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1 Summary

Fluctuations in Earth’s surface air temperature determine the climatic conditions for life on our

planet and influence, among other factors, the occurrence of extreme climatic events. Therefore,

a precise understanding of this variability in temperature is paramount to society, politics, and the

economy. However, many characteristics and impacts of temperature variability are still uncertain,

especially at the local spatial scale and on decadal to multicentennial timescales. Moreover, the rel-

ative contribution of climate system-inherent and external drivers of variability needs to be better

constrained. Finally, how temperature variability changes with the mean climate state and, thus, un-

der current and future anthropogenic warming remains to be clarified. These uncertainties affect

long-term planning, for example, concerning mitigation and adaptation strategies.

In three publications, this dissertation examines the statistical properties of temperature variability

as a function of the underlying spatiotemporal scales, external drivers, andmean climate state. Spec-

tral methods are combined with time series analysis, conceptual modeling, and Bayesian inference

to quantify temperature variability from climate model simulations and paleoclimate records. The

results confirm overall confidence in the simulated global temperature variability. Climate models,

however, respond more strongly to external forcing and show fewer internal fluctuations at decadal

scales than paleoclimate reconstructions of global temperature. At the local level, there are signif-

icant data-model mismatches in temperature variance and correlation properties over decadal and

longer timescales. Improved representation of natural forcing in climate model simulations can par-

tially offset these differences. By integrating the response to volcanic eruptions, sea ice dynamics

plays an essential role in amplifying local multidecadal variability. Decreasing sea ice extent atten-

uates local variability under warming, especially in high latitudes. Overall, global variability tends

to be dominated by external forcing, while local variability is primarily caused by state-dependent

internal variations and remains subject to substantial uncertainties.

This work extends these findings with complementary investigations. A new estimate of the power

spectral density for global temperature beyond the last millennia complements the analyses. The

comparison of transient climate model experiments covering the last 27 thousand years using pre-

scribed or interactively coupled ice sheets reveals benefits from dynamic simulation of ice sheet

feedbacks for representing millennial-scale variability. Further studies analyze the potential impacts

of uncertainties in the simulated variability on projections of extreme climate events, attribution

studies, and risk assessments. Missing interannual to millennial temperature variability in simula-

tions could lead to underestimating future climate impacts.

Limitations of the presented analyses arise from uncertainties of the data and the assumption that

weakly-stationary stochastic processes sufficiently describe the considered temperature time se-

ries. Since this work focuses on past and present climates, follow-up studies are needed to test

the robustness of the findings in future projections, particularly against the influence of non-linear

processes.

Altogether, the insights gained on the timescale-, forcing-, and state-dependent statistics of local

to global temperatures open new possibilities for improving the analysis and understanding of tem-

perature variations, as well as the ability of models to simulate climate variability. Despite remaining

uncertainties in model simulations and reconstructions, the reliable simulation of future local tem-

perature variability requires improved representations of ice sheet feedbacks and natural forcing in

climate model experiments. This will contribute to a reliable assessment of future climate-related

risks and help inform long-term planning, mitigation, and adaptation efforts.
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Kurzfassung

Die Schwankungen der Oberflächenlufttemperatur bestimmen die klimatischen Bedingungen für

das Leben auf unserem Planeten. Durch diese Temperaturvariabilität werden etwa extreme Kli-

maereignisse beeinflusst. Temperaturvariabilität zu verstehen ist daher für Gesellschaft, Poli-

tik und Wirtschaft unerlässlich. Besonders auf lokaler Ebene und über Zeitskalen von Jahren

bis Jahrtausenden ist Temperaturvariabilität noch unzureichend verstanden. Es ist notwendig,

Diskrepanzen zwischen simulierter und rekonstruierter Variabilität zu klären. Zudem gilt es die An-

teile jener Fluktuationen, die im Klimasystem intern generiert oder extern angetrieben werden, zu

bestimmen. Noch ist zu wenig über den Einfluss der durch den Menschen verursachten Erwärmung

auf die Klimavariabilität bekannt. Diese Unsicherheiten erschweren die langfristige sozioökonomis-

che Planung und Entwicklung von Mitigations- und Adaptationsstrategien.

Diese Dissertation untersucht in drei Publikationen die Temperaturvariabilität unter Berücksichti-

gung der räumlichen und zeitlichen Skalen, der natürlichen Antriebe und des mittleren Klimazus-

tands. Zeitreihenanalysen, konzeptionelle Modellierung und Bayes’sche Verfahren quantifizieren die

Variabilität aus Paläoklimarekonstruktionen und Klimamodellsimulationen. Die Ergebnisse zeigen,

dass Klimamodelle die globale Temperaturvariabilität zuverlässig simulieren. Auf dekadischen Zeit-

skalen sind geringe Abweichungen zu finden, da Modelle stärker auf Vulkanausbrüche reagieren.

Auf lokaler Ebene und Zeitskalen länger als zehn Jahren zeigen sich signifikante Unterschiede in

der Varianz und den Korrelationseigenschaften simulierter und rekonstruierter Temperaturen. Die

Einbeziehung natürlicher Einflüsse auf die Strahlungsbilanz in Modellen kann diese Diskrepanz ver-

ringern. Meereis ist dabei wichtig, um die Reaktion des Oberflächenklimas auf Vulkanausbrüche

zu verstärken. In wärmeren Klimazuständen führen geringere Meereis-Rückkopplungseffekte zu

weniger Variabilität. Zusammenfassend wird die globale Temperatur hauptsächlich durch externe

Antriebe bestimmt, während lokal interne zustandsabhängige Schwankungen dominieren und noch

große Unsicherheiten auftreten.

Diese Arbeit ergänzt die Erkenntnisse der vorgestellten Publikationen durch weitere Untersuchun-

gen. Dabeiwird die Temperaturvariabilität aus Klimamodellsimulationen der letzten 27 tausend Jahre

mit interaktiv gekoppelten Eisschilden analysiert. Die dynamische Simulation von Rückkopplungen

in Reaktion auf Schmelzwasser aus Eisschilden ermöglicht eine bessere Darstellung der Variabilität.

Allerdings reichen diese Verbesserungen nicht aus, um die Diskrepanz zwischen simulierten und

rekonstruierten lokalen Temperaturen vollständig aufzuheben. Limitierungen der simulierten Vari-

abilität kann sich auf die statistische Vorhersage extremer Klimaereignisse sowie Attributionsstudien

auswirken. DesWeiteren sollte die Abschätzung ökonomischer Schäden durch Klimaveränderungen

mögliche Variabilitätseffekte berücksichtigen.

Limitierungen entstehen primär durch Datenunsicherheiten und die Annahme, dass schwach-

stationäre stochastische Prozesse die Temperaturveränderungen hinreichend beschreiben. Da

diese Arbeit den Fokus auf das vergangene und gegenwärtige Klima legt, sollten Folgestudien die

vorgestellten Methoden und Ergebnisse in Simulationen zukünftiger Szenarien testen.

Die gewonnenen Erkenntnisse eröffnen neue Möglichkeiten, um das Verständnis von Kli-

maschwankungen zu verbessern und die Fähigkeiten von Modellen zur Simulation von Temper-

aturvariabilität zu testen. Ungeachtet verbleibender Unsicherheiten erfordern Projektionen lokaler

Temperaturen eine verbesserte Darstellung von Eisschild-Rückkopplungseffekten und natürlichen

Antrieben. Die dargelegten Ergebnisse werden daher zu einer zuverlässigen Simulation künftiger

Klimarisiken beitragen und langfristige Mitigations- und Anpassungsmaßnahmen wissenschaftlich

unterstützen.
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5. INTRODUCTION

5 Introduction

Throughout human history, the desire to understand nature and its laws has led to countless break-

throughs in physics and related disciplines. Observations of the Earth’s dynamic system have repeat-

edly given new impetus to climate research, prompting the field to find explanations for phenomena

as diverse as glacial cycles, the greenhouse effect, and ozone depletion. Today, human impacts on the

climate and environment threaten life on Earth. Among others, the occurrence of extreme weather

and climate events is noticeably changing (Fischer&Knutti, 2015). Unabated global warming is af-

fecting human health, food security, and entire ecosystems (IPCC, 2022b). Consequently, climate

research is driven by the need to estimate and constrain possible future climate pathways based on

information about past and present changes. At the same time, the time window to act and protect

human well-being and our planet’s health is rapidly closing (IPCC, 2021b).

Climatemodel simulations of globalmean temperature have quantified and attributed anthropogenic

warming (IPCC, 2021b; Manabe&Wetherald, 1967), paving the way for effective mitigation strategies.

Besides changes in the mean, climate variability also comprises changes in the variance and higher-

order statistics (IPCC, 2022a). Predicting air temperature fluctuations at the Earth’s surface, here

temperature variability, is at least equally important as predictions of the mean (Katz&Brown, 1992).

In particular, temperature variability influences the climatic conditions at the local level, including

the probability of droughts and extreme heat (Schär et al., 2004). Therefore, risk assessment and

adaptation strategies depend on accurate information about local temperature variability.

Klaus Hasselmann, honored with the 2021 Nobel Prize in Physics, was one of the first to recognize

variability as a prominent feature of global temperature. He attributed parts of the variability to ran-

dom effects from high-frequency (“weather”) components of the Earth system (Hasselmann, 1976).

His work enabled the unambiguous separation of natural forced and unforced variations from an-

thropogenic effects by so-called “fingerprinting” approaches (Hegerl et al., 1996). Despite these and

othermilestones in climate science, the range of future climate variability is still subject to uncertain-

ties (IPCC, 2021b). More knowledge about temperature variability is required, especially regarding

local temperatures at timescales of a few years to millennia (Franzke et al., 2020).

Figure 1 illustrates the “knowledge gap” on temperature variability by showing three profoundly

different concepts of temperature variability across scales (Huybers&Curry, 2006; Lovejoy, 2015;

Mitchell, 1976). The concepts correspond to analytical and data-based estimates of the power spec-

tral density (PSD) S(τ). The PSD quantifies the contributions of fluctuations to the total variance as

a function of the underlying timescale τ (details in Section 5.2.2). The first estimate of the PSD, or

“spectrum”, of global temperature was a detailed and pioneering sketch by Mitchell (1976) (Fig. 1 a).

His seminal paper shaped the early understanding of this spectrum as the composite of multiple

(pseudo-)oscillatory variations, giving rise to spectral peaks.

In contrast to Mitchell’s “foreground” view, Huybers&Curry (2006) drew attention to the “back-

ground continuum” of the spectrum (Fig. 1 b). Parts of the fitted spectral continuum follow a power

law

S(τ) ∼ τβ ,

with spectral exponent β and scaling interval τ ∈ [τ1, τ2]. The temporal scaling suggests that the

temperature fluctuations can be described by the same stochastic process and, thus, statistical

properties within a scaling interval. The concept of temporal scaling stimulated numerous studies

(Fraedrich et al., 2004; Fredriksen&Rypdal, 2017; Nilsen et al., 2016), however, its underlying mech-

anisms are still debated (Franzke et al., 2020).
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5. INTRODUCTION

Figure 1: Conceptual illustrations of estimated

power spectral densities (PSD) for surface air

temperature and scaling coefficients β prior to this

dissertation thesis. a Sketched temperature spec-

trum with highlighted peaks at the Milankovitch,

annual, and diurnal cycles (Mitchell, 1976). b Fitted

PSD and power-law scaling β to composite spectra

from tropical and high latitude temperature data

(Huybers&Curry, 2006). c PSD and scaling laws

fitted to a spectral composite of temperature

data from different locations (Lovejoy, 2015). The

so-called weather, macroweather, and climate

regimes (Lovejoy, 2015) are highlighted. All lines

were redrawn from the original figures.
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One reason for the remaining uncertainties is unequivocal evidence for scale breaks. The latter are

periods at which the scaling behavior changes (Nilsen et al., 2016). Huybers&Curry (2006) suggested

a change in scaling behavior at the centennial scale for tropical and high-latitude zonal mean spectra

based on paleoclimate and instrumental records (Fig. 1 b). However, this selection of data supporting

spectral estimates is limited to a few records. The PSD estimate by Lovejoy (2015) proposes different

regimes with distinct temporal scaling behavior (Fig. 1 c), but the records seem unrelated because

they refer to different locations. The use of different methods for quantifying spectral estimates,

such as relativemagnitudes (Fig. 1 a) or normalization techniques (Fig. 1 b), complicate the comparison

between spectral estimates and scaling behavior (Hébert et al., 2021).

The guiding aim of this thesis is to improve the understanding of the structure and causes of tem-

perature variability by presenting and analyzing new estimates of the temperature spectrum. To this

end, this work quantifies and contrasts the timescale dependency of temperature fluctuations across

scales from paleoclimate records, observational data, and model simulations of varying complexity.

To identify potential variability mechanisms, the presented studies also examine the forcing depen-

dency of temperature variability, that is, the extent to which fluctuations are externally driven or

internally generated. As the amplitude of temperature variations does not only vary with timescale

but also with the mean climate (Rehfeld et al., 2018), the state dependency of forced and unforced

temperature variability from the last glacial to the present day is assessed. The improved under-

standing of local to global temperature variability can help to identify themechanisms and potential

impacts of temperature variability and to test the ability of climate models to simulate temperature

variability with sufficient accuracy.

This introductory chapter reviews the physics-based concepts relevant to the pursued research

strategy. Section 5.1 defines the climate system, its components, and characteristic timescales. A

brief history of Earth’s surface temperature (Sec. 5.1.1) reviews paleoclimate reconstructions as a

data source for past temperature variability. The notion of radiative equilibrium and feedback is
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introduced to explain the state space of climate (Sec. 5.1.2) and emerging dynamical phenomena,

such as abrupt transitions. Section 5.2 presents the methods used in this work. These include sim-

ple to comprehensive climate models (Sec. 5.2.1), spectral analysis (Sec. 5.2.2), and scale invariance

(Sec. 5.2.3). Section 5.3 elaborates the existing knowledge gaps on temperature variability and mo-

tivates the guiding questions of this dissertation. All details about the numerical implementations,

statistical framework, uncertainty analysis, and specific datasets are given in the data and methods

parts of P1-P3 (App. F - App. H).

5.1 Variability as an inherent property of Earth’s dynamic system

Changes in Earth’s climate result from the dynamics of climate subsystems, including the atmo-

sphere, hydrosphere, cryosphere, lithosphere, and biosphere (IPCC, 2022a), as well as external forc-

ing from natural and anthropogenic sources (Fig. 2 a). Natural forcing corresponds to orbital, solar,

volcanic, and natural greenhouse gas perturbations to Earth’s radiative balance. Anthropogenic forc-

ing relates to human activities and mainly stems from land cover changes and greenhouse gas emis-

sions. Both the external forcing and climate subsystems operate at distinct characteristic timescales

(Fig. 2 b). The transfer of mass, energy, and momentum intimately connects these components. As a

result, climate variability is closely bound to the physical properties of the climate system.

To first order, climate variability can be separated into external and internal variability. Here, “exter-

nal” refers to the forced component of variability, whereas “internal” describes the intrinsic chaotic

component of variability. Natural variability describes internal and external variations without an-

thropogenic influences. Statistical descriptions of climate variability range from monthly to geo-

logical periods on the order of millions of years (Fig. 2 b). In contrast to meteorological studies,

climate variability typically neglects details of the instantaneous atmospheric state, including day-

to-day and synoptic changes. Nevertheless, climate statistics capture these fluctuations in the mean

and higher-order moments over many individual realizations of fast and chaotic weather dynamics.

The wide range of timescales is linked to a multitude of spatial scales, from kilometer-wide weather

systems to planetary waves spanning large parts of the Earth.

Figure 2: a Main components (hydrosphere, atmosphere, biosphere, lithosphere, and cryosphere) and drivers (volcanic

aerosols, solar irradiance, greenhouse gas emissions, and orbital forcing) of Earth’s climate system. b Selection of ap-

proximate characteristic timescales for internal variations (orange) and external forcing (blue) (PALAEOSENS Project

Members, 2012; Peixoto&Oort, 1992; Rohling et al., 2018).

5.1.1 From paleoclimate reconstructions to future scenarios

Earth’s temperature variations provide insights into our planet’s history. Instrumental measure-

ments of local surface and near-surface temperature have been available since about industrial times.

The longest instrumental observation is the Hadley Centre Central England Temperature (HadCET),

starting 1659 CE (Parker et al., 1992). Robust statistical estimates of the global temperature are avail-
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able after approximately 1850 CE (Morice et al., 2021), whereby global temperature commonly refers

to the globally-averaged surface air temperature.

Paleoclimate reconstructions

Paleoclimate research based on climate proxies is needed to resolve variability prior to the last cen-

turies (IPCC, 2021b). Climate proxies preserve past physical or biogeochemical characteristics of

particular, often seasonal, climate parameters such as summer temperatures (Evans et al., 2013). Ex-

amples are stable isotopes in ice cores and corals, growth rates in tree rings, pollen species in lake

sediments, and foraminifera in ocean sediments. Their biological and chemical composition, growth

or sedimentation rate relate to past climate conditions. Therefore, proxy records allow for recon-

structions of past temperatures based on calibration methods. Nevertheless, there are fundamental

challenges in separating climatic from non-climatic information (Lücke et al., 2019; Reschke et al.,

2019) as well as externally forced from internally generated fluctuations. Proxy-based reconstruc-

tions are subject to numerous uncertainties in the agglomeration of the climatic signal, the transfor-

mation to temperature, and the statistical interpretation. There is a shift from analyzing individual

proxies to synthesizing records in large data projects. These compilations have improved the avail-

ability, documentation, and comparability of paleoclimate reconstructions (Comas-Bru et al., 2020;

Marcott et al., 2013) and analysis methods (Kaufman et al., 2020; PAGES2k Consortium, 2017). More-

over, combining multiple proxy records with statistical methods and climate field reconstructions

allows for reliable hemispheric and global estimates (Kaufman et al., 2020; Lisiecki &Raymo, 2005;

PAGES 2k Consortium, 2019; Snyder, 2016).
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Figure 3: Patchwork of paleoclimate reconstructions (Hansen et al., 2013; Jouzel et al., 2007; Lisiecki &Raymo, 2005;

North Greenland Ice Core Project members, 2004; Zachos et al., 2008), historical observations (Morice et al., 2021), and

model simulation (Boucher et al., 2020) of the global temperature from 66 million years ago to 2300 CE. Anomalies are

given with respect to 1960-1989 CE. Dashed lines correspond to the maximum global annual mean temperature of two

scenarios, SSP1-2.6 and SSP5-8.5, as simulated by the IPSL model (Boucher et al., 2020). The figure was adapted from

Wikimedia Commons (Fergus, 2014) using code from Elisa Ziegler (Ziegler, 2022).

Past to future temperatures on Earth

Paleoclimate reconstructions of global mean temperature present a wealth of variability phenom-

ena over the last million years (Fig. 3). One important feature of past climate on Earth is the Pale-

ocene–Eocene thermal maximum (PETM), an early warm period approximately 55 million years ago

(McInerney&Wing, 2011) (Fig. 3 a). Back then, global temperaturewasmore than 10 °C degrees higher

than today. Some warming scenarios project similarly high temperatures within the next centuries

(Boucher et al., 2020). Although life on Earth was quite different from today, research on the PETM

can help understand the impacts of anthropogenic warming on flora and fauna (McInerney&Wing,

2011; Wing et al., 2005).

Other characteristics of past temperatures are pseudo-oscillatory switches between warm and cold

periods, so-called glacial and interglacial states (Fig. 3 b and c). Climate research has greatly ben-

efited from studying such glacial-interglacial cycles and their underlying physics (Crucifix, 2012;

Jouzel et al., 2007; Shakun&Carlson, 2010). In his seminal work, Milankovitch (1941) attributed the

changes between glacial and interglacial periods to seasonal and latitudinal-dependent changes in
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solar insolation from slow periodic variations in Earth’s orbit. However, there is still a debate about

the role of internal mechanisms and external causes in the occurrence of these transitions (Shackle-

ton, 2000; Willeit et al., 2019). WhileMilankovitch’s theory explains the presence of 41 kiloyears (kyrs)

long periods, different hypotheses exist for the change in cyclicity to periods of approximates 100

kyrs around 650 to 1250 kyrs ago, referred to as the “100,000-year problem” (Clark et al., 2006).

Moreover, the study of glacial-interglacial cycles has revealed sudden temperature changes (Fig. 3 d),

primarily associated with so-called Dansgaard–Oeschger (DO) (Dansgaard et al., 1993) and Heinrich

events (Heinrich, 1988). These involve self-amplifying non-linear processes and critical transitions

in ocean circulations, such as the Atlantic Meridional Overturning Circulation (AMOC) (Henry et al.,

2016). The most recent deglaciation, called “last deglaciation”, describes the transition from the Last

Glacial Maximum (LGM, approx. 25-17 kyrs ago) to the Holocene (11 750 before present (BP) to today).

The latter is a particularly stable climate period, showing only small global temperature variations.

The temperature increase from the LGM to theHolocene is of the samemagnitude as that of warming

scenarios by 2100 CE (IPCC, 2021b; Shakun&Carlson, 2010). Therefore, the comparison of variability

in different mean climates (Rehfeld et al., 2018) can guide the validation of climate model simulations

across climate states and improve the accuracy of projections (Rehfeld et al., 2020).

Human interventions in the climate are determining the near-term global temperature evolution

(IPCC, 2022b). Figure 3 e depicts emission-driven simulations for two distinct future scenarios. The

scenarios correspond to shared socioeconomic pathways (SSPs), providing greenhouse gas emissions

based on projected socioeconomic changes and climate policies up to 2100 CE, and their extensions

to 2300 CE. Reaching the Paris target to limit warming to +2 °C compared to pre-industrial times,

preferably +1.5 °C, by 2100 CE is still achievable (IPCC, 2022b). The SSP1-1.9 and SSP1-2.6 scenarios

are projected to yield a global temperature increase below +1.5 °C and +2 °C, respectively. Conversely,

sustained high emission scenarios, such as SSP5-8.5, would drive the climate within a few decades

into a range of temperatures unseen over the past million years (Fig. 3 e). While there is strong con-

fidence in the global response to greenhouse gas emissions, uncertainties about future projections

remain (Sherwood et al., 2020), especially on local to regional scales (IPCC, 2021b). These uncertain-

ties affect the assessment of climate-related risks for society and ecosystems and, thus, require an

improved understanding of local temperature variability.

5.1.2 From nature’s laws to describing temperature variability

To characterize temperature fluctuations, it is essential to describe temperature as a quantity of

the dynamical climate system and its governing equations. Depending on the physical systems, dif-

ferent mathematical formulations of temperature exist. Microscopically, for example, temperature

can describe the mean translational kinetic energy of particles with velocity vector ~v following the

Maxwell-Boltzmann law T ∝
√

〈~v · ~v〉. Macroscopically, temperature is a state variable of a physical

system that obeys the laws of thermodynamics. For example, the ideal gas law defines the tempera-

ture as a function of pressure p and volume V via T ∝ pV , given that the total number of molecules

is fixed.

Energy balance and equilibrium solutions

In climate research, temperature relates to nature’s laws of energy conservation and thermodynam-

ics. It is the key quantity to describe the Earth’s climate system’s physical state and statistical proper-

ties (Peixoto&Oort, 1992). A zero-dimensional, so-called Budyko-Sellers type energy balance model

(EBMs) (Budyko, 1969; Sellers, 1969), serves as a simple approximation to the global temperature from
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the balance between incoming and outgoing radiative energy

C
dT

dt
= Rin −Rout , (1)

where T is the time-dependent temperature evolution. C is a positive constant corresponding to

Earth’s heat capacity. The incoming short-wave and outgoing long-wave radiation are functions of

T , typically written as:

Rin = (1− α(T ))S0

Rout = σε(T )T 4

The absorbed radiation Rin equals the incoming radiation S0 = Q0/4 from solar insolation Q0 minus

the reflected one α(T )S0 due to albedo effects α(T ). The effective emissivity ε(T ) describes the back

radiation relative to that of a perfect black body radiator, and σ is the Stefan-Boltzmann constant.

More (less) incoming than outgoing energy heats (cools) the Earth’s surface.

To find steady solutions to the energy balance (1), it is possible to formulate a variational principle

(Benzi et al., 1983; Ghil, 1976; North et al., 1979). Accordingly, the steady solutions of a differential

equation f(T ) correspond to the extrema of a pseudo-potential V via

f(T ) = −dV

dT

!
= 0 and V (T ) = −

∫ ∞

−∞
f(T ) dT .

Here, the differential equation reads f(T ) = C dT
dt and a steady solution f(T0) = 0 gives rise to a so-

called “fixed point” T0. At such fixed points, the temperature evolution T can be approximated after

time-dependent perturbation ∆T using a Taylor series

f(T ) = f(T0) + f ′(T0)∆T +O((∆T 2)) = f ′(T0)∆T +O((∆T 2)) ,

with f ′(T0) denoting the time derivative of f(T ) at T0. For sufficiently small fluctuations ∆T at the

start of the perturbation, higher-order fluctuations O((∆T 2)) are negligible. As a result, the approx-

imate time-evolution for the perturbation ∆T reads

C
d∆T

dt
≈ f ′(T0)∆T.

The solution to this equation is an exponential function∆T (t) = ∆T (t0)exp(λf t) (Ghil, 1976) with ini-

tial perturbation ∆T (t0) and feedback parameter λf = f ′(T0)/C. The sign of λf determines whether

the perturbations grow or decay exponentially over a period of time, and relates to the concavity

of the pseudo-potential V (T ) at T0. The fixed point is linearly stable (unstable) for negative (posi-

tive) feedback. If λf = 0, the fixed point is marginally stable, and higher-order fluctuations must be

considered.

Bifurcation and abrupt transitions

In casemultiple fixed points exist in a system, transitions between themcanoccur, which is described

in the mathematical framework of bifurcations. Considering the global temperature evolution as

formulated in Equation (1), the number of possible states depends on the parametrization α(T ) and

ε(T ). Typical parametrizations share the property that, as temperature increases, the negative black

body feedback partially counterbalances the positive feedback from the planetary albedo (Budyko,

1969; Sellers, 1969). A corresponding potential V (T ) can bemodeled by a double-well potential

Vν(T ) =
T

4

4

− T

2

2

− νT ,

with control parameter ν (Fig. 4 a) (Boers et al., 2022; Ditlevsen&Ashwin, 2018; Ghil & Lucarini, 2020).

Here, the control parameter ν describes the difference between Rin and Rout and, thus, the global

temperature.
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For control parameters |ν| ≥ νc above a critical value νc, the system has only one fixed point (Fig. 4 a,

blue curve). For −νc < ν < νc, the dynamical system exhibits two stable solutions (Fig. 4 a, green

curve), described by the term “bistability”. For example, the two stable states correspond to the

existence of a cold (“deep-freeze”) and warm, present-day climate state (Budyko, 1969; Sellers, 1969).

The bifurcation diagram (Fig. 4 b) describes this change in the number of fixed points and visualizes

its dependence on ν.
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Figure 4: Potential function (a), bifurcation diagram (b), and time series examples (c and d) of a dynamical system with

bistability as a function of the control parameter ν. The illustration and underlyingmathematical description correspond

to global temperature bistability (Boers et al., 2022; Ditlevsen&Ashwin, 2018; Ditlevsen& Johnsen, 2010; Ghil & Lucarini,

2020). Dashed lines indicate unstable fixed points and branches. Arrows in the bifurcation diagram (b) correspond to

hysteresis jumps from one stable branch to the other. The change in the system state is numerically simulated under (c)

a noise-induced transition, corresponding to the motion of a particle in the double-well potential, and (d) a bifurcation-

induced transition using a time-dependent linear ramp ν(t).

For a certain value of ν, the system can abruptly jump from one to the other fixed point. This is

because stable solutions can coexist for the same ν (Fig. 4 b). Stochastic noise, such as random

internal fluctuations, can drive the transition from one to another fixed point (Fig. 4 c). Gradual

changes in ν can also cause a transition (Fig. 4 d). After such a transition, only bifurcation or closing

the hysteresis loop (Fig. 4 b) retains the initial state (Boers et al., 2022).

In addition to global temperature, many studies have found multistability for other climate pa-

rameters. In this context, the concept of so-called “tipping points” (Lenton et al., 2008; Lenton&

Schellnhuber, 2007) has recently gained much attention (Armstrong McKay et al., 2022; Lenton et al.,

2019; Wunderling et al., 2021). “Tipping” describes transition phenomena that are triggered above a

critical threshold and different types of tipping have been classified (Ashwin et al., 2012). Its notion

of an accelerated and irreversible change is controversial but stresses the risk that small fluctua-

tions can cause a pronounced change in the climate system (Crucifix&Annan, 2019). Detecting and

predicting tipping points might be complicated by incomplete knowledge of long-term variability

and stochastic dynamics in climate subsystems. This highlights the role of precise knowledge of the

structure and causes of variability in assessing climate-related risks.

Climate sensitivity

As a central quantity in climate research, the equilibrium climate sensitivity (ECS) quantifies the

long-term response to external forcing. The term “equilibrium” refers to some equilibrated slower

dynamics (von der Heydt et al., 2021), independent of fast fluctuations such as weather. Building

on this timescale separation, the expected long-term change in global temperature ∆T after re-

sponse to radiative forcing∆R can be described by a general equilibrium sensitivity (Ghil & Lucarini,
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2020)

SE =
∆T

∆R
.

The ECS is then defined as the global warming ECS = SE ∆R2xCO2
corresponding to the radiative per-

turbation ∆R2xCO2
of doubling the atmospheric CO2 concentration (IPCC, 2022a) and after reaching

a new equilibrium state. Current estimates suggest that ECS = 3K with a likely range of 2.5 - 4K

(IPCC, 2021b).

Considering anomalies ∆T with respect to some equilibrium stat T0, a new equilibrium T = T0 +∆T

is reached when R(∆T ) = Rout(∆T )−Rin(∆T ) = 0Wm−2 holds. Here, the radiative forcing R(T0) = 0

Wm−2 is set to zero for simplicity. The change ∆R = −R(∆T ) in response to external radiative

forcing reads

∆R = −dR

dT

∣∣∣∣
T=T0

∆T +O
(
(∆T )2

)
Assuming that Rin stays constant, the reference sensitivity SE for the radiative balance (1) is solely

determined by the Planck feedback

SE = −∂R

∂T

∣∣∣∣
T=T0

= 4σε(T0)T
3 , (2)

which defines the reference feedback parameter λ0(T0) = 1/SE . However, R can depend on various

other feedback processes χi(T ), that contribute to the radiative adjustment

dR

dT
=

∂R

∂T
+
∑
i

∂R

∂χi

dχi

dT
.

Neglecting higher-order fluctuations, the change in temperature ∆T corresponding to a change in

radiation ∆R reads

∆T ≈ λ0(T0)

1−
∑

i fi(T0)
∆R with fi(T0) = λ0(T0)

∂R

∂χi

dχi

dT

∣∣∣∣
T=T0

.

The ECS found in observations and climate model simulations is typically higher than that expected

from (2) due to feedbacks ∂R
∂χi

dχi

dT and non-linear processes O
(
(∆T )2

)
. Causes for the large inter-

model spread in ECS estimates are uncertainties about the role of non-linear feedback processes

(Ceppi et al., 2017; Knutti &Rugenstein, 2015; Lovejoy&Schertzer, 2012; Rypdal &Rypdal, 2016), forced

(Forster, 2016), and internal variability (Huber et al., 2014; Olson et al., 2013). Thus, ECS estimates will

directly benefit from studying forced versus unforced variability and potential feedback mechanisms

contributing to climate variability.

5.2 Concepts of temperature variability research

Temperature data to study climate variability can be obtained from direct instrumental measure-

ments, reanalysis, paleoclimate reconstructions, and simulations with climate models of varying

complexity. These datasets vary in spatiotemporal resolution and are subject to inevitable uncertain-

ties, requiring statistical and physics-based analysis. This chapter introduces climate models of var-

ious complexity and reviews the time series analysis and spectral methods used in this work.

5.2.1 Climate model simulations

Climate model simulations are crucial to project the future climate and aid in understanding climate

observations and reconstruction. They represent the physical, chemical, and biological processes

of the climate system, their interactions, and responses to external drivers (IPCC, 2022a) (Fig. 5). In

26



5. INTRODUCTION

LITH
OSP

HER
E

CRYO
SPHE

RE BIOSPHERE

HYD
ROS

PHE
RE

ATMOSPHERE
clouds

wind

precipitation

sea ice

ocean 
currents

river runoff
and lakes

weathering

carbon 
cycleback 

radiation
evaporation

sea level

volcanic 
aerosols

greenhouse 
gases

land use

solar
radiation

Figure 5: Simplified architecture of complex climate models, such as ESMs. The model represents the main components

(black), drivers (orange), and processes (pink) by solving their governing equations on a three-dimensional grid of cells.

The figure is inspired by the schematic of the UVic ESCM 2.10 climate model (Mengis et al., 2020).

addition, the models account for the conservation of momentum, mass, and energy. To this end,

they employ physics-based laws such as the first law of thermodynamics, the Stefan-Boltzmann law,

and the Navier-Stokes equations of fluid motion. The numerical framework of climate models en-

forces these constraints by differential equations. Physical or empirical laws parametrize sub-grid

processes. Running model experiments corresponds to computing the discretized and approxi-

mate solutions to the implemented equations. As such, climate simulations depend on the choice

of boundary and initial conditions. Boundary conditions include Earth system properties such as

orography, land-sea mask, greenhouse gas concentrations, bathymetry, vegetation distribution, and

orbital parameters. They can vary in time by interactive modeling or prescribed values. Initial con-

ditions describe the initialized state of the climate system’s components, such as the oceans and

atmosphere. The initial state corresponds to an equilibrium reached after a spin-up run.

Models differ in their number of degrees of freedom, spatiotemporal resolution, and the extent to

which processes are parametrized or directly simulated (Fig. 6). Earth system models (ESMs) are the

highest, most comprehensive class of climate models. They increasingly include interactive chem-

istry and biology, allowing for enhanced representation of the carbon cycle, atmospheric chemistry,

ice sheets, and dynamic vegetation (IPCC, 2022a). As such, they account for more interactions within

the Earth system than their predecessors, so-called atmosphere-ocean general circulation mod-

els (AOGCMs). Earth system models of intermediate complexity (EMICs) resolve climate processes

typically at a lower resolution and use more idealized representations (IPCC, 2022a) compared to

AOGCMs.

Stochastic energy balance models

Comprehensive climate models require high programming efforts, are computationally expensive,

and produce large amounts of data, especially for high-resolution and long simulations. Despite the

complexity of the climate system, conceptual (also called “simple”) energy balance models (EBMs)

(Fig. 6) provide an easy-to-interpret and computationally cheap approach to model the climate’s

main characteristics. The simplicity of conceptual climate models is not a deficiency but helps ex-

plain global warming, climate dynamics, and the output of more complex models. For example, they

laid the basis for attributing anthropogenic warming to greenhouse gas emission (Hegerl et al., 1996),

investigating climate sensitivity (Ghil, 1984), and Glacial/Interglacial cycles (Dortmans et al., 2019;
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Figure 6: Conceptual ranking of the complexity of climate models used in this work. The model typology ranges from

conceptual energy balance models (EBMs) and Earth system models of intermediate complexity (EMICs) to highly com-

prehensive atmosphere-ocean general circulation models (AOGCMs) and Earth system models (ESMs). The dashed lines

indicate that the distinction between the individual models and their positioning on the scale of increasing degrees of

freedom can overlap.

North et al., 1983). Simple climate models have also been used for future projections of global and

regional temperatures (Hébert&Lovejoy, 2018; Myrvoll-Nilsen et al., 2020). In addition to analytical

exercises, simple climate models can emulate the output of more complex model simulations (Mein-

shausen et al., 2011). Emulators “learn” another model’s properties by fitting the free parameters of

the emulator to the target data or by using machine learning methods. Because of their flexibility

and efficiency, emulators can help explore a wide range of parameters and scenarios.

Assuming a linear and stationary temperature response to external forcing F (t) to the energy balance

(1), the global temperature evolution can be approximated by

C
d

dt
T (t) = −λT (t) + F (t) ,

with feedback parameter λ (Budyko, 1969; Sellers, 1969). Hasselmann (1976) extended this approach

to a stochastic model, thereby initiating the field of stochastic climate modeling. Stochastic models

are motivated by the fundamental question of how random long-term fluctuations in the climate

systems can emerge from the chaotic short-termdynamics of the atmosphere. Hasselmann’s seminal

approach relies on the distinction between deterministic and random forcings:

C
d

dt
T (t) = −λT (t) + F (t) + ξ(t) (3)

The process ξ(t) = σW ε(t) with standard deviation σW is typically assumed as a white noise process

ε(t) and gives rise to stochastic dynamics, motivated by random “weather forcing”. The solution to

Equation (3) is an Itô-integral over the Wiener process W (s)

T (t) =

∫ t

−∞
R(t− s)

1

C
F (s)ds+

∫ t

−∞
R(t− s)

σW
C

dW (s) , (4)

with response function R(t) (P3). The second term in Equation (4) corresponds to an Ornstein-

Uhlenbeck (OU) process and explains long-term temperature variability as the integral response to

short-term stochastic fluctuations (Hasselmann, 1976; Rypdal &Rypdal, 2014). In P3 (Schillinger et

al., 2022a), we combine a multibox extension of the Hasselmann EBM (4) with Bayesian inference to

emulate the statistics of forced and unforced variability in state-of-the-art complex climate mod-

els.

