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Abstract

English Super-resolution quantum imaging is a recently developed technique
that allows high-resolution imaging beyond the classical diffraction limit. To obtain
super-resolution, one can use quantum tools, such as squeezed states, photon-
number-resolving detectors, or mode demultiplexing, to get a better spatial or
radiometric resolution. In this thesis, we study super-resolution imaging theoreti-
cally with a distant n-mode interferometer in the microwave regime. Interferometers
play an essential role in passive remote sensing, particularly for observing the surface
of the Earth in missions such as the Soil Moisture and Ocean Salinity (SMOS)
mission. The SMOS is a passive remote sensing satellite in the microwave regime to
measure the brightness temperature of Earth. The correlation of spatially-resolved
electric field measurements obtained by SMOS helps determine Earth’s surface’s
moisture level and ocean water’s salinity and has a pixel size of approximately
35km. Our focus is a complete quantum mechanical analysis of estimating the
parameters of the sources. Starting from the thermal distributions of microscopic
currents on the surface leads to partially coherent quantum states of the elec-
tromagnetic field on the n-mode interferometer. In passive remote sensing, we
have no control over the quantum states. However, we can look for a quantum
enhancement in the measurement scheme. We combine incoming modes with an
optimized unitary to achieve the optimal detection modes for that aim. This
approach allows for the most informative measurement based on photon counting
in the detection modes. It also saturates the quantum Cramér-Rao bound from
the symmetric logarithmic derivative for the parameter set of temperatures. In
our first work, we studied single-parameter estimation problems such as single
source size, temperature, two-point source separation, and centroid. A quantum
enhancement in spatial resolution is theoretically achievable for a single circular
source to approximately 1m and less than 0.1 K when using the proposed maximum
number of measurements with a single detector. We showed that one can resolve
the source separation for any distance for two-point sources using the correct phase
shift and a 50:50 beam splitter for a two-mode interferometer. The quantum Fisher
information scales linearly with the number of modes when we keep the maximum
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baseline constant for the array interferometer. In our second work, we focused
on multiparameter estimations of the source temperature distributions. Unlike
the single parameter case, quantum Cramér Rao Bound is not always saturable
in the multiparameter scenario. It can be saturable asymptotically if the SLDs
for different parameters commute on average. Then, one must find the optimal
POVM, in our case, optimal unitary for mode mixing, to achieve the quantum
limit. Our numerical analysis demonstrates quantum-enhanced super-resolution by
reconstructing an image using the maximum likelihood estimator with a pixel size
of 3 km. This resolution is ten times smaller than the spatial resolution of SMOS
with comparable parameters. Furthermore, we identify the optimized unitary for
uniform temperature distribution on the source plane, with the temperatures corre-
sponding to the average temperatures of the image. Although this unitary was not
optimized for the specific image, it yields a super-resolution compared to local mea-
surement scenarios for the theoretically possible maximum number of measurements.

German Superauflösende Quantenbildgebung ist eine kürzlich entwickelte
Technik, die eine hochauflösende Bildgebung jenseits der klassischen Beugungsgrenze
ermöglicht. Um Superauflösung zu erreichen, kann man Quantenwerkzeuge wie ge-
quetschte Zustände, Photonenzahl-auflösende Detektoren oder Moden-Demultiplexing
einsetzen, um eine bessere räumliche oder radiometrische Auflösung zu erzielen.
In dieser Arbeit untersuchen wir die superauflösende Bildgebung theoretisch mit
einem entfernten n-Mode-Interferometer im Mikrowellenbereich. Interferometer
spielen eine wesentliche Rolle in der passiven Fernerkundung, insbesondere bei
der Beobachtung der Erdoberfläche in Missionen wie der Soil Moisture and Ocean
Salinity (SMOS) Mission. SMOS ist ein passiver Fernerkundungssatellit im Mikrow-
ellenbereich zur Messung der Helligkeitstemperatur der Erde. Die Korrelationen
der mit SMOS gewonnenen räumlich aufgelösten elektrischen Feldmessungen helfen
bei der Bestimmung des Feuchtigkeitsgehalts der Erdoberfläche und des Salzgehalts
des Ozeanwassers und lösen Pixelgrößen von etwa 35 km auf. Unser Schwer-
punkt liegt auf einer vollständigen quantenmechanischen Analyse zur Schätzung
der Parameter der Quellen. Ausgehend von den thermischen Verteilungen der
mikroskopischen Ströme auf der Oberfläche führt das zu teilkohärenten Quanten-
zuständen des elektromagnetischen Feldes auf dem n-Mode-Interferometer. Bei
der passiven Fernerkundung haben wir keine Kontrolle über die Quantenzustände.
Dennoch können wir nach einer Quantenverstärkung im Messverfahren suchen.
Dafür kombinieren wir die eingehenden Moden mit einem optimierten unitären Op-
erator, um die optimalen Detektionsmoden zu erreichen. Dieser Ansatz ermöglicht
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die informativste Messung auf Grundlage der Photonenzählung in den Detektions-
modi. Er sättigt auch die Quanten-Cramér-Rao-Ungleichung aus der symmetrischen
logarithmischen Ableitung für den Parametersatz der Temperaturen. In unserer
ersten Arbeit untersuchten wir Probleme der Schätzung von Einzelparametern
wie Größe der Einzelquelle, Temperatur, Zwei-Punkt-Quellentrennung und Schw-
erpunkt. Eine Quantenverbesserung der räumlichen Auflösung ist theoretisch für
eine einzelne kreisförmige Quelle bis etwa 1 m und weniger als 0,1 K möglich, wenn
die vorgeschlagene maximale Anzahl von Messungen mit einem einzigen Detektor
verwendet wird. Wir haben gezeigt, dass man den Quellenabstand für beliebige
Entfernungen für Zweipunktquellen auflösen kann, wenn man die richtige Phasen-
verschiebung und einen 50:50-Strahlenteiler für ein Zweimoden-Interferometer ver-
wendet. Die Quanten-Fisher-Information skaliert linear mit der Anzahl der Moden,
wenn wir die maximale Basislinie für das Array-Interferometer konstant halten. In
unserer zweiten Arbeit haben wir uns auf Multiparameter-Schätzungen der Temper-
aturverteilungen der Quellen konzentriert. Im Gegensatz zum Ein-Parameter-Fall
ist die Quanten-Cramér-Rao -Ungleichung im Mehr-Parameter-Szenario nicht immer
sättigbar. Sie kann asymptotisch sättigbar sein, wenn die SLDs für verschiedene
Parameter im Durchschnitt gleich sind. Dann muss man das optimale POVM
finden, in unserem Fall der optimale unitäre Operator für die Modenmischung,
um die Quantengrenze zu erreichen. Unsere numerische Analyse demonstriert die
quantenverstärkte Superauflösung durch die Rekonstruktion eines Bildes mit dem
Maximum-Likelihood-Schätzer mit einer Pixelgröße von 3 km. Diese Auflösung
ist zehnmal kleiner als die räumliche Auflösung von SMOS mit vergleichbaren
Parametern. Darüber hinaus ermitteln wir den optimierten unitären Operator
für eine gleichmäßige Temperaturverteilung auf der Quellebene, wobei die Tem-
peraturen den durchschnittlichen Temperaturen des Bildes entsprechen. Obwohl
dieser unitäre Operator nicht für das spezifische Bild optimiert wurde, ergibt er eine
Superauflösung im Vergleich zu lokalen Messszenarien für die theoretisch mögliche
maximale Anzahl von Messungen.
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Chapter 1

Framework

1.1 Introduction

This thesis focuses on applying quantum metrology to various imaging fields. The
areas of interest include optical imaging of sub-wavelength structures in microscopy,
imaging during astronomical observations, and lens-free imaging using phased
optical arrays. In our calculations, we are particularly interested in the parameters
of the SMOS, an array interferometer.

Conventionally, we have been using classical wave mechanics to calculate the
best possible performance of microscopes, telescopes, and antenna arrays. As
known almost 150 years ago, we have the bounds on resolution, such as the Abbe
or Rayleigh diffraction limits, that limit resolution comparable to the wavelength of
the used electromagnetic waves to distance how far we are away from the sources.
At the same time, the van Cittert-Zernike theorem [46] limits resolution based on
antenna arrays that record time-resolved electrical fields. However, it has become
increasingly apparent in recent years that imaging analysis is too restrictive just
using classical wave mechanics. Better experimental techniques like “super-resolved
fluorescence microscopy” (Nobel Prize in Chemistry 2014) [18], in which one dresses
a macro-molecule with point-like emitters selectively switched on and off, have
helped resolve below the optical wavelength for imaging of macromolecules.

Over the last decade, quantum metrology has seen rapid growth. It is now
well known that using non-classical quantum states can increase the precision with
which specific parameters can be measured. So far, most of the quantum metrology
community has focused on single-parameter estimation problems, like resolving
the separation of the two-point sources, measuring magnetic fields, or temperature
estimation. Thus, the quantum Cramér-Rao bound has become preferred for finding
ultimate bounds for the sensitivity given specific resources such as the total available
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2 CHAPTER 1. FRAMEWORK

energy, number of probes, or measurement time [22, 21]. It is optimized over all
possible measurements and data-analysis schemes. In principle, it gives a bound
that can be achieved in the limit of many measurements for the single-parameter
estimation problems.

Tsang and his co-workers recently implemented quantum Cramér-Rao linked
to imaging [42]. This caused immediate surprise and considerable excitement in
the imaging community. They demonstrated that quantum Cramér-Rao allows
a resolution well below the wavelength for estimating the distance between two
equidistant emitters from an observer. They also suggested a method called SPADE
(spatial mode demultiplexing), engineering of the modes in which light should
be detected) that allows one to achieve such an advanced resolution. This work,
meanwhile, has been generalized by relaxing constraints such as equal intensity or
location in the same plane perpendicular to the line of sight of two sources.

Most of the interference effects in quantum optics rely on simple classical
interference of the electromagnetic field modes. Classical mode interference gives
rise to the resolution limits, such as the Abbe diffraction limit or the angular
resolution of rays synthesized from a phased antenna array. However, since photons
obey the laws of quantum mechanics, extra interference can happen at a much deeper
level due to quantum interference in Hilbert space. Thus, quantum mechanical
interference in Hilbert space can provide additional information. The quantum
Cramér-Rao bound automatically considers all the information about the parameter
in the quantum state of light. Detection of photons in different modes is involved
in optimization over all possible measurement schemes for the parameter or a
parameter vector. Also, once established, it can be used to determine optimum
detection modes. A well-known example is the Hanbury-Brown-Twiss method,
which determines the diameter of distant stars. It relies on receiving the light
collected by the two telescopes as a function of the distances of the collected
photons that provide access to the quantum correlation function, which contains
information about the diameter of the emitting source that is not in the intensity
distribution itself.

Helstrom considered the multi-parameter quantum estimation theory very be-
ginning, leading to the multi-parameter quantum Cramer-Rao bound. It is a
matrix-bound equal to the inverse of the quantum Fisher information matrix, which
bounds the covariance matrix of the estimators of the parameters. However, unlike
the single-parameter quantum Cramer-Rao bond, the multi-parameter quantum
Cramer-Rao bond may not always be saturated. One reason is that the optimum
quantum measurements typically required for each parameter are incompatible,
meaning they cannot be measured simultaneously since the symmetric logarithmic
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derivatives for different parameters do not commute. Recently, many questions arose
in the quantum metrology community about when exactly the multi-parameter
quantum Cramer-Rao bond can become saturated. A sufficient condition for the
optimal quantum measurements for different parameters to be compatible is that the
corresponding logarithmic derivatives commute. The Ref. [31] also finds a weaker
sufficient condition: If the commutator of the symmetric logarithmic derivatives
vanishes only on average over the quantum state, the bound can be saturated
asymptotically; for pure states, that condition is also necessary [36].

Quantum multi-parameter estimation theory is developing very rapidly right
now. This thesis aims to use these innovative techniques to establish ultimate
quantum bounds for the performance of imaging techniques and measurement
schemes for achieving them. For the first chapter, we will summarize the classical
sources from the perspective of classical electromagnetic theory. Then we will
continue with the semi-classical model depending on the minimal coupling between
the classical sources and the quantized field modes. Further, we summarize the
theoretical background for the classical and quantum parameter estimation theory.
In the last chapter, we will summarize our results for the array interferometers
based on our two papers in the Appendix.

1.2 Classical Analysis of Electromagnetic Field

1.2.1 Gauge Fields

In this section, I will give a simple introduction to gauge field theories. In
general, we solve Maxwell’s equations using the vector potential A(r, t) and the
scalar potential φ(r, t), which are directly related to the magnetic and electric fields.
As we know, these potentials are not unique and are subject to certain conditions
known as gauge freedoms. The relation to electric E(r, t) and magnetic B(r, t)
fields to vector and scalar potentials are given by the following equations

E = −∇φ− ∂A
∂t
, B = ∇×A. (1.1)

Then, ∇ ·B = 0 (Gauss’s law for magnetism) and ∇× E = −∂B
∂t

(Faraday’s law
of induction), both of the remaining Maxwell’s equations are also satisfied. For
any gauge, the two remaining equations lead to the following inhomogeneous wave
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equations for the vector and the scalar potentials(
∇2 − 1

c2
∂2

∂t2

)
A = ∇

(
1
c2
∂φ

∂t
+∇ ·A

)
− µ0j,

−∇2φ− ∂

∂t
(∇ ·A) = ρ/ε0,

(1.2)

where ρ(r, t) and j(r, t) are charge density and current density, respectively, and µ0

and ε0 are the magnetic permeability and dielectric constant of vacuum. Using the
gauge degree of freedom, we can impose additional constraints to decouple the two
equations in (1.2).

1. Lorenz Gauge : The Lorenz gauge is defined as

∇ ·A + 1
c

∂φ

∂t
= 0, (1.3)

which is invariant under Lorentz transformation and yields immediately two inde-
pendent wave equations for φ(r, t) and A(r, t) as,

(
∇2 − 1

c2
∂2

∂t2

)
φ = −ρ/ε0,(

∇2 − 1
c2
∂2

∂t2

)
A = −µ0j.

(1.4)

In terms of retarded sources, the known solutions for current and charge densities
that are dependent on space and time are given by

φ(r, t) = 1
4πε0

∫
d3r′

ρ (r′, t− |r− r′| /c)
|r− r′|

,

A(r, t) = µ0

4π

∫
d3r′

j (r′, t− |r− r′| /c)
|r− r′|

.

(1.5)

Except for being Lorentz invariant, the other significant benefit of using this partic-
ular gauge is that it includes the correct retardation of sources. This is important
for obtaining accurate phase factors when analyzing correlation measurements of
electric fields at different space-time points. Inserting equations in (1.5) to electric
field equation in (1.1) gives

E(r, t) =− µ0

4π

∫
d3r′

1
|r− r′|

∂j (r′, t− |r− r′| /c)
∂t

+ 1
4πε0

∫
d3r′

r− r′

|r− r′|3
ρ (r′, t− |r− r′| /c)

+ 1
4πε0

∫
d3r′

r− r′

|r− r′|2
∂ρ (r′, t− |r− r′| /c)

∂t
.

(1.6)
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The second term describes the contribution of time-independent sources, which
gives rise to the static Coulomb field. Since it scales as 1/ |r− r′|2, whereas the
other two terms scale as 1/ |r− r′|, it has a negligible effect compared to the other
two terms in the far field regime. If the current density is linked through to a
(macroscopic) charge density ρ by the following j = ρv, we can compare the first
and last term. We find that the last term is more considerable than the first one by
a factor of ∼ v/c where v = |v| and ε0µ0 = 1/c2.

We consider the situation of ρ(r, t) = 0, which describes the absence of any
macroscopic charge density. This condition is mainly due to the global charge
neutrality of Earth’s surface. The standard quantum optics is formulated in this
situation as it considers the absence of free charges, thus motivating the quantization
in the Coulomb gauge. Under this scenario, photons exhibit two linearly independent
polarization directions perpendicular to their propagation direction. They give
the correct physical picture far from any charges, where the propagating waves
are well approximated by plane waves. Classical electromagnetic waves have two
perpendicular polarizations as ∇ · E = 0, resulting in an asymptotically converging
free field solution. Thus, we have only two degrees of freedom from the initial
four (three components of A and φ). Any vector field can be decomposed into
longitudinal and transverse components. Accordingly, we can write j = jl + jt,
where ∇ · jt = 0, ∇× jl = 0. Using the continuity equation given by ∇ · j + ∂ρ

∂t
= 0,

for ρ = 0, we can write ∇ · j = 0. The longitudinal current density is a source-free
and curl-free quantity spatially constant when ρ = 0. Additionally, we can simplify
further by using the boundary condition of vanishing current for r →∞ to find that
jl = 0. Thus, the transverse polarizations depend only on the locally transverse
components of the current density vector. Then we have

E(r, t) = −µ0

4π

∫
d3r′

1
|r− r′|

∂jt (r′, t− |r− r′| /c)
∂t

, (1.7)

and states that only the transverse component of the current density drives the
electromagnetic field. If ρ = 0 is exact in all space-time, there is no need for
assumptions in being the far-field regime in Eq. (1.6). Before proceeding with the
classical correlation of the electric field, I will briefly explain that Eq. (1.7) is also
obtained in the Coulomb gauge, which is used in the quantum analysis.

2. Coulomb Gauge : The Coulomb gauge sets the divergence of the vector
potential to zero ∇ ·A = 0 in some preferred reference frame. It is pretty helpful
for quantizing vector potential in "semiclassical" calculations since the A is quan-
tized, but the Coulomb interaction is not quantized. Then the Eq. (1.2) follows
immediately to −∇2φ = ρ/ε0 which implies that the scalar potential is given by the
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instantaneous, non-retarded charge density. Since we set ρ(r, t) = 0 for everywhere
in space and time, we will have φ = 0. Then we immediately recover the wave
equation for vector potential given in Eq. (1.5). The same arguments about the
absence of the current longitudinal component as a source apply. Then we conclude
with the same equation for the electric field in (1.7), which we will now exploit for
calculating classical correlations between two different space-time points.

1.2.2 Classical Correlations of Electromagnetic Fields

The visibility (correlation) function of the electric fields related to the current
density distributions are given in Refs. [7, 8, 6]. In a reference frame fixed to
detectors as we can define it as

Cij(r1, r2, t1, t2) ≡ 〈Ei(r1, t1)E∗j (r2, t2)〉, (1.8)

where Ei = E · êi is the electric field component in the direction specified by the
unit vector êi. With the electric fields measured by two antennae at two different
space-time points (r1, t1) and (r2, t2) one can form the product Ei (r1, t1)Ej (r2, t2)
and can take the average in space and time. We first introduce the Fourier transform
(FT) of an arbitrary time-dependent quantity f(t), as f(t) = 1√

2π
∫∞
−∞ dωe

iωtf̃(ω)
For real f(t) one has f(−ω) = f ∗(ω). Eq. (1.7) yields

Ẽ(r, ω) = −µ0

4π

∫ d3r′

|r− r′|
iωj̃t (r′, ω) e−iω(|r−r′|)/c. (1.9)

The back-transformation reads as E(r, t) = 1√
2π
∫∞
−∞ Ẽ(r, ω)eiωt. This is the full

time-dependent field in a space-time point given with infinite precision, including all
frequency components from −∞ to ∞, before any filtering. The antenna will not
respond much to frequencies beyond its fundamental resonance frequency. Formally
this corresponds to introducing an effective filter function w(ω) in the inverse
Fourier transform for Ei(r, t) as

Ei(r, t) = 1√
2π

∫ ∞
−∞

dωw(ω)Ẽi(r, ω), (1.10)

where the filter function w(ω) is in general complex. For a narrow bandwidth B
and the central frequency ω0 filter function can be defined as

w(ω) =

 1 for ω0 −B/2 6 ω 6 ω0 +B/2
0 elsewhere

. (1.11)
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where B � ω0. The antenna will respond differently to different frequencies, with
varying phase shifts. A simple dipole antenna is essentially a harmonic oscillator
with its characteristic phase shift and attenuation of response beyond the resonance
frequency. By inserting Eq. (1.9) into Eq. (1.10), we can find the effectively
measured electric field as

E(r, t) = −µ0

4π
1√
2π

∫ ∞
−∞

dωw(ω)
∫ d3r′

|r− r′|
iωj̃t (r′, ω) e−iω(|r−r′|/c−t). (1.12)

The electric field in Eq. (1.12) is written for a deterministic current density distri-
bution. In reality, these current densities fluctuate. Before we move forward, we
describe the properties of these current density distributions. We assume that it
is a complex symmetric Gaussian process with current densities uncorrelated in
positions, directions, and frequencies [7, 26, 38],〈

j̃l (r, ω) j̃∗m
(
r′, ω′

)〉
= l3c
τc
δlmδ(ω − ω′)δ(r− r′) 〈|j̃l(r, ω)|2〉 ,〈

j̃l (r, ω) j̃m
(
r′, ω′

)〉
= 0,

〈
j̃∗l (r, ω) j̃∗m

(
r′, ω′

)〉
= 0 .

(1.13)

The length scale lc and time scale τc are introduced for dimensional grounds, and
the polarizations are indexed by l,m, taking values x, y, z. For the classical white
noise currents, Eq. (1.13) is a standard model and appears in many places in the
literature [40, 27, 11]. Using the correlation of current density distributions and
the definition of the filter function, the visibility function of the electric fields at
two different space-time points becomes

Cij(r1, r2, t1, t2) = µ2
0l

3
cBω

2
0δij

32π3τc

∫
d3r 〈|j̃t,i(r, ω0)|2〉 e

−iω0(−∆t+(|r1−r|−|r2−r|)/c)
|r1 − r| |r2 − r|

× sinc
[
B

2

(
−∆t+ |r1 − r| − |r2 − r|

c

)]
,

(1.14)

where ∆t = t1− t2 and for spatial correlation its taken as zero ∆t = 0. The integral
over Earth’s surface is parametrized by r = (x, y, R) with respect to the coordinate
system of the detection plane. Further, we write |rj − r1| − |r2 − r| ≈ ∆r12 · r/|r|
for |∆r12| � R in the far field regime, where the vector ∆r12 = r1 − r2 connects
two different receiver modes. Then we approximate |ri − r| ≈ R/ cos θ̃(x, y) with
θ̃(x, y) the polar angle the angle between the z-axis and the vector (x, y, R). In
the microwave regime, one can relate the average amplitude of current density to
brightness temperature TB(x, y) by 〈|j̃t,l (r, ω) |2〉 = K1TB(x, y) cos θ̃(x, y)δ(z −R)
with a constant defined as K1 = 32τckB/(3l3cµ0c) [7] (See also an appendix of [25]).
Further, we define the effective temperature as Teff(x, y) ≡ TB(x, y) cos3 θ̃(x, y)
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and a new constant as K̃ = kBµ0Bω
2
0/(3π3c) and we for a very narrow bandwith

B, we can approximate sinc(...) ∼ 1. Then visibility function considering these
assumptions becomes

Cij(r1, r2) = K̃δij
R2

∫
dxdy Teff(x, y)e2πi(v12

x x+v12
y y), (1.15)

where v12
y = ∆x12/(λR), v12

x = ∆y12/(λR) and we used ω0/c = 2π/λ. The
equation (1.15) is known as the Van Cittert-Zernike theorem, which describes the
Fourier transform the relationship between the spatial intensity distribution (or
in this case, the temperature distribution) of these incoherent radiation sources
and the associated visibility function. Resolution is limited to the paradigmatic
resolution limit d = λR/∆x12 found by Abbe and Rayleigh based on the interference
of classical waves, where ∆x12 is the maximum spatial separation between two
antennas. In the following section, I will briefly introduce the quantum definition
of the problem.

