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Abstract

The phase diagram of the QCD matter in the baryon chemical potential region

500 MeV ≤ µB ≤ 800 MeV will be studied by the future Compressed Baryonic

Matter (CBM) experiment in the beam energy range corresponding to
√

sNN =

2.9 − 4.9 GeV. The experiment will be carried out at the Facility for Anti-Proton

and Ion Research. A prerequisite for determining the properties of dense bary-

onic matter is the multi-differential measurement of the yield of (multi-) strange

hadrons.

This work evaluates the performance of CBM in measuring the multi-differential

(charged tracks multiplicity, transverse momentum, and rapidity) yield of the

most abundantly produced Λ0 baryon for Au-Au collisions at a beam momen-

tum of 12 A GeV/c. The Kalman Filter algorithm is employed to reconstruct

the Λ0 baryon through its weak decay to a proton and π− topology, which is

selected non-linearly using the machine learning algorithm eXtreme Gradient

Boosting (XGBoost). The selection is performed multi-differentially in transverse

momentum and rapidity for the multiplicity interval [200, 400] of charged tracks

to achieve a high signal-to-background ratio.

After the selection, raw-yield extraction is performed multi-differentially through

a multi-step fitting routine. The extracted raw-yield is corrected for the efficiency

of the reconstruction and selection procedure and the geometrical acceptance of

the experiment. The corrected yield is compared to the true yield to validate the

reconstruction, selection, yield extraction, and correction procedure. The system-

atic uncertainties are evaluated by varying the selection parameters and they are

typically below 3% but can go up to 6% for high transverse momentum intervals.
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Zusammenfassung

Das Phasendiagramm der QCD-Materie im Bereich des chemischen Baryonen-

potenzials 500 MeV ≤ µB ≤ 800 MeV wird mit dem künftigen Experiment für

komprimierte baryonische Materie (CBM) im Strahlenergiebereich von
√

sNN =

2.9 − 4.9 GeV untersucht. Das Experiment wird in der Facility for Anti-Proton

and Ion Research (FAIR) durchgeführt. Eine Voraussetzung für die Bestimmung

der Eigenschaften dichter baryonischer Materie ist die multidifferenzielle Mes-

sung der Ausbeute an Hadronen mit einem oder mehreren Strange-Quarks.

In dieser Arbeit wird die Leistungfähigkeit von CBM bei der Messung der

multidifferenziellen (Multiplizität der geladenen Spuren, Transversalimpuls und

Geschwindigkeit) Ausbeute des am häufigsten produzierten Λ-Baryons für Au-

Au-Kollisionen bei einem Strahlimpuls von 12 A GeV/c. Der Kalman-Filter-

Algorithmus wird eingesetzt, um das Λ-Baryon aufgrund der Topolgie des

schwachens Zerfall in ein Proton und die π− zu rekonstruieren. Mögliche Λ-

Kandidaten werden dem maschinellen Lernalgorithmus eXtreme Gradient Boost-

ing (XGBoost) ausgewählt. Die Auswahl erfolgt multidifferenziell nach transver-

salem Impuls und Geschwindigkeit für das Multiplizitätsintervall [200, 400]

geladener Spuren, um ein hohes Signal-zu-Hintergrund-Verhältnis zu erreichen.

Nach der Auswahl wird die Ausbeute durch eine mehrstufige Fitroutine mul-

tidifferenziell extrahiert. Diese Ausbeute wird für die Effizienz des Rekonstruk-

tions und Auswahlverfahrens und die geometrische Akzeptanz des Experiments

korrigiert. Die korrigierte Ausbeute wird mit der wahren Ausbeute verglichen,

um die Rekonstruktion, die Auswahl, die Extraktion der Ausbeute und das Kor-

rekturverfahren zu validieren. Die systematischen Unsicherheiten werden durch

Variation der Auswahlparameter ausgewertet und liegen typischerweise unter

3%, können aber bei hohen Transversalimpulsintervallen bis zu 6% betragen.
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Chapter 1

Introduction

The matter that surrounds us in our daily lives is mostly composed of molecules,

which are tiny building blocks made up of atoms. An atom is not the end of

the story and it has been found to contain sub-atomic particles such as electrons

and nucleons (protons and neutrons). Hitherto, the electrons are considered to be

structureless particles but the nucleons are composed of fundamental particles

called quarks and gluons. The quarks and gluons interact with each other with

a strong force. The set of rules that dictate the behavior of the strong interaction

among quarks and gluons is called Quantum-chromo dynamics (QCD). QCD is

a quantum field theory and its Lagrangian can be written as:

LQCD = ψ̄ f l(iγµDµ − mq)ψ f l −
1
4

Ga
µνGµν

a (1.1)

with ψ f l representing the quark fields and the subscript f l representing their fla-

vors [1]. The γµ are the Dirac gamma matrices and the co-variant derivative (D)

can be expressed as Dµ = ∂µ − ιgAa
µλa. It contains the SU(3), Special Unitary

group in 3 dimensions, color symmetric gluon field Aa
µ with a as a color index

and goes from 1 and 8. The Gell-Mann matrices are represented by λa and the

non-Abelian gauge field strength tensor by Ga
µν. While g is related to the strong

coupling constant αs = g2/4π, mq represents the mass of an individual quark.

A property of QCD, asymptotic freedom, reveals that αs gets weaker at short

distances or at large momentum transfer [2, 3]. Another property is that a single

quark cannot exist freely. At high energies, due to asymptotic freedom, eq. 1.1

can be solved using perturbative approaches while at lower energies it becomes
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non-perturbative and can only be solved by numerical methods such as lattice

QCD and effective field theories.

1.1 QCD-Matter Phase Diagram

QCD matter is generally composed of hadrons, quarks, and gluons, which at low

temperature and baryon chemical potential µB may exist as a pions-dominated

hadron gas [4]. The value of µB represents the disparity between matter and

antimatter, and a zero value implies an ideal balance between the two. At higher

temperatures (T ≳ 130 MeV) and small µB, the hadron gas can undergo a phase

transition to a quark-gluon plasma (QGP), where quarks and colored gluons are

deconfined, and the number of effective degrees of freedom increases.

Lattice QCD calculations predict that the phase transition from hadronic mat-

ter to QGP is a smooth crossover, i.e., without any abrupt changes when µB ≈

0 [5]. However, if µB/T ≳ 2 then various theoretical approaches predict that the

phase transition can become first-order, exhibiting an abrupt change [6]. Unfortu-

nately, lattice QCD calculations fail to predict the value of µB and the temperature

at which the first-order phase transition begins, known as the critical point [7].

The QCD matter phase diagram maps the different phases of QCD matter as a

function of µB and temperature as shown in Fig. 1.1. The white-colored curve rep-

resents two co-existing phases separated by a first-order phase transition. Along

this curve, state variables are discontinuous and become continuous again at the

critical point. The discontinuity originates from the fact that the entropy is higher

at the QGP side due to the availability of more degrees of freedom. In this dia-

gram, the first-order phase boundary between the hadron gas and QGP ends at

a temperature near 150 MeV and µB around 400 MeV, which is the critical point.

Various theoretical model calculations [6] have placed the critical point at this µB.

Below this region, the transition from a hadron gas to QGP is represented by a

blurry region representing the continuous region, smooth cross-over, of second-

order phase change.
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Figure 1.1: The diagram shows different phases of the QCD matter. The image has been taken

from [4]. The three phases of the matter, i.e., hadron (light blue) gas, QGP (dark blue), and color

superconductivity (brownish yellow) are shown with different colors.

1.2 Heavy-Ions Collisions

The naturally found nuclear matter on earth represents a small part of the QCD

matter phase diagram, i.e., at finite µB at T ≈ 0. The extreme environments re-

quired to study QCD matter at its various phases are naturally found in neutron

star mergers, in the cores of neutron stars, and in the micro-seconds old uni-

verse [8]. Those conditions of high energy densities and temperatures can be also

made on earth by heavy-ion collisions (HIC) at various energies. Different re-

gions of the phase diagram can be studied by varying the energy of the collision

and the size of the colliding nuclei. For example, nuclei collisions at the center

of mass energy in the
√

sNN ∼ TeV energies can be used to study the phase di-

agram near the vanishing µB region. Similarly, with heavier nuclei and lower

beam energies corresponding to
√

sNN ∼ 2 − 3 GeV the high µB region can be

probed.

When heavy ions are accelerated close to the speed of light, the nuclei get

Lorentz contracted and their properties such as the collective dynamics can be

explained by a framework called the color-glass-condensate (CGC) [9]. Time di-

lation makes the color sources (quarks and gluons) static at the time scale of the

strong force. The collision of the nuclei leads to the creation of a fireball, which is

not in equilibrium. Eventually, partons are created from the fireball, and their col-

lisions with each other result in a locally thermalized phase, i.e., the QGP. After
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Figure 1.2: The image shows the different stages of the heavy ions collision; the evolution pro-

ceeds from left to right. The cartoon has been taken from the MADAI collaboration, Hannah

Petersen and Jonah Bernhard [11].

rapid expansion and cooling [10] hadron formation starts and when inelastic col-

lisions vanish their production stops, marking the chemical freeze-out. However,

elastic collision among hadrons continues and after some time, this also stops at

the kinetic freeze-out. A diagram of the evolution of the collision is shown in

Fig. 1.2. On the left side, two nuclei in red and blue color are shown and upon

their collision, a pre-equilibrium phase is formed. During equilibration, QGP is

formed and is shown by the red phase between the blue and red nucleons. Par-

ticle formation is shown in the next two stages of the diagram where elastic and

inelastic processes still carry on. This discussion is valid for the µB ≈ 0 case.

At higher µB the nuclei are not so much lorentz contracted and the color-glass

condensate frame-work may not be applicable.

Various messengers from the different stages of the collision can be used to

study its evolution in time. For example, spectra of the emitted particles can

reveal information about quantities such as energy density, pressure, and en-

tropy. Similarly, information about the thermodynamics of the system can be

extracted from observables such as flow, correlations, fluctuations, particle ratios,

etc. Dileptons and photons, i.e., electromagnetic probes, produced at different

stages of evolution can escape the medium without interactions and can reveal

information about the medium at the time of their production. Observable as-

sociated with the QGP phase (µB ≈ 0 case) is the suppression of the production

of J/ψ because cc− bonding is suppressed due to Debye screening [12]. In the

high µB region, the extent of equilibration of the fireball can be investigated by

measuring excitation functions of (multi)-strange hyperons in A+A collision with
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different mass numbers A. This will lead to finding a signal for the onset of de-

confinement in QCD matter at high µB [13].

To calculate the various particle yields based on theoretical models, collision

generators are required. These simulators will give predictions for experiments

to improve our understanding of the phases of QCD matter.

1.2.1 Collision Simulators

To describe the results obtained from heavy-ion collisions, various theoretical

models have been put forward based on various hypotheses. For example, ther-

mal models [14, 15] hypothesize that global thermodynamic chemical equilib-

rium is reached. Assuming a thermal source, these models predict the production

yields of hadrons at chemical freeze-out. Similarly, hydrodynamic modeling [16]

requires a local thermal equilibrium and treats the matter created in the collision

collectively like a fluid. This modeling predicts the production yields and spectra

of various particle species. The partition function in the case of the thermal model

and the equation-of-state (EoS) in the hydrodynamical case drives the physical

processes of the collision. However, modern and up-to-date transport models

use various assumptions and different models to simulate heavy-ion collisions.

Two transport models are used in this work and they are briefly introduced in

this section.

The Ultrarelativistic Quantum Molecular Dynamics (UrQMD) [17] is a Monte

Carlo event generator that can simulate the collision of a proton with a proton, a

proton with a nucleus, and a nucleus with a nucleus at energies ranging from SIS

(SchwerIonenSynchrotron) [18] to Large Hadron Collider (LHC)[19] energies, i.e.,

from a few GeV to TeV. There are 70 different baryons and 39 types of mesons in

the model [20]. The cascade mode of the model is established on the propagation

of hadrons and re-scattering among hadrons is allowed. This mode offers the

solution for the relativistic Boltzmann equation.

The Dubna Cascade Model with the Quark Gluon String Model (DCM-QGSM)

and the Statistical Multi-fragmentation Model (SMM) as afterburner [21] is an-

other Monte Carlo event generator. For energies, lower than 1 GeV, the model

only considers nucleons, pions, and deltas for the collision dynamics. In compar-
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ison, above 10 GeV QGSM is used to describe elementary hadron collisions.

The difference between the two models is that in UrQMD spectators are pro-

tons and neutrons, while DCM-QGSM-SMM (DCM) contains spectator fragments

and uses coalescence for their formation.

1.2.2 Experimental Facilities to Study the QCD Matter

To study the different phases of the QCD matter, various heavy-ion collisions

experiments have been set up in the past at the CERN SPS facility [22], at BNL

Relativistic Heavy Ion Collider (RHIC) [23], at the CERN LHC facility, and at the

GSI facility [24]. A new phase of matter named the Quark Gluon Plasma (QGP)

was discovered at the CERN SPS program and confirmed at the RHIC facility in

the 1990s and 2000s; it contains quarks not bound inside nucleons but moving

freely inside a plasma of quarks and gluons [25, 26, 27]. The RHIC experiments

showed that the plasma is not a weakly interacting gas of its constituents, i.e.,

the gluons and the quarks [28]. It is like a strongly interacting opaque fluid. The

high transverse momentum (pT) hadron production was studied at the LHC and

it was found that the QGP is so dense that high energetic quarks (a few GeV)

traversing it lose a large fraction of their energies [29, 30, 31].

Past experiments at RHIC studied the phase diagram from very low (25 MeV)

to high (760 MeV) µB with beam energies corresponding to
√

sNN = 3− 200 GeV.

But in the high µB region corresponding to
√

sNN = 3 − 13.7 GeV, except the

3 GeV, the mid-rapidity region, which is important for physics, was only partially

covered by the detector’s geometrical acceptance [32]. The high µB part at lower

energies is challenging and to study the signatures of the phase transition with

high detail, high statistics are required. Therefore, new fixed target experiments

such as the Compressed Baryonic Matter (CBM) at the Facility for Anti-Proton

and Ion Research (FAIR) are being built to solve the issue. To accumulate the

required statistics CBM needs to operate at an unprecedented interaction rate of

up to 10 MHz.
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1.2.3 Strangeness Enhancement as a QGP Observable

Strange quarks do not exist in nuclear matter and are only produced in extreme

conditions such as the collision of high-energy heavy ions. A strange quark

(mass ∼ 93 MeV) is lighter than heavy quarks, i.e., charm, beauty, and top but

is comparatively heavier than light quarks (up and down) [33]. The strangeness

quantum number for the strange quark is -1 and is considered to be conserved in

strong interaction while it is violated in the weak interaction.

One of the earliest signatures put forward for the formation of QGP was strangeness

enhancement [34, 35]. A notable difference between A-A collisions and proton-

proton collisions is the chemical equilibration of the production of strange quarks

[36, 37]. During the hadronization stage of the QGP, hadrons are formed and the

total yield of hadrons containing strange quarks can be measured over a consid-

erable kinematic domain to get insights into the QGP creation and its subsequent

evolution [38]. The gluon component of the QGP creates pairs of quarks [39] and

their high density at the time of hadronization produces multi-strange hadrons:

which are rarely produced in the case of hadron collisions.

Therefore, for the study of the different phases of the QCD matter the study

of hadrons containing strange quarks is required. Due to their short lifetimes,

particles that contain strange quarks decay near their production point and can

be identified and reconstructed by analyzing their daughter particles. The exper-

imental yield for different particle species, especially ones containing short-lived

strange quarks, is used to improve models of collision simulations.

1.3 The Facility for Anti-Proton and Ion Research

The GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany has

successfully hosted heavy-ion experiments such as High Acceptance Di-Electron

Spectrometer (HADES) [40, 41], FOPI [42], and A Large Acceptance DIpole mag-

Net (ALADIN) [43] with its UNILAC (the linear accelerator) and SIS18 acceler-

ator facility. The FAIR facility, next to the GSI facility, will host the heavy-ion

synchrotron SIS100 and experiments such as the CBM experiment. Fig. 1.3 shows

the GSI facility with blue color and the future FAIR facility with red color.
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Figure 1.3: The image shows the existing GSI facility (blue color), with blue color, and the future

FAIR facility (red), with red color. The CAD drawing has been taken from [46].

The SIS100 accelerator will have super-conducting magnets that will provide

magnetic rigidity up to 100 T m [44]. The SIS100, having a radius of around

175 m, will accelerate protons up to 29 GeV beam energy at a rate of 109/s [45].

It will also accelerate heavy ions such as Au (other ions such as C and Ca) up

to 11 AGeV1 (14 AGeV). This will enable experiments such as CBM to collide Au

nuclei on the Au target to achieve an interaction rate up to 10 MHz at a maximum

beam energy corresponding to
√

sNN = 4.9 GeV.

