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zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Elmer Suarez

aus Lima, Peru
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Abstract

This work reports on the real-time detection of internal-state dynamics of cold 87Rb

atoms being excited to the 30D5/2 Rydberg state via two-photon excitation. A meso-

scopic cloud of atoms is overlapped with the mode volume of a confocal optical cavity

and optically pumped by two laser beams transverse to the cavity axis. The excita-

tion to Rydberg states changes the collective atom-cavity coupling, which is detected

by monitoring the light transmitted through the cavity while being weakly driven.

In addition to the damped coherent excitation dynamics and the decay back to the

ground state, the data shows a superradiant enhancement of the black-body radiation

induced transitions from the 30D5/2 state to neighboring Rydberg states. Further-

more, they show a density dependent mitigation of the superradiant decay which is

attributed to long range dipole-dipole interactions between atoms in the involved Ry-

dberg states. These results contribute to solving a recent controversy on the interplay

between BBR-induced superradiance and Rydberg atom interactions.
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Zusammenfassung

In dieser Arbeit wird über die Echtzeitdetektion der internen Zustandsdynamik

von kalten 87Rb-Atomen berichtet, die durch Zwei-Photonen-Anregung zum 30D5/2-

Rydberg-Zustand angeregt werden. Eine mesoskopische Atomwolke wird mit dem

Modenvolumen eines konfokalen optischen Resonators überlagert und durch zwei

Laserstrahlen quer zur Resonatorachse optisch gepumpt. Die Anregung in Rydberg-

Zustände verändert die kollektive Atom-Resonator-Kopplung, die durch Beobach-

tung des durch den Resonator transmittierten Lichts nachgewiesen wird. Neben

der gedämpften kohärenten Anregungsdynamik und dem Zerfall zurück in den

Grundzustand zeigen die Daten eine superradiante Verstärkung der durch die

Schwarzkörperstrahlung induzierten Übergänge vom 30D5/2-Zustand in benachbarte

Rydberg-Zustände. Darüber hinaus zeigen sie eine dichteabhängige Abschwächung

des superradianten Zerfalls, die auf langreichweitige Dipol-Dipol-Wechselwirkungen

zwischen den Atomen in den beteiligten Rydberg-Zuständen zurückgeführt wird.

Diese Ergebnisse tragen zur Lösung einer aktuellen Kontroverse über das Zusammen-

spiel zwischen BBR-induzierter Superradianz und Rydberg-Atom-Wechselwirkungen

bei.
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1. Introduction

Quoting Richard Feynman: nature has, at the atomic scale, “a peculiar behavior

impossible to explain in any classical way.” [1] Consequently, quantum theory com-

plements classical physics by giving a physical system the ability to form a new

kind of state: one where different possible states coexist through interference, like

waves on a pond. Now, how can one experience the quantum realm? The idea that

measuring a system brings it back to our classical experience is the main concept

behind decoherence [2]. Take for instance the tracks left behind by a particle on

a cloud chamber: the constant measurement of its position by collisions to other

environmental particles allows us, in a sense, to observe the particles trajectories.

In fact, the avenue of quantum theory into physics finally fueled the technologi-

cal development from which our modern technology is built upon. At present, the

development of quantum technologies, that is, the exploitation of this “peculiar be-

havior” as a resource is thriving. In fact, the most recent Nobel prize has been

awarded to A. Aspect, J. F. Clauser and A. Zeilinger for studying entangled states

on their connection to classical experience and their introduction to quantum infor-

mation. In addition, a key step towards state of the art quantum technologies was

the control of quantum systems. At the front page of this achievement are Serge

Haroche and David Wineland as they were both awarded the Nobel prize in 2012.

While Wineland studied the interaction between two degrees of freedom (i.e. inter-

nal states and motion) of single ions in a harmonic trap [3], Haroche focused on the

interaction between single atoms and photons inside a cavity or resonator: cavity

QED [4]. In particular, the latter used atoms with high principal quantum number

(circular Rydberg states) as they are extremely sensitive to microwave radiation

which is, in turn, contained inside a cavity.

The quantized nature of an atom or of electromagnetic radiation was demon-

strated in both cases. Remarkably, a superposition of coherent or Glauber states

was engineered in order to show the creation of a Schrödinger cat state. The role of
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1. Introduction

the cat as macroscopic object was played by the coherent state: a particular super-

position of the infinite photon number states which exhibits classical trajectories in

phase space. Then, the wave character, i.e. the ability for a macroscopic state to

exist in a superposition was observed to dissapear over time in a process known as

decoherence. In a sense, Wineland and Haroche were exploring the border between

classical and quantum physics.

In parallel to these achievements, decoherence has a story on its own and it has

found a place in all areas of quantum theory. Because it describes the loss of quan-

tumness on a system, the study of decoherence is of technological importance for

areas such as quantum information processing [5]. At the same time, since deco-

herence deals with the concept of measurement (i.e. the channel of communication

with the quantum realm) it rises questions about the interpretation of quantum

mechanics [6]. Even though the study of decoherence has a strong theoretical char-

acter there are a number of experiments which have helped to understand the nature

of this process [7]. In particular, the work done by Sonnentag and Hasselbach [8]

from the university of Tübingen has explored the action of decoherence on interfer-

ing electrons. It is indeed in Tübingen that electron diffraction was pioneered by

Jönsson [9]. In addition, the work with electron interferometers was continued by

Stibor [10, 11].

Early on their research about microwave cavities and Rydberg atoms, the Paris

group led by Haroche explored the spontaneous decay of initially excited atoms

inside the cavity. By observing atom number statistics they revealed a shorter

emission time from the upper Rydberg state than expected for a single atom; thus,

demonstrating the first observation of superradiant decay [12, 13]. Superradiance

was predicted by Dicke years before [14] and further studied by Bonifacio [15].

Nevertheless, in contrast to Dicke’s original proposal, in those experiments it is the

emission rate of thermal photons (black body radiation) and not the spontaneous

decay rate that was enhanced. Still in the microwave domain, superradiance has

been observed in other atom-like systems such as semiconductors [16], color centers

in diamond [17], vibrational transitions in molecules [18] and has even been proposed

in astrophysics [19].

Importantly, inside a cavity, superradiance has shown to be of technological im-

portance. Indeed, in order to achieve greater accuracy on the ticking rate of atomic

clocks, lasers with very small uncertainty on their frequency are required. This is

2



because atoms used for this matter have states with linewidths on the order of mHz

(e.g. 1 mHz for 87Sr). Recently, in [20], a superradiant laser was demonstrated:

light is taken from 87Sr and a useful brightness is reached by superradiant enhance-

ment of the spontaneous decay into the cavity. Furthermore, this is possible when

the system is in the so-called bad cavity regime where the cavity leaks out photons

much faster than the energy exchange rate with the atoms. Consequently, the cavity

frequency does not play a key role meaning that the effects of typical noise sources

of conventional lasers are highly supressed. However, there is still one enemy to

fight: decoherence.

Superradiance is the result of constructive interference between a collection of

synchronized or phase-correlated scatterers. As such, any type of environment that

is inhomogeneously coupled to the ensemble will be a dephasing or decoherence

source. Diffusion of the momentum state (i.e. heating) has been recognized to reduce

or even completely suppress superradiance. For a thermal atomic cloud, this effect

is observed due to Doppler broadening [21, 22]; however, subradiance (the decay

into long-lived many-body states) shows the opposite effect on thermal dephasing

[23]. In addition, similar effects are observed for a BEC inside an optical ring cavity

[24]. Finally, in a circuit QED context, the different atomic positions relative to

the resonator makes their coupling to be position dependent. This inhomogeneous

coupling reduces the superradiant decay rate but also increases it under certain

conditions [25].

Another decoherence source of particular importance to this thesis is due to dipole-

dipole interactions. This type of interaction is described by a Hamiltonian Ĥdd =∑N
j,j′ Ωjj′σ̂

†
j σ̂j′ between two atoms j and j′ which can be translated as the exchange

of a virtual photon by a pair of atoms. The potential energy Ωjj′ of this interaction

depends on the interatomic distance and is greater the smaller the ratio is between

this distance and the transition wavelength. The negative effect of this type of

interaction on superradiance has been recognized since the early experiments by the

Paris group [26]. However, it has been only until recently that numerical simulations

have been able to describe superradiance in an ensemble of interacting atoms [27].

On the other hand, experiments with ultracold atomic clouds show unclear results:

whereas in [28] evidence is shown of an atomic lifetime reduction argued to be

due to superradiance, in [29] no superradiant decay rate is observed under similar

experimental conditions. It is the objective of this work to contribute on this debate.
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1. Introduction

In this regard, one must recognize that the large dipole moment of atoms excited

to Rydberg states also facilitates the energy exchange between an atom pair on the

micrometer scale. For this, since the usually achieved atomic densities in magneto-

optical traps are on the order of 109 − 1011 cm−3 they are a suitable platform to

study dipole-dipole interactions between Rydberg atoms. Furthermore, since the

transition wavelength between Rydberg states is in the order of a few milimeters,

the condition for superradiance can also be fulfilled.

This thesis starts by introducing the theoretical background from which the phys-

ical concepts most important for this work lie upon: First, in chapter 2 the optical

Bloch equations necessary to describe the interaction of light with two and three

level atoms are shown when both classical and quantum (cavity QED) fields are

present. The steady-state solutions for the atomic variables as well as the intra-

cavity field (i.e. cavity transmission) are then presented under the low saturation

approximation. In particular, for a three-level atom, special attention is payed to

electromagnetically induced transparency (EIT), a coherent phenomena where an

atom becomes transparent with the aid of an extra powerful laser. At the end of this

chapter the collective coupling of an atomic ensemble to the same electromagnetic

modes is explained to be the cause of superradiant decay and dipole-dipole interac-

tion. The shape factor or cooperativity parameter that gauges superradiance for an

extended ensemble is also introduced. Chapter 3 is dedicated to atoms in Rydberg

states: how their decay into several other states is described including their inter-

action with black body radiation. Finally, dipole-dipole interactions are introduced

in the context of Rydberg states and, in particular, the model used to describe the

decoherence of superradiance is explained. In chapter 4 all optical setups are de-

scribed together with the measurements that show how superradiance is diminished

as Rydberg density is increased. In addition, the observation of optical pumping

due to the intracavity field in the cavity transmission is explained. In appendix

A the Bloch equations are extended to include the multilevel structure due to the

Zeemann states in order to describe our observations.
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2. Atom-Light Interaction

All physical effects to be studied in this thesis orbit around the interaction between

matter (in the form of individual, ultracold atoms) and light. The present chapter

starts describing the atom as effectively consisting of only two energy states which

can be treated as a dipole. The interaction between this dipole and the electro-

magnetic field is then introduced in a semiclassical context. When a third level is

included the complexity of the problem is increased. However, approximations are

justified in order to reveal the physical effects most relevant for this thesis like two-

photon excitation and Electromagnetically Induced Transparency. Furthermore, the

interaction between an optical cavity and an atomic ensemble is studied using the

mean-field approximation where quantum correlations between atoms and cavity

photons are neglected. The mean-field equations for the atom-cavity system are

used to arrive to an expression of the cavity transmission that is then used for the

different experimental conditions of this thesis. Finally, superradiance, a collective

effect where atoms that are very close to each other radiate at a much faster rate

than when they are far apart is introduced.

2.1. Interaction of light with a Two-Level Atom

It is known that any atom, even Hydrogen, exhibits a complex energy structure.

In fact, an atom internal energy structure consists of an infinite number of discrete

values which get closer the more they approach the ionization energy. However, it is

customary to consider only two energy states. This is specially done when describing

an atom interacting with light that is monochromatic and has a frequency ω such

that ℏω is nearly equal to the energy difference between both states considered

[30, 31].

Following this argument and neglecting atomic motion, the quantum states |g⟩
and |e⟩ are defined as eigenstates of the atomic Hamiltonian Ĥa with eigenvalues Eg

5



2. Atom-Light Interaction

Figure 2.1.: Energy scheme (with ℏ = 1) of a two-level atom with “ground” and
“excited” state labeled |g⟩ and |e⟩, respectively. The excited state spon-
taneously decays with a rate Γ to the ground state. The atom is driven
by a light field of frequency ω, with a detuning ∆ = ω − ω0 such that
ω0 is the frequency corresponding to the energy difference between the
states: Ee − Eg = ℏω0.

and Ee such that Ee − Eg = ℏω0. This allows to define the eigenvalues relative to

some arbitrary energy E0: choosing E0 = (Eg + Ee)/2 results in Ee,g = E0 ± 1
2
ℏω0.

On the other hand, the set {|e⟩ , |g⟩} is defined as the orthonormal basis of the

Hilbert space used to describe the two-level atom. Consequently, the common term

E0 only adds to Ĥa an extra term proportional to the unity operator (E01). This

means that E0 can be ignored as it does not influence the atom dynamics (see eq.

(2.20)). Ĥa can then be defined such that

Ĥa |e⟩ =
1

2
ℏω0 |e⟩ (2.1)

and

Ĥa |g⟩ = −1

2
ℏω0 |g⟩ . (2.2)

Under the dipole approximation [31], the interaction Hamiltonian is

Ĥint = −d̂ · E . (2.3)

Where d̂ is the atomic dipole moment operator and E is the electric field vector

evaluated at the dipole’s position. Since d̂ = er̂ where e is the electron’s charge and

r̂ is the position operator, the dipole operator has odd parity. Therefore, its matrix
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2.1. Interaction of light with a Two-Level Atom

form will have null diagonal elements (expectation values) whereas its non-diagonal

elements will be denoted as

dge = ⟨g| d̂ |e⟩ deg = d∗
ge = ⟨e| d̂ |g⟩ . (2.4)

The complex vector dge can then be calculated by expanding r̂:

dge = e

∫
Ψ∗

g(r)rΨe(r) d
3r. (2.5)

Here, Ψg(r) = ⟨r|g⟩ and Ψe(r) = ⟨r|e⟩ are the wavefunctions of the ground and

excited states; respectively.

By further defining the ladder operators σ̂+ = |e⟩⟨g| and σ̂− = |g⟩⟨e|, the dipole

operator can be written as

d̂ = dgeσ̂
− + degσ̂

+. (2.6)

Alternatively, the introduction of the Pauli operators

σ̂x ≡

(
0 1

1 0

)
σ̂y ≡

(
0 −i
i 0

)
σ̂z ≡

(
1 0

0 −1

)
(2.7)

results in σ̂± = (σ̂x ± iσ̂y)/2. Consequently, the dipole operator d̂ and the atomic

Hamiltonian Ĥa can be written as

d̂ = Re(dge)σ̂x + Im(dge)σ̂y, (2.8)

and

Ĥa =
1

2
ℏω0σ̂z. (2.9)

On the other hand, inserting the electric field E = (E0eiωt + E0e−iωt) /2 into eq.

(2.3) and using eq. (2.6) results in

Ĥint =
Ω

2
σ̂−e−iωt +

Ω∗

2
σ̂+eiωt +

Ω

2
σ̂−eiωt +

Ω∗

2
σ̂+e−iωt. (2.10)

Where Ω = −dge · E0 is the so called Rabi frequency. At this point, it is customary

to perform the Rotating Wave Approximation (RWA). It consists in eliminating the

fast oscillating terms after changing the frame of reference to one rotating at the

7



2. Atom-Light Interaction

Figure 2.2.: Eigenvalues of a two-level atom driven by a light field with Rabi fre-
quency Ω = 2 as a function of detuning ∆ = ω − ω0. The avoided
crossing is manifested by the minimum separation Ω between the eigen-
values E±. In comparison, the free atom eigenvalues Eg,e (dashed lines)
cross at ∆ = 0. In the dispersive regime (∆ ≫ Ω), Eg,e and E± almost
coincide; the difference being given by the Stark shift.

laser frequency which results in

Ĥint =
Ω

2
σ̂− +

Ω∗

2
σ̂+. (2.11)

Finally the full Hamiltonian reads

Ĥ = Ĥa + Ĥint = −1

2
ℏ∆σ̂z +

ℏ
2
(Ωσ̂− + Ω∗σ̂+). (2.12)

Where ∆ = ω − ω0 is the detuning of the laser frequency relative to the atomic

transition frequency.

The atomic energies are modified by the interaction with the light field. This is

manifested by the eigenvalues of Eq. (2.12):

E± = ±ℏ
2

√
|Ω|2 +∆2. (2.13)

Turning off the interaction (Ω = 0) gives the atomic energies in the rotating frame:

Ee = −ℏ
2
∆ and Eg =

ℏ
2
∆. The modified energies are plotted in Fig. 2.2 as a function

of ∆. They show what is called an avoided crossing, in comparison to the free atomic
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2.1. Interaction of light with a Two-Level Atom

energies (dashed lines) which intersect at the origin. In the dispersive regime, when

Ω ≪ ∆, the frequency shift induced by the light field equals

E± − Eg,e = ±ℏ
|Ω|2

4∆
(2.14)

which is the AC Stark shift for a two-level atom. On the other hand, the eigenstates

can be written as function of a mixing angle θ such that tan(θ) = |Ω|/∆:

|D+⟩ = cos(θ/2) |e⟩+ sin(θ/2) |g⟩ (2.15)

|D−⟩ = − sin(θ/2) |e⟩+ cos(θ/2) |g⟩ . (2.16)

2.1.1. Bloch Equations

In the present thesis it is convenient to describe the atomic system with a density

operator ρ̂. This operator is defined such that [32]:

ρ̂† = ρ̂ ρ̂ ≥ 0 Tr (ρ̂) = 1. (2.17)

As a consequence, for a two-level atom, the corresponding density matrix

ρ̂ ≡

(
ρee ρeg

ρge ρgg

)
(2.18)

has its elements ρij = Tr (ρ̂ |j⟩⟨i|) (with i, j = e, g) constrained by

ρge = ρ∗eg ρee, ρgg ≥ 0 ρee + ρgg = 1. (2.19)

In particular, ρee and ρgg are termed populations as they represent the probability

for the atom to be in state |e⟩ or |g⟩, respectively. On the other hand, ρeg and ρge

are termed coherences.

The Hamiltonian of eq. (2.12) changes the atomic system following the Von

Neumann equation:
dρ̂

dt
= −i

[
Ĥ/ℏ, ρ̂

]
. (2.20)

It can be seen that the role of ℏ is to scale the time evolution of ρ̂; thus, from now

on, ℏ = 1 is assumed for convenience. It is also remarked that the interaction of

9



2. Atom-Light Interaction

an atom to its environment or a reservoir (e.g. quantum electromagnetic vacuum,

photon bath) is not included in eq. (2.20).