1.3 Quantum Analysis of Electromagnetic Field

1.3.1 Quantized Electromagnetic Field

The electromagnetic field is quantized by expanding the energy of the free
electromagnetic field in modes, and the mode functions form an orthonormal
functional basis for the solution of Maxwell equations under appropriate boundary
conditions in a finite quantization volume. For the quantized electric field in free
space, we consider the quantization volume as infinity, and the discrete modes are
replaced by the continuous ones in this limit. We can write the operator for the
quantized vector potential Â(r, t) in Coulomb gauge in continuous form as [5, 30]

Â(r, t) =
∫
d3k

(
~

16π3ε0c|k|

)1/2

×
∑
σ=1,2

ε(k, σ)â(k, σ) exp(−ic|k|t+ ik · r) + h.c.,
(1.16)

where, â(k, σ) are the continuous mode operators with [â (k, σ) , â† (k, σ)] = δ(k−
k′)δσσ′ , and ε(k, σ) are the directions of the polarizations with index σ ∈ 1, 2, which
are always perpendicular to wave vector k. Mode functions are plane waves and
parametrized by k and σ. As in the classical case, we consider the classical current
density distributions as sources of electromagnetic radiation. For this reason, the
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interaction Hamiltonian for the classical current distribution of the sources j(r, t)
with electromagnetic waves in free space is given by the following [17, 7, 30, 39]

HI(t) = −
∫
d3r j(r, t) · Â(r, t). (1.17)

In the interaction picture, using the Schrödinger equation, the state of the elec-
tromagnetic field at time t can be obtained from the one at t0 as [39, 17, 30,
29]

|ψ(t)〉 = U (t, t0) |ψ (t0)〉 , (1.18)

where the unitary propagator U (t, t0) is given by

U (t, t0) = exp
(
i

~

∫ t

t0
dt′
∫
d3r j (r, t′) · Â (r, t′) + iϕ (t, t0)

)
. (1.19)

The phase ϕ (t, t0) is a real number resulting from the classical interaction between
currents and equal-time matrix elements. Since our model is semiclassical, the
current density changes with the vector potential, and we can write the time
evolution as a displacement operator as

D({α(k, σ)}) = exp
[∑
σ

∫
d3k [α(k, σ)â†(k, σ)− α∗(k, σ)â(k, σ)]

]
. (1.20)

We assume that for t0 → −∞ we have the vacuum state |{0}〉 for all modes. For a
deterministic current density, |ψ(t)〉 is a tensor product of coherent states,

|ψ(t)〉 = |{α(k, σ)}〉 = D({α(k, σ)})|{0}〉, (1.21)

using Fourier transform of the current densities as in the classical case and taking
the integral over t′, α(k, σ) can be found as

α(k, σ) =−
(

1
32π4ε0c~|k|

)1/2

×
∫
d3r

∫ ∞
−∞

dω̃j̃ (r, ω̃) · ε(k, σ) exp(−ik · r)

× exp(i(ω̃ + c|k|)t)
iε− c|k| − ω̃

.

(1.22)

where a shift in the denominator ’iε’ is introduced, and it is necessary for the
integral to converge at t = −∞. So far, we have the modes of free space. To
understand the electric field received by the interferometer, we need an input-output
process between the modes of the free space and the interferometer modes. In the
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following section, I will define the scattering process to the received modes of the
interferometer.

1.3.2 Mode Matching: Scattering to Interferometer Modes

An interferometer receives the electromagnetic field through an array of antennas
at positions ri in a detection plane parallel to the source plane and separated from
it by a distance R. Each antenna’s output mode is connected to input modes that
receive electromagnetic field radiation. Receiver "i" consist of antenna "i" combined
with its output waveguide. After filtering, the output of each antenna is considered
to be single-mode with discrete annihilation operator b̂i. The modes received by
the antennas can be called "spatial field modes." Since each mode, b̂i is specific to a
location on the detection plane. Single modes with discrete annihilation operator
âi are reflected from the pre-processing stage. On the antenna side, we describe
incoming plane waves in the interferometer by â(k, σ) and scattered outgoing plane
waves by b̂(k, σ). One can use the scattering matrix formalism to see the connection
between incoming and outgoing modes.

Moreover, the b̂i modes are separated by considerably large distances comparable
to the central wavelength of λ. And, the collection area of each antenna AD is
assumed to be AD ∼ λ2. These constraints make the modes for different receivers
orthogonal and simplify the form of the scattering matrix. A scattering matrix
connects incoming and outgoing modes, and one can write it as [47, 48]

S =
 S(scat ) S(trans)

S(rec ) S(refl )

 . (1.23)

Here the scattering matrix acts on the vector [{â(k, σ)}{k,σ}, {âi}{i}]T , where
{a(k, σ)}{k,σ} is the vector of continuous plane wave operators with continuous
k and two polarizations. {âi}{i} is the vector of modes with i ∈ {1, .., n} for an
n-mode interferometer. The first block, S(scat ), describes the scattering of incoming
plane waves to outgoing plane waves from the interferometer. The off-diagonal
block S(rec) describes the coupling of the incoming plane waves â(k, σ) into the
receiver modes b̂i, and S(trans) describes scattering of reflected receiver modes âi
into outgoing plane waves b̂(k, σ). The matrix S(refl ) represents the scattering
(reflection) between the receivers and will be neglected by assuming there is no
reflection from these modes, S(refl ) ∼ 0. One can also verify that if the receivers
have only incoming and outgoing modes, the receiving and transmitting pattern of
the receivers will be the same S(trans)(k, σ; j) = S(rec)(j; k, σ) and we can denote
them as simply Sj(k, σ). We can replace the field operators â(k, σ) in Eq. (1.21)
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by the following relation for n different receiver modes

â(k, σ) =
n∑
j

S∗j (k, σ)b̂j +
∑
σ′

∫
d3k′S∗(scat)(k′, σ′,k, σ)b̂(k′, σ′). (1.24)

Then using Eq. (1.24), we can write the coherent state in Eq. (1.21) as

|ψ(t)〉 = D({βi})D({β(k, σ)}) |{0}〉 , (1.25)

where D({β(k, σ)}) can be defined similarly to Eq. (1.20) and β(k, σ) is the
eigenvalue of the scattered plane waves modes with annihilation operator b̂(k, σ).
The interferometer does not have any access to outgoing plane modes b̂(k, σ) as
well, and b̂i commutes with b̂(k, σ). Thus, we can safely trace them out. The
displacement operator for the spatial modes of the interferometer can be written in
the form

D({βi}) =
n⊗
i

exp
[
βib̂
†
i − β∗i b̂i

]
. (1.26)

In the end, we have a coherent state for spatial modes of the interferometer, and
for the field amplitudes βi, we can write in the simplified form as

βi =−
(

3cµ0

16π~ω3
0B

)1/2 ∫ ∞
−∞

dωw(−ω)ω
∫
d3rj̃t (r, ω) · ûe

−iω(t̄−|r−ri|/c)
|r− ri|

. (1.27)

Since the mean value of the current density distribution is zero, we only need
the covariance matrix elements of the received modes to describe Gaussian states,
which I will introduce in the following section. Thus, we must calculate 〈b†ibj〉. The
integral over ω can be taken using the filter function of bandwidth B as discussed
in the classical correlation of the electromagnetic fields. Integrals can be further
simplified using current density correlations (See first publication for the details).
Then we find

〈b†ibj〉 = K
∫
d3r
〈|j̃t,l (r, ω) |2〉 eiω0(|r−rj |−|r−ri|)/c

|r− ri||r− rj|

× sinc
[
B

2c(|r− rj| − |r− ri|)
]
,

(1.28)

where, K = 3cµ0l
3
c/(16π~ω0τc) and sinc[x] ≡ sin x/x. As in the classical case,

average current density amplitudes can be related to the temperature distribution
of the surface. Then we can simplify the 〈b†ibj〉 further using far-field approximation
as we discussed in our first paper [25].
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1.3.3 Gaussian States

Let us consider n received modes of the interferometer in the detection plane
with annihilation operators b̂i satisfying the commutation relations

[
b̂i, b̂

†
j

]
= δij,

all other commutators being zero. If we arrange all operators into a vector form
such as b =

[
b1, b

†
1, b2, b

†
2, . . . bn, b

†
n

]
. The Gaussian state is defined as a state with

Gaussian characteristic function which can be completely described by the mean
displacement γα and covariance matrix Σαβ as [9, 1, 16, 32, 35, 44]

γα = Tr [ρbα]

Σαβ = 1
2 Tr

[
ρ
(
b̃αb̃β + b̃βb̃α

)]
,

(1.29)

in terms of the centered operator b̃α = bα − γα. We use this notation while using
the quantum Cramér bound in our first and second publications. However, for
simplicity, while we are using classical Cramér Rao bound from the measurement,
we use Sudarshan-Glauber representation. We show that the state of the incoming
modes of the n-mode interferometer from these radiated sources can be modeled
as circularly symmetric Gaussian states with a partial coherence, which encodes
the information of position and amplitudes distribution of the sources. Then after
the scattering process [47, 48] from the interferometer, the partially coherent state
received in the n modes is represented by

ρ =
∫

d2nβΦ({βi})|{βi}〉〈{βi}|, (1.30)

where |{βi}〉 is a multi-mode coherent state for spatial antenna modes, {βi} =
β1, β2, ...βn, and

Φ({βi}) = 1
πn det Γe

−β̄†Γ−1β̄. (1.31)

with β̄T = (β1, β2...βn) is the Sudarshan-Glauber representation, and d2nβ ≡
d<β1d=β1 . . . d<βnd=βn. The matrix Γ is the coherence matrix for n antenna
modes, and its elements are defined as Γij = 〈b̂†i b̂j〉.

1.4 Parameter Estimation Theory

One of the most fundamental purposes of physics is the estimation of physical
quantities from experimental data obtained from measurements. By using the tools
of the estimation theory, the goal is to achieve fundamental precision of any given
parameter or a set of parameters [20, 22, 19]. The theory of probability is used to
properly formalize parameter estimation theory by considering the random processes.
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In this section, I will first introduce the random variables, parameter space, and
estimators. Then, I will define the classical Cramér-Rao bound and associated
classical Fisher information matrix for multiparameter estimation. Further, I
will discuss the parameter estimation in the quantum limit. Quantum metrology
attempts to make high-resolution and high-precision measurements using Quantum
Theory. It gives the most fundamental bound known as the quantum Cramér Rao
Bound related to the quantum Fisher information matrix. One can check Ref. [13]
for more details about the parameter estimation theory.

1.4.1 Random variables - Parameter Space - Estimators

From a mathematical point of view, a random variable X is a formalization of
a quantity that depends on random events. When the value is observed, we call
it realization or observation of X. We represent the probability that X accepts
the value xi as p(xi) or p(X = xi), then the random variable X is distributed
according to this probability density function p(xi). If possible process outcomes
are countable, we call it discreate random variable. Otherwise, we call it continuous
random variable and the normalization conditions for the probabilities given by

∑
i

p(xi) = 1,
∫
dxp(x) = 1 (1.32)

respectively. Suppose we have a random variable X and {pθ} family of probability
distributions depends on parameter θ ∈ Θ, where Θ is called parameter space. X is
distributed according to a probability density function pθ and θ is not a random
variable. Thus, it is essential to assume that the parameter θ is deterministic for
unbiased parameter estimation and θ has a fixed value. The parameter space Θ
is a subset of R if we have a single parameter (scalar parameter). It is a subset
of Rn if we have many parameters (a vector of parameters). The results of the
measurement are realized as a statistical sample x = (x1, . . . , xn) from a probability
density function pθ(x), which also depends on the parameter θ that we want to
estimate. We represent the averages for the probability distribution as Eθ. Further,
we call estimator for the method by which we intend to estimate the parameter
from the collected data. It is defined as a function of the data in the form θ̂ ≡ θ̂(x).
We consider an estimator as good estimator if the expected value of it gives the
actual value of the parameter, such as

Eθ[θ̂(x)] ≡
∫
Rn
θ̂(x)pθ(x)dnx = θ. (1.33)
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If this condition is satisfied, the estimator can be considered an unbiased estimator
and guarantees that it is not affected by at least some systematic errors. A better
criterion for determining the quality of an estimator is to minimize the mean square
error (MSE), which is defined as

MSE[θ̂] = Eθ
[
(θ̂ − θ)2

]
≡
∫
Rn

(θ̂(x)− θ)2pθ(x)dnx, (1.34)

which calculates the mean squared error of the estimator from the actual value.
When we expand it, we get two different terms as

MSE[θ̂] = Eθ
[(
θ̂ − Eθ[θ̂] + Eθ[θ̂]− θ

)2
]

= Eθ
[(
θ̂ − Eθ[θ̂]

)2
]

+
(
Eθ[θ̂]− θ

)2

= Varθ[θ̂] + b(θ)2,

(1.35)

where we define the bias of the estimator as b(θ) = Eθ[θ̂]− θ and the variance of
the estimator can be defined as

Varθ[θ̂] =
∫
Rn
θ̂(x)2pθ(x)dnx−

(∫
Rn
θ̂(x)pθ(x)dnx

)2
. (1.36)

If b(θ) = 0, the estimator is unbiased, and the estimator’s variance is equivalent to
the mean squared error. In this case, the error or uncertainty in the estimation of
the parameter θ is δθ becomes

√
Varθ[θ̂] = δθ. (1.37)

Theoretically, we want to find the best estimator that minimizes δθ. However, as
some explicit examples show, an unbiased estimator that minimizes the variance for
all θ might not even exist [20]. Therefore, finding the minimum variance unbiased
estimator can be complicated in practice. At this point, finding a lower bound
on the variance of an unbiased estimator is quite important. Several examples
of estimators are given in the literature, such as a constant, moment, maximum
likelihood estimator (MLE), etc. Among them, we will consider MLE, which also
plays an important role in interpreting the Cramér-Rao theorem.

Maximum likelihood estimator : The likelihood function l of a random
variable X is defined as

l(θ;x) := pθ(x), (1.38)
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where the likelihood is equal to the probability distribution, the new notation is
utilized due to the meaning of θ and X. In estimation theory, X describes the
experiment and is a random quantity whose realizations vary from experiment to
experiment, but θ is a fixed parameter. Once we write pθ(X = x), we consider
the probability. Then the notation l(θ;x) stresses the dependency on θ. Since we
already observed x and considered it fixed, we like to understand how likely it was
that the parameter had the value θ. The probability corresponds to a statement
before the experiment, while the likelihood corresponds to a statement once the
experiment was realized and we observed the value x. Since the logarithm is a
monotonously increasing function, the log of the likelihood function is maximized
by the same parameter. For this reason, it is also useful to define the loglikelihood
L as

L(θ;x) := ln(l(θ;x)), (1.39)

which is the logarithm of the likelihood function. Generally, we are using an n-
sample {X(n)} in the estimation procedure with a specific realization of it {xi}. In
this case, the maximum likelihood estimator becomes

θ̂mle = argmaxθ∈Θ L (θ; {xi}) . (1.40)

where the joint probability distribution of the n-sample can be obtain for the
likelihood as l (θ, {xi}) = ∏

i l (θ;xi). Since the logarithm transforms the product
into a sum will give us the loglikelihood function as

L (θ, {xi}) =
∑
i

ln (pθ (Xi = xi)) . (1.41)

The MLE has an invariance property, which means that if one has the MLE θ̂mle

for a parameter θ, then the MLE for a parameter f = f(θ), where f is a bijective
function, is given by

f̂mle = f
(
θ̂mle

)
. (1.42)

1.4.2 Classical Cramér Rao Bound and Fisher Information

In the previous section, we showed that the MSE equals the variance for unbiased
estimators. The best estimator leads to a vanishing bias; we are looking for the
estimator that minimizes the variance (MVU estimator). The difficulty is that MVU
estimators do not always exist. Because it generally does not minimize variance
for different values of the same parameter. Then, a different approach would be
to look for an estimator that reduces the variance locally. The problem is that
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the calculation of this variance is a difficult task. Instead, we will derive a lower
bound for the variance and then study how tight it is. A famous lower bound
for the variance is given by the famous Cramér-Rao theorem, named after Harald
Cramér and Calyampudi Radhakrishna Rao, which provides a lower bound for the
covariance for any unbiased estimator [14, 12, 37].

Theorem 1.1 - Cramér-Rao Bound. Let regularity condition holds for a
probability distribution {pθ(X)} with a random variable X and a parameter θ ∈ Θ
as

Eθ
[
∂ ln (pθ(x))

∂θ

]
= 0, ∀θ. (1.43)

Then the variance Var
[
θ̂est

]
of any locally unbiased estimator satisfy

Var
[
θ̂est

]
≥ 1
F (pθ; θ)

, (1.44)

where F (pθ; θ) is called Fisher information associated with the probability density
function pθ(x) and defined as

F (pθ; θ) := Eθ

(∂ ln (pθ(x))
∂θ

)2
 . (1.45)

If an estimator saturates the Cramér-Rao bound, it is called an efficient estimator.
Proof of the Cramér-Rao theorem : The proof of Cramér Rao’s theorem

is based on the Cauchy-Schwarz inequality. Here, I will start with the proof of a
parameter function f(θ) instead of the parameter θ directly. Then the estimator
can be written as f̂est. Since θ ∈ Θ then we need that f̂est takes its values in
f(Θ). We can start with the regularity condition, which holds in the theorem. The
left-hand side of the regularity condition becomes

Eθ
[
∂ ln (pθ(x))

∂θ

]
=
∫

dx∂pθ(x)
∂θ

. (1.46)

Changing the integral with the derivative will give

Eθ
[
∂ ln (pθ(x))

∂θ

]
= ∂

∂θ

∫
dxpθ(x). (1.47)

By the definition of the normalization, we have
∫

dxpθ(x) = 1. Then the derivative
of 1 gives directly zero, and we end up with regularity condition as

Eθ
[
∂ ln (pθ(x))

∂θ

]
= 0. (1.48)
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Thus, changing the derivative and the limits is sufficient for the regularity condition
to be satisfied. We can say that this is true for most joint probability distributions.
However, one exception we can immediately say is when the parameter appears in
the limit of the integral such as estimating the upper bound of a uniform distribution.
Now let us continue the unbiasedness of the estimator by taking the derivative
concerning θ for both sides of the unbiasedness condition

∫
dxpθ(x)f̂est (x) =

f(θ). Since only the average value of the estimator depends on the θ from the
probability distribution pθ, not the estimator itself, then interchanging the integral
and derivative, we will have

∂f(θ)
∂θ

= ∂

∂θ

∫
dxpθ(x)f̂est =

∫
dxpθ(x)∂ ln (pθ(x))

∂θ
f̂est. (1.49)

We can think of it this way: the process used to estimate the value of θ should not
depend on θ. If we multiply both sides of the regularity condition by f(θ), and
using the fact that f(θ) is independent of x, we get

∫
dxpθ(x)∂ ln (pθ(x))

∂θ
f(θ) = 0. (1.50)

Then we can obtain the following equation by subtracting Eq. (1.50) from Eq.
(1.49) as

∂f(θ)
∂θ

=
∫

dxpθ(x)∂ ln (pθ(x))
∂θ

(
f̂est − f(θ)

)
. (1.51)

To apply the Cauchy-Schwarz inequality, let us first introduce a scalar product for
any joint probability distribution pθ(x) and for two real functions a(x) and b(x) as

〈a(x), b(x)〉pθ :=
∫

dxa(x)b(x)pθ(x). (1.52)

Then the Eq. (1.51) in this notation becomes

∂f(θ)
∂θ

=
〈
∂ ln (pθ(x))

∂θ
, f̂est − f(θ)

〉
pθ

. (1.53)

Using the Cauchy-Schwarz inequality, we will have the following for the right-hand
side of Eq. (1.53) as

〈
∂ ln (pθ(x))

∂θ
, f̂est − f(θ)

〉2

pθ

≤
〈
∂ ln (pθ(x))

∂θ
,
∂ ln (pθ(x))

∂θ

〉
pθ

〈
f̂est − f(θ), f̂est − f(θ)

〉
pθ
.

(1.54)
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Then we can rewrite the inequality in the following form

∫
dxpθ(x)

(
f̂est − f(θ)

)2
≥

(
∂f(θ)
∂θ

)2

∫
dxpθ(x)

(
∂ ln(pθ(x))

∂θ

)2 . (1.55)

By taking f(θ) = θ, using the definition the varience
∫

dxpθ(x)
(
f̂est − f(θ)

)2
=

Var [ĝest ] and defining the Fisher information as

F (pθ; θ) =
〈
∂ ln (pθ(x))

∂θ
,
∂ ln (pθ(x))

∂θ

〉
pθ

. (1.56)

We prove the Cramér-Rao theorem as

Var
[
θ̂est

]
≥ 1
F (pθ; θ)

. (1.57)

The loglikelihood derivative, sometimes called the score function, becomes sensitive
to slight variations of θ as the probability changes, that is, in the case of the higher
derivative score function. Therefore, the Fisher information matrix (FI), which is
the norm of the score, takes a significant value and lowers the variance.

Multiparameter Estimation : In multiparameter estimation, the goal is to
estimate a vector of parameters, θ ≡ {θ1, θ2...θm}. The constraints and formalism
requirements for multiparameter estimation are the same as for scalar parameter
estimation. However, the Cramér-Rao bound corresponds to an inequality for the
covariance matrix.

Cov
(
θ̂est

)
−F (θ)−1 ≥ 0. (1.58)

The elements of the Fisher information matrix F (θ) is given by

Fij (θ) := Eθ
[
∂ ln (pθ)
∂θi

∂ ln (pθ)
∂θj

]
. (1.59)

Reparametrization : If reparametrization is needed, i.e., if we need to estimate
a vector of parameters f(θ), which is a function of original parameters θ then the
inverse of the new Fisher information matrix for the parameter change is given by

F (f)−1 = J [f , {θi}] · F (θ)−1 · J [f , {θi}]t , (1.60)

where J [f , {θi}] is the Jacobian of the transformation with elements Jij [f , {θi}] :=
∂fi(θ)/∂θj. If an estimator θ̂est is efficient to estimate the original parameter θ,
then f(θ̂est ) it does not mean that will be efficient to estimate the new parameters
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of f(θ). We can interpret the Fisher information matrix F (f) as a metric in the
manifold from a geometric perspective [3]. This metric can be calculated from the
joint probability distribution as in Eq. (1.59). For the coordinate changes {θi} at
any point on the manifold, the Fisher information matrix may not be invertible, or
there may be fewer variables in the new coordinate system; that is why we used
the transformation for the inverse of the Fisher information matrix. When the
Fisher information matrix is diagonal, the estimation of the θi parameter will not
be affected by the lack of information on the other parameters. In this case, the
multiparameter estimation is determined to be the same as the multiple scalar
single parameter estimation. For the following section, we will refer to the Fisher
information matrix from the classical estimation theory as the classical Fisher
information matrix (CFIM) to distinguish it from the quantum Fisher information
matrix (QFIM).

1.4.3 Quantum Cramér Rao Bound and Quantum Fisher
Information

In this section, I will introduce the quantum Cramér-Rao bound with the
quantum Fisher information matrix F (θ) for multiparameter estimation. We aim
to derive the upper bound for the CFIM we get from the measurement. In quantum
mechanics, we mostly have the positive operator value measure (POVM), i.e., a set
of operators {Πk} satisfying

Πk > 0 ∀k,
∑
k

Πk = I, (1.61)

in the discrete case. Then the probability distribution of the measurement is given
by the Born rule as

pk(θ) = Tr (ρθΠk) , (1.62)

where ρθ is the density matrix of the quantum state encoding the parameter vector
θ, on which the measurement is performed. As we see, we can choose any set
POVMs to perform a measurement. However, our metrological goal is to find
the ultimate bound on precision achievable for the parameter vector ϕ. Thus, we
need to find the correct set of POVM elements that saturates this ultimate bound.
Before moving forward, we can start with the quantum version of the Cramér Rao
theorem for multiparameter estimation.

Theorem 1.2 - Quantum Cramér Rao Theorem : Let us consider the
family of quantum states ρθ depending on a vector of parameter {θi} ∈ Θ. The
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covariance matrix Cov(θ̂est) of any locally unbiased estimator θ̂est is lower bounded
by the inverse of the quantum Fisher information matrix

Cov(θ̂est) ≥ F (θ)−1, (1.63)

and the elements of the quantum Fisher information matrix are defined as

Fij(θ) = 1
2 Tr(ρθ{Li,Lj}), (1.64)

where {·, ·} is the anti-commutator, and Li is the symmetric logarithmic derivative
(SLD) related to parameter i, which is defined as 1

2 (Liρθ + ρθLi) := ∂iρθ.