1.4 The CBM Experiment

Microscopic models (transport and hydrodynamic) predict that the density, in the

center of an Au-Au collision, is more than 8 times the saturation density ρ0 at a

beam energy of 10 AGeV [47, 48]. Rare probes need to be employed to study the

QCD matter at high µB, i.e., at conditions with more baryons than anti-baryons.

To acquire enough rare probes, one needs to operate at a high beam-target in-

1A is for energy per nucleon
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Figure 1.4: The CAD model of the CBM experiment is shown here. The drawing is from the CBM

collaboration [49].

teraction rate. A multi-purpose detector with fixed target geometry is ideal for

such a scenario. CBM is a fixed target forward geometry experiment designed to

operate at high interaction rates, up to 10 MHz [13]. This constrains the detector

material budget to be low to not generate secondary particles and the detector to

be resilient to radiation.

Due to the operation at a high interaction rate, CBM can detect and measure

the yields of hadrons, electrons, and muons at p − p and HIC, with high statis-

tics. The detected charged particles can then be used to reconstruct short-lived

mother particles. Due to high statistics, the yields of rare probes will be analyzed

multi-differentially. This will require to understand the systematics uncertainties

at high precision and reduce them. The experimental setup contains tracking,

particle identification, centrality and reaction plane determination systems along

with the target. The CAD drawing of the different sub-systems of the CBM de-

tector is shown in Fig. 1.4.

The target for the Au-Au collision will be a segmented one and before it, there

will be a diamond beam monitoring (BMON) counter with less than 50 ps time

precision. It will give the initial time t0 of the collision. After the target, the mag-

net will be placed housing the tracking system, shown by the blue color in Fig. 1.4.

It will be followed by different particle identification sub-systems such as the

9



Ring Imaging Cherenkov detector for electrons identification, shown in Fig. 1.4

by the purple haze color box after the blue magnet. Further electron identifica-

tion will be achieved by the transition radiation sub-system which lies behind it.

The Muon chamber will be used in the alternative setup to measure muons and it

is stationed on the right side of the Ring Imaging Cherenkov detector in Fig. 1.4.

The time of flight wall is shown by the yellow color and it will identify hadrons.

At the very end along the beamline, the geometry determination detector will be

placed and it will be followed by a beam dump.

The tracking system will be inside a superconducting dipole magnet of 1 T m

field strength with an aperture of ±25◦ polar angle [50]. The magnetic field is per-

pendicular to the beam direction and bends a charged particle passing through

the detector based on its momentum-to-charge ratio. The maximum magnet size

will be 4.7 m × 3.73 m and it should have a minimum aperture size of height

1.47 m and width 3.3 m.

1.4.1 Tracking System

The trajectory of a charged particle passing through a magnetic field is curved

and the curvature depends on the momentum-to-charge ratio of the particle and

also on the strength of the magnetic field. The interaction of a charged particle

with a charge-detecting material, in the form of a hit, inside the magnetic field

can be used to find the location of the interaction. The hits can be connected

to form tracks and if the magnetic field strength is known then momentum can

be calculated from the curvature of the track. The tracking system of the CBM

collects hits of traversing charged particles in the detector and it is placed inside

a magnetic field strength of 1 T m. It consists of two sub-systems, i.e., the main

tracking detector in the form of a Silicon Tracking System and a decay vertex

reconstruction detector, a Micro-Vertex Detector.

1.4.1.1 The Micro-Vertex Detector

The Micro Vertex Detector (MVD) of the CBM experiment is required to have

a spatial resolution of around 5 µm and a low material budget [51]. The posi-

tion on the z-axis, 5 − 20 cm after the target in the beam direction, makes it face
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more radiation than any other detector sub-system so it needs to be radiation

hard. The MVD will enable CBM to reconstruct tracks with momentum as low

as 300 MeV/c. It will help in the reduction of combinatorial background and

will be able to resolve the vertices of short-lived particles (hyperons and charm

hadrons) that decay very close to the primary vertex. Therefore, the MVD will be

placed close to the primary vertex. The CAD rendering of the detector is shown in

Fig. 1.5a. The MVD will reside inside the target vacuum box, inside the magnet.

The MVD will have 4 layers of sensors separated by 5 (or 8) cm and the sensors

will be CMOS 2 Monolithic Active Pixel Sensors (MAPS) named MIMOSIS. MI-

MOSIS pixel sensors will be used to make up the MVD detector with each pixel

size of 26.9 × 30.2 µm2. MIMOSIS sensors were selected for the MVD because of

their low material budget, 50 µm thickness, radiation hardness, and 5 µm single-

point resolution. A sensor will host a pixel matrix of 1024 × 504 and will have

dimensions of 31 × 17 mm2. Each pixel will have an integrated circuit that will

amplify, shape, and discriminate the signal. The whole setup will contain up to

300 sensors.

1.4.1.2 The Silicon Tracking System

To reconstruct the tracks of more than 700 charged particles per collision event

with momentum resolution of the order of ∆p/p3 < 2%, 8 tracking layers of

silicon-based detectors are under construction [53, 50]. These 8 layers will be

put inside a thermal enclosure in the forward direction of the beam after the

target at distances of 30 − 100 cm and will cover the polar angles between 2.5°

and 25°. Minimizing the interaction of charged particles with the sub-system,

so that no further charged particles are produced, increases tracking efficiency

and improves momentum resolution. Double-sided microstrip sensors (thick-

ness of 320 µm), with a stereo angle of 7.5° will be mounted on carbon fiber sup-

port structures. The Front End Electronics will be placed outside the acceptance

of the detector along with cooling and mechanical support structures to reduce

the material budget. The readout cables, made from multi-layers of polyimide-

2Complementary metal–oxide–semiconductor
3∆p/p = preconstructed−ptrue

ptrue
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(a) (b)

Figure 1.5: The image shows the drawings of the MVD detector. The left image shows the full

MVD setup with its 4 stations, sensors, and cooling pipes (tubes on both sides). The light grey

color part consists of the heatsinks and mounting structures. The orange part contains the data

and Power Cables. The right side image shows a cross-sectional view with the 3rd station in full

showing a module. The image was taken from the MVD section of the CBM website [52].

Aluminium, will transmit analog signals from the sensor to the front-end elec-

tronics.

The silicon sensors of the silicon tracking system (STS) are made of n-type

float-zone silicon, obtained by vertical zone melting silicon, and implants of p-

type material. The thickness of the sensors was chosen as 300 µm to optimize the

signal-to-noise ratio and material budget. Thicker sensors produce better signal-

to-noise but more multiple scattering as well. The sensors are divided into 1024

strips on each side at a strip pitch of 58 µm. The strip pitch was selected as a

trade-off among resolution, the number of readout channels due to the noise of

each read-out, and material budget. Smaller polar angles will receive a higher hit

density; therefore, the strip length will increase from lower angles to higher an-

gles. The central area of the first two layers of the sensors will constitute sensors

with a strip length of 22 mm to get more granularity. The width of the sensors

is 62 mm but the height, due to the length of the strips, varies (22, 42, 62 or 124

mm). Each strip has a contact pad for the connection to readout.
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The sensors will be connected to the STS-XYTER 4 through microcables to read

out, amplify and digitize the signal from the double-sided micro-strip sensors [54,

55]. The sensors (up to 10) and microcables, for readout, are mounted on support

structures (called ladders) made of carbon fiber with lengths up to 100 cm, as

shown in Fig. 1.6b. This ASIC 5 has 128 channels and to read a single side of a

silicon sensor 8 STS-XYTER ASICs are required, which will be put on a single

front-end board. There are 106 ladders in total in the STS assembly and 896 STS

sensors will be mounted on them. The ladders are then mounted on an Al support

frame called C-frame because of its C shape. An assembly unit of STS is shown in

Fig. 1.6c consisting of C-frame and electronics boards. Also, Fig. 1.6c shows the

main STS frame that will accommodate all the stations.

Simulation studies show that keeping the sensors under −10 °C will help in

preventing the deterioration of the momentum resolution of the detector [56]. To

receive equilibrated air flow throughout the detector, the cooling gas will have

to flow inside carbon-fiber tubes. Similarly, the front end electronics will also

dissipate heat and that can cause the sensors to heat up, so they must also be kept

under −10 °C.

4Silicon Tracking System-X–Y-Time–Energy Read-out
5application-specific integrated circuit
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(a) (b)

(c)

Figure 1.6: The image shows the different components of the STS detector setup [57]. (a) The

image shows on the top left the double-sided silicon sensors that will be connected through the

microcables to the FEBs. (b) Sensors and cables mounted on a ladder. (c) The top image shows

an Al C frame to hold the ladders. The FEBs are on the top and bottom of the ladders and the

readouts are on the right side. The lower image shows the STS main frame to hold all the layers

of the tracking system.

14



1.4.2 Particle Identification Detectors

Various particle species such as electrons, muons, protons, strange hadrons, and

nuclei will be produced by the interaction of the STS-100 beam with the target of

the CBM experiment. CBM has various particle identification detectors that can

provide particle identification (PID) hypotheses for the measured particles. In

this section, the PID sub-systems will be described starting from the one closest

to the target along the beam axis.

1.4.2.1 Ring Imaging Cherenkov

Electrons identification is important because the electron-positron pairs in the

low-mass (masse−e+ < 1 GeV/c2) range reveal information about chiral symme-

try restoration, the medium mass (1 < masse−e+ < 3 GeV/c2) range give hints

about the fireball temperature and the high mass (masse−e+ > 3 GeV/c2) is useful

for charm quark studies. In the Au-Au collisions of the CBM experiment pions

will be produced abundantly and they can be misidentified as electrons. To iden-

tify electrons with up to 8A GeV/c and segregate them properly from the pions,

the Ring Imaging Cherenkov detector (RICH) [58] is used. The RICH will be

placed after the STS and will have a size of 2 × 4 × 5 m [59]. To detect photons,

it will have Multi-Anode Photo-Multipliers (MAPMTs) and 80 trapezoidal glass

mirror tiles arranged in two half-spheres for focusing the photons. The RICH will

use as a radiator CO2 gas at atmospheric pressure and will have around 28 hits

for a single electron cone’s ring on the plane containing the MAPMTs. The radius

of the cone can be used to filter electrons from other particles.

1.4.2.2 Transition Radiation Detector

The identification of electrons by RICH is restricted to the lower momentum re-

gion of p < 6 GeV/c. Also, the separation of deuterons from 4He is not possi-

ble with the CBM primary detector for hadrons identification (the TOF detector),

only. The Transition Radiation Detector (TRD) will [60] augment the pion sup-

pression (by 10 to 20 times) in the low-mass, medium-mass, and high-mass re-

gions. It will also help to distinguish nuclei fragments 1H from 2H and 4He. The
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TRD will be made from MWPC 6 and will be filled with either Xe/CO2. The TRD

will have 4 layers and will have two different types of modules (57 × 57cm2 and

99 × 99 cm2) and it will be placed after the RICH.

1.4.2.3 The Muon Chamber

For the identification of muons, the Muon CHamber (MuCH) of the CBM exper-

iment will be used [61]. The MuCH will be put behind the STS and will replace

the RICH to study di-muons from the decay of low-mass vector mesons and J/Ψ.

The MuCH will contain 6 absorbers and tracking stations, to track the particles

passing through it. Apart from the first absorber, graphite, and concrete made,

the other 5 will be made from Fe with varying thicknesses. For tracking the Gas

Electron Multiplier will make up the first two stations because of its resolution

and can operate at high rates. The 3rd and 4th stations will be Resistive Plate

Chamber based.

1.4.2.4 TOF wall

The Time-Of-Flight (TOF) wall is the main PID sub-detector of the CBM experi-

ment for charged hadrons such as pions, kaons, and protons [62]. It will be con-

structed using Multi-gap Resistive Plate Chambers and cover an area of 120 m2.

The TOF wall will have a time resolution of approximately 80 ps to record the

time of charged particles passing through it accurately. Located at a distance of

6 − 10 m from the target, the TOF wall will face an incident-charged particle flux

in the range of 0.1 − 100 kHz/cm2 as a function of angle due to the 10 MHz in-

teraction rate of CBM. Because of the different fluxes, TOF will be modular, and

its elements (modules) will be located according to rate requirements. There will

be 6 different types of modules and a total of 226 modules will be integrated into

the TOF wall.

One can use the time parameter from the time detector t0 to calculate the mass

of a charged particle using the equation:

mass2 = p2

(
t2
TOF
l2 − 1

)
(GeV/c2)2 (1.2)

6Multi-Wire Proportional Chambers
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with p representing the momentum of the charged track, tTOF = tst − t0 − o f f set

time between TOF and time detector including offset, l distance, and c the speed

of light (constant value). The tst can either come from the TOF wall or another

beam monitoring detector, a beam fragmentation detector. Matching a TOF hit

to a corresponding track in the tracking system can provide the p of the charged

track since p is saved for each track during tracking.

1.4.3 Collision Geometry Determination Detector

The impact parameter between the two colliding nuclei in a heavy-ion collision

reveals information about how central the collision was but one cannot directly

measure this quantity. Some parts of the colliding nuclei take part in the collision

while others do not and are referred to as spectators. To find out the central-

ity and the orientation of a heavy-ion collision a detector is required to measure

the energy and spatial distribution of the spectators. At the current stage, vari-

ous types of detectors based on other experiments such as the HADES forward

wall [63] and the event plane detector of the STAR experiment [64] are under con-

sideration for such a sub-system. As of March 2023, the underlying technology

for the forward detector is still under investigation.

1.4.4 Data Acquisition System

There are no straightforward observables that can be used to apply a hardware

trigger on the streaming readout system, therefore, the CBM experiment, due to

its high interaction rate, will produce data at a rate of around 1 TB/s [65]. A

system containing 200 FPGA-based Common Readout Interface boards will pre-

process the data before sending it to a computing farm via optical fibers. Events

are reconstructed and filtered by the First-level event selector at the computing

farm. The selection of interesting events is performed from the physics point of

view, and the data of the selected events will be saved on tape.

17



1.4.5 CBM Reconstruction Chain

A charged particle traversing the tracking detectors leaves hits in the detectors.

Three hits are then combined to form triplets which are then converted to track

candidates and selection criteria are applied to select tracks. Tracks are fitted by

the Kalman filter method that returns various track parameters. Tracks sharing

origin in time and space are grouped to form a single event.

When a charged particle traverses the bulk region of the silicon sensor of the

STS, electron-hole pairs are created and they drift in the presence of an applied

electric field toward their respective electrodes. Current sensing amplifiers am-

plify the current and the response is digitized by a digitizer. Adjacent hit strips

by a charged track with a joint time stamp are grouped in a cluster. The center of

gravity (COG) equation (XCOG = ∑cluster Sixi/ ∑cluster Si) gives the cluster posi-

tion when the position of the ith strip, xi, and the signal amplitude, Si are known.

If the two clusters are associated with the p and n sides of a single sensor and

they are inside a pre-defined time window then the cluster is referred to as a sin-

gle hit. In the case of MVD, the discriminator on the pixel detects a hit, and then

this information is forwarded to the readout.

A cellular automaton based track finder algorithm is used to reconstruct tracks

in the CBM experiment [66]. Cellular automaton was chosen as the optimum can-

didate, in terms of speed and efficiency, over other algorithms such as conformal

mapping, hough transformation, and track following. The algorithm takes in hits,

containing position and time coordinates, in the input from the tracking system

and reconstructs tracks. The algorithm has 3 main steps:

1. Three hits on consecutive stations are combined into tracklets (triplets)

2. Tracklets containing two common hits are merged to form candidates for

tracks

3. Selection criteria are applied to the candidates to filter reconstructed tracks.

The above steps are repeated three times to reduce combinatorics and increase

efficiency. In the first attempt easier tracks (high-momentum primary tracks)

are reconstructed, and the associated hits are eliminated in the other two itera-

tions. In the second iteration, low-momentum primary tracks are reconstructed
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and the related hits are discarded in the next iteration. Finally, all other tracks

are searched. In step (1), only those hits are combined that coincide with each

other in time. Step (1) is the most computationally expensive and creates huge

combinatorics but step (2) and step (3) reduces that consecutively. Tracks candi-

dates’ construction begins at the last layer and goes toward the target. The triplet

structure was selected because momentum can be calculated from three hits.

The Kalman Filter (KF) method is used to estimate track parameters [67]. A

state vector is used to parameterize the track and gets updated by a measurement

of a hit. The Kalman Gain, which depends on the uncertainties of the measure-

ment and track estimate, controls the updating of the state vector. The χ2 matrix

encapsulates the difference between the measurement and the track estimate. The

quality of the Kalman fit is checked using the distribution of the χ2. The saved

track parameters include initial and final coordinates, slopes, time, and q/p (q is

the electromagnetic charge sign). Similarly, the position of the PV is found by

the KF method where extrapolated to the PV state vectors of tracks are used as

measurements.

