
Resilient and Scalable Forwarding for
Software-Defined Networks with

P4-Programmable Switches

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Daniel Alexander Merling

aus Nürtingen

Tübingen
2022

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 19.04.2023
Dekan: Prof. Dr. Thilo Stehle
1. Berichterstatter: Prof. Dr. Michael Menth
2. Berichterstatter: Prof. Dr. Wolfgang Küchlin

Contents

List of Abbreviations iii

Summary vii

List of Publications xi

1 Introduction & Overview 1
1.1 Software-Defined Networking and Data Plane Programming 1
1.2 Programmable Protocol-Independent Packet Processor (P4) 3
1.3 Bit Index Explicit Replication (BIER) 4
1.4 Research Objectives . 5
1.5 Research Context . 6
1.6 Research Results . 6

2 Results & Discussion 9
2.1 Protection of Data Plane Traffic in SDN with P4 9

2.1.1 Robust LFA Protection for Software-Defined Networks (RoLPS) 10
2.1.2 P4 Protect . 21

2.2 BIER-Based Multicast in P4 . 23
2.2.1 BIER Overview . 24
2.2.2 BIER Fast Reroute (BIER-FRR) 25
2.2.3 BIER Scalability . 25
2.2.4 BIER Implementation in P4 30
2.2.5 Discussion and Outlook . 33

2.3 Additional Content . 35
2.3.1 P4 ABC . 35
2.3.2 Load Profile Negotiation . 35

Personal Contribution 43

Publications 51
1 Accepted Manuscripts (Core Content) 51

1.1 Robust LFA Protection for Software-Defined Networks (RoLPS) 51
1.2 P4-Protect: 1+1 Path Protection for P4 70
1.3 An Overview of Bit Index Explicit Replication (BIER) 77
1.4 Comparison of Fast-Reroute Mechanisms for BIER-Based IP

Multicast . 92

i

Contents

1.5 P4-Based Implementation of BIER and BIER-FRR for Scal-
able and Resilient Multicast 101

1.6 Hardware-Based Evaluation of Scalable and Resilient Multi-
cast With BIER in P4 . 145

1.7 Efficiency of BIER Multicast in Large Networks 161
1.8 Learning Multicast Patterns for Efficient BIER Forwarding with

P4 . 176
1.9 A Survey on Data Plane Programming with P4: Fundamentals,

Advances, and Applied Research 192
2 Accepted Manuscripts (Additional Content) 337

2.1 Implementation and Evaluation of Activity-Based Congestion
Management Using P4 (P4-ABC) 337

2.2 Load Profile Negotiation in Day-Ahead Planning for Compli-
ance with Power Limits . 350

ii

List of Abbreviations

ALD advanced loop detection
API application programming interface
BIER Bit Index Explicit Replication
BIER-FRR BIER fast reroute
BFD bidirectional forwarding detection
BFIR bit forwarding ingress router
BFR bit forwarding router
BFER bit forwarding egress router
CLI command line interface
DLF double link failure
eLFA explicit LFA
FRR fast reroute
IETF Internet Engineering Task Force
IGP Interior Gateway Protocol
IPMC IP multicast
LP link protection
LFA Loop-Free Alternate
MAT match-action-table
MPLS Multiprotocol Label Switching
NH next-hop
NP node protection
OF OpenFlow
PLR point of local repair
rLFA remote LFA
RoLPS Robust LFA Protection for Software-Defined Networks
SDN software-defined networking
SLF single link failure
SLF+SNF single link failures plus single node failures
SNF single node failure
TI-LFA topology-independent LFA

iii

Danksagung

Ganz besonderer Dank gilt meinem Doktorvater Prof. Dr. Michael Menth. Ihm habe
ich die vielen Momente des Kopfzerbrechens, arbeitsreiche Wochenenden und meine
Obsession für englische Kommaregeln zu verdanken. Aber noch viel wichtiger: Er gab
mir die Möglichkeit mich selbst weiterzuentwickeln und an unzähligen Herausforde-
rungen zu wachsen. Auch wenn seine hervorragende fachliche und wissenschaftliche
Betreuung vermutlich den größten Einfluss auf meine Dissertation hatte, so schätze ich
ihn doch vor allem für seine Persönlichkeit. Seine Art als Mensch und wie er den Lehr-
stuhl leitet haben dazu geführt, dass mir trotz aller Forschung, Diskussionen, Vorträge,
Papern und Betreuung von Abschlussarbeiten immer genug Zeit für meine Familie und
mich blieb. Deshalb nochmal direkt an Sie, Herr Menth: Vielen Dank!

Weiterhin möchte ich mich ausdrücklich bei meinem zweiten Gutachter Prof. Dr. Wolf-
gang Küchlin bedanken. Prof. Dr. Andreas Zell und Jun. Prof. Dr. Setareh Maghsudi
danke ich für ihre Bereitschaft, als Prüfer an meiner Disputation teilzunehmen.

Alle Paper dieser Dissertation entstanden durch intensive Zusammenarbeit mit Kol-
leg:innen und Student:innen. Namentlich möchte ich mich bei Steffen Lindner, Marco
Häberle, Frederik Hauser, Thomas Stüber, Erfan Mozaffariahrar, Lukas Osswald, Ben-
jamin Steinert, Jonas Primbs, Manuel Eppler und Gabriel Paradzik bedanken. Ganz
besonders möchte ich Gülsen Ergün-Karagkiozidou erwähnen und mich bei ihr bedan-
ken. Sie ist für mich viel mehr eine manchmal große und manchmal kleine Schwester
als nur eine Kollegin. Vielen Dank für dich als Mensch und deine Art! Ihr alle macht
den Lehrstuhl zu dem was er ist. Ich hatte immer das Gefühl mehr mit Freunden zu
arbeiten als mit Kollegen. Das nächste BIER [WRD+17] geht auf mich.

Zum Schluss aber nicht weniger wichtig möchte ich mich bei meiner Familie, mei-
nen Freunden, Bekannten, Fast-Food Lieferanten, Zweckgemeinschaften und Spotify
bedanken. Bei meinen Eltern, Eva und Herbert, die mit fast nichts nach Deutschland
kamen und so viel gegeben haben, um mir so viel zu ermöglichen, die immer für mich
da sind und meine Eigenheiten aushalten. Bei meinem kleinen Bruder Dominik, der

v

List of Abbreviations

nie zu müde ist mich zu triezen. Bei meinen besten Freunden, Maxi, Max und Alex oh-
ne deren unermüdliche Ablenkung mit Blödsinn meine Dissertation schon lange fertig
gewesen wäre. Und bei meiner Freundin Lelly, die so viel mehr für mich getan hat, als
sie ahnt. Außerdem bei Nathalie, Tone, Clara, Michi, Rachel, Jasmin, Sven, Alev und
alle anderen, die mir in den letzten fünf Jahren zur Seite standen.

Danke!

vi

Summary

Abstract

Traditional networking devices support only fixed features and limited configurability.
Network softwarization leverages programmable software and hardware platforms to
remove those limitations. In this context the concept of programmable data planes
allows directly to program the packet processing pipeline of networking devices and
create custom control plane algorithms. This flexibility enables the design of novel
networking mechanisms where the status quo struggles to meet high demands of next-
generation networks like 5G, Internet of Things, cloud computing, and industry 4.0. P4
is the most popular technology to implement programmable data planes.

However, programmable data planes, and in particular, the P4 technology, emerged
only recently. Thus, P4 support for some well-established networking concepts is still
lacking and several issues remain unsolved due to the different characteristics of pro-
grammable data planes in comparison to traditional networking. The research of this
thesis focuses on two open issues of programmable data planes. First, it develops re-
silient and efficient forwarding mechanisms for the P4 data plane as there are no satis-
fying state of the art best practices yet. Second, it enables Bit Index Explicit Replica-
tion (BIER) in high-performance P4 data planes. BIER is a novel, scalable, and effi-
cient transport mechanism for IP multicast traffic which has only very limited support
of high-performance forwarding platforms yet.

The main results of this thesis are published as 8 peer-reviewed and one post-publication
peer-reviewed publication. The results cover the development of suitable resilience
mechanisms for P4 data planes, the development and implementation of resilient BIER
forwarding in P4, and the extensive evaluations of all developed and implemented
mechanisms. Furthermore, the results contain a comprehensive P4 literature study.
Two more peer-reviewed papers contain additional content that is not directly related

vii

Summary

to the main results. They implement congestion avoidance mechanisms in P4 and de-
velop a scheduling concept to find cost-optimized load schedules based on day-ahead
forecasts.

The majority of the research related to the main results have been funded by the Deutsche
Forschungsgemeinschaft (DFG) in the context of the research project ”Future Internet
Routing (FIR)“ under grand ME2727/1-2.

Kurzfassung

Herkömmliche Netzwerkgeräte unterstützen nur einen festen Funktionsumfang und ha-
ben begrenzte Konfigurierbarkeit. Network softwarization nutzt programmierbare Soft
ware- und Hardware-Plattformen, um diese Einschränkungen aufzuheben. In diesem
Kontext erlaubt das Konzept der programmable data planes die direkte Programmie-
rung der Paketverarbeitungspipeline von Netzwerkgeräten und die Verwendung benut-
zerdefinierter Algorithmen für die control plane. Diese Flexibilität ermöglicht die Ent-
wicklung neuartiger Netzwerkmechanismen, wo der Status quo Schwierigkeiten hat,
die hohen Anforderungen von Netzwerken der nächsten Generation wie 5G, Internet
of Things, Cloud Computing und Industrie 4.0 zu erfüllen. P4 ist die am Weitesten
verbreitete Technologie zur Implementierung von programmable data planes.

Programmable data planes und insbesondere die P4-Technologie wurden jedoch erst
vor kurzem entwickelt. Daher fehlt es noch an P4-Unterstützung für einige etablierte
Netzwerkkonzepte, und mehrere Probleme blieben bisher aufgrund der unterschied-
lichen Eigenschaften von programmable data planes im Vergleich zu traditionellen
Netzwerken ungelöst. Die Forschung in dieser Arbeit konzentriert sich auf zwei of-
fene Fragen zu programmable data planes. Erstens werden widerstandsfähige und ef-
fiziente Weiterleitungsmechanismen für die P4 data plane entworfen und implemen-
tiert, da es bisher noch keine zufriedenstellenden Best Practices gibt. Zweitens wird
BIER für hochleistungsfähigen P4 data planes entwickelt. Bit Index Explicit Replica-
tion (BIER) ist ein neuartiger, skalierbarer und effizienter Transportmechanismus für
IP-Multicast-Verkehr, der bisher nur in sehr begrenztem Umfang von Hochleistungs-
geräten unterstützt wird.

Die Hauptergebnisse dieser Arbeit wurden in 8 peer-review und einer post-publication-
peer-review Publikation veröffentlicht. Die Ergebnisse umfassen die Entwicklung ge-
eigneter Resilienz-Mechanismen für die P4 data planes, die Entwicklung und Imple-

viii

mentierung von widerstandsfähiger BIER-Weiterleitung in P4 und die umfangreichen
Evaluierungen aller entwickelten und implementierten Mechanismen. Darüber hinaus
enthält die Forschungsarbeit eine umfassende P4-Literaturstudie. Zwei weitere peer-
review Arbeiten enthalten zusätzliche Inhalte, die nicht direkt mit den Hauptergebnis-
sen dieser Arbeit zusammenhängen. Sie implementieren Mechanismen zur Vermei-
dung von congestion in der data plane in P4 und entwickeln ein Planungskonzept, um
kostenoptimierte Lastpläne auf Basis von Day-Ahead-Prognosen zu erstellen.

Der Großteil der Forschungsarbeiten zu den Hauptergebnissen wurde von der Deut-
schen Forschungsgemeinschaft (DFG) im Rahmen des Forschungsprojekts ”Future In-
ternet Routing (FIR)“ unter dem Förderkennzeichen ME2727/1-2 gefördert.

ix

List of Publications

My personal contributions to all publications (§ 6 Abs. 2 Satz 3 der Promotionsord-
nung) can be found in the appendix.

Accepted Manuscripts (Core Content)

1. Daniel Merling, Steffen Lindner, and Michael Menth. Robust LFA Protection
for Software-Defined Networks (RoLPS) [MLM21b]. IEEE Transactions on

Network and Service Management (TNSM), vol. 18, pp. 2570-2586, 2021. The
published version of this publication can be found in the Appendix 1.1. The pa-
per is also available online at the following URL: https://doi.org/10.1109/
TNSM.2021.3090843

2. Steffen Lindner, Daniel Merling, Marco Häberle, and Michael Menth. P4-Protect:
1+1 Path Protection for P4 [LMHM20]. Proceedings of the 3rd P4 Workshop in

Europe, pp. 21-27, 2020. The published version of this publication can be found
in the Appendix 1.2. The paper is also available online at the following URL:
https://doi.org/10.1145/3426744.3431327

3. Daniel Merling, Michael Menth, Nils Warnke, Toerless Eckert. An Overview of
Bit Index Explicit Replication (BIER) [MMWE18]. IETF Journal, 2018. The
published version of this publication can be found in the Appendix 1.3 and on-
line at the following URL: https://www.ietfjournal.org/an-overview-
of-bit-index-explicit-replication-bier/. This publication has been
subject only to post-publication peer review.

4. Daniel Merling, Steffen Lindner, and Michael Menth. Comparison of Fast-
Reroute Mechanisms for BIER-Based IP Multicast [MLM20a]. Proceedings

of Seventh International Conference on Software Defined Systems (SDS), Paris,
France, 2020, pp. 51-58. The published version of this publication can be found

xi

https://doi.org/10.1109/TNSM.2021.3090843
https://doi.org/10.1109/TNSM.2021.3090843
https://doi.org/10.1145/3426744.3431327
https://www.ietfjournal.org/an-overview-of-bit-index-explicit-replication-bier/
https://www.ietfjournal.org/an-overview-of-bit-index-explicit-replication-bier/

List of Publications

in the Appendix 1.4. The paper is also available online at the following URL:
https://doi.org/10.1109/SDS49854.2020.9143935.

5. Daniel Merling, Steffen Lindner, and Michael Menth. P4-Based Implementa-
tion of BIER and BIER-FRR for Scalable and Resilient Multicast [MLM20b].
Journal of Network and Computer Applications (JNCA), vol. 169, 2020. The
published version of this publication can be found in the Appendix 1.5. The pa-
per is also available online at the following URL: https://doi.org/10.1016/
j.jnca.2020.102764

6. Daniel Merling, Steffen Lindner, and Michael Menth. Hardware-Based Evalu-
ation of Scalable and Resilient Multicast With BIER in P4 [MLM21a]. IEEE

Access, vol. 9, pp. 34500-34514, 2021. The published version of this publica-
tion can be found in the Appendix 1.6. The paper is also available online at the
following URL: https://doi.org/10.1109/ACCESS.2021.3061763

7. Daniel Merling, Thomas Stüber, and Michael Menth. Efficiency of BIER Mul-
ticast in Large Networks [MSM22]. Accepted for publication in IEEE Trans-

actions on Network and Service Management (TNSM). The most recent version
of this publication can be found in the Appendix 1.7.

8. Steffen Lindner, Daniel Merling, and Michael Menth. Learning Multicast Pat-
terns for Efficient BIER Forwarding with P4 [LMM22]. Accepted for publi-

cation in IEEE Transactions on Network and Service Management (TNSM). The
most recent version of this publication can be found in the Appendix 1.8.

9. Frederik Hauser, Marco Häberle, Daniel Merling, Steffen Lindner, Vladimir Gure-
vich, Florian Zeiger, Reinhard Frank, and Michael Menth. A Survey on Data
Plane Programming with P4: Fundamentals, Advances, and Applied Re-
search [HHM+23]. Journal of Network and Computer Applications (JNCA),
vol. 212, 2023. The most recent version of this publication can be found in the
Appendix 1.9. It is also available as preprint on arXiv: https://arxiv.org/

abs/2101.10632.

Accepted Manuscripts (Additional Content)

10. Michael Menth, Habib Mostafaei, Daniel Merling, and Marco Häberle. Imple-
mentation and Evaluation of Activity-Based Congestion Management Using

xii

https://doi.org/10.1109/SDS49854.2020.9143935
https://doi.org/10.1016/j.jnca.2020.102764
https://doi.org/10.1016/j.jnca.2020.102764
https://doi.org/10.1109/ACCESS.2021.3061763
https://arxiv.org/abs/2101.10632
https://arxiv.org/abs/2101.10632

P4 (P4-ABC) [MMMH19]. Future Internet, vol. 11, 2019. The published ver-
sion of this publication can be found in the Appendix 2.1. The paper is also avail-
able online at the following URL: https://doi.org/10.3390/fi11070159

11. Florian Heimgärtner, Sascha Heider, Thomas Stüber, Daniel Merling, and Michael
Menth. Load Profile Negotiation in Day-Ahead Planning for Compliance
with Power Limits [HHS+19]. Proceedings of the ETG Kongress, pp. 1-6,
2019. The published version of this publication can be found in the Appendix 2.2.
The paper is also available online at the following URL: https://ieeexplore.
ieee.org/document/8836012

xiii

https://doi.org/10.3390/fi11070159
https://ieeexplore.ieee.org/document/8836012
https://ieeexplore.ieee.org/document/8836012

1 Introduction & Overview

In the past years, network softwarization became an important research field in the area
of communication networks. It offers solutions where the status quo struggles to meet
latency, bandwidth, flexibility, and availability demands of next-generation communi-
cation networks like 5G, Internet of things, cloud computing, and industry 4.0.

Traditional networks consist of devices, e.g., routers, switches, or firewalls, with sup-
port for only very specific protocols, and mechanisms. Other functionalities that may
be desired by network operators are not supported and manufacturers allow only very
limited configurability of the devices.

Network softwarization is a novel networking paradigm that reduces the dependence
on the manufacturers. It enables new flexibility for network operators to design and
implement networking services, protocols, and functions. The core idea is that network
devices become programmable. That is, their functionality can be adapted by network
operators without the need to change the underlying platform or buy other devices when
demands change.

In the following, I will further specify the context of my thesis and describe its ob-
jectives. That is, I will introduce three highly-relevant concepts and technologies, i.e.,
software-defined networking (SDN), data plane programming with P4, and BIER. Af-
terwards, I describe the objectives of this thesis and briefly summarize its results.

1.1 Software-Defined Networking and Data Plane
Programming

Software-defined networking (SDN) is a well-known and important concept in the con-
text of network softwarization. Figure 1.1 compares SDN and traditional networking.

Networking devices consists of a packet processor, i.e., the data plane, which is steered
by the control plane. In traditional networking devices data plane and control plane

1

1 Introduction & Overview

Traditional
networking

Control plane

SDN with fixed-
function data

plane

Data plane

Control plane

APIAPI

Agent

Control plane

Data plane

SDN with
programmable

data plane

Data plane

API
ProgrammabilityProgrammabilityProgrammability

Figure 1.1: Comparison of traditional networking, SDN with fixed-function data
planes, and SDN with programmable data planes (figure from Hauser et
al. [HHM+23]).

are tightly coupled and often located on the same device. The control plane offers user
interfaces like web interfaces, command line interfaces (CLIs), or application program-
ming interfaces (APIs) through which network operators configure the device. How-
ever, configuration is limited to specific actions through predefined interfaces by the
manufacturer and there is no direct access to either control plane or data plane.

SDN decouples data plane and control plane. That is, the data plane is extended by an
API that allows network operators to directly configure it with custom software-based
control plane algorithms. This significantly increases flexibility because the complex
distributed control plane of traditional networking devices can be replaced by a central-
ized control plane with a comprehensive view of the network and custom functionali-
ties. Network operators program the control plane so that it configures the data plane by
calling predefined actions through the data plane API. This is called SDN with a fixed
function data plane. OpenFlow (OF) [MAB+08] is the most popular SDN technology
with fixed function data planes.

However, flexibility is still limited since API and actions are predefined and there is still
no direct access to the data plane. The next step in introducing more flexibility is data
plane programming, i.e., SDN with a programmable data plane. There, the data plane is
described by software, e.g., a program, and custom APIs allow its configuration during
network runtime by a custom control plane. P4 (Programming Protocol-Independent
Packet Processors) [BDG+14] is the most widespread data plane programming tech-
nology.

P4 and data plane programming in general, have a disrupting impact on building and

2

1.2 Programmable Protocol-Independent Packet Processor (P4)

operating communication networks. It enables full flexibility, i.e., data plane, control
plane, and APIs are defined by the network operators. Programmable, high-performance
hardware gives users the opportunity to create custom packet processing algorithms and
control mechanisms without manufacturer-dependence. This enables many opportuni-
ties for innovation in industry and academia.

1.2 Programmable Protocol-Independent Packet Processor
(P4)

P4 [BDG+14] is both an architecture and programming language to describe data
planes. We published a comprehensive literature study on P4 [HHM21] with 519 ref-
erences which is also part of this thesis. It includes thorough descriptions of the P4
ecosystem, tutorials, examples, and comparisons to other technologies so that readers
can easily place P4 in the wider context of SDN. Furthermore, we reviewed hundreds
of research papers with and on P4 and summarize their contents. The following part
briefly summarizes the paper and gives an introduction to P4.

P4 is a high-level programming language to describe data planes. Target-specific com-
pilers translate the P4 programs into binaries for the particular P4-programmable de-
vice, i.e., P4 target. To that end, P4 leverages an abstract model for the packet process-
ing pipeline, which is shown in Figure 1.2.

D
ep

ar
se

r

Action

Action

Extern

S A

R

Port0

Portn

...
Port0

Portn

...

Control plane

Parser Control blocks

P4 processing pipeline

Match-
action
table

Data plane API

Ingress Egress

Headers
Metadata

Packet

Figure 1.2: Simplified P4 processing pipeline (adjusted from Figure 5 from Hauser et
al. [HHSM20]).

The P4 processing pipeline consists of a programmable parser, a match-action pipeline,
and a programmable deparser. The parser is based on a programmable finite-state ma-
chine. Users can define custom headers and parsing schemes, e.g., for different header

3

1 Introduction & Overview

structures. The parser deseralizes the packet and extracts header information, custom
metadata, e.g., intermediate calculations, and intrinsic metadata, e.g., timestamps and
ingress port number, into variable-like fields for later processing.

The match-action pipeline consists of programmable match-action-tables (MATs). They
decide which actions are applied to a packet. That is, header or metadata fields are com-
pared with entries of a table and upon a match a predefined action is executed. Users
can define custom actions, e.g., dropping a packet or changing header fields, match
fields, e.g., the destination IP address in the packet header, and parameters. The P4
program describes the structure of the MAT, i.e., the match fields and actions. The
MAT is then filled with entries by the control plane. This gives the users full control
over the behavior of the packet processing pipeline and even complex, novel packet for-
warding and protocols can be implemented. P4 targets may introduce platform-specific
actions and functionalities, e.g., registers, cryptographic functions, or port monitoring.
Finally, the deparser serializes the packet according to the processing in the match-
action pipeline.

1.3 Bit Index Explicit Replication (BIER)

IP multicast (IPMC) delivers one-to-many traffic like live-streaming, financial broad-
cast data, IPTV, or multicast VPN. To that end, IPMC is organized into multicast
groups. Core devices maintain multicast group-specific information to which neigh-
bors packets should be forwarded. Thus, traditional IPMC has three scalability issues.
First, forwarding information occupy extensive storage of core devices. Second, when-
ever IPMC groups change, forwarding information is updated, which requires signifi-
cant signalling effort. Third, when the topology changes or a link or node fails, many
devices may require an update.

Bit Index Explicit Replication (BIER) [WRD+17] was proposed by the Internet Engi-
neering Task Force (IETF) as an efficient and scalable transport mechanism for mul-
ticast traffic that does not suffer the aforementioned downsides. That is, BIER moves
forwarding information for IPMC groups from core devices to the packet header to keep
the core network stateless. Section 2.2.1 contains a detailed introduction of BIER.

4

1.4 Research Objectives

1.4 Research Objectives

SDN, and in particular, programmable data planes, have significant advantages over tra-
ditional networks. However, both technologies are relatively new. Thus, several issues
remain unsolved, which reduce efficiency and opportunities. This thesis focuses on two
main objectives that tackle open issues of SDN and programmable data planes.

The first objective is to develop resilient forwarding mechanisms for the data plane
in SDN. Legacy networks have a variety of different resilience mechanisms to harden
packet forwarding against failures. Due to the different networking paradigm in SDN,
some mechanisms cannot be easily transferred from legacy to SDN, or their operation is
inefficient. As a result, there are no satisfying state of the art best practices for resilience
of data plane traffic in SDN.

This objective is separated into three main issues. First, we design suitable mecha-
nisms with the characteristics of SDN in mind, e.g., separated data plane and control
plane. Second, those mechanisms should be implementable in P4, the state of the art
programmable data plane technology. This is a serious challenge due to the limited
hardware support and strong constraints of existing platforms on packet forwarding
operations to maintain high forwarding rates. Finally, we perform comprehensive eval-
uations of the designed mechanisms to show their capabilities and limitations.

The second objective of this thesis is the support of BIER in P4. SDN platforms
and P4 support traditional multicast with its limitations described in Section 1.3. At
the time of writing this thesis, BIER is not natively supported by any SDN platform.
However, the interest in BIER by industry and academia is significantly increasing and
serious undertakings by the IETF BIER working group aim at developing BIER even
further to make it the state of the art multicast transport mechanism. The goals of this
objective are twofold.

First, we develop a BIER-based forwarding scheme in P4. This enables BIER-based
forwarding and its advantages in comparison to traditional IPMC in SDN. Second, we
perform extensive evaluations of BIER in both, simulative environments, and hardware-
based testbeds, with regard to its efficiency and scalability.

5

1 Introduction & Overview

1.5 Research Context

Most research in this thesis was funded by the Deutsche Forschungsgemeinschaft (DFG)
under grant ME2727/1-2. This research project with the title ”Future Internet Routing
(FIR)“ aims at developing and evaluating novel forwarding mechanisms with respect
to demands of novel network infrastructures.

All research was done in collaboration with colleagues. A description of the contribu-
tions to the overall work by my colleagues and me can be found in the appendix.

1.6 Research Results

This thesis summarizes the work of 11 publications which can be found in the appendix.
Chapter 2 describes and discusses research with respect to the two main objectives
and additional secondary results of this thesis. Each main objective contains multiple
contributions. We explain the context and foundations, describe the research approach
and the results, and discuss their relevance. Now we give an overview on the research
and the results.

One contribution of this thesis is the P4 literature study [HHM+23]. It contains a com-
prehensive overview of research on P4 and projects with P4. Especially from the re-
view of existing resilience and multicast mechanisms we derived the open issues of
SDN with programmable data planes, and therefore, the two main objectives of this
thesis. Thus, the P4 survey summarizes related work and analyzes the two aforemen-
tioned research areas to gain meaningful insights and identify open research potential.
Throughout the remainder of this document, it serves as a reference to place the re-
search in a wider context and is not describe any further.

The first main objective, i.e., resilience in SDN with P4, is covered in Section 2.1.
One significant contribution is the development of fast 1:1 protection in SDN based
on P4 with extensive evaluations [MLM21b] in Section 2.1.1. We developed a local
rerouting scheme, based on popular legacy technology, that protects against any single
component failure and most double failures, and detects and stops looping traffic, i.e.,
loops, in any failure scenario. Thereby, it requires only very little overhead, i.e., at
most only one additional tunnel header, and only very few additional forwarding entries
in core nodes in the network. The evaluations show that it outperforms state of the
art legacy technologies and other SDN-based resilience mechanisms. Furthermore,

6

1.6 Research Results

we implemented this mechanism on high-performance P4-programmable hardware and
showed its feasibility in a hardware-based 100 Gb/s line rate1 testbed. The results show
that downtime due to failures can be reduces to under 1 ms, and that loops are detected
and prevented correctly.

The second contribution is the development of a 1+1 protection scheme in P4 [LMHM20]
in Section 2.1.2. Thereby, traffic is forwarded over two disjoint paths so that traffic is
delivered even if one path is interrupted. 1+1 protection is preferably used in scenarios
with time-sensitive traffic, like live streaming. The evaluations prove its feasibility in a
hardware-based testbed.

The source codes of both projects is publicly available for the benefit of fellow re-
searches and developers. Furthermore, results were discussed with researchers from
industry, e.g., on IETF, and/or joint projects.

The second main objective, i.e., BIER support in P4, is described in Section 2.2. The
first contribution is the successful development of BIER prototypes in P4 [MLM20b,
MLM21a]. Due to the complex nature of BIER forwarding this proved to be a serious
challenge. We describe the process and the results in detail in Section 2.2.4. We imple-
mented BIER and BIER fast reroute (BIER-FRR) [MLM20a], a novel BIER resilience
scheme that is a contribution of this thesis (see Section 2.2.2), for a P4-programmable
software switch, and a high-performance, P4-programmable switching ASIC with 100
Gb/s line rate. The results show the feasibility of BIER on 100 Gb/s line rate P4 hard-
ware with the overhead of capacity issues (see Section 2.2.4.2.1). That is, when BIER
traffic arrives at high rates and has many next-hops, additional processing capacity may
be required to prevent packet loss. However, the evaluations show that for realistic traf-
fic mixes of unicast and multicast, only very little additional capacity is required (see
Section 2.2.4.2.2).

A further contribution is the evaluation of the efficiency of BIER and BIER-FRR and
their scalability (see Section 2.2.3) [MSM22]. We showed that IPMC reduces the one-
to-many traffic amount in comparison to unicast. BIER is less efficient than IPMC, but
generates still significantly less traffic amount than unicast. We conducted comprehen-
sive evaluations to show the efficiency depends on different topologies and configura-
tion properties.

Finally, we enhanced BIER-based forwarding in P4 so that even less capacity is re-
quired to prevent packet loss (see Section 2.2.4.3) [LMM22]. To that end, we lever-

1Line rate is the typical communication speed of two connected devices.

7

1 Introduction & Overview

age machine learning strategies to learn traffic patterns so that forwarding can be opti-
mized.

All implementations are open-source, and the results were frequently presented and
discussed in the IETF and at other occasions.

Finally, Section 2.3 contains additional research without direct relation to the aforemen-
tioned main objectives of this thesis. In Section 2.3.1 we implemented activity-based
congestion management (ABC) for a P4 software platform and performed evaluations
[MMMH19]. We showed that ABC successfully achieves fairness among users for both
UDP and TCP traffic, even when some users try to actively gain an unfair advantage
over others. Thereby, ABC does not require per-flow or per-user state in core nodes.
In Section 2.3.2 we developed models to leverage flexibility in energy demands and
price forecasts to build operation schedulings that reduce or even minimize the overall
energy cost [HHS+19].

8

2 Results & Discussion

This chapter presents and discusses the results of this thesis. Section 2.1 contains re-
search on the first main objective of this thesis, i.e., fast protection of data plane traffic
in SDN with P4. Section 2.2 presents the second main objective which is research
on BIER with the goal to implement it in P4. Section 2.3 covers additional research
without direct relation to the main objectives of this thesis.

2.1 Protection of Data Plane Traffic in SDN with P4

Failure of network components have a negative impact on performance, e.g., availabil-
ity of services, throughput, or latency. Default forwarding paths are interrupted and data
packets may be dropped when the next-hop (NH) is unreachable. However, recompu-
tation of paths and updating the networking devices requires a considerable amount of
time.

To avoid packet loss in the meantime, legacy networks often leverage fast reroute (FRR)
mechanisms to reroute packets on precomputed backup paths during recomputation.
Raj et al. [RI07], Rai et al. [RMD05], and Papan et al. [PSPM17] present surveys
with a wide overview on FRR mechanisms for legacy networks. Santos da Silva et
al. [dSMSF15], and Chiesa et al. [CKR+21] survey FRR mechanisms for SDN. For
a detailed discussion on the content of those surveys, see the related work section of
Merling et al. [MLM21b]. We summarize that most mentioned mechanisms are either
complex, restricted to specific forwarding technologies or use-cases, require extensive
overhead, protect only the control plane, or are not easily applicable to SDN.

In the following, we summarize and discuss the research results of this thesis for effi-
cient data plane protection in SDN. First, we present Loop-Free Alternate (LFA)-based
1:1 protection in P4 that locally reroutes traffic around the failure. Afterwards, we de-
scribe 1+1 protection in P4 where traffic is always sent on two disjoint paths to the
destination. Finally, we discuss future research.

9

2 Results & Discussion

2.1.1 Robust LFA Protection for Software-Defined Networks (RoLPS)

In this section, we summarize and present the most important research results from
Merling et al. [MLM21b]. For more details please refer to the paper. First, we intro-
duce important foundations and the problem statement. Then, we present the research
objectives, the concept and implementation of Robust LFA Protection for Software-
Defined Networks (RoLPS), and evaluation results.

2.1.1.1 Foundations

We introduce LFAs, and describe loop detection.

2.1.1.1.1 Loop-Free Alternates Loop-Free Alternates (LFAs) [AZ08] are a well-known
FRR mechanism in legacy networks and are often used due to their simplicity and low
overhead. The point of local repair (PLR) locally reroutes packets to an alternative NH
if the default NH is unreachable. The alternative NH is called LFA and it has to be
selected in a way that it still has a working shortest path towards the destination despite
the failure.

LFAs can be link protecting or node protecting, while the latter also includes the former.
An LFA with link protection (LP) protects against the failure of the link between PLR
and NH by avoiding that link on its path towards the destination. An LFA with node
protection (NP) avoids the failed NH. However, LFAs cannot protect all destinations.

Remote LFAs (rLFAs) [BFP+15, SHB+17, CR15] increase the number of protected
destinations. rLFAs are remote nodes in the network that can still reach the destination.
The PLR adds a tunnel header to the affected packet such that it is rerouted over shortest
paths to the rLFA instead. There, the tunnel header is removed and the original packet
is forwarded towards the destination. There are LP rLFAs and NP rLFAs.

Finally, there are topology-independent LFAs (TI-LFAs) [LBF+22, FB17] with LP or
NP. TI-LFAs leverage an address stack of multiple intermediate nodes to explicitly
define paths towards remote nodes in the network that have a working shortest path
towards the destination.

10

2.1 Protection of Data Plane Traffic in SDN with P4

2.1.1.1.2 Loop Detection Braun et al. [BM16] found that all LFAs may cause loops
under severe failure conditions. Loops should be heavily avoided because they may
easily occupy 30-fold of the capacity of regular traffic. Therefore, Braun et al. [BM16]
present a loop detection mechanism based on a bitstring. Each node is assigned to a
position in that bitstring. Whenever a node reroutes a packet, it activates its bit. When
a node has to reroute a packet, but its own bit is already activated, the packet is dropped
instead. This mechanism requires significant header space in large networks.

2.1.1.2 Research Objectives

The objective was to create efficient and robust best practices for protection of data
plane traffic in SDN. We selected LFAs as a basis due to their popularity in legacy
networks, and their low overhead compared to other approaches. This objective consists
of three goals.

The first goal was to design an LFA-based mechanism that protects all destinations
against both single link failures (SLFs) and single node failures (SNFs) with only low
overhead. The research results in this thesis [MLM21b] and Braun et al. [BM16] show
that both LFAs and rLFAs cannot provide sufficient protection, i.e., protect all desti-
nations against both SLFs and SNFs all networks. We discuss those results in detail
in Section 2.1.1.4.2. TI-LFAs protect all destinations, but we showed1 that they may
be inefficient due to large header stacks [MLM21b]. Therefore, we did not consider
TI-LFAs any further. As a results, we developed a new type of LFAs with the desired
protection capabilities. We call them explicit LFAs (eLFAs) and present them in Sec-
tion 2.1.1.3.1.

The second goal was to design a suitable loop detection mechanism for SDN. In Sec-
tion 2.1.1.1.2 we presented the solution of Braun et al. [BM16]. However, this approach
may cause large headers because each node in the network requires a bit position. The
authors argue that bit positions may be reused to prevent large headers but this may
cause false positive detection of loops when different nodes that share a bit position
reroute a packet. Thus, we designed a more efficient loop-detection and prevention
mechanism which we present in Section 2.1.1.3.2.

The third goal was to implement this protection scheme in P4 and evaluate its effi-
ciency and feasibility. The target platform was a high-performance P4-programmable

1See Section V-D of Merling et al. [MLM21b])

11

2 Results & Discussion

switching ASIC with up to 3.2 Tb/s switching capacity, i.e., 100 Gb/s per link. This
is a notable contribution because most other P4-based FRR implementations which
we reviewed extensively in Hauser et al. [HHM+23], target only low-performance
platforms as high-performance targets impose additional constrictions on packet pro-
cessing to guarantee high throughput. We present the implementation concept in Sec-
tion 2.1.1.5.

2.1.1.3 Robust LFA Protection for Software-Defined Networks (RoLPS)

In this section, we present Robust LFA Protection for Software-Defined Networks
(RoLPS) [MLM21b]. First, we introduce the novel explicit LFAs (eLFAs) and advanced
loop detection (ALD). Then, we explain the concept of RoLPS-based protection.

2.1.1.3.1 Explicit LFAs Explicit LFAs (eLFAs) are remote nodes in the network. The
difference to rLFAs is that eLFAs are not restricted to shortest paths. Instead, the PLR
reaches an eLFA through an explicit tunnel. Thus, eLFAs can be nodes that are not
reachable via shortest paths anymore. Figure 2.1 shows an example topology with
link costs and a link failure where the PLR sends a packet towards the destination D.
First, we explain why LFAs and rLFAs cannot protect this destination. N is not an

4

DPLR

1

eLFA N
Explicit
tunnel

Default path
eLFA backup path

1 1

Figure 2.1: eLFAs leverage an explicit tunnel to send the packet to an arbitrary node
regardless of link costs (figure from Merling et al. [MLM21b]).

LFA because it forwards traffic towards D back to the PLR which creates a traffic loop
between PLR and N. Furthermore, the node eLFA is not an rLFA because the shortest
path from the PLR to the eLFA crosses the broken link. Therefore, we leverage an
explicit tunnel from the PLR over N to the eLFA.

Explicit tunnels are implemented with additional forwarding entries in tunnel nodes.
To that end, the eLFA gets an unique IP address. When the PLR reroutes a packet, it

12

2.1 Protection of Data Plane Traffic in SDN with P4

adds a tunnel header to the packet. The IP address in the tunnel header is the unique IP
of the eLFA. Nodes on the tunnel path forward the packet according to tunnel-specific
forwarding entries. The eLFA removes the tunnel header and forwards the original
packet

2.1.1.3.2 Advanced Loop Detection The loop detection from Braun et al. [BM16]
requires large headers or may drop packets erroneously. We present advanced loop
detection (ALD) which requires significantly less header space.

Advanced loop detection (ALD) requires a counter in the packet header. It allows
packets to be rerouted n times. Upon the next reroute, the packet is dropped instead.
Users may configure ALD with a large n, but we perform the evaluations in this thesis
with n = 2 which is implementable by a single bit. We show in Section 2.1.1.4.2 that
this is sufficient to detect and drop all loops in single failure scenarios and most loops
in scenarios with multiple failures.

2.1.1.3.3 Concept of RoLPS-Based Protection RoLPS leverages the novel eLFAs and
ALD to protect data plane traffic against any single component failure. To reduce over-
head, it relies on less complex LFA-types if possible. For example, an eLFA is used
only when there is no LFA or rLFA to protect a destination. This prevents unnecessary
additional forwarding entries to implement explicit tunnels. ALD is used to detect and
stop loops under any failure condition. RoLPS can be configured with different pro-
tection degrees and complexity levels. For details see Merling et al. [MLM21b]. In
the following we present results only for RoLPS with LP and RoLPS with NP which
guarantee the highest degrees of protection.

2.1.1.4 Simulative Performance Evaluation

First, we describe the methodology. Then, we evaluate protection coverage and over-
head in terms of additional forwarding entries.

2.1.1.4.1 Methodology We evaluate several RoLPS-based protection on 205 commer-
cial, wide area, academic, and research networks from the Internet topology zoo
[KNF+11] and three data center topologies (DCell, fat-tree, BCube). We include link
costs in the evaluations because those networks are considered more challenging than

13

2 Results & Discussion

networks without link costs2. To that end, we leverage a full traffic matrix based on
shortest path. That is, each node sends a packet to each other node on shortest paths
and we count the number of packets that travel over each link, i.e., the link load. The
link cost of a link is the inverse of the link load multiplied by the larges link load in the
network3. For each topology we forward packets according to shortest paths4

2.1.1.4.2 Protection Coverage We consider four failure scenarios to evaluate LFAs,
rLFAs, and RoLPS. A failure scenario S ∈ {SLF, SNF,DLF, SLF+SNF} consists of
either all SLFs, SNFs, double link failures (DLFs), or single link failures plus single
node failures (SLF+SNF). We evaluate a full traffic matrix, i.e., a flow from each
source to each destination, and apply every failure from S that affects that flow. A
flow may be protected, unprotected or loop when it is affected by a failure. A flow is

”protected“ when the packet is successfully delivered due to rerouting. A packet may
be dropped for two reasons. First, if the packet is dropped and there is no physical
path to the destination we consider this scenario also as ”protected“ because the packet
would loop otherwise. Second, if the packet is dropped although the destination is still
reachable, this scenario is considered ”unprotected“. Finally, a packet may ”loop“. The

”coverage“ is the fraction of protected destinations. We summarize the results for every
considered FRR mechanism over all topologies and report the fraction of protected,
unprotected, and looped flows in a bar chart.

Figure 2.2 shows the results on the 208 topologies with link costs. We see the benefit
of rLFAs5 over LFAs5 in SLFs scenarios, i.e., 87% over 60% protected destinations.
However, only RoLPS-based mechanisms are able to protect all destinations. In SNFs
scenarios both, LFAs and rLFAs create a significant amount of loops, and both cannot
protect all destinations. RoLPS with LP protects only 93% of destinations while RoLPS
with NP achieves 100%. Both RoLPS mechanisms prevent loops.

In addition, we investigate protection coverage in scenarios with multiple failures al-
though such scenarios are often not considered in FRR because traffic is rerouted only
locally without further communication with other nodes. We see, that for DLFs, both

2Merling et al. [MLM21b] contains evaluations on the same topologies without link costs. The results
support the claims we present here.

3This normalizes link costs so that the smallest link cost is 1. More details on link cost computation are
found in Section V.A.3) of Merling et al. [MLM21b].

4RoLPS works for general destination-based forwarding but to reduce parameter space we limit evalu-
ations to shortest paths.

5We consider only LFAs and rLFAs with LP because coverage with NP is even lower.

14

2.1 Protection of Data Plane Traffic in SDN with P4

50

60

70

80

90

100

LF
A

s

rL
FA

s

R
oL

P
S

 w
/ L

P

R
oL

P
S

 w
/ N

PF
lo

w
 c

ov
er

ag
e

(%
) (i) SLF

50

60

70

80

90

100

LF
A

s

rL
FA

s

R
oL

P
S

 w
/ L

P

R
oL

P
S

 w
/ N

PF
lo

w
 c

ov
er

ag
e

(%
) (ii) SNF

50

60

70

80

90

100

LF
A

s

rL
FA

s

R
oL

P
S

 w
/ L

P

R
oL

P
S

 w
/ N

PF
lo

w
 c

ov
er

ag
e

(%
) (iii) DLF

50

60

70

80

90

100

LF
A

s

rL
FA

s

R
oL

P
S

 w
/ L

P

R
oL

P
S

 w
/ N

PF
lo

w
 c

ov
er

ag
e

(%
) (iv) SLF+SNF

Protected Unprotected Looped

Figure 2.2: Fraction of protected, unprotected, and looped traffic over 208 topologies
with link costs (adjusted from Figure 3.b) from Merling et al. [MLM21b]).

RoLPS with LP and RoLPS with NP, still protect around 95% of destinations while pre-
venting loops. LFAs and rLFAs cause loops and protection a significant lower fraction
of destinations, i.e., 65% and 82%. In the SLF+SNF scenario the results are similar.

2.1.1.4.3 Additional Forwarding Entries Each node maintains n−1 forwarding entries
in a network with n nodes for shortest path forwarding. LFAs and rLFAs work with
shortest paths and do not leverage additional forwarding entries which leads to lower
coverage. Therefore, we evaluate the average and maximum amount of additional for-
warding entries per node relative to n− 1 for protection variants that require additional
forwarding entries but protect all destinations. That is, RoLPS with LP and RoLPS with
NP and Multiprotocol Label Switching (MPLS) with facility-backup. MPLS-facility-

15

2 Results & Discussion

backup (MPLS-FB) is a state of the art FRR mechanism which can be used in SDN. It
has either LP, i.e., MPLS-FB-LP, or NP, i.e., MPLS-FB-NP, properties.

We evaluate the 208 topologies from the topology zoo with link costs6. We present the
results as a complementary cumulative distribution function (CCDF). Figure 2.3 shows
the results. RoLPS with LP requires only very few addtional forwarding entries. Only

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300
Additional entries x (%)

P
(X

 >
 x

)

avg
max

MPLS−FB−LP
MPLS−FB−NP
RoLPS w/ LP
RoLPS w/ NP

Figure 2.3: Relative increase in forwarding entries per node on 208 topologies with link
costs (adjusted from Figure 4.b) from Merling et al. [MLM21b]).

10% of networks require more than 8% of additional entries on average. Furthermore,
no network has a node that requires more than 80% of additional entries. MPLS-FB-
LP causes in 20% of networks around 65% additional entries on average, and 40% of
networks even have at least one node with 140% more additional entries.

RoLPS with NP installs only few additional entries. On average, 90% of nodes require
less than 25% of additional entries. Furthermore, there in no network that has a node
that requires more than 80% of additional state. MPLS-FB-NP causes at least 175%
more additional entries on average in 20% of networks. 50% of networks even contain
at least one node where number of entries increases by 300%.

2.1.1.5 RoLPS Implementation

In Hauser et al. [HHM21] we showed that most P4 projects are implemented for the P4
programmable software switch BMv2 [p4l19]. Most authors chose it as a target because

6see Merling et al. [MLM21b] for evaluations on topologies without link costs

16

2.1 Protection of Data Plane Traffic in SDN with P4

it is extendable with custom packet processing actions when the actions from the P4
specification are insufficient to implement very complex packet processing behavior,
like cryptographic operations or complex mathematical computations. However, the
throughput of the BMv2 is limited to around 900 Mb/s [Bas18]. Furthermore, such
modified P4 programs often cannot run on hardware targets with higher throughput
because those cannot be extended in the same way.

Our target was the Intel Tofino [Int22] which is a P4-programmable high-performance
switching ASIC with a capacity of 3.2 Tb/s. Such hardware targets impose additional
restrictions on the P4 program, e.g., the number of operations per packet, to achieve
high processing rates. Therefore, implementing a complex data plane for the Tofino is
a significant challenge. The Tofino is used in the Edgecore Wedge 100BF-32X [Edg17]
switch with 32 100 Gb/s ports which we use for our hardware-based evaluations.

The source code for the RoLPS data plane and control plane is publicly available7. Sec-
tion VI of Merling et al. [MLM21b] contains more details about the implementation.

2.1.1.6 Hardware-Based Performance Evaluations

In this section, we present results of the hardware-based evaluation. First, we explain
the evaluation setup for measurements of restoration time, followed by the results.
Then, we evaluate the loop detection.

2.1.1.6.1 Setup for Measurements of Restoration Time Figure 2.4 shows the topology
for the measurements of the restoration time. The evaluations focus on the Tofino
(see Section 2.1.1.5). It is connected to a EXFO FTB-1 Pro traffic generator [EXF19]
which generates up to 100 Gb/s of traffic8. Since we have access only to one Tofino
we implement the rest of the network with BMv2s (see Section 2.1.1.5). Therefore,
the traffic generator sends with only 100 Mb/s to not overload the BMv2s. This has no
impact on restoration time measurements. BMv2-1 and BMv2-2 are two NHs of the
Tofino. To resemble more realistic networks, we add five BMv2s and 10 links in the
additional network.

All devices, except for the traffic generator, are connected to a controller. It sets up
primary forwarding rules in all devices. We evaluate two scenarios. In the first scenario,

7https://github.com/uni-tue-kn/p4-lfa
8In a separate evaluation we confirmed that the RoLPS implementation achieves a throughput of 100

Gb/s on the Tofino with and without FRR. For details see Section VII.A. of Merling et al. [MLM21b].

17

https://github.com/uni-tue-kn/p4-lfa

2 Results & Discussion

Traffic generator

Tofino BMv2

Controller

Backu
p path

Pr
im

ar
y

pa
th

Additional
network

1 2

Figure 2.4: Topology for measurements of restoration time. The additional network
consists of five other BMv2s and 10 links (figure from Merling et al.
[MLM21b]).

the controller does not install any FRR rules. That is, when a device cannot forward
a packet because the NH is unreachable, it notifies the controller which recomputes
forwarding entries and updates the networking devices. In the second scenario, the
controller installs RoLPS with LP so that the shown backup path is used by the Tofino
when the primary NH is unreachable.

The traffic generator sends traffic to the Tofino which forwards the packets on the pri-
mary path to BMv2-1. Then, we disable the link between Tofino and BMv2-1 so that
the primary path is interrupted. We measure the time until BMv2-2 receives traffic
again after the deactivation of the primary link.

2.1.1.6.2 Restoration Time Measurements Figure 2.5 shows the average results of 10
runs and 95% confidence intervals. We see that without FRR the restoration time takes

86.3 0.64

0

25

50

75

100

w/o FRR w/ FRR

R
es

to
ra

tio
n

tim
e

(m
s)

Figure 2.5: Restoration time with and without FRR (figure from Merling et al.
[MLM21b]).

18

2.1 Protection of Data Plane Traffic in SDN with P4

around 86.3 ms with around 15 ms fluctuations up or down. Note that we measured
this time in a very small network with only 8 devices and a controller that does not
perform any other task. In realistic networks with many devices and heavier load on
the controller recomputation requires significantly more time possibly in the magnitude
of multiple seconds.

When FRR is activated, the restoration time drops to under 1 ms because the Tofino
immediately leverages backup forwarding rules to reroute the packet to BMv2-2 which
then forwards the packet to BMv2-1.

2.1.1.6.3 Setup for Loop Detection Evaluation Figure 2.6 shows the testbed for evalu-
ation of loop detection. The Tofino is connected to two BMv2s and a traffic generator.

Traffic generator

Tofino BMv2

Controller Primary path

Backup path

2

1

Figure 2.6: Setup for evaluation of loop detection (figure from Merling et al.
[MLM21b]).

The traffic generator sends with only 100 Mb/s to not overload the BMv2s9. All de-
vices, except the traffic generator, are connected to the controller. It sets up primary
forwarding entries and RoLPS with LP in all devices.

We deactivate the primary NH, i.e., BMv2-1, to simulate a SNF. However, we installed
RoLPS only with LP in the devices. Therefore, the Tofino will leverage its backup
entries to forward the traffic to BMv2-2 upon failure detection. BMv2-2 will also use
backup entries to send traffic back to the Tofino because the primary NH, i.e., BMv2-1,
is unreachable. As a result, the packets will loop between the Tofino and BMv2-2.

9This has no impact on the evaluation of loop detection.

19

2 Results & Discussion

We evaluate two scenarios. In the first scenario, ALD is activated and allows one reroute
(see Section 2.1.1.3.2). In the second scenario, ALD is deactivated. We report packet-
ins at the BMv2-2.

2.1.1.6.4 Loop Detection Figure 2.7 shows the packet arrivals at BMv2-2.

w/o ALD

w/ ALD

0 59 118 177 236
Packet arrival time (ms)

Figure 2.7: ALD successfully detects and drops loops (figure from Merling et al.
[MLM21b]).

We see that ALD successfully detects and drops the loops. That is, BMv2-2 receives
the packet after the first reroute from the Tofino. Then, it has to reroute the packet again
because the default NH is unreachable. This exceeds the configured reroute limit and
the packet is dropped. Without ALD, the packet loops between Tofino and BMv2-2
until its time-to-live (TTL) expires.

2.1.1.7 Conclusion and Discussion

We summarize the results of Merling et al. [MLM21b] and discuss future research.

2.1.1.7.1 Summary of the Results In Merling et al. [MLM21b] we presented a quick
and efficient FRR mechanism for the SDN data plane. It requires only very low over-
head in terms of additional forwarding entries compared to other state of the art mech-
anisms10 and protects against all single component failures. Furthermore, it detects
and stops all loops. We proved that RoLPS is implementable on state of the art high-
performance P4-programmable hardware, i.e., the Tofino, and it achieves a throughput
of 100 Gb/s per link. Furthermore, downtime after the detection of a failure is under 1
ms.
10In this summary we compared RoLPS only to MPLS-FB. Merling et al. [MLM21b] contains compar-

isons with more state of the art FRR mechanisms which support the results of this summary.

20

2.1 Protection of Data Plane Traffic in SDN with P4

2.1.1.7.2 Outlook 1:1 protection like RoLPS requires quick detection of a failure. The
Tofino offers a feature by which it detects port ups/downs to reroute packets quickly
(for details, see Section VI.C.1) of Merling et al. [MLM21b]). However, this is a
target-specific extension of the P4 features. That is, other targets require their own so-
lutions. In particular, there may be targets that do not support fast detection of port
up/down events. In such cases, operators need to establish bidirectional forwarding de-
tections (BFDs) between nodes. Two connected nodes regularly exchange BFD packets
to notify other participants about their liveliness. Future research could investigate on
restoration times in realistic hardware-based networks with BFDs or other mechanisms
when there is no target support for fast failure detection.

In general, RoLPS-based protection imposes only very little overhead in the network.
However, the evaluations show that there may be topologies with high overhead. Future
studies could evaluate the impact of topology structure, and other properties on the
efficiency of RoLPS which were not part of this study.

Visibility of the Results

An early prototype of RoLPS has been developed during my masterthesis [Mer17]
and published on the IEEE International Conference on Network Softwarization (IEEE
NetSoft) [MBM18]. During my Ph.D. thesis, RoLPS has been implemented and signif-
icantly refined, extended, and evaluated. The concept, evaluations, and implementation
were published as a journal paper in the Special Section on Design and Management
of Reliable Communication Networks of IEEE Transactions on Network and Service
Management [MLM21b] (Appendix 1.1) in 2021.

We presented and discussed the results on the KuVS Fachgespräch ”Network Soft-
warization“ in April 2022, and the IETF MPLS working group.

The source code of the Tofino-based prototype with a throughput of up to 100 Gb/s per
link and a restoration time of under 1 ms is publicly available11.

2.1.2 P4 Protect

In this section, we present results from Lindner et al. [LMHM20]. I only briefly sum-
marize the results because I was only secondary contributor to this work (see Sec-

11https://github.com/uni-tue-kn/p4-lfa

21

2 Results & Discussion

tion 1.6). First, I introduce the research objectives and then explain the solution con-
cept.

2.1.2.1 Research Objectives

1:1 FRR mechanisms like RoLPS switch to a backup path at the PLR only when the
default path is interrupted. Failure detection and rerouting may require some time. In
contrast, with 1+1 protection traffic is always carried over two disjoint paths. When
one path is interrupted, the destination still receives traffic over the unaffected path.
This is advantageous for time-critical traffic, e.g., live-streaming or VoIP. However,
1+1 protection requires backup capacity even in the failure free case. Thus, both, 1:1
protection and 1+1 protection, are beneficial for different use cases.

With RoLPS, we already presented a suitable 1:1 protection scheme for programmable
data planes. Therefore, the goal was to also develop a 1+1 protection mechanism for
SDN with programmable data planes.

2.1.2.2 1+1 Protection Mechanism

P4-Protect is a P4-based 1+1 protection scheme [LMHM20]. Figure 2.8 shows its
concept. A controller may set up a 1+1 protected connection between two endpoints.

PD

PIP-PTE PD

PD

PD

PIP-PTE PD
P PD

P PD

P4-Switch

IP-PTE

PTI PTE

P

PD Packet data Protection headerP IP tunnel to PTEIP-PTE

Figure 2.8: Concept of P4 protect (adjusted from Figure 1 from Lindner et al.
[LMHM20]).

We call this the protection tunnel. The protection tunnel ingress (PTI) adds a protection
header to the data packet and an IP header with the IP address of the protection tunnel
egress (PTE). The protection header contains a sequence number so that the PTE can
correctly order received packets. The packet is copied at the PTI and send over two
disjoint paths towards the PTE. Path selection and implementation is discussed in more
detail in Lindner et al. [LMHM20]. The PTE receives traffic on two paths. It leverages

22

2.2 BIER-Based Multicast in P4

the sequence number in the packet header to only accept in-order packets. Then, it
discards packet duplicates, removes the protection header from the other packet and
forwards the original payload further. If one path is interrupted by a failure, the PTE
will still receive traffic over the other path which ensures very low downtimes which is
crucial for time-sensitive traffic.

We implemented P4-Protect for the BMv212 and the Tofino13. The code is publicly
available. The hardware-based evaluations with 100 Gb/s line rate show the feasibility
of P4-Protect and its low overhead. For details, see Section 6 of Lindner et al. (2020)
[LMHM20].

2.1.2.3 Future Research

P4-Protect is designed in a way that it even provides 1+1 protection over the Internet
However, network operators have only very little influence on path selection and, in
particular, disjointness. Real-world evaluations could accurately assess the efficiency
of P4-Protect for such scenarios because isolated testbeds may omit several unknown
conditions and restrictions of real infrastructure.

Visibility of the Results

We published P4-Protect [LMHM20] and comprehensive evaluations on the P4 Work-
shop in Europe (EuroP4) in 2020 (see Appendix 1.2). We presented it at the workshop
and discussed the results. Furthermore, we made the implementation publicly avail-
able.

2.2 BIER-Based Multicast in P4

In this section, we summarize the research results of this thesis on BIER. More details,
explanations, and evaluations can be found in the respective papers. First, we give an
overview on BIER. Then, we present BIER fast reroute and evaluate the scalability
and efficiency of BIER. Afterwards, we briefly describe the BIER implementation in
P4 and present hardware-based performance evaluations. Finally, we discuss future
research.
12https://github.com/uni-tue-kn/p4-protect
13https://github.com/uni-tue-kn/p4-protect-tofino

23

2 Results & Discussion

2.2.1 BIER Overview

In Section 1.3 we explained the downsides of state-of-the-art IPMC. That is, the stateful
core network is continuously updated when subscribers or the topology changes. This
requires significant signaling effort, in particular, when failures hit the network.

The IETF propoesed Bit Index Explicit Replication (BIER) [WRD+17] as an efficient
and scalable transport mechanism for multicast traffic. In Merling et al. [MMWE18]
we give an overview and tutorial on BIER. At this point we briefly summarize the
content.

BIER is a domain-based, point-to-multipoint forwarding mechanism for IPMC traffic.
In contrast to traditional IPMC, it keeps the core network stateless, i.e., its core routers
do not maintain information that depends on the subscribers. Figure 2.9 shows the
layered architecture of BIER. When an IPMC packet enters the BIER domain at a

IPMC
source

Subscriber

Paths

1,2

Subscriber

1 2

BIER domain

BFIR BFER 1 BFER 2

BFR

IPM
C

layer

BIER

layer
R

outing
underlay

x BIER header with destinations

Figure 2.9: Layered BIER architecture (figure from Merling et al. [MLM21a]).

bit forwarding ingress router (BFIR), it is equipped with a BIER header. The BIER
header contains all destinations of the packet. That is, it contains a bitstring where each
destination in the BIER domain, i.e., bit forwarding egress router (BFER), is assigned
a position. If a specific BFER should receive a packet copy, its corresponding bit is
activated. In the BIER domain, bit forwarding routers (BFRs) replicate and forward
BIER packets towards all destinations of the BIER packet, i.e., BFERs, indicated in its
BIER header. They do so along paths from the unicast routing, i.e, the Interior Gateway
Protocol (IGP) which we call routing underlay in the following. Before forwarding a
packet to a particular neighboring BFR, the forwarding BFR clears the bits of BFERs
that are reached via other neighboring BFRs in the bitstring in the BIER header. This

24

2.2 BIER-Based Multicast in P4

prevents duplicates at the receivers. Finally, BFERs remove the BIER header from the
packet.

2.2.2 BIER Fast Reroute (BIER-FRR)

In Section 2.1 we described how to make unicast data plane traffic in SDN resilient.
Failures affect multicast traffic, too. However, as multicast traffic is distributed along
tree-like structures, a failure may disconnect entire subtrees, rendering many destina-
tions unreachable.

In Merling et al. [MLM20a] we developed and compared two approaches to protect
BIER traffic with fast reroute mechanism, i.e, BIER fast reroute (BIER-FRR). At this
point we only briefly describe both approaches and refer to the original paper for more
details [MLM20a].

The first BIER-FRR approach is based on LFAs. It reroutes BIER packets to alternative
NHs around the failure so that BIER traffic can be successfully delivered. Thereby, the
rerouting BFR adapts the bistrings in the BIER headers to avoid duplicates at receivers.
The second approach leverages unicast protection tunnels to all next-next-hop BFRs.
To that end, the rerouting BFR encapsulates copies of the BIER packet with unicast
headers. The destinations of those temporary unicast packets are the next-next-hop
BFRs downstream of the failure. Unicast routing usually has strong FRR capabili-
ties or fast recomputation of forwarding rules so that packets are still delivered at the
BFRs. At the BFRs the unicast headers are removed and the original BIER packets are
forwarded.

2.2.3 BIER Scalability

BIER stores the destinations of a packet in the BIER header. Thus, the header size
increases in larger networks. This rises questions with regard to the efficiency and scal-
ability of BIER since large packet headers are inefficient. In Merling et al. [MSM22]
we perform comprehensive evaluations to investigate the scalability of BIER. At this
point we summarize the paper and present only the most important results. That is,
we briefly explain how BIER is deployed in large networks and the resulting research
objective. Finally, we present results of the study with regards to overhead of BIER, its
traffic saving potentials and selection of reasonable BIER header size.