5.2.2 Time series and spectral analysis

Understanding mechanisms and making predictions of climate variability requires time series analy-

sis. A time series x(t) represents a sequence of data points at consecutive points in time. To describe

their statistical properties, time series are typically considered to be realizations of mathematical

models. Since random fluctuations are ubiquitous in nature, stochastic processes are particularly
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suited to describe time series of climate parameters (Chatfield, 2003). A stochastic process X(t) is

an ordered set of random variables. Here, the main statistical measures of stochastic processes are

presented in the framework of real-valued processes that are continuous in time (−∞ < t < ∞, if not

stated otherwise).

Autocovariance and spectral analysis of stochastic processes

The autocovariance gives the covariance of X(t1) and X(t2) at times t1 and t2

γ(t1, t2) = E [(X(t1)− µ(t1)) (X(t2)− µ(t2))] ,

with mean µ(t) = E [X(t)]. If the autocovariance and mean function are time-independent, the pro-

cess is weakly stationary, and the autocovariance depends solely on the lag h = t2 − t1:

γ(h) = E [(X(t)− µ) (X(t+ h)− µ)]

For zero-mean processes, γ(h = 0) = E
[
X2

]
= σ2 denotes the variance. Strict stationarity addition-

ally requires the temporal independence of all higher-order moments.

Spectral analysis plays a key role in quantifying temperature fluctuations across timescales. The

PSD quantifies the contribution of fluctuations, related to oscillations with certain frequencies, to

the total variance. For a weakly-stationary stochastic process, the PSD is defined by the Fourier

transform F of the autocovariance (Chatfield, 2003; Khintchine, 1934; Wiener, 1930)

S(ω) = F{γ(h)}(ω) . (5)

Practically, the PSD is often calculated from the Fourier transform of the process, that is X̂(ω) =

F{X(t)}(ω). To avoid convergence problems (Ditlevsen et al., 2020) (App. A), it is assumed that the

stochastic process is ergodic and zero outside an interval t ∈ [−T/2, T/2], here denoted by XT (t).

Following the proof from Equation (14) in Appendix A, the PSD can be expressed by means of the

squared Fourier transform

S(ω) = lim
T→∞

1

T
|X̂T (ω)|2 (6)

in the limit of T → ∞.

Moreover, the PSD relates to the variance γ(0) = E[X2] of the stochastic process via

E[X2] =
1

2π

∫ ∞

−∞
S(ω) dω . (7)

Equation (7) can be directly obtained from the inverse Fourier transform γ(h) = F−1{S(w)}(h) by
setting h = 0.

Name X(t) γ(h) S(ω)

White noise dX(t) = σW dW (t) σ2
W δ(h) σ2

W

OU-process dX(t) = −λX(t)dt+ σOUdW (t)
σ2
OU
2λ e−λ|h| σ2

OU

λ2+ω2

Cosine A cos(ω0t+ θ) A2

2 cos(ω0h)
A2

2 π (δ(ω0 − ω) + δ(ω0 + ω))

Table 1: Examples of time seriesX(t), their autocovariance γ(h), and power spectral density S(ω) for uncorrelated white

noise, an Ornstein-Uhlenbeck (OU) process, and a cosine function. W (t) is the Wiener process. Mathematical proofs in

Appendix A.

Table 1 gives examples of the PSD of uncorrelated white noise, an OU-process, and a cosine function.

Figure 7 exemplifies a numerically simulated OU-process and its spectral representations obtained
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Figure 7: Example for the spectral

representation of a time series,

here numerically simulated for an

OU-process with 10,000 timesteps,

σ = 1, and λ = 0.07. a Time series

segment of the full stochastic

process. b Spectral estimates based

on analytical (dark blue line) and

numerical (cyan line) calculations.

S

a b

from analytical (Tab. 1 and App. A) and numerical solutions. The numerical implementation of PSD

calculations is based on Thomson’s multitaper method (Percival &Walden, 1993) as described in P1-

P3. Inmost parts of this thesis andP1-P3, the PSD is visualized over periods τ for illustrative purposes.

The relations S(ω) dω = 2πS(f) df and τ = 1/f can be used to rewrite Equation (5) as a function of

τ .

Linear time-invariant processes in time and frequency domain

In P1, spectral analysis is also used to analyze how external forcing drives fluctuations at specific

frequencies. Linear response theory describes the relationship between the time and frequency

responses of a time-variant linear system (Chatfield, 2003). It states that the response function R(h)

defines the output Y (t) in response to the input X(t) via

Y (t) =

∫ ∞

−∞
R(h)X(t− h) dh .

The system is physically causal if R(h) = 0 for h < 0. The frequency response, or transfer, function

results from the Fourier transform

Ĥ(ω) = F{R(h)}(ω) .

Ĥ(ω) corresponds to a complex function Ĥ(ω) = G(ω)eiφ(ω), where G(ω) and φ(ω) are the real-valued

gain and phase (Chatfield, 2003). Suppose that X(t) and Y (t) can be described as weakly-stationary

processes, their PSDs relate via

SY (ω) = |Ĥ(ω)|2SX(ω) = G2(ω)SX(ω). (8)

P1makes use of Equation (8) to compute the gain of the approximate linear response of global tem-

perature to radiative forcing.

5.2.3 Scale invariance and long-range dependence

The intimate connectivity between numerous interacting components and their large number of

degrees of freedom characterizes complex systems. As a result, complex systems feature compre-

hensive dynamics, including, for example, non-linear feedbacks. Many complex systems also show

emergent phenomena such as self-organization that arise from comprehensive interactions within

the system but are often independent of the details of individual components. Studying these emer-

gent properties is critical for advancing our understanding of nature. Scale invariance, or scaling, is

one of these properties.
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Scaling bridges two sides of a parameter regime, for example, the occurrence of high and low-

magnitude events or a system’s fast and slow dynamics. As a universal behavior, scale invariance

can link and classify the properties of different dynamical systems from areas such as biology, eco-

nomics, quantum physics, and geology (Clauset et al., 2009; Mandelbrot&Van Ness, 1968). The

scale-invariant function for a one-dimensional function f : R → R is a power law (proof in Ap-

pendix A)

f(x) = cxb . (9)

This relation states that rescaling x by a factor of x0 leads to a change in f(x) by a factor of xb0. The

parameter b is called the scaling exponent.

Power-law scaling has been found in the distributions of the population of cities (Zipf, 1949), the

magnitude of earthquakes (Gutenberg&Richter, 1944), and the sizes of wildfires (Newman, 2005),

among others. These distributions exhibit so-called heavy tails, which imply higher probabilities

for extreme magnitudes compared to exponentially decaying distributions, such as Gaussian distri-

butions. Many time-varying processes also show power-law scaling. The main property of scale-

invariant stochastic processes such as Brownian motion is that their statistical properties have no

characteristic timescale (Mandelbrot&Van Ness, 1968). Accordingly, the statistical properties trans-

fer from one scale to another. This is particularly useful when only one scale is within the possible

range of observations.

Among others, the study of scale-invariant processes led to the concept of long-range dependence:

In 1951, Hurst (Hurst, 1951) studied the Nile’s water level fluctuations and related the change of the

water level’s variance to the time-span n of the observation1. He found that as n → ∞, the variance

increases following a power law nH with Hurst exponent H . This so-called “Hurst effect” has been

confirmed in various systems from physics and climate science to economics (Franzke et al., 2015).

Formally, a stationary stochastic processX(t) is said to possess long-range dependence, or memory,

if the autocovariance function decays asymptotically

γ(h) ∼ h2H−2 (10)

with 0.5 < H ≤ 1. The Hurst exponent quantifies the temporal persistence of the process, that is,

the strength of the correlation of successive values in the time series. In the frequency domain,

Equation (10) becomes (Mandelbrot&Van Ness, 1968)

S(ω) ∼ ω−2H+1 as ω → 0 . (11)

For non-stationary processes, long-range memory corresponds to a diverging sum of the autoco-

variance∫
γ(h) dh → ∞ . (12)

Surface air temperature has been suggested to show fluctuation behavior similar to the Hurst phe-

nomenon (Fraedrich et al., 2004). Fractional Gaussian noise and fractional Brownian motion are two

types of stochastic processes suited to describe temperatures (Nilsen et al., 2016). Their correlation

properties define the process (Mandelbrot&Van Ness, 1968) and strongly relate to the Hurst phe-

nomenon (10)-(12). P1 gives a detailed description of these processes and uses them to study the

persistence of temperature fluctuations.

1The specific quantity Hurst (1951) studied was the so-called “rescaled range”, which is a statistical measure of the

variance as a function of n.
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5.3 Uncertainties in temperature variability

The quantification of temperature variability is pivotal to future projections (Katz&Brown, 1992;

Schär et al., 2004). However, the understanding of temperature variability across scales still needs

to be completed (Fig. 1), especially on interannual to millennial timescales. Uncertainties in local to

global temperature fluctuations and their representation in climate model simulations could partic-

ularly impact the assessment of temperature-related risks, ECS estimates, and abrupt transitions.

This points to a necessity of constraining temperature variability from climate simulations and pale-

oclimate reconstructions. Three specific problems complicating the characterization of interannual

to millennial-scale variability have been identified:

1. Data-model mismatches on the timescale-dependent temperature variance

Agreement between paleoclimate reconstructions and model simulations on multidecadal global

mean temperature variability has been suggested by estimates in the time (PAGES 2k Consortium,

2019) and frequency domain (Zhu et al., 2019). However, the scale breaks from Zhu et al. (2019) are

different from those found by Lovejoy (2015) (Fig. 1 c). Moreover, comparisons of the variance from

local temperature time series present a mismatch between model simulations and paleoclimate re-

constructions (Fernández-Donado et al., 2013; Laepple&Huybers, 2014a; Parsons et al., 2017). Yet, a

detailed comparison of the PSD and scaling behavior from reconstructions and simulations across

spatiotemporal scales and mean climates is still missing.

2. Insufficient knowledge about internal variability mechanisms and the role of external forcing

Different mechanisms might explain the potential scale invariance of temperature fluctuations. One

candidate is the linear integration of high-frequency forcing by slowly varying climate subsystems,

such as the oceans and cryosphere, similar to Equation (3). In line with that, power-law behavior

could resemble the one from an OU-process (Fig. 7). This idea has been successfully used to de-

scribe ocean surface temperatures by a linear model representing oceanic diffusion through box

models (Fraedrich et al., 2004; Fredriksen&Rypdal, 2017). The overlap of short-range dependent

processes might explain continuous scaling (Fredriksen&Rypdal, 2017). By contrast, long-range de-

pendent processes such as fractional Brownianmotion have also been suggested to describe temper-

ature fluctuations (Franzke, 2012; Nilsen et al., 2016). However, their appearance in Earth dynamics

is controversial since most geophysical equations of motion depend solely on the previous state but

not the distant past (Franzke et al., 2020). Moreover, there are large uncertainties about the rela-

tive magnitude of internal and external variability (Frankcombe et al., 2015; Hawkins&Sutton, 2011;

Hébert&Lovejoy, 2018), especially on decadal to centennial timescales. This requires quantifying

contributions from externally forced and internally generated fluctuations to the spectrum.

3. Unclear effects of changes in the mean climate on temperature variability

Rehfeld et al. (2018) have shown that temperature variability depends on the mean climate state. As

a result, global warming affects variability (Bathiany et al., 2018; Olonscheck et al., 2021). However,

there is conflicting evidence on the mechanisms and spatiotemporal patterns of variability changes

(Brown et al., 2017; Holmes et al., 2016; Huntingford et al., 2013; Rehfeld et al., 2020). Studies based

on single strong volcanic eruptions (Berdahl&Robock, 2013; Muthers et al., 2014; Swingedouw et al.,

2017; Zanchettin et al., 2016) and future projections (Hopcroft et al., 2018) suggest state-dependent ef-

fects in response to volcanic eruptions. It still needs to be determinedwhether this state dependency

also holds for the response to weaker forcing. Sea ice could contribute to state-dependent effects

as its extent follows the mean state and varies under volcanic forcing (Timmreck, 2012). However,

the impact of sea ice dynamics on temperature variability across scales remains uncertain. There is

a need to quantify the state-dependent changes of forced and unforced variability and the contribu-
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tions from potentially state-dependent components such as sea ice.

Overall, there is a large uncertainty about the structure and causes of temperature variability.

Timescale-, forcing-, and state-dependent variability changes are insufficiently constrained. Achiev-

ing improvement on the above elements of uncertainty could open new possibilities for reliable sim-

ulations of future variations, climate impacts, and associated risks. To this end, this work and P1-P3

follow five specific research objects, summarized in the next section (Sec. 6). Altogether, this thesis

presents and discusses new findings on the local-to-global structure, the mechanisms, and state-

dependent effects of temperature variability to improve the understanding of temperature variations

and assess their potential implications for future projections.
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6 Research objectives

This thesis comprises the analysis of the timescale-, forcing-, and state-dependent structures and

causes of temperature variability (Fig. 8) in three publications (P1-P3) and complementary investiga-

tions (CI), presented in this work. The underlying specific research objectives (O1-O5) and resulting

key findings (in italic) are:

O1: To evaluate the agreement of reconstructed and simulated global temperature variability

→ The agreement has been largely confirmed (P1, P2, P3, CI). This supports confidence in the simu-

lated global temperature variability, especially if simulations include natural forcing and interactively

coupled model components (CI).

O2: To quantify the potential mismatch between reconstructed and simulated local temperature

variability in terms of overall variance and scaling on interannual to millennial timescales

→ Mismatches in the variance and scaling properties of reconstructed and simulated temperature on

decadal to multicentennial timescales are significant (P1, P2). Using natural forcing (P2) and dynamic

ice sheets (CI) in the simulation reduces discrepancies. If simulated temperatures miss variability, they

could underestimate the recurrence of extremes (CI).

O3: To isolate the timescale-dependent forced and unforced temperature variability

→ A Bayesian energy balance framework can successfully separate forced and unforced global tem-

perature variability (P3) by emulation frommore complex models. The relative contribution of internal

variability increases with model complexity and decreases with timescale (P3). The approach provides

an alternative to computationally expensive methods for separating variability components (P3) and

can support statistical estimates of climate-related risks (CI).

O4: To test for state-dependent effects in forced and unforced temperature variability

→ The global variability is predominately forcing-dependent while local variability is mainly state-

dependent and decreases with warming (P2, CI). Sea ice dynamics is identified as a state-dependent

mechanism that causes changes in local temperature variability (P2).

O5: To identify keymechanisms contributing to the power spectral density of surface air temperature

→ The global temperature spectrum of the last millennia results from the integrated linear response

to mostly external forcing (P1, P3). A millennial-scale change in fluctuation behavior might be due to

changes in meltwater forcing and stabilizing feedback in response to it (CI). Locally, sea ice and volcanic

forcing influence temperature variability for decades (P2). Improved representations of feedbacks in

climate models are necessary to reconcile simulated and reconstructed temperatures (CI).

Common to these research objectives is the overarching question of the implications of temperature

variability across scales. The combined findings of this work, discussed in the next section, suggest

that the presented findings are critical for the reliable representation of temperature variability in

simulations of the past, present, and future, as well as the assessment of climate-related risks.

Figure 8: Visualization of the research strategy. 35
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7 Results and discussion

This chapter comprises the summary and discussion of this work’s findings on the structure and

causes of surface air temperature variability across scales. Section 7.1 summarizes the main con-

clusions from P1-P3, which are discussed in detail in the respective manuscripts (App. F - App. H).

Section 7.2 presents complementary analyses of an ensemble of comprehensive climate model sim-

ulations for the last 26 thousand years to expand the discussion of P1-P3. Section 7.3 discusses

remaining limitations resulting from the underlying assumptions (Sec. 7.3.1) as well as uncertainties

in simulations (Sec. 7.3.2) and reconstruction data (Sec. 7.3.3). Finally, implications for climate model

improvements (Sec. 7.4.1), the projection and attribution of extremes (Sec. 7.4.2), as well as risk and

impact assessments (Sec. 7.4.3) are discussed. The outlook (Sec. 7.4.4) provides some ideas for testing

these implications in follow-up studies.

7.1 Summary of the results from the presented publications

P1: B. Ellerhoff and K. Rehfeld (2021)

The publication P1 “Probing the timescale dependency of local and global variations in surface air

temperature from climate simulations and reconstructions of the last millennia” (App. F) quantifies

the agreement between temperature variability in model simulations and paleoclimate reconstruc-

tions of the last millennia. We provide a new estimate of the global and local mean PSD from peri-

ods of hours to millennia using paleoclimate reconstructions and simulation data from the Coupled

Model Intercomparison Project phase 5 (CMIP5). The local paleoclimate records show higher mul-

tidecadal variability and scaling coefficients β of the local PSD S ∼ τβ than simulated temperatures.

The global mean PSD is widely consistent across datasets, primarily due to the dominant linear re-

sponse of global temperature to external forcing. However, local disagreement despite global agree-

ment presents a dilemma. It appears that local variations in climate model simulations need to be

enhanced without significantly affecting global properties.

P2: B. Ellerhoff, M. J. Kirschner, E. Ziegler, M. D. Holloway, L. Sime, and K. Rehfeld (2022)

P2 “Contrasting state-dependent effects of natural forcing on global and local climate variability”

(App. G) examines whether the climatic response to natural forcing depends on the mean climate

state. We present an ensemble of forced and unforced Glacial/Interglacial simulations with the

HadCM3 climatemodel and evaluate their variability on interannual tomulticentennial scales. Global

mean spectra are predominately determined by external forcing, in linewith the results fromP1. Nat-

ural forcing increases variability on all timescales. Local mean spectra are more characteristic of the

mean state than of the applied forcing. The mismatch between reconstructed and simulated local

temperatures is significant and increases with timescale. However, including natural forcing helps

reduce this mismatch, even beyond decadal scales. Moreover, we quantify the contributions from

sea ice dynamics to temperature fluctuations across scales. The variability of sea ice extent is sig-

nificantly higher in forced compared to unforced simulations and in glacial compared to interglacial

climates. By integrating the climate system’s response to high-frequency natural forcing, sea ice

dynamics plays a crucial role in amplifying local multidecadal variability.

P3: M. Schillinger, B. Ellerhoff, R. Scheichl, and K. Rehfeld (2022)

P3 “Separating internal and externally forced contributions to global temperature variability using

a Bayesian stochastic energy balance framework” (App. H) emulates temperature fluctuations from

simulations with climate models of intermediate to high complexity based on physical constraints.

To this end, P3 presents the “ClimBayes” software package (Schillinger et al., 2022b) which infers the

free parameters of a stochastic two-box energy balance model (EBM) using a Bayesian approach.
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The EBM reproduces the characteristics of simulated global temperature fluctuations even from

comprehensive climate models. Furthermore, the ClimBayes framework allows for the separation of

forced and unforced variability as a function of timescale. The relative contribution of internal dy-

namics increases with model complexity and decreases with timescale. Compared to observations,

internal (external) variability in CMIP5 simulations is smaller (larger) on decadal and multidecadal

scales.

Altogether, P1, P2, and P3 largely confirm the agreement between the variability of simulated and

reconstructed global temperatures for the last millennia. However, it is unclear whether the agree-

ment can be confirmed for temperatures beyond the stable period of the Holocene and, if so, for

which climate model simulations. Moreover, P1 and P2 point to pronounced differences in simulated

and reconstructed local temperature variability. It remains to be clarified whether more advanced

climate models can overcome these mismatches. In addition, it is necessary to test whether simu-

lations with improved representations of feedback mechanisms can confirm the global forcing and

local state dependency of variability (P2). Precise understanding of these dependencies could help

reveal the extent to which global temperatures represent a linear response to external forcing (P3).

These open points are addressed by complementary studies presented here.

7.2 Complementary studies with advanced model simulations

This section presents additional investigations to support the discussion of P1-P3. The complemen-

tary analyses use an ensemble of transient deglaciation simulations (Mikolajewicz, 2023; Mikolajewicz

&Kapsch, 2022) for the last 26 thousand years with the Max Planck Institute for Meteorology Earth

System Model (MPI-ESM) version 1.2 (Mauritsen et al., 2019) (App. B). The model experiments were

performed by Uwe Mikolajewicz and Marie-Luise Kapsch (Kapsch et al., 2022; Mikolajewicz, 2023;

Mikolajewicz&Kapsch, 2022). The runs provide state-of-the-art paleoclimate simulation with im-

proved ice sheet representations compared to other PMIP3-type simulations (Kapsch et al., 2022).

In particular, these runs allow differentiation of variability from volcanic forcing, ice sheet imple-

mentations, and meltwater fluxes.

Section 7.2.1 evaluates the robustness of our finding of forcing-dependent global and state-

dependent local variability using the MPI-ESM simulation ensemble. Section 7.2.2 tests if advanced

climate model simulations with volcanic forcing and interactively coupled ice sheets can reduce dis-

crepancies in the multidecadal and multicentennial variability between reconstructions and simu-

lations. Lastly, Section 7.2.3 provides a new composite of the global temperature PSD on timescales

of years to hundreds of millennia by comprising paleoclimate data from state-of-the-art simulations

and reconstruction.

7.2.1 Evaluation of global forcing and local state dependency

According to our analysis of a Glacial/Interglacial simulation ensemble with HadCM3, external forc-

ing dominates global temperature variability (P2). This is confirmed by studies of the forced response

in P1 and P3. Conversely, local temperature variability depends primarily on the mean climate (P2).

For validation of these findings, the analysis from P2 is repeated with MPI-ESM simulations with op-

tional volcanic forcing and an interactively coupled ice sheet, hereafter denoted by MPI-ESM (cou-

pled) (App. B, Tab. 2). Ice sheet changes directly affect the river routing andmeltwater fluxes in these

runs through the interactive coupling. The volcanic forcing corresponds to a reconstruction for

the last 130,000 years that compiles proxy records and stochastically generated synthetic eruptions

(Toohey et al., 2023) (App. B). Following P2, “control” runs without volcanic forcing are examined
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to investigate the forcing dependency of variance estimates across timescales. In contrast to the

considered HadCM3 runs, the MPI-ESM simulations feature no solar forcing. Following P1-P3, the

multitaper method with three windows (Percival &Walden, 1993; Yiou et al., 1996) is used to compute

power spectra. Time series are linearly detrended to avoid biases arising from non-stationary trends.

In addition, logarithmic Gaussian smoothing is applied to the PSDs for visual purposes.

Figure 9: Local and global power spectral density for simulated temperature using HadCM3 (a, as in P2), and MPI-ESM

(coupled) (b). Global spectra are calculated from global mean surface air temperature. Local refers to the area-weighted

average of all local temperature spectra. Solid lines correspond to simulations with high-frequency natural forcing (MPI-

ESM: volcanic, HadCM3: volcanic + solar forcing). Dotted lines show corresponding control runs without high-frequency

natural forcing. The spectra were computed from simulated temperatures of climate states corresponding to a glacial

and interglacial climate state. HadCM3 runs are of millennial length and correspond to the Last Glacial Maximum (LGM)

and Pre-industrial state (P2). For MPI-ESM (coupled), decadally-resolved temperature time series were extracted from

periods of 25 - 17 kiloyears ago (LGM) and the last eight kiloyears (Holocene). Lines show logarithmically smoothed

(0.08 dB) mean spectra with shaded 95% confidence intervals. Confidence bands of HadCM3 are wider because they are

obtained by sampling from a three-member ensemble for each configuration. The panels c and d summarize the forcing

and state dependencies in terms of the standard deviation of temperature fluctuations over periods 50 ≤ τ ≤ 500 yrs,

highlighted by green vertical lines in a and b.

Figure 9 compares the findings on the state-dependent variability from HadCM3 (P2) to those ob-

tained with MPI-ESM (coupled). The results from MPI-ESM (coupled) confirm that state-dependent

changes of internal variability dominate the simulated local temperature variability (Fig. 9 d). Local

variability decreases with warming in the MPI-ESM simulations, as it does in the HadCM3 ensemble

(Fig. 9 c). The effects of external forcing on global temperature variability also remain dominant in

MPI-ESM. However, the MPI-ESM simulation shows enhanced variability at global scales during the

LGM (Fig. 9 d), while there is no global state dependency in the HadCM3 simulations (Fig. 9 c). Using

prescribed compared to coupled ice sheets does not alter the state-dependent effects significantly.

This is shown by comparison against the same MPI-ESM model experiment with a prescribed ice

sheet (App. D, Fig. 19).

Thus, the analysis of MPI-ESM simulations confirms the result from P2 that local variability is domi-

nated by internal state-dependent mechanisms. However, the complementary study also reveals the

potential underestimation of state-dependent changes in the global temperature evolution simulated

by HadCM3. Instead, more comprehensive climate model simulations can exhibit state-dependent

effects in the global mean. These effects are likely due to a more sophisticated representation of

variability mechanisms related to state-dependent cryospheric processes in MPI-ESM, addressed in

Section 7.2.3.
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7.2.2 Variability effects of volcanic forcing and interactive ice sheets

The findings from P1 and P2 reveal significant differences between simulated and reconstructed

temperature variability on interannual to millennial scales. In particular, the decadal-to-centennial

variability of the local mean PSD based on proxy records is one to two orders of magnitude higher

than the one from state-of-the-art climate model simulations (P1). The spectral exponent on multi-

decadal scales is smaller for simulation than for paleoclimate data. This disagreement is statistically

significant, showing no agreement beyond chance for almost all model simulations (P1). In P2, we

showed that it is possible to partially compensate for these mismatches by including natural forcing

in simulations. Nevertheless, the mismatch in variance increases with timescale (P2).

Similar to the previous section, the improvement in model-data agreement for simulations with vol-

canic forcing is verified using the MPI-ESM (coupled) simulations. The local variance fromMPI-ESM

(coupled) runs with and without volcanic forcing are compared against paleoclimate data, following

P2. The same proxy records from Rehfeld et al. (2018) and PAGES2k Consortium (2017) are analyzed

as in P2. To be selected, recordsmust be published and calibrated to temperature, containmore than

50 data points, cover at least three times the largest period of interest, and have a mean sampling

frequency twice the highest frequency considered (P2). Records with gaps exceeding five times the

required resolution are rejected.

c

f = 1.15 (0.96, 1.37) f = 1.50 (1.25, 1.79)

Last Glacial Maximum

Holocene

Figure 10: Ratios r(sim./obs.) of simulated to reconstructed temperature variance over latitude for control (black) and

volcanically forced (orange) runs from the MPI-ESM (coupled) simulation for the Holocene (a and b, last eight kyrs, 78

data points) and LGM (c and d, 25-17 kyrs ago, 15 data points), as Fig. 4 in P2. The ratio of simulated to reconstructed

temperature variance is computed on multidecadal (a and c) and multicentennial (b and d) timescales. Model data is

bilinearly interpolated to the location of the observation. Symbols indicate the variance ratio and proxy archive. Vertical

lines show 90% confidence intervals. The data points are slightly displaced along the x-axis to increase visibility. The

local mean improvement f of the variance ratio is given in the lower left of each panel, with confidence intervals in

parentheses (see Appendix A of P2).

Following P2, Figure 10 shows the ratio of simulated to reconstructed temperature variance on mul-

tidecadal (50 ≤ τ ≤ 200 yrs) and multicentennial (200 ≤ τ ≤ 500 yrs) timescales for the Last Glacial
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Maximum (25-17 kyrs) and Holocene (last eight kyrs). The proxy records show a higher variance at

both timescales and most locations compared to simulated temperatures. Including volcanic forcing

in the MPI-ESM runs increases the variance, confirming effects from high-frequency natural forcing

on the simulated variability (P2). Overall, this improvement is significant and quantified by the im-

provement factors (P2) f = 1.32 (1.09, 1.59) at multidecadal and f = 1.66 (1.33, 2.08) at multicentennial

scales for the Holocene (Fig. 10 a and b). The factors are similar for LGM temperatures (Fig. 10 c and d)

but less statistically robust due to fewer records. Simulations with prescribed instead of interactive

ice sheets show similar improvements in both the Holocene and LGM (App. D, Fig. 20). In contrast to

HadCM3, an increase in themismatch between reconstructed and simulated variance with timescale

is not discernible.

Mistmatch between simulated and reconstructed variance across model types

To further investigate this finding, Figure 11 shows the percentage agreement and the distribution of

local mismatches as a function of the climate state and considered model. In addition to HadCM3

and MPI-ESM (coupled), an MPI-ESM simulation with volcanic forcing (Toohey et al., 2023), local

meltwater, and prescribed ice sheets (Briggs et al., 2014; Kapsch et al., 2022; Tarasov et al., 2012)

based on the GLAC-1D reconstruction is considered and denoted by MPI-ESM (GLAC-1D) (App. B).

MPI-ESM (coupled) appears to provide the best abilities to simulatemulticentennial variability among

the considered model experiments (Fig. 11).

Figure 11: Comparison of simulated and reconstructed local temperature variance at multicentennial scales (200-500

yrs) using naturally forced climate model simulations of the Holocene (left panel) and LGM (right panel). Numbers give

the percentage agreement, that is, the fraction of locations at which simulated and reconstructed variance agrees within

uncertainties. Dots show the mismatch in orders of magnitude at single locations (see previous figure). Their colors

indicate whether the simulated variance is smaller (blue) or larger (orange) than the one from proxy records. Within

a simulation type, dots are slightly displaced along the x-axis to increase visibility. The boxes indicate the mean and

quartiles (25% and 75% confidence levels). Vertical lines correspond to the 95% confidence interval of the ensemble.

The MPI-ESM simulations are described in Appendix B, Tab. 2. HadCM3 corresponds to the solar and volcanically forced

simulations from P2.

For Holocene temperatures, the median variance mismatch for MPI-ESM (coupled) is the lowest,

and the percentage agreement is the highest (33%, corresponding to 26 out of 78 samples). It per-

forms slightly better than MPI-ESM (GLAC-1D) (26% agreement). For HadCM3, only 17% of the sam-

ples agree. There are only minor differences between the MPI-ESM runs for LGM temperatures in

the distribution of mismatches. The percentage agreement for MPI-ESM (coupled) is approximately

twice as high as for MPI-ESM (GLAC-1D) (27% compared to 13%). Simulated LGM temperatures from

HadCM3 show no agreement with the considered proxy records. Moreover, the HadCM3 experi-
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ment uses a volcanic forcing reconstruction of the last millennium. Therefore, the comparability

of the variability between the HadCM3 simulation and proxy records is limited, which could par-

tially explain the strong disagreement for LGM temperatures. However, other factors due to the less

comprehensive representation of cryosphere processes in HadCM3 are more likely to explain the

inconsistency.

In summary, the analysis with the MPI-ESM simulation ensemble confirms, first, the disagreement

between simulated and reconstructed variance on multidecadal and multicentennial timescales (P1,

P2), and, second, the enhancement of the simulated variance by volcanic forcing (P2). In contrast to

the 1000 years long HadCM3 simulation, the more comprehensive 26 kiloyears long runs with MPI-

ESM show no increase in mismatches with timescales. This could be due to improved sampling of

low-frequency variability or better representations of local long-term variability mechanisms. Im-

proved agreement with MPI-ESM (coupled) compared to MPI-ESM (GLAC-1D) (Fig. 11) indicates that

a greater time series length alone cannot explain the reduced mismatch. Instead, the representa-

tion of local feedbacks from interactively coupling the ice sheet could cause improved agreement

in MPI-ESM (coupled). Differences in the representation of feedbacks relevant to the simulation of

temperature variability in the MPI-ESM ensemble are discussed in Section 7.2.3.

The slightly enhanced agreement for local Holocene temperatures in MPI-ESM (coupled) is remark-

able since themeltwater flux in the prescribed simulation can be expected to be close to zero over the

last eight kiloyears (Kapsch et al., 2022). This might imply that meltwater-related fluctuations, which

could occur in the coupled simulation in response to internal modes of the ice sheets, contribute to

multicentennial variability in the Holocene. While this hypothesis requires further testing, the MPI-

ESM (coupled) simulation opens new possibilities to validate temperature variability on timescales

from decades to multiple millennia compared to PMIP3-type last millennium simulations, such as

the one with HadCM3 (P2).

7.2.3 A new composite PSD of global temperature beyond the Common Era

Based on the above findings, Figure 12 a presents a composite estimate of the global temperature

PSD that spans periods between years and hundreds of thousands of years. This PSD represents a

new estimate compared to the previous findings from Huybers&Curry (2006), Lovejoy (2015), and

Mitchell (1976) (Fig. 1), and P1 for three reasons: First, it combines data from state-of-the-art instru-

mental observations, paleoclimate reconstructions, and climate model simulations (App. E, Tab. 3).

Second, the reconstruction ensembles from PAGES2k (PAGES 2k Consortium, 2019) (1000 members

per method, seven methods) and Temp12k (Kaufman et al., 2020) (500 members per method, five

methods) help constrain the uncertainty range by allowing to sample the PSD from different recon-

structionmethods. Third, climatemodel simulationswere selected based on their ability to represent

relevant physical mechanisms contributing to variability across scales.

The high-frequency end of the spectrum, highlighted in Figure 12 c, is formed by an ensemble of 23

CMIP5 last millennium runs from seven models (PAGES 2k Consortium, 2019) (App. E, Tab. 3). The

observed and reconstructed global temperatures from HadCRUT5 (Morice et al., 2021) and PAGES2k

(PAGES 2k Consortium, 2019) are added. The low-frequency part of the spectrum (Fig. 12 b) consists

of recent global temperature reconstructions from Snyder (2016) (Snyder GMST) and Kaufman et al.

(2020) (Temp12k). In addition, simulations with the Earth system models of intermediate complexity

Famous (Smith&Gregory, 2012) and CLIMBER-2 are shown. The CLIMBER-2 simulation provides a

transient run of the past three million years with interactive Northern Hemisphere ice sheets and

atmospheric CO2 (Willeit et al., 2019). The (coupled) MPI-ESM run, which agrees best with paleocli-

mate data (Sec. 7.2.2), covers decadal to multimillennial timescales and, thus, allows for comparison
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against all other datasets. The PSDs are calculated following P1-P3. The mean spectrum is com-

puted by interpolating to the lowest resolution, binning into equally spaced log-frequency intervals,

and taking the average with equal weights (Huybers&Curry, 2006).

W
m

-

Mean Spectrum
MPI-ESM (coupled)
CMIP5 Ensemble
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Figure 12: a New composite estimate of the PSD of global mean temperature from instrumental observations (Had-

CRUT5), reconstructions (PAGES2k, Temp12k, Snyder GMST), and climate model simulations (MPI-ESM (coupled),

CLIMBER-2, Famous). In addition, 23 CMIP5 last millennium runs are combined as “CMIP5 ensemble” following the

PAGES 2k Consortium (2019). References to all considered datasets are given in Appendix E, Tab. 3. Uncertainties are χ2

distributed according to the degrees of freedom of the spectral estimate, except for the PAGES2k, Temp12k, and CMIP5

ensemble. In these cases, uncertainty bands correspond to the 95% confidence interval of the spectra sampled from the

full ensemble (Temp12k: 5 reconstruction methods, 500 samples each; PAGES2k: 7 reconstruction methods, 1000 sam-

ples each; CMIP5: 23 members, 7 models). The uncertainty for the mean spectrum is not shown here for better visibility

and because it is best represented by the envelope of all other PSDs. The light grey line at the bottom of panel a shows

a composite estimate of the PSD from radiative forcing that considers orbital, volcanic, solar, and CO2 forcing (App. D,

Fig. 21). b The inset highlights the PSD from 100 ≤ τ ≤ 10, 000 yrs at the centennial to multimillennial scale from all

considered time series. c As b, but for 1 < τ ≤ 100 yrs.