Stable charged particles such as protons and electrons or particles with the cτ

(c is the speed of light and τ is the mean half-life) larger than the length of the

tracking detector are reconstructed directly by tracking. However, short-lived

particles (e.g. K0
s and Λ0) with cτ smaller than the length of the tracking detector

need to be reconstructed by using their daughter tracks. If a short-lived particle

decays and the hits of the charged daughter tracks are available then the point

of the decay of the mother particle, the secondary vertex (SV), is reconstructed

using the KF method in the KFParticle package [67].

The event builder algorithm groups the reconstructed tracks into different

events based on the time, which is obtained as a fit parameter during track fit-

ting using the Kalman filter fit. Tracks are propagated to the PV and the time

parameter value in the KF along with its error is used for the assignment of a

track to a particular event. Initially, a track with the least χ2 and smallest time

error σt is used as a seed for the event. Other tracks are added to the event if they

coincide within 3σt of the time of the seed of the event. After the event builder,

the tracks of an individual event are saved separately.
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1.4.6 Reconstruction of Λ0 Hyperon

For the reconstruction of short-lived particles through a specific decay channel,

all the candidate daughters are combined. The reconstructed short-lived candi-

dates are mostly combinatorial pairs when the particles to be reconstructed are

rare particles. Therefore, certain variables need to be reconstructed with the help

of which true short-lived particles (signal) can be distinguished from the combi-

natorial combinations (background). This work focuses on the reconstruction of

Λ0 (referred to as Λ from now onwards) hyperon and its selection criteria opti-

mization so the variables which have separation power for Λ will be discussed

here. The decay with the largest branching ratio (63.9%) for Λ is Λ0 −→ p+π− with

p+ representing a proton and π− representing the negatively charged pion [68].

To reconstruct Λ through the mentioned decay channel, all positive tracks (hy-

pothesized as protons) will be combined with all negative tracks (hypothesized

as pions).

Au-Au collisions are simulated with collision simulators, at pbeam = 12 A

GeV/c, such as DCM and UrQMD and the produced particles are transported

through the CBM setup (APR20 version [69]) in the Geant4 [70] engine. The

tracks are found by the cellular automaton package and the KFParticle package

(PFSimple [71]) is used to reconstruct Λ candidates from all the negatively and

positively charged tracks. The analysis has been performed event by event and

not time based. In the future, it should be performed on time based simulations

but the over all procedure of this analysis will not change. The combinatorics

contain more combinatorial background than the signal (MC true Λ). From now

onwards, when the data generated by these generators will be mentioned it will

mean that the CBM reconstruction chain has been implemented and Λ candidates

have been reconstructed. If the discussion will be about simulated Λs by these

generators, without the CBM reconstruction chain, then the word simulated Λs

will be used.

The distance of the closest approach between the PV and the daughter (d)

of a short-lived particle when extrapolated to the PV can be used as a criterion

to separate the signal from the background. This means that a daughter track

that originates closer to the PV is most likely not produced by hyperon decay.

20



(a) (b)

Figure 1.7: The variables associated with a Λ decay to p+ (blue line) and π− ((red)) are illustrated.

The variables χ2
prim p+ , χ2

prim π− , and DCA associated are illustrated in 1.7a. The separation be-

tween the PV (magenta circle) and SV (cyan circle) L is illustrated in the drawing in 1.7b.

The extrapolation of d to the PV means that the uncertainties will also increase

because there is no tracking layer very close to the PV. The distance needs to be

divided by the errors to take the uncertainties into account. The distance of a

daughter to the PV divided by the error is represented by χ2
prim d in this work. It

is defined as:

χ2
prim d = ∆rT

d−PV(Cd + CPV)
−1∆rd−PV (1.3)

with ∆rd−PV representing the distance of the closest approach between the daugh-

ter d and the PV [72]. The covariance matrix associated with the track of the

daughter d is Cd, and the covariance matrix of the state of the PV is CPV . Fig. 1.7a

illustrates the Λ decay in terms of its daughters, i.e., p+ (blue line) and π− (red

line), and the magenta circle represents the PV. For the daughter p+, χ2
prim d is il-

lustrated as χ2
prim p+ and for the π− it is shown as χ2

prim π− . For the Λ → p+ + π−

decay the π− (p+) from 17000 Au-Au events generated by UrQMD, variable

χ2
prim π− (χ2

prim p+) is shown in Fig.1.8d (1.8e), with red color showing the back-

ground and black color showing the signal distribution.

The point of closest approach between the daughters is beneficial for the ini-

tial approximation of the SV and also for the segregation of the signal from the

background. The shortest point of approach can be used to calculate the dis-

tance of the closest approach (DCA) and those tracks with longer distances can

be regarded as combinatorial backgrounds. The DCA is illustrated in Fig. 1.7a

with the cyan color. Similarly, those tracks which have small values (a few cm)
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of DCA can be regarded as good candidates for the signal. The DCA, in units of

cm, distribution is shown in Fig. 1.8b for signal and background. Finding the SV

requires the extrapolation of the daughter tracks. This increases the errors of the

parameters of the tracks and therefore DCA can be normalized to its errors in the

form of χ2
geo variable. It can be defined as:

χ2
geo = ∆rT

d1−d2(Cd1 + Cd2)
−1∆rd1−d2 (1.4)

with ∆rd1−d2 representing the distance between the two tracks, and Cd1 and Cd2

the error matrices of the daughter tracks. A smaller portion of the χ2
geo distribu-

tion is shown in Fig. 1.8a for better visualization of the two distributions.

The distance between the PV and the SV can also be used to separate the signal

from the background. This distance is illustrated as a drawing in Fig. 1.7b as a

double-sided arrow and indicated by L. The selection criterion based on such

a variable works because the smaller the distance between the PV and the SV

the smaller the chance that the daughter particles are originating from a decay.

Therefore, a variable L/∆L, i.e., the distance between PV and SV normalized on

the errors is made for the isolation of the signal from the background. The L/∆L

for the Λ decay is shown in Fig. 1.8c in a smaller range.

For the identification of charged particles, PID detectors can be used alongside

the tracking detectors. In the case of Λ, the charged decay daughters are π− and

p+ and for their identification, the mass2 information from the TOF wall can be

used. The distribution of mass2 in units of (GeV/c2)2 for p+ (π−) is shown for

signal and background in Fig. 1.8g (1.8f). The variables used in this study are

summarized in Table 1.1. Also, the other detectors of CBM such as the TRD and

RICH can be useful to separate the electrons from the π− but they are not used in

this study. In the future, the information from them can be also incorporated into

the reconstruction and selection of short-lived particles.
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Variable Description

χ2
prim π− Squared distance normalized to error between π− and PV

χ2
prim p+ Squared distance normalized to error between p+ and PV

DCA Distance of closest approach between p+ and π−

χ2
geo Squared DCA normalized to its error

L/∆L Normalized to its error distance between PV and SV

mass2
π− mass2 of the π− from TOF

mass2
p+ mass2 of the p+ from TOF

Table 1.1: The variables associated with the Λ decay and its daughters, i.e., p+ and π−.
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(e) (f)

(g)

Figure 1.8: The variables associated with the Λ reconstruction are shown here in the log scale on

the y-axis. The Λ candidates were reconstructed from the UrQMD simulated Λs.
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Chapter 2

Machine Learning Theory

New accelerator facilities are aiming to provide high beam luminosities, driving

research to upgrade detector technologies [73]. The increase in the beam intensi-

ties has allowed HIC experiments to operate at increasing interaction rates, i.e.,

up to a few MHz [74]. Simulations of HICs through collision generators predict

experimental results such as particle yields with high precision, and the interac-

tion of the produced particles with detector material is also well simulated within

Geant4 [70]. For the processing of this data, algorithms are required that can

learn from the simulation and experimental data and analyze the real experimen-

tal data. Machine Learning (ML) algorithms have been used in HIC experiments

for various purposes such as tracking, identifying particles, and selection criteria

optimization of reconstructed particles [75, 76, 77].

This chapter defines ML algorithms and describes the eXtreme Gradient Boost-

ing (XGBoost) algorithm. It also highlights the optimization of hyperparameters

(HPs) of ML models using different techniques. Various tools to quantify the

performance of different ML models are also discussed briefly. Finally, the inter-

pretation of ML models is described.

2.1 Introduction to Machine Learning

ML is a division of computer science where algorithms are designed to predict an

outcome (y′) by learning from the data. The algorithm may be used to find pat-

terns or learn correlations in the data. The algorithm learns from the variables or
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features (x = x1, x2, · · ·, xn) of the data. After learning, the algorithm can predict

an outcome when provided with the same features of the data not yet seen by

the algorithm during the training stage. Mathematically, the ML model is a map-

ping from the features to the prediction, i.e., f (x) = y′. Sometimes in the training

of the algorithm, the target or output (y) is also given as an input, the goal is to

learn the correlations between the variables and the target, this type of learning

is called supervised learning [78]. In another case, unsupervised learning, the

algorithm is given only the features, and the algorithm clusters subsets of data

based on the values of the features. In both cases, after training the ML model, it

is deployed on the unseen or test data, and the performance of the algorithm is

evaluated on this unseen data.

In the case of supervised learning a cost function c(y, y′) is used to train the

algorithm and also to evaluate its performance on the test data. During the learn-

ing stage, the algorithm learns from the data by minimizing the cost function. A

well-trained algorithm has a lower c value on the test data. If the dependent vari-

able, y, is a continuous value then the mapping f (x) is called a regression, and

often the cost function c(y, y′) = (y − y′)2 is used. If the response y is a category

or a number then the prediction is known as classification and the most used cost

function is the negative log-likelihood defined as

c(y, p) = −[y × log(p) + (1 − y)× log(1 − p)]. (2.1)

Here p is the predicted probability or output, and the minus sign ensures that the

minimization of c(y, p) is required to make the difference between y and p small,

without the minus maximization would have been required. If the number of

categories is two then the classification is called a binary classification and this

thesis focuses on binary classification. For simplification, the two classes will be

0 (noise/background) and 1 (signal), and the goal will be to segregate these two

classes on the basis of certain input features.

To perform the task of a binary classification various ML algorithms are avail-

able and they are optimized for speed and performance. For example, the ML

algorithm decision tree (sec. 2.2) is a simple and fast algorithm but with lim-

ited power of prediction on complex data sets. Complex means that the data

is large and has many variables and each variable has a low separation power of

26



distinguishing the different classes. While complex algorithms such as XGBoost

(sec. 2.3.1) are useful for large and complex data sets they take often longer to be

trained and deployed.

2.2 Decision Trees

A Decision Tree (DT) is a sequential ML model that is used in supervised learning

for classification and regression. In each step, an if-else condition is applied to the

data to partition it into different groups. The point where the condition is applied

is called a node while the data passing the condition is stored in one category, i.e.,

a so-called leaf, while the data not passing the condition is stored in another leaf.

The selection of the condition at each node is made through a process that aims

to maximize the purity of the data in the leaf nodes relative to the data in the

parent node. Because of finding the quickest way to optimize the selection, DTs

are called greedy algorithms. The goal is to have a leaf with one class only if no

pruning criteria, e.g. a limit on the depth of the tree, are set. Pruning prevents

the DT from over-fitting on the training data and therefore makes it generalized.

DTs are preferred over other complicated black-box models because they can be

easily interpreted [79].

One of the selection criteria for deciding to split the data is maximizing the

information gain

I = Enode− < Eleaves > . (2.2)

The entropy (E), measures the impurity of a leaf/node, for each class i is defined

as E = ∑n
i=1 (−pilog2pi) with p as the probability of each class in a node/leaf.

The < Eleaves > represents the average entropy of the leaves. The probability p

for a class i is calculated by taking the ratio of the samples of this class to the total

number of samples. Every variable is scanned, and the variable which gives the

maximum information gain at a particular value is selected. At the next node,

again the same selection is applied and sometimes one variable is used multiple

times. This makes the selection non-linear.

Table 2.1 shows some made-up data for two classes, i.e., 1 and 0 as specified

by the target variable. Figure 2.2 shows a made-up structure of a DT. Tree depth
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is the number of decision nodes in a tree, for example, the tree of Fig.2.2 has

a depth of 2. The goal of the decision tree is to classify the two classes based

on the variables provided. The entropy at node 0 can be calculated as the sum

of the entropy of each class E = −(1/2)(−1) + −(1/2)(−1) = 1, where the

probability of each class is 1/2. Leaf 1 gets the same target value samples so

its entropy is 0, since log21 = 0 and the entropy of the other leaf (labeled as

node 1) is E = (−1/4)(−2) + (−3/4)(−0.415) = 0.811. An information gain

of I = 1 − (0 + 0.81)/2 = 0.594 has been achieved through the first selection.

This information gain is more than the gain which can be achieved if Var2 is used

instead of Var1, i.e., I = 1 − (0 + ((−2/5) ∗ (−1.322)) + ((−3/5)(−0.737)) =

0.51. Similarly, at node 1 a selection criterion on Var2 splits the data to increase

the information gain. The response of the tree to predict the target in terms of

variables Var1 and Var2 can be written as

f (Var) =
3

∑
j=1

Oj I{(Var1, Var2) ∈ Rj} (2.3)

with R as a leaf and Oj as the response, output value of the individual leaf, of

the DT model, [78]. Thus for an element in a leaf x ∈ Rj the tree response can

be summarized as a constant value, i.e., f (x) = Oj. In the example (Tab. 2.1),

sample 1 in leaf 1 has a prediction value of 1.

S.No. Target Var1 Var2

1 1 10 30

2 0 20 30

3 1 15 30

4 0 30 20

5 1 30 10

6 0 30 30

Table 2.1: A table of pseudo-data to

show how a DT will classify the two

classes of the target variable based on

the variables Var1 and Var2. S.No. is

the sample number.

Node 0

var1<20

leaf 1

samples 1,3

Ye
s

Node 1

var2>10

leaf 2

samples 2,4,6

Ye
s

leaf 3

sample 5

N
o

N
o

Table 2.2: A DT to classify the classes in the target

according to Var1 and Var2.
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2.3 The Gradient Boosting Algorithm

DT-based results are easily interpretable but the algorithm, with a limited tree

depth, is a weak learner (models performing a little better than guessing). There-

fore, the DT algorithm only works well for less complex and smaller datasets.

One way to combine weak learners, such as DTs, to get a strong learner, with

good accuracy, is gradient boosting [80]. The DTs are combined in an iterative

way to get a final classifier that takes into account all the previous results of all

the trees. Suppose, there is a dataset D = (xi, yi)
n
i=1, with xi = (xi1, xi2, · · ·, xin)

representing the independent variables and y the target variable of the n samples

in the data. A cost function c(yi, F(xi)) can be used to quantify the prediction

performance of ML model F(x) on some data. In the case of classification, the

differentiable cost function often used is the negative log-likelihood (eq. 2.1) of

the observed data (yi) given the ML prediction F(xi), i.e.,

c(yi, F(xi)) = −[yi × log(F(xi)) + (1 − yi)× log(1 − F(xi))]. (2.4)

The main gradient boosting algorithm proceeds in the following steps [78]:

1. Initialise the ML model with a constant value

F0(x) = arg min
n

∑
i=1

c(yi, F(xi)) (2.5)

2. Fit m-th DT to the data where m ∈ {1, 2, 3, · · ·, M}:

(a) Compute the pseudo-residuals (rim) for m−th tree for all n samples at

F(x) = Fm−1(x), i.e.,

rim = −
[∂c(yi, F(xi))

∂F(xi)

]
(2.6)

(b) By fitting a regression tree to the rim values, leaves Rjm are created. For

each leaf j in tree m, i.e., j = 1, · · ·, Jm, the output value is determined

by

Ojm = arg min ∑
xiϵRij

c(yi, Fm−1(xi) +O) (2.7)

often Ojm is not easy to solve and Taylor expansion is used

c(yi, Fm−1(xi) +O) ≈ (yi, Fm−1(xi))

+ grad c(yi, Fm−1(xi))O − 1
2

hess c(yi, Fm−1(xi))O2 (2.8)
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(c) Update the previous prediction

Fm(x) = Fm−1(x) + η
Jm

∑
j=1

Ojm I(xϵRjm) (2.9)

3. The final classifier is the combination of all trees in FM(x).

eq. 2.5 is initialized for binary classification with log(p/(1 − p)) of the differ-

ent classes present in the data with p as the probability of one of the classes in

the data. With the selected cost function eq. 2.4, the pseudo-residuals in eq. 2.6,

will become rim = yi − p, i.e., the difference between the actual class label and

the probability for individual entry. The algorithm is named after the step in

eq. 2.6 as Gradient-Boosting. The grad (related to gradient) in eq. 2.8 is the first

order derivative ( d
dF(Fm−1)

) and the hess (related to Hessian) is the 2nd order one

( d2

dF(Fm−1)2 ). The η in eq. 2.9 is a regularization term and it scales the contribution

of the tree, ∑Jm
j=1 Ojm I(xϵRjm), by a factor 0 < η < 1. Empirical evidence [80] sug-

gests that smaller values of η result in better test data performance but require

more trees (M) with lower values of depth; therefore, F(x) becomes computation-

ally expensive. Subsampling is another regularization parameter that reduces

computing usage but increases the performance of the model on the test data. If

a subsampling of 0.8 is selected this will lead to the selection of 80% of the total

training data and the next tree will be trained on it. This will reduce the comput-

ing power by 20% and will also make the model less dependent on the training

data.