25

2 Results & Discussion

2.2.3.1 Subdomains

When BIER is deployed in a large network, the BIER domain is divided into multiple
subdomains to avoid large BIER headers. That is, the BFERs are divided into sets
with their own BIER headers. When an BFIR receives an IPMC packet, it sends a
separate BIER packet into the BIER domain for each subdomain that contains at least
one destination of the IPMC packet. This reduces the BIER header size to the maximum
subdomain size but forwards multiple BIER packets into the BIER domain for each
IPMC packet.

2.2.3.2 Research Objectives

In Merling et al. [MSM22] we evaluated the increase of traffic load in the network
when BIER with subdomains is used. That is, when a BFIR sends the BIER packet
copies to the subdomains, sometimes they are forwarded over the same link which is
contrary to the idea of multicast and adds additional load on the links. We investigate
the overhead of BIER with subdomains in comparison to traditional IPMC and how
much traffic is saved by BIER in comparison to unicast. Furthermore, we evaluate the
effect of the bitstring size in the BIER header since the BIER RFC [WRD+17] suggests
a range for that size but makes no comments on the effects and efficiency.

2.2.3.3 Clustering Algorithms

The assignment of BFERs to subdomains heavily influences the overall traffic load
within the BIER domain. Therefore, we briefly discuss the aspect of clustering a BIER
topology into subdomains. Please refer to Merling et al. [MSM22] for details.

The BIER RFC [WRD+17] does not specify any clustering algorithm. In Merling et
al. [MSM22] we present an integer linear program (ILP) that computes an optimal
assignment so that subdomains are of equal size14, and that the overall traffic load is
minimized. However, the ILP is solvable in reasonable time only in small topologies,
i.e., in moderate-size and large topologies no solution was found even after several
hours.

Therefore, we described an heuristic to approximate the solution of the ILP. The basic
idea is to initially chose n random subdomain centers in the topology and then assign

14This prevents subdomains with extensive size, and therefore, large BIER headers.

26

2.2 BIER-Based Multicast in P4

BFERs in a round robin manner to the nearest subdomain center whose subdomain
is not full, yet. Afterwards, BFERs are swapped between subdomains to improve the
assignment.

We compared the heuristic to ILP solutions in small networks and showed that the
heuristically calculated results differ less then 1% from the optimum15. Therefore, we
present evaluations based on the heuristic clustering in the following. Furthermore,
we designed optimal cluster algorithms for selected topologies, i.e., full-mesh, ring,
binary-tree, and line, which we use for those topologies.

2.2.3.4 Overall Traffic in Networks of Different Sizes

In this section we evaluate the overall traffic amount in different topologies and network
sizes. First, we explain the methodology. Then, we present results for BIER compared
to traditional IPMC, and BIER compared to unicast. Finally, we discuss the results.

2.2.3.4.1 Methodology We evaluate selected network types, i.e., full-mesh, ring, binary-
tree, line, and randomly generated mesh-d16 d ∈ {2, 4, 6, 8} networks. We consider
networks of sizes k ∈ {256, 512, 1024, 2048, 4096, 8192}. Every node is a BFIR, BFR,
and BFER. We cluster the topologies into n ∈ {1, 2, 4, 8, 16, 32} subdomains of sizes
256, i.e., the default BIER bitstring length, and send an IPMC packet from any node in
the network to all other nodes.

We evaluate the overall traffic load which is the number of hops that are required to
distribute all packet. We separately report results of overall traffic load of BIER relative
to both traditional IPMC and unicast. This allows to assess the overhead of BIER in
comparison to traditional IPMC, and the traffic saving potentials of BIER compared to
unicast.

We repeat all evaluations 10 times and report average results. We computed 95% con-
fidence intervals but omit them in the figures because they were very small.

2.2.3.4.2 BIER Overhead Figure 2.10 presents the overall traffic load of BIER relative
to IPMC. In general, we see that BIER increases the traffic volume in comparison
to IPMC, i.e., the relative traffic load is always greater or equal to one. This is not

15See Section V.C. of Merling et al. [MSM22] for details of the evaluation.
16In a mesh-d network the average node degree is d.

27

2 Results & Discussion

1

2

4

6
8

10
12

256 512 1024 2048 4096 8192
Number of nodes

R
el

at
iv

e
ov

er
al

l t
ra

ffi
c Line

Ring
Binary tree
Mesh-2
Mesh-4
Mesh-6
Mesh-8

Figure 2.10: BIER has a higher overall traffic load than IPMC(figure from Merling et
al. [MSM22]).

surprising because for every IPMC packet BIER sends an individual BIER packet to
each subdomain. In binary-trees, and mesh-2 topologies the traffic load increase is
always below 40% although it is often significantly smaller. For mesh-4, mesh-6, mesh-
8 the traffic volume rises linearly from no increase in topologies of size 256 to up to a
doubling of the traffic amount in very large topologies with 8192 nodes. In very large
line and ring topologies the traffic volume increases by far the most to up to 12 times
the amount compared to IPMC.

2.2.3.4.3 BIER Traffic Saving Potentials Figure 2.11 shows the results for BIER in
comparison to unicast. In general, BIER decreases the traffic volume in comparison

0.0

0.2

0.4

0.6

256 512 1024 2048 4096 8192
Number of nodes

R
el

at
iv

e
ov

er
al

l t
ra

ffi
c Line

Ring
Binary tree
Mesh-2

Mesh-4
Mesh-6
Mesh-8

Figure 2.11: BIER has a significantly lower traffic load then unicast (figure from Mer-
ling et al. [MSM22]).

28

2.2 BIER-Based Multicast in P4

to unicast significantly. The effect ranges from almost 99% reduction in line and ring
topologies to around 50% decrease in very large mesh-8 topologies. The figure shows
the interesting effect that the relative overall traffic of BIER compared to unicast in-
creases with growing network size. We explain this effect by the increasing number
of required subdomains in larger networks. Therefore, more packets are sent for each
IPMC packet, which increases the overall traffic.

2.2.3.4.4 Discussion The results show that in terms of traffic volume BIER is a com-
promise between IPMC which sends only one packet per involved link and unicast
which sends one individual packet per destination. BIER causes more traffic than
IPMC, which is not surprising. However, the increase is reasonable, especially be-
cause IPMC comes with all the disadvantages, described in Section 1.3, which lead to
the development of BIER in the first place. Still, BIER significantly reduces the traffic
amount in comparison to unicast in all topologies and network sizes.

2.2.3.5 BIER Header Size

Now, we evaluate the effect of the BIER header size. That is, large bitstrings in the
BIER header potentially reduce the number of required subdomains. However, a large
header also increase the traffic amount in the network that is not payload. Therefore,
we measure the absolute overall traffic that is sent through a BIER domain in a network
with 8192 nodes with different BIER header sizes. We assume the payload to be 500
bytes, i.e., the average packet size in the internet [L+12]. We omit mesh-6 and mesh-8
topologies because results were very similar to mesh-2 and mesh-4. Figure 2.12 shows
the results. We see different effects for line and ring topologies, and all other topologies.
In line and ring topologies the absolute overall traffic reduces with increasing header
size up around 2048 bits from which it stays almost the same for larger headers. That is
because at this point the benefit of fewer subdomains is smaller than the larger header
overhead. For all other topologies the traffic volume slowly grows with increasing
header size. Therefore, we argue that for such topologies the optimal bitstring size is
between 256 and 1024 bits.

In general, we argue that the optimal bitstring size depends on the topology. In par-
ticular, the average shortest path lengths, highly influences the efficiency. Topologies
with long average shortest path length, i.e., line and ring topologies, benefit from larger

29

2 Results & Discussion

●

●

●
● ● ●

●
● ● ●

●

●

0

100

200

300

400

256 512 1024 2048 4096 8192
Bitstring size (Bits)

A
bs

ol
ut

e
ov

er
al

l t
ra

ffi
c

(G
B

)

●

●

Ring
Line
Binary tree
Mesh−2
Mesh−4

Figure 2.12: Effect ofBIERheader size on the overall traffic volume (figure from Mer-
ling et al. [MSM22]).

headers because it is cheaper to forward one large packet along a long path then to for-
ward multiple small packets. In contrast, topologies with shorter average shortest paths
benefit from smaller header sizes.

2.2.4 BIER Implementation in P4

In this section we present the most important results from Merling et al. [MLM20b]
and Merling et al. [MLM21a]. We implemented BIER and BIER-FRR for the BMv2
[MLM20b] as a proof of concept, and for the P4-programmable high-performance
switching ASIC Tofino [MLM21a]. In this summary, we focus on the Tofino implemen-
tation because it provides more relevant insights and interesting results for researches
and developers. We discuss the implementation concepts, present hardware-based eval-
uation results, and introduce means to increase the efficiency of the implementations.

2.2.4.1 Implementation Concept

Figure 2.13 shows the concept of the BIER implementation in P4. The Tofino has two
processing pipelines, i.e., the ingress and the egress. BIER packets are first processed
in the ingress where a next-hop (NH) of the BIER packet is determined. Afterwards
the packet is cloned so that two packets enter the egress pipeline. The original BIER
packet is sent towards the earlier determined NH. The packet copy is recirculated. That
is, the packet is again processed by the ingress as if it has been received regularly.

30

2.2 BIER-Based Multicast in P4

Ingress Egress

BIER
BIER

Recirculation port
Path of cloned BIER packet
Path of original BIER packet

Figure 2.13: BIER packet flow in the P4 processing pipeline (figure from Merling et al.
[MLM21a]).

This procedure is repeated until the BIER packet has been forwarded to all its NHs.
Therefore, a BIER packet with n NHs is recirculated n− 1 times.

The downside of this concept is that packets are cloned and processed again, which
requires additional processing capacity17. For example when packets arrive with 100
Gb/s at a switch and are recirculated once, 200 Gb/s processing capacity is required.
Then, packets may be dropped because usually the recirculation capacity of the Tofino
is limited 100 Gb/s. Therefore, we introduce so-called recirculation ports. Such a
port is a physical port of the switch that is configured to provide 100 Gb/s additional
processing capacity for recirculation traffic. However, such ports cannot be used for
regular forwarding.

To facilitate readability, we refer the build-in capacity of 100 Gb/s for recirculation
traffic of the Tofino also as a recirculation port although it does not occupy a physical
port. It should be used before any physical ports are configured as recirculation ports.

2.2.4.2 Evaluations

In this section we evaluate the throughput of the BIER P4 implementation. Further-
more, we predict throughput results for realistic traffic mixes.

2.2.4.2.1 Throughput Measurements At this point we omit details of the hardware
setup and refer to Section VI.2) of Merling et al. [MLM21a]. We send BIER packet
with 100 Gb/s with multiple NHs to the Tofino. Thereby, we configured the Tofino with
different numbers of recirculation ports, i.e., varying recirculation capacity. We report

17Currently, P4 does not support more efficient dynamic packet cloning mechanisms.

31

2 Results & Discussion

the end-to-end throughput at the first receiver18. Figure 2.14 shows the results. We see

Native multicast

0

25

50

75

100

1 2 3
Number of recirculation ports

BI
ER

 th
ro

ug
hp

ut
 (G

b/
s)

Number of Next-Hops: 1 2 3 4

Figure 2.14: The throughput depends on the available recirculation capacity and num-
ber of NHs (figure from Merling et al. [MLM21a]).

that end-to-end throughput is 100 Gb/s with only one recirculation port when the BIER
packet has up to two NHs. That is because the packets are recirculated at most once.
When an additional NH is added the throughput drops to around 45 Gb/s and even
further when a fourth NH is added. That is because one recirculation port provides
insufficient capacity for recirculated traffic, and therefore, packets are dropped. When
more recirculation ports are added, more recirculation capacity is available so that the
throughput is not negatively affected even when the number of NHs increases.

2.2.4.2.2 Throughput Predictions for Realistic Traffic Mixes We performed the hardware-
based evaluations with 100 Gb/s traffic rate to show the capabilities of the BIER im-
plementation. However, normally multicast makes up only a small fraction of the total
traffic compared to unicast. Therefore, we vary the fraction a ∈ {1, 2.5, 5, 10}% of
multicast traffic of the the total traffic of 100 Gb/s per link. In addition, we vary the
number of NHs19. Then, we perform simulations to calculate the number of required
recirculation ports to prevent packet loss. Figure 2.15 shows the results. In networks
with 2.5% multicast traffic or less, 2 recirculation ports provide enough capacity for
BIER packets with up to 16 NHs. For larger traffic fractions the number is still rather
low if reasonable numbers of NHs are considered. In general, we conclude that in
realistic traffic mixes few recirculation ports suffice to prevent packet loss.

18With unlimited recirculation capacity this should always be 100 Gb/s.
19This influences the number of recirculations per packet.

32

2.2 BIER-Based Multicast in P4

0

2

4

6

8

0 2 4 6 8 10 12 14 16

Multicast next−hops n

R
ec

irc
ul

at
io

n
po

rt
s

Fraction of multicast traffic a (%) 10 5
2.5 1

Figure 2.15: Number of required recirculation ports to prevent packet loss (figure from
Merling et al. [MLM21a]).

2.2.4.3 Efficient BIER Implementation

In Lindner et al. [LMM22] we suggest ways to make BIER forwarding in a switch more
efficient. As I am only a contributing author to that work I only briefly summarize the
paper in the following.

We propose the following forwarding mechanism to improve BIER forwarding. The
switch observes to which egress ports it sends BIER packets. Over time, it identifies
ports that frequently occur together in a packet, i.e., egress port sets. Then, the con-
troller installs static multicast groups on the switch for the observed egress port sets20.
Such static multicast groups forward BIER packets over several egress ports simultane-
ously without packet recirculation. Thus, this approach sends a BIER packet to multiple
NHs per pipeline iteration instead of only one NH. This significantly reduces the num-
ber of recirculations per packet, and therefore, the required recirculation capacity. The
switch continuously observes the egress port sets and adapts the static multicast groups
over time if necessary.

2.2.5 Discussion and Outlook

The presented P4 BIER prototype enables BIER forwarding in P4. Furthermore, the
evaluations show that BIER is a scalable transport mechanism for IPMC that does not

20Installing static multicast groups for all possible egress port sets would process any BIER packet
without packet recirculation. However, this is unfeasible because it requires 232 static multicast
groups on a 32 port switch.

33

2 Results & Discussion

suffer the downsides of traditional multicast approaches. However, the implemented
BIER packet processing approach requires packet recirculation, and therefore, addi-
tional recirculation capacity, to prevent packet loss under heavy load. Future research
could focus on making BIER forwarding in P4 more efficient. In particular, BIER for-
warding that processes all NHs of a BIER packet in one pipeline iteration would be
desirable.

Currently, the IETF is developing an alternative encoding for multicast trees in the
packet header [Tro22] which is more efficient in large networks with low number of
multicast subscribers. Future research could investigate this mechanism, and assess its
feasibility in P4, and evaluate its efficiency.

Visibility of the Results

Merling et al. [MLM20b] (see Appendix 1.5) contains a detailed implementation of
BIER and BIER-FRR for a P4 software switch to show how complex forwarding be-
havior is implemented in P4. It was published in the Journal of Network and Computer
Applications in 2020, the source code is publicly available21, and the results were ex-
tensively discussed in multiple IETF BIER working group meetings. Furthermore, the
work supported the development of a BIER-FRR draft [MM19] in the BIER working
group and became an active working group document [CML+22].

Merling et al. [MLM21a] (see Appendix 1.6) contains interesting evaluations of the
performance of BIER and BIER-FRR in a high-performance hardware testbed. The
paper was published as open access in the IEEE Access journal and the source code
is publicly available22. The implementation and the results were heavily discussed in
several IETF BIER working group meetings and several other smaller workshops.

Merling et al. [MSM22] (see Appendix 1.7) is a comprehensive evaluation of the scala-
bility and efficiency of BIER. It has been accepted for publication in the IEEE Transac-
tions on Network and Service Management journal. The results will be presented and
discussed in the IETF BIER working group.

Lindner et al. [LMM22] (see Appendix 1.8) describes efforts to make BIER forwarding
more efficient in P4. It has been accepted for publication in the ”Machine Learning and

21https://github.com/uni-tue-kn/p4-bier
22https://github.com/uni-tue-kn/p4-bier-tofino

34

2.3 Additional Content

Artificial Intelligence for Managing Networks, Systems, and Services“ special issue of
the IEEE Transactions on Network and Service Management journal.

Finally, Merling et al. [MMWE18] (see Appendix 1.3) was published at the IETF
Journal in 2018 and has been used as an overview and introduction to BIER.

2.3 Additional Content

Research in this section is only additional content of this thesis and I have been only
contributing author. Therefore I present the work only briefly.

2.3.1 P4 ABC

P4 ABC [MMMH19]23 is the P4 implementation of activity-based congestion manage-
ment (ABC) [MZ16]. ABC is a mechanism to ensure fairness between multiple senders
in a domain which does not require per-user or per-flow state in its core. To that end,
ingress nodes measure the activity of users and flows and annotate packets with activity
information. Nodes in the core drop packets when congestion is imminent based on the
activity value in the packet header where packets with higher activity experience a drop
more likely.

We implemented P4 ABC for the P4 software switch BMv2 and performed evaluations.
The results show that without ABC an user with high activity, i.e., high constant bitrate
(CBR) traffic, is able to push away a user that sends TCP traffic which decreases its
sending rate to prevent congestion. When ABC is activated, the TCP user gets a sig-
nificantly larger share of bandwith because ABC drops packets of the CBR user more
likely due to the higher activity.

2.3.2 Load Profile Negotiation

In Heimgärtner et al. [HHS+19]24 we presented a scheduling algorithm to find cost-
optimized load schedules for energy consumers based on day-ahead forecasts. To that
end, users register their schedules at an aggregator which trades energy at the spot
market on behalf of its users. The aggregator checks whether the provided schedules

23published on the Future Internet Journal by MDPI
24International ETG-Congress 2019, ETG Symposium

35

2 Results & Discussion

conflict each other, i.e., whether the accumulated power demands in any timeslot can
be met. If so, it renegotiates schedules with the users in a way that those constraints are
met and energy cost is reduced by shifting flexibilities to cheaper time slots in the day-
ahead price forecast. The results show the feasabiliy of this approach. However, due to
the simple model, results cannot be generalized and further research is needed.

36

Bibliography

[AZ08] A. Atlas and A. Zinin. RFC5286: Basic Specification for IP Fast Reroute:
Loop-Free Alternates. Internet-draft, Internet Engineering Task Force,
September 2008. http://www.rfc-editor.org/rfc/rfc5286.txt.

[Bas18] Antonin Bas. BMv2 Throughput. https://github.com/p4lang/

behavioral-model/issues/537#issuecomment-360537441, Jan-
uary 2018. Accessed: 22 April 2023.

[BDG+14] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jen-
nifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. P4: Programming Protocol-independent
Packet Processors. ACM SIGCOMM Computer Communications Review

(CCR), 44, 2014.

[BFP+15] S. Bryant, C. Filsfils, S. Previdi, M. Shand, and N. So. RFC7490: Remote
Loop-Free Alternate (LFA) Fast Reroute (FRR). Internet-draft, Internet
Engineering Task Force, April 2015. https://tools.ietf.org/html/
rfc7490.

[BM16] Wolfgang Braun and Michael Menth. Loop-Free Alternates with Loop
Detection for Fast Reroute in Software-Defined Carrier and Data Center
Networks. Journal of Network and Systems Management, 24:470–490,
2016.

[CKR+21] Marco Chiesa, Andrzej Kamisiński, Jacek Rak, Gábor Rétvári, and Ste-
fan Schmid. A Survey of Fast-Recovery Mechanisms in Packet-Switched
Networks. IEEE Communications Surveys & Tutorials, 23:1253–1301,
2021.

[CML+22] Huaimo Chen, Mike McBride, Steffen Lindner, Michael Menth, Ai-
jun Wang, Gyan Mishra, Yisong Liu, Yanhe Fan, Lei Liu, and Xufeng
Liu. BIER Fast ReRoute. Internet-draft, Internet Engineering Task

37

http://www.rfc-editor.org/rfc/rfc5286.txt
https://github.com/p4lang/behavioral-model/issues/537#issuecomment-360537441
https://github.com/p4lang/behavioral-model/issues/537#issuecomment-360537441
https://tools.ietf.org/html/rfc7490
https://tools.ietf.org/html/rfc7490

Bibliography

Force, April 2022. https://datatracker.ietf.org/doc/draft-

chen-bier-frr/05/.

[CR15] L. Csikor and G. Retvari. On Providing Fast Protection with Remote
Loop-Free Alternates: Analyzing and Optimizing Unit Cost Networks.
Telecommunication Systems, 60:485–502, 2015.

[dSMSF15] Anderson Santos da Silva, Paul Smith, Andreas Mauthe, and Alberto
Schaeffer-Filho. Resilience support in software-defined networking: A
survey. Computer Networks, 92:189–207, 2015.

[Edg17] Edge-Core Networks. Wedge100BF-32X/65X Switch. https:

//www.edge-core.com/_upload/images/Wedge_100-32X_DS_R04_

20170615.pdf, 2017. Accessed: 22 April 2023.

[EXF19] EXFO. FTB-1v2/FTB-1 Pro Platform. https://www.exfo.com/

umbraco/surface/file/download/?ni=10900&cn=en-US&pi=5404,
2019. Accessed: 22 April 2023.

[FB17] Adrian Farrel and Ron Bonica. Segment Routing: Cutting Through the
Hype and Finding the IETF’s Innovative Nugget of Gold. IETF Journal,
13, 2017.

[HHM21] Frederik Hauser, Marco Häberle, and Michael Menth. P4sec: Automated
Deployment of 802.1X, IPsec, and MACsec Network Protection in P4-
Based SDN. Technical report, University of Tuebingen, 2021.

[HHM+23] Frederik Hauser, Marco Häberle, Daniel Merling, Steffen Lindner,
Vladimir Gurevich, Florian Zeiger, Reinhard Frank, and Michael Menth.
A Survey on Data Plane Programming with P4: Fundamentals, Advances,
and Applied Research. Journal of Network and Computer Applications,
212, 2023.

[HHS+19] Florian Heimgaertner, Sascha Heider, Thomas Stueber, Daniel Merling,
and Michael Menth. Load Profile Negotiation for Compliance with Power
Limits in Day-Ahead Planning. In International ETG-Congress 2019;

ETG Symposium, pages 1–6, 2019. ©2019 IEEE. Reprinted with permis-
sion.

38

https://datatracker.ietf.org/doc/draft-chen-bier-frr/05/
https://datatracker.ietf.org/doc/draft-chen-bier-frr/05/
https://www.edge-core.com/_upload/images/Wedge_100-32X_DS_R04_20170615.pdf
https://www.edge-core.com/_upload/images/Wedge_100-32X_DS_R04_20170615.pdf
https://www.edge-core.com/_upload/images/Wedge_100-32X_DS_R04_20170615.pdf
https://www.exfo.com/umbraco/surface/file/download/?ni=10900&cn=en-US&pi=5404
https://www.exfo.com/umbraco/surface/file/download/?ni=10900&cn=en-US&pi=5404

Bibliography

[HHSM20] Frederik Hauser, Marco Häberle, Marc Schmidt, and Michael Menth. P4-
IPsec: Site-to-Site and Host-to-Site VPN With IPsec in P4-Based SDN.
IEEE Access, 8:139567–139586, 2020.

[Int22] Intel®. Intel® Tofino™. https://www.intel.com/content/

www/us/en/products/network-io/programmable-ethernet-

switch/tofino-series.html, 2022. Accessed: 22 April 2023.

[KNF+11] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The
Internet Topology Zoo. IEEE Journal on Selected Areas in Communica-

tions, 29:1765–1775, 2011.

[L+12] F. Liu et al. The packet size distribution patterns of the typical internet ap-
plications. In IEEE International Conference on Network Infrastructure

and Digital Content, pages 325–332, 2012.

[LBF+22] Stephane Litkowski, Ahmed Bashandy, Clarence Filsfils, Pierre Francois,
Bruno Decraene, and Daniel Voyer. Topology Independent Fast Reroute
using Segment Routing. Internet-draft, Internet Engineering Task Force,
January 2022. https://datatracker.ietf.org/doc/draft-ietf-

rtgwg-segment-routing-ti-lfa/08/.

[LMHM20] Steffen Lindner, Daniel Merling, Marco Häberle, and Michael Menth.
P4-Protect: 1+1 Path Protection for P4. In Proceedings of the 3rd P4

Workshop in Europe, page 21–27, 2020. https://doi.org/10.1145/

3426744.3431327.

[LMM22] Steffen Lindner, Daniel Merling, and Menth Michael. Learning Multi-
cast Patterns for Efficient BIER Forwarding with P4, 2022. Accepted for
publication in IEEE Transactions on Network and Service Management
(TNSM) journal. The most recent version of this publication can be found
in the Appendix 2.2.

[MAB+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Open-
Flow: Enabling Innovation in Campus Networks. ACM SIGCOMM Com-

puter Communications Review (CCR), 38:69–74, March 2008.

[MBM18] Daniel Merling, Wolfgang Braun, and Michael Menth. Efficient Data
Plane Protection for SDN. In IEEE Conference on Network Softwariza-

tion and Workshops (NetSoft), pages 10–18, 2018.

39

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://datatracker.ietf.org/doc/draft-ietf-rtgwg-segment-routing-ti-lfa/08/
https://datatracker.ietf.org/doc/draft-ietf-rtgwg-segment-routing-ti-lfa/08/
https://doi.org/10.1145/3426744.3431327
https://doi.org/10.1145/3426744.3431327

Bibliography

[Mer17] Daniel Merling. Scalable Resilience for Software-Defined Networking
using Remote Loop-Free Alternates with Loop Detection. Master’s the-
sis, University of Tuebingen, Sand 13, 72076 Tübingen, September 2017.

[MLM20a] Daniel Merling, Steffen Lindner, and Michael Menth. Comparison of
Fast-Reroute Mechanisms for BIER-Based IP Multicast. In Proceedings

of Seventh International Conference on Software Defined Systems (SDS),
pages 51–58, 2020. ©2020 IEEE. Reprinted with permission.

[MLM20b] Daniel Merling, Steffen Lindner, and Michael Menth. P4-Based Imple-
mentation of BIER and BIER-FRR for Scalable and Resilient Multicast.
Journal of Network and Computer Applications, 169:102764, 2020.

[MLM21a] Daniel Merling, Steffen Lindner, and Michael Menth. Hardware-Based
Evaluation of Scalable and Resilient Multicast With BIER in P4. IEEE

Access, 9:34500–34514, 2021. ©2021 IEEE. Reprinted with permission.

[MLM21b] Daniel Merling, Steffen Lindner, and Michael Menth. Robust LFA Pro-
tection for Software-Defined Networks (RoLPS). IEEE Transactions on

Network and Service Management (TNSM), 18:2570–2586, 2021. ©2021
IEEE. Reprinted with permission.

[MM19] Daniel Merling and Michael Menth. BIER Fast Reroute. Internet-draft,
Internet Engineering Task Force, March 2019. https://datatracker.
ietf.org/doc/draft-merling-bier-frr/00/.

[MMMH19] Michael Menth, Habib Mostafaei, Daniel Merling, and Marco Häberle.
Implementation and Evaluation of Activity-Based Congestion Manage-
ment Using P4 (P4-ABC). Future Internet, 11, 2019. ©2019 IEEE.
Reprinted with permission.

[MMWE18] Daniel Merling, Michael Menth, Nils Warnke, and Toerless. Eckert. An
Overview of Bit Index Explicit Replication (BIER). In IETF Journal,
2018.

[MSM22] Daniel Merling, Thomas Stüber, and Michael Menth. Efficiency of BIER
Multicast in Large Networks, 2022. Accepted for publication in IEEE
Transactions on Network and Service Management (TNSM) journal. The
most recent version of this publication can be found in the Appendix 2.1.

40

https://datatracker.ietf.org/doc/draft-merling-bier-frr/00/
https://datatracker.ietf.org/doc/draft-merling-bier-frr/00/

Bibliography

[MZ16] Michael Menth and Nikolas Zeitler. Activity-Based Congestion Man-
agement for Fair Bandwidth Sharing in Trusted Packet Networks. In
IEEE/IFIP Network Operations and Management Symposium (NOMS),
pages 231–239, 2016.

[p4l19] p4lang. behavioral-model. https://github.com/p4lang/

behavioral-model, 2019. Accessed: 22 April 2023.

[PSPM17] Jozef Papan, Pavel Segeč, Peter Palúch, and Ludovit Mikus. The Survey
of Current IPFRR Mechanisms. In Federated Conference on Software

Development and Object Technologies, pages 229–240, December 2017.

[RI07] A. Raj and O.C. Ibe. A Survey of IP and Multiprotocol Label Switching
Fast Reroute Schemes. Computer Networks, 51:1882–1907, 2007.

[RMD05] Smita Rai, Biswanath Mukherjee, and Omkar Deshpande. IP Resilience
within an Autonomous System: Current Approaches, Challenges, and
Future Directions. IEEE Communications Magazine, 43:142–149, 2005.

[SHB+17] P. Sarkar, S. Hegde, C. Bowers, H. Gredler, and S. Litkowski. RFC8102:
Remote-LFA Node Protection and Manageability. Internet-draft, Inter-
net Engineering Task Force, March 2017. https://tools.ietf.org/

html/rfc8102.

[Tro22] Dirk Trossen. Forward Requests Return Multicast (FRRM) Commu-
nication Semantic. Internet-draft, Internet Engineering Task Force,
July 2022. https://datatracker.ietf.org/doc/draft-trossen-

rtgwg-frrm/00/.

[WRD+17] IJsbrand Wijnands, Eric C. Rosen, Andrew Dolganow, Tony Przygienda,
and Sam Aldrin. RFC8279: Multicast Using Bit Index Explicit Replica-
tion (BIER). Internet-draft, Internet Engineering Task Force, November
2017. https://datatracker.ietf.org/doc/rfc8279/.

41

https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://tools.ietf.org/html/rfc8102
https://tools.ietf.org/html/rfc8102
https://datatracker.ietf.org/doc/draft-trossen-rtgwg-frrm/00/
https://datatracker.ietf.org/doc/draft-trossen-rtgwg-frrm/00/
https://datatracker.ietf.org/doc/rfc8279/

Personal Contribution

Accepted Manuscripts (Core Content)

1. Robust LFA Protection for Software-Defined Networks (RoLPS) [MLM21b]

Scope of the joint
work

This research work was done in the context of the research
project ”Future Internet Routing (FIR)“ funded by the Deutsche
Forschungsgemeinschaft (DFG). The scope of this work was the
development and implementation of a scalable and efficient 1:1
resilience mechanism for SDNs.

Names of collabora-
tors and their shares

Irene Müller-Benz: Implementation of an early prototype in her
master thesis.

Steffen Lindner: Co-supervision of the master thesis of
Irene Müller-Benz (focus on technological supervision). Imple-
mentation of the developed concepts. Editorial assistance on the
publication.

Michael Menth: Scientific supervision of the master thesis
and research work. Editorial assistance on the publication.

Importance of own
contributions to the
joint work

Conceptual development of the protection mechanism. Supervi-
sion of the master thesis of Irene Müller-Benz (focus on concept
and architecture). Main author of the publication taking on most
of the write-up and rewriting during revision phase.

2. P4-Protect: 1+1 Path Protection for P4 [LMHM20]

43

Personal Contribution

Scope of the joint
work

This research work was done in the context of the research
project ”Future Internet Routing (FIR)“ funded by the Deutsche
Forschungsgemeinschaft (DFG). The scope of this work was the
development and implementation of a scalable and efficient 1+1
resilience mechanism for SDNs.

Names of collabora-
tors and their shares

Steffen Lindner: Main developer for design of resilience mech-
anism. Responsible for the Implementation. Main author of the
publication.

Marco Häberle: Editorial assistance on publication and im-
plementation support.

Michael Menth: Scientific supervision and editorial assis-
tance on the publication.

Importance of own
contributions to the
joint work

Editorial assistance for writing of the publication and assistance
during development and implementation phase.

3. An Overview of Bit Index Explicit Replication (BIER) [MMWE18]

Scope of the joint
work

This work was done for the Internet Engineering Task Force
(IETF). The goal was to write up a refined overview and tuto-
rial for BIER for the IETF Journal.

Names of collabora-
tors and their shares

Nils Warnke, Toerless Eckert: Technical input and co-author.
Michael Menth: Scientific supervision, co-author and editorial
assistance.

Importance of own
contributions to the
joint work

Main author of the paper, taking up most of the write-up.

4. Comparison of Fast-Reroute Mechanisms for BIER-Based IP Multicast [MLM20a]

44

Scope of the joint
work

This research work was done in the context of the research
project ”Future Internet Routing (FIR)“ funded by the Deutsche
Forschungsgemeinschaft (DFG). The scope of this work was the
development and comparison of fast resilience mechanisms for
BIER, i.e., BIER-FRR.

Names of collabora-
tors and their shares

Steffen Lindner: Editorial assistance on the publication and
assistance during development phase.

Michael Menth: Scientific supervision. Editorial assistance
on the publication.

Importance of own
contributions to the
joint work

Conceptual development of protection mechanism. Main author
of the publication taking on most of the write-up and rewriting
during revision phase.

5. P4-Based Implementation of BIER and BIER-FRR for Scalable and Resilient
Multicast [MLM20b]

Scope of the joint
work

This research work was done in the context of the research
project ”Future Internet Routing (FIR)“ funded by the Deutsche
Forschungsgemeinschaft (DFG). The scope of this work was the
development of a fast protection mechanism for BIER, i.e., BIER-
FRR, and implementing a BIER and BIER-FRR prototype for the
P4 software switch BMv2.

Names of collabora-
tors and their shares

Steffen Lindner: Implementation of the developed concepts.
Editorial assistance and co-author of the publication.

Michael Menth: Scientific supervision. Editorial assistance
on the publication.

Importance of own
contributions to the
joint work

Mainly responsible for the developed concepts. Main author of
the publication taking on most of the write-up and rewriting dur-
ing revision phase.

6. Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in
P4 [MLM21a]

45

Personal Contribution

Scope of the joint
work

This research work was done in the context of the research
project ”Future Internet Routing (FIR)“ funded by the Deutsche
Forschungsgemeinschaft (DFG). The scope of this work was the
implementation and evaluation of a BIER and BIER-FRR proto-
type for high-performance P4-programmable hardware.

Names of collabora-
tors and their shares

Steffen Lindner: Responsible for the implementation. Editorial
assistance and co-author of the publication.

Michael Menth: Scientific supervision. Editorial assistance
on the publication.

Importance of own
contributions to the
joint work

Assistance on implementation. Main author of the publication
taking on most of the write-up and rewriting during revision
phase.

Submitted Manuscripts (Core Content)

7. Efficiency of BIER Multicast in Large Networks [MSM22]

Scope of the joint
work

This research work was done in the context of the research
project ”Future Internet Routing (FIR)“ funded by the Deutsche
Forschungsgemeinschaft (DFG). The scope of this work was to
design clustering algorithms for BIER subdomains and to evalu-
ate the efficiency and scalability of BIER and BIER-FRR.

Names of collabora-
tors and their shares

Tobias Burghardt, Alexander Rzehak, Manuel Eppler: Bachelor
thesis in the context of this research work. Early results and
insights.

Thomas Stüber: Design of suitable algorithms. Co-supervisor
of bachelor theses. Editorial assistance and co-author of the
publication

Michael Menth: Scientific supervision of the bachelor the-
ses and publication. Editorial assistance on the publication.

46

Importance of own
contributions to the
joint work

Supervisor of bachelor theses. Supervision of design and evalua-
tion of developed mechanisms and assistance. Main author of the
publication taking on most of the write-up and rewriting during
revision phase.

8. Learning Multicast Patterns for Efficient BIER Forwarding with P4 [LMM22]

Scope of the joint
work

This research work was done in the context of the research
project ”Future Internet Routing (FIR)“ funded by the Deutsche
Forschungsgemeinschaft (DFG). The scope of this work was to
make BIER forwarding in P4 more efficient.

Names of collabora-
tors and their shares

Steffen Lindner: Mainly responsible for concept development.
Implementation of the concepts. Main author of the publication.

Michael Menth: Scientific supervision. Editorial assistance
on the publication.

Importance of own
contributions to the
joint work

Assistance on concept development. Co-author of and editorial
assistance on publication.

9. A Survey on Data Plane Programming with P4: Fundamentals, Advances, and
Applied Re- search [HHM+23]

Scope of the joint
work

Literature study on the state-of-the-art of data plane programming
with P4 covering fundamentals, advances, and applied research.

47

Personal Contribution

Names of collabora-
tors and their shares

Frederik Hauser: Coordination of all activities around this
writing project. Main author of the publication.

Steffen Lindner, Marco Häberle: Analysis, classification
and summarization of applied research works. Writing input and
feedback on the foundation chapters. Help in structure definition
and review of the complete manuscript.

Vladimir Gurevich: Writing input and feedback on the founda-
tion chapters.

Florian Zeiger, Reinhard Frank: Feedback on the structure
and write-up of the manuscript.

Michael Menth: Scientific supervision of the research project.
Editorial assistance on the publication.

Importance of own
contributions to the
joint work

Analysis, classification and summarization of applied research
works. Writing input and feedback on the foundation chap-
ters. Help in structure definition and review of the complete
manuscript.

Accepted Manuscripts (Additional Content)

10. Implementation and Evaluation of Activity-Based Congestion Management
Using P4 (P4-ABC) [MMMH19]

Scope of the joint
work

The scope of this work was the implementation of activity-based
congestion management (ABC) for the BMv2 P4 software switch
and its evaluation.

48

Names of collabora-
tors and their shares

Michael Menth: Scientific supervision and main author of the
publication.

Habib Mostafaei: Responsible for the implementation. Ed-
itorial assistance and co-author of the publication.

Marco Häberle: Implementation support and editorial assis-
tance.

Importance of own
contributions to the
joint work

Editorial assistance and implementation support.

11. Load Profile Negotiation in Day-Ahead Planning for Compliance with Power
Limits [HHS+19]

Scope of the joint
work

The scope of this work was the development of a mechanism to
find cost-optimized load schedules for energy consumers based
on day-ahead forecast.

Names of collabora-
tors and their shares

Florian Heimgärtner: Development of concepts. Scientific super-
vision of the bachelor thesis and main author of the publication.

Sascha Heider: Bachelor thesis on the design of a suitable
mechanism.

Thomas Stüber: Scientific supervision of the bachelor the-
sis and editorial support.

Michael Menth: Supervision of the bachelor thesis and edi-
torial assistance.

Importance of own
contributions to the
joint work

Supervision of the bachelor thesis and editorial assistance during
write up.

49

Publications

1 Accepted Manuscripts (Core Content)

1.1 Robust LFA Protection for Software-Defined Networks (RoLPS)

51

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Robust LFA Protection for Software-Defined
Networks (RoLPS)

Daniel Merling, Steffen Lindner, and Michael Menth
Chair of Communication Networks, University of Tuebingen, Germany

{daniel.merling, steffen.lindner, menth}@uni-tuebingen.de

Abstract—In software-defined networks, forwarding entries on
switches are configured by a controller. In case of an unreachable
next-hop, traffic is dropped until forwarding entries are updated,
which takes significant time. Therefore, fast reroute (FRR)
mechanisms are needed to forward affected traffic over alternate
paths in the meantime. Loop-free alternates (LFAs) and remote
LFAs (rLFAs) have been proposed for FRR in IP networks.
However, they cannot protect traffic for all destinations and some
LFAs may create loops under challenging conditions.

This paper proposes robust LFA protection for software-
defined networks (RoLPS). RoLPS augments the coverage of
(r)LFAs with novel explicit LFAs (eLFAs). RoLPS ranks available
LFAs according to protection quality and complexity for selection
of the best available LFA. Furthermore, we introduce advanced
loop detection (ALD) so that RoLPS stops loops caused by LFAs.
We evaluate RoLPS-based protection variants on a large set of
representative networks with unit and non-unit link costs. We
study their protection coverage, additional forwarding entries,
and path extensions for rerouted traffic, and compare them with
MPLS facility backup. Results show that RoLPS can protect
traffic against all single link or node failures, and against most
double failures while inducing only little overhead. We implement
FRR on the P4-programmable switch ASIC Tofino and provide a
control plane logic based on RoLPS. Measurement results show
that the prototype achieves a throughput of 100 Gb/s, reroutes
traffic within less than a millisecond, and reliably detects and
drops looping traffic.

Index Terms—Software-Defined Networking, P4, Loop-Free
Alternates, Resilience, Link Protection, Node Protection, Scal-
ability,

I. INTRODUCTION

Software-defined networking (SDN) separates data plane
and control plane of forwarding nodes. A controller computes
and installs forwarding rules on data plane devices to instruct
them how to process data packets. Packet forwarding is im-
paired when a next-hop becomes unreachable due to a failure,
i.e., a failed link or a failed node. Without controller inter-
action, switches drop affected packets. However, notification
of the controller, recomputation of forwarding rules, and their
installation on data plane devices takes a considerable amount
of time. This outage time is too long, in particular for the
transport of realtime traffic.

In IP networks fast reroute (FRR) mechanisms are used
to quickly reroute packets via pre-computed backup paths
while forwarding entries are recomputed. FRR would also be

The authors acknowledge the funding by the Deutsche Forschungsgemein-
schaft (DFG) under grant ME2727/1-2. The authors alone are responsible for
the content of the paper.

helpful in SDN to forward traffic with unreachable next-hops
without controller interaction via alternate paths. However,
SDN forwarding devices often have limited forwarding tables
so that adding many forwarding entries for FRR purposes
may be problematic. Loop-free alternates (LFAs) are a well-
known FRR method for IP networks that requires no additional
forwarding entries so that we consider them in this work.
LFAs constitute alternative next-hops that successfully forward
traffic towards the destination when the default next-hop is un-
reachable. The authors of [1] proposed to use LFAs to protect
traffic without controller interaction in SDN-based networks.
However, LFAs suffer from two major shortcomings. First,
they cannot protect traffic for all destinations against single
link failures (SLF) and single node failures (SNF). Second,
some LFAs may cause rerouting loops in case of node failures
or multiple failures.

In previous work [2] we improved the usage of LFAs
in software-defined networks. We introduced explicit LFAs
(eLFAs) based on explicit tunnels to protect destinations that
cannot be protected by other LFAs. We proposed advanced
loop detection (ALD) to detect and stop loops, which prevents
severe overload that may happen with LFAs in failure cases.
We described loop avoidance (LA), which leverages ALD,
ranks available LFAs according to their protection quality
and overhead, and chooses the best one. Furthermore, we
showed how LA can be implemented in OpenFlow. Finally,
a simulation-based evaluation showed that LA can protect all
traffic in SDN networks against SLF and SNF and with less
overhead compared to other FRR methods.

his paper is an extension of [2] with the following advances.
(1) We augment eLFAs with explicit multipoint-to-point
rerouting tunnels. This significantly decreases the required
number of additional forwarding entries for explicit tunnels.
(2) We modify ALD so that it can detect and stop loops faster
while being implementable on P4 devices. (3) We update the
simulative evaluations according to the new mechanisms. (4)
We include topology-independent LFAs (TI-LFAs) [3] in the
simulative evaluations because they are conceptually similar
to eLFAs. (5) We improved the overall presentation, including
a renaming of LA into RoLPS as the name LA did not capture
the entire concept. (6) We implement a prototype of RoLPS on
the P4-programmable switching ASIC Tofino featuring LFAs,
rLFA, eLFA, and ALD, and a RoLPS-based SDN controller,
and thereby, show its technical feasibility. (7) We demonstrate
that the technical solution performs well by showing that the
prototype operates at 100 Gb/s, reroutes traffic within less than

2

a millisecond, and reliably detects and drops looping traffic.
The paper is structured as follows. In Section II we discuss

related work. Then, we review state of the art for LFAs
in Section III. Section IV introduces eLFAs and ALD for
improved protection of the SDN data plane, and a RoLPS-
based control plane logic for that features and existing LFAs.
Section V describes the simulative evaluation methodology
and discusses performance results based on comprehensive
study. We present the implementation of a P4-based hardware
prototype in Section VI. We evaluate its performance in
Section VII by measurements. Finally, we conclude the paper
in Section VIII. A table of acronyms and a glossary are
provided at the end of the paper to facilitate the reading.

II. RELATED WORK

In this section we describe related work. First, we discuss
legacy FRR mechanisms to position LFAs. Then, we review
FRR for SDN.

A. FRR in Legacy Networks

Rai et al. [4], Raj et al. [5], and Papan et al. [6] present
surveys that provide a wide overview of FRR in legacy
networks. Hutchinson et al. [7] discuss the architecture and
design of resilient network systems, i.e., specifying and re-
alizing appropriate components. They review state-of-the-art
contributions and identify future research issues.

1) MPLS Networks: For MPLS [8] two major FRR mech-
anisms have been proposed [9]. One-to-one backup reroutes
packets on preconfigured paths that avoid the failure. Facility
backup tunnels the packets locally around the failure to the
next-hop for link protection, or to the next-next-hop for node
protection. Only recently, the authors of [10] propose a loop
detection mechanism for MPLS. It is based on special MPLS
labels that are pushed on the MPLS header stack when a packet
is rerouted. This allows nodes to detect whether a packet has
already been rerouted.

2) IP Networks: Not-via addresses [11] protect both IP
and MPLS networks. The routing table of a node contains
one additional forwarding entry for every outgoing link.
When the default next-hop is unreachable, those additional
entries are used to deviate the packet from its shortest path
through a tunnel around the failure. This causes a similar
path layout as MPLS facility backup [12]. Failure insensitive
routing (FIR) [13] leverages interface-specific routing tables
to encode failure information. Depending on the ingress in-
terface, packets are rerouted on precomputed backup paths
around the failure. Multiple routing configurations (MRCs)
[14] implement multiple disjoint routing topologies so that
always at least one topology provides a working path towards
the destination despite the failure. For each topology, an entire
set of forwarding entries is required which at least doubles
the amount of forwarding entries. Maximally redundant trees
(MRTs) [15] leverage a similar approach. A red and a blue set
of backup forwarding entries are computed so that at least one
set delivers the packet in case of a failure. However, MRTs
triple the number of forwarding entries in the network and may
lead to extensive backup paths [16]. LFAs can be combined

with MRTs to reduce backup path length and link load [17].
Independent directed acyclic graphs (IDAGs) [18] compute
only two sets of maximally disjoint forwarding entries, i.e.,
doubling the amount of forwarding entries so that one is
working in case of a failure. The authors of [19] encode
failure information in the packet header. Nodes leverage this
information to identify the failure and reroute packets on
disjoint paths around it.

3) LFA-Based Protection: LFAs [20] with either link or
node protection locally reroute packets around the failure
on shortest paths. Therefore, they do not require additional
forwarding entries but cannot protect all destinations. Csikor
et al. [21], [22] increase the number of protected destinations
by optimizing link costs. rLFAs [23]–[25] augment LFAs to
increase the number of protected destinations by rerouting
packets to remote nodes through shortest path tunnels. They do
not need additional forwarding entries but still cannot protect
all destinations. The performance of both LFAs and rLFAs can
be enhanced by adding links to the network [26]. In [27], the
authors present a self-configuring extension for LFAs based on
probes. It installs alternative hops in other nodes to prevent
rerouting loops. Topology-independent LFAs (TI-LFAs) [3]
leverage segment routing (SR) [28] to protect against failures.
SR is based on forwarding instructions in the packet header
which may be stacked. TI-LFAs leverage SR to implement
explicit tunnels to remote nodes. As eLFAs leverage explicit
tunnels, too, they can be viewed as a very specific but rather
untypical form of TI-LFAs.

B. FRR Protection in SDN

We discuss FRR in the context of SDN. We first address
general FRR approaches for SDN and then we discuss related
work for FRR in OpenFlow- and P4-based networks.

1) FRR in SDN: There have been many proposals to make
the SDN control plane more resilient [29]. However, there
are only very few efforts to protect traffic in the data plane.
If the controller is notified about the failure, it may update
its topology, and recompute and install updated forwarding
entries. Sharma et al. [30] measure that recomputation takes
about 80-100 ms. However, the authors clarify that this number
highly depends on the number of affected flows, path lengths,
and traffic bursts in the control network. In particular, it is
likely that the time for rerouting is significantly higher in larger
networks. Da Silva et al. [31] and Chiesa et al. [32] present
surveys that give overviews of FRR in SDN with significantly
faster protection than recomputation of forwarding entries.

2) OpenFlow-Based FRR: FRR capabilities have been in-
troduced in OpenFlow with Version 1.1. The authors of [33]
provide a BFD-based protection scheme for earlier OpenFlow
versions than 1.1. It is based on a bidirectional forwarding de-
tection (BFD) where nodes periodically exchange information
about their reachability. Van Adrichem et al. [34] measure
that failure detection takes about 3-30 ms on the software-
based Open vSwitch depending on the configuration of the
BFD. SlickFlow [35] encodes primary and backup paths in
the packet header to reroute packets when an unavailable
egress port is selected. SPIDER [36] leverages additional

3

state in the OpenFlow pipeline. Packet labels carry reroute
and connectivity information. Braun et al. [1] propose loop
detection for LFAs (LD-LFA) which increases the number
of protected destinations but may erroneously drop packets.
The authors of [37] use labels in the packet header that
carry failure information to trigger rerouting in other nodes.
Cevher et al. [38] implement MRCs in OpenFlow. The authors
of [39] implement multi-topology routing which uses virtual
topologies to provide redundancies in routing tables. If a
failure is detected, packet forwarding is switched to a topology
which is not affected by the failure. BOND [40] optimizes
memory management for backup rules and leverages global
hash tables to accelerate failure recovery.

3) P4-based FRR: P4 does not provide native FRR ca-
pabilities. Therefore, the hardest challenge is to provide the
data plane devices with information about which neighbors
are reachable, i.e., which port is up or down.

Sedar et al. [41] propose to use registers to store information
about which egress port is up or down. Depending on the
port status registers, primary or backup forwarding actions are
triggered. However, the authors depend on a local agent to
populate the registers. Shared Queue Ring (SQR) [42] caches
recent traffic in a delayed queue. If a link failure is detected,
the cached traffic is sent over alternative paths. Lindner et al.
[43] implement 1+1 protection in P4 which replicates traffic,
includes sequence numbers, and sends it over disjoint paths.
The joint head end of those paths deduplicates the traffic.
Hirata et al. [44] implement a FRR scheme in P4 which is
similar to MRCs. Multiple routing topologies with disjoint
paths are deployed. A field in the packet header identifies
the topology which should be used for forwarding. D2R [45]
is a resilience mechanism which works entirely in the data
plane. When a failure is detected, the data plane itself, i.e.,
the failure-detecting switch, recomputes a new path to the
destination. A primitive for reconfigurable fast reroute (PURR)
[46] stores additional egress ports for each destination. During
packet processing, the first working egress port is selected for
forwarding.

III. LFAS: STATE OF THE ART

We review LFAs and remote LFAs (rLFAs) and give an
overview of previous work regarding loop detection for LFAs.
Finally, we explain topology-independent LFAs (TI-LFAs).

A. LFAs and rLFAs

In this subsection we introduce the concept of LFAs and
rLFAs. Then, we discuss three important properties of LFAs.
First, we differentiate protection levels for LFAs, i.e., link pro-
tection and node protection. Second, we explain the influence
of links cost on LFA-based protection. Third, we point out
that LFAs may generate loops under some conditions.

1) Concept: LFAs [20] have been proposed in the context
of FRR for IP networks to quickly protect traffic against the
failure of links and nodes while primary forwarding entries
are recomputed.

A point of local repair (PLR) denotes a node that detects
an unreachable next-hop and reroutes affected traffic to some

other neighbor. However, some neighbors would send the
traffic back to the PLR, which creates a loop. The other
neighbors can forward the traffic without creating a loop and
are called loop-free alternates (LFAs). They are used by a PLR
to reroute traffic in case of a failure.

NH DPLR

LFA

rLFAN1

Shortest
path tunnel

Default path
LFA backup path
rLFA backup path

S

N2 N2

Figure 1: In case of a failure, a PLR may reroute a packet to
an LFA or tunnel it via a shortest path to a rLFA. The (r)LFA
then forwards the packet via a shortest path to its destination.

LFAs are illustrated in Figure 1. Traffic is forwarded on
shortest paths. A packet is sent from sender S to destination
D. The default path is via PLR and NH. When PLR cannot
reach its next-hop NH due to a link failure, it cannot reroute the
packet via neighbors S or N1 as they forward traffic towards D
to PLR, which creates a loop. However, PLR may reroute the
packet via LFA which can forward the packet to D. Thus,
the node LFA represents an LFA for PLR with respect to
destination D.

We now assume that NH fails so that LFA has no working
path towards D. If PLR reroutes the packet to LFA, LFA may
use PLR as an LFA and return the packet. Thus, a loop occurs.

Remote LFAs (rLFAs) [23]–[25] have been introduced
to protect more destinations than LFAs by sending packets
through shortest path tunnels to remote nodes. In our example,
the node rLFA is an rLFA for PLR with respect to destination
D. If NH fails, PLR may tunnel the packet to rLFA which
decapsulates the packet and sends it to D via a shortest path.

2) Protection Level: We already observed that some
(r)LFAs protect only against link failures, others protect also
against node failures. The first are classified as link-protecting
(LP), the second as node protecting (NP). A link-protecting
LFA (LP-LFA) forwards traffic to a destination via a path that
avoids a PLR’s failed link. A node-protecting LFA (NP-LFA)
forwards traffic to a destination via a path that avoids a PLR’s
failed next-hop. Thus, NP-LFAs are also LP-LFAs, but not
vice-versa. Therefore, a PLR can protect more destinations
with LP-LFAs than with NP-LFAs. For some destinations,
there may be no LP-LFA or NP-LFA at all. Then, rLFAs may
help.

3) Influence of Link Cost: Networks are configured without
link costs, i.e., unit link cost networks, or with link costs,
i.e., non-unit link cost networks, e.g., for traffic-engineering.
(r)LFAs have different protection properties in unit link cost
networks than in non-unit link cost networks. The authors of

4

[1], [2] showed that for some destinations there is no LP-LFA
or NP-LFA in both unit-link cost networks and non-unit link
cost networks. Then, some destinations may be protected with
rLFAs. Csikor et al. [25] proved that there is always an LP-
rLFA for any destination in unit link cost networks. However,
in [2] we showed that this is not the case in non-unit link
cost networks. Furthermore, we showed that in both unit link
cost networks and non-unit link cost networks there is not
always an NP-rLFA for a destination [2] although there are
more NP-rLFAs in unit link cost networks. Thus, in general,
more destinations can be protected in unit link cost networks
with (r)LFAs than in non-unit link cost networks.

4) LFA-Generated Loops: Forwarding loops in networks
are problematic for two reasons. First, the traffic cannot reach
its destination. Second, looping traffic consumes bandwidth,
which may lead to packet loss for other traffic. However,
looping traffic does not loop forever because the TTL field
in the IP header limits the number of forwarding hops. As
TTL=64 is a typical value, looping traffic can easily waste
the 30-fold of the capacity it would normally occupy on a
link. Therefore, routing loops are detrimental and should be
avoided.

Depending on their protection level (r)LFAs may cause
rerouting loops in specific failure scenarios. We distinguish
and order four failure scenarios: single link failure (SLF) <
single node failure (SNF) < double link failure (DLF) < single
link and single node failure (SLF+SNF).

LP-(r)LFAs do not cause rerouting loops for SLF but they
may cause loops in other scenarios. NP-(r)LFAs prevent loops
for both SLF and SNF [2], but fewer destinations can be
protected by them. In case of multiple failures, even NP-
(r)LFAs may generate loops. Some LP- or NP-(r)LFAs have
the “downstream” property [12] and they avoid loops in case of
multiple failures. However, only a few LFAs have that property
so that only a few destinations can be protected by them. We
do not consider them any further in this study.

B. Loop Detection for LFAs

The authors of [1] propose loop detection based on bit
strings. They use it in combination with LFAs to protect more
destinations by LFAs without suffering from loops. In addition,
they suggest to protect destinations with LFAs with the highest
possible protection level to maximize the coverage against link
and node failures. They call this approach LD-LFA.

1) Loop Detection Based on Bit Strings: The loop detection
in [1] requires a bit string in the packet header to indicate
nodes that have rerouted the packet before. Each node in
the network is associated with a bit position. If a packet is
rerouted, the node activates it bit in the packet’s header. If a
node receives a packet with its corresponding bit activated, the
packet is dropped.

The authors suggest an implementation in OpenFlow but do
not deliver a prototype. An advantage of this approach is that
a packet can be rerouted by multiple nodes. A disadvantage
is the missing scalability. Bit strings in packet headers should
be small. In OpenFlow, MPLS labels may be reused for that
purpose, but they are only 4 bytes long which is not enough

to number all nodes of a large network. Therefore, multiple
nodes may be associated with the same bit. If one of these
nodes reroutes a packet, the packet is dropped if it is received
by another of those nodes. This causes erroneous drops for
rerouted packets.

2) LFA Selection: For some PLRs there are several LFAs
available for a specific destination. The authors of [1] sug-
gested to prefer NP-LFAs over LP-LFAs in such a case. They
showed for various network topologies that significantly fewer
destinations can be protected by NP-LFAs than by LP-LFAs.
Therefore, they suggested to protect the remaining destinations
with LP-LFAs if possible. In addition, they proposed to utilize
loop detection based on bit strings to avoid rerouting loops
caused by LP-LFAs. They did not consider rLFAs.

C. Topology-Independent LFAs

In this subsection we explain topology-independent LFAs
(TI-LFAs) [3]. First, we review segment routing (SR) [28].
Then, we describe TI-LFAs.

1) Segment Routing: IP networks leverage destination-
based forwarding to deliver packets. That is, a packet carries
the IP address of the destination in its header which is used
by network devices to determine the appropriate next-hop
according to entries in a forwarding table. In contrast, with
SR the packet source determines the processing of a packet.
To that end, SR leverages forwarding instructions in the packet
header. The packet source constructs a set of header segments
that are added to the packet. Each header segment corresponds
to a specific action. Nodes process a packet according to the
segments in its header. To that end, network devices maintain a
certain number of forwarding entries to map a header segment
to a specific action.

Currently, there are two major technologies that implement
SR. SRv6 [47] is based on IPv6 and its extension header. Each
IPv6 address in the extension header corresponds to one header
segment. SR-MPLS ([48]) leverages stacked MPLS labels, i.e.,
the header stack, where each MPLS label is a header segment.
To facilitate readability we only use the terminology of SR-
MPLS, i.e., header stack and label, in the following.

Header segments may instruct nodes to perform arbitrary
actions, e.g., forwarding a packet, pushing or removing other
header segments, etc. In the following we focus on two specific
types of header segments. The first type are header segments
for global forwarding. We refer to such header segments with
the term “global labels”. Global labels instruct the nodes to
forward a packet according to shortest paths towards a specific
destination. As a result, a global label is similar to destination-
based forwarding in IP networks. At the destination the global
label is removed and the node processes the next header
segment. When global labels are used for all destinations,
every nodes requires n− 1 forwarding entries where n is the
number of destinations in the network. The second type are
header segments for local forwarding. We refer to that kind
of header segments with the term “local labels”. Local labels
instruct nodes to forward a packet over a specific link towards
a next-hop. Before a node forwards a packet to the NH, it
removes its local label from the header stack. When local

5

labels are used for all nodes, every node requires d forwarding
entries where d is the number of neighbors of that node.

A source may construct a header stack that contains both
global labels and local labels. As a result, forwarding differs
depending on which type of label is on top of the header
stack. On some subpaths the packet is forwarded according to
a global label and on some subpaths the packet is forwarded
according to a local label.

2) Concept of TI-LFAs: TI-LFAs leverage SR to forward
packets on explicit paths around a failure. That is, TI-LFAs
are not restricted to shortest paths because they construct
a header stack with explicit forwarding instructions so that
the packet avoids the failure. As a result, TI-LFAs with LP
protect against any single link failure independently of link
costs, and TI-LFAs with NP protect against any single node
failure independently of link costs. However, multiple header
segments may be necessary which increases the size of the
header stack and thereby the overhead in terms of additional
packet headers. The authors of TI-LFAs state that “in an MPLS
world, this may create a long stack of labels to be pushed that
some hardware may not be able to push.” ([3], 2021, p. 6).

The size of a specific header stack depends on how the
explicit backup path is implemented. The straightforward
approach is to use one explicit forwarding instruction for
every hop, i.e., local labels. However, this requires one header
segment for each hop which causes large header stacks. The
size of the header stack can be reduced if subpaths of the
explicit path are implemented with already existing global
labels. That is, one global label replaces multiple local labels.
This is possible when working shortest paths are subpaths of
the explicit path. However, this may not be possible for all
subpaths because sometimes no working shortest subpath is
available due to the failure.

The authors of [3] do not specify how the header stack
to implement explicit paths is built. In particular, this is
an optimization that highly depends on the failure scenario,
topology, link costs, and path selection. Therefore, we see
research potential for the optimization of the TI-LFA header
stack. This, however, is out of scope of this document. In the
following we assume that TI-LFAs implement explicit paths
only with local labels.

IV. ROBUST LFA PROTECTION FOR SOFTWARE-DEFINED
NETWORKS (ROLPS)

LFAs originated from IP networks. They are attractive for
SDN because they entail only little overhead in terms of
additional forwarding state. However, they have three major
shortcomings. They have been designed only for shortest-
path routing based on link costs, they cannot protect all
destinations, and they may cause loops under some conditions.

In the following we explain how LFAs can be applied in
SDN which allows for general destination-based forwarding.
We present explicit LFAs so that all destinations can be
protected in case of a failure, provided they can be physically
reached by a working path. We describe an advanced loop
detection method to detect and stop loops and prevent erro-
neous packet drop after up to n reroute actions. Finally, we

propose how to utilize these components and consider different
protection variants.

A. Applicability of LFAs for SDN

In the context of IP networks, equations considering link
costs are used to classify neighboring nodes into non-LFAs,
LP-LFAs, and NP-LFAs with regard to some destination [12].
Forwarding in SDN does not need to follow shortest path
routing based on link costs, but general destination-based
forwarding may be applied. Therefore, we briefly explain how
(r)LFAs can be used in that context. Essentially, we need to
classify neighboring nodes into no-LFAs, LP-LFAs, and NP-
LFAs. A PLR’s neighboring node is

• no LFA if its standard forwarding procedure forwards the
traffic to the destination via a path containing the PLR.