The modification of the Von Neumann equation to account for a reservoir is not

trivial [32]. However, in the present thesis, it is well justified to consider the master

equation
dρ̂

dt
= −i

[
Ĥ, ρ̂

]
+
∑
k

γk

(
L̂kρ̂L̂

†
k −

1

2

{
L̂†
kL̂k, ρ̂

})
(2.21)

as the one governing the time dynamics of ρ̂ including the coupling of the atom to

its environment 1. The most notable change is the last term (usually denoted as

D [ρ̂]) called dissipator or Lindblad superoperator which describes irreversible lost

of energy (or information [33]) into the environment. Here, it has been written in

the standard diagonal Lindblad form with jump or Lindblad operators L̂k and their

corresponding eigenvalues γk.

Spontaneous decay is a consequence of the interaction of the atom with the elec-

tromagnetic quantum vacuum modes. In this case, only the dissipator has to be

added which is, in turn, described by a single eigenvalue γ1 = Γ and Lindblad

operator L̂1 = σ̂−:

dρ̂

dt
= −i

[
Ĥ, ρ̂

]
+ Γ

(
σ̂−ρ̂σ̂+ − 1

2

{
σ̂+σ̂−, ρ̂

})
. (2.22)

Furthermore, the spontaneous decay rate Γ is given by

Γ =
1

τ
= 2πFWHM =

ω3
0 |dge|2

3πϵ0ℏc3
. (2.23)

Where τ and FWHM are the lifetime and the Full Width at Half Maximum of the

excited state, respectively.

After some algebra, using ρ̇ij = Tr
(
˙̂ρ |j⟩⟨i|

)
, the optical Bloch equations (OBE)

1In the Heisenberg picture, eq. 2.21 is slightly modified to describe the time evolution of some
operator Â [32]:

dÂ

dt
= i
[
Ĥ, Â

]
+
∑
k

γk

(
L̂†
kÂL̂k − 1

2

{
L̂†
kL̂k, Â

})

10



2.1. Interaction of light with a Two-Level Atom

are derived from eq. (2.22):

ρ̇ee = −γ∥ρee − i
Ω

2
(ρge − ρeg) (2.24)

ρ̇gg = γ∥ρee + i
Ω

2
(ρge − ρeg) (2.25)

ρ̇eg = −(γ⊥ − i∆)ρeg + i
Ω

2
(ρee − ρgg) (2.26)

ρ̇ge = −(γ⊥ + i∆)ρge − i
Ω

2
(ρee − ρgg). (2.27)

There, it has been assumed that Ω is real. Also, notation makes explicit that the

decay rate of the coherences (γ⊥) and the populations (γ∥) are different. This dis-

tinction becomes more important when, for example, homogeneous broadening must

be included2. However, when spontaneous decay is the only source of decoherence

(as in eq. 2.22): γ⊥ = Γ/2 and γ∥ = Γ.

For the present work, the steady-state solution (ρ̇ij = 0) of the OBE is more

important than the time-dependence. Then, the relevant equations are

ρssee =
s0/2

1 + s0 + (∆/γ⊥)
2 (2.28)

ρsseg =
Ω/2γ⊥

1 + s0 + (∆/γ⊥)
2 (−i+∆/γ⊥) , (2.29)

where the on-resonance saturation parameter s0 = Ω2/γ⊥γ∥ = 2Ω2/Γ2 is introduced.

Fig. 2.3a shows the behavior of ρssee: the atom is more likely to be in the excited state

as s0 is increased until the saturation limit (ρssee = 0.5 at s0 → ∞) is asymptotically

reached. However, the excitation efficiency is reduced for any s0 as ∆ goes away

from 0.

Equally important for this work are the dispersive and absorptive characteristics

of a two-level atomic medium of density ζ. These are calculated from the real and

imaginary parts of the refractive index η = k/k0 =
√
1 + χ [34]. The complex

susceptibility χ is obtained following the classical definition of the dipole moment

together with eq. (2.6). Assuming a complex dipole moment p such that d =

2This type of broadening could be included into eq. (2.22) by considering an extra Lindblad
operator L2 = |e⟩⟨e| with eigenvalue γ2 = γd. As a result, the coherences decay at a rate
γ⊥ = (Γ + γd)/2.
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2. Atom-Light Interaction

Figure 2.3.: (a) Excitation probability for a two-level atom as a function of the satu-
ration parameter s0. For s0 ≪ 1 the excitation probability is linear with
respect to s0 and the proportionality constant follows a Lorentzian pro-
file dependent on ∆/γ⊥. (b) Real (dispersive) and imaginary (absorp-
tive) parts of the dielectric constant for a two-level atom. Anomalous
dispersion occurs for detunings within the FWHM, where absorption is
greatest.

Tr
(
ρ̂d̂
)
= p+p∗, we thus have ζp = −1

2
ϵ0χE0 [35]. Therefore, in steady-state, one

finally obtains

χ = −3πζ

k3
γ∥/γ⊥

1 + s0 + (∆/γ⊥)2
(−i+∆/γ⊥). (2.30)

This can be further simplified by considering 2γ⊥ = γ∥ = Γ, eq. 2.23 and assuming

Ω ≪ γ∥, γ⊥:

χ =
6πζ

k3
i

1− i2∆/Γ
. (2.31)

The adimensional prefactor 6πζ/k3 is a gauge for the density of the atomic medium.

When small (< 1), one can approximate η ≈ 1 + χ/2. Consequently, the intensity

absorption coefficient is given by α = k0Im(χ) and the dispersion coefficient is given

by β = k0Re(χ/2) [35]. In fig. 2.3b the real and imaginary parts of the dielectric

constant 1 + χ, for unity prefactor, are plotted as a function of detuning. Note how

the absorption of the atom is greater within the FWHM, when anomalous dispersion

occurs.

The absorption of a two-level atomic medium as a function of ∆ follows a Lorentzian

lineshape. Indeed, at low saturation, the imaginary component of the refractive in-
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2.2. Interaction of light with a three-level atom

dex reduces the field intensity as I(z) ∝ e−αz where α was introduced above and

z is the propagation coordinate. Then, the fraction of transmitted light (i.e. the

transmission) through an atomic medium of width ℓ is given by Tℓ = e−αℓ which at

first order on α can be linearized as

Tℓ ∼ 1− αℓ = 1− 6πζℓ

k2
1

1 + (2∆/Γ)2
. (2.32)

The FWHM is then given by the spontaneous decay rate Γ. Furthermore, at reso-

nance, the optical density is defined as OD = σ0ζℓ where σ0 = 6π/k2 is the resonant

cross section.

2.2. Interaction of light with a three-level atom

Adding a third level to the system leads to the three different possible energy schemes

shown in Fig. 2.4(a). In this thesis, however, the ladder type system is used:

the frequencies ωge = Ee − Eg and ωer = Er − Ee correspond to the lower and

upper transition, respectively. At the same time, the Hilbert space basis is extended

to {|e⟩ , |g⟩ , |r⟩}; then, by choosing the energy reference E0 = Eg, the atomic

Hamiltonian Ĥa is defined such that

Ĥa |e⟩ = ωge |e⟩ , (2.33)

Ĥa |r⟩ = (ωge + ωer) |r⟩ (2.34)

and

Ĥa |g⟩ = 0. (2.35)

As shown in Fig. 2.4(b), each atomic transition is nearly resonant to a light field

of frequency ω1,2. The interaction Hamiltonian is then given by

Ĥint = −d̂ge · E1 − d̂er · E2 (2.36)

where d̂ge and d̂er are the dipole operators for the lower and upper transition,

respectively. By introducing the ladder operators for each atomic transition (i.e. σ̂±
1

and σ̂±
2 ), the RWA is applied after changing the reference frame with the unitary

operator U = eiω1t |e⟩⟨e| + |g⟩⟨g| + ei(ω1+ω2)t |r⟩⟨r|. Then, the Hamiltonian Ĥint is

13



2. Atom-Light Interaction

written as

Ĥint =
Ω1

2
σ̂−
1 e

−iω1t +
Ω∗

1

2
σ̂+
1 e

iω1t +
Ω2

2
σ̂−
2 e

−iω2t +
Ω∗

2

2
σ̂+
2 e

iω2t (2.37)

with corresponding Rabi frequencies Ω1 = −dge · E1 and Ω2 = −der · E2. Finally, the
total Hamiltonian Ĥ reads

Ĥ = Ĥa + Ĥint = −δ1 |e⟩⟨e| − δ |r⟩⟨r|+ Ω1

2
(σ̂+

1 + σ̂−
1 ) +

Ω2

2
(σ̂+

2 + σ̂−
2 ). (2.38)

Here, Ω1,2 is assumed real and the two-photon detuning δ = δ1 + δ2 = (ω1 − ωge) +

(ω2 − ωer) is introduced.

The intermediate (|e⟩) and upper (|r⟩) state spontaneously decay at rates Γe and

Γr. Furthermore, it is assumed that homogeneous broadening, accounted for by the

decoherence rate γd, only affects the upper state. Therefore, following Eqs. (2.21)

and (2.38), the OBE are derived:

ρ̇ee = −Γeρee + Γrρrr − Ω1Im(ρeg) + Ω2Im(ρre) (2.39)

ρ̇gg = Γeρee + Ω1Im(ρeg) (2.40)

ρ̇rr = −Γrρrr − Ω2Im(ρre) (2.41)

ρ̇eg = −(Γe/2− iδ1)ρeg + i
Ω1

2
(ρee − ρgg)− i

Ω2

2
ρrg (2.42)

ρ̇rg = −((Γr + γd)/2− iδ)ρrg + i
Ω1

2
ρre − i

Ω2

2
ρeg (2.43)

ρ̇re = −((Γr + Γe + γd)/2− iδ2)ρre + i
Ω1

2
ρrg + i

Ω2

2
(ρrr − ρee). (2.44)

The equations for ρge = ρ∗eg, ρgr = ρ∗rg, and ρre = ρ∗er have been omitted. This set of

equations is solved numerically; however, different approximations can be used to

derive analytical solutions in order to gain a better physical understanding.

2.2.1. Effective two-level model

The time dynamics of a three-level atom approximates that of a two-level atom when

|δ1 − δ2| ≫ |δ| , Ω1, Ω2 [36]. In this case the intermediate state is adiabatically

eliminated as it remains mostly unpopulated, assuming the initial state does not

contain |e⟩. The resulting Hamiltonian has the form of Eq. 2.12 parametrised by
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2.2. Interaction of light with a three-level atom

Figure 2.4.: (a) The different possible energy schemes for a driven three-level atom:
(i) Ladder type system, (ii) Λ type system and (iii) V type system. (b)
Detailed scheme for the ladder type system used in this thesis.

an effective detuning and Rabi frequency:

∆eff = δ +
Ω2

1 − Ω2
2

2(δ1 − δ2)
, Ωeff =

Ω1Ω2

δ1 − δ2
. (2.45)

Then, everything applicable to a two-level atom is valid in this approximation as

long as the replacements ∆ → ∆eff and Ω → Ωeff are performed. Note that at two-

photon resonance δ1 = −δ2 = Θ Eqs. (2.45) result in ∆eff = (Ω2
1 − Ω2

2)/4Θ which

is just the difference between the Stark shifts of both transitions and Ωeff = Ω1ω2

2Θ
.

2.2.2. Low excitation regime

When an arbitrary value of ∆ must be considered, another useful approximation is

to consider the driving field for the lower transition to be weak (i.e. low saturation:

2Ω2
1/Γ

2
e ≪ 1). Though, similar to the two-level effective model the intermediate level

can be eliminated since the populations ρee and ρrr can be considered negligible.

This, in turn, results in ρre ≈ 0 [35]. Then, after some algebra, the steady-state
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2. Atom-Light Interaction

equations for a three-level system are derived:

ρsseg =
−iΩ1/Γe

1− i2δ1/Γe +
Ω2

2/Γeγr
1−i2δ/γr

(2.46)

ρssrg = ρsseg
−iΩ2/γr
1− i2δ/γr

. (2.47)

Where γr = Γr + γd is the broadened linewidth of the upper state.

The linear susceptibility for the lower transition χ introduced in Eq. (2.31) is then

modified by the introduction of a third level. Indeed, the coupling of a two-level

atom to a third level by a Rabi frequency Ω2, using Eq. 2.46, results in

χ =
6πζ

k3
i

1− i2δ1/Γe +
Ω2

2/Γeγr
1−i2δ/γr

(2.48)

with the wavenumber of the lower transition k. It is remarkable that an apparently

simple modification in the denominator results in many different new phenomena

such as Electromagnetically Induced Transparency (EIT), Autler-Townes splitting

and dark states. These effects can be quantitatively well described in a semiclassical

context; in particular, by analyzing Eq. (2.48).

2.2.3. Electromagnetically Induced Transparency (EIT)

At two-photon resonance (∆ = δ1 = −δ2) the three eigenstates of Eq. (2.38) are

denoted as |a0⟩ and |a±⟩:

|a0⟩ = cos θ |g⟩ − sin θ |r⟩ (2.49)

|a+⟩ = sin θ sinϕ |g⟩+ cosϕ |e⟩+ cos θ sinϕ |r⟩ (2.50)

|a−⟩ = sin θ cosϕ |g⟩ − sinϕ |e⟩+ cos θ cosϕ |r⟩ , (2.51)

where the coefficients θ and ϕ are defined such that tan θ = Ω1/Ω2 and tan 2ϕ =√
Ω2

1 + Ω2
2/∆. In Fig. 2.5 the energy distribution according to their respective

eigenvalues E± = 1/2(∆ ±
√

∆2 + Ω2
1 + Ω2

2) and E0 = 0 is shown for the resonant

(∆ = 0) and dispersive (∆ ≫ Ω2) case in the low excitation regime (i.e. |a0⟩ → |g⟩).
In this context the dressed atom picture is very useful to qualitatively understand

EIT. At resonance, a probe photon excites the atom from state |g⟩ up to |e⟩. In the
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2.2. Interaction of light with a three-level atom

Figure 2.5.: Left: level scheme of the bare states of a three-level atom. In the weak
probe limit and at two-photon resonance (δ1 = −δ2 = ∆) the dressed
states |a±⟩ are introduced. When ∆ = 0 these states symmetrically
split around |e⟩ resulting in destructive interference for the |g⟩ → |e⟩
transition. When ∆ ≫ Ω2 the system behaves like a driven two-level
atom consisting of states |g⟩ and |r⟩ with an effective detuning Ω2

2/4∆.

dressed atom picture, however, this photon absorption can only be done via |a+⟩
or |a−⟩ as virtual states. Furthermore, since |e⟩ = 1√

2
|a+⟩ − 1√

2
|a−⟩, the transition

probability amplitudes must be summed up meaning that they may interfere. In

fact, whenever the two-photon resonance condition is met (i.e. δ1 = −δ2) they

interfere destructively. As a result, the atom does not scatter probe photons (i.e. it

becomes transparent) since the probability of photon absorption is zero. In general,

the physical concept behind EIT is that of interference between different atomic

transition paths [37, 38].

Another consequence of this type of interference is the appearance of dark states.

An atom is in a dark state when it does not interact with light (i.e. it cannot absorb

or emit photons). This is always the case for |a0⟩ since it has a zero eigenvalue. It

is nice to realize that in the weak probe limit |a0⟩ → |g⟩ confirming the result from

the discussion above: an atom will remain in the ground state without scattering

photons. Also, notice that Eq. (2.50) does not have a contribution from state |e⟩
meaning that, by spontaneous decay from |e⟩, atoms can populate |a0⟩ and stay

trapped there. This effect is called Coherent Population Trapping (CPT) [39] and,

ideally, |r⟩ must be metastable. This explains why EIT was first observed in Λ−type
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2. Atom-Light Interaction

systems which appear more naturally in hyperfine ground states [40]. Furthermore,

CPT can then be used as a tool to control the population on |r⟩ by a method

called Stimulated Rapid Adiabatic Passage (STIRAP) [41] which, in contrast to a

two-photon π-pulse, relies on incoherent processes.

Fig. 2.6 shows the absorption profiles (i.e. the imaginary part of Eq. (2.48) for a

unity prefactor) for different values of δ2 and Ω2 as a function of the probe detuning

δ1. In the ideal case when γr = 0 full transparency is achieved for any (δ2, Ω2)

pair at δ1 = −δ2. Otherwise, Ω2 needs to be increased in order to approach full

transparency. However, when Ω2 ≫ Γe the absorption profile carries the signature

of an Autler-Townes (AT) doublet and no longer shows the sharp transparency

window with a linewidth smaller than Γe
3. Therefore, one can conclude that EIT,

which is the result of destructive interference between excitation paths, happens

only when |a±⟩ lie within the linewidth of |e⟩. Otherwise, transparency will not be

the result of interference but of Rabi splitting [47].

As mentioned before, when δ2 ̸= 0, the transparency window will move according

to the two-photon resonance condition. Nevertheless, as shown in Fig. 2.6, in

the EIT regime the linewidth starts broadening and becoming asymmetric as δ2

increases (e.g. when δ2 = 0.5Γe). However, when δ2 is too large (≫ Γe) the resulting

absorption profile is that of a two-level atom together with a Raman peak very close

to δ1 = −δ2. On the other hand, in the AT regime, the profile does not change much

for detunings much smaller than Ω2 but for larger ones a Raman peak is similarly

observed. This time, however, the Raman peak broadens and is pushed farther away

due to the larger AC Stark shift which, at the same time, pushes the central peak

to the opposite direction.

The transparency features explained so far can also appear when γr ̸= 0. By

comparing Eqs. 2.31 and 2.48 it can be argued that all transparency features must

be present as long as the coupling field Rabi frequency satisfies

|Ω2|2 ≫ Γeγr. (2.52)

It must be pointed out that this condition accounts for γr = Γr + γd; thus, it

depends on the total decoherence rate. Consequently, any process that broadens

3Additionally, although not shown in Fig. 2.6, the dispersion curve in the EIT regime shows a
very steep slope that can be exploited for different applications [42, 43, 44, 45, 46].

18



2.2. Interaction of light with a three-level atom

Figure 2.6.: Absorption profiles of the lower transition on a ladder-type three-level
atom in the weak probe limit for different (δ2, Ω2) pairs and values of γr.
In spite of γr, transparency can be recovered by increasing Ω2; however,
a too large value (≫ Γe) transforms the EIT into an AT doublet. The
last row shows the dispersive regime where the system behaves as having
two resonance frequencies. The insets better show the area around the
two-photon resonance condition: transparency is achieved exactly when
this condition is met while the Raman peak moves away from this point
due to the AC Stark shift.

19



2. Atom-Light Interaction

the linewidth of |r⟩ (in general, also of |e⟩) can potentially wash out the interference

process responsible for EIT. This behavior is observed throughout Fig. 2.6 where

traces with different colors represent various values of γr in units of Γe.

2.3. Cavity QED

Quantum Electrodynamics (QED) studies the interaction between matter and light

when both parts are described within quantum theory. In this context, the monochro-

matic (single-mode) light field which has been used so far is now described by cre-

ation (â†) and annihilation (â) operators [48]:

Ê = i

√
ℏω
2ϵ0V

(âε− â†ε∗). (2.53)

Where ε is the unit polarization vector and the prefactor i
√

ℏω/2ϵ0V is interpreted

as the single-photon electric field amplitude with the quantization volume V .