For example, the initial prediction for the data in table 2.1 will be F0(x) =

log(p/(1 − p)) = log(0.5/0.5) = 0. Therefore, all candidates will be treated as

background and pseudo-residuals in eq. 2.6 will be calculated and will be r =

(−1, 0,−1, 0,−1, 0). A tree is used to predict the pseudo-residuals, instead of the

target, using the variables Var1 and Var2. To prevent the tree from over-fitting

onto the data η = 0.2 can be used and the final classifier in eq. 2.9 p will be

F1(x) = 0 + 0.2 × ∑J1
j=1 Oj1 I(xϵRj1). To improve the result, another tree could be

added and this time the prediction of F1(x) will be the initial prediction and the

final classifier will be F2(x) = F0(x) + F1(x) + 0.2 × ∑J2
j=1 Oj2 I(xϵRj2).
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2.3.1 XGBoost

To create a library that uses the gradient boosting algorithm efficiently and effec-

tively Tianqi Chen and Carlos Guestrin introduced Extreme Gradient Boosting

(XGBoost). XGBoost is better than other boosting libraries in terms of speed and

accuracy. It offers parallel processing and can handle missing values. It has won

several ML competitions and is an open-source project [81].

2.3.1.1 The XGBoost Algorithm

Since XGBoost is a gradient boosting algorithm, most of the theory of sec. 2.3

applies here. However, some changes were made to the original algorithm to

modify it for speed and accuracy. An initial prediction, F0 = 0, is used for all

candidates of the target variable, and residuals rim (eq. 2.6) are calculated. DTs are

added iteratively to predict the residuals using variables of the data, excluding

the target variable, and the final classifier is a combination of all the previous

ones. For a classification problem, the cost function in eq. 2.4 is used but an

additional term is added for regularization, i.e., γR + 0.5λO2. R represents the

total number of leaves and γ is a pruning term, i.e., it controls the depth of a

decision tree. The regularization term 0.5λO2 takes into account the output value

of a leaf O and then shrinks it by a factor λ. The output values (Ojm) of the leaves

(Rjm) for the m-th tree are again calculated using the Taylor expansion mentioned

in eq. 2.8. If Ij is the instance set of leaf j then Ojm in terms of the new cost-function

become

Ojm =
∑i∈Ij

gradi

∑i∈Ij
hessi + λ

. (2.10)

However, instead of using the impurity measure mentioned in sec. 2.2 as the

splitting criteria for node into leaves, XGBoost uses a score given as

score = −1
2

R

∑
j=1

(∑i∈Ij
grad2

i )

∑i∈Ij
hessi + λ

+ γR. (2.11)

The gain achieved by two leaves, I1 and I2, after a split is given by

Gain =
1
2

[
∑i∈I1

grad2
i

∑i∈I1
hessi + λ

+
∑i∈I2

grad2
i

∑i∈I2
hessi + λ

−
∑i∈Inode

grad2
i

∑i∈Inode
hessi + λ

]
− γ. (2.12)
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A node is split into leaves if eq. 2.12 is greater than zero. So γ and score control

the splitting of the node to leaves and therefore γ regularizes the depth of the

tree.

Finding the best split exactly using eq. 2.12 is very costly for bigger data sets

and therefore an approximate method is also available. In this method (hist tree),

the data in a variable is divided into percentiles and then the splitting of a node to

leaves is checked on these percentiles. Whichever percentile corresponds to the

biggest gain will be selected to split the data. If a feature has missing values then

during the data splitting from node to leaves, the missing data entries are added

to different percentiles and the one resulting in the highest gain is selected.

2.3.1.2 Hyperparameters of XGBoost

Apart from the HPs discussed in section 2.3, i.e., tree depth (max_depth), number

of trees (n_estimator or nest for short),η, and subsampling, XGBoost offer a wide

variety of HPs.

• λ: regularization parameter controlling output values of leaves. It is also

known as L2 regularization and a higher value will mean a more conserva-

tive model.

• γ- pruning parameter that controls tree depth

• α: L1 regularization that control leaf outputs, i.e., eq. 2.10. Increasing it

makes the model more conservative.

• subsample: By defining this fraction the algorithm selects a subset of the

training data based on this fraction. Subsample 0.8 means that XGBoost

would randomly sample 80% of the training data before growing trees to

minimize overfitting.

• scale position weight (scale P-W): This controls the weights of different

classes if the data is unbalanced: different classes do not equally populate

the data.

Here L1 regularization originates from Lasso regression where the absolute value

of output is regularized by a regularization parameter λ. While in L2 regulariza-
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tion, i.e., Ridge regression the square of the output is regularized by the λ. There

are also other HPs but since they are not used in this work, they will not be dis-

cussed here.

2.3.2 Treelite

The Python implementation of XGBoost is slow when it comes to predicting the

outcome for a very large data set e.g. data of Terabytes in size. In high-energy

physics, selection criteria are generally optimized on a local computer (host ma-

chine) on a smaller data set. The optimized selection criteria are then utilized

on larger data on a supercomputer cluster (target machine) with 1000s of Central

Processing Units (CPU).

The treelite [82] can convert the python-based XGBoost model into a C++ li-

brary and therefore offer accelerated performance in terms of speed. It was made

with the intention to install treelite on the local machine and then take the trained

ML model to the host machine without installing any software. The library con-

verts the decision rules of XGBoost into if-else conditions. For example, a tree

node division into leaves is converted into a single if-else rule and if the leaf

further divides then other if-else conditions are added into the parent if or else

condition.

2.4 Hyperparameter Optimization

ML algorithms are often complex mapping functions from observables to an out-

put distribution. To fit the mapping functions such that they fit the train data

and also have useful predictions on unseen data, the number of the free param-

eters of the mapping function needs to be found. The mapping is then fitted

on the training data by finding the values of the fit parameters. The resulting

mapping is then tested on some unseen part of the data (test data). Some pa-

rameters improve the performance of the mapping on the available data while

others control over-fitting on it so that the prediction power on unseen data

is comparable to the one on training data. Generally, a cost function, such as

c(x) = true label − ML prediction, i.e., the difference between the true target
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label value and the ML output value, is used to quantify the performance of the

ML model. The free parameters of the mapping are often so many that one needs

an automatized tool to find them.

If there is an ML model and it has N HPs to be optimized then the total space

of HPs is:

X = χ1 × χ2 × · · ·χN. (2.13)

The individual domain of the i-th HP is χi and a vector from this space would

be x ∈ X. When an ML model such as a classifier is applied to certain data it

gives predictions for the target label. Algorithmically, one is trying to minimize

or maximize a cost function c(x) such as:

x∗ = arg min
x∈X

c(x). (2.14)

Here the cost function measures the performance of the ML model on the test

data and the x∗ is the best HPs vector. The goal of an HP optimization algorithm

should be to find x∗ efficiently in terms of computation power.

For example, in the case of XGBoost, these parameters can be the number of

trees (nest), max_depth, the η, etc. If an HP, like the number of trees, is selected and

the domain is selected to be between 1 and 1000, then χnest = {1, 2, · · ·, 1000}. Sim-

ilarly, if an HP such as the depth of each tree is selected to have values between

1 and 20, then χmax_depth = {1, 2, · · ·, 20}. The total space would be XXGBoost =

χnest × χmax_depth. Examples of x ∈ XXGBoost will be x1 = (1, 1), x2 = (1000, 1),

and x3 = (1000, 20). In total 1000 × 20 = 20, 000 different x will be in XXGBoost.

2.4.1 Sequential Model-based Global Optimization

Brute force searches such as grid search, where HP points are placed on a lat-

tice, are computationally expensive because it searches the provided space exten-

sively [83]. As an alternative, Bayesian optimization [84] can be used to find the

HP more quickly. In sequential model-based (SMB) bayesian optimization a sub-

sample of X is selected with a sampling strategy such as random, quasi-random,

and Latin hypercube sampling. On a sub sample of X, a set E = {(x1, c(x1) , · ·

·, (xi, c(xi))} is created by evaluating the expensive cost function, c(x) at each

vector x ∈ χ. A surrogate model S (generally probabilistic regression) is fitted
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to E and a probability distribution p(c(x)|x, E) is created. The probability dis-

tribution should contain the uncertainty of the surrogate model for mimicking

the cost function. New locations within X are iteratively selected by optimizing

a selection function A which uses the surrogate model instead of the expensive

objective c(x) for the HP optimization.

2.4.1.1 Tree-structured Parzen Estimators

Tree-structured Parzen Estimators (TPE) is an SMB optimization algorithm. In-

stead of predictive distribution over the cost function, p(c(x)|x, E), it models

p(x|c(x), E) and generates two density functions, i.e., h(x) and j(x) [85]. Both h(x)

and j(x) model the domain variables when the cost function is below and above a

specified quantile c(x)∗ (usually set to 15%):

p(x|c(x), E) =

h(x) if c(x) < c(x)∗

j(x) if c(x) ≥ c(x)∗
(2.15)

The ratio h(x)/j(x) is related to the selection function A and is used to predict

new HP. A tree of Parzen estimators for conditional HP is used by TPE and has

been shown to perform well on different datasets [85, 86]. It is easier to under-

stand, computationally less expensive than conventional methods and offers the

option of parallelization. The disadvantage of TPE is that it does not model inter-

actions between HP.

2.4.1.2 Evolutionary Strategy

The finding of HPs is an optimization problem, and since Evolutionary Strategy

(ES) is a stochastic search algorithm, therefore, can also be used to find HPs. In

an ES, a subset of X is taken as a population and then one xi = (xi1, xi2, · · ·, xiN)

is selected randomly as a parent. An offspring x′i is generated from the parent

by adding an independent mutation (δi), sampled from a normal distribution to

one of its N variables e.g., x′i = (xi1 + δiz, xi2, · · ·, xiN). Here z is a random vec-

tor coming from a normal distribution. The mutation part is the stochastic part

of the algorithm. A selection procedure then filters the worst samples from the

population and therefore one is left with a number of x as the best HPs [87]. The
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disadvantage of these algorithms is that they are very slow and therefore compu-

tationally expensive.

A popular ES algorithm is the Covariance Matrix Adaptation Evolutionary

Strategy (CMA-ES) [88]. In this method, the offspring is created not from a single

parent but from a weighted mean of the population where the best candidates

get a higher weight. The offspring are then mutated by adding terms to variables

from a normal distribution with zero mean and variance that comes from a co-

variance matrix. This covariance matrix is updated at each iteration and therefore

the new population generated is based on it.

2.4.2 Optuna

Optuna [89] is an HP optimization library that offers efficient sampling and prun-

ing algorithms. The library provides different sampling methods such as grid

search, random search, relational, e.g., CMA-ES, and independent, e.g., Tree Parzen

Estimators (TPE). The relational method uses the correlations among the param-

eters while the independent method samples each parameter independently. The

library optimizes the HP by using a loss function, which takes in HP and gives

back a validation score. In every trial, an improved validation score is searched.

Optuna can generate HPs through the "suggest API" within limits provided by

the user. The library makes the search more efficient by applying pruning meth-

ods through its "should prune API." Through pruning, it terminates a trial in

which a pre-defined condition is not met.

2.4.3 Cross Validation

For a simpler data set, with fewer variables having great separation power be-

tween classes, one often splits the data into two parts, i.e., train and test data. The

ML algorithm is trained on the train part and is evaluated on the test part. How-

ever, if the data sample is complex, more variables with less separation power

and one needs the HPs of the ML model to be tuned separately, then one can

divide the data into three equal parts. One part of the data will be used for find-

ing HPs, one for training, and one for testing the ML model. Often generation
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and handling of such big data are expensive. There is a better strategy of k-fold

cross-validation where one divides the data into the conventional train and test

data and then further divides the train data into k equal subsets [78]. Then one

uses all k-1 subsets, selected randomly out of k subsets, to train the ML model on

a particular vector of HPs and uses the kth subset to evaluate the model perfor-

mance. The same process is performed k times and the average performance of

the model is calculated. In the search to find a new and better HPs vector than

the previous one, another HP vector goes through k-fold cross-validation. This

process is repeated several times and the best HPs are found.

After finding the best HPs the complete training data is used to train the ML

model. Now to check the performance of the ML model on data that it has not

seen during the HPs optimization stage, the model is deployed on the test data.

The difference between the test data target and the ML model output is used to

quantify the performance of the ML model.

2.5 Model Performance Evaluation

To quantify the performance of the ML model on the train-test data sets a cri-

terion is required. This criterion should reveal the variance and bias of the ML

model on the train-test data sets. Often a confusion matrix (CM) is used to quan-

tify the performance of an ML classifier on different data but a selection needs

to be applied to the ML output for that. A CM [90] for a binary classifier con-

tains 2 rows and 2 columns as shown in Fig. 2.1 left. The top left column shows

the number of true class 1 candidates correctly classified as class 1 candidates by

the classifier i.e true positives (TP). The top right plot shows the number of true

class 1 candidates misidentified as class 0 candidates, i.e., false negatives (FN).

The bottom right shows the class 0 candidates correctly classified, i.e. true neg-

atives (TN), while the bottom left shows the misclassified background, i.e., false

positives (FP). To check the performance of the ML model on many selections,

creating and analyzing CMs is time-consuming.

The CMs for many selections on the ML output can be quantified by making a

plot of true positive rate (TPR) vs false positive rate (FPR) in a Receiver Operating
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Figure 2.1: The left drawing shows a confusion matrix for a binary classifier. The y-axis labels are

the true labels of the data, and the x-axis labels are the classifier-predicted labels. The right side

drawing shows a CM normalized to 1 for an ideal classifier.

characteristic Curve (ROC). Where TPR and FPR are defined as:

TPR =
TP

TP + FN
FPR =

TN
TN + FP

. (2.16)

In terms of two classes in the binary classification, the TPR is the ratio of true class

1 candidates classified correctly to the total true candidates of class 1. Similarly,

FPR is the ratio of the correctly classified class 0 candidates to the total class 0 can-

didates. The Area Under the ROC Curve (AUC) of the ROC plot can be used as

a criterion for distinguishing different models. Fig. 2.2 shows the performance of

an ML model on two data. Generally, a higher value of ROC-AUC indicates better

classification performance for an ML model, but this is not always the case. For

example, a model with more complexity can give a better ROC-AUC on train-

ing data (Fig. 2.2 left, blue dash-dot line) but not better results on the test data

((Fig. 2.2 right). Therefore, a good classifier will have high ROC-AUC on both

train and test data. An ideal ML model will have ROC-AUC equal to one while

random guessing will have a 50% chance of success if the two classes are equally

likely to appear in the data.

2.6 Model Interpretability

A supervised ML model is a complex mapping from input variables (the indepen-

dent ones) to a target variable (the dependent one) with many hyper-parameters

and is not easily interpretable. The functionality of ML models is not easily un-
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Figure 2.2: The left side images shows the ROC plot for the train data set. The right side plot

shows the ROC plot for the test data. All the models trained had a fixed learning rate of 0.1.

derstandable by mere visual inspection. Approximation of an ML model by a

simpler model is required to interpret the results of the ML model intuitively.

Models which approximate the ML model locally explain individual predictions

of the ML model and then selecting multiple such predictions reveals the inner

workings of the ML model. For example, the simpler explanation model can be a

linear regression model or a decision tree.

The Shapley Additive exPlanation (SHAP) library approximates the original

ML model, f (x), locally (on a single input x) by an explanatory model, g(x′), [91].

It is not made for some specific ML model and can be applied to any ML model.

A mapping function x = hx(x′) connects the original inputs x to simplified inputs

x′. Individual feature i ∈ N (e.g. the DCA between two tracks), is given a SHAP

score ϕi and the ML model is approximated in additive feature attribution way

as:

f (x) = g(x′) = ϕ0 +
N

∑
i=1

ϕix′i (2.17)

with x′ ∈ {0, 1}N. If features of the output f (x) were unknown, then the model

would predict the base value ϕ0. Each feature contribution can be written as:

ϕi( f , x) = ∑
z′⊆x′

|z′|!(N − z′ − 1) !
N !

[ fx(z′)− fx(z′ \ i)]. (2.18)

Here z′ ⊆ x′ shows all z′ vectors that have non-zero entries as a subset of the

non-zero entries of x′. The number of non-zero values in z′ is represented by |z′|.