Proof of the Quantum Cramér Rao theorem : We can start writing the
CFIM elements F k

ij from a measurement corresponds to a regular POVM element
given by Πk as [45]

F k
ij = ∂i Tr (ρθΠk) ∂j Tr (ρθΠk)

Tr (ρθΠk)
, (1.65)

where CFIM elements can be written for complete POVM using additivity of the
Fisher information matrix Fij = ∑

k F
k
ij . Using the cyclic property of trace, such as

Tr (LiρθΠk) = Tr (ρθΠkLi) = [Tr (ρθLiΠk)]∗ , (1.66)

and the definition of the SLD, we can expand one of the terms in the nominator as

∂i Tr (ρθΠk) = Tr (∂iρθΠk) = 1
2 [Tr (LiρθΠk) + Tr (ρθLiΠk)]

= Re [Tr (ρθΠkLi)] .
(1.67)

For a real and nonzero vector u, an upper bound can be found by using the following
inequalities:

∑
ij

uiF
k
ijuj =[Re Tr (ρθΠk

∑
i uiLi)]2

Tr (ρθΠk)

6 |Tr (ρθΠk
∑
i uiLi)|2

Tr (ρθΠk)
→ First inequality

6
∑
ij

uiuj Tr (ρθLiΠkLj) → Second inequality

=1
2
∑
ij

uiuj [Tr (ρθLiΠkLj) + Tr (ρθLjΠkLi)]

=
∑
ij

uiuj Re [Tr (ρθLiΠkLj)] ,

(1.68)
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where in the last step we used the fact uiuj is symmetric in indices i, j. First
inequlity can be saturated if Tr (ρθΠk

∑
i uiLi) is real for any parameter {θi}.

For the second inequality, we used the Cauchy Swartz inequality defined as∣∣∣Tr
(
A†B

)∣∣∣2 6 Tr
(
A†A

)
Tr
(
B†B

)
, with A ≡

√
Πk
√
ρθ and B ≡ ∑i

√
ΠkuiLi

√
ρθ.

The saturation of the second inequality requires that
√

Πk
√
ρθ must be proportional

to
√

Πk
∑
i uiLi

√
ρθ for any arbitrary, nonzero, and real vector u. Summing over k

both sides of the inequality, we will have the inequality in the form

∑
ij

uiFkijuj ≤
1
2
∑
ij

uiuj Tr (ρθ{Li,Lj}) =
∑
ij

uiFijuj, (1.69)

where in the last term, Fij is defined as the QFIM as in the theorem, which is
independent of any parameter-independent measurement and the ultimate bound for
the CFIM. Since the covariance matrix Cov(θ̂est) of an estimator is lower bounded
by the CFIM then we conclude with the proof of the quantum Cramér Rao theorem
for regular POVMs as

Cov(θ̂est) ≥ F(θ)−1 ≥ F (θ)−1. (1.70)

Now I will give a summary of the properties of quantum Fisher information :

Theorem 1.3 - Monocity of the quantum Fisher information : Let
H be a Hilbert space of a family of density matrices {ρθ} with ρθ ∈ S(H). The
quantum channel E is independent of the parameter θ acting on S(H) as well, then
we have

F (E (ρθ) ; θ) ≤ F (ρθ; θ) . (1.71)

For the parameter independent unitary quantum channels U quantum Fisher infor-
mation is conserved under evolution as

F (U (ρθ) ; θ) = F
(
UρθU

†; θ
)

= F (ρθ; θ) . (1.72)

The monotonicity of the quantum Fisher information is discussed in Ref. [34] and
more recently, its proof given by the book on geometry of quantum states in Ref [4].

Theorem 1.4 - Additivity of the quantum Fisher information : If H1

and H2 are the two Hilbert spaces S of two families of density matrices {ρ1,θ} and
{ρ2,θ}, respectively (ρ1,θ ∈ S (H1) and ρ2,θ ∈ S (H2)). Then we have

F (ρ1,θ ⊗ ρ2,θ; θ) = F (ρ1,θ; θ) + F (ρ2,θ; θ) . (1.73)

Ref. [24] gives complete proof for the additivity property of the quantum Fisher
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information. Moreover, this property also holds for the classical Fisher informa-
tion. Using this theorem for a quantum state ρθ of N copies ρ⊗Nθ , the quantum
Fisher information scales as FN ∝ NF , where FN is the total quantum Fisher
information.

Theorem 1.5 - Convexity of the quantum Fisher information : Let
two families of quantum states {ρθ} and {σθ} parametrized by θ, where ρθ, σθ are
elements of S(H). For 0 ≤ λ ≤ 1 we have

F (λρθ + (1− λ)σθ; θ) ≤ λF (ρθ; θ) + (1− λ)F (σθ; θ) . (1.74)

The proof of convexity of the quantum Fisher information can be found in [15].
In the next chapter, I will briefly discuss our results for the single and multipa-

rameter metrology considering imaging problems of the array interferometers.



Chapter 2

Results

2.1 Single parameter estimation for the Gaussian
states

The SLD and the elements of the QFI matrix are given in Ref. [16] for any
Gaussian state. The SLD can be written as

Li = 1
2M−1

αβ,γδ

(
∂iΣγδ

) (
bαbβ − Σαβ

)
, (2.1)

where M−1
αβ,γδ is the fourth order tensor form of the inverse of the matrix M ≡

Σ⊗Σ + 1
4Ω⊗Ω, with Ω = ⊕n

k=1 iσy, and the summation convention is used for the
repeating indices. In our case, the mean displacement of the Gaussian state is zero.
Then the elements of the QFI matrix in [16] become

Fij = 1
2M−1

αβ,γδ∂jΣαβ∂iΣγδ, (2.2)

Using the properties of the Gaussian state (circularly symmetric and with zero
means), we can write the SLD for n mode interferometers as [25]

Li =
n∑
j

gji b̂
†
j b̂j +

n∑
j<k

(gjki b̂
†
j b̂k + (gjki )∗b̂†kb̂j) + C, (2.3)

where C is a constant term that can be dropped for diagonalization purposes.
In the single parameter case, the optimal POVM is the set of projectors onto
eigenstates of Li. It allows one to saturate the QCRB in the limit of infinitely
many measurements using maximum likelihood estimation [20, 10, 33]. To find
the POVMs from the SLD, we construct a Hermitian matrix Mi whose diagonal
elements are real-valued functions which are defined as gji ≡M−1

αβ,γδ

(
∂iΣγδ

)
with

23
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α = 2j and β = 2j − 1. The off-diagonal elements are complex-valued functions
and defined as gjki = M−1

αβ,γδ

(
∂iΣγδ

)
with α = 2j and β = 2k − 1 and k > j. By

introducing a new set for the field operators such that, b̄† ≡
[
b̂†1, b̂

†
2, ..., b̂

†
n

]
and

b̄ ≡
[
b̂1, b̂2, ..., b̂n

]T
, we write the SLD in the following form

Li = b̄†Mib̄. (2.4)

As Mi is a Hermitian matrix it can be unitarily diagonalized by Mi = V†iDiVi

with V†iVi = I. A new set of operators can be defined as d̄†i = b̄†V†i where
d̄†i =

[
d̂†i1, d̂

†
i2, ..., d̂

†
in

]
. The optimal POVM for the single parameter case (i = 1,

which we drop in the following) can be found as a set of projectors in the Fock basis
{|m1,m2, ...,mn〉 〈m1,m2, ...,mn|}{m1,m2...mn} of the d̂l with d̂

†
l d̂l |m1,m2, ...,mn〉 =

ml |m1,m2, ...,mn〉, where l ∈ {1, ..., n}. The d̂l will be called "detection modes."
In our first paper, using the tools of quantum metrology introduced in the

previous chapter, we investigated the single parameter estimation of the sources’
different parameters using different interferometer modes. In the following, I will
briefly summarize our results for estimating the parameters: source temperature,
source size, source separation, and centroid of two-point sources.

The resolution of the Uniform Circular Source : For the simple example
of T (x, y), we consider a circular source on the source plane parametrized with
radius "a," temperature "T ," and the central location as "(x0, y0)". Since the source
size directly affects the mean photon number, we first look at the estimation of "a"
with a single-mode antenna. We calculated the quantum Fisher information, which
can be saturated by photon number resolving measurement for a single mode. We
compared this with the Heterodyne measurement (its POVM can be taken as a
projector in a coherent state basis, as discussed in the appendix of the first paper).
In the limit a→ 0, we observe that quantum Fisher information tends to a constant,
while classical Fisher information for Heterodyne detection vanishes (See Fig. 2a
of first paper). We obtain similar results for two-mode (Fig. 3a) and more than
two-mode interferometers (Fig. 6). When we increase the number of modes, we
see that additional information arises due to the correlation of different modes and
increases the quantum Fisher information. Here, we also checked the dependency
on the maximum baseline of the interferometer, as we see from Figs. (3b) (3c), for
different temperatures and different source sizes, quantum Fisher information has
a maximum at some point; later, it oscillates around a constant value. The other
parameter we are interested in is the source’s temperature. We notice that photon
number resolving is superior to the Heterodyne detection for estimating T . For
large sources, they converge at some point due to the increasing number of photons
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in a single mode. More than single-mode interferometers, if we know the centroid
of the source, the modes can be connected by the unitary from SLD to saturate
the quantum bound for these single parameters with a photon number resolving
detection.

Spatial Resolution of Two Point Sources : Resolution of the two-point
sources is a very popular problem in the literature; as discussed in the introduction
section, using the SPADE technique, one can resolve the two-point sources for a
lens system such as optical telescopes, microscopes, etc. Here, We are considering
this problem for the interferometers. We consider a two-point source parametrized
with source separation "s," centroid "t" and the source temperatures "T1" and "T2."
We aim to estimate "s" and "t" separately. Since these parameters are written in the
two-mode phase difference, we at least need to consider two-mode interferometers.
First, we showed that the quantum Fisher information increases for estimating "s"
and "t" when we increase the temperatures (See Fig. (4a) and (4d) respectively).
Then, we checked the quantum Fisher information for the unbalanced temperature
configurations and obtained that we can resolve "s" and "t" better than the balanced
case (Fig (4b) and (4e)). Further, we consider Heterodyne detection to compare
our results for resolving "s" and "t." For estimating the source separation, we
obtained that quantum Fisher information becomes constant when the separation
vanishes. In addition, classical Fisher information for Heterodyne detection vanishes.
To achieve the quantum limit, we need to combine the incoming modes of the
interferometer with a beam splitter and a phase shifter with a correct phase delay
requires the knowledge of the centroid only. Then by non-local measurement of
these modes using photon number resolving detection, we can break Rayleigh’s curse
of resolution for two-point sources. Thus we can resolve them for any separation.
On the other hand, with Heterodyne detection, which can be understood as local
measurement, we always have the resolution limit. Later, we increase the number
of modes to understand how the quantum Fisher information scales. If we keep the
nearest separation of the modes fixed on the detection plane, we see that quantum
Fisher information increases sub-exponentially (See Fig. (5b) (5e)). If we keep the
total baseline fixed, quantum Fisher information increases linearly by the number
of modes (Fig. (5c) (5f)).

In the end, we conclude that with the correct pre-processing of the received modes
of the interferometer, we can achieve super-resolution for the selected parameters
by saturating the quantum limit.
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2.2 Multiparameter Estimation for Gaussian States

Contrary to the single parameter case, the multiparameter QCRB can generally
not be saturated. By introducing a weight matrix w, one can define the scalar
inequalities from the matrix-valued QCRB as Tr(wCov(θ̃)) > Tr(wF (θ)−1) ≡
CS(θ,w). The weight matrix is a positive definite matrix to satisfy the scalar
Cramér-Rao bound. For simplicity, we will consider w = I to optimize the average
variances of all parameters. One can also consider a diagonal matrix with different
weights. This will result in directly decreasing the variances of preferred estimators.
Further, choosing a weight matrix with off-diagonal elements includes covariances of
the estimators. Holevo realized the problem of saturability of QCRB and proposed
a tighter and more fundamental bound [23] CH(θ,w), which is upper bounded by
2CS(θ,w) [41, 2]. If the SLD operators for different parameters commute on average
Tr(ρθ[Li, Lj]) = 0, then the Holevo-CRB is equivalent to the QCRB. Moreover,
the QCRB for multiparameter estimation can be saturated asymptotically with a
collective measurement in the limit of an infinitely large number of copies ρ⊗Nθ [36,
2].
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Figure 2.1: The Gaussian state ρ(θ) of the n-mode interferometer contains the spatial
and the radiometric information from current density sources. The incoming
modes b̂i are combined with an optimized U to have detection modes d̂i
of the photon counting measurement. For experimental realization, one
can decompose U into SU(2) group elements similar to optical quantum
computing, i.e., using beam splitters and phase shifters. After the measure-
ments, one estimates the parameter set using an estimator function such as
a maximum likelihood estimator (MLE).

Most Informative Bound for Multiparameter Metrology : The most
informative bound minimizes the classical scalar Cramer Rao bound over all the
possible POVMs. In the single parameter case, from the diagonalization of the SLD,
we see that one needs to combine the incoming modes with a unitary transformation
to saturate the QCRB single parameter case. This transformation, even for a single
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parameter, depends on the parameter itself. In the multiparameter case, any of
these specific unitary transformations for a specific parameter usually gives a more
significant mean square error for the remaining parameters. Using the clue from
the SLD structure, we drop the index "i" from the unitary transformation of the
modes and minimize the scalar bound of the classical Fisher information matrix for
multiparameter estimation over all possible unitaries. Then, a new set of operators
for the detection modes can be defined as d̄ = Ub̄ where d̄T =

[
d̂1, d̂2, ..., d̂n

]
, where

U is the corresponding unitary transformation of the field modes (See 2.1). The
average values of the elements of the new coherence matrix Γ̃ can be found by using
d̂i = ∑

l Uilb̂l as
Γ̃ij = 〈d†idj〉 =

∑
kl

U∗ikUjl〈b
†
kbl〉. (2.5)

Then we will have the probabilities after measurement P (m1, ..mn|θ1, θ2, ..., θl) as

P ({mk}|θ) =
∫

d2nδΦ̃({δi})|〈{mk}|{δi}〉|2,

=
∫

d2nδΦ̃({δi})
∏
i

e−|δi|
2 |δi|2mi
mi!

.
(2.6)

where |{δi}〉 is a coherent state of the detection modes and Φ̃({δi}) is the Sudarshan-
Glauber function for the state of the detection modes. Due to the linear transfor-
mation from b̄ to d̄, it is still a Gaussian. The most informative bound [2] in this
case is the bound minimized over all possible unitary matrices

Tr
[
wCov(θ̃)

]
≥ min

U

[
Tr
[
wF−1(θ)

]]
. (2.7)

Estimating the source temperatures of many pixels on the source
plane : In our first paper, we only consider the single parameter estimation.
However, our ultimate aim is to estimate T (x, y) completely. Our second paper only
focused on multiparameter estimation and multiparameter quantum Cramer Rao
bound. We consider having many pixels on the source plane, each parametrized
by Ti. The goal is to estimate the parameter vector θ = (T1, T2, ....Tp), where p is
the total pixel number. Here, we checked the compatibility condition for our set of
parameters. Numerically, we find that for n mode interferometer, SLDs of different
parameters commute on average for the quantum state of the interferometer. Thus,
Holevo-CRB is equivalent to QCRB. Further, we assume that we know the position
of each pixel precisely on the source plane; all pixels are next to each other, and
their sizes are ten times smaller than the resolution limit of the classical detection
strategies. As a starting point, we consider two-pixel and two-mode interferometers.
We analyze the corresponding unitary for the non-local measurement considering
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only the phase delay. When we vary the phase in the unitary to combine these
two modes, we can saturate the scalar quantum Cramer Rao bound for the correct
phase (See Fig. (2) in the second paper). For the next step, we increase the number
of pixels and the number of modes so as not to leave any redundant parameters.
The parameterization of the unitary when n > 2 is a difficult task. Therefore,
we used an optimization algorithm to minimize the cost function from the most
informative bound. By considering the photon loss, which is parametrized by µ,
we analyzed the 1D pixel sources (See Fig. (3) and Fig. (4) ). In the last step, we
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Figure 2.2: (a) The image on the source plane with 30 pixels will be estimated us-
ing a maximum likelihood estimator. (b) The reconstructed image after
single photon detection in detection modes d̂i obtained from using the
optimized unitary Uimage

opt specific to the temperature distribution. (c) The
reconstructed image using a unitary optimized for uniform temperature
distribution Uuniform

opt . (d) The reconstructed image using a local measure-
ment of single photons considering U = I. Pixel size a = 3.0 km, average
temperature T̄ ∼ 293 K, and sample size N = 108.



2.2. MULTIPARAMETER ESTIMATION FOR GAUSSIAN STATES 29

go beyond the 1D model by considering source pixels on a 2D surface. We obtain
super-resolution for an optimized unitary Uimage

opt specific to the actual image in Fig.
(2.2a), as seen from the reconstructed image using MLE in Fig. (2.2b). However,
revealing this optimized unitary requires knowledge of the image. That is why we
found another unitary optimized for the uniform temperature distribution Uuniform

opt

and used it to estimate the actual image. After reconstructing the image using
MLE, we obtain again a sharp image that is sufficient to demonstrate the actual
image (See Fig. (2.2c)). If we check the local measurement by considering U = I
(means direct detection), we see from Fig. (2.2d) that the reconstructed image is
entirely washed out. Thus, we can not resolve it by direct detection due to the
resolution limit of the local measurement of the modes.



Chapter 3

Conclusion and Outlook

In our first paper, we obtain the general partially coherent state received
by an antenna array starting from a microscopic current density distribution in
the source plane corresponding to a position-dependent brightness temperature
Teff(x, y). We calculated the QFI and the QCRB for the minimum uncertainty
for the parameters that can be estimated based on measurements of the multi-
mode quantum state of the interferometer. We demonstrated how the optimal
measurements allow one to estimate a single parameter estimation. We showed
that the optimal measurements correspond to photon detection in specific detector
modes obtained from the original receiver modes by mode mixing via beam splitters
and phase shifters. From the dependence of that partially coherent quantum states
on parameters that characterize the sources, we estimated the radius a and the
brightness temperature T of a uniform circular source. Then, we estimated the
source’s centroid t and source separation s for two-point sources for single-mode
and two-mode interferometers. We demonstrated a clear quantum advantage over
the classical strategy corresponding to direct heterodyne measurements of the
receiver modes. We benchmarked our results with the performance of the SMOS
mission, which achieves about 35 km resolution with 69 antennas deployed on three
four-meter long arms arranged in a Y-shape, operating at 21 cm wavelength and
flying at the height of 758 km above Earth. For example, we showed that using the
optimal measurements, a single arm of length 4 m with 20 antennas and a single
measurement would allow a spatial resolution of about 1.5 km. I.e. with a satellite,
a more than 20 times increase in resolution compared to SMOS could be achieved.
By increasing the size of the array to 19m, the 20 antennas should give rise to a
spatial resolution down to 300m. Assuming that the number of samples is given by
the time the satellite flies over the object whose size one wants to estimate divided
by the inverse bandwidth, even with a single receiver with a spatial resolution down
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to a few meters. In principle, a radiometric resolution of a fraction of a Kelvin
becomes possible.

In our second paper, we focused on the temperatures on the ground as parameters
for passive remote sensing as a quantum multi-parameter estimation problem rather
than geometrical information of sources currently, such as the separation, centroid,
or phases of sources. An array interferometer with many antennas receives thermal
electromagnetic radiation from the pixels in the source plane. Then the received
interferometer modes are mixed according to an optimized unitary transformation,
and in the corresponding optimized detection modes, the single-photon detectors
detect the incoming photons. We optimized the cost function from a scalar classical
Cramér-Rao bound obtained by the inverse Fisher information matrix for estimating
the temperatures from the photon-counting results with a positive weight matrix
leading to a “most-informative bound”. For a uniform weight over all pixels, we
show that one can approximatively saturate the scalar quantum Cramér-Rao bound
based on the quantum Fisher information matrix for the same positive weight
matrix. The optimized unitary depends on the actual temperature distribution
in principle. However, we showed that the unitary obtained from a uniform
temperature distribution gives still much better resolution than direct photon
counting in the incoming modes. We showed that the found optimal mode of
mixing, followed by single photon detection, leads to a spatial resolution of the
reconstructed images that are at least about an order of magnitude better than
Rayleigh’s limit (about 3 km instead of 35 km for an antenna array comparable
with the one of SMOS, even for substantial photon losses), given in the present case
by the van Cittert-Zernike theorem. We used a conjugate gradient algorithm for
the optimization over the unitaries. The optimal unitary can be decomposed into
SU(2) group elements using beam splitters and phase shifters and can be realized
as linear optical quantum computing.

Experimentally, single-photon detection in the microwave regime is still difficult
but has started to become available [28], and even number-resolved photon detection
in the microwave regime has meanwhile been shown [43]. Considering the recent
availability of single-photon detection in the micro-wave domain, our results show a
path towards substantially enhanced resolution in passive remote sensing compared
to classical interferometers that effectively implement heterodyne measurements.
Further advancements might be possible for larger photon numbers or smaller losses
if photon-number resolved measurements are available. Several challenges remain.
Post-measurement beam synthesis standard in interferometric astronomy does not
work here, as the detection modes already depend on the pixel in the image that
one wants to focus on. However, the substantial quantum advantages explained
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here theoretically in a relatively simple but real-world scenario give hope that
quantum metrology can help to significantly improve the resolution of passive Earth
observation schemes, with a corresponding positive effect on the data available for
feeding climate models, weather forecasts, and forecasts of floodings.

Further discussions apart from this thesis might include the generalization of
the quantum Cramér-Rao bound to sources illuminated with non-classical light
sources. Here, the initial quantum state might also be optimized before imprinting
the parameters of the scattered surface. Apart from this, one might also consider
a non-local measurement using entangled photons to correlate information in the
received modes of the interferometer and might give better resolution compared to
local Heterodyne detection.
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Quantum-enhanced passive remote sensing
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We investigate theoretically the ultimate resolution that can be achieved with passive remote sensing in
the microwave regime used, e.g., on board of satellites observing Earth, such as the soil moisture and ocean
salinity (SMOS) mission. We give a fully quantum mechanical analysis of the problem, starting from thermal
distributions of microscopic currents on the surface to be imaged that lead to a mixture of coherent states of
the electromagnetic field which are then measured with an array of antennas. We derive the optimal detection
modes and measurement schemes that allow one to saturate the quantum Cramér-Rao bound for the chosen
parameters that determine the distribution of the microscopic currents. For parameters comparable to those of
SMOS, a quantum enhancement of the spatial resolution by more than a factor of 20 should be possible with a
single measurement and a single detector, and a resolution down to the order of 1 m and less than a 1

10 K for the
theoretically possible maximum number of measurements.

DOI: 10.1103/PhysRevA.106.012601

I. INTRODUCTION

Optical imaging has evolved dramatically since the discov-
ery that Abbe’s and Rayleigh’s resolution limit comparable to
the wavelength of the used light is not a fundamental bound.
This was demonstrated experimentally with a series of works
starting with stimulated emission depletion in 1994 by Hell
[1], who showed that decorating molecules with fluorophores
and quenching these selectively, imaging of a molecule with
nanometer resolution could be achieved in the optical domain
(see [2] for a review). This was followed in 2016 by theoretical
work by Tsang and coworkers [3] who framed the problem
of the ultimate resolution of two-point sources in terms of
quantum parameter estimation, a very natural approach given
that quantum parameter estimation theory was originally mo-
tivated by generalizing the classical Cramér-Rao bound that
had long been used in radar detection to the optical domain
[4–7]. Tsang and coworkers showed that even in the limit
of vanishing spatial separation between the two sources a
finite quantum Fisher information (QFI) for that parameter
remains, whereas the classical Fisher information degrades in
agreement with Rayleigh’s bound [8]. A large body of the-
oretical work followed that incorporated important concepts
such as the point spread function for analyzing optical lens
systems, and mode engineering such as SPADE for optimal
detection modes [8–25], reminiscent of the engineering of
a “detector mode” for single-parameter estimation of light
sources [26]. Experimental work in recent years validated this
new approach to imaging [27–30]. Optical interferometers
were investigated in [21,31–33]. The resolution for general

*saban-emre.koese@uni-tuebingen.de
†gerardo.adesso@nottingham.ac.uk
‡daniel.braun@uni-tuebingen.de

parameter estimation for weak thermal sources was studied
in [34]. Recently, the spatial resolution of two point sources
for two-mode interferometers was examined for the far-field
regime [35].