Figure 12 confirms a wide model-data agreement in global temperature variability. On interannual

to decadal scales (Fig. 12 c), the CMIP5 last millennium simulation ensemble shows a higher PSD than

the HadCRUT5 instrumental record and the PAGES2k paleoclimate reconstruction for the last two

millennia. This is in line with model-data differences in the spectral gain (P1) and can be explained

by an enhanced response to external forcing in CMIP5 simulations compared to observations (P3)

(Fredriksen&Rypdal, 2016; Goosse et al., 2005; Scaife&Smith, 2018). Moreover, artificial amplifica-

tion of the El Niño–Southern Oscillation (ENSO) in CMIP5 simulation using the atmospheric general

circulationmodel ECHAM could contribute to this mismatch (P1) (Jungclaus, 2020). The approximate

power-law scaling β ≈ 1 (10 < τ < 1, 000 yrs) is in line with previous results (P3) (Huybers&Curry,

2006; Lovejoy, 2015; Nilsen et al., 2016; Rypdal et al., 2013). The linear response to forcing can explain

this behavior (P3) (Fredriksen&Rypdal, 2016).
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Millennial-scale change in global temperature fluctuation behavior

There are indications for a change in fluctuation behavior at millennial periods (Fig. 12 b). Above this

period, the temperature scaling is more similar to β ≈ 2 (for 1, 000 < τ < 100, 000 yrs). The change

in scaling indicates two regimes with distinct behavior of temperature fluctuation. To illustrate this,

the relative contribution from the two neighboring intervals
[
ω′/2, ω′] and [

ω′, 2ω′] within a scaling

regime [ω1, ω2] reads∫ ω′

ω′/2
S(ω) dω∫ 2ω′

ω′ S(ω) dω
=

1− 2β−1

21−β − 1
= 2β−1 ,

with ω1 = ω′/2 and ω2 = 2ω′. Hence, for β = 1, the contribution to the variance stays the same over

timescales. For β > 1, variance is relatively stronger on long compared to short timescales. Huybers

&Curry (2006) have reported higher scaling coefficients on millennial timescales, however, with a

scale break at centennial scales. Conversely, Figure 12 shows no evidence for a scale break at the

centennial scale and raises the question of why the transition occurs at τ ≈ 1, 000 years.

To investigate the causes for this transition, Figure 13 highlights the PSD at centennial to multimil-

lennial timescales from the Temp12k reconstruction (Kaufman et al., 2020) and MPI-ESM simulation

ensemble. The simulated and reconstructed PSD agree well within the uncertainty. Restricting the

analysis to simulated temperatures for the last twelve thousand years, which corresponds to the tem-

poral overlap between the two datasets, confirms the agreement between the MPI-ESM simulations

and Temp12k (Fig. 13 c) within uncertainties. However, estimates from the Temp12k reconstruction

ensemble exhibit large uncertainty bands.

Temp12k recons.

MPI-ESM simulations

c26 000 - 0 BP 12 000 - 0 BP 

Figure 13: Global temperature PSD at the centennial tomultimillennial scale (100 ≤ τ ≤ 10, 000 yrs) from (a) the Temp12k

reconstruction (Kaufman et al., 2020) and (b and c) the MPI-ESM simulation ensemble (App. B, Tab. 2). c shows the PSD

for theMPI-ESM runs considered in b but using only global temperatures since 12 000 kyrs before present (BP). In panel b

and c, the 95% confidence interval of the spectra sampled from the full Temp12k reconstruction ensemble is highlighted

in light blue. “Distributedmeltwater” corresponds to an implementation that redistributes the local meltwater discharge

homogeneously across all grid cells worldwide (App. B).

The Standard Calibrated Composite (SCC) and Generalized Additive Model (GAM) reconstruction

show a change in scaling behavior from β ≈ 1 to β ≈ 2 at a period of approximately 1,000 years

(Fig. 12 a). The Pairwise Comparison (PAI) and Composite Plus Scale (CPS) reconstructions do not

show this transition. The reconstruction based on the Dynamic Calibrated Composite (DCC) method

indicates a scale break, although the change in scaling behavior is not as pronounced as in SCC and

GAM. The SCC, GAM, and DCC reconstructions are likely more robust than PAI and CPS. This is

because PAI features an exceptionally low variability in all regions except for the northern latitudes

(Kaufman et al., 2020). CPS stands out with its significant temperature changes compared to other
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methods and proxy records, especially in the Early- andMid-Holocenewarmth (Kaufman et al., 2020).

Thus, the reconstruction methods most likely to be trusted indicate a millennial-scale change in

fluctuation behavior.

Regarding the MPI-ESM simulation ensemble, Figure 13 b compares the PSDs from the MPI-ESM

(coupled) run against those from the full MPI-ESM simulations with prescribed ice sheets (GLAC-

1D and ICE-6G) and different implementations of meltwater fluxes (App. B, Tab. 2). There are pro-

nounced differences in the simulated PSD at centennial to millennial scales, depending on the im-

plementation of ice sheet feedback and volcanic forcing in the simulations. These differences are

smaller when considering only the last twelve thousand years of the simulation (Fig. 13 c). While

volcanic forcing enhanced the PSD in all runs, differences between the spectra in Figure 13 b are

primarily due to the considered meltwater and ice sheet implementations. Both simulations with

local meltwater and prescribed ice sheets show the highest millennial-scale variability. The MPI-

ESM (GLAC-1D) simulation without meltwater shows the lowest PSD. MPI-ESM (GLAC-1D) shows

enhancedmillennial-scale variability compared toMPI-ESM (ICE-6G). On the one hand, this could be

due to the higher temporal resolution of the considered simulation output fromMPI-ESM (GLAC-1D).

On the other hand, Kapsch et al. (2022) argue that greater variability in meltwater release through-

out the last deglaciation in MPI-ESM (GLAC-1D) could cause the increased temperature variability

compared to MPI-ESM (ICE-6G). This is in line with reduced differences for the Holocene period

(Fig. 13 c).

Improved representation of ice sheet feedbacks in coupled simulations

Together, the analysis of Temp12k reconstructions and MPI-ESM simulations suggests a millennial-

scale change in scaling behavior. Here, it is hypothesized that the differences between themillennial-

scale variability from MPI-ESM runs with a coupled or prescribed ice sheet (Fig. 13 b) are due to a

different role of ice sheet feedbacks in the simulations. Ice sheet dynamics and freshwater forcing

are essential feedback mechanisms operating at this timescale. Ice sheets predominately build up

during glacial cold periods, recurring on orbital timescales with periods of approximately 41 to 100

kyrs. Freshwater discharge from ice sheets and icebergs can destabilize ocean circulation (Ziemen et

al., 2019) and lead to sudden changes in local to global temperatures (Bakker et al., 2017; Klockmann et

al., 2020), especially during deglaciations. The meltwater flux can be understood as a natural driver

that forces temperature changes in the ocean, thereby enhancing the surface temperature variability

on multimillennial timescales.

In MPI-ESM simulations with prescribed ice sheets, the meltwater flux is computed from the tem-

poral derivative in ice thickness (Kapsch et al., 2022; Meccia&Mikolajewicz, 2018). By contrast, MPI-

ESM (coupled) computes meltwater fluxes dynamically from ice sheet changes. Therefore, the in-

teractively coupled version can account for feedbacks of the meltwater onto the ice sheet growth

(Ziemen et al., 2019). In particular, the meltwater flux could cause a slowdown of the AMOC, lead-

ing to a cooling in the North Atlantic and, thus, reduced meltwater flux. Consequently, destabilizing

meltwater fluxes and stabilizing negative feedback in response to it might compete at millennial

scales. These mechanisms, however, can only unfold in interactively coupled simulations. In runs

with prescribed ice sheets, the ocean’s cooling can not feedback onto the meltwater flux, which

keeps driving temperature variability. This could explain the increased millennial-scale variability in

the prescribed compared to coupled runs as well as a better agreement of local temperatures from

MPI-ESM (coupled) with reconstructions (Fig. 11).

The transition from β ≈ 2 to β ≈ 1 could be due to destabilizing meltwater fluxes becoming less

relevant below millennial timescales, partially due to negative feedback from ocean cooling. This is

in line with previous ideas that changes in fluctuation behavior might result from stabilizing versus
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destabilizing slow processes in the climate system (Arnscheidt&Rothman, 2022). On the one hand,

the change in fluctuation behavior at millennial scales could also be an artifact of the enhanced vari-

ability on orbital timescales according to Milankovitch cycles (Fig. 12 a). On the other hand, the

MPI-ESM simulations, relying on the same orbital and CO2 forcing, show pronounced differences

in millennial-scale variability and scaling behavior depending on the implementation of meltwater

fluxes and ice sheets in the simulation (Fig. 12 a). While the linear response to forcing can largely

explain global temperature on timescales below centuries (P1, P3), internal mechanisms increasingly

contribute to variability on millennial scales (Fig. 13 b). The substantial contributions to variability

from ice sheet processes that persist at the global scale could also explain state-dependent changes

in millennial-scale variability (Fig. 9 d). In line with Section 7.2.1 and Section 7.2.2, climate mod-

els with a realistic implementation of natural forcing and ice sheet feedbacks simulate temperature

fluctuations that are more consistent with reconstructions. Therefore, the present findings indicate

that the representation of feedback processes in response to meltwater fluxes could cause a pro-

found change in fluctuation behavior on multicentennial to multimillennia scales and is, therefore,

an essential component of reliable climate simulations on centennial and longer timescales. Testing

the proposed mechanisms requires analyses of the ice sheet dynamics and meltwater forcing in the

MPI-ESM simulation ensemble once more variables are available (Mikolajewicz, 2023; Mikolajewicz

&Kapsch, 2022).

Nonetheless, the presented mean PSD and the indication of a change in scaling behavior on mil-

lennial timescales are subject to uncertainties (Fig. 12 a). Only datasets that are trusted because of

their properties to reflect variability on the respective timescales are considered. Moreover, the

mean spectrum is formed with equal weighting across all PSD. While this could introduce a sampling

bias, small changes in the data selection and weights do not significantly alter the findings. Monte

Carlo simulation of this sampling (as in P1) could yield realistic uncertainty bands for the mean global

temperature and radiative forcing spectrum in follow-up studies. Improved statistical reconstruc-

tions based on proxy synthesis are required to provide better constraints on global millennial-scale

temperature variability from paleoclimate evidence.

7.3 Limitations and uncertainties

In addition to the discussions in P1-P3, this section reviews remaining limitations and uncertain-

ties. While the respective manuscripts (App. F - App. H) discuss limitations of the specific data and

methods used, there are also uncertainties common to the studies presented. These include the

assumption of weak stationarity of examined time series and the approximative linear response to

external forcing, which are addressed in (Sec. 7.3.1). Moreover, uncertainties resulting from the con-

sidered paleoclimate reconstructions (Sec. 7.3.3) and simulation data (Sec. 7.3.2) are discussed as well

as potential remedies.

7.3.1 Stationarity and linearity assumptions

As introduced in Section 5.2.2, the spectral analysis assumes weak stationarity of the underlying

stochastic process (Chatfield, 2003). Linear detrending serves to remove trends from time series

before computing spectra (Fredriksen&Rypdal, 2016; Laepple&Huybers, 2014b; Nilsen et al., 2016)

(P1-P3). Supplementary analyses confirm that the recent global warming trend does not impact our

main conclusions (P2, Fig. S6, S9, and S10, Fig. 22). However, time series beyond the stable period of

theHolocene, considered in Section 7.2, could be subject to spectral biases since glacial cycles involve

non-stationary transitions. The onset of the deglaciation affects the spectral estimate, but linear

detrending does not significantly alter the presented findings of variability below millennial scales
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(App. D, Fig. 22). This indicates that the change in PSD at millennial scales is due to physics-based

changes in temperature fluctuations rather than spectral biases from the impact of non-stationary

trends. The findings on state-dependent effects also imply that power spectral densities of time

series covering glacial and interglacial periods might be more representative of the cold climate

state, exhibiting more variability. Besides analyzing time series segments such as in Fig. 9, time-

varying spectra might be best suited to disentangle power spectral density changes over time and

prevent potential biases from trends.

To quantify the contribution from forced variability inP1 andP3, it is assumed that the global temper-

ature evolution can be described as a linear response to external drivers. However, this assumption

neglects higher-order perturbations in response to forcing. Thus, potential impacts from radiative

forcing on internal climate variations, for example, by modulation of the phase or amplitude of in-

ternal climate modes (Maher et al., 2015; Otterå et al., 2010) are not considered. Nevertheless, the

finding that the stochastic two-box EBM successfully emulates the global temperature variability of

CMIP5 simulations and AR5 EMICs well (P3) is consistent with previous findings on a linear relation

between external forcing and global temperature for the last millennium (Fredriksen&Rypdal, 2017;

Geoffroy et al., 2013; MacMynowski et al., 2011). One way to test the limitations of the linear as-

sumption for other timescales and future climates could be the study of single-forcing experiments

(Schurer et al., 2014) and large single-model ensembles (Fyfe et al., 2021) to separate contributions

to temperature variability from different external, anthropogenic, and internal sources. Moreover,

P3 suggests several potential modifications of ClimBayes, such as extensions to other temporal res-

olutions and numerical optimizations to enable longer simulations. However, non-linear effects in

response to radiative forcing or changes in variability with the mean climate could complicate vari-

ability analysis on centennial and longer timescales. The application of ClimBayes to deglaciation

simulations and future projections with substantial trends, such as SSP5-8.5 experiments, remains

to be tested.

The power spectral density estimator measures two-point correlations and is therefore limited in

identifying non-linear processes. Inappropriate use of linear methods for analyzing highly non-

linear processes such as DO-events can lead to false interpretations of the significance of peaks

(Braun et al., 2010). This does not directly affect our analysis as we focus on the continuum of the

climate spectrum instead of spectral peaks. However, since nonlinearities are inherent to the cli-

mate system, it will be necessary to develop additional tools to extend the analysis of non-linear

effects on climate variability across scales. Moreover, power spectral analysis cannot be directly ap-

plied to infer causality (Chatfield, 2003). For example, the spectral gain cannot tell which process

preceded the other. Cross-spectral and higher-order spectral analyses could be used to study how

one process influences the other in a linear or non-linear setting (Liebrand&de Bakker, 2019). The

cross-spectral density, extending the power spectrum to the case of two input time series, allows

studying the temporal synchronicity and time offsets between these two (Pires&Hannachi, 2021).

Yet, robust applications of these advanced spectral estimates are limited to time series that exhibit

many similarly shaped cycles per considered time window, supporting high enough significance lev-

els (Liebrand&de Bakker, 2019). Moreover, there is no common standard for defining significance

levels against stochastic noise and normalizing these spectral estimates. Thus, their application for

quantifying the strength and causality of climate interactions requires additional research.

7.3.2 Uncertainties in climate model simulations

Climate models have constantly been improved in their representation of climate processes (Knutti

& Sedláček, 2013). Nevertheless, they represent simplifications of physical processes and cannot re-
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produce the entire complexity of Earth’s dynamic system. In simulations, relevant processes might

be missing because of insufficient coupling between climate model components, such as the carbon

cycle and ice sheets. Paleoclimate simulations are typically based on less comprehensive models or

use lower model resolutions to simulate long periods within limited computational capacities (Bra-

connot et al., 2012). Unavoidable uncertainties arise from their fixed temporal and spatial resolution

as well as their different level of detail in representing Earth system components. The necessary

parametrization of sub-grid processes complicates the representation of important small-scale feed-

back processes, such as those from stratospheric or indirect aerosol effects in response to volcanic

forcing, cloud feedbacks, or ocean mixing, needed to advance climate model simulations (Eyring et

al., 2019). Parametrization schemes that simplify sub-grid processes can be prone to uncertainties

(Lehner et al., 2020), for example, due to empirically estimated parameters.

In addition, paleoclimate simulations require forcing reconstructions, which are subject to uncer-

tainties in paleoclimate analysis (Toohey&Sigl, 2017). The design of model experiments, which use

different (Schmidt et al., 2012) or incomplete (O’Neill et al., 2016) forcing inputs, further contribute to

the spread between simulations (Fyfe et al., 2021) and between simulated and observed climate vari-

ability (Fredriksen&Rypdal, 2016; Goosse et al., 2005; Scaife&Smith, 2018) (P2). Running ensemble

simulations and considering multiple members in the statistical analysis can make statistical assess-

ments more reliable (P2), assuming that the ensemble members sample the relevant uncertainties.

Moreover, Bayesian inference based on Monte Carlo Markov chains can help infer model-specific

parameters from a limited number of model runs (P3).

7.3.3 Uncertainties in proxy reconstructions

Paleoclimate reconstructions are also subject to uncertainties. This is because they are based on

natural chemical, biological, geological, and physical processes (Cronin, 2010). Time series extracted

from paleoclimate archives can exhibit irregular sampling, hiatuses, measurement uncertainties,

varying resolutions, limited coverage, or a limited number of data points. Natural signal-altering

processes such as bioturbation (Dolman et al., 2021; Mollenhauer et al., 2003) and diffusion (Johnsen

et al., 2000; Münch et al., 2017) impact the records and can lead to archive- or proxy-specific limi-

tations in representing variability. Examples are the tendency of reduced high-frequency variability

in marine sediments and ice core records (Casado et al., 2020), as well as the reduced low-frequency

variability in tree ring reconstructions (Lücke et al., 2019). Calibration and reconstruction techniques

rely on statistical assumptions and vary between archive types and proxies. This can lead to addi-

tional biases and uncertainties (Birks& John, 2012; Büntgen et al., 2022). Global and hemispheric

reconstructions are considered more robust since they build on multiple records (Christiansen&

Ljungqvist, 2017). However, the sparse proxy coverage in some parts of the Earth can bias recon-

structions (Mann et al., 2008), for example, towards more densely sampled regions.

The irregularity and sparse availability of proxy records also challenge their statistical analysis. In

particular, spectral analysis of irregularly sampled proxy data is more prone to biases than that of

regular time series. To reduce possible errors, proxy analyses in P1, P2, and this work build on the

interpolation and uncertainty quantification for irregular temperature records of previous studies

by Laepple&Huybers (2014b). Biases are minimized by selecting published proxy records from large

proxy syntheses such as PAGES2k (PAGES2k Consortium, 2017). Selection criteria account for hia-

tus, target resolution, number of data points, and covered period and are chosen to allow for reliable

estimates over the considered timescale (P1 and P2). Comparison of statistical estimators (Baudouin

et al., 2022), for example, for extracting scaling coefficients (P1), forms the basis for the develop-

ment and application of robust statistical tools. Monte Carlo and pseudo-proxy approaches (P1)
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address the problem that only a single observed realization of past climate exists. They can also help

distinguish signal from noise in the presence of limited data. However, more reliable regional re-

constructions are needed to exploit the full potential of climate model validation with paleoclimate

reconstructions.

7.4 Implications and outlook

The presented results point to limitations in the simulated variability structure from climate model

simulations. In particular, climatemodel simulationsmight show too few temperature variations over

decades and centuries (P1, P2, Fig. 11). This section examines the potential for reconciling simulated

and reconstructed local temperature variability (Sec. 7.4.1). Next, potential biases in temperature

projections and attributions studies arising from our findings are discussed (Sec. 7.4.2). Numeri-

cal experiments with integrated assessment models (IAMs) show the importance of accounting for

the full range of potential future variability by contrasting projections of climate-related economic

damages with and without natural variability (Sec. 7.4.3). It remains to be clarified to what extent the

presented paleoclimate findings transfer to future climate variability in an Earth system state subject

to far-reaching anthropogenic changes (IPCC, 2022b). The section concludes by discussing potential

future studies to extend this work’s findings and implications (Sec. 7.4.4).

7.4.1 Reconciling simulated and reconstructed temperature variability

Different arguments can partly explain our findings on the local-to-global variability structure. Re-

garding global variability, simulated, observed, and reconstructed temperatures largely agree across

timescales (P1, P3). The dependence of global temperature on external radiative forcing (P1-P3) is the

main reason why less comprehensive models can reliably simulate its properties for the recent mil-

lennia. Our simple stochastic two-box EBM confirms a predominant linear dependence of surface air

temperature on natural forcing by robustly emulating complex climate model simulations (P3). The

agreement of forced climate model experiments with paleoclimate reconstructions demonstrates

their ability to simulate the global temperature evolution on interannual to centennial scales.

However, simulations show a stronger contribution from forcing to global temperature variability at

interannual to decadal scales than instrumental observations and paleoclimate reconstructions (P1,

P3) (Chylek et al., 2020; Schurer et al., 2013). Likewise, the simulated internal variability is smaller over

these periods (P3) (Yan et al., 2018). As the overall variability agrees, the enhanced global response to

forcing might compensate for too low internal variability in simulations. The presented results also

demonstrate that contributions from internal variability grow over periods from years to centuries

when slow processes in the oceans, cryosphere, vegetation, and carbon cycle become increasingly

relevant (P3). The simulation of long-term ice sheet feedbacks using an interactive ice sheet model

can help reconcile the continuumof reconstructed and simulated variability onmillennial scales from

different data sources (Fig. 12).

Regarding temperatures at the local-to-regional level, many studies confirm disagreement on

decadal to multicentennial scales (Cheung et al., 2017; Fredriksen&Rypdal, 2016; Hébert et al., 2022;

Laepple&Huybers, 2014a,b; Parsons et al., 2017). Some uncertainties inherent to themodel and proxy

data can help explain this finding. Local variability could be enhanced in proxy records because

they may include non-climatic “noise”, for example, from site-specific features or the aliasing of the

seasonal cycle (Laepple&Huybers, 2013). Conversely, potential biases, such as the bioturbation of

sediments (Berger&Heath, 1968) and isotopic diffusion in ice (Johnsen et al., 2000), tend to deplete

variability in proxy records. These effects can occur at specific, potentially distinct timescales.
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In Laepple et al. (2023), we hypothesize that uncertainties in proxy reconstructions alone cannot

explain the mismatch in variance and persistence at the local level. By reviewing the evidence on

natural temperature variability and potential reasons for the data-model mismatch, we argue that

regional climate variations persist for timescales longer than those currently simulated by climate

models. In favor of this argument, statistical methods to correct potential biases from non-climatic

processes have strongly improved the reliability of proxy reconstruction (Casado et al., 2020; Dolman

&Laepple, 2018). In addition, comparisons to observations also show wide agreement (Hébert et al.,

2022), as do reconstructions and simulations at interannual scales (P1, P2) (Bühler et al., 2021; Cheung

et al., 2017; Hébert et al., 2022; Laepple&Huybers, 2014a,b). Therefore, neither an overestimation of

local variability nor an underestimation of global variability by reconstructions can fully explain the

systematic model-data discrepancies (Laepple et al., 2023). Instead, the mismatch might be due to

model deficiencies. Climate model simulations might show too little local variability on multidecadal

scales. Suppression of this variability could result from a highmodel diffusivity and, thus, fast energy

dissipation over temporal scales in simulations. In line with this, comprehensive climate models are

often too stable to simulate abrupt climate transitions (Valdes, 2011).

Several optimizations of climate models and simulation experiments can help improve the represen-

tation of variability. The enhancedmodel-data agreement between proxy and simulated temperature

using MPI-ESM (coupled) points to an improved representation of climate variability in comprehen-

sive climate models with interactive ice sheets. In line with this, models with sophisticated ice sheet

feedbacks could potentially better simulate sudden climate shifts (Armstrong et al., 2022; Klockmann

et al., 2020; Ziemen et al., 2019) and, thus, account for these contributions to variability. Missing

representation of interactive ice sheets (Bakker et al., 2017) and dynamic vegetation (Braconnot et al.,

2019; Hopcroft &Valdes, 2021) have been proposed to explain underestimated simulated variability,

as well as too weak forcing at the local scale (Fredriksen&Rypdal, 2016; Goosse et al., 2005; Scaife&

Smith, 2018). More interactive components and feedback processes could yield more independent

modes of variability in climate models. Improved representation of sub-grid scale processes can also

increase temperature variability in model simulations (Juricke et al., 2017).

When model experiments account for natural forcing, the simulated temperature variance agrees

significantly better with palaeoclimate data, especially on decadal to multicentennial scales (P2,

Fig. 9). Thus, including natural forcing provides a more accurate representation of climate variabil-

ity. Consistent with previous arguments (Bethke et al., 2017), it is necessary to complement solely

emissions-driven projections (O’Neill et al., 2016) by natural forcing. Representing stochastic and

intermittent natural forcing from volcanic eruptions at the regional scale could also improve the

representation of forced variability. It might correct for too strong responses at the global level

(Fredriksen&Rypdal, 2016; Goosse et al., 2005; Scaife&Smith, 2018). If disagreement persists, re-

gional projections will be affected by associated model biases. This raises the question of whether

projections of the occurrence of extreme periods and the attribution of single events are sensitive

to simulated long-term variability.

7.4.2 Projection and attribution of extremes under long-term variability

Climate variability influences projections of future climate (Blanusa et al., 2022), impact assessments

(Calel et al., 2020; Schwarzwald&Lenssen, 2022), the occurrence of extreme events (Czymzik et

al., 2016; Ionita et al., 2021), and attribution studies (Harrington et al., 2021). Open challenges re-

main in linking climate variability with the recurrence properties of extreme climate and weather

events (Simolo&Corti, 2022). P1 concluded that local temperature fluctuations at decadal and longer

timescales tend to show statistically different behavior with increasing (β > 1) versus decreasing
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(β < 1) fluctuations on longer timescales in proxy records compared to simulations. As a result, cli-

matemodel simulationsmight underestimate long-term correlations of local temperature at decadal

to centennial scales compared to reconstructions.
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Figure 14: Conceptual representation of how long-term variability might influence the occurrence of extremes. a Light

blue line shows a realization of a white noise process reflecting the short-term variations linked to weather phenomena.

The dark blue line shows a realization of a self-similar stochastic process with S(τ) ∼ τβ and β ≈ 1. This long-term

correlated time series is low-pass filtered (cutoff 1/10 yrs) to reflect decadal-to-centennial variability. The pink line is the

sum of both processes and refers to a typical climate time series. Parameters reflect characteristic timescales of weeks

(short-term) and decades (long-term), with a variance ratio of 5:1. The segment displays the numerical simulations of

these time series corresponding to a timewindow of 50 years. Dots show extreme events that lie more than two standard

deviations below or above themean (white area). b Empirical distributions of the short-term time series and the full signal

(solid lines). Dashed lines show distributions of the full signal estimated from an exceptionally cold and warm decade.

c Empirical return levels from the full “short-term” and “short-term + long-term” time series. The empirical estimates

are based on a numerically simulated time series of 10,000 years to ensure convergence of the empirically computed

distributions. Figure adapted from Laepple et al. (2023).

Figure 14 visualizes the linkage between the statistical properties of time series fluctuations and the

recurrence of extreme values. For the conceptual illustration of this link, numerical experiments

with correlated and uncorrelated time series (Fig. 14 a) were performed. The short-term uncorre-

lated fluctuations correspond to a white noise process on a characteristic timescale of weeks. The

long-term fluctuations correspond to a low-pass filtered self-similar stochastic process with β ≈ 1,

representing variability on decadal and longer timescales. Figure 14 b compares the probability dis-

tributions of the short-term fluctuations with that of the sum of short- and long-term fluctuations,

reflecting a conceptual climate time series that features fast (“weather”) and slow modulations, for

example, from decadal variability. Figure 14 c displays the return levels of both time series. They

were obtained from the Weibull formula, which relates the inverse rank i of the sorted time series
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vector X = (x1, . . . , xN ), xi ≥ xi+1 of length N to the return period R(xi) via

R(xi) = 1/P (x ≥ xi) =
N + 1

i
.

Long-term variability leads to a higher sensitivity of the estimated distribution on the observed time

window (Fig. 14 b). Moreover, it increases themagnitude of extreme events and decreases their return

time (Fig. 14 c). Underestimating long-term variability can cause statistical predictions of extremes

that turn out too weak and, thus, miss losses and damages. Such an underestimation can, for ex-

ample, result from relying on instrumental observations that are too short to constrain temperature

variability beyond the decadal scale. This can bias distribution estimates of the underlying variable

(Fig. 14 b). If strong and persistent local variability is partially missing in climate model simulations,

future projections might underestimate the recurrence times of extremes (Fig. 14 c).

Moreover, a higher persistence increases the risk of extreme conditions, such as sustained high

temperatures that increase the likelihood of extreme heat and droughts. Likewise, climate model

simulations might underestimate the risk of compound heat and drought events and the risk of

sustained agricultural losses and wildfires. Such combinations of extremes are essential for long-

term planning, as they increase the vulnerability of ecosystems and populations (Zscheischler et al.,

2020). Consequently, there is a need for impact assessment studies that consider climate variability

(Calel et al., 2020; Schwarzwald&Lenssen, 2022). Uncertainties in policy-relevant projections due

to incomplete knowledge of climate variability can also affect socio-economic planning (Deser et al.,

2012).

As the simulation of variability is linked to the simulation of extremes, uncertainties in variability

directly affect attribution studies. Attribution studies provide evidence for the anthropogenic in-

fluence on single extremes (Stott et al., 2016) and long-term changes (Hegerl et al., 1996). They de-

compose the climate response into anthropogenic and natural contributions based on climate model

simulations. As such, they are susceptible to model biases in simulating variability (Harrington et al.,

2021; van Oldenborgh et al., 2021). Extreme event attribution often assumes that decadal and longer

internal variability plays only a minor role in the occurrence of extremes (Philip et al., 2020). If sim-

ulations fail to simulate the strength and persistence of local variability, tests for the significance

of anthropogenic effects will tend to be biased positive (Laepple&Huybers, 2014b; Laepple et al.,

2023).

7.4.3 Impacts of natural variability on damage and risk assessments

Besides links between climate variability and extreme events, variability also affects economic dam-

ages and losses (Calel et al., 2020; Schwarzwald&Lenssen, 2022). Here, the economic impact of

global temperature variability is examined by combining the developed ClimBayes software package

(P3) (Schillinger et al., 2022b) with an integrated assessment model (IAM). IAMs serve to represent

the interaction between socio-economic and climate processes throughout the upcoming decades

and centuries (Parson&Fisher-Vanden, 1997; van Beek et al., 2020). They are designed to explore

scenarios of technical development, socio-economic transformation, climate-related damages, and

their interaction with policy choices (Krey, 2014; Parson&Fisher-Vanden, 1997). Depending on the

scope of application, IAMs vary in complexity, spatiotemporal resolution, and time horizon, among

others (Baumstark et al., 2021; Krey, 2014). Examples include multiregional IAMs that address energy

transformations in response to climate policies and economic development by modeling the energy-

economic system (Baumstark et al., 2021). Other IAMs contrast the cost of global warming to that of

climate mitigation and adaptation (Nordhaus, 2010).

Typically, IAMs rely on strong economic assumptions (Rotmans&van Asselt, 2001), such as simpli-
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fied damage functions that extrapolate expected climate-related damages using empirical estimates

(Weitzman, 2012). Moreover, IAM-based projections of losses and damages often focus on the mean

values of climate parameters instead of their variability. Using a comparatively simple IAM (Nordhaus,

2017; Weitzman, 2012), Calel et al. (2020) demonstrated that projections of economic costs might be

overly optimistic if future scenarios of global temperature change miss internal variability. The im-

pacts of volcanic forcing as a substantial driver of interannual global temperature variability (P3) still

need to be examined.

Here, the impacts from internal and volcanically forced variability on monetary costs from climate-

related damages are estimated by combining the approach from Calel et al. (2020) with ClimBayes.

Following P3, nine CMIP5 models2 are emulated to generate an ensemble of global temperature time

series with different variability representations, reflecting the internal, volcanic, and internal + vol-

canic variations. Next, the IAM computes the annual global economic damage based on global tem-

perature anomalies ∆T , a damage function D(∆T ) (Fig. 15 a), population growth, and economic pa-

rameters such as per capita consumption and discount rate (App. C). The parameters are taken from

Calel et al. (2020) and comply with economic and population models for 2020-2500 CE.

The emulated global temperature data consists of an ensemble of 10,000 time series with a length

of 480 years for each of the nine CMIP5 models and three categories (internal, volcanic, and internal

+ volcanic). Example time series are shown in Appendix D, Fig. 18. The volcanic forcing is randomly

sampled from distribution estimates of volcanic eruptions (Ammann&Naveau, 2010; Sprinz, 2023)

(App. C). Other natural drivers, such as solar forcing, are neglected here since volcanism represents

the dominant driver on interannual scales (P1). To isolate the damages from annual fluctuations,

the mean temperature is held constant by fixing the free parameters T0 and F0 in ClimBayes. It

is important to note that a constant mean temperature for 2020-2500 CE does not comply with

realistic future scenarios. Here, potential impacts from global warming can only be approximated by

comparing the damages for different mean temperatures.

Figure 15 b shows the damage distributions for global temperatures with internal, volcanic and in-

ternal + volcanic variability for a mean temperature anomaly of 〈∆T (t)〉 = 1.09 K, corresponding to

present day warming. The mean economic cost for all categories lies above a baseline scenario with

constant ∆T (t) = 1.09 K for all times t. This is because the non-linear damage function penalizes

positive deviations (∆T (t) > 1.09 K) from the mean stronger than negative ones (∆T (t) < 1.09 K)

in this scenario (Fig. 15 a). As a result, variability broadens the distribution of costs and increases

its mean value (Fig. 15 b). The ensemble mean standard deviation σ(∆T ) =
√

〈(∆T (t)− 〈∆T (t)〉)2〉 is
higher for volcanic (σ(∆T ) = 0.26K) compared to internal (σ(∆T ) = 0.12K). This explains increased

mean economic costs and larger quartiles under volcanic forcing. Combining internal + volcanic

further increases the variance, broadens the damage distributions, and increases the mean costs

(Fig. 15 b).

The dependence of the overall extent of economic costs on the global mean temperature anomaly

(Fig. 15 c and d) results directly from the damage function (Fig. 15 a). The costs are approximately

one order of magnitude higher for 〈∆T (t)〉 = 3 K compared to 〈∆T (t)〉 = 1.09K (Fig. 15 c), and one

order of magnitude lower compared to 〈∆T (t)〉 = 5K (Fig. 15 d). The mean cumulative damage (127

Trillion USD) for 〈∆T (t)〉 = 3K corresponds to annual damages of approximately 3% of today’s gross

world product (≈ 80 Billion USD), in line with Calel et al. (2020) (App. C). Disregardless of the mean

temperature, the distribution’s quantiles span a range of costs that vary by approximately 10% due

to internal + volcanic variability. Thus, missing volcanic forcing and internal variability in future

2All CMIP5 models used in P3 are considered, except for MIROC, showing a substantial drift of the mean temperature,

which could bias the analysis (P3). Table 1 of P3 (App. H) specifies the simulations.
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Figure 15: a Share of global economic output that will be lost according to the damage function D(∆T (t)) =(
1 + a∆T (t)2 + b∆T (t)6

)−1
for a = (1/20.46K)2 and b = (1/6.081K)6 (Calel et al., 2020; Nordhaus, 2017; Weitzman,

2012) (App. C). The annual global temperature anomaly∆T (t) refers to pre-industrial times (reference period 1850–1900

CE). Crosses indicate the mean anomaly 1.09K, 3K, and 5K, for which idealized experiments computed the distribution

of cumulative damages (b, c, and d). The inset highlights the loss for comparatively small temperature anomalies below

3K. b Distribution of cumulative damages in an idealized scenario with 〈∆T (t)〉 = 1.09K considering volcanic, inter-

nal and internal + volcanic variability over the period 2020-2500 CE. The boxes indicate the quartiles, solid horizontal

lines the median, and vertical lines the 5% and 95% quantiles. Each box represents the distribution estimates based on

90,000 samples from nine emulated CMIP5 last millennium simulations (10,000 per model). The horizontal dashed line

corresponds to the cumulative damages obtained from a constant mean temperature without fluctuations. Panel c and

d show the results for internal+volcanic variability and 〈∆T (t)〉 = 3K and 〈∆T (t)〉 = 5K, respectively. Stephan Sprinz

generated the global temperature time series using ClimBayes (Sprinz, 2023).

scenarios can cause an underestimation of the range of possible future damages.

Fundamental limitations of this conceptual IAM study arise from the damage functionD(∆T ) (App. C),

which does not account for uncertainties in the empirically estimated parameters. Moreover, the

function is ill-defined for negative temperature anomalies. Substantial cooling after strong volcanic

eruptions could bias the distribution estimates. Here, these effects occur in less than 0.7% of all data

points and do not significantly alter the ensemble estimates. Further, the damage does not capture

secondary feedbacks of temperature variability change and non-linear non-temperature variable ef-

fects. Themarket-based cost-benefit or cost-efficiency optimization (Baumstark et al., 2021) of IAMs

can often not reflect the potential for endogenous lifestyle changes. These changes, however, could

significantly contribute to climate mitigation (van Vuuren et al., 2018). In addition, the ClimBayes

package neglects potential changes in variability with warming (P3). Precise damage projections

should be quantified with more complex IAMs and, ideally, simulation ensembles of naturally and

anthropogenically forced projections based on more comprehensive models.