In eq. 2.18, the fx(z′) = f (hx(z′)) shows the presence of the feature in the model

prediction. The z′ \ i in fx(z′ \ i) symbolize the configuration z′i = 0 and shows
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the absence of the feature in the model prediction. This means that each feature

contribution should be calculated as the difference between its presence ( fx(z′))

and absence ( fx(z′ \ i)) in the model prediction. Missing features should have no

influence, i.e., x′i = 0 ⇒ ϕi = 0. In Kernel SHAP, a minimization algorithm fits

the local approximation g(z′) to the ML model f using the squared loss function

L for finding the ϕ over a set of samples in the simplified input space weighted

by the local kernel πz′ , i.e.,

arg min
g∈G

L( f , g, πx′). (2.19)

The explanation model g for sample x minimizes the loss L. L quantifies how

close the explanation model is to the output of the ML model, i.e.,

L( f , g, πx′) = ∑
z′∈Z

[
f (h−1

x (z′))− g(z′)
]2

πx′(z′). (2.20)

G encompasses all similar simple explanatory models, for example, all possible

linear regression models[92]. Kernel SHAP has a unique weighted local kernel,

which can be mathematically expressed as:

πx′(z′) =
N − 1

(N choose |z′|) |z′|(N − |z′|) . (2.21)
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Chapter 3

Performance for Multi-differential

Yield Measurement

The hot and dense matter created during heavy-ion collisions can be studied in

a fixed target experiment by measuring the multi-differential yields of hyperons.

To calculate the yield of a hyperon, the tracks of its daughter particles are recon-

structed and then combined to form candidates for the hyperon. This leads to a

huge combinatoric and a selection process is required for its removal. Detectors

are made for general purposes in fixed target experiments; they are not perfectly

optimized for a particular decay scheme in terms of placing tracking detectors

downward the target. The purpose is to reconstruct most particles in order to get

a complete picture of the collision. Often the decay vertex of a short-lived particle

cannot be clearly resolved from the primary vertex when the detector geometry

is not optimized for this type of decay. Therefore, the application of selection cri-

teria will reduce the combinatorial background, but the particle yield also gets

diminished. To not diminish the yield of a rare decay, mild selection criteria are

applied and some background is left under the signal peak of the invariant (inv.)

mass distribution of the decay. A fitting routine is used to estimate the yield

and the remaining combinatorial background. The particle yield needs to be cor-

rected for efficiency and geometrical acceptance. The systematic uncertainties are

evaluated by varying the selection criteria.

This chapter focuses on the selection criteria optimization for Λ hyperon through

the ML algorithm of XGBoost. The performance of the ML model will be evalu-
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ated using ROC-AUC curves and the selection criteria visualization will be per-

formed with SHAP. A comparison is also made to manually optimized selection

criteria.

The next chapter (ch. 4) focuses on the multi-differential yield extraction pro-

cedure through a fitting routine. The yield is efficiency corrected and the system-

atics are evaluated from the response of the corrected yield to the variation in

selection criteria. The corrected yield and the simulated yields are compared and

a summary is also be presented.

3.1 The Selection Criteria Optimization of Λ

Λ hyperons are crucial to study the deconfined matter created during heavy-ion

collisions because they contain a strange quark. Since they are the most abun-

dantly produced strange baryons at FAIR energies they are useful for assessing

the systematic uncertainty of a selection procedure. For the same number of sim-

ulated collision events, a rarer decay than Λ has lower statistics and the system-

atic uncertainty calculation gets less precise. Λs are neutral particles that decay

via weak interaction and their tracks are not registered in the tracking detectors.

Also, their cτ is 7.89 cm [93], so their decay vertex is on average shifted from the

primary vertex and lies between the first layer of the micro-vertex detector and

the target. A Λ can decay through multiple decay channels but the decay channel

with the highest branching ratio (63.9%) is Λ → p+ + π−, so this channel will be

studied in this work. There are Λs that are produced in the collision of heavy

nuclei and they are referred to as primary Λs in this work. There are also Λs

which are produced in the decay of other particles such as Ξ0 and Ξ− [93]; also

inelastic processes such as the interaction of charged particles with the detector

material can produce Λs called secondary Λs. In this work, the contribution of

the secondary Λs to the yield will not be discussed. In appendix A.1, the reason

for the exclusion of secondaries is discussed.

Data, products of Au-Au collisions at pbeam = 12 A GeV/c, from two dif-

ferent collision simulators, i.e., UrQMD and DCM are passed through the CBM

Geant4 setup. KFParticle package [67, 71] is used to reconstruct Λ candidates.
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The combinatorics contain more combinatorial background than signal and the

signal and the background produced in such collisions depend on the centrality

class, pT, and rapidity (yLab). The values of the various variables, associated with

the daughters of Λ, vary in different intervals because of the response of the CBM

detector and the tracking algorithms. selection criteria need to be applied to the

variables to segregate signal from the combinatorial background in various cen-

trality, pT, and yLab intervals. Simulations of the variables of the signal are easier

to produce than those associated with random combinatorial backgrounds. The

reason is that the random background can come from various sources, such as

protons and pions produced due to the interaction of the collision-produced par-

ticles with a detector component that was not taken into account during simu-

lation. This can be overcome by using the combinatorial background from real

data in a phase space of inv. mass distribution where Λs are not expected, i.e.,

inv. mass < 1.1 and inv. mass > 1.13. Also, this optimization needs to be per-

formed for different energies of the colliding nuclei.

The optimization of selection criteria in a multi-dimensional space of variables

manually is a laborious job. It gets more demanding if one wants to optimize

the selection criteria non-linearly for each energy of colliding nuclei for different

centrality, pT, and yLab intervals. ML algorithms can optimize selection criteria

non-linearly and multi-dimensionally in an automatized way.

3.2 Data Preparation for ML

KFParticle reconstructed Λ candidates generated by the DCM model are treated

as a simulation while those generated by UrQMD are considered real experimen-

tal data. When the FAIR facility will start operating, the experimental CBM data

will replace the 2nd model data but the procedure will remain the same. This

type of analysis is partially data-driven because the easier to simulate data comes

from simulation and the less predictable part comes from data .

In an average UrQMD (DCM) Au-Au collision, the ratio of π− and p+ pairs

produced in a Λ decay to combinatorial background is around 3.8 × 10−7(3 ×

10−7). Therefore, to enhance the number of signal candidates, 5 × 106 events of
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the DCM model are taken and only primary MC true Λ candidates are selected

for the training of the algorithm. The signal of the DCM data is shown in Fig.

3.1 and it is distributed non-uniformly in different pT − yLab bins. To make the

ML model treat various pT − yLab regions differently, one needs to train one ML

model for each region. Similarly, the production of signal candidates depends

on the impact parameter of the collision. A central collision produces more Λ

hyperons than a peripheral one. A central collision also produces other charged

particles in higher abundance than a peripheral which can lead to a decrease in

the efficiency of the tracking system. This efficiency will be discussed in sec. 4.2.

In this section, the analysis of the multiplicity interval of charged tracks [200, 400],

pT [0, 0.6] GeV/c, and rapidity [0, 1.6] is presented as an example. The analysis of

the other pT − yLab intervals of this multiplicity interval are also performed and

some of its figures are added in the appendix A.
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Figure 3.1: The DCM-generated MC Λ distribution after reconstruction for 5× 106 Au-Au events,

produced at pbeam = 12 A GeV/c.

The variables (discussed in sec. 1.4.6) that are used to separate the signal from
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the background are: χ2
geo, χ2

prim π− , χ2
prim p+ , DCA, L/∆L, mass2

pi− and the mass2
p+ .

The distribution of MC true Λ and its background were plotted for each variable

in Fig. 1.8. The Pearson correlation coefficient ρx,y =
Covariancex,y

σx,σy
between every

two variables for the MC true background set is plotted in Fig. 3.2. The standard

deviation of each variable is represented by its σ. The correlation of the vari-

ables for the background outside (inside) the inv. mass peak of the Λ, mass <

1.1 GeV/c2 and mass > 1.13 GeV/c2 (1.1 GeV/c2 < mass < 1.13 GeV/c2), is

shown in Fig. 3.2b (3.2a). Both images show that there are no strong correla-

tions between the various variables and the inv. mass, pT, and yLab distributions

of the background. Also, the correlations are the same for both types (under the

peak and in side bands) of the background, which means that the background is

a mere combination of pairs and it is independent of inv. mass.

(a) (b)

Figure 3.2: The plot shows the correlations among various variables for the background data, i.e.,

KFParticles reconstructed Λ candidates by combining random pairs of positively and negatively

charged tracks generated by UrQMD Au-Au collisions at pbeam = 12 A GeV/c. The left (right)

plot is for the background lying outside (inside) the Λ peak on the inv mass distribution.

The MC true signal is selected from the DCM-QGSM-SMM model data in the

5σ region around the Λ peak. The background distribution is selected in the

sidebands of the Λ peak from the UrQMD model data. These two data sets are

combined in such a way that 3 times more background than signal is taken and

Fig. 3.3 shows the inv. mass distribution of this data set. This data is divided into
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equal-size train and test data. The training data is used for optimizing the hyper-

parameters of the XGBoost algorithm, discussed in section 3.3, and training the

model. The performance of the model will be evaluated on the test data.
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Figure 3.3: The graph shows the true MC Λ candidates, magenta, selected from the DCM model

in the 5σ region around the Λ peak along with combinatorial background selected (yellow) from

the UrQMD model in the sidebands.
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3.3 XGBoost Hyper-parameters Tuning

The Optuna library is used for finding the hyper-parameters (sec. 2.3.1.2) of the

XGBoost algorithm. It offers many sampling methods but two of them, TPE

(sec. 2.4.1.1) and CMA-ES (sec.2.4.1.2), are used in this study. Each sampling

method was iterated three times. Each time the number of trials was 5, the range

(minimum or min and maximum or max) of various hyperparameters is given

in Table 3.1. In each trial, 3-fold cross-validation (sec. 2.4.3) is performed and the

model performance is judged on the validation part (or the testing part of the

train data). The number of subsample was fixed at 0.8, the area under the curve

HPs min max TPE1 TPE2 TPE3 CEs1 CEs2 CEs3

n_est 100 500 300 160 240 300 250 300

α 2 30 26 11 25 16 5 16

scale P-W 1 10 2 4 6 5 2 6

γ 0 1 0.58 0.02 0.44 0.49 0.70 0.61

η 0.01 1 0.06 0.08 0.12 0.10 0.10 0.09

max depth 0 10 6 8 6 5 4 5

AUC (10−2) 99.47 99.47 99.47 99.47 99.47 99.47

Table 3.1: The table shows the hyper-parameters (HPs), the minimum and maximum range of a

hyper-parameter, and the best value returned by TPE and CmaEs (CEs) for each hyperparameter.

The TPE3 values were used for the selection of Λs of the interval: mulitplicity= [200, 400], pT =

[0, 0.6] GeV/c, and rapidity = [0, 1.6]

.

(AUC) was used as the evaluation metric, and the hist tree method was used for

speed. The model, trained on the best hyper-parameters of an individual trial,

is evaluated on the test part of the 3-fold, and its evaluation AUC is plotted for

each sampler in Fig. 3.4. The higher the AUC the better the model. The num-

ber, e.g., TPE1 shows the first attempt of using the TPE sampler for 5 trials and

the best with an individual attempt shows that during a single trial, multiple

hyper-parameters can be found but the best is saved. It can be concluded that,

if performed for 5 trials, the two sampling algorithms, i.e., TPE and CmaEs per-

form similarly in finding the best hyper-parameters as all the curves converge
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after the 3rd trial. This means that both methods perform similarly over 5 trials

and both methods are suitable for this work. However, TPE is faster, therefore it

was selected as a default method.
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Figure 3.4: The plot shows the average AUC score, on the validation data, of the best hyper-

parameters found in a search using TPE and CMA-ES in each trial. Each point on the graph

shows the validation score of the ML model based on the hyper-parameters found by the hyper-

parameter search algorithm.
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3.4 Bias and Variance Check

After finding the best hyper-parameters for the training data, the model is de-

ployed first on the train and then on the test data set, and it returns a distribution

of probabilities for each set. The probability for each Λ candidate to be a signal

will be referred to as XGBoost score. Fig. 3.5a shows the overall output of the

ML model on the train data while Fig. 3.5b plot shows the true signal and back-

ground distributions in the XGBoost score. According to Fig.3.5 the model puts

signal like Λ candidates near 1 and background like near 0. This means that if a

selection threshold, greater than zero, is applied on the XGBoost score to select

Λ candidates then some true signal candidates will be also lost. To understand

the behavior of selection criteria on the XGBoost score in terms of the true signal

loss, a confusion matrix needs to be plotted. Fig.3.6a shows the confusion matrix

for train data, normalized to 1, for a particular selection, i.e., 0.9 on the XGBoost

score. All candidates with an XGBoost score greater than 0.9 are selected. The

confusion matrix shows that at this selection on the XGBoost score, 93% of the

MC true Λs are correctly identified while < 1% background has also passed the

selection. Also, 7% of true Λs were lost by this selection but it also removed

99% of the total background. Similarly, Fig. 3.7a shows the XGBoost score for

the test data and Fig. 3.7b shows the MC signal and background distributions in

the score. Fig. 3.6b right shows the confusion matrix for the test data where the

selection is applied on the 0.9 threshold.

Fig. 3.5b and Fig. 3.7b can be combined in one image to look at the perfor-

mance of the model on the training and testing data, along with MC information,

as shown in Fig.3.8 and it shows that the model output for the two data sets looks

similar. Also, the two confusion matrices (Fig.3.6a, Fig.3.6b right) reveal that the

selection of a particular XGBoost score results in similar ML model performance

on both train and test data sets. To ensure that the ML model is behaving sim-

ilarly on the train and test data one needs to calculate the confusion matrix for

each selection on the XGBoost score. The ROC curve (Fig.3.9) is a plot of True

Positive Rate (TPR) vs False Positive Rate (FPR) for all the thresholds that one

wants to apply on the XGBoost score. The area under the ROC curve can be used

as a criterion to judge the performance of an ML model. Fig.3.9 also confirms that
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Figure 3.5: The left side image shows the output of the XGBoost model on the train data set.

The right side image shows the distribution of MC true Λ candidates and MC background in the

predictions
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Figure 3.6: The left plot shows the confusion matrix for train data while the right shows for test

data. The two confusion matrices differ from each other in the 3rd digit after the decimal point.

the model is working similarly on the two data sets because the AUC is differing

only by 0.1%.

Since the model was trained on enhanced data, it is tested on full UrQMD

generated events at pbeam = 12 A GeV/c passed through the CBM Geant4 setup.

The inv. mass distribution of the Λ candidates before (blue) and after (red) the

application of ML selection criteria is shown in Fig. 3.10. The combinatorics is so

huge before the application of the selection criteria that the Λ peak is not visible

to the naked eye. After the deployment of the ML model, the background is

reduced and the peak is clearly visible. This visual test suggests that the model
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Figure 3.7: The left image shows the output of the XGBoost model on the test data set. The right

image shows the distribution of MC true Λ candidates and MC background in the predictions
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Figure 3.8: The graph shows the XGBoost score for both the train and test data set. This graph

is the combination of Fig 3.5 and 3.7. The performance of the ML model on the train (filled

histogram) and test (circles) is almost the same.

performs similarly on enhanced data and realistic simulated data.

Selection criteria can reduce combinatorial background, but it can also reject

signal. To quantify the loss of signal candidates, an ML efficiency, denoted by

εML, can be introduced. This represents the ratio of the selected signal (Λslc) to

the reconstructed signal (Λrecons). A pT − yLab distribution of εML for the threshold

of 0.9 on the XGBoost score is shown in Figure 3.11, where it can be observed that

the efficiency reaches up to 0.9.
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Figure 3.9: The graph shows the ROC curves for the train (dotted orange line) and test data (green

line). The AUC of the ROC curve is shown in the legend.
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Figure 3.10: The inv. mass distribution of the UrQMD model data before (blue) and after (red) the

application of ML-based selection criteria. The counts for the data before the application of ML

are on the left side y-axis and for the data after ML model deployment on the right side.
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Figure 3.11: The εML is shown here for the threshold of 0.9 on the XGBoost score on the UrQMD

data.
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3.5 Comparison between Manually & ML Optimized

Selection Criteria

In this section, the ML-based selection criteria optimization is compared to man-

ually optimized selection criteria. The manual selection criteria for Λ hyperon for

CBM were based on signal-to-background ratio maximization and have been dis-

cussed here [72]. The optimum values of the hypercube found were: χ2
prim > 18.4,

χ2
geo < 3, DCA < 1, and L/∆L > 5. On top of these, one selects π− and p+ which

is performed by selection on the mass2 information that is obtained from the TOF

wall detector. The selection criteria applied to the mass2 variable for the π− (p+)

are shown in Fig. 3.12 left (right) as red lines. The procedure behind this particle

identification method has been discussed in this [94] work.
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Figure 3.12: The graph shows the momentum (p) on the x-axis and mass2 in (GeV/c2)2 on the

y-axis, for UrQMD data. The PID selection criteria (red) applied to the mass2 variable associated

with all negatively (left) and positively (right) charged tracks are shown by the red lines.