In this work, we investigate the ultimate limits of passive
remote sensing in the microwave regime with a satellite of
the surface of Earth. There, the state of the art is the use of
antenna arrays for synthesizing interferometrically a large an-
tenna with corresponding enhanced resolution. For example,
the SMOS (soil moisture and ocean salinity) interferometer
achieves a resolution of about 35 km, flying at the height
of about 758 km and using a Y-shaped array of 69 antenna
[36–39]. Each antenna measures in a narrow frequency band
1420–1427 MHz with a central wavelength around λ ∼ 21 cm
and in real time the electric fields corresponding to the thermal
noise emitted by Earth according to the local brightness tem-
peratures on its surface. The signals are filtered and interfered
numerically, implementing thus purely classical interference,
which implies a resolution governed by the van Cittert–
Zernike theorem [40–42]. Recently, it was shown theoretically
that larger baselines can be synthesized by using the motion
of the satellite but at the price of the radiometric (i.e., temper-
ature) resolution [43]. The question naturally arises to what
extent the resolution can be improved by using methods of
quantum metrology. As in the optical domain the answer can
be found by analyzing the quantum Cramér-Rao bound and
then trying to find the optimal measurements that can achieve
it. We solve this problem, in general, for an arbitrary antenna
array defined by the positions of individual antenna, in the
sense of finding, at least numerically, the optimal modes for
measuring the electric fields. We go beyond the situation of lo-
calized point sources that has become a favorite simplification
in the field and describe the sources as randomly fluctuat-
ing microscopic current distributions which in turn generate
the electromagnetic field noise, ultimately measured by the

2469-9926/2022/106(1)/012601(20) 012601-1 ©2022 American Physical Society
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satellite. This is closer to the literature on passive remote
sensing in the microwave regime and allows a direct compar-
ison with the van Cittert–Zernike theorem. We also make use
of the scattering matrix formalism introduced in this context
in [44]. The thermal fluctuations of the microscopic currents
lead to Gaussian states of the microwave field [26,45–47],
and our analysis makes therefore heavy use of the quantum
Cramér-Rao bound (QCRB) for Gaussian states [48–53]. We
assume that only the current densities at the surface of Earth
contribute. In reality, the emission seen by the SMOS is from
a surface layer on Earth that has a finite thickness, but is thin
enough to make a two-dimensional (2D) approximation. Also,
the receivers see the emission from the cosmic microwave
background. We neglect it as its temperature is two orders
of magnitude lower than the one of Earth [43]. Additional
technical noises are neglected and indeed beyond the scope
of this paper. Additional technical noises in the context of
imaging were considered in Refs. [54–56].

The rest of the paper is organized as follows. In Sec. II,
we describe the state for the n-mode interferometer for gen-
eral sources on the source plane using the scattering matrix
formalism. Later, we present the general formula of the
positive-operator-valued measure (POVM) for the QFI based
on the state of the n-mode interferometer. In Sec. III, first,
we discuss the QFI for the parameters, source size, and tem-
perature of a single uniform circular source for both a single
antenna and two antennas. Second, we discuss the spatial res-
olution, source separation, and centroid on the source plane,
of two strong point sources with the same and different tem-
peratures for a two-mode interferometer. Third, we examine
an array of antennas to increase the spatial resolution of a
uniform circular source and two-point sources. We conclude
in Sec. IV.

II. THEORY

A. Continuous vector potential and interaction with classical
current sources

The operators for the quantized vector potential A(r, t ) can
be written in continuous form. The operator for the vector
potential in the Coulomb gauge reads as [57,58]

Â(r, t ) =
∫

d3k

(
h̄

16π3ε0c|k|
)1/2

×
∑

σ=1,2

ε(k, σ )â(k, σ ) exp(−ic|k|t + ik · r) + H.c.,

(1)

where, â(k, σ ) are the continuous mode operators with
[â(k, σ ), â†(k, σ )] = δ(k − k′)δσσ ′ , and ε(k, σ ) are the di-
rections of the polarizations with index σ ∈ 1, 2, which are
always perpendicular to wave vector k. Mode functions are
plane waves and parametrized by k and σ . The interac-
tion Hamiltonian for the classical current distribution of the
sources j(r, t ) with electromagnetic waves in free space is
given by [43,58–60]

HI (t ) = −
∫

d3r j(r, t ) · Â(r, t ). (2)

In the interaction picture, using the Schrödinger equation the
state of the electromagnetic field at time t can be obtained
from the one at t0 as [58–61]

|ψ (t )〉 = U (t, t0)|ψ (t0)〉, (3)

where the U (t, t0) is given by

U (t, t0) = exp

(
i

h̄

∫ t

t0

dt ′
∫

d3r j(r, t ′) · Â(r, t ′)+iϕ(t, t0)

)
.

(4)

The phase ϕ(t, t0) is a real number, which arises from the
classical interaction between the currents. It is independent
of the state on which the propagator acts, and cancels in the
calculation of equal-time matrix elements. Since the current
density commutes with the vector potential, one can write the
time evolution in the form of a displacement operator, which
is given by

D({α(k, σ )}) = exp

[∑
σ

∫
d3k [α(k, σ )â†(k, σ )

− α∗(k, σ )â(k, σ )]

]
,

(5)

where α(k, σ ) can be found as

α(k, σ ) = i

h̄

(
h̄

16π3ε0c|k|
)1/2 ∫ t

t0

dt ′
∫

d3r j(r, t ′) · ε(k, σ )

× exp(ic|k|t ′ − ik · r). (6)

The α(k, σ ) also depends on t and t0. We assume that for
t0 → −∞ we have the vacuum state |{0}〉 for all modes. For
a deterministic current density, |ψ (t )〉 is a tensor product of
coherent states,

|ψ (t )〉 = |{α(k, σ )}〉 = D[{α(k, σ )}]|{0}〉. (7)

One can introduce the Fourier transform (FT) of the current
densities and take the t ′ integral immediately [43]. We intro-
duce the Fourier decomposition of current density as

j(r, t ′) = 1√
2π

∫ ∞

−∞
dω̃ j̃(r, ω̃) exp(iω̃t ′). (8)

Then we can write α(k, σ ) in the form

α(k, σ ) = i

h̄

(
h̄

32π4ε0c|k|
)1/2

×
∫ t

−∞
dt ′
∫

d3r
∫ ∞

−∞
dω̃ j̃(r′, ω̃) · ε(k, σ )

× exp(ic|k|t ′ − ik · r) exp(iω̃t ′). (9)

Taking the integral over t ′ gives

α(k, σ ) =−
(

1

32π4ε0ch̄|k|
)1/2

×
∫

d3r
∫ ∞

−∞
dω̃ j̃(r, ω̃) · ε(k, σ ) exp(−ik · r)

× exp[i(ω̃ + c|k|)t]

iε − c|k| − ω̃
. (10)
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FIG. 1. An interferometer, with n antennas, separated by a
distance R from the source plane. The Teff (x, y) is the position-
dependent effective temperature in the source plane that one wants
to measure. The field â(k, σ ) propagating from the source enters the
receiver on the interferometer and is partly reflected back into the
modes b̂(k, σ ). Single b̂i exit the receiver and are combined in a
preprocessing step, while other single modes âi are scattered back
from the preprocessing step. The preprocessing of modes allows a
nonlocal measurement by combining the modes b̂i with beam split-
ters and phase shifters. We denote the origin of the coordinate system
on the detection plane as O. All the components of the vectors are
donated in the coordinate system R = (O, êx, êy, êz ).

We introduced a shift in the denominator “iε” that is necessary
for the integral to converge at t = −∞.

B. State received by the antennas

The electromagnetic field is received by an interferometer
that has an array of antennas, localized at positions ri in a
plane. The detection plane of antennas is parallel to the source
plane and separated from it by a distance R (see Fig. 1).
Each antenna is connected at its output to a waveguide that
channels the received electromagnetic field radiation towards
the measurement instruments. Receiver “i” consists of an-
tenna “i” combined with its output waveguide. Its output,
possibly after filtering, is assumed to be single mode with
discrete annihilation operator b̂i. We call the modes received
by the antennas “spatial field modes” since each mode b̂i is
specific to a location on the detection plane. Single modes
with discrete annihilation operator âi are reflected from the
preprocessing stage. On the antenna side, we represent incom-
ing plane waves in the interferometer by â(k, σ ) and scattered
outgoing plane waves by b̂(k, σ ) (see Fig. 1). One can use
the scattering matrix formalism to find the relation between
incoming and outgoing modes.

Furthermore, the modes b̂i are separated by distances
substantially larger than the central wavelength λ. And the
collection area of each antenna AD is assumed to be AD ∼ λ2,
where λ is central wavelength. These constraints make the
modes for different receivers orthogonal and simplifies the
form of the scattering matrix. A scattering matrix connects

incoming and outgoing modes, and one can write it as [62,63]

S =
[
S (scat ) S (trans)

S (rec ) S (refl )

]
. (11)

This matrix acts on the vector [{â(k, σ )}{k,σ }, {âi}{i}]T ,
where {a(k, σ )}{k,σ } is the vector of continuous plane-wave
operators with continuous k and two polarizations. {âi}{i} is
the vector of modes with i ∈ {1, . . . , n} for an n-mode in-
terferometer. The first block, S (scat ), describes the scattering
of incoming plane waves to outgoing plane waves from the
interferometer. A receiver can receive or transmit the signal.
The off-diagonal block S (rec) describes the coupling of the
incoming plane waves â(k, σ ) into the receiver modes b̂i,
and S (trans) describes scattering of reflected receiver modes
âi into outgoing plane waves b̂(k, σ ). The matrix S (refl ) rep-
resents the scattering (reflection) between the receivers, and
will be neglected, S (refl ) ∼ 0. One can also verify that if the
receivers have only incoming and outgoing modes, the receiv-
ing and transmitting pattern of the receivers will be the same
S (trans)(k, σ ; j) = S (rec)( j; k, σ ) and we can denote them as
simply S j (k, σ ). Formally, the input-output relations read as

b̂(k, σ ) =
∑
σ ′

∫
d3k′S (scat)(k, k′, σ, σ ′)â(k′, σ ′)

+
∑

j

S j (k, σ )â j (12)

and

b̂i =
∑

σ

∫
d3k Si(k, σ )â(k, σ ). (13)

For a lossless system we assume that S†S = I . Then we write
S (scat)(k, k′, σ, σ ′) = (S (scat) )T (k′, k, σ ′, σ ). The field oper-
ators â(k, σ ) from the state that we have for Eq. (7) can
be replaced by the following relation for n different receiver
modes:

â(k, σ ) =
n∑
j

S∗
j (k, σ )b̂ j

+
∑
σ ′

∫
d3k′S∗(scat)(k′, σ ′, k, σ )b̂(k′, σ ′). (14)

The interferometer does not have any access to modes b̂(k, σ ).
Assuming that all antennas are identical in terms of their
receiver pattern, except for their position ri on the detection
plane, each scattering function may be written as [62,63]

Si(k, σ ) = ei(k·ri−ωti )S (k, σ ), (15)

where ti is the time at which we consider the state of the ith
antenna. Since we are only interested in spatial modes, we
assume that relative time differences between any pair of an-
tennas is zero. Then we write ti ≡ t̄ , with t̄ the time when the
signal from (r, t ) arrives at central antenna. And S (k, σ ) is the
function describes scattering to the central receiver. According
to (14), t is the last time the current densities to be sensed
imprint their information the coherent state labels α(k, σ ).
Further, the commutation relation of different receiver modes
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can be written as

[b̂i, b̂†
j] =

∑
σ

∫
d3k Si(k, σ )S∗

j (k, σ ) ≈ δi j, (16)

where we have used the canonic commutation relation of
â(k, σ ) and we assumed that |S (k, σ )| varies slowly com-
pared to the oscillations of the exponential factor exp[ik ·
(ri − r j )] for i �= j. Since b̂i commutes with b̂(k, σ ), using
Eq. (14) we can write the coherent state in Eq. (7) as

|ψ (t )〉 = D({βi})D[{β(k, σ )}]|{0}〉, (17)

where D[{β(k, σ )}] can be defined similarly to Eq. (5) and
β(k, σ ) is the eigenvalue of the scattered plane-wave modes
with annihilation operator b̂(k, σ ). Since the interferometer
does not have any access to these modes, we can safely trace
them out. The displacement operator for the spatial modes of
the interferometer can be written in the form

D({βi}) =
n⊗
i

exp[βib̂
†
i − β∗

i b̂i]. (18)

Then we have a coherent state for spatial modes of the inter-
ferometer,

ρ ′ = |{βi}〉 〈{βi}| , (19)

where

βi =
∑

σ

∫
d3k Si(k, σ )α(k, σ ). (20)

Si(k, σ ) depends on the type of receivers. Let us assume that
each receiver is characterized by a filter function w(ω) with
central frequency ω0 and bandwidth B � ω0:

w(ω) =
{

1 for ω0 − B/2 � ω � ω0 + B/2,

0 elsewhere. (21)

For simplicity we assume S (k, σ ) ∝ √
ωw(ω)ε(k, σ ) · û, and

normalized according to Eq. (16) as

S (k, σ ) =
(

3c3ω

8πω3
0B

)1/2

w(ω)ε(k, σ ) · û, (22)

where ω = c|k| and û is the unit polarization direction of
the corresponding receiver mode. Since we are using a filter
function and S (k, σ ) is normalized, choosing

√
ω or with a

different power will not change the result in Eq. (28). Yet,
in Eq. (25) we have the term ∼ωj̃t (r, ω) by this choice and
it is consistent with the van Cittert–Zernike theorem given in
Ref. [42]. Then we have

βi =−
(

3c3

28h̄ε0π5ω3
0B

)1/2 ∫
d3r

∫ ∞

−∞
dω̃

×
∑

σ

∫
d3k w(ω)j̃(r, ω̃) · ε(k, σ )ε(k, σ ) · û

× ei(ω̃t+ωt−ωt̄ )e−ik·(r−ri )

iε − c|k| − ω̃
. (23)

To take the integral over d3k we align the kz axis with the
vector (r − ri ). In spherical coordinates in k space we have
d3k = ω2/c3dω d�, where ω = |k|c and k = (ω/c)n̂(�)

with n̂(�) = (sin θ cos φ, sin θ sin φ, cos θ ). The frequencies
will be filtered out by the filter function w(ω) and later
only the integral over the surface from a distance R will be
considered in the far-field regime (Rω0/c � 1). Then in this
step, we can drop the terms of order 1/ f 2 and 1/ f 3 with
f ≡ ω|r − ri|/c. Taking the integral over �, summing over
two polarizations, considering that our problem is limited to
far field we have

βi = i

(
3cμ0

64h̄π3ω3
0B

)1/2 ∫
d3r
∫ ∞

−∞
dω̃

∫ ∞

0
dω w(ω)ω

× j̃t (r, ω̃) · û
eiω|r−ri|/c − e−iω|r−ri|/c

|r − ri|
ei(ω̃t+ωt−ωt̄ )

iε − ω − ω̃
,

(24)

where j̃t (r, ω̃) is the locally transverse component of the
current density defined as j̃t = j̃ − (j̃ · êr )êr with unit vector
êr = (r − ri )/|r − ri|. For R � |ri|, we have êr ≈ r/|r|, with
corrections modifying only slightly the prefactors, not the
phases. One can extend the lower bound of the integration
range of the ω integral to −∞ using the definition of w(ω),
and evaluate the ω integral with the help of the law of residues.
Since t̄ > t − |r − ri|/c, the pole at ω = −ω̃ + iε contributes
to the term exp (iω|r − ri|/c). For exp (−iω|r − ri|/c) the
contour must be closed in the lower half-plane and there is no
pole to contribute. In the end one should send ε → 0. Then βi

simplifies to

βi = −
(

3cμ0

16π h̄ω3
0B

)1/2 ∫ ∞

−∞
dω w(−ω)ω

∫
d3r

× j̃t (r, ω) · û
e−iω(t̄−|r−ri|/c)

|r − ri| , (25)

where we drop the “∼” from ω̃. The state in Eq. (7) is writ-
ten for a deterministic current density distribution. In reality,
these current densities fluctuate. Before we move forward,
we describe the properties of this current density distribution.
We assume that it is a complex symmetric Gaussian process
with current densities uncorrelated in positions, directions,
and frequencies [43,64,65],

〈 j̃l (r, ω) j̃∗m(r′, ω′)〉 = l3
c

τc
δlmδ(ω − ω′)δ(r − r′) 〈| j̃l (r, ω)|2〉 ,

〈 j̃l (r, ω) j̃m(r′, ω′)〉 = 0, 〈 j̃∗l (r, ω) j̃∗m(r′, ω′)〉 = 0. (26)

The length scale lc and timescale τc are introduced for di-
mensional grounds and the polarizations are indexed by l, m
taking values x, y, z. For the classical white-noise currents
Eq. (26) is a standard model, and appears in many places
in the literature [66–68]. One can also derive Planck’s law
for the energy density of an electromagnetic field in ther-
mal equilibrium from it (see Appendix of Ref. [43]). We
choose the unit polarization vector of the receiver û as one
of the basis vectors of the coordinate system R parallel to
the detection plane, in either x or y direction. Then, we write
〈j̃t (r, ω) · ûj̃∗t (r, ω) · û〉 = 〈| j̃t,l (r, ω)|2〉. Using Eq. (19) and
introducing the distribution of the current density P( j̃(r, ω)),
the state for the interferometer ρint with n receivers can be
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written as

ρint =
∫

d2 j̃ P( j̃(r, ω))|{βi}〉〈{βi}|. (27)

The integral is over the complex j̃ plane. Since it is a cir-
cularly symmetric Gaussian process, P( j̃(r, ω)) is assumed
through its moments given in Eq. (26). Gaussian states
are completely characterized by their mean displacement
�i = Tr[ρbi] and covariance matrix with elements �i j =
1
2 Tr[ρ(b̃ib̃ j + b̃ j b̃i )], where b = [b1, b†

1, b2, b†
2, . . . , bn, b†

n]
and b̃i = bi − �i [26,69–73]. The mean displacement for
our state is zero �i = 0 considering Eq. (26). To find the el-
ements of the covariance matrix, we need to calculate 〈b†

i b j〉.
The integral over ω can be taken using the filter function of
bandwidth B. With this we find

〈b†
i b j〉 = K

∫
d3r

〈| j̃t,l (r, ω)|2〉 eiω0(|r−r j |−|r−ri|)/c

|r − ri||r − r j |

× sinc
[ B

2c
(|r − r j | − |r − ri|)

]
, (28)

where K = 3cμ0l3
c /(16π h̄ω0τc) and sinc[x] ≡ sin x/x. For a

very narrow bandwidth sinc[. . . ] ≈ 1. Then, Eq. (28) for i =
j becomes

n̄ = K
∫

d3r
〈| j̃t,l (r, ω)|2〉

|r − ri|2 , (29)

where we defined n̄ ≡ 〈b†
i bi〉 without any index since the

mean photon number is the same for all interferometer modes
in the far-field approximation, and for i �= j it becomes

ξi j = K
∫

d3r
〈| j̃t,l (r, ω)|2〉 eiω0(|r−r j |−|r−ri|)/c

|r − ri||r − r j |
(30)

with ξi j ≡ 〈b†
i b j〉. The integral over Earth’s surface is

parametrized by r = (x, y, R) with respect to the coordinate
system of the detection plane. Further, we write |r − r j | −
|r − ri| ≈ �ri j · r/|r| for |�ri j | � R, where �ri j = r j − ri

connects two different receiver modes. In the denomina-
tor, we approximate |r − ri| ≈ R/ cos θ̃ (x, y) with θ̃ (x, y) the
polar angle the angle between the z axis and the vector
(x, y, R). One can relate the average amplitude of current
density to brightness temperature TB(x, y) by 〈| j̃t,l (r, ω)|2〉 =
K1TB(x, y) cos θ̃ (x, y)δ(z − R) with a constant defined as
K1 = 32τckB/(3l3

c μ0c) (see Appendix A). We define the effec-
tive temperature as Teff (x, y) ≡ TB(x, y) cos3 θ̃ (x, y) and a new
constant κ = K1K ≡ 2kB/(π h̄ω0) where κ has the dimension
of inverse temperature with SI units “1/K.” Then we can
simplify Eq. (29) for i = j as

n̄ = κ

R2

∫
dx dy Teff (x, y), (31)

and for i �= j as

ξi j = κ

R2

∫
dx dy Teff (x, y)e2π i(vi j

x x+v
i j
y y), (32)

where

vi j
y = �xi j

λR
, vi j

x = �yi j

λR
. (33)

We used ω0/c = 2π/λ. These two equations suffice to deter-
mine the covariance matrix elements of the Gaussian states
for the general interferometer with an array of antennas. All
spatial field modes received by the interferometer undergo a
preprocessing before measurement. This processing can be
understood as a linear combination of all spatial modes in such
a way to achieve the optimal POVM for the best estimation of
the parameter we are interested in (see Sec. II C). We use the
values of the SMOS for the rest of the paper which leads to
κ ∼ 9.4 1/K.

C. Quantum Cramér-Rao bound

A lower bound of an unbiased estimator of a deterministic
parameter is given by the Cramér-Rao bound (CRB), which
states that the variance of any such estimator is equal or
greater than the inverse of the Fisher information. The quan-
tum analog of the CRB is the quantum Cramér-Rao bound
(QCRB), given by the inverse of the QFI. The significance of
the QCRB lies in the fact that in the case of a single parameter
to be estimated the bound can in principle be saturated in
the limit of infinitely many measurements when choosing
the optimal quantum measurement and maximum-likelihood
estimation. Let us consider a quantum state ρμ that depends
on a vector of l parameters, μ = (μ1, μ2, . . . , μl )T . One can
generalize the single-parameter QCRB [4,5] to the multipa-
rameter QCRB [74] given for a single measurement by

Cov(μ̃) � F (μ)−1, Fi j (μ) = 1
2 tr (ρμ{Li,L j}), (34)

where Cov(μ̃) is a covariance matrix for the locally unbiased
estimator μ̃(x) [48,53], the {·, ·} means the anticommuta-
tor, and Li is the symmetric logarithmic derivative (SLD)
related to parameter i, which is defined similarly to the single-
parameter case 1

2 (Liρμ + ρμLi ) = ∂iρμ. For any given
positive weight matrix W , the estimation cost is bounded
by Tr[W Cov(μ̃)] � Tr[WF (μ)−1] ≡ CS (μ,W ). Contrary
to the single-parameter case, the multiparameter QCRB can
in general not be saturated. This problem was realized by
Holevo [52]. He proposed a tighter and more fundamental
bound CH (μ,W ), which is upper bounded by 2CS (μ,W )
[75,76]. In case of the asymptotically classical models, where
SLD operators for different parameters commute on aver-
age Tr(ρμ[Li, Lj]) = 0, the Holevo CRB is equivalent to the
QCRB and it can be saturated asymptotically with a collective
measurement on an asymptotically large number of copies
ρ⊗N

μ [53,76].
The SLD and the elements of QFI matrix are given

in Ref. [71] for any Gaussian state. The SLD can be
written as

Li = 1
2M−1

αβ,γ δ (∂i�
γδ )(bαbβ − �αβ ), (35)

where the summation convention is used. In our case, the
mean displacement of Gaussian state is zero. Thus, we can
simplify further the elements of the QFI matrix in [71] to

Fi j = 1
2M−1

αβ,γ δ∂ j�
αβ∂i�

γδ, (36)

where

M ≡ � ⊗ � + 1
4� ⊗ �, (37)
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and � =⊕n
k=1 iσy. Using the properties of the Gaussian state

(circularly symmetric and with zero mean) we can write the
SLD for n-mode interferometers as

Li =
n∑
j

gj
i b̂

†
j b̂ j +

n∑
j<k

(
gjk

i b̂†
j b̂k + (gjk

i

)∗
b̂†

kb̂ j
)+ C, (38)

where C is a constant term. In the single-parameter case,
the optimal POVM is the set of projectors onto eigenstates
of Li. It allows one to saturate the QCRB in the limit of
infinitely many measurements and maximum-likelihood es-
timation [4,77,78]. For the diagonalization of the SLD, the
constant C is not important and we can drop it from the
beginning. We construct a Hermitian matrix Mi

Mi =

⎡
⎢⎢⎣

g1
i g12

i . . . g1n
i

(g12
i )∗ g2

i . . . g2n
i

. . . . . . . . . . . .