7.4.4 Remaining questions and potential for future studies

This dissertation comprises studies of various mechanisms of interannual to millennial temperature

variability. In particular, the distinction between externally driven and intrinsic variability and the

response to volcanic forcing on different timescales has been investigated. Moreover, the contribu-

tions of sea ice andmeltwater flux feedbacks to variability have been discussed. However, as outlined

in the introduction (Sec. 5.1 and Fig. 2), numerous other mechanisms can also influence climate vari-

ability. Thus, the presented analyses cover only a subset of relevant mechanisms of interannual to

millennial variability.

This work does not explicitly study multidecadal modes such as the Atlantic Multidecadal Variabil-

ity or the Pacific Decadal Oscillation, extensively covered in the literature (Fasullo et al., 2020; IPCC,

2021a). These and othermodes can influence local and global temperature and are importantmecha-
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nisms formultidecadal variability (von der Heydt et al., 2021). However, variability is often considered

as the response to external forcing plus internal modes, which may need to be revised because of

the temperature fluctuations’ scaling and persistence. The interaction ofmodeswith the background

continuum, particularly their contributions to scaling, remains open to future work.

Other essential mechanisms of variability, merely discussed in P1-P3, are short-term feedbacks on

interannual timescales. They are especially relevant in response to forcing but also for the projection

of extremes. Potentially relevant processes, such as stratospheric (Aubry et al., 2022) or cloud feed-

backs (Hopcroft et al., 2018), require enhanced parameterization schemes, especially for paleoclimate

simulations. If these can be improved, one critical question arises from the finding that local trends of

short-term extremes, such as daily temperature maxima, differ in simulation and instrumental data

(van Oldenborgh et al., 2022). On the one hand, a too-homogeneous structure of variability could

explain why climate models are less capable of representing small-scale than large-scale changes.

On the other hand, unresolved local feedbacks, potentially resulting from anthropogenic aerosols

and land surface changes, could cause the observed differences. Contrasting the influences of long-

term statistical changes and short-term local feedbacks will be necessary to improve the reliability

of local projections.

The importance for simulated variability to couple model components interactively

Including land ice in climate simulations often relies on prescribing ice sheets based on reconstruc-

tions. Simulations with coupled ice sheets open new possibilities for improved representation of

long-term variability, as the comparison of the MPI-ESM simulations shows. Similar results might be

expected from including other interactive Earth system components in climate model simulations.

In particular, paleoclimate simulationswith ESMs typically prescribe CO2 concentrations rather than

simulating them within a dynamic carbon cycle (Brierley et al., 2020). Simulating all relevant climate

feedback processes from the carbon cycle and vegetation dynamics with ESMs is challenging and

computationally expensive. As a result, state-of-the-art PMIP4-CMIP6 simulations include only a

few runs with an interactive carbon cycle. None of them represents a fully dynamic vegetation to-

gether with an interactive carbon cycle for a Mid-Holocene simulation (Brierley et al., 2020).

However, changes in the CO2 concentrations from ocean biogeochemistry (Sigman&Boyle, 2000),

enhanced weathering (Arnscheidt&Rothman, 2022), and vegetation changes (Braconnot et al., 2019)

have been proposed to contribute to variability on millennial and longer scales. The implementation

of an interactive carbon cycle in ESMs for last millennium simulations (Braconnot et al., 2012) and

the first EMIC simulation of the past glacial cycles with interactive ice sheet and carbon cycle com-

ponents (Willeit et al., 2019) could help assess slow carbon and vegetation feedbacks in the climate

system. Moreover, dynamic vegetation can improve the representation of variability in simulations

(Braconnot et al., 2019; Hopcroft &Valdes, 2021). Therefore, comprehensive climate model exper-

iments that can dynamically simulate the interaction between climate, ice sheets, vegetation, and

the carbon cycle over timescales longer than a thousand years will be necessary to complete the

understanding of temperature variability.

Climate sensitivity, non-linear feedbacks, and future abrupt transitions

The equilibrium climate sensitivity (ECS) strongly depends on the strength of climate feedbacks, as

outlined in Section 5.1.2. One major reason for the spread in ECS assessed by climate models is that

they represent feedback mechanisms differently (Ceppi et al., 2017; Knutti &Rugenstein, 2015). As a

result, the natural variability of feedback processes and their response to forcing could influence ECS

estimates. The findings presented here can support ECS estimates by reducing model uncertainties

and improving the understanding of internal variability. Future studies based on validation against

paleoclimate reconstructions, such as the one presented for the MPI-ESM simulations with differ-
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ent representations of ice sheet feedbacks, can help identify those models which provide a realistic

temperature spectrum and which are most capable of simulating feedback processes. Therefore, a

comparison of ECS estimates based on these models and scenario runs needs to follow.

Proper assessment of feedback mechanisms is not only critical for ECS estimates but also for as-

sessing the risk of abrupt future changes. Both anthropogenic and natural forcings influence abrupt

transitions and tipping points (Ashwin et al., 2012; Boers et al., 2022). Separating externally forced

and internal variability could help understand whether abrupt transitions are due to external causes,

internal mechanisms, or both (Ashwin et al., 2012). If climatemodels cannot simulate past transitions,

theymay alsomiss future abrupt changes due to similar mechanisms. Paleoclimate analyses can help

determine whether climate model simulations capture the non-linear dynamics involved in abrupt

transitions with sufficient accuracy (Valdes, 2011). Our results indicate that incorporating ice sheet

feedbacks with interactively coupled ice sheet models may simulate temperature changes more re-

liably.

One possibility to project abrupt transitions is to determine critical warming values and associated

forcing levels at which components of the Earth systemmight undergo a critical transition. However,

estimates of these critical thresholds are still subject to significant uncertainties (Boers et al., 2022).

Underestimating variability in climate model simulations can cause too optimistic predictions of the

probability of crossing potentially critical thresholds in future projections. However, the link between

long-term variability and critical regional or global climate thresholds in a future climate remains to

be verified.

Transferring paleoclimate knowledge to future climates

This dissertation focuses on paleoclimate simulations and comparisons with existing paleoclimate

data. Testing the relevance of the discussed state and forcing dependency for projectionswas beyond

the scope of this thesis but should be readily possible using simulations of future climate scenarios.

To this end, it will be necessary to compare simulated variability in past, present, and future climate

states using climate models with a comprehensive representation of feedback processes. These are

particularly needed to account for anthropogenically-modifiedmechanisms of variability. For exam-

ple, air pollution could influence decadal modes of variability (Smith et al., 2016). In addition, land

surface changes due to human activities strongly perturb the carbon cycle (Falkowski et al., 2000)

and vegetation. These changes can impact future variability, for example, through albedo feedbacks.

Moreover, the rapid melting of ice sheets, sea ice, and mountain glaciers could increase volcanic

activity (Aubry et al., 2022; Swindles et al., 2018).

Nevertheless, the presented studies indicate strong implications for future climate states and their

simulation: First, the lower mean local variability of surface air temperature in warmer climate states

(P2) is likely to hold for future warming (Bathiany et al., 2018; Olonscheck et al., 2021; Rehfeld et al.,

2018). While this pattern is robust for the high latitudes (P2), it remains to be verified for other re-

gions. Second, the benefits of including high-frequency natural forcings in model experiments have

been demonstrated for simulations of the past (P2, P3) and future climate (Bethke et al., 2017). It is

crucial to ensure that climate models simulate natural forcing, internal variability, and their future

changes sufficiently well to provide reliable projections of the impacts of local variability on society

and ecosystems. Third, the representation of natural, long-term temperature variability in climate

models influences projections of extremes in numerous ways. Representing variability in impact

studies is critical to account for uncertainties in climate risk projections. Yet, the examined impact

studies did not consider any adaptation behavior. Studies investigating the interaction between soci-

etal preparedness and the distribution of damages, for example, using coupled climate-social models

(Moore et al., 2022), will be needed to further reduce uncertainties in impact assessments.
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8 Conclusion

Due to anthropogenic influences on the climate, temperatures on Earth are rising faster than ever

before. Mitigation and adaptation policies require reliable simulations of future climate variability.

In particular, understanding and modeling temperature variability is crucial for projecting extreme

climate and weather events like drought and heat. Model simulations are the primary method for as-

sessing climate-related risks for humans and nature. However, simulated temperatures are subject to

considerable uncertainties, especially on the societally relevant decadal and centennial timescales.

Consequently, it is essential to comprehend the statistics of temperature fluctuations across spa-

tiotemporal scales and the ability of climatemodels to represent them. This requires the comparison

of simulated temperatures against paleoclimate reconstructions.

This dissertation aimed to improve the understanding andmodeling of temperature variability across

spatiotemporal scales and its potential impacts on projections and extremes. Three studies (P1-

P3) and complementary analyses investigated temperature fluctuations across scales, focusing on

their dependence on climate forcings and the mean climate state. With respect to the five research

objectives O1-O5 (Sec. 6), this work concludes (key findings in italic):

O1 To evaluate the agreement of reconstructed and simulated global temperature variability

Evaluating previously found agreement (PAGES 2k Consortium, 2019; Zhu et al., 2019) between

reconstructed and simulated global temperature variability, the presented studies allow three

conclusions: First, they confirmwide agreement of observed, simulated, and reconstructed global

temperature variability throughout the last millennia (P1, P2). The dominant response of sim-

ulated temperatures to included external drivers explains this finding (P1-P3). However, this

dependence also suggests that future projections will underestimate temperature variability

and associated risks when ignoring natural forcing mechanisms, such as volcanism. Second,

the strong response to volcanic eruptions yields an overestimation of the decadal variability by

CMIP5 simulations (P3, Fig. 12 c). This raises the question for future research whether more

localized in contrast to zonal implementations of volcanic forcing can correct this mismatch.

Third, the broad agreement between climatemodels and observations cannot be generalized to

timescales longer than centuries. This partially contradicts the arguments by Zhu et al. (2019)

that climate models can correctly simulate the continuum of temperature variability. Instead,

global temperature variability of the comprehensive climate models investigated here depends

on their implementation of potentially non-linear feedbackmechanisms from slow components

of the dynamic climate system, such as ice sheets. In particular, the presented results demon-

strate a strong effect of meltwater fluxes on global temperature variability (Fig. 13). Neverthe-

less, our studies confirm the confidence in the simulation of global temperature, especially if cli-

mate model simulations represent the physically relevant building blocks of long-term variability

in a realistic and interactively coupled manner.

O2 To quantify the potential mismatch between reconstructed and simulated local temperature

variability in terms of overall variance and scaling on interannual to millennial timescales

The main conclusion that can be drawn from comparing simulated and reconstructed local

temperatures is that mismatches on the examined decadal to multicentennial timescale are sig-

nificant. This includes both the scaling (P1) and the variance (P2). A too homogenous spatial

structure of simulated variability might explain global agreement despite local disagreement of

paleoclimate reconstructions and model simulations (Laepple et al., 2023). Incorporating natu-

ral high-frequency forcing (P2, Fig. 10) and interactive ice sheets (Fig. 11) in climate model experi-

ments can reduce the mismatch. If climate model simulations do not sufficiently represent slow
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feedback processes, the mismatch between simulated and reconstructed local temperatures

likely increases with timescales. However, there is a need for more robust zonal or regional re-

constructions and large ensembles of climate model experiments to constrain local variability.

Lastly, reconciling existing discrepancies between simulated and reconstructed variability is

crucial for projecting extremes. If simulated temperatures miss temporal persistence or decadal

variance, as indicated by the present results, they will underestimate the recurrence of extremes

(Fig. 14).

O3 To isolate the timescale-dependent forced and unforced temperature variability

In P3, we have developed the statistically robust and easy-to-use ClimBayes (Schillinger et al.,

2022b) software package to isolate the timescale-dependent forced and unforced tempera-

ture statistics from climate model outputs. The main implication of the successful emulation of

global temperature from state-of-the-art climate model simulations is that a few mechanisms,

represented by a linear stochastic two-box EBM (P3), suffice to simulate global temperature

variations over the last millennia. This finding can be considered a further validation of the

predominant linear response to external forcing of simulated global mean temperatures (P1,

P3) (Fredriksen&Rypdal, 2017; Geoffroy et al., 2013; MacMynowski et al., 2011). ClimBayes pro-

vides an alternative to computationally expensive approaches for separating variability compo-

nents based on large ensembles of climate model simulations (Kay et al., 2015; Lehner et al.,

2020). Therefore, ClimBayes can help identify uncertainties in variability estimates from in-

ternal stochastic dynamics, deterministic forcing, and additional proxy-, model-, or scenario-

specific uncertainties. The developed approach also generates realistic global temperature

time series very effectively. This supportsmore reliable statistical estimates of potential climate-

related risks and economic losses (Fig. 15) compared to assessment studies that miss natural

forcing (Calel et al., 2020; Schwarzwald&Lenssen, 2022). The many possibilities of combining

integrated assessment models with ClimBayes warrants further investigation. In addition, fu-

ture research could develop faster numerical implementations for ClimBayes that would allow

emulating longer time series and, thus, validating limitations due to non-stationary trends and

potential interactions between forced and internal variability.

O4 To test for state-dependent effects in forced and unforced temperature variability

Contrasting temperature variability in Glacial and Interglacial simulations with HadCM3 (P2)

and MPI-ESM (Sec. 7.2.1), the present findings confirm reduced local variability in warmer cli-

mates (Bathiany et al., 2018; Berdahl&Robock, 2013; Bethke et al., 2017; Brown et al., 2017; Olon-

scheck et al., 2021; Rehfeld et al., 2018). Decreasing sea ice dynamics with warming is a potential

mechanism for this change and causes the strongest reduction of variability in high latitudes

(P2). In contrast to previously suggested state-dependent effects of volcanic forcing on the

global and hemispheric climate based on ensemble simulations with large volcanic eruptions

(Berdahl&Robock, 2013; Muthers et al., 2014; Swingedouw et al., 2017; Zanchettin et al., 2016),

our study P2 concludes that the simulated global temperature response does not strongly de-

pend on the mean climate. This result is broadly consistent with the predominant linear rela-

tion between the global temperature response and volcanic forcing (see O3). While the local

response to strong volcanic eruptions may depend on the climate state due to non-linear pro-

cesses (Zanchettin et al., 2013), these effects are likely to vanish at the global scale and in more

realistic forcing scenarios (P2). Since the present analyses reveal state-dependent differences

according to the implementation of ice sheet feedbacks in climatemodels (Fig. 13), investigating

the response to individual strong volcanic eruptions in these simulationsmight prove important

to test the findings of P2. Overall, this work’s results demonstrate a substantial impact of state-
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dependent effects on local and a weak impact on global temperature variability. This implies high

confidence in future projections of global mean temperature driven by greenhouse gas emis-

sions. The dependence of internal variability on future scenarios and associated uncertainties

in regional projections are issues for further research.

O5 To identify keymechanisms contributing to the power spectral density of surface air temperature

This overarching research goal draws on the insights into variability mechanisms from O1-O4.

In summary, external forcing dominates global temperature variability below centennial scales

(P1-P3). The integration of uncorrelated, short-term fluctuations (“weather forcing”) (P3) de-

scribes internal variability reliably on these timescales, except for the impact of superposed

pseudo-oscillatory climatemodes, such as ENSO.With larger timescales, the contribution from

internal variability arising from slow components of Earth dynamics, such as the cryosphere,

becomes more important. At the period of approximately 1000 years, data from paleoclimate

reconstructions and model simulations indicate a change in the behavior of global tempera-

ture fluctuations (Fig. 12). This finding can help reveal millennial-scale variability mechanisms.

In particular, the transition in fluctuation behavior might be due to changes in meltwater forc-

ing and stabilizing feedbacks in response to it. More research is needed to test this hypothesis.

At the local level, temperature variability in simulation and reconstruction still deviates above

decadal timescales. Thus, it is difficult to arrive at conclusions about mechanisms governing

local variability. Nevertheless, the present results show that sea ice and volcanic forcing influ-

ence temperature variability for decades (P2). This is an interesting finding for understanding the

continuumof temperature variability, as sea ice and volcanic forcing havemuch shorter charac-

teristic timescales. However, the climate system’s response to these processes integrates their

dynamics to longer timescales. The representation of meltwater fluxes and coupled ice sheets

can further improve the agreement of simulated temperatures with reconstructions on mul-

ticentennial scales (Fig. 11). Altogether, this strengthens the hypothesis that more independent

modes of variability and enhanced representations of feedbacks in climate model simulations are

necessary to reconcile simulated and reconstructed temperature variability (Laepple et al., 2023).

The contributions of this work to the above research objectives improved the understanding of re-

constructed and simulated temperature variability, as well as the estimation of the future range of

variability. The developed methods robustly estimated variability from proxy reconstructions and

separated externally generated from internal variability in the Earth system. On this basis, they

helped identify model experiments that simulate past climate processes best. The results shed light

on the feedbacks from sea ice and meltwater flux at interannual to millennial timescales, which may

be critical for estimating the ECS and the risk of abrupt changes. It can be concluded that trustworthy

simulations of surface air temperature for decadal and longer-term projections require the inclusion

of volcanic forcing, sea ice dynamics and interactive ice sheets. Future studies could continue to

explore mechanisms of long-term variability by investigating the role of interactively coupling the

carbon cycle and vegetation dynamics in simulations of temperature variability. Further efforts are

needed to bridge the gaps between simulated and reconstructed temperature variability, providing

the basis for reliable predictions of local impacts on society and ecosystems. In particular, a better

understanding of temperature variability will benefit attribution studies, as well as projections of ex-

tremes, risks, and damages. The presented research on the structure and causes of temperature vari-

ability will support assessing future climate risks more accurately and developing optimal adaptation

and mitigation strategies to temperature changes from natural and anthropogenic sources.
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Appendix 1 (A-E)

A Mathematical proofs

Proof of Equation (6)

The Fourier transform and its inverse are here defined as

X̂(ω) := F{X(t)}(ω) =
∫ ∞

−∞
X(t)e−iωtdt and X(t) = F−1{X(ω)}(t) = 1

2π

∫ ∞

−∞
X̂(ω)eiωtdω .

The complex conjugate of X(ω) is

X̂∗(ω) =

(∫ ∞

−∞
X(t)e−iωtdt

)∗
= X̂(−ω) . (13)

To derive mathematical equations for spectral analysis, X(t) is treated as a real-valued ergodic pro-

cess sampled over the time interval t ∈ [−T/2, T/2] and zero otherwise. Therefore, the process is

denoted by XT (t). Further, it is assumed that XT (t) has a zero mean E[XT (t)] = 0. Then, the autoco-

variance function reads

γ(h) = E[XT (t)XT (t+ h)] = lim
T→∞

1

T

∫ ∞

−∞
XT (t)XT (t+ h) dt .

Accordingly, the power spectral density becomes

S(ω) =

∫ ∞

−∞
γ(h)e−iωh dh

=

∫ ∞

−∞

(
lim

T→∞

1

T

∫ ∞

−∞
XT (t)XT (t+ h) dt

)
e−iωhdh

I
=

∫ ∞

−∞

(
lim

T→∞

1

T

∫ ∞

−∞
XT (t)XT (t− h) dt

)
e−iωhdh

II
= lim

T→∞

1

T
F{XT (−t) ∗XT (t)}(ω)

III
= lim

T→∞

1

T
|X̂T (ω)|2 . (14)

Step I follows from the symmetry γ(h) = γ(−h). In step II, the integrand is rewritten as a convolution

integral. Step III applies Equation (13) and the convolution theorem, which relates the convolution in

time to a multiplication in the frequency domain. Equation (14) also shows why the compact support

t ∈ [−T/2, T/2] is needed. First, it assures that the Fourier transformexists becauseXT (t) is integrable

over t ∈ [−T/2, T/2]. Second, it avoids convergence problems by preventing a diverging expectation

value of |XT (t)|2.

Proof of expressions in Table 1

1. White noise process

The white noise process has the autocovariance function γ(h) = σ2
W δ(h). As a result, the PSD

S(ω) =

∫ ∞

−∞
σ2
W δ(h)e−iωhdh = σ2

W

results directly from the property of the dirac delta function
∫∞
−∞ δ(h)e−iωhdh = 1 .

2. OU-process

The autocovariance function of an OU-process dX(t) = −λX(t)dt+ σOUdW (t) reads

γ(h) =
σ2
OU

2λ
e−λ|h| .
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The PSD results from

S(ω) =

∫ ∞

−∞

σ2
OU

2λ
e−λ|h|e−iωhdh

=
σ2
OU

2λ

(∫ 0

−∞
e(λ−iω)hdh+

∫ ∞

0

e−(λ+iω)hdh

)
=

σ2
OU

2λ

(
1

λ− iω
+

1

λ+ iω

)
=

σ2
OU

2λ

(
2λ

λ2 + ω2

)
=

σ2
OU

λ2 + ω2
.

3. Cosine function

For a sinusoidal function A cos(ω0t + θ) with random phase θ ∈ (0, 2π/ω0), the autocovariance

reads

γ(h) = lim
T→∞

A2

T

∫ T/2

−T/2

cos(ω0(t+ h) + θ) cos(ω0t+ θ)dt

= lim
T→∞

A2

2T

∫ T/2

−T/2

cos(ω0(2t+ h) + 2θ) + cos(ω0h) dt

=
A2

2
cos(ω0h)

For symmetry reasons, the integral over cos(ω0(2t + h) + 2φ) vanishes. Using the Euler relation and

properties of the Kronecker delta, the PSD becomes

S(ω) =
A2

2

∫ ∞

−∞
cos(ω0h)e

−iωhdh

=
A2

4

∫ ∞

−∞

(
ei(ω0−ω)h + e−i(ω0+ω)h

)
dh

=
A2

2
π (δ(ω0 − ω) + δ(ω0 + ω)) .

Proof of Equation (9)

This proof shows that scale-invariant functions in one dimension, f : R → R, are power-laws. First,
scale invariance can be described by:

g(α)f(x) = f(αx), α ∈ R+, g : R+ → R+ (15)

Here, g(α) is an arbitrary function of the factorα. For simplicity, g(α) andα are assumed to be positive.

Computing the derivative with respect to x and multiplying (15) by x yields

f ′(x)
f(x)

x =
f ′(αx)
f(αx)

αx .

This relation must hold for all values of α ∈ R+. Thus, the ratio f ′(x)
f(x)

x = bmust be constant. Integra-

tion yields the form of f :

f(x) = cxb

Hence, the scale-invariant function for a one-dimensional function is a power law. Independent of

the remaining constant c, rescaling x by a factor of α leads to a change in f(x) by a factor of g(α) = αb.

This intimately links the scale of x to the scale of f(x). The parameter b is called the scaling exponent

and can be estimated from the regression on the logarithm log(f(x)) = b log(x) + log(c).
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B MPI-ESM model simulations

The complementary analysis in Section 7.2 studies variability in a seven-member ensemble (Kapsch

et al., 2022; Mikolajewicz, 2023; Mikolajewicz&Kapsch, 2022) of climate model simulations with the

Max Planck Institute for Meteorology Earth System Model (MPI-ESM) version 1.2 (Mauritsen et al.,

2019) (Tab. 2 and Fig. 17). MPI-ESM version 1.2 includes the atmosphere general circulation model

ECHAM6.3, the land surface model JSBACH3.2, the ocean biogeochemistry model HAMOCC6 and

the dynamic ocean and sea ice component MPIOM1.6, as described in Figure 16 and Mauritsen et al.

(2019). The atmosphere–land and ocean–marine biogeochemistry parts are coupled by the OASIS3-

MCT component. The simulations were performed in coarse resolution. This includes ECHAM6.3

at T31 horizontal resolution (≈ 3.75◦) and 31 vertical levels, coupled with daily frequency. JSBACH3.2

and MPIOM1.6 are run with a nominal resolution of 3◦ and 40 vertical levels.

Figure 16: Schematic overview of the

components of MPI-ESM version 1.2 and

their interactions. The influence of external

forcing and the ice-sheet component is not

shown. Figure taken from Mauritsen et al.

(2019).

The considered simulations represent transient model experiments that cover the period between

the Last Glacial Maximum (26 kyrs ago) until present day (1950 CE), using prescribed orbital (Berger

&Loutre, 1991) and CO2 forcing (Köhler et al., 2017). Although not yet published, the simulations

build on a series of MPI-ESM optimizations for transient deglaciation experiments (Erokhina, 2020;

Kapsch et al., 2022; Ziemen et al., 2019). To investigate the contribution of cryosphere processes on

temperature variability, some model experiments apply prescribed ice sheets, while others use an

interactive coupling of an ice sheet model to the full model setup (Tab. 2).

Runs with prescribed ice sheets use the GLAC-1D (Briggs et al., 2014; Tarasov et al., 2012) or ICE-6G

(Peltier et al., 2015) reconstruction with a native temporal resolution of 100 and 500 years, respec-

tively. All forcing fields and the ice sheets are updated every ten years in the simulation and, for

this, interpolated to decadal resolution (Kapsch et al., 2022). Ice sheet updates initiate changes in

the topography, glacier mask, river pathways, ocean bathymetry, and land-sea mask (Kapsch et al.,

2022; Meccia&Mikolajewicz, 2018; Riddick et al., 2018). Meltwater flux is computed from the tem-

poral derivative in ice thickness and applied locally in the North Atlantic Ocean (Kapsch et al., 2022;

Meccia&Mikolajewicz, 2018). The coupled ice sheet–climate model experiments use the modified

Parallel Ice Sheet Model version 0.3 (Bueler&Brown, 2009; Winkelmann et al., 2011; Ziemen et al.,

2019). Ice sheet changes directly affect the river routing and meltwater fluxes in these runs through

the interactive coupling. All global mean temperature time series of the seven-member ensemble

(Tab. 2) are shown in Figure 17.

Moreover, Section 7.2 quantifies the impact of volcanic forcing on temperature variability in theMPI-

ESM simulation ensemble. Consequently, model experiments with and without volcanic forcing are

contrasted for each ice sheet configuration (prescribed or coupled, Tab. 2). The volcanic forcing

corresponds to a recent reconstruction for the last glacial cycle by Toohey et al. (2023) (Fig. 17 b). It

was obtained by an ensemble reconstruction of volcanic stratospheric sulfur injection over the past

130,000 years, mainly using terrestrial andmarine tephra records. To correct for the incompleteness
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Run ID Simulation type Volcanic forcing Ice sheet configuration Resolution (yrs) Meltwater forcing

M1 MPI-ESM (coupled) - interactively coupled ice sheet 10 interactively simulated

M2 MPI-ESM (coupled) Toohey et al. (2023) interactively coupled ice sheet 10 interactively simulated

M3 MPI-ESM (GLAC-1D) - prescribed, GLAC-1D (Briggs et al.,

2014; Tarasov et al., 2012)

10 local meltwater

M4 MPI-ESM (GLAC-1D) Toohey et al. (2023) prescribed, GLAC-1D (Briggs et al.,

2014; Tarasov et al., 2012)

10 local meltwater

M5 MPI-ESM (ICE-6G) - prescribed, ICE-6G (Peltier et al., 2015) 100 local meltwater

M6 MPI-ESM (ICE-6G) - prescribed, ICE-6G (Peltier et al., 2015) 100 globally distributed

M7 MPI-ESM (ICE-6G) - prescribed, ICE-6G (Peltier et al., 2015) 100 no meltwater

Table 2: Key specifications of consideredMPI-ESM simulations performed by UweMikolajewicz andMarie-Luise Kapsch

(Kapsch et al., 2022; Mikolajewicz, 2023; Mikolajewicz&Kapsch, 2022). Local meltwater discharge is calculated from

changes in ice sheet thickness. Globally distributed meltwater corresponds to an implementation that redistributes the

local meltwater discharge homogeneously across all grid cells worldwide.

Figure 17: Global temperature evolution over the past 26 kyrs from theMPI-ESM simulation ensemble (Tab. 2) (Kapsch et

al., 2022; Mikolajewicz, 2023; Mikolajewicz&Kapsch, 2022). Panel a displays runs without volcanic forcing. Panel b shows

the volcanically-forced MPI-ESM (coupled) and MPI-ESM (GLAC-1D, local meltwater) runs as well as the considered

aerosol optical depth (AOD) time series from Toohey et al. (2023).

of the compiled records, stochastically generated synthetic eruptions are added, assuming a constant

background eruption frequency from the ice core Holocene record (Toohey et al., 2023). A more

detailed description of all considered simulations is in preparation (Mikolajewicz, 2023).

C Economic damages from global temperature variability

The annual economic damage can be approximated from annual global mean temperature anomalies

∆T (t) compared to pre-industrial times (1850-1900 CE) following

D(∆T (t)) =
(
1 + a∆T (t)2 + b∆T (t)6

)−1
,

with empirically parameters a = (1/20.46K)2 and b = (1/6.081K)6 (Calel et al., 2020; Nordhaus, 2017;

Weitzman, 2012). The economic loss 1−D(∆T ) is given as a share of global economic output (Fig. 15 a).

The total monetary costs M from all economic losses over a time interval 0 < t < T is given by the

difference between the expected potential and actual consumption (Calel et al., 2020)

M =

T∑
t=0

(
(1 + g)

(1 + r)

)t

c0P (t)(1−D(∆T (t))) . (16)
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Free parameters correspond to the initial per capita consumption level c0, global population P (t),

rate of consumption growth g, and discount rate r. Following Calel et al. (2020), the parameters

are set to c0 = 10, 666 United States Dollars (USD), r = 4.25%, and g = 1.9% (Calel et al., 2020) to

represent realistic values for the year 2020 CE. The global population growth is modeled by P (t +

1) = P (t)1−αPα
max, assuming a population increases from P (t = 0) = 7.5 billion in 2020 CE to an

asymptotic value of Pmax = limt→∞ P (t) = 11.5 billion people at an annual rate of α = 2.68% (Calel

et al., 2020).

Sampling of internal and volcanically-forced temperature variability using ClimBayes

Samples of internal and volcanically-forced temperature variations∆T (t) over the time period 2020-

2500 CEwere generated applying the ClimBayes packages (Schillinger et al., 2022b) and following P3.

After fitting the stochastic two-box EBM to CMIP5 simulations, the EBM was used to run idealized

experiments for 2020-2500 CE with and without volcanic forcing. Artificial volcanic forcing time

series were obtained using the forcing generator by Ammann&Naveau (2010). The volcanic forcing

reconstruction by Sigl et al. (2015) was used as input data. For each simulation, a new forcing sample

was drawn from the distribution of eruption sizes (Sprinz, 2023). To convert aerosol optical depths

(AOD) to radiative forcing, a factor of−18Wm−2 was used. Figure 18 displays exemplary temperature

time series considering internal, volcanic, and internal + volcanic fluctuations.

Figure 18: Example of emulated time series from the IPSL last millennium simulation (Dufresne et al., 2013; Hourdin

et al., 2013) using the ClimBayes package (Schillinger et al., 2022b) and following P3. The emulation of global temperature

anomalies can consider volcanically forced (a), internally generated (b), or both types (c) of fluctuations. Stephan Sprinz

generated the data (Sprinz, 2023).

D Supplementary figures

Figure 19: As Fig. 9, but comparing the forcing and state dependency of MPI-ESM (coupled) with interactively coupled

ice sheets (a and c) and MPI-ESM (GLAC-1D) with prescribed ice sheets (b and d).
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c

Figure 20: As Figure 10, but using the MPI-ESM (GLAC-1D) simulation with prescribed ice sheets.
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Figure 21: Composite spectral estimate of radiative forcing including orbital, volcanic, total solar irradiance (TSI) and

carbon dioxide (CO2) forcing. The orbital forcing corresponds to radiative changes at 65°N (Berger, 1978), computed with

the Palinsol Package (Crucifix, 2016) (as in P1). The solar forcing spectrum represents the mean of the spectral estimate

from P1 using the compiled data from Schmidt et al. (2012). Spectral estimates for solar forcing above centennial periods

are obtained from surrogate time series. Surrogates are generated by applying the Amplitude Adjusted Fourier transform

surrogate method (Theiler et al., 1992) based on TSI data from Steinhilber et al. (2009), as described by Wirths (2021).

Changes in aerosol optical depth (AOD) due to volcanic eruptions are taken from Toohey et al. (2023). A scaling factor

of −18 Wm−2 was used to convert AOD values to effective radiative forcing (IPCC, 2021b). Atmospheric carbon dioxide

concentrations correspond to the reconstruction by Köhler et al. (2017). The mean spectrum is formed as a sum of all

individual spectra assuming independent and additive forcings (P1).
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Figure 22: PSD of global temperature segments from the volcanically-forced MPI-ESM (coupled) simulation with and

without linear detrending prior to spectral analysis. The time series represent the full transient run (a), the Last Glacial

Maximum (b), the past twelve thousand years (c), and the past eight thousand years (d). The global warming trend

(1850-1950 CE) was excluded from spectral analysis to isolate the effects from detrending the deglaciation. Detrending

significantly impacts spectral analysis above millennial scales.

E Supplementary tables

Name Type Time span Resolution (yrs) Reference

Synder GMST reconstruc-

tion

past 2 Million years 1000 Snyder (2016)

Temp12k reconstruc-

tion

past 12 kiloyears 100 Kaufman et al. (2020)

PAGES2k reconstruc-

tion

0-2000 CE 1 PAGES 2k Consortium (2019)

HadCRUT5 observation 1850-2019 CE 1 Morice et al. (2021)

CLIMBER-2 simulation past 3 Million years 1000 Willeit et al. (2019)

Famous simulation past 120 kiloyears 100 Smith&Gregory (2012)

MPI-ESM (coupled) simulation past 26 kiloyears 10 Mikolajewicz (2023)

CMPI5 ensemble simulation 850-2004 CE 1 BCC-CSM (Xiao-Ge et al.,

2013), CCSM4 (Landrum et al.,

2013), CESM-LME

(Otto-Bliesner et al., 2016),

CSIROMk3L-1-2 (Phipps et al.,

2012), GISS-E2-R (Schmidt

et al., 2006), HadCM3 (Schurer

et al., 2013), MPI-ESM-P

(Giorgetta et al., 2013;

Jungclaus et al., 2013)

Table 3: Key specifications of datasets considered for the calculation of the global PSD presented in Figure 12. The

resolution corresponds to the mean resolution of the considered time series after preprocessing. The references might

also provide the datasets in higher resolutions. The PAGES2k and Temp12k present reconstruction ensembles of seven

and fivemembers, respectively. The CMIP5 ensemble corresponds to 23 simulations from sevenmodels. Their simulated

global temperature was aggregated annually by April−March as in PAGES 2k Consortium (2019). The MPI-ESM (coupled)

simulation is described in Appendix B.
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Earth’s climate can be understood as a dynamical system that changes due to external forcing and internal

couplings. Essential climate variables, such as surface air temperature, describe this dynamics. Our current

interglacial, the Holocene (11 700 yr ago to today), has been characterized by small variations in global

mean temperature prior to anthropogenic warming. However, the mechanisms and spatiotemporal patterns of

fluctuations around this mean, called temperature variability, are poorly understood despite their socioeconomic

relevance for climate change mitigation and adaptation. Here we examine discrepancies between temperature

variability from model simulations and paleoclimate reconstructions by categorizing the scaling behavior of

local and global surface air temperature on the timescale of years to centuries. To this end, we contrast power

spectral densities (PSD) and their power-law scaling using simulated and observation-based temperature series

of the last 6000 yr. We further introduce the spectral gain to disentangle the externally forced and internally

generated variability as a function of timescale. It is based on our estimate of the joint PSD of radiative

forcing, which exhibits a scale break around the period of 7 yr. We find that local temperature series from

paleoclimate reconstructions show a different scaling behavior than simulated ones, with a tendency towards

stronger persistence (i.e., correlation between successive values within a time series) on periods of 10 to 200 yr.

Conversely, the PSD and spectral gain of global mean temperature are consistent across data sets. Our results

point to the limitation of climate models to fully represent local temperature statistics over decades to centuries.

By highlighting the key characteristics of temperature variability, we pave a way to better constrain possible

changes in temperature variability with global warming and assess future climate risks.

DOI: 10.1103/PhysRevE.104.064136

I. INTRODUCTION

The variability of surface air temperature is present on
all spatial and temporal scales, from synoptic and seasonal
changes to long-term variations on periods of years to multi-
millennia. On the one hand, it arises from internal processes,
such as the El Niño-Southern Oscillation (ENSO) [1]. On
the other hand, the temperature varies due to external forc-
ing, such as the greenhouse effect [2,3]. Understanding the
internally generated and externally forced variability has been
suggested to be at least as necessary for evaluating climate
risks for society and ecosystems as projecting the global
mean temperature [4]. Available instrumental observations are
limited to a small time span, leading to challenges in quan-
tifying temperature variability. Paleoclimate reconstructions
extend the characterization of temperature variability and can
be compared to global circulation models (GCMs) [5–7].
However, discrepancies between model and paleoclimate data
remain to be resolved, especially on the local level and on
periods between years and centuries [8–12].