When interacting with a two-level atom, following Eq. (2.3), the interaction

Hamiltonian is, after the RWA, given by the Jaynes-Cummings Hamiltonian [31, 49]:

Ĥint = ℏg0(iâ†σ̂− − iâσ̂+). (2.54)

The energy exchange rate g0 = dge ·ε
√

ω
2ℏϵ0V is interpreted as half the single-photon

Rabi frequency.

Furthermore, the energy of the field is given by the Hamiltonian

Ĥf = ℏω
(
â†â+

1

2

)
(2.55)

where the factor 1/2 gives the vacuum energy ℏω/2.

In the present thesis, a single mode of a light field is selected with the aid of

an optical cavity or resonator; hence, the name cavity QED. In what follows, the

properties and equations governing the dynamics between a set of atoms and a cavity

will be described in more detail.
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2.3. Cavity QED

2.3.1. The optical resonator

For the sake of simplicity, this section will be dedicated to linear, near confocal,

cavities4. They are composed of two spherical mirrors aligned on the same axis

(i.e. the cavity axis) facing each other as in Fig. 2.7. The cavity’s length L is

the distance between the mirrors measured along its axis and is nearly equal to the

mirror’s radius of curvature rc. Furthermore, in our case, the transmission of both

mirrors is considered to be equal.

An electric field with a Gaussian intensity distribution is stable or can resonate

inside an optical cavity [50]. It propagates, under the paraxial approximation, as a

plane wave with wavevector k parallel to the cavity axis (z direction). Therefore,

the field can be written as E(x, y, z) = u(x, y, z)e−ikz with

u(x, y, z) =
w0

w(z)
e
− r2⊥

w(z)2 e
i

(
Φ(z)−k

r2⊥
2R(z)

)
(2.56)

and r2⊥ = x2 + y2. As expected, it is observed that the intensity I(x, y, z) ∝
|E(x, y, z)|2 follows a Gaussian function which decreases when moving away from

the focus. This decrease is measured by the beam waist w(z):

w(z) = w0

√
1 +

(
z

zR

)2

(2.57)

where zR =
πw2

0

λ
is the Rayleigh length. Similarly, the field’s wavefront is modified

along z and r being curved like a sphere centered at the origin with radius

R(z) = z

(
1 +

(zR
z

)2)
. (2.58)

Furthermore, in the longitudinal direction, the field differs from a plane wave by

the Gouy phase:

Φ(z) = arctan

(
z

zR

)
. (2.59)

It is important to realize from Eqs. (2.57), (2.58) and (2.59) that the propagation

4However, the methods introduced in this section can be extrapolated to be used for other types of
cavities. In particular, for example, the bow-tie cavity used to generate the blue light necessary
to couple atoms to Rydberg states.
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2. Atom-Light Interaction

Figure 2.7.: Sketch of a confocal cavity of length L and curved mirrors with radius
of curvature rc. A Gaussian shaped standing wave (the fundamental
mode) resonates inside the cavity. Its beam waist increases along the
cavity axis (z-axis) and its radius of curvature R(z) coincide with rc at
the position of the mirrors. Due to the several round trips light makes
inside the cavity, the intracavity power is enhanced relative to the power
coming into it.

of a Gaussian beam is completely defined by the wavelength λ and the beam waist

w0 located at the origin5.

The stability or phase-matching condition for a light field inside the cavity is

constructive interference (i.e. it must repeat itself after a round-trip). Therefore,

for the cavity considered here, this condition translates into R(z = ±L/2) !
= ±rc

and
∫ 2L

0
φ′dz

!
= 2πq with q ∈ Z. While the former equality fixes the beam waist w0,

the latter defines a set of allowed frequencies {νq} which are known as longitudinal

frequencies. In particular, the frequency difference νq+1 − νq = c
2L

is called Free

Spectral Range (FSR).

Other Gaussian beams can also resonate inside the cavity. These are termed

transverse modes and are indexed by the non-negative integer numbers m and n.

In particular, when m = n = 0 the mode is called fundamental. These modes are

described by rewriting Eq. (2.56) as

umn(x, y, z) =
w0

w(z)
Hm

(√
2

x

w(z)

)
Hn

(√
2

y

w(z)

)
e
− r2⊥

w(z)2 e
i

(
Φmn(z)−k

r2⊥
2R(z)

)
(2.60)

where Hm,n is the Hermite polynomial of order m, n. Thus, these indices indicate

the number of nodes that the transverse intensity pattern will show along the x and

5Nevertheless, the beam waist w0 does not necessarily have to be located at z = 0. Consequently,
the change z → z − z0 must be made in Eqs. (2.57), (2.58) and (2.59).
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2.3. Cavity QED

Figure 2.8.: (a) Transverse spatial profiles of resonant cavity modes given by

|umn(x, y, z = 0)|2 (Eq. (2.60)). These are labeled with coordinates
(m,n) locating the fundamental (0,0)-mode at the lower left corner. In
an ideal confocal cavity, transverse modes with the same border color
are degenerate (i.e. resonate at the same frequency νmn

q ) (b) In the near
confocal case this degeneracy is lifted; however, if νmn

q lies within the
cavity FWHM, it is still considered degenerate. Here, for δL/L, the
(1,1)-mode is degenerate but not the (2,2)-mode.

y direction (see Fig. 2.8(a)). In addition, the Gouy phase is modified:

Φmn(z) = (m+ n+ 1) arctan

(
z

zR

)
. (2.61)

The dependence of the Gouy phase on m and n results in a relative phase between

the transverse modes and the fundamental mode after a round-trip. As a result, the

transverse modes have different resonant frequencies (i.e. transverse frequencies)

which complement the set {νq} of longitudinal frequencies. Indeed, imposing the

stability condition together with Eq. (2.61) it is obtained

νmn
q = FSR

(
q +

n+m+ 1

π
cos−1

(
1− L

rc

))
. (2.62)

In the perfect confocal case (L = rc) transverse modes with m+n = even (odd) are

degenerate or resonate at the same frequency νevenq (νoddq ) such that νevenq − νoddq =

FSR/2. As L gets larger the transverse frequencies start shifting until all modes are
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degenerate at the concentric cavity limit (L = 2rc). As will be explained next, due

to the finite lifetime of light inside the resonator, the uncertainty of νmn
q is given by

the FWHM. Therefore, modes can be considered degenerate when their frequencies

lie within a FWHM (see Fig. 2.8(b)).

Another aspect of resonators or cavities is their capacity to store energy. This

characteristic is measured by the Quality factor Q and is dependent on the losses

suffered by the light field after a round-trip inside the resonator. Energy is lost

out of the resonator mode by transmission through the mirrors, by absorption of

an intracavity element (e.g. atoms, non-linear crystal) or scattering due to mirror

imperfections.

Similarly, energy can be input into the resonator by an incident field Ein. In

order to efficiently couple light into the resonator, the Gaussian shape of Ein must be

mode-matched with one of the resonator modes. Additionally, the mirror upon which

Ein reflects is called incoupling mirror while the outcoupling mirror is the one from

which light only leaks out of the cavity. Ideally, each mirror has a reflectivity rj and

transmissivity tj such that r2j+t
2
j = 1. Then, when energy is lost only by transmission

through the mirrors, the phase-matching condition implies rout = rin = r which

results in

Tcav =
Pout

Pin

=
T 2

(1−R)2 + 4R sin2(φ/2)
(2.63)

where T = t2, R = r2 and φ = 2π ν−νq
FSR

. For this thesis it is a good approximation to

consider R ∼ 1 and φ ≪ 1. In this limit, the cavity transmission has a Lorentzian

shape 6:

Tcav =
1

1 + (φ/T )2
. (2.64)

The resonator’s linewidth is then identified as FWHM = FSRT
π
which corresponds

to an inverse lifetime of

τ−1
cav = κ = 2FSR · T. (2.65)

6In general, the light field’s round trip reflectivity is rm = r1r2
√
1− L with L denoting other

losses inside the resonator besides the mirrors. Then, Eq. (2.64) is generalized to

Tcav =
T1T2

(1− rm)2 + rmφ2

and the impedance-matching condition to 1−L = r21. It follows that τ
−1
cav = 2FSR 1−rm√

rm
which

in turn implies F = π
√
rm

1−rm
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Figure 2.9.: Knowing the resonator losses beforehand (Rout), its enhancement can be
plotted as a function of the incoupling mirror reflectivity Rin. The max-
imum enhancement for a given Rout is reached when the phase matching
condition is satisfied (dashed).

The characteristic parameter for optical resonators to quantify its capacity to

store light is the finesse F given by

F =
FSR

FWHM
. (2.66)

By realizing that FSR−1 is the light field’s round trip time, F
2π

= τcav/τrt which

can be interpreted as the light field’s number of round trips before leaving the

resonator. Because of this, the power circulating inside the resonator Pcav = Pout/T

can be larger than T · Pin. To gauge this, the resonator enhancement is introduced
7

Ξ =
Pcav|φ=0

Pin

=
1

T
=

F
π
. (2.68)

In particular, this is an important gauge to consider in the frequency-doubling res-

onator.

7In fact, this value is reached only when the phase-matching condition is satisfied. In general,
but still considering loss due to transmission only, the enhancement is given by

Ξ =
T1

(1− rm)2
. (2.67)

This relation is plotted in Fig. 2.9 for two different outcoupling mirror reflectivities.
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2. Atom-Light Interaction

2.3.2. Atom-cavity Bloch equations

Each mode of the optical resonator or cavity is described by a single creation (ani-

hilation) operator â†q (âq)[33]. As mentioned before, all optical modes within the

cavity’s FWHM are considered degenerate. However, here it will be assumed that

only a single mode is driven and, at the same time, interacts with the atoms.

First, we recall Eq. 2.53 and identify the field frequency as the cavity’s mode

frequency ωc. Also, the quantization volume V is identified as

V =

∫
|ψ(r)|2d3r. (2.69)

Where ψ(r) is a function describing the Gaussian mode resonating inside the cavity.

Of main interest to us is the fundamental mode in a confocal cavity which results in

ψ(r) = (u(r)e−ikz + u∗(r)eikz)/
√
2. In particular, if the cavity’s length L is smaller

than the Rayleigh length zR we have approximately

|ψ(r)|2 = cos(kz)2e−2r2⊥/w2
0 (2.70)

which results in V =
πw2

0L

4
.

Additionally, as mentioned before, the light field in the cavity has a lifetime due

to the non-perfectly reflecting mirrors. On one hand, this means that we can drive

the cavity (i.e. light can enter or feed the cavity mode) which can be described with

the Hamiltonian

ĤD = iη(â− â†), (2.71)

where
(
η
κ

)2
= Ξ Iin

ℏωc
and Iin = 2Pin

πw2
0
. On the other hand, light leaks out of the cavity

through its mirrors. This incoherent process is accounted in the master equation

with a dissipator consisting of the Lindblad operator L̂cav = â with rate γcav = κ.

Furthermore, since we are interested in the interaction of N two-level atoms with

the cavity mode we use, instead of Eq. (2.54), the Tavis-Cummings Hamiltonian

is introduced. Thus, considering a set of N atoms distributed within the cavity we

have

Ĥint =
N∑
j

ℏgj(iâ†σ̂−
j − iâσ̂+

j ). (2.72)

Where gj(r) = g0ψ(r) quantifies the coupling rate of each atom according to its
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2.3. Cavity QED

location in the cavity mode. Then, we can think of an effective number of atoms [51]

Neff =
∫
ζ(r)|ψ(r)|2d3r which actually interact with the cavity. Indeed, considering

the atomic density to be spherically symmetric with a Gaussian distribution as

ζ(r) = ζ0e
−r2/2w2

(2.73)

such that ζ0 = N
(w

√
2π)3

we obtain, together with Eq. (2.70), Neff = ζ0ww
2
0(π/2)

3/2.

Consequently, we can make the changes gj → g0 and N → Neff in Eq. (2.72).

Finally, the atom-cavity system is described by the Hamiltonian

Ĥa−c = Ĥa + Ĥf + Ĥint + ĤD (2.74)

and the dissipators due to spontaneous decay of the atoms and cavity losses following

Eq. (2.21). But, as the Fock space has an infinite number of states, the atom-cavity

density matrix will have an infinite number of components which results in an infinite

set of differential equations. Using the Heisenberg picture one can compactly write

a finite set of equations for the atomic variables; however, the product terms (e.g.

âσ̂z
j , âσ̂

+
j and â†σ̂−

j ) necessary for describing atom-field correlations imply solving

more, in principle, an infinite number of equations.

At this point it is important to introduce the cooperativity parameter

C1 =
2g20
κΓ

(2.75)

which breaks down the atom-cavity dynamics into different regimes according to its

value. In particular, the semiclassical limit is reached when C1 → 0 and Neff → ∞
such that C1Neff is finite [52]. In this limit it is possible to neglect correlations or

entanglement between the field and the atoms, the system’s density operator can be

written as ρ(t) = ρa(t) ⊗ ρc(t). Consequently, taking the expectation values in the

Heisenberg equations, any product term can be separated (e.g.
〈
âσ̂z

j

〉
= ⟨â⟩

〈
σ̂z
j

〉
).
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2. Atom-Light Interaction

As a result, the so called mean-field equations are obtained:

d

dt
⟨â⟩ = −(κ/2− i∆) ⟨â⟩+ g0

〈
σ̂−〉+ η (2.76)

d

dt

〈
σ̂−〉 = −(Γ/2− iδp)

〈
σ̂−〉+ g0 ⟨â⟩ ⟨σ̂z⟩ (2.77)

d

dt
⟨σ̂z⟩ = −Γ(Neff + ⟨σ̂z⟩)− 2g0(⟨â⟩

〈
σ̂+
〉
+
〈
â†
〉 〈
σ̂−〉). (2.78)

Where the collective variables ⟨σ̂±⟩ =
∑Neff

j=1

〈
σ̂±
j

〉
and ⟨σ̂z⟩ =

∑Neff

j=1

〈
σ̂z
j

〉
together

with the cavity detuning δc = ωc − ωge, probe detuning relative to the atomic

transition δp = ωp−ωge and relative to the cavity ∆ = δp− δc have been introduced.

Solving for the steady-state in the weak probe limit, the cavity transmission Tcav

can be calculated as [52]

|⟨â⟩|2

(2η/κ)2
= Tcav =

∣∣∣∣ 1

1− i(2∆/κ+ 2C1Neffχ′)

∣∣∣∣2 (2.79)

where χ′ = i
1−i2δp/Γ

is proportional to the atomic susceptibility. Indeed, one can

rewrite 2C1Neffχ
′ in terms of χ (Eq. (2.30)) and ζ0 (Eq. (2.73)) to obtain [53]

2C1Neffχ
′ = kℓχF/

√
2π (2.80)

where ℓ = 2w is the diameter of the atomic cloud. Therefore, one can notice that the

atomic susceptibility is modified by the cavity through its finesse F . In particular,

the optical density is enhanced by the several round trips (F/2π) made by light or

a photon before leaking out of the cavity.

Interestingly, in Ref. [54] it is shown that the cavity transmission for the atom-

cavity system in steady-state can be derived from fully classical concepts in the form

of Eq. (2.63):

Tcav =
T 2

(1−Re−αℓ)2 + 4Re−αℓ sin2 (Φ/2)
(2.81)

with Φ = ∆
2FSR

+ kℓ
2
Re(χ) and α = k Im(χ) is the atomic absorption coefficient.

Then, Eq. (2.79) can be recovered by assuming that ∆ and the atomic dispersion

are small compared to the FSR; thus, sin(Φ/2) → Φ/2.

For a given empty cavity detuning (δc) the atom-cavity system will resonate

(i.e. store or transmit the most light) at different probe frequencies δp such that
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2.3. Cavity QED

Figure 2.10.: (a) Transmission of a cavity resonant with the atomic transition (δc =
0) as a function of the probe detuning for the cases of an empty cavity
(blue) and with atoms inside (orange) where normal mode splitting
is observed. (b) The atom-cavity system resonates at those probe
detunings δp where the zero-phase condition is fulfilled. Even though
three resonances exist the middle one is highly absorbed by the atoms;
thus, is not transmitted by the cavity

Φ is a multiple of 2π or, equivalently, the zero-phase condition 2(δp − δc)/κ +

2C1Neff Re(χ
′) = 0 introduced in [55] is met. As a result, the cavity spectrum

will show what is called Normal Mode Splitting or Vacuum Rabi Splitting: the sin-

gle resonant peak of an empty cavity splits in two (see Fig. 2.10). In particular, for

the case of a resonant cavity (δc = 0), the atom-cavity spectrum is symmetric on δp

with resonances appearing at

δp = ±g0
√
Neff (2.82)

where it has been assumed that ΩNM = 2g ≫ |κ− Γ/2| with g = g0
√
Neff . At the

same time, the cavity transmission is reduced at these peaks to values of

Tcav =

(
1

1 + Γ/κ

)2

. (2.83)

Under the same approximation, in the non-resonant cavity case (δc ̸= 0) the reso-

nances are located at

δp =
1

2

(
δc ±

√
δ2c + Ω2

NM

)
. (2.84)
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2. Atom-Light Interaction

Figure 2.11.: The behavior of these peaks when δc ̸= 0 is that of an avoided crossing.
The heights of these peaks change accordingly: Tcav → 1(0) for the
mode with frequency closer (farther) to ωc.

Thus, they follow an avoided crossing similar as in Eq. (2.13). On the other hand,

the cavity transmission Tcav → 1(0) for the resonance peak with the same (opposite)

sign as δc (see Fig. 2.11).

2.3.3. Cavity EIT

Even though the cavity interacts or exchanges photons only with two atomic states,

three-level atoms can influence the atom-cavity dynamics. It has been discussed

that, following Eq. (2.79), an atomic ensemble modifies the cavity spectrum via its

susceptibility χ which is, in turn, enhanced by the presence of the cavity through

its Finesse F . Therefore, it is expected for the cavity transmission to be further

modified by the presence of a classical light field coupling the atoms to a third atomic

state. Indeed, in Fig. 2.13 the cavity transmission is plotted as a function of δp for

a cavity resonant with the lower transition (δc = 0). There, a narrow transparency

window clearly appears at the empty cavity resonance frequency location.

In the EIT regime, Fig. 2.13 (a) shows how the transparency window gets smaller

and slightly broadened with increasing γr as expected from the discussion in Sec.

2.2. On the other hand, Fig. 2.13 (b) shows how the transparency peak is shifted

towards δc as Ω2 is increased while δ2 = Γe. This effect, particular of cavity EIT,

is called frequency pulling [56, 57]. By analyzing the zero-phase condition 2(δp −
δc)/κ + 2C1Neff Re(χ

′) = 0 one obtains a relation for the frequency at which the
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2.3. Cavity QED

Figure 2.12.: Energy level scheme for cavity EIT. The cavity exchanges photons with

the lower transition of an atom at a rate ΩNM = 2g0
√
Neff . On the

other hand, the upper transition is strongly driven with Rabi frequency
Ω2 making the absorption paths of the cavity photon to interfere de-
structively; thus, making the cavity transparent to the probe field.