• an LP-LFA if its standard forwarding procedure forwards
the traffic to the destination via a path that does not
contain the link from PLR to its next-hop towards the
destination.

• an NP-LFAs if its standard forwarding behavior forwards
the traffic to the destination via a path that does not
contain the PLR’s next-hop towards the destination.

This definition can be applied to normal LFAs, rLFAs, and to
eLFAs that are presented later in this section.

Path computation is not a focus of this paper. To limit the
parameter space for ease of understanding, we consider in the
evaluation in Section V link-cost-based forwarding which is a
special case of the more general destination-based forwarding.

B. Explicit LFAs

We first give an example where (r)LFAs cannot protect
a destination. Such destinations can be protected by explicit
LFAs (eLFAs) which are based on explicit tunnels. However,
explicit tunnels require additional forwarding entries. In [2]
we suggested to implement explicit tunnels with explicit
point-to-point rerouting tunnels. In this paper, we propose
explicit multipoint-to-point rerouting tunnels as an alternative
which requires significantly less additional forwarding entries.
Finally, we explain the relation between eLFAs and TI-LFAs.

1) Protection through Explicit Tunnels: The network in
Figure 2 forwards traffic on shortest paths based on costs
that are annotated on the links. PLR sends a packet to D
but the primary next-hop is unreachable. Although there is
a physical path via N1 and eLFA, there is no (r)LFA available.
N1 is not an LFA because it sends traffic to D via PLR. eLFA
cannot serve as rLFA because the shortest path from PLR to
eLFA traverses D. The problem can be solved by setting up
an explicit tunnel via N1 to eLFA a priori. If D is no longer
reachable, PLR can send the packet over that explicit tunnel,
and from eLFA the packet reaches D via a shortest path. Thus,
eLFA is an eLFA for PLR with regard to D.

2) Explicit Point-to-Point Rerouting Tunnels: Now we ex-
plain the concept of explicit point-to-point tunnels which we
introduced in [2]. In Subsection VI-C3 we describe technical
details about the implementation of explicit tunnels in general
with P4.

6

4

DPLR

1

eLFAN1
Explicit
tunnel

Default path
eLFA backup path

1 1

Figure 2: In case of a failure, a PLR may reroute a packet to
an eLFA via an explicit tunnel which then forwards the packet
via a shortest path to its destination. In contrast to rLFAs, the
PLR cannot reach the eLFA via a shortest path.

Explicit point-to-point rerouting tunnels do not follow stan-
dard paths. Therefore, they are configured with a unique
identifier, e.g., a unique number or IP address, in advance.
When a PLR reroutes a packet through an explicit point-to-
point rerouting tunnel, it adds the identifier of that tunnel to the
packet. Nodes use the identifier to forward the packet along the
explicit path. To that end, the nodes along an explicit path need
additional forwarding entries for the identifier of that tunnel.
Additional forwarding entries for FRR purposes are undesired
overhead for the data plane as they limit its scalability.

3) Explicit Multipoint-to-Point Rerouting Tunnels: The
overhead of additional forwarding entries from explicit tunnels
can be reduced by using explicit multipoint-to-point tunnels.
That is, the explicit tunnels from multiple PLRs towards the
same endpoint, i.e., an eLFA, build a destination tree where
the PLRs are the sources and the eLFA is the sink. Such
an explicit multipoint-to-point rerouting tunnel corresponds
to a specific eLFA and is identified by a single unique
identifier. When a PLR reroutes a packet towards a specific
eLFA, it adds the identifier of the corresponding multipoint-to-
point rerouting tunnel to the packet. As a result, overlapping
subpaths of explicit tunnels towards the same eLFA require
only a single additional forwarding entry in nodes along that
subpath. Therefore, multipoint-to-point rerouting tunnels are
prefered over point-to-point rerouting tunnels. We evaluate the
effect of multipoint-to-point rerouting tunnels in comparison
to point-to-point rerouting tunnels in Section V-C.

4) Relation to TI-LFAs: Explicit tunnels can be imple-
mented in different ways. We suggest eLFAs which implement
explicit tunnels with a single tunnel header and additional for-
warding entries in forwarding devices. Alternatively, TI-LFAs
leverage a header stack with explicit forwarding instructions
based on already available forwarding entries. Section III-C
contains details about the construction of the TI-LFA header
stack. Either way creates overhead to implement explicit
tunnels. In Section V-C we evaluate the number of additional
forwarding entries that are required by eLFAs. In Section V-D
we quantify the size of the packet header stack when TI-LFAs
are used.

C. Advanced Loop Detection

The loop detection method in [1] suffered from scalability
problems. Therefore, we propose that packets are dropped if
they are rerouted more than n times. This requires only a
counter in the packet header which is increased with each
reroute action. When the counter reaches the limit, the packet
is dropped. We denote this advanced loop detection (ALD).
Generally, ALD can be configured to support an arbitrary
number of redirects. However, a large number can be counter-
productive as packets are dropped later in case of loops and
consume more bandwidth. In our context, we allow a packet
to be rerouted twice so that double failures can be survived.

1) Implementation in OpenFlow: Due to technical restric-
tions of OpenFlow, conditions can be checked only at the
beginning of the forwarding pipeline. However, at that stage,
there is no knowledge about the packet’s next hop and failed
interfaces. Fortunately, it is possible to increase the reroute
counter while rerouting. Thus, only the next-hop of a rerouted
packet can determine whether the packet’s reroute counter
exceeds the limit and then the packet is dropped. This wastes
bandwidth on the last link over which the packet was rerouted.

We provided a more detailed sketch of an OpenFlow-based
implementation of ALD in [2]. That particular proposal was
still based on bit strings. However, it avoids erroneous packet
drops after a single reroute in contrast to the solution in [1].

2) Implementation in P4: P4 offers more implementation
flexibility. Therefore, it is possible to check whether a packet
is rerouted and whether its rerouting counter exceeds the
limit before the packet is forwarded to the egress port. As a
consequence, packets are dropped before transmission, which
does not waste bandwidth. More details about the P4-based
implementation of ALD are given in Section VI-D.

D. RoLPS Protection Variants

With SDN a controller configures flow entries on data
plane devices. Alternative paths can be configured so that
the device can switch over to a secondary next-hop if the
first hop becomes unreachable. The secondary next-hop is
also configured by the controller. In this section we present a
ranking scheme for LFAs to choose the best one as a secondary
next-hop. We further define protection variants and propose a
corresponding nomenclature.

1) LFA Ranking: A controller can classify neighboring and
remote nodes of a potential PLR into LFAs, rLFAs, and eLFAs,
and as LP or NP for a specific destination. These LFAs can
be ranked according to their protection level, i.e., NP is better
than LP. Recall that NP-LFAs are also LP-LFAs, but not

Rank LFA Type
0 NP-LFA
1 NP-rLFA
2 NP-eLFA
3 LP-LFA
4 LP-rLFA
5 LP-eLFA

Table 1: Ranking of LFA types according to protection level
and complexity. Preference is given to LFAs with lower rank
number.

7

Mechanism C-LFA C-rLFA LD-LFA ALD-NP-rLFA ALD-LP-eLFA ALD-NP-eLFA
(nLD-LP-LFA) (nLD-LP-rLFA) (ALD-NP-LFA)

Loop detection • • • •
Protection against all SLF o o • •
Protection against all SNF •
Additional forwarding entries • •

Table 2: Properties of protection variants.
Legend: o = only for unit link costs; • = independent of link costs.

vice-versa. They can also be ranked according to complexity.
Normal LFAs are simplest as they do not require tunneling.
eLFAs are most complex as they entail additional forwarding
entries for explicit tunnels.

With SDN, it is important to have an alternative next-hop
in case the primary next-hop is unreachable as it may take too
long until the forwarding is fixed by the controller. Therefore,
we rank LFAs first according to their protection level and then
according to their complexity. This yields the ranking given in
Table 1. The ranking is used to select the best available LFA
during computation.

2) Protection Variants: We define several protection vari-
ants with respect to loop detection, LFA complexity, and
protection level. The following naming scheme is used: {nLD,
ALD}-{LP, NP}-{LFA, rLFA, eLFA}. Loop detection may
be activated or not {ALD, nLD}. Either the LP property is
sufficient or NP is desired {LP, NP}. Only normal LFAs may
be allowed, normal and rLFAs may be allowed, or normal,
remote, and explicit LFAs are supported {LFA, rLFA, eLFA}.

eLFAs are preferably implemented with explicit multipoint-
to-point rerouting tunnels (see Section IV-B3). However, for
comparison we sometimes refer to eLFAs with point-to-point
tunnels. To that end, we add the suffix “-p2p” to the protection
variant. We omit a suffix for eLFAs with multipoint-to-point
rerouting tunnels because this is the preferable way That
is, *-*-eLFA refers to protection variant with eLFAs with
multipoint-to-point rerouting tunnels and *-*-eLFA-p2p refers
to protection variants with eLFAs with point-to-point rerouting
tunnels.

If a protection variant requires the NP property, the LFA
selection process starts with the search for an LFA of rank 0.
If the search is successful, this LFA is configured as secondary
next-hop for a specific destination, and the algorithm stops.
Otherwise the search continues with the next higher rank
number. This possibly continues up to rank 5. That means, NP-
(e/r)LFAs are preferentially utilized, but LP-(e/r)LFAs may be
used if the destination cannot be protected otherwise. This is
needed, e.g., if the protected next-hop is the destination. If no
LFA has been found for the last rank, there is no physical
connection between PLR and destination.

If a protection variant requires only the LP property, the
LFA selection process starts with the search for an LFA of
rank 3. The algorithm also stops if no LFAs has been found
for the last rank. In that case there is no physical path between
PLR and destination. Note that LFAs of rank 3 may also be NP
as every NP-LFA also fulfills the LP property. LP-LFAs are
just not preferred over NP-LFAs when the protection variant
requires only the LP property.

Protection variants requiring the NP property may still suffer

from loops since some destinations can be protected only with
LP-(e/r)LFAs. For example they occur when the destination
of a flow fails. nLD-LP-LFA and nLD-LP-rLFA leverage only
the classic LP-LFAs [20] and LP-rLFAs [23]. They are widely
used in IP networks and we denote them as the classic LFA
and rLFA variants (C-LFA, C-rLFA). ALD-NP-LFA1 has been
investigated as a preferred protection variant in [1] under the
name LD-LFA.

Table 2 summarizes the most important protection variants
investigated in our study. It summarizes properties regarding
protection level and complexity. ALD-mechanisms prevent
loops in any failure scenario. *-*-rLFA protect against all
protectable SLF in networks with unit link costs. *-*-eLFA
methods achieve that protection level even in networks with
non-unit link costs. *-NP-eLFA protects even against all
protectable SNF in networks with either unit or non-unit link
costs.

V. SIMULATIVE PERFORMANCE EVALUATION OF
LFA-BASED PROTECTION

In this section we analyze the efficiency of LFA-based FRR
mechanisms. First, we describe the methodology. The perfor-
mance metrics of interest are protection coverage, required
amount of additional forwarding entries, required amount of
header segments for TI-LFAs, and path lengths. We compare
them for RoLPS protection variants and other well-known
FRR mechanisms. Finally, we discuss the presented results.

A. Methodology

We explain the methodology for the simulation-based eval-
uation. We describe the general approach, and discuss the
topology data set and link costs used in the evaluation.

1) General Approach: We take a network topology includ-
ing link costs and a RoLPS protection variant as input pa-
rameters. Then we compute LFAs according to Section IV-D.
We evaluate different protection variants against various sets
of failure scenarios, i.e., S ∈ {SLF,SNF,DLF,SLF+SNF}
(see Section III-A4). To that end, we consider all source-
destination pairs f ∈ F in the network and analyze how their
traffic is forwarded in a specific failure scenario s ∈ S.

Although RoLPS works for general destination-based for-
warding (see Section IV-A), we limit the evaluation to shortest
paths routing based on link costs to reduce the parameter
space.

1Approximation of LD-LFAs with better loop detection.

8

2) Network Topologies: We evaluate 205 wide area, com-
mercial, research, and academic networks from the Internet
topology zoo [49] and three typical data center topologies
(fat-tree, DCell, BCube) which were studied in [1]. For each
topology we calculate both average values and maximum
values for the considered metrics. We explain these metrics in
Sections V-B1, V-C1, and V-E1. We visualize the results in bar
diagrams or complementary cumulative distribution functions
(CCDFs).

3) Link Costs: In Subsection III-A3 we showed that link
costs have a significant impact on the protection properties
of LFAs. To account for that fact, we perform evaluations on
then networks with both unit link cost and non-unit link cost.
However, the topology zoo does not include link costs for all
networks. Therefore, we calculate link costs on all networks
as proposed in [50]. For each link we derive the specific load
based on a homogeneous traffic matrix, shortest paths, and
unit link costs. The link cost of each link is the inverse of its
load multiplied by the largest link load in the network so that
the smallest link cost is 1. Over all topologies this leads to an
average link cost of 6.8 and a coefficient of variation of link
costs of 1. Thus, the generated link costs differ substantially.

B. Protection Coverage

In this subsection we evaluate and compare the coverage of
RoLPS protection variants. First, we explain the metric. Then,
we briefly describe the evaluated protection mechanisms.
Finally, we discuss results for networks with unit link costs
and with non-unit link costs.

1) Metric: We introduce the three terms ’protected’, ’un-
protected’, and ’looped’ to refer to the quality of protection
which is provided by a FRR mechanism for a flow in a specific
scenario that consists of topology, failure scenario, and link
costs. A flow is considered protected in two cases. First, if the
packet is still successfully delivered at the destination although
the path from source to destination was interrupted by a failure.
Second, if a packet is dropped to prevent a loop because the
destination is not reachable anymore. A flow is unprotected if
the packet is dropped although the destination is still reachable.
Finally, a flow is denoted as looped if a microloop was caused
by local rerouting. We report the average fraction of protected,
unprotected, and looped flows over all 208 topologies (see
Section V-A2) in bar diagrams. The term coverage refers to
the fraction of protected flows in a scenario.

2) Evaluated Protection Variants: We consider the classic
protection variants C-LFA (nLD-LP-LFA) and C-rLFA (nLD-
LP-rLFA) as well as the LD-LFA (ALD-NP-LFA) from [1].
We further study the new protection variants ALD-NP-rLFA
and ALD-{LP,NP}-eLFA since they have stronger protection
properties.

3) Coverage: In this section we present results for the
number of protected destinations for different failure scenarios.
First, we evaluate unit link cost networks. Then, we discuss
non-unit link cost networks.

a) Networks with Unit Link Costs: Figure Figure 3(a)
shows the coverage in percent for different sets of failure
scenarios in networks with unit link costs. Subfigure 3(a) (i)

50

60

70

80

90

100

C
-L

F
A

LD
-L

F
A

C
-r

LF
A

A
LD

-
N

P
-r

LF
A

A
LD

-
LP

-e
LF

A

A
LD

-
N

P
-e

LF
A

F
lo

w
 c

ov
er

ag
e

(%
)

(i) SLF

50

60

70

80

90

100

C
-L

F
A

LD
-L

F
A

C
-r

LF
A

A
LD

-
N

P
-r

LF
A

A
LD

-
LP

-e
LF

A

A
LD

-
N

P
-e

LF
A

F
lo

w
 c

ov
er

ag
e

(%
)

(ii) SNF

50

60

70

80

90

100

C
-L

F
A

LD
-L

F
A

C
-r

LF
A

A
LD

-
N

P
-r

LF
A

A
LD

-
LP

-e
LF

A

A
LD

-
N

P
-e

LF
A

F
lo

w
 c

ov
er

ag
e

(%
)

(iii) DLF

50

60

70

80

90

100

C
-L

F
A

LD
-L

F
A

C
-r

LF
A

A
LD

-
N

P
-r

LF
A

A
LD

-
LP

-e
LF

A

A
LD

-
N

P
-e

LF
A

F
lo

w
 c

ov
er

ag
e

(%
)

(iv) SLF+SNF

Protected Unprotected Looped

(a) Networks with unit link costs.

50

60

70

80

90

100

C
-L

F
A

LD
-L

F
A

C
-r

LF
A

A
LD

-
N

P
-r

LF
A

A
LD

-
LP

-e
LF

A

A
LD

-
N

P
-e

LF
A

F
lo

w
 c

ov
er

ag
e

(%
)

(i) SLF

50

60

70

80

90

100

C
-L

F
A

LD
-L

F
A

C
-r

LF
A

A
LD

-
N

P
-r

LF
A

A
LD

-
LP

-e
LF

A

A
LD

-
N

P
-e

LF
A

F
lo

w
 c

ov
er

ag
e

(%
)

(ii) SNF

50

60

70

80

90

100

C
-L

F
A

LD
-L

F
A

C
-r

LF
A

A
LD

-
N

P
-r

LF
A

A
LD

-
LP

-e
LF

A

A
LD

-
N

P
-e

LF
A

F
lo

w
 c

ov
er

ag
e

(%
)

(iii) DLF

50

60

70

80

90

100

C
-L

F
A

LD
-L

F
A

C
-r

LF
A

A
LD

-
N

P
-r

LF
A

A
LD

-
LP

-e
LF

A

A
LD

-
N

P
-e

LF
A

F
lo

w
 c

ov
er

ag
e

(%
)

(iv) SLF+SNF

Protected Unprotected Looped

(b) Networks with non-unit link costs.

Figure 3: Coverage averaged over 208 topologies depending
on protection method and set of failure scenarios.

shows that only C-LFA and LD-LFA cannot protect all des-
tinations against SLF, i.e., their coverage is less than 100%.
All other protection variants provide full coverage.

Subfigure 3(a) (ii) shows that SNFs cause many rerouting
loops with C-LFA (17%) and C-rLFA (34%). This is mostly
caused by failed destinations. As C-rLFA protect more des-
tinations than C-LFA, they also cause more loops when the
next-hop is the destination. Thus, loop detection is even more
important when C-rLFA is used because more flows loop in
case of node failures than with C-LFA. LD-LFA protects more

9

traffic (81%) than C-(r)LFA in case of SNF as it preferentially
uses NP-LFAs if available. Moreover, it prevents loops.

The new protection variants have significantly higher cov-
erage. ALD-NP-rLFA protects around 99% of the destinations
with SNF. This results from dropping packets that cannot be
delivered anymore due to a failed destination; if they looped,
the corresponding flow would count as looped. The coverage
of ALD-LP-eLFA is slightly lower, i.e., 94%. This is because
NP-(e/r)LFAs are not preferentially chosen for this protection
variant so that there are more LFAs in use without the NP
property. Finally, ALD-NP-eLFA protects all destinations for
three reasons. First, it leverages rLFAs or eLFAs to provide
protection for destinations that cannot be protected with LFAs.
Second, it uses NP-(e/r)LFAs to protect against node failures
and falls back to unsafe LP-(e/r)LFAs only when (e/r)LFAs
with NP property are not available. Third, ALD detects and
stops all loops that may be caused by LFAs with LP. This
turns flows that cannot reach their destination into protected
flows instead of looped flows.

Subfigure 3(a) (iii) shows the coverage against DLFs. No
mechanism is able to protect all destinations. C-LFA and
LD-LFA protect around 70% of the destinations. C-rLFA
cover more flows (92%). However, protection variants without
loop detection, i.e., C-LFA and C-rLFA, lead to loops. All
newly proposed protection variants achieve roughly the same
coverage, i.e., 96%, and prevent loops.

Finally, Subfigure 3(a) (iv) shows results for SLF+SNF.
They are similar to the results of DLFs, but the fraction
of rerouting loops caused by both C-LFA and C-rLFA is
significantly higher. This is due to node failures which cause
significant rerouting loops for protection variants without loop
detection.

b) Networks with Non-Unit Link Costs: Figure Fig-
ure 3(b) shows the coverage for different sets of failure
scenarios in networks with non-unit link costs. Subfigure 3(b)
(i) shows the coverage against SLF. Both C-LFA and LD-
LFA protect only around 60% of the destinations. In networks
with non-unit link costs, C-rLFA cannot protect all destinations
anymore against SLF and achieve only a coverage of 88%.
The same holds for ALD-NP-rLFA. Only the eLFA-based
protection variants are able to protect all destinations against
SLF.

Subfigure 3(b) (ii) shows the coverage against SNF. Both
C-LFA and C-rLFA cause many rerouting loops. LD-LFA
prevents loops but protects only 76% of the destinations.
ALD-NP-rLFA and ALD-LP-eLFA protect a higher fraction of
destinations, i.e., 94% and 93%, because they prevent loops of
unsafe LFAs with LP, but they have no suitable backup path for
some node failures. ALD-NP-eLFA protects all destinations
against SNF even in networks with non-unit link costs as it
prevents loops and leverages NP-(e/r)LFAs wherever possible.

Finally, Subfigure 3(b) (iii) and Subfigure 3(b) (iv) present
the coverage for DLF and SLF+SNF. The results are similar
to those from networks with unit link costs, but the coverage
here is slightly lower.

C. Additional Forwarding Entries
We now evaluate the number of additional forwarding

entries to implement explicit tunnels. First, we explain the
metric. Then, we discuss the investigated FRR mechanisms.
Finally, we present results for networks with unit link costs
and non-unit link costs.

1) Metric: In a network with n nodes, each node maintains
n − 1 forwarding entries for destination-based forwarding.
eLFAs require additional forwarding entries to implement
explicit tunnels. In contrast, both LFAs and rLFAs are based on
shortest paths, and therefore, do not need additional forward-
ing entries. We calculate the average and maximum amount
of additional forwarding entries per node relative to n− 1 for
each network and present the results for all topologies in a
CCDF.

2) FRR Mechanisms under Study: We compare the required
amount of additional forwarding entries only for eLFA-based
RoLPS protection variants as others do not require additional
forwarding entries. To evaluate the efficiency of multipoint-
to-point rerouting rerouting tunnels, we report results for
ALD-{LP,NP}-eLFA and compare them to the corresponding
mechanisms with point-to-point rerouting tunnels, i.e., ALD-
{LP,NP}-eLFA-p2p. In addition, we present results for state-
of-the-art MPLS-facility-backup (MPLS-FB-{LP,NP}) with
LP and NP property.

3) Results: We present results for the fraction of additional
forwarding entries. First, we evaluate unit link cost networks.
Then, we discuss non-unit link cost networks.

a) Networks with Unit Link Costs: Figure 4(a) shows a
CCDF for the relative amount of additional forwarding entries
for the considered FRR mechanisms in networks with non-unit
link costs. First, we compare LP mechanisms. With MPLS-
FB-LP, in 40% of the networks at least one node requires
120% or more additional entries (max-curve). However, on
average in only 6% of the networks more than 100% additional
entries are needed (avg-curve). The curves for ALD-LP-eLFA
and ALD-LP-eLFA-p2p are omitted because those protection
variants do not induce any additional forwarding entries. This
is because (r)LFAs alone protect all destinations against all
SLF in networks with unit link costs. Therefore, explicit
LFAs are not needed and no additional forwarding entries are
required.

Now, we compare NP mechanisms. MPLS-FB-NP requires
most additional entries by far. 62% of the topologies have at
least one node that requires 200% or more additional entries.
And in 40% of the topologies 100% or more additional entries
are required on average. Protection mechanisms with eLFAs,
i.e., ALD-NP-eLFA and ALD-NP-eLFA-p2p, require less for-
warding entries because they protect most of the destinations
by NP-rLFAs and only the few remaining destinations are
protected by eLFAs which induce forwarding state in the
network. When ALD-NP-eLFA-p2p is used, only 20% of
topologies have a node that requires 50% or more additional
entries. However, some topologies contain at least one node
that requires 200% or more additional entries. On average, no
topology requires more than 65% or more additional entries.
ALD-NP-eLFA is even more efficient because it leverages
multipoint-to-point rerouting tunnels to reduce the number

10

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300
Additional entries x (%)

P
(X

 >
 x

)

avg
max

ALD-NP-eLFA
ALD-NP-eLFA-p2p
MPLS-FB-LP
MPLS-FB-NP

(a) Networks with unit link costs. ALD-LP-eLFA does not induce any
additional entries and is omitted in the figure.

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300
Additional entries x (%)

P
(X

 >
 x

)

avg
max

ALD-LP-eLFA
ALD-NP-eLFA
ALD-LP-eLFA-p2p
ALD-NP-eLFA-p2p
MPLS-FB-LP
MPLS-FB-NP

(b) Networks with non-unit link costs.

Figure 4: CCDFs for fraction of additional forwarding entries.

of additional forwarding entries even further. There is no
topology with a node that requires more than 70% of addi-
tional entries. 90% of the networks require only 15% or less
additional entries on average.

b) Networks with Non-Unit Link Costs: Figure 4(b)
shows a CCDF for the relative amount of additional forward-
ing entries for the considered FRR mechanisms in networks
with non-unit link costs. Again, we compare LP mechanisms
first. MPLS-FB-LP requires lots of additional entries. Around
55% of the topologies have at least one node that requires
120% or more additional entries (max-curve). However, in
only 8% of the networks more than 100% additional entries are
needed on average (avg-curve). eLFA-based protection mech-
anisms, i.e., ALD-LP-eLFA and ALD-LP-eLFA-p2p, are more
efficient. When ALD-LP-eLFA-p2p is used, 22% of networks
contain at least one node that requires 100% or more additional
entries. On average, in 20% of networks nodes require 25% or
more additional entries. ALD-LP-eLFA reduces the number of
additional forwarding entries by leveraging multipoin-to-point
tunnels. There is no topology with a node that requires more
than 80% of additional entries and in 95% of the networks
less than 15% additional entries are needed on average.

Now we compare NP mechanisms. MPLS-FB-NP requires
most additional entries by far. 75% of networks have at least
one node that requires 120% or more additional entries, 40%

even more than 340%. In around 44% of the networks, 100%
or more entries are required on average, and in 8% of the
networks even 250% or more additional entries are required.
ALD-NP-eLFA-p2p requires less entries. Only 45% of net-
works contain a node that requires 100% or more additional
entries, but 20% of networks require even more than 210%.
On average, 22% of networks require 50% or more additional
entries. ALD-NP-eLFA is even more efficient. No network
contains a node that requires more than 80% additional entries.
In 90% of the networks, less than 30% additional entries are
required on average.

Thus, in networks with non-unit link costs, somewhat more
additional entries are needed but ALD-{LP,NP}-eLFA still
require significantly less entries than MPLS-FB-{LP,NP} and
ALD-{LP,NP}-eLFA-p2p.

D. Size of Header Stacks for TI-LFAs

In this section we evaluate the number of required segments
to implement explicit paths with TI-LFAs using local labels.
First, we explain the metric, and the studied mechanisms.
Then, we present the results.

1) Metric: We count the number of header segments that
are added to the packet by the respective mechanism for
FRR purposes. That is, we do not count the header segment
that identifies the original destination of the packet. For each
network we record both the average and maximum number of
additional header segments added to a packet and present the
results as a CCDF.

2) Reroute Mechanisms under Study: We evaluate TI-LFAs
that use only local labels (see Section III-C) because they
implement explicit tunnels with multiple header segments.
However, we leverage TI-LFAs only when there are no LFAs
or rLFAs to protect a destination to avoid unnecessary addi-
tional header segments.

rLFAs, and eLFAs also leverage tunnels. However, both
require only one additional header segment for tunneling
which is why we omit those curves in the figure to facilitate
readability. LFAs do not require additional header segments.

3) Results: Figure 5 shows the results for networks with
non-unit link costs.

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20
of header segments x

P
(X

 >
 x

)

avg
max

TI-LFA w/ LP
TI-LFA w/ NP

Figure 5: CCDF for number of additional header segments.

11

First, we discuss TI-LFAs with LP. In most networks, i.e.,
roughly 80%, TI-LFAs with LP require at least two additional
header segments. In 20% of networks TI-LFAs with LP require
on average 3 or more additional header segments. However,
23% of networks have at least one TI-LFA with LP that
requires 6 or more additional header segments.

Now, we discuss TI-LFAs with NP. In general, TI-LFAs
with NP require more additional header segments than TI-
LFAs with LP. In 19% of networks TI-LFAs with NP require
on average 5 or more additional header segments. 40% of
networks even contain at least one TI-LFA with NP that
requires 6 or more additional header segments.

In Section III-C2 we mentioned that the size of the TI-
LFA header stack may be reduced. This, however, requires
optimization which is a promising approach and an interesting
research issue, but it is out of the scope of this document.

We omit a figure for results for networks with unit-link
costs because of two reasons. First, TI-LFAs with NP require
slightly fewer header segments but the results show no further
insights. Second, for LP all destinations can be protected with
either LFAs or rLFAs, i.e., no TI-LFAs are used, which was
to be expected.

E. Path Lengths

In this section we report results for path lengths. First, we
explain the metric and evaluated FRR mechanisms, then, we
present the results.

1) Metric: We measure the path lengths of all flows that
are affected by SLF but were successfully delivered due to
local rerouting. For each topology, we calculate the average
and maximum path lengths and present the results for all
topologies in a CCDF.

2) Reroute Mechanisms under Study: We choose path
lengths for rerouting as a baseline which recomputes shortest
paths after a failure. We compare these results to the ones for
ALD-{LP,NP}-eLFA and MPLS-FB-{LP,NP}.

3) Results: Figure 6 shows a CCDF for average and max-
imum path lengths of successfully delivered flows with SLF
in networks with unit link costs.

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30
Path length l (hops)

P
(L

 >
 l)

Rerouting
ALD-LP-eLFA
ALD-NP-eLFA
MPLS-FB-LP
MPLS-FB-NP

avg

max

Figure 6: CCDF for path lengths of successfully delivered
flows for SLF in networks with unit link costs.

We observe that rerouting leads in fact to the shortest
maximum and average path lengths. All FRR mechanisms
under study lead to longer maximum and average path lengths.
The path lengths of the different FRR mechanisms does not
differ.

The same analysis in networks with non-unit link costs
leads to slightly longer paths but without any further insights.
Therefore, we omit the corresponding figure.

F. Discussion

We investigated various RoLPS protection variants with
regard to protection coverage, additional forwarding entries,
and path lengths on a set of 208 topologies with both unit
link costs and non-unit link costs, and compared them with
MPLS-facility-backup.

The evaluations of protection coverage showed that C-LFA
cannot protect many destinations in case of link failures. C-
rLFAs can protect all destinations in case of SLF in networks
with unit link costs. However, the usage of C-(r)LFA leads to
many loops in case of node failures. The use of ALD avoids
such loops. LD-LFA [1] prevents loops but cannot protect all
destinations. ALD-NP-eLFA protects all destinations against
SLF and SNF in networks with unit and non-unit link costs
because it leverages eLFAs to complement (r)LFAs.

The explicit LFAs induce additional forwarding entries in
the data plane, which is not desired. Therefore, we com-
pared the additional forwarding entries for ALD-{LP,NP}-
eLFA, ALD-{LP,NP}-eLFA-p2p, and MPLS-FB-{LP,NP}.
ALD-{LP,NP}-eLFA require only very few additional entries
compared to ALD-{LP,NP}-eLFA-p2p, and MPLS facility
backup. Both MRCs [14] and IDAGs [18] always require
100% additional entries, and MRTs [15] need 200% more.
Not-via addresses [11] need 100% · d more entries where
d is the average node degree. Although TI-LFAs require at
most d additional forwarding entries per node, they impose
significant overhead in form of multiple additional header
segments. ALD-{LP,NP}-eLFA add only one additional packet
header for tunneling and our evaluation shows that they require
less additional forwarding entries than other comparable FRR
mechanisms. Therefore, ALD-{LP,NP}-eLFA can be consid-
ered very lightweight which makes them attractive for FRR in
SDN.

All evaluated FRR mechanisms, i.e., ALD-{LP,NP}-eLFA
and MPLS-FB-{LP,NP} extend backup paths by about the
same, and backup paths are only slightly longer than the
average and maximum length of recomputed shortest paths.

VI. IMPLEMENTATION OF ROLPS IN P4

We start with a short introduction of P4 and the implemen-
tation platform. Then we summarize important basics of P4
and describe the implementation of the RoLPS prototype.

A. Overview of P4 and the Implementation Target

P4 is a high-level programming language for protocol-
independent packet processors [51]. P4 programs are mapped,
i.e., compiled, to the programmable processing pipeline of

12

so-called targets, e.g., the software switch BMv2 [52] or
the switching ASIC Tofino [53]. When a P4 program is
successfully compiled for a target, it offers an API to let the
control plane configure the device during runtime, e.g., to write
forwarding entries.

In [2] we sketched how the predecessor of RoLPS could
be implemented in OpenFlow. However, due to technical
restrictions of OpenFlow the implementation concept required
multiple workarounds which made it complex (see Section
III-B1 and Section IV-C1). P4 offers significantly more flexi-
bility than OpenFlow. It allows a flexible description of the
data plane, in particular, the definition of arbitrary packet
headers and packet parsers, and conditional application of
programmable match+action tables (MATs). Therefore, imple-
mentation of novel features in P4 is easier than in OpenFlow.

In this paper we describe the implementation of RoLPS
in P4. Our target is the P4-programmable high-performance
switching ASIC Tofino [53] which is used in the Edgecore
Wedge 100BF-32X [54] switch with 32 100 Gb/s ports. We
made the source code for the RoLPS data plane and control
plane publicly available2.

B. P4 Pipeline

Figure 7 illustrates the abstract forwarding model of P4. A
user-programmable parser extracts the information from the
packet header and stores them in so-called header fields. They
are carried with the packet through the processing pipeline,
possibly with additional metadata which are similar to reg-
ular variables from other high-level programming languages.
Metadata are packet-specific and discarded after the packet is
sent to an egress port.

Ingress pipeline Egress pipeline

Pa
ck

et
 b

uf
fe

r

Pa
rs

er Match
action D

ep
ar

se
r

Match
action

Figure 7: P4 abstract forwarding model according to [51].

The P4 abstract forwarding model is divided into two stages,
the ingress and the egress pipeline, which are separated by a
packet buffer. Match+action tables (MATs) allow for packet-
specific processing. They have entries consisting of custom
match fields and types that map header fields and metadata to
actions, e.g., modifying header fields, and parameters.

P4 offers three match types: exact, longest-prefix match
(LPM), and ternary. For an exact match the header field or
metadata field must be exactly the same as the match field in
the MAT, e.g., a specific IP address. LPM is well-known from
standard IP forwarding. Ternary facilitates wildcard matches.
P4 does not allow to match a packet multiple times on the
same MAT to prevent processing loops.

2https://github.com/uni-tue-kn/p4-lfa

After the egress pipeline, the deparser writes the potentially
modified header fields into the packet header and the packet
is sent through the specified egress port.

However, P4 does not support FRR natively. Port status
information cannot be accessed by the data plane by default.
This makes the implementation of FRR in P4 a serious
challenge.

C. Implementation of LFAs

First, we describe how the port status can be determined
in P4. Afterwards, we describe the implementation of LFAs
without tunnels followed by LFAs with tunnels, i.e., rLFAs
and eLFAs, and ranking-based selection of LFA types.

1) Port Status Detection in P4: Executing backup actions,
e.g., forwarding to an LFA, requires a reliable and timely
detection when a port goes down. However, P4 does not
support such a feature. In [55] we proposed a workaround for
the Tofino platform which detects port-down events within 1
ms without controller interaction. We leverage this workaround
to implement RoLPS-based protection and summarize it in the
following.

Registers in P4 provide persistent storage, i.e., their content
survives processed packets. The individual register fields can
be accessed by an index. We leverage a register to store the
current status of the egress ports by single bits (0: down, 1:
up). Each register field stores the status of one port, i.e., one
bit. The port ID serves as an index to access the corresponding
register field. The challenge is updating the registers when the
port status changes, which is platform-specific.

Port-down events are tracked as follows. Tofino has means
outside the P4 programmable data plane to detect port-down
events. We configured the Tofino such that it creates a ‘port-
down packet’ in case of a port-down event. The packet
contains the ID of the corresponding port and the packet is
sent to a switch-intern port. We programmed the p4 pipeline
such that the port status register for the respective port is set
to zero upon reception of a port-down packet.

Port-up events are tracked differently. When the Tofino
receives a packet over a specific port, it activates the status
bit of that port in the register. To ensure that port-up events
are detected sufficiently fast, we take advantage of topology
packets that are regularly sent by the Tofino to all egress ports
for neighbor detection. The frequency for topology packets can
be configured to an appropriate value. While the detection of
port-down events is time-critical, detection of port-up events is
more relaxed because FRR mechanisms reroute affected traffic
in the meantime via alternative ports.

2) Implementation of LFAs without Tunnels: As described
in the previous section, the register fields provide information
whether specific egress ports are up or down. However, the
egress port of a packet is known only after matching the packet
on a MAT. To mitigate this problem, we implemented FRR as
shown in Figure 8. First, the packet is matched against a MAT
that performs regular IPv4 routing, i.e., it determines the next-
hop and thereby the egress port of a packet. Second, the ID of
the selected egress port is used to access the register fields to
retrieve the port status of that egress port. If the egress port is

13

IPv4

FRR

Egress port up

de
pa

rs
er

Egress port down

pa
rs

er

Ingress pipeline Egress
pipeline

Figure 8: P4 implementation of FRR. A packet is matched
against an IPv4 forwarding MAT to determine its egress port.
If that port is down, the packet is matched against a FRR-MAT
to determine its backup egress port.

up, the packet is forwarded. If the port is down, FRR actions
are triggered, i.e., the packet is matched against a FRR-MAT
using the IP destination address and the ID of the failed egress
port. This selects a backup entry with a preinstalled LFA, i.e.,
backup egress port, for forwarding.

3) LFAs with Tunnels: LFAs with tunnels are implemented
in a similar way as LFAs without tunnels. However, the
backup actions in the FRR-MAT contain an encapsulation
action which adds an additional IP header to the packet for
tunneling to the remote node, i.e., the rLFA or eLFA.

If the remote node is an rLFA, the encapsulating IP header
contains the IP address of that node. The packet is then
forwarded on standard paths towards the rLFA.

If the remote node is an eLFA, the encapsulating IP header
contains a unique IP address which identifies the explicit path
towards the eLFA (see Section IV-B2). When the controller
installs eLFAs in the network, it also sets up explicit tunnels
towards the eLFAs. To that end, it calculates appropriate
tunnel-specific forwarding entries and configures them on
the forwarding devices along the explicit path. Thereby, the
controller leverages explicit multipoint-to-point rerouting tun-
nels (see Section IV-B3) if possible to reduce the number
of additional forwarding entries. That is, it configures only
one additional forwarding entry on forwarding devices on
overlapping subpaths of explicit paths towards the same eLFA.

4) Implementation of Ranking-Based Selection of LFA
Types: The ranking-based selection of LFAs as described
in Section IV-D is part of the control plane. The controller
precomputes appropriate LFA types depending on the desired
protection variant and installs corresponding egress ports and
encapsulation actions in the FRR-MATs of the data plane
devices.

D. Implementation of ALD

We implement ALD so that it allows two redirects, i.e., the
packet is dropped when it has to be rerouted a third time. To
that end, we define the ALD field as a 2-bit custom header
field in the packet header. These bits track how often a packet
has been rerouted. Packets initially carry the bit pattern ‘00’ in
the ALD field. When a node reroutes a packet with bit pattern
‘00’, it replaces the bit pattern with ‘01’. When a node reroutes
a packet with bit pattern ‘01’, it replaces the bit pattern with
‘10’. When a node cannot forward a packet with bit pattern
‘10’ due to a failed egress port, it drops the packet.

VII. HARDWARE-BASED PERFORMANCE EVALUATION

In this section we conduct a performance evaluation of the
RoLPS hardware prototype. It is based on the Tofino [53], a
P4-programmable switch ASIC, which is used in the Edgecore
Wedge 100BF-32X [54], a switch with 32 100 Gb/s ports. We
present measurement results for throughput, restoration time,
and loop detection.

A. Throughput

Every P4 program successfully compiled for the Tofino
processes packets at a speed of 100 Gb/s. To verify that
property for our prototype, we conducted the following ex-
periment. We utilized an EXFO FTB-1 Pro traffic generator
[56] which generates up to 100 Gb/s of traffic. We connected
it to the Tofino which processes the traffic and sends it back
to the traffic generator. This way we measure the traffic rate
forwarded by Tofino. In fact, we obtained a throughput of
100 Gb/s for both failure-free forwarding and forwarding with
activated FRR.

B. Restoration Time

The evaluation of restoration times is more complex. We
describe the testbed, the measurement procedure and metric,
as well as the experimental scenarios. Then, we present
measurement results.

1) Testbed: Figure 9 shows the testbed for the performance
evaluation. Center of the testbed is the above mentioned
Tofino.

Traffic generator

Tofino BMv2

Controller

Backu
p path

Pr
im

ar
y

pa
th

Additional
network

1 2

Figure 9: Topology for restoration time measurements. The
additional network consists of five other BMv2s and 10 links.

It is connected to two BMv2 [52] P4 software switches.
To perform evaluations for more realistic network sizes, we
connected the Tofino to an additional network which consists
of five BMv2s and 10 links. All BMv2s run on a server with an
Intel Xeon Gold 6134 with 3.2 GHz and 12 cores, and 32 GB
RAM. A controller is connected to the Tofino and all BMv2s.
It configures them upon start, i.e., it discovers the topology,
and computes and installs appropriate forwarding rules. It runs
on the same server as the BMv2s. Furthermore, the above
mentioned traffic generator is connected to the Tofino and
serves as a traffic source in the experiment.

14

2) Measurement Procedure and Metric: The traffic gener-
ator sends traffic to the Tofino which forwards the packets on
the primary path to the destination BMv2-1. BMv2-1 monitors
the packet arrivals. Then, we deactivate the link from Tofino
to BMv2-1 on the primary path to trigger a port-down event
at the Tofino. We derive the restoration time for the FRR
mechanism from a tcpdump log at BMv2-1. It is the duration
of the interval within which BMv2-1 does not receive any
packets.

In these experiments, the traffic generator sends only with
100 Mb/s instead of 100 Gb/s. This avoids overload on the
BMv2s which can process packets only with around 900 Mb/s
[57]. Avoiding overload is important only to obtain correct
measurement results from BMv2-1. The restoration time on
the Tofino is not affected by any overload.

3) Experiments: We perform two experiments to measure
the restoration time without and with FRR.

a) Forwarding without FRR: For this experiment we
disabled the FRR feature on Tofino. When the Tofino detects
the failure, it notifies the controller. The controller then updates
its topology, computes new forwarding entries, and installs
them on the affected devices so that traffic can be forwarded
again.

b) Forwarding with FRR: In this experiment the FRR
feature is enabled. Thus, if BMv2-1 is no longer reachable,
the Tofino forwards traffic destined to BMv2-1 to BMv2-2
which relays the traffic to BMv2-1.

4) Results: We performed the above described experiments
10 times. Figure 10 shows the average restoration time without
and with FRR on the Tofino, including 95% confidence
intervals.

86.3 0.64

0

25

50

75

100

w/o FRR w/ FRR

R
es

to
ra

tio
n

tim
e

(m
s)

Figure 10: Restoration time on Tofino without and with FRR.

If FRR is disabled, traffic is delivered again after 86 ms.
As rerouting without FRR requires controller interaction, the
measured restoration time depends on controller load, network
size, and communication delay. In this experiment, there is
only a single flow affected by the faiure, the overall network
is small despite the additional network, and the controller is
directly connected to the Tofino. Therefore, the experimental
result for the restoration time is likely lower than restoration
times in production networks.

If FRR is enabled, traffic is delivered after a small restora-
tion time of 0.6 ms. Here, the switchover from primary egress
port to backup egress port at the Tofino is independent of
controller load, network size, and communication delay as
FRR is a switch-local mechanism. Thus, restoration times can
be greatly reduced by FRR on P4-capable hardware. More-
over, the mechanism is general enough to support all RoLPS

protection variants by appropriate configuration through the
controller.

C. Loop Detection

We experimentally evaluate the capability of ALD to detect
and stop loops. We present the modified testbed, explain two
different experiments and the studied metric, and finally we
discuss measurement results.

1) Testbed: Figure 11 shows the testbed. The Tofino is

Traffic generator

Tofino BMv2

Controller Primary path

Backup path

2

1

Figure 11: Testbed for evaluation of ALD.

now conntected to two BMv2s (BMv2-1, BMv2-2) which are
also connected with each other. The controller configures the
Tofino and all BMv2s with available LP-LFAs upon startup. In
the experiments, the traffic generator sends a packet towards
BMv2-1. The Tofino has BMv2-2 as an LFA when BMv2-
1 is not reachable. Likewise, BMv2-2 has the Tofino as an
LFA when BMv2-1 is not reachable. If BMv2-1 fails, traffic
destined to that node loops between the Tofino and BMv2-2.
However, the TTL in the IP header is set to 64 when sent by
the traffic generator and decremented whenever forwarded by
a node. The packet is dropped when its TTL reached 0.

2) Experiments and Metric: We perform two experiments
with ALD disabled and ALD enabled on the switches. We
track packet arrivals at BMv2-2 using tcpdump. Thereby we
can observe how often a looping packet is received.

3) Results: Figure 12 illustrates a log of packet arrivals at
BMv2-2, starting with time 0 at first packet arrival. Without

w/o ALD

w/ ALD

0 59 118 177 236
Packet arrival time (ms)

Figure 12: Packet arrivals at BMv2-2 without and with ALD.

ALD, BMv2-2 receives the packet 32 times. Thus, the packet
looped between the Tofino and BMv2-2 until it was dropped
due to TTL=0. With ALD, BMv2-2 receives the packet only

15

once. It then redirects the packet to the Tofino which then
drops the packet at the attempt to reroute the packet for the
third time. Therefore, BMv2-2 receives the packet only once.

VIII. CONCLUSION

In this paper we presented robust LFA protection for
software-defined networks (RoLPS). It leverages loop-free
alternates (LFAs) and remote LFAs (rLFAs) known from
IP networks to forward traffic over alternative next-hops if
primary next-hops are not reachable. However, this alone
cannot protect all destinations against failures and may cause
forwarding loops under challenging conditions. Therefore,
we proposed explicit LFAs (eLFAs) using explicit rerouting
tunnels to cover all destinations. eLFAs are conceptually sim-
ilar to topology-independent LFAs (TI-LFAs) but do require
only a single additional header segment for protection while
protection with typical TI-LFAs may require a clearly larger
header stack. Furthermore we describe advanced loop detec-
tion (ALD) to stop forwarding loops. These mechanisms are
simple and do not require controller interaction. We suggested
various protection variants that utilize (e/r)LFAs with different
protection quality and complexity.

We evaluated RoLPS through simulations based on 208
representative topologies. The results revealed that existing
(r)LFAs cannot provide all destinations and lead to substantial
forwarding loops in case of node failures. More elaborate
RoLPS variants with eLFAs and ALD, e.g., ALD-NP-eLFA,
protect all traffic against all single link or node failures in
networks with both unit and non-unit link costs. Further-
more, they protect most destinations against multiple failures
(> 90%) and prevent forwarding loops. A drawback of eLFAs
is that they required additional forwarding entries. However,
our evaluation showed that RoLPS protection variants require
only very few eLFAs, in particular compared to other FRR
mechanisms such as MPLS facility backup, MRTs, MRCs,
IDAGs, or not-via addresses. Thus, the full protection coverage
against single link or node failures together with the need
for only a few additional forwarding entries make RoLPS
attractive for software-defined networks. In addition, RoLPS
protection variants extends lengths of backup paths compared
to those of shortest path recomputation, but there is no visible
difference to backup path lengths with MPLS facility backup.

We implemented a P4-based prototype that features RoLPS-
based protection variants. The source code is publicly avail-
able. A measurement study showed that the prototype achieves
a throughput of 100 Gb/s, restores connectivity in less than 1
ms including failure detection, and reliably detects and stops
forwarding loops.

ACKNOWLEDGMENT

We acknowledge the support from BelWü for borrowed
high-performance hardware for the measurement-based evalu-
ations. Likewise, we appreciate the work of Irene Müller-Benz
for the development of an early prototype of RoLPS.

ACRONYMS AND GLOSSARY

FRR fast reroute
PLR point of local repair
LFA loop-free alternate [20]
rLFA remote LFA [23], [24]
eLFA explicit LFA [2]
TI-LFA topology-independent LFA [3]
MPLS multiprotocol label switching [8]
MRT maximally redundant tree [15]
IDAG independent directed acyclic graph [18]
MRC multiple routing configuration [14]
SLF single link failure
SNF single node failure
DLF double link failure
LP link protecting
NP node protecting
ALD advanced loop detection
RoLPS robust LFA protection for SDN

Table 3: Acronyms.

Point of local
repair (PLR)

A node that cannot forward a packet to the default
next-hop because of a failure. It executes precomputed
backup actions to locally reroute packets around the
failure.

Loop-free
alternate (LFA)

Alternative next-hop that successfully forwards failure-
affected traffic towards the destination. Simple LFAs
cannot protect all destinations.

rLFA Remote nodes in the network that successfully forward
traffic towards the destination. PLRs reach rLFAs
through shortest path tunnels. rLFAs protect more
destinations than LFAs. However, they cannot protect all
destinations against SLF in non-unit link cost networks
or SNF in general.

eLFA Similar to rLFAs. However, PLRs reach eLFAs through
explicit tunnels implemented by additional forwarding
entries. eLFAs protect against all SLF and SNF
independent of link costs. Multipoint-to-point tunnels
reduce the number of additional forwarding entries.

Link protecting
(LP)

A link protecting (e/r)LFA avoids the link between PLR
and next-hop. They may cause rerouting loops for SNF.

Node
protecting (NP)

A node protecting (e/r)LFA avoids the next-hop. There
are significantly less NP-(e/r)LFAs than LP-(e/r)LFAs.
NP implies LP, i.e., it is the stronger property.

Loop detection
(LD) [1]

A mechanism to detect and stop rerouting loops caused
by LFAs. May erroneously drop packets.

LD-LFA [1] LD-LFA preferably uses NP-LFAs for protection. Only
when no NP-LFA is available, LP-LFAs are used
to increase the number of protected destinations. In
addition, LD-LFA leverages loop detection to prevent
loops.

Advanced
loop detection
(ALD)

A mechanism to detect and stop loops caused by LFAs.
Allows to reroute a packet two times to cope with
double failures.

Robust LFA
protection for
SDN (RoLPS)

Protection concept presented in this paper. It defines
eLFAs and ALD. RoLPS ranks (e/r)LFAs and selects the
best one. Uses ALD to detect and stop loops.

Table 4: Glossary.

16

REFERENCES

[1] W. Braun and M. Menth, “Loop-Free Alternates with
Loop Detection for Fast Reroute in Software-Defined
Carrier and Data Center Networks,” Journal of Network
and Systems Management, vol. 24, 2016.

[2] D. Merling, W. Braun, and M. Menth, “Efficient Data
Plane Protection for SDN,” in IEEE Conference on
Network Softwarization (NetSoft), Jun. 2018.

[3] P. Francois, C. Filsfils, A. Bashandy, B. Decraene, and
S. Litkowski, Topology Independent Fast Reroute using
Segment Routing, https://tools.ietf.org/html/draft- ietf-
rtgwg-segment-routing-ti-lfa-06, Feb. 2021.

[4] S. Rai, B. Mukherjee, and O. Deshpande, “IP Resilience
within an Autonomous System: Current Approaches,
Challenges, and Future Directions,” IEEE Communica-
tions Magazine, vol. 43, 2005.

[5] A. Raj and O. Ibe, “A Survey of IP and Multiprotocol
Label Switching Fast Reroute Schemes,” Computer
Networks, vol. 51, no. 8, 2007.

[6] J. Papan, P. Segeč, P. Palúch, and L. Mikus, “The
Survey of Current IPFRR Mechanisms,” in Federated
Conference on Software Development and Object Tech-
nologies, Dec. 2017.

[7] D. Hutchison and J. P. Sterbenz, “Architecture and de-
sign for resilient networked systems,” Computer Com-
munications, vol. 131, 2018.

[8] E. Rosen, A. Viswanathan, and R. Callon, Multiprotocol
Label Switching Architecture, https://tools.ietf.org/html/
rfc3031, Jan. 2001.

[9] Ping Pan and George Swallow and Alia Atlas,
RFC4090: Fast Reroute Extensions to RSVP-TE for LSP
Tunnels, https://tools.ietf.org/html/rfc4090, May 2005.

[10] K. Kompella and W. Lin, No Further Fast Reroute,
https://tools.ietf.org/html/draft-kompella-mpls-nffrr-00,
Mar. 2020.

[11] S. Bryant, S. Previdi, and M. Shand, RFC6981: A
Framework for IP and MPLS Fast Reroute Using Not-
Via Addresses, http://www.rfc-editor.org/rfc/rfc6981.txt,
Jul. 2013.

[12] R. Martin, M. Menth, M. Hartmann, T. Cicic, and
A. Kvalbein, “Loop-Free Alternates and Not-Via Ad-
dresses: A Proper Combination for IP Fast Reroute?”
Computer Networks, vol. 54, 2010.

[13] S. Nelakuditi et al., “Fast Local Rerouting for Han-
dling Transient Link Failures,” IEEE/ACM Trans. on
Networking, Apr. 2007.

[14] A. Kvalbein, A. F. Hansen, T. Cicic, S. Gjessing, and
O. Lysne, “Fast IP Network Recovery Using Multiple
Routing Configurations,” in IEEE Infocom, Apr. 2006.

[15] A. Atlas, C. Bowers, and G. Enyedi, RFC7812: An
Architecture for IP/LDP Fast Reroute Using Maximally
Redundant Trees (MRT-FRR), http : / /www.rfc- editor.
org/rfc/rfc7812.txt, Jun. 2016.

[16] M. Menth and W. Braun, “Performance Comparison
of Not-Via Addresses and Maximally Redundant Trees
(MRTs),” in IEEE/IFIP IM, Apr. 2013.

[17] K. Kuang, S. Wang, and X. Wang, “Discussion on the
Combination of Loop-Free Alternates and Maximally
Redundant Trees for IP Networks Fast Reroute,” in
IEEE International Conference on Communications,
Jun. 2014.

[18] S. Cho, T. Elhourani, and S. Ramasubramanian, “Inde-
pendent Directed Acyclic Graphs for Resilient Multi-
path Routing,” IEEE/ACM Transactions on Networking,
vol. 20, Feb. 2012.

[19] S. S. Lor, R. Landa, and M. Rio, “Packet re-cycling:
Eliminating packet losses due to network failures,” in
ACM Workshop on Hot Topics in Networks, 2010.

[20] A. Atlas and A. Zinin, RFC5286: Basic Specification
for IP Fast Reroute: Loop-Free Alternates, http://www.
rfc-editor.org/rfc/rfc5286.txt, 2008.

[21] L. Csikor, M. Nagy, and G. Rétvári, “Network Opti-
mization Techniques for Improving Fast IP-level Re-
silience with Loop-Free Alternates,” Infocommunica-
tions Journal, vol. 3, 2011.

[22] L. Csikor, J. Tapolcai, and G. Retvari, “Optimizing IGP
link costs for improving IP-level resilience with Loop-
Free Alternates,” Computer Communications, vol. 36,
2013.

[23] S. Bryant, C. Filsfils, S. Previdi, M. Shand, and N.
So, RFC7490:Remote Loop-Free Alternate (LFA) Fast
Reroute (FRR), https://tools.ietf.org/html/rfc7490, 2015.

[24] P. Sarkar, S. Hegde, C. Bowers, H. Gredler, and S.
Litkowski, Remote-LFA Node Protection and Manage-
ability, https://tools.ietf.org/html/rfc8102, 2017.

[25] L. Csikor and G. Retvari, “On Providing Fast Protec-
tion with Remote Loop-Free Alternates: Analyzing and
Optimizing Unit Cost Networks,” in Telecommunication
Systems, 2015.

[26] G. Retvari, J. Tapolcai, G. Enyedi, and A. Csaszar, “IP
Fast ReRoute: Loop Free Alternates Revisited,” in IEEE
Infocom, Apr. 2011.

[27] W. Tavernier, D. Papadimitriou, D. Colle, M. Pickavet,
and P. Demeester, “Self-configuring Loop-free Alter-
nates with High Link Failure Coverage,” Telecommu-
nication Systems, vol. 56, 2014.

[28] A. Farrel and R. Bonica, “Segment Routing: Cutting
Through the Hype and Finding the IETF’s Innovative
Nugget of Gold,” IETF Journal, vol. 13, 2017.

[29] Y. E. Oktian et al., “Distributed SDN Controller System:
A Survey on Design Choice,” Computer Networks,
vol. 121, 2017.

[30] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P.
Demeester, “OpenFlow: Meeting Carrier-Grade Recov-
ery Requirements,” Computer Communications, vol. 36,
2013.

[31] A. S. da Silva, P. Smith, A. Mauthe, and A. Schaeffer-
Filho, “Resilience support in software-defined network-
ing: A survey,” Computer Networks, vol. 92, 2015.

[32] M. Chiesa, A. Kamisiński, J. Rak, G. Rétvári, and
S. Schmid, A Survey of Fast Recovery Mechanisms
in the Data Plane, https : / / www . techrxiv . org /
articles / preprint / Fast Recovery Mechanisms in the
Data Plane/12367508/2, May 2020.

17

[33] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takàcs,
and P. Sköldström, “Scalable Fault Management for
OpenFlow,” in IEEE International Conference on Com-
munications, 2012.

[34] N. L. van Adrichem, B. J. van Asten, and F. A. Kuipers,
“Fast Recovery in Software-Defined Networks,” in Eu-
ropean Workshop on Software Defined Networks, Sep.
2014.

[35] R. M. Ramos et al., “SlickFlow: Resilient Source Rout-
ing in Data Center Networks Unlocked by OpenFlow,”
in IEEE Conference on Local Computer Networks, Oct.
2013.

[36] C. Cascone, L. Pollini, D. Sanvito, A. Capone, and
B. Sansó, “SPIDER: Fault Resilient SDN Pipeline with
Recovery Delay Guarantees,” in IEEE Conference on
Network Softwarization, Jun. 2016.

[37] N. L. M. van Adrichem, F. Iqbal, and F. A. Kuipers,
“Backup Rules in Software-Defined Networks,” in IEEE
Conference on Network Function Virtualization and
Software-Defined Networking, Nov. 2016.

[38] S. Cevher, M. Ulutas, S. Altun, and I. Hokelek, “Multi
Topology Routing Based IP Fast Re-Route for Software
Defined Networks,” in IEEE Symposium on Computers
and Communications, Jun. 2016.

[39] S. Cevher, “Multi Topology Routing Based Failure
Protection for Software Defined Networks,” in IEEE
International Black Sea Conference on Communications
and Networking, Jun. 2018.

[40] Q. Li, Y. Liu, Z. Zhu, H. Li, and Y. Jiang, “BOND:
Flexible failure recovery in software defined networks,”
Computer Networks, vol. 149, 2019.

[41] R. Sedar, M. Borokhovich, M. Chiesa, G. Antichi, and
S. Schmid, “Supporting Emerging Applications With
Low-Latency Failover in P4,” in Workshop on Network-
ing for Emerging Applications and Technologies, 2018.

[42] H. Giesen, L. Shi, J. Sonchack, A. Chelluri, N. Prabhu,
N. Sultana, L. Kant, A. J. McAuley, A. Poylisher, A.
DeHon, and B. T. Loo, “In-Network Computing to the
Rescue of Faulty Links,” in Morning Workshop on In-
Network Computing, 2018.

[43] S. Lindner, D. Merling, M. Häberle, and M. Menth,
“P4-Protect: 1+1 Path Protection for P4,” P4 Workshop
in Europe (EuroP4), Dec. 2020.

[44] K. Hirata and T. Tachibana, “Implementation of Mul-
tiple Routing Configurations on Software-Defined Net-
works with P4,” in Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference,
2019.

[45] K. Subramanian, A. Abhashkumar, L. D’Antoni, and A.
Akella, D2R: Dataplane-Only Policy-Compliant Rout-
ing Under Failures, 2019.

[46] M. Chiesa, R. Sedar, G. Antichi, M. Borokhovich,
A. Kamisiński, G. Nikolaidis, and S. Schmid, “PURR:
A Primitive for Reconfigurable Fast Reroute,” in ACM
Conference on emerging Networking EXperiments and
Technologies, 2019.

[47] C. Filsfils et al., RFC8986: Segment Routing over IPv6
(SRv6) Network Programming, https://www.rfc-editor.
org/rfc/rfc8986.txt, 2021.

[48] A. Bashandy et al., RFC8660: Segment Routing with
the MPLS Data Plane, https://www.rfc-editor.org/rfc/
rfc8660.txt, 2019.

[49] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden,
and M. Roughan, “The Internet Topology Zoo,” IEEE
Journal on Selected Areas in Communications, vol. 29,
2011.

[50] S. Halabi, OSPF DESIGN GUIDE, http://rtfm.vtt.net/
spf1euro.pdf, 1996.

[51] P. Bosshart et al., “P4: Programming Protocol-
Independent Packet Processors,” ACM CCR, vol. 44,
2014.

[52] p4lang, Behavioral-model, https://github.com/p4lang/
behavioral-model, 2019.

[53] Edge-Core Networks, The World’s Fastest & Most
Programmable Networks, https : / / barefootnetworks .
com / resources / worlds - fastest - most - programmable -
networks/, 2017.

[54] ——, Wedge100BF-32X/65X Switch, https://www.edge-
core . com / upload / images / Wedge100BF - 32X 65X
DS R05 20191210.pdf, 2019.

[55] D. Merling, S. Lindner, and M. Menth, “Hardware-
Based Evaluation of Scalable andResilient Multicast
with BIER in P4,” IEEE Transactions on Network and
Service Management, In Revision for TNSM special
issue: Advanced Management of Softwarized Networks.

[56] EXFO, FTB-1v2/FTB-1 Pro Platform, https : / / www.
exfo.com/umbraco/surface/file/download/?ni=10900&
cn=en-US&pi=5404, 2019.