Characterizing local temperature variability is crucial for
predicting extremes [6], not only to minimize short-term
damage but also to design long-term strategies, including ur-
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†Now at Geo- und Umweltforschungszentrum (GUZ), Universität

Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany.

ban planning and food cultivation [13]. Variability of global
temperature on periods above years is relevant to the un-
derstanding of long-term changes [14] as well as climate
sensitivity [15]. Assessing the temporal correlation struc-
ture of temperature series by means of scaling behavior and
persistence is particularly important for distinguishing exter-
nally forced trends from natural changes [16]. It could affect
the confidence in future projections and attribution studies
[17,18]. Therefore, one of the main topics to be investigated
here is the characteristics of local and global temperature vari-
ability on periods of years to centuries from model simulations
and observation-based data of the last millennia.

To determine how the variability of a temperature series
is distributed with timescales τ , we make use of the power
spectral density (PSD) S(τ ), known as spectrum. It can be
obtained from the Fourier transform of the autocorrelation
function (see Appendix A) [19,20]. The spectrum was shown
to often follow a power law

S(τ ) ∼ τ β , (1)

with spectral exponent β and period τ [21,23–27], especially
on decadal-to-centennial scales [22,28,29]. We refer to this
behavior (1) as temporal scaling since the temperature signal
has no preferred timescale and is statistically similar across
periods τ . The exact determination of the start and end points
of a scaling interval is not part of this study.
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FIG. 1. Characteristic timescales relevant to surface air tempera-

ture variability of climatic drivers (dark blue) and climate subsystems

(yellow) [32–34]. The weather and long-term climate is character-

ized by β > 1 for local and global mean temperature. On interannual

to millennial timescales the statistical properties of temperature fluc-

tuations remain to be determined, especially at the local scale. The

TSI bar highlights the dominant variations in recent total solar irra-

diance observations.

Long-range memory stochastic processes are suitable
to describe temperature signals with temporal scaling
[25,26,30]. Among those, fractional Gaussian noise (fGn) is
a stationary process and exhibits a spectral exponent β ∈

(−1, 1) on sufficiently long periods (see Appendix B). Frac-
tional Brownian motion (fBm) is a nonstationary process that
shows β ∈ (1, 3). The scaling exponent β relates to the decay
of the autocovariance function (Appendix B) and indicates
how strongly the values within a time series are correlated
(or anticorrelated). It is therefore regarded as a measure of the
strength of temporal persistence (or antipersistence) [26,31].

Particular scaling behavior with β ≈ 2 [23,25] is typical
for the weather regime (hours to weeks) and can be explained
by atmospheric turbulence [35,36]. In the long-term climate,
regional and global mean temperatures show similar behavior
(β > 1) [24,25,29] due to the presence of nonlinear processes,
such as the temperature-albedo feedback [37]. On timescales
between years to millennia, the temperature is constantly in-
fluenced by the interaction of all climate subsystems and by
volcanic, solar, as well as CO2 forcing (Fig. 1). Estimates
of the spatially dependent scaling behavior of local temper-
ature on these timescales differ [22,25]. On the global scale,
many studies find β ≈ 1 [28,29]. However, Lovejoy et al. has
identified a change from the so-called macroweather regime
(β ≈ 0.8 on periods of 10 days to 40 yr) to the climate regime
(β ≈ 1.8 on periods from 40 yr to 80 000 yr) [25].

In this manner, previous works find ambiguity in the in-
terpretation of local and global temperature scaling, and it
remains to be determined whether simulations and reconstruc-
tions qualitatively agree in scaling behavior β < 1 or β > 1.
The so-called “1/ f noise” (β = 1) corresponds to a process
with power spectral density proportional to the period. For

β > 1, the relative contribution
∫ f ′

f ′/2
S( f ) df

∫ 2 f ′

f ′ S( f ) df
=

1 − 2β−1

21−β − 1
= 2β−1 (2)

to the variance is larger from slow timescales compared to
faster ones for all frequency intervals f ′/2 to 2 f ′ within
a scaling interval [38]. With increasing β > 1, the fBM is
said to exhibit “nonlinear pseudotrends” [30] (Appendix B).
Thus, for understanding climate variability and for modeling
purposes, the systematic estimate of the scaling exponent
β allows to assess the behavior of fluctuation levels across
timescales [26]. Moreover, the differentiation between forced
and unforced changes poses a challenge to understanding
temperature variability [39,40]. Beyond the analysis of Haar
fluctuations of a few forcing reconstructions [41–43], spectral
analysis of climatic drivers and their frequency-dependent
linkage to the temperature response remains incomplete.

We investigate the timescale dependency of local and
global surface air temperature variability by analyzing
power spectral densities from a few hours to a thousand
years, thereby extending and improving on earlier work
[24,25,29,44]. We use model simulations and observation-
based data, which we introduce in Sec. II. To estimate the PSD
and determine its power-law scaling on periods of 10 to 200
yr, we use state-of-the-art methods described in Sec. III. This
allows us to contrast regional and global spectra (Sec. IV A),
spatial patterns (Sec. IV B), and the agreement of simulated
and observation-based estimates (Sec. III C). Along with that,
we discuss the joint PSD from various radiative forcings,
which allows us to calculate the spectral gain and study the
externally forced variability in Sec. III D. Based on our re-
construction of the PSD of surface air temperature for the last
millennia, we evaluate the consistency of spectral character-
istics across the data sets considered. In Sec. V we elaborate
on the stronger persistence of temperature on local than global
level as well as remaining discrepancies. Finally, we discuss
how our findings could help improve climate model simula-
tions and understand Earth’s climate dynamics.

II. DATA

We investigate the timescale-dependent distribution of
surface air temperature variability using model simulations,
observation-based data, and radiative forcing reconstructions.
The model simulations include ten transient runs from GCM
experiments [45]. The observation-based data consists of
reanalysis data, instrumental measurements, and the paleo-
climate reconstructions from the Past Global Changes 2k
(PAGES2k) network [46]. We use 12 reconstructions of cli-
matic drivers, including solar, volcanic, orbital, and CO2

forcing. All temperature and radiative forcing signals are spe-
cific to the Mid- and Late-Holocene (the last 6000 yr), with a
focus on the Common Era (0 to 2000 CE). The supplemental
tables S1–S3 [47] summarize their key specifications.

A. Model simulations

Each of the ten GCM runs considered features a tran-
sient, albeit different forcing and a comparable spatiotemporal
resolution. The CESM-LME 1 [48] and MPI-M LM [49] ex-
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periments serve as representative runs of the last millennium.
We analyze them at two temporal resolutions (one month,
six hours) to capture both the high- and low-frequency vari-
ability within our available computing capacities (see Fig. S7
[47]). CESM 1 past 2k [50] is included as a slightly newer
run for the Common Era. To cover the Mid-Holocene, we
use simulations from the IPSL [51] (denoted IPSL-p6k) and
ECHAM5/MPI-OM [52] (denoted ECH5/MPIOM-p6k) of
the last 6000 yr. From the TraCE-21k [53] simulation, we also
consider only the last 6000 yr to retain comparability and to
avoid potential biases due to significant shifts in the mean state
of climate. The Mid-Holocene runs were temporally averaged
to a bimonthly resolution to reduce computational costs. To
test for the influence of human-induced climate change on
our results, we include the HadCM3 LM1 simulation [12],
covering the period from 850 to 1850 CE. Furthermore, we
compare our results to the pre-industrial (PI) control runs from
CESM-LME 1 and MPI-M LM, as well as the TraCE-21k-
ORB run, which is solely forced by orbital changes.

B. Observation-based data

In addition to the simulations, we analyze the monthly
resolved HadCRUT4 (Hadley Centre/Climatic Research Unit
Temperature) instrumental records, ranging from 1850 to
2019 [54]. However, most of the grid-box time series are not
available as continuous measurements as required for spectral
analysis. Therefore, we retain only those 104 grid boxes with
coverage greater than 150 yr after interpolating gaps of up to
two months. While the Northern Hemisphere is comparatively
well covered up to 72.5◦N, only nine grid boxes remain for
the Southern Hemisphere. Therefore, this selection comes at
the expense of spatial resolution but offers a higher spectral
resolution on longer timescales. To further explore the poten-
tial effect of these spatiotemporal constraints, we include the
ERA5 (European Centre for Medium-Range Weather Fore-
casts Reanalysis 5th generation) temperature reanalysis for
the years 1979 to 2019 [55]. Along with CESM-LME 1 and
MPI-M LM, we analyze the ERA5 data at both six-hourly and
monthly resolution for the same reasons as mentioned earlier.

In addition to direct temperature observations and reanaly-
sis, we analyze paleoclimate data. Paleoclimate records hold
preserved biological, chemical, and physical tracers (“prox-
ies”) of past climate. The number of temperature records
from paleoclimate data with subcentennial resolution is lim-
ited. Recent progress has been made by improved calibration
and pseudoproxy methods within the PAGES2k network
[56]. Therefore, we base our analysis on their newest global
multiproxy database for temperature reconstructions of the
Common Era [46]. It gathers 692 records from trees, ice, sed-
iment, corals, speleothems, and documentary evidence with
a resolution between weeks and centuries. The records are
spread over 648 locations, including all continental regions
and major ocean basins.

For investigating the variability of global mean surface
temperature, we use the seven spatially weighted statistical re-
constructions for the last 2000 yr provided by PAGES2k [46].
To estimate the mean of local spectra, we choose records from
the PAGES2k database according to their resolution (�80 yr),
their number of data points (�20), their coverage (�20 yr), as

TABLE I. Requirements on irregularly sampled time series x(t )

for analyzing power-law scaling on timescales τ ∈ [τ1, τ2]. We apply

this scheme for τ1 = 10 and τ2 = 200 yr in Secs. IV B and IV C.

Parameter Value

Number of data points (N) � 50

Mean temporal resolution [〈ti+1 − ti〉] �τ1

Coverage (tN − t1) �3τ2

Length of hiatuses [max(ti+1 − ti)] �5τ1

well as their maximum hiatuses (�160 yr). To reliably deduce
the scaling of the PSD from individual records, we select the
records according to our scales of interest (Table I), similar
to [26,57]. Ice core records were excluded from our analysis
since they require additional consideration of signal-to-noise
ratios at the subcentennial timescales [58,59].

C. Radiative forcing

External forcing contributes significantly to temperature
variability and is an essential part of reliable climate projec-
tions [40,60,61]. We study its spectral properties using forcing
reconstructions, widely implemented in GCM experiments
and coordinated within the Palaeoclimate Model Intercom-
parison Project (PMIP3/PMIP4) [62,63]. This includes five
solar [64–68], one CO2 [63], and two volcanic [60,69] forcing
reconstructions as well as Berger’s numerical solution for
orbital forcing [70]. Furthermore, we calculate diurnal insola-
tion changes from the hour angle of the sun [71]. We also use a
more recently published volcanic [72] and high-resolution so-
lar forcing [73] reconstruction as well as CO2 measurements
[74]. We neglect land-use forcing [75] which is much lower
in amplitude and variability than the other forcings considered
here.

All forcing reconstructions are rescaled to radiative
forcing equivalents, which express their respective change
in the Earth’s radiation balance in Watts per square
meter (Wm−2). We apply the widely used formula
5.35 ln([CO2]/278ppm) Wm−2 to rescale CO2 concentrations
[CO2], given in parts per million (ppm) [76]. The stratospheric
aerosol optical depth (AOD) from volcanic eruptions is
rescaled by (−20)−1 Wm−2/AOD [77]; however, the optimal
conversion factor is still a matter of debate [78]. Additional
uncertainties arise from the wide spread of reconstructions for
volcanic and solar forcing. To account for this and the choice
of conversion factor, we simulate the joint PSD of radiative
forcing by a Monte Carlo approach described in Appendix E.
Here “joint” indicates that the PSD of radiative forcing is cal-
culated by linear summation of the mean PSD from different
types of climatic drivers, rescaled to their radiative forcing
equivalents.

III. METHODS

Spectral analysis is the primary tool used here for studying
the timescale-dependent variability and scaling of temperature
series. To minimize uncertainties in the spectral analysis of
proxy records, we use state-of-the-art approaches for irregu-
larly sampled time series [79]. Statistical estimators further
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test for the agreement between simulations and paleoclimate
data. We apply linear response theory to derive the spectral
gain and investigate the forced temperature response.

A. Spectral analysis

Power spectral analysis requires the assumption that the
underlying time series can be described as a weakly stationary,
stochastic process with time-independent mean and autoco-
variance [80]. We therefore linearly detrend all time series
as it is standard for temperature analysis [9,26,81,82]. The
agreement of the PSD from disjoint time intervals in Fig. S13
[47] provides evidence that stationarity is sufficiently fulfilled.
We use the multitaper method with three windows [83,84]
and chi-square distributed uncertainties to compute the PSD.
The two lowest frequencies were omitted to reduce biases of
the multitaper method [24]. For visual purposes, we apply
a logarithmic Gaussian smoothing filter of constant width
(0.005 decibels) [85]. Mean spectra were calculated by inter-
polation to the lowest resolution, binning into equally spaced
log-frequency intervals, and taking the average with equal
weights [24]. This requires the statistical independence of the
averaged values [43]. The spectral exponent β is calculated by
linear regression to the logarithm of (1) on periods between
τ1 = 10 and τ2 = 200 yr after binning the PSD into equally
spaced log-frequency intervals to more uniformly weight the
estimate and avoid low-frequency biases [24,26,29,86]. In the
case of seven proxy records with an insufficient resolution, the
scaling is estimated on their corresponding spectral resolution,
but always at least between 20 and 200 yr (Fig. S4 [47]).
The uncertainty of the spectral exponent, �β, is given by the
standard error of the linear regression model �βlm, except for
irregularly temperature series.

B. Uncertainties for irregular temperature series

Spectral analysis of proxy records, which are typically not
sampled in regular time steps, is more prone to errors than
that of regular time series. We aim to minimize biases by
accounting for the number of data points, temporal resolution,
total coverage, and hiatuses’ length when selecting the records
(Table I). We find that the mean temporal resolution of a proxy
record approximates well the optimal interpolation time step.
Nevertheless, the interpolation introduces uncertainties which
are not captured by �βlm. Similar to Laepple et al. [79], we
quantify this additional uncertainty �βint in four steps: (1) For
each record with spectral exponent β, we simulate N = 100
surrogate time series with annual resolution and a power-law
scaling βn ≈ β and n ∈ [1, N]. (2) We form the surrogate’s
block average over the proxy record’s irregular time steps
and obtain N surrogate time series at record resolution. (3)
We interpolate the surrogate time series, calculate the multi-
taper spectrum, and extract the scaling exponent βn,lm from
linear regression in the same way as for the proxy record
(Fig. S8 [47]). (4) We calculate the mean deviation �βint =
1
N

∑N
n=1 |βn,lm − βn| of the ensemble. The uncertainty of the

individual fits �βn,lm is negligible compared to the mean
deviation �βint. We obtain the uncertainty of the record’s
spectral exponent from both, the uncertainty of the initial fit

�βlm and due to interpolation �βint via quadratic summation:

�β =
√

(�βlm)2 + (�βint )2.

C. Statistical analysis of spectral exponents

We quantify the agreement of simulated and reconstructed
β-values using percent agreement, categorical agreement, and
Kappa statistics. Beforehand, we extract the simulated tem-
perature at the proxy record location by bilinear interpolation
of neighboring grid boxes to achieve the best possible com-
parability between record and simulation. Percent agreement
p0 gives the percentage of locations at which the confidence
range β ± �β from simulation and reconstruction overlap.
The agreement by category, here referred to as categorical
agreement pc, is calculated with the help of ν = 0.32, the
mean uncertainty of β from all proxy records considered.
We then assign the three categories low (β < 1 − ν), high

(1 + ν � β), and intermediate (1 − ν � β < 1 + ν) to the
spectral exponent β. The intermediate regime prevents in-
correct assignment. To verify the reliability of categorical
agreement, we calculate the kappa statistics

κ = (pc − pe)/(1 − pe) (3)

with expected percent agreement pe by category [87]. The

latter can be obtained from pe = 1
N2

∑3
c=1 nc,mnc,p where c is

the category, N the number of locations and n the number of
times that models (m) and proxy records (p) have predicted
category c. The κ-coefficient quantifies the reliability from no
agreement beyond chance (κ = 0) to full agreement (κ = 1).
Negative κ indicates agreement that is beyond change, for
example, due to systematic biases.

D. Spectral gain

We investigate how climatic drivers influence the global
mean temperature at period τ by calculating the spectral gain

G2(τ ) =
ST (τ )

SF (τ )
. (4)

Here ST (τ ) is the PSD of the global mean temperature and
SF (τ ) the PSD of radiative forcing (see also Appendix C). The
gain requires the assumption that the global mean temperature
can be well approximated as a linear function of the forcing
[27,88,89] and that different types of radiative forcing add
linearly [90–93]. To this end, we focus on timescales between
years and centuries when additivity is a valid assumption and
nonlinearities in the global mean temperature are sufficiently
small [42,43]. The main practical problem that confronts us
is that the gain might be subject to a sampling bias due to
our data sets choice. Therefore, we perform a Monte Carlo
simulation of the PSD of radiative forcing and the global
mean temperature, as well as the spectral gain as described
in Appendix E.

IV. RESULTS AND DISCUSSION

A. Global mean and mean of local spectra

In order to study the timescale dependency of global mean
temperature, we present its power spectral density in Fig. 2(b).
It shows the characteristic background continuum, spectral

064136-4



PROBING THE TIMESCALE DEPENDENCY OF LOCAL AND … PHYSICAL REVIEW E 104, 064136 (2021)

FIG. 2. (a) Mean power spectral densities (PSD) of local temperature from model simulations and observation-based data on periods from

hours to 1000 yr for the Holocene. (b) PSD of global mean temperature. The dashed lines with slope β and arbitrary y-intercept in the log-log

graph indicate the scaling behavior for visual comparison. The ensemble means (black solid lines) were formed using equal weights across the

model group M0 (see Table S1 [47]).

peaks, and higher harmonics associated with the diurnal and
annual cycle. Overall, the PSDs tend to agree between the
data sets, albeit with some differences on the interannual
scale and when compared to the Trace21k ORB run. The
Trace21k-ORB run is solely forced by orbital changes and
therefore shows less variability than the ensemble mean.
The broad spectral peak on interannual periods reveals an
artificially amplified ENSO in the shared MPI-M LM and
ECHAM5/MPI-OM ocean component [94]. For a better
visibility, PI control runs are separately shown in the supple-
mentary Fig. S6 [47]. Overall, the PSD largely agrees among
different data sets, especially towards shorter timescales.

We find a power-law scaling of β ≈ 1 on timescales longer
than 10 yr in line with previous results [25,26,28]. The PSD
decreases more strongly towards shorter periods, which is
characteristic of the weather regime [25,36]. Similar to Nilsen
et al. [26], we find no evidence for significant changes in
scaling behavior around the centennial scale. One limitation of
previous work that found scale breaks is that the spectra were
estimated across nonstationary shifts in climate, such as the
deglaciation [29], and with a change in proxies and archives
[24].

We present the area-weighted mean spectra of the local
(grid box) temperature in Fig. 2(a). Compared to the global
mean in Fig. 2(b), the power increases and the spectral slope
decreases, in line with [81]. The spectra agree on periods
below 10 yr, except for the artificially amplified ENSO signal
mentioned earlier. Moreover, we find a narrow peak at 13 yr,
associated with an unrealistic variability in the northern North

Atlantic of the TraCE-21k run, similar to [95,96]. Remark-
ably, the decadal-to-centennial variability of the reconstructed
temperature is increased by one to two orders of magnitude
compared to the simulations. The spectral exponent is smaller
for models (β < 1) compared to paleoclimate data (β ≈ 1).

This finding verifies that models show less regional tem-
perature variability and that the mismatch increases towards
longer timescales. The results are robust to sampling from
the PAGES2k database and the influence of anthropogenic
climate change (Fig. S10 [47]). One shortcoming of forming
the area-weighted mean PSD is that the uncertainty quantifi-
cation requires the assumption of independent spatial degrees
of freedom of the temperature field. Due to the presence of
spatial correlations, an estimate of the effective spatial degrees
of freedom and their dependence on the underlying timescale
would be needed to resolve this limitation [97].

B. Spatial patterns of persistence

To further investigate the mismatch on local scaling prop-
erties, we compare the spatial dependence of temperature
persistence from simulations and paleoclimate data in Fig. 3.
The simulations largely exhibit small-magnitude scaling ex-
ponents (−1 < β < 1), whereas proxy records were found to
also show β > 1. In this manner, the magnitude of local tem-
perature fluctuations from model simulations often shows no
dependence on the decadal-to-centennial timescale. However,
approximately half of the proxy records show a variance that
grows on increasingly long periods (see also Fig. S11 [47]).
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FIG. 3. Local temperature persistence on timescales from τ1 = 10 to τ2 = 200 yr across multiple climate simulations and selected proxy

records from the PAGES2k database. Colors from blue to red indicate the scaling behavior ranging from β = −1 to β = 3. Symbols indicate

the scaling of proxy records from different natural archives. The background of each panel shows the β-values fitted to the PSD of the local

grid box temperature from simulations. Zonal mean values (dashed curves) are given next to the map, with means (solid curves) over latitude

intervals (with breaks at −60, −30, 0, 30, and 60◦ N) and gray shaded confidence intervals. The spatial coverage of proxy records is not

sufficient for robust mean estimates, which is why only simulation data are shown here.

From both simulations and paleoclimate data, we can
strengthen the argument by Fredriksen et al. [81] that there
is no latitudinal dependence of β (Fig. 3), in contrast to pre-
vious studies, suggesting a possible linkage to the strength of
the seasonal cycle [24]. Inspecting the simulations’ β-values
(background of Fig. 3), we find a small land-sea contrast.
Strongest scaling occurs in the Southern Oceans in line with
previous findings [81]. Ocean-sea ice interactions with char-
acteristic timescales of the order of centuries and a generally

increased internal variability over the oceans might explain
these results.

We find generally lower values for the slope β in the
ENSO and Indo-Pacific region. This could be attributed to the
fact that (quasi-)oscillatory signals, such as active modes of
internal variability, are reflected in the PSD as broad peaks and
hence cannot be described by a scaling law. On the other hand,
this finding is stronger in PI control runs compared to fully
forced runs [Figs. 3(c)–3(f)]. Thus, residual effects of the re-
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FIG. 4. Percentage agreement p0, categorical agreement pc and

interrater reliability κ of local temperature persistence from simula-

tions and paleoclimate data. The measures were calculated from a

set of bilinearly interpolated simulation records and the proxy record

at 23 different locations. Missing orange bars indicate no agreement

beyond chance and, therefore, zero interrater reliability (κ = 0).

cent global warming trend might play an additional role [98].
A systematic bias becomes clear from the spatially almost
uniform β-values of Trace21k-ORB [Fig. 3(h)]. In line with
Fig. 2, we explain this by the lack of forcing mechanisms on
interannual to multidecadal timescales in the aforementioned
simulation.

Marine and lake sediments, as well as the archived
documents, follow the general trend of increased β-values
compared to simulations. Tree ring records agree well with
most simulations in North America and Siberia, but not
necessarily at the coast of Australia and northern Europe.
Discrepancies such as those in southern South America could
reflect the proxies’ strength in representing local conditions,
for example, topography. However, noise sources in the cli-
mate signal recording and preservation, such as bioturbation,
can influence proxy records. Further separating the signal
content from noise sources in paleoclimate reconstructions
can help refine our findings [99,100].

C. Statistical agreement of temperature persistence

We further investigate the question of temperature scal-
ing by a statistical analysis of β-values from simulations
and paleoclimate reconstructions. It is based on the detailed
uncertainty quantification outlined in Sec. III B. Our results
show that reconstructions and simulations agree in less than
30% of locations within the scope of uncertainties (Fig. 4).
To single out the scaling behavior of temperature signals,
we study the agreement by category. We find approximately
25% of agreement within the categories β < 1 − ν (low) and

β > 1 + ν (high). Although widely accepted [101], categor-
ical and percentage agreement suffer from the limitation to
ignore any agreement by chance. Therefore, we investigate
the κ-statistics (orange bar in Fig. 4) and verify that there is no
agreement beyond chance (κ = 0) for almost all models. Only
MPI-M LM and HadCM3 LM1 show any, if poor agreement
(κ ≈ 0.1), whereas Trace21k-ORB shows even lower agree-
ment than expected by chance (κ < 0) due to its systematic
bias.

The disagreement could be attributed to both paleocli-
mate data and simulations. A systematic bias could arise, for
example, through the recent, nonstationary global warming
trend. Therefore, we repeat our analysis with all time series
cut at 1850. In particular, anthropogenic warming slightly
increases long-term temperature variability and thus scaling
behavior, but not significantly (Figs. S6, S9, and S10 [47]).
Further uncertainties could arise from our choice of statistical
estimator for the scaling exponent β. Maximum likelihood
estimation (MLE) should generally be preferred over linear
regression (LR) because of its mathematical soundness and
skillfulness [102]. We find that MLE is indeed more accurate
for regular time series with β > 0 (Fig. S14 [47]). However,
LR allows for estimation of β < 1, unlike MLE which as-
sumes β > 1 [102]. In addition, for the characteristics of our
empirical data, the differences between the two methods are
not significant for β > 0 (Fig. S15 [47]). Therefore, linear
regression represents the preferred estimator for our analy-
sis. Regardless of the chosen estimator, we observe a slight
tendency towards increased scaling exponents for irregularly
sampled data (Fig. S15 [47]), similar to Lucke et al. [100].
Our uncertainty quantification carefully accounts for these
potential errors due to irregular sampling and interpolation by
simulating their influence using surrogates (Fig. S8 [47]).

We do not expect other systematic biases for the paleocli-
mate data since we base our results on multiple archives and
proxies, and no systematic spatial pattern is discernible (Fig.
S11 [47]). In particular, the cross-correlations between the 23
proxy data sets are weakly positive (0.02 on average with 95%
quantiles of −0.17 to 0.21). The assumption of spatial inde-
pendence necessary for robust statistical analysis (Fig. S16
[47]) therefore appears fully satisfied. The models’ resolu-
tions are another possible element of uncertainty that impacts
variability over a wide range of timescales [103–105]. We
here facilitate intermodel comparison by using state-of-the-art
GCMs with comparable spatial and temporal resolutions, but
computational costs precluded higher resolutions. The latter
might be necessary to improve the representation of decadal
variability and response to external forcing. In particular, the
increased scaling exponents (β > 1) from paleoclimate data
could indicate that nonlinear processes from an interactive
carbon cycle and dynamical ice sheets might not be suffi-
ciently represented in models.

D. The forced temperature response

Climatic drivers are not constant in time and thus affect the
surface air temperature on multiple timescales. To investigate
the forced temperature response, we present spectra for the
main climatic drivers in Fig. 5. The PSD of orbital forcing
consists of the diurnal and annual cycle as well as a back-
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FIG. 5. Power spectral densities from radiative forcings. Details

on the reconstructions considered here are summarized in Table S2

and Fig. S5 [47].

ground continuum on longer timescales. Higher harmonics
on monthly timescales were omitted. We calculate the mean
volcanic, solar, and CO2 spectra using an equally weighted
average of spectra from multiple data sets (Fig. S5 [47]). The
CO2 forcing follows the orbital forcing. The PSD of solar
forcing again contains more power and has a pronounced peak
around the 11 yr solar cycle. Multiple theories and paleo-
climate reconstructions suggest the increased variability on
centennial to millennial periods due to the long-term behavior
of solar activity [106].

Volcanic forcing dominates interannual to centennial scales
and undergoes a scale break around the period of 7 yr, esti-
mated using the goodness of fit [102]. Above decadal scales,
it follows a white noise spectrum with constant variance.
However, the intermittency of volcanic eruptions might have
led to biases in the spectral characteristics [42]. We verify our
results using an analytical approach described in Appendix
D. Remarkably, the derived PSD of an ideal, intermittent
time series with Poisson distributed return times explains our
findings. We further demonstrate the scale break by a Monte
Carlo simulation of the joint PSD of radiative forcing in
Fig. 6(a). This finding raises the question of how the spectrum
with a scale break translates into the continuous spectrum in
Fig. 2(b).

We address this question by calculating the spectral gain
(4) on periods between years and centuries in Fig. 6(b).
Here observation-based data include HadCRUT4, ERA5, and
PAGES2k again. To account for the model artifacts explained
above, we calculate the gain from the model simulation group
M0 and together with group M+ (see Table S1 [47]). We find
that the spectral gain is similar from observation-based data
and the model simulation group M0, which is the one without
artificially amplified ENSO. This suggests that both follow
a similar distribution of timescale-dependent variability, as
already indicated by Fig. 2(b). Large parts of the gain show
constant behavior, which is most pronounced in M0. In a
simplified way, the gain might be approximated by an ideal
linear amplifier or damper of the forcing with comparable
internal variability on all timescales. However, we also find a
dip around decadal scales, which is strongest in the gain from

FIG. 6. Monte Carlo simulation of PSD (a) and spectral gain

(b) using temperature and forcing reconstructions as well as model

simulations. Shaded confidence intervals lie between the 5% and

95% quantiles. We consider only models from the groups M0 and

M+ (Table S1 [47]) to exclude model artifacts and to represent the

historical temperature response in the best possible way. Notably, M+

contains those simulations with amplified ENSO [94]. (b) Dashed

lines indicate the mean variance ratio 〈ST 〉/〈SF 〉.

measurements. Inspecting Fig. 6(a), this can be explained
by forming the ratio between a spectrum with a scale break
(β > 1 → β ≈ 0) and one with moderate scaling (β ≈ 1).

From this standpoint, internal variability slightly grows
on periods from years to centuries when slow processes in
the oceans, vegetation, land surface, and cryosphere become
increasingly active (Fig. 1). While the model simulations fol-
low this general pattern, they may not represent its amplitude
correctly, for example, due to the lack of feedback mecha-
nisms. In addition, a too high model diffusivity could cause
the suppression of low-frequency variability in model simu-
lations due to a faster energy dissipation over temporal scales
[8]. The PAGES2k multiproxy reconstruction, stemming from
palaeoclimate data, possibly underestimates internal variabil-
ity on interannual scales. However, the mean variance ratios in
Fig. 5(b) of the model estimates agree with those from obser-
vations in the global mean. This leaves us with a conundrum:
the global mean temperature based on model simulations and
observations is mostly consistent in its variability, scaling,
and response to forcing. Notwithstanding, locally, the models
show a much lower variance on longer timescales and dif-
ferent scaling behavior than reconstructions. Thus, it appears
that the statistics of local fluctuations need to be optimized in
models but without significantly altering global properties. To
this end, the study of unforced (“spontaneous”) oscillations
[107] and abrupt transitions [108,109] in the climate system
is one promising approach to improve the representation of
local variation. Furthermore, higher-resolved ocean and at-
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mosphere models with additional mechanisms such as ice
sheet dynamics and an interactive carbon cycle might increase
long-range dependence and persistence of local temperature
in the future.

V. CONCLUSION

In summary, we have investigated the question of temper-
ature variability on the timescale of years to centuries. To
this end, we have presented power spectral densities for both
local and global surface air temperature from simulation and
observation-based data of the last millennia. On this basis, we
concluded that locally there is a stronger scaling and increased
variance in reconstructions as compared to simulations. Using
statistical analysis, we found that local temperature series
extracted from simulations and paleoclimate reconstructions
show different scaling behavior, with proxy records hinting at
a stronger persistence. Furthermore, we have largely extended
the spectral analysis of climatic drivers by estimating the
joint PSD from CO2, solar, volcanic, and orbital forcing using
Monte Carlo simulation. Hereby, we discovered a scale break
at the period of approximately 7 yr. Moreover, we have pre-
sented the spectral gain, describing the timescale-dependent
forced temperature response. We found that it is mostly con-
sistent across data sets and indicates an increasing internal
variability on timescales of decades to centuries.

Our analysis of the spectral gain was limited to global
average values and those timescales where linearity can be
reasonably assumed [42,43,110]. Nonlinearities are inherent
to the climate system, for example, due to the temperature-
albedo feedback. Thus, it will be necessary to examine their
possible effects on multiple spatiotemporal scales to further
extend this work. Studying nonlinearities could also shine new
light on the mechanisms of scaling in Earth’s climate, which
are not yet fully understood and might be linked to nonlinear-
ities as well [6]. Furthermore, we have focused on the current
interglacial, the Holocene. This is because climate variability
has been demonstrated to depend on the mean climate state
[82]. Furthermore, major shifts in climate could potentially
violate the basic assumption of weak stationarity for spec-
tral analysis. Thus, the conclusions laid out here cannot be
readily applied to other climate states, such as glacial periods,
which is an issue for future studies. Clearly, understanding
the dependence of temperature variability on global warming
demands additional work.

Ideally, our findings should be replicated by employ-
ing models with increased internal variability on longer
timescales and paleoclimate data that provides improved
spatiotemporal resolution. In particular, investigating the re-
lationship between spatial and temporal disagreement is a key
task for future analyses. Optimized analysis of noise sources
and spectral analysis of (pseudo-)proxy records could help
to expand the data basis of proxy records with decadal res-
olution [59,111,112]. Regarding climate models, an improved
representation of processes that increase Earth’s long-term
memory, such as an interactive carbon cycle and dynamical
ice sheets, might strengthen the long-range dependence and
persistence of surface air temperature. A better understand-
ing of unforced low-frequency oscillations as well as abrupt
changes will be necessary to improve the representation of

local fluctuations and could further help to understand nonlin-
ear feedback and possible bifurcations in the climate system.
Future studies could also continue to explore how internally
generated and externally forced variability compares on dif-
ferent spatial scales. Research on the interrelation between
internal and forced changes, as well as local, regional, and
global variability, might prove important and could be con-
ducted using single-forcing experiments from ensembles of
model simulations.

Managing climate risks requires a detailed understanding
of temperature variability. Locally and on timescales between
years and centuries, there is an urgency to address discrep-
ancies to make further progress in climate modeling. In this
study, we have singled out the key characteristics of temper-
ature variability and showed that the timescale dependency
of local temperature variations from observation-based data
and model simulations differs. Our results have demonstrated
that the scaling behavior and spectral gain are easy-to-use yet
effective and promising tools for investigating variability in
Earth’s dynamic climate.

Code to reproduce all figures is available at [113].

ACKNOWLEDGMENTS

This manuscript is based upon data provided by the
World Climate Research Programme’s Working Group on
Coupled Modelling, which is responsible for CMIP and
PMIP. We thank the research groups listed in Tables S1
and S2 for producing and making available their data from
model outputs, measurements, paleoclimate, and forcing re-
constructions. This study benefited from discussions within
the CVAS working group, a working group of the Past Global
Changes (PAGES) project. We thank T. Gasenzer, T. Kunz,
and N. Weitzel for discussions and J. Bühler, M. Casado,
M. Schillinger, and E. Ziegler for helpful comments on
the manuscript. We are grateful to Aimé Fournier and one
anonymous referee for their constructive and valuable review.
This research has been funded by the Heidelberg Gradu-
ate School for Physics, by the PalMod project (subProject
no. 01LP1926C), and by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation), Project No.
395588486.

APPENDIX A: RELATION BETWEEN POWER SPECTRAL

DENSITY AND VARIANCE

The power spectral density of a weakly stationary, stochas-
tic process is given by the Fourier transform of the autocorre-
lation S( f ) = F{R(h)} with frequency f and lag h = t2 − t1
between two points in time [19,20]. For zero lag and zero
mean, the integral of the PSD corresponds to the variance
of the signal [80]. Instead of frequency, we use the period
τ = 1/ f to express the PSD and spectral gain. The integration
of expression (1) is divergent for β < 1 and f → ∞ which re-
quires a high-frequency cutoff, such as described by Lovejoy
et al. [38]. In case of temperature time series considered here,
this is naturally defined by the temporal resolution, setting the
maximum frequency.
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APPENDIX B: AUTOCOVARIANCE OF LONG-RANGE

MEMORY PROCESSES

Fractional Brownian motion (fBm) and fractional Gaussian
noise (fGn) are fully described by their correlation properties
[30,114], summarized below. The autocovariance function of
fBm B(t ) reads

γ (t ′, t ) = 〈B(t ′)B(t )〉 =
Vβ

2
(|t |β−1 + |t ′|β−1 − |t ′ − t |β−1)

∝ 1 +

∣

∣

∣

∣

t ′

t

∣

∣

∣

∣

β−1

−

∣

∣

∣

∣

1 −
t ′

t

∣

∣

∣

∣

β−1

(B1)

for 1 < β < 3. Vβ is a positive constant factor related to
〈(B(t ′) − B(t ))2〉 = Vβ |t ′ − t |β−1. By definition, fGn is the
series of stationary increments B(t ′) − B(t ) and shows spec-
tral exponent −1 < β ′ = β − 2 < 1 for f ≪ 1/π�t with
�t = t ′ − t . Its autocovariance

γ (h) = 〈[B(t + 1 + h) − B(t + h)][B(t + 1) − B(t )]〉

=
Vβ

2
|h − 1|β

′+1 − 2|h|β
′+1 + |h + 1|β

′+1 (B2)

depends only on the lag h ∈ Z, where we set �t = 1 without
loss of generality. The fGn has a power spectrum of the form
[115]

S( f ) ∝
sin2(π�t f )

|2π�t f |β
′+2

, (B3)

with the slowly varying factor

sin2(π�t f ) −−−−−−→
f / fmax→ 0

(π�t )2 f 2, fmax = 1/π�t .