EIT resonance occurs:

ωD =
1

1 + ξ
ωc +

ξ

1 + ξ
ωge (2.85)

with ξ = kℓ
FSR

dχ
dδp

and the dark state frequency ωD.

The situation in cavity EIT is then similar to Sec. 2.2. The main difference

being that this time the lower atomic transition is not driven by a classical field

but, instead, an atomic ensemble exchanges excitations for cavity photons at a rate

ΩNM = 2g0
√
Neff (see Fig. 2.12). As a result, when tuned at the EIT resonance,

the cavity inherits characteristics of the uppermost state |r⟩ since the dark state is

written as

|D⟩ = cos θ |C⟩ − sin θ |r⟩ (2.86)

with tan θ = ΩNM/Ω2 as the dark-state rotation angle and |C⟩ representing a cavity

photon. In particular, when a Rydberg state is used as |r⟩ this can be interpreted as

the appeareance of a quasiparticle called cavity Rydberg polariton [58]. Under this

interpretation Eq. (2.85) is rewritten as the quasiparticle energy relative to ωge:

δD = δc cos
2 θ − δ2 sin

2 θ. (2.87)
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2. Atom-Light Interaction

Figure 2.13.: A narrow transparency window appears on the cavity transmission
when the atoms are coupled to a third state by a classical light field.
In (a) it is shown how the maximum transparency is reduced as γr is
increased for a fixed ΩNM ∼ 7Γe and Ω2 ∼ 0.6κ. The frequency pulling
effect is shown in (b) for γr = 0, ΩNM ∼ 13Γe and δc = 0: the peak
transparency is shifted towards δc as Ω2 is increased.

Aditionally, it has a decay rate given by

ΓD = κ cos2 θ + γr sin
2 θ. (2.88)

In conclusion, the properties (height and width) of the transparency peak from

cavity EIT are closely linked to the parameters from the upper transition. Therefore,

in order to gauge Ω2 and γr, for a given set of data, a least-square fit to Eq. (2.79)

will be performed throughout this thesis. A similar strategy can be found in [53, 57].

2.4. Superradiance

So far in this chapter when considering an atomic ensemble it has been assumed

that atoms act independently of one another. On the other hand, when there are

interactions between the atoms cooperative effects arise. Interestingly, it is not

necessary for atoms to interact directly with each other but photons, for instance,

can act as mediators for an effective interaction to arise [59]. The main focus of this

thesis is on one particular cooperative effect: superradiance.
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2.4.1. Master equation for collective radiative emission

The system considered is that of an ensemble of N two-level atoms with fixed but

random positions Rj, parallel dipoles dge and with the basis
{
|g⟩j , |e⟩j

}
. The

atoms, also, are coupled to the electromagnetic vacuum. Following Ref. [59], this

can be described by an electric field operator in a plane-wave expansion:

Ê(R) =
∑
k

Ek
(
âke

ik·R + â†ke
−ik·R

)
ϵk. (2.89)

Here, a perfectly reflecting cube of arbitrary length ℓ is considered. Thus, k is a

multiple of 2π/ℓ on each Cartesian coordinate and the index k runs over all field

modes: all possible k vectors and polarizations ϵk.

An open-system dynamics approach is then applied to reduce the complexity of

the system. In this approach the field degrees of freedom are traced out leaving only

the atomic Hilbert space of dimension 2N . The resulting collective quantum master

equation for the atomic density operator ρ̂ reads

˙̂ρ(t) = i

[
ρ̂(t),

N∑
j=1

Ĥaj + Ĥdd

]
+ Le [ρ̂] . (2.90)

Here, Ĥaj is the free atom Hamiltonian for the j-th atom while Ĥdd and Le describe

collective coherent and dissipative processes, respectively. As discussed in Sec. 2.1.1

the last term describes irreversible loss of photons into the electromagnetic vacuum

modes and it is defined as

Le [ρ̂] =
N∑

jj′=1

2γjj′

(
σ̂j ρ̂σ̂

†
j′ −

1

2

{
σ̂†
j σ̂j′ , ρ̂

})
. (2.91)

The matrix γjj′ is, in general, non diagonal; thus, it is revealing the collective be-

havior of the atoms. The collective decay rates are 2γjj′ = 3Γe/2F (k0Rjj′) where

Rjj′ = |Rj −Rj′ | and

F (kR) =

(
1 +

(ed · ∇R)
2

k2

)
sin(kR)

kR
(2.92)

with the unit vector ed ∥ dge.
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In order to have a physical picture one may bring the line of thought followed

when discussing EIT: interference between excitation paths. This time, however, we

are dealing with several many-body states decaying to the same continuum (vacuum

modes). If a many-body state is symmetric (antisymmetric) then interference will

be constructive (destructive) resulting in superradiant (subradiant) decay. One can

also notice that, by diagonalizing γjj′ , Eq. (2.91) can be written in the form of Eq.

(2.21) and, thus, it is explicitly showing that there are many independent possible

decay channels.

As explained in [59], the coherent term Ĥdd describes a dipole-dipole interaction

characterized by a virtual exchange of a photon via the vacuum modes:

Ĥdd =
N∑
j,j′

Ωjj′σ̂
†
j σ̂j′ (2.93)

where the sum is between pairs of atoms such that j ̸= j′ and Ωjj′ = −3Γe/4G(k0Rjj′)

with

G(kR) = (1− cos2 θ)
cos(kR)

kR
− (1− 3 cos2 θ)

(
sin(kR)

(kR)2
+

cos(kR)

(kR)3

)
. (2.94)

At first order in R this can be simplified to

G(kR) → 1− 3 cos2 θ

(kR)3
. (2.95)

This coherent term will be further discussed in the context of Rydberg atoms in Ch.

3.

2.4.2. Dicke superradiance

Dicke was the first to introduce superradiance by considering an elementary situation

[14]. This model assumes the case of N atomic dipoles within a very small volume so

as to make them indistinguishable but neglecting their dipole-dipole interactions. In

this context, we can think of all atoms to be in the same position; thus, maximizing

and making all collective decay rates equal: 2γjj′ = Γe. Consequently, a single
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(superradiant) decay channel is open:

Le [ρ̂] = Γe

(
Ŝρ̂Ŝ† − 1

2

{
Ŝ†Ŝ, ρ̂

})
. (2.96)

Here, the collective spin operator Ŝ =
∑

j σ̂
−
j . Additionally, by defining Ŝz =

∑
j σ̂

z
j

one may complete the spin angular momentum algebra by building the operator

Ŝ2 = (Ŝz)2 + (Ŝ†Ŝ + ŜŜ†)/2. Then, together with the collective basis |s,ms⟩ such
that 0, 1/2 ≤ s ≤ N/2 (where 1/2 holds for odd values of N) and −s ≤ ms ≤ s we

have

Ŝ2 |s,ms⟩ = s(s+ 1) |s,ms⟩ (2.97)

Ŝz |s,ms⟩ = ms |s,ms⟩ . (2.98)

As is known for angular momentum algebra the action of Ŝ (Ŝ†) is to decrease

(increase) by 1 the value of ms of a state |s,ms⟩ without changing s. Therefore, the
dynamics governed by Eq. (2.96) happens within a manifold of dimension 2s + 1

with states parametrized by their value of ms.

Let us consider a typical situation, when the initial atomic state is fully inverted:

|ψ(t = 0)⟩ = |s = N/2,ms = N/2⟩. Then, the equation of motion for the population

difference can then be derived to be〈
˙̂
Sz
〉
= −Γe(s+ms)(s−ms + 1). (2.99)

This equation can be rewritten by considering the number of atoms N = Ne + Ng

as constant with the number of excited atoms Ne = s+ms:〈
Ṅe

〉
= −ΓeNe(Ng + 1). (2.100)

This result shows that the decay rate of the atomic ensemble is state-dependent;

thus, it no longer follows an exponential law. At t = 0 the decay rate equals NΓe

as expected for N independent decaying dipoles. However, notice that the effect of

the collective jump operator on ρ̂ is to project it into a large superposition of states

with only one atom in the ground state: it creates correlations between the atoms.

Indeed, this can be quantified as
〈
σ̂†
i σ̂j

〉
= (s2 − m2

s)/N(N − 1) which is ̸= 0 for
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any state with ms ̸= ±N/2 and reaches a maximum at ms = 0 exactly the state at

which the decay rate also reaches its maximum ∝ N2Γe.

In conclusion, this simple example reveals that atomic correlations are the essence

of superradiance. These correlations originate from the indistinguishability of the

dipoles relative to photon emission which makes it possible to describe the system as

an entangled atomic state invariant by atom permutation [26]. From another (more

classical) perspective, one may see superradiance as the buildup of a global dipole

∝ N (where the individual oscillating dipoles are synchronized in phase) resulting

in a radiation rate of N2Γe. In any case, it is the ensemble and not the individual

character of the atoms that plays the fundamental role in superradiance.

2.4.3. Extended ensembles

A more realistic situation is studied in Ref. [60] where an arbitrary distribution of

atoms is considered without conditioning the atoms to be closer than the transition

wavelength. Following a different approach to Eq. (2.90), Ref. [60] compacts all of

the complications due to N cooperating dipoles into a single constant µ. Indeed,

the obtained radiation law is given by

dW

dt
= −µΓe

(
N

2
+W

)(
N

2
−W +

1

µ

)
(2.101)

where W = (Ne − Ng)/2. Notice that, when µ = 1, Eq. (2.99) is recovered. On

the other hand, for µ = 0 the equation describes a set of N independent dipoles

radiating each at a rate Γe. Therefore, the constant µ can be seen as a gauge of

superradiance with respect to the atomic ensemble’s size.

The shape factor or cooperativity parameter µ is a complicated function of the size

and shape of the volume in which the two-level atoms are contained. In particular,

for N ≫ 1 randomly distributed atoms it is given by

µ =

∫
I0(k)Λ(k,k1)dΩk

I0
. (2.102)

Where I0 =
∫
I0(k)dΩk = ℏω0Γe is the total power radiated by a dipole. Also, the
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function Λ is defined with respect to the emission (k) and excitation (k1) wavevector:

Λ(k,k1) =

∣∣∣∣∣ 1N
N∑
j=1

ei(k−k1)·rj

∣∣∣∣∣
2

=
1

V 2

∫
d3x

∫
d3x′ei(k−k1)·(x−x′). (2.103)

In particular, for a spherical homogeneous distribution of atoms of radius R the

cooperativity parameter is given by

µ =
9(sin(k0R)− k0R cos(k0R))

2

(k0R)6
. (2.104)
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3. Rydberg atoms

This chapter introduces the energy structure description of atoms paying particular

attention to states with high principal quantum number n: Rydberg states. First,

it will be shown how large the dipole moments of Rydberg atoms are compared to

the ground state dipoles. As a consequence, Rydberg atoms are very sensitive to

electric or magnetic fields as well as to room temperature Black Body Radiation

(BBR). The effects on the Rydberg atom lifetime is discussed afterwards; also, a

method on how to introduce the Rydberg atom decay into the OBE of Sec. 2.2

is presented. Finally, the chapter concludes by describing long-range dipole-dipole

interactions between Rydberg atoms.

3.1. Dipole moment of Rydberg atoms

The dipole moment between two atomic states was introduced in Eq. (2.5). By

means of the Wigner-Eckart theorem the angular part of the dipole moment can be

factored out leaving only an integral over the radial part of the wavefunctions:

RnL→n′L′ =

∫
RnL(r)rRn′L′(r)r2dr. (3.1)

Here, the dipole selection rules (see Fig. 3.1) are assumed to be fulfilled. Then, it

is easy to realize that the dipole moment is larger for neighboring states as their

wavefunctions can be similar and even larger if one considers neighboring Rydberg

states because ⟨r⟩ ∝ n2. In 87Rb, for example, R5S1/2→5P3/2
= −5.2ea0 compared to

R5S1/2→50P3/2
= −0.0033ea0 and R50S1/2→50P3/2

= 2511ea0 with e the electron charge

and a0 the Bohr radius.

The energy difference between neighboring Rydberg states scales as n−3. Conse-

quently, together with the large dipole moment, Rydberg atoms turn out to be very

sensitive to electric fields as their polarizability scales as n7. Another consequence is
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Figure 3.1.: An atomic transition from state i to k by absorption or emission of
a photon follows (dipole) selection rules. The parity rule specifies that
∆ℓ = ±1 with the orbital angular momentum quantum number ℓ. Sim-
ilarly, the total angular momentum F and J for the hyperfine and fine
structure respectively must obey ∆F = 0, ±1 and ∆J = 0, ±1. Also,
the angular momentum component m along the quantization axis q⃗ can
be changed by ∆m = mk −mi = 0, ±1. Overall, a dipole transition is
named σ±-transition (∆m = ±1 on absorption or ∆m = ∓1 on emis-
sion) or π-transition (∆m = 0) when the photon spin equals ±ℏ or
averages 0, correspondingly. Light polarization for (a) σ+ (b) σ− and
(c) π transitions are shown.

their large (small) transition wavelength (frequency). This makes them a convenient

platform for superradiance as will be discussed more later but also it makes them

susceptible to microwave photons present due to BBR at room temperature.

3.1.1. Total decay rate of a Rydberg state

In order to analyze the effects of BBR on the Rydberg atom lifetime one must first

take into account all other atomic states beyond those that are coherently coupled

by monochromatic light as discussed in Ch. 2. Then, the radiative lifetime τnL of

a given state with quantum numbers n, L is the inverse of the total radiative decay

rate [61]. This is obtained by summing the decay rates (see Eq. (2.23)) over all

n′, L′ states with lower energy:

τ−1
nL =

∑
n′L′

ΓnL,n′L′ . (3.2)

Due to the ω3
nL,n′L′ factor in ΓnL,n′L′ , this sum will have its major contribution

from transitions with higher frequencies (i.e. from transitions to ground states). In

general, by using software packages like the Alkali Rydberg Calculator (ARC) [62]
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3.1. Dipole moment of Rydberg atoms

Figure 3.2.: Transition rates due to spontaneous decay (blue) and BBR (red) for
the 30D5/2 → nP3/2, nF7/2 transitions of 87Rb calculated using ARC.
The rates are normalized to their respective total rate: τ−1

30D5/2
= 38.4

KHz and τ−1
BBR = 17.4 KHz. The software allows also to calculate that

most (84%) of spontaneous decay transitions happen to nP3/2 states
while most (60%) of BBR induced transitions happen to nF7/2 states.

the sum in Eq. 3.2 can be explicitly calculated as shown in Fig. 3.2.

It is known that the rate of stimulated emission (or absorption) of thermal photons

due to BBR is proportional to the spontaneous decay rate of a given transition:

KnL,n′L′ =
ΓnL,n′L′

ehν/kBT − 1
. (3.3)

At room temperature (T = 300K) one obtains a thermal frequency of νT = kBT/h ∼
6 THz or a corresponding wavelength of 48µm. Transitions with frequencies smaller

and up to this order can be achieved with Rydberg atoms and their transition rates

to neighboring states are shown in Fig. 3.2. Then, similarly as with Eq. 3.2, the

decay rate due to BBR from state nL is given by

τ−1
BBR =

∑
n′

KnL,n′L′ (3.4)

where, this time, n′ can go up to infinity. Finally, the total decay rate is written as

ΓnL = τ−1
nL + τ−1

BBR. (3.5)
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3. Rydberg atoms

From the discussion above it is clear that in order to describe atomic decay from

a Rydberg state down to the ground state one may have to consider several inter-

mediate states; thus, decay channels. For this only the atomic populations and the

dissipative part of Eq. (2.21) play a role. As a result, a set of well-known rate

equations of the form [60]

dNi

dt
= −ΓiiNi +

∑
j ̸=i

ΓijNj (3.6)

are obtained. Here, recognizing that the set of quantum numbers for any atomic

state is unique they have been replaced with a single index i. Then, Ni is the

population of state i, Γij is the decay rate from j → i 1 and Γii is the total decay

rate of state i. Finally, it is easy to realize that all of these rate equations can be

written as
dN⃗

dt
= AN⃗ (3.7)

with the vector N⃗ = [Ni] and the matrix A = [Γij] such that
∑

iAij = 0 which

guarantees that there is no loss of atoms.

3.2. Superradiance with Rydberg atoms

Rydberg atoms offer a convenient platform to study superradiance in the context

described in Ch. 2. Indeed, the transition wavelength between Rydberg states is

comparable to the size of an atomic cloud. Nevertheless, at these highly excited

states the enhanced decay rate is induced by BBR and not vacuum fluctuations as

discussed above, unless the atomic system is in a cryogenic environment. Whichever

the case, superradiance in mm-wave transitions has been thoroughly studied in

the context of Rydberg-atom masers [63]; however, its decoherence due to dipole-

dipole interaction has recently received greater attention [29]. This section aims to

introduce and justify the theoretical description used to interpret the data presented

in Sec. 4.

1The state j can be above or below i on the energy scale. This is because BBR stimulates not
only emission but also absorption.
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3.2. Superradiance with Rydberg atoms

3.2.1. Decoherence by dipole-dipole interactions

The interaction potential between two two-level atoms separated by R is given in

Eq. (2.95) as Ĥdd =
∑N

j,j′ Ωjj′σ̂
†
j σ̂j′ . At first order, notice that this Hamiltonian has

no effect on the eigenenergies when both atoms are in the same state. Indeed, since

an excitation is exchanged between the atoms, the mean value of Ĥdd taken over a

pair state |rr⟩ is always zero. Then, one needs to consider second-order perturbation
theory in order to obtain the van der Waals energy shift E between a pair of atoms

at distance R:

E =
C6

R6
. (3.8)

It is in this context that effects like Rydberg blockade or Förster resonances, key for

quantum computation using Rydberg atoms [64], are studied. Next, without going

into much details, the two regimes with different scalings of R that originate are

introduced.

In essence, the pair state under study |rr⟩ = |r⟩1 |r⟩2 interacts via Ĥdd through dif-

ferent channels (i.e. other pair states) denoted as |pq⟩ resembling a two-level system

as depicted in Sec. 2. It was demonstrated in [65] that an avoided crossing indeed

appears and, thus, reveals the two different regimes of the interaction potential: the

resonant (Udd ∝ R−3) regime and the van der Waals regime (Udd ∝ R−6). One can

define a critical distance Rc such that δ = C3/R
3
c in order to draw a border between

both regimes. Here, δ is the energy defect (i.e. the energy difference between two

pair states) and C3 = ⟨r| er |p⟩ ⟨r| er |q⟩ /4πϵ0.
In the present project the state |r⟩ = 30D5/2 is considered. For second order ef-

fects, the most important interaction channels are to the pair states
∣∣32P3/2, 28F7/2

〉
and

∣∣31P3/2, 29F7/2

〉
with energy defects of 4.6 GHz and 6.4 GHz, respectively. Us-

ing ARC one can calculate the critical radii to be ∼ 0.5 µm for both channels. As

will be shown in Ch. 4, the usual interatomic separation used in this work is larger;

therefore, the second order contribution is in the 1/R6 van der Waals regime.