The manually optimized selection criteria, MSC, (blue), and the ML optimized

(red) are applied to 2 × 106 UrQMD generated events, transported through the

Geant4 CBM setup are shown in Fig. 3.13. In the lower part of Fig. 3.13, the ratio
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of the two Λ distributions is plotted. The errors are propagated using:

σratio =
ΛML

ΛMSC

√
(

√
ΛML

ΛML
)2 + (

√
ΛMSC

ΛMSC
)2 (3.1)

with ΛML representing the bin count of the ML selected Λ distribution and ΛMSC

the manually optimized one. The ML-optimized selection criteria are non-linear

in a multi-dimensional space and achieve a much better signal-to-background

ratio while maintaining a higher efficiency. The efficiency of primary and sec-

ondary Λ are shown as text in Fig. 3.13, although the study of secondary Λ is

not the focus of this study it reflects the fact that any type of true Λ is not thrown

away from the distribution by ML. Similar plots have been generated for other

intervals of pT − yLab and they are presented in the appendix sec. A.4.

102

103

lo
g 

(c
ou

nt
s)

Machine Learning (XGBoost)
Manual Selection Criteria (MSC) 

1.100 1.105 1.110 1.115 1.120 1.125 1.130 1.135 1.140
Mass in GeV/c2

0.0

0.5

1.0

1.5

XG
Bo

os
t /

 M
SC

CBM Performance
URQMD Au+Au
12A GeV/c

MSC Primary efficiency = 0.042

MSC secondary efficiency = 0.043

XGBoost Primary efficiency = 0.065

XGBoost secondary efficiency = 0.064

XGBoost Selection = 0.999

Figure 3.13: The top plot shows the Λ candidates selected by ML-optimized selection criteria

(red) and manually optimized selection criteria (blue). The bottom plot shows the ratio of the two

Λ distributions.

In the mass window of 1.1 − 1.13 GeV/c2, the signal and background can-

didates were counted in data after the application of ML and manual selection

criteria, separately. The signal-to-background ratio for the ML selection criteria
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was 43.3, while for the manually optimized hypercube was 5.9. Therefore, at the

same efficiency ML selection criteria have a more than seven times better signal-

to-background ratio than the hypercube.

The distributions of the variables of the Λ candidates that the ML optimized

selection criteria have filtered are plotted in Fig. 3.14, and the black (red) filled

circles show the MC signal (background) distribution. In contrast to Fig. 1.8,

the signal distribution is in abundance. Also, the distributions of the Λ variables

after the application of MSC are plotted with blue (magenta) unfilled squares

showing the signal (background) distributions in Fig. 3.14. These distributions

show that the background is still dominant in some places and can be suppressed

by applying stricter selection. The χ2
geo distribution in Fig. 3.14a goes up to the

value of 8 while the DCA in Fig. 3.14b goes up to 0.02. On the other hand, the

MSC applied χ2
geo distribution goes up to 3 and DCA up to 1. The L/∆L in Fig.

3.14c starts from the value 90 and the χ2
prim π− (χ2

prim p+) in Fig. 3.14d (Fig. 3.14e)

starts from 20 × 103 (1500). Sometimes the TOF hit is incorrectly assigned to a

particle track and the ML algorithm, in this case, selects the Λ candidates based

on other variables than the mass of p+ and π− as shown by Fig. 3.14f and Fig.

3.14g. The two images show that certain true p+ are mismatched to tracks with

mass2 greater than 2 GeV/c2. Similarly some true π− are assigned an incorrect

mass2 of electrons.

In the case of ML selection criteria, certain variables start (end) from some low

(high) value meaning that the lower (higher) values are rejected. This is not the

true picture because the selection criteria of ML are non-linear and some inter-

mediate values of some variables are also eliminated. This means that multiple

variables are used non-linearly to apply a certain selection. The selection applied

to the XGBoost score, in the comparison case, is to maintain similar efficiency

to that of the manual selection criteria. The distributions may change on a dif-

ferent threshold on the XGBoost score and this makes ML-based selection easily

adjustable according to one’s need. If one wants high efficiency with a low signal-

to-background ratio then one applies a low threshold on the XGBoost score and

vice versa. The manual-based hypercube is more rigid and to increase (decrease)

efficiency one will have to change the hypercube. Also, manual-based selection
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criteria depend on the mass2 information but some π− never reach the TOF de-

tector and they are automatically rejected in the first stage of the selection. The

matching algorithm that connects a TOF hit to a track from the tracking system is

not ideal and therefore some tracks are mismatched to an incorrect mass2 value.

Manually optimized selection criteria are more vulnerable to this mismatch than

ML selection criteria.
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Figure 3.14: The graphs show the distributions of variables associated with Λ after the application

of ML-optimized and manually-optimized selection criteria, for UrQMD-generated data. The

signal is represented by black full circles (blue open squares) and the background with red full

circles (magenta open squares ) for the ML-optimized (manually optimized) selection criteria

applied.
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3.6 Visualization of the ML Model and Ranking of

the Variables

ML models such as XGBoost contain a large number of hyperparameters and that

makes them not easily explainable. Since the global explanation of the behavior

of these models is complicated, SHAP (Sec. 2.6) can be used to approximate the

behavior locally. Fig. 3.15 shows the SHAP values of the variables associated

with the ML model for one Λ candidate. SHAP approximates the ML model per-

formance on this single sample. The variable which has the highest SHAP score

is put on the top while the variable with the lowest SHAP score is on the bottom.

The decision to assign the XGBoost score to a candidate can be considered as the

sum of its SHAP scores. For example, in Fig. 3.15 the sum of all SHAP scores

is less than zero and therefore this candidate is assigned a low XGBoost score

(0.011).

For a number of samples, the SHAP model approximates the ML model gen-

erally. The higher the number of samples the better the SHAP model fits the real

ML model. For 3× 104 samples from the training data, the SHAP plot is shown in

Fig. 3.16. It shows that the model is using primarily the distances of the positive

and negative tracks to the PV, i.e., χ2
prim p+ and χ2

prim π− as the top classification

variables with the biggest SHAP scores. The SHAP scores for the values of vari-

able χ2
prim p+ go up to 4 while the SHAP score for the values of variable χ2

prim π−

end up below 3. This means that χ2
prim p+ is much more useful for signal identi-

fication. Also, it shows that the higher values (red color dots) of these two vari-

ables are more useful in the classification of signal (positive SHAP value score).

The higher the distance to the primary vertex of the daughter tracks the more

likely the model treats the candidates as the signal. This is further cemented by

Fig.3.17a where the SHAP values for the variable χ2
prim p+ are plotted as a function

of the variable values. The SHAP score for the candidates with χ2
prim p+ < 20 are

mostly negative. These candidates are more likely to originate from the primary

vertex and not from a Λ decay. The plot for the χ2
prim π− vs its SHAP values is

plotted in Fig.3.17b and the higher the value of the variable the higher the SHAP

score. However, the SHAP score does not go as high as it does for the χ2
prim p+
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Figure 3.15: The graph shows the SHAP values associated with each feature for a single Λ candi-

date on the x-axis and the variables on the y-axis. The color bar shows the values of the variables

with red meaning higher values and blue meaning lower values. The grey color shows missing

values. The single entry was taken from the train data. At least two candidates are required to

compare different feature values, that’s why no red color is visible here.

variable.

The model finds the distance, normalized to its error, between primary vertex

and secondary vertex (L/∆L) the 3rd useful, shown by Fig. 3.16. Fig. 3.17e shows

that the lower values (less than 10) of this variable are given more negative SHAP

scores. The SHAP values mostly go above zero around 10 and then go below zero

after 20. The higher values of the mass of the positive track (mass2
p+) are also cor-

related with the signal because they have been given high SHAP values in Fig.

3.16. There are also some grey dots here which are tracks where the information

of the mass2 variable from the TOF detector is not available. These missing val-

ues are sometimes also given SHAP scores as the algorithm can take them into

account, as discussed in sec. 2.3.1.1. The SHAP values for the variable mass2
p+ are

shown in Fig. 3.17d and they show that a high SHAP score is given to values near

the mass of p+, massp+ = 0.938 GeV/c2 [33]. Higher values of distance (DCA and
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χ2
geo) between the two tracks are given lower SHAP scores, i.e., these candidates

are treated as background. The SHAP values for DCA plotted against DCA value

in Fig. 3.17c shows that the closer the two tracks come toward each other the

higher the SHAP score and vice versa. The mass of the negatively charged track

(mass2
pi−) is the least useful for the segregation of signal from the background.
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Figure 3.16: The graph shows the features on which the model was trained on the y-axis and the

SHAP score on the x-axis.

The SHAP analysis provides insights into how the machine learning (ML)

model is making decisions based on the underlying decay topology of the vari-

ables. As discussed in section 1.4.6, the distance of the daughter track from the

primary vertex is a crucial variable for identifying whether it originates from the

primary vertex or from the decay of a particle. Consistently with the decay topol-

ogy, the ML algorithm assigns higher rankings to daughter tracks that are farther

from the PV. Additionally, the proximity of two tracks to each other is a key fea-

ture for identifying tracks that arise from decay. Once again, the ML model re-

flects the decay topology by assigning higher scores to lower values of the DCA

between the tracks. The farther away the secondary vertex from the primary ver-

tex the more likely the tracks are from decay and the SHAP analysis also reveals
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Figure 3.17: SHAP score for different variables is shown against the values of the variables.
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the same.

Further SHAP analysis is described in the appendix section A.2. That analy-

sis includes SHAP plots for the signal-only data with a high XGBoost score, i.e.,

greater than 0.99. The SHAP distributions show that the ML model performs the

same on signal-only data as it does on the total data. Each candidate’s individual

value of a variable gets a score and the final decision is made on the final sum of

all the scores from all the variables.

3.7 Conclusions on Selection Criteria Optimization

Selection optimization was performed using the ML algorithm XGBoost multi-

differential in multiplicity, transverse momentum and rapidity. The selection cri-

teria reduces the background but also rejects signal and the ML efficiency term

quantifies the rejection. The ML efficiency value depends on the threshold on the

XGBoost score and this will be discussed in chapter 4, but at a threshold of 0.9

it can go up to 0.9. The SHAP explanation revealed that the ML model makes

decisions based on the underlying decay topology.

The ML selection criteria because of its non-linear nature in a multi-dimensional

space show better suppression of background than the manual hypercube selec-

tion at a better efficiency. This resulted in a seven times better signal-to-background

ratio in the ML case. ML selection criteria are less vulnerable to mismatches in the

TOF matching algorithm than the manually optimized selection criteria. Also in

the case where there is no TOF information available for the π− and p+ the ML

selection criteria could still make a decision while the manual selection criteria

could not.
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Chapter 4

Yield Extraction and Systematic

Uncertainties

After the application of ML-optimized selection criteria, the raw yield of the Λ

hyperon is extracted differentially in pT and yLAB in a multi-step inv. mass fitting

routine. The signal distribution is approximated using the Double-Sided Crys-

tal Ball (DSCB) function [95], while background estimation is performed using a

fourth-order polynomial (pol4). The yield is obtained by integrating the DSCB

function within a few σ regions around the Λ inv. mass peak. Counting the total

MC true signal is considered as the yield of the DCM model data and the ratio

of this yield to the simulated yield defines the total efficiency. The total efficiency

is then used to correct the yield obtained from UrQMD data, through the fitting

routine.

4.1 Raw-Yield Extraction Procedure

After the application of the XGBoost model on the data and the selection of a

certain XGB score as a signal discrimination threshold, some combinatorial back-

ground is still left, as shown by the tails of the inv. mass in Fig. 3.13. The sep-

aration of this combinatorial background from the signal is performed using a

multi-step fitting routine on the invariant inv. mass distribution of the Λ candi-

dates. The functions used to fit the signal and background distribution were se-

lected because they resulted in a lower χ2
red = χ2/NDF. Here χ2 is the weighted
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sum of squared residuals and the number of degrees of freedom (NDF) is the dif-

ference between the number of observations and the number of fitted parameters.

However, a comparison between the DSCB and a Double Gaussian (DG) is also

performed here.

The DSCB function is a combination of two Crystal Balls and is defined as:

f (m; A0, µ, σ, aL, aR, nL, nR) = A0 ×


AL(BL − G)−nL if G < −aL

e−(G)2/2 if aR > G ≥ −aL

AR(BR + G)−n2 if G ≥ aR

(4.1)

with AL/R = (nL/R/aL/R)
nL/R × e−a2

L/R/2, BL/R =
nL/R
aL/R

− aL/R and G = m−µ
σ .

The fit parameter µ is the meanwhile σ is the standard deviation of the Gaus-

sian. The A0 is a normalization coefficient. The parameters of the power tail

(AL/R(BL/R − G)−nL/R) are aL/R and nL/R. The aL/R is the parameter that de-

cides the switching to the Gaussian from the power tail on the left/right.

The 4th-order polynomial is defined as:

pol4 = p0 +
4

∑
i=1

pi
Ci

i!
(4.2)

with C = x − massΛ, where massΛ = 1.115 GeV/c2 [96], and the pis are the fitting

parameters.

The DG consists of two Gaussians centered around the same mean µ and is

defined as:

DG(m, A, µ, σ1, B, σ2) = A

[
(1 − B)√

2π/σ1
e
−(m−µ)2

2σ2
1 +

(B)√
2π/σ2

e
−(m−µ)2

2σ2
2

]
(4.3)

where σ1 and σ2 are the standard deviations of the two Gaussians. Parameters A

and B are coefficients.

To ensure the stability of the fitting routine, a multi-step procedure is em-

ployed. The yield is extracted multi-differentially by dividing the data into 10

intervals of pT, with a size of 0.3 GeV/c for each interval. Each pT interval is fur-

ther divided into 10 intervals of yLab, with a width of 0.3. This section focuses on

the pT = [0.3, 0.6] GeV/c and yLab = [1.2, 1.5] interval. The same procedure is

applied to all other pT and yLab intervals, although the results are not discussed

66



here. The inv. mass fits of the other intervals are plotted in the Appendix sec-

tion A.4.

In the first step of the fitting routine, MC signal-only data is selected from the

DCM-QGSM-SMM data with an XGBoost threshold of 0.53. This data is used to

create a histogram of the inv. mass, with 500 bins in the range 1.08 − 1.2 GeV/c2.

The DSCB parameters (A0, µ, σ, aL, aR, nL, nR) are initialized with values given

in appendix sec. A.4, and their ranges are bounded. The fitting range is set as

4.5 standard deviations of the histogram data around the mean value of the his-

togram. The histogram and the fitted DSCB function are displayed in Fig. (4.1).

The yield (Λyield) is computed by integrating the fit function over an ±11σ region

centered around the µ of the Gaussian parameters of the fit function. The ±11σ

region covers the peak region of the inv. mass. However, due to issues in the re-

construction, a very small number of true Λs can end up far away from the main

peak, and they are excluded from fitting. To estimate the uncertainty of the fit

integral (σΛyield), it is assumed that the relative error is the same as for the total

integral. The value of a fit parameter, such as µ, and the uncertainty in the value

of this fit parameter, such as σµ, are used to calculate the ratio σµ

µvalue
which is mul-

tiplied by the integral of the fit function. The value of Λyield ×
σµ

µvalue
estimates the

uncertainty of the fit integral. The number of true Λs are counted as well and the

sum is called MC true yield. The obtained yield agrees with the MC true yield

within the uncertainty of the fit integral.

Fitting the DG function to the signal-only distribution was also implemented

in the same way as the DSCB, and the yield was calculated as the integral of the

DG function in the 3σ (larger σ of the two σs) region around µ. Although the

integral of the fit function agrees with the total number of MC true Λ candidates,

the fit does not describe the tails of the distribution very well, as shown in Fig. 4.2.

Also, a visual inspection of the ratio plot reveals that the fit function does not

describe the peak region as well as the DSCB function does. Additionally, the

χ2
red value (9.2) was larger than that of DSCB (2.6).