(B4)
Considering positive frequencies f > 0, the spectrum (B3)
can be approximated by the power law S( f ) ∼ 1/ f β ′

if f ≪

fmax. For f � fmax, however, the fGn has a similar spectral
shape to fBm [114]. We account for this by considering
sufficiently long periods. To give an example, 100.58 yr−1 �
fmax � 102.7 yr−1 corresponds to 6 h ��t � 1 mo.

For all |t ′/t | ≫ 1, the covariances (B1) keep growing
for β > 2 (persistence) and stay bounded for β < 2 (an-
tipersistence). As a result, Eq. (B1) involves “nonlinear
pseudo-trends” [30] for B(t ′) conditioned on B(t ), which
diverge for β > 2 and converge for β < 2. According to
Eq. (B2), fGn is persistent for β ′ > 0 and antipersistent for
β ′ < 0. Ordinary Brownian motion corresponds to β = 2 and
white noise to β ′ = 0. The sequence of partial sums of the
autocovariance function diverges for fGn with β ′ > 0 and
fBm with β > 2. The process is nonsummable and said to
possess long-range memory.

APPENDIX C: SPECTRAL GAIN FOR LINEAR SYSTEMS

In a time-invariant linear system, the output

y(t ) =

∫ ∞

−∞

h(u)x(t − u) du (C1)

is given by the input time series x(t ) and the impulse response
function h(u) [80]. The Fourier transform H ( f ) = F{h(u)} =

G( f )eiφ( f ) gives the frequency response function, also called
the transfer function. G( f ) and φ( f ) are the gain and phase,

respectively. The integral (C1) corresponds to a product in fre-
quency space F{y(t )} = H ( f )F{x(t )}. This relates the PSD
of the output Sy( f ) to the one of the input Sx( f ) via

Sy( f ) = |H ( f )|2Sx( f ) = G2( f )Sx( f ). (C2)

APPENDIX D: ANALYTICAL SOLUTION TO THE PSD OF

INTERMITTENT VOLCANIC FORCING

We investigate the power spectral density of intermittent
volcanic forcing by approximating the eruption time series in
a simplified way as a stochastic signal X (t ) = δ(t − ti ). This
function is zero at all times except ti, when an event of unique
amplitude occurs. We denote Ti = ti − ti−1 the time intervals
between two events. We use the fact that the PSD cannot be
calculated only from the covariance, but also from the Laplace
transform S(X, f ) = 2 limǫ→0〈|L(X (t ), ǫ

2
− 2π i f )|2〉 [116].

Based on this approach, the power spectral density

S( f ) = μT

1 − |ρ( f )|2

|1 − ρ( f )|2
, f > 0 (D1)

becomes a function of the Fourier transform of the prob-
ability density function ρ( f ) = F{ρ(T )} and the inverse
mean interval between two events μT = 〈T 〉−1 [116,117].
An exponentially decaying probability distribution ρ(T ) =

μT exp(−μT T )(T ) for volcanic forcing is suggested [118],
and we have checked this for the data sets considered. The
Fourier transform reads ρ( f ) = μT (μT + 2π i f )−1 such that
1 − |ρ( f )|2 = |1 − ρ( f )|2. As a consequence, the PSD (D1)
takes a constant value. We can observe this white noise be-
havior in Figs. 5 and 6(a) on timescales longer than a few
years, which is on the order of characteristic return times
for eruptions. Below these timescales, the variability consid-
erably drops. This analytical result provides an independent
verification of the PSD for volcanic forcing and its scale
break.

APPENDIX E: MONTE CARLO SAMPLING OF THE

SPECTRAL GAIN

We simulate the spectral gain (4), as well as the PSD of
global mean temperature and the joint PSD of radiative forc-
ing using a Monte Carlo approach with N = 1000 realizations
to account for sampling biases. The PSD of global mean tem-
perature is sampled for three groups: the observation-based
data, the model simulations from group M0, and those from
M0 together with M+ (Table S1 [47]). Here only models
from the groups M0 and M+ are considered to exclude model
artifacts and to represent the historical temperature response
in the best possible way.

We sample the simulation-based PSD from the average
PSD of the simulations using uniformly distributed ran-
dom weights. To obtain the observation-based PSD, we
use the global mean temperature from HadCRUT4, ERA5,
and a 7000-member reconstruction ensemble provided by
PAGES2k [46]. This ensemble allows us to sample the PSD
by randomly selecting one ensemble member and form the
mean of its spectrum with that of the ERA5 and HadCRUT4
temperature. The joint PSD of radiative forcing is calculated
from all forcing reconstructions considered in this work ex-
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cept the Fröhlich et al. solar forcing, which has too low
temporal resolution above interannual scales (Table S3 and
Fig. S5 [47]). We assume the PSD of CO2 and orbital forcing
as fixed since its spectral power is comparatively low on mul-
tidecadal scales. We sample the PSD of solar forcing by using
uniformly distributed weights when forming the average PSD
of all solar reconstructions. Similarly, the PSD of volcanic
forcing is obtained. In addition, we randomly vary the con-
version factor between (−18)−1 and (−25)−1 Wm−2/AOD
[78]. The joint PSD of radiative forcing is calculated by linear

summation of the PSD from CO2, orbital, solar, and volcanic
forcing.

Using this sampling scheme, our Monte Carlo produces
two outcomes: First, we compute the PSD of global mean tem-
perature and the joint PSD of radiative forcing by simulating
an ensemble of N realizations for both forcing and response.
Second, we sample the spectral gain directly from the quotient
(4) in each of the N realizations. In both cases, the average
of the generated N-member ensemble and its 5% and 95%
quantiles constitute the result of our Monte Carlo simulation.
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TABLE S1. Key specifications of model simulations and observation-based data used to estimate27

temperature variability. We give the main references (Doc.) of the simulation runs, observation-28

based data sets, and their forcing (Forc.). The groups M+ and M0 were assigned to better dis-29

tinguish spectral properties when performing a Monte Carlo simulation of the spectral gain in the30

main manuscript. The temporal resolution ∆t is given in months (m), hours (hr), years (yrs), and31

days. The spatial resolutions of atmosphere and ocean are denoted by the subscripts ◦degat. and32

◦degoc., respectively.33

Name Doc. Model ∆t ◦degat. ◦degoc. Forc. Time (CE)
Model simulations
CESM 1 past2ka [6] CESM1 1 m 2 1 [7] 1-2005
CESM-LME 1a [8] CESM1 1 m, 6 hr 2 1 [9] 850-2006
CESM-LME 1 cntl [8] CESM1 1 m 2 1 [9] 850-2006
MPI-M LMb [10] MPI-ESM 1 m, 6 hr 3.75 GR30c [10] 800-2005
MPI-M LM cntl [10] MPI-ESM 1 m 3.75 GR30c [10] 800-2005
HadCM3 LM1a [11] iHadCM3 1 m 2.5 x 3.75 1.25 [12] 800-1850
IPSL-p6ka [13] IPSL-CM5A 2 m 2.5 x 1.27 2 [13] 4000 BCE - 2000
TraCE-21k [14] CCSM3 2 m ≈ 3.75 3.6 x vd [15, 16] 4,000 BCE - 1990
TraCE-21k-ORB [14] CCSM3 10 yrs ≈ 3.75 3.6 x vd [15, 16] 4,000 BCE - 1990
ECH5/MPIOM-p6kb [17] ECHAM5/MPI-OM 1 m 3.75 2 [15] 4000 BCE - 2000
Observation-based
ERA5 [18] 1 m, 6 hr 2 2 1979-2019
HadCRUT4 [19] 7 days 5 5 1850-2019
PAGES2k [3] 1 yr [3] 0-2000

34

35
a assigned to group M0
b assigned to M+
c curvilinear grid with nominal resolution of 3.0◦

d the latitudinal resolution is variable (v), with finer resolution near the equator (≈ 0.90◦)

2



TABLE S2. Key specifications of climatic drivers used to estimate the power spectral density of

radiative forcing as well as the gain function of the forced temperature response.

Name ∆t Time (CE)

Volcanic forcing

Crowley et al.a [21] 10 days 500BCE-1900

Gao et al.a [22] 1 yr 850-2000

Toohey et al. [23] 850-2000

Total solar irradiance

Delaygue et al.ab [24] 1 yr 850-1850

Muscheler et al.ab [25] 1 yr 850-1850

Steinhilber et al.a [26] 1 yr 850-1850

Vieira et al.a [27, 28] 1 yr 850-1850

Wang et al.ab [29] 1 yr 1610-2009

Fröhlich et al. [30] 36 hr 1978-2017

CO2

Schmidt et al.a [20] 1 yr 850-2000

Keeling et al. [31] 1 hr 1970-2016

Insolation at 65◦N

Bergerac [15] 1 yr, 3 hr 0-2000

a from the PMIP simulations of the Last Millennium [20]
b when multiple versions were provided by PMIP, the “with-background”-version was considered here
c computed with the R-package “Palinsol” [32]
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PAGES2k
4

36

FIG. S1. Evolution of global mean temperature over the Common Era from model simulations37

and observation-based data as in Table S1. Anomalies are given with respect to the reference38

period 1961-1990 (HadCM3 LM1:1800-1850) and as a running average of five years.39
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FIG. S2. (a) Reconstruction of climate drivers over the Common Era used to estimate the PSD41

of radiative forcing (RF). Labels indicate the data reference as given in Table S2. (b) Additional42

observational data for solar and CO2 forcing used to obtain high-frequency spectral estimates.43

Highly resolved insolation changes due to the diurnal and annual cycle are not shown here.44
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FIG. S3. Temperature anomalies from proxy records used to estimate local temperature variability.

The labels give the ID from the PAGES2k database as indicated by a star (?) in Table S3.
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FIG. S4. As Figure S3, but showing the PSD of the proxy records. The shaded area indicates the

periods between 10 and 200 years, used to estimate the scaling relationship. Scaling exponents for

spectra that do not cover the full period were estimated on their corresponding timescales, but at

least between 20 and 200 years.
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FIG. S5. Power spectral densities of solar (a), CO2 (b), and volcanic (c) from multiple data sets

and their mean spectra (black). Low- and high-frequency tails, likely prone to spectral biases, were

omitted in the average.

FIG. S6. PSD for global mean and mean of local spectra of surface air temperature from last

millennium runs and their PI control (cntl).
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FIG. S7. Joint PSD (dashed orange line) from the mean spectrum of a highly (hr) and lower

resolved time series on the example of surface air temperature from the CESM-LME 1 run. To

improve computational efficiency, we formed this joint PSD for ERA5, MPI-M LM, and CESM-

LME 1. The high-frequency component was estimated from data at hourly resolved temperature

series from 1981 to 1990 CE since this is a part of the climatic period that is shared among the

three data sets.

int

signal
series
surrogate PSD

FIG. S8. Step-wise estimation of uncertainty on β-scaling relation for irregularly sampled proxy

records on the example of the PSD from the “NAm-LakeMina”-record. When interpolated to

its mean temporal resolution ∆t, the raw signal has a scaling relation β = 1.31 (orange dashed

line). The uncertainties were calculated from 100 surrogates that are random time series with

approximately the same power-law scaling β (black dotted line). The PSD is altered after forming

the block-average of the surrogate time series and interpolation to ∆t (blue solid line). Linear

regression on this spectrum (black dashed line) gives the scaling coefficient βint of the surrogate

series.
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cutoff:

FIG. S9. Global mean of local PSD from proxy records subject to sampling from the PAGES2k

data base and global warming. Dashed and solid lines refer to the mean spectra of local proxy

records cut at 1850 CE (PI) and 2000 CE (hist) respectively. The plot compares strong (blue) and

loose (orange) criteria. Loose criteria are described in the data section of the main manuscript and

were used to calculate the mean of local spectra from reconstructions. For the stronger criteria we

require the mean temporal resolution (〈ti+1 - ti〉) ≤ 20years, a coverage (tN - t1) ≥ 30years and

the number of data points N ≥ 30. Hiatus are tolerated up to max(ti+1- ti) ≥ 40 years.

Proxy

CESM 1 past2k

CESM-LME 1

MPI-M LM

ECH5/MPIOM-p6k

TraCE-21k

      IPSL-p6k

-0.2 0.0 0.2
βhist − βPI

FIG. S10. Normalized density plots of the deviations of the spectral exponent β extracted from

time series up to 2020 CE (βhist) and time series up to 1850 CE (βPI). The densities were computed

from the local power-law scaling used to estimate the statistical agreement between models and

data (Table S3).
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FIG. S11. Local scaling coefficients and its confidence intervals from simulations and paleoclimate

data. Each panel denotes the ID within the PAGES2k database and its coordinates (longitude ◦E,

latitude ◦N). Symbols indicate the archive of the proxy record or whether the scaling exponent

belongs to a model simulation or not. Red shading refers to scaling exponents β > 1, whereas the

white background indicates β < 1.
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HadCM3 LM1(a) CESM 1 past2k(b) CESM-LME 1(c)

CESM-LME 1 (cntl)(d) MPI-M LM(e) MPI-M LM (cntl)(f)

ECH5/MPIOM-p6k(g) TraCE-21k-ORB(h) TraCE-21k(i)

 IPSL-p6k(j)

std. Δβ
0.00 0.05 0.10 0.15 0.20

FIG. S12. Standard deviation of the least-square regression of local scaling coefficient β for all

model simulations. The goodness of fit is generally lower for models with a comparatively low

temporal resolution (Trace21k-ORB) or coverage (HadCM3 LM1). Furthermore, there is a slightly

increased deviation in areas of active modes of variability, such as the ENSO region ((b), (c), (e),

(j)). This could be due to the fact, that spectral peaks describe these (quasi-)periodic signals better

than power-law scaling.
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FIG. S13. PSD of global mean surface temperature from model simulations and PAGES2k

reconstruction. To test the robustness of our spectral analysis against potentially non-trending,

non-stationary signals in the data sets, each temperature signal was split into two disjoint time

intervals of equal length, representing the “early” and the “late” part of the signal. The latter

contains the anthropogenic global warming period, starting approximately 1850 CE. Trace-21k-

ORB (orbitally forced only) as well as HadCM3 LM1 (800-1850 CE) were excluded from the

discussion since they do not represent the recent global warming.
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FIG. S14. Root-mean-squared error of linear regression (LR) and maximum likelihood estimation

(MLE) [1, 2] computed from 200 surrogate time series with 6000 data points and power-law scaling

β. The grey dashed line marks the mean confidence ∆βLR of the linear regression. Outliers (> 0.3)

of the MLE for negative scaling exponents are not shown here. The implemented (standard) MLE

is generally not appropriate to estimate β ≤ 0, which explains deviations in this range [2].
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1. Introduction
Climate variability, that is variations in the statistics of climate parameters, characterizes Earth's dynamical 
system and is the primary influence on extreme events (Katz & Brown, 1992). Variability arises from unforced 
processes, internal to the climate system, and from forced processes, caused by external natural and anthropo-
genic drivers. Natural drivers include volcanic and solar forcing, contributing significantly to climate variability 
(Crowley & Unterman, 2013b). Due to anthropogenic activities, the recent trend of global mean surface tempera-
ture (GMST) and other variables has clearly emerged beyond the range of natural variability (Bindoff et al., 2013; 
Hasselmann, 1997; Marcott et al., 2013; Sippel et al., 2020).

Global warming also affects climate variability (Bathiany et al., 2018; Olonscheck et al., 2021). The underlying 
mechanisms remain poorly understood. There is conflicting and incomplete evidence on the spatio-temporal 
patterns of change (Brown et al., 2017; Holmes et al., 2016; Huntingford et al., 2013; Pendergrass et al., 2017; 
Rehfeld et al., 2020). This is a major source of uncertainty for regional climate projections. To accurately simulate 
climate variability models must resolve internal variability, its response to natural forcing across scales, and the 
mean climate states (Rehfeld et al., 2018).

Large explosive volcanic eruptions are suggested to have driven millennial-scale climate variations during 
glacial periods (Baldini et al., 2015). The largest eruption was hypothesized to have caused a human popula-
tion bottleneck (Ambrose, 1998). The extent and impact of this event remains unclear (Svensson et al., 2013; 
Timmreck et al., 2010). Strong tropical volcanic eruptions have also been shown to influence daily temperature 

Abstract Natural forcing from solar and volcanic activity contributes significantly to climate variability. 
The post-eruption cooling of strong volcanic eruptions was hypothesized to have led to millennial-scale 
variability during Glacials. Cooling induced by volcanic eruption is potentially weaker in the warmer climate. 
The underlying question is whether the climatic response to natural forcing is state-dependent. Here, we 
quantify the response to natural forcing under Last Glacial and Pre-Industrial conditions in an ensemble of 
climate model simulations. We evaluate internal and forced variability on annual to multicentennial scales. The 
global temperature response reveals no state dependency. Small local differences result mainly from state-
dependent sea ice changes. Variability in forced simulations matches paleoclimate reconstructions significantly 
better than in unforced scenarios. Considering natural forcing is therefore important for model-data comparison 
and future projections.

Plain Language Summary Climate variability describes the spatial and temporal variations of 
Earth's climate. Understanding these variations is important for estimating the occurrence of extreme climate 
events such as droughts. Yet, it is unclear whether climate variability depends on the mean surface temperature 
of the Earth or not. Here, we investigate the effects of natural forcing from volcanic eruptions and solar activity 
changes on climate variability. We compare simulations of a past (cold) and present (warm) climate with and 
without volcanism and solar changes. We find that overall, the climate system responds similarly to natural 
forcing in the cold and warm state. Small local differences mainly occur where ice can form. To evaluate the 
simulated variability, we use data from paleoclimate archives, including trees, ice-cores, and marine sediments. 
Climate variability from forced simulations agrees better with the temperature variability obtained from data. 
Natural forcing is therefore critical for reliable simulation of variability in past and future climates.
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and precipitation extremes (Wang et al., 2021). These eruptions could induce a somewhat weaker response in 
warmer climates (Hopcroft et al., 2018), but volcanism will continue to play an important role in future variability 
(Bethke et al., 2017). These studies, however, do not examine the dependency of forced variability on the mean 
climate because they rely on future projections or the responses to large eruptions.

The paleoclimate record is crucial to assess whether a colder planet is more sensitive to natural forcing than a 
warmer one. Yet, temperature variability shows a mismatch between paleoclimate simulations and proxy data 
on the decadal-to-multicentennial scale (Ellerhoff & Rehfeld, 2021; Laepple & Huybers, 2014a). Despite major 
efforts, such as the Paleoclimate Modeling Intercomparison Project (PMIP; Braconnot et al., 2012; Kageyama 
et  al.,  2018), this discrepancy remains unresolved. While PMIP experiments successfully demonstrated the 
influ ence of natural and anthropogenic forcing on temperature variability over the last millennium (Otto-Bliesner 
et  al.,  2016), similar studies for Glacial states are missing. Transient paleoclimate simulations for the Last 
Glacial Maximum (LGM) have mostly been performed without high-frequency solar and volcanic forcing (Liu 
et al., 2009; Smith & Gregory, 2012). This lack of time-dependent forcing could potentially explain discrepancies 
between reconstructed and simulated variability. Additional uncertainty remains about the mechanisms of local, 
long-term variability (Franzke et al., 2020; Fredriksen & Rypdal, 2017; Huybers & Curry, 2006).

Separating internal and external variability has improved the understanding of climate dynamics and processes 
(Frankcombe et al., 2015; Haustein et al., 2019; Mann et al., 2022; Schurer et al., 2013). The approach should 
allow to identify drivers of local, decadal-to-multicentennial variability in cold and warm climates. This requires 
the comparison of unforced and forced climate simulations under Glacial and Interglacial conditions, and their 
validation against paleoclimate data over a wide range of timescales. Studying contributions to surface climate 
variability of system components that bridge internal and external factors is also necessary. Sea ice, for exam-
ple, follows in extent the mean state. Natural forcing could, however, also drive multidecadal variability via 
modulation of the Atlantic Meridional Overturning Circulation (AMOC; Halloran et al., 2020). This highlights 
contributions to variability from climate components and mechanisms that bridge intrinsic and external factors.

Here, we contrast unforced and naturally forced simulations under LGM and PI conditions in an ensemble using 
the Hadley Centre Coupled Model Version 3.4 (HadCM3 (Gordon et al., 2000; Pope et al., 2000; Reichler & 
Kim, 2008; Stott et al., 2000);). We examine the mean local response of the surface climate to volcanism in the 
two climate states (Section 3.1). Spectral analysis (Section 3.2) further quantifies the state- and timescale-de-
pendent effects of natural forcing on local, zonal, and global scales. It confirms a robust response to natural forc-
ing across climate states, but a mean decline in local temperature variability with warming. To aid interpretation 
of the spectra, we investigate sea ice dynamics as it appears a main contributor to local, long-term variability. We 
validate simulated variances using proxy data (Section 3.3) to confirm that the addition of natural forcing signif-
icantly reduces the model-data mismatch on multidecadal and longer timescales. Thus, the inclusion of natural 
forcing provides a more accurate representation of climate variability, needed for climate simulations.

2. Data and Methods
2.1. Model Setup

Our ensemble consists of 12 simulations using LGM or PI boundary conditions (Table S1, Figure S1 in Support-
ing Information  S1). We performed them using HadCM3, a three-dimensional, coupled atmosphere-ocean 
general circulation model (AOGCM) that is widely used for paleoclimate study (Armstrong et al., 2022; Bühler 
et al., 2021; Collins et al., 2001; Flato et al., 2014; Reichler & Kim, 2008; Tindall et al., 2009; Valdes et al., 2017). 
Computational efficiency allows for long-term integrations, with a simulated climate comparable to other 
AOGCMs and observations (Gordon et al., 2000; Jackson & Vellinga, 2013).

The simulations are monthly resolved and of millennial length. The boundary conditions (orography, orbital 
parameters, greenhouse gas concentrations) defining the mean state are constant over these runs. All runs start 
from the same LGM/PI spin-up simulation at consecutive years. Six runs are akin to control simulations with-
out transient forcing. The remaining runs feature time-varying solar and volcanic forcing. We mark these with 
a star (*). Thus, three runs exist for each mean state and each forcing scenario (Table S2 in Supporting Infor-
mation S1). Unless otherwise specified, our results represent average values of these sub-ensembles. Temper-
ature, precipitation, sea level pressure, and wind fields are shown in Figure S2 in Supporting Information S1. 
The Last Glacial GMST is decidedly colder (9.5 ± 1.4) °C and the global mean precipitation rate (GMPR) is 
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lower (935 ± 20) mm yr −1, with a steeper equator-to-pole temperature gradi-
ent than the Pre-Industrial with (15.1 ± 1.3) °C and (1,048 ± 21) mm yr −1, 
respectively.

We use transient volcanic and solar forcing (Figure S1 in Supporting Infor-
mation S1), following the PMIP3 protocol for the last millennium (850–1850 
CE; Schmidt et al., 2012) and updated every 10 days. We apply the same forc-
ing in both states, as no reconstructions of solar and volcanic forcing for the 
LGM exist to date. This also makes comparing forced variability between the 
states easier. Total solar irradiance (from Steinhilber et al. (2009) and Wang 
et al. (2005)) is time dependent, with a superposed 11-year cycle (Schmidt 
et al., 2012). Volcanic forcing (Crowley & Unterman, 2013) is supplied as 
Aerosol Optical Depth (AOD) at four equal-area latitude bands (90-30°S, 
30°S-0, 0–30°N, 30–90°N). It describes the attenuation of incoming radia-
tion by volcanic aerosols at a wavelength of 0.55 μm and is converted into an 
aerosol mass loading factor (Schmidt et al., 2012).

Figure 1 shows the distribution of simulated GMST anomalies for the Last 
Glacial and Pre-Industrial. Forced scenarios (LGM*, PI*) exhibit larger fluc-
tuations. In both states the GMST standard deviation increases by a factor of 
approximately 1.65 compared to unforced runs. There is no strong difference 
in the GMST distribution attributable to the mean climate.

2.2. Observations and Paleoclimate Reconstructions

We use observations and paleoclimate reconstructions to validate the variance from model simulation on interan-
nual to multicentennial scales (2–5, 5–50, 50–200, and 200–500 years). We consider proxy records from Rehfeld 
et al. (2018) and the PAGES2k-Consortium (2017), and observations from the Met Office Hadley Centre's sea 
surface temperature data set (HadISST downloaded 11/2019; Rayner et  al.  (2003)). We focus on sea surface 
temperature observations as much of our proxy data is of marine origin. We select records that (a) are published 
and calibrated to temperature, (b) contain more than 50 data points, (c) cover at least three times the largest period 
of interest, and (d) have a mean sampling frequency of twice the highest frequency considered (Ellerhoff & 
Rehfeld, 2021). We exclude records with gaps larger than five times the required resolution. Ice core records are 
not considered on timescales below 50 years, where signal-to-noise ratios are low (Casado et al., 2020; Laepple 
et al., 2018). Our ensemble consists of 41 observations and 115 proxy records from six archive types (Data Set 
S1, Figures S9 and S10 in Supporting Information S1).

2.3. Effect Analysis

We analyze the global and local state-dependent effects of natural forcing in time and spectral domain. Following 
Swingedouw et al. (2017), we quantify local effects of moderate to large-magnitude volcanic eruptions using the 
mean standardized anomaly (MSA). The MSA represents the average value of the standardized anomalies across 
ensemble members. It is computed for 12-month means surrounding periods with high aerosol imprint (AOD > 
0.13, corresponding to approx. −2.6 W/m 2 (Forster et al., 2021)) as follows

MSA =
1

𝑗𝑗

∑

𝑗𝑗

1

12

∑

𝑖𝑖∈𝑇𝑇𝑗𝑗
𝑋𝑋𝑖𝑖 − 𝜇𝜇

𝜎𝜎
, (1)

with mean μ = E[X] and standard deviation 𝐴𝐴 𝐴𝐴 =

√

E
[

(𝑋𝑋 − 𝜇𝜇)
2
]

 of each individual gridbox time series X. The 
index i specifies the 12 months of the time series X corresponding to the set of periods Tj for run j of each climate 
state. The normalization to the local variability σ allows detecting forced variations caused by volcanic erup-
tions. We test for statistical significance by bootstrapping using 400 block samples of X with a fixed length of 
48 months.

We quantify the timescale-dependent variance of surface air temperature using the power spectral density (PSD, 
denoted spectrum). We use the multitaper method (Percival & Walden, 1993) with three windows and chi-square 

Figure 1. Probability density (unitless) of simulated yearly global mean 
surface temperature anomalies from all Pre-Industrial and Last Glacial 
Maximum runs. Forced scenarios are marked with a (*). The ratio of the 
distributions' standard deviations is given by rσ.
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distributed uncertainties. The required assumption of weak stationarity (Davies & Chatfield, 1990) is reasonably 
fulfilled, given that we linearly detrend all time series (Fredriksen & Rypdal, 2016; Laepple & Huybers, 2014b; 
Nilsen et  al.,  2016). Spectra are smoothed logarithmically using a Gaussian kernel. Following Huybers and 
Curry  (2006), we compute mean spectra after interpolation to the lowest resolution and binning into equally 
spaced log-frequency intervals.

We use variance ratios, as in Laepple and Huybers (2014b), Rehfeld et al. (2018) and Ellerhoff and Rehfeld (2021), 
to compare model simulations and observational data. First, observation and proxy data are interpolated onto an 
equidistant time axis of the same mean resolution as the raw signal. We compute the spectrum and obtain the 
variance by integration over the considered timescale (2–5, 5–20, 50–200, 200–500 years). Finally, we calcu-
late the variance ratio by dividing the simulated by the reconstructed variance. Confidence intervals (CI) are 
obtained from a F-distribution, based on the degrees of freedom of the variance estimates. The “lgm3” and “pi2” 
(Table S2 in Supporting Information S1) runs are excluded for the longest timescale (200–500 years) as they are 
shorter than 1,000 years. Changes in variance ratios between forced and unforced runs are quantified by the area-
weighted mean of the improvement factor (Appendix A).

3. Results
3.1. Mean Response to Volcanic Forcing

Volcanic eruptions cause mean temperature decline at almost every location (Figure 2) as expected (Robock, 2000). 
The mean response, quantified by MSA, is weaker over the oceans than over land. The response is stronger 
between 30°N and 30°S than in high-latitude regions, following the mean AOD imprint (Figure 2c). The strongest 
cooling (up to three standard deviations) occurs over the Southeast Asian Archipelago (Figure 2b). These patterns 
are largely robust against changes in the mean climate. This also applies to precipitation, sea level pressure, and 
500mbar wind speed (Figure S3 in Supporting Information S1).

The zonally averaged MSA (Figure 2 (c)) reveals small differences between the states during LGM* and PI* 
around the equator, 60°S, 50°N, and toward the North Pole. We identify differences in Southeast Asia, the Antarc-
tic Ocean, over the Northern Hemisphere (NH) ice sheets, and the Barents Sea (Figures 2a and 2b). In Southeast 
Asia, the enhanced PI* surface climate response could be linked to the high AOD imprint from strong tropical 
volcanic eruptions (Fasullo et al., 2017), such as the 1,257 Samalas eruption. Changes in the land-sea mask in 
the region could alter the local coupling between ocean and atmosphere. In the LGM*, cooling in response to 
eruptions is enhanced at the Antarctic sea ice edge and in the Barents Sea. Both regions feature a higher amount 
of sea ice cover during the LGM. The variations in MSA extend toward the Arctic Ocean and Northern North 
Atlantic. Differences between the states could therefore be related to the potential for sea ice formation, likely 
amplifying the local response to volcanic eruptions (Timmreck, 2012). Remaining small differences are found in 

Figure 2. (a) Mean standardized anomalies (MSA) of surface air temperature in the Last Glacial Maximum* (b) and the Pre-Industrial* state after volcanic eruptions. 
Dots indicate insignificant anomalies within the 99% quantile range of local variability. Gray shaded crosses show land ice. Hatched areas indicate areas with >50% 
yearly sea ice coverage. (c) Zonally averaged MSA and Aerosol Optical Depth (AOD) (black dashed). MSA and AOD are unitless quantities.
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regions with state-dependent changes of NH ice sheets, with a tendency toward enhanced cooling over NH land 
masses in the Pre-Industrial.

3.2. Spectral Response at the Global and Local Scale

Examining power spectra for the global and local scale highlights the timescale-dependent impact of natural 
forcing. Global mean spectra of simulated temperatures (Figure 3a) are predominately determined by natural 
forcing. Including the forcing increases the power, and thus variance, on all timescales. At multidecadal scales, 
the forced GMST shows approximately five times more variance than unforced runs. State-dependent effects 
of the forced response are not discernible in these spectra. There are no pronounced spectral peaks. Enhanced 
centennial-scale variability in the Pre-Industrial could be attributed to a more variable AMOC (Figure S8 in 
Supporting Information S1).

Local mean spectra (Figure 3a) are characteristic for the mean state and less affected by natural forcing. They 
point to a greater temperature variance during the LGM. Differences between the states are the strongest on 
interannual scales, where LGM (∗) variance is higher by a factor of approximately two compared to PI (∗). Zonal 
mean spectra (Figures 3b and 3c) reveal that the decrease in variability with warming is greatest at mid-, and espe-
cially high-latitudes, supporting a potential link to sea ice dynamics. Tropical variability widely agrees across 
states. Differences between forced and unforced local and zonal mean spectra are within uncertainties, but most 
pronounced for high-latitude, long-term variability. The PSD of global mean sea ice concentration is smaller 
under Pre-Industrial than Glacial conditions (Figure 3d). Above decadal scales, sea ice variability is significantly 
higher in forced compared to unforced scenarios.

Figure 3. (a) Local and global power spectral density for simulated temperature using Hadley Centre Coupled Model Version 
3.4. Global spectra are computed from global mean surface temperature. Local refers to the area-weighted average of all 
local spectra. (b and c) Area-weighted average of local spectra by climate zone, given by the tropics (−23.5 to 23.5°N), mid 
(23.5–66.5°), and high latitudes (>66.5°) for Last Glacial Maximum and Pre-Industrial. (d) Global spectra (units in % 2 yr) 
of global mean sea ice concentration, defined as percentage of the globe covered in sea ice. Lines show logarithmically 
smoothed (0.08 dB) mean spectra with shaded 95% CIs.

Global sea iced
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3.3. Comparison of Observed and Modeled Variability

We validate the simulated variability against observational and paleoclimate data and revisit the local, long-term 
variability mismatch (Ellerhoff & Rehfeld, 2021; Laepple & Huybers, 2014a; Rehfeld et al., 2018). Figure 4 
shows the model-data mismatch as variance ratios. Proxy variance is increasingly larger on longer timescales 
compared to simulations. There is no major difference in the variance ratios between unforced and naturally 
forced runs on short timescales (2–5 and 5–50 years; Figures  3a and 3b). This can be explained by internal 
processes dominating simulated local variability at these scales. The PI simulation slightly overestimates interan-
nual variability in the mid and high latitudes compared to sea surface temperature observations.

Beyond periods of 50 years (Figures 3c–3d), simulated local variance is consistently smaller than proxy-based 
reconstructions. Including natural forcing in simulations decreases the mismatch for the majority of proxy sample 
sites. On periods of 50–200 years, the ratio bias is decreased by a factor (local mean improvement, Appendix A) 
of f = 1.38 (1.12, 1.71, 90% CI). The local mean improvement increases toward multicentennial scales, reducing 
the discrepancy. On periods of 200–500 years, the mismatch is reduced by a factor of 2.22 (1.75, 2.81). This is not 
sufficient to achieve consistency between modeled and proxy variance, but the mismatch is significantly smaller.

4. Discussion
We confirm that including natural forcing promotes temperature variability in model simulations across a range 
of timescales. In contrast to some experiments in the literature, we find that the modeled response of GMST does 
not strongly depend on the mean climate (Figures 1 and 3). Locally, weak state-dependent effects occur (Figures 2 
and 3). Considering natural forcing reduces the model-data mismatch on local temperature variability, in particu-
lar on multidecadal and multicentennial scales (Figure 4).

4.1. Forced and Unforced Variability

Previous studies suggested state-dependent effects of volcanic forcing on global and hemispheric climate 
(Berdahl & Robock, 2013; Muthers et al., 2015; Swingedouw et al., 2017; Zanchettin et al., 2016). These results 
were obtained using ensembles of large volcanic eruptions. State dependency in these has been primarily linked 

Figure 4. Ratio r(sim./obs.) of simulated to observed variance over latitude for unforced (black) and naturally forced (green) Hadley Centre Coupled Model Version 3.4 
simulations for the Pre-Industrial. Model data is bilinearly interpolated to the location of the observation. We show the ratio of simulated PI temperature to observations 
for periods of 2–5 years (a), and to proxies spanning the last 8,000 years on interannual to decadal (b), multidecadal (c), and multicentennial (d) timescales. Symbols 
indicate the variance ratio and vertical lines their 90% CI. The local mean improvement f of the variance ratio is given in the lower left of each panel, with CIs in 
parentheses (Appendix A).
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to nonlinear processes and initial conditions (Zanchettin et al., 2013). We argue that the response to individual 
volcanic eruptions may well depend on the climate state. However, globally averaged effects from changes in 
response mechanisms are small considering realistic forcing scenarios, in line with a linear relation between 
GMST and external forcing (Fredriksen & Rypdal, 2017; Geoffroy et al., 2013; MacMynowski et al., 2011). 
In our ensemble, the GMST response to an eruption of the size of Samalas 1,257 shows no difference between 
LGM* and PI* (Figure S7a in Supporting Information S1). Global precipitation and sea ice concentration is only 
slightly enhanced in the LGM* (Figures S7b and S7c in Supporting Information S1). Interannual GMST varia-
bility and equilibrium climate sensitivity (ECS) can also be linked in a linear feedback framework (Cox, 2001). 
Assuming the above framework, and that HadCM3 simulates all relevant feedbacks, the similar forced response 
could indicate that ECS in LGM and PI are not strongly different.