The van der Waals interaction is then considered negligible compared to the first

order contribution, i.e. resonant interaction between pair states |rr′⟩ (r ̸= r′).

Approximating the ensemble as a continuum one finds out that the transition fre-

quency will suffer a density dependent shift called the collective Lamb shift as a

result from the exchange of virtual photons between atoms. This and other shifts

due to resonant interactions has been studied in [66] where due to the large num-
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3. Rydberg atoms

ber of atoms considered a continuum approximation is done replacing the sum over

different atom pairs by an integral. An alternative approach which accounts for the

spatial distribution of atoms; thus, considers the position-dependent dipole-dipole

(DD) interactions is the single excitation regime [67, 68, 69]. Here, the collective

decay rate of the atomic ensemble is diminished by the rapid dephasing or deco-

herence caused by DD interactions on the light-induced dipole. This is revealed by

the excited state inhomogeneous broadened linewidth. For a two-photon Rydberg

excitation similar results are obtained [70, 71] but superradiance is not present.

The DD-induced frequency shift is also dependent on the atomic ensemble ge-

ometry and size relative to the transition wavelength. In a microscopic picture,

the problem of including resonant interactions has been solved exactly for two and

three atoms with specific triangular shapes in [72]. Here, it is remarked that in the

case of two identical atoms Dicke superradiance is preserved and no decoherence

takes place. They argue that, for fixed atomic dipole orientations, the interaction

potential will be the same for both atoms; therefore, no matter how close they are

the situation is unchanged: two (identical) two-level atoms with the same transition

wavelength (as they experience the same potential, the energy shift is the same)

will superradiantly decay. They later show that when the identical atoms premise

is lifted (e.g. different transition wavelengths or more than two atoms), the interac-

tion potential between them suppresses superradiance. Numerically the problem has

been approached with up to five randomly distributed atoms in [73] and for a linear

array [74]. In any case, it is concluded that dipole-dipole interactions diminish the

superradiant decay rate. Further insight is given at the conclusions of [72] where it

is argued that a consequence of pair interactions is the coupling of subradiant states

and the lack of freedom to permute the atom positions without altering the system

(i.e. the frequency shifts experienced by different atom pairs). The latter, is said,

render the atoms to be nonequivalent.

A large step forward on the understanding of this problem was done recently in

[27]. There, a numerical method is introduced that allows to track the problem

for hundreds of randomly distributed atoms. As a result, it is shown that the

superradiant decay rate is not only diminished as the atomic ensemble is less diluted

but that there is a peak decay rate. This point draws a line in atomic density: on

one hand, interatomic distance is short making the dephasing of superradiance to

be dominated by dipole-dipole interactions; on the other hand, the atomic ensemble
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3.2. Superradiance with Rydberg atoms

is diluted enough for the dominant role to be replaced by finite-size effects as in [60]

which states that atoms will start to radiate incoherently as the distance between

them grows larger than their transition wavelength. Furthermore, the competition

of two superradiant decay channels is studied and the complex interplay between

their transition parameters and the number of atoms is discussed.

From another perspective, superradiance can be pictured as the result of inter-

ference between different decay paths [75]. Indeed, it is shown that tracking the

emission of a single photon from a symmetric Dicke state multiple indistinguishable

decay paths appear: a pair of atoms sharing an excitation project the system into a

single state but is impossible to discriminate which atom emitted (two decay paths).

As a result, the radiated intensity is greater than for independent radiating dipoles

with the difference given by interference terms between pairs of decay paths. In fact,

the points of maximum radiation are shown to follow

Imax = Iinc + Ppair
no. |f⟩no. N (3.9)

where Iinc is the incoherent contribution, N is the squared normalization constant

of the Dicke state while Ppair
no. and |f⟩no. are the number of interfering decay path

pairs and final states after a single photon emission, respectively.

For the case of superradiant decay, the first term (Iinc) corresponds to Ne and the

second term (Ppair
no. |f⟩no. N ) to NeNg which then results in Dicke’s result Ne(Ng+1).

Notice that it is the second term that is affected by the cooperativity or shape

parameter µ for an extended atomic ensemble introduced in Sec. 2.4.3. This is not

surprising since µ controls the amplitude of a diffraction pattern formed from the

scattered photons [60]. On the other hand, the Hamiltonian Ĥdd (see Eq. (2.93))

makes pairs of atoms interact via exchange of excitation |r1⟩i |r2⟩j ↔ |r2⟩i |r1⟩j.
Then, pairs of atoms that are coupled by Ĥdd will be dephased relative to other not

so strongly coupled pairs. This would effectively reduce the second term of Eq. (3.9)

since the interference between pairs of decay paths will be dephased. Decoherence

or dephasing by dipole-dipole interactions must also compete with other decohering

sources that inhomogeneously broadens the Rydberg state linewidth γr [76]. In order

to account for this competition a critical radius rc is defined as Ωij = C3/r
3
c = γr

where both rates are equal. This means that if two atoms are closer than rc the

dephasing rate due to Ωij is faster than any other one; thus, a density dependent
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Figure 3.3.: Representation of a set of interacting Rydberg atoms. Superradiant
decay from state |r⟩ to a neighboring Rydberg state |l⟩ is possible as
long as they form a coherent many-body state: a Dicke state (in blue,
dashed lines, shaded region). If the distance z to the next neighbor
is smaller than the critical radius rcr (in red, unshaded) the transition
is tuned out of resonance due to the dipole-dipole interaction potential
Udd(z) making those atoms unable to link to the Dicke state. Effectively,
less atoms take part in the superradiant decay.

decoherence of superradiance should be observed.

We aim to introduce a density dependent factor β that alongside µ reduces su-

perradiance. Although a formal derivation is not presented, β contains the effects

of resonant interactions on superradiance explained above. Since the typical ensem-

ble has randomly distributed atoms, the nearest neighbor probability distribution

W (r) = 4πr2ρe−
4
3
πρr3 is used to describe the number of atom pairs at distance r

instead of considering the exact geometry of the atomic positions. In particular,

given the atomic density ρ, it is most likely that the nearest neighbor of any atom

is at a distance rmax = (2πρ)−1/3.

Next, it is necessary to calculate the ratio of atom pairs P (rc) separated at a

distance smaller than rc. This is obtained by integrating W (r):

P (rc) = 1− e−
4
3
πρr3c . (3.10)

It is these atom pairs that dephase superradiance by reducing the number of in-

terfering decay paths. We are then left with 1 − P (rc) = β as the ratio of atom
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3.2. Superradiance with Rydberg atoms

pairs effectively taking part in the superradiant decay without dephasing due to

dipole-dipole interactions (see Fig. 3.3).
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4. Optical setups and measurements

The present chapter describes the experimental work done for the realization of this

thesis. In regard of the optical setups, major emphasis is given to the blue laser

source and the science cavity setup as they are key elements for the fulfillment of

this project. Nevertheless, the MOT setup (based on the previous one by Math-

ias Mildner) was completely rebuilt from the ground up mainly in order to install

cat-eye lasers and Acousto-Optical Modulators (AOM) in replacement of all lasers

and shutters, respectively. Afterwards, experimental evidence of the phenomena

discussed in Ch. 2 is shown. The chapter is finished by showing the main results

giving the title for this thesis: the use of an optical cavity transmission as detector

of Rydberg dynamics.

4.1. The MOT setup

In this thesis the Alkali isotope 87Rb is the atom of interest. The single valence

electron of Rb has the lowest energy in the ground state 52S1/2. In particular, the

D2 transition structure consists of two (F = 1, 2) and four (F = 0, 1, 2, 3) hyperfine

levels corresponding to the 52S1/2 and 52P3/2 states, respectively. Here, the ground

(|g⟩) and excited (|e⟩) states introduced in the previous chapters are now defined

as the 52S1/2F = 2 and 52P3/2F = 3 hyperfine states, respectively. Furthermore,

each of these constitute a manifold of degenerate (in the absence of magnetic field)

states: the Zeeman states. In App. A it is shown how to take these manifolds into

account for a cavity QED system as discussed in Sec. 2.3.2. Usually an average over

these manifolds is considered throughout this thesis.

In this context, the MOT setup consists of three lasers: the “reference”, the

“MOT” and the “Repump” (Rp) laser. The last two laser’s frequencies (νMOT and

νRp) are stabilized relative to the reference laser frequency (νr) which is, in turn,

stabilized to 87Rb by saturation spectroscopy. Specifically, to the crossover between
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4. Optical setups and measurements

Figure 4.1.: The reference laser frequency is fixed to 133.3 MHz red detuned to the
F = 2 → F ′ = 3 transition of 87Rb. All other laser frequencies are
controlled relative to the reference frequency. Finally, an AOM controls
the optical power of each laser and shifts their frequencies by a constant
80 MHz.

the F = 2 → F ′ = 2 and F = 2 → F ′ = 3 transitions of the D2 line. Therefore,

it has a red detuning of 133.3 MHz relative to the atomic transition of interest (see

Fig. 4.1). The choice of stabilizing the laser to this crossover was made because its

error signal, obtained using a frequency-modulation (FM) technique, has the largest

signal-to-noise ratio.

The stabilization procedure for the other lasers is by a “beat lock”. The RF

signal (beat) resulting by superposing light from the reference laser and another one

(e.g. MOT or Rp) has a frequency equal to the difference between both frequencies

(νRF = |νr − νMOT,Rp|). Then, in order to stabilize νr, an error signal is generated

by means of a linear frequency-to-voltage (f/u) converter 1 with a dynamic range

of 100 MHz and a bandwidth from DC-1576 MHz. In particular, the RF signal

obtained from the Rp laser is beyond this bandwidth (see Fig. 4.1). Thus, after

detection by a fast photodiode, the signal is first mixed with an RF oscillator at

6896.4 MHz and then fed to an f/u converter 2.

The MOT laser optical power needs to be controlled. First, it is amplified by a

1See “Frequenzstabilisierer für Dioden-Laser” Version-3 Nr. 6256 in the electronic workshop.
2The fast photodiode used is a 10GbE SFP+ SR Transceiver model TAS-A2NH1-P11 from For-
mericaOE and the mixer is a MiniCircuits ZX05-153-S+.
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4.1. The MOT setup

Figure 4.2.: An ensemble of atoms is loaded into a MOT and released after a short
flight time (∼ 100 µs) to be used in the experiment. A transversal
cut to the image allows to measure the cloud radius to be ∼ 0.25 mm
containing around 1 million atoms. At the end, only around 104 atoms
are located inside the cavity mode. A larger cloud and longer flight time
were used to measure the temperature to be ∼ 30µK.

tapered amplifier 3 reaching ∼ 500 mW. Then, it passes through an AOM operating

at 80 MHz with an RF power controlled by a Voltage Controlled Attenuator. The

-1 order beam is then coupled into a single mode fiber. On the other hand, the Rp

laser is not amplified (∼ 5 mW) and only passes through an AOM also operating

at 80 MHz but at a constant RF power. The +1 order beam is then coupled into a

single mode fiber.

In the present project one pair of coils separated by a distance of 42 mm with an

inner and outer radius of 22 mm and 56 mm and 6 mm width is used. The base

pressure reached in the chamber is 2× 10−10 mbar. There, the MOT beams have a

beam waist of 9 mm and an optical power of 9 mW each compared to the 2.5 mm

and 5 mW of the Rp beam. Additionally, two 87Rb dispensers from SAES Getters

are used as atomic source and are usually driven between three and five amperes.

Furthermore, a copper rod is positioned in front of each dispenser in order to avoid

ejecting hot atoms directly into the MOT position. The experimental cycle has a

duration of 15 s and starts by turning on the dispensers for 6 s. After the dispensers

are off, the MOT keeps loading atoms for 3 more seconds before the current running

through the coils is turned off. At this moment, a mollasses phase starts lasting

3BoosTA from Toptica
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for 10 ms: the optical power of the cooling beams is reduced to ∼ 30% and the

frequency is changed to reach a detuning of ∆MOT = −65 MHz. This allows us to

obtain a typical cloud temperature of T ∼ 30 µK.

In order to measure the number of atoms and the cloud temperature, absorption

imaging is used. For this, part of the light (∼ 1 mW) from the reference laser passes

through an AOM running at 133.3 MHz making it resonant to the atomic transition.

Additionally, a lens of 75 mm focal length is used for imaging the MOT onto a CCD

camera (Sony XC56) with magnification 1:3. The image taken has 640× 480 pixels

and 8-bit depth. A typical picture taken using this method is shown in Fig. 4.2. The

atom number is measured by summing the optical density across all pixels. Also, a

vertical cut along the peak OD is shown together with the lorentzian curve used to

extract the cloud radius and temperature.

4.2. The blue laser setup

In order to transfer atoms into a certain Rydberg state a two-photon transition is

performed. To make this possible a new laser setup with the appropriate wavelength

had to be designed and built. This section is dedicated to describe this setup. First

of all, notice that the only dipole allowed transitions starting from the 52P3/2 state

are to the nS1/2, nD3/2 or nD5/2 Rydberg states. The corresponding transition

wavelength is 480 nm. This wavelength is produced by frequency doubling a laser

of 960 nm and, afterwards, it is precisely tuned using EIT spectroscopy on a Rb cell

so as to couple a particular Rydberg state.

4.2.1. Frequency doubling cavity

Second harmonic generation (SHG) or frequency doubling is possible due to the

χ(2) non-linearity of a material. Two fields with different wavelengths will then

propagate through the crystal: the pump (λ) and the second harmonic (λ/2). For

the wavelengths considered in this thesis (960 and 480 nm) an LiB3O5 (LBO) crystal

is commonly used. This is a biaxial type of crystal meaning that the refractive indices

along its principal axes (i.e. x, y, z) are all different. In practice, however, nonlinear

effects in this type of crystals are evaluated or considered for light propagating in

the principal planes only.
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Type-I SHG, in LBO, is possible only for wavevectors in the xy or xz principal

planes [77]. In particular, the xy plane is used in this thesis as it is the one offered

by the crystal manufacturer EKSMA. Then, the pump field is linearly polarized

along z while the second harmonic field is linearly polarized in the xy-plane with an

angle φ relative to the x axis. In order for SHG to be efficient, a phase matching

condition must be fulfilled where the refractive index for both fields are equal. For

critical phase matching, the angle φ is varied at a working temperature T (see Fig.

4.3(a)) until the phase matching condition is reached at φ = θpm:

θpm = asin


√√√√ 1

η2zp
− 1

η2ySH
1

η2xSH
− 1

η2ySH

. (4.1)

The temperature dependence of the refractive indexes correspond to those given in

[78]. On the other hand, non-critical phase matching requires temperature to be

changed. However, a temperature well above 100 ◦C is required. For this project,

critical phase matching is chosen in order to avoid temperature perturbations to the

optical cavity in which the LBO crystal is located. Then, a working temperature of

25◦C is chosen since it is closer to room temperature. Consequently, the manufac-

turer was required to prepare the crystal at a cut angle ϕ = 18.4◦ (see Fig. 4.3(b))

so that, in practice, we have normal incidence of light on the crystal. Addition-

ally, Fig. 4.3(b) shows how the working temperature needs to be changed in order

to excite different Rydberg states (i.e. change the pump wavelength). Finally, to

minimize back reflection, antireflection coatings for 960 nm were deposited on the

crystal faces of dimensions 3× 3 mm.

Further parameters to take into account for the efficiency of SHG are the ones

characterizing the fundamental Gaussian beam such as power and beam waist as

well as the crystal length. The importance of the former is straightforward to justify

as the power of the frequency-doubled field PSHG is given by

PSHG = γP 2
in (4.2)

where Pin is the power of the fundamental field and γ is the crystal conversion

efficiency [79]. In our case, high light powers are achieved by using a TA Pro from

Toptica which can deliver at most 2 W with a wavelength range from 955 up to
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Figure 4.3.: The phase matching condition for SHG is fulfilled at the angle φ = θpm.
At this angle both, pump and second harmonic fields, travel through
the crystal with the same refractive index. Therefore, θpm depends on
temperature.

980 nm controlled by a diffraction grating. Moreover, the maximum possible Pin,

though limited by the LBO damage threshold, is enhanced by putting the crystal

inside a resonator mode. At the same time, the cavity geometry will define the

beam waist of the fundamental field which, in principle, needs to be close to the

optimal waist defined by the crystal length [80]. Considering a crystal length ℓ = 15

mm (offered by the manufacturer) and following [81] a focusing parameter f = ℓ/b

where b = w2
0kp is the confocal parameter with w0 and kp are the pump beam waist

and wave number, respectively. In [81] an optimum focusing parameter ζm(B) is

defined which depends on the double refraction parameter B = ρ ℓkp
2

where ρ is the

walk-off angle (see Fig. 4.4) which is the angle between the residual pump beam

and the second harmonic beam. As a result, the optimum beam waist is estimated

to be w0 = 38 µm.

The resonator used is a bow tie type cavity consisting of four mirrors 4: 2 concave

and 2 plane folded as shown in Fig. 4.5. The mirrors sit on an Invar 36 plate

of 230 × 160 mm and 30 mm thickness surrounded by a plastic cover. Also, in

order to control the cavity length, one of the plane mirrors is glued to a piezo

transducer 5 while the crystal is located within the short space of length L1 = 65

4Highly reflective (R > 99.9%) at 960 nm and highly transmissive (R < 2.5%) at 480 nm from
Laseroptik.

5P-010.00H PICA from PI Ceramic.
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Figure 4.4.: The walkoff angle as a function of the phase matching angle θpm. The
second harmonic beam is tilted by an amount given by the walkoff angle
ρ relative to the pump beam.

mm between the curved mirrors. In total, the roundtrip length Lrt = 215 mm but,

since the crystal refractive ηϕ = 1.58 must be accounted for the applicable length,

the resulting FSR = 1.34 GHz. Also, the relatively small folding angle θ = 15◦ is

selected to avoid a too large ellipticity of the resonator mode at the center of the

crystal. Indeed, the expected transversal and sagital beam waists are wx
0 = 41.9 µm

and wy
0 = 43.2 µm, respectively.

Inside the cavity, Pin in Eq. 4.2 must be replaced by the intracavity power Pcav.

The latter, in the ideal case scenario, is amplified by the cavity enhancement Ξ

discussed in Ch. 2. In reality though the present case is non ideal: mirrors scatter as

well as absorb (i.e. R+T ̸= 1) and, furthermore, the input beam may be considered

to not perfectly match the cavity mode. In any case, the phase matching condition

guarantees the largest enhancement for a given round-trip loss. Then, following

the crystal specifications and mirror nominal reflectivity of 99.9% (in practice, can

be higher) given by the manufacturers, under perfect phase matching the incoupler

transmission must equal 0.5% which would result in F = 603 and Ξ = 192. However,

preventing for possible higher round-trip losses 6, the incoupler reflectivity is chosen

to be Rin = 98.5% below the optimum value. This defines a lower bound for F = 208

and Ξ = 66 under perfect phase matching.