[57] A. Bas, BMv2 Throughput, https : / / github . com /
p4lang / behavioral - model / issues / 537 # issuecomment -
360537441, Jan. 2018.

Daniel Merling is a Ph. D. student at the chair of
communication networks of Prof. Dr. habil. Michael
Menth at the Eberhard Karls University Tuebingen,
Germany. There he obtained his master’s degree in
2017 and afterwards, became part of the communi-
cation networks research group. His area of expertise
include software-defined networking, scalability, P4,
routing and resilience issues, multicast and conges-
tion management.

Steffen Lindner is a Ph.D. student at the Eberhard
Karls University Tübingen, Germany. He wrote his
bachelor and master thesis at the chair of communi-
cation networks of Prof. Dr. habil. Michael Menth.
He started his Ph.D. in September 2019 at the com-
munication networks research group. His research
interests include software-defined networking, P4
and congestion management.

18

Michael Menth (Senior Member, IEEE) is pro-
fessor at the Department of Computer Science at
the University of Tuebingen/Germany since 2010
and chairholder of Communication Networks. He
studied, worked, and obtained diploma (1998),
PhD (2004), and habilitation (2010) degrees at
the universities of Austin/Texas, Ulm/Germany, and
Wuerzburg/Germany. His special interests are per-
formance analysis and optimization of communica-
tion networks, resilience and routing issues, resource
and congestion management, industrial networking

and Internet of Things, software-defined networking and Internet protocols.

Publications

1.2 P4-Protect: 1+1 Path Protection for P4

70

P4-Protect: 1+1 Path Protection for P4
Steffen Lindner

University of Tübingen
steffen.lindner@uni-tuebingen.de

Daniel Merling
University of Tübingen

daniel.merling@uni-tuebingen.de

Marco Häberle
University of Tübingen

marco.haeberle@uni-tuebingen.de

Michael Menth
University of Tübingen

menth@uni-tuebingen.de

ABSTRACT
1+1 protection is a method to secure traffic between two nodes
against failures in between. The sending node duplicates the traffic
and forwards it over two disjoint paths. The receiving node assures
that only a single copy of the traffic is further forwarded to its
destination. In contrast to other protection schemes, this method
prevents almost any packet loss in case of failures. 1+1 protection
is usually applied on the optical layer, on Ethernet, or on MPLS.

In this work we propose the application of 1+1 for P4-based IP
networks. We define an 1+1 protection header for that purpose. We
describe the behavior of sending and receiving nodes and provide
a P4-based implementation for the Behavioral Model version 2
(bmv2) software switch and the hardware switch Tofino Edgecore
Wedge 100BF-32X.We illustrate how to secure traffic, e.g. individual
TCP flows, on the Internet with this approach. Finally, we present
performance results showing that the P4-based implementation
efficiently works on the Tofino Edgecore Wedge 100BF-32X.

KEYWORDS
p4, software defined networking, 1+1 protection
ACM Reference Format:
Steffen Lindner, Daniel Merling, Marco Häberle, and Michael Menth. 2020.
P4-Protect: 1+1 Path Protection for P4. In 3rd P4 Workshop in Europe (Eu-
roP4’20), December 1, 2020, Barcelona, Spain. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3426744.3431327

1 INTRODUCTION
There are various concepts to secure traffic transmission against
failure of path components such as links or nodes. The fastest is 1+1
protection. A sender duplicates traffic and forwards it over disjoint
paths while the receiver forwards only the first copy received for
every packet. In case of a failure, any packet loss can be avoided,
which makes 1+1 protection attractive for highly reliable applica-
tions. 1+1 protection is implemented in optical networks to protect
an entire trunk. It is also available for MPLS [10] and Ethernet [9],
which are carrier technologies for IP and introduce signaling com-
plexity. In this paper, we leverage the P4 programming language [3]
to provide 1+1 protection for IP networks. We program P4 switches
such that they feature IP forwarding, the sending and receiving
node behaviour of 1+1 protection which includes IP encapsulation

EuroP4’20, December 1, 2020, Barcelona, Spain
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in 3rd P4 Workshop in
Europe (EuroP4’20), December 1, 2020, Barcelona, Spain, https://doi.org/10.1145/3426744.
3431327.

and decapsulation. We call this approach P4-Protect. Targets of our
implementation are the software switch BMv2 and the hardware
switch Tofino Edgecore Wedge 100BF-32X. A particular challenge
is the selection of the fist copy of every duplicated packet at the
receiver. We provide a controller that allows to set up 1+1 pro-
tection between P4 nodes implementing P4-Protect. Furthermore,
protected flows can be added using a fine-granular description
based on various header fields. We evaluate the performance of
P4-Protect on the hardware switch. We show that P4-Protect can be
used with only marginal throughput degradation and we illustrate
that P4-Protect can significantly reduce jitter when both paths have
similar delays.

The paper is structured as follows. Section 2 gives an overview
of related work. Section 3 describes the 1+1 protection mechanism
used for our implementation and extensions for its use on the
general Internet. Section 5 presents a P4-based implementation
including specifics for the Tofino Edgecore Wedge 100BF-32X. We
evaluate the performance of P4-Protect on the hardware switch in
Section 6 and conclude the paper in Section 7.

2 RELATEDWORK
We review various resilience concepts for communication networks.
Afterwards, we give examples for 1+1 protection.

2.1 Overview
Rerouting reorganizes the traffic forwarding to avoid failed compo-
nents. This happens on a time scale of a second. Fast reroute (FRR)
locally detects that a next hop is unreachable and deviates traffic
to an alternative next hop [1]. The detection may take a few 10s of
milliseconds so that traffic loss cannot be avoided. Both rerouting
and FRR do not utilize backup resources under failure-free condi-
tions, but their reaction time suffers from failure detection delay.
1:1 protection leverages a primary/backup path concept. To switch
over, the head-end node of the paths needs to be informed about
a failure, which imposes additional delay. With restoration, recov-
ery paths may be dynamically allocated so that even more time is
needed to establish the restoration paths [19, p. 31]. 1+1 protection
duplicates traffic and sends it over two disjoint paths whereby the
receiving node needs to eliminate duplicates. That method is fastest,
but it requires extra capacities also under failure-free conditions.
Some services can afford short network downtimes, other services
greatly benefit from 1+1 protection’s high reliability.

The surveys [15], [20], and [7] provide an overview of various
protection and restoration schemes. The authors of [7] discuss
survivability techniques for non-WDM networks like automatic
protection switching (APS) and self healing rings (SHR) as well

EuroP4’20, December 1, 2020, Barcelona, Spain Lindner et. al

as dynamic restoration schemes in SONET. They further describe
protection methods for optical WDM networks. A comprehensive
overview of protection and restoration mechanisms for optical,
SONET/SDH, IP, and MPLS networks can be found in [19].

SDN with inband signalling increases the need for fast and local
protection against failures because the controller may no longer be
reachable in case of a failure or highly loaded. In addition, with SDN
new protection mechanisms can be implemented, e.g., to reduce
state in the network. Examples are given in [14].

2.2 1+1 Protection
At first we will look at standards with respect to 1+1 protection,
followed by other work related to 1+1 protection.

2.2.1 Standards. The ITU-T specification Y.1703 [10] defines a 1+1
path protection scheme for MPLS. It adds sequence numbers to
packets and replicates them on disjoint paths. At the end of the
paths, duplicate packets are identified by the sequence number and
eliminated. P4-Protect works similarly. However, it does not require
MPLS. It is compatible with IP and works over the Internet.

802.1CB [8] defines a redundant transmission mode for Time-
Sensitive Networking (TSN), called Frame Replication and Elimi-
nation for Reliability (FRER). Each packet of a stream is equipped
with a sequence number, replicated, and then sent through two
disjoint paths to a destination. Both destination and/or traversing
nodes eliminate duplicate packets. FRER supports two algorithms:
VectorRecoveryAlgorithm and MatchRecoveryAlgorithm. With the
VectorRecoveryAlgorithm, an acceptance window is used to accept
packets with higher sequence numbers than expected. With the
MatchRecoveryAlgorithm all sequence numbers except the last seen
are accepted, which is used to prevent misbehaviour. In-order de-
livery is currently out of scope in 802.1CB.

DetNet [5] provides capabilities to carry data flows for real-
time applications with extremely low data loss rates and bounded
latency within a network. Packet Replication and Elimination (PRE)
is a service protection method for DetNet, which leverages the 1+1
protection concept. PRE adds sequence numbers or time stamps
to packets in order to identify duplicates. Packets are replicated
and sent along multiple different paths, e.g., over explicit routes.
Duplicates are eliminated, mostly at the edge of the DetNet domain.
The Packet Ordering Function can be used at the elimination point
to provide in-order delivery. However, this requires extra buffering.

2.2.2 Other Work on 1+1 Protection. The authors of [21] compare
several implementation strategies of 1+1 protection, i.e, traditional
1+1 path protection, network redundancy 1+1 path protection (di-
versity coding) [2], and network-coded 1+1 path protection. Their
analytical results show that diversity coding and network coding
can be more cost-efficient, i.e., they require about 5-20% less re-
served bandwidth. The delay impact of 1+1 path protection in MPLS
networks has been investigated in [17]. McGettrick et. al [13] con-
sider 10 Gb/s symmetric LR-PON. They reveal switch-over times
to a backup OLT of less than 4 ms. Multicast traffic has often real-
time requirements. Mohandespour et. al extend the idea of unicast
1+1 protection to protect multicast connections [16]. They formu-
late the problem of minimum cost multicast 1+1 protection as a
2-connectivity problem and propose heuristics. Braun et. al [4]

propose maximally redundant trees for 1+1 protection in BIER, a
stateless multicast transport mechanism. It leverages the concept
of multicast-only FRR [11].

3 P4-PROTECT: CONCEPT
We first give an overview of P4-Protect. We present its protection
header, the protection connection context, and the operation of the
Protection Tunnel Ingress (PTI) and Protection Tunnel Egress (PTE).

3.1 Overview
With P4-Protect, a protection connection is established between
two P4 switches. Protected traffic is duplicated by a PTI node and
simultaneously carried through two protection tunnels to a PTE
node. The PTE receives the duplicated traffic and forwards the first
copy received for every packet.

PD

PIP-PTE PD

PD

PD

PIP-PTE PD
P PD

P PD

P4-Switch Legacy router

IP-IH IP-PTE

PTI PTE

P

PD Packet data Protection headerP IP tunnel to PTEIP-PTE IP-IH IP tunnel to legacy router

Figure 1: With P4-Protect, a PTI encapsulates and duplicates
packets, and sends them over disjoint paths; the PTE decap-
sulates the packets and forwards only the first packet copy.

Figure 1 illustrates the protocol stack used with P4-Protect. The
PTI adds to each packet received for a protected flow a protection
header (P) that contains a sequence number which is incremented
for each protected packet. The packet is equipped with an additional
IP header (IP-PTE) with the PTE’s IP address as destination. The PTI
duplicates that packet and forwards the two copies over different
paths. The paths may be different due to traffic engineering (TE) ca-
pabilities of the network or path diversity may be achieved through
an additional intermediate hop. When the PTE receives a packet, it
removes its outer IP header (IP-PTE). If the sequence number in the
protection header is larger than the last sequence number received
for this connection, it removes the protection header and forwards
the packet; otherwise, the packet is dropped. The latter is needed
as duplicate packets are also considered harmful.

3.2 Protection Header
The protection header contains a 24 bit Connection Identifier (CID),
a 32 bit Sequence Number (SN) field, and an 8 bit next protocol field.
The CID is used to uniquely identify a protection connection at the
PTE. The sequence number is used at the PTE to identify duplicates.
The next protocol field facilitates the parsing of the next header. We
reuse the IP protocol numbers for this purpose.

3.3 Protection Connection Context
A protection connection is set up between a PTI and PTE. Their
IP addresses are associated with this connection, including two
interfaces over which duplicate packets are forwarded. For each
connection, the PTI has a sequence number counter 𝑆𝑁𝑃𝑇 𝐼

𝑙𝑎𝑠𝑡
which

P4-Protect EuroP4’20, December 1, 2020, Barcelona, Spain

is incremented for each packet forwarded over the respective pro-
tection connection. Likewise, the PTE has a variable 𝑆𝑁𝑃𝑇𝐸

𝑙𝑎𝑠𝑡
which

records the highest sequence number received for the respective
protection connection. A CID is used to identify a connection at the
PTE. A PTI may have several protection connections with the same
CID but different PTEs (see Section 5.5.1).

3.4 PTI Operation
The PTI has a set of flow descriptors that are mapped to protection
connections. If the PTI receives a packet which is matched by a
specific flow descriptor, the PTI processes the packet using the
corresponding protection connection. That is, it increments the
𝑆𝑁𝑃𝑇 𝐼

𝑙𝑎𝑠𝑡
, adds a protection header with CID, next protocol set to IPv4,

and the SN set to 𝑆𝑁𝑃𝑇 𝐼
𝑙𝑎𝑠𝑡

. Then, an IP header is added using the PTI’s
IP address as source and the IP address of the PTE associated with
the protection connection as destination. The packet is duplicated
and forwarded over the two paths associated with the protection
connection.

3.5 PTE Operation
During failure-free operation, the PTE receives duplicate packets
via two protection tunnels. When the PTE receives a packet, it
decapsulates the outer IP header. It uses the CID in the protection
header to identify the protection connection and the corresponding
𝑆𝑁𝑃𝑇𝐸

𝑙𝑎𝑠𝑡
. If the SN in the protection header is larger than 𝑆𝑁𝑃𝑇𝐸

𝑙𝑎𝑠𝑡
,

𝑆𝑁𝑃𝑇𝐸
𝑙𝑎𝑠𝑡

is updated by SN, the protection header is decapsulated, and
the original packet is forwarded; otherwise, the packet is dropped.

The presented behavior works for unlimited sequence numbers.
The limited size of the sequence number spacemakes the acceptance
decision for a packet more complex. Then, a SN larger than 𝑆𝑁𝑃𝑇𝐸

𝑙𝑎𝑠𝑡
may indicate a copy of a new packet, but it may also result from
a very old packet. To solve this problem, we adopt the use of an
acceptance window as proposed in [10]. The window is𝑊 sequence
numbers large. Let 𝑆𝑁𝑚𝑎𝑥 be the maximum sequence number. If
𝑆𝑁𝑃𝑇𝐸

𝑙𝑎𝑠𝑡
+𝑊 < 𝑆𝑁𝑚𝑎𝑥 holds, a new sequence number 𝑆𝑁 is accepted

if the following inequality holds:

𝑆𝑁𝑃𝑇𝐸
𝑙𝑎𝑠𝑡 < 𝑆𝑁 ≤ 𝑆𝑁𝑃𝑇𝐸

𝑙𝑎𝑠𝑡 +𝑊 (1)

If 𝑆𝑁𝑃𝑇𝐸
𝑙𝑎𝑠𝑡

+𝑊 ≥ 𝑆𝑁𝑚𝑎𝑥 holds, a new sequence number 𝑆𝑁 is
accepted if one of the two following inequalities holds:

𝑆𝑁𝑃𝑇𝐸
𝑙𝑎𝑠𝑡 < 𝑆𝑁 (2)

𝑆𝑁 < 𝑆𝑁𝑃𝑇𝐸
𝑙𝑎𝑠𝑡 +𝑊 − 𝑆𝑁𝑚𝑎𝑥 (3)

This allows a packet copy to arrive 𝑆𝑁𝑚𝑎𝑥 −𝑊 sequence num-
bers later than the corresponding first packet copy without being
recognized as new packets.

AXE [12] tries to solve a similar problem, namely the de-duplication
of packets. The hash of incoming packets is used to access special
registers and associated header fields are stored. When another
packet with the same hash arrives and the stored header fields
match the incoming packet, the packet is a duplicate. No hash colli-
sion is considered. This technique detects duplicates quite reliably.
However, AXE considers L2 flooding for learning bridges and there-
fore operates on relatively low bandwidths. P4-Protect must be able
to de-duplicate several 100G connections, for the Tofino Edgecore

Wedge 100BF-32X 3.2 Tb/s. Hence the AXE approach is not feasible
due to the required register memory space and, depending on the
hash algorithm, the high probability for hash collisions.

4 DISCUSSION
In this section the protection properties of P4-Protect are examined
in more detail. Both, advantages and limitations of P4-Protect are
discussed. The impact on jitter, packet loss and packet reordering
are considered. To that end, we provide examples of traffic streams
received by the PTE and their results after duplicate elimination.

4.1 Impact on Jitter
P4-Protect replicates packets to two preferable disjoint paths. If
both paths suffer from jitter, P4-Protect can compensate the overall
end-to-end jitter. Figure 2 illustrates the impact of P4-Protect on
the overall end-to-end jitter. Packet 3 on path 1 has a very high
delay due to jitter. As P4-Protect always forwards the first version
of in-order packets, packet 3 is forwarded from the second path
and thereby compensates the jitter delay.

Time t

12

12

3

3

Path 1

Path 2
123

Figure 2: P4-Protect can reduce jitter.

4.2 Impact of Packet Loss
P4-Protect forwards the first version of a packet. If a path fails,
all packet replicas of the other path are forwarded correctly. If
individual packets are lost on one path, their replicas from the
other path are not necessarily forwarded. This phenomenon ist
illustrated in Figure 3. Four packets are replicated by the PTI and
sent over two disjoint paths. The second path has a higher latency.
As a result, packet 4 of the first path arrives before packet 3 on the
second path. Now, 𝑆𝑁𝐸𝑃𝑇𝐸

𝑙𝑎𝑠𝑡
is set to 4, and as a consequence, packet

3 on the second path is discarded.

Time t

12

12

34

34

Path 1

Path 2
124

X

Figure 3: Packet lossmay not be compensated by P4-Protect.

This behavior is due to the scalable design of P4-Protect. Only
the last accepted sequence number is stored and checked at a new
packet arrival. Missing packets are not memorized nor are packets
buffered. This example clarifies that the objective of P4-Protect is
to protect quickly against path failures, it is not to compensate for
individual packet losses.

EuroP4’20, December 1, 2020, Barcelona, Spain Lindner et. al

4.3 Packet Reordering
Packet reordering on a path has different sources, e.g., parallelism
in network devices, link bundling, and special QoS configurations
[18]. In case of packet reordering, P4-Protect may cause packet loss.

Time t

13

12

2

3

Path 1

Path 2
13

4

4
4

Figure 4: As it is not possible to check for lost packets, re-
ordering leads to packet loss.

Figure 4 illustrates the impact of packet reordering. Path 1 has
a slightly lower end-to-end latency than path 2. Due to packet
reordering, the PTE receives the packets of path 1 in the order 1 3
2 4 instead of 1 2 3 4 . Moreover, packet 3 of the first path arrives
slightly before packet 2 of the second path. As a result, the PTE
accepts packets 1, 3 and 4 from path 1 and discards packet 2 from
path 2. The main reason for this behavior is that P4-Protect does
not memorize missing packets. Therefore, they cannot be accepted
if they arrive in the wrong order. Limited arithmetic operations
and storage access on our specific hardware target inhibit more
sophisticated checks.

5 IMPLEMENTATION
In this section we present the implementation of P4-Protect. We
describe the supported header stacks, explain the control blocks,
their organization in ingress and egress control flow, and we re-
veal implementation details about some control blocks. Finally, we
sketch most relevant aspects of the P4-Protect controller.

5.1 Supported Header Stacks
Incoming packets are parsed so that their header values can be
accessed within the P4 pipeline. To that end, we define the following
supported header stacks. Unprotected IP traffic has the structure
IP/TP, i.e., IP header and some transport header (TCP/UDP), and
protected IP traffic has the structure IP/P/IP/TP, i.e., the IP header
with the PTE’s address, the protection header, the original IP header,
and a transport header. IP traffic without transport header is parsed
only up to the IP header.

5.2 Control Blocks
Wepresent three control blocks of our implementation of P4-Protect.
They consider the packet processing by PTI and PTE.

5.2.1 Control Block: Protect&Forward. When the PTI receives an IP
packet, it is parsed and matched against the Match+action (MAT)
table ProtectedFlows. In case of a match, the packet is equippedwith
an appropriate header stack, duplicated, and sent to appropriate
egress ports. In case of a miss, the packet is processed by a standard
IPv4 forwarding procedure.

5.2.2 Control Block: Decaps-IP. When the PTE receives an IP packet
with the PTE’s own IP address, the IP header is decapsulated. If the

next protocol indicates a protection header, the packet is handed
over to the Decaps-P control block; otherwise, the packet is pro-
cessed by the Protect&Forward control block since the resulting
packet may need to be protected and forwarded.

5.2.3 Control Block: Decaps-P. In the Decaps-P control block, the
PTE examines the protection header and decides whether to keep
or drop the packet as it is a copy of an earlier received packet. To
keep the packet, the protection header is decapsulated.

5.3 Ingress and Egress Control Flow
The inter-dependencies between the control blocks suggest the fol-
lowing ingress control flow: Decaps-IP, Decaps-P, Protect&Forward.
At a mere PTI, no action is performed by the Decaps-IP and Decap-P
control block. The Protect&Forward takes care that protected traffic
is duplicated and sent over two different paths and that unprotected
traffic is forwarded by normal IPv4 operation. At a mere PTE, pro-
tected traffic is decapsulated and selected before being forwarded
by normal IPv4 operation. Unprotected traffic is just forwarded by
normal IPv4 operation.

5.4 Control Block Implementations
In the following, we explain implementation details of the Pro-
tect&Forward control block and the Decaps-P control block. We
omit the Decaps-IP control block as it is rather simple.

5.4.1 Protect&Forward Control Block. The operation of the Pro-
tect&Forward control block is illustrated in Figure 5. It utilizes the
MAT ProtectedFlows to process all packets. It effects that protected
traffic is encapsulated at the PTI with a protection header and an IP
header for tunneling.

ProtectedFlows
Match keys

Ternary

p.srcIP & p.dstIP
p.protocol & p.srcPort & p.dstPort

Action Parameters

protect

- i
- CID
- srcIP
- dstIP
- m_grp

- increment sequence number for next pkt
- add protection header with CID
- add outer ip header with srcIP and dstIP

Standard IPv4 forwarding

miss

Send to mulicat group m_grp

Figure 5: The MAT ProtectedFows inside the Pro-
tect&Forward control block is applied to IPv4 traffic.

The MAT ProtectedFlows uses a ternary match on the classic
5-tuple description of a flow: the source and destination IP ad-
dress and port as well as the protocol field. In case of a match, the
MAT maps a packet to a specifc protection connection and calls
the protect action with the connection-specific parameters 𝑖 , 𝐶𝐼𝐷 ,
𝑠𝑟𝑐𝐼𝑃 , 𝑑𝑠𝑡𝐼𝑃 , and𝑚_𝑔𝑟𝑝 . The protect action increments the register
𝑆𝑁𝑃𝑇 𝐼

𝑙𝑎𝑠𝑡
[𝑖] where 𝑖 is a connection-specific index to access a register

containing the last sequence number. On the Tofino target, this is
performed by a separate register action. The protect action further
pushes a protection header on the packet including 𝐶𝐼𝐷 , i.e., the

P4-Protect EuroP4’20, December 1, 2020, Barcelona, Spain

CID, 𝑆𝑁𝑃𝑇 𝐼
𝑙𝑎𝑠𝑡

[𝑖], and the next protocol set to IPv4. Then, it pushes
an IPv4 header with the IP address 𝑠𝑟𝑐𝐼𝑃 of the PTI as source IP and
the IP address 𝑑𝑠𝑡𝐼𝑃 of the PTE as destination IP. The protocol field
of this outer IP header is set to P4-Protect. Finally, the multicast
group of the packet is set to𝑚_𝑔𝑟𝑝 . It is a connection-specific mul-
ticast group. It effects that the packet is duplicated and sent to two
egress ports in order to deliver it via two protection tunnels to the
PTE. In case of a miss, the packet is unprotected and handled by a
standard IPv4 forwarding procedure, which is not further explained
in this paper.

5.4.2 Decaps-P Control Block. The Decaps-P control block decides
whether a packet is new and should be forwarded or dropped. It com-
pares the sequence number 𝑆𝑁 of the packet’s protection header
with the last sequence number of the corresponding protection
connection. The latter can be accessed by the register 𝑆𝑁𝑃𝑇𝐸

𝑙𝑎𝑠𝑡
[𝐶𝐼𝐷]

where CID is given in the protection header. The acceptance is de-
cided based on Equation (1) or Equation (3) depending on the value
of 𝑆𝑁 and𝑊 where𝑊 is given as a constant.

As the check is rather complex, it requires careful implemen-
tation for the Tofino target 1. It leverages the fact that we set
𝑊 = 𝑆𝑁𝑚𝑎𝑥

2 . Furthermore, it requires a reformulation of Equa-
tion (1) and Equation (3).

If𝑊 ≤ 𝑆𝑁 holds, the following two inequalities must be met:

𝑆𝑁𝑃𝑇𝐸
𝑙𝑎𝑠𝑡 < 𝑆𝑁 (4)

𝑆𝑁 − 𝑆𝑁𝑃𝑇𝐸
𝑙𝑎𝑠𝑡 ≤ 𝑊 (5)

Otherwise, if 𝑆𝑁 <𝑊 , it is sufficient that only one of the following
two inequalities holds:

𝑆𝑁𝑃𝑇𝐸
𝑙𝑎𝑠𝑡 < 𝑆𝑁 (6)

𝑊 ≤ 𝑆𝑁𝑃𝑇𝐸
𝑙𝑎𝑠𝑡 − 𝑆𝑁 (7)

Both cases are implemented as separate register actions on the
Tofino target. With 32 bit sequence numbers, a minimum packet
size of 40 bytes and a transmission speed of 𝐶 = 1 Tb/s, a delay
difference up to 1.6s can be compensated.

The bmv2 version of the implementation can be found at Github2.
The Tofino version of the implementation can be found at Github3
as well.

5.5 Controller for P4-Protect
P4-Protect’s controller offers an interface for the management of
protection connections and protected flows. It configures in par-
ticular the MAT ProtectedFlows but also other MATs needed for
standard IPv4 forwarding or IP decapsulation. In the following, we
explain the configuration of protection connections and protected
flows.

5.5.1 Configuration of Protection Connections. A protection con-
nection is established by choosing registers on PTI and PTE to
record the last sequence numbers 𝑆𝑁𝑃𝑇 𝐼

𝑙𝑎𝑠𝑡
and 𝑆𝑁𝑃𝑇𝐸

𝑙𝑎𝑠𝑡
of a protec-

tion connection. The connection identifier is the PTE’s index to
1Tofino is a high-performance chip which operates at 100 Gb/s so that only a limited
set of operations can be performed for each packet, in particular in connection with
register access.
2Repository: https://github.com/uni-tue-kn/p4-protect
3Repository: https://github.com/uni-tue-kn/p4-protect-tofino

access 𝑆𝑁𝑃𝑇𝐸
𝑙𝑎𝑠𝑡

. On the PTI, a different index 𝑖 may be chosen to
access 𝑆𝑁𝑃𝑇 𝐼

𝑙𝑎𝑠𝑡
. Furthermore, the registers are initialized with zero.

Moreover, the controller sets up a multicast group𝑚_𝑔𝑟𝑝 for each
connection so that its traffic will be replicated in an efficient way
to the two desired interfaces.

5.5.2 Configuration of Protected Flows. A protected flow is estab-
lished by adding a new flow rule in the MAT ProtectedFlows of the
PTI. It contains an appropriate flow descriptor and the parameters
to call the action protect. Those are the index 𝑖 associated with the
corresponding protection connection, the CID needed at the PTE to
identify the protection connection, the IP address of the PTI, the IP
of the PTE, and the multicast group𝑚_𝑔𝑟𝑝 .

6 EVALUATION
In this section we evaluate the performance of the implemented
mechanism on the Tofino Edgecore Wedge 100BF-32X. First, we
compare packet processing times with and without P4-Protect.
Then, we demonstrate that very high data rates can be achievedwith
and without P4-Protect on a 100 Gb/s interface. Finally, we show
that P4-Protect can provide a transmission service with reduced
jitter compared to the jitter of both protection tunnels.

6.1 Packet Processing Time
P4-Protect induces forwarding complexity. To evaluate its impact,
we leverage P4 metadata to calculate the time a packet takes from
the beginning of the ingress pipeline to the beginning of the egress
pipeline. This is sufficient for a comparison as all work for P4-
Protect is done in the ingress pipeline and all considered forward-
ing schemes utilizes the same egress pipeline. We compare three
forwarding modes: a plain IP forwarding implementation (plain),
P4-Protect for unprotected traffic (unprotected), and P4-Protect for
protected traffic (protected).

0

50

100

150

PTI PTE

R
e
la

ti
v
e
 p

ro
c
e
s
s
in

g
 t
im

e
 (

%
)

Plain
Unprotected
Protected

Figure 6: Ingress-to-egress packet processing time at PTI and
PTE for three forwardingmodes: plain, unprotected, and pro-
tected.

Figure 6 shows the ingress-to-egress packet processing time on
both PTI and PTE for the three mentioned forwarding modes. The
duration is given relative to the processing time for plain forwarding
mode. We observe the lowest processing time at PTI and PTE for
plain forwarding as it has the least complex pipeline. With P4-
Protect, the processing time at both PTI and PTE is larger than with
plain forwarding as the operations are more complex. At PTI, the
processing time is even larger with protected forwarding (166%)
than with unprotected forwarding (127%). At PTE, the processing
times for protected and unprotected traffic are equal and 27% longer
than with plain forwarding.

EuroP4’20, December 1, 2020, Barcelona, Spain Lindner et. al

In our implementations, we have used only a minimal IPv4
stack for all three forwarding modes. With a more comprehen-
sive IPv4 stack, the relative overhead through P4-Protect is likely
to be smaller.

6.2 TCP Goodput
We set up iperf3 connections between client/server pairs and mea-
sure their goodput. Each iperf3 connection consists of 15 parallel
TCP flows. Two switches are bidirectionally connected via two
100 Gb/s interfaces. Four client/server pairs are connected to the
switches via 100 Gb/s interfaces. Up to 4 clients download traffic
from their servers via the trunk between the switches.

0

25

50

75

100

1 2 3 4

Number of client/server pairs

G
o
o
d
p
u
t
(G

b
/s

)

Plain
Unprotected
Protected

Figure 7: Impact of varying number of client/server pairs ex-
changing traffic with iperf3.

Figure 7 shows the overall goodput for a various number of
client/server pairs, each transmitting traffic over a single TCP con-
nection. The goodput is given for the forwarding modes plain,
unprotected, and protected. We performed 20 runs per experiment
and provide the 95% confidence interval.

A single, two, and, three TCP connections cannot generate suffi-
cient traffic to fill the 100 Gb/s bottleneck link. However, with four
TCP connections a goodput of around 90 Gb/s is achieved. This is
less than 100% because of overhead due to Ethernet, IP, and TCP
headers and due to the inability of TCP to efficiently utilize available
capacity at high data rates. Most important is the observation that
all three forwarding modes lead to almost identical goodput. The
goodput for protected and unprotected forwarding is slightly lower
than plain forwarding, which is apparently due to the operational
overhead of P4-Protect.

6.3 Impact on Jitter
We examine the effect of 1+1 path protection on jitter. Two hosts are
connected to two Tofino EdgecoreWedges 100BF-32X. The switches
are connected with each other via two paths with intermediate
Linux servers. Their interfaces are bridged and cause an artificial,
adjustable, uniformly distributed jitter. We leverage the tc tool for
this purpose [6]. All lines have a capacity of 100 Gb/s.

In our experiment, we send pings between the two hosts with
and without P4-Protect. Figure 8 reports the average round trip
time (RTT) deviation for the pings. Unprotected traffic suffers from
all the jitter induced on a single path. Protected traffic suffers only
from about half the jitter. This is because P4-Protect forwards the
earliest received packet copy and minimizes packet delay occurred
on both links.

0

2

4

6

0 1 3 10

Jitter (ms)

D
e
v
ia

ti
o
n
 (

m
s
)

Unprotected
Protected

Figure 8: Impact of 1+1 protection on jitter.

7 CONCLUSION
In this paper we proposed P4-Protect for 1+1 path protection with
P4. It may be utilized to protect traffic via two largely disjoint paths.
We presented an implementation for the software switch bmv2 and
the hardware switch Tofino Edgecore Wedge 100Bf-32X. The evalu-
ation of P4-Protect on the hardware switch revealed that P4-Protect
increases packet processing times only little, that high throughput
can be achieved with P4-Protect, and that jitter is reduced by P4-
Protect when traffic is carried over two path with similar delay but
large jitter.

ACKNOWLEDGMENTS
The authors acknowledge the funding by the Deutsche Forschungs-
gemeinschaft (DFG) under grant ME2727/1-2. The authors alone
are responsible for the content of the paper.

REFERENCES
[1] A. Atlas et al. 2008. RFC5286: Basic Specification for IP Fast Reroute: Loop-Free

Alternates .
[2] Ender Ayanoglu et al. 1993. Diversity coding for transparent self-healing and

fault-tolerant communication networks. IEEE ToC 41(11) (1993).
[3] P. Bosshart et al. 2014. P4: Programming Protocol-Independent Packet Processors.

ACM CCR 44(3) (2014).
[4] Wolfgang Braun et al. 2017. Performance Comparison of Resilience Mechanisms

for Stateless Multicast Using BIER. In IFIP/IEEE.
[5] Norman Finn, Pascal Thubert, Balazs Varga, and János Farkas. 2019. Deterministic

Networking Architecture. RFC 8655. https://doi.org/10.17487/RFC8655
[6] Linux Foundation. 2019. Linux Traffic Control.
[7] A. Fumagalli et al. 2000. IP restoration vs. WDM protection: is there an optimal

choice? IEEE Network Magazine 14(6) (2000).
[8] IEEE Computer Society. 2017. Frame Replication and Elimination for Reliability.

Technical Report.
[9] ITU. 2006. ITU-T Recommendation G.803/Y.1342 (2006), Ethernet Protection

Switching .
[10] ITU. 2010. ITU-T Recommendation G.7712/Y.1703 (2010), Internet protocol

aspects – Operation, administration and maintenance.
[11] A. Karan et al. 2015. RFC7431: Multicast-Only Fast Reroute.
[12] James McCauley, Mingjie Zhao, Ethan J. Jackson, Barath Raghavan, Sylvia Rat-

nasamy, and Scott Shenker. 2016. The Deforestation of L2. In Proceedings of the
2016 ACM SIGCOMM Conference.

[13] Sèamas McGettrick et al. 2013. Ultra-fast 1+1 protection in 10 Gb/s symmetric
Long Reach PON. In IEEE ECOC).

[14] Daniel Merling et al. 2018. Efficient Data Plane Protection for SDN. IEEE (Net-
Soft).

[15] Christopher Metz. 2000. IP protection and restoration. IEEE Internet Computing
4(2) (2000).

[16] Mirzad Mohandespour et al. 2015. Multicast 1+1 protection: The case for simple
network coding. In IEEE ICNC.

[17] Grazziela Niculescu et al. 2010. The Packet Delay in a MPLS Network Using "1+1
Protection. In IEEE Advanced International Conference on Telecommunications.

[18] Michal Przybylski, Bartosz Belter, and Artur Binczewski. 2005. Shall we worry
about Packet Reordering? Computational Methods in Science and Technology 11.

[19] Jean Philippe Vasseur et al. 2004. Network Recovery. Morgan Kaufmann.
[20] Dongyun Zhou et al. 2000. Survivability in Optical Networks. IEEE Network

Magazine 14(6) (2000).
[21] Harald Øverby et. al. 2012. Cost comparison of 1+1 path protection schemes: A

case for coding. In IEEE ICC.

1 Accepted Manuscripts (Core Content)

1.3 An Overview of Bit Index Explicit Replication (BIER)

77

ietfjournal.org

An Overview of Bit Index Explicit

Replication (BIER)

19-24 minutes

Introduction

IP Multicast (IPMC) efficiently forwards one-to-many traffic and

is leveraged for services like IPTV or multicast VPN (mVPN) [1].

In this article we explain the basic concept of traditional IPMC,

describe its shortcomings, and present Bit Index Explicit

Replication (BIER) as a solution.

An IPMC group may correspond to one specific IPTV channel.

Packets destined to an IPMC group address are forwarded to all

its members. Receivers leverage IGMP/MLD (Internet Group

Management Protocol, RFC 3376/Multicast Listener Discovery,

RFC 3810) to join an IPMC group. Within an IPMC domain,

typical IPMC protocols use in-network traffic replication to

ensure that at most a single copy of a packet traverses each link

to reach multiple receivers. To that end, they establish per IPMC

group one IPMC tree, possibly for each source, along which the

traffic of that group is forwarded. The concept is shown in Figure

1. Examples for such protocols are PIM (Protocol Independent

Multicast, RFC 7761), mLDP (Multicast Label Distribution

Protocol), or RSVP-TE/P2MP (Resource Reservation Protocol –

Traffic Engineering, RFC 3209, Point-to-Multipoint RFC 4875).

The IPMC trees requires forwarding information in intermediate

hops that we denote as ‘state’ in the following.

Figure 1: Two multicast trees.

Certain IPMC solutions for special use cases with static

distribution trees – especially implementations of PIM – have

proven to be useful and manageable. Nevertheless, traditional

IPMC solutions suffer from limited scalability [1] [2].

Technologies to address these issues have been proposed but

they cause further complexity and create new disadvantages.

BIER has been proposed by the IETF and is described in RFC

8279 [3]. The basic idea is to remove the IPMC-group-

dependent state and the need for explicit-tree building from

devices in the middle of the network to improve the scalability of

the IPMC domain. This is achieved by adding a BIER header to

IPMC packets. Within such a BIER domain, the packets are

forwarded only according to this header.

Shortcomings of Traditional Multicast

Traditional IPMC solutions like PIM, mLDP, or RSVP-TE/P2MP

rely on per-group IPMC tree state. This tree state limits

scalability in three ways.

P0. Devices have to store state per IPMC group.

P1. The IPMC protocol has to actively create, change, and tear-

down the IPMC trees whenever IPMC groups start, change, or

stop.

P2. In case of a topology change, the forwarding structure may

need to change. Thus, the states of all IPMC groups possibly

require adaptation. The time needed for that process scales with

the number of IPMC groups.

Several additional technologies have been introduced to

address these issues but they come with new disadvantages.

Ingress replication is a tunnel-based approach that avoids

additional state by utilizing unicast tunnels for building an IPMC

tree at the expense of reduced forwarding efficiency. PMSI

(Provider Multicast Service Interfaces, RFC 6513) leverages

aggregated trees to carry the traffic of multiple IPMC

applications, which causes significant signaling overhead.

RSVP-TE/P2MP is a heavyweight approach to reduce

convergence time issues for IPMC with pre-established backup

tunnels. All those approaches have to be managed by operators

making traditional IPMC more complex, expensive, less reliable,

and overall challenging to deploy.

BIER proposes a replicating fabric technology which allows an

operator to forward IPMC traffic efficiently without the need for

explicit IPMC tree state in intermediate devices. In this section,

we describe the concept of BIER, explain BIER’s forwarding

procedure in detail, and outline how it addresses the previously

mentioned shortcomings of traditional IPMC.

Figure 2: Packets enter the BIER domain via Bit-Forwarding

Ingress Routers (BFIRs). They construct and push a BIER

header onto the packet which holds information for BIER’s

forwarding procedure. At the Bit-Forwarding Egress Routers

(BFERs), the BIER header is removed.

BIER Concept

The concept of BIER is illustrated in Figure 2. Traffic enters a

BIER domain through a Bit-Forwarding Ingress Router (BFIR)

and is replicated efficiently to potentially many Bit-Forwarding

Egress Routers (BFERs). The BFIR adds a BIER header to the

packets. This header contains information about the set of

BFERs to which a copy of the packet is to be delivered. The

BFERs remove the BIER header from the packets before they

leave the BIER domain.

The BIER header is leveraged by all Bit-Forwarding Routers

(BFRs) within the BIER domain to efficiently forward the traffic

along a tree structure or even any acyclic graph that is

determined from the underlay information, normally carried by

the IGP (Interior Gateway Protocol). More specifically, the BIER

header contains a bit string where each bit corresponds to a

specific BFER. The BFIR sets that bit if the corresponding BFER

should receive the packet.

A BFR relays and replicates BIER traffic based on that header

information and its so-called Bit Index Forwarding Table (BIFT).

The BIFT holds the next-hop information for every possible

destination (BFER). Therefore, the size of the BIFT is

independent of the number of IPMC groups. Real deployments

may group the forwarding information for destinations that are

reached via the same next-hop. This reduces the number of

forwarding entries even further so that it scales with the number

of a BFR’s next-hops. The forwarding procedure ensures that a

next-hop receives only a single copy of a packet even though

the packet’s BIER header indicates multiple destinations with

that next-hop. To forward BIER traffic consistently, the BIFTs are

commonly configured with shortest path entries towards the

BFERs. BIER acquires this information from the IGP topology

database of the underlying routing protocol, e.g. ISIS

(Intermediate System to Intermediate System) or OSPF (Open

Shortest Path First).

BIER Forwarding

In the following, we explain how traffic is forwarded with BIER

along a shortest-path tree and illustrate it with an example.

Figure 3 shows a network topology together with the shortest-

path tree from Node 1 towards all destinations.

Figure 3: Example topology with the shortest-path forwarding

tree for Node 1.

The BFERs are numbered and assigned to the bit positions in

the bitstring of a BIER header. Thereby, counting starts with the

least-significant bit of the bitstring. That means, the bitstring

‘000001’ corresponds to Node 1 and ‘100000’ corresponds to

Node 6.

The BFR needs to ensure that all destinations receive a copy of

the packet. To that end, the BFR forwards a copy to each next-

hop that is on the path to at least one destination indicated in the

BIER header. In our example, we assume that Node 1 receives

a packet with a bitstring ‘100100’ in the BIER header, i.e., the

bits for Node 3 and Node 6 are activated. Therefore, Node 1

sends a copy of the packet to Node 3 and Node 2.

To prevent duplicates, a BFR clears all bits in the bitstring of a

packet’s BIER header that are not reached via the next-hop the

packet is forwarded to. This ensures that there is only a single

packet on the way towards each desired destination in spite of

packet replication. In our example, Node 1 unsets the bit for

Node 6 when forwarding the packet to Node 3 (‘000100’) and it

unsets the bit for Node3 when forwarding the packet to Node 2

(‘100000’).

We explain how a BFR achieves the explained forwarding

behavior in an efficient way using the bitstring of a packet’s

BIER header and its BIFT. The BIFT contains for every

destination a so-called Forwarding Bit Mask (F-BM) and a next-

hop. The F-BM is a bitmask whose bit positions correspond to

the same BFERs as the bit positions in the bitstring of a BIER

header. Activated bits in the F-BM indicate the BFERs that are

reached via the specific next-hop. Therefore, all destinations

reached via the same next-hop share the same F-BM. As an

example, the BIFT of Node 1 is given in Table 1. For destination

Node 3, the next-hop is Node 3 and the corresponding F-BM

indicates that only Node 3 is reached via Node 3. For the

destinations Node 2, Node 4, Node 5, and Node 6, the next-hop

is Node 2 and the F-BM indicates that all these nodes share the

next-hop Node 2.

Table 1: BIFT of Node 1

To efficiently process a packet, the BFR creates an internal copy

of the bitstring and performs the following algorithm until all bits

of the internal copy of the bitstring are zero. The BFR finds a

destination indicated in the bitstring of the internal copy of the

bitstring. It looks up the F-BM for that destination in the BIFT and

constructs a new BIER header using the bitstring of the packet

ANDed with the F-BM. Then it sends a copy of the packet with

the modified bitstring to the next-hop also indicated in the BIFT.

Afterwards, the internal copy of the bitstring is modified by

bitwise ANDing it with the complement of the F-BM. This action

removes all destinations from the packet header that have been

served by the last transmission of the packet.

BIER – A Scalable Multicast Approach

BIER overcomes the previously outlined problems of IPMC. It

solves the problem of IPMC-group-dependent state within

forwarding devices (P0) by moving this state to the BIER header.

In case of changing IPMC-groups (P1), only BFIRs require an

update as they construct the BIER header that indicates the

destinations of the packet. At last, the BIFT of every BFR holds

forwarding entries for all BFERs in the network in a compact

form. In case of a topology change (P2), only that information

has to be updated instead of the tree state of potentially many

IPMC groups, which takes a long time. As a result, the

reconvergence time of BIER can be compared to IP unicast

rather than to one of the traditional IPMC protocols.

By transferring the state from the forwarding devices to the

header, the size of the header becomes a scalability issue as

one bit is required for every BFER. With current router

technology, 256 bits will be the most commonly used bitstring

length because this is equivalent to the two IPv6 addresses in

every IPv6 header. Longer bitstrings may be supported by future

hardware. If there are more than 256 BFERs within the network,

BIER supports the possibility of separating BFERs into subsets.

The BIER header contains a field that identifies the subset that

is addressed by a BIER packet. Thus, if an IPMC packet targets

BFERs from different subsets, for each of these subsets, one

copy of a packet has to be forwarded.

Use Cases

At the beginning of the BIER standardization journey, ten use

cases were envisioned as technology drivers [1]. In this section

we briefly describe the most prominent use cases, namely

various multicast Layer 2/3 VPNs (L2/3VPNs), IPTV media

streaming, data center virtualization services, and financial

services. We outline problems that occur when these use cases

are supported with traditional IPMC approaches and point out

how BIER may be used to solve these problems.

Multicast VPN Services

Multicast within VPNs is used for news ticker, broadcast-TV

applications or in general, content delivery networks (CDNs).

For signaling in traditional multicast VPN (mVPN) services, PIM,

mLDP, RSVP-TE/P2MP, or ingress replication is used. Each

implementation offers a trade-off between state and flooding.

The Multidirectional Inclusive PMSI (MI-PMSI) relies on flooding

frames to all provider edge (PE) routers of the VPN, regardless

of whether an IPMC receiver joined behind the PE routers. This

results in a rather steady IPMC tree at the expense of flooding.

In Selective PMSI (S-PMSI) only PE routers with joined

receivers are part of the IPMC tree. S-PMSI reduces flooding

with a more dynamic tree, requiring more state on the provider’s

core routers (P routers). Ingress replication causes the ingress

PE router to send multiple copies of the same frame and forward

it via unicast tunnels to the destinations. This poses a high

replication burden on ingress routers and high bandwidth burden

on paths.

Requiring IPMC-group-dependent state is a typical problem

network operators are faced with (P0). With the introduction of

BIER, this problem no longer exists.

IPTV Media Streaming

IPMC is leveraged for IPTV, or Internet video distribution in

CDNs. Typical implementations like PIM, mLDP, or RSVP-

TE/P2MP generate IPMC-group-dependent state as described

in the previous use case. Additionally, such media streaming

services may experience extensive subscription changes as

every time a user switches a channel, the IPMC groups may

have to be adapted. This may cause a high update frequency of

IPMC state.

BIER solves the problem of requiring IPMC-group-dependent

state (P0). In particular changes of subscriptions can be

managed by reconfiguring BFIRs instead of potentially many

devices (P1) so that core routers are not affected.

Data Center Virtualization Services

Virtual eXtensible LAN (VXLAN, RFC 7348) interconnects L2

networks over an L3 infrastructure. It encapsulates L2 frames in

UDP and adds a 24-bit ID so that 16 million virtual network

instances (VNIs) can be differentiated. Each VNI is an isolated

virtual network similar to a VLAN. That technology is used to

isolate VLANs of multiple tenants in modern multi-tenant

datacenters.

Typically, a tenant interconnects its virtual machines (VMs) over

an L3 infrastructure using one or multiple VNIs to logically

separate its own traffic and to isolate it from other tenants’ traffic.

If a VM is moved from one physical machine to another or even

to another datacenter, there is no need to change its IP address

as long as the VM remains in the same VNI.

IPMC can be leveraged to distribute broadcast, unknown, and

multicast (BUM) traffic over the L3 infrastructure within a single

VNI. One or even multiple IPMC groups are needed per tenant

and, therefore, the number of IPMC groups may be very large.

Thus, this use case faces again the IPMC state problem (P0),

causing significant challenges for datacenter switches, data and

forwarding planes, as well as for network operation and

management. That problem may be solved by leveraging BIER

instead of traditional IPMC protocols in the L3 underlay network.

Financial Services

IPMC is used to deliver real-time stock market data to

subscribers. Such highly time-dependent data requires fast

recalculation of paths in case of a topology change to satisfy

latency requirements.

For traditional IPMC, a topology change requires a significant

amount of time since potentially many IPMC trees have to be

recomputed to restore connectivity and establish new shortest

paths.

As BIER relies only on one IPMC-group-independent forwarding

structure, its recomputation is significantly faster (P2).

Recent Working Group Achievements

The BIER working group developed BIER and provided several

extensions, increasing its applicability and facilitating its

deployment. We recap the results of the BIER working group

below.

RFC 8279 [3] specifies the BIER architecture. Among others, it

contains information about the BIER domain and its

components, how the forwarding procedure works, and briefly

explains the advantages of BIER compared to traditional IPMC

solutions. RFC 8296 [4] defines the implementation of BIER

encapsulation in MPLS and non-MPLS networks.

Signaling via PIM through the BIER domain, e.g. for

subscriptions of receivers at a sender, is described in [9].

For operation in a real network, BIER devices need to share

BIER-related information with each other. For example BFRs

have to advertise their IDs, or bitstring lengths. BIER leverages

link state routing protocols to perform this distribution. [5], [6]

and [7] contain OSPF, ISIS and BGP extensions for this

purpose. The latter is supported by a document for a BGP link

state extension for BIER [8].

Outlook

With the standardization of BIER, a new charter for the BIER

working group [10] has been proposed. The main goal is to

generate new experimental RFCs and to move existing

experimental RFCs to the Standards Track.

The BIER working group has to define a transition mechanism

for BIER. It should describe how BIER could be introduced in

existing IPMC networks. This will facilitate the deployment of

BIER.

The charter proposes documenting the applicability of BIER and

its use cases. A draft for the application of BIER to multicast

L3VPN and EVPN is required. Mechanisms for the signaling

between ingress and egress routers and improving scalability

are also mentioned. Furthermore, a document that clearly

discusses the benefits of BIER for specific use cases is desired.

Operation, administration, and management of the BIER domain

have to be described. The simplification of IPMC traffic

management with BIER is a particular focus and for this purpose

management APIs are required.

The BIER working group will continue the work on BIER-TE, an

extension to BIER to support traffic engineering (TE). In

software-defined networks (SDN), BIER may profit from a

controller-based architecture. A controller may calculate the

entries of the BIFTs and configure them in the BFRs. It may also

instruct the BIFRs with appropriate BIER headers for

encapsulation of traffic from specific IPMC groups.

Summary

BIER is a new, innovative mechanism for efficient forwarding

and replication of IPMC traffic. It addresses scalability,

operational, and performance issues of traditional IPMC

solutions. While the latter require per-IPMC-group state and

explicit-tree building in the forwarding devices, BIER encodes

the destinations of an IPMC group within the packet’s BIER

header. The header is created by Bit-Forwarding Ingress

Routers (BFIRs) when an IPMC packet enters the BIER domain.

BIER scales very well as no IPMC-group-dependent information

is required by forwarding nodes in the network core.

The collaboration in the BIER working group excels through

participation of a large group of different vendors, operators, and

researchers. Many companies have invested efforts in the

standardization of BIER, which underlines its importance for

future IPMC solutions. The spirit of the BIER working group is

special even within the IETF. New ideas and use cases are

always appreciated and discussed, and the community

welcomes new members.

[1] Nagendra Kumar, Rajiv Asati, Mach Chen, Xiaohu Xu,

Andrew Dolganow, Tony Przygienda, Arkadiy Gulko, Dom

Robinson, Vishal Arya, and Caitlin Bestler. BIER Use Cases,

January 2018.

[2] G. Shepherd, A. Dolganow, and A. Gulko. Bit Indexed Explicit

Replication (BIER) Problem Statement. http://tools.ietf.org

/html/draft-ietf-bier-problem-statement, April 2016.

[3] IJsbrand Wijnands, Eric C. Rosen, Andrew Dolganow, Tony

Przygienda, and Sam Aldrin. Multicast Using Bit Index Explicit

Replication (BIER). RFC 8279, November 2017.

[4] IJsbrand Wijnands, Eric C. Rosen, Andrew Dolganow, Jeff

Tantsura, Sam Aldrin, and Israel Meilik. Encapsulation for Bit

Index Explicit Replication (BIER) in MPLS and Non-MPLS

Networks. RFC 8296, January 2018.

[5] P. Psenak, N. Kumar, I. Wijnands, A. Dolganow, T.

Przygienda, J. Zhang, and S. Aldrin. OSPF Extensions For

BIER. https://datatracker.ietf.org/doc/draft-ietf-bier-ospf-bier-

extensions/, October 2015.

[6] L. Ginsberg, A. Przygienda, S. Aldrin, and J. Zhang. BIER

support via ISIS. https://datatracker.ietf.org/doc/draft-ietf-bier-

isis-extensions/, October 2015.

[7] Xiaohu Xu, Mach Chen, Keyur Patel, IJsbrand Wijnands, and

Tony Przygienda. BGP Extensions for BIER. Technical report,

January 2018.

[8] Ran Chen, Zheng Zhang, Vengada Prasad Govindan, and

IJsbrand Wijnands. BGP Link-State extensions for BIER.

Technical report, February 2018.

[9] Hooman Bidgoli, Andrew Dolganow, Jayant Kotalwar,

Fengman Xu, IJsbrand Wijnands, and mankamana prasad

mishra. PIM Signaling Through BIER Core. Technical report,

February 2018.

[10] Alia Atlas, Tony Przygienda, and Greg Shepherd. Charter

for the BIER WG. https://datatracker.ietf.org/doc/charter-ietf-

bier/, February 2018.

Publications

1.4 Comparison of Fast-Reroute Mechanisms for BIER-Based IP
Multicast

92

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Comparison of Fast-Reroute Mechanisms for
BIER-Based IP Multicast

Daniel Merling, Steffen Lindner, Michael Menth
Chair of Communication Networks, University of Tuebingen, Tuebingen, Germany

{daniel.merling, steffen.lindner, menth}@uni-tuebingen.de

Abstract—IP multicast (IPMC) delivers one-to-many traffic
along distribution trees. To that end, conventional IPMC requires
state in forwarding devices for each IPMC group. This limits
scalability of IPMC because forwarding state in core devices
may be extensive and updates are necessary when IPMC groups
or the topology change. The IETF introduced Bit Index Explicit
Replication (BIER) for efficient transport of IPMC traffic. BIER
leverages a BIER header and IPMC-group-independent forward-
ing tables for forwarding of IPMC packets in a BIER domain.
However, legacy devices do not support BIER. In contrary, two
SDN-based implementations for OpenFlow an P4 have been
published recently. In this paper, we assess BIER forwarding
which may be affected by network failures. So far there is no
standardized procedure to handle such situations. Two concepts
have been proposed. The first approach is based on Loop-
Free Alternates. It reroutes traffic to suitable neighbors in the
BIER domain to steer traffic around the failure. The second
approach is a tunnel-based mechanism that tunnels BIER packets
to appropriate downstream nodes within the BIER distribution
tree. We explain and compare both approaches, and discuss their
advantages and disadvantages.

Index Terms—Software-Defined Networking, Bit Index Explicit
Replication, Multicast, Resilience, Scalability

I. INTRODUCTION

IP multicast (IPMC) is used for services like IPTV, com-
mercial stock exchange, multicast VPN, content-delivery net-
works, or distribution of broadcast data. Figure 1 shows the
concept of IPMC.

IPMC
group 2

IPMC
group 1

Figure 1: Two multicast distribution trees.

IPMC efficiently distributes one-to-many traffic by replicat-
ing packets and forwarding only one packet per link. Hosts
join an IPMC group to receive the traffic addressed to that
group. Forwarding devices maintain IPMC-group-dependent
state to forward packets to the right neighbors. This decreases
the scalability of IPMC for the following reasons. First, a
large number of IMPC groups require a significant amount

The authors acknowledge the funding by the Deutsche Forschungsgemein-
schaft (DFG) under grant ME2727/1-2. The authors alone are responsible for
the content of the paper.

of forwarding state in core devices. Second, when subscribers
of an IPMC group change, i.e., devices join or leave the
group, the forwarding state needs to be updated. Third, when
the topology changes or in case of a failure, the forwarding
information base of possibly many devices has to be adapted.

The IETF presented BIER [1] as an efficient transport
mechanism for IPMC traffic. BIER introduces a BIER domain,
where only ingress routers maintain IPMC-group-dependent
state. Ingress routers of the BIER domain encapsulate IPMC
packets with a so-called BIER header which contains the
destinations of the packet. Within the BIER domain, BIER
packets are forwarded along distribution trees from the source
to the destinations. Thereby only a single packet is transmitted
per link. Finally, egress nodes remove the BIER header.
Forwarding in the BIER domain is based on two components.
First, the BIER header which contains a bit string that iden-
tifies receivers of a packet within the BIER domain. Second,
the so-called Bit Index Forwarding Table (BIFT) which is the
routing table of BIER devices. The entries of the BIFT are
derived from information from the routing underlay, e.g., the
Interior Gateway Protocol (IGP).

When a primary next-hop (NH) is unreachable due to a
failure, an entire set of downstream destination nodes does
not receive the traffic. When a failure is detected, IGP con-
verges, new distribution trees are calculated, and the BIFTs
are updated. This process requires a significant amount time.
Therefore, BIER would benefit greatly from a fast protection
mechanism that delivers traffic in the meantime. For unicast,
several fast reroute (FRR) mechanisms [2] have been proposed
which protect against the failure of single links or nodes until
the forwarding information base is updated. FRR mechanisms
use pre-computed backup entries to quickly reroute traffic
when the primary NH is unreachable. No signaling between
devices is necessary. Two FRR concepts for BIER have been
proposed. First, LFA-based BIER-FRR [3] leverages a FRR
mechanism called Loop-Free Alternates (LFAs) [4] that has
been initially proposed for IP unicast. Failures are bypassed
by forwarding traffic to alternative BIER NHs. Second, tunnel-
based BIER-FRR tunnels traffic through the routing underlay,
leveraging its FRR capabilities to steer traffic around the
failure. We proposed this mechanism at the IETF [5].

However, legacy devices do not support BIER. On the
contrary, the flexibility of SDN-based technologies have been
leveraged recently to successfully implement BIER with Open-
Flow [6] and in P41. This allows the deployment of BIER

1https://github.com/uni-tue-kn/p4-bier

©International Conference on Software Defined Systems (SDS 2020), April 2020, Paris, France

and facilitates the implementation of additional BIER-related
features, e.g. BIER-FRR.

In this paper we review LFA-based and tunnel-based BIER-
FRR. First, we propose changes to tunnel-based BIER-FRR to
reduce the number of forwarding entries. Then, we point out
major shortcomings of the LFA-based approach and present
extensions to resolve the issues. Further, we compare both
mechanisms by discussing their protection capabilities, and
overhead in terms of header size and forwarding state.

The paper is structured as follows. Section II describes
related work for conventional and SDN-based multicast, and
BIER. We review BIER in Section III. Section IV gives a
primer on LFAs. Then, in Section V we explain tunnel-based
BIER-FRR. Afterwards, we describe LFA-based BIER-FRR
in Section VI, and point out its shortcomings and propose
extensions in Section VII. Finally, we compare and discuss
both approaches in Section VIII. We conclude the paper in
Section IX. II. RELATED WORK

In this section we first discuss related work for conventional
and SDN-based multicast. Afterwards, we review related work
for BIER.
A. Multicast

In [7] the authors provide an overview of the early develop-
ment of multicast. The authors of [8] discuss the limited scal-
ability of conventional IP multicast in terms of the number of
forwarding entries. They propose an extension to the multicast
routing protocol MOSPF to reduce the number of required
forwarding entries. Li et al. [9] propose an architecture to
partition the multicast address space to increase scalability of
IP multicast in data center topologies.

B. SDN-Based Multicast
The surveys [10], [11] provide a detailed overview of

SDN-based multicast. We discuss only some of the men-
tioned papers. The authors of [12] introduce software-defined
multicast (SDM), an OpenFlow-based approach that aims at
providing a well-managed multicast platform for over-the-top
and overlay-based live streaming services. SDM is specifically
engineered for the needs of P2P-based video stream delivery.
They further develop their idea of SDM in [13] by adding
support for fine-granular traffic engineering capabilities. Lin et
al. [14] present a multicast model to construct so-called multi-
group shared trees. By deploying distribution trees that cover
multiple multicast groups simultaneously, the entire network
is covered with a small number of trees.

C. Protection of SDN-Based Multicast
Kotani et al. [15] propose to leverage multiple simulta-

neously deployed multicast trees for protection. An ID in
the packet header determines along which distribution tree
a packet is forwarded. When a tree is affected by a failure,
the controller reconfigures the senders to forward traffic on
a backup tree. The authors of [16] follow a similar approach
where they leverage primary and backup trees identified by
a VLAN tag. When a switch detects a failure, it reroutes the
packets on a working backup tree that contains all downstream
nodes. This is accomplished by switching the VLAN tag in
the packet header.

D. BIER Related Work
Giorgetti et al. [6], [17] provide an implementation for

both, conventional IPMC and BIER forwarding in OpenFlow.
They leverage MPLS headers to encode the BIER bit string,
which limits the bit string length, and thereby the number
of destinations, to a maximum of 20. However, a local
BIER agent is required to run on the switches to support
arbitrary destinations. BIER-TE [18] extends BIER with traffic
engineering capabilities. BIER-TE leverages the same header
format as BIER and supports explicit coding of a distribu-
tion tree in the BIER header. However, BIER and BIER-TE
are not compatible. The authors of [19] present a P4-based
implementation of BIER and BIER-TE and present different
demo scenarios to show the feasibility and the advantages
of BIER(-TE). The authors of [20] propose 1+1 protection
for BIER-TE. Traffic for each IPMC group is forwarded
on two disjoint distribution trees simultaneously. The trees
share as few network components as possible to still deliver
traffic when one tree is interrupted by a failure. However, the
approach requires two forwarding planes, and in the failure
free case twice the amount of network resources are occupied.