(g1n
i )∗ (g2n

i )∗ . . . gn
i

⎤
⎥⎥⎦, (39)

where the diagonal elements are real-valued functions which
can be defined as gj

i = M−1
αβ,γ δ (∂i�

γδ ) with α = 2 j and β =
2 j − 1. The off-diagonal elements are complex-valued func-
tions which are defined as gjk

i = M−1
αβ,γ δ (∂i�

γδ ) with α = 2 j
and β = 2k − 1 and k > j. Further, we can define a new set
of operators b̄† ≡ [b̂†

1, b̂†
2, . . . , b̂†

n] and b̄ ≡ [b̂1, b̂2, . . . , b̂n]T .
Then the SLD becomes

Li = b̄†Mib̄. (40)

Since Mi is a Hermitian matrix, it can always be uni-
tarily diagonalized by Mi = V†

i DiVi with V†
i Vi = I . A

new set of operators can be defined as d̄†
i = b̄†V†

i where
d̄†

i = [d̂†
i1, d̂†

i2, . . . , d̂†
in]. The optimal POVM for the single-

parameter case (i = 1, which we drop in the following)
can be found as a set of projectors in the Fock ba-
sis {|m1, m2, . . . , mn〉 〈m1, m2, . . . , mn|}{m1,m2...mn} of the d̂l

with d̂†
l d̂l |m1, m2, . . . , mn〉 = ml |m1, m2, . . . , mn〉, where l ∈

{1, . . . , n}. The d̂l will be called “detection modes.” In the
case of multiparameter estimation, one needs to check the
compatibility conditions to saturate the SLD-CRB. Thus, we
give the general commutation relation of SLD in Appendix B
for an n-mode interferometer. We see that the SLDs for n < 3
commute on average, Tr [ρint[Li,L j]] = 0, for any parameter
estimation.

III. RESULTS

A. Single receiver

In this section, we consider the case of the simplest esti-
mation of the parameters of the sources with a single receiver
with mode b̂. Then the covariance matrix for the state can be
written as

� =
[

0 χ

χ 0

]
. (41)

The QFI matrix elements for single mode can be found as

Fi j = 4∂iχ∂ jχ

4χ2 − 1
, (42)

and, up to the irrelavant constant, the SLD becomes

Li = 4∂iχ

4χ2 − 1
b̂†b. (43)

Since the SLD is already diagonal in the basis of b̂†b̂, the
detection mode can be considered as b̂. We write the POVM
obtained from the SLD as a set of projectors in the Fock basis
{|m〉 〈m|}{m} which is the eigenbasis of b̂†b̂, b̂†b̂ |m〉 〈m| =
m |m〉 〈m|. To compare, we consider the POVM from het-
erodyne detection. The heterodyne detection uses a classical
local oscillator to make a measurement locally on the basis of
coherent states. For a single mode, its POVM elements can be
written as E (ν) = |ν〉 〈ν| /π where |ν〉 is coherent state and∫

d2ν E (ν) = 1. The probability that E (ν) triggers reads as

P(ν|μi ) = 1

π (1 + n̄)
exp

[
− |ν|2

(1 + n̄)

]
, (44)

with n̄ given by Eq. (31). The classical Fisher information
(CFI) for parameter μi can be written as

Fi =
∫

d2ν
1

P(ν|μi )

(
∂P(ν|μi )

∂μi

)2

. (45)

Resolution of a uniform circular source. Consider a source
defined as a circular disk with radius a and with uniform
temperature T located under the interferometer at a distance R
[r = (0, 0, R)]. We are interested in estimating a or T . While
estimating one of them, we will assume that the other param-
eter is known to sufficiently large precision. The temperature
distribution on the source plane becomes

Teff (x, y) = T circ(x, y), (46)

where the symbol circ(·) stands for the circular function, de-
fined as

circ(x, y) �
{

1,
√

x2 + y2 � a
0,

√
x2 + y2 > a.

(47)

We assume a � R. Then only small angles are involved
and one can set cos3 �(x, y) ≈ 1. This corresponds to one of
the approximations characteristic of the far-field regime [79].
Using Eq. (31), we have n̄ = πa2κT /R2 and χ = 1/2 + n̄.
The QFI for estimating a becomes

Fa = 4πT κ

R2 + a2πT κ
. (48)

Then we can write the SLD for estimating the a ignoring the
constant term as

La = 2R2

aR2 + a3πT κ
b̂†b̂. (49)

The CFI of the heterodyne detection becomes

Fa = 4a2π2T 2κ2

(R2 + a2πT κ )2
. (50)

In Fig. 2, we compare the QFI with the CFI of heterodyne
detection. As one can see, for small source sizes, the Fisher
information from heterodyne measurement vanishes. How-
ever, the QFI tends to a constant. For instance, in the limit
a → 0, for T = 300 K we have QFI for estimating a as
Fa ∼ 6.16 × 10−2 1/km2, which gives a smallest standard
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FIG. 2. (a) The QFI (solid blue line) and the CFI (dotted-dashed
red line) from the heterodyne measurement to estimate the source
size as a function of a. Both results are dimensionless and scaled
with the 4πT κ/R2, considering T = 300 K. (b) The QFI (solid
blue line) and the CFI (dotted-dashed red line) from the heterodyne
measurement to estimate the temperature as a function of a. Both
results are in units of 1/K2, and we consider T = 300 K.

deviation of about 4 km. Thus, we can conclude that the
photon-number measurement on the complete basis of Fock
states in the detection mode b̂ helps us to get better resolution
than heterodyne measurement. If a becomes larger, we can see
that the QFI and CFI get close to each other at some point. To
estimate a, we assumed that we know exactly the temperature
of the source. Further, we find the QFI for estimating the
temperature as

FT = πa2κ

R2T + a2πT 2κ
, (51)

with a SLD given by

LT = R2

T R2 + a2πT 2κ
b̂†b̂. (52)

The optimal POVM is a set of projectors in the Fock basis
{|m〉 〈m|}{m} for both estimating a and T . The CFI from het-
erodyne detection to estimate temperature becomes

FT = π2a4κ2

(R2 + a2πT κ )2
. (53)

In Fig. 2(b), we plot both QFI and CFI for heterodyne
detection for temperature estimation. Both have very close
functional behavior. They vanish for a → 0 and they approach
each other when we have a large source size.

The off-diagonal matrix element of the QFI matrix for
multiparameter estimation reads as

FaT = 2aπκ

R2 + a2πT κ
. (54)

By sampling the same state N times, the standard deviation
of the estimator decreases proportional to 1/

√
N . The SMOS

satellite moves at a constant speed v � 7 km/s and takes the
time τ = L/v to fly over a distance L. For each sample there is
a lower bound for the detection time given by tD ∼ 1/B (see
Appendix A). In practice, the effective detection time might
be much larger, due to, e.g. dead times of the detectors, slow
electronics, etc. In addition, zero temperature of the detector
and modes bi is implicitly assumed in our calculations, but
would require cooling down to temperatures much smaller
than h̄ω0. If the actual detection time is t eff

D , the sample size
becomes N = τ/t eff

D . In this paper we intend to establish the

ultimate theoretical bounds and hence assume that the mini-
mal detection time tD = 1/B can be achieved, in which case
the sample size becomes N ∼ LB/v. To estimate the source
size one can assume that L ∼ a, and the QCRB for estimating
a becomes δa � 1/

√NFa. Since N depends also on a one
can find the optimum bound in the sense of a minimal δa
at a = R/

√
πκT . For T = 300 K, we find a ∼ 7.9 km and

δa � 1.0 m. The bound for estimating T , assuming all other
parameters known, can be written as δT � 1/

√NFT . Using
the same parameters as before and the same sample size, we
have δT � 0.08 K. Thus, increasing the sample size to the
theoretically maximally possible value, the spatial resolution
improves by a factor of order 35 000 compared to the reso-
lution of SMOS, and the radiometric resolution by factor of
order 500. One can also increase the resolution by increasing
the number of antennas, which we present in the following
sections.

B. Two-mode interferometer

The optimum measurement with a two-mode interferome-
ter for temperature estimation of a black body was considered
in Ref. [80] and experimentally demonstrated in Ref. [81].
Further, the spatial resolution of two equally bright point
sources with a similar setup was recently studied in Ref. [35].
In the previous section, we only considered a single receiver
with mode b̂. It is obvious that we may get additional informa-
tion from the cross correlations of an n-mode interferometer.
An analytical calculation of the QFI matrix for n-mode inter-
ferometer generally becomes untractable for n > 2 and one
has to rely on numerical calculation (see Sec. III C). In this
section, we consider two receivers with modes b̂1 and b̂2 to
analyze the estimation of a single uniform circular disk for its
size a and temperature T and two uniform circular disks with
different temperatures for their the spatial resolution (source
separation si and centroid ti with i ∈ {x, y}). We write b as
b� = (b̂1, b̂†

1, b̂2, b̂†
2). Since, the mean displacement is �i = 0,

the covariance matrix � of the state ρint becomes

� =

⎡
⎢⎣

0 χ 0 ξ

χ 0 ξ ∗ 0
0 ξ ∗ 0 χ

ξ 0 χ 0

⎤
⎥⎦, (55)

where χ = 1/2 + n̄ and ξ = 〈b†
2b1〉. We give the general re-

sult for the QFI elements in Appendix C. Further, one can
write the matrix Mi as

Mi =
[

g1
i |g2

i |eiδi

|g2
i |e−iδi g1

i

]
, (56)

where g1
i , g2

i are given in Appendix C in terms of χ and ξ ,
and δi is the phase difference between two modes in the SLD.
Using the eigenvectors of Mi, we can write the unitary Vi as

Vi = 1√
2

[
1 eiδi

1 −eiδi

]
. (57)

We see that Vi does not depend on the magnitude of the
elements of the matrix Mi for a two-mode interferometer. The
detection modes can be found as d̂1 = (b̂1 + b̂2eiδi )/

√
2 and

d̂2 = (b̂1 − b̂2eiδi )/
√

2. The preprocessing to combine these
two modes can be done by a phase delay on one of the modes
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FIG. 3. (a) The QFI (solid blue) and the CFI (dotted-dashed red) from the heterodyne measurement to estimate the source size as a
function of a. Both of the results are scaled with Eq. (59). In the limit a → 0, for T = 300 K we have Fa ∼ 0.117 1/km2, which gives us a
standard deviation around 2.92 km. (b) The QFI Fa for estimating the size of the circular disk as a function of �r (spatial separation of two
receivers) for different source sizes a = (0, 10, 20, 30) km with T = 300 K. Data are scaled by the maximum values of the QFI, which are
∼0.117, ∼ 0.070, ∼ 0.030, ∼ 0.015 1/km2, respectively. (c) The QFI Fa for estimating the size of the circular disk as a function of separation
of two antennas �r, for different temperatures T .

and then combining these modes by a beam splitter before
any measurement. Then the POVM for the optimum mea-
surement can be written as a set of projectors again in Fock
basis as {|m1, m2〉 〈m1, m2|}{m1,m2} which is the eigenbasis of
d̂†

l d̂l , d̂†
l d̂l |m1, m2〉 = ml |m1, m2〉. We check the weak com-

patibility condition for the SLD operators for general ith and
jth parameters of two-mode interferometer in Appendix B.
We find that the SLD operators commute on average on ρint,
Tr[ρint[Li,L j]] = 0 for the two-mode interferometer. In this
case, CH (μ,W ) = CS (μ,W ) ∀ W and the SLD-CRB can be
saturated asymptotically by a collective measurement on an
asymptotically large set of copies ρ⊗N

int of ρint. To compare
this POVM with the classical approach, we consider hetero-
dyne detection (see Appendix D).

Resolution of uniform circular source. Let us assume that
on the source plane, we have a circular disk of radius a with
uniform temperature T located at r = (x0, y0, R). Then the
temperature distribution over the surface on the source plane
can be written as Teff (x, y) = T circ(x − x0, y − y0). We want
to estimate again a and T . The QFI for estimating the source
size is given by Eq. (E4) for a two-mode interferometer. The
expression is quite complicated. However, we can analyze it
numerically, or we can look at certain limits. Estimating the
size of the circle Fa depends on �r (the separation of the
two antennas). Physically we assumed this separation to be
greater than the central wavelength �r > λ. Mathematically,
one can take the limit �r → 0, in which case the additional
information from the phase difference between two antennas
vanishes. In this limit, the QFI for estimating the source size
becomes

Fa
�r→0−−−→ 8πκT

R2 + 2πa2κT
. (58)

If we have 2πa2κT � R2, the QFI for estimating a is Fa ∼
4/a2; for high temperatures or large a, the error of estimating
the size of the source linearly increases with its size. Fig-
ure 3(b) shows how the QFI changes when we decrease the
source size. In the limit of a → 0, the QFI for estimating the
source size becomes

Fa
a→0−−→ 8πκT

R2
. (59)

Comparing with the single receiver the QFI is doubled for
two-mode interferometers in the limit a → 0. We can still
have nonvanishing QFI for a → 0, as we can see from the
black line in Fig. 3(b), which is the limit as in Eq. (59). The
black line (∼0 km source size) is scaled with ∼0.117 1/km2,
which corresponds to a standard deviation of ∼2.92 km for
the interferometer with two modes. We give the CFI for het-
erodyne detection in Eq. (E14). For small source size, we can
ignore the higher-order terms in a, and we can simplify it as

Fa ≈ 16π2κ2T 2a2

R4
. (60)

As we can see, for a → 0, the CFI for heterodyne detection
tends to zero. Thus, the resolution of the source size with
heterodyne detection becomes arbitrarily bad in that limit [see
Fig. 3(a)]. However, for large source sizes, we can see from
Fig. 3(a) that CFI and QFI become equivalent. Therefore,
constructing a POVM from the SLD can beat Rayleigh’s reso-
lution curse, even for estimating the source size. To construct
the POVM for estimating the source size we give the elements
of matrix M in Eqs. (E9) and (E10). The phase delay is found
as δa = x0vx + y0vy, with vi defined as vx = �r cos ϕ/(λR),
vy = �r sin ϕ/(λR). Thus, once we have the information of
the location of the source centroid, we can combine these two
interferometer modes by using a phase delay to get the POVM
that saturates the QCRB. We plot the QFI as a function of �r
in Fig. 3(c) for different temperatures. We can see that when
the effective temperature of the circular source increases, the
QFI also increases. Moreover, when we increase �r, the QFI
for estimating a increases up to a maximum around �r ∼ 6 m.
The reason for this is additional information coming from the
phase differences in the two antennas. The QFI in Eq. (59) is
doubled compared to QFI for single receiver in Eq. (48) in the
limit a → 0.

In the limit �r → 0, the QFI for estimating T becomes

FT → 2πa2κ

T (2πa2κT + R2)
. (61)

Since we assume we are in a microwave regime kBT � h̄ω0,
we can not take the limit T → 0. Instead, we can verify that
the QFI for estimating the temperature depends on the source
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size for a finite temperature. Now, for T = 300 K and 30 km
source size we have the QFI around 2 × 10−5 1/K2 which
gives a very high standard deviation around 221 K. We show
in the next section that the QFI also increases if we increase
the number of spatial modes. For instance, for 20 antennas, we
have QFI around 1.5 × 10−4 1/K2, and the standard deviation
is 79 K for a single measurement.

In the limit �r → 0, the CFI from heterodyne detection
becomes

FT → 4π2a4κ2(πa2κT + R2)(3πa2κT + R2)

(2πa2κT + R2)4 . (62)

To compare with the QFI we assume the brightness temper-
ature T = 300 K and source size a = 30 km. This gives a
CFI around 8 × 10−6 1/K2 which give us a standard deviation
around 350 K. Compared to the QFI information, the CFI is
around 2.5 times smaller. Therefore, combining the spatial
modes (receivers) and measuring photon number in the Fock
basis of d̂1, d̂2, as expected, is more advantageous even for
estimating the temperature.

So far, we only gave the diagonal elements of the QFI
matrix, relevant for estimating each parameter individually,
assuming all other parameters are known. The single indepen-
dent off-diagonal element of the QFI matrix regarding a and
T is given in Eq. (E7). In the limit �r → 0 it simplifies to

FaT = 4πaκ

2πa2κT + R2
. (63)

Then one can construct the QFI matrix to find the QCRB
for multiparameter estimation. Further, we can estimate the
source location considering the two parameters x0, y0. The
QFI matrix elements for estimating the source locations can
be written as

Fi0 j0 = 8π2�r2κT J2
1 viv j

π�r2(πa2κT + R2) − κλ2R2T J2
1

, (64)

where i, j ∈ {x, y}. The QFI for estimating the source location
depends on source size and source temperature. Since the
elements Fi0a and Fi0T of the QFI matrix are zero, source size
and location can be estimated simultaneously. And the neces-
sary phase delay for POVM can be found as δi0 = δ + π/2
from Eq. (E13).

Spatial resolution of two-point sources. Recently, the spa-
tial resolution of two equally bright strong point sources was
studied in [35] by considering the sources aligned parallel to
the two-mode interferometer.

In this section, we consider a similar model with two circu-
lar disk sources on the surface of the source plane at locations
r1 = (x1, y1, R) and r2 = (x2, y2, R) but with different effec-
tive temperatures T1 and T2, and same sizes a. We assume
that in the far field {xi, yi} � R and a � R. We analyze two
cases: when the sources are aligned or not aligned with the
two antennas. For two circular sources with equal size, the
temperature distribution over the surface can be written as

Teff (x, y) =
∑

i={1,2}
Ticirc(x − xi, y − yi ). (65)

Then we can define the four parameters that we want to es-
timate as source separation (sx = x1 − x2), (sy = y1 − y2) and
centroid of the two sources [tx = (x1 + x2)/2], [ty = (y1 +

y2)/2]. In Appendix F, we express the QFI matrix elements for
all four parameters. Since these equations are quite compli-
cated, we check the important limits. Since we want to resolve
the two-point sources even for very small separation, we
check the limit sx, sy → 0. Then we have QFI matrix elements
for estimating the source separation as Fsi → 4π2v2

i ηκT and
Fsxsy → 4π2vxvyηκT , if T1 = T2 = T .

If we assume two sources aligned parallel to the two-
mode interferometer [y1 = 0, y2 = 0 and ϕ = 0 → v = vx =
�r/(Rλ) and sx → s, tx → t] we can simplify our problem
to a single dimension. We show the dependence of the QFI
matrix elements on average temperature [T = (T1 + T2)/2]
and temperature difference �T = T1 − T2 assuming T1 � T2.
In Fig. 4(a), we plot Fs with respect to source separation
s for different average temperatures. As expected, when the
temperature increases, the QFI for estimating the separation
also increases. For T = 300 K and �r = 4 m, we have a
QFI around 0.027 1/km2 which corresponds to a standard
deviation of 6 km for only two receivers for the separation
estimation. In Fig. 4(b), we see that, as we increase the tem-
perature difference between the two-point sources, the QFI
becomes less oscillatory and at �T → 2T , the oscillatory
behavior disappears. In the limit �T → 2T , or s → 0 the QFI
for estimating s becomes

Fs → 4π2v2ηκT , (66)

which is the limit given by the solid black line in Fig. 4(b).
We calculated the CFI from heterodyne detection to estimate
the source separation in Eq. (F14). If the size of the sources
is very small and in the limit ηκT � 1 the CFI for estimating
the source separation simplifies to

Fsi

ηκT �1−−−−→ 8π2η2κ2T 2v2
i sin2[π (sxvx + syvy)]. (67)

When the source separation goes to zero (sx, sy → 0), Fsi

tends to zero. We compare the QFI with CFI in Eq. (F14)
from heterodyne detection in Fig. 4(c). As we can see, the CFI
goes to zero for small source separation. Therefore, we can
conclude that Rayleigh’s curse limits heterodyne detection.
The POVM from the SLD eliminates that limitation. We give
the elements of the matrix Ms, g1

s , and g2
s in Appendix F.

The phase difference for combining two spatial modes of the
interferometer can be found as δs = 2π (txvx + tyvy) − π . As-
suming the alignment of the spatial mode separation parallel
to source separation, it becomes δs = 2πtv − π .

The QFI matrix elements for estimating the centroid is
given in Eq. (F6). We assume that the two sources aligned
again parallel to two spatial modes of the interferometer
[y1 = 0, y2 = 0 and ϕ = 0 → v = vx = �r/(Rλ) and sx →
s, tx → t] and Ftx,tx → Ft . In Fig. 4(d), we see that the Ft

increases when we increase the temperature. For T = 300 K
and �r = 4 m, we have a QFI Ft ∼ 0.11 1/km2 which cor-
responds to a standard deviation of 3 km for estimating the
centroid. When sv ∼ 0.5, Ft goes to zero for equally bright
sources. In Fig. 4(e) we see that it is not zero for sv ∼ 0.5,
if �T �= 0, and the oscillation of Ft decreases when we
increase the temperature difference. In the limit s → 0, Ft

simplifies to

Ft → 32π2v2ηκT (68)
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FIG. 4. (a) The QFI Fs of estimating the separation of two-point sources as a function of source separation s for different average
temperatures with �T = 0 and �r = 4 m. (b) The QFI Fs with respect to s for various temperature differences �T for T = 300 K. (c) The
QFI Fs (red dotted-dashed) and CFI for heterodyne detection (blue dashed) for estimating the separation of two-point sources with same
temperatures T as a function of s. Both the QFI and the CFI scaled by 4π2v2ηκT . (d) The QFI Ft respect to s for different average temperature
T . (e) The QFI Ft respect to s for various temperature difference �T for T = 300 K. (f) The QFI Ft (red dotted-dashed) and CFI for
heterodyne detection Ft (blue dashed) for estimating the centroid of two-point sources with same temperatures T as a function of s (both the
QFI and the CFI scaled by 32π 2v2ηκT ). For (a), (b), (d), and (e), v is fixed by taking the separation �r of the two antennas 4 m and we have
η ∼ 10−4. The curves are ordered by increasing value of the QFI from solid black to green dotted-dashed lines in (a) and (d), and from blue
dashed to solid black lines in (b) and (d).

for �T = 0. The CFI for heterodyne detection is given in
Eq. (F13). For small sources we consider again the limit
ηκT � 1, and we ignore the higher-order terms of ηκT . Then
we have

Fti
ηκT �1−−−−→ 32π2η2κ2T 2vi

2 cos2[π (sxvx + sxvy)]. (69)

If the source separation goes to zero (sx, sy → 0), we still have
a finite Fti , unlike the CFI for source separation. In Fig. 4(f),
we compare Ft with Fti . When the source separation goes to
zero, both Fisher information goes to a constant, and both go
to zero at sv → 0.5. However, the QFI is five times larger than
the CFI from heterodyne detection. Again the phase difference
for the POVM from the SLD can be found as δt = 2πtv +
π/2.

Both QFIs, for source separation and centroid, are periodic
functions with a period of 1/v in the case of two point sources
(see Ref. [35]). The information on the position of the sources
is only encoded in phases. The QFIs are maximum at s = 0
or at s = 1/v = λR/�r. The fact that sv = 1

2 the QFI has a
minimum (or even vanishes for the centroid estimation) has
its origin in destructive interference. For this value of sv, the
two waves from the centroid position to the two receivers
have a phase difference of π that makes that the off-diagonal
matrix element in the correlation matrix 〈b̂†

i b̂ j〉 vanish. Hence,
the QFI has to drop from the finite value at sv = 0 to this
minimum.

C. 1D n-mode interferometer arrays

The previous section considered a two-mode interferom-
eter for analytical calculations and compared the QFI with
its POVM and CFI for heterodyne detection. To compare our
results with SMOS, we extend the two-mode interferometer to
a 1D array of n single-mode receivers. We investigate numer-
ically how the QFI changes when increasing the number n of
interferometer modes. We assume the antenna array aligned
with the x axis on the detection plane and denote the maxi-
mum baseline separation of the two most distant antennas by
�rmax.