The characterization of the cavity was estimated experimentally by driving it with

6Smaller than nominal mirror reflectivities due to a higher scattering rate (e.g. dust on the
mirrors), pump depletion due to the SHG and crystal degradation.
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4.2. The blue laser setup

Figure 4.6.: The piezo of the bowtie cavity is ramped across the fundamental mode
resonance peak in 10 ms. (a) From this peak one can estimate the
FWHM from its definition. (b) The same peak with a smaller scale
allows to observe more clearly the pair of small peaks corresponding to
the 20 MHz modulation of the laser frequency. These peaks allow to
calibrate the time axis to frequency units.

Figure 4.7.: Measured (blue) and expected (orange) spectrum of the bowtie cavity
on reflection. The difference between them is argued to be due to im-
perfect mode-matching. An effective cavity enhancement can then be
calculated.
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the lowest possible power so as to avoid heating effects and pump depletion. The

measured resonance peak of the fundamental mode is shown in Fig. 4.6 where the

inset is a zoom to better show the calibration peaks. These are part of the PDH

setup to control the cavity length and their frequency difference is a known constant

parameter. Therefore, it is used as frequency calibration of the time axis. In this

way, the resonance peak was measured to have a FWHM = 5.7 MHz corresponding

to F = 237 which would, in turn, correspond to Ξ = 87 by virtue of Eq. 2.67.

However, the expected reflected spectrum is compared with the measured one and

shown in Fig. 4.7. The higher reflected power measured is assumed to be due to

imperfect mode matching 7; therefore, an effective enhancement is calculated to be

Ξ = 1−Iexp
1−Ith

= 50.

The SHG efficiency is also estimated experimentally. For this, the outcoupling

mirror transmissivity was previously measured to be 0.01%. Then, by measuring

the transmitted power out of this mirror, Pcav is estimated. However, since 480 nm

light is simultaneously outputted, a dichroic mirror (DMLP650 from Thorlabs) is

used to separate both wavelengths. Furthermore, the reflectivity and transmissivity

of this dichroic mirror is also measured at both wavelengths allowing a more precise

value of Pcav and PSHG to be estimated. The resulting curve obtained as a function

of intracavity power is shown in Fig. 4.8 together with a fit to Eq. 4.2. From it the

conversion efficiency is estimated to be γ = (1.09 ± 0.43) × 10−4 W−1. At higher

values of Pcav, its depletion is taken into account by fitting a line which resulting in

a proportionality factor of 1.3× 10−2 between Pcav and PSHG.

Due to the high optical powers reached inside the cavity, the effects of temperature

drifts on the optical components produce a non linear effect on the cavity spectrum.

Indeed, it was observed that the resonance peak is pushed farther away the greater

Pcav is; thus, making it difficult for the servo loop to stabilize the cavity length. In

the context of ring nanocavities, Ref. [82] shows that this non linear effect is due to

thermal expansion and to the dependence of refractive index on temperature. Nev-

ertheless, they also show that the frequency pulling can be engineered by calibrating

the thermal dissipation response between the nanocavity and its surroundings. In

our particular case, taking the crystal out of the cavity this effect is not seen meaning

7This can be considered to be a good approximation because the beam profile out of the TA Pro
is not perfectly gaussian and, evenmore, its ellipticity is not shaped before the cavity: a single
lens is used.
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Figure 4.8.: Generated optical power by SHG at 480 nm dependence with the in-
tracavity power Pcav. A quadratic function is fitted to this data in order
to estimate the conversion efficiency. A linear fit is used for the higher
power cases in order to account for pump depletion.

that the leading role is taken by the crystal on this matter.

Unfortunately, LBO thermal response is slow (see App. B) meaning that heat can

accumulate for a long time inside the crystal before dissipating to the outside which

finally results in greater thermal expansion. Therefore, the crystal thermal coupling

to its surroundings had to be engineered and the final design that worked best is

shown in Fig. 4.9. The crystal is surrounded by a copper plate acting as a heatsink

with its temperature controlled by a Peltier element. A silver heat paste of 50 µm

thickness and a thermal conductivity of 10 W/m ·K is used to join the crystal with

the copper plate. Then, the other side of the Peltier element is connected to another

heatsink which is conveniently manufactured to fit into a mirror mount 8 allowing

us at the same time to finely adjust the crystal orientation.

4.2.2. EIT spectroscopy on a Rb cell

In order to tune the wavelength of the coupling laser to a particular Rydberg state

EIT spectroscopy is performed on a Rb cell. As explained in a previous chapter,

at two-photon resonance the lower transition shows a transparency window which

can be much smaller than Γe. This property can then be exploited by using the

8KS05 from Thorlabs
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4. Optical setups and measurements

Figure 4.9.: A Peltier element is glued to copper devices. One is used as heatsink
for the Peltier element as well as to be mounted into a mirror mount in
order to tilt and rotate the crystal. The other, smaller, copper device
serves as heatsink for the crystal. A silver heat paste is used to join the
crystal with this device.

PDH method to generate a very steep error signal out of this resonance peak. An

example is shown in Fig. 4.10 together with the optical setup used. First, the

elliptical beam out of the bow tie cavity is collimated with a lens of focal length

f = 200 mm and then transformed to a circular profile of beam waist w0 = 1 mm

by using an anamorphic prism pair. At this point the optical power for this beam

is ∼ 300 mW. On the other hand, the Rb cell is heated at 25 ◦C by winding wire

around it with a constant current. The wire is folded so that current flows in both

directions; thus, magnetic fields are cancelled. The cell is positioned between two

dichroic mirrors that allow the probe and coupling beams to counter propagate along

the same path through the cell. The probe beam comes directly from the reference

laser after passing through an EOM 9 driven at 19.65 MHz and is finally detected

by an avalanche photodiode 10.

With the aid of a wavemeter the lasing frequency of the TA Pro is measured while

observing the EIT peaks. The observed peaks can then be labeled to a Rydberg

state by following Ref. [83]. Nevertheless, since ∆p = −133.3 MHz, the coupling

frequency must be blue detuned in order to fulfill the two-photon resonance condi-

9PM7-NIR 20 from QUBIG.
10APD130A/M from Thorlabs.
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4. Optical setups and measurements

tion. Furthermore, the Doppler shifts must be accounted for because both beams

have different wavelengths. Indeed, there is a particular velocity class with speed

v = ∆p/kp that makes the photon to be resonant with the lower atomic transi-

tion. Then, in order to fulfill the two-photon resonance condition, the coupling

frequency ωc must also have a detuning ∆c = kcv which equates to ∆c = (λp/λc)∆p.

In our particular case, the coupling beam would then have a frequency such that

∆c = 1.62 × 133.3 = 216 MHz. Finally, a telescope is used to focus the beam on

an AOM which is driven at this frequency. As a result, the coupling field is set to

be resonant with the upper atomic transition and, at the same time, its power is

controlled.

4.3. The science cavity setup

A picture of the cavity used in this thesis is shown in Fig. 4.11. It is a confocal

cavity with mirrors of a radius of curvature rc = 50 mm and equal nominal reflec-

tivity R = 98.5%. Consequently, the space between the mirrors has a length of

50 mm corresponding to a FSR = 3 GHz. Each, odd and even transverse modes

are degenerate and separated by exactly FSR/2. In order to control the cavity

frequency, a cylindrical piezo of low capacitance (10 nF) is glued between one of the

mirrors and its mount. On the other hand, the second mirror is directly glued to its

mount; however, both mounts are screwed to the same stainless steel bar of 240×30

mm and 7 mm thickness. A circular hole of 20 mm radius is made in the center

between the mirrors to allow the propagation of the MOT beams. In addition, two

plane mirrors are located outside the cavity right next to each curved mirror. These

fold the incoupling and transmitted beam to make them enter and exit the vacuum

chamber. Finally, as seen in Fig. 4.11 the steel bar sits on the lower MOT coil by

means of three steel spacers.

In order to control the cavity detuning δc (i.e. ωcav) the PDH method is applied.

For this, a laser of 786 nm (“lock laser”) is installed. This wavelength was chosen so

as to be off resonant to any atomic transition in 87Rb as well as for convenience since

the diode is easily available. This choice though brings the difficulty that it is not

possible to stabilize this laser by using spectroscopy. Thus, an alternative method

is used which involves incorporating a highly stable cavity made out of Ultra Low
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4.3. The science cavity setup

Figure 4.11.: Standing wave cavity used in this project. The beam out of a fiber
containing the “lock” and “probe” light is shaped to mode-match the
cavity. Reflected light is accessed by means of a beam splitter and both
wavelengths are separated with a polarizing cube so that only lock
light is detected by an APD. The atomic cloud is situated inside the
cavity mode and is driven by two counterpropagating beams crossing
the cavity transversally.

Expansion (ULE) glass to which the lock laser frequency is stabilized.

In order to have control over the cavity frequency, part of the lock laser light is

coupled into a fiber EOM driven by a 2.1 GHz signal generator 11. As a result,

sidebands are created whose frequency distance can be controlled by almost a full

FSR by tuning the signal generator frequency. Another “probe” field resonant to the

atomic transition is simultaneously coupled into the cavity (see Fig. 4.12). Monitor-

ing the cavity transmission while ramping its piezoelement one can simultaneously

observe the probe resonance peak and one of the lock laser’s sidebands PDH signal.

By changing the EOM driving frequency one can displace the error signal closely

on top of the probe resonance peak. Furthermore, to facilitate the discrimination

of lock light in transmission, the chosen sideband drives the TEM01 mode while the

probe drives the fundamental TEM00 mode. The sideband frequency can then be

finely tuned by closing the feedback control loop and ramping the full range of the

probe field frequency in 1.5 ms. Note that, from a previous measurement, the time

axis is known as a function of probe detuning δp = ωp − ωge. Then, a least-square

11NIR-MX800-LN from IxBlue and Rigol DSG821
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4.3. The science cavity setup

fit to Eq. (2.79) can be done on the measured transmission peak in order to obtain

a value of δc = ωcav − ωge. A sample of values is collected after which a mean value

is calculated and compared to the desired one in order to change the EOM driving

frequency accordingly. In this way, ∆c is adjusted with an uncertainty of 0.4 MHz

given by the standard deviation. Finally a FWHM = 13.4 MHz is measured from

the fit corresponding to a lifetime τ = 12 ns and a finesse F = 213.

An extra factor which affects the long-term stability of δc is temperature. Al-

though details about the ULE cavity are not well known, its temperature is con-

trolled to be at 30 ◦C. The science cavity, however, does not have any control over

this parameter. As a result, due to temperature drifts around the chamber, it was

observed that the value of δc drifted around 5 MHz on the order of hours. This

was done by periodically measuring δc. The major problem with this was the corre-

sponding voltage drift of the cavity piezoelement as will be explained later.

The signals of interest that are to be measured correspond to the transmitted

light through the cavity. These are then compared with Eq. (2.79). For this, the

measured signal is normalized with respect to the fitted peak voltage obtained by

measuring the empty cavity resonance peak. This is a valid procedure for a non

impedance matched cavity as well as one with non-ideal mirrors because, in any

case, Eq. (2.79) is multiplied by a constant value. Nevertheless, the ratio of both

lock and probe light are similarly transmitted through the cavity; however, only

probe light is of interest. Thus, in order to discriminate it, an interference filter (IF)

and a single mode fiber are used. While the former discriminates wavelength, the

latter selects the fundamental transversal mode only. As a result, enough lock light

to produce an error signal can be used while detecting just a small portion of it. In

particular, this is detected with the most sensitive detector used (APD440A from

Thorlabs).

As already mentioned, a probe field is used to drive the cavity. At the same time, a

“pump” field travelling transversal to the cavity is needed for the Rydberg excitation.

In the present work, probe and pump come from the same laser, stabilized by a beat

with the reference laser. Each field is frequency shifted and switched using its own

AOM. Consequently, the relative detuning between both fields (δ1 − δp) is limited

by the bandwidth of the AOMs. Finally, the transversal profile of the pump beam

is shaped with a cylindrical lens in order to almost match the cavity mode profile.

Similarly, the coupling beam is also shaped with another set of cylindrical lenses and
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4. Optical setups and measurements

Figure 4.13.: Energy level scheme for three-level atoms inside a cavity. The cav-
ity exchanges photons with the lower transition of an atom at a rate
ΩNM = 2g0

√
Neff . On the other hand, the upper transition is strongly

driven with Rabi frequency Ω2 making the absorption paths of the
cavity photon to interfere destructively; thus, making the cavity trans-
parent to the probe field.

travels in the opposite direction of the pump beam. At the end, both beam waists

at the MOT position are of similar size parallel to the cavity axis wr ∼ 700 µm and

wz ∼ 125 µm.

4.4. Normal mode splitting and EIT

The central point of the experimental setup is an atomic cloud positioned inside

a cavity mode like the level scheme shown in Fig. 4.13. For this, the center of

the MOT is shifted by the homogeneous field produced by the MOT coils and

the compensation coils outside the vacuum chamber. First, a coarse adjustment is

realized by loading an atomic cloud of large size while the cavity is resonant with

the atomic transition and contains a large number of photons. As a result, with

the aid of a CCD camera monitoring the MOT fluorescence, that part of the cloud

which is inside the cavity mode is blown away due to radiation pressure. Then, the

MOT position is optimized by switching on the probe laser right after the cloud

preparation is finished and taking absorption images after a few microseconds time

of flight. Finally, a finer adjustment is reached by reducing the MOT size close to

the one that is finally used.
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4.4. Normal mode splitting and EIT
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Figure 4.14.: Measured transmission spectra when atoms are located inside the
cavity mode for different cavity detunings δc and intracavity photon
numbers: ∼ 2 in (a) and ∼ 200 in (b). In both cases the transmission
T is normalized to the respective peak empty cavity transmission: blue
represents T = 0 while yellow T = 1. The purple curve corresponds to
Eq. 2.84 with ΩNM = 18 MHz taken from a fit to (a) when δc = 0.

At this point the cavity transmission spectrum shows the expected normal mode

splitting. The overlap between MOT and cavity mode is then given a final ad-

justment by maximizing the frequency separation between the peaks for a resonant

cavity. In general, the position and height of the normal mode peaks depend on

the cavity detuning δc. The expected behavior is that of an avoided crossing, as

observed in Fig. 4.14. There, measurements were taken for two different intracavity

photon numbers in order to show that non linearities due to atomic saturation are

not present in any case.

The number of atoms interacting with the cavity can be estimated by making a

fit of the measured spectra to Eq. 2.79. A value of g0 = 2π × 207 kHz is calculated

from a cavity mode volume of V = 2.7×10−10 m3 corresponding to the fundamental

mode. Furthermore, an average Clebsch-Gordan coefficient (0.48 for π−transitions)

over the equally populated ground states is accounted in this calculation. After

this, the effective number of atoms interacting with the cavity is determined. For

example, for the cloud shown in Fig. 4.2 a value of Neff = 104 is obtained. In

comparison, given the mode waist together with the cloud radius and total atom

number extracted from this figure, Neff = 1.28× 104 should be expected.

The transverse beams are aligned along the same axis crossing the atomic cloud

67



4. Optical setups and measurements

Figure 4.15.: The transparency window width and height dependence of cavity EIT
on Ω2. (a) Empty cavity spectrum (blue) and with atoms inside (or-
ange). In this context, the transparency window dependence is shown
in (b). The various colors represent different values of coupling Rabi
frequency Ω2. The traces here are averages of five measurements.

and the cavity axis. This is done by first optimizing the coupling beam path so

that it allows the observation of cavity EIT. Due to the large difference between the

beam waist in the cavity (on the order of 100 µm) and the large distance (∼ 10

cm) to the last mirror a fine threaded screw is used for adjustment. Finally, the

pump beam is made to overlap the coupling beam by maximizing the transparency

window observed in free space EIT.

The cavity EIT spectrum is used for alignment of the coupling beam because the

transparency window width and height depend on Ω2. Then, as the beam has a

Gaussian profile, the maximum intensity (thus, Ω2) is located at its center. After

this beam is properly adjusted, its optical power was changed in order to observe

how the transparency window changes. These measurements are shown in Fig. 4.15.

There, even though at higher values of Ω2 the EIT peak is taller, its width increases.

Nevertheless, the peak position on the frequency axis ∆p and the actual height of the

peak changes in each experimental cycle. For that reason, up to ten measurements

were taken and each was fitted to Eq. 2.79. From this set of data, the mean and

standard deviation were the values actually considered.

In Fig. 4.16 (a) two cavity EIT spectra are shown for equal Rabi frequency Ω2

coupling the 5P3/2 state to the 30D5/2 Rydberg state. The difference between these

plots is due to different values of the Rydberg state dephasing rate γr discussed
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4.4. Normal mode splitting and EIT

Figure 4.16.: (a) Cavity Rydberg EIT spectra with two different values of the de-
phasing rate γr as obtained from the fit. (b) When the cavity piezo
voltage drifts too much what used to be a single transparency window
turns into three. This is due to the Stark effect and is shown for two
different electric field strengths. All traces here were taken in the same
experimental conditions, the values shown are the fit results.
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4. Optical setups and measurements

Figure 4.17.: Free space EIT under the experimental conditions of Sec. 4.5 for
∆2 = 0 and 31.8 MHz. Here though, the large detuning is done by
using one of the sidebands resulting from the EIT spectroscopy on a
cell. Therefore, keeping Ω2 constant in contrast of Fig. 4.19 where the
detuning was done by changing the AOM frequency.

in Ch. 2. These values are obtained by making a least-square fit to Eq. (2.79)

with the atomic susceptibility given in Eq. (2.48). It was observed that γr was

correlated with the piezo voltage. In fact, at some point the observed transparency

window is splitted in three (see Fig. 4.16 (b)). These correspond to the three

|mj| = 1/2, 3/2, 5/2 states interacting with an electric field: the Stark effect. Here,

the piezo is identified as the source for this field. A closer look to it revealed that

the piezo was directly glued to the mirror mount. Consequently, it may be expected

that there is a (bad) connection between the inner side (positive connector) of the

piezo and the mirror mount which produces stray electric fields around the atoms.

However, this is uncertain since the observed behavior was that the higher voltage

across the piezo, the less dephasing. Then, as long as the piezo voltage is constant

this stray electric field is “under control” since the dephasing rate γr would be

constant. However, the cavity temperature drifts change the piezo voltage within

hours limiting the time window to do an experiment under the same conditions.

Trying to use the lower MOT coil as a heater on the last seconds of the experimental

cycle was not successful.