III. BIT INDEX EXPLICIT REPLICATION (BIER)
The following section reviews BIER [1]. First, we describe

its concept, the structure of the Bit Index Forwarding Table
(BIFT), the BIER forwarding procedure, and a forwarding
example. Afterwards we explain a compact representation of
the BIFT, and characteristics of the BIER topology.
A. BIER Concept

BIER is based on a layered architecture, consisting of
routing underlay, BIER layer, and IPMC layer. Figure 2
illustrates the relation between these components.

IPMC
source Subscriber

Forwarding entries

BIER packet with BitString and IPMC payload
Bit-Forwarding Ingress Router

11

IPMC packet

IP
M

C

BI
ER

R

ou
tin

g
un

de
rla

y
la

ye
r

la
ye

r

Bit-Forwarding Egress Router

Bit-Forwarding Router

Subscriber

01 10

BIER domain

BFIR BFER 1 BFER 2

BFIR

BFER

BFR

00

BFR

Figure 2: Layered architecture of BIER; it shows the relation
between routing underlay, BIER layer, and IPMC layer.

The BIER layer serves as a point-to-multipoint tunnel for
IPMC traffic through a BIER domain. The BIER domain con-
sists of bit forwarding ingress routers (BFIRs), bit forwarding

routers (BFRs), and bit forwarding egress routers (BFERs). A
BIER-capable device can be BFIR, BFR and BFER at the
same time. When an IPMC packet enters the domain, the
BFIR pushes a BIER header onto the IPMC packet. The BIER
header identifies all receivers (BFERs) of the packet within the
BIER domain. To that end, it contains a bit string which has
to be at least as long as the number of BFERs in the BIER
domain. In the following, ’BitString’ refers to the bit string in
the BIER header of the packet. Each BFER is assigned to a bit
position in the BitString, starting with the least-significant bit.
An activated bit means that the corresponding BFER must
receive a copy of the BIER packet. BFRs forward BIER
packets according to theor BitString along distribution trees
to multiple BFERs.

Paths in the BIER domain are derived from the routing
underlay, e.g., the IGP. As a consequence, BIER traffic follows
the same paths as the corresponding unicast traffic from source
to destination. At the domain boundary, BFERs remove the
BIER header and pass the IPMC packet to the IPMC layer.

B. BIFT Structure
Table 1 shows the BIFT of BFR 1 from Figure 3. For each

BFER, the BIFT contains one forwarding entry that consists
of the primary NH and the so-called Forwarding Bit Mask
(F-BM). The F-BM is a NH-specific bit string similar to the
bit string in the BIER header. It indicates the BFERs with the
same NH. In one particular F-BM, only bits of BFERs that are
reached over the same NH are activated. During forwarding,
BFRs use the F-BM to clear bits from the BitString.

C. BIER Forwarding
When a BFR receives a BIER packet, it stores its BitString

to account to which BFERs the packet needs to be sent. We
refer to that stored bit string by the term ’remaining bits’. The
following procedure is repeated until the remaining bits do not
contain any activated bits anymore.

The BFR determines the least-significant activated bit in the
remaining bits. This bit indicates the BFER to be processed.
Then, the BFR performs a looks up in the BIFT to get the
NH and F-BM for that BFER. After a successful match, the
BFR creates a copy of the received BIER packet. The BFR
clears the BFERs from the BitString of the packet copy that
have a different NH. To that end, the BFR performs a bitwise
AND operation of the F-BM and the BitString of the packet
copy. Then the BFR writes the result into the BitString of
the packet copy. This procedure is called applying the F-BM.
Thus, only bits that correspond to BFERs which share the
same primary NH remain active in the BitString of the packet
copy. Clearing other bits avoids duplicates at the receivers.
Afterwards, the packet copy is forwarded to the NH. Finally,
the BFERs, to which a packet has just been sent, are removed
from the remaining bits. To that end, a bitwise AND operation
of the bitwise complement of the F-BM and the remaining bits
is performed.

D. BIER Forwarding Example
Figure 3 shows an example topology with four BFRs. Each

BFR is in addition a BFIR and a BFER. Table 1 shows the
BIFT of BFR 1.

1110

0100 1000

1010

2

43

1
BFER NH F-BM

1 - -
2 2 1010
3 3 0100
4 2 1010

Figure 3: BIER topology and
BitStrings of forwarded BIER
packets.

Table 1: BIFT of BFR 1.

BFR 1 receives a BIER packet with the BitString 1110. The
least-significant activated bit in the remainings bits identifies
BFR 2. Therefore, BFR 1 creates a copy of the packet, applies
the corresponding F-BM 1010, and forwards the packet copy
with the BitString 1010 to BFR 2. This sends a packet to
BFER 2 and BFER 4. Afterwards, the bits of the F-BM are
cleared from the remaining bits 0100. The least-significant
activated bit in the remaining bits corresponds to BFER 3.
The F-BM is applied and a packet clone with the BitString
0100 is forwarded to the NH which is BFR 3. After clearing
the F-BM from the remaining bits, processing stops because
no active bits remain.

E. Compact BIFT

The number of entries of the BIFT scales with the number
of BFERs. For improved scalability in terms of forwarding
entries, the authors of [21] propose a compact representation of
the BIFT that requires only one forwarding entry per neighbor.
To that end, all entries with the same NH and F-BM are
aggregated. As a result, all BFERs indicated in the F-BM
share a single forwarding entry. During lookup, an entry is
considered a match when at least one of the associated BFERs
is a destination of the BIER packet. Table 2 shows the compact
BIFT of BFR 1 from Figure 3.

BFERs NH F-BM
2, 4 2 1010
3 3 0100

Table 2: Compact BIFT of BFR 1.

F. Characteristics of the BIER Topology

In this paragraph we first discuss the impact of differences
between the Layer 3 topology and BIER topology. Afterwards,
we review how BIER devices detect whether BIER neighbors
are still reachable.

1) Differences Between Layer 3 Topology and BIER Topol-
ogy: In a Layer 3 topology some Layer 3 devices may not
be BIER capable. Thus, the BIER topology may be different
from the Layer 3 topology. Neighbors in the BIER topology
are either connected directly to each other, or through at
least one intermediate Layer 3 device that is no BIER device.
BIER nodes receive information about their connection to their
neighbors from the routing underlay. If two BIER neighbors
are directly adjacent, they forward packets over Layer 2 to each
other. If they are not directly adjacent, the BIER neighbors

leverage a Layer 3 tunnel to exchange packets. In both cases
forwarding still follows the paths from the routing underlay.

2) Detection of Unreachable NHs: To quickly detect un-
reachable BIER neighbors, the authors of [22] propose bidi-
rectional forwarding detection (BFD) [23] for BIER. When a
BFD is established between two BIER nodes, they periodically
exchange notifications to observe the reachability.

IV. LOOP-FREE ALTERNATES

In this section we explain the concept of Loop-Free Al-
ternates (LFAs) [4]. Afterwards, we review extensions for
improved protection capabilities and loop detection.

A. Foundations of LFAs

LFAs implement a FRR mechanism for IP unicast traffic
that prevents rerouting loops. Figure 4 shows the concept of
LFAs.

PLR NH DestinationDefault route

Alternative

Single hop

Shortest path

Li
ne

ty
pe

C
ol

or

LFANo LFA

NH 1
Alternative
NH 2

to destination

Figure 4: Concept of LFAs.

When a node cannot reach a primary NH, it acts as point
of local repair (PLR), i.e., it leverages a pre-computed backup
entry to reroute the packet via an alternative NH on a backup
path towards the destination. Such neighbors are called LFAs
and they have to be chosen in a way that rerouting loops are
avoided. Some neighbors must not be chosen as LFAs because
rerouting the packet would result in a forwarding loop.

LFAs have different properties for protection and loop
avoidance. Some protect against link failures, others against
node failures. Link-protecting LFAs (LP-LFAs) have a shortest
path towards the destination that does not include the link
between PLR and primary NH. Thus, LP-LFAs protect against
the failure of the link between PLR and primary NH. The
authors of [24] and [25] analyze the protection capabilities of
LP-LFAs with a comprehensive set of topologies. They find
that LP-LFAs protect only 70% of destinations against single
link failures. Furthermore, LP-LFAs may cause loops when
at least one node or multiple links fail instead of a single
link only. To protect against the failure of the primary NH,
node-protecting LFAs (NP-LFAs) have a shortest path to the
destination that does not include the primary NH. In [24] the
authors evaluate NP-LFAs in different scenarios on a large
set of topologies. They show that NP-LFAs prevent loops for
single link and single node failures, but they protect only 40%
of destinations against single link failures.

B. Extensions for LFAs

In this paragraph we explain remote LFAs (rLFAs), topol-
ogy independent LFAs (TI-LFAs), and explicit LFAs (eLFAs)
to complement LFAs for increased protection capabilities.
All three LFA variants support link and node protection. We

indicate the protection mode with the prefix ’LP-’ for link
protection, and ’NP-’ for node protection. Furthermore, we
review a loop detection mechanism for LFAs. Figure 5 shows
the concept of rLFAs, TI-LFAs, and eLFAs, which we explain
in detail in the following.

TI-LFA

rLFA

eLFA

Single hop

Shortest path

Shortest path tunnel

Header stack tunnel

Explicit path tunnel

Default route

Backup route

PLR NH Destination

Li
ne

ty
pe

C
ol

or

Figure 5: Concept of rLFAs, TI-LFAs, and eLFAs.
1) Remote LFAs (rLFAs): rLFAs [26] are remote nodes in

the network. When the PLR cannot reach a primary NH, the
packet is rerouted through a shortest path tunnel to the rLFA.
From there, the packet is forwarded on a shortest path towards
the destination. In [26] the authors prove that there is always
a LP-rLFA to protect against a single link failure in unit-link-
cost topologies. However, the authors of [25] find that this
property does not hold for topologies with arbitrary link costs.
NP-rLFAs cannot protect against all single link or single node
failures.

2) Topology-Independent LFAs (TI-LFAs): TI-LFAs [27]
are remote nodes in the network. When the primary NH is
unreachable, the PLR leverages a header stack of IP headers
to deviate traffic to the TI-LFA. The TI-LFA then sends the
original packet on a shortest path towards the destination. As
long as there is still a working shortest path to the destination,
LP-TI-LFAs can protect against any single link failure, and
NP-TI-LFAs against any single node failure.

3) Explicit LFAs (eLFAs): eLFAs [25] follow a similar
concept as TI-LFAs. An eLFA is a remote node that serves
as tunnel-end point when the PLR cannot reach the primary
NH. The PLR reroutes the packet through an tunnel on an
explicit path to the eLFA. The eLFA then forwards the packet
on a shortest path to the destination. In contrast to TI-LFAs,
eLFAs leverage additional forwarding entries for explicit paths
to prevent an IP header stack. The authors of [25] evaluate
eLFAs on a comprehensive set of different topologies. As long
as the destinaton is still reachable, LP-eLFAs protect against
any single link failure and NP-eLFAs protect against any single
node failure.

4) Loop Detection: LFAs and all of its variants share the
shortcoming that their deployment may cause forwarding loops
[24], [25] in case of unprotected failures. In [24] the authors
present a loop detection mechanism for LFAs. It is based on a
bit string in the packet header where each forwarding device
in the network is assigned a bit position. When a node needs
to reroute a packet, it checks whether its own bit is activated.
If this is not the case, the node activates the bit and reroutes
the packet. However, if the bit is already activated, the packet

has been rerouted by the node before, and thus, the packet is
dropped to prevent a loop. In [25] the authors describe loop
detection for all LFA variants.

V. TUNNEL-BASED BIER-FRR

In this section we review tunnel-based BIER-FRR. We
introduced this mechanism at the IETF [5]. First, we describe
the concept, explain two modes of operation and an exam-
ple. Then, we present changes to tunnel-based BIER-FRR
for deployment with the compact BIFT. Finally, we discuss
forwarding state.

A. Concept

When a BFR cannot forward a packet to a NH, the neighbor
may still be reachable on a backup path. Tunnel-based BIER-
FRR tunnels traffic through the routing underlay around the
failure to BIER nodes downstream in the BIER distribution
tree. A tunnel may be affected by the same failure but
the routing underlay quickly restores connectivity with FRR
mechanisms. With link protection, tunnel-based BIER-FRR
tunnels the BIER packet to the NH. With node protection,
BIER packets with adjusted BitStrings are tunneled to the
next-next-hops (NNHs). Additionally, one BIER packet is
tunneled to the NH to deliver a packet if only the link between
PLR and NH failed.

Protection capabilities of tunnel-based BIER-FRR depend
on the properties of the routing underlay. Tunnel-based BIER-
FRR protects against any single component failure which can
be handled by FRR mechanisms in the routing underlay. We
describe the operation of tunnel-based BIER-FRR for link and
node protection based on the normal BIFT.

1) Link Protection: Tunnel-based BIER-FRR with link
protection does not require changes to the BIFT. When a
primary NH is unreachable, the packet copy is tunneled to
the NH instead of being forwarded on Layer 2. The routing
underlay leverages IP-FRR to deliver the packet to the NH.

2) Node Protection: Tunnel-based BIER-FRR with node
protection tunnels BIER packets to the NNHs. However,
usually the NH adapts the BitString before the packet is
forwarded to the NNH. Thus, before the packet is tunneled, the
PLR performs modifications on the BitString that are usually
done by the NH, i.e., applying the F-BM. To that end, backup
entries in the BIFT are required which consist of a backup
NH, and a backup F-BM. There are two categories of backup
entries. First, for BFERs that are also NHs. In such backup
entries, the NH is the backup NH and in the backup F-BM
only the bit of the BFER is activated. This tunnels a packet to
the NH in case only the link between PLR and NH failed. The
second category of backup entries is for BFERs that are not
NHs. For their entries, the backup NH is the NNH towards
the BFER. The backup F-BM is the primary F-BM of the NH
for the NNH.

When a primary NH is unreachable, the BFR performs three
operations. First, the BFR applies the primary and the backup
F-BM to the packet clone. The primary F-BM clears BFERs
from the BitString that have a different NH. The backup F-BM
clears BFERs from the BitString that have a different NNH.

This leaves only bits of BFERs active that are activated in
both, the primary and backup F-BM, i.e., all BFERs that have
the same NH and the same NNH. Second, the packet copy
is tunneled to the backup NH. Third, only bits that are active
in both, the primary and backup F-BM are cleared from the
remaining bits.

B. Forwarding Example

Figure 6 shows a BIER topology with a node failure where
each BFR is also a BFIR and BFER. Table 3 displays the
BIFT of BFR 1 with backup entries for node protection.

Shortest-path tree of BFR 2

1

2

3
4

BFER NH F-BM
2 2 1010

2 0010
3 3 0100

3 0100
4 2 1010

4 1100

Figure 6: BIER topology with
a node failure. The shortest-path
tree of BFR 2 is shown to derive
the backup F-BM of BFR 1 for
BFER 4.

Table 3: BIFT of BFR 1
with backup entries for
node protection.

BFR 1 processes a packet with the BitString 1000. The
least-significant activated bit identifies BFER 4. However, the
primary NH BFR 2 is unreachable. Thus, both, the primary
F-BM 1010 and the backup F-BM 1100 are applied to the
BitString of the packet copy. This leaves the BitString 1000
and the packet is tunneled to BFR 4 through the routing
underlay. Bits that are activated in both, the primary and
backup F-BM are cleared from the remaining bits which leaves
0000 and processing stops. The packet is eventually delivered
by the routing underlay to BFR 4.

C. Compact BIFT

When the compact BIFT is used, tunnel-based BIER-FRR
with link protection can be deployed as described in Section
V-A1. Tunnel-based BIER-FRR with node protection requires
two modifications. First, multiple backup entries are required
for each primary forwarding entry. In the compact BIFT, each
primary forwarding entry corresponds to one specific NH. For
each NNH of the NH, one backup entry is required. The
backup entries are calculated as described in Section V-A2.
Second, when a BFR detects that a specific NH is unreachable,
it matches incoming packets on the backup entries of the
affected primary entry instead.

D. State Discussion

Tunnel-based BIER-FRR requires one backup entry for
each primary entry. Therefore, in a topology with n BFERs
the normal BIFT with backup entries contains n + n for-
warding entries. Deployment with the compact BIFT requires
significantly fewer forwarding entries because the average

number of neighbors is significantly smaller than the number
of destinations in a network. In a topology with an average
node-degree of k, each node has k neighbors, and each NH
has k− 1 NHs on average. As a result the average number of
forwarding entries per node is the sum of primary forwarding
entries and backup entries k + k · (k − 1).

VI. LFA-BASED BIER-FRR

In this section we review LFA-based BIER-FRR [3]. We
explain the concept, derivation of backup entries, and a for-
warding example.

A. Concept

LFA-based BIER-FRR leverages backup entries in the BIFT
to deviate traffic on backup paths when the primary path is
interrupted. A backup entry consists of a backup NH, and a
backup F-BM. When a primary NH is unreachable, further
processing depends on the availability of a backup entry. If
there is no backup entry, the bit of the BFER is cleared from
the remaining bits and no packet is delivered to this particular
BFER. Processing resumes with the next BFER. If there is a
backup entry, further packet processing differs in three ways
from regular BIER forwarding. First, the PLR applies the
backup F-BM instead of the primary F-BM to the BitString of
the packet clone. Second, the BIER packet is forwarded to the
backup NH instead of the primary NH. Third, the bits of the
backup F-BM instead of the primary F-BM are cleared from
the remaining bits. Afterwards, the next BFER is processed.

B. Derivation of Backup Entries

We describe how we derive a backup entry consisting of a
backup NH and a backup F-BM for a specific primary entry.
First, we identify BIER neighbors that are LFAs as described
in Section IV. LFA computation has to be performed on the
BIER topology because Layer 3 LFAs may not be available on
BIER layer due to topology differences. If no LFA is available,
the primary forwarding entry remains without a backup entry.
If there is an LFA L, it is selected as the backup NH. The
activated bits in the backup F-BM are determined as follows.
The bit that corresponds to an arbitrary BFER B is activated in
the backup F-BM only if one of the two following conditions
is fulfilled. First, L is an LFA to protect B. Second, L is the
primary NH on the path to B. This aggregates all BFERs that
are reached on a primary or backup path where L is the NH.

C. Forwarding Example

Figure 7 shows a BIER topology with a failed link between
BFR 1 and 2. Each BFR is both a BFIR and a BFER. Table 4
contains the BIFT of BFR 1 with backup entries for link
protection.

BFR 1 processes a BIER packet with the BitString 1110.
The least-significant activated bit identifies BFER 2. However,
the primary NH BFR 2 is unreachable and there is no backup
entry. Thus, the bit for BFER 2 is cleared from the remaining
bits 1100 and no packet is sent. The next destination is BFER
3. Since the primary NH BFR 3 is reachable, the primary F-
BM is applied and a packet clone with the BitString 0100 is

1

2

3
4

BFER NH F-BM
2 2 1010

- -
3 3 0100

- -
4 2 1010

3 1100

Figure 7: BIER topology
with a link failure.

Table 4: BIFT of BFR 1
with backup entries for link
protection.

forwarded to BFR 3. Clearing the F-BM from the remaining
bits leaves only one bit activated 1000 which corresponds to
BFER 4. However, the primary NH BFR 2 is unreachable.
Thus, the backup F-BM is applied and a packet copy with the
BitString 1000 is forwarded to the backup NH BFR 3. After
the backup F-BM has been cleared from the remaining bits,
no activated bits remain and processing stops. BFR 3 then
forwards the packet to its destination BFR 4.

VII. EXTENSIONS FOR LFA-BASED BIER-FRR

In this section, we expose major shortcomings of LFA-
based BIER-FRR in terms of matching order, coverage, and
forwarding state, and propose solutions. In the end we discuss
scalability in terms of forwarding entries.

A. Matching Order

In the previous example two packets are forwarded to
BFR 3. This is caused by the order in which receivers of a
packet are processed. The following scenario describes when
more than one packet is forwarded to one specific NH P . First,
a packet is forwarded to the primary NH P towards a set of
BFERs. Second, another BFER that should receive the packet
is processed but its primary NH is unreachable. However, P
is the backup NH. Thus, a second packet is forwarded to P
on a backup path. To avoid sending multiple packets over one
link, it is necessary to first process forwarding entries whose
primary NH is unreachable. Then, no additional packet is sent
because the backup F-BM aggregates primary and backup
paths that have the same NH.

B. Coverage

Depending on the topology, LFAs cannot protect against
arbitrary single component failures. rLFAs protect against any
single link failure on unit-link-cost topologies. TI-LFAs and
eLFAs guarantee protection against any single component
failure on arbitrary topologies. However, the deployment of
each of the three LFA extensions requires some sort of IP
or segment routing tunnel. Nevertheless, full protection is an
important property and we suggest to augment LFA-based
BIER-FRR with rLFAs, TI-LFAs, or eLFAs to increase the
coverage. rLFAs, TI-LFAs, and eLFAs need to be BFRs.
Therefore, computations have to be performed on the BIER
topology because not all Layer 3 devices may be BIER
devices.

C. Compact BIFT

We explain scalability issues of LFA-based BIER-FRR and
propose a solution that requires changes to how backup entries
are derived.

1) Problem Statement and Solution: LFA-based BIER-FRR
has been described for the BIFT that contains one primary
forwarding entry per BFER. In its proposed form LFA-based
BIER-FRR is incompatible with the compact representation of
the BIFT, which requires only one primary entry per neighbor.
In the following we describe the necessary changes to use
LFA-based BIER-FRR with the compact BIFT.

We propose to use a default BIFT that does not contain
any backup entries and is used for forwarding in the failure-
free case. In addition, we use failure-specific backup BIFTs.
When a BFR detects that a specific neighbor is unreachable,
it matches incoming packets on the backup BIFT that is
associated with the unreachable NH. When the failure has been
repaired or forwarding entries are updated, the BFR continues
matching on the default BIFT.

2) Derivation of Backup BIFTs: We explain how the
backup BIFT for a specific neighbor N is derived in two steps.
First we fill the BIFT with entries and afterwards activate bits
in specific F-BMs. We start with an empty backup BIFT. In the
first step, for each neighbor that is not N , the corresponding
primary entry from the default BIFT is added to the backup
BIFT. In the second step, for each BFER B whose primary
NH is N , LFAs are identified on the BIER topology. If an
LFA is available, the bit that corresponds to B is activated in
the F-BM of the BFR that is the LFA. If no LFA is available,
B cannot be protected.

D. State Discussion

In a topology with n BFERs the normal BIFT contains n
primary forwarding entries. LFA-based BIER-FRR requires n
additional backup entries, which totals in n + n forwarding
entries. In contrast, the compact BIFT contains only one for-
warding entry for each neighbor. Therefore, when the average
node degree is k, the compact BIFT requires on average only
k primary forwarding entries. On average each node has k
backup BIFTs with on average k − 1 entries, which results
in k + k · (k − 1) forwarding entries. Since the average node
degree is significantly smaller than the number of destinations
in a network, scalability of the compact BIFT is considerably
better.

VIII. COMPARISON OF LFA- AND TUNNEL-BASED
PROTECTION FOR BIER

In this section we compare LFA-based and tunnel-based
BIER-FRR. We point out similarities, and analyze protection
capabilities and overhead with regard to header size and for-
warding state. Afterwards, we discuss the impact of differences
between Layer 3 topology and BIER topology.

A. Similarities

Both approaches implement FRR for BIER for resilient
transport of IP multicast. Forwarding devices need to detect
unreachable NHs, e.g. through a BFD. Both FRR mechanisms
are based on pre-computed backup entries in addition to the

primary forwarding entries. It is not necessary to change the
structure of the BIFT. When the PLR cannot reach a primary
NH, affected packets are rerouted according to the backup
entries. Two modes of operation for link and node protection
with different protection properties are available. For both,
LFA- and tunnel-based BIER-FRR it is necessary to augment
the forwarding procedure of BIER.

B. Protection Capabilities

We compare coverage properties and occurrence of loops.
1) Coverage: Tunnel-based BIER-FRR is able to protect

traffic against arbitrary single component failures by design
when the routing underlay provides full FRR coverage. As
long as the destination is still reachable, an IP or segment rout-
ing tunnel is deployed to deliver the traffic to the unreachable
NH or NNHs.

Protection of LFA-based BIER-FRR depends on the topol-
ogy. The authors of [24] evaluate LP- and NP-LFAs on a
comprehensive set of topologies. They find that LP-LFAs
protect only 70% of destinations against single link failures
and cause loops when nodes fail. NP-LFAs avoid loops when
a node fails, but protect only 40% of destinations against single
link failures. LP-rLFAs protect against any single link failure
on unit link cost topologies. For any further guarantees TI-
LFAs, or eLFAs have to be deployed. Both LFA extensions
guarantee full protection for any single component failure
in the network. However, augmenting LFA-based BIER-FRR
with rLFAs, TI-LFAs, or eLFAs requires an additional header.
TI-LFAs require an IP header stack, eLFAs require additional
forwarding entries to implement backup paths.

2) Loops: Tunnel-based BIER-FRR cannot cause loops on
the BIER layer because the packet is tunneled to the backup
NH. When the packet is successfully delivered at the backup
NH, BIER forwarding continues. If the tunnel is interrupted,
the routing underlay is responsible for avoiding loops.

LFA-based BIER-FRR cannot guarantee to avoid loops
because depending on the failure scenario and the mode
of operation, all LFA variants can cause loops [24], [25].
With link protection, traffic may loop if at least one node or
multiple links fail. With node protection, loops are prevented
as long as not multiple components fails. In Section IV-B4
we review a loop detection mechanism for LFAs and all
variants to prevent loops in any failure scenario. However,
this mechanism significantly increases operational complexity
and modifications to the packet header are necessary.

C. Overhead

We compare both protection approaches according to packet
header size and required forwarding state.

1) Header Size: Tunnel-based BIER-FRR requires tunnel-
ing to protect traffic against failures. This adds an additional
header to the packet. When the tunnel is interrupted and
the routing underlay leverages a tunnel-based FRR protection
mechanism for unicast, e.g. TI-. or eLFAs, an additional header
is added to the packet. The basic form of the LFA-based BIER-
FRR approach does not require tunneling. However, rLFAs,
TI-LFAs, or eLFAs increase the protection capabilities of LFAs
to an appropriate level but require at least one additional IP

header. More header reduce the throughput and the Maximum
Transmission Unit (MTU) has to be decreased at domain
boundaries. The LFA-based approach requires a loop detection
mechanism to prevent loops. Such a mechanism is available,
however it increases packet header size even further.

2) Forwarding State: Both BIER-FRR approaches require
the same amount of forwarding state. In a topology with n
BFERs and an average node degree of k, the regular BIFT
contains n + n forwarding entries while the compact BIFT
requires on average only k + k · (k − 1) entries. Since k
is significantly smaller than n, deployment with the compact
BIFT provides better scalability.

D. Influence of the BIER Topology

When some network nodes in a Layer 3 network do not
support BIER, Layer 3 LFAs may disappear on the BIER
layer. Thus, coverage of LFA-based BIER-FRR depends on the
BIER topology. When regular LFAs have low coverage, LFA-
based BIER-FRR needs to be complemented with rLFAs, TI-
LFAs, or eLFAs. Backup paths may become longer in a sparse
BIER topology because LFAs may be reachable only through
a long Layer 3 tunnel. Tunnel-based BIER-FRR leverages
tunnels through the routing underlay to the BIER NH or BIER
NNHs for protection. Thus, tunnel-based BIER-FRR is not
affected in a negative way by a BIER topology that is different
from the Layer 3 topology.

IX. CONCLUSION

In this paper we compared LFA-based and tunnel-based
BIER-FRR for resilient and scalable transport of IP multi-
cast. Our discussion showed shortcomings of the LFA-based
approach. Sometimes multiple packets are sent over one link,
not all single link or single node failures can be protected,
and in some scenarios backup traffic may loop. We propose
extensions to overcome those shortcomings so that the capabil-
ities of LFA-based and tunnel-based BIER-FRR mechanisms
are equal. Differences remain in backup path length when the
BIER topology is different from the Layer 3 topology, and in
the need for additional headers.

REFERENCES

[1] I. Wijnands, E. Rosen, A. Dolganow, T. Przygienda, and
S. Aldrin, RFC 8279: Multicast Using Bit Index Explicit
Replication (BIER), https://datatracker.ietf.org/doc/rfc8279/,
Nov. 2017.

[2] J. Papán, P. Segeč, M. Moravčı́k, M. Kontšek, L. Mikuš, and J.
Uramová, “Overview of IP Fast Reroute solutions,” in ICETA,
2019.

[3] I. Wijnands, G. J. Shepherd, C. J. Martin, and R. Asati, Per-
Prefix LFA FRR with Bit Indexed Explicit Replication, https:
/ / patents . google . com / patent / US20180278470A1 / en, Sep.
2018.

[4] G. Rétvári, J. Tapolcai, G. Enyedi, and A. Császár, “IP fast
ReRoute: Loop Free Alternates revisited,” in IEEE INFO-
COM, 2011.

[5] D. Merling and M. Menth, BIER Fast Reroute, https://tools.
ietf.org/html/draft-merling-bier-frr-00, Mar. 2019.

[6] A. Giorgetti, A. Sgambelluri, F. Paolucci, P. Castoldi, and F.
Cugini, “First Demonstration of SDN-based Bit Index Explicit
Replication (BIER) Multicasting,” in IEEE EuCNC, 2017.

[7] K. C. Almeroth, “The Evolution of Multicast: From the
MBone to Interdomain Multicast to Internet2 Deployment,”
IEEE Network, vol. 14, 2000.

[8] B. Zhang and H. T. Mouftah, “Forwarding State Scalability
for Multicast Provisioning in IP Networks,” IEEE ComMag,
vol. 41, 2003.

[9] X. Li and M. J. Freedman, “Scaling IP Multicast on Datacen-
ter Topologies,” in ACM CoNEXT, 2013.

[10] S. Islam, N. Muslim, and J. W. Atwood, “A Survey on
Multicasting in Software-Defined Networking,” IEEE Comst,
vol. 20, 2018.

[11] Z. AlSaeed, I. Ahmad, and I. Hussain, “Multicasting in Soft-
ware Defined Networks: A Comprehensive Survey,” JNCA,
vol. 104, 2018.

[12] J. Rückert et al., “Software-Defined Multicast for Over-the-
Top and Overlay-based Live Streaming in ISP Networks,”
JNSM, vol. 23, 2015.

[13] J. Rückert, J. Blendin, and D. Hausheer, “Flexible, Efficient,
and Scalable Software-Defined Over-the-Top Multicast for
ISP Environments With DynSdm,” IEEE TNSM, vol. 13, 2016.

[14] Y.-D. Lin, Y.-C. Lai, H.-Y. Teng, C.-C. Liao, and Y.-C.
Kao, “Scalable Multicasting with Multiple Shared Trees in
Software Defined Networking,” JNCA, vol. 78, 2017.

[15] D. Kotani, K. Suzuki, and H. Shimonishi, “A Multicast Tree
Management Method Supporting Fast Failure Recovery and
Dynamic Group Membership Changes in OpenFlow Net-
works,” JIP, vol. 24, 2016.

[16] T. Pfeiffenberger, J. L. Du, P. B. Arruda, and A. Anzaloni,
“Reliable and Flexible Communications for Power Systems:
Fault-tolerant Multicast with SDN/OpenFlow,” in IFIP NTMS,
2015.

[17] A. Giorgetti, A. Sgambelluri, F. Paolucci, N. Sambo, P. Cas-
toldi, and F. Cugini, “Bit Index Explicit Replication (BIER)
Multicasting in Transport Networks,” in ONDM, 2017.

[18] T. Eckert, G. Cauchie, W. Braun, and M. Menth, Traffic
Engineering for Bit Index Explicit Replication BIER-TE, http:
//tools.ietf.org/html/draft-eckert-bier-te-arch, Nov. 2017.

[19] W. Braun, J. Hartmann, and M. Menth, “Demo: Scalable and
Reliable Software-Defined Multicast with BIER and P4,” in
IFIP/IEEE IM, 2017.

[20] W. Braun, M. Albert, T. Eckert, and M. Menth, “Performance
Comparison of Resilience Mechanisms for Stateless Multicast
using BIER,” in IFIP/IEEE IM, 2017.

[21] Z. Zhang and A. Baban, Bit Index Explicit Replication (BIER)
Forwarding for Network Device Components, https://patents.
google.com/patent/US20160191372, Dec. 2014.

[22] Q. Xiong, G. Mirsky, F. Hu, and C. Liu, BIER BFD, https:
//datatracker.ietf.org/doc/draft-hu-bier-bfd/, Oct. 2017.

[23] D. Katz and D. Ward, Bidirectional Forwarding Detection
(BFD), https://datatracker.ietf.org/doc/rfc5880/, Jul. 2004.

[24] W. Braun and M. Menth, “Loop-Free Alternates with Loop
Detection for Fast Reroute in Software-Defined Carrier and
Data Center Networks,” JNSM, vol. 24, 2016.

[25] D. Merling, W. Braun, and M. Menth, “Efficient Data Plane
Protection for SDN,” in IEEE NetSoft, 2018.

[26] L. Csikor and G. Rétvári, “IP fast reroute with remote Loop-
Free Alternates: The unit link cost case,” in ICUMT, 2012.

[27] P. Francois, C. Filsfils, A. Bashandy, B. Decraene, and S.
Litkowski, Topology Independent Fast Reroute using Segment
Routing, https : / / tools . ietf . org / html / draft - francois - rtgwg -
segment-routing-ti-lfa-00, Aug. 2015.

1 Accepted Manuscripts (Core Content)

1.5 P4-Based Implementation of BIER and BIER-FRR for Scalable and
Resilient Multicast

101

P4-Based Implementation of BIER and BIER-FRR for
Scalable and Resilient Multicast

Daniel Merling∗, Steffen Lindner, Michael Menth

University of Tuebingen, Department of Computer Science, Chair of Communication
Networks, Tuebingen, Germany

Abstract

Bit Indexed Explicit Replication (BIER) is a novel IP multicast (IPMC) for-
warding paradigm proposed by the IETF. It offers a transport layer for other
IPMC traffic, keeps core routers unaware of IPMC groups, and utilizes a rout-
ing underlay, e.g., an IP network, for its forwarding decisions. With BIER, core
networks do not require dynamic signaling and support a large number of IPMC
groups with large churn rates. The contribution of this work is threefold. First,
we propose a novel fast reroute (FRR) mechanism for BIER (BIER-FRR) so
that IPMC traffic can be rerouted as soon as the routing underlay is able to
carry traffic again after a failure. In particular, BIER-FRR enables BIER to
profit from FRR mechanisms in the routing underlay. Second, we describe a
prototype for BIER and BIER-FRR within an IP network with IP fast reroute
(IP-FRR). It is based on the programmable data plane technology P4. Third,
we propose a controller hierarchy with local controllers for local tasks, in par-
ticular to enable IP-FRR and BIER-FRR. The prototype demonstrates that
BIER-FRR reduces the protection time for BIER traffic to the protection time
for unicast traffic in the routing underlay.

Keywords: Software-Defined Networking, P4, Bit Index Explicit Replication,
Multicast, Resilience, Scalability

©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.jnca.2020.102764
∗Corresponding author
The authors acknowledge the funding by the Deutsche Forschungsgemeinschaft (DFG)

under grant ME2727/2. The authors alone are responsible for the content of the paper.
Email addresses: daniel.merling@uni-tuebingen.de (Daniel Merling),

steffen.lindner@uni-tuebingen.de (Steffen Lindner), menth@uni-tuebingen.de (Michael
Menth)

Accepted manuscript, JNCA, published in vol. 169, 1. November 2020 September 8, 2020

1. Introduction

IP multicast (IPMC) is leveraged for many services like IPTV, multicast
VPN, or the distribution of financial or broadcast data. It efficiently forwards
one-to-many traffic on tree-like structures to all desired destinations by sending
at most one packet copy per link in the distribution tree. IPMC is organized into
sets of receivers, so-called IPMC groups. Hosts subscribe to IPMC groups to
receive the traffic which is addressed to that group. Traditional IPMC methods
require per-IPMC-group state within core routers to forward the packets to the
right next-hops (NHs). This raises three scalability issues. First, the number
of IPMC groups may be large which require lots of space in forwarding tables.
Second, core routers are involved in the establishment, removal, and in the
change of an IPMC group. This requires significant signaling in the core network
every time subscribers change because many nodes possibly need to update their
forwarding information base, which imposes heavy load on core when churn
rates are large. Third, when the topology changes or in case of a failure, the
forwarding of any IPMC group possibly requires fast update, which is demanding
in a critical network situation. IPMC features are available in most off-the-shelf
hardware, but the features are turned off by administrators due to complexity
and limited scalability.

The Internet Engineering Task Force (IETF) developed Bit Index Explicit
Replication (BIER) [1, 2] as a solution to those problems. BIER features a
domain concept. Only ingress and egress routers of a BIER domain participate
in signalling. They encapsulate IPMC packets with a BIER header containing
a bit string that indicates the receivers of the IPMC group within the BIER
domain. Based on that bit string the packets are forwarded through the BIER
domain without requiring per-IPMC-group state in core routers.

BIER leverages the so-called bit indexed forwarding table (BIFT) for for-
warding decisions. Its entries are derived from paths induced by the interior
gateway protocol (IGP) which is used for unicast routing. In the following
we refer to that routing protocol with the term ’routing underlay’. Therefore,
BIER traffic follows the same paths as the unicast traffic carried by the rout-
ing underlay. So far, BIER lacks any protection capabilities. In case of a link
or node failure, the BIFT entries need to be changed so that BIER traffic is
carried around failed elements towards receivers. However, the BIFTs can be
updated only after the routing underlay has updated its forwarding information
base and based on the new paths, BIER forwarding entries are recomputed.
This takes a significant amount of time. In the meantime, packets are dropped.
When a multicast packet is dropped, all downstream subscribers cannot receive
the packet. Regular IP forwarding is affected as well by failures, but for uni-
cast traffic, fast reroute (FRR) [3] mechanisms have been proposed to reroute
affected packets on backup paths until the primary forwarding entries are up-
dated. IP-FRR leverages pre-computed backup actions for fast recovery in case
of a failure without the need for signaling. However, IP-FRR is not a suitable
protection method for multicast traffic because it does not consider the tree-like
forwarding structures along which IPMC packets are distributed.

2

In this work, we introduce BIER-FRR. It has two different operation modes
to protect either only against link failures or also against node failures. We
recently proposed this mechanism in the BIER working group of the IETF [4].
BIER has been suggested as a novel transport mechanism for IPMC. However,
it cannot be configured yet on standard hardware. New, programmable data
plane technologies allow the definition of new packet headers and forwarding
behavior, and offer themselves for the implementation of prototypes. In [5], we
presented an early version of a P4-based prototype for BIER. It was based on
the P14 specification of P4 [6] and required a few workarounds because at that
time some P4 features were not available on our target, the software switch
BMv2. Moreover, there was no protection method available for BIER. We
now provide the description of a completely reworked prototype on the base of
the P16 specification of P4 [7]. The new prototype implements IP forwarding,
a simple form of IP-FRR, BIER forwarding, and BIER-FRR. It comprises a
controller hierarchy with local controllers that enables FRR techniques with
P4. We argue that local controllers are needed for protection and helpful for
local tasks in general. The evaluation of the prototype shows that BIER traffic
is not longer affected by network failures than unicast traffic when BIER-FRR
is enabled. Thus, the contribution of this paper is threefold: (1) a concept for
BIER-FRR, (2) an implementation of BIER and BIER-FRR with P4, and (3)
a controller hierarchy with local controllers to support FRR techniques in P4.
Finally, the P4-based prototype demonstrates the usefulness of BIER-FRR. The
source code of our prototype with the fully working data and control plane is
publicly available on GitHub.

The remainder of this paper is structured as follows. Section 2 reviews
basics of multicast. Section 3 contains fundamentals about IP-FRR, explains
why it is insufficient to protect multicast traffic, and examines related work.
Section 4 discusses related work for both legacy- and SDN-based multicast.
Section 5 gives a primer on BIER. Section 6 explains the resilience problem of
BIER and introduces BIER-FRR. In Section 7 we summarize necessary basics
of P4 needed for the understanding of the BIER prototype. Section 8 describes
the P4-based prototype implementation of IP, IP-FRR, BIER, and BIER-FRR.
The prototype is used to demonstrate the usefulness of BIER-FRR in Section 9.
Finally, Section 10 summarizes this paper and discusses further research issues.

2. Technological Background for IP Multicast

This section gives a primer on IP multicast (IPMC) for readers that are not
familiar with IPMC. IPMC supports one or more sources to efficiently commu-
nicate with a set of receivers. The set of receivers is called an IPMC group
and is identified by an IP address from the Class D address space (224.0.0.0 –
239.255.255.255). Devices join or leave an IPMC group leveraging the Internet
Group Management Protocol (IGMP) [8].

IPMC packets are delivered over group-specific distribution trees which are
computed and maintained by IPMC-capable routers. In the simplest form,
source-specific multicast trees based on the shortest path principle are computed

3

and installed in the routers. The notation (S,G) identifies such a shortest path
tree for the source S and the group G.

IPMC also supports the use of shared trees that can be used by multiple
senders to send traffic to a multicast group. The shared tree has a single root
node called rendezvous point (RP). The sources send the multicast traffic to
the RP which then distributes the traffic over a shared tree. In the literature,
shared trees are denoted by (∗, G).

Protocol-independent multicast (PIM) leverages unicast routing information
to perform multicast forwarding. PIM cooperates with various unicast routing
protocols such as OSPF or BGP and supports both source-specific and shared
multicast distribution trees.

Pragmatic General Multicast (PGM) [9] reduces packet loss for multicast
traffic. It enables receivers to detect lost or out-of-order packets and supports
retransmission requests similar to TCP.

3. IP Fast Reroute

In this section we give a primer on IP fast reroute (IP-FRR). First, we
explain fundamentals of IP-FRR and describe Loop-Free Alternates. Then, we
discuss related work.

3.1. Fundamentals of IP-FRR

When a link or a node fails, devices may not be able to forward packets
to their NHs. As soon as a failure is detected in an IP network, the changed
topology is signaled through the network, new working paths are calculated,
and the forwarding tables of all devices are consistently updated. This process
is called reconvergence and may take up to several seconds. In the meantime,
packets are dropped in case of wrong or missing forwarding entries. IP-FRR
[3] protects IP unicast traffic against the failure of single links and nodes while
reconvergence is ongoing. It is based on pre-computed backup actions to quickly
reroute affected packets. Figure 1 shows an example for Loop-Free Alternates
(LFAs) [10] which is the most popular IP-FRR mechanism. When a node’s

PLR Destination

LFANo LFA

Default route
Backup route

Figure 1: A PLR reroutes a packet to a backup path when the NH on the primary path is
unreachable.

(primary) NH becomes unreachable, the node detects that failure after some

4

time and reroutes the traffic locally over a backup path. Therefore, the node is
also called point of local repair (PLR). To reroute packets in a timely manner,
nodes store a backup NH in addition to the primary NH for each destination.
When the PLR detects that the primary NH is unrechable, e.g., by loss-of-light
detection, loss-of-carrier detection, a bidirectional forwarding detection1 (BFD)
[11], or any other suitable mechanism, it forwards the packet to its backup NH
instead. That backup NH is called Loop-Free Alternate (LFA) and it has to
be chosen such that rerouted traffic does not loop. However, some destinations
remain unprotected because there is not always an alternative hop that has a
shortest path towards the destination which avoids the failed element. The set
of protected destinations is also called coverage. The limited coverage of LFAs
has been evaluated in various studies [12, 13].

3.2. Related Work

The two surveys [14, 15] give an overview of several IP-FRR mechanisms.
We discuss only some of the papers. Equal-cost multi-path (ECMP) can be used
as a very basic FRR mechanism. When a PLR has at least two paths with equal
cost towards a destination, it quickly deviates traffic to the other path when the
primary NH is unreachable. However, this works only if two equal-cost paths
are available under normal conditions, which is mostly not the case. Not-via
addresses [16, 13] tunnel packets to the downstream next-next-hop (NNH) if
the NH is unreachable. To that end, the NNH is assigned a unique address
and an explicit backup path is constructed which does not include the failed
component. Loop-Free Alternates (LFAs) [10] forward packets to alternative
NHs if the primary NH is unreachable. Those alternative NHs have to be
chosen in a way that they have a working shortest path to the destination that
avoids rerouting loops. As such alternative neighbors do not exist for all PLRs
and destinations, the LFA mechanism cannot protect against all single link and
node failure. Remote LFAs [17] (rLFAs) extend the protection capabilities of
LFAs by sending affected packets through shortest path tunnels to nodes that
still reach the destination on a working shortest path. rLFAs protect against
any single link failure in unit link cost networks. However, they achieve only
partial coverage in case of node failures or non-unit link costs. An analysis can
be found in [12].

4. Related Work

We review work in the context of SDN-based multicast. Most traditional
multicast approaches were implemented with OpenFlow. Some works consid-
ered protection mechanisms. A few studies improve the efficiency of multicast
forwarding with SDN. Only a single work implements BIER without protection
using OpenFlow, but the implementation itself requires dynamic forwarding
state, which runs contrary to the intention of BIER.

1When a BFD is established between two nodes, they periodically exchanges keep-alive
notifications.

5

4.1. Multicast Implementations with OpenFlow

The surveys [18, 19] provide an extensive overview of multicast implemen-
tations for SDN. They discuss the history of traditional multicast and present
multiple aspects for SDN-based multicast, e.g., multicast tree planning and
management, multicast routing and reliability, etc. In the following we briefly
discuss some exemplary works that implement multicast for SDN. More details
can be found in the surveys or the original papers.

Most related works with regard to SDN-based multicast implement explicit
flow-specific multicast trees. Most authors propose to compute traffic-engineered
multicast trees in the controller using advanced algorithms and leverage SDN
as tool to implement the multicast path layout. The following works provide
implementations in OpenFlow to show the feasibility of their approaches. Dy-
namic Software-Defined Multicast (DynSDM) [20, 21] leverages multiple trees to
load-balance multicast traffic and efficiently handle group subscription changes.
Modified Steiner tree problems are considered in [22, 23] to minimize the total
cost of edges and the number of branch nodes, or to additionally minimize the
source-destination delay [24]. In [25], the authors compute and install traffic-
engineered shared multicast trees using OpenFlow. In [26] and [27], traffic-
engineered Steiner trees are computed which minimize the number of edges of
the tree and provide optimized locations for multicast sources in the network.
The Avalanche Routing Algorithm (AvRA) [28] considers topological properties
of data center networks to optimize utilization of network links. Dual-Structure
Multicast (DuSM) [29] improves scalability and link utilization for SDN-based
data center networks by deploying different forwarding approaches for high-
bandwidth and low-bandwidth flows. In [30], Steiner trees are leveraged to
compute a multicast path layout including certain recovery nodes which are used
for reliable multicast transmission such as PGM. In [31], the authors evaluate
different node-redundant multicast tree algorithms in an SDN context. They
evaluate the number of forwarding rules required for each mechanism and study
the effects of node failures. The authors of [32] reduce the number of forward-
ing entries in OpenFlow switches for multicast. They propose to use address
translation from the multicast address to the receiver’s unicast address on the
last branching node of the multicast tree. This allows to omit multicast-specific
forwarding entries in leaf switches.

4.2. Multicast Protection with OpenFlow

Kotani et al. [33] suggest to utilize primary and backup multicast trees for
SDN networks. Multicast packets carry an ID to identify the distribution tree
over which they are forwarded. In case of a failure, the controller chooses an
appropriate backup multicast tree and reconfigures senders accordingly. This
mechanism differs in two ways from BIER-FRR. First, the controller has to be
notified, which is not suitable for fast recovery. Second, it requires significant
signalling effort in response to a failure.

The authors of [34] propose a FRR method for multicast in OpenFlow net-
works. Multicast traffic is forwarded along a default distribution tree. If a

6

downstream neighbor is unreachable, traffic is switched to a backup distribu-
tion tree that contains all downstream nodes of the unreachable default subtree.
The backup distribution tree must not contain the unreachable neighbor as for-
warding node. VLAN tags are used to indicate the trees over which multicast
packets should be sent. This mechanism differs from BIER-FRR in a way that
it requires a significant amount of additional dynamic forwarding state to con-
figure the backup trees.

4.3. Improved Multicast Forwarding for SDN Switches

Some contributions improve the efficiency of devices to enable hardware-
based multicast forwarding. The work in [35] organizes forwarding entries of a
switch based on prime numbers and the Chinese remainder theorem. It reduces
the internal forwarding state and allows for more efficient hardware implemen-
tations. Reed et al. provide stateless multicast switching in SDN-based sys-
tems using Bloom filters in [36] and implement their approach for TCAM-based
switches. The authors compare their approach with existing layer-2 forwarding
and show that their method leads to significantly lower TCAM utilization.

4.4. SDN Support for BIER

The authors of [37, 38] implement two SDN-based multicast approaches us-
ing (1) explicit multicast tree forwarding and (2) BIER forwarding in OpenFlow.
They realize explicit multicast trees with OpenFlow group tables. To support
BIER, they leverage MPLS headers to encode the BIER bit string, which lim-
its the implementation to bit strings with a length of 20 bits, and therefore a
maximum of 20 receivers. Rules with exact matches for bit strings are installed
in the OpenFlow forwarding tables. When a packet with a BIER header ar-
rives at a switch and a rule for its bit string is available, the packet can be
immediately transmitted over the indicated interfaces. Otherwise, a local BIER
agent running on the switch and maintaining the BIFT is queried. The local
BIER agent installs a new flow entry for the specific bit string in the OpenFlow
forwarding table. Thus, this approach requires bit string-specific state instead
of IPMC group specific state. Furthermore, it is not likely to work well with
quickly changing multicast groups as most subscription changes require config-
uration changes in the forwarding table of the switch. BIER with support for
traffic engineering (TE) has been proposed in [39]. It uses the same header
format but features different forwarding semantics and is not compatible with
normal BIER. In [40] we have proposed and evaluated several FRR algorithms
for BIER-TE and implemented them in a P4-based prototype [5].

5. Bit Index Explicit Replication (BIER)

First, we give an overview of BIER [2]. Afterwards, we present the Bit Index
Forwarding Table (BIFT), which is the forwarding table for BIER. Then, we
describe the BIER forwarding procedure.

7

5.1. Overview

We introduce essential nomenclature for BIER, the layered BIER architec-
ture, the BIER header, and the BIER forwarding principle.

5.1.1. BIER Domain

BIER leverages a domain concept to transport IPMC traffic in a scalable
manner, which is illustrated in Figure 2. Bit-Forwarding Routers (BFRs) for-
ward BIER multicast traffic within the BIER domain. Inbound multicast traffic
enters the domain through Bit-Forwarding Ingress Routers (BFIRs) and leaves
it through Bit-Forwarding Egress Routers (BFERs). Border routers usually im-
plement both BFIR and BFER functionality. When a BFIR receives an inbound
IPMC packet, it pushes a BIER header onto the IPMC packet which indicates
all BFERs that should receive a packet copy. BFRs utilize the information
in the BIER header to forward BIER packets to all desired destinations along
the paths induced by the interior gateway protocol (IGP). Thereby, packets
are replicated if needed. Finally, the BFERs remove the BIER header before
forwarding IPMC packets outside the domain.

BIER

Bit-Forwarding Ingress
Router (BFIR)

Bit-Forwarding
Router (BFR)

Bit-Forwarding Egress
Router (BFER)

BIER

BIER

BIER

BIER

BIER

BIER domain

Figure 2: IPMC traffic enters a BIER domain through BFIRs which equip it with a BIER
header. BFRs forwarded the traffic based on the BIER header within the domain on paths
induced by the IGP. BFERs remove the BIER header when the traffic leaves the domain.

5.1.2. A Layered BIER Architecture

The BIER architecture can be subdivided into three layers: the IPMC layer,
the BIER layer, and the routing underlay which is the forwarding mechanism
for unicast traffic. In IP networks, the latter corresponds to the interior gateway
protocol (IGP). Figure 3 shows the relation among the layers.

The IPMC layer requests multicast delivery for IPMC packets to a set of
receivers in a BIER domain that depend on IPMC subscriptions. That is, when
an inbound IMPC packet arrives at a BFIR, the BFIR equips the IPMC packet
with an appropriate BIER header indicating all desired destinations. The BIER
layer forwards these packets through the BIER domain to all receivers indicated

8

IPMC
source

Subscriber

Paths

1,2

Subscriber

1 2

BIER domain

BFIR BFER 1 BFER 2

BFR

IPM
C

layer

BIER

layer
R

outing
underlay

x BIER header with destinations

Figure 3: Layered BIER architecture with IPMC layer, BIER layer, and the routing underlay.

in the BIER header, thereby implementing a stateless point-to-multipoint tun-
nel für IPMC. The BIER layer leverages the forwarding information of the
routing underlay to populate the forwarding tables of the BFRs. As a result,
BIER traffic to a specific BFER follows the same path as unicast traffic towards
that BFER. If two BFR are connected on Layer 2, the BIER traffic is directly
forwarded; otherwise, the BFR neighbor is reachable only over the routing un-
derlay so that the BIER traffic is encapsulated and forwarded over the routing
underlay. When a BIER packet reaches a BFER that should receive a packet
copy, the BFER removes the BIER header and passed the IPMP packet to the
IPMC layer for further forwarding.

5.1.3. BIER Header and Forwarding Principle

The BIER header contains a bit string to identify BFERs. For brevity, we
talk in the following about the BitString of a packet to refer to the bit string
in the BIER header of that packet. The BitString is of a specific lenght. Each
bit in the BitString corresponds to one specific BFER. The bits are assigned
to BFERs starting with the least significant bit. BIER devices must support a
BIER header of 256 bits. As this may not suffice to assign bits to all BFERs in
large networks, the standard [2] defines subdomains to cope with that problem.
This is a technical detail that we do not consider any further and our proposed
solution can be easily adapted to subdomains.

When a BFIR receives an IPMC packet, it pushes a BIER header to the
IPMC packet, determines the set of BFERs that must receive the traffic of the
respective IMPC group, and activates in the BitString the bits corresponding
to these BFERs. Packets are forwarded based on the information in their BIER
header. A BFR sends a packet to any of its interfaces if at least one BFER
indicated in the BIER header is reached in the routing underlay over this specific
interface. To avoid duplicates, only those bits are kept in the BitString whose
BFERs can be reached over the specific interface.

9

Figure 4 illustrates the BIER forwarding principle. It shows a small BIER
domain with four nodes, each of them being BFR, BFIR, and BFER. Hosts are
attached to all BIER nodes and participate in a single multicast group. Host 1
sends an IPMC packet to all other hosts. The figure visualizes how the BitString
changes along the forwarding tree whose paths are inherited from the routing
underlay.

2

3

1

4
Shortest path tree from the
routing underlay of BFR 1

IPMC Host 1

IPMC Host 3

IPMC Host 2

IPMC Host 4

BIER domain

1110
1010

0100 1000

Figure 4: An IPMC packet is forwarded from Host 1 to all other hosts via a BIER domain.
Within the domain, BIER packets are forwarded based on the BitString.

The information of the BIER forwarding tables depends only on the routing
underlay. In Section 5.2 we explain the structure of the table and how its entries
are calculated. In contrast to traditional IPMC forwarding, BIER forwarding
does not require knowledge about IPMC groups. This has several advantages.
BFRs do not neet to keep state per IPMC group. This frees core nodes of a BIER
domain from signalling and state processing per IPMC group when subscriptions
or routes change, e.g., in case of failures. This makes BIER forwarding in core
nodes more robust and scalable than traditional IPMC forwarding. BFIRs still
participate in IPMC signaling to keep track of group changes in order to adapt
the BIER header for each IPMC group. BFERs forward outbound IPMC traffic
in a traditional way.

5.2. Bit Index Forwarding Table

In this section we describe the Bit Index Forwarding Table (BIFT) which is
the forwarding table of BFRs. We explain its structure and the computation of
its entries.

First, we define BFR neighbors (BFR-NBRs) before we introduce the struc-
ture of the BIFT. The BFR-NBRs of a BFR A are those BFRs, that are adjacent
to A according to the paths of the routing underlay.

Each BFR maintains a Bit Index Forwarding Table (BIFT) to determine the
NH, i.e., BFR-NBR, when forwarding a packet. Table 1 shows the structure of
the BIFT. For each BFER, the BIFT contains one entry which consists of a
forwarding bitmask (F-BM) and the BFR-NBR to which the packet should be
sent. The F-BM is used in the forwarding process to clear bits in a packet’s
BitString before transmission. The BFR-NBR for a BFER is derived as the

10

BFER F-BM BFR-NBR

Table 1: Header of the BIFT.

BFR-NBR on the path from the considered BFR to the BFER in the routing
underlay. The F-BM for a BFER is composed as a bit string where all bits are
activated that belong to BFERs with the same BFR-NBR. As a result, all BIFT
entries with the same BFR-NBRs also have the same F-BM.

Table 2 illustrates the BIFT of BFR 1 in the example given in Figure 4.

BFER F-BM BFR-NBR
1 - -
2 1010 2
3 0100 3
4 1010 2

Table 2: BIFT of BFR 1.

5.3. BIER Forwarding

In this paragraph we describe BIER forwarding. First, we explain the pro-
cedure how BIER processes packets. Then, we show a forwarding example.
Finally, we illustrate the BIER header stack.

5.3.1. BIER Forwarding Procedure

BFRs process BIER packets in a loop. When a BFR receives a BIER packet,
it determines the position of the least-significant activated bit in the BitString.
The position of that bit corresponds to a BFER which is processed in this
specific iteration of the loop. The BFR looks up that BFER in the BIFT, which
results in a BFR-NBR and a F-BM. Then, a copy of the BIER packet is created
for transmission to that BFR-NBR. Before transmission, all bits are cleared in
the BitString of the packet copy that are not reachable through the same BFR-
NBR. This is achieved by an AND-operation of the BitString and the F-BM. We
denote this action as “applying the F-BM to the BitString”. Then, the packet
copy is forwarded to the indicated BFR-NBR. All BFERs in the IPMC subtree
of that BFR-NBR eventually receive a copy of this sent packet if their bit is
activated in the BitString of the packet copy. Thus, all BFERs of this IMPC
subtree can be considered as processed. Therefore, their bits are removed from
the BitString of the remaining BIER packet. To that end, the BFR applies
the complement of the F-BM to the BitString of the remaining BIER packet.
This ensures that packets are delivered only once to intended receivers. If the
BitString in the remaining BIER packet still contains activated bits, the loop
restarts; otherwise the processing loop stops.

When the BFER that is currently processed corresponds to the BFR itself,
the F-BM and BFR-NBR of its BIFT entry are empty. Then, a copy of the

11

BIER packet is created, the BIER header is removed, and the packet is passed
to the IPMC layer within the BFR. Afterwards, the processed bit is cleared
in the BitString of the remaining BIER packet, and the loop restarts if the
BitString contains activated bits; otherwise the loop stops.

5.3.2. BIER Forwarding Example

We assume that BFIR 1 in Figure 4 receives an IPMC packet from IPMC
Host 1 that should be sent to the IPMC Hosts 2, 3, and 4. Therefore, it adds
a BIER header with the BitString 1110 to the IPMC packet and processes it.
The least-significant activated bit corresponds to BFR 2. BFR 1 looks up the
activated bit in its BIFT which is shown in Table 2. Then, it creates a packet
copy and applies the F-BM to the BitString of that copy. This sets the BitString
to 1010. Then, the packet copy is forwarded to BFR 2. Aftwards, BFR 1 clears
the activated bits of the F-BM from the BitString of the remaining original
BIER packet. This leaves a packet with the BitString 0100. BFR 1 processes
the next activated bit, i.e. the bit for BFER 3. A packet copy is created, and
the F-BM is applied which leaves the BitString 0100 in the packet copy. Then
it is forwarded to BFR 3.

BFR 2 process the packet in the same way. As a result, it forwards one
packet copy with the BitString 1000 to BFR 4. Additionally, it sends an IPMC
packet without BIER header to its connected host. BFR 3 and 4 do the same
when they receive their respective BIER packet.

5.3.3. BIER Header Stack

Without loss of generality, we assume in the following that the routing un-
derlay is IP. Furthermore, we neglect the role of Layer 2 to facilitate readability.

Each BIER device is also an IP device. However, not every IP device is a
BIER device. In Figure 5, the “Pure IP-node” is an IP node without BIER
functionality. It belongs to the IP topology but not to the BIER topology. This
influences the header stack of forwarded BIER packets. BFR 1, 2 and 3 are

IPBFR 1

BFR 2

BFR 3

BIER domain

BHIP BHIP

BH
BH

IPMC packet BH BIER header IP IP header

IP domain

Pure
IP-node

Figure 5: BIER traffic forwarded over pure IP nodes requires additional IP encapsulation.

12

both IP and BIER devices. The three BFRs are BFR-NBRs to each other.
BFR 1 and 2 are neighbors to each other in both the IP and BIER topology
because they are directly connected on Layer 2. Therefore, they exchange BIER
packets on Layer 2 without an additional header. Since the pure IP node is not
part of the BIER topology, BFR 1 and BFR 3 are BFR-NBRs although they
are not neighbors in the IP topology. To exchange packets, BFR 1 and BFR
3 encapsulate BIER packets with an IP header and forward them via the pure
IP node. When BFR 1 or 3 receive the packet, they remove the IP header and
process the BIER header.

6. BIER Fast Reroute

The necessity for resilience mechanisms in BIER networks has been discussed
in [41] without proposing any mechanism. In this section we introduce BIER
fast reroute (BIER-FRR) to protect BIER traffic against link and node failures
by taking advantage of reconvergence and FRR mechanisms of the routing un-
derlay. We explain why regular BIER cannot protect BIER traffic sufficiently
against failures, and present BIER-FRR for link and node protection, respec-
tively. Finally, we discuss the protection properties of BIER-FRR.