In the second step of the fitting routine, the inv. mass distribution of the

UrQMD data is utilized. The invariant mass window (µ − 8σ) − (µ + 8σ) is

excluded, using the σ and µ fit parameters from the first step. Consequently, the
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Figure 4.1: The inv. mass histogram, in black circular markers, of the DCM-QGSM-SMM data

along with the DSCB fit, green dotted curve, is plotted for pT(GeV/c) − yLAB = [0.3, 0.6] −

[1.2, 1.5] is shown here. XGBoost probability selection of 0.53 is applied. The bottom plot shows

the ratio plot (black circles) of the data and the fit. The red line is the ratio = 1.

invariant mass range lying beyond the red perpendicular lines shown in Fig.4.3

is fitted with a pol4 function. The fitted function is extended to the inv. mass

peak region and is shown by the magenta-dotted curve. As actual accelerator

facility-produced data will replace the UrQMD data in the future, this process

will continue to work because the background data will be chosen outside the Λ

peak region.

The third step of the fitting routine involves fitting the total invariant mass

distribution with the DSCB + pol4 function. The initialization of the parameters

uses the fit parameters obtained from the last two steps. The red dotted curve

in Fig. 4.4 represents the resulting total fit. To calculate the raw yield, the signal-

only function, which is the DSCB (green dotted curve), is integrated inside the

11σ region (green perpendicular dotted lines) around µ. The raw yield agrees
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Figure 4.2: The MC true signal only inv. mass histogram of the DCM model-generated data (black

circles) is fitted by a DG fit function (green dotted curve).
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Figure 4.3: The inv. mass of the UrQMD model data (black circles) is fitted in the sidebands of the

Λ peak (the region outside the red perpendicular lines) with a pol4 (dotted magenta curve).
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with the MC true signal (found by counting all MC true) within the uncertainty.
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Figure 4.4: The inv. mass of the Λ hyperon of UrQMD data (black circles) is fitted with

DSCB + pol4 (red dotted curve). The DSCB only part (green dotted curve) of the total fit function

approximates the signal part while the pol4 (blue curve) approximates the background-only dis-

tribution. The perpendicular green dotted lines on both sides of the Λ peak show the inv. mass

range where the signal function is integrated for yield calculation.
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4.2 Efficiency Correction of Raw-Yield

Fixed target experiments, such as CBM, adopt a forward spectrometer geometry

with an angle coverage of 2.5°-25° to cover the mid-rapidity region. Nonetheless,

not all Λ candidates produced in heavy-ion collisions are detected by this detec-

tor geometry. The detector’s inefficiency to detect all Λ candidates is quantified

by the geometrical acceptance (Acc) of the experiment. Furthermore, even those

Λ candidates that pass through the detector geometry are not always successfully

reconstructed due to the limited efficiency of the candidate reconstruction chain.

About 63.9% [96] of the total Λ candidates decay through the Λ → p+ + π− de-

cay channel. The efficiency for reconstruction and branching ratio are combined

into the term ϵcomb. Therefore, if N is the number of simulated Λs (Λsim), only

Acc × ϵcomb × N will be reconstructed by the CBM experiment.

The pT − yLab distribution of simulated Λ by DCM for 2 × 106 Au-Au events

is illustrated in Fig. 4.5a, corresponding to charged tracks multiplicity interval

= [200, 400] per collision. The simulated signal shows pT − yLab dependence

and this is due to the simulation model with its modeling physics. Fig. 4.5b

presents the reconstructed true Λs by the CBM reconstruction chain. To calcu-

late the Acc × ϵcomb, the number of reconstructed Λ candidates is divided by the

number of simulated ones. The pT − yLab distribution of Acc × ϵcomb for Λ can-

didates for the multiplicity interval [200, 400] is shown in Fig. 4.5c, while Fig. 4.5f

shows the zoomed-in pT = [0, 0.6] GeV/c and yLab = [0, 1.5] interval. The re-

construction efficiency for Λ is non-uniform in different pT − yLab intervals and it

can go up to 0.52. Similarly, the Acc × ϵcomb was calculated for the multiplicity

interval [0 − 200] (shown in Fig. 4.5d) and it can go up to 0.54. The efficiency for

multiplicity interval [0 − 200] is divided by the efficiency of multiplicity interval

[200, 400], and the result is shown in Fig. 4.5e. The ratio of the efficiencies of two

multiplicity intervals in all intervals of pT and yLab is not one, indicating that the

Acc × ϵcomb is non-uniform across different multiplicity, pT and yLab intervals.

This non-uniformity is due to the detector’s response.

Performing selection and yield extraction using all the data within a single

interval is unlikely to result in a successful correction procedure. This is because

the simulated signal depends on both pT and yLab, and the reconstruction effi-
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ciency is non-uniform across different intervals of multiplicity, pT and yLab. To

correct for the non-uniformity of the signal in different intervals of pT, yLab and

multiplicity, it is important to perform the optimization of selection criteria, yield

extraction, and yield correction multi-differentially.

ML-based selection criteria reject combinatorial background but may also elim-

inate signal, leading to a certain efficiency (ϵML) for each selection based on the

XGB score. There is an inverse relationship between efficiency and the use of an

XGB score as selection criteria for candidates and it will be discussed in sec. 4.4.1.

Fig.4.6a shows the ML-only efficiency at the XGB score of 0.53, reaching up to

96% for the multiplicity [200, 400] interval. Since the selected Λ candidates (Λslc)

are a subset of the reconstructed Λ candidates (Λrecons), the uncertainty in the

ML efficiency is calculated using the error propagation of binomial statistics. The

uncertainty [97] is defined as:

σϵML =

(
(1 − 2Λslc

Λrecons
)σ2

Λslc
+

Λ2
slc

Λ2
recons

σ2
Λrecons

)
/Λ2

recons (4.4)

where σΛslc (σΛrecons) is the square root of Λslc (Λrecons). ML efficiency can be com-

bined with the ϵcomb × Acc to obtain a total efficiency, i.e.,

ϵtotal = ϵML × ϵcomb × Acc. (4.5)

Fig.4.6b displays the values of ϵtotal, which reach up to 43%. The associated uncer-

tainty (σϵtotal ) is calculated using equation 4.4, but replacing Λrecons with simulated

Λ candidates (Λsim). To correct for the lost signal candidates, the yield obtained in

section 4.1 requires correction by the factor ϵtotal, which depends on the selection

threshold applied to the XGB score.

The DCM collision simulator data is treated as a simulation, and efficiency is

calculated using this model. Conversely, UrQMD data is treated as experimental

data, and its yield is corrected on the efficiency obtained on the DCM data, after

the yield extraction procedure. The corrected yield Λcorr is obtained by:

Λcorr =
Λyield

ϵtotal
(4.6)

The uncertainty of the corrected yield is calculated by considering that the ϵtotal of

the UrQMD is correlated to the ϵtotal of the DCM model. This correlation is due
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Figure 4.5: Fig. 4.5a shows the production of Λ candidates by the DCM generator for 2 × 106

Au-Au events; the reconstructed ones by the CBM reconstruction chain are shown in 4.5b, in the

multiplicity interval = [200, 400]. The Acc × ϵcomb efficiency is plotted in 4.5c and for a smaller

pT − yLab interval it is plotted in 4.5f. The Acc × ϵcomb for the the multiplicity interval = [0− 200]

are shown in 4.5d and the ratio of 4.5d to 4.5c is shown in 4.5e. In 4.5e the (εcomb × Acc)0−200

((εcomb × Acc)0−200) is Acc × ϵcomb for multiplicity [0 − 200] ([200 − 400]) interval.
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Figure 4.6: The ML-only efficiency is shown in Fig. 4.6a and the total efficiency, i.e., ϵML × ϵcomb ×

Acc = ϵtotal is shown in Fig. 4.6b.

to the fact that ϵtotal is independent of the collision generator. This means that

the ML-based selection and CBM reconstruction mechanism do not depend on

the choice of collision generator. This discussion is followed in the next section

(sec. 4.3) in detail. The formula for the uncertainty calculation of the corrected

yield (σcorr yield) is given by

σcorr yield =
Λyield

ϵtotal

√
(

σΛyield

Λyield
)2 + (

σϵtotal

ϵtotal
)2 − 2

σϵtotal σΛyield

Λyieldϵtotal
(4.7)

here σyield is the error on the fit integral of the DSCB function, and σϵtotal is the

uncertainty in the εtotal.
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4.3 Efficiencies Comparison

The ϵcomb × Acc should be independent of the collision generator. The Λ ϵcomb ×

Acc is plotted in Fig. 4.7c, for the UrQMD data. The ratio of the Λ ϵcomb × Acc

for DCM (Fig. 4.5f) and UrQMD is shown in Fig. 4.7a (4.7b) for pT = [0, 0.3]

(pT = [0.3, 0.6]) GeV/c. The ratio plots show that the two match within the sta-

tistical uncertainties. This shows that the ϵcomb × Acc for Λ of the CBM experi-

ment is independent of the collision generator.

Similarly, the ML-based selection criteria application is also independent of

the collision generator. In the same manner as εtotal for DCM (Fig. 4.6b), the εtotal

for the UrQMD data is shown in Fig. 4.8c for the threshold of 0.53 on the XGB

score. The ratio of the εtotal for DCM and UrQMD is shown in Fig. 4.8a (4.8b)

(a) (b)

(c)

Figure 4.7: Fig. 4.7c shows the εcomb × Acc for true Λ generated by the UrQMD. The ra-

tio of the εcomb × Acc for true Λ for two collision generators is shown in Fig. 4.7a (4.7b) for

pT = [0, 0.3] (pT = [0.3, 0.6]) GeV/c .
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(a) (b)

(c)

Figure 4.8: Fig. 4.8c shows the εtotal for true Λ generated by the UrQMD. The ratio of

the εtotal for true Λ for two collision generators is shown in Fig. 4.8a (4.8b) for pT =

[0, 0.3]((pT = [0.3, 0.6]) GeV/c.

for pT = [0, 0.3] (pT = [0.3, 0.6]) GeV/c. The ratio plots show that the two match

within the statistical uncertainties. This shows that the εtotal of the selection, and

reconstruction is independent of the collision generator.

On top of that, the ML-based selection efficiency will not change if one changes

the threshold on the XGB score for two different collision generators. The pT =

[0.3, 0.6] GeV and yLab = [1.2, 1.5]([0.9, 1.2]) interval has been taken and the εML

efficiency for UrQMD (red) and DCM (blue) is plotted as a function of XGB score

in Fig. 4.9b (4.9a). The εML of the two collision generators vary in the same way

with the variation of the selection on the XGB score. The two efficiencies overlap

within the uncertainties showing that the ML-based selection is independent of

the collision generator.
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(a) (b)

Figure 4.9: The variation of εML for UrQMD(red circles) and DCM(blue circles) is shown as a

function of XGB score

The independence of the εtotal on a collision generator is crucial for the future

data taking of the experiment.
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4.4 Systematic Uncertainties Evaluation

To calculate the systematic uncertainty on the ML selection, the variation of the

selection on the XGBoost (XGB) score is needed. The variation of selection on

the XGB score will change the raw yield and therefore the corrected yield. The

systematic uncertainty will be the standard deviation of the distribution of the

corrected yield for different thresholds on the XGB score. The systematic uncer-

tainity of the fitting procedure (sec. 4.1) is calculated as the difference between the

MC yield obtained by counting and the one achieved through the fitting routine.

The total systematic error is the sum of the two in quadrature.

4.4.1 Variation of Corrected Yield with XGB Selection

Increasing the threshold of selection on the XGB score reduces combinatorial

background but also decreases the number of true signal candidates, referred

to as ML efficiency in Fig. 4.10. This is because the separation between the true

Λ and the combinatorial background is not perfect. In Fig. 4.10, the efficiency

decreases slowly when the threshold on the XGB score is incremented between

0.08 and 0.8 with a linear kind of response (a + bx). For higher thresholds, the

efficiency decreases exponentially (ce−x/d). Therefore, the threshold on the XGB

score will be varied between 0.4 and 0.8 to avoid the region of the dramatic fall in

efficiency.

The efficiency of machine learning (ML) varies with the threshold on the XGB

score, which affects the raw yield achieved through the fitting routine. Fig.4.11

shows the variation of the raw yield with the variation on the threshold on XGB

score for the pT = [0.3, 0.6] GeV/c and yLab = [1.2, 1.5], interval. The value of

the raw yield comes from the integral of the signal function (Sec.4.1) and the er-

ror bars are the associated errors on the integral. Fig.4.12 shows the significance

(
Λyield√

Λyield+background
) as a function of the XGB score variation. A 3rd-order polyno-

mial ( f3 = a0 + a1x + a2x2 + a3x3) has been fit to the significance, ai represents

the i-th fit parameter. The uncertainties of the fit function [98] with covariance
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Figure 4.10: The graph shows the ML efficiency variation on changing the selection on XGB prob-

ability for two different pT bins. The efficiency errors are calculated using Binomial statistics

(eq. 4.4).

matrix cov are calculated for 1000 uniform steps (x0) between 0.4 and 0.8 as:

∆ f 2
3
∣∣
x=x0

=
4

∑
i=1

4

∑
j=1

(
∂ f3

∂ai
)
∣∣
x=x0

(
∂ f3

∂aj
)
∣∣
x=x0

cov(ai, aj). (4.8)

The maximum of f3 is found at the XGB score of 0.53, therefore, the default thresh-

old on the XGB score is set to 0.53 (εML de f = 0.961), and the selection is varied be-

tween 0.4 (εML low = 0.969 = εML de f + 0.7%εML de f ) and 0.8 (εML high = 0.937 =

εML de f − 2.6%εML de f ) with a step size of 0.002. The asymmetry (0.7, 2.6%) in

the efficiency variation cannot be adjusted because on the left side, the efficiency

reaches 1 and on the right side it goes up to 0.8, as shown in Fig. 4.10.

The raw yield is efficiency corrected, eq. 4.6, and the corrected yield as a func-

tion of the XGB score threshold is shown in Fig. 4.13a with red circles. The stan-

dard deviation of this data is considered as the systematic uncertainty of the selec-

tion procedure and it is less than 0.2% for the pT = [0.3, 0.6], yLab = [1.2, 1.5] and

multiplicity = [200, 400] interval. The bars on the red circles are the associated

statistical uncertainties calculated from the fit procedure and the efficiency cor-

rection procedure. The uncertainties are estimated using eq. 4.7. The blue circle

and the bars represent the corrected yield at the default XGB threshold. Similarly,

Fig. 4.13b shows the corrected yield at different XGB scores but the yield was

calculated through MC counting.
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Figure 4.11: The variation of the raw yield as a function of selection on the XGB score. The blue

dot with bars shows the raw yield at the default threshold of 0.53 on the XGB score with its errors.
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Figure 4.12: The variation of significance (red circles) as a function of the threshold applied on the

XGB score for pT = [0.3, 0.6], GeV/c and yLAB = [1.2, 1.5]. A 3rd-order polynomial has been fit to

the significance plot and is shown by the green curve and its uncertainties. The lower plot shows

the residuals (data − f3).

The black open circles in Fig. 4.14, represent the corrected yield obtained at

various XGB scores and it is the projection of Fig. 4.13a. The magenta circle is

the corrected yield at the default XGB threshold and its statistical uncertainty is

shown by the dotted magenta perpendicular lines. The simulated yield is shown

by the cyan triangle and its statistical uncertainty is shown by the cyan lines.

The corrected yield at the default XGB threshold matches the simulated yield
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Figure 4.13: (4.13a) The corrected yield as a function of the selection on the XGB score. The yield is

obtained through the integration of the signal fit function. (4.13b) The graph shows the corrected

yield, the yield is obtained through MC counting, as a function of the threshold on the XGB score.
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(difference < 0.8%) within the statistical uncertainties. The green open squares

represent the y-axis projections of Fig.4.13b. The red square is the corrected yield,

obtained through MC counting, at the default threshold on the XGB threshold.

The difference between the magenta circle and the red square gives the system-

atic uncertainty estimate for the fitting routine (σf it) and it is less than 0.2% for

the pT = [0.3, 0.6], yLab = [1.2, 1.5] and multiplicity = [200, 400] interval. The

standard deviation of the black open circle estimates the systematic uncertainty

(σXGB) of the corrected yield as a variation of the XGB threshold. The total sys-

tematic uncertainty is calculated as:

σ =

√√√√( σf it

Λcorr yield de f

)2

+

(
σXGB

Λcorr yield de f

)2

(4.9)

with Λcorr yield de f representing the corrected yield at the default threshold on the

XGB score. The total systematic is less than 0.3% for this particular interval.
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Figure 4.14: The corrected yield (black circles) for different XGB scores. The magenta circle shows

the corrected yield at the default selection while the perpendicular magenta lines represent its

uncertainty. The cyan triangle shows the simulated yield. The green histogram is the corrected

yield obtained through MC counting of the signal. The red square is the corrected yield at the

default XGB score and the yield is obtained through MC counting.

The efficiency calculation on a single generator (model A) and then correcting

the yield of the same model (model A) on its efficiency is also checked. The ML

model is applied to Λ candidates generated by 1M UrQMD events and the yield
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Figure 4.15: The corrected yield for various XGB scores. The yield is obtained from 1M events

while the efficiency is calculated on another 1M events, generated with the same collision gener-

ator.

is calculated by summing all the MC Λs, for one selection on the XGB score. The

efficiency is calculated on another 1M data of UrQMD on that same XGB score.