Finally, the pump beam path is adjusted by observing EIT in free space: the lower

transition is driven by the pump and not the intracavity field. This was the chosen

procedure because the transparency window width and height depend on the overlap
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4.5. Optical cavity as detector of Rydberg dynamics

between Ω1 and Ω2. The observations are shown in Fig. 4.18 for different values

of Ω2 and in Fig. 4.19 for varying ∆2. There, one can observe both Autler-Townes

splitting and EIT as discussed in Sec. 2.2.3. In particular, it is remarked that with

a detuning ∆2 = 31.8 MHz (used for the results shown in Sec. 4.5) two-photon

Rydberg excitation is shown to be possible (see Fig. 4.17 (b) and 2.6).

4.5. Optical cavity as detector of Rydberg dynamics

The cavity transmission has been previously used as detector of atom dynamics. In

Ref. [84] it was used to observe the expansion of an atomic ensemble trapped in the

optical lattice of a standing wave cavity. Also, in Ref. [85] precise measurements of

the atom number fluctuations during evaporative cooling were performed using the

same method. Finally, in Ref. [86] a dynamical phase transition was monitored by

using light transmitted through the cavity.

In this work real-time detection of Rydberg dynamics is performed by exploiting

the atom number dependence of the collective atom-cavity coupling ΩNM . Indeed,

Neff accounts for those atoms that interact or exchange photons within the cavity

mode unlike those which are excited to a Rydberg state. These are effectively off-

resonant with respect to the cavity photons and, therefore, must be substracted

from Neff . Monitoring of Rydberg dynamics has been reported in [87, 88] without

the use of a cavity.

In order to have a theoretical model to support the measurements the three-

level optical Bloch equations are joined with the atom-cavity system. For this, the

adiabatic approximation is recalled: whenever a bipartite system is governed by

two different timescales, the full system dynamics can be described by the faster

system eigenstates following the slower one. This is a procedure typically used in

a cavity QED context in the so-called bad cavity regime where the cavity field is

adiabatically eliminated. Here, this field is considered to reach its steady-state in a

timescale κ−1, much faster than the processes responsible of changing ΩNM ; in the

present case: Rydberg dynamics, which is on the order of µs.

By following the discussion above, the cavity steady-state depends on the Rydberg

dynamics via Neff . Then, time-dependent Neff(t) is defined as

Neff(t) = Neff(Pg(t) + Pe(t)) (4.3)
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4. Optical setups and measurements

Figure 4.18.: Free space Rydberg EIT spectra. The coupling beam is focused (w0 =
200 µm) on the atomic cloud after which the transparency window is
observed on the weak probe light. With ∆2 = 0, Ω2 is varied from
values greater than Γe so that Autler-Townes splitting is observed (top
left) and, as it is decreased to values smaller than Γe EIT is finally
observed (bottom left). Here, the probe detuning is scanned from +45
to -45 MHz in 1.5 ms.
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4.5. Optical cavity as detector of Rydberg dynamics

Figure 4.19.: Under the same conditions of Fig. 4.18 ∆2 is varied. The coupling de-
tuning is controlled by the RF driving the AOM which, however, does
not keep the same optical power for each detuning; thus, Ω2 also varies.
Though the coupling beam angle after the AOM is also affected, care
was taken to tilt the last mirror before the chamber horizontally every
time. Nevertheless, at two photon resonance, transparency is observed
and, at large detunings a second absorption deep corresponding to Ry-
dberg excitation appears.
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4. Optical setups and measurements

together with Pg(t)+Pe(t)+PRy = 1. Here, Pg,e,Ry(t) is the probability for an atom

to be in the ground, excited state or any other state, respectively. In particular,

these can be the numerical solution of the three-level optical Bloch equations.

For this adiabatic approximation to be valid, the excited state must not influence

the system dynamics. Thus, the low excitation regime or the effective two-level

model as discussed in Sec. 2.2 must be fulfilled. Otherwise, the excited state pop-

ulation will make the system to decay or reach a steady-state faster since Γe > Γr.

Therefore, for this experiment, the detuning δ1 must be made large enough. On one

hand, the RF frequency driving the AOM of the blue laser can be changed up to 30

MHz but at the cost of reducing the Rabi frequency to 30 %. On the other hand,

one could use one of the sidebands generated by the EOM on the probe beam used

on the Rb cell. Since the EOM is driven at 19.61 MHz this would translate to a

coupling detuning δ2 = 1.62 × 19.6 = 31.8 MHz (see Sec. 4.2.2) in vacuum with

the advantage that the Rabi frequency is unchanged. This is the largest value that

can be attained but, as shown before, it is enough to generate Rydberg excitation

at two-photon resonance.

Since δ2 is in this way fixed, δ1 can be chosen appropriately to fulfill the two-

photon resonance condition. This, in turn, limits the probe detuning δp driving the

cavity because of the used setup. Indeed, as explained before, the difference between

δ1 and δp is varied by the driving frequency of two AOM: one fixed at 80 MHz and

the other one variable. A difference δ1− δp = 7.8 MHz was chosen which then limits

the tuning of g0
√
Neff to ∼ 20 MHz. This is in order to probe the cavity on the

slope of one of the normal mode peaks which allows to observe changes of Neff .

Another factor to consider for the Rydberg dynamics timescale is the dephasing

rate. This is because, in the present case, population transfer into a Rydberg state

relies on a coherent effect: Rabi oscillations. Indeed, within a Rabi period the

atomic state is a superposition of |g⟩ and |r⟩. Thus, a faster decay rate of the

coherences (antidiagonal terms of ρ̂) will result in a less efficient Rydberg excitation.

Furthermore, it is possible to derive a condition that the different parameters must

fulfill to observe Rabi oscillations:

Ω2
2

Γe

>
Ω1Ω2

2∆1

> γd. (4.4)

Here is shown that γd sets the lower limit for the effective two-level Rabi frequency
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4.6. Decoherence of Rydberg superradiance

Figure 4.20.: (a) Measured cavity transmission spectra: empty cavity (blue), atom-
cavity (orange) and cavity EIT (yellow). (b) The cavity transmission
increases when the transversal beams are off due to optical pumping.
This effect is treated as a systematic error by using this trace as refer-
ence.

Ωeff and Ω2
2/Γe which can be interpreted as the pump rate from |e⟩ to |r⟩. In

the present case, Ωmax
eff = 0.466 MHz and Ω2

2/Γe = 9.6 MHz meaning that Rabi

oscillations wont be observed as γd = 0.65 MHz. Similarly, from the two-level

effective model perspective, the ratio of excited atoms depend on the difference

between Stark shifts from Ω1 and Ω2. In the present work, being Ω2 fixed, the

excitation efficiency is only controlled by the optical power of the pump beam (i.e.

Ω1).

4.6. Decoherence of Rydberg superradiance

The cavity transmission spectra corresponding to the experiment performed were

taken with an avalanche photodiode of 10 MHz bandwidth and are shown in Fig.

4.20 (a). These traces are then fitted to Eq. 2.79 and the extracted parameter values

are shown in Table 4.1. In particular, it is remarked that there is a slight cavity

detuning ∆c = −1.3 MHz.

As explained before, the cavity is driven with a constant detuning ∆p = 24 MHz.

Without turning on the transversal beams yet, the cavity transmission follows the

optical pumping between the Zeeman states (see App. A). In Fig. 4.20 (b) an av-

erage from ten of these time signals is shown. This effect is treated as a systematic
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4. Optical setups and measurements

Empty cavity Atom-cavity Cavity EIT

Cavity detuning ∆c −1.3 ± 0.5 MHz - -
Cavity FWHM κ 13.6 ± 0.6 MHz - -
Atom number Neff (×103) - 6.5 ± 0.2 -
Dephasing rate γr - - 650 ± 69 kHz
Coupling Rabi frequency Ω2 - - 7.6 ± 0.3 MHz

Table 4.1.: Table with the experimental parameters obtained by doing a least-square
fit to the spectra shown in Fig. 4.20.

error meaning that this averaged trace can be simply substracted from any subse-

quent measurement. For instance, this procedure is followed for Fig. 4.21 where

Ω1 = 2π × 3.9 MHz and Ω2 = 0. The result is a flat line which means that, at

a detuning of ∆1 = 31.8 MHz, only optical pumping is present; thus, there is no

radiation force coming from the pump beam.

Then, following this procedure, the coupling and pump beams are simultaneously

turned on and Ω1 is varied. The obtained time signals are shown in Fig. 4.21. The

drop is more pronounced in transmission when two-photon excitation starts and

gets deeper as Ω1 increases. Furthermore, this fast drop happens on a timescale

that corresponds to the inverse of the broadened linewidth γ−1
r . This behavior

corresponds to the coherent Rydberg excitation which would, in turn, be followed

by a steady-state. However, the cavity transmission keeps slowly decreasing.

As explained in Ch. 2, a Rydberg state is in reality coupled to many other

states around it. More importantly, BBR-induced transitions transfer atoms to

neighboring Rydberg states which will, in turn, spontaneously decay back to the

ground state through different states. This process is called shelving due to the

longer timescale of spontaneous decay compared to stimulated emission. This is

numerically simulated by using the parameters from Table 4.1 and the decay rate

matrix shown in App. C as discussed in Sec. 3.1.1. The solution is shown as dashed

lines in Fig. 4.21. Even though they qualitatively agree with the experimental data

they do not fully explain the observed slow decrease quantitatively specially in those

traces with greater Ω1.

At this point we switch the attention to the excitation pulse endtime where also a

quick jump occurs. This is, however, not related with Rydberg excitation but on the

coupling field influence on the atom-cavity steady-state. Indeed, even though there
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Figure 4.21.: Cavity transmission for fixed ∆p = 24 MHz. Transversal beams are
pulsed simultaneously from t = 10 µs until t = 60 µs as highlighted
with dashed vertical lines with exception of the top left figure which
shows that Ω1 does heat the atom cloud. The first 10 µs are used to
determine ∆c at each trace. The red lines show the result of numeri-
cal simulations excluding (dashed) and including (solid) superradiance
together with the reduction factors β1,2. The green solid line in the
bottom right trace is the same numerical simulation but replacing the
β1,2 by the ones corresponding to the top right trace. 77



4. Optical setups and measurements

Figure 4.22.: Obtained parameters after fitting the time signals shown in Fig. 4.21.
Circles (left axis) denote the reduction factors β1 and β2 for the two
superradiant decays down to the 31P3/2 and 28F7/2 states, respectively.
Stars (right axis) denote the length scale R of the superradiant cloud.
Vertical error bars represent a 95% confidence interval and horizontal
error bars represent a 5% uncertainty in the atom number. Solid lines
are exponential fits (Eq. 4.5) to the reduction factors dependence on
Rydberg atom density ζr. Data for R are shifted to the right by one
data width for clarity.

is a two-photon detuning of 7.8 MHz between coupling field and cavity, it is not

large enough. As a result, the cavity steady-state is different whether the coupling

field is on or not. This is taken into account in all numerical simulations.

Shifting the attention back to the main part of the signal, a faster shelving rate

than simulated is taking place in our system. Due to the atomic cloud size of R ∼ 0.5

mm, superradiance can take place in our system and be responsible for the faster

shelving rate. Indeed, the closer Rydberg states are the 31P3/2 and 28F7/2 (see Fig.

4.23) with transition wavelengths of 3.6 and 1.5 mm, respectively. Then, as the

atomic sample and wavelengths have similar orders of magnitude, the cooperativity

parameter introduced in Ch. 2 can reach large values. In parallel, the interparticle

distance can be calculated from the peak density of the atomic cloud ζ = 2 ×
109 cm−3. Considering that in our case the percentage of atoms excited to the

Rydberg state is at most 50%, it is most likely for any atom to have a neighbor at

a distance of (2πζ)−1/3 = 5.4 µm.

From the discussion of Ch. 3, one can conclude that at these close distances
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4.6. Decoherence of Rydberg superradiance

Figure 4.23.: Left: Nearby Rydberg states to the 30D5/2 state. Right: Transition
rates in Hz from the 30D5/2 state to the states shown in the left figure.
In the inset the cooperativity parameter µ introduced in Sec. 2.4.3 is
shown for the same transitions.

dipole-dipole interactions should have an effect on superradiance, especially after

considering the C3 coefficients for the involved states shown in Table 4.2. The

proposed model in the same chapter is then applied to the current experimental

conditions with three free parameters: β1,2 and R corresponding to decoherence

and cloud lengthscale, respectively. In fact, though by using only the first ten

microseconds, the cavity detuning ∆c is also fitted to the data. This is because

the shot to shot fluctuations of ∆c change the initial positions of the different time

traces.

The results are plotted in Fig. 4.22 with the error bars representing 1σ uncertainty.

It is remarked that the horizontal axis correspond to ζr = Prζ where Pr is the steady-

state ratio of atoms in the Rydberg state in the simplified three-level system. Then,

following the decoherence model discussed in Sec. 3.2.1, an exponentially decaying

function of the form

β1,2 = A1,2e
− 4π

3
ζrr3cr 1,2 (4.5)

is fitted to the data points of β1,2. The obtained values of rcr 1,2 are compared to the

theoretical ones in Table 4.2. A very good agreement is observed, confirming that

dipole-dipole interactions do in fact decohere superradiance. Furthermore, in order

to remark the need of different reduction factors for various Rydberg densities, in

Fig. 4.21 the green line shows how using the largest values of β1,2 (corresponding
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to lowest ζr) on the trace of largest ζr results in an obvious discrepancy. Finally,

since the parameters A1,2 are density independent they are not caused by atom

pair interactions. These parameters may be accounting for the unprecise knowledge

of the atom number inside the cavity or they can be interpreted as the effects on

superradiance due to homogeneous broadening on the Rydberg linewidth [89, 90, 91].

The calculated critical radii rcr 1,2 shown in Table 4.2 result from taking an average

⟨C3,k⟩ where the index k denotes the decay into state 31P3/2 and 28F7/2. Indeed, in

addition to its spatial dependence (see Eq. (2.95)), each pair of states from a dipole

allowed transition has a different value of C3 due to the varying Clebsch-Gordan

coefficients. Then, a weighted average is defined as

⟨C3,k⟩ =
1

nj

∑
j′ ̸=j

Cj,j′

3,kG
2
j,j′ (4.6)

where G2
j,j′ is the squared Clebsch-Gordan coefficient for the decay path |mj⟩ →

|mj′⟩ and the normalization constant is the number of mj sublevels nj =
∑

j,j′ G
2
j,j′ .

The spatial dependence, on the other hand, is integrated as
∫
|1− 3 cos2 θ|dΩ where

Ω is the solid angle on a unit sphere and an absolute value is taken in order not to

balance positive frequency shifts with negative ones, as both signs lead to a detuning

from the superradiant transition. As a result, the values obtained are ⟨C3,1⟩ = 0.247

GHz (µm)3 for the decay down to the 31P3/2 state and ⟨C3,1⟩ = 0.079 GHz (µm)3

for the decay down to the 28F7/2 state.

On the other hand, the observed reduction of R as ζr decreases is explained by

the Gaussian spatial profile of Ω1,2 ∝ e−r2/w2
0 and the nonlinear dependence of ζr on

Ω1. Indeed, for weak driving ζr ∝ Ω2
1; thus, the 1/e radius of the Rydberg cloud is

r0 = w0/
√
2. As the peak Rabi frequency Ω1 is increased (but below saturation), the

scaling becomes linear such that both, cloud and beam radius are equal (r0 = w0).

The factor of
√
2 difference in r0 matches the observation in Fig. 4.22.

30D5/2 Fit (µm) Theory (µm) C3 (2π GHz µm3) A

→ 31P3/2 8.4 ± 1.4
1.6 7.9 -0.247 0.18 ± 0.09

0.07

→ 28F7/2 4.6 ± 1.0
1.9 5.4 -0.079 0.48 ± 0.06

0.07

Table 4.2.: Obtained values for the critical radii compared to the calculated theo-
retical ones by using the C3 coefficient.
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In this work an ensemble of 87Rb atoms is loaded into a MOT which overlaps with the

mode of an optical cavity. The atoms are released and excited to the 30D5/2 Rydberg

state. This collection of atoms exchanges energy (or photons) with the cavity mode

at a rate given by the collective atom-cavity coupling ΩNM = 2g0
√
N where N is the

number of atoms interacting with the cavity. Then, by detecting variations of ΩNM

through the cavity transmission, atom dynamics within the cavity can be tracked

[84]. In particular, for the present project the decay dynamics from the 30D5/2 state

was monitored. The superradiant decay rate to neighboring Rydberg states is shown

to depend on the Rydberg atom density: a signature of dipole-dipole interactions

dephasing or decohering superradiance. To explain these observations a model is

then introduced which effectively reduces the number of atoms participating in the

superradiant decay [92]. These results contribute not only to better understand

the interplay between superradiance and resonant dipole interactions but also the

excitation to Rydberg states in a many-body context.

Rydberg excitation is performed via a two-photon transition using the 5P3/2(F =

3) state as the intermediate state of a ladder-type system. The upper transition

is driven by the coupling laser with a wavelength of 480 nm which is obtained by

second harmonic generation or frequency doubling. For this, an optical resonator

with an LBO crystal inside is designed and built as explained in Sec. 4.2.1. The

coupling laser frequency is tuned to resonate with a particular Rydberg state by

obtaining an error signal (FM technique) from the EIT spectrum measured in a Rb

cell.

EIT is a coherent process where an atom becomes transparent to a two-level

transition when a second laser strongly drives the upper state of this transition

to a third state. In order to show that atoms inside the cavity are also coupled

to a Rydberg state, cavity EIT was demonstrated. These traces were also used

to benchmark some parameters like the broadened Rydberg linewidth γr and the
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coupling Rabi frequency Ω2. Later, EIT on free space was measured showing that

control over Ω2 allows to observe Autler-Townes splitting as well as EIT. Also, two-

photon Rydberg excitation is observed by increasing the coupling laser detuning δ2

up to ∼ 32 MHz. Therefore, solid ground is given to the interpretation of the main

results of this thesis.

Rydberg decay dynamics was observed by using the transmission of an optical

cavity. For this, a low-finesse cavity was installed since, in the collective strong

coupling regime (ΩNM ≫ Γe/2) and at resonance with the atomic transition (δc = 0),

the normal mode peaks are shown to transmit around half the light relative to the

peak transmission when no atoms are present together with a linewidth of ∼ 10

MHz. Then, probing the cavity on the slope of one of these modes delivers enough

dynamic range for the expected change of N . Contrary to expectation, keeping

δp and δc fixed without Rydberg excitation the cavity transmission is observed to

be not constant. A set of equations is derived in App. A to explain this as the

change of ΩNM through the Clebsch-Gordan coefficients due to optical pumping by

the intracavity light field. However, when Rydberg excitation is turned on the cavity

transmission quickly drops agreeing with the argument that a number of atoms are

excited out of the two-level system driven by the cavity. Later, when these beams

are turned off, the cavity transmission slowly goes back to its original value on a

timescale which does not correspond to the 30D5/2 state lifetime (τ ∼ 20µs). Thus,

neighboring Rydberg states have also been populated (i.e. shelving). Simulations

were performed accounting for the decay and BBR-induced transitions to several

neighboring states (see App. C) without free parameters in the initial conditions.