Resolution of two-point sources for n-mode interferometer
array. We assume that both sources have the same sizes and
temperatures (�T = 0 and T1 = T2 = T ) and that they are
parallel to the antenna array. In Fig. 5(a), we see that when we
increase the number of receivers, the behavior of Fs changes.
It is still oscillatory as a function of sv with a period of 2π .
However, for each oscillation, we have n − 2 additional max-
ima. Moreover, in Fig. 5(b), we see that Fs increases gradually
when we increase the number of receivers and the maximum
baseline increases as �rmax = (n − 1)�r. For �r = 1 m and
T = 300 K, the standard deviation for estimating the source
separation is ∼23 km for the two-mode interferometer. For
the 20-mode interferometer, we find a standard deviation of
around 0.65 km. Further, if we keep the baseline fixed as 4 m,
the QFI increases linearly with the number of receivers, as we
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FIG. 5. (a) The QFI Fs as a function of s for 2,3,4,5,6 mode interferometers and each curve is scaled by its maximum values which are
∼1.7 × 10−3,∼ 6.9 × 10−3, ∼ 17.3 × 10−3,∼ 34.7 × 10−3, ∼ 60.8 × 10−3 1/km2, respectively. (b) The QFI Fs with respect to a number
of interferometer modes n. (c) The QFI Fs with respect to a number of interferometer modes n. (d) The QFI Ft as a function of s for
2,3,4,5,6 mode interferometers. Each curve is scaled by its maximum values which are ∼0.67 × 10−2, ∼ 2.78 × 10−2, ∼ 6.96 × 10−2, ∼
13.9 × 10−2, ∼ 24.3 × 10−2 1/km2, respectively. (e) The QFI Ft with respect to a number of interferometer modes n. [For all, the separation
of two nearest antenna �r is 1 m, and η ∼ 10−4. The maximum baseline is �rmax = (n − 1)�r.)] (f) The QFI Ft with respect to a number of
interferometer modes n. For both (c) and (f), the maximum baseline is fixed by �rmax = 4 m, in this case, separation of two nearest antenna is
�r = �rmax/(n − 1), and η ∼ 10−4. The curves are ordered by increasing value of the modes (n) from two-mode interferometer (solid black)
to six-mode interferometer (purple dotted-dashed) in (a) and (d).

can see in Fig. 5(c). In this case, for a two-mode interferom-
eter, we have a standard deviation of around 6 km, and for a
20-mode interferometer, we have 3 km.

We also checked the centroid estimation for the n-mode
interferometer. It leads to similar results as for source sep-
aration. From Fig. 5(d) we see that for sv = 0.5 the centroid
uncertainty for the two-mode interferometer diverges (Ft ∼ 0
at sv ∼ 0.5). This is no longer the case for the array of n
receivers. In Fig. 5(e), we see that Ft also increases with the
number of modes. For the two modes, the standard deviation
for estimating the centroid was ∼12 km. For the 20 modes,
we have a standard deviation of around 0.32 km considering
�r = 1 m and �rmax = (n − 1)�r for average temperature
T = 300 K. If we keep the baseline fixed, as we can see
from the Fig. 5(f), Ft increases linearly by n. By fixing the
�rmax = 4 m, we have a standard deviation of ∼3 km for the
two-mode interferometer; for 20 modes we have a standard
deviation of ∼1.5 km. Thus, instead of sampling the state in
time, we can increase the number of receivers to increase the
QFI, and both methods can be combined as well.

Spatial resolution of single circular source for n-mode
interferometer array. To analyze the effect of n for source
size estimation, we consider a single circular source as given
in Eq. (46). In Fig. 6, we show how the QFI for estimating
a changes with n. For a → 0, Fa increases linearly with n.
We have Fa ∼ 6.16 × 10−2 1/km2 for single receiver which
corresponds to a standard deviation of 4 km and for higher n,
we have approximately Fa ∝ n for small values of a. If we

have an array of 20 antennas, Fa ∼ 1.23 1/km2 which gives
a standard deviation of 0.9 km for estimating a. When we in-
crease the source size a, we see that there is extra information
coming from the phase differences as given by the solid lines
for �rmax = 6 m and dashed lines for �rmax = 4 m. One can
also see that as expected the dotted lines, corresponding to
the limit �rmax → 0, get close to the solid black line, which
corresponds to a single receiver, for large values of a.

FIG. 6. The QFI Fa as a function of a for 1,2,3,4 mode inter-
ferometers, which are given by black (the lowest single) curve, blue,
red, and green (the top) curves, respectively. The maximum baseline
difference is given by �rmax → 0 for dotted lines, �rmax = 4 m for
dashed lines, and �rmax = 6 m for solid lines. The black solid line
corresponds to single receiver and T = 300 K.
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As a mathematical limit, we can take �rmax → 0. Then the
additional information from phase differences of a receiver
pair will vanish [see Figs. 2(a) and 3(a)]. One can also com-
pare the QFI in Eq. (48) for a single mode with the QFI in
Eq. (59) for a two-mode receiver. In the limit a → 0, we
see that the QFI for estimating a is doubled. Yet, the FI for
estimating a from heterodyne detection in Eqs. (50) and (60)
always vanishes in this limit a → 0. In Fig. 6, the QFI to es-
timate a linearly increases with n. But the FI from heterodyne
detection is zero for the small source sizes in the limit a → 0
even for n → ∞. Thus, we see that resolution is limited for
heterodyne detection for small source sizes. To get the quan-
tum super-resolution for estimating the image, one needs to
linearly combine the modes b̂i of the n-mode interferometer.
For that aim, one needs to calculate the elements of the matrix
Mi numerically. Each normalized eigenvector of Mi maps to
a set of operators d̄ by linear combination of the operators in
b̄ with corresponding weights and phases. One can design a
setup using these weights and phases in the eigenvectors to
achieve the resolutions for a chosen parameter given in this
section.

IV. CONCLUSION

In summary, we studied possible quantum advantages
in passive microwave remote sensing. Starting from a mi-
croscopic current density distribution in the source plane
corresponding to a position-dependent brightness temperature
Teff (x, y), we derived the general partially coherent state re-
ceived by an array of antennas. From the dependence of that
partially coherent states on parameters that characterize the
sources, such as the radius a and brightness temperature T
of a uniform circular source, we obtained the QFI and hence
the QCRB for the smallest possible uncertainty with which
these parameters can be estimated based on measurements
of the multimode state of the antennas. We showed how the
optimal measurements allowing one to estimate a single pa-
rameter can be obtained for a general array interferometer
with antennas placed at arbitrary positions. In general, the
optimal measurements correspond to photon-detection in cer-
tain detector modes that can be obtained from the original
receiver modes by mode mixing via beam splitters and phase
shifters. For single-mode and two-mode interferometers, we
gave explicit analytical results for the best possible resolution
of one or two uniform circular sources, both in a and T and
demonstrated a clear quantum advantage over the classical
strategy corresponding to direct heterodyne measurements of
the receiver modes. In the limit of small source sizes, we
recover known results for the measurement of the centroid

and separation of two-point sources. We benchmarked our
results with the performance of the SMOS mission, which
achieves about 35-km resolution with 69 antennas deployed
on three 4-m long arms arranged in a Y shape, operating at
21 cm the wavelength, and flying at a height of 758 km above
Earth. As an example, we showed that by using the optimal
measurements, a single arm of length 4 m with 20 antennas
and a single measurement would allow a spatial resolution of
about 1.5 km. With a smaller satellite, a more than 20-fold
increase of resolution compared to SMOS could be achieved.
By increasing the size of the array to 19 m, the 20 antennas
should give rise to a spatial resolution down to 300 m. Sub-
stantially better resolutions can be achieved if we allow more
measurements. If we assume that the number of samples is
given by the time the satellite flies over the object whose size
one wants to estimate divided by the inverse bandwidth, even
with a single receiver a spatial resolution down to a few meters
and a radiometric resolution of a fraction of a Kelvin become
possible in principle.

Our results generalize previous approaches to quantum-
enhanced imaging based typically on weak sources (photon
numbers on average smaller than 1 per mode) or point sources,
and pave the way to quantum metrological sensitivity en-
hancements in real-world scenarios in passive microwave
remote sensing. Several challenges remain. Experimentally,
single-photon detection in the microwave regime is still
difficult but starts to become available [82], and even number-
resolved photon detection in the microwave regime has
meanwhile been demonstrated [83]. It requires very low tem-
peratures for operating superconducting qubits that would
have to be maintained on a long timescale on the satellite.
From the theoretical side, an extension to a many-parameter
regime requiring adaption of the optimal measurements will
be crucial for true imaging. Post-measurement beam synthesis
that is common in interferometric astronomy does not work
here, as already the detection modes depend on the pixel in the
image that one wants to focus on. Nevertheless, the substantial
quantum advantages demonstrated here theoretically in a rel-
atively simple but real-world scenario give hope that quantum
metrology can help to significantly improve the resolution of
passive Earth observation schemes, with corresponding posi-
tive impact on the data available for feeding climate models,
weather forecasts, and forecasts of floodings.
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APPENDIX A: BRIGHTNESS TEMPERATURE AND CURRENT DENSITY FLUCTUATIONS

The number of photons that pass through a certain antenna area AD in a certain time tD can be found from n̄ = ADtD�,
where � is the photon flux. For a given intensity I , the photon flux for frequency ω0 can be found by � = I/(h̄ω0). If the
total energy density on the antenna is UD, then the intensity can be written as I = UDc. Then n̄ becomes n̄ = ADtDUDc/(h̄ω0).
In the microwave regime h̄ω � kBT , the energy density (energy per unit volume per frequency) from black-body radiation at
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frequency ω with a temperature distribution T (x, y) on the surface of radiation at the ith antenna position is given by [43]

uD(ω) = kB

2π3c3

∫
dx dy ω2 TB(x, y) cos θ̃ (x, y)

|r − ri|2 , (A1)

where the brightness temperature is defined as TB(x, y) ≡ T (x, y)B(x, y; ω, θ̃ , ϕ̃). Earth is rather a gray than a black body,
therefore, the emissivity B(x, y; ω, θ̃, ϕ̃) of the patch in the direction of the satellite given by polar and azimuthal angles is
introduced. One can take the integral over ω using the filter function in Eq. (21) to find the total energy density (energy per
volume) and it becomes

UD = kBω2
0B

2π3c3

∫
dx dy

TB(x, y) cos θ̃ (x, y)

|r − ri|2 . (A2)

Then the photon number on the receiver becomes

n̄ = 2kB

π h̄ω0

(AD

λ2

)
(tDB)

∫
dx dy

TB(x, y) cos θ̃ (x, y)

|r − ri|2 . (A3)

For simplicity of the receivers scattering function, we set AD ∼ λ2 and tD ∼ 1/B. Comparing Eq. (A3) with (29), we define
〈| j̃t,i(r, ω)|2〉 ≡ K1TB(x, y) cos θ̃ (x, y)δ(z − R) with a constant K1 = 32τckB/(3l3

c μ0c) which agrees with the result in Ref. [43].

APPENDIX B: COMMUTATION RELATIONS OF SLD’S FOR n-MODE INTERFEROMETER

The SLD for the ith parameter is given in Eq. (38) for the n-mode interferometer. To find the [Li,L j] we write

Ai =
n∑
j

gj
i b̂

†
j b̂ j, Bi =

n∑
j<k

[
gjk

i b̂†
j b̂k + (gjk

i

)∗
b̂†

kb̂ j
]
. (B1)

Using [b̂l , b̂†
k] = δkl , one can write b̂†

kb̂l b̂†
mb̂p = b̂†

mb̂pb̂†
kb̂l + b̂†

kb̂pδlm − b̂†
mb̂lδkp. Then, we find the rest of the commutation

relations as follows:

[Ai,A j] =
n∑
kl

gk
i g

l
j (b̂

†
l b̂kδkl − b̂†

kb̂lδkl ) = 0, (B2)

[Ai,B j] =
n∑

l<m

[(
gl

i − gm
i

)
glm

j b̂†
l b̂m + (gm

i − gl
i

)(
glm

j

)∗
b̂†

mb̂l
]
, (B3)

[Bi,A j] = −
n∑

l<m

[(
gl

j − gm
j

)
glm

i b̂†
l b̂m + (gm

j − gl
j

)(
glm

i

)∗
b̂†

mb̂l
]
, (B4)

[Bi,B j] =
n∑

k<l<m

(
gkl

i glm
j − glm

i gkl
j

)
b†

kbm + [(glm
i

)∗(
gkl

j

)∗ − (gkl
i

)∗(
glm

j

)∗]
b†

mbk

+
n∑

k<min(l,p)

[(
gkl

i

)∗
gkp

j b̂†
l b̂p − gkl

i

(
gkp

j

)∗
b̂†

pb̂l
]+ n∑

{k,m}<l

[
gkl

i

(
gml

j

)∗
b̂†

kb̂m − (gkl
i

)∗
gml

j b̂†
mb̂k
]
, (B5)

where
∑n

k<min(l,p) ≡∑n
l

∑n
p

∑min(l,p)−1
k and

∑n
{k,m}<l ≡∑n

l

∑l−1
m

∑l−1
k . For the two-mode interferometer (n = 2), the diagonal

elements of Mi are the same for any parameter estimation due to the central symmetry of two antenna. Then, we have
[Ai,B j] = [Bi,A j] = 0, the first summation vanishes, and we have [Bi,B j] = [g12

i (g12
j )∗ − (g12

i )∗g12
j ](b̂†

1b1 − b̂†
2b̂2). Since

〈b†
1b1〉 = 〈b†

2b2〉 = n̄, we obtain Tr [ρint[Li,L j]] = 0.

APPENDIX C: GENERAL QFI AND THE ELEMENTS OF THE MATRIX M FOR A TWO-MODE INTERFEROMETER

In this Appendix, we give the general results for the elements of the QFI and the matrix Mi for a two-mode interferometer,
assuming that all the elements of the covariance matrix depend on the parameter μi that we want to estimate. Using the covariance
matrix for a two-mode interferometer one finds the QFI matrix elements as

Fi j = 8

D

{
∂iξ

∗∂ jξ [(1 − 4χ2)2 − 4(1 + 4χ2)|ξ |2] + ∂iξ∂ jξ
∗[(1 − 4χ2)2 − 4(1 + 4χ2)|ξ |2]

+ 4ξ∂iξ
∗[ξ∂ jξ

∗(1 + 4χ2 − 4|ξ |2) + 2χ∂ jχ (1 − 4χ2 + 4|ξ |2)] + 4ξ ∗∂iξ [ξ∂ jξ
∗(1 + 4χ2 − 4|ξ |2)

+ 2χ∂ jχ (1 − 4χ2 + 4|ξ |2)] + 2∂iχ (−1 + 4χ2 − 4|ξ |2)[−4χ (ξ∂ jξ
∗ + ξ ∗∂ jξ ) + ∂ jχ (−1 + 4χ2 + 4|ξ |2)]

}
, (C1)
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where the denominator is given by

D = (−1 + 4χ2 − 4|ξ |2)[16χ4 + (1 − 4|ξ |2)2 − 8χ2(1 + |ξ |2)]. (C2)

Using the SLD given in Eq. (38) we find the diagonal elements of the matrix Mi given in Eq. (56) as

g1
i = 2(4∂iχ |ξ |2 + 4∂iχχ2 − 4∂iξξ ∗χ − 4∂iξ

∗ξχ − ∂iχ )

16χ4 − 8χ2(4|ξ |2 + 1) + (1 − 4|ξ |2)2
, (C3)

where the two diagonal elements are the same due to the symmetry with respect to the center of the two antennas, and

g2
i = 2

D
{−∂iξ (16|ξ |2χ2 + 4|ξ |2 − 16χ4 + 8χ2 − 1) − ∂iξ

∗[4ξ 2(4|ξ |2 − 1) − 16ξ 2χ2] − ∂iχ[32ξχ3 − 8ξχ (4|ξ |2 + 1)]},
(C4)

where D is given in Eq. (C2).

APPENDIX D: POVM FOR HETERODYNE DETECTION

The POVM for heterodyne detection is given in Ref. [34], and the CFI analyzed for the weak thermal sources. Here we briefly
introduce the POVM for heterodyne detection. Then, we compare our results for the QFI with the CFI for heterodyne detection.
The POVM is given as

E (ν1, ν2) = 1

π2
|ν1, ν2〉〈ν1, ν2|, (D1)

where |ν1, ν2〉 is a coherent state with normalization given by
∫

d2ν1d2ν2E (ν1, ν2) = 1. The covariance matrix for a two-mode
interferometer is given in Eq. (55). Using the corresponding state for the two-mode interferometer we can find the observation
probability for any parameter μi, in terms of the elements of the covariance matrix as

P(ν1, ν2|μi ) = 1

π2[(1 + n̄)2 − |ξ |2]
exp

[
(−|ν1|2 − |ν2|2)(1 + n̄) + ξν∗

1ν2 + ξ ∗ν∗
2ν1

(1 + n̄)2 − |ξ |2
]
. (D2)

The Fisher information for the parameter μi can be found as

Fi =
∫

d2ν1d2ν2
1

P(ν1, ν2|μi )

(
∂P(ν1, ν2|μi )

∂μi

)2

=
∫

d2ν1d2ν2P(ν1, ν2|μi ) f (ν1, ν2)

= 〈 f (ν1, ν2)〉, (D3)

where f (ν1, ν2) is a polynomial function of second- and fourth-order correlations of ν1 and ν2, defined as

f (ν1, ν2) ≡ {∂μi ln [P(ν1, ν2|μi )]}2 = 1

[P(ν1, ν2|μi )]2

(
∂P(ν1, ν2|μi )

∂μi

)2

. (D4)

With Wick’s theorem for Gaussian states, the fourth-order statistic can be written as

〈x1x2x3x4〉 = 〈x1x2〉 〈x3x4〉 + 〈x1x3〉 〈x2x4〉 + 〈x1x4〉 〈x2x3〉, (D5)

where xi ∈ {ν1, ν
∗
1 , ν2, ν

∗
2 }. We can also write 〈|ν1|2〉 = 〈|ν2|2〉 = 1 + n̄ and 〈ν∗

1ν2〉 = ξ , 〈ν∗
2ν1〉 = ξ ∗.

APPENDIX E: UNIFORM CIRCULAR SOURCE FOR A TWO-MODE INTERFEROMETER

We find the elements of the covariance matrix describing the state of two-mode interferometers in Eq. (55). Then for a circular
source with size a located at position (x0, y0, R) with the assumption x0, y0 � R in the source plane we have

n̄ = κT

R2

∫
dx dy circ(x − x0, y − y0)

= πa2κT

R2
, (E1)
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and χ and ξ become

χ = 1

2
+ πa2κT

R2
, (E2)

ξ = 〈b†
2b1〉 = κT

R2

∫
dx dy circ(x − x0, y − y0) exp [2π i(xvx + yvy)]

= κTa2

R2

J1

(
2πa

√
v2

x + v2
y

)
a
√

v2
x + v2

y

exp [2π i(x0vx + y0vy)], (E3)

where vx = �r cos ϕ/(λR), vy = �r sin ϕ/(λR), with �r = �r(cos ϕ, sin ϕ, 0). Note that
√

v2
x + v2

y = �r/(λR).

1. Quantum Fisher information: The uniform circular source

We found the QFI for estimating a is as

Fa =8π2a�r2κT

Da

[
πa�r2(πa2κT + R2)(J2

0 + 1) − 2�rλR(2πa2κT + R2)J0J1 + aκλ2R2T (J2
0 + 1)J2

1

]
, (E4)

where

Da = (π2a2�r2 − λ2R2J2
1

)[
�r2(πa2κT + R2)2 − κ2λ2R2T 2J2

1

]
, (E5)

and Ji( 2a�rπ
Rλ

) are the Bessel functions of the first kind and ith order. The QFI for estimating T becomes

FT = 2κa2
[
π�r2(πa2κT + R2) − κλ2R2T J2

1

]
T
[
�r2(πa2κT + R2)2 − a2κ2λ2R2T 2J2

1

] . (E6)

The other elements regarding the source size and the temperature of the circular source can be found as

FaT = 4πa�rκ[�r(πa2κT + R2) − aκλRT J0J1]

�r2(πa2κT + R2)2 − a2κ2λ2R2T 2J1
2

. (E7)

The QFI matrix elements for estimating the source locations can be written as

Fi0 j0 = 8π2R2λ2κT J1
2viv j

π�r2(πa2κT + R2) − κλ2R2T J1
2
, (E8)

where i, j ∈ {x, y}.

2. Elements of the matrix Mi for a two-mode interferometer: The uniform circular source

To combine two modes of the receivers for the optimum measurements, we calculate δ as given in Eq. (57). We find the matrix
elements of Ma as

g1
a = 2π�r2R2

Da
{πa�r2(πa2κT + R2) + λRJ1[aκλRT J1 − �r(2πa2κT + R2)J0]}, (E9)

g2
a = 2π�r2R2

Da
{aJ0[π�r2(πa2κT + R2) + κλ2R2T J2

1 ] − �rλR(2πa2κT + R2)J1}e−iδ, (E10)

where δ = vxx0 + vyy0. For the temperature estimation we get the elements of MT as

g1
T = �r2R2(πa2κT + R2)

�r2T (πa2κT + R2)2 − a2κ2λ2R2T 3J2
1

, (E11)

g2
T = − a�rκλR3J1e−iδ

a2κ2λ2R2T 2J2
1 − �r2(πa2κT + R2)2 . (E12)
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Finally, for the source location we found(
g2

x0

g2
y0

)
= − 2π�r2R2J1ei(−δ+π/2)

a
[
π�r2(πa2κT + R2) − κλ2R2T J2

1

](cos(ϕ)
sin(ϕ)

)
, (E13)

and g1
x0

= g1
y0

= 0.

3. Classical Fisher information for heterodyne detection: The uniform circular source

Since we calculated the elements of the covariance matrix in Eqs. (E1) and (E2) we can calculate Eqs. (D2) and (D4). Using
the CFI for the heterodyne detection in Eq. (D3), we can write the result for estimating the source size as

Fa = 8π2a2κ2T 2�r3(πa2κT + R2)

Da

[
4a5κ5λ5R5T 5J0J1

5 − 2a2�r3κ2λ2R2T 2(πa2κT + R2)3(J0
2 + 1)J2

1

+�r5(πa2κT + R2)5(J0
2 + 1) − 4a�r4κλRT (πa2κT + R2)4J0J1

− 7a4�rκ4λ4R4T 4(πa2κT + R2)(J0
2 + 1)J1

4 + 16a3�r2κ3λ3R3T 3(πa2κT + R2)2J0J3
1

]
, (E14)

with

Da = [�r2(πa2κT + R2)2 − a2κ2λ2R2T 2J2
1

]
4. (E15)

The estimation of the temperature becomes

FT = 2a2�r2κ2(πa2κT + R2)

DT

[
π2a2�r6(πa2κT + R2)5 − a4κ4λ6R6T 4(3πa2κT + 7R2)J6

1

+�r4λ2R2(πa2κT + R2)3(−5π2a4κ2T 2 − 2πa2κR2T + R4)J2
1 + a2�r2κ2λ4R4T 2(7π3a6κ3T 3

+ 19π2a4κ2R2T 2 + 10πa2κR4T − 2R6)J4
1

]
, (E16)

where

DT = [�r2(πa2κT + R2)2 − a2κ2λ2R2T 2J2
1

]
4. (E17)

APPENDIX F: TWO-POINT SOURCES FOR A TWO-MODE
INTERFEROMETER

The temperature distribution of two circular sources with
equal size a at locations (x1, y1, R) and (x2, y2, R) is given in
Eq. (65). We assume that {|xi|, |yi|, a} � R. The elements of
the covariance matrix in Eq. (55) for two-point sources with
different temperature can be found using Eqs. (31), (32), and
(65) as

χ = 1

2
+
∑

i

πa2κTi

R2
= 1

2
+ 2πa2κT

R2

= 1

2
+ 2ηκT, (F1)

where η = πa2/R2, and

ξ = 〈b†
1b2〉 = κπa2

R2

2J1
(

2πa�r
Rλ

)
2πa�r

Rλ

(T1e2π i(vxx1+vyy1 )

+ T2e2π i(vxx2+vyy2 ) )

= κηη2

2
[(2T − �T )e2π i(vxx1+vyy1 )

+ (2T + �T )e2π i(vxx2+vyy2 )], (F2)

where the average temperature is defined as T ≡ (T1 + T2)/2,
and the temperature difference of the sources as �T ≡ T2 −
T1 with T2 � T1 assumed, while the parameter η2 is given by

η2 = 2J1
(

2πa�r
Rλ

)
2πa�r

Rλ

, (F3)

which is related to the source size. In Fig. 7, we can see
the behavior of η2 with respect to the source size. For point
sources one can approximate η2 ≈ 1.