The Λ yield from the first 1M is corrected by the efficiency obtained from the 2nd

1M events. The process is repeated for multiple selections on XGB score as was

performed previously and the efficiency corrected yield is shown in Fig. 4.15 The

difference between the corrected yield at the default XGB score of 0.53 (magenta

line) and the true simulated yield (black line) is less than 0.5% and both match

within the statistical errors.

The selection criteria optimization is repeated for the intervals: pT = [0.6, 3]−

yLab = [0, 1.6], pT = [0, 0.6]− yLab = [1.6, 3], and pT = [0.6, 3]− yLab = [1.6, 3].

The pT is in the units of GeV/c. The multiplicity interval was the same as in

the previous analysis, i.e., multiplicity of charged tracks = [200, 400]. The multi-

differential pT − yLab yield extraction and the efficiency correction procedure were

performed for the above three intervals. Plots of the invariant mass distribu-

tion along with the fitting curves have been plotted in the appendix section A.4.

The plots to extract the systematic uncertainty for a few intervals are shown in

sec. A.5. The performance in the very low populated pT and low yLab regions has

not been shown in this work because of the availability of simulated data. The
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CBM common production only has 2 × 106 UrQMD events available and this is

not enough to populate these bins with high statistics.
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4.5 Transverse Momentum-Rapidity Spectra

The Λ hyperons generated by UrQMD and DCM were transported through the

CBM Geant4 setup and reconstructed using the CBM reconstruction chain, for

the multiplicity of charged tracks = [200, 400]. The reconstructed candidates of

both models were subjected to ML-based SC. The DCM-generated data was used

to obtain the efficiency, which was used to correct the UrQMD raw yield. The re-

constructed and corrected spectra (red circles) and the MC spectra (black squares)

of the UrQMD data have been plotted in Fig. 4.16. The function:

Fit f unc(A, pT) =
ApT

T2 + mΛT
exp

−

√
p2

T + m2
Λ − mΛ

T

 (4.10)

is fitted to the reconstructed spectra with A as and T as free parameters and

massΛ = 1.115 683 GeV/c2. This function comes from a thermal ansatz and the

derivation is discussed in the appendix of the work in [99]. The obtained values of

T (A) for the [0.9, 1.2],[1.2− 1.5], [1.5− 1.8], and [1.8, 2.1] yLab intervals are 0.205±

0.015 (1.17 × 105 ± 8 × 103), 0.2145 ± 0.016 (1.4 × 105 ± 104), 0.219 ± 0.016 (1.47 ×

105 ± 1.1 × 104), and 0.211 ± 0.016 (1.38 × 105 ± 104). These intervals of rapid-

ity contain the mid-rapidity region, i.e., y/2 = 0.25(log (E+pbeam
E−pbeam

)) = 1.62 where

beam momentum is pbeam = 12AGeV/c, energy is E =
√

mass2
p+ + p2

beamGeV,

and massp+ = 0.938 GeV/c2. The spectra show that CBM has pT and rapidity

coverage over midrapidity.

The statistical uncertainties for the corrected (simulated) spectra are shown

by the red lines (black dotted lines) while the systematic uncertainties are shown

with the blue shaded area, in Fig. 4.16. For better visualization of the uncertain-

ties, one pT interval is zoomed in. The systematic uncertainity is less than 6%,

2%, 3%, and 3% for the yLab intervals [0.9, 1.2], [1.2, 1.5], [1.5, 1.8], and [1.8, 2.1],

respectively. The lower statistics in the high pT intervals might be contributing

to the high systematics and can be improved with higher statistics. The corrected

spectra match the simulated spectra within the statistical and systematic uncer-

tainties.
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Figure 4.16: The graphs 4.16a, 4.16b, 4.16c, and 4.16d show the corrected pT spectra (red circles)

for the yLab intervals of [0.9, 1.2],[1.2 − 1.5], [1.5 − 1.8], and [1.8, 2.1]. The MC true simulated spec-

tra, before reconstruction and selection, are shown with black unfilled rectangles. The systematic

uncertainties are shown with a filled blue area.
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Chapter 5

Summary and Outlook

The multi-differential yield of (multi-)strange hyperons can reveal information

about the matter created during heavy-ions collision. The rare production of hy-

perons requires optimized selection criteria to suppress the combinatorial back-

ground. Since Λ is the most abundantly produced hyperon at FAIR energies, it is

useful for the systematic uncertainty evaluation of the selection process. Achiev-

ing a large signal-to-background ratio with high efficiency requires optimizing

selection criteria multi-differentially in centrality, transverse momentum, and ra-

pidity for each collision energy. Manual optimization can be performed by adjust-

ing the selection criteria to maximize the signal-to-background ratio. However,

performing this optimization non-linearly in a multi-dimensional space across

different intervals becomes a laborious task. ML algorithms can optimize selec-

tion criteria non-linearly in an automatized way for every interval. The optimiza-

tion of selection criteria for the Λ hyperon has been investigated using ML algo-

rithms such as tree-based eXtreme Gradient Boosting (XGBoost). The ML-based

selection criteria delivered at least seven times better signal-to-background ratio

at a higher efficiency than the manually optimized selection criteria. For some

pT − yLab interval (sec. A.3), the signal-to-background ratio was more than forty

times better. The CBM experiment is currently not yet operational, so the goal of

this work was to develop methods in preparation for the future.

Two collision generators were employed, DCM-QGSM-SMM for simulation

and UrQMD for data. This approach is useful to check for biases in the procedure.

In the future, the UrQMD data will be replaced by data from the experiment
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but the developed framework will remain the same. Monte Carlo (MC) signal

was selected from the Λ peak region of the simulation, while three times more

background candidates were selected from data outside the Λ peak region. To

develop and assess a machine learning (ML) model, training and testing datasets

were created. The model was trained on the training dataset and evaluated on

the testing dataset to ensure that it did not over-fit. After the model demonstrated

good performance on the testing dataset, it was applied to analyze 2× 106 events

from both simulation and data.

After applying ML-based selection criteria to simulation and data events, the

raw yield of the hyperon was extracted using a multi-differential fitting routine.

To ensure stability, the routine was performed in multiple steps. The signal is fit-

ted using a double-sided crystal ball function (DSCB), followed by a polynomial

fit for the background. Finally, the entire invariant mass distribution of the data

is fit with a sum of DSCB and a polynomial, while initializing the parameters

from the last two steps. The yield was obtained as the integral of the DSCB in the

±11 sigma region around the peak. To correct the yield for efficiency and accep-

tance, an efficiency ×Acc factor obtained from the simulation was applied. The

systematic uncertainties for the selection procedure and the fitting routine were

separately calculated and the two were added in quadrature. The total systematic

uncertainty is generally below 3% but in the high pT intervals it can go up to 6%.

It is worth mentioning that the removal of secondary Λ contamination was

not performed.

To optimize the selection criteria, this study focused on one multiplicity in-

terval of charged particles, specifically [200, 400], for beam momentum of 12 A

GeV/c of the CBM experiment. The interval was divided into four pT − yLab in-

tervals and separate optimizations were conducted for each interval. This study

did not explore other multiplicity intervals or energies, leaving these as areas for

future investigation. Also, the fitting procedure needs to be applied to the other

multiplicities of the data but its performance has been tested on high and low pT

intervals and it seems pretty robust.

The inclusion of other variables from other sub-systems of the CBM detector

will be tried in the future to better select the p+ and π−. The information from
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the other detectors for example RICH and TRD can help to suppress the contam-

ination from electrons for the π−. Also, an improvement in the TOF matching

algorithm can help reduce the background further.
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Appendix A

To not break the flow of the discussion of the analysis some of the figures and

discussions have been avoided in the last two chapters and they are provided

here. SHAP plots of signal-only data with a high threshold applied to the XGB

score are discussed here. Also a discussion about the removal of secondary Λ

from this analysis is provided. The details of the fitting routine and some plots

for other pT − yLab intervals were not discussed before and they are shown here.

The systematic uncertainty calculation plots of the remaining intervals and their

spectra is also added here.
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A.1 Primary and secondary Λs Separation

There are Λs that are produced directly in the collision and therefore are called

primary Λs. These Λs tell us about the nature of the deconfined matter created

by heavy-ions collisions. However, these collisions also produce other particles

which decay into Λs. Similarly, there are Λs that are produced due to the interac-

tion of particles with the detector material. All other types of Λ except primaries

are called secondaries. In order to study the matter created in the collision, the

two Λ types need to be separated from each other. In this section, it is illustrated

that the full separation is not possible but the full description is not put forward.

To separate primary Λs from secondaries and from the background, a multi-

class classifier was applied to both train and test data. The number of classes

available is three and the algorithm returns a probability distribution for each

class. Most of the variables available associated with the Λ decay topology were

used to separate the different classes. Fig. A.1 shows the performance of the

model for the primary Λs on the train-test data. The background (blue) distribu-

tion peak is away from the overlapping peaks of the primary (red) and secondary

(green) distributions. The model can separate the background from the two dis-

tributions of primaries and secondaries, but it cannot separate the secondaries

from the primaries.

Figure A.1: The distribution of primary and secondary Λ along with the background distribution

for the train and test data. The shaded area histograms are for the train data and the circles

represent the test data.
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A.2 SHAP Explanation

This section is a continuation of the discussion in section 3.6. The SHAP score for

signal-only training data with an XGB score above 0.99 is plotted in Fig. A.2 to see

the performance of the model. These signals show that the most useful variables

for the ML classifier are the distances of the p+ and π− tracks to the primary ver-

tex. But the χ2
prim p+ values go up to a SHAP score of nearly 4 while the χ2

prim π−

SHAP score ends below 3. Fig. A.3a shows that for signal with XGB score above

0.99 higher SHAP score is given to higher values of the χ2
prim p+ variable. Also, a

higher SHAP score is given to higher values for the χ2
prim π− variable, shown in

Fig. A.3b. The distance between the two daughter tracks is found to be the 3rd

best variable according to the SHAP score. Fig. A.3d shows that the lower values

of the DCA are given a higher SHAP score and since χ2
geo is the same variable but

normalized so the same behavior is observed for it, as shown in Fig. A.3e. But in

terms of ranking, it is the 5th best variable according to the SHAP score.

The mass of the p+ is the 4th useful variable according to SHAP calculation

and Fig. A.3f shows the SHAP values plotted for this variable. Fig. A.3f reveals

that though these are all true p+ they have been matched with incorrect hits in the

TOF wall. Most of these protons have a mass near the mass of the proton, mp+ =

0.938 27 GeV/c2 [33] and the algorithm has given those protons all positive SHAP

scores. Improving this matching from the TOF team will help also this analysis,

as the p+ assigned with lower mass values have been given negative SHAP scores

by the ML model. The 6th best variable found by the model is normalized to its

error distance between the PV and SV. Fig. A.3c shows the SHAP values for L/∆L

and they peak between 5 and 15.

92



Figure A.2: SHAP for signal only with XGB score above 0.99
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(a) (b)

(c) (d)

(e) (f)

Figure A.3: The SHAP score is plotted on the y-axis for the values of the variables used for Λ

segregation from the background.
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A.3 Comparison of ML to Manual SC

The comparison between the hypercube selection criteria optimized manually

and selection criteria optimized through XGBoost had been discussed in sec. 3.5.

The other intervals of pT − yLab are compared in Fig. A.4. Thresholds on the

XGB scores that have similar efficiency to that of manually optimized hypercube

selection criteria are applied. ML-optimized selection criteria show slightly better

efficiency and very good background suppression than the manually optimized

SC.

In the mass window of 1.1− 1.13 GeV/c2, the true signal and background can-

didates were counted for both the data, i.e., after the application of ML and man-

ual SC. The signal-to-background ratio for the ML selection criteria method were

366, 179, and 373 while for the manually optimized hypercube method, they were

15, 4.3, and 13 for the intervals pT(GeV/c) − yLab = [0.6, 3] − [0, 1.6], [0, 0.6] −

[1.6, 3], and [0.6, 3]− [1.6, 3], respectively. This means that the signal-to-background

ratio in the case of ML selection criteria is at least 24 times more than in the man-

ually optimized selection criteria case.
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Figure A.4: The Figs. A.4a, Fig. A.4b, Fig. A.4c show the comparison of manually and ML op-

timized selection criteria for the intervals pT = [0.6, 3] − yLab = [0, 1.6], pT = [0, 0.6] − yLab =

[1.6, 3], and pT = [0.6, 3]− yLab = [1.6, 3]. The pT is in GeV/c.
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A.4 Fitting Routine

The invariant mass histograms of the various intervals shown in sec. 4.5 are plot-

ted here. The multi-step fitting routine mentioned in section 4.1 is utilized here.

The first step of the fitting routine starts with the fitting of the signal only part

of the simulation with a DSCB function. The parameters are initialized (bounded)

as µ = 1.11567(1.113, 1.119), σ = 0.0012 (0.0012 × (1 − 4), 0.0012 × (1 + 0.0012)),

aL/R = 1(0, 10), and nL/R = 1(0, 100).
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Figure A.5: The Figures A.5a, A.5b, A.5c, A.5d, A.5e, and A.5f show the invariant mass histogram

of the yLab = [1.2, 1.5] interval and different intervals of pT i.e., [0, 0.3], [0.6, 0.9], [0.9, 1.2], [1.2, 1.5],

[1.5, 1.8], and [1.8, 2.1]. The pT is in the units of GeV/c.
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Figure A.6: The Figures A.6a, A.6b, A.6c, A.6d, A.6e, A.6f, and A.6g show the invariant mass

histogram for the yLab = [1.5, 1.8] interval and pT intervals of [0, 0.3], [0.3, 0.6], [0.6, 0.9], [0.9, 1.2],

[1.2, 1.5], [1.5, 1.8], [1.8, 2.1]. The pT is in GeV/c units.
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A.5 Additional Plots for Systematic Uncertainity

The procedure discussed in sec. 4.4 has been used here to calculate the systematic

uncertainties for a few transverse momentum and rapidity intervals. The two

sources of the systematic uncertainity evaluated here are the selection procedure

and the fitting routine.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure A.7: The Figures A.7a, A.7b, A.7d, A.7e, A.7f, and A.7g show the invariant mass histogram

for the yLab = [0.9, 1.2] interval and pT intervals of [0, 0.3], [0.3, 0.6], [0.6, 0.9], [0.9, 1.2], [1.2, 1.5],

[1.5, 1.8], [1.8, 2.1]. The pT is in GeV/c units.
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(a) (b)

(c) (d)

(e) (f)

Figure A.8: The Figures A.8a, A.8b, A.7c ,A.8c, A.8d, A.8e, and A.8f show the invariant mass

histogram for the yLab = [1.2, 1.5] interval and pT intervals of [0, 0.3], [0.6, 0.9], [0.9, 1.2], [1.2, 1.5],

[1.5, 1.8], and [1.8, 2.1]. The pT is in GeV/c units.
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Contributions to CBM

In this work, if a plot is borrowed from someone else’s work, then the credit has

been given to the creator of the image in the caption. The results obtained in chap-

ters 3, 4, and appendix A are part of this work and have not been borrowed from

any other work. The details about the packages used in this work are mentioned

below.

The Au-Au collisions simulation through the UrQMD and DCM collisions

generator and then transporting it through the CBM setup inside Geant4 was

made available by the CBM collaboration’s common production team. The au-

thor of this work is not involved in those productions. To reconstruct Λ candi-

dates from the data the PFSimple package [71] was used and again the author

is not involved in its development. The machine learning implementation for

the CBM experiment code was developed by the author. This means the hyper-

parameters search, training, and testing of the ML algorithm and the explanation

through the SHAP library. The treelite conversion code was written in collabora-

tion with Viktor Klochkov.

For the comparison of the ML and the manually optimized SC, the plots were

generated by the author. However, the PID selection criteria optimization, for the

π− and p+, and the manual selection criteria optimization, for Λ, are part of this

work only. Only once the manually optimized selection criteria are used in sec.

3.5 for the comparison with ML-based SC.

For the yield extraction (sec: 4.1), the ALICE HF inv. mass fitting routine

class [100] was used. This class was not in use by the CBM collaboration so the

necessary parts of the code were applied to the CBM data by the author. The

author modified the class by introducing the DSCB function. The class was used

to fit the data by taking the advantage of the available signal and background
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approximation functions. The visualization plots of the inv. mass and the fits

are created for this work only and are not a duplication of anyone else’s work.

For the efficiency calculation (sec:4.2) the AnalysistreeQA package was used to

extract the simulated yield and the author has not developed the package in any

way. After that, the efficiency calculation and correction were done by the author.

The code for the systematic uncertainties is the author’s contribution and so

is the code for Λ spectra and their fitting.
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