6.1. Link Protection

In this paragraph we introduce BIER-FRR with link protection. First, we
explain why relying on the available features of BIER and a resilient routing
underlay is not sufficient for protection against link failures. Afterwards, we
describe BIER-FRR with link protection and show a forwarding example.

6.1.1. Resilience Problems of BIER for Link Failures

BFR-NBRs may be directly connected over Layer 2 or they may be reachable
only over Layer 3 so that IP encapsulation is needed for them to exchange BIER
traffic (see Section 5.3.3). This has impact on the effect of link failures.

If neighboring BFRs are reachable only over Layer 3, they exchange BIER
traffic IP-encapsulated towards each other. If a link on the path towards the
BFR-NBR fails, the BFR-NBR is not reachable until the routing underlay has
restored reachability. This may be due to IP-FRR, which is fast, or IP routing
reconvergence, which is slow. In any case, the reachability on the BIER layer
is also restored and no further action needs to be taken. Possibly, the path in
the routing underlay changed, which may affect the neighboring relationships
among BFRs, so that BIFTs need to be recomputed. This, however, is not
time-critical.

If BFR-NBRs are directly connected over Layer 2, they exchange packets
without an additional IP header. If the link between them is broken, protection
mechanisms on Layer 3, in particular IP-FRR, cannot help because the BIER
packet is not equipped with an IP header. Therefore, affected BIER traffic
cannot be forwarded until a new BFR-NBR is provided in the BIFT for affected
BFERs. Thus, the BIFT needs to be updated. This process takes time to

13

recompute the entries based on the new paths from the routing underlay and
starts only after reconvergence of the routing underlay has completed. This
is significantly later than FRR mechanisms on the routing underlay restore
connectivity for unicast traffic.

BIER-FRR with link protection effects that a BFR affected by a link failure
can forward BIER traffic again as soon as its connectivity problem is detected
on the BIER layer and the routing underlay is able to forward unicast traffic
again.

6.1.2. BIER-FRR with Link Protection

PLR BFR-NBR

BIERIP

BIER distribution tree
IP tunnel

BIER

BIER

Figure 6: BIER-FRR with link protection is needed for BFR-NBRs which are directly con-
nected on Layer 2: they IP-encapsulate BIER traffic towards a BFR-NBR after it is detected
unreachable.

The concept of BIER-FRR with link protection is illustrated in Figure 6.
BFRs must be able to detect link failures. This may happen, e.g., through loss of
light detection or through bidirectional forwarding detection (BFD) with BFR-
NBRs [42]. If an unreachable BFR-NBR is detected, a BFR IP-encapsulates
BIER traffic towards that BFR-NBR. As a result, the BIER traffic will reach
the affected BFR-NBR again as soon as reachability on the routing underlay is
restored. This can be very fast if the routing underlay leverages FRR. When
the traffic arrives at the BFR-NBR, the additional IP header is removed and
packets are processed as normal BIER traffic.

6.1.3. Example for BIER-FRR with Link Protection

Figure 7 shows the BIER topology from the earlier forwarding example in
Figure 4 with a link failure. For convenience, the BIFT of BFR 1 is displayed
again in Table 3.

When BFR 1 sends a BIER packet to all other BFERs, the BitString is 1110.
First a packet copy is successfully deliverd to BFER 2 and BFER 4 so that the
BitString of the remaining packet is 0100, i.e., next a packet must be forwarded
to BFER 3. However, BFR-NBR 3 is unreachable for BFR 1 due to the link
failure. Therefore, BFR 1 IP-encapsulates the BIER packets towards BFR 3. As
soon as the routing underlay restores connectivity, the IP-encapsulated BIER
packets is detoured via BFR 2 and BFR 4 towards BFR 3. Thus, BIER-FRR
with link protection may send a second packet copy over a link.

14

1110

1010 2

3 4
Failure free BIER forwarding
Tunneled BIER packet
on backup path

1
1000

0100

0100

0100
BFER F-BM BFR-NBR

1 - -
2 1010 2
3 0100 3
4 1010 2

Figure 7: Packet paths and example topology
for BIER-FRR with link protection.

Table 3: BIFT of BFR 1.

6.2. Node Protection

We introduce BIER-FRR with node protection. First, we discuss why reg-
ular BIER cannot protect BIER traffic sufficiently fast against node failures.
Afterwards, we present the concept of BIER-FRR with node protection, extend
the BIFT with backup entries, show a forwarding example, and explain how
backup entries are computed.

6.2.1. Resilience Problems of BIER for Node Failures

If a BFR fails, all downstream BFRs are unreachable. This problem cannot
be quickly repaired by the routing underlay because traffic directed to the failed
node cannot be delivered. Thus, alternate BFR-NBRs are needed. These are
provided when the routing underlay has reconverged and the BIFT entries are
recomputed. This, however, may take long time.

BIER-FRR with node protection shortens this time so that affected BIER
traffic can be delivered in the presence of node failures as soon as connectivity
for unicast traffic is restored in the routing underlay.

6.2.2. BIER-FRR with Node Protection

We propose BIER-FRR with node protection to deliver BIER traffic even if
the BFR-NBR fails. The concept is shown in Figure 8. When a PLR cannot
reach a BFR-NBR, it tunnels copies of the BIER packet to all BFR next-next-
hops (BFR-NNH) in the distribution tree that should receive or forward a copy.
Thus, for each such BFR-NNH, an individual packet copy is created. The packet
is then tunneled to the BFR-NNH with an additional header of the routing
underlay; these packets are delivered as soon as the routing underlay restores
connectivity. When the BFR-NNH receives such a packet, it removes the tunnel
header and processes the resulting BIER packet.

If a BFR-NBR is unreachable, the link towards the BFR-NBR or the BFR-
NBR itself may have failed. Therefore, the BFR-NBR should also receive a
packet copy encapsulated by the routing underlay.

15

BFR-NBR

BIERIP

BIER distribution tree
IP tunnel

PLR

BIERIP

BFR-NNH

BFR-NNH

Figure 8: Concept of BIER-FRR with node protection.

BFER F-BM BFR-NBR
1 primary F-BM primary NH

backup F-BM backup NH
...

Table 4: Structure of a BIFT with backup entries.

When a packet copy is sent to multiple BFR-NNHs instead of the BFR-NBR,
the the BitString of the forwarded packet copies must be modified appropriately
to avoid duplicate packets at BFERs. These modifications can be obtained with
backup F-BMs, which is explained in more detail in Section 6.2.5.

6.2.3. BIFT with Backup Entries

To support BIER-FRR with node protection, the BIFT must be extended
with backup entries. The structure of a BIFT with backup entries is shown in
Table 4.

The normal BIFT entries are called primary entries. The backup entries have
the same structure as the primary entries. When a BFR-NBR is reachable, the
primary entries are used for forwarding. If a BFR-NBR becomes unreachable,
the corresponding backup entry is used for forwarding in the same way as a
primary entry with only one difference. The packet is not forwarded natively
but instead it is always tunneled to the backup NH through the routing underlay.

6.2.4. Example for BIER-FRR with Node Protection

Figure 9 shows an example topology and Figure 10 illustrates the distribution
tree for BFR 1 and BFR 2 based on the paths from the routing underlay. Table 5
shows the BIFT of BFR 1 with primary and backup entries.

We illustrate the forwarding with BIER-FRR when BFR 2 fails. We assume
that BFR 1 needs to send a BIER packet to BFR 6, i.e. the packet contains
the BitString 100000. As BFR 2 is unreachable, the primary NH of BFR 1
to BFR 6, which is BFR 2, cannot be used. Therefore, the backup entry is
utilized. That means, the backup F-BM 101000 (see Table 5) is applied to the
copy of the BIER packet and then it is tunneled through the routing underlay
to the backup NH BFR 4. BFR 1 applies the complement of the backup F-BM

16

3

1

4

2

6

5
100000

100000

Tunneled BIER packet
on backup path

Failure free BIER forwarding

100000

100000

6

4

2

5

1

3

2

4

3 6

5 1

Figure 9: A packet is sent from BFR 1
to BFR 6 over a backup path using node
protection.

Figure 10: Shortest-path tree of BFR 1 and
BFR 2.

BFER F-BM BFR-NBR
1 000001 -

- -
2 111010 2

000010 2
3 000100 3

000100 3
4 111010 2

101000 4
5 111010 2

010000 5
6 111010 2

101000 4

Table 5: BIFT of BFR 1 with primary and backup entries.

010111 to the BitString of the original BIER packet which is then 000000. As
the BitString of the remaining BIER packet has no activated bits anymore, the
forwarding process terminates at BFR 1.

The routing underlay delivers the packet copy from BFR 1 to BFR 4 as soon
as connectivity is restored. BFR 4 removes the tunnel header and forwards the
BIER packet to BFR 6.

If the BitString of the packet was 100100, i.e., BFER 3 should have received
a copy of the packet, too, a regular BIER packet would have been forwarded
directly to BFR 3 before BIER-FRR tunnels another copy of the BIER packet
to BFR 4. Thus, BIER-FRR with node protection may increase the traffic on
a link to ensure that all relevant NNHs receive a packet copy.

6.2.5. Computation of Backup Entries

We compute backup NHs and backup F-BMs for BFERs at a specific BFR
which we call PLR in this context. To that end, we distinguish two cases: the

17

BFER is not a BFR-NBR (1) or it is a BFR-NBR (2).
In the first case, the BFER is reached from the PLR through the routing

underlay via a considered NH and next-next-hop (NNH). The considered NNH
becomes the backup NH for the BFER. The corresponding backup F-BM re-
quires activated bits for a set of BFERs. This set comprises all BFERs whose
paths in the routing underlay from the PLR also traverses the considered NH
and NNH. This F-BM can be computed by bitwise AND’ing the PLR’s F-BM
for the considered BFER and the considered NH’s F-BM.

In the second case, the considered BFER is a BFR-NBR. Then, the NH is
also taken as backup NH. This ensures that the NH receives a copy of the BIER
packet if the NH cannot be reached due to a link failure. To avoid that the NH
distributes further packet copies, the backup F-BM contains only the activated
bit for the considered BFER.

We illustrate both computation rules by an example. We consider the BIFT
of BFR 1 in Table 5. The backup entry of BFER 6 is an example for the first
computation rule. The backup NH for BFR 6 is BFR 4 as it is the NNH of BFR
1 on the path towards BFR 6 in Figure 10. The BFERs reachable from the
PLR through BFR 4 are BFER 4 and BFER 6. Therefore, the backup F-BM is
101000. It can be obtained by bitwise AND’ing the F-BM of BFR 1 for BFER
6 (111010) and the F-BM of BFR 2 for BFER 6 (101100). The latter can be
derived from the multicast subtree of BFR 2 in Figure 10.

The backup entry of BFER 2 is an example for the second computation rule.
The backup NH for BFER 2 is BFR 2 and the F-BM contains only one activated
bit for BFER 2 (000010).

6.3. Properties of BIER-FRR

We have argued that restoration of BIER connectivity may take long time in
case of a link failure since this process can start only after the reconvergence of
the routing underlay has completed. To shorten the outage time, we introduced
BIER-FRR which restores connectivity on the BIER layer as soon as unreach-
able BFR-NBRs are detected and the connectivity in the routing underlay is
restored.

The general concept of BIER-FRR is simple: it requires some sort of de-
tection that a BFR-NBR is no longer reachable, but it does not require any
additional signalling as it is a local mechanism. Furthermore, it leverages the
restoration of routing underlay so that BIER traffic can profit from FRR mech-
anisms in the routing underlay. It does not define alternate paths on the BIER
layer, which is in contrast to another solution reported in [43].

BIER-FRR comes in two variants: link protection and node protection. Link
protection is simple, it just encapsulates BIER traffic into a header of the routing
underlay, but it cannot protect against node failures. The encapsulated packet
may be sent over an interface over which also a regular copy of the same BIER-
packet is transmitted. That means, up to two packet copies can be transmitted
over at most one link in case of a failure, which runs in contrast to the actual
idea of multicast.

18

Node protection is more complex. It requires a PLR to send backup copies of
a BIER packet to all relevant NNHs encapsulated with a header of the routing
underlay. This requires extensions to the BIFT for backup entries. However,
it protects against link and node failures. The encapsulated packets may be
sent over interfaces over which also a regular copy of the same BIER packet is
transmitted. That means that even multiple packet copies can be transmitted
over several links in case of a failure.

BIER-FRR is designed for single link and node failures. In case of multiple
failures, BIER-FRR suffers from potential shortcomings of the routing underlay
to cope with multiple failures, too, so that some traffic may be lost until the
BIFT is updated. Furthermore, if both a NH and a NNH fail, the subtree of the
NNH is no longer reachable until the BIFTs are updated. Some FRR techniques
may cause routing loops in case of multiple failures [12]. In contrast, BIER-FRR
cannot cause routing loops because it just leverages the routing underlay and
does not propose new paths in failure cases.

6.4. Application of IP-FRR Mechanism on BIER Layer

In Section 3.1 we introduced IP-FRR and described LFAs. In [43] we dis-
cussed the application of LFAs on the BIER layer, i.e., in addition to the pri-
mary BFR-NBR, the BIFT contains a backup BFR-NBRs respectively, to which
a BIER packet is forwarded when the primary NH is unreachable. We identified
two major disadvantages. First, their application leaves a significant amount of
BFERs unprotected against link or node failures because LFAs cannot guaran-
tee full protection coverage [12]. This holds in particular when node protection
is desired for which protection coverage is even lower than for link protection.
Second, LFAs on the BIER layer introduce new paths in the BIER topology,
which can cause rerouting loops for BIER traffic. Third, this approach assumes
IP with IP-FRR as routing underlay while our approach works with any rout-
ing underlay and FRR mechanism. Therefore, we argue that the application of
IP-FRR mechanisms on BIER layer is not sufficient for appropriate protection.

7. Introduction to P4

This section serves as a primer for readers who are not familiar with P4.
First, we explain the general P4 processing pipeline. Then, we describe the
concept of match+action tables, control blocks, and metadata. Finally, we
explain the recirculate and clone operations.

7.1. P4 Pipeline

P4 is a high-level language for programming protocol-independent packet
processors [44]. Its objective is a flexible description of data planes. It introduces
the forwarding pipeline shown in Figure 11. A programmable parser reads
packets and stores their header information in header fields which are carried
together with the packet through the pipeline. The overall processing model is
composed of two stages: the ingress and the egress pipeline with a packet buffer

19

Ingress pipeline

Match
actionPa

rs
er

D
ep

ar
se

r

In
pu

t

O
ut

pu
t

Bu
ffe

r

Egress pipeline

Match
action

Recirculation

Figure 11: P4 abstract forwarding pipeline according to [44].

in between. The egress port of a packet has to be specified in the ingress pipeline.
If no egress port has been specified for a packet at the end of the egress pipeline,
the packet is dropped. At the end of the egress pipeline, a deparser constructs
the packet with new headers according to the possibly modified header fields.
P4 supports the definition and processing of arbitrary headers. Therefore, it is
not bound to existing protocols.

7.2. Metadata

Metadata constitute packet-related information. There are standard and
user-defined metadata. Examples for standard metadata are ingress port or
reception time which are set by the device. User-defined metadata store arbi-
trary data, e.g., processing flags or calculated values. Each packet carries its
own instances of standard and user-define metadata through the P4 processing
pipeline.

7.3. Match+Action Tables

Match+action tables are used within the ingress and egress pipeline to apply
actions to specified packets. The P4 program describes the structure of each
match+action table. The rules are the contents of the table and are added to
the table during runtime.

As match+action tables are essential for the description of our prototype,
we introduce a compact notation for them by an example. The example is
given in Figure 12. The table has the name “MAT Simple IP” and describes an
implementation of simplified IP forwarding with match+action tables. In the
following we use the prefix “MAT ” for naming MATs.

7.3.1. Match Part

A table defines a list of match keys that describe which header fields or meta-
data are used for matching a packet against the table. The match type indicates
the matching method. P4 supports several match types: exact, longest-prefix
(lpm), and ternary. The latter features a wildcard match. In our example in
Figure 12, the match key is the destination IP address and lpm matching is
applied.

20

Packet p MAT_Simple_IP

Match keys: p.DstIP (lpm)

Action Parameter

forward_IP - 2

- meta.egress_port
= egress_port

next step

Match fields

192.168.0.1/32

forward_IP - 3192.168.0.2/32

 forward_IP - egress_port

Action Parameters
Table definition

Table entries

miss
next step

Figure 12: Match+action table for simplified IP forwarding.

7.3.2. Actions

The table further defines a list of actions including their signature which can
be used by rules in case of a match. Actions are similar to functions in common
programming languages and consist of several primitive operations. Inside an
action further actions can be executed. Actions can modify header fields and
metadata of a packet. In our example, this is the forward IP action that requires
the appropriate egress port as a parameter. Each action is illustrated by a flow
chart on the right side of the table.

7.3.3. Rules

During runtime, the match+action tables can be filled with rules through
an application programming interface (API). The rules contain match fields
which are patterns that are to be matched against a packet’s context selected
by the match keys. In our example, the match fields are IP addresses. The rules
further specify an action in the table definition and suitable parameters which
are applied to the packet in case of a match.

In our example in Figure 12 we install two rules. In the first one, the match
field is the IP address 192.168.0.1 and it applies the action forward IP with
the parameter 2. This will send packets with the destination IP 192.168.0.1
over port 2. The match field for the second rule is 192.168.0.2 and it sends the
packet over port 3. For all other destination IPs a miss occurs and no egress
port is specified.

When describing match+action tables of our implementation in Section 8,
we omit the actual rules as they are configuration data and not part of the P4
implementation.

7.4. Control Blocks

A control block consists of a sequence of match+action tables, operations
and if-statements. They encapsulate functionality. Within control blocks other
control blocks can be called. Both the ingress and egress pipeline are control

21

blocks that apply other control blocks. We use the prefix “CB ” for naming of
our other control blocks. Examples of control blocks in our implementation are
CB IPv4, CB BIER, or CB Ethernet.

7.5. Recirculation
P4 does not support native loops. However, as indicated in Figure 11, the

recirculation operation returns a packet to the beginning of the ingress pipeline.
It activates a standard metadata field, i.e., a flag, which marks the packet for
recirculation. The packet still traverses the entire pipeline and only at the end
of the egress pipeline the packet is returned to the start of the ingress pipeline.
When setting the recirculate flag, it is possible to specify which metadata fields
should be kept during recirculation. All others are reset to their default values.
In contrast, header fields modified during the processing remain modfied after
recirculation. Another standard metadata field stores whether a packet has been
recirculated.

7.6. Packet Cloning
P4 supports the packet cloning operation clone-ingress-to-egress (CI2E).

CI2E can be called anywhere in the ingress pipeline. This activates the CI2E
metadata flag which indicates that the packet should be cloned. However, the
copy is created only at the end of the ingress pipeline. In the packet clone all
header changes are discarded that have been made within the ingress pipeline.
If CI2E has been called within the ingress pipeline, two packets enter the egress
pipeline. One is the original packet that has been processed by the ingress
control flow. The second packet is the copy without modifications from the
ingress pipeline. Figure 13 illustrates this by an example.

Ingress start Ingress end

Dst. IP: 192.0.0.1
change Dst.

IP to
 192.0.0.2

CI2E
Dst. IP: 192.0.0.3

Dst. IP: 192.0.0.1 to egress

to egress
change Dst.

IP to
192.0.0.3

Parsed packet Original packet

Cloned packet

Figure 13: Illustration of the clone-ingress-to-egress (CI2E) operation: the destination IP of
the clone is the one of the received packet although IP was modified before CI2E was called.

When the CI2E flag is set, it is possible to specify for the clone whether
metadata fields should persist or be reset. When a packet clone enters the
egress pipeline, an additional standard metadata flag identifies the packet as a
clone. This allows different processing for original and cloned packets.

8. P4-Based Implementation of BIER and BIER-FRR

In this section, we describe the P4-based implementation of IP, IP-FRR,
BIER, and BIER-FRR. We first describe the data plane followed by the control
plane. In the end, we briefly explain our codebase.

22

8.1. Data Plane

First, we specify the handling of packet headers, then, we give a high-level
overview of the processing pipeline, followed by a detailed explanation of applied
control blocks.

8.1.1. Packet Header Processing

P4 requires that potential headers of a packet are defined a priori. Our
implementation supports the header suite Ethernet/outer-IP/BIER/inner-IP.
We use the inner IP header for regular forwarding and the outer IP header
for FRR. During packet processing, headers may be activated or deactivated.
Deactivated headers are not added by the deparser. Encaps actions in our
implementation activate a specific header and set header fields. Decaps actions
deactivate specific headers.

8.1.2. Overview of Ingress and Egress Control Flow

Figure 14 shows an overview of the entire data plane implementation which
is able to perform IP and BIER forwarding as well as IP-FRR and BIER-FRR. It

Ingress pipeline

CB_Port_
Status

CB_IPv4

CB_BIER
(ingress)

Updates port
information

Applies BIFT

Applies BIER encapsulation
and IPv4 forwarding

Egress pipeline

CB_BIER
(egress) CB_Ethernet

BIER
recirculation

Updates MAC
addresses

Recirculation

Figure 14: Overview of ingress and egress control flow.

is divided into ingress and egress control flow which are given as control blocks.
In the ingress and egress control block the CB IPv4 and CB BIER control block
are only applied to their respective packets, i.e., the CB IPv4 control block is
applied to IP packets and the CB BIER control block is applied to BIER packets.
We first summarize their operations and describe their implementation in detail
in the following Sections.

When a packet enters the ingress pipeline, it is processed by the CB Port Status
control block. It updates the port status (up/down) and records it in the user-
defined metadata meta.live ports of the packet. This possibly triggers FRR
actions later in the pipeline. Then, the CB IPv4 control block or the CB BIER
control block is executed depending on the packet type.

The CB IPv4 control block is applied to both unicast and multicast IP
packets. Unicast packets are processed by setting an appropriate egress port,

23

possibly using IP-FRR in case of a failure. IPMC packets entering the BIER
domain are equipped with a BIER header and recirculated for BIER forwarding.
IPMC packets leaving the BIER domain are forwarded using native multicast.

The CB BIER control block is applied to BIER packets. There is a CB BIER
control block for the ingress control flow and another for the egress control flow.
A processing loop for BIER packets is implemented which extends over both
CB BIER control blocks. At the beginning of the processing loop in the ingress
flow the BitString is copied to metadata meta.remaining bits. This metadata
is used to track for which BFERs a copy of the BIER packet still needs to
be sent. Then, rules from the MAT BIFT are applied to the packet. This
also comprises BIER-FRR actions which encapsulate BIER packets with an IP
header if necessary. Within these procedures, the BIER packet is cloned so that
the original packet and a clone enter the egress control flow. The processing
loop stops if the meta.remaining bits are all zero.

In the CB BIER control block of the egress control flow, the recirculate flag
is set for cloned packets. At the end of the egress control flow, the clone is
recirculated to the ingress control flow with modified meta.remaining bits to
continue the processing loop. The non-cloned BIER packet is just passed to the
CB Ethernet control block.

The CB Ethernet control block updates the Ethernet header of each packet.
Then, the packet is sent if an egress port is set and the recirculate flag has
not been activated. If the recirculate flag is activated, the packet is recirculated
instead. This applies to cloned BIER packets in the processing loop or to packets
that require a second pass through the pipeline: BIER-encapsulated IPMC
packets, BIER-decapsulated IPMC packets, IP-encapsulated BIER packets, or
IP-decapsulated BIER packets. If neither recirculate flag is activated and nor
the egress port is set, the packet is dropped.

8.1.3. CB Port Status Control Block

The control block CB Port Status records whether a port is up or down in
the user-defined metadata meta.live ports of a packet. Figure 15 shows that it
consists of only the match+action table MAT Port Status.

The table does not define any match keys. As a result, the first entry matches
every packet. We install only a single rule which calls the action set port status.
It copies the parameter live ports to the user-defined metadata meta.live ports.
Meta.live ports is a bit string where each bit corresponds to a port of the switch.
If the port is currently up, the bit is activated, otherwise, the bit is deacti-
vated. The metadata field meta.live ports is later used by both the CB IPv4
and CB BIER control block to decide whether IP-FRR and BIER-FRR should
be applied. The parameter live ports in the table is updated by the local con-
troller when the port status changes, which will be explained in Section 8.2.1.

8.1.4. CB IPv4 Control Block

The CB IPv4 control block handles IPv4 packets. Its operation is shown in
Figure 16.

24

Packet p MAT_Port_Status

Match keys: -

Action Parameters

 set_port_status - live_ports

- meta.live_ports
 = live_ports

to either CB_IP or
CB_BIER

Figure 15: In the control block CB Port Status the table MAT Port Status copies the infor-
mation about live ports to the user-defined metadata field meta.live ports of the packet.

Packet p
MAT_IP_unicast

Action Parameters

 forward_IP - egress_port

 decaps_IP -

no

yes

miss

MAT_IPMC_native

Match keys: p.DstIP (exact)

Action Parameters

 forward_IPMC - IPMC_group

- meta.egress_port
 = egress_port

- remove IP
 header of p
- set
 meta.recirculate

- meta.mcast_group =
 IPMC_group

meta.BIER
_decaps set?

miss

to egress

to egress

miss

MAT_IPMC_BIER

Match keys: p.DstIP (exact)

Action Parameters

 encaps_BIER - BIER_bitstring

- push BIER header with
 BIER_bitstring to p
- set meta.recirculate

Match keys: p.DstIP (lpm) &
meta.live_ports (ternary)

Figure 16: The CB IPv4 control block handles IPv4 packets.

It leverages three match+action tables: MAT IP unicast, MAT IPMC native,
and MAT IPMC BIER. Packets are processed by these tables depending on
their type. MAT IP unicast performs IP unicast forwarding including IP-FRR.
IPMC packets encounter a miss and are relayed by the control flow to MAT IPMC native
or MAT IPMC BIER. MAT IPMC native performs native multicast forwarding
for IPMC packets leaving the BIER domain while MAT IPMC BIER just adds
a BIER header for IPMC packets entering the BIER domain.

MAT IP unicast. This match+action table uses the IP destination address and
the metadata meta.live ports as match keys. The IP destination address is
associated with a longest prefix match and the meta.live ports with a ternary
match. We first explain our implementation of IP-FRR. The rules contain an
IP prefix and a required port pattern as match fields (not shown in the table).
Required port corresponds to a bit string of all egress ports and is a wildcard
expression with only a single zero or one for the primary egress port of the traffic,
i.e., *...*0*...* or *...*1*...*. If FRR is desired for an IP prefix, two rules
are provided: a primary rule with *...*1*...* as required port pattern, and a
backup rule with *...*0*...*.

The table offers two actions: forward IP and decaps IP. We explain both in
the following in detail.

The decaps IP action is applied to packets that are addressed to the node

25

itself. For such rules the required port pattern is set to *...*. Those IP packets
are typically BIER packets that have been encapsulated in IP by other nodes
for BIER-FRR. Therefore, the IP header is removed and the recirculate flag is
set so that the packet can be forwarded as BIER packet in a second pass of the
pipeline. In theory, other IP packets with the destination IP addresses of the
node itself may have reached their final destination. They need to be handed
over to a higher layer within the node. However, this feature is not required in
our prototype so that we omit it in our implementation.

The forward IP action is applied for other unicast address prefixes and re-
quires an egress port as parameter. It sets the meta.egress port to the indicated
egress port so that the packet is switch-internally relayed to the right egress
port. The IP-FRR mechanism as explained above may be used in conjunction
with forward IP to provide an alternate egress port when the primary egress
port is down. This mechanism allows implementation of LFAs.

IPMC addresses encounter a miss in this table so that their packets are
further treated by the control flow in the CB IPv4 control block. It checks
whether the meta.BIER decaps bit has been set. If so, the IPMC packet came
from the BIER domain and has been decapsulated. Therefore, it is relayed to
the MAT IPMC native table for outbound IPMC traffic. Otherwise, the IMPC
packet has been received from a host and requires forwarding through the BIER
domain. Therefore, it is relayed to the MAT IPMC BIER table.

MAT IPMC native. This match+action table implements native IPMC for-
warding. It is used by a BFER to send IPMC packets to hosts outside the
BIER domain that have subscribed to a specific IPMC group. The table
MAT IPMC native uses the IP destination address as match key with an ex-
act match. It defines only the forward IPMC action and requires a switch-
internal multicast group as parameter, which is specific to the IPMC group
(IP destination address) of the packet. The action sets this parameter in the
meta.mcast group of the packet. As a consequence, the packet is processed by
the native multicast feature of the switch. This results in packet copies for every
egress port contained in the switch-internal multicast group meta.mcast group
with the corresponding egress port set in the metadata of the packets. The set
of egress ports belonging to that group can be defined through a target-specific
interface, which is done by the controller in response to received IGMP packets.
Packets encountering a miss in this table are dropped at the end of the pipeline.

MAT IPMC BIER. This match+action table uses the IP destination address
as match key with an exact match. It defines only the encaps BIER action and
requires the bit string as parameter, which is specific to the IPMC group (IP
destination address) of the packet. The action pushes a BIER header onto the
packet and sets the specified BitString. Then the recirculate flag is set so that
the packet can be forwarded as a BIER packet in a second pass of the pipeline.
Packets encountering a miss in this table are dropped at the end of the pipeline.

26

8.1.5. CB BIER Control Block

The CB BIER control block processes BIER packets. It is illustrated in
Figure 17.

MAT_BIFT
Match keys:

meta.remaining_bits (ternary)
& meta.live_ports (ternary)

Action Parameters

 forward_BIER - primary_fbm
- primary_NH

 decaps_BIER - decap_bit

 encaps_IP - backup_fbm
- backup_NH

Packet p

- apply primary_fbm to p.bitstring
- remove primary_fbm
 from meta.remaining_bits
- set meta.egress_port to primary_NH
- set CI2E flag

to egress

- remove BIER header from p
- remove decap_bit from
 meta.remaining_bits
- set meta.BIER_decaps
- set recirculateflag
- set CI2E flag

- apply backup_fbm to p.bitstring
- remove backup_fbm from
 meta.remaining_bits
- push IP header to p with
 backup_NH as destination
- set recirculate flag
- set CI2E flag

miss

Is p a clone?
no

yes

to CB_Ethernet
Packet p

BIER (ingress) BIER (egress)

 if
(!meta.rem_
bits_valid)

yes

no

- meta.remaining_bits = p.bitstring
- meta.rem_bits_valid = true

- set recirculate flag

Figure 17: The CB BIER control blocks in the ingress and egress pipeline implement BIER
fowarding as a processing loop.

The user-defined metadata meta.remaining bits is used during BIER pro-
cessing to account for the BFERs that still need a copy of the packet. It serves
as a control variable for the processing loop. When a BIER packet is pro-
cessed by the CB BIER control block for the first time, meta.remaining bits
is initialized with the BitString of the packet. The user-defined metadata
meta.remaining bits valid is initially zero. It is activated after meta.remaining bits
is initialized and prevents overwriting
meta.remaining bits when the packet is recirculated.

Then the match+action table MAT BIFT is applied. It implements BIER
forwarding including BIER-FRR according to the principle we developed for
IP-FRR in Section 8.1.4. Match keys are the packet’s meta.remaining bits in-
dicating BFERs, and meta.live ports indicating live egress ports. The match
types are ternary. Rules are provided for all individual BFERs both for failure-
free cases and failure cases. The match field of these rules consists of two bit
strings that we call dest BFER and required port (not shown in the table). The
dest BFER bit string has the bit position for the respective BFER activated
and all other bit positions set to wildcards (*...*1*...*). The required port
bit string is used as in Section 8.1.4 to select between primary and backup rules.
In case of a match, there are three possible actions.

Decaps BIER is called by the rule whose activated bit in dest BFER refers
to the node itself. It has a F-BM with only the bit of the BFER activated and
no primary or backup NH. If this rule matches, the node should receive a copy
of the packet. The action removes the BIER header of the packet, activates
the user-defined metadata flag meta.BIER decaps, and the recirculate flag so
that the resulting IPMC packet is processed in a second pass of the pipeline.
In addition, the complement of F-BM is used to clear the bit for the processing
node itself in meta.remaining bits.

Forward BIER is called by rules whose activated bit in dest BFER refers to

27

other nodes and where the required port bit string indicates that the egress port
works. Thus, forward BIER is used for primary forwarding. It has the primary
F-BM and the primary NH (egress port) as parameters. The primary F-BM is
applied to clear bits from the BitString of the packet and the complement of the
backup F-BM is applied to meta.remaining bits. In addition, meta.egress port
is set to the primary NH.

Encaps IP is called by rules where the required port bit string indicates that
the primary egress port does not work for the BFER specified in dest BFER.
Thus, encaps IP is used for backup forwarding. It has the backup F-BM and
the backup NH (IP address) as parameters. The backup F-BM is applied to
clear bits from the BitString of the packet and the complement of the backup
F-BM is applied to meta.remaining bits. Then, an IP header is pushed with
the destination address of the backup NH. The recirculate flag for the packet is
activated as it requires IP forwarding in a second run through the pipeline.

At the end of decaps BIER, forward BIER, and encaps IP, a flag for CI2E
is set. This effects that a packet copy is generated at the end of the ingress
pipeline. For the copy (clone), the recirculate flag is activated in the CB BIER
control block in the egress control flow. With this packet, the BIER processing
loop continues. The meta.remaining bits information must be kept to account
for the BFERs that still need a packet copy.

When packets enter the MAT BIFT table with meta.remaining bits equal
to zero, they encounter a miss. As a result, they are dropped at the end of the
pipeline, which stops the processing loop for these BIER packets.

8.1.6. CB Ethernet Control Block

The CB Ethernet control block is visualized in Figure 18.

Packet p MAT_Ethernet
Match keys:

meta.egress_port (exact)

Action Parameters

 encaps_eth - src_MAC
- dst_MAC

- set p.src_MAC = srcMAC
- set p.dst_MAC = dstMAC

send or recirculate p

Figure 18: CB Ethernet control block.

It applies the match+action table MAT Ethernet to all packets. The match
key is the egress port of the packet and the match type is exact. Only the action
encaps eth is defined which requires the parameters src MAC and dst MAC. It
updates the Ethernet header of the packet by setting the source and destination
MAC address which are provided as parameters. Rules are added for every
egress port.

28

This behavior is sufficient as we assume that any hop is an IP node. Although
MAC addresses are not utilized for packet switching, they are still necessary as
packet receivers in Mininet discard packets if their destination MAC address
does not match their own address.

8.2. Control Plane Architecture

The control plane is visualized in Figure 19. It consists of one global con-

Table entries

P4 target
P4 Pipeline

gRPC Server

gRPC client

Local controller

P4 Runtime Interface

gRPC client

Global controller

gRPC Server

gRPC Server

gRPC client

BIER

Communication layer

Application layer

Service layer Topology Table
Management

Communication using
proprietary protobuf protocol

Local topology

MAC Port

Group
Management

IPv4

Table entries

P4 target
P4 Pipeline

gRPC Server

gRPC client

Local controller

P4 Runtime Interface

gRPC Server gRPC client

Local topology

MAC Port

Figure 19: Controller architecture.

troller and one local controller per switch. The local controllers run directly on
the switch hardware as P4 switches are mostly whiteboxes. The local controller
takes care of tasks that can be performed locally while the global controller is in
charge of configuration issues that require a global network view. In theory, a
single controller could perform all tasks. However, there are three reasons that
call for a local controller: scalability, speed, and robustness. Performing local
tasks at the local controller relieves the global controller from unnecessary work.
A local controller can reach the switch faster than a global controller. And, most
important, a local controller does not need to communicate with the switch via
a network. In case of a network failure, the local controller still reaches the
switch while the global controller may be unable to do so. Local controllers
have also been applied for similar reasons in LoCoSDN [45], P4-MACSec [46],
and P4-IPSec [47]. In the following we explain the local and global controller
in more detail.

29

8.2.1. Local Controller

Each switch has a local controller. Switch and local controller communicate
via the so-called P4 Runtime which is essentially the Southbound interface in
the SDN context. The P4 Runtime uses a gRPC channel and a protobuf-based
communication protocol. It allows the controller to write table entries on the
switch.

Figure 19 shows that the local controller keeps information about the local
topology, learns about neighboring nodes, and port status, and configures this
information in the tables of the switch. Moreover, it relays some packets to the
global controller and writes table entries as a proxy for the global controller.

We leverage the local controller for three local tasks that we describe in the
following: IGMP handling, neighbor discovery, and port monitoring.

IGMP Handling. Multiple hosts are connected to a switch. They leverage the
Internet Group Message Protocol (IGMP) to join and leave IPMC groups. If the
switch receives an IGMP packet, it forwards it to its local controller which then
configures the switch for appropriate actions. For example, it adds a new host to
the IPMC group and configures the native IPMC feature of the switch to deliver
IPMC packets to the hosts. That feature is used only for carrying multicast
traffic from the switch to the hosts. To populate the MAT IPMC native table,
the local controller utilizes the Thrift channel instead of the P4 Runtime as this
API is target-specific.

Neighbor Discovery. For neighbor discovery, we implemented a simple propri-
etary topology recognition protocol. All nodes announce themselves to their
neighbors. It allows the local controller to learn the MAC address of the neigh-
bor for each egress port. The local controller stores this information in the
match+action table MAT Ethernet which is utilized in the CB Ethernet con-
trol block (see Section 8.1.6).

Port Monitoring. A P4 switch by itself is not able to find out whether a neigh-
boring node is reachable. However, a fast indication of this information is crucial
to support FRR. In a real network a local controller may test for neighbor reach-
ability, e.g., using a BFD towards all neighbors, loss-of-light, loss-of-carrier, or
any other suitable mechanism. Then, the local controller configures this in-
formation as a bit string in the match+action table MAT Port Status of the
switch whenever the port status changes. Failure detection is target-dependent
and out of scope of this document. Therefore we trigger failure processing of
the local controller manually with a software signal. The local controller then
activates IP-FRR and BIER-FRR if enabled and notifies the global controller
for recomputation of forwarding entries.

8.2.2. Global Controller

We divide the architecture of the global controller in three layers: commu-
nication, service, and application (see Figure 19).

30

The communication layer is responsible for the communication with the local
controllers. Each switch is connected to its local controller. Since the P4 runtime
only allows one controller with write access, the global controller cannot directly
control the switches. Therefore, it communicates with the local controllers to
configure the switches. All changes calculated by the global controller are sent
to the local controller using a separate channel. The local controller forwards
the changes to the switch using the P4 runtime interface.

The service layer provides services for the application layer. This includes
information about the topology, multicast groups, and entries in the tables on
the switches. The application layer utilizes that information to calculate the
table entries.

The global controller receives IGMP messages and keeps track of subscrip-
tions to IPMC groups. If a host is the first to enter or the last to leave an
IPMC group at a BFER, the global controller configures the MAT IPMC BIER
table of all BFIRs with an appropriate bit string for the specific IPMC group
by activating or deactivating the corresponding bit of the BFER. As a result,
the BFIR starts or stops sending traffic from this IPMC group to the BFER.

The global controller sets all entries in the MAT IP unicast and MAT IPMC BIER
tables of all switches and the entries in the MAT BIFT s. If the global con-
troller is informed by a local controller about a failure, it first reconfigures
the MAT IP unicast and MAT IPMC BIER tables and then the entries of the
MAT BIFT s accordingly.

8.3. Codebase

The implementation of the BIER data plane and control plane including a
demo can be downloaded at https://github.com/uni-tue-kn/p4-bier. The pro-
vided code contains a more detailed documentation of the BIER(-FRR) imple-
mentation. The demo contains several Mininet network topologies that were
used to verify the functionality of BIER(-FRR). One of them is described in
Section 9.1. Links can be disabled using Mininet, which enables the verification
of the BIER-FRR mechanism. A simple host CLI allows multicast packets to
be sent and incoming multicast packets to be displayed.

9. Evaluation

In this section we illustrate that BIER traffic is better protected with BIER-
FRR. To that end, we conduct experiments in a testbed using our prototype. We
first explain the experimental setup, the timing behavior of our emulation and
our metrics. Finally, we describe the testbed setup and present experimental
protection results in an BIER/IP network with and without IP-FRR and BIER-
FRR, for link protection and node protection, respectively.

9.1. Methodology

First, we describe the general approach for our evaluation. Then, we discuss
the timing behavior of a software-based evaluation. As the prototype switch is

31

differently controlled than typical routers, we adapt reaction times of the con-
troller after a failure to mimic the timely behaviour of updates for IP forwarding
tables and BIFTs. Finally, we explain our metrics.

9.1.1. General Setup

We emulate different topologies in Mininet [48]. The core network is im-
plemented with our P4-based prototype and the software-based simple switch
which is based on the BMv2 framework [49]. It forwards IP unicast, IP mul-
ticast, and BIER traffic. One source and several subscribers are connected to
the core network. The source periodically sends IP unicast and IP multicast
packets. IP unicast packets are forwarded as usual through the core network.
When IP multicast packets enter the core network, they are encapsulated with
a BIER header at the BFIR. BFERs remove BIER headers and forward the IP
multicast packets to the subscribers.

Rules for the match+action tables are computed by the global controller in
an initial setup phase. In different scenarios we simulate link and node failures
and observe packet arrivals at the subscribers. We study different combinations
of IP-FRR and BIER-FRR to evaluate the delay until subscribers receive traffic
again after a failure has been detected. Also in those cases, the local controller
notifies the global controller to perform IP reconvergence and BIFT recompu-
tation because FRR is meant to be only a temporary measure until the global
forwarding information base has been updated as a response to the link or node
failure.

We report events at the PLR and at all subscribers before and after the fail-
ure. For the PLR we show the following signals: failure detection at t0, updates
of IP forwarding entries, and updates of BIFT entries. For the subscribers we
record receptions of unicast and multicast packets.

9.1.2. Timing Behavior

Our switch implementation in a small, virtual environment has a different
timing behavior than a typical router in a large, physical environment. In par-
ticular signaling can be executed with insignificant delay in our virtual environ-
ment, e.g., notifying the global controller about the failure or the distribution of
updated forwarding entries. This is different with routers and routing protocols
in the physical world. Signaling requires significant time as routing protocols
need to exchange information about the changed topology. Routers compute
alternative routes and push them to their forwarding tables. Only after all uni-
cast paths have been recomputed and globally updated by the routing underlay,
BFRs can compute new forwarding entries for BIER and push them to their
BIFTs. Thus, the BIFT is updated only significantly later compared to the
unicast forwarding information base. To respect that in our evaluation, we con-
figure the global controller to install new IP forwarding entries on the switches
only after 150 ms after being informed about a failure and new BIFT entries
another 150 ms later.

32

9.1.3. Metric

We perform experiments with and without IP-FRR and BIER-FRR, and
compare the time after which unicast and multicast traffic is delivered again at
the subscribers after a failure has been detected by the affected BFR.

9.2. Link Protection

We perform experiments for the evaluation of BIER-FRR with link pro-
tection. First, we explain the experimental setup. Afterwards, we report and
discuss the results for all scenarios.

9.2.1. Setup for Link Protection

BFER

NH

BFIRSource Subscriber

Core network

(PLR)

Figure 20: Two hosts the Source and the Subscriber are connected to a BIER network with
IP as the routing underlay.

We emulate the testbed depicted in Figure 20 in Mininet. Two hosts the
Source and the Subscriber are connected to a BIER/IP network. The host
Source sends every 10 ms packets to the host Subscriber over the core network.
Every other packet is sent by IP unicast and IPMC. The primary path carries
packets from PLR via NH to BFER. We simulate the failure of the link
between the PLR and the NH to interrupt packet delivery. We compare the
time until the host Subscriber receives unicast and multicast traffic again, after
the failure has been detected by the PLR. We perform experiments with and
without IP-FRR and BIER-FRR with link protection.

9.2.2. Without IP-FRR and BIER-FRR

In the first experiment, failure recovery is based only on IP reconvergence
and BIFT recomputation. Neither IP-FRR nor BIER-FRR are enabled. Fig-
ure 21(a) shows that the failure interrupts packet delivery at the Subscriber.
Unicast reconvergence is completed after about 170 ms after failure detection.
Updating the BIFT entries has finished only after about 370 ms in total. Unicast
and multicast packets are received again by the Subscriber only after updated
IP and BIER forwarding rules from the controller have been installed at the
PLR.

9.2.3. With IP-FRR but without BIER-FRR

In the second experiment, IP-FRR is enabled but BIER-FRR remains dis-
abled. Figure 21(b) shows that IP unicast traffic immediately benefits from

33

Failure detected IP update BIFT update

IP pkt

BIER pkt

Event

0 100 200 300 400 500
Time (ms)

(a) Without IP-FRR and BIER-FRR.

Failure detected IP update BIFT update

IP pkt

BIER pkt

Event

0 100 200 300 400 500
Time (ms)

(b) With IP-FRR but without BIER-FRR.

Failure detected IP update BIFT update

IP pkt

BIER pkt

Event

0 100 200 300 400 500
Time (ms)

(c) Without IP-FRR but with BIER-FRR.

Failure detected IP update BIFT update

IP pkt

BIER pkt

Event

0 100 200 300 400 500
Time (ms)

(d) With IP-FRR and BIER-FRR.

Figure 21: Reception time of packets in the link failure scenario.

34

IP-FRR when the PLR detects the failure. IP-FRR instantly reroutes pack-
ets and, therefore, IP unicast traffic is still delivered at the Subscriber. Both
IP reconvergence and BIFT recompuration are finished slightly later compared
to the previous scenario. The reason for the extended duration is that the
global controller needs to compute new forwarding entries for IP-FRR during
reconvergence, which is not needed if IP-FRR is disabled. After 200 ms, IP
reconvergence has finished and the primary IP unicast forwarding entries have
been updated. Multicast packets are delivered only after BIFT recomputation
after about 400 ms.

9.2.4. Without IP-FRR but with BIER-FRR

In the third experiment, IP-FRR is disabled but BIER-FRR is enabled.
Figure 21(c) shows that unicast traffic is delivered at the Subscriber when IP
reconvergence has finished after about 170 ms. Due to BIER-FRR, BIER traffic
benefits from the faster IP reconvergence, too. Multicast traffic is delivered
after 170 ms as well, and not only after BIFT recomputation. The BIFT is
updated only after about 400 ms in total which is slightly longer than in the
scenario without BIER-FRR. Although conceptually the BIFT does not require
modification for BIER-FRR with link protection, the match+action tables in
the P4 implementation need backup entries that tunnel BIER packets in case
of a failure. Therefore, the global controller has to compute new backup entries
for BIER-FRR in addition to primary BIFT entries during the recomputation
process. The slightly delayed BIFT recomputation is not a disadvantage for
BIER traffic because BIER-FRR reroutes BIER packets until both primary and
backup BIFT entries have been updated.

9.2.5. With IP-FRR and BIER-FRR

In the last experiment, IP-FRR and BIER-FRR are enabled. Figure 21(d)
illustrates that both unicast and multicast traffic are delivered at the Subscriber
without any delay despite of the failure. This is achieved by FRR mechanisms
in both the routing underlay and the BIER layer. IP-FRR immediately re-
stores connectivity for unicast traffic. BIER-FRR leverages the resilient routing
underlay to immediately reroute BIER packets. IP reconvergence has finished
after about 200 ms. BIFT recomputation finishes only after about 420 ms. In
both cases the longer time is explained by the additional FRR entries the global
controller has to compute during IP reconvergence and BIFT recomputation,
respectively.

9.3. Node Protection

In this paragraph we evaluate BIER-FRR with node protection. First, we
describe the experimental setup. Then, we report and discuss the evaluation
results for all four scenarios.

35

Source

Core network

BFIR NH

BFER1

BFER2

Subscriber1

Subscriber2

(PLR)

Figure 22: Three hosts, Source, Subscriber1 and Subscriber2 are connected to a BIER net-
work with IP as the routing underlay.

9.3.1. Setup for Node Protection

Figure 22 shows the topology we emulated in Mininet. The three hosts
Source, Subscriber1, and Subscriber2 are connected to an BIER/IP network.
The Source alternately sends two IP unicast packets and one IP multicast
packet with 10 ms in between. The unicast packets are sent to Subscriber1
and Subscriber2. The IPMC group of the the IPMC packet is subscribed by
Subscriber1 and Subscriber2. On the primary path, packets are carried from
the PLR via the NH to BFER1 and BFER2, respectively. We simulate the
failure of the NH to interrupt packet delivery with a node failure. We evaluate
the time until both the Subscriber1 and the Subscriber2 receive traffic again
after the PLR detects the failure. We perform experiments with and with-
out IP-FRR and BIER-FRR with node protection. We discuss the outcome
and show figures only for Subscriber1 because results for Subscriber2 are very
similar.

9.3.2. Without IP-FRR and BIER-FRR

In the first scenario, the local controller at the PLR triggers only IP recon-
vergence and BIFT recomputation after failure detection. No FRR measures
are enabled. Figure 23(a) shows that the Subscriber1 receives IP unicast traf-
fic only after IP reconvergence which takes about 180 ms. Subscriber1 receives
multicast traffic only after BIFT recomputation which takes about 400 ms. Both
IP reconvergence and BIFT recomputation require slightly more time than in
the link failure scenario because now the local controller reports a node failure
which requires more rules to be recomputed.

9.3.3. With IP-FRR but without BIER-FRR

In the second scenario, IP-FRR is enabled but not BIER-FRR. Figure 23(b)
shows that IP unicast traffic immediately benefits from IP-FRR. Traffic is de-
livered at the Subscriber1 without any delay despite of the failure. IP recon-
vergence requires about 240 ms. Multicast traffic is received by the Subscriber1
only after BIFT recomputation which has finished only after about 520 ms.

36

Failure detected IP update BIFT update

IP pkt

BIER pkt

Event

−100 0 100 200 300 400 500 600
Time (ms)

(a) Without IP-FRR and BIER-FRR.

Failure detected IP update BIFT update

IP pkt

BIER pkt

Event

−100 0 100 200 300 400 500 600
Time (ms)

(b) With IP-FRR but without BIER-FRR.

Failure detected IP update BIFT update

IP pkt

BIER pkt

Event

−100 0 100 200 300 400 500 600
Time (ms)

(c) Without IP-FRR but with BIER-FRR.

Failure detected IP update BIFT update

IP pkt

BIER pkt

Event

−100 0 100 200 300 400 500 600
Time (ms)

(d) With IP-FRR and BIER-FRR.

Figure 23: Reception time of packets in the node failure scenario.

37

Again, IP reconvergence and BIFT recomputation require slightly more time
than without IP-FRR because because additional IP-FRR entries have to be
computed.

9.3.4. Without IP-FRR but with BIER-FRR

In the third scenario, BIER-FRR is enabled but not IP-FRR. Figure 23(b)
shows that both IP unicast and multicast traffic are received at the Subscriber1
only after IP reconvergence which takes about 170 ms. Afterwards, IP traffic
is rerouted because of the updated forwarding entries. BIER traffic is rerouted
after that time as well, because BIER-FRR leverages the updated routing un-
derlay instead of requiring BIFT recomputation which has finished only after
about 500 ms.

9.3.5. With IP-FRR and BIER-FRR

In the last scenario, both IP-FRR and BIER-FRR are enabled. Figure 23(d)
shows that both IP unicast and multicast traffic are received by the Subscriber1
without any delay despite of the failure. IP-FRR reroutes IP unicast traffic as
soon as the failure is detected by the PLR. Similarly, BIER-FRR reroutes BIER
traffic immediately, too. Therefore, BIER traffic benefits from the resilience of
the routing underlay to forward BIER traffic although the NH failed and BIFT
recomputation has not finished, yet. IP reconvergence takes about 240 ms.
BIFT recomputation finished only after 600 ms.

10. Conclusion

BIER is a novel, domain-based, scalable multicast transport mechanism for
IP networks that does not require state per IP multicast (IPMC) group in core
nodes. Only ingress nodes of a BIER domain maintain group-specific infor-
mation and push a BIER header on multicast traffic for simplified forwarding
within the BIER domain. Bit-forwarding routers (BFRs) leverage a bit index
forwarding table (BIFT) for forwarding decisions. Its entries are derived from
the interior gateway protocol (IGP), the so-called routing underlay. In case of
a failure, the BIFT entries are recomputed only after IP reconvergence. There-
fore, BIER traffic encounters rather long outages after link or node failures and
cannot profit from fast reroute (FRR) mechanisms in the IP routing underlay.

In this work, we proposed BIER-FRR to shorten the time until BIER traf-
fic is delivered again after a failure. BIER-FRR deviates BIER traffic around
the failure via unicast tunnels through the routing underlay. Therefore, BIER
benefits from fast reconvergence or FRR mechanisms of the routing underlay
to deliver BIER traffic as soon as connectivity for unicast traffic has been re-
stored in the routing underlay. BIER-FRR has a link and a node protection
mode. Link protection is simple but cannot protect against node failures. To
that end, BIER-FRR offers a node protection mode which requires extensions
to the BIFT structure.

As BIER defines new headers and forwarding behavior, it cannot be con-
figured on standard networking gears. Therefore, a second contribution of

38

this paper is a prototype implementation of BIER and BIER-FRR on a P4-
programmable switch based on P416. It works without extern functions or
other extensions such as local agents that impede portability. The switch offers
an API for interaction with controllers. A local controller takes care of local
tasks such as MAC learning and failure detection. A global controller configures
other match+action tables that pertain to forwarding decisions. A predecessor
of this prototype without BIER-FRR and based on P414 has been presented as
a demo in [5]. The novel BIER prototype including BIER-FRR demonstrates
that P4 facilitates implementation of rather complex forwarding behavior.

We deployed our prototype on a virtualized testbed based on Mininet and the
software switch BMv2. Our experiments confirm that BIER-FRR significantly
reduces the time until multicast traffic is received again by subscribers after link
or node failures. Without BIER-FRR, multicast packets arrive at the subscriber
only after reconvergence of the routing underlay and BIFT recomputation. With
BIER-FRR, multicast traffic is delivered again as soon as connectivity in the
routing underlay is restored, which is particularly fast if the routing underlay
applies FRR methods.

Acknowledgment

The authors thank Wolfgang Braun and Toerless Eckert for valuable input
and stimulating discussions.

References

[1] D. Merling, M. Menth, et al., An Overview of Bit Index Explicit Replication
(BIER), IETFJournal (Mar. 2018).

[2] I. Wijnands, E. Rosen, et al., RFC8279: Multicast Using Bit Index Explicit
Replication (BIER), https://tools.ietf.org/html/rfc8279 (Nov. 2017).

[3] M. Shand, S. Bryant, IP Fast Reroute Framework,
https://tools.ietf.org/html/rfc5714 (Jan. 2010).

[4] D. Merling, M. Menth, BIER Fast Reroute,
https://datatracker.ietf.org/doc/draft-merling-bier-frr/ (Mar. 2019).

[5] W. Braun, J. Hartmann, et al., Demo: Scalable and Reliable Software-
Defined Multicast with BIER and P4, IFIP/IEEE International Sympo-
sium on Integrated Network Management (IM) (May 2017).

[6] The P4 Language Consortium, The P4 Language Specification Version
1.0.5, https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf (Nov. 2018).

[7] The P4 Language Consortium, The P4 Language Specification Version
1.1.0, https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf (Nov. 2018).

39

[8] H. Holbrook, B. Cain, et al., Using Internet Group Management Protocol
Version 3 (IGMPv3) and Multicast Listener Discovery Protocol Version 2
(MLDv2) for Source-Specific Multicast, https://tools.ietf.org/html/rfc4604
(Aug. 2006).

[9] T. Speakman, J. Crowcroft, et al., PGM Reliable Transport Protocol Spec-
ification, https://tools.ietf.org/html/rfc3208 (Dec. 2001).

[10] G. Rétvári, J. Tapolcai, et al., IP fast ReRoute: Loop Free Alternates
revisited, IEEE Conference on Computer Communications (Apr. 2011).

[11] D. Katz, D. Ward, et al., Bidirectional Forwarding Detection (BFD),
https://tools.ietf.org/html/rfc5880 (Jun. 2010).

[12] D. Merling, W. Braun, et al., Efficient Data Plane Protection for SDN,
IEEE Conference on Network Softwarization and Workshops (Jun. 2018).

[13] M. Menth, M. Hartmann, et al., Loop-Free Alternates and Not-Via Ad-
dresses: A Proper Combination for IP Fast Reroute?, Computer Networks
54 (Jun. 2010).

[14] A. Raj, O. Ibe, et al., A survey of IP and multiprotocol label switchingfast
reroute schemes, Computer Networks 51 (Jun. 2007).

[15] V. S. Pal, Y. R. Devi, et al., A Survey on IP Fast Rerouting Schemes using
Backup Topology, International Journal of Advanced Research inComputer
Science and Software Engineering 3 (Apr. 2003).

[16] S. Bryant, S. Previdi, et al., A Framework for IP and MPLS Fast Reroute
Using Not-Via Addresses, https://tools.ietf.org/html/rfc6981 (Aug. 2013).

[17] L. Csikor, G. Rétvári, et al., IP fast reroute with remote Loop-Free Al-
ternates: The unit link cost case, International Congress on Ultra Modern
Telecommunications and Control Systems (Feb. 2012).

[18] S. Islam, N. Muslim, et al., A Survey on Multicasting in Software-Defined
Networking, IEEE Communications Surveys Tutorials 20 (Nov. 2018).

[19] Z. Al-Saeed, I. Ahmada, et al., Multicasting in Software Defined Networks:
A Comprehensive Survey, Journal of Network and Computer Applications
104 (Feb. 2018).

[20] J. Rückert, J. Blendin, et al., Software-Defined Multicast for Over-the-Top
and Overlay-based Live Streaming in ISP Networks, Journal of Network
and Systems Management 23 (Apr. 2015).

[21] J. Rückert, J. Blendin, et al., Flexible, Efficient, and Scalable Software-
Defined Over-the-Top Multicast for ISP Environments With DynSdm,
IEEE Transactions on Network and Service Management 13 (Sep. 2016).

40

[22] L. H. Huang, H.-J. Hung, et al., Scalable and Bandwidth-Efficient Multicast
for Software-Defined Networks, IEEE Global Communications Conference
(Dec. 2014).

[23] S. Zhou, H. Wang, et al., Cost-Efficient and Scalable Multicast Tree in
Software Defined Networking, Algorithms and Architectures for Parallel
Processing (Dec. 2015).

[24] J.-R. Jiang, S.-Y. Chen, Constructing Multiple Steiner Trees for Software-
Defined Networking Multicast, Proceedings of the 11th International Con-
ference on Future Internet Technologies (Jun. 2016).

[25] Y.-D. Lin, Y.-C. Lai, et al., Scalable Multicasting with Multiple Shared
Trees in Software Defined Networking, Journal of Network and Computer
Applications 78 (Jan. 2017).

[26] Z. Hu, D. Guo, et al., Multicast Routing with Uncertain Sources in
Software-Defined Network, IEEE/ACM International Symposium on Qual-
ity of Service (Jun. 2016).

[27] B. Ren, D. Guo, et al., The Packing Problem of Uncertain Multicasts,
Concurrency and Computation: Practice and Experience 29 (August 2017).

[28] A. Iyer, P. Kumar, et al., Avalanche: Data Center Multicast using Software
Defined Networking, International Conference on Communication Systems
and Networks (Jan 2014).

[29] W. Cui, C. Qian, et al., Scalable and Load-Balanced Data Center Multicast,
IEEE Global Communications Conference (Dec 2015).

[30] S. H. Shen, L.-H. Huang, et al., Reliable Multicast Routing for Software-
Defined Networks, IEEE Conference on Computer Communications (April
2015).

[31] M. Popovic, R. Khalili, et al., Performance Comparison of Node-Redundant
Multicast Distribution Trees in SDN Networks, International Conference
on Networked Systems (Apr. 2017).

[32] T. Humernbrum, B. Hagedorn, et al., Towards Efficient Multicast Commu-
nication in Software-Defined Networks, IEEE International Conference on
Distributed Computing Systems Workshops (Jun. 2016).

[33] D. Kotani, K. Suzuki, et al., A Multicast Tree Management Method Sup-
porting Fast Failure Recovery and Dynamic Group Membership Changes
in OpenFlow Networks, Journal of Information Processing 24 (2016).

[34] T. Pfeiffenberger, J. L. Du, et al., Reliable and Flexible Communications
for Power Systems: Fault-tolerant Multicast with SDN/OpenFlow, Interna-
tional Conference on New Technologies, Mobility and Security (Jul. 2015).

41

[35] W. K. Jia, L.-C. Wang, et al., A Unified Unicast and Multicast Routing and
Forwarding Algorithm for Software-Defined Datacenter Networks, IEEE
Journal on Selected Areas in Communications 31 (Dec. 2013).

[36] M. J. Reed, M. Al-Naday, et al., Stateless Multicast Switching in Soft-
ware Defined Networks, IEEE International Conference on Communica-
tions (May 2016).

[37] A. Giorgetti, A. Sgambelluri, et al., First Demonstration of SDN-based Bit
Index Explicit Replication (BIER) Multicasting, European Conference on
Networks and Communications (Jun. 2017).

[38] A. Giorgetti, A. Sgambelluri, et al., Bit Index Explicit Replication (BIER)
Multicasting in Transport Networks, International Conference on Optical
Network Design and Modeling (May 2017).

[39] T. Eckert, G. Cauchie, et al., Traffic Engineering for Bit Index Explicit
Replication BIER-TE, http://tools.ietf.org/html/draft-eckert-bier-te-arch
(Nov. 2017).

[40] W. Braun, M. Albert, et al., Performance Comparison of Resilience Mech-
anisms for Stateless Multicast Using BIER, IFIP/IEEE International Sym-
posium on Integrated Network Management (May 2017).

[41] Q. Xiong, G. Mirsky, et al., The Resilience for BIER,
https://datatracker.ietf.org/doc/draft-xiong-bier-resilience/ (Mar. 2019).

[42] Q. Xiong, G. Mirsky, et al., BIER BFD,
https://datatracker.ietf.org/doc/draft-hu-bier-bfd/ (Mar. 2019).

[43] D. Merling, S. Lindner, et al., Comparison of Fast-Reroute Mechanisms for
BIER-Based IP Multicast, International Conference on Software Defined
Systems (Apr. 2020).