FIG. 7. Plot showing the behavior of η2 with respect to the radius
of the circular disk source with �r = 2 m.
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1. Quantum Fisher information: Two-point sources

We found the elements of the QFI matrix for estimating the source separation as

Fsis j = 2π2ηκviv j

Dsxsy

(η2κ2(4T 2 − �T 2){(4T 2 − �T 2) cos[4π (sxvx + syvy)] + 16T 2 cos[2π (sxvx + syvy)]}

−η2κ2(�T 4 − 24�T 2T 2 + 80T 4) − 128ηκT 3 − 32T 2), (F4)

where i, j = {x, y} and the denominator is given by

Dsxsy = ηκ (4T 2 − �T 2){η2κ2(�T 2 − 4T 2) cos[4π (sxvx + syvy)]

+ 4[ηκ (−�T 2ηκ + 4ηκT 2 + 6T ) + 1] cos[2π (sxvx + syvy)]}
− 3η3κ3(�T 2 − 4T 2)2 + 24η2κ2T (�T 2 − 4T 2) + 4ηκ (�T 2 − 20T 2) − 16T . (F5)

The elements of QFI matrix for estimating the centroid becomes

Ftit j = 16π2viv jηκ

Dt
[(4T 2 − �T 2) cos (2π (sxvx + syvy)) + �T 2 + 4T 2], (F6)

where the denominator is

Dt = 4T + 4ηκT 2 − �T 2ηκ − ηκ (4T 2 − �T 2) cos [2π (sxvx + syvy)]. (F7)

Off-diagonal elements of the QFI matrix can be found as

Fsit j = 32π2�T ηκT viv j

�T 2ηκ + ηκ (4T 2 − �T 2) cos[2π (sxvx + syvy)] − 4ηκT 2 − 4T
. (F8)

If we align two antennas parallel to the source separation, vx → v and vy → 0. In the limit where �T → 0 the QFI for the
source separation simplifies to

Fs → 4π2v2ηκT [ηκT cos (2πsv) + 3ηκT + 1]

[1 + 4ηκT + 2η2κ2T 2 − 2η2κ2T 2 cos (2πsv)]
, (F9)

and the QFI for the centroid simplifies to

Ft → 32π2v2ηκT cos2 (πsv)

1 + ηκT − ηκT cos (2πsv)
, (F10)

which agrees with the results in Ref. [35] for (�T = 0, vy = 0, sy = 0, ty = 0) as expected.

2. Elements of the matrix Mi for a two-mode interferometer: Two-point sources

For simplicity let us assume that �T → 0. Then we have the elements of the matrix Mi for a two-mode interferometer for
estimating the source sizes as

g1
si

= πvi(4ηκT + 1) cot[π (sxvx + syvy)]

{1 + 4ηκT + 2η2κ2T 2 − 2η2κ2T 2 cos[2π (sxvx + syvy)]} ,

g2
si

= πvi{ηκT cos[2π (sxvx + syvy)] + 3ηκT + 1} csc[π (sxvx + syvy)] exp(−iδs)

{1 + 4ηκT + 2η2κ2T 2 − 2η2κ2T 2 cos[2π (sxvx + syvy)]} ,

(F11)

and

g1
ti = 0,

g2
ti = 2πv cos[π (sxvx + syvy)] exp(−iδt )

1 + ηκT − ηκT cos[2π (sxvx + syvy)]
, (F12)

where δs = 2π (txvx + tyvy) − π and δt = 2π (txvx + tyvy) + π/2.

3. Classical Fisher information for heterodyne detection: Two-point sources

Using the CFI given for the heterodyne detection in Eq. (D3), and assuming that both sources have the same temperature
(�T → 0), one can find the CFI for estimating the centroid as

Fti = 32π2η2κ2T 2vi
2(2ηκT + 1)2 cos2[π (sxvx + syvy)]

{−2η2κ2T 2 cos[2π (sxvx + syvy)] + 2ηκT (ηκT + 2) + 1}2 . (F13)
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Again assuming (�T → 0), we can find the CFI for estimating the source separation as

Fsi = 1

Ds
8π2η2κ2T 2v2

i sin2[π (sxvx + syvy)](2ηκT + 1)2(1 − 14η4κ4T 4 cos[4π (sxvx + syvy)]

− 4η2κ2T 2 cos[2π (sxvx + syvy)][2ηκT (9ηκT + 2) + 1] − 2ηκT {ηκT [ηκT (21ηκT − 8) − 10] − 4}), (F14)

where the denominator is given by

Ds = {1 + 4ηκT + 2η2κ2T 2 − 2η2κ2T 2 cos[2π (sxvx + syvy)]}4. (F15)
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We study super-resolution imaging theoretically using a distant n-mode interferometer in the microwave
regime for passive remote sensing, used, e.g., for satellites like the “Soil Moisture and Ocean Salinity” (SMOS)
mission to observe the surface of the Earth. We give a complete quantum-mechanical analysis of multiparameter
estimation of the temperatures on the source plane. We find the optimal detection modes by combining incoming
modes with an optimized unitary that enables the most informative measurement based on photon counting in
the detection modes and saturates the quantum Cramér-Rao bound from the symmetric logarithmic derivative for
the parameter set of temperatures. In our numerical analysis, we achieved a quantum-enhanced super-resolution
by reconstructing an image using the maximum likelihood estimator with a pixel size of 3 km, which is ten times
smaller than the spatial resolution of SMOS with comparable parameters. Further, we find the optimized unitary
for uniform temperature distribution on the source plane, with the temperatures corresponding to the average
temperatures of the image. Even though the corresponding unitary was not optimized for the specific image, it
still gives a super-resolution compared to local measurement scenarios for the theoretically possible maximum
number of measurements.

DOI: 10.1103/PhysRevA.107.032607

I. INTRODUCTION

The technology of imaging is currently undergoing a rapid
evolution both due to enhanced computational techniques [1]
and due to insights from quantum information processing and
quantum metrology. It has become clear that the paradig-
matic resolution limit found by Abbe and Rayleigh, based
on the interference of classical waves set by the wavelength
of the light, is not the ultimate fundamental bound if the
quantum nature of light is taken into account. In quantum
optics it was realized already in the 1960s in the context of
the explication of the Hanbury–Brown Twiss effect [2,3] that
fundamentally the interference of light should be considered
in Hilbert space and can lead to higher-order correlations that
contain information beyond the first-order correlations rele-
vant to the interference patterns of classical electromagnetic
waves. Experimentally, super-resolution was demonstrated by
Hell in 1994 (see Refs. [4,5]), who resolved a molecule
with nanometer resolution with light in the optical domain
by a decoration of the molecule with pointlike emitters and
quenching them selectively. Early theoretical work used the
techniques of optimal parameter estimation to estimate the
ultimate sensitivities of radar and, in fact, led to the devel-
opment of quantum parameter estimation theory [6–9]. Much
later, quantum parameter estimation theory was applied to de-
termine optimal detection modes and ultimate sensitivities for
arbitrary parameters encoded in the quantum state of Gaussian
light [10,11]. In 2016, Nair and Tsang [17] wrote a seminal
paper that considered the problem of ultimate resolution as a
quantum parameter estimation problem for the distance be-

*saban-emre.koese@uni-tuebingen.de
†daniel.braun@uni-tuebingen.de

tween the two sources. They found that the quantum Fisher
information (QFI) that sets the ultimate bound remains finite
for two point sources of low, identical intensity in the limit of
vanishing separation, whereas the classical Fisher information
linked to intensity measurements in direct imaging vanishes.
A large amount of theoretical [12–36] and experimental re-
search [37–42] followed that corroborated and generalized
this insight.

Most of these works concentrated on estimating one or few
parameters, however, typically linked to geometrical informa-
tion like the spatial separation or position of point sources and,
in some cases, optical phase imaging, i.e., the joint estima-
tion of the phases with respect to a reference mode [43–46].
While this led to important insights and solid evidence that,
in many situations, quantum parameter estimation techniques
can enhance resolution beyond the classical diffraction limit,
imaging typically does not aim at recovering information
about the separation or, more generally, the spatial position of
point sources. Instead, in a typical image, the scene is covered
by pixels of known locations and one wants to know for each
pixel the intensity of the source in that point, its spectral com-
position, polarization, etc. Since an image typically consists
of many pixels, imaging is then inherently a (quantum) many-
parameter estimation problem, and corresponding techniques
should be applied to obtain the best possible image reconstruc-
tion quality based on the gathered measurement results.

In this paper, we take an important step in this direction in
passive remote sensing of Earth in the micro-wave domain,
building on our previous work [47]. Here, the state of the
art is interferometric antenna synthesis, with which a large
effective antenna can be formed from a set of small antennas,
with corresponding enhanced resolution. For example, the
“Soil Moisture and Ocean Salinity” (SMOS) satellite is an
interferometer with a Y-shaped array of 69 antennas where

2469-9926/2023/107(3)/032607(12) 032607-1 ©2023 American Physical Society
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FIG. 1. The Gaussian state ρ(θ) of the n-mode interferometer
contains the spatial and the radiometric information from current
density sources. The incoming modes b̂i are combined with an
optimized U to have detection modes d̂i of the photon counting
measurement. For experimental realization, one can decompose U
into SU (2) group elements similar to optical quantum computing,
i.e., using beam splitters and phase shifters. After the measurements,
one estimates the parameter set using an estimator function such as a
maximum likelihood estimator (MLE).

each arm has a length of around 4 m [48–51]. It achieves a
resolution of about d � 35 km, from a distance R � 758 km
above the surface of Earth by measuring the thermal noise
in a narrow frequency band of electromagnetic fields (1420–
1427 MHz, central wavelength λ � 21 cm). The electric fields
are sampled in real time, filtered, and interfered numeri-
cally, implementing thus purely classical interference. The
diffraction limit analogous to the ones by Abbe and Rayleigh
is given here by the van Cittert–Zernike theorem [52–54],
d � λR/�xi j , where �xi j is the maximal spatial separation
between two antennas. From the interferometric data one can,
via inverse spatial Fourier transform, estimate the local bright-
ness temperatures Teff on the surface of Earth with resolution
d , and from these, with appropriate models, the soil moisture
and ocean salinity. This information is of great importance for
the geosciences, monitoring of Earth, climate modeling, flood
predictions, and much more. Driven by these applications,
there is the desire to enhance the spatial resolution but simply
increasing the size of the satellite becomes unpractical and
lowering its orbit reduces its lifetime.

Here we show that with appropriate techniques from mul-
tiparameter quantum estimation theory, one can reconstruct
images of Earth with roughly a factor 10 better spatial res-
olution than SMOS with a satellite of comparable size. We
demonstrate this with images of up to 30 pixels, showing
that they can be reconstructed faithfully with a pixel size of
3 km. Instead of local measurement of the incoming modes
of the interferometer, we combine the modes with a unitary
transformation that enables nonlocal measurements. We find
the optimal unitary matrix that minimizes the scalar classi-
cal Cramér-Rao bound (CCRB) [55] for the classical Fisher
information matrix for the chosen measurements contracted
with a weight matrix. The corresponding unitary matrix can
be decomposed into phase shifters and, at most, n(n − 1)/2
beam splitters, as is well known from linear optical quantum
computing [56]. This allows us to quantum program optimal
measurement schemes for imaging. Contrary to classical com-
putational imaging [1], the quantum computation for this new
kind of “quantum-computational imaging” is done before the
measurements (see Fig. 1).

Multiparameter quantum estimation theory is by itself
a rapidly evolving field. Recently, there have been many
different works, e.g., multiparameter estimation of several

phases [43], estimation of all three components of a magnetic
field [57], optimal estimation of the Bloch vector components
of a qubit [58], multiparameter estimation from Markovian
dynamics [59], etc. (see the review article [60]). For a limited
sample size, like in passive sensing, it is crucial to estimate
the image’s parameters simultaneously. The multiparameter
quantum Cramér-Rao bound (QCRB) can, in general, not be
saturated. Optimal measurements linked to different parame-
ters do not typically commute and hence lead to incompatible
measurements. Once the commutation on average is satisfied,
the quantum limit is asymptotically attainable [61].

We build on our previous work [47,54,62], where we
showed that thermal fluctuations of the microscopic currents
lead to Gaussian states of the microwave field and hence
allow one to use the QCRB for Gaussian states [10,11,63,64].
As before, we assume that only the current densities at the
surface of Earth contribute and neglect the cosmic microwave
background as well as additional technical noises [65–67].

We organize the rest of the paper as follows. In Sec. II,
we introduce the quantum state received by the n-mode
interferometer, as well as the QFI, the symmetric loga-
rithmic derivative (SLD), and the corresponding quantum
Cramér-Rao lower bound. Further, we present the optimal
positive operator-valued measure (POVM), which minimizes
the most informative bound for the multiparameter estima-
tion. In Sec. III, first, we discuss the simple problem as a
benchmark considering two-pixel sources with the two-mode
interferometer. We analyze the quantum advantage with the
optimal unitary compared to local measurement scenarios.
Second, we increase the number of pixels by considering a
one-dimensional (1D) array of sources with a 1D array in-
terferometer. We examine how closely we can approach the
quantum limit of sensitivity with our parameter set. Third,
we consider a two-dimensional (2D) source image with a 2D
array interferometer. Using the maximum likelihood estimator
(MLE), we reconstruct the image for the POVMs with the
optimized unitary specific to the image, the optimized unitary
for uniform temperature distribution, and local measurements.
We conclude in Sec. IV.

II. THEORY

A. State received by the n-mode interferometer

In previous work [47], we analyzed the quantum state radi-
ated from current current distribution j(r, t ) [62,68–77] on the
source plane. We show that the state of the incoming modes of
the n-mode interferometer from these radiated sources can be
modeled as circularly symmetric Gaussian states with a partial
coherence, which encodes the information of position and am-
plitudes distribution of the sources. Then after the scattering
process [78,79] from the interferometer, the partially coherent
state received in the n modes is represented by

ρ =
∫

d2nβ�({βi})|{βi}〉〈{βi}|, (1)

where |{βi}〉 is a multimode coherent state for spatial antenna
modes, {βi} = β1, β2, . . . , βn, and

�({βi}) = 1

πn det �
e−β̄†�−1β̄ , (2)
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where β̄T = (β1, β2, . . . , βn) is the Sudarshan-Glauber rep-
resentation, and d2nβ ≡ dReβ1dImβ1 . . . dReβndImβn. The
matrix � is the coherence matrix for n antenna modes, and its
elements are defined as �i j = 〈b̂†

i b̂ j〉. Considering the sources
of these fields are generated by random current distribution
on the source plane and assuming that each antenna has the
same polarization direction êl and they filter incoming fields
with the same frequency ω0 with a bandwidth B, then one
finds a relation between 〈b†

i b j〉 and the average current density
distribution on the source plane as [47]

〈b̂†
i b̂ j〉 = K

∫
d3r

〈|J̃t,l (r, ω)|2〉 eiω0(|r−r j |−|r−ri|)/c

|r − ri||r − r j |

× sinc

[
B

2c
(|r − r j | − |r − ri|)

]
, (3)

where d3r is the integral over the source volume, ri is the
location of the detector for received modes in the detec-
tion plane, and sinc(x) = sin(x)/x. J̃t,l (r, ω) is the Fourier
transform of the locally transverse component of the cur-
rent density J (r, t ) and l stands for the component parallel
to the source plane. Considering R as the distance between
source and detection planes, we can parametrize the inte-
gral over Earth’s surface as r = (x, y, R) with respect to
the coordinate system of the detection plane. Assuming that
we are in the far-field regime |�ri j | � R, where �ri j =
r j − ri is the distance between two antennas, we approx-
imate |r − r j | − |r − ri| ≈ �ri j · r/|r|. In the denominator,
we approximate |r − ri| ≈ R/ cos θ̃ (x, y) with θ̃ (x, y) the po-
lar angle between the z axis and the vector (x, y, R). We
find the relation of the average amplitude of current den-
sity distribution to brightness temperature as TB(x, y) by
〈|J̃t,i(r, ω)|2〉 = K1TB(x, y) cos θ̃ (x, y)δ(z − R), where K1 =
32τckB/(3l3

c μ0c). Further, one can define the effective temper-
ature as Teff (x, y) ≡ TB(x, y) cos3 θ̃ (x, y). We include an extra
constant prefactor μ for the additional losses, which can be
justified by tracing out modes of losses ĉ into which photons

might scatter by writing b̂ = √
μ ˆ̃b + √

1 − μĉ. Compared to
the actual physical temperature, the brilliance temperature is
additionally modified by the albedo of the surface from which
important information, such as the surface’s water content or
the ocean water’s salinity, can be extracted. For simplicity,
we work with the physical temperatures in the following,
i.e., set TB(x, y) = T (x, y). Following these assumptions and

dropping the ∼ from ˆ̃b, we simplify Eq. (3) as

〈b̂†
i b̂ j〉 = μκ

R2

∫
dxdy Teff (x, y)e2π i(vi j

x x+v
i j
y y). (4)

We introduced a new constant κ = K1K ≡ 2kB/(π h̄ω0) where
κ has the dimension of inverse temperature with SI units
(1/K) and v

i j
y = �xi j/(λR), v

i j
x = �yi j/(λR) with ω0/c =

2π/λ. Considering the parameters of SMOS, we find κ = 9.4
1/K. The SMOS has a Y shape where each arm has a length
of almost 4 m. Therefore, it is reasonable to set maximum
baselines �xmax = �ymax around 10 m.

B. Estimation theory of the sources

1. Quantum Cramér-Rao bound

For a quantum state ρθ that depends on a vector of l
parameters θ = (θ1, θ2, . . . , θl )T , an ultimate lower bound of
an unbiased estimator of the parameter set is given by the
quantum Cramér-Rao bound (CRB), which states that the
covariance matrix of any such estimator is equal to or greater
than the inverse of the QFI matrix (in the sense that their
difference is a positive-semidefinite matrix). The CCRB from
measurement is lower bounded by the QCRB [6,7,60] given
by

Cov(θ̃) � F (θ)−1, Fi j (θ) = 1
2 Tr(ρθ{Li,L j}), (5)

where Cov(θ̃) is a covariance matrix for the locally unbiased
estimator θ̃ [61,80], the {·, ·} means the anticommutator, and
Li is the SLD related to parameter i, which is defined sim-
ilarly to the single parameter case, 1

2 (Liρθ + ρθLi ) = ∂iρθ.

The SLD and the elements of the QFI matrix are given in
Ref. [81] for any Gaussian state. The SLD can be written as

Li = 1
2M−1

αβ,γ δ (∂i�
γδ )(bαbβ − �αβ ), (6)

where M−1
αβ,γ δ is the fourth-order tensor form of the inverse of

the matrix M ≡ � ⊗ � + 1
4� ⊗ �, with � = ⊕n

k=1 iσy, and
the summation convention is used for repeated indices. In our
case, the mean displacement of the Gaussian state is zero. Co-
variance matrix elements are given by �αβ = 1

2 Tr[ρ(bαbβ +
bβbα )], with b = [b1, b†

1, b2, b†
2, . . . , bn, b†

n] [10,81–85]. Then
the elements of the QFI matrix in [81] become

Fi j = 1
2M−1

αβ,γ δ∂ j�
αβ∂i�

γδ. (7)

Using the properties of the Gaussian state (circularly symmet-
ric and with zero mean) we can write the SLD for n mode
interferometers as [47]

Li =
n∑
j

gj
i b̂

†
j b̂ j +

n∑
j<k

[
gjk

i b̂†
j b̂k + (gjk

i )∗b̂†
kb̂ j

] + C, (8)

where C is a constant term that can be dropped for diago-
nalization purposes. In the single parameter case, the optimal
POVM is the set of projectors onto eigenstates of Li. It allows
one to saturate the QCRB in the limit of infinitely many mea-
surements using maximum likelihood estimation [6,86,87].
To find the POVMs from the SLD, we construct a Hermitian
matrix Mi whose diagonal elements are real-valued functions
which are defined as gj

i ≡ M−1
αβ,γ δ (∂i�

γδ ) with α = 2 j and
β = 2 j − 1. The off-diagonal elements are complex-valued
functions and defined as gjk

i = M−1
αβ,γ δ (∂i�

γδ ) with α = 2 j
and β = 2k − 1 and k > j. By introducing a new set for
the field operators such that b̄† ≡ [b̂†

1, b̂†
2, . . . , b̂†

n] and b̄ ≡
[b̂1, b̂2, . . . , b̂n]T , we write the SLD in the following form:

Li = b̄†Mib̄. (9)

As Mi is a Hermitian matrix it can be unitarily di-
agonalized by Mi = V†

i DiVi with V†
i Vi = I. A new set

of operators can be defined as d̄†
i = b̄†V†

i where d̄†
i =

[d̂†
i1, d̂†

i2, . . . , d̂†
in]. The optimal POVM for the single pa-

rameter case (i = 1, which we drop in the following)
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can be found as a set of projectors in the Fock ba-
sis {|m1, m2, . . . , mn〉 〈m1, m2, . . . , mn|}{m1,m2,...,mn} of the d̂l

with d̂†
l d̂l |m1, m2, . . . , mn〉 = ml |m1, m2, . . . , mn〉, where l ∈

{1, . . . , n}. The d̂l will be called “detection modes.” By intro-
ducing a positive weight matrix w, one can define the scalar
inequalities from the matrix valued QCRB as Tr[w Cov(θ̃)] �
Tr(wF (θ)−1) ≡ CS (θ,w). Contrary to the single parameter
case, the multiparameter QCRB can generally not be satu-
rated. Holevo realized this problem and proposed a tighter
and more fundamental bound [88] CH (θ,w), which is upper
bounded by 2CS (θ,w) [55,89]. If the SLD operators for differ-
ent parameters commute on average Tr(ρθ[Li, Lj]) = 0, then
the Holevo-CRB is equivalent to the QCRB, and the QCRB
for multiparameter estimation can be saturated asymptotically
with a collective measurement in the limit of an infinitely large
number of copies ρ⊗N

θ
[55,61]. The standard deviation of the

estimator decreases proportionally to 1/
√

N for the sample
size of N . The SMOS satellite travels at a constant speed of
around v � 7 km/s. It takes time τ = L/v to fly at a distance
L. Each sample has a lower bound for the detection time given
by tD � 1/B. In practice, the practical detection time might
be much larger due to, e.g., deadtimes of the sensors, slow
electronics, etc. In addition, zero temperature of the detector
and modes b̂i is implicitly assumed in our calculations but
would require cooling down to temperatures much smaller
than h̄ω0. If the actual detection time is t eff

D , the maximum
sample size becomes N = τ/t eff

D .

2. Most informative bound for multiparameter metrology

The most informative bound minimizes the classical scalar
Cramér-Rao bound over all the possible POVMs. In the single
parameter case, from the diagonalization of the SLD, we see
that one needs to combine the incoming modes with a unitary
transformation to saturate the QCRB single parameter case.
This transformation, even for a single parameter, depends
on the parameter itself. In the multiparameter case, any of
these specific unitary transformations for a specific parameter
usually gives a more significant mean-square error for the
remaining parameters. Using the clue from the SLD structure,
we drop the index i from the unitary transformation of the
modes and minimize the scalar bound of the classical Fisher
information matrix for multiparameter estimation over all pos-
sible unitaries. Then, a new set of operators for the detection
modes can be defined as d̄ = Ub̄ where d̄T = [d̂1, d̂2, . . . , d̂n],
where U is the corresponding unitary transformation of the
field modes. The average values of the elements of the new
coherence matrix �̃ can be found by using d̂i = ∑

l Uil b̂l as

�̃i j = 〈d†
i d j〉 =

∑
kl

U ∗
ikUjl〈b†

kbl〉. (10)

Then we will have the probabilities after measurement
P(m1, ..mn|θ1, θ2, . . . , θl ) as

P({mk}|θ) =
∫

d2nδ�̃({δi})|〈{mk}|{δi}〉|2

=
∫

d2nδ�̃({δi})
∏

i

e−|δi|2 |δi|2mi

mi!
, (11)

where |{δi}〉 is a coherent state of the detection modes and
�̃({δi}) is the Sudarshan-Glauber function for the state of the
detection modes. Due to the linear transformation from b̄ to
d̄, it is still a Gaussian. It is difficult to evaluate the integral
of P({mk}|θ) for all possible values of mk and keep track of
all possible combinations of photon number counts, both nu-
merically and experimentally. Hence, instead of considering
projections on the complete Fock basis as POVMs, we choose
the POVMs with at most one photon per measurement and
limit ourselves to

∑
k mk � 1. Clearly, the resulting informa-

tion loss is negligible for light that, from the very beginning,
is very faint, with at most one photon per mode. However,
it can be important for stronger light sources, for which one
should try to resolve the photon numbers. We have the order of
ten photons per mode for thermal microwave sources at room
temperature. We see below that even without resolving their
number, we can already largely surpass the classical resolution
limit, but there is room for further improvement by going
beyond the single-photon detection scheme we analyze in the
following.