4.2. Internal Variability Across States

The question of state-dependent variability has long motivated studies of past (Ditlevsen et al., 1996; Rehfeld 
et  al., 2018; Shao & Ditlevsen, 2016) and future (Huntingford et  al., 2013; Olonscheck et  al., 2021; Rehfeld 
et al., 2020) climate. Our results reveal a decrease in mean local variability with warming (Figure 3). Decreasing 
sea ice dynamics and a smaller meridional temperature gradient are suggested as major causes. In line with other 
studies (Bathiany et al., 2018; Berdahl & Robock, 2013; Bethke et al., 2017; Brown et al., 2017; Olonscheck 
et al., 2021; Rehfeld et al., 2018), we find a clear zonal pattern, with greater reduction of variability in the mid 
and high latitudes (Figures 3b and 3c). This is corroborated by the small discrepancy between short-term varia-
bility from observations and simulations in the mid and high latitudes (Figure 4a). The sea surface temperature 
observations contain the recent global warming trend and sea ice retreat, our PI(*) simulations do not. This could 
contribute to the decrease in local, high-latitude variability. The mean climate also changes AMOC variability in 
HadCM3 (Figure S8 in Supporting Information S1). It is smaller in the LGM on multidecadal and multicenten-
nial scales (Jackson & Vellinga, 2013). Under LGM conditions, the AMOC strength and correlation length is also 
increased by natural forcing (Figure S8 in Supporting Information S1). Potential mechanisms of the intensifica-
tion are debated (Iwi et al., 2012; Mignot et al., 2011), and they could contribute to state-dependent enhancement 
of long-term regional variability through natural forcing.

4.3. Mechanisms Leading to Long-Term Variability

Across our experiments, sea ice variability and regions with varying sea ice extent, primarily the Southern Oceans 
and Barents Sea, are most affected by natural forcing. This is further supported by mean standardized anomalies 
of precipitation, sea level pressure, and wind speed over the North American ice sheet, the North Atlantic Ocean, 
Antarctica, and the Southern Oceans (Figure S3 in Supporting Information S1). Comparing simulations with the 
two-dimensional energy balance model (TransEBM; Ziegler and Rehfeld (2021); Figure S5 in Supporting Infor-
mation S1) adds support to the role of sea ice in forced temperature variability. TransEBM is a fairly linear model 
with no atmospheric and oceanic dynamics. We use it to differentiate the contribution from deterministic forcing 
and sea ice to the variance. In TransEBM experiments we prescribe sea ice changes from HadCM3. Forming the 
ratio of the local mean TransEBM and HadCM3 variability (Figure S6 in Supporting Information S1) supports 
the strong sea ice contribution to interannual variability (sea also Figure 3a). The contribution remains significant 
on decadal and longer timescales, promoting sea ice variations as a key mechanism of local, long-term variability.

Our results provide crucial insights into the discrepancy between modeled and reconstructed local, long-term 
variability (Ellerhoff & Rehfeld,  2021; Laepple & Huybers,  2014a). Internal variability dominates the local 
temperature variance on annual to decadal scales (Goosse et al., 2005), but contributions from natural forcing 
are detectable beyond decadal timescales (Figure 3), increasing variance on longer timescales. This is supported 
by increased scaling coefficients (Figure S4 in Supporting Information S1), and, hence, increased persistence 
of forced temperatures on periods of 50–500 years, similar to (Vyushin et al., 2004). Including natural forcing 
in simulations improved model-data agreement of local variability on multidecadal and multicentennial scales 
(Figure  4). This is perhaps surprising given that the forcing has no centennial scale variability (Ellerhoff & 
Rehfeld, 2021). There is no change in agreement from interannual to decadal timescales, implying that the gain 
from forcing on local temperatures is small on these short timescales. Hence not only the integrated response 
to strong (Timmreck, 2012) but also to weak natural forcing contributes to long-term variability. Time-varying 
forcing appears thus beneficial for reliable simulations of global mean (Figure 3) and local, long-term variability. 
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Consistent with previous arguments (Bethke et al., 2017), our results challenge the common usage of external 
forcing that shows no time-varying changes (O’Neill et al., 2016).

4.4. Limitations and Potential

We used the same volcanic forcing reconstruction to drive simulations in LGM and PI, in an idealized setup. The 
volcanic record shows that large eruptions occurred throughout the Glacial (Brown et  al.,  2014). We do not 
account for the possibly lower rate than during the last millennium, which could also be due to undersampling. 
Furthermore, we may miss feedbacks in HadCM3 that are relevant for local climate variability. This could explain 
the underestimation of local variability compared to proxy data (Figure 4a). Sea ice dynamics, stratospheric and 
cloud-related feedbacks are key nonlinear mechanisms that can alter the response to volcanic forcing in a warmer 
climate (Aubry et al., 2021; Fasullo et al., 2017; Hopcroft et al., 2018). Projections of tropical eruptions with a 
newer model show enhanced (dampened) radiative forcing from strong (moderate) eruptions (Aubry et al., 2021). 
Cloud-related feedback, likely underestimated in HadCM3, is generally weaker than feedback from sea ice, but 
may be enhanced with warming (Hopcroft et al., 2018).

Future work could examine the response in simulations with models that show a higher ECS (Gettelman 
et al., 2019; Tatebe et al., 2019; Voldoire et al., 2019; Wu et al., 2019) and better sea-ice (Guarino et al., 2020). 
Insufficient sea ice and vegetation cover changes may significantly alter the response in extreme warming scenar-
ios. Future studies could test long-term impacts of volcanism and local state dependency with more advanced 
climate models, including better representation of radiative-chemical feedback, aerosol indirect, stratospheric and 
sea ice processes. Moreover, future research could apply probabilistic eruption projections (Bethke et al., 2017) 
in larger ensembles (Zanchettin et al., 2016) to study forcing scenarios with localized eruptions at high and low 
latitude. This will aid understanding of long-term Earth-system sensitivity and the state-dependent response of 
multidecadal modes to natural forcing (Swingedouw et al., 2017).

5. Conclusion
Presenting the first millennial-length, naturally forced simulation for the LGM, we investigated state-dependent 
effects of volcanic and solar forcing on global and local climate variability. The modeled global temperature 
response shows no dependency on the mean climate. Weak local differences resulted primarily from sea ice 
dynamics, providing a key mechanism of long-term variability. Including natural forcing in climate model simu-
lations improves the agreement between modeled and observed variability and, thus, calls into question the lack 
of time-dependent volcanic forcing in projections and model-data comparison. The robust temperature response 
suggests that findings on the ability of models to simulate past variability can help constrain forced variability 
across spatial and temporal scales.

Appendix A: Variance Ratio Improvement
We quantify the change in variance ratio r from unforced and naturally forced simulations to proxy records using 
the logarithmic measure l(x) = |log10(x)|. Let 𝐴𝐴 𝐴𝐴
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convert the logarithmic distance to the variance ratio improvement f = 10 Δl and estimate confidence intervals 
using the area-weighted mean of the error propagation
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We ensure a conservative coverage of the CIs by using the upper limit on 𝐴𝐴 𝐴𝐴𝐴𝐴
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 from F-distributed uncertainties of 
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Data Availability Statement
The presented model simulations are available at Zenodo via https://doi.org/10.5281/zenodo.6074747 with 
CC-BY-SA 4.0 license. They were carried out using version three of the Hadley Center Coupled Model, HadCM3, 
as described in Valdes et  al.  (2017) and Tindall et  al.  (2009). Paleoclimate and observation datasets for this 
research are included in Rehfeld et al. (2018), PAGES2k-Consortium (2017) and Rayner et al. (2003). Supple-
mental analysis used the two-dimensional TransEBM model described by Ziegler and Rehfeld (2021) which is 
based on Zhuang et al. (2017). Code and data to reproduce all figures is available at https://github.com/paleovar/
StateDependency, and also available at the following Zenodo: https://doi.org/10.5281/zenodo.6474769.
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Introduction This supporting material provides additional information on boundary

conditions, surface climate, and spectral properties of the HadCM3 simulation. We show

the power spectra of all simulated and reconstructed time series, used for variance ratio
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estimates. The separately uploaded dataset S1 contains detailed information about the

considered paleoclimate records from Rehfeld, Münch, Ho, and Laepple (2018), Rayner

et al. (2003), and the PAGES2k-Consortium (2017). We provide a supporting analysis on

the contribution of sea ice dynamics to variability using the two-dimensional TransEBM

model (Ziegler & Rehfeld, 2021).

Data Set S1. Key specification of proxy records used to estimate local temperature

variance ratios. The records were collected from Rehfeld et al. (2018), Rayner et al. (2003)

and the PAGES2k-Consortium (2017). The first six columns denote the reconstruction

name, assigned ID, location (Latitude, Longitude, Elevation), archive type, and proxy

used. The last column denotes the climate state (“LGM” or “PI”) for which the proxy

reconstruction was considered. Surface temperature observations were taken from the

location closest to the proxy location and specified by ”HadISST@...”.
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Figure S1. a Simulated PI* and LGM* global mean surface temperature (GMST) averaged

over all runs in a state, total solar irradiance (Steinhilber et al., 2009), and aerosol optical

depth (Crowley & Unterman, 2013). The solar forcing was kept constant the first 50 years due

to missing reconstructions. b LGM over LGM* GMST anomalies from HadCM3 after linear

detrending and subtracting the mean of the full time series. c As b, with PI* over LGM* GMST

anomalies.
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Figure S2. Surface temperature (a-c), precipitation rate (d-f), sea level pressure (g-i), and

wind fields at 500mbar (j-l) as simulated by HadCM3 for the LGM* and PI*. Means over latitude

intervals are displayed in the right-hand panels. Global mean values and their standard deviation

are given above the maps.
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Figure S3. Mean standardized anomalies (MSA), as Figure 2 of the main manuscript, for

precipitation rate (a-c), sea level pressure (d-f), and wind fields at 500mbar (g-i) from HadCM3.

Dots indicate insignificant anomalies within the 99% quantile range of local variability. Grey

shaded crosses and lines show land and sea ice, respectively. Mean anomalies over latitude

intervals are displayed on the right-hand panels. The black dashed line shows the mean zonal

Aerosol Optical Depth (AOD) imprint.
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Figure S4. Scaling coefficient β of forced and unforced surface air temperature on the

multidecadal-to-multicentennial scale (50-500yrs) as simulated by HadCM3 for the Last Glacial

and Pre-Industrial. Surface air temperature variability was approximated by power-laws of the

spectrum S(τ ) ∼ τβ with 50 ≤ τ ≤ 500 years and scaling coefficient β (Huybers & Curry,

2006; Fredriksen & Rypdal, 2017; Lovejoy & Varotsos, 2016). The area-weighted mean scaling

coefficient is denoted by β̂. Following Huybers and Curry (2006), we estimate β by linear

regression after log-binning to prevent low-frequency biases.
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Figure S5. Global and local mean spectra of naturally forced surface air temperature as sim-

ulated by TransEBM with (solid lines) and without (dotted lines) time-varying sea ice dynamics

(SID). TransEBM is a two-dimensional energy balance model with T42 resolution, as described

by Ziegler and Rehfeld (2021) which draws on Zhuang et al. (2017). We run TransEBM with

the same boundary conditions and time-varying forcing time series as the HadCM3 simulations,

including the latitudinal-dependent volcanic forcing. Without loss of generality, we used the

same constant CO2 values as in HadCM3 and neglected minor impacts from other greenhouse

gases. The EBM is driven by yearly averaged solar and volcanic forcing. Dotted lines show the

global and local mean spectra of the simulated temperature when sea ice extent is fixed. To

mimic the sea ice dynamics in the two-dimensional model, we update the EBM’s land-sea mask

yearly based on the sea ice output from HadCM3 and repeat the simulations.
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local: HadCM3 / TransEBM
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Figure S6. Ratio of HadCM3 (Figure 3) to TransEBM (Figure S5) local mean spectra (PSD) of

naturally forced surface air temperature. LGM⋆ / LGM⋆ and PI⋆ / PI⋆ denote the ratios obtained

from dividing the local mean spectrum of the naturally forced HadCM3 temperature by the one

obtained from TransEBM with fixed sea ice. For the ratios of LGM⋆ / LGM⋆ (SID) and PI⋆

/ PI⋆ (SID), time-varying sea ice dynamics in TransEBM was prescribed using the HadCM3

output. Hence, forming the ratio largely removes the linear response to naturally forcing and, for

(SID), the contribution to variability from sea ice. The ratios therefore indicate the timescale-

dependency of local variance simulated by HadCM3 that can be mainly attributed to internal

dynamics excluding (solid lines) and including (dotted lines) sea ice dynamics. Shaded confidence

intervals are computed from the F-distribution, based on the degrees of freedom of the spectral

estimates.
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Figure S7. Superposed epoch analysis (see e.g., Sear et al. (1987); Brad Adams et al. (2003))

of globally averaged surface temperature (GMST, a), precipitation rate (GMPR, b), and sea

ice concentration (GMICE, c) as simulated by HadCM3 using the reconstructed 1257 Samalas

eruption. The lines represent the average value over all simulations in the LGM* and PI* state,

and the shaded areas their respective ranges. The volcanic forcing from the Samalas eruption is

shown in black. Anomalies are calculated against the three-year period before the eruption using

the deseasonalized, detrended HadCM3 model output.
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Figure S8. a Power spectral density (PSD) of the Atlantic Meridional Overturning Circu-

lation (AMOC) strength from control and forced LGM and PI simulations using HadCM3. b

Correlation length, defined as the lag at which the autocorrelation function first drops below 1/e

and its standard error. Following Danabasoglu et al. (2012), we compute the AMOC strength

as the maximum of the meridional ocean velocity field between 450 m and 2100 m depth and

20◦N to 62.5◦N at every timestep. Accordingly, the AMOC strength is given in Sv = 106 m3 s−1.

The correlation length is an average of 3000 randomly sampled 100 year time slices of each state

(1000 slices per run).
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Figure S9. Temperature spectra from observations and proxy records (orange), and from

HadCM3 simulations (grey) for the Pre-Industrial state, used for variance ratio estimates (Figure

4 of the main manuscript). The x-axis labels and background of each panel highlights the period

(2-5 and 5-50 years) considered for timescale-dependent variance estimates. The y-axis denotes

the power spectral density. Solid and dashed lines indicate forced and unforced runs. The title

denotes the IDs from the separately uploaded dataset S1.
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Figure S10. Same as Figure S9 but for multidecadal (50-200 years) and multicentennial (200-

500 years) timescales. HadCM3 simulations under Last Glacial boundary conditions are shown

in magenta.
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Table S1. Boundary conditions of the HadCM3 simulation ensemble. Orbital parameters

are internally calculated following (Berger, 1978) and Orography is taken from Singarayer and

Valdes (2010) for 21 ka BP and 1850 CE. Greenhouse gas concentrations are taken from the

protocols of the PMIP3 21ka and PI experiments (Schmidt et al., 2012). Vegetation is modeled

with a 30-year timestep (Cox, 2001). Forced runs are driven by time-varying volcanic and solar

(volc + sol) forcing as described in Table S2.

State Orography, Orb. Param. CO2, CH4, N2O Forcing #Runs

Last Glacial Maximum (LGM) 21 ka BP 185ppm, 350ppb, 200ppb – 3

Forced LGM (LGM*) 21 ka BP 185ppm, 350ppb, 200ppb volc + sol 3

Pre-Industrial (PI) 1850 CE 280ppm, 650ppb, 270ppb – 3

Forced PI (PI*) 1850 CE 280ppm, 650ppb, 270ppb volc + sol 3
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ABSTRACT

Earth’s temperature variability can be partitioned into internal and externally forced components. Yet, underlying mechanisms and their rel-
ative contributions remain insufficiently understood, especially on decadal to centennial timescales. Important reasons for this are difficulties
in isolating internal and externally forced variability. Here, we provide a physically motivated emulation of global mean surface temperature
(GMST) variability, which allows for the separation of internal and external variations. To this end, we introduce the “ClimBayes” software
package, which infers climate parameters from a stochastic energy balance model (EBM) with a Bayesian approach. We apply our method to
GMST data from temperature observations and 20 last millennium simulations from climate models of intermediate to high complexity. This
yields the best estimates of the EBM’s forced and forced + internal response, which we refer to as emulated variability. The timescale-dependent
variance is obtained from spectral analysis. In particular, we contrast the emulated forced and forced + internal variance on interannual to
centennial timescales with that of the GMST target. Our findings show that a stochastic EBM closely approximates the power spectrum and
timescale-dependent variance of GMST as simulated by modern climate models. Small deviations at interannual timescales can be attributed
to the simplified representation of internal variability and, in particular, the absence of (pseudo-)oscillatory modes in the stochastic EBM.
Altogether, we demonstrate the potential of combining Bayesian inference with conceptual climate models to emulate statistics of climate
variables across timescales.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0106123

Understanding the statistical properties and sources of the
Earth’s surface temperature variations is of great importance
in climate science. To this end, we analyze the variability of
global mean surface temperature (GMST) with a simple stochas-
tic energy balance model (EBM). With Bayesian methods and
spectral analysis, we separate internally generated and externally
forced contributions to GMST variations on different timescales
in state-of-the-art climate model simulations. Our results show
that a stochastic EBM can emulate the variability of more

complex climate models. The combined use of Bayesian inference
and conceptual climate models, therefore, provides a versatile
tool to advance the understanding of the internal and forced
variability in the Earth’s dynamical system.

I. INTRODUCTION

Climate variability describes the spatial and temporal variations
in the mean and higher order statistics of climate parameters and
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is of vital importance for living conditions on the Earth.1 While
many sources of natural variability exist, anthropogenic influences
clearly dominate the recent trend in global mean surface tempera-
ture (GMST). To characterize variability, it is typically partitioned
into internal and external components. Internal variability arises
from intrinsic climate system processes such as oceanic and atmo-
spheric circulation. External sources include changes in radiative
forcing, for example, from solar irradiance, volcanic eruptions, and
greenhouse gases. Despite a general agreement of the total simu-
lated and observed GMST variability over the Common Era (0–2000
CE),2,3 uncertainties remain about the mechanisms and magni-
tude of internal and external variations,4–6 especially on decadal to
centennial timescales.3,7

Simple mathematical models help understand climate
variability8–10 and can be used to emulate climate variables from
more complex model simulations. Most general, the time evo-
lution of a forced climate parameter X(t) is described by Ẋ(t)
= A (t, X(t), F(t)) for an arbitrary operator A and external driver
F(t). We consider X as the GMST, for which many studies have
formulated physically motivated approximations of A . One piv-
otal approach is centered around the idea of balancing incoming
and outgoing radiations,8,9 later extended to a stochastic energy bal-
ance model (EBM) by Hasselmann.10 This approach assumes the
climate system close to equilibrium, showing a linear and station-
ary response to perturbations. Then, A can be approximated by a
linear stochastic operator8,9

C
d

dt
T(t) = −λ̃T(t) + F(t) + ε(t). (1)

Formula (1) describes the GMST anomaly T(t) with respect
to the equilibrium state, given the Earth’s effective heat capacity
C, a radiative forcing anomaly F(t), and a term ε(t), represent-
ing stochastic dynamics such as weather fluctuations. The response

parameter λ:=λ̃/C is the reciprocal of the characteristic timescale
1/λ. The response to radiative forcing F(t) determines forced tem-
perature variations. The response to the stochastic term ε(t) approx-
imates internal variability.

The stochastic EBM (1) is too simplistic to accurately rep-
resent long-term responses and, therefore, has been extended to
the so-called multibox EBMs.11–15 The latter are based on multiple
ocean layers, referred to as boxes. The layers serve to approx-
imate the vertical heat transfer and the integrated response to
forcing over long periods. The EBM (1) laid the basis for attribut-
ing anthropogenic warming.16,17 It was applied and modified to
study climate sensitivity,14,18–20 climate and ice cap stability,21–24

regional temperatures,25–27 glacial/interglacial cycles,22,28 and future
projections.29,30 Key advantages of EBMs are their computational
efficiency and comparatively easy interpretation.

To estimate uncertain parameters of conceptual climate mod-
els from data, Bayesian frameworks have become increasingly
popular.31–35 In comparison to other methods for inferring cli-
mate parameters, such as maximum likelihood estimation, Bayesian
approaches have the advantage of providing full posterior distri-
butions. The methods compute the posterior means and credible
intervals (CIs) of uncertain parameters θ conditioned on target data
y while including prior knowledge on θ . Central to this framework

is applying the Bayes theorem

p(θ |y) =
p(y|θ)p(θ)

p(y)
, (2)

with likelihood p(y|θ), prior p(θ), marginal p(y), and posterior
p(θ |y). We denote all probability densities by p and distinguish them
by their arguments. Combining Bayesian inference with conceptual
climate models typically also yields the posterior of the model’s fit to
the data.

With the ability to quantify fluctuations across timescales,
power spectral analysis has improved the understanding of cli-
mate variability.3,36–39 Simple climate models have been combined
with spectral analysis to explain timescale-dependent variability. For
example, Fredriksen and Rypdal15 use a multibox EBM to study
temporal scaling of temperature time series. Related works exam-
ine future projections29 and climate sensitivity.40 Soldatenko and
Colman41 study the sensitivity of the power spectrum on uncer-
tainties in the parameters of a two-box EBM, considering stochastic
noise but neglecting deterministic forcing. Yet, the potential of com-
bining stochastic multibox EBMs, Bayesian inference and spectral
analysis to study the magnitude of unforced and forced variability
across timescales remains untapped.

Here, we examine and separate timescale-dependent internal
and externally forced contributions to the GMST variations. In par-
ticular, we analyze GMST variability during the last millennium
(850–1850 CE) as simulated by 20 climate models of intermediate
to high complexity. To this end, we combine a stochastic two-box
EBM (Sec. III A) with Bayesian inference (Sec. III B) and spectral
analysis (Sec. III C). We present the “ClimBayes” software package42

for Bayesian inference of climate parameters, which fits the stochas-
tic EBM to GMST data. This results in the best estimate of the forced
and samples of the forced + internal EBM’s temperature response.
First, we demonstrate our analysis on the example of historical
observations (Sec. IV A) and then apply it to the considered set
of last millennium simulations (Sec. IV B). Section IV C contrasts
power spectra of the fitted EBM with and without internal varia-
tions. Comparing the internal and forced variance on interannual to
centennial timescales (Sec. IV D), a stochastic two-box EBM cap-
tures most variations of more comprehensive model simulations.
We summarize and discuss the potential for physics-informed emu-
lation of GMST data and separation of variance contributions across
timescales in Secs. V and VI.

II. DATA

Our study relies on annual GMST and corresponding radia-
tive forcing time series. We use full-forced last millennium runs
from climate models of varying complexity (Table I). We analyze
10 simulations with atmosphere-ocean general circulation mod-
els (AOGCMs), considered in the Coupled Model Intercomparison
Project 5 (CMIP5).43 Moreover, we use 10 simulations with Earth
system models of intermediate complexity (EMICs) that are part
of the IPCC’s Fifth Assessment Report (AR5)44 and described by
Eby et al.45 The AR5 EMICs represent single simulations, except for
CLIMBER2 and LOVECLIM V.1.2, which are ensemble means and
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TABLE I. Key forcing specifications and references of considered climate model sim-

ulations. The “Forcing” column gives the abbreviations from the PMIP3 protocol,46

corresponding to the implemented land use, solar, and volcanic forcing reconstruc-

tions. The land use reconstruction PEA is taken from Pongratz et al.49 Solar forcing

reconstructions correspond to DB: Delaygue and Bard,53 VSK: Krivova, Balmaceda,

and Solanki,54 Vieira and Solanki,55 and SBF: Steinhilber, Beer, and Fröhlich.51 They

are calibrated to WLS modern values (1366.14W/m2) and continued by Wang, Lean,

and Sheeley.52Volcanic forcing refers to CEA: Crowley et al.50 andGRA: Gao, Robock,

and Ammann.56 Trace gases are prescribed in all simulations and follow the PMIP3

protocol.46

Climate model Forcing Reference

AR5 EMICs
Bern 3D PEA, DB, CEA 57
CLIMBER-3alpha PEA, DB, CEA 58
CLIMBER2 PEA, DB, CEA 59
DCESS ESM v1 PEA, DB, CEA 60
IGSM 2.2 PEA, DB, CEA 61
LOVECLIM V.1.2 PEA, DB, CEA 62
MESMO 1.0 PEA, DB, CEA 63
MIROC3-lite PEA, DB, CEA 47
UMD PEA, DB, CEA 64
UVic v2.9 PEA, DB, CEA 65

CMIP5 models
BBC-CSM1-1 –, VSK, GRA 66
CCSM4 PEA, VSK, GRA 67
CSIRO-Mk3L-1-2 –, SBF, CEA 68
FGOALS-s2 –, VSK, GRA 69
GISS-E2-R PEA, SBF, CEA 70
HadCM3 PEA, SBF, CEA 71
HadGEM2-ES PEA, SBF, CEA 72
IPSL-CM5A-LR –, VSK, GRA 73 and 74
MIROC-ESM –, DB, CEA 75
MPI-ESM-P PEA, VSK, CEA 76 and 77

denoted by “(mean)” in the following. To compare variability in sin-
gle ensemble members to that of the ensemble mean, we use the five
available ensemble members LOVECLIM V.1.2 (E1–E5).

The transient radiative forcing applied to these simulations fol-
lows the Paleoclimate Modelling Intercomparison Project Phase III
(PMIP3) protocol.46 For AR5 EMICs, we take the total estimated
radiative forcing provided by Eby et al.45 For CMIP5 simulations, we
use the radiative forcing from reconstructions of well-mixed green-
house gases (CO2, CH4, and N2O), volcanic aerosols, total solar
irradiance, and land use changes as provided by Schmidt et al.46 We
neglect orbital forcing, which is assumed to play a negligible role
for GMST variability over the last millennium. To remove potential
unforced drifts of the simulated background climate,47 the simu-
lated GMST is linearly detrended prior to analysis. For consistency,
detrending is also applied to the corresponding forcing time series.
This does not affect our results, as the simulations’ forcing input
exhibits no trend for the last millennium (850–1850 CE). Both tem-
perature and forcing time series are considered as anomalies with
respect to the starting year.

We use the GMST from HadCRUT548 observations (1850–
2000 CE) to demonstrate the developed workflow of our Bayesian
stochastic energy balance framework. As estimates for radiative
forcing during the historical period, we consider the “PEA” land
use (Pongratz et al.49), “CEA” volcanic forcing (Crowley et al.50),
“SBF” solar irradiance reconstruction (Steinhilber et al.51) patched
into Wang et al.,52 and greenhouse gas concentrations from Schmidt
et al.46

III. METHODS

Our analysis combines stochastic multibox EBMs, Bayesian
inference, and spectral analysis. We introduce the approach imple-
mented in “ClimBayes”42 for the most generic case of a stochastic
EBM with N boxes in Sec. III A. All results are obtained from the
special case N = 2.

A. Stochastic two-box energy balance model (EBM)

The stochastic multibox EBM13,15,29 extends the one-
dimensional linear operator from Eq. (1) by multiple vertical layers,
approximating the heat exchange between surface and deep ocean
layers. In matrix notation, the model reads15

C
dT

dt
(t) = KT(t) + F(t) + ε(t). (3)

For N boxes, T(t) is an N-dimensional vector, describing the temper-
ature of each box. By convention, T1 corresponds to the temperature
of the uppermost and TN to the temperature of the lowermost box.
Accordingly, C is a diagonal matrix with the effective heat capac-
ity Cii of each layer (i = 1, . . . , N). K is a N-dimensional tridiagonal
matrix, parameterizing the surface temperature response and verti-
cal heat transfer (Appendix A). The time-dependent radiative forc-
ing F(t) is only applied to the uppermost box, such that F1 = F(t)
and Fk = 0 for k = 2, . . . , N. The stochastic forcing ε(t) is likewise
implemented with non-zero entry ε1(t) = σWξ(t). We motivate the
white noise process ξ(t) with standard deviation (SD) σW by the
found impact of weather fluctuations.10,14,78

Integrating Eq. (3) yields the solution of the surface tempera-
ture T1(t), given by a sum of the forced response T1,F(t) and internal
variations T1,I(t),

T1(t) = T1,F(t) + T1,I(t)

=
∫ t

−∞
R(t − s)

1

C1

F(s) ds +
∫ t

−∞
R(t − s)

σW

C1

dW(s), (4)

where C1 = C11 is the heat capacity of the uppermost box. This
assumes no interaction between forced and internal variability on
a global scale. The response function

R(t) =
N

∑

k=1

wk e−λkt (5)

is uniquely defined13,15 by the response parameters λk and weights

wk (k = 1, . . . , N) with
∑N

k=1 wk = 1, which depend on the entries of
C and K (Appendix A). The internal fluctuations T1,I(t) in formula
(4) represent an Itô-integral over the Wiener process W(s). There-
fore, T1,I(t) can be written as a weighted sum of Ornstein–Uhlenbeck
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(OU) processes, where the kth OU process solves the stochastic
differential equation dU(t) = −λkU(t) dt + σW

C1
dW(t) and receives

weight wk. Accordingly, T1,I(t) is normally distributed with mean
zero. Its covariance matrix is determined by σW, C1, wk, and λk

(Appendix B).

B. Bayesian inference algorithm

1. Joint emulation of forced and internal variations

To separate the internal and forced contributions to the GMST
variance, we introduce the Bayesian inference algorithm imple-
mented in “ClimBayes.” We fit the linear stochastic two-box EBM to
GMST data (Table I), as illustrated in Fig. 1. The Bayesian inference
algorithm relies on annually resolved temperature and forcing time
series as input data. Moreover, it requires physics-informed prior
information on θ = (λ1, λ2, w1, C1, T0, F0). The parameters λ1, λ2,
and w1 correspond to free parameters of the response function in
Eq. (5). C1 is the heat capacity of the upper ocean box. T0 and F0 are
initial free parameters. T0 allows for small deviations of the EBM
solution to the input data in the starting year and is expected to
be close to zero. Similarly, the additional parameter F0 is needed
to compensate for an initial forcing anomaly with respect to the
equilibrium state.

We infer the posterior distributions of the uncertain parame-
ters θ conditioned on target data y via Bayes theorem (2), using a
Markov chain Monte Carlo (MCMC) algorithm. To this end, we
assume that the target data can be described by a deterministic
model 8F and stochastic measurement or intrinsic noise Z that is
also allowed to depend on θ ,

y = 8F(θ) + Z(θ). (6)

Formula (6) yields the likelihood p(y|θ). Combined with prior infor-
mation p(θ), Bayes theorem (2) defines the posterior distribution
p(θ |y). In our case, the deterministic model 8F(θ) is given by a dis-
cretization of the temperature responses T1,F(t). The noise term Z(θ)

corresponds to the internal fluctuations T1,I(t).
This approach provides a joint estimate of the internal and

externally forced response, based on the same physics-informed
response function and parameters. The best estimates of θ and
the forced response T1,F(t) are defined as their posterior means
E[θ |y] and E[8F(θ)|y]. The SD σI of the internal variability Z(θ)

determines σW (Appendix B) and is approximated by the resid-
uals’ SD, that is, the difference between the target data and the
forced response. Samples of the internal variations T1,I(t) can be
drawn from its covariance matrix, using the best estimates of θ

(Appendix B). The forced + internal variations T1,F(t) + T1,I(t) rep-
resent the full response of the stochastic two-box EBM and, thus,
provide a model for the target variability. To streamline our dis-
cussion, we will refer to the modeled forced and forced + internal
response as emulation.

2. Numerical implementation

The “ClimBayes” package provides the numerical implemen-
tation of our approach (Fig. 1) and allows for straightforward
adjustments via a configuration file. Most importantly, this includes
specifications of the number of boxes, prior distributions, MCMC

FIG. 1. Workflow of our Bayesian inference algorithm to emulate forced and inter-
nal GMST fluctuations. (a) The workflow builds on a linear stochastic two-box
EBM, here in matrix notation. The solution for the surface temperature T1(t) is
given by an integral with exponential response function R(t). (b) Required input
data include annually resolved GMST and time-dependent forcing, as well as
physics-informed prior information p(θ) on uncertain parameters θ . (c) We infer
the parameters of the two-box EBM using a Markov chain Monte Carlo (MCMC)
algorithm and Bayes theorem, assuming that the target GMST can be described
as a deterministic model 8F(θ) and stochastic noise Z(θ). (d) The workflow
yields posterior distributions p(θ |y) of uncertain parameters conditioned on tem-
perature data y and a physically motivated emulation of the forced and internal
variations.

sampling properties, and fixed parameters. We choose N = 2 boxes
(Appendix C) in line with Held et al.12 and Geoffroy et al.13 Our
experiments use independent prior distributions. We choose beta
distributions with shape parameters α = β = 2 for the marginal
priors of λ1, λ2, as well as the initial parameters T0 and F0. This
allows for a physics-informed, fixed parameter range, where the
mean is preferred over boundary values. The algorithm’s conver-
gence is improved compared to uniform priors. The intervals for
the response parameters λ1 : (0.2, 2) yr−1 and λ2 : (0.005, 0.2) yr−1

are similar to those from Fredriksen and Rypdal.15 Tailored to our
goal to emulate interannual to centennial variability from last mil-
lennium simulations, our choice of priors assumes characteristic
response times 1/λk smaller than 200 years. These response times
implicitly set a characteristic depth scale for the two ocean boxes of
our stochastic EBM.

The prior of C1 : (4, 11) W yr m−2 K−1 follows previous
findings.13,15,79 Initial values T0 : (−0.5, 0.5) K and F0 : (−2, 2) W m−2

are centered around zero. The weight w1 : (0, 1) has an uniform
prior. We consider no measurement noise, which is inherently
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fulfilled for simulated GMST. For observed GMST, we assume mea-
surement errors to be small compared to internal fluctuations.48 We
verified that our findings are robust against reasonable variations of
the MCMC and prior specifications.

To obtain the best parameter estimates, “ClimBayes” uses a
Metropolis Hastings (MH) algorithm from the family of MCMC
methods. To this end, we discretize the forward operator and com-
pute annual temperature anomalies relative to the starting point
t = 0 by a midpoint rule29

T1,F(tm) = T0 +
1

C1

N
∑

k=1

wk

m
∑

j=1

e−(m−j+1/2)λk (F(tj) + F0). (7)

Here, the time step tj corresponds to the jth year, and F(tj) are forc-
ing anomalies with respect to the starting point t = 0. F0 represents
an initial forcing anomaly. Discretizing T1,I leads to a normally dis-
tributed weighted sum of AR(1)-processes with covariance matrix
entries depending on λk and wk (Appendix B). The likelihood p(y|θ)

is given by the normal distribution of T1,F(t) + T1,I(t). This requires
the calculation of the covariance matrix for each sample in the
Markov chain. For numerical robustness and computational effi-
ciency, however, we approximate the likelihood function using an
iterative scheme (Appendix B).

The MCMC algorithm uses four chains with 25 000 sam-
ples each, from which the first 5000 are discarded as burn-in.
The proposal distribution is initially set to a normal distribu-
tion with mean zero and variances (0.2, 2, 1, 10, 1, 2) × 10−5 for θ

= (λ1, λ2, w1, C1, T0, F0). After 2500 samples, the proposals are dis-
tributed according to the weighted sum of the initial normal pro-
posal distribution and the empirical covariance matrix of previous
samples.

We check the convergence of the Markov chains following
two performance measures: First, the Gelman–Rubin diagnostics80,81

compares the inter-chain and between-chain variances. It is ≤ 1.1
for most models, complying to recommendations.82,83 Second, we
use the Monte Carlo standard error,84 which constructs an asymp-
totic confidence interval for the posterior mean.84,85 In our experi-
ments, the half-width of this interval is smaller than 5% of the prior
mean. We found that this criterion guarantees robustness of the
parameter estimates when the same run is repeated multiple times
or additional samples are added. DCESS ESM v1 is the only outlier,
showing a tendency for bimodal posterior densities which lead to
less stable estimates with wide CIs. However, we confirmed that con-
vergence can be achieved by fixing the heat capacity to the estimated
parameter.

C. Spectral analysis and variance ratios

Given a temperature time series T(t), the power spectral density
(PSD) at frequency f corresponds to the Fourier transform of the
autocovariance

S(f) =
∫ ∞

−∞
e−2π ifk E

[

(T(t) − µ)
(

T(t + k) − µ
)]

dk, (8)

with lag k = t2 − t1 and mean µ := E[T(t)]. This assumes X(t) to be
weakly stationary, which is reasonably fulfilled after linear detrend-
ing the GMST data. Following Ellerhoff and Rehfeld,3 we use the

multitaper method with three windows to compute the PSD and
χ 2-distributed uncertainties. Mean spectra are obtained after inter-
polation to the lowest resolution and binning into equally spaced
log-frequency intervals.86 The spectra are visualized over periods
τ = 1/f and logarithmically smoothed using a Gaussian kernel of
0.04 dB.