[44] P. Bosshart, D. Daly, et al., P4: Programming Protocol-Independent
Packet Processors, ACM SIGCOMM Computer Communication Review
44 (Jul. 2014).

[45] M. Schmidt, F. Hauser, et al., LoCoSDN: A Local Controller for Opera-
tion of OFSwitches in non-SDN Networks, Software Defined System (Apr.
2018).

[46] F. Hauser, M. Schmidt, et al., P4-MACsec: Dynamic Topology Monitoring
and Data Layer Protection with MACsec in P4-Based SDN, IEEE Access
(Mar. 2020).

[47] F. Hauser, M. Häberle, et al., P4-IPsec: Implementation of IPsec Gateways
in P4 with SDN Control for Host-to-Site Scenarios, ArXiv (Jul. 2019).

42

[48] B. Lantz, B. Heller, et al., A Network in a Laptop: Rapid Prototyping
for Software-defined Networks, ACM SIGCOMM HotNets Workshop (Oct.
2010).

[49] p4lang, behavioral-model, https://github.com/p4lang/

behavioral-model (Mar. 2019).

43

1 Accepted Manuscripts (Core Content)

1.6 Hardware-Based Evaluation of Scalable and Resilient Multicast With
BIER in P4

145

Received February 4, 2021, accepted February 19, 2021, date of publication February 24, 2021, date of current version March 4, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3061763

Hardware-Based Evaluation of Scalable and
Resilient Multicast With BIER in P4
DANIEL MERLING , STEFFEN LINDNER , AND MICHAEL MENTH , (Senior Member, IEEE)
Chair of Communication Networks, University of Tuebingen, 72076 Tübingen, Germany

Corresponding author: Daniel Merling (daniel.merling@uni-tuebingen.de)

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under Grant ME2727/1-2. The authors alone are responsible for
the content of this paper.

ABSTRACT Traditional IP multicast (IPMC) maintains state per IPMC group in core devices to distribute
one-to-many traffic along tree-like structures through the network. This limits its scalability because
whenever subscribers of IPMC groups change, forwarding state in the core network needs to be updated.
Bit Index Explicit Replication (BIER) has been proposed by the IETF for efficient transport of IPMC traffic
without the need of IPMC-group-dependent state in core devices. However, legacy devices do not offer the
required features to implement BIER. P4 is a programming language which follows the software-defined
networking (SDN) paradigm. It provides a programmable data plane by programming the packet processing
pipeline of P4 devices. The contribution of this article is threefold. First, we provide a hardware-based
prototype of BIER and BIER fast reroute (BIER-FRR) which leverages packet recirculation. Our target
is the P4-programmable high-performance switching ASIC Tofino; the source code is publicly available.
Second, we perform an experimental evaluation, with regard to failover time and throughput, which shows
that up to 100 Gb/s throughput can be obtained and that failures affect BIER forwarding for less than 1 ms.
However, throughput can decrease if switch-internal packet loss occurs due to missing recirculation capacity.
As a remedy, we add more recirculation capacity by turning physical ports into loopback mode. To quantify
the problem, we derive a prediction model for reduced throughput whose results are in good accordance with
measured values. Third, we provide a provisioning rule for recirculation ports, that is applicable to general
P4 programs, to avoid switch-internal packet loss due to packet recirculation. In a case study we show that
BIER requires only a few such ports under realistic mixes of unicast and multicast traffic.

INDEX TERMS Software-defined networking, P4, bit index explicit replication, multicast, resilience,
scalability.

I. INTRODUCTION
IP multicast (IPMC) has been proposed to efficiently
distribute one-to-many traffic, e.g. for IPTV, multicast
VPN, commercial stock exchange, video services, public
surveillance data distribution, emergency services, teleme-
try, or content-delivery networks, by forwarding only one
packet per link. IPMC traffic is organized in IPMC groups
which are subscribed by hosts. Figure 1 shows the concept
of IPMC. IPMC traffic is forwarded on IPMC-group-specific
distribution trees from the source to all subscribed hosts.
To that end, core routers maintain forwarding state for each
IPMC group to determine the next-hops (NHs) of an IPMC
packet. Scalability issues are threefold. First, a significant

The associate editor coordinating the review of this manuscript and

approving it for publication was Martin Reisslein .

Figure 1. Two multicast distribution trees.

amount of storage is required to keep extensive forwarding
state. Second, when subscribers of an IPMC group change,
the distribution tree needs to be updated by signaling the
changes to core devices. Third, the distribution trees have to

34500 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

be updated when the topology changes or a failure is detected.
Therefore, traditional IPMC comes with significant manage-
ment and state overhead. As a result, traditional IPMC is
often avoided andmulticast is implemented on the application
layer. Thereby, one-to-many traffic is carried via network
layer unicast, which is not efficient.

The IETF proposed Bit Index Explicit Replication
(BIER) [1] for efficient transport of IPMC traffic. BIER intro-
duces a BIER domain where core routers do not need tomain-
tain IPMC-group-dependent state. Upon entering the BIER
domain, IPMC packets are equipped with a BIER header
which specifies all destinations of the packet within the
BIER domain. The BIER packets are forwarded through
the BIER domain towards their destinations on paths from
the Interior Gateway Protocol (IGP), which we call ’rout-
ing underlay’ in the following. Thereby, only one packet is
forwarded per link. When the BIER packets leave the BIER
domain, the BIER header is removed.

Unicast and BIER traffic may be affected by failures.
IP-Unicast traffic is often protected by fast reroute (FRR)
mechanisms for IP (IP-FRR). IP-FRR leverages precomputed
backup entries to quickly reroute a packet on a backup
path when the primary NH is unreachable. Tunnel-based
BIER-FRR [2] is used to protect BIER traffic by tunneling
BIER packets through the routing underlay. The tunnel may
be also affected by a failure, but FRR or timely updates of
the forwarding information base (FIB) in the routing underlay
quickly restore connectivity. However, BIER is not supported
by legacy devices and there is no dedicated BIER hardware
available. P4 [3] is a programming language that follows the
software-defined networking (SDN) paradigm for program-
ming protocol-independent packet processors. P4 allows
developers to write high-level programs to define the packet
processing pipeline of programmable network devices.
A target-specific compiler translates the P4 program for exe-
cution on a particular device.With the P4-programmable data
plane new protocols can be implemented and deployed in
short time.

In previous work [2], [4] we implemented BIER
and tunnel-based BIER-FRR for the P4 software switch
bmv2 [5]. However, the developers of the bmv2 clarify that
the ‘BMv2 is not meant to be a production-grade software
switch’ [5] and is, therefore, only a ‘tool for developing,
testing and debugging P4 data planes’ [5]. Thus, it remains
unclear whether BIER and BIER-FRR forwarding is simple
enough to be implemented also on P4-capable hardware
platforms which entail functional and runtime constraints to
achieve high-speed forwarding.

The contribution of this article is threefold. First, we pro-
vide a new prototype for BIER and BIER-FRR on the
P4-programmable switching ASIC Tofino [6] which is used
in the Edgecore Wedge 100BF-32X [7], a 32 100 Gb/s port
high-performance P4 switch, and make our code publicly
available.

Second, we conduct an experimental performance study
with regard to failover time and throughput. The evaluations

show that connectivity can be restored within less than 1 ms
and that a throughput of up to 100 Gb/s can be obtained.
However, we observe reduced throughput under certain con-
ditions and conjecture that this results from switch-internal
packet loss due to missing recirculation capacity. We add
more recirculation capacity by turning physical ports into
loopback mode to avoid switch-internal packet loss in case
of recirculation. To quantify the problem, we derive a predic-
tion model for BIER throughput whose results are in good
accordance with measured values.

Third, we propose a provisioning rule for recirculation
ports to avoid switch-internal packet loss due to packet recir-
culation. It is applicable to general P4 programs and helps
to avoid throughput reduction on outgoing links. Finally,
we utilize the provisioning model to show in a case study that
only a few ports in loopback mode suffice to avoid internal
packet loss with BIER under realistic mixes of unicast and
multicast traffic.

The paper is structured as follows. In Section II we describe
related work. Section III contains a primer on BIER and
tunnel-based BIER-FRR. Afterwards, we give an overview
on P4 in Section IV and explain important properties.
In Section V, we briefly describe the P4 implementation of
BIER and tunnel-based BIER-FRR for the Tofino. Section VI
contains our evaluation and the model for throughput predic-
tion of BIER. In Section VII we present a model to provision
recirculation ports. We conclude the paper in Section VIII.

II. RELATED WORK
First, we describe related work for SDN-based multicast in
general. Then, we review work for BIER-based multicast.
Finally, we present P4 projects that are based on packet
recirculation.

A. SDN-BASED MULTICAST
Elmo [8] increases scalability of traditional IPMC in data
center environments by leveraging characteristics of data
center networks, in particular symmetric topologies and short
paths. By encoding multicast group information in the packet
header, this information is no longer stored in forwarding
devices. This significantly reduces the dynamic state that
needs to be maintained by core nodes.

Two surveys [9], [10] provide a comprehensive overview
of SDN-based multicast. They review the development of
traditional multicast and different aspects of SDN-based mul-
ticast, e.g., building of distribution trees, group management,
and approaches to improve the efficiency of multicast. Most
of the papers in the surveys discuss multicast mechanisms
that are based on explicit IPMC-group-dependent state in core
devices. The downsides of those traditional IPMC approaches
have been discussed in Section I. We still discuss some
papers on IPMC due to their efforts to make traditional
IPMC more efficient. The papers often focus on intelligent
tree building mechanisms that reduce the state, or efficient
signaling techniques when IPMC groups or the topology
changes. The surveys also consider works that utilize SDN to

VOLUME 9, 2021 34501

D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

improvemulticast. They are related as our approach also takes
an SDN approach. Therefore, we present some representative
examples from that area.

1) OPTIMIZATION OF MULTICAST TREES
Rückert et al. propose Software-Defined Multicast (SDM)
[11]. SDM is an OpenFlow-based platform that provides
well-managed multicast for over-the-top and overlay-based
live streaming services tailored for P2P-based video stream
delivery. The authors extend SDM in [12] with traffic engi-
neering capabilities. In [13] the authors propose address
translation from the multicast address to the unicast address
of receivers at the last multicast hop in OpenFlow switches.
This reduces the number of IPMC-group-dependent forward-
ing entries in some nodes.

Steiner trees are often used to build multicast distribution
trees [14]. Several papers modify the original Steiner-tree
problem to build distribution trees with minimal cost [15],
number of edges [16], number of branch nodes [17],
delay [18], or for optimal position of the multicast
source [19].

The authors of [20] implement a multicast platform in
OpenFlow with a reduced number of forwarding entries.
It is based on multiple shared trees between different IPMC
groups. The Avalanche Routing Algorithm (AvRA) [21] con-
siders properties of the topology of data center networks to
build trees with optimal utilization of network links. Dual-
StructureMulticast (DuSM) [22] leverages different forward-
ing structures for high-bandwidth and low-bandwidth flows.
This improves scalability and link utilization of SDN-based
data centers. Jia et al. [23] present a way to efficiently
organize forwarding entries based on prime numbers and the
Chinese remainder theorem. This reduces the required state
in forwarding devices and allows more efficient implemen-
tation. In [24] the authors propose a SDN-based multicast
switching system that leverages bloom filters to reduce the
number of TCAM-entries.

2) RESILIENCE FOR TRADITIONAL MULTICAST
Shen et al. [25] modify Steiner trees to include recovery
nodes in the multicast distribution tree. The recovery nodes
cache IPMC traffic temporarily and resend it after recon-
vergence when the destination notified the recovery point
because it did not get all packets due to a failure. The
authors of [26] evaluate several algorithms that generate
node-redundant multicast distribution trees. They analyse the
number of forwarding entries and the effect of node failures.
In [27] the authors propose to deploy primary and backup
multicast trees in SDN networks. The header of multicast
packets contains an ID that identifies the distribution tree on
which the packet is forwarded. When a failure is detected,
the controller reconfigures affected sources to send packets
along a working backup tree. Pfeiffenberger et al. [28] pro-
pose a similar method. Each node that is part of a distribu-
tion tree is the root of a backup tree that does not contain
the unreachable NH but all downstream destinations of the

primary distribution tree. When a node cannot forward a
packet, it reroutes the packet on a backup tree by switching
an VLAN tag in the packet header.

B. BIER-BASED MULTICAST
In this subsection we discuss work directly related to BIER.
First, we define our work in contrast to other implementa-
tions. Then, we describe evaluations and extensions for BIER.

1) IMPLEMENTATIONS
We started with an implementation of BIER for the software
switch bmv2 using P414. The protoype was documented
at high level in a 2-page demo paper [4]. We then devel-
oped BIER-FRR and implemented a prototype for BIER
and BIER-FRR on the software switch bmv2 using the
newer variant P416 in [2]. That work demonstrated that the
P4 language is expressive enough to implement also complex
forwarding mechanisms and introduced a hierarchical con-
troller hierarchy to quickly trigger FRR actions. The study
compared restoration times for various failure cases and pro-
tection schemes at light load conditions of a few packets
per second. Throughput measurements were not conducted
as the bmv2 software switch is only a ‘tool for developing,
testing and debugging P4 data planes’ [5] with low through-
put (900 Mb/s) [29] and not for application in real networks.
In contrast, this paper shows that BIER and BIER FRR can
be implemented also on high-performance P4-programmable
hardware, i.e., the switching ASIC Tofino, which entails
additional functional and runtime constraints for implementa-
tions to achieve high throughput. Experimental measurement
studies in a 100 Gb/s hardware testbed reveal performance
challenges due to recirculations. As this is a general problem
for some P4 programs, we derive recommendations to cope
with them and validate them in our hardware testbed.

We know only a single BIER implementation by other
authors which is based on OpenFlow and presented
in [30], [31]. Their approach suffers from two major short-
comings. First, the BIER bit string is encoded in a MPLS
header which is the only way to encode arbitrary bit strings
in OpenFlow. This limits the bit string length, and thus
the number of receivers, to 20 which is the length of an
MPLS label. Second, the implementation performs an exact
match on the bitstring. If a subscriber changes, thematch does
not work anymore and a local BIER agent that is not part of
the OpenFlow protocol needs to process the packet. There-
fore, we consider this project only as an early BIER-based
prototype for OpenFlow and not as a production-ready
BIER implementation.

2) EVALUATIONS AND EXTENSIONS OF BIER-BASED
MULTICAST
The authors of [32] perform a simulation-based evaluation
of BIER. They find that on metrics like delivery ratios and
retransmissions BIER performs as well as traditional IPMC
but has better link usage and no per-flow or per-group state
in core devices.

34502 VOLUME 9, 2021

D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

Eckert et al. [33] propose an extension for BIER that
allows for traffic engineering (BIER-TE). In addition to the
egress nodes, the BIER header encodes the distribution tree
of a packet. In [34] the authors propose 1 + 1 protection
for BIER-TE. The traffic is transported on two disjoint dis-
tribution trees, which delivers the traffic even if one tree is
interrupted by a failure.

C. PACKET RECIRCULATION IN P4
Hauser et al. [35] show in their P4 survey that packet recircu-
lation is not used only in this BIER implementation but also in
other P4 projects. In [36] the authors implement a congestion
control mechanism in P4 and leverage packet recirculation
to create notification packets, update their header fields, and
send them to appropriate monitoring nodes. The authors
of [37] present a content-based publish/subscribe mechanism
in P4 where they introduce a new header stack that requires
packet recirculation for processing. Uddin et al. [38] imple-
ment multi-protocol edge switching for IoT based on P4.
Packet recirculation is used to process packets a second time
after they have been decrypted.

III. BIT INDEX EXPLICIT REPLICATION (BIER)
In this Section we explain BIER. First, we give an overview.
Then we describe the BIER forwarding table and how BIER
packets are processed. Afterwards, we show a forwarding
example. Finally, we review tunnel-based BIER-FRR.

A. BIER OVERVIEW
First, we introduce the BIER domain. Then, we present the
layered BIER architecture followed by the BIER header.
Finally, we describe BIER forwarding.

1) BIER DOMAIN
Figure 2 shows the concept of the BIER domain. When
bit-forwarding ingress routers (BFIRs) receive an IPMC
packet they push a BIER header onto it and forward the
packet into the BIER domain. The BIER header identifies
all destinations of the BIER packet within the BIER domain,
i.e., bit-forwarding egress routers (BFERs). Bit-forwarding
routers (BFRs) forward the BIER packets to all BFERs indi-
cated in its BIER header. Thereby, packets are replicated and

Figure 2. The concept of the BIER domain [39].

forwarded to multiple next-hops (NHs) but only one packet
is sent over any involved link. The paths towards the desti-
nations are provided by the Interior Gateway Protocol (IGP),
i.e., the routing underlay. Therefore, from a specific BFIR to
a specific BFER, the BIER packet follows the same path as
unicast traffic. Finally, BFERs remove the BIER header.

2) THE LAYERED BIER ARCHITECTURE
The BIER architecture consists of three components. The
IPMC layer, the BIER layer and the routing underlay.
Figure 3 shows the three layers, their composition, and inter-
action. The IPMC layer contains the sources and subscribers
of IPMC traffic. The BIER layer acts as a transport layer
for IPMC traffic. It consists of the BIER domain which is
connected to the IPMC layer at the BFIRs, and BFERs.
Therefore, the BIER layer acts as a point-to-multipoint tunnel
from an IPMC source to multiple subscribers. The routing
underlay refers to the IGP which provides the paths to all
destinations within the network.

Figure 3. IPMC packets are transmitted over a layered BIER architecture;
the paths are defined by the information from the routing underlay [39].

3) BIER HEADER
The BIER header contains a bit string to indicate the destina-
tions of a BIER packet. To that end, each BFER is assigned
an unique number that corresponds to a bit position in that
bit string, starting by 1 for the least-significant bit. If a BFER
should receive a copy of the IPMC packet, its bit is activated
in the bit string in the BIER header of the packet. To facilitate
readability we refer to the bit string in the BIER header of a
BIER packet with the term ’BitString’.

4) BIER FORWARDING
A BFR forwards a packet copy to any neighbor over which at
least one destination of the packet indicated by its BitString
is reached according to the paths from the routing underlay.
Before a packet is forwarded to a specific NH, the BFR
clears all bits that correspond to BFERs that are reached via
other NHs from the BitString of that packet. This prevents
duplicates at the BFERs.

VOLUME 9, 2021 34503

D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

B. BIFT STRUCTURE
BFRs use the Bit Index Forwarding Table (BIFT) to deter-
mine the NHs of a BIER packet. Table 1 shows the BIFT
of BFR 1 from Figure 4. For each BFER there is one entry
in the BIFT. Entries of the BIFT consist of a NH, and a
so-called F-BM. The F-BM is a bit string similar to the
BitString. It records which BFERs have the same NH. In the
F-BM of an BIFT entry the bits of BFERs are activated which
are reached over the NH of that entry. Therefore, BFERs with
the same NH have the same F-BM. BFRs use the F-BM to
clear bits from the BitString of a packet before it is forwarded
to a NH.

Table 1. BIFT of BFR 1 in the example of Figure 4 [39].

Figure 4. Example of a BIER topology and BitStrings of forwarded BIER
packets [39].

C. BIER PACKET PROCESSING
When a BFR receives a BIER packet, it first stores the Bit-
String of the packet in a separate bit string to account to which
BFERs a packet has to be sent. In the following, we refer to
that bit string with the term ’remaining bits’. The following
procedure is repeated, until the remaining bits contain no
activated bits anymore [1].

The BFR determines the least-significant activated bit in
the remaining bits. The BFER that corresponds to that bit is
used for a lookup in the BIFT. If a matching entry is found,
it results in a NH nh and the F-BM fbm and the BFR creates
a copy of the BIER packet. The BFR uses fbm to clear bits
from the BitString of the packet copy. To that end, the BFR
performs a bitwise AND operation of fbm and the BitString
of the packet copy and writes the result into the BitString of
the packet copy. This procedure is called applying the F-BM.
It leaves only bits of BFERs in the BitString active that are
reached over nh. The packet copy is then forwarded to nh.
Afterwards, the bits of BFERs to which a packets has just
been sent are cleared from the remaining bits. To that end,
the BFR performs a bitwise AND operation of the bitwise
complement of fbmwith the remaining bits. The result is then
stored in the remaining bits.

D. BIER FORWARDING EXAMPLE
Figure 4 shows a topology with four BIER devices where
each is BFIR, BFR, and BFER. Table 1 shows the BIFT
of BFR 1.

BFR 1 receives an IPMC packet from IPMC host 1 which
should be distributed to all other IPMC hosts. Therefore,
BFIR 1 pushes a BIER header with the BitString 1110 to
the IPMC packet.

Then, BFR 1 determines the least-significant activated bit
in the BIER header which corresponds to BFER2. This BFER
is used for lookup in the BIFT, which results in the F-BM
1010 and the NH BFR 2. BFR 1 creates a packet copy and
applies the F-BM to its BitString. Then, the packet copy
with the BitString 1010 is forwarded to BFR 2. Finally,
the activated bits of the F-BM are cleared from the remaining
bits which leaves the bit string 0100.

This leaves only one bit active which identifies BFER 3.
After the F-BM 0100 is applied to the BitString of a packet
copy, it is forwarded to BFR 3 with the BitString 0100.
After clearing the bits of the F-BM from the remaining bits,
processing stops because no active bits remain.

E. TUNNEL-BASED BIER-FRR
Tunnel-based BIER-FRR is used to deliver BIER traffic even
when NHs are unreachable due to link or node failures. When
a BFR detects that a NH is unreachable, e.g., by loss-of-
carrier, loss-of-light, or a bidirectional forwarding detection
(BFD1) [40] for BIER [41], it becomes the point of local
repair (PLR) by tunneling the BIER packet through the rout-
ing underlay to nodes downstream in the BIER distribution
tree. The tunnel may be affected by the failure, too. However,
FRR mechanisms or timely updates of the FIB in the routing
underlay restore connectivity for unicast traffic faster than for
BIER traffic because recomputation of BIER entries can start
only after the FIB of the routing underlay has been updated.
Tunnel-based BIER-FRR can be configured either for link
protection or node protection. BIER-FRRwith link protection
tunnels the BIER packet to the NH where the tunnel header is
removed and the BIER header is processed again. BIER-FRR
with node protection tunnels copies of the BIER packets to all
next-next-hops (NNHs) in the distribution tree.

IV. INTRODUCTION TO P4
In this section we briefly review fundamentals of P4 [3]. First,
we give an short overview of the P4 processing pipeline.
Afterwards, we explain packet cloning and packet recircula-
tion and point out important properties.

A. P4 PIPELINE
In this subsection we review the P4 processing pipeline.
We explain its composition, transient and persistent mem-
ory, match + action tables, control blocks, packet cloning

1When a BFR is established between two nodes, they periodically
exchange notifications about their status.

34504 VOLUME 9, 2021

D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

and packet recirculation. Figure 5 shows the concept of the
P4 processing pipeline.

Figure 5. P4 processing pipeline.

1) COMPOSITION
The P4 pipeline consists of an ingress pipeline and an egress
pipeline. They process packets in a similar fashion, i.e., both
contain a parser, a match + action pipeline, and a deparser.
When a packet arrives at the switch, it is first processed
by the ingress pipeline. The header fields of the packet are
parsed and carried along with the packet through the ingress
pipeline. The parser is followed by a match+ action pipeline
which consists of a sequence of conditional statements, table
matches, and primitive operations. Afterwards, the packet is
deparsed and sent to the egress pipeline for further process-
ing. Finally, the packet is sent through the specified egress
port which has to be set in the ingress pipeline and cannot be
changed in the egress pipeline.

The P4 program defines the parser and the deparser,
which allows the use of custom packet headers. In addition,
the P4 program describes the control flow of the match +
action pipeline in the ingress pipeline and egress pipeline,
respectively.

2) CONTROL BLOCKS
Both the ingress and egress pipeline can be divided into
so-called control blocks for structuring. Control blocks are
used to clearly separate functionality for different protocols
like IP, BIER, and Ethernet, i.e., the IP control block con-
tains Match + Action Tables (MATs) and operations that are
applied only to IP packets, etc. In this paper we focus only on
the BIER control block.

3) Match+Action TABLES (MATs)
MATs execute packet-dependent actions by matching packet
header fields against MAT entries. To that end, an entry
contains one or more match fields, and an action set. When
a packet is matched against a MAT, the match fields of
the entries are compared with specified header fields of
the packet. An action set consists of one or more actions,
e.g., reading or writing a header field, mathematical oper-
ations, setting the egress port of the packet, etc. It is not
possible to match a packet on the same MAT multiple
times.

B. PACKET CLONING
The operation clone-ingress-to-egress (CI2E) allows packet
replication in P4. It can be called only in the ingress pipeline.
At the end of the ingress pipeline, a copy of the packet is
created. However, the packet copy resembles the packet that
has been parsed in the beginning of the ingress pipeline,
i.e., the header changes performed during processing in the
ingress pipeline are reverted. This is illustrated in Figure 6.

Figure 6. An example of the clone-ingress-to-egress (CI2E) operation [39].

If an egress port has been provided as a parameter,
the egress port of the clone is set to that port. Both the original
and cloned packet are processed independently in the egress
pipeline. The cloned packet carries a flag to identify it as a
clone.

C. PACKET RECIRCULATION
In this subsectin we explain the packet recirculation opera-
tion. First, we explain its working. Afterwards, we introduce
the term recirculation capacity.

1) FUNCTIONALITY
P4 allows to recirculate a packet for processing it by the
pipeline a second time. We use this feature to implement
the iterative packet processing of BIER as described in
Section III-C as P4 offers no other possibility to implement
processing loops.

P4 leverages a switch-intern recirculation port for packet
recirculation.When a packet should be recirculated, its egress
port has to be set to the recirculation port during processing in
the ingress pipeline. The flow of a packet through the pipeline
when it is recirculated is shown in Figure 7. The packet is still
processed by the entire processing pipeline, i.e., the ingress
pipeline and egress pipeline. However, after the packet has
been deparsed, it is not sent through a regular physical egress
port but pushed back into the switch-intern recirculation port.
The packet is then processed as if it has been received on a
physical port. The recirculation port has the same capacity

Figure 7. A packet is recirculated to a recirculation port and traverses the
ingress and egress pipeline for a second time.

VOLUME 9, 2021 34505

D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

as the physical ports. For example, when two physical ports
receive traffic at line rate and each packet is recirculated once,
the recirculation port receives recirculated packets at double
line rate, which causes packet loss.

2) RECIRCULATION CAPACITY
To discuss the effect of packet loss due to many recircula-
tions we introduce the term ’recirculation capacity’. It is the
available capacity to process recirculation traffic. Additional
recirculation capacity is provided by using physical ports
in loopback mode. When the forwarding device switches a
packet to an egress port that is configured as a loopback
port, the packet is immediately placed in the ingress of that
port, instead. The packet is then processed as if it has been
received on that port as usual, i.e., by the parser, the ingress
and egress pipeline, and the deparser. Only traffic that has
to be recirculated is switched to recirculation ports. In the
following the term ’recirculation port’ refers to a physical
port in loopback mode, or the switch-intern recirculation
port. When recirculation ports are required, the switch-intern
recircution port should be used first, before any physical
ports are configured as loopback ports. Only packets that
are recirculated require recirculation capacity, i.e., common
unicast traffic, e.g., as in regular IP unicast forwarding, is not
recirculated, and therefore, does not occupy any recirculation
capacity.

When multiple recirculation ports are deployed to increase
the recirculation capacity, packets that should be recirculated
need to be distributed over these ports. There are different
distribution strategies. We developed a round-robin-based
distribution approach for recirculation traffic to distribute
the load equally over all recirculation ports. We store in
a register which recirculation port receives the next packet
which should be recirculated. When a packet has to be sent
to a recirculation port, that register is accessed and updated
in one atomic operation. This prevents any race conditions
when traffic is distributed. Thus, this distribution strategy
has two advantages. First, if n recirculation ports are used,
the available recirculation capacity is increased to n · linerate.
Second, the equal distribution of recirculation traffic over all
recirculation ports guarantees the full utilization of available
recirculation capacities before packet loss occurs.

V. P4 IMPLEMENTATION OF BIER AND BIER-FRR FOR
TOFINO
In this section we give an overview of the P4 implementation
of BIER and tunnel-based BIER-FRR. First, we discuss the
implementation basis. Afterwards, we give an overview of the
processing of BIER packets, in particular we discuss packet
recirculation.

A. CODEBASE
In [2] we presented a software-based prototype of a P416
implementation of BIER and tunnel-based BIER-FRR for
the P4 software switch bmv2. We provided a very detailed
description of the P4 programs including MATs with match

fields and action parameters, control blocks, and applied
operations. The prototype and the controller are publicly
available on GitHub.2

In this paper we refrain from including a detailed technical
description of the implementation for the Tofino. However,
the source code3 can be accessed by anyone on GitHub.
In the following, we only explain important aspects of the
hardware-based implementation to facilitate the understand-
ing of the evaluation in Section VI and the model derivations
in Section VII.

B. BIER PROCESSING
First, we describe the implementation of regular BIER for-
warding on the Tofino. Afterwards, we explain operation of
tunnel-based BIER-FRR.

1) BIER FORWARDING
Figure 8 shows how a BIER packet is processed once in the
packet processing pipeline.

Figure 8. Paket flow of a BIER packet in the processing pipeline.

When the switch receives a BIER packet it is processed by
the BIER control block. First, the BitString of the packet is
matched against the BIFT which determines the egress port
and the F-BM. The F-BM is applied to the BitString of the
packet and cleared from the remaining bits. If the remaining
bits still contain activated bits, CI2E is called and the egress
port is set to a recirculation port so that the packet will be
processed again. After the ingress pipeline, the copy is created
and both packet instances enter the egress pipeline indepen-
dently of each other. The original packet is sent through an
egress port towards its NH. The packet clone is processed
by a second BIER control block in the egress pipeline which
sets the BitString of the packet copy to the remaining bits.
Since the egress port of the packet clone is a recirculation
port, the packet is recirculated, i.e., it is processed by the
ingress pipeline again.

BIER forwarding removes BIER headers from packets that
leave the BIER domain, and adds IP headers for tunneling
through the routing underlay by tunnel-based BIER-FRR.
Whenever a header is added or removed, the packet is recir-
culated for further processing.

When a BIER packet has more than one NH, two chal-
lenges appear. First, the BitString of a BIER packet has to be

2https://github.com/uni-tue-kn/p4-bier
3https://github.com/uni-tue-kn/p4-bier-tofino

34506 VOLUME 9, 2021

D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

matched several times against the BIFT to determine all NHs.
However, matching a packet multiple times against the same
MAT is not possible in P4. Second, multiple packet copies
have to be created for forwarding. However, P4 does not allow
to dynamically generate more than one copy of a packet.
Therefore, we implemented a packet processing behavior
where in each pipeline iteration one packet is forwarded to
a NH and a copy of the packet is recirculated for further
processing. This is repeated until all NHs receive a packet
over which at least one destination of the BIER packet is
reached. Figure 9 shows the processing of a BIER packet
which has to be forwarded to three neighbors. In the first
and second pipeline iteration the original BIER packet is sent
through a physical egress port towards a NH and the copied
BIER packet is recirculated by sending the packet copy to a
recirculation port. In the last iteration when the remaining bits
contain no activated bits anymore, no further packet copy is
required and only the original BIER packet is sent through the
egress port. In total, the packet needs to be recirculated two
times to forward it to all three NHs. Therefore, in general,
a BIER packet with n NHs, has to be recirculated n− 1 times
and the first NH can be served without packet recirculation.

Figure 9. BIER processing over multiple pipeline iterations.

2) FORWARDING WITH TUNNEL-BASED BIER-FRR
The concept of tunnel-based BIER-FRR has been proposed
in [2]. We implement it for the Tofino as follows.

The switch monitors the status of its ports as described in
Section. When the match on the BIFT results in a NH which
is reached by a port that is currently down, the processing
of the BIER packet differs in the following way from the
BIER processing described above. An IP header is added to
the original BIER packet to tunnel the packet through the
routing underlay towards an appropriate node in the BIER
distribution tree. The egress port of the original packet is set
to a recirculation port to process the IP header in another
pipeline iteration, i.e., forward the IP packet to the right NH.

VI. PERFORMANCE EVALUATION OF THE P4-BASED
HARDWARE PROTOTYPE
In this section we perform experiments to evaluate the perfor-
mance of the P4-based hardware prototype for BIER regard-
ing Layer-2 throughput and failover time, i.e., the time until
BIER traffic is successfully delivered after a network failure.

A. FAILOVER TIME FOR BIER TRAFFIC
Here we evaluate the restoration time after a failure in three
scenarios and vary the protection properties of IP and BIER.
First, only the IP FIB and BIER FIB are updated by the
controller, respectively, and no FRR mechanisms are acti-
vated. This process is triggered by a device that detects a
failure. It notifies the controller which computes new for-
warding rules and updates the IP and BIER FIB of affected
devices. This scenario measures the time until the BIER FIB
is updated after a failure, which is our baseline restoration
time. The control plane, i.e., the controller, is directly con-
nected to the P4 switch, which keeps the delay to a minimum
in comparison to networks where the controller is several
hops away.

Second, only BIER-FRR is deployed. In this scenario
BIER is able to utilize tunnel-based BIER-FRR in case of
a failure. However, FRR for IP traffic remains deactivated.
Thus, IP traffic can be forwarded only after the IP FIB is
updated.

Third, both IP-FRR and BIER-FRR are deployed. This
scenario evaluates how quickly the P4 switch can react
to network failures and restore connectivity of BIER and
IP forwarding.

In the following, we first explain the setup and the metric.
Then, we present our results. Finally, we discuss the influence
of the setup on the results.

1) EXPERIMENT SETUP
Figure 10 shows the testbed. The Tofino [6],
a P4-programmable switching ASIC, is at the core of the
hardware testbed. We utilize a Tofino based Edgecore Wedge
100BF-32X [7] switch with 32 100 Gb/s ports. An EXFO
FTB-1 Pro [42] 100 Gb/s traffic generator is connected to the
Tofino to generate a data stream that is as precise as possible.
Furthermore, we deploy two bmv2s that act as BFRs and
BFERs. The traffic generator, the controller and two bmv2s
are connected to the Tofino. The traffic generator sends IPMC
traffic to the Tofino. The IPMC traffic has been subscribed
only by bmv2-1. As long as the link between the Tofino
and bmv2-1 works, the BIER packets are forwarded on the
primary path. When the Tofino detects a failure, it notifies the

Figure 10. Experimental setup for evaluation of restoration time.

VOLUME 9, 2021 34507

D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

controller which computes new rules and updates forwarding
entries of affected devices. In the meantime, the Tofino uses
BIER-FRR to protect BIER traffic, and IP-FRR to protect IP
traffic if enabled. This causes the Tofino to forward traffic on
the backup path via bmv2-2 towards bmv2-1.

2) METRIC
We disable the link between the Tofino and bmv2-1 and
measure the time until bmv2-1 receives BIER traffic again.
We evaluate different combinations with and without IP-FRR
and with and without BIER-FRR. To avoid congestion on
the bmv2 and the VMs, the traffic generator sends only
with 100 Mb/s, which has no impact on the results.

Figure 11 shows the average restoration time for the dif-
ferent deployed protection scenarios based on 10 runs which
we discuss in the following. Confidence intervals are given
on the base of a confidence level of 95%.

Figure 11. Restoration time for BIER with different FRR strategies.

3) FAILOVER TIME W/O BIER-FRR AND W/O IP-FRR
When no FRR mechanism is activated, multicast traffic
arrives at the host only after the IP and BIER forwarding rules
have been updated, which takes about 76 ms. The controller
is directly connected to the Tofino. In a real deployment the
controller may be multiple hops away, which would increase
the restoration time significantly.

The same failover time is achieved without BIER-FRR but
with IP-FRR, for which we do not present separate results.
As BIER forwarding entries are updated only after IP for-
warding entries have been updated, the use of IP-FRR in the
network does not shorten the failover time for BIER traffic.

4) FAILOVER TIME W/BIER-FRR BUT W/O IP-FRR
When tunnel-based BIER-FRR but not IP-FRR is activated,
bmv2-1 receives multicast traffic after 36 ms. In case of
a failure, BIER-FRR tunnels the BIER traffic through the
routing underlay. As soon as IP forwarding rules are updated,
multicast traffic arrives at the host again. Since IP rules
are updated faster than BIER rules, BIER-FRR decreases
the restoration time for multicast traffic even if no IP-FRR
mechanism is deployed.

5) FAILOVER TIME W/BIER-FRR AND W/IP-FRR
In the fastest and most resilient deployment both BIER-FRR
and IP-FRR are activated. Then, multicast packets arrive at
the host with virtually no delay after only 0.6 ms. In contrast
to the previous scenario, unicast traffic is rerouted by IP-FRR
which immediately restores connectivity for IP traffic.

6) INFLUENCE OF EXPERIMENTAL SETUP
The experimental setup (see Figure 10) features two
BFERs on the base of bmv2 software switches with rather
low performance compared to the Tofino-based hardware
switch. However, we designed the experiment such that the
low performance of these BFERs has no impact on results.
bmv2 software switches can forward traffic with a rate up
to 900 Mb/s [29]. By limiting the generated traffic rate
to 100 Mb/s, the bmv2 switches forwarding and receiving
BIER traffic are not overloaded so that bmv2-1 is able to
measure correct restoration times. Furthermore, failure detec-
tion and protection switching are only carried out by the
Tofino-based switch in the setup.

We now consider the impact of the hardware hosting the
controller. When the controller is notified about a failure,
it recomputes entries for IP and BIER forwarding tables. The
computation time depends on the performance of the host
and the size of the network in terms of number of nodes.
Thus, the recomputation time may be significantly larger
in larger networks, which increases the restoration time for
BIER without any fast-reroute and for BIER with BIER-FRR
but without IP-FRR. In contrast, the restoration time for BIER
with BIER-FRR and IP-FRR is not impacted by the controller
hardware or network size.

We discuss the impact of the signalling delay between
the failure-detecting node and the controller. This delay was
very low in our setup while it may be significantly larger
in networks with large geographic extension or slow links.
Such signalling delay adds to the restoration time for BIER
without any fast-reroute and for BIER with BIER-FRR but
without IP-FRR. The restoration time for BIER with
BIER-FRR and IP-FRR is not impacted by that delay.

Finally, controller overload may occur when the controller
needs to process too many messages, e.g., in case of a failure.
This again has no impact on the restoration time for BIER
with BIER-FRR and IP-FRR while it has significant impact
on the restoration time for the other two settings.

B. THROUGHPUT FOR BIER TRAFFIC
The P4-based implementation of BIER described in
Section V-B requires recirculation and is limited by the
amount of recirculation capacity. The PSA defines a virtual
port for this purpose. In this section we show the impact
of insufficient recirculation capacity on throughput and the
effect when additional physical recirculation ports, i.e., ports
in loopback mode, are used for recirculation. We validate our
experimental results in Section VI-C based on a theoretical
model.

34508 VOLUME 9, 2021

D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

1) EXPERIMENTAL SETUP
The experimental setup is illustrated in Figure 12. A source
node sends IPMC traffic to a BFIR. The BFIR encapsulates
that traffic and sends it to a BFR. The BFR forwards the traffic
to n BFERs which decapsulate the BIER traffic and send it as
normal IPMC traffic to connected subscribers.

Figure 12. Theoretical setup for evaluation of BIER throughput.

The goal of the experiment is to evaluate the forwarding
performance of the BFR depending on the number of NHs.
With nNHs, BIER packets have to be recirculated n−1 times,
and internal packet loss occurs if recirculation capacity does
not suffice. The objective of the experiment is to measure the
BIER throughput depending on the number of recirculation
ports for which only physical loopback ports are utilized in
the experiment. However, the n subscribers may see different
throughput. The first BFER does not see any packet loss while
the last BFER sees most packet loss. Therefore, we measure
the rate of IPMC traffic received on Layer 2 at the last
subscriber.

2) HARDWARE SETUP AND CONFIGURATION
Due to hardware restrictions in our lab, we utilize one
traffic generator, one P4-capable hardware switch, and one
server running multiple P4 software switches to build the
logical setup sketched above. The hardware setup is shown
in Figure 13. The traffic generator is the source of IPMC
traffic and sends traffic to the BFIR. The traffic generator is
also the subscriber of BFER n and measures the throughput
of received IPMC traffic on Layer 2. The hardware switch
acts as BFIR, BFR, and BFER n while BFERs 1 to n− 1 are
deployed as P4 software switches on the server. In addition,
we collapse the BFIR and the BFR in the hardware switch
so that packet forwarding from the BFIR to the BFR is not
needed. Therefore, the traffic generator is the last NH of the
BIER packet when it is processed by the BFR.

Packet recirculation is required after (1) encapsulation to
enable further BIER processing, (2) decapsulation to enable
further IP forwarding, and (3) BIER packet replication to
enable BIER forwarding to additional NHs. We set up the
hardware switch so that all recirculation operations in con-
nection with encapsulation and decapsulation are supported
by two dedicated ports in loopback mode and spend another
k ports in loopback mode to support packet recirculation after
packet replication. This models the competition for recircu-
lation ports on a mere BFR as in the theoretical model.

Figure 13. Hardware setup for evaluation of BIER throughput.

The P4 software switches are bmv2s that run alongside
our controller on VMs on a server with an Intel Xeon Scal-
able Gold 6134 (8x 3.2 GHz) and 4 x 32 GB RAM. The
P4 hardware switch is a Tofino [6] inside an EdgecoreWedge
100BF-32X [7] which is a 100 Gb/s P4-programmable switch
with 32 ports. The traffic generator is an EXFO FTB-1
Pro [42] which generates up to 100 Gb/s. All devices are con-
nected with QSFP28 cables which transmit up to 100 Gb/s.

3) INFLUENCE OF EXPERIMENTAL SETUP
The presented setup contains only a single Tofino-based
switch which is partitioned and utilized as a single BFIR/BFR
and a single BFER. All other BFERs in this setting are soft-
ware switches that support only significantly lower bit rates
(900 Mb/s [29]) than the Tofino-based switch (100 Gb/s).
However, this has no impact on results because we mea-
sure the rate received by the single BFER implemented on
the Tofino-based hardware. Furthermore, packet loss by the
low-performance software switches does not reduce the gen-
erated traffic rate as this is configured as a constant rate on
the generator.

4) BIER THROUGHPUT MEASUREMENTS DEPENDING ON
RECIRCULATION PORTS
The traffic generator sends IPMC traffic at a rate of 100 Gb/s
to the hardware switch, the hardware switch encapsulates
the IPMC traffic, forwards BIER traffic iteratively n-1 times
to bmv2s, recirculates the BIER packet to process the last
activated header bit, decapsulates the traffic as BFER n, and
returns it back to the traffic generator, which measures the
received IPMC rate on Layer-2. We start measuring only
after a 30 seconds initialization phase to avoid any influ-
ences from the startup phase. After 30 seconds, the traf-
fic generator measures for 60 seconds the traffic arriving
from the Tofino and reports the average Layer-2 throughput.
We repeated experiments 10 times and computed confidence
intervals with a confidence level of 95%. Their width was less
than 0.5% of the measured average and, therefore, invisible.

VOLUME 9, 2021 34509

D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

Table 2. Model predictions T (i) for BIER throughput and measured values M(i) (Gb/s); the latter are the same values as presented in Figure 14.

Therefore, we omit them in future figures and tables for better
readability.

In our experiments, we consider 1, 2, 3, and 4 NHs
and utilize 1, 2, and 3 ports in loopback mode to support
recirculation for BIER forwarding. The results are compiled
in Figure 14.

Figure 14. Measured throughput of BIER and traditional IPMC on
the 100 Gb/s Tofino-based switch for different numbers of NHs and
recirculation ports.

The left-most bar shows that with a single recirculation
port, the last NH receives the full IPMC rate of 100 Gb/s if
1 NH is connected. The second bar from the left shows that
the last NH still receives the full IPMC rate of 100 Gb/s if
2 NHs are connected. For 3 or 4 NHs, i.e., the third and fourth
bar from the left, the IPMC traffic rate received by the last NH
is reduced to 43 and 19 Gb/s, respectively.

With 2 recirculation ports, the last NH does not perceive a
throughput degradation if at most 3 NHs, i.e., fifth to seventh
bar from the left, are connected. For 4 NHs, i.e., eighth bar
from the left, the IPMC traffic rate received by the last NH is
reduced to 50 Gb/s.

And with 3 recirculation ports, even up to 4 NHs, i.e., ninth
to twelfth bar from the left, can be supported without through-
put degradation for the last NH.

Thus our experiments confirm that when multicast traffic
arrives with 100 Gb/s at the Tofino, n-1 recirculation ports are
needed to forward BIER traffic to n NHs without packet loss.
This is different for a realistic multicast portion in the traffic
mix, i.e., a minor fraction instead of 100%.

The hardware switch also supports traditional multicast
in P4. With traditional multicast forwarding, all NHs receive
100 Gb/s regardless of the number of NHs. However, this

comes with all the disadvantages of traditional IPMCwe have
discussed earlier.

C. THROUGHPUT MODEL FOR BIER FORWARDING WITH
INSUFFICIENT RECIRCULATION CAPACITY
We model the throughput of BIER forwarding with insuffi-
cient recirculation capacity and validate the results with the
experimentally measured values.

To forward a BIER packet to nNHs, it has to be recirculated
n − 1 times (see Section V-B). Any time a packet is sent to
a recirculation, the packet is dropped with a certain proba-
bility if insufficient recirculation capacity is available. Due
to the implemented round robin approach (see Section IV-C),
the drop probability p is equal for all recirculation ports.
The drop probability p in a system can be determined
by comparing the available recirculation capacity and
the sustainable recirculation load. The latter results from
recirculations after BIER packet replication and takes
packet loss into account. It is shown in the following
formula.

C ·
n−1∑
m=1

(1− p)m = k · C (1)

The available recirculation capacity is k · C where k is the
number of recirculation ports and C is line capacity. The
sustainable recirculation load is the sum of the successfully
recirculated traffic rates after any number of recirculations.
The traffic amount that has been successfully recirculated
once isC ·(1−p). The traffic amount that has been recirculated
twice is C · (1 − p)2, and so on. Therefore, the total amount
is C ·

∑n−1
m=1(1− p)

m.
We calculate the BIER throughput at any NH, i.e., after any

number of recirculations. At the first NH, the throughput of
the BIER traffic is C because the BIER packet is forwarded
to the first NH before the packet is recirculated the first time.
At the second NH, the BIER throughput is C · (1− p), at the
third NH its C · (1 − p)2, and so on. Therefore, the BIER
throughput T (i) at NH 1 ≤ i ≤ n is:

T (i) = C · (1− p)i−1 (2)

Table 2 shows the throughput predictions T (i). We make
predictions for the same scenarios as we evaluated in the
performance evaluation in Section VI-B4 and compare them
to the measured valuesM (i).

The comparison shows that the model provides reasonable
predictions for the BIER throughput.

34510 VOLUME 9, 2021

D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

VII. PROVISIONING RULE FOR RECIRCULATION PORTS
In this section we propose a provisioning rule for recircula-
tion ports. It may be used for general P4-based applications
requiring packet recirculation, not just for BIER forwarding.
We first point out the importance for sufficient recirculation
capacity. Then, we derive a general provisioning rule for
recirculation ports and illustrate how their number depends
on other factors. Finally, we apply that rule to provision the
number of loopback ports for BFRs in the presence of traffic
mixes.

A. IMPACT OF PACKET LOSS DUE TO MISSING
RECIRCULATION CAPACITY
In Section IV-C we briefly discussed projects that leverage
packet recirculation in P4. However, if recirculation capacity
does not suffice and packets need to be recirculated sev-
eral times, packet loss observed at the last stage may be
quite high. We first illustrate this effect. If the packet loss
probability due to missing recirculation capacity is p, then
the overall packet loss probability after n recirculations is
p(n) = 1−(1−p)n. We illustrate this connection in Figure 15,
which utilizes logarithmic scales to better view several orders
of magnitude in packet loss. With only one recirculation,
we obtain a diagonal for the overall packet loss. A fixed
number of recirculations shifts the entire curve upwards, and
with several recirculations like n = 6 or n = 10, the overall
loss probability p(6) or p(10) is an order of magnitude larger
than the packet loss probability p of a single recirculation
step. Therefore, avoiding packet loss due to recirculations
is important. Thus, sufficient recirculation capacity must be
provisioned but overprovisioning is also costly since this
means that entire ports at high speed cannot be utilized for
operational traffic. Therefore, well-informed provisioning of
recirculation ports is an important issue.

Figure 15. Loss probability after multiple recirculations.

B. DERIVATION OF A PROVISIONING RULE FOR
RECIRCULATION PORTS
Wefirst introduce the recirculation factorR and the utilization
ratio U . Then, we use them to derive a provisioning rule for
recirculation ports.

The recirculation factor R is the average number of recir-
culations per packet. Not all packets may be recirculated or
the number how often a packet is recirculated depends on the
particular packet.

The utilization ratio U describes the multiple by which a
recirculation port can be higher utilized than a normal port.
For example, if the average utilization of each normal port
is 10%, then each recirculation port may be operated with
a utilization of 40%, in particular if multiple of them are
utilized. This corresponds to a utilization ratio of U = 4.
We give some rationales for that idea. Normal ports at high
speed are often underutilized in practice because bandwidths
exist only in fixed granularities and usually link speeds are
heavily overprovisioned to avoid upgrades in the near future.
Furthermore, some links operate at lower utilization, others
at higher utilization. Recirculation ports can be utilized to a
higher degree. First, there is no need to keep the utilization of
recirculation ports low for reasons like missing appropriate
lower link speeds as it can be the case for normal ports.
Second, recirculation ports are shared for all recirculation
traffic of a switch so that resulting traffic fluctuations are
lower and the utilization of the ports can be higher than the
one of other ports.

If m incoming ports carry traffic with a recirculation fac-
tor R and a utilization ratio U can be used on the switch, then

m′ =
⌈
m · R
U

⌉
(3)

describes the number of required recirculation ports.

C. ILLUSTRATION OF REQUIRED RECIRCULATION PORTS
For illustration purposes, we consider a P4 switch with
32 physical (external) ports and one virtual (internal) port
in loopback mode for recirculations. If the capacity of that
single virtual recirculation port does not suffice for recircu-
lations, physical ports need to be turned into loopback mode
as well and be used for recirculation. All recirculation ports
are utilized in round-robin manner to ensure equal utilization
among them.

Thus, the number of normal ports m plus the number of
recirculation ports m′ must be at most 33, i.e., 32 physical
ports and 1 virtual port. Therefore, we find the smallest m′

according to Equation 3, so thatm+m′ ≤ 33 while maximiz-
ingm. The number of physical recirculation ports ism′−1 as
the virtual port can also be used for recirculations. Figure 16
shows the number of physical recirculation ports depending
on the recirculation factor R and the utilization ratio U .
Since U depends on the specific use case and traffic mix,
we present results for different values of U . Thereby, R and
U are fractional numbers. While the number of recirculations
for each packet is an integral number, the average number
of recirculations per packet R is fractional. The number of
physical recirculation ports increases with the recirculation
factor R. Due to the fact that both m and m′ are integers,
the number of physical recirculation ports (m − 1) is not
monotonously increasing because for some R and U the sum

VOLUME 9, 2021 34511

D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

Figure 16. Number of physical ports in loopback mode.

m+m′ amounts to the maximum 33, and to lower values for
other R and U .

The various curves show that the number of required phys-
ical recirculation ports decreases with increasing utilization
ratio U . With a large recirculation factor R ≥ 3 and a low
utilization Ratio U ≤ 3, half of the ports of the 32 port
switch or even more need to be used for recirculation, which
is expensive. However, with small R < 1 and large U > 3
the number of required physical recirculation ports is low
because most of the traffic does not require packet recircula-
tion, and due to the large utilization ratio U , the recirculation
ports can cover significantly more traffic than normal ports. It
is even possible that no physical recirculation port is needed
if the recirculation capacity of the internal recirculation port
can cover the recirculation load.

D. APPLICATION OF THE PROVISIONING METHOD TO
TRAFFIC MIXES WITH BIER
In this section we make predictions for m′, the number of
recirculation ports, for traffic mixes with typical multicast
portions. We assume different portions of multicast traffic
a ∈ {0.01, 0.025, 0.05, 0.1} and different average numbers
of BIER NHs n ∈ {0, 2, 4, . . . , 16}, i.e., each BIER packet
is recirculated n − 1 times on average. Since unicast traf-
fic is normally processed without recirculation, it does not
need any recirculation capacity, i.e., its amount has no influ-
ence on the number of required recirculation ports and is,
therefore, not considered in this analysis. Then, we calculate
R = a · (n− 1), and assume U = 4. Again, we calculate the
smallestm′, i.e., like in Equation 3, so thatm+m′ ≤ 33 while
maximizingm. Figure 17 shows the number of physical recir-
culation ports depending on the average number of multicast
NHs n and the fraction of multicast traffic a. If the fraction of
multicast traffic is low like 1%, the capacity of the internal
port suffices to serve up to 13 NHs on average. Moderate
fractions of 2.5% multicast traffic require no physical recir-
culation port for up to 5 NHs, 1 physical recirculation port for

Figure 17. Physical ports in loopback mode for traffic mixes with realistic
multicast portions.

up to 11 NHs, and 2 physical recirculation ports for 12 and
more NHs. With 5% multicast traffic, the number of required
physical recirculation ports increases almost linearly from
zero to 5 with an increasing number of NHs. Large fractions
of multicast traffic, like 10%, require up to 8 recirculation
ports if the number of NHs is also large like 16. Under such
conditions, 25% of the physical ports cannot be used for
normal traffic forwarding as they are turned into loopback
mode. However, the assumptions seem rather unlikely as
multicast traffic typically makes up only a small proportion
of the traffic.

VIII. CONCLUSION
The scalability of traditional IPMC is limited because core
devices need to maintain IPMC group-dependent forwarding
state and process lots of control traffic whenever topology or
subscriptions change. Therefore, BIER has been introduced
by the IETF as an efficient transport mechanism for IPMC
traffic. State in BIER core devices does not depend on IPMC
groups, and control traffic is only sent to border nodes, which
increases scalability in comparison to traditional IPMC sig-
nificantly. In addition, there are fast-reroute (FRR) mecha-
nisms for BIER to minimize the effect of network failures.
However, BIER cannot be configured on legacy devices as
it implements a new protocol with a complex forwarding
behavior.

In this paper we demonstrated a P4-based implementation
of BIER with tunnel-based BIER-FRR, IP unicast with FRR,
IP multicast, and Ethernet forwarding. The target platform
is the P4-programmable switching ASIC Tofino which is
used in the Edgecore Wedge 100BF-32X, a 32 100 Gb/s port
high-performance P4 switch.

In an experimental study, we showed that BIER-FRR sig-
nificantly reduces the restoration time after a failure, and in
combination with IP-FRR, the restoration time is reduced
to less than 1 ms. We confirmed that the prototype is able
to forward traffic at a speed up to 100 Gb/s. However,

34512 VOLUME 9, 2021

D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

under some conditions, less throughput is achieved when
switch-internal recirculation ports are overloaded. As a rem-
edy, we addedmore recirculation capacity by turning physical
ports into loopback mode. We modelled BIER forwarding,
predicted limited throughput due to missing recirculation
capacity, and validated the results by measured values. Fur-
thermore, we proposed a simple method for provisioning of
physical recirculation ports. The approach was motivated by
BIER, but holds for general P4 programs requiring recircu-
lations. In a case study, we applied it to BIER with differ-
ent mixes of unicast and multicast traffic and showed that
only a few physical recirculation ports suffice under realistic
conditions.

REFERENCES
[1] I. Wijnands. (Nov. 2017). RFC 8279: Multicast Using Bit Index

Explicit Replication (BIER). [Online]. Available: https://datatracker.ietf.
org/doc/rfc8279/

[2] D.Merling, S. Lindner, andM.Menth, ‘‘P4-based implementation of BIER
and BIER-FRR for scalable and resilient multicast,’’ J. Netw. Comput.
Appl., vol. 169, Nov. 2020, Art. no. 102764.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, and
J. Rexford, ‘‘P4: Programming protocol-independent packet processors,’’
ACM SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–95,
Jul. 2014.

[4] W. Braun, J. Hartmann, and M. Menth, ‘‘Scalable and reliable software-
defined multicast with BIER and P4,’’ in Proc. IFIP/IEEE Symp. Integr.
Netw. Service Manage. (IM), May 2017, pp. 905–906.

[5] P4lang. (2021). behavioral-Model. Accessed: Jan. 28, 2021. [Online].
Available: https://github.com/p4lang/behavioral-model

[6] Edge-Core Networks. (2017). The World’s Fastest & Most Pro-
grammable Networks. [Online]. Available: https://barefootnetworks.com/
resources/worlds-fastest-most-programmable-networks/

[7] Edge-Core Networks. (2019). Wedge100BF-32X/65X Switch. [Online].
Available: https://www.edge-core.com/_upload/images/Wedge100BF-
32X_65X_DS_R05_2019%1210.pdf

[8] M. Shahbaz, L. Suresh, J. Rexford, N. Feamster, O. Rottenstreich, and
M. Hira, ‘‘Elmo: Source routed multicast for public clouds,’’ in Proc. ACM
Special Interest Group Data Commun., 2019, pp. 458–471.

[9] S. Islam, N. Muslim, and J. W. Atwood, ‘‘A survey on multicasting in
software-defined networking,’’ IEEE Commun. Surveys Tuts., vol. 20,
no. 1, pp. 355–387, 1st Quart., 2018.

[10] Z. AlSaeed, I. Ahmad, and I. Hussain, ‘‘Multicasting in software defined
networks: A comprehensive survey,’’ J. Netw. Comput. Appl., vol. 104,
pp. 61–77, Feb. 2018.

[11] J. Ráckert, J. Blendin, and D. Hausheer, ‘‘Software-defined multicast for
over-the-top and overlay-based live streaming in ISP networks,’’ J. Netw.
Syst. Manage., vol. 23, no. 2, pp. 280–308, Apr. 2015.

[12] J. Ruckert, J. Blendin, R. Hark, and D. Hausheer, ‘‘Flexible, efficient,
and scalable software-defined over-the-top multicast for ISP environments
with DynSdm,’’ IEEE Trans. Netw. Service Manage., vol. 13, no. 4,
pp. 754–767, Dec. 2016.

[13] T. Humernbrum, B. Hagedorn, and S. Gorlatch, ‘‘Towards efficient
multicast communication in software-defined networks,’’ in Proc. IEEE
36th Int. Conf. Distrib. Comput. Syst. Workshops (ICDCSW), Jun. 2016,
pp. 106–113.

[14] C. A. S. Oliveira, ‘‘Steiner trees and multicast,’’ Math. Aspects Netw.
Routing Optim., vol. 53, pp. 29–45, Dec. 2011.

[15] L.-H. Huang, H.-J. Hung, C.-C. Lin, and D.-N. Yang, ‘‘Scalable and
bandwidth-efficient multicast for software-defined networks,’’ in Proc.
IEEE Global Commun. Conf., Dec. 2014, pp. 1890–1896.

[16] Z. Hu, D. Guo, J. Xie, and B. Ren, ‘‘Multicast routing with uncertain
sources in software-defined network,’’ in Proc. IEEE/ACM 24th Int. Symp.
Qual. Service (IWQoS), Jun. 2016, pp. 1–6.

[17] S. Zhou, H.Wang, S. Yi, and F. Zhu, ‘‘Cost-efficient and scalable multicast
tree in software defined networking,’’ in Proc. Conf. Algorithms Archit.
Parallel Process., 2015, pp. 562–605.

[18] J.-R. Jiang and S.-Y. Chen, ‘‘Constructing multiple Steiner trees for
software-defined networking multicast,’’ in Proc. 11th Int. Conf. Future
Internet Technol., Jun. 2016, pp. 1–6.

[19] B. Ren, D. Guo, J. Xie, W. Li, B. Yuan, and Y. Liu, ‘‘The packing problem
of uncertain multicasts,’’ Concurrency Comput., Pract. Exper., vol. 29,
no. 16, p. e3985, Aug. 2017.

[20] Y.-D. Lin, Y.-C. Lai, H.-Y. Teng, C.-C. Liao, and Y.-C. Kao, ‘‘Scalable
multicasting with multiple shared trees in software defined networking,’’
J. Netw. Comput. Appl., vol. 78, pp. 125–133, Jan. 2017.

[21] A. Iyer, P. Kumar, and V. Mann, ‘‘Avalanche: Data center multicast using
software defined networking,’’ in Proc. 6th Int. Conf. Commun. Syst. Netw.
(COMSNETS), Jan. 2014, pp. 1–8.

[22] W. Cui and C. Qian, ‘‘Scalable and load-balanced data center multi-
cast,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2014,
pp. 1–6.

[23] W.-K. Jia and L.-C. Wang, ‘‘A unified unicast and multicast rout-
ing and forwarding algorithm for software-defined datacenter net-
works,’’ IEEE J. Sel. Areas Commun., vol. 31, no. 12, pp. 2646–2657,
Dec. 2013.

[24] M. J. Reed, M. Al-Naday, N. Thomos, D. Trossen, and G. Petropoulos,
‘‘Stateless multicast switching in software defined networks,’’ in Proc.
IEEE Int. Conf. Commun., May 2016, pp. 1–7.

[25] S.-H. Shen, L.-H. Huang, D.-N. Yang, andW.-T. Chen, ‘‘Reliable multicast
routing for software-defined networks,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2015, pp. 181–189.

[26] M. Popovic, R. Khalili, and J.-Y. Le Boudec, ‘‘Performance comparison
of node-redundant multicast distribution trees in SDN networks,’’ in Proc.
Int. Conf. Networked Syst. (NetSys), Mar. 2017, pp. 1–8.

[27] D. Kotani, K. Suzuki, and H. Shimonishi, ‘‘A multicast tree management
method supporting fast failure recovery and dynamic group member-
ship changes in OpenFlow networks,’’ J. Inf. Process., vol. 24, no. 2,
pp. 395–406, 2016.