The selected POVM elements of single-photon detection
are

�0 = |0, 0, . . . , 0〉 〈0, 0, . . . , 0|,
�k = |0, 0, . . . , 1k, . . . , 0〉 〈0, 0, . . . , 1k, . . . , 0|,

�n+1 = I −
n∑

l=0

�l , (12)

where the last element (n + 1) ensures
∑n+1

l=0 �l = I. The
measurement probability of no photon in any interferometer
mode becomes

P0(θ) = 1

πn det �̃

∫
d2nδe−δ†(�̃−1+I)δ

= 1

det(�̃ + I)
. (13)

The single-photon detection probabilities in each mode of the
interferometer follow as

Pk (θ) = 1

πn det �̃

∫
d2nδe−δ†(�̃−1+I)δ|δk|2

= [(�̃−1 + I)−1]kk

det(�̃ + I)
. (14)

The probability to find more than a single photon per mea-
surement can be found as

Pn+1(θ) = I −
n∑

k=0

Pk . (15)

We also show the first derivative of the probability distribu-
tions of no photon detection from measurements analytically
to be given by

∂P0(θ)

∂θi
=

(
1

det(�̃ + I)

)
Tr

(
−(�̃ + I)−1 ∂�̃

∂θi

)
. (16)
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The first derivative for at most single-photon detection for all
modes becomes

∂Pk (θ)

∂θi
=

(
1

det(�̃ + I)

)

×
{[

(�̃−1 + I)−1�̃−1 ∂�̃

∂θi
�̃−1(�̃−1 + I)−1

]
kk

− [(�̃−1 + I)−1]kk Tr

(
(�̃ + I)−1 ∂�̃

∂θi

)}
. (17)

Finally, using Eqs. (13)–(17), the elements of the classical
Fisher information can be found from

Fi j =
n+1∑

l

1

Pl (θ)

∂Pl (θ)

∂θi

∂Pl (θ)

∂θ j
. (18)

The most informative bound [55] in this case is the bound
minimized over all possible unitary matrices:

Tr[w Cov(θ̃)] � min
U

{Tr[wF−1(θ)]}. (19)

The weight matrix is a positive definite matrix to satisfy the
scalar Cramér-Rao bound. For simplicity, we consider w = I
to optimize the average variance of all parameters. One can
also consider a diagonal matrix with different weights. This
will result in directly decreasing the variances of preferred es-
timators. Further, choosing a weight matrix with off-diagonal
elements includes covariances of the estimators. Since we
assume spatially uncorrelated currents, we focus here for sim-
plicity on the temperatures, with equal weight, rather than
their correlations, which is also a preferred choice in the
literature (see Ref. [55]).

3. Maximum likelihood estimation

Maximum likelihood estimators are widely used in esti-
mation theory and play an essential role in interpreting the
Cramér-Rao theorem [90,91]. One can estimate the set of
parameters with a given probability distribution with some
observed data. The likelihood function is given by l (θ) =∏n+1

k (Pk (θ))Nk , where the total number of samples is given
by N = ∑n+1

k Nk with Nk realizations of outcome k. Since the
logarithm is a monotonously increasing function, the log of
the likelihood function is maximized by the same parameter
vector θ. Thus, the MLE θ̂MLE is a value of θ that maximizes
the log likelihood L(θ) = ln[l (θ)],

θ̂MLE = arg max
θ∈�

L(θ), (20)

where the max is taken over the entire parameter space �. For
sufficiently large sample size, N → ∞, θ̂MLE converges to the
true value of the parameter set θ.

III. RESULTS: ESTIMATION OF SOURCE
TEMPERATURES

In this paper, our purpose is to estimate the function
T (x, y). Equation (4) allows us to study any source distri-
bution on the source plane. For that aim, we partition the
electromagnetic field’s source on Earth’s surface into square
pixels of size a and effective pixel temperature Ti, located

under the interferometer in the x, y plane at a distance R
from the satellite. Thus, we are interested in estimating the
temperature distribution in the form

Teff (x, y) =
∑

i

TiBox(x − xi, y − yi ), (21)

where Box(x, y) is defined as

Box(x, y) �
{

1 |x| � a
2 and |y| � a

2
0 else

. (22)

Of course, this is a choice to simplify our problem to a limited
number of parameters. One could also describe T (x, y) using
different temperature distribution functions such as Gaussian
and define the parameter set according to this choice. Further,
we estimate the effective pixel temperatures Ti, assuming that
all the other parameters are known to a sufficiently large
precision. The diagonal elements of the coherence matrix (�)
of Gaussian states become

〈b̂†
kb̂k〉 = μκa2

R2

p∑
i

Ti, (23)

and the off-diagonal elements are

〈b̂†
kb̂l〉 =μκa2ηkl

R2

p∑
i

Tie
2π i(vx

kl xi+v
y
kl yi ), (24)

where k �= l and we defined ηkl ≡ sinc(vx
kl a) sinc(vy

kla). The
number of pixels along the x̂ and ŷ axis is px and py, respec-
tively, and the number of detection modes along these axes is
nx and ny, respectively. In total, we have p = px py pixels on
the surface and n = nxny detectors in the detection plane, of
which each measures one detection mode. We set the num-
ber of detection modes equal to the number of pixels in the
source plane, n = p, to leave no redundant parameter for the
estimation, and use nx = px and ny = py.

A. Resolution of two pixel sources

Let us start with two pixels (pixel 1 and pixel 2) with
temperatures T1 and T2 in the source plane with pixel size
a. Our goal is to estimate the temperatures of each source.
We set the central locations of these two sources in the
source plane to (−a/2, 0, R) and (a/2, 0, R), i.e., both are on
an axis parallel to the x̂ axis without any distance between
them. In the detection plane, we have two detection modes
d̂1 and d̂2 with detectors centered at positions (−�x/2, 0, 0)
and (�x/2, 0, 0) on the x̂ axis, respectively. In our previous
work [47], we showed that if the mean photon numbers in
each received mode of the two-mode interferometer, with
circular symmetric Gaussian state, are identical (〈b†

1b1〉 =
〈b†

2b2〉), then the SLDs for T1 and T2 commute on aver-
age Tr(ρθ[Li, Lj]) = 0. Thus the QCRB and Holevo-CRB
are equivalent: CS (θ,w) ≡ CH (θ,w). For each parameter, the
matrix Mi from the SLD with i ∈ {T1, T2} is of the form

Mi =
[

gi
1 |gi

2|eiφi

|gi
2|e−iφi gi

1

]
, (25)

where the φi, in general, depend on both T1 and T2. The φ1

and φ2 differ for single parameter estimation of T1 and T2. The
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FIG. 2. Temperature estimation of two pixels. (a) The diago-
nal elements of the Fisher information matrix (dimensionless) as
a function of φ. The dashed curves are for FT1 , and solid curves
are for FT2 . (b) The scalar CRBs as a function of φ scaled with
the average temperature T̄ square of the sources. The flat lines are
for the QCRBs, and the others are the CCRBs for the measurement.
(c) The scalar CRBs as a function of the temperature difference of
two pixels. Solid black is for QCRB, red dotted is for CCRB for opti-
mized φ, and the green dashed curve is for the scalar CCRB for local
measurement considering U = I. (d) The gain factor of the estimate
R as a function of φ. The flat lines are from the QCRBs, and the
others are the CCRBs from the measurement. In figures (a), (b), and
(d), the blue curves are for uniform temperature, T1 = T2 = 300 K,
and red curves are for nonuniform temperatures, T1 = 400 K and
T2 = 200 K. The source size is a = 4 km. The average temperature
in all figures is T̄ = 300 K and μ = 0.5.

unitary that diagonalizes each SLD is found as

Ui = 1√
2

[
1 eiφi

1 −eiφi

]
. (26)

Since the unitary is parametrized with a single parameter,
we can drop the index i and find the φ that gives the most
informative bound for joint estimation of both T1 and T2. In
Fig. 2(a), we plot the diagonal elements of the classical Fisher
information (CFI) matrix in Eq. (18) as a function of φ. If
T1 (dashed) and T2 (solid) are equal, T1 = T2 (blue lines),
a diagonal element F1 or F2 can be obtained by mirroring
the other with respect to φ = π/2. For different tempera-
tures, T1 > T2 (red lines), the CFI matrix elements are not
symmetric anymore. We observe that max(F1) > max(F2),
and their difference is related to temperature changes, which
means that we can estimate the pixel with higher temperature
better. We keep the average temperature (T̄ ) constant. In both
cases, we have the maximum value of CFI matrix elements
max(F1) = max(F2) at different φ and diagonalize the SLD
for each parameter for single parameter estimation.

In Fig. 2(b), we plot Tr(F−1)/(T̄ 2) as a function of φ for
T1 = T2 (blue) and T1 > T2 (red) temperature configurations.
The scalar QCRBs are given by solid blue (T1 = T2) and
dotted red (T1 > T2) flat lines, respectively. We see that for
T1 = T2 (dot-dashed blue curve), we have the minimum of the
scalar CCRB at φ = 0.5π , and for T1 > T2 (dashed red curve),

the minimum value is slightly shifted to the left. In both cases,
the QCRBs are saturated. We see that the magnitudes of scalar
QCRBs for T1 = T2 and T1 > T2 are close to each other if we
keep the same T̄ in both configurations. We also observe that
Tr(F−1)/(T̄ 2) for T1 > T2 (dashed red curve) at φ = π/2 is
still close to the QCRB (red dotted flat line). Even though to
saturate the QCRB, φ must depend on the temperatures of
all pixels, one can find the φ for T1 = T2 = T̄ and use it to
estimate different temperature configurations (T1 > T2).

In Fig. 2(c), we compare the most informative bound for
optimal φ with the CCRB of local measurement (i.e., U = I)
for joint estimation of T1 and T2 for a single measurement. We
see that the dimensionless CCRB for the local measurement
(green dashed line) goes to ∞ when the two sources have
the same temperature. For a temperature difference around
≈10 K, it is around ≈106, which is almost ≈104 times larger
than for an optimal nonlocal measurement using Uopt (red
dotted line). We also see that the optimal unitary saturates the
QCRBs (solid black line). The bounds given in Fig. 2 are for
a single measurement (N = 1) and reduced by a factor N for
N independent measurements.

One can wonder what is the advantage of joint estimation
of parameters over single parameter estimation. To answer
that question, we can define the gain factor of the joint esti-
mate [92,93]:

R = p
p∑
i

1/Fii

Tr (F−1)
, (27)

where p is the total number of the parameters we want to
estimate. The F stands for both the QFI matrix F and the
CFI matrix F . The gain factor R is upper bounded by p
(0 < R � p), where the factor p arises from the fact that
for p single parameter estimations, the number of samples
available for each parameter is reduced by a factor p compared
to the total sample size, as different optimal measurements are
typically required for different parameters. Since we have only
two parameters to estimate (T1 and T2), the upper bound of
the gain factor becomes R � 2. If the gain factor is smaller
than 1, R < 1, then we do not have any advantage from
joint estimation. In Fig. 2(d), we show the gain factor R of
the estimation as a function of φ. It is close to 2 for the
scalar QCRBs of T1 = T2 (solid blue) and T1 > T2 (dotted
red straight lines). Furthermore, this advantage is achieved by
the optimized unitary for CCRBs of T1 = T2 (dot-dashed blue
curve) and T1 > T2 (dashed red curve). We have almost twice
the advantage compared to single parameter estimation.

B. Resolution of a 1D array of pixel sources

We next consider a 1D array of pixels aligned parallel to the
detector modes on the x̂ axis (px = nx and py = ny = 1). The
size a of a pixel is the same for all pixels, and the separation
between the two nearest pixels vanishes. The central position
of each pixel is given by x̃ j = (2 j − px − 1)a/2, and the
position of detector k is xk = (2k − nx − 1)�xmax/nx, where
j ∈ {1, . . . , px} and k ∈ {1, . . . , nx}. The parameters that we
want to estimate are the temperatures of each pixel given by a
vector θ = {T1, T2, . . . , Tpx }.
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FIG. 3. (a)–(c) The temperature distribution of the 1D pixels with uniform temperature (blue bars) and different temperatures (red bars)
for three, five, and seven pixels of the sources from (a) to (c), respectively. (d)–(f) The scalar CRBs (dimensionless) as a function of μ for the
number of source pixels corresponding to (a)–(c). The solid blue and dashed red curves describe the QCRBs, and dotted red curves and dashed
dotted blue curves describe the CCRBs for uniform and random temperature configurations. The insets show the total photon number as a
function of μ with a solid green line. The pixel size for (d)–(f) is 2.5 km. (g)–(i) The scalar CRBs as a function of the source size a. The blue,
red, and black lines correspond to different μ = (0.1, 0.5, 1.0), respectively. The solid lines represent the QCRBs, and dashed, dash-dotted,
and dotted lines represent the scalar CCRBs of single-photon measurements with optimized unitary specific to different pixel configurations.
The insets show the total photon number in the detector as a function of pixel size a, with the corresponding color of different μ. The average
temperatures are assumed to be T̄ = 300 K, and the sample size is set to be N = 106.

The unitary U becomes a nx × nx matrix, and we need
n2

x real parameters. Varying all the parameters of U indepen-
dently to find a minimum for our cost function is a difficult
task. Therefore, for n > 2, we use the steepest decent algo-
rithm to minimize the most informative bound in Eq. (19). An
efficient algorithm to minimize a given cost function with an
argument of the Lie group of unitary matrices U (n) is pro-
posed in Ref. [94]. The unitary group U (n) is a real Lie group
of dimension n2. In each iteration step, the conjugate gradient
(CG) algorithm moves towards a minimum along the geodesic
on the Riemannian manifold, corresponding to a straight line
in Euclidean space. We explain the details of the CG algorithm
adapted from Refs. [94–97] in the Appendix. These types
of algorithms are widely used in classical communication
systems. This paper uses the algorithm to optimize the POVM
to achieve the quantum limit for imaging in passive remote
sensing. We verified numerically that for our choice of the
parameter set, the SLDs for different parameters commute on
average over the corresponding quantum state for the n-mode
interferometer.

In Fig. 3, we analyze the QCRB and the CCRB for dif-
ferent numbers of source pixels px (3, 5, and 7). The average

temperatures are fixed to T̄ = 300 K for both random temper-
ature distributions (left, red bars) and the uniform temperature
distribution of the pixel sources (right, blue bars). From
Figs. 3(d)–3(f), we show how the classical bounds from our
measurement with optimized unitary change as a function of
μ; insets show the changes of the corresponding total photon
numbers as a function of μ in each configuration. Since the
total mean photon number of the detection modes (solid green
lines) decreases with μ and tends to Tr(�) � 1, the POVMs
of single-photon detections (red dotted and blue dash-dotted)
saturate the QCRBs (red dashed and solid blue) for different
and uniform temperature configurations, respectively. When
Tr(�) gets close to 1, we see that the gap between the
QCRB and the CCRB for single-photon measurement with
optimized unitary (Uopt) increases. Additionally, the QCRBs
decrease as the number of photons increases with μ, which
means more photons from each pixel increase the QFI of
the parameters. Thus, one needs to perform photon-number
measurements rather than just single-photon ones to achieve
the QCRB in this limit. Increasing the number of pixels p
increases the total photon number on the interferometer. Thus
the gap between the QCRBs and the CCRBs for measurement
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with optimized Uopt in each figure from Fig. 3(d) to Fig. 3(f)
increases.

In Figs. 3(g)–3(i), we compare how both bounds change
as a function of source size a for different temperature
configurations. The black, red, and blue solid lines provide the
QCRBs, and dashed black, dot-dashed red, and dotted blue
provide the CRBs for single-photon POVMs measurement
for different μ (0.1, 0.5, 1.0), respectively. Further, the insets
provide the total photon numbers in the detection modes.
We observe that the blue dotted lines (μ = 0.1) are very
close to the quantum limit and almost saturate the QCRBs
for each source configuration for different source sizes. Once
we increase μ, the gap between the two bounds increases as
a function of source size a due to the increased number of
photons. For instance, compare the gap for black dashed lines
(μ = 1.0) and blue dotted lines (μ = 0.1). This is due to the
limitation of the single-photon statistics for sources with a
total photon number greater than 1 [Tr(�) > 1].

In general, the optimal unitary depends on the parameters
(temperature distributions) we want to estimate. However,
in real-life cases, we need to gain knowledge of the pa-
rameters to optimize the unitary completely. As we discuss
in the section on two-pixel sources, a unitary for uniform
temperature distributions can also be used to estimate dif-
ferent temperatures with the same T̄ value. Experimentally,
one can estimate the average temperature separately and
construct the optimized unitary for the uniform temperature
distribution (Uuniform

opt ). One then uses it to estimate the actual
nonuniform temperature distribution. Further, we examine
how both bounds change as a function of the number of
pixels (px). In Fig. 4, we show the CCRBs for different
μ = (0.05, 0.1, 0.5, 1.0) in Figs. 4(a)–4(d), respectively. The
blue circles represent the initial random unitary for the CG
algorithm. The black triangles are the scalar QCRBs. The red
upward wedges are the scalar CCRBs from the optimized uni-
tary (Uimage

opt ) specific to random temperature distributions of
pixels. Further, the green downward wedges are for the opti-
mized unitary for uniform temperature distributions (Uuniform

opt )
of the pixels, used to estimate the corresponding random
unitary temperature distributions with the same pixel number
and the same average temperatures. The bounds from Uuniform

opt

(green wedges) and Uimage
opt (red wedges) are very close to each

other in this logarithmic scale. Also, both almost saturate the
QCRBs for μ = 0.05 and 0.1 for different px. When we raise
the number of pixels (px), we see that all bounds increase.
Moreover, the gap between QCRBs and CCRBs from single-
photon measurements becomes more significant for μ = 0.5
and 1.0 compared to μ = 0.1.

C. Resolution of 2D sources

This section considers an image with a total number of pix-
els p = px py on the image plane. The number n of the modes
of the 2D array interferometers will be considered the same
as p, with n = nxny. The size of each pixel is set to a = 3 km,
which is around ten times smaller than the spatial resolution of
SMOS considering the van Cittert–Zernike theorem, and the
separation between the two nearest pixels is again set to zero.
The parameters that we want to estimate are the temperatures
of the 2D image θ = {T1, T2, . . . , Tp}. We consider the case

FIG. 4. (a)–(d) The scalar CRBs (dimensionless) for differ-
ent numbers of pixels px along the x̂ axis in a 1D array and
μ = (0.05, 0.1, 0.5, 1.0), respectively. The black triangles represent
QCRBs, and red upward wedges represent the scalar CCRBs that
we get using the optimized unitary Uimage

opt specific to the actual
temperature distributions of source pixels. Green downward wedges
are for the unitary Uuniform

opt optimized for the uniform temperature
of the pixels used to estimate the actual temperature distribution
with the same average temperature. Blue circles correspond to scalar
CRBs for the initial random unitary before optimization. Pixel size
is a = 2.5 km, average temperature T̄ = 300 K, and sample size
N = 106.

of drastic photon losses and set μ = 0.01, which for T̄ ≈
293 K gives the total photon number around Tr(�) � 0.39. In
Fig. 5(a), we consider an actual image of h̄ using 30 pixels on
the image plane and a 30-mode interferometer on the source
plane. The unitary optimized (Uimage

opt ) for this image or the
unitary for a uniform temperatures distribution (Uuniform

opt ) is
applied in the preprocessing stage to estimate the parameters.
For the classical measurement, we consider a local measure-
ment scenario with U = I. Further, the image from different
measurement strategies is reconstructed by using a maximum
likelihood estimator for a sample of size N . In Fig. 5(b),
we reconstructed the image by using Uimage

opt . We have the
advantage of the nonlocal measurement and the optimized
unitary specific to the image. The reconstructed image is close
to the actual image for this parameter regime. Though this
unitary depends on the parameter set, we estimate that the
same resolution limit may be achieved using adaptive types
of measurement [98] by iteratively updating the unitary for
each sample after measurement.

However, this is beyond the scope of this paper. On the
other hand, for easy experimental realization, we reconstruct
the image by using Uuniform

opt in Fig. 5(c). One can inde-
pendently estimate the average temperature from the source
distribution and construct this general unitary for any image.
As we see, the reconstructed image still reveals the actual
image nicely, but as expected, it is not as sharp as the im-
age from a specifically optimized unitary. We reconstructed
the image from local measurement in Fig. 5(d). Clearly, this
reconstructed image is not close to the original one. This is
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FIG. 5. (a) The image on the source plane with 30 pixels will
be estimated using a maximum likelihood estimator. (b) The re-
constructed image after single-photon detection in detection modes
d̂i obtained from using the optimized unitary Uimage

opt specific to the
temperature distribution. (c) The reconstructed image using a uni-
tary optimized for uniform temperature distribution Uuniform

opt . (d) The
reconstructed image using a local measurement of single photons
considering U = I. Pixel size a = 3.0 km, average temperature T̄ ≈
293 K, and sample size N = 108.

expected for our pixel size a = 3 km, well below the limit of
the Rayleigh resolution for SMOS, which is around 35 km,
based on the van Cittert–Zernike theorem [48–51].

IV. CONCLUSION

In summary, we formulated passive remote sensing as a
quantum multiparameter estimation problem, where we fo-
cused on the temperatures on the ground as parameters rather
than geometrical information of sources that are currently
at the center of attention in quantum imaging, such as the
separation, centroid, or phases of sources. An antenna array
with as many antennas as desired pixels in the source plane
receives thermal electromagnetic radiation in receiver modes
that are then mixed according to an optimized unitary trans-
formation. Single-photon detectors detect the photons in the
corresponding optimized detection modes. The function to be
optimized is a scalar classical Cramér-Rao bound obtained
by contracting the inverse Fisher information matrix for es-
timating the temperatures from the photon-counting results
with a positive weight matrix. With the latter one we can
give different preferences for high resolution to different parts
of the image. The optimization of the bound over all unitary
mode mixings leads to a “most-informative bound [55].” For a

uniform weight over all pixels, we show that with this pro-
cedure, one can, in the case of the Gaussian white-noise
characteristic of thermal states, approximatively saturate the
scalar quantum Cramér-Rao bound based on the contraction
of the quantum Fisher information matrix for the multiparam-
eter estimation problem with the same positive weight matrix
(chosen as the identity in the present paper). In principle, the
optimized unitary depends on the actual temperature distribu-
tion, but we showed that the unitary obtained from a uniform
temperature distribution gives still much better resolution than
direct photon counting in the incoming modes. For the op-
timization over the unitaries, we used a conjugate gradient
algorithm. We showed that the found optimal mode of mixing,
followed by single-photon detection, leads to a spatial reso-
lution of the reconstructed images that are at least about an
order of magnitude better than Rayleigh’s limit (about 3 km
instead of 35 km for an antenna array comparable with the
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one of SMOS, even for substantial photon losses), given in the
present case by the van Cittert–Zernike theorem. The optimal
unitary can be decomposed into SU (2) group elements using
beam splitters and phase shifters and can be realized as linear
optical quantum computing. Given the recent availability of
single-photon detection in the microwave domain, our results
show a path towards substantially enhanced resolution in pas-
sive remote sensing compared to classical interferometers that
essentially implement homodyne quadrature measurements.
Further improvements might be possible for larger photon
numbers or smaller losses if photon-number resolved mea-
surements are available.
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APPENDIX: CONJUGATE GRADIENT ALGORITHM FOR
OPTIMIZATION

This section summarizes a practical CG algorithm given
by Refs. [94,96,97]. The generic CG algorithm starts with
(k = 0) finding the conjugate gradient Gk of the cost function
F (Uk ) for an initial unitary matrix, where

Gk = ∂

∂U∗ F (Uk ). (A1)

Then, the Riemannian gradient Wk at that point can be found
by

Wk = GkU†
k − UkG†

k . (A2)

By determining the step size α using the Armijo method (see
Ref. [95]) along the geodesic direction (in the direction of
−Hk), one can update the unitary by

Uk+1 = exp(−αHk )Uk . (A3)

Further, the new search direction can be found by using the
Polak-Ribierre formula Hk+1 = Wk+1 + γkHk , where

γk := 〈Wk+1 − Wk, Wk〉
〈Wk, Wk〉 . (A4)

The inner product defined as 〈X,Y 〉 ≡ Tr(X †Y )/2 induces
a bi-invariant metric on the unitary group U (n). We reset
the search direction periodically to ensure the direction of
Hk is a descent direction. Then the next iteration continues
accordingly (see pseudocode in Algorithm 1). The algorithm
runs until it converges to a minimum value of the cost function
or a maximum number of iterations kmax. To efficiently deal
with the gradient of the cost functions, we used the PYTORCH

gradient function. PYTORCH is used in machine learning for its
GPU capabilities.
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