A faster shelving rate is taking place that these simulations do not explain. Under

the described experimental conditons this can only be explained by superradiant

enhancement of the decay from the 30D5/2 state. Indeed, the decay down to the

28F7/2 and 31P3/2 state are shown to be the most important superradiant decay

channels. Nevertheless, due to stray electric fields superradiance is expected to be

damped. Interestingly, this dampening is observed to also depend on the Rydberg

atom density. To explain this feature, a model is introduced that effectively reduces

the number of atoms participating in the superradiant decay by defining a critical

radius rc that depends on the resonant dipole-dipole interaction C3 coefficient: atom

pairs closer than rc are sufficiently dephased so that they become distinguishable

from other pairs making up the many-body state responsible for superradiance. The
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model is compared with the data and a very good agreement is observed.

The collective atom-cavity coupling is exploited in this project as a tool to study

Rydberg decay dynamics. Most importantly, superradiant enhancement of the BBR

induced transition rate to two neighboring Rydberg states is observed to be density

dependent. The number of atoms inside the cavity mode is obtained by measuring

the normal mode splitting and, from this, the ratio of atoms excited to the 30D5/2

state was implied from the measured Rabi frequencies of the beams transversal to

the cavity. Instead, Rydberg population could be measured directly by collecting

the fluorescence after estimulated emission from a fourth state (e.g. 6P3/2). To

further improve control over our system broadening of the Rydberg state can be

lowered by adding a set of electrodes to compensate any stray electric field; in

addition, a ULE cavity has been recently built up in order to reduce the lasers’

linewidth. Furthermore, a new science cavity has been designed which includes six

electrodes and higher reflective mirrors. The latter will reduce the cavity FWHM and

increase the cooperativity parameter C1 which allows Rabi oscillations between the

atomic ensemble and cavity photons to be observable. This new capability will open

the possibility to explore collective behavior as in the Dicke phase transition [93]

which could, in turn, be enriched by addition of dipole-dipole interactions between

Rydberg atoms. This is the main subject of study of the new project currently being

developed in the group.
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A. Cavity QED with multilevel atoms

The state manifolds consisting of the different Zeeman states is usually not con-

sidered in cavity QED experiments. In fact, it is avoided by optically pumping

the atoms into a Zeeman state with mF = ±F and using circularly polarized light

in order to isolate a single two-level transition. However, the Zeeman structure of

atoms (i.e. multilevel atoms) has recently acquired particular attention in cavity

QED systems [94]. For the present thesis a set of differential equations were derived

in order to describe the interaction between a single cavity mode and an ensemble

of multilevel atoms. Even though the work to be presented in this appendix was

done independently of Ref. [94] they share a similar approach. Nevertheless, they

follow different paths and arrive to different conclusions.

A.1. Interaction with a multilevel atom

We can think of a multilevel atom as consisting of many radiating dipoles interacting

with the same field E . The number of dipoles depends on the total angular momen-

tum of the ground state (Fg) and excited state (Fe) as well as the polarization of the

field. Here, the case to be considered is that of Fg = 2, Fe = 3 coherently coupled

by π-transitions. Therefore, we have five dipoles one for each mF = −2 → +2 which

will be labeled with an index k. Then, the interaction Hamiltonian, following Eq.

2.3, is written as

Ĥint = −
2∑

m=−2

d̂m · E (A.1)

where d̂ = dmσ̂
−
m + d∗

mσ̂
+
m with σ̂+

m = |e,m⟩⟨g,m| and σ̂−
m = |g,m⟩⟨e,m|. The dipole

matrix elements are proportional to a common value dm = Wmdge where Wm is the

Clebsch-Gordan coefficient for them-th transition and dge = ⟨Jg ||er|| Je⟩. Similarly,

the uncoupled atom Hamiltonian can easily be extended to the multilevel case when
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states of the same manifold are degenerate:

Ĥa =
1

2
ω0

2∑
m=−2

σ̂z
m. (A.2)

A.1.1. Lindblad operators

The jump or Lindblad operator describing spontaneous decay of a two-level atom

was already introduced in Sec. 2.1.1 to be given by

L̂ = σ̂− = |g⟩⟨e| . (A.3)

On the other hand, in the multilevel case, when a polarized photon is emitted

by spontaneous decay it is impossible to determine which Zeemann state from the

excited manifold has decayed. But it is possible to give a probability for this event

to happen. Indeed, since the Zeemann states of the same manifold are orthogonal,

the probability of emission of a photon with polarization µ is given by

pµ =
∑
k

βjkp
e
k (A.4)

where pek is the probability for the atom to be at the k-th Zeemann state of the excited

manifold and βjk is the corresponding branching ratio [95] of the same Zeeman

state. This implies that the multilevel jump operator describing the emission of a

µ-polarized photon by spontaneous decay can be written as

L̂µ =
∑
k

√
βjkσ̂

−
k . (A.5)

Here, the index j corresponds to the Zeemann state of the ground manifold where

the atom decays to. The dipole selection rules limit this index to j = k− 1, k, k+ 1

(see Fig. A.1). Furthermore, the sum of these coefficients must sum one since

Γe =
∑
j

Γj =
∑
j

βjkΓe (A.6)
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Figure A.1.: Building block of the level scheme for a multilevel atom where each
dark line represent a Zeemann state belonging to a manifold of 2F +
1 Zeemann states. By spontaneous decay, an excited state emits a
photon and transition to a certain Zeemann state from the ground
state manifold. The probability or branching ratio for any of the three
possible transitions is denoted as βjk.

and, therefore ∑
j

βjk = 1. (A.7)

Consequently, one can build up a matrix β̃ = [βjk] with the condition that the

elements of each column must sum one.

For the hyperfine states considered in this thesis the excited manifold contains

seven (mF = −3 → +3) Zeemann states while the ground manifold five (mF =

−2 → +2). Finally, the three Lindblad operators for this particular case can then

be written as

L̂π =
2∑

k=−2

√
βkk |g, k⟩ ⟨e, k| (A.8)

L̂σ− =
2∑

k=−2

√
βkk+1 |g, k⟩ ⟨e, k + 1| (A.9)

L̂σ+ =
2∑

k=−2

√
βkk−1 |g, k⟩ ⟨e, k − 1| . (A.10)

When an ensemble of atoms is considered an important assumption is made:

atoms scatter independently of each other into the vacuum modes. This is partic-

ularly true in our experimental setup where a low-finesse cavity is used. Here is
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where we depart from Ref. [94]. There it is assumed that the atoms scatter into the

same (cavity) mode. Consequently, each Lindblad operator includes a sum over the

atoms which results in superradiant decay modes.

A.1.2. Multilevel atom-cavity Bloch equations

Calculating the Bloch equations for an ensemble of N multilevel atoms interacting

with a single cavity mode is done similarly as in Sec. 2.3. This time, however, Eq.

A.1 must be considered. The equivalent Tavis-Cummings hamiltonian then reads

Ĥint =

Neff∑
j=1

2∑
m=−2

gm(iâ
†σ̂−

jm − iâσ̂+
jm) (A.11)

with gm = Wmg0. The homogeneity of g0 allows to simplify this hamiltonian by

introducing the variables σ̂±
m =

∑Neff

j=1 σ̂±
jm and σ̂z

m =
∑Neff

j=1 σ̂z
jm. Then, accounting

also for the dissipators introduced in the previous section, the mean-field equations

are written as

d ⟨â⟩
dt

=− (κ/2− i∆) ⟨â⟩+
2∑

m=−2

gm
〈
σ̂−
m

〉
+ E (A.12)

d ⟨σ̂−
m⟩

dt
=− (Γ/2− iδp)

〈
σ̂−
m

〉
+ gm ⟨â⟩ ⟨σ̂z

m⟩ (A.13)

dNm

dt
=
Γ

2
(βmm−1(

〈
σ̂z
m−1

〉
+Nm−1) + (βm − 1)(⟨σ̂z

m⟩+Nm) (A.14)

+ βmm+1(
〈
σ̂z
m+1

〉
+Nm+1)) (A.15)

d ⟨σ̂z
m⟩

dt
+
dNm

dt
=− Γ(Nm + ⟨σ̂z

m⟩)− 2gm(
〈
â†
〉 〈
σ̂−
m

〉
+ ⟨â⟩

〈
σ̂+
m

〉
). (A.16)

Here, ∆ = δp − δcav where δp,cav is the detuning relative to atomic transition.

In contrast to Sec. 2.3, an extra differential equation appears. This one describes

optical pumping: the change on the number of atoms on the m-th driven transition

Nm = NeffPm. Where Pm = Pe
m+Pg

m is the probability for a single atom to belong

on the mth transition whether on the state |e,m⟩ or |g,m⟩. Needless to say is that

the total number of atoms is considered to be constant: N =
∑

mNm.
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A.2. Steady-state solution

It is of most interest to calculate the steady-state solution of the system. Then,

all the derivatives are set to zero and we start by introducing the variable Xm =

⟨â⟩ /
√
nm
0 with the saturation photon number nm

0 = Γ2b/8g2m. From Eq. A.13 we

have 〈
σ̂−
m

〉
= 2

gm
Γ

√
nm
0

⟨σ̂z
m⟩

1− iδ′p
Xm. (A.17)

Introducing this relation into Eq. A.16 results in

Γ(⟨σ̂z
m⟩+NPm) = −8

g2mn
m
0

Γ
|Xm|2

⟨σ̂z
m⟩

1 + δ′2p
. (A.18)

Which can be further simplified to

⟨σ̂z
m⟩ =

−NPm

1 + b|Xm|2
1+δ′2p

. (A.19)

Then, combining eqs. A.17 and A.19 we get

gm ⟨σ̂−
m⟩

κ
= −N(1− iδ′p)

Γb

4κ
P ′′

mX
′. (A.20)

Here, X′ = ⟨â⟩ and P ′′
m = P ′

m/n
m
0 with P ′

m = Pm

1+δ′2p +b|Xm|2 . Also, the relation

nm
0 C

m
1 = Γb

4κ
is used where Cm

1 = 2g2m/κΓ is the single-atom cooperativity of the

m-th transition.

Next, using Eq. A.15 together with Eq. A.19 we further obtain the relation

0 = βmm−1P ′′
m−1 + (βm − 1)P ′′

m + βmm+1P ′′
m+1 (A.21)

which can be rewriten in a matrix form:

0 = A · P⃗ ′′ = (β̃ − 1) · P⃗ ′′. (A.22)

As mentioned before, the hyperfine states in consideration are Fg = 2 and Fe = 3

driven by π transitions. Therefore, we can define the vector P⃗ ′′ = [Pm] with m =
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−2, . . . ,+2 and introduce the corresponding matrix

A =


1/3− 1 1/15 0 0

2/3 8/15− 1 1/5 0 0

0 2/5 3/5− 1 2/5 0

0 0 1/5 8/15− 1 2/3

0 0 0 1/15 1/3− 1

 . (A.23)

Eq. A.22 states that the vector P⃗ ′′ is an eigenvector of A with eigenvalue equal

to 0 (i.e. is part of the null space). This can be solved to obtain

P⃗ ′′ = v(1, 10, 20, 10, 1) (A.24)

where v is a normalization constant which can be calculated by applying the condi-

tion
+2∑

m=−2

Pm = 1. (A.25)

Indeed, by expanding Eq. A.25:

+2∑
m=−2

(nm
0 (1 + δ2p) + b |X′|2)P ′′

m = 1. (A.26)

and then using Eq. A.24 the normalization constant can be finally obtained

v =
1

(n′
0(1 + δ2p) + b′ |X′|2)

(A.27)

where n′
0 = (n−2

0 +10n−1
0 +20n0

0+10n+1
0 +n+2

0 ) and b′ = 42b. Furthermore, because

of symmetry on the Clebsch-Gordan coefficients, we have n±2
0 = n2

0 and n±1
0 = n1

0;

thus, n′
0 = 2(n2

0 + 10n1
0 + 10n0

0).

Finally, by using Eq. A.12 and making y′ = 2E/κ results in

y′ = (1− i∆′)X′ +
Γb

2κ
(1 + iδ′p)X

′N

+2∑
m=−2

P ′′
m (A.28)
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where ∆′ = 2∆/κ. This can be solved by noting that

+2∑
m=−2

P ′′
m = 42v =

1

(n̄0(1 + δ′2p ) + b |X′|2)
. (A.29)

where n̄0 = (n2
0 + 10n1

0 + 10n0
0)/21 is the average of the saturation photon number

over the population probability distribution of an atom in steady-state after optical

pumping. Eq. A.28 can be rewritten as

y =

(
(1− i∆′) + 2C̄1N

1 + iδ′p

1 + δ′2p + b |x|2

)
x (A.30)

where y = 2E/κ
√
n̄0, x = ⟨â⟩ /

√
n̄0 and C̄1 =

2ḡ20
κΓ

with ḡ20 = Γ2

8n̄0
b. Then, comparing

this result with the one obtained in [52] it can be concluded that the inclusion of

multilevel atoms results in an average or effective value of C1.

A.3. Optical pumping in the cavity mode

These equations were derived in order to explain the observations when the cavity

is probed at a constant detuning (e.g. ∆p = 24.5 MHz) at the outer slope of one

of the normal mode peaks. Based on the discussion of Ch. 2 a constant cavity

transmission is expected. However, the observed behavior is shown in Fig. A.2: the

cavity transmission grows in a short timescale; then, it decreases after some ms.

The latter observation is argued to be a consequence of the atom cloud falling

due to gravity and growing due to thermal expansion. These, in particular, are

considered as atom loss from the cavity mode. Indeed, because the normal mode

splitting depends on the atom number it is expected that as atoms leave the cavity

mode, the normal mode peaks get closer to each other. This happens until the

transmission spectrum shows only a single peak corresponding to an empty cavity.

The change of transmitted light due to atom loss in a cavity has been published in

Ref. [84] where two different timescales were also observed corresponding to axial

and radial expansion of the atomic cloud.

Here, though, the growth of transmitted light at ∆p = 24.5 MHz cannot be

explained as atom loss. Indeed, this growth would correspond to an increase of
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A. Cavity QED with multilevel atoms

Figure A.2.: (a) Transmission spectrum corresponding to the measurements in (b).
From here the number of atoms is estimated to be Neff = (10.4 ±
0.4)×103, the cavity detuning ∆c = −2π ·0.2±0.4 MHz and linewidth
κ = 2π · 13.4± 0.6 MHz. (b) Cavity transmission for different constant
∆p: with atoms (blue) and without atoms (orange) inside the cavity.
Based on the measured transmitted power, the peak intracavity optical
power is 2.7 nW (η = 2π · 12.4 MHz). The red lines correspond to
a least-square fit optimizing Neff while w0 = 310 µm, ∆c = 0 MHz,
κ = 2π · 13.2 MHz and T = 30 µK are kept fixed.
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A.3. Optical pumping in the cavity mode

ΩNM : the normal mode peaks are getting farther away from each other. However,

since care has been taken to hit the atom cloud at the center where the density is

largest, there is no reason to believe that the atom number should increase. On the

contrary, it should always decrease. Furthermore, the number of intracavity photons

is low enough (nph ∼ 2); thus, radiation force and/or the atomic external degrees of

freedom should not play a role in these measurements.

It is the atomic internal degrees of freedom then that must be analyzed in more

detail. In this context, a first approach taken in this thesis is to account the interac-

tion of all Zeeman states with the same cavity mode. This has an effect on ΩNM by

means of the Clebsch-Gordan coefficients. Indeed, as concluded in this appendix,

the steady-state of this multilevel atom-cavity system is characterized by an aver-

age coupling coefficient ḡ0 over the final ground state probability distribution; thus,

there is an interdependence between atomic ground state population and intracavity

field via ΩNM. In the present case the initial ground state probability distribution is

considered to be homogeneous as it is taken after the MOT preparation. Then, the

linearly polarized intracavity field drives π-transitions on the atoms aligning them

towards the mF = 0 Zeeman state: the one with highest Clebsch-Gordan coefficient.

The new ḡ0 is then larger than the initial one and the evolution of ΩNM towards its

final value generates the observed behavior in Fig. A.2 where other values of δp

are also considered. In fact, it is shown in [96] that π-transitions always lead to

an exponential evolution of a Zeeman state population while σ±-transitions lead to

non-exponential dynamics.

Finally, the set of differential equations derived in Sec. A.1.2 are used to obtain

the solid red lines shown in Fig. A.2. In addition, the change of atom number due

to ballistic expansion and gravity is accounted by doing

N(t) = N(t = 0)
w2

w2 + (Vtht)2
e
− (0.5gt)2

2(w2+(Vtht)2) . (A.31)

Here, Vth =
√

kBT
M

is the thermal velocity for an atom of temperature T and mass

M while g is the gravity acceleration.
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B. LBO thermal response

At a steady state any material can be associated with a thermal resistance Rth =

ℓ/λA where ℓ is the length on the direction of the heat flow, A is the cross-sectional

area and λ is the thermal conductivity. However, when it is an out-of-equilibrium

situation there is an associated capacitance Cth:

Cth = ρV Cp (B.1)

with material density ρ, volume V and specific heat Cp. Sectioning the material

into different layers corresponds to several low-pass RC filters.

Considering the specific heat of LBO to be 1060 J/Kg·K, its density of 2.47 g/cm3

and thermal conductivity of 3.5 W/m ·K a time constant RC = 6.6 s is obtained.
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C. Decay rate matrix

Figure C.1.: The quantum numbers for the states used in the decay matrix used
in the numerical simulation of Sec. 4: principal quantum number n,
orbital angular momentum L and angular momentum J .
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C. Decay rate matrix

Figure C.2.: The decay matrix used in simulations of Sec. 4 to describe the decay
dynamics from the 30D5/2 state including BBR are shown in the lower
figure. The vertical axis is in Hz and the horizontal axis are indexes
that correspond to an electronic state of principal quantum number n,
orbital angular momentum L and angular momentum J . These states
are displayed in Fig. C.1
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[94] A. Piñeiro Orioli, J. K. Thompson, and A. M. Rey, “Emergent Dark States

from Superradiant Dynamics in Multilevel Atoms in a Cavity,” Phys. Rev. X,

vol. 12, p. 011054, Mar 2022.

[95] F. Atoneche and A. Kastberg, “Simplified approach for quantitative calcula-

tions of optical pumping,” European Journal of Physics, vol. 38, p. 045703,

may 2017.

[96] E. Suarez, F. Carollo, I. Lesanovsky, B. Olmos, P. W. Courteille, and S. Slama,

“Collective atom-cavity coupling and nonlinear dynamics with atoms with mul-

tilevel ground states,” Phys. Rev. A, vol. 107, p. 023714, Feb 2023.

110



Acknowledgments

I would like to give my greatest gratitude to Prof. Claus Zimmermann for giving me

the opportunity, in the first place, to come to Tübingen. At the same time, I thank
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