We compare the PSD for three types of time series: (1) the tar-
get temperature data from historical observations or climate model
simulations, AR5 EMIC and CMIP5 models, (2) the emulated forced
variations T1,F(t), and (3) the emulated forced + internal tempera-
ture variations T1,F(t) + T1,I(t) from the stochastic two-box EBM.
To compute the forced + internal PSD, we first sample 1000 real-
izations of the internal response T1,I(t). We add these to T1,F(t) and
compute the PSD for all samples. Mean spectra and 95% confidence
bands are obtained from this ensemble.

Variance ratios are calculated by dividing the emulated by the
target variance. Following Parseval’s theorem, we determine the
timescale-dependent variance by integrating the PSD over frequen-
cies. We consider frequency bands corresponding to interannual
(2–5 yr), decadal (5–20 yr), multidecadal (20–50 yr), and centennial
(50–200 yr) scales.

IV. RESULTS

A. Example application to historical observations

We demonstrate the application of the Bayesian inference
algorithm and our spectral analysis on the example of GMST obser-
vations from HadCRUT5.48 Figure 2(a) shows the forcing and tem-
perature time series together with the best estimate of the forced
response T1,F(t). The forced response follows the global warming
trend and shows cooling periods after volcanic eruptions. Credi-
ble intervals (CIs) capture the uncertainties of the forced response,
but not those due to internal variability. As a result, observations
partly lie outside CIs. Uncertainties of the two-box forced response
are largest at the time series’ start.

Figure 2(b) shows marginal prior and posterior distri-
butions for the free parameters of the stochastic two-box
EBM. The response parameters λ1 = 1.31 (0.71, 1.86) yr−1 and λ2

= 0.09 (0.03, 0.16) yr−1 (Table III) correspond to timescales of
approximately 10 months and 10 years. The corresponding heat
capacity C1 of the upper ocean layer is 8.20 (5.68, 10.43) W yr m−2

K−1. The initial values T0 and F0 are well constrained and close to
zero. The weight w1 = 0.72 (0.46, 0.90) tends to emphasize the fast
response.

The power spectral density [Fig. 2(c)] of the forced response
alone is smaller than that of the target temperature. Conversely, the
magnitude of the emulated forced + internal PSD agrees with the
target PSD within uncertainties, except for the interannual scale.
While the emulated PSD constantly increases from interannual to
multidecadal scales, HadCRUT5 shows a modulation with increased
power on periods of two to ten years, which is not captured by the
emulated response.

Figure 2(d) compares the variance on interannual to mul-
tidecadal timescales. The variance ratios are formed by dividing
the emulated forced or forced + internal variance by the variance
obtained from the HadCRUT5 target. The forced variance is smaller
than the target variance on all timescales. Incorporating internal
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FIG. 2. Example application of our developed approach to historical GMST observations from HadCRUT5. (a) Target data y, forcing F(t) (taken from Schmidt et al.,46

Pongratz et al.,49 Crowley et al.,50 Steinhilber et al.,51 Wang et al.52), and the best estimate of the forced response T1,F(t), that is the posterior mean E[8F(θ)|y]. Shaded
areas correspond to 95% CIs of T1,F(t). (b) Marginal prior and posterior densities for uncertain parameters θ . (c) PSD of the GMST observations, the forced response (both
with χ 2-distributed confidence bands) and the sampled forced + internal variations. The sampled forced + internal PSD represents the mean and 95% confidence bands
obtained from an ensemble of T1,F(t) + T1,I(t) using 1000 realizations of T1,I(t). (d) Ratios of the emulated to observed GMST variance, computed by integration of the
PSD on the multidecadal (20–100 yr), decadal (5–20 yr), and interannual (2–5 yr) scales. Uncertainties (95% CI) are calculated from a F-distribution based on the degrees
of freedom of the variance estimate.

variability reduces this mismatch strongly, yet, is not enough to
capture all fluctuations on interannual and multidecadal scales. On
decadal scales, the emulated forced + internal variability agrees well
with the observations.

B. Parameters estimated from last millennium

simulations

We use Bayesian inference to fit the stochastic two-box EBM to
GMST simulations from CMIP5 models and AR5 EMICs (Sec. II).
Table II shows the best estimates that are the posterior means and
95% CIs of θ = (λ1, λ2, w1, C1, T0, F0) as well as the SD σI of the
internal variability T1,I(t). Across all simulations, the short-term
response parameter λ1 varies between 1.91 and 0.31 yr−1, spanning
the full prior range between 6 months and 5 years. The long-term

response λ2 varies between 0.19 and 0.01 yr−1, corresponding to
characteristic timescales of approximately 5–100 years.

Differences between AR5 EMICs and CMIP5 models are most
pronounced for λ1. CMIP5 simulations exhibit larger CIs and inter-
model differences, while AR5 EMICs show similar λ1, except for
CLIMBER 2 (mean) and LOVECLIM (E1 and mean). The weight
w1 > 0.5 is typically larger than w2 = 1 − w1, emphasizing the rela-
tive importance of the fast compared to the slow response. w1 often is
closer to unity for AR5 EMICs than for CMIP5 models. CLIMBER2
(mean) shows exceptionally large λ1 and small w1. The heat capac-
ity C1 varies from 4.7 to 10.96 W yr m−1 K−1. It spans the full prior
range for both AR5 EMICs as well as CMIP5 models and shows no
strong dependence on other parameters. The initial temperature T0

is well constrained and close to zero. Inter-model differences are also
large for F0 and linked to varying temperature amplitudes at the
beginning of the time series with respect to the mean (Fig. 7). The
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TABLE II. Posterior means and 95% CIs of uncertain parameters θ for the stochastic two-box EBM fitted to GMST from climate model simulations. The SD σ I of the internal

variability equals the residual of the forced response (Appendix B) and is, therefore, given without CIs. Ensemble means are denoted by “(mean).” We exemplary show the

LOVECLIM ensemble member “E1” as there are no major differences across the ensemble. Models with GRA56 volcanic forcing are marked with an asterisk (*), all others use

the CEA reconstruction50 (Table I). The weight w2 = 1−w1 (not shown) is uniquely defined by w1.

Climate
model λ1 (yr−1) λ2 (yr−1) w1 (unitless) C1 (W yr m−2 K−1) T0 (K) F0 (Wm−2) σ I (K)

AR5 EMICs
Bern 3D 0.74 (0.62,0.81) 0.08 (0.06,0.15) 0.91 (0.88,0.95) 4.76 (4.54, 5.43) −0.09 (−0.50,0.04) 0.18 (−0.15, 1.48) 0.02

CLIMBER-
3alpha 0.76 (0.72,0.80) 0.06 (0.05,0.07) 0.91 (0.90,0.93) 6.18 (5.99, 6.35) −0.02 (−0.05,0.02) −0.04 (−0.13, 0.04) 0.01

CLIMBER2
(mean) 1.43 (0.25,1.97) 0.19 (0.17,0.20) 0.05 (0.00,0.19) 10.96 (10.89,11.00) 0.01 (−0.11,0.13) −0.19 (−0.45, 0.07) 0.05

DCESS ESM
v1 0.31 (0.21,1.18) 0.08 (0.03,0.18) 0.64 (0.00,0.92) 10.25 (9.95,10.52) 0.02 (−0.05,0.08) −0.18 (−0.27,−0.05) 0.03

IGSM 2.2 0.64 (0.57,0.73) 0.10 (0.07,0.15) 0.89 (0.82,0.93) 6.68 (6.38, 6.98) 0.01 (−0.08,0.11) −0.10 (−0.36, 0.15) 0.03

LOVECLIM
(E1) 1.32 (0.99,1.69) 0.13 (0.07,0.18) 0.90 (0.85,0.94) 6.03 (4.95,7.29) −0.01 (−0.22,0.19) 0.28 (−0.58,1.21) 0.09

LOVECLIM
(mean) 1.12 (0.93,1.34) 0.14 (0.09,0.19) 0.88 (0.84,0.92) 6.74 (6.06,7.42) 0.04 (−0.08,0.16) −0.50 (−1.03,0.01) 0.04

MESMO 1.0 0.52 (0.49,0.56) 0.03 (0.02,0.04) 0.90 (0.88,0.92) 7.96 (7.72, 8.19) 0.02 (−0.03,0.06) −0.32 (−0.39,−0.24) 0.02

MIROC-lite 0.44 (0.41,0.47) 0.02 (0.01,0.04) 0.96 (0.94,0.97) 6.75 (6.56, 6.96) 0.01 (−0.05,0.08) −0.34 (−0.49,−0.25) 0.03

UMD 0.72 (0.68,0.77) 0.01 (0.01,0.01) 0.99 (0.99,0.99) 8.81 (8.46, 9.15) 0.00 (−0.04,0.02) −0.09 (−0.21, 0.08) 0.02

UVic v2.9 0.45 (0.41,0.51) 0.05 (0.03,0.08) 0.88 (0.81,0.93) 10.88 (10.68,10.98) −0.01 (−0.06,0.05) −0.05 (−0.19, 0.09) 0.02

CMIP5 models
BCC-
CSM1-1* 1.91 (1.76,1.99) 0.06 (0.04,0.10) 0.94 (0.91,0.96) 10.49 (9.78,10.92) −0.05 (−0.13,0.06) 1.31 (0.53, 1.87) 0.10

CCSM4* 1.62 (1.27,1.90) 0.12 (0.08,0.16) 0.88 (0.83,0.92) 4.70 (4.12, 5.60) −0.06 (−0.34,0.18) 0.17 (−0.60, 1.05) 0.14

CSIRO-
Mk2L-1-2 0.48 (0.29,1.12) 0.15 (0.07,0.19) 0.65 (0.31,0.96) 10.49 (9.78,10.92) 0.02 (−0.17,0.21) −0.23 (−0.76, 0.30) 0.08

FGOALS-s2* 1.49 (1.13,1.88) 0.03 (0.01,0.10) 0.94 (0.89,0.97) 8.41 (6.71,10.38) −0.05 (−0.20,0.11) −0.58 (−1.42,−0.06) 0.14

GISS-E2-R 0.56 (0.50,0.65) 0.03 (0.01,0.15) 0.99 (0.96,1.00) 6.53 (5.94, 7.07) 0.12 (−0.43,0.32) −1.19 (−1.77, 0.48) 0.09

HadCM3 0.49 (0.34,0.73) 0.13 (0.05,0.19) 0.76 (0.52,0.96) 7.99 (7.15, 8.86) −0.06 (−0.31,0.20) 0.89 (0.27, 1.48) 0.12

HadGEM2-ES 0.64 (0.39,1.28) 0.14 (0.05,0.19) 0.74 (0.53,0.95) 7.79 (6.52, 8.81) −0.06 (−0.30,0.19) 0.97 (0.36, 1.58) 0.12

IPSL-
CM5A-LR* 1.69 (1.36,1.95) 0.09 (0.06,0.14) 0.85 (0.78,0.91) 9.49 (7.89,10.73) −0.16 (−0.34,0.00) −0.99 (−1.77,−0.14) 0.15

MIROC-
ESM 1.49 (1.04,1.90) 0.14 (0.09,0.19) 0.71 (0.60,0.81) 9.62 (8.01,10.78) −0.02 (−0.25,0.22) 0.10 (−0.83, 1.03) 0.11

MPI-ESM-P 0.66 (0.45,0.97) 0.14 (0.07,0.19) 0.77 (0.61,0.93) 6.11 (5.42, 6.80) 0.04 (−0.22,0.29) −0.57 (−1.15,−0.01) 0.11

SD σI of the internal variability from CMIP5 models lies between
0.09 and 0.15 K and is larger than for AR5 EMICs (0.01–0.09 K).

C. Emulation of power spectral density

Figure 3 compares the target PSD to the emulated forced and
forced + internal PSD. For most simulations, the emulated forced
+ internal PSD agrees with the target within uncertainties. AR5

EMICs show no major differences between forced and forced + inter-
nal PSD above decadal scales, except for the LOVECLIM ensemble
members. Hence, the forced response is sufficient to emulate the
long-term variability of most AR5 EMIC simulations. On interan-
nual scales, considering internal variability in the emulation com-
pensates for the mismatch between the forced and target PSD. Dif-
ferences between emulated and target PSD are most pronounced for
CLIMBER2 (mean), showing an overestimation on multidecadal to
centennial scales by the emulation.
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FIG. 3. Target and emulated forced and forced + internal power spectral density (PSD) and 95% confidence bands for AR5 EMICs [top: (a)–(k)] and CMIP5 models [bottom:
(l)–(u)], as Fig. 1(c). Shaded intervals highlight examples of overestimation (pink) and underestimation (green) of the emulated PSD compared to the target, which are
discussed in the main text. We show the PSD for LOVECLIM V.1.2 (mean) and the first ensemble member LOVECLIM V.1.2 (E1), as there are no major differences across
ensemble members.

For CMIP5 simulations, the emulated forced PSD underes-
timates the target PSD on all timescales. Conversely, the forced
+ internal variability matches the target well for almost all mod-
els. Minor differences are found on interannual scales [Figs. 3(l)
and 3(q)–3(u)]. Here, the target PSD of MPI-ESM-P and HadCM3
exhibit increased power on periods of 2–8 years. CCSM4, FGOALS-
s2, and IPSL-CM5A-LR overestimate the PSD on the shortest
timescales of approximately 2 years. The emulated forced + inter-
nal PSD for BCC-CSM1-1 deviates from that of the target by
showing increased power on interannual and decreased power on
multidecadal to centennial scales.

D. Separating internal and externally forced variance

Figure 4 shows the mean and spread of variance ratios on
interannual to centennial scales for the considered model types.
Variance ratios smaller than one indicate less emulated forced
or forced+internal than target variance. We add a comparison of

the variance from the five LOVECLIM V.1.2 ensemble members
(E1–E5) [Fig. 4(b)] to that of the remaining AR5 EMICs [Fig. 4(a)]
and CMIP5 models [Fig. 4(c)]. Here, AR5 EMICs explicitly include
the LOVECLIM ensemble mean, but not its members. For all model
types, the relative contribution of internal variability decreases with
increasing timescale, as the ratios for forced and forced + inter-
nal variance become more similar. The contribution of internal
variability is larger in LOVECLIM ensemble members and CMIP5
simulations compared to AR5 EMICs.

The emulated variance of AR5 EMICs [Fig. 4(a)] is dom-
inated by forced variations and matches the target variance on
interannual and decadal scales. On longer timescales, the emulated
variance tends to overestimate the target variance. This is mostly due
to outliers, which correspond to CLIMBER2 (mean), in line with the
overestimated PSD in Fig. 3(b). Members of the LOVECLIM V.1.2.
ensemble [Fig. 4(b)] exhibit more internal contributions to the vari-
ance on all timescales compared to AR5 EMICs. The ensemble’s
emulated forced + internal variance approximates the target well on
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FIG. 4. Ratios of the emulated forced and forced + internal to the target variance for AR5 EMICs [panel (a)], LOVECLIM ensemble members [panel (b)], and CMIP5
simulations [panel (c)] on centennial (50–200 yr), multidecadal (20–50 yr), decadal (5–20 yr), and interannual (2–5 yr) scales [as Fig. 1(d)]. Bars indicate the mean variance
ratio over the considered simulations for one model type. Circles correspond to individual simulations. Confidence bands for individual ratios (as in Fig. 2) are not shown for
better visibility.

the interannual and decadal scale. On larger timescales, we find an
overestimation of the target variance.

The mean emulated forced + internal variance of CMIP5 sim-
ulations [Fig. 4(c)] is close to one on all timescales. The relative
contribution of internal compared to forced variations is similar to
that of LOVECLIM ensemble members on interannual and decadal
timescales. However, there is a larger spread of variance ratios.
Moreover, we find a small tendency of the emulation to overes-
timate the interannual and centennial variance of CMIP5 models.
BCC-CSM1-1 represents an outlier, with the uppermost variance
ratio on the shorter and lowermost on the longer timescales, in line
with the spectral analysis [Fig. 3(l)].

V. DISCUSSION

We demonstrate the emulation of GMST variability as sim-
ulated by state-of-the-art climate models using a linear stochastic
two-box EBM and Bayesian inference. Our analysis builds on the
same, physically motivated response function for internal and exter-
nal processes and allows for consistent separation of internal and
externally forced variability. Estimates of the timescale-dependent
variance show that the relative contribution of internal variability
increases with model complexity and decreases with timescale.

Building on previous studies,29,31 the strength of our Bayesian
framework is that it yields the posterior means and CIs for the
uncertain parameters of the stochastic two-box EBM fitted to GMST
simulations. Due to our choice of priors and the convergence of the
fit, the estimated heat capacity C1 agrees by construction with previ-
ous findings.13,15,79 Our response parameters λ1 and λ2 are consistent
with results from Fredriksen and Rypdal,15 estimated from obser-
vational data. However, the estimates differ from those obtained in
4 × CO2 experiments.13,79 This is because our framework accounts
for high-frequency pulses and, thus, estimates response parameters
associated with faster dynamics. Furthermore, our findings reveal
a dependence of the estimated response parameters on the imprint
of intermittent volcanic eruptions on simulated temperatures. This

is reflected in consistently high values for w1, emphasizing the fast
feedback. The inter-model spread of λ1 in CMIP5 simulations sug-
gests a link to the implemented volcanic forcing: CMIP5 simulations
driven by a comparatively weak reconstruction (“GRA”) tend to
show higher values for λ1 compared to those driven by “CEA”
(Table I), which has greater forcing amplitudes. λ1 and w1 are par-
ticularly high for BCC-CSM1-1, indicating a fast and weak forced
response of the fitted EBM (Fig. 7). This is consistent with a weak
forced response in BCC-CSM1-1.87 The parameter estimates for
CLIMBER2 (mean) differ from the remaining AR5 EMICs. In par-
ticular, λ1 is poorly constrained, as CIs span the full prior range.
We find that the temperature response to volcanic eruptions in
CLIMBER2 (mean) is delayed. The estimated λ1 and w1 can be rec-
onciled with those of the other AR5 EMICs if the temperature data
were shifted by 1 yr. Altogether, the sensitivity of the fit to inter-
mittent volcanic forcing suggests that high-frequency forcing plays
a crucial role for simulating temperature variability across scales
correctly.

Different methods have been developed to isolate forced
and internal variations based on detrending,88 single-model
ensembles,5,89–91 and deterministic EBMs,92,93 among others. The
application of a Bayesian energy balance framework to the
timescale-dependent quantification of forced and internal variance
is novel. Our method provides a robust and joint separation of the
variations at every step in time in a statistically sound way. Using
data from the CESM Large Ensemble Community project,94 we ver-
ify the robustness of our forced response (Fig. 8). The latter agrees
well with the ensemble mean, which shows higher variability due to
remaining internal variations that have not been averaged out over
the 13 members. Hence, our method provides a robust tool to esti-
mate the forced response when large ensembles are not available.
Moreover, we find a wide agreement of the emulated forced + inter-
nal variance with that from CMIP5 simulations. The fact that the
stochastic two-box EBM mimics the temperature variations well is
in line with previous findings on a linear relation between external
forcing and GMST.3,13,15,95
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Small differences between the emulated forced+internal and
target PSD for CMIP5 models on interannual timescales can be
attributed to the simplified representation of internal variability
as a weighted sum of AR(1) processes by the stochastic EBM.
The latter cannot represent (pseudo-)oscillatory climate modes or
modulations of internal variability by external forcing,96,97 which
could result in the observed underestimation of the PSD by the
emulation on these timescales. For HadCM3 and MPI-ESM
[Figs. 3(s) and 3(u)], deviations on the interannual scale are sim-
ilar to those in HadCRUT5 and likely due to the spectral imprint
of the El Niño–Southern Oscillation.3,98 Moreover, our approach
assumes that the covariance structure of the internal variations
is determined by the estimated feedback parameters. In CMIP5
simulations with “GRA” volcanic forcing, particularly high values
for the fast response parameter λ1 and the weight w1 lead to inter-
nal variations with autocorrelations on short timescales. This can
cause an overestimation of the emulated PSD [Figs. 3(l), 3(q), 3(r),
and 3(t)]. Similarly, the overestimation of the target PSD on longer
timescales [Fig. 3(b)] in CLIMBER 2 can be explained by its esti-
mated slow response. The latter is due to the biased delay between
forcing and temperature time series (Table II). Additionally, mis-
matches on short timescales can propagate to longer timescales, as
in the case of BCC-CSM1-1 [Fig. 3(l)]. Hence, explaining spectral
properties of temperature time series not only requires consider-
ation of stochastic noise,41 but also precise knowledge of its cor-
relation structure and the forced response. This highlights a need
for simple, stochastic dynamical models99 to simulate temperature
fluctuations on long timescales.

The components of AR5 EMICs show a reduced number of
scales compared to the AOGCMs, which simplifies the complexity
of the processes contributing to variability. Therefore, the relatively
strong forced variability in EMICs [Figs. 4(a) and 4(b)] is not a main
deficiency but serves to explore the long-term coupling between
different Earth system components in response to radiative forc-
ing. Compared to other AR5 EMICs, LOVECLIM V.1.2 features
a more complex, three-layered atmosphere, which likely explains
increased internal variations in the ensemble members. However,
this variability is predominately short-term correlated. Due to the
EBM’s covariance structure, this can lead to an overestimation of the
emulated forced+internal variability [Fig. 4(b)] on longer timescales.
On interannual and decadal scales, the variance ratios based on the
emulated forced and forced + internal variability from the LOVE-
CLIM ensemble members [Fig. 4(b)] are similar to CMIP5 simula-
tions [Fig. 4(c)]. The similarity indicates that EMICs with a more
realistic representation of atmospheric variability might better cap-
ture the relative contribution of forced and internal temperature
variations on these timescales.

The contributions of internal variations on multidecadal scales
and longer remain the largest in CMIP5 models, likely due to long-
term variability mechanisms from the comprehensive ocean dynam-
ics of AOGCMs. Compared to observations [Fig. 2(d)], however,
internal variability on decadal and multidecadal scales is smaller in
CMIP5 simulations [Fig. 4(c)]. This is particularly interesting given
the agreement of observed and simulated total GMST variability
on these scales.2,3 Smaller low-frequency internal variability in cli-
mate models than in observations100 could be offset by enhanced
forced variability in response to volcanic eruptions,101,102 such that

the overall variance is largely conserved. We suspect that an incor-
rect ratio between internal and external variability could impact
the long-term variability of simulated local temperatures. How-
ever, uncertainties in the interpretation of our HadCRUT5 findings
arise due to the comparatively short time-span of the instrumental
record and a possible change of the forced response under global
warming.103 Further investigating the spatial variability structure104

and the link between local and global variability across climate states
could help resolve mismatches between observed and simulated
local variability on decadal and multidecadal scales.

One limitation of our study arises from the fact that the devel-
oped framework targets interannual to centennial timescales and is,
therefore, designed for annually resolved GMST and forcing data.
As a result, it cannot be readily applied to much shorter or longer
timescales. Investigating the immediate effects of radiative forcing,
for example, necessitates an extension to sub-annual resolution,
and treatment of the seasonal cycle. An extension to coarser
resolutions could be beneficial to study long-term changes such
as millennial-scale variability. However, such applications require
careful examination of the underlying assumptions of the cur-
rent framework, and an extension and validation of the estimation
algorithm. The forced response is likely sensitive to model-specific
rapid adjustments105 and uncertainties in the forcing. Applying the
workflow to paleoclimate reconstructions could, therefore, be chal-
lenging. On the one hand, “ClimBayes” does not yet run at the
best possible speed, as there are faster Bayesian algorithms.29 On the
other hand, “ClimBayes” represents an accessible, transparent, and
well-documented numerical framework that can be easily adapted
and extended, for example, by integrating “Rstan”106 or multilevel
delayed acceptance MCMC.107 Similar to Fredriksen and Rypdal,15

we use a response function of exponential form, solving the ordi-
nary differential equation (1). Future research could investigate the
potential of Bayesian methods to find response functions describing
the effects of climate forcing on different observables.108,109 Further-
more, future studies could test our findings with more advanced
climate models including better representation of, for example, land
surface processes, atmospheric dynamics and chemistry, and sea
ice. The presented framework can be also applied to single forc-
ing experiments71 for quantifying the contribution of single forcings
to the spectrum. This will help better understand the climate sys-
tem’s response and interplay of intrinsic and external components
in driving climate variability.

VI. CONCLUSION

We presented a physically motivated emulation of GMST data
using Bayesian inference and a stochastic energy balance model.
Analyzing AR5 EMICs and CMIP5 simulations for the last millen-
nium, we found that the power spectral density of the combined
forced + internal response approximates the target spectrum well.
We show that our emulation can be used to separate internal and
forced contributions to GMST variability across timescales. The rel-
ative contribution of internal dynamics increases with model com-
plexity and decreases with timescale. While AR5 EMICs predom-
inately exhibit forced variations, simulations from CMIP5 models
and the LOVECLIM ensemble members exhibit major contribu-
tions from the forced and internal response. This suggests that
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EMICs with more realistic atmospheric variability can simulate sta-
tistical properties of interannual to decadal climate fluctuations
more reliably. Our results show that precise knowledge of the
forced response and correlation structure of internal variability
is necessary to explain variability across scales, needed to assess
future variability and potentially associated risks with long-term
projections. Our developed framework is robust and readily avail-
able and can thus be widely applied to describe, emulate, and
diagnose observed and simulated temperature variability.

ACKNOWLEDGMENTS

We acknowledge the World Climate Research Programme’s
Working Group on Coupled Modelling, responsible for PMIP and
CMIP. We thank the research groups listed in Table I and the
Met Office for producing and making available their model out-
put, measurements, and forcing reconstructions. We thank M. Eby
for EMIC discussions, E. Myrvoll-Nilsen for discussion of Bayesian
inference and the INLA package, and T. Gasenzer for discus-
sion of conceptual climate models. We are grateful to N. Mein-
shausen, N. Weitzel, and E. Ziegler for helpful comments on the
manuscript. We thank two anonymous referees for their construc-
tive and valuable review. This study has been supported by funds
of the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) Project No. 395588486, by the PalMod Project (Sub-
project No. 01LP1926C), the Heinrich-Böll-Stiftung (Heinrich Böll
Foundation), and the Studienstiftung des deutschen Volkes (Ger-
man Academic Scholarship Foundation). R. Scheichl is supported
by the Deutsche Forschungsgemeinschaft under Germany’s Excel-
lence Strategy EXC No. 2181/1–390900948 (the Heidelberg STRUC-
TURES Excellence Cluster). The study benefited from discussions
within the CVAS working group, a working group of the Past Global
Changes (PAGES) project.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

M.S. and B.E. contributed equally to this work. They carried
out the analysis, created the figures and wrote the paper, supervised
by K.R. and R.S. M.S. led the development of the ClimBayes pack-
age. B.E. led the variability analysis based on spectral methods. All
authors designed the study, contributed to revisions, and approved
the final version of the manuscript.

Maybritt Schillinger: Conceptualization (equal); Data curation
(equal); Formal analysis (equal); Investigation (equal); Methodol-
ogy (equal); Resources (equal); Software (equal); Validation (equal);
Visualization (equal); Writing – original draft (equal); Writing –
review & editing (equal). Beatrice Ellerhoff: Conceptualization
(equal); Data curation (equal); Formal analysis (equal); Investigation
(equal); Methodology (equal); Resources (equal); Software (equal);
Supervision (equal); Validation (equal); Visualization (equal); Writ-
ing – original draft (equal); Writing – review & editing (equal).
Robert Scheichl: Conceptualization (equal); Funding acquisition

(equal); Project administration (equal); Resources (equal); Supervi-
sion (equal); Writing – review & editing (equal). Kira Rehfeld: Con-
ceptualization (equal); Funding acquisition (equal); Project admin-
istration (equal); Resources (equal); Supervision (equal); Writing –
review & editing (equal).

DATA AVAILABILITY

The ClimBayes42 software package in R is released at
https://github.com/paleovar/ClimBayes. and published under the
Zenodo identifier https://doi.org/10.5281/zenodo.7317984. Code
and data to reproduce all figures is available at https://github.com/pal
eovar/EmulatingVariability. The data that support the findings of
this study are openly available from the data holdings of the Cli-
mate Research Programme’s Working Group on Coupled Mod-
elling (e.g., https://esgf-node.llnl.gov/search/cmip5/), responsible
for CMIP and PMIP, and from Schmidt et al.,46 Eby et al.45

(https://climate.uvic.ca/EMICAR5/participants.html), and Morice
et al.48

APPENDIX A: SOLUTION TO THE MULTIBOX EBM

The tridiagonal matrix K of the multibox EBM in matrix
notation (3) is given by

K =

























−(λ̃ + κ2) κ2 0 · · · 0
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.

The parameter λ̃ controls the feedback of the surface layer. The coef-
ficients κ2, . . . , κN > 0 describe the vertical heat transfer between
ocean layers. The full solution to the multibox EBM15 reads

T =
∫ t

−∞
e(t−s)C−1

K
C

−1
F(s) ds.

K is symmetric and negative definite, and, thus, diagonalizable. Mul-
tiplication with the positive diagonal matrix C

−1 does not change
this property. Accordingly, the matrix exponential

eC
−1

K = V
T











e−λ1 0 0 · · · 0
0 e−λ2 0 · · · 0

0
. . .

. . .
. . . 0

0 · · · · · · 0 e−λN











V

exists for an orthonormal matrix V and eigenvalues −λk of C
−1

K.
Since only the first component of the forcing vector F(t) is non-zero,

the matrix entry (eC
−1

K)11 defines the surface temperature response.
The response function reads

R(t) = (etC−1
K)11 =

N
∑

k=1

wk e−λkt.
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FIG. 5. HadCRUT5 target observation, the posterior mean of the forced response
of the stochastic two-box EBM, and three example realizations of the emulated
forced + internal variability.

The normalization of the weights results from
∑N

k=1 wk

=
∑N

k=1 (Vk1)
2 = 1 for any orthonormal matrix V.

APPENDIX B: COVARIANCE OF THE

ORNSTEIN–UHLENBECK AND AR(1) PROCESS

1. Covariance matrix

The noise term in Eq. (4) is a weighted sum of Ornstein-
Uhlenbeck (OU) processes. Consequently, its covariance structure

FIG. 6. HadCRUT5 target observation (grey), the forced response from the one-,
two-, and three-box EBM fit to the data. We show their posterior means and the
CIs (shaded) as well as their root mean square errors (RMSEs).

results in

Cov(T1,I(t), T1,I(t + s)) =
σ 2

W

C2
1

N
∑

k=1

N
∑

l=1

wkwl

e−λl|s|

λk + λl

. (B1)

In the special case of N = 1, the covariance reduces to the covariance

of a single OU process40 Cov(T1,I(t), T1,I(t + s))N=1 = σ 2
W

2C2
1λ1

e−λ1|s|.

Formula (B1) follows from a generalization of this special case
to arbitrary N. Discretizing the noise term in Eq. (4) results in
a weighted sum of AR(1) processes. This sum Z is normally dis-
tributed with mean zero and covariance matrix

Cov(Z)ij:=Cov(Zi, Zj) =
σ 2

W

C2
1

N
∑

k=1

N
∑

l=1

wkwl

e−λl|i−j|

λk + λl

. (B2)

For given λk, wk, and C1, the SD of the stochastic forcing, σW,
uniquely defines the SD of the internal variations σI:=

√
Cov(Zi, Zi)

and vice versa. It is possible to estimate σI within the Bayesian frame-
work. However, additional uncertainties arise from the fact that the
covariance matrix in Eq. (B2) is only an approximation to the true
correlation structure of the residuals. As a result, the Bayesian esti-
mation of σI might not preserve the total variance. Therefore, we
determine σI from the residuals, that is, the data minus the estimated
forced response.

2. Iterative computation of the likelihood

Theoretically, the likelihood is given by a normal distribution
with mean T1,F and covariance matrix Cov(Z), depending on θ .
However, computing the covariance matrix dynamically for each
sample in the Markov chain can lead to difficulties. In particular,
Cov(Z) needs to be inverted for every sample, which is computation-
ally expensive. Moreover, the determinant det(Cov(Z)) can be close
to zero, which can make numerical calculations unstable. Potential
biases include decreasing goodness of fit and accuracy of estimated
posteriors.

To solve this problem, we propose an iterative approach. This
keeps λk and wk in the covariance matrix fixed for each itera-
tion of the algorithm. The first iteration uses the prior means for
λk and wk as well as a starting value for the ratio σW/C1. It is
not necessary to consider σW and C1 separately, since Eqs. (B1)
and (B2) depend only on their ratio. This ratio is chosen such that
σI = 0.1 K for CMIP5 simulations and LOVECLIM ensemble mem-
bers, and σI = 0.05 K for AR5 EMICs. For the second iteration, the
estimated posterior means of λk and wk define the covariance matrix
entries. Additionally, σI is set to the SD of the residuals, which
defines σW/C1. The results of this second iteration are the posterior
distributions for λ1, . . . , λN, weights w2, . . . , wN, heat capacity C1,
initial forcing F0, and initial temperature T0. These iterations can be
repeated and adjusted with “ClimBayes.” We find that two iterations
are enough to fit the forced + internal response to the considered
data well, and that further iterations do not improve the goodness
of fit.

3. Sampling from internal variability

Sampling internal variations T1,I(t) requires the values of λk, wk,
and σW in Cov(Z) [Eq. (B1)]. λk and wk are set to the posterior
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TABLE III. Posterior means and 95% CI of estimated feedback parameters and weights for the 1-, 2-, and 3-box EBM fitted to the HadCRUT5 GMST.

Number of boxes λ1 (yr−1) λ2 (yr−1) λ3 (yr−1) C1 (W yr m−2 K−1) w1 (unitless) w2 (unitless)

1-box 0.35 (0.21,0.63) . . . . . . 9.08 (6.83,10.68) . . . . . .
2-box 1.31 (0.71,1.86) 0.09 (0.03,0.16) . . . 8.20 (5.68,10.43) 0.72 (0.46,0.9) . . .
3-box 1.29 (0.70,1.86) 0.11 (0.04,0.18) 0.01 (0.01,0.02) 8.46 (5.86,10.57) 0.74 (0.46,0.90) 0.22 (0.02,0.53)

FIG. 7. Emulated forced response T1,F(t), that is the posterior mean, of the stochastic two-box EBM fitted to the GMST target data from AR5 EMICs [panels (a)–(j)],
LOVECLIM V.1.2 ensemble members [panels (k)–(0)], and CMIP5 simulations [panels (p)–(y)].
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means. We calculate σW from σI, which we assume to equal the SD
of the residuals. As an example, Fig. 5 shows realizations of T1,I(t)
drawn from the estimated covariance of HadCRUT5 observations.

APPENDIX C: COMPARISON OF ONE-, TWO- AND

THREE-BOX EBM

We have verified that our results are robust against rea-
sonable variations of the number of boxes. Here, we exam-
ine the difference between N ∈ (1, 2, 3) boxes on the example
of the HadCRUT5 GMST (Fig. 6). We choose the priors of
the response parameters to cover the same overall range as
for the two-box model [N = 1 : λ1 ∈ (1/200, 2) yr−1 and N = 3 :
λ1 ∈ (1/5, 2) yr−1, λ2 ∈ (1/50, 1/5) yr−1, λ3 ∈ (1/200, 1/50) yr−1].

The stochastic two-box EBM fits the data more accurately
(root mean square error: RMSE = 0.114 K) than the one-box EBM
(RMSE = 0.133 K) (Fig. 6). The three-box EBM yields only minor
improvements (RMSE = 0.0111 K). This pattern is consistent for
AR5 EMICs and CMIP5 simulations and reflected in similar forced
responses and power spectral densities for N ∈ (1, 2, 3). Adding
boxes, however, increases the risk of overfitting due to increas-
ing degrees of freedom. This is reflected in increasing CIs for the
forced response and parameters (Table III) with more boxes. That is
why N = 2 represents the best compromise between goodness of fit,
identifiability of parameters, and number of free parameters in our
experiments.

APPENDIX D: EMULATED FORCED TEMPERATURE

RESPONSE FOR CONSIDERED SIMULATIONS

Figure 7 shows the best estimate of the EBM’s forced response,
fitted to the target simulations from all considered models. CIs

FIG. 8. Ensemble mean of the CESM Large Ensemble110 (13 members) and the
emulated forced response T1,F(t) of the stochastic two-box EBM fitted to GMST
target data from one of the ensemble members (E1). The corresponding radiative
forcing time series is shown in green.

are much narrower and almost vanishing compared to HadCRUT
[Fig. 2(a)]. This is due to the fact that with increasing length of
the time series the posterior uncertainties of the parameters and the
forced response decrease.

Figure 8 compares the emulated forced response against simu-
lation data from the Last Millennium Ensemble of the Community
Earth System Model (CESM).110 Forming the ensemble mean over
the available 13 members serves to average out uncorrelated internal
variability. Our emulated forced response, fitted to the first ensem-
ble member (E1), shows a large overlap with the ensemble mean
despite remaining internal variability that has not been averaged
out.
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