[28] T. Pfeiffenberger, J. L. Du, P. B. Arruda, and A. Anzaloni, ‘‘Reliable and
flexible communications for power systems: Fault-tolerant multicast with
SDN/OpenFlow,’’ in Proc. 7th Int. Conf. New Technol., Mobility Secur.
(NTMS), Jul. 2015, pp. 1–6.

[29] A. Bas. (Jan. 2018). BMv2 Throughput. [Online]. Available: https://github.
com/p4lang/behavioral-model/issues/537#issuecomment-360537441

[30] A. Giorgetti, A. Sgambelluri, F. Paolucci, P. Castoldi, and F. Cugini,
‘‘First demonstration of SDN-based bit index explicit replication (BIER)
multicasting,’’ in Proc. Eur. Conf. Netw. Commun. (EuCNC), Jun. 2017,
pp. 1–6.

[31] A. Giorgetti, A. Sgambelluri, F. Paolucci, N. Sambo, P. Castoldi, and
F. Cugini, ‘‘Bit index explicit replication (BIER) multicasting in transport
networks,’’ in Proc. Int. Conf. Opt. Netw. Design Modeling (ONDM),
May 2017, pp. 1–5.

[32] Y. Desmouceaux and T. Clausen, ‘‘Reliable multicast with BIER,’’
J. Commun. Netw., vol. 20, pp. 182–197, May 2018.

[33] T. Eckert. (Nov. 2017). Traffic Engineering for Bit Index Explicit Replica-
tion BIER-TE. [Online]. Available: http://tools.ietf.org/html/draft-eckert-
bier-te-arch

[34] W. Braun, M. Albert, T. Eckert, and M. Menth, ‘‘Performance compar-
ison of resilience mechanisms for stateless multicast using BIER,’’ in
Proc. IFIP/IEEE Symp. Integr. Netw. Service Manage. (IM), May 2017,
pp. 230–238.

[35] F. Hauser, M. Haeberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,
R. Frank, and M. Menth, ‘‘A survey on data plane programming with P4:
Fundamentals, advances, and applied research,’’ 2021, arXiv:2101.10632.
[Online]. Available: https://arxiv.org/abs/2101.10632

[36] J. Geng, J. Yan, and Y. Zhang, ‘‘P4QCN: Congestion control using
P4-capable device in data center networks,’’ Electronics, vol. 8, p. 280,
Mar. 2019.

[37] C. Wernecke, H. Parzyjegla, G. Muhl, P. Danielis, and D. Timmermann,
‘‘Realizing content-based publish/subscribe with P4,’’ in Proc. IEEE
Conf. Netw. Function Virtualization Softw. Defined Netw. (NFV-SDN),
Nov. 2018, pp. 1–7.

[38] M. Uddin, S. Mukherjee, H. Chang, and T. V. Lakshman, ‘‘SDN-based
multi-protocol edge switching for IoT service automation,’’ IEEE J. Sel.
Areas Commun., vol. 36, no. 12, pp. 2775–2786, Dec. 2018.

[39] Reprinted from Journal of Network and Computer Applications, vol. 169,
Daniel Merling, Steffen Lindner, Michael Menth, P4-Based Implementa-
tion of BIER and BIER-FRR for Scalable and Resilient Multicast, Elsevier,
Amsterdam, The Netherlands, 2020.

VOLUME 9, 2021 34513

D. Merling et al.: Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4

[40] D. Katz. (Jul. 2004). Bidirectional Forwarding Detection (BFD). [Online].
Available: https://datatracker.ietf.org/doc/rfc5880/

[41] Q. Xiong. (Oct. 2017). BIER BFD. [Online]. Available: https://
datatracker.ietf.org/doc/draft-hu-bier-bfd/

[42] EXFO. (2019). FTB-1v2/FTB-1 Pro Platform. [Online]. Available:
https://www.exfo.com/umbraco/surface/file/download/?ni=10900&cn=en-
US&pi=5404

DANIEL MERLING received the master’s degree
from the Chair of Communication Networks of
Prof. Dr. habil. Michael Menth, Eberhard Karls
University, Tübingen, Germany, in 2017, where
he is currently pursuing the Ph.D. degree. His
research interests include software-defined net-
working, scalability, P4, routing and resilience
issues, multicast, and congestion management.

STEFFEN LINDNER received the bachelor’s and
master’s degrees from the Chair of Communica-
tion Networks of Prof. Dr. habil. Michael Menth.
He is currently pursuing the Ph.D. degree with
the Communication Networks Research Group,
Eberhard Karls University, Tübingen, Germany.
His research interests include software-defined
networking, P4, and congestion management.

MICHAEL MENTH (Senior Member, IEEE)
received the Diploma degree from The University
of Texas at Austin, in 1998, the Ph.D. degree
from the University of Ulm, Germany, in 2004,
and the Habilitation degree from the University of
Wuerzburg, Germany, in 2010. He is currently a
Professor with the Department of Computer Sci-
ence, University of Tuebingen, Germany, since
2010, and the Chair Holder of communication net-
works. His research interests include performance

analysis and optimization of communication networks, resilience and routing
issues, resource and congestion management, industrial networking and the
Internet of Things, software-defined networking, and the Internet protocols.

34514 VOLUME 9, 2021

1 Accepted Manuscripts (Core Content)

1.7 Efficiency of BIER Multicast in Large Networks

161

Efficiency of BIER Multicast in Large Networks
Daniel Merling*, Thomas Stüber*, Michael Menth

Chair of Communication Networks, University of Tuebingen, Germany
{daniel.merling, thomas.stueber, menth}@uni-tuebingen.de

Abstract—Bit Index Explicit Replication (BIER) has been
introduced by the IETF to transport IP multicast (IPMC) traffic
within a BIER domain. Its advantage over IPMC is improved
scalability regarding the number of multicast groups. However,
scaling BIER to large networks is a challenge. To that end,
receivers of a BIER domain are assigned to smaller subdomains.
To deliver an IPMC packet over a BIER domain, a copy is sent
to any subdomain with a receiver for that packet. Consequently,
some links may carry multiple copies of the same IPMC packet,
which contradicts the multicast idea.

In this paper, we propose and compare various algorithms
to select subdomains for BIER in order to keep the overall
BIER traffic low despite multiple packet copies. We apply them
to investigate the traffic savings potential of IPMC and BIER
relative to unicast under various conditions. We show that the
traffic savings depend on network topology, network size, and the
size of the multicast groups. Also the extra traffic caused by BIER
depends on these factors. In spite of some redundant packets,
BIER can efficiently reduce the overall traffic in most network
topologies. Similarly to IPMC, BIER also avoids heavily loaded
links. Finally, we demonstrate that BIER subdomains optimized
for failure-free conditions do not cause extensive overload in case
of single link failures.

Index Terms—Bit Index Explicit Replication (BIER), multicast,
IP networks, performance evaluation, optimization

I. INTRODUCTION

IP multicast (IPMC) distributes traffic of a multicast group
along a tree so that any link in an IP network forwards at
most a single copy of a packet. However, each multicast group
requires signalling and forwarding state in all routers of the
tree. In case of subscriber change, updates to the forwarding
states of a single multicast group may be required. In case
of link or node failures, the traffic of many multicast groups
may be affected so that routers experience a large signalling
load. The IETF has proposed Bit Index Explicit Replication
(BIER) [1] to counteract that problem. BIER tunnels multicast
traffic through a BIER domain and delivers a copy to each
desired egress node. BIER solves the scalability problem by
keeping the core nodes of the BIER domain unaware of any
multicast group. Nevertheless, scaling BIER to large networks
is a challenge. Multiple copies of a multicast packet may
need to be forwarded over the same link, which contracts the
multicast idea and may prevent BIER from efficiently reducing
the traffic load for multicast traffic. We briefly explain the
reason and provide the ground for this research work.

The authors acknowledge the funding by the Deutsche Forschungsgemein-
schaft (DFG) under grant ME2727/1-2. The authors alone are responsible for
the content of the paper.

*These authors contributed equally

When an ingress node of a BIER domain receives an IPMC
packet, it adds a BIER header including a bitstring. The
positions in the bitstring correspond to egress nodes of the
BIER domain and the activated bits indicate the receivers
of the BIER packet. The bitstring enables BIER routers to
forward BIER packets without knowing individual multicast
groups. As the bitstring has a limited size, BIER domains with
more egress nodes require a scaling feature. Subdomains are
introduced which are sets of egress nodes, and bitstrings are
defined for each subdomain. Thus, if an IPMC packet needs to
be forwarded to egress nodes in different subdomains, multiple
BIER packets with different bitstrings are sent and possibly
pass identical links. This obviously diminishes the efficiency
of BIER to reduce the load of multicast traffic compared to
IPMC.

In this paper we quantify and compare the ability of IPMC
and BIER to efficiently reduce the load from multicast traffic
in comparison to unicast. We define suitable metrics and show
that the efficiency of IPMC depends on network topology and
size as well as the size of the multicast groups. As the BIER
standard [1] does not specify the computation of subdomains,
we propose various algorithms for that purpose. Thereby, the
objective is to minimize the resulting load of BIER traffic.
We utilize these algorithms to define suitable subdomains for
BIER networks and use them to assess the ability of BIER to
efficiently transport multicast traffic. As the subdomains are
optimized for failure-free conditions, we also investigate their
effect on traffic distribution in case of link failures.

The remainder of the paper is structured as follows. In the
next section we review related work. Section III gives a primer
on BIER and shows that BIER generates a separate packet
copy for almost every subdomain even for small multicast
groups. In Section IV we propose algorithms to compute
subdomains for BIER networks. We compare the algorithms
with regard to runtime and quality in Section V. Section VI
evaluates and compares the traffic savings potential of IPMC
and BIER for multicast traffic under various conditions. In
Section VII we evaluate the efficiency of BIER in case of
single link failures. Finally, we conclude the paper in Section
VIII.

II. RELATED WORK

We review advances for IPMC and BIER-based multicast
and mention well-known clustering algorithms.

A. Advances for IPMC

Islam et al. [2] and Al-Saeed et al. [3] provide comprehen-
sive surveys for multicast. Most of the cited papers discuss
shortcomings of IPMC as already mentioned in Section I.
Many approaches aim to enhance IPMC. Intelligent mecha-
nisms for multicast tree-building are presented to reduce the
size of the forwarding information base (FIB), or efficient
signalling mechanisms are proposed.

Elmo [4] improves the scalability of traditional IPMC in
data centers. Multicast group information is encoded in packet
headers to reduce the FIB of core nodes by leveraging char-
acteristic properties of data center topologies. The Avalanche
Routing Algorithm (AvRA) [5] also leverages properties of
data center networks to optimize link utilization of distribution
trees. Dual-Structure Multicast (DuSM) [6] builds specialized
forwarding structures for high-bandwidth and low-bandwidth
flows. It improves scalability and link utilization in data
centers.

Zhang et al. [7] optimize application layer multicast (ALM).
They continuously monitor the application-specific distribution
tree and update its structure according to the optimization
objective of the multicast group. The authors of [8] study
the distribution of delay-sensitive data with minimum latency.
They propose a set of algorithms that construct minimum-
delay trees for different kinds of application requirements like
min-average, min-maximum, real-time requirements, etc. Li et
al. [9] leverage the structure of data center networks to improve
the scalability of traditional multicast. They optimize the for-
warding tables by partitioning the multicast address space and
aggregating multicast addresses at bottleneck switches. Kaafar
et al. [10] present a new overlay multicast tree construction
scheme. It leverages location-information of subscribers to
build efficient distribution trees.

Software-Defined Multicast (SDM) [11] is a well-managed
multicast platform. It is specialized on P2P-based video
streaming for over-the-top and overlay-based live streaming
services. In [12] traffic engineering features are added to SDM.
Lin et al. [13] propose to share distribution trees between
multicast groups to reduce the size of the FIB in core nodes
and implement it in OpenFlow. Similarly, the authors of
[14] leverage bloom filters to reduce the number of TCAM-
entries in software-defined networks. Adaptive SDN-based
SVC multicast (ASCast) [15] optimizes multicast forwarding
for video live streaming by minimizing latency and delay. To
that end, the authors propose an integer linear program for
optimal tree building, and TCAM-based forwarding tables for
fast packet processing. Humernbrum et al. [16] reduce the
size of the FIB in some core nodes by introducing address
translation from multicast addresses to unicast addresses at
the last multicast hop. Jia et al. [17] reduce the size of the
FIB in core nodes and facilitate efficient implementations.
They leverage prime numbers and the Chinese remainder
theorem to efficiently organize FIB structures. Steiner trees
[18] are well-researched structures to build efficient multicast
trees. Many papers modify and extend Steiner trees to build

specialized multicast trees that minimize specific aspects like
link costs [19], number of branch nodes [20], number of hops
[21], delay [22], optimal placement of IPMC sources [23], or
retransmission efficiency [24].

B. Advances for BIER

BIER uses a novel header and its forwarding behaviour
distinguishes substantially from IP forwarding. Giorgetti et al.
[25], [26] show a first implementation of BIER in OpenFlow.
Merling et al. [27] present a BIER prototype for a P4-
programmable software switch with a throughput of around
900 Mb/s. In a follow-up work [28] they implement BIER for
the P4-programmable switching ASIC Tofino that supports 100
Gb/s throughput per port. They also propose how BIER traffic
should be rerouted in case of failures, which has been adopted
as IETF working group document [29].

The authors of [30] evaluate the retransmission efficiency
of BIER when subscribers signal missing packets by negative
acknowledgements, i.e., NACKs. Traditional IPMC leverages
either unicast packets or retransmission to the entire multicast
group when some subscribers signal NACKs. The BIER
header allows to retransmit packets to specific subscribers
only, i.e., NACK senders, while sending only one packet
copy over each link. The authors find that BIER causes less
overhead in terms of number of retransmitted packets and that
it achieves better link utilization. Desmouceaux et al. [31]
increase efficiency of retransmission with BIER by allowing
intermediate nodes to resend packets, if possible, instead of
resending the packet at the source. This significantly reduces
the overall retransmission traffic.

Eckert et al. [32] propose tree engineering for BIER, i.e.,
BIER-TE. It leverages the BIER header to also encode the
distribution tree of a packet in terms of traversed links. In
[33] 1+1 protection for BIER is presented using maximally
redundant trees (MRTs). Traffic is distributed simultaneously
over two disjoint trees so that packets are delivered even if
one tree is compromised by a failure.

C. Clustering Algorithms

In this work we cluster receivers of BIER domains into
subdomains. Karypis et. al. [34] present an algorithm to
compute a bisection of a graph by performing a breadth-first
search starting from two center nodes. The authors of [35]
propose a similar method to compute k-partitions for arbitrary
k, using k center nodes. Instead of two breadth-first searches,
this algorithm performs k breadth-first searches in parallel.
The resulting partitions tend to reduce the number of border
nodes instead of cross-edges, which is a good property for
load balancing. The approach is closely related to k-means
clustering with Lloyd’s algorithm [36]. The algorithm selects k
center nodes and adds all nodes to the cluster with the nearest
center node. The center nodes are readjusted to reflect the
center of the clusters and this step is repeated until no changes
occur. k-means clustering is not suitable for our problem, as
cluster sizes cannot be limited. In contrast to that, the bubble
growing approach of [35] produces equal size partitions. The

heuristic algorithm for BIER clustering in this work follows a
similar approach.

III. BIT INDEX EXPLICIT REPLICATION (BIER)

In this section we introduce fundamentals of BIER and
explain its scaling mechanism for large networks. In addition,
we show that the mechanism tends to produce multiple BIER
packets for a single IPMC packet, even for small multicast
groups.

A. Overview

BIER is a domain-based mechanism to transport IPMC
traffic over a so-called routing underlay network, e.g., an IP
network [1]. Figure 1 shows the layered BIER architecture.

2

IP
M

C

la
ye

r
B

IE
R

la

ye
r

R
ou

tin
g

un
de

rl
ay

Source Receiver Receiver

BFIR BFER 1 BFER 2

BFR

1,2 1 2

Paths

Fig. 1: Layered BIER architecture according to [27].

BIER-capable routers are called bit forwarding routers
(BFRs). Ingress and egress nodes of a BIER domain are called
bit forwarding ingress and egress routers (BFIRs, BFERs).
The BIER header contains a bitstring with bit positions for
all BFERs. BFIRs encapsulate IPMC traffic with a BIER
header and the activated bits in its bitstring indicate the set of
BFERs that should receive a copy of the packet. BFRs forward
BIER packets based on this bitstring along a tree towards the
indicated BFERs. Thereby, only a single copy is sent over
each involved link. The paths of the tree are inherited from
the routing underlay but BIER-encapsulated IPMC packets are
usually sent over Layer 2 technology. BFERs remove the BIER
header from the packets and pass them to the IPMC layer.

B. Scaling BIER to Large Networks

BIER hardware must implement a bitstring length of 256
bits, but larger bitstrings, e.g., 1024 bits, may also be sup-
ported [1]. However, large bitstrings increase the header size,
which is tolerable only to some extent. Any BFER requires
a position in the bitstring to be addressable. To make BIER
applicable to networks with more BFERs than the size of the
bitstring, so-called BIER subdomains are introduced that are
identified in the BIER header by their subdomain identifier
(SDI). Subdomains define different mappings of BFERs to
bit positions for the bitstring so that only the combination of
SDI and bitstring determines the addressed BFERs. If a BFIR
receives an IPMC packet, it must send an encapsulated copy

possibly for multiple subdomains to ensure that all desired
BFERs are reached.

C. BIER Packets Needed for Single IPMC Packet

When a BIER domain is large, it may require multiple
subdomains. Then, the BFERs of a BIER domain are assigned
to bit positions in the bitstrings of different subdomains.
As a consequence, when an IPMC packet is to be carried
through a BIER domain, multiple BIER packets with different
SDIs may be created to address all desired receivers. We call
them redundant packet copies as they carry the same IPMC
packet. They cause extra traffic and reduce BIER’s ability to
reduce load from multicast traffic compared to normal IPMC
forwarding.

We investigate how many different BIER packets are gen-
erated on average when a BFIR sends an IPMC packet
over a BIER domain. To that end, we consider a BIER
domain with n = 1024 BFERs and bitstring lengths of b ∈
{128, 256, 512, 1024} bits. Hence, s ∈ {1, 2, 4, 8} subdomains
are needed to provide all BFERs with bit positions. We use
a Markov chain model to compute the average number of
different BIER packets needed if an IPMC packet has r BFERs
as receivers; thereby we assume that receivers of a packet
belong with equal probability to any of the subdomains.

0

2

4

6

8

0 10 20 30 40
Number of receivers

N
um

be
r

of
 B

IE
R

 p
ac

ke
ts

BIER w/ 1 subdomain
BIER w/ 2 subdomains
BIER w/ 4 subdomains
BIER w/ 8 subdomains

Fig. 2: Average number of redundant BIER packet copies
needed to forward a single IPMC packet through a BIER
domain with n = 1024 BFERs partitioned into s ∈ {1, 2, 4, 8}
subdomains.

Figure 2 shows that the average number of BIER packets
significantly depends on the number of receivers r and the
number of subdomains s. The number of BIER packets
converges quickly to the number of subdomains s. If r = 3 · s
receivers are addressed, almost s different BIER packets need
to be sent for a single IPMC packet.

As the number of redundant packets is large even for
small multicast groups, it is relevant to study their impact
on the overall extra traffic in the network and on the ability
of BIER to efficiently carry multicast traffic compared to
IPMC. Moreover, the effect of redundant BIER packets may be
mitigated. If a specific part of the BIER domain accommodates
only BFERs from a single subdomain, only packets for that

subdomain will be forwarded to that part of the network,
which avoids redundant packets in this area. Thus, when
subdomains are chosen appropriately, BIER may be able to
deliver multicast traffic with only little extra traffic compared
to IPMC.

IV. ALGORITHMS FOR BIER CLUSTERING

As explained in the previous section, sudomains for BIER
domains should be defined such that the overall load from
multicast traffic is low in the entire network even if multiple
redundant BIER packets need to be sent to BFERs in different
subdomains.

We first formalize this challenge as the “BIER clustering
problem”. Then, we propose three classes of algorithms to
assign BFERs to subdomains of a BIER domain: random,
optimal, and heuristic. For optimal solutions, we propose
topology-specific algorithms for selected, regular topologies.
For arbitrary topologies we propose an integer linear program
(ILP) to optimally solve the BIER clustering problem. Finally,
we suggest a heuristic algorithm that may be used when the
ILP is not solvable for complexity reasons.

A. The BIER Clustering Problem
We introduce nomenclature and constraints as well as the

objective function for BIER clustering, and discuss alternate
optimization goals.

1) Nomenclature and Constraints: A network topology is
given by a set of n vertices V and a set of edges E . The set of
edges on the path between any two nodes v, w ∈ V is denoted
by p(v, w) ⊆ E ; it is inherited by the routing underlay. The
objective of the clustering is to find a set of subdomains C so
that any subdomain S ∈ C is a subset of all nodes S ⊆ V and
the union of all subsets covers all nodes, i.e.,

⋃
S∈C S = V .

Moreover, the size of a subdomain is limited by the length of
the bitsring b.

In theory, there is no limit on the number of subdomains and
subdomains may overlap. However, more subdomains imply
more forwarding information on the BFRs, more complex bit-
string definition for a multicast group, and longer subdomain
identifiers. Therefore, we keep the number of subdomains as
low as possible. We further assume that any node of the BIER
domain is a BFER. Therefore, the number of subdomains is
s = dnb e. We require the subdomains to be disjoint. This
simplifies the algorithms and has no impact on the results
as the network sizes in our experiments are multiples of
maximum subdomain sizes.

2) Objective Function: The objective function for the clus-
tering is to keep the overall traffic low. We define the overall
traffic as the number of packets carried over all links of the
BIER domain when every node sends a packet to every other
node. The traffic induced by a BIER packet sent from a single
BFIR v to all BFERs within a subdomain S is the number of
edges traversed, i.e.,

∣∣⋃
w∈S p(v, w)

∣∣. Thus, the overall BIER
traffic load is

ρ =
∑

v∈V

∑

S∈C

∣∣∣∣∣
⋃

w∈S
p(v, w).

∣∣∣∣∣ (1)

This metric is to be minimized by a clustering C.
3) Alternate Optimization Goals: Future work may opti-

mize the clustering so that more subdomains are allowed.
Then, some subdomains may overlap and BFIRs can choose
over which subdomains a BFER will be reached. This in-
creases the potential for the minimization of overall traffic
so that even fewer redundant BIER packets may need to be
generated. This, however, requires the knowledge of the IPMC
groups and needs more resources on BFRs and BFIRs.

B. Random BIER Clustering

We briefly explain random BIER clustering. A bitstring
length of b is given. A set of n BFERs is subdivided into equal-
size s = dnb e subdomains. BFERs are randomly assigned to
these subdomains whereby their size is limited to b BFERs.
In Section V-C we use this algorithm as a baseline for
comparison.

C. Optimal BIER Clustering for Selected Topologies

We describe optimal clusterings for selected, regular topolo-
gies: full mesh, line, ring, and perfect binary tree. We renounce
on a formal proof of optimality as this is rather obvious.
For arbitrary topologies we provide an ILP-based optimization
algorithm in the next subsection.

1) Full Mesh: Here, random assignment is optimal. In full
meshes, all traffic is exchanged over a direct link between
source and destination because all nodes are neighbors. How-
ever, in such topologies, there is no traffic reduction potential
for multicast and we do not consider full meshes any further.

2) Line Topologies: Start at one end of the line. Assign
the next b neighboring nodes to a subdomain. Repeat until all
nodes are assigned. The last subdomain may have less than b
nodes.

3) Ring Topologies: Select an arbitrary position in the ring
and choose a direction. Assign the next b neighboring nodes
to a subdomain. Repeat until all nodes are assigned. The last
subdomain may have less than b nodes.

4) Perfect Binary Trees: We consider a perfect binary tree.
The depth of a node is its distance to the root plus one so that
the leaves have maximum depth. We denote their depth as the
height h of the tree. We state that a perfect binary tree with
height h has 2h − 1 nodes.

We assume that the bitstring size is b = 2k. It can
accommodate a perfect binary tree with height k. We give
an algorithm to cluster a perfect binary tree with height h into
2h−k subdomains with up to 2k nodes. We take all subtrees
with roots of depth h−k+1 as initial subdomains. The other
unassigned nodes are assigned to a nearest possible subdomain
which still accepts additional nodes. Thereby, the assignment
order of these nodes is inverse to their depth. The order among
nodes with equal depth does not matter.

D. Optimal BIER Clustering for Arbitrary Topologies

We first explain fundamentals of integer linear programs
(ILPs). Then, we apply them for optimal clustering of BIER
domains.

1) Fundamentals of ILPs: An ILP describes the solution
space of an optimization problem with so-called decision vari-
ables and linear inequalities. Parameters of the optimization
problem serve as coefficients in the inequalities. A linear
objective function describes the quality of possible solutions
and is to be minimized.

ILP solvers find the best integer solution for decision vari-
ables that fulfill all inequalities. During the solution process,
an ILP solver indicates lower and upper bounds regarding the
objective value for the best solution. The upper bound is the
value for the best solution found so far. While progressing,
better solutions may be found and the lower bound for the
best solution may increase. If upper and lower bound meet,
the ILP solver found an optimal solution.

2) BIER Clustering Using ILPs: We build an ILP that
describes the solution space for BIER clustering and an
objective function for the overall traffic load given in Equation
(1). Its output is an optimal clustering C of the network that
minimizes the objective function.

∀v ∈ V :
∑

S∈C
xSv = 1 (2)

S ∈ C :
∑

v∈V
xSv ≤ b (3)

∀v, w ∈ V, e ∈ E ,S ∈ C : pe,v,w · xSw ≤ ySv,e (4)

∀v ∈ V, e ∈ E ,S ∈ C : ySv,e ≤
∑

w∈V
pe,v,w · xSw (5)

min: ρ =
∑

v∈V

∑

S∈C

∑

e∈E
ySv,e (6)

The ILP is given by Equation (2), Inequalities (3)–(5), and
the objective function (6). It contains two types of binary
decision variables. The decision variable xSv indicates whether
node v belongs to subdomain S; it is 1 if v ∈ V is in
subdomain S, otherwise it is 0. Equation 2 enforces that any
node is part of exactly one subdomain. Inequaltiy 3 ensures
that a subdomain contains at most b nodes. The decision
variable ySv,e indicates whether edge e is part of the multicast
tree from node v to any node w ∈ S. It depends on xSv and
the forwarding information. The latter is given by coefficients
pe,v,w which are 1 if edge e is on the path from v to w;
otherwise the coefficient is 0. This dependency is modelled
by Inequalities 4 and 5. Equation 4 ensures that ySv,e = 1 if e
is part of the path from BFIR v to any BFER w in subdomain
S. Equation 5 ensures that the decision variable ySv,e is 0 if e
is not part of any path from v (BFIR) to any w (BFER) in S;
thereby the membership w ∈ S is expressed only indirectly
by w ∈ V and the decision variable xSw.

The objective function in Equation (6) quantifies the overall
traffic as defined in Equation (1) and is to be minimized.

E. Heuristic BIER Clustering

We propose a heuristic clustering algorithm that consists
of two phases. Phase 1 selects initial subdomains. Phase

2 improves these subdomains according to Equation (1) by
exchanging the assignment of node pairs to their subdomains.

Phase 1 works as follows. First, randomly select s nodes as
center nodes of the different subdomains. Second, add further
nodes to the subdomains until their maximum size b is reached.
To that end, nearest non-assigned nodes are assigned to the
center nodes in round-robin fashion. This yields a clustering
of the BIER domain into subdomains. We repeat Phase 1 to
generate 10 · s clusterings and choose the best according to
the objective function in Equation (1) to continue with it in
Phase 2.

Phase 2 improves the clustering. First, randomly select two
nodes that have neighbors in other subdomains and that are
are assigned to different subdomains. Swap their assignment if
this reduces the overall load according to Equation (1). Repeat
this procedure until ρ from Equation (1) does not decrease for
n = |V| steps. When computing a clustering for a network,
we perform the presented algorithm 20 times and take the best
solution.

This algorithm is simple but works better than more com-
plex approaches we have evaluated before. We evaluate the
quality of this heuristic in the next section.

V. COMPARISON OF BIER CLUSTERING ALGORITHMS

In this section we compare the BIER clustering algorithms
from the previous section with regard to runtime and quality.
First we present the topologies that we use for evaluations
in this paper. Then, we demonstrate that the runtime of the
ILP-based optimization is feasible only for small networks.
Finally, we compare the quality of the subdomains obtained
for different algorithms, topologies, and network sizes.

A. Topologies

In this work we investigate delivery of multicast traffic in
various network topologies: full mesh, line, ring, perfect binary
tree, and mesh networks with node degree d ∈ {2, 4, 6, 8}.
We refer to the latter as mesh-d. We construct them using the
topology generator BRITE [37] which leverages a Waxman
model [38]. While the first mentioned topologies are regular
so that there is only a single choice for a network with n
nodes, mesh-d networks are randomly constructed. Therefore,
we generate 10 different representatives and compute average
values for the considered metrics. The 95% confidence inter-
vals are below 0.3% for all reported results so that we omit
them in all tables and figures.

Topology n = 64 n = 128
s = 2 s = 4 s = 2 s = 4

Line 0.11 3.80 1.07 45.51
Ring 66.51 21139.70 3633.59 -

Perfect binary tree 0.11 1.10 0.33 6.71
Mesh-2 0.06 3.59 0.21 22.67
Mesh-4 76.09 - - -
Mesh-6 718.23 - - -
Mesh-8 3883.62 - - -

Tab. 1: Time to solve ILPs for BIER clustering in seconds.
Some instances could not be solved within 12 hours.

B. Runtime for ILP-Based Optimization
We measure the runtime to solve ILPs for BIER clustering

with the ILP solver Gurobi 9.1 on a Ryzen 3900X CPU with
12 cores running at 3.8 GHz with 64 GB RAM.

Table 1 compiles the runtimes of the solver for different
network topologies, network sizes, and number of subdomains.
Perfect binary trees have one node less than indicated in the
table. The runtime to solve the ILPs increases with network
size and in particular with the number of subdomains. The
network topology also has a significant impact. For some
topologies, networks with 128 nodes or with 4 subdomains
cannot be solved within 12 hours.

In contrast, the heuristic algorithm has a runtime of a few
seconds for any topology with n = 1024 nodes, and s = 4
subdomains. For n = 8192 nodes and s = 32 subdomains, it
takes 8–16 h for mesh-4 and mesh-6, 16–24 h for lines, perfect
binary trees, mesh-2, and mesh-8, and about 3 days for rings.

Thus, solving the ILP for optimal BIER clustering is in-
feasible for realistic problem instances, but the runtime of
the heuristic algorithm is acceptable even for large networks.
Therefore, we utilize for the evaluations in Section VI the
topology-specific solutions of Section IV-C for lines, rings,
and perfect binary trees, and the heuristic algorithm for mesh-
d networks.

C. Quality Comparison
We now compare the quality of heuristic results with those

from optimal and random subdomain assignment. The metric
is the overall traffic load ρ with BIER when every node sends
a packet to any other node (see Equation (1)).

We first consider mesh-d, for which only the ILP-based
algorithm can deliver optimal results but only for small
networks. Table 2 shows the overall traffic for subdomains
generated with heuristic and with random assignment relative
to the overall traffic for optimal subdomains. All heuristic
results are close to optimum. We observe for mesh-2 that larger
networks and more subdomains slightly degrade the results of
the heuristic algorithm. Random assignment is clearly worse,
i.e., it generates 33%-80% more extra traffic than optimal
subdomains while heuristic assignment causes only 0.3%-
1.5% more extra traffic. The quality of the heuristic results
tends to improve with increasing node degree.

Topology n s Heuristic (%) Random (%)

Mesh-2
64 2 100.3 132.6

4 100.7 162.2

128 2 100.5 133.7
4 101.5 179.8

Mesh-4 64 2 100.3 115.2
Mesh-6 64 2 100.4 110.6
Mesh-8 64 2 100.3 107.1

Tab. 2: Overall traffic load for heuristic and random BIER
clustering depending on network size n and number of sub-
domains s; numbers are relative to the overall traffic load for
optimal subdomains computed based on ILP solutions.

Now we discuss larger, regular topologies for which the
algorithms of Section IV-C provide optimal results. We clus-

ter the networks into subdomains of size b = 256. The
results are compiled in Table 3. We consider networks with
n ∈ {256, 512, 1024, 2048, 4096, 8192} nodes, an exception
are perfect binary trees with only n− 1 nodes. Consequently,
multiple subdomains s ∈ {1, 2, 4, 8, 16, 32} are needed. The
overall traffic load is given relative to the one for optimal
subdomains.

n s
Line (%) Ring (%) Perfect binary tree

(%)
Heur. Rnd. Heur. Rnd. Heur. Rnd.

256 1 100 100 100 100 100 100
512 2 100 159.5 100 133.1 101.2 142.8

1024 4 100 212.2 100 199.1 100.8 197.2
2048 8 100 249.3 100 265.1 100.6 262.5
4096 16 100 271.8 108.7 317.9 104.9 336.9
8192 32 100 284.3 134.1 353.0 118.0 416.9

Tab. 3: Overall traffic load for heuristic and random BIER clus-
tering depending on network size n and number of subdomains
s; numbers are relative to the overall traffic load for optimal
subdomains computed based on topology-specific solutions.

We observe that the quality of the heuristic is almost optimal
for up to 2048 nodes. Beyond that, the quality degrades by
up to 34% for rings compared to optimum. The quality for
lines and perfect binary trees is better with a degradation of
at most 18%. The results with random assignment are much
worse than those with optimum and heuristic assignment.

We draw two major conclusions. First, optimization of
subdomains is important as random subdomains are likely
to cause a lot more extra traffic than needed in large BIER
domains. Second, subdomains obtained through the presented
heuristic are almost optimal for networks up to 2048 nodes,
beyond that we see a degradation. However, even then heuristic
subdomains are still much better than random subdomains. The
heuristic is needed for the evaluation of mesh-d networks in
Section VI. We believe that the quality of the heuristic results
for mesh-d is acceptable even for large networks because the
heuristic algorithm performed well in large networks for lines,
rings, and perfect binary trees. Therefore, the method may be
suitable for application in practice.

VI. TRAFFIC SAVINGS WITH IPMC AND BIER

In this section we investigate the potential of multicast
variants, i.e., IPMC and BIER, to reduce the traffic load
from multicast traffic relative to unicast, and compare it with
each other. We first discuss the methodology. Afterwards we
study the reduction potential for overall traffic depending on
network size and multicast group size. Then, we show that
both IPMC and BIER can well avoid heavily loaded links.
Finally, we examine the impact of header size on the traffic
saving potential of BIER.

A. Methodology

We describe the general approach, investigated network
topologies, and how BIER subdomains are clustered.

0.0

0.1

0.2

0.3

0.4

256 512 1024 2048 4096 8192
Number of nodes

R
el

at
iv

e
ov

er
al

l t
ra

ffi
c Line

Ring
Binary tree
Mesh-2

Mesh-4
Mesh-6
Mesh-8

(a) IPMC relative to unicast.

0.0

0.2

0.4

0.6

256 512 1024 2048 4096 8192
Number of nodes

R
el

at
iv

e
ov

er
al

l t
ra

ffi
c Line

Ring
Binary tree
Mesh-2

Mesh-4
Mesh-6
Mesh-8

(b) BIER relative to unicast.

1

2

4

6
8

10
12

256 512 1024 2048 4096 8192
Number of nodes

R
el

at
iv

e
ov

er
al

l t
ra

ffi
c Line

Ring
Binary tree
Mesh-2
Mesh-4
Mesh-6
Mesh-8

(c) BIER relative to IPMC.

Fig. 3: Overall traffic load when every node sends one packet to all other nodes, depending on the network size.

1) General Approach: It is obvious that multicast groups
can be very different, both in size and geographical distri-
bution. Moreover, networks supporting multicast can have
different topology. As those factors likely impact the efficiency
of multicast variants, we study them depending on network
topology, network size, and multicast group size. We study
the topologies presented in Section V-A; if the topologies
are random, we report averages from 10 different topologies
and omit the small confidence intervals as mentioned. The
networks have n ∈ {256, 512, 1024, 2048, 4096, 8192} nodes,
with the exception of perfect binary trees that have only
network size n−1. To quantify the traffic savings potential of
IPMC and BIER, we relate their overall load for a specific
traffic scenario to the one of unicast. The overall load is
the number of packets resulting from the traffic scenario,
summed up over all links in the network (cf. Equation (1)
for BIER). The considered traffic scenarios are maximum
multicast groups, i.e., every node sends a packet to all other
nodes in the network, and partial multicast groups, i.e., every
nodes sends a packet to a given number of randomly chosen
nodes. For all evaluations, packets follow shortest path trees
based on the hop count metric.

The traffic reduction potential may vary among links. Cen-
tral links tend to have a much higher load than others so that
they may profit more from traffic load reduction through IPMC
or BIER. Therefore, we also study link load reduction on links.

2) BIER Clustering: If not stated otherwise, we assume
in our studies for BIER a bitstring size of b = 256 bits
because that value must be supported by all BIER-capable
equipment. Thus, b is also the maximum number of BFERs
in subdomains. We assume that all nodes are BFERs. That
means, when networks have more than b nodes, the nodes are
partitioned into a minimum number of s = dnb e subdomains.

For lines, rings, and perfect binary trees, the optimum
clustering from Section IV-C is applied while random mesh
topologies are clustered using the heuristic algorithm from
Section IV-E.

B. Reduction of Overall Traffic

We evaluate the potential for the reduction of overall traffic
through multicast variants relative to unicast and compare the
efficiency of BIER with the one of IPMC. We first study the

impact of network topology and size and then the impact of
network toplogy and multicast group size.

1) Impact of Network Size: We evaluate the savings po-
tential for overall traffic through multicast variants. To that
end, we consider different network topologies and sizes and
maximum multicast groups. We study IPMC vs. unicast, BIER
vs. unicast, and BIER vs. IPMC.

a) IPMC vs. Unicast: Figure 3(a) shows the overall
traffic for IPMC relative to unicast for multiple network
topologies depending on the network size. The IPMC traffic
load decreases relative to the unicast traffic load with increas-
ing network size. There is a large reduction potential in line
and ring networks so that the IPMC traffic volume is less than
2% compared to the one of unicast. In perfect binary trees
the traffic can be reduced to 10% for n = 255 nodes and to
5% for n = 8191 nodes. Random mesh networks have a lower
reduction potential that decreases with increasing node degree.

We observe an obvious dependence of the traffic reduction
potential of IPMC on the network topology. We show that it
is 1

l in the presence of maximum multicast groups. Multicast
requires n− 1 hops to distribute a packet from one source to
n− 1 receivers as this is the number of links in any shortest-
path tree. Thus, n · (n − 1) hops are required to distribute a
packet from each node to all other nodes. When the same is
done with unicast, any source node v ∈ V sends a packet to
any destination node w ∈ V . This requires |p(v, w)| hops per
v/w pair, which is in sum

∑

v∈V

∑

w∈V
|p(v, w)| =n·(n− 1)·

∑
v∈V

∑
w∈V |p(v, w)|

n · (n− 1)

= n·(n− 1) · l. (7)

This follows that IPMC can reduce the overall traffic to 1
l

compared to unicast. Lines and rings have by far the longest
average path length and it strongly increases with increasing
network size. In other topologies, average path lengths are
clearly lower and increase slowly with the network size.
The average path length correlates with the node degree and
increases in the following topologies: mesh-8, mesh-6, mesh-
4, mesh-2 and perfect binary trees.

b) BIER vs. Unicast: Figure 3(b) presents the overall
traffic load for BIER relative to unicast. The number of re-
quired subdomains increases with the network size and thereby

0.00

0.25

0.50

0.75

1.00

1 4 16 64 256 1024
Number of receivers

R
el

at
iv

e
ov

er
al

l t
ra

ffi
c Line

Ring
Binary tree
Mesh-2
Mesh-4
Mesh-6
Mesh-8

(a) IPMC relative to unicast.

0.00

0.25

0.50

0.75

1.00

1 4 16 64 256 1024
Number of receivers

R
el

at
iv

e
ov

er
al

l t
ra

ffi
c Line

Ring
Binary tree
Mesh-2

Mesh-4
Mesh-6
Mesh-8

(b) BIER relative to unicast.

1.0

1.5

2.0

2.5

1 4 16 64 256 1024
Number of receivers

R
el

at
iv

e
ov

er
al

l t
ra

ffi
c Line

Ring
Binary tree
Mesh-2

Mesh-4
Mesh-6
Mesh-8

(c) BIER relative to IPMC.

Fig. 4: Overall traffic load depending on the size of the multicast group in networks with n = 1024 nodes.

the number of BIER packets needed for these subdomains.
We observe that BIER achieves the largest traffic reduction
in lines and rings (around 97%), followed by perfect binary
trees and mesh networks with node degree 2 (around 90%).
Mesh networks with node degrees 4, 6, and 8 have a lower
savings potential of around 50% and BIER’s traffic savings
potential relative to unicast decreases with increasing network
size. The latter is different to IPMC (cf. Figure 3(a)). Thus,
BIER can reduce the load of multicast traffic similarly well
as IPMC, except in large, highly meshed networks in spite of
well clustered subdomains.

c) BIER vs. IPMC: To compare BIER directly with
IPMC, we consider the fraction of overall traffic load of
BIER and the one of IPMC in Figure 3(c). In line and ring
networks, BIER causes a multiple (3 - 11 times) of the traffic
that occurs with IPMC if the number of subdomains is very
large, i.e., 8, 16, and 32 for network sizes of 2048, 4096, and
8192 nodes. However, the savings compared to unicast are
still enormous, i.e., more than 98%. In mesh networks with
node degee 4, 6, and 8, the traffic load with BIER compared
to IPMC increases about logarithmically with network the
network size and roughly doubles the load with IPMC in very
large networks. In perfect binary trees and mesh networks with
node degree 2, the traffic load with BIER relative to IPMC also
increases with network size, but BIER causes only 40% more
traffic than IPMC in very large networks although up to 32
subdomains are supported.

2) Impact of Multicast Group Size: We evaluate the in-
fluence of the multicast group size on the traffic reduction
potential of multicast variants. We perform this study for
different network topologies and a network size of n = 1024.
Every node sends a packet to a random set of receivers. The
set sizes are r ∈ {1, 3, 7, 15, 31, 63, 127, 255, 511, 1023} large,
for perfect binary trees the maximum number of receivers is
r = 1022. As these are random experiments, we run each
experiment 20 times to obtain very small confidence intervals
that we omit in the figures for the sake of clarity.

a) IPMC vs. Unicast: Figure 4(a) shows the overall
traffic load of IPMC relative to unicast. It decreases with
increasing multicast group size. For small multicast group
sizes, IPMC can reduce the overall traffic only by little. In line
and ring networks, large traffic savings are achieved already
for small multicast groups, followed by perfect binary trees

and random meshes with node degree 2. Random meshes with
node degree 4, 6, and 8 require rather large multicast groups
to provide a substantial savings potential.

b) BIER vs. Unicast: Figure 4(b) shows the overall
traffic load for BIER vs. unicast. The figure looks similar to
Figure 4(a), but all lines are slightly higher due to the extra
traffic caused with BIER. To make the difference between
BIER and unicast better visible, we compare their results
directly in the following.

c) BIER vs. IPMC: Figure 4(c) shows the overall traffic
load with BIER compared to the one of IPMC. For a single
receiver, BIER and IPMC are equally efficient as BIER does
not send any redundant packets. When the number of receivers
increases, the overhead of BIER increases as more redundant
BIER copies are sent. The values for r = 1024 receivers are
same as the values for network size n = 1024 in Figure 3(c).
Apart from that, BIER’s overhead compared to IPMC depends
on the network topology. For line and ring topologies, the
overhead of BIER relative to IPMC increases up to a multicast
group size of 64 receivers and remains constant afterwards. For
mesh networks with node degree 4, 6, and 8, the overhead in-
creases logarithmically with increasing number of subscribers.
And for line and ring networks, the overhead decreases when
the number of subscribers is 8 receivers or more.

C. Avoidance of Heavily Loaded Links

For some network topologies, the savings potential through
multicast is only moderate. However, traffic is not equally
distributed over all links of a network as central links tend to
carry more traffic. We show that multicast variants can greatly
reduce the load on those links compared to unicast.

We consider again maximum multicast groups and networks
with n = 1024 nodes, n = 1023 for perfect binary trees. We
count the number of packets carried over each link and discuss
the complementary cumulative distribution function (CCDF)
of the link loads for unicast, IPMC, and BIER. In case of
mesh-d, the load information of multiple networks is integrated
in a single CCDF.

1) Link Load Distribution with Unicast: The CCDF for link
loads with unicast is illustrated in Figure 5(a). In line and ring
networks, a large percentage of links carries a large number
of packets. With rings, any link carries the same number of
packets due to symmetry. In perfect binary trees the number of

0

25

50

75

100

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

Link load l (pkts)

%
 l
in

ks
 w

/
lin

k
lo

a
d
 >

 l

Line
Ring
Binary tree
Mesh-2
Mesh-4
Mesh-6
Mesh-8

(a) Unicast.

0

25

50

75

100

2
0

2
2

2
4

2
6

2
8

2
10

Link load l (pkts)

%
 l
in

ks
 w

/
lin

k
lo

a
d
 >

 l

Line
Ring
Binary tree
Mesh-2

Mesh-4
Mesh-6
Mesh-8

(b) IPMC.

0

25

50

75

100

2
0

2
2

2
4

2
6

2
8

2
10

2
12

Link load l (pkts)

%
 l
in

ks
 w

/
lin

k
lo

a
d
 >

 l

Line
Ring
Binary tree
Mesh-2

Mesh-4
Mesh-6
Mesh-8

(c) BIER.

Fig. 5: Complementary cumulative distribution function (CCDF) for link loads in networks with 1024 nodes; every node sends
a packet to all other nodes.

packets per link is clearly lower than in lines and rings. Half
of the links has only a load of 1022 packets, those are adjacent
to the leaves. There are also a few links with a very high link
load, those are links close the root. Random mesh networks
with a node degree 2 have a similar CCDF as perfect binary
trees. The random mesh networks with a node degree of 4,
6, and 8 have increasingly lower link loads and less variation
regarding link loads.

2) Link Load Distribution with IPMC: Figure 5(b) shows
the CCDF for link load with IPMC. The upper limit is now
1023 packets. Again, many links in lines and rings carry a
large number of packets. In perfect binary trees and random
mesh networks with node degree 2, 25% of the links have a
very low load while 50% have a high load. In perfect binary
trees, those are links close to the leaves and to the root,
respectively. Random meshes with node degree 4, 6, and 8
reveal again a load continuum but it is at a lower load level
compared to unicast. The x-scales in Figures 5(a) and 5(b) are
different. This suggests that there are many links for which
IPMC decreases the traffic load by orders of magnitude. Thus,
IPMC avoids in particular heavily loaded links compared to
unicast.

3) Link Load Distribution with BIER: Figure 5(c) shows
the CCDF of link loads with BIER. It looks similar to the
one of IPMC in that the link load is mostly limited to 1023
packets. However, some links in line and ring networks have
larger loads up to around 1600 packets, and a very few links in
mesh networks with node degree 2 have loads of up to 3976
packets, i.e., roughly the maximum link load for multicast
multiplied by the number of subdomains s. Mesh networks
with a node degree of 4, 6, and 8 generally lead to lower link
loads as their traffic is not concentrated on a few links.

The most important finding is that BIER also avoids very
high loads on links compared to unicast. Only a very few links
experience substantially higher link loads than with IPMC.
Thus, BIER efficiently avoids heavily loaded links in a similar
way as IPMC.

D. Impact of BIER Header Size

On the one hand, BIER largely avoids redundant packets
over links, on the other hand BIER causes additional header
overhead. There is an obvious tradeoff regarding header size:

●

●

●
● ● ●

●
● ● ●

●

●

0

100

200

300

400

256 512 1024 2048 4096 8192
Bitstring size (Bits)

A
bs

ol
ut

e
ov

er
al

l t
ra

ffi
c

(G
B

)

●

●

Ring
Line
Binary tree
Mesh−2
Mesh−4

Fig. 6: Overall traffic load depending on the bitstring size in
the BIER header in networks with n = 8192 nodes.

small bitstrings add only little header overhead, but require
many redundant packets in large network, large bitstrings add
lots of header overhead, but require only a few redundant
packets in large networks. We expect an optimal header size in
between. To study this effect, we first explain our methodology
and then discuss experimental results.

1) Methodology: We consider networks with n = 8192
nodes, n = 8191 for perfect binary trees. Multicast groups
have maximum size, i.e., n participants, and each participant
sends a single packet. We investigate different bitstring sizes
of b ∈ {256, 512, 1024, 2048, 4096, 8192} bits that require
dnb e SDs. We assume a payload size of 500 B which is the
average size of IP packets on the Internet [39]. In contrast
to the preceding experiments, we now take the amount of
overall traffic in bytes as performance metric as this captures
the effect of the BIER header size. We omit mesh-6 and mesh-
8 topologies because hop count and average path lengths are
almost identical to mesh-4.

2) Results: Figure 6 shows the overall traffic volume for
different bitstring sizes. The ring and the line topology lead to
a large traffic volume for small bitstring sizes b. This results
from long paths of most of the packets replicated for the dnb e
SDs. Larger bitstring sizes reduce the number of SDs and
thereby the replicated packets as well as the traffic volume.
The optimal bitstring size for the line is b = 4096 bits and

the one for the ring is b = 2048 bits. Larger bitstring sizes
add so much header overhead that the overall traffic increases
again. Topologies with shorter paths like binary trees, mesh-2
or mesh-4 networks reveal a clearly lower traffic volume for
small bitstring sizes than lines or rings. The optimal bitstring
size is b = 256 bits for binary trees, it is b = 512 bits for mesh-
2, and it is b = 1024 bits for mesh-4. However, suboptimal
bitstring sizes between 256 and 2048 bits lead only to slightly
larger traffic volumes. Thus, any of these bitstring sizes is
suitable for typical network topologies.

VII. IMPACT OF SINGLE LINK FAILURES

We have optimized BIER subdomains for failure-free for-
warding. In case of link failures, rerouting occurs in IP
networks and then traffic is diverted around failed links.
As a consequence, individual link loads and overall traffic
load may increase. BIER with subdomains optimized for
failure-free routing may lead to an even larger traffic increase
than IPMC forwarding. Therefore, BIER may require more
backup capacity than IPMC. We investigate these issues in
the following. We first explain our methodology. Then, we
study the overall traffic load and maximum link loads in case
of single link failures, as well as the overall backup capacity
required to accommodate rerouted traffic.

A. Methodology

Single link failures may partition a network topology. Then
multicast groups are also partitioned into subgroups that
cannot reach each other anymore. This can be avoided in
resilient networks with 2-link-connected topologies and rerout-
ing after failure detection. Thereby, end-to-end connectivity
is not impaired so that participants of a multicast group
can still reach each other. As a consequence, we consider
only 2-link-connected topologies in this context, i.e., networks
which are still connected after any single link failure. As a
consequence, we do not consider lines and binary trees as
they may be partitioned through single link failures. Rings
are 2-link-connected by definition. We reuse the mesh-{4,6,8}
toplogies from Section V-A which were chosen for the entire
study such that they are 2-link-connected.

We consider networks with 1024 nodes and a bitstring
with b = 256 bits. We optimize the subdomains for the
failure-free case using the heuristic clustering algorithms from
Section IV-E for mesh-d topologies, and the optimal clustering
algorithm from Section IV-C for the ring topology. We assume
again a full multicast group and each participant sends a single
packet to all other participants. We compute the effect of all
single link failures for the mentioned topologies. That means,
we remove the failed link from the topology, calculate new
shortest paths, and compute the performance metric based on
the new traffic distribution; thereby, the subdomains remain
unchanged. As mesh-d topologies are random, we report
averaged results for them from 10 different topology samples.

In our experiments we count number of packets carried over
links. When we extend the single sent packets to flows, we
obtain observed rates which are proportional to the numbers

of counted packets. To be more intuitive, we sometimes talk
about rates and required capacities rather than counted packets,
in particular when it comes to backup resources.

B. Overall Traffic Load

Traffic rerouting due to link failures possibly leads to longer
paths, which may increase the overall link load in the network.
Thus, we quantify the impact of single link failures on the
overall traffic load (Equation 1) and compare it to the failure-
free case both for IPMC and for BIER.

As the multicast groups in our experiments contain every
node in the network, the overall traffic load for IPMC is n ·
(n − 1) packets, no matter if a link fails. This is due to the
fact that n packets are each forwarded along a single shortest
path tree, and each shortest path tree consists of n− 1 hops.
Thus, the traffic load does not increase with IPMC in case of
single link failures.

0

25

50

75

100

0 5 10 15 20 25
Relative load change c (%)

%
 li

nk
 fa

ilu
re

s
w

/ r
el

. c
ha

ng
e

>
 c

Ring

(a) Ring.

0

25

50

75

100

−0.2 −0.1 0.0 0.1 0.2
Relative load change c (%)

%
 li

nk
 fa

ilu
re

s
w

/ r
el

. c
ha

ng
e

>
 c

Mesh−4
Mesh−6
Mesh−8

(b) Mesh-d.

Fig. 7: BIER with single link failures – CCDFs of rela-
tive overall traffic change compared to the failure-free case,
accumulated over all single link failures. Experiments are
conducted in networks with n = 1024 nodes, every node sends
a packet to every other node.

This is different with BIER. With BIER, d 1024256 e = 4
packet copies, one for each subdomain, are forwarded over
shortest path trees which consist of fewer hops than n − 1.

However, their overall number of hops may change when
traffic is rerouted. Therefore, we evaluate the change of overall
traffic load with BIER for all single link failures. Figures 7(a)
and 7(b) show CCDFs of relative overall traffic changes
accumulated over all single link failures. We first discuss
Figure 7(a) for a ring network. The overall traffic load rises
between 15% and 17.3% depending on the position of the
failed link. We explain this large increase as follows. Between
any two nodes, there are exactly two paths in a ring network
and the paths may have significantly different length. If the
shorter path fails, traffic is rerouted over the longer path. This
causes path stretch and leads to the observed increase in overall
traffic load.

We now study mesh-d topologies for which the CCDF of
the change in overall traffic load is presented in Figure 7(b).
The increase in overall traffic load is bounded by 0.2%. We
explain this as follows. In meshed networks with a node degree
between 4 and 8, multiple paths exist between any two nodes
and their lengths are likely to be similar. If the shortest path
fails, another path with similar length is mostly available,
which hardly increases the overall traffic load.

S

SD1 SD2

(a) Failure-free case.

S

SD1 SD2

(b) Single link failure.

Fig. 8: Example network with two BIER subdomains. In case
of the indicated link failure, the adapted shortest path tree for
the nodes in SD2 contains fewer hops than in the failure-free
case, which reduces the traffic load.

We further observe that in 75% of all single link failures,
the overall traffic load increases but in 25% the overall load
decreases. This observation does not seem intuitive as the
shortest path length for any pair of nodes remains unchanged
or increases in case of a link failure. Nevertheless, the load

may decrease as the shortest path tree towards the nodes in a
subdomain may be more compact after rerouting. We illustrate
this claim by the example in Figures 8(a) and 8(b). They show
a network partitioned into two subdomains, SD1 and SD2. The
shortest path tree starting in node S towards all nodes in SD2
contains two hops less in case of the considered link failure
(Figure 8(b)) than under failure-free conditions (Figure 8(a)).
This apparently more favorable path layout cannot be utilized
under failure-free conditions because BIER traffic is always
forwarded according to the paths in the underlay.

C. Maximum Load Increase on Links

When traffic is rerouted over another path, the traffic load
on the corresponding links increases. We record for each link
the maximum load increase observed for any single link failure
as this constitutes the required backup capacity for this link.

0

25

50

75

100

0 500 1000
Maximum load increase i (pkts)

%
 li

nk
s

w
/ m

ax
. i

nc
re

as
e

>
 i

BIER
IPMC

Mesh−4
Mesh−6
Mesh−8
Ring

Fig. 9: CCDFs of maximum link load increases for single link
failures. Experiments are conducted in networks with n =
1024 nodes, every node sends a packet to every other node.

Figure 9 shows the CCDFs of the maximum load increases
for all links. In ring networks, all links experience up to
512 more packets with IPMC in case of link failures. In
contrast with BIER, links carry between 768 and 1024 more
packets. This is because multiple redundant BIER packets
may be affected by the failure and are redirected. Therefore,
BIER requires substantially more backup capacity in rings
than IPMC and the exact amount depends on the location of
a link within its subdomain. In mesh-d networks, the CCDF
is almost a continuum. In networks with larger node degree,
links require less backup than in networks with smaller node
degree. This is due to shorter paths and less affected traffic,
shorter backup paths, and better traffic distribution in case
of link failures. Most notably, BIER causes about the same
maximum load increases as IPMC although BIER requires
more capacity than IPMC under failure-free conditions. We
explain this fact by an example. Figure 10(a) shows a link
carrying redundant BIER packets to two different subdomains.
When that link fails, the traffic is redirected over different
paths to the subdomains. IPMC would save a packet copy
in the failure-free case, but it results into the same traffic
distribution in this particular example.

S

SD1

SD2

(a) Failure-free case: two redundant packets are delivered over a link to two
different subdomains.

S

SD1

SD2

(b) Single link failure: the two packets are redirected over different backup
paths.

Fig. 10: Example network with two BIER subdomains. Re-
dundant BIER packets for different subdomains are redirected
over different paths.

Metric Ring Mesh-4 Mesh-6 Mesh-8

IPMC

Cap. w/o
backup 1047552 1047552 1047552 1047552

Cap. w/
backup 2095104 1857633 1559138 1422539

Abs.
backup cap. 1047552 810081 511586 374987

Rel. backup
cap. 1.00 0.77 0.49 0.36

BIER

Cap. w/o
backup 1051129 1395817 1418709 1406915

Cap. w/
backup 2881534 2263645 1962557 1813694

Abs.
backup cap. 1830405 867828 543848 406779

Rel. backup
cap. 1.74 0.62 0.38 0.29

BIER Fraction
w/o backup 1.003 1.33 1.35 1.34

/ IPMC Fraction w/
backup 1.375 1.22 1.26 1.27

Tab. 4: Overall capacity w/ and w/o backup as well as absolute
and relative backup capacity for IPMC and BIER. Capacities
are given in packets.

D. Overall Backup Capacity

We sum up link capacities for a network needed to carry the
considered traffic for failure-free conditions on the one hand
(capacity w/o backup) and for all single link failures on the
other hand (capacity w/ backup). The difference is the absolute
backup capacity. Table 4 compiles them for BIER and IPMC
in mesh-d and ring topologies. The relative backup capacity is

the ratio between absolute backup capacity and capacity w/o
backup.

The results show that IPMC require 100% relative backup
capacities for rings, but only 77%, 49%, and 36% for mesh-4,
mesh-6, and mesh-8 networks. In contrast, BIER needs 176%
backup capacity for rings, and 62%, 38%, and 29% for mesh-
4, mesh-6, and mesh-8 networks. This is less than for IPMC,
which seems surprising, but there is a simple explanation.
BIER requires more capacity w/o backup than IPMC, but only
little more backup capacity than IPMC. As a consequence,
BIER’s relative backup capacity is lower than the one for
IPMC.

Below the line, BIER does not lead to excessive backup
capacity demands when BIER subdomains are optimized for
failure-free scenarios. The relative backup capacity is even
lower than with IPMC. The ring network is an exception, but
also IPMC requires lots of capacity in rings.

VIII. CONCLUSION

BIER is a novel forwarding paradigm to carry IP multicast
(IPMC) traffic within so-called BIER domains. It is more
scalable than IPMC because core nodes remain unaware of
individual multicast groups. A problem arises for large BIER
domains where subdomains need to be defined to make all
egress nodes addressable. When an IPMC packet is distributed
via a BIER domain, a separate BIER packet is needed for
each subdomain that has a receiver for the IPMC packet. This
leads to redundant packets and we showed that their number
almost equals the number of subdomains if multicast groups
are about 3 times larger than the number of subdomains. These
redundant packets can significantly degrade BIER’s ability to
efficiently carry multicast traffic.

We argued that an appropriate choice of the subdomains can
mitigate that effect when multiple BIER packets are sent to
different regions of a network. Therefore, we defined the BIER
clustering problem and proposed several algorithms to cluster
a BIER domain into appropriate subdomains. We compared
the runtime and quality of these algorithms, and showed that
optimization of subdomains can greatly reduce the resulting
overall traffic compared to random subdomains.

We evaluated and compared the ability of IPMC and BIER
to reduce traffic load for multicast traffic relative to unicast
transmission in different network topologies. It depends on
the average path length in the network. IPMC can save lots
of traffic in line and ring networks, in binary trees and in
mesh networks with a low node degree. In mesh networks
with larger node degree the traffic savings potential is smaller.
It also depends on the network size. As BIER possibly sends
redundant packets in large domains, its ability to reduce traffic
load diminishes compared to IPMC. This also depends on
network topology and size. In large networks with 8192 nodes
and subdomain sizes of 256 nodes, BIER causes only moderate
extra traffic compared to IPMC in binary trees and mesh
networks with small node degrees. In contrast, it produces
10-12 times more traffic than IPMC in lines and rings, but
the traffic savings potential of BIER is still very large in

these topologies (∼ 98%). In mesh networks with larger
node degrees BIER doubles the overall traffic compared to
IPMC and also the traffic savings potential is clearly reduced.
These findings hold for maximum multicast groups. In smaller
multicast groups the traffic savings potential of IPMC and
BIER relative to unicast transmission is lower. While unicast
causes enormous traffic loads on some links, both IPMC
and BIER decrease such loads by orders of magnitude. The
residual load on these links is higher with BIER than with
IPMC due to redundant packets, but it is still on a low level.
We showed that there is an optimum size for the BIER header
which depends on the network topology. We investigated the
impact of single link failures on BIER domains with optimized
subdomains. Rerouting causes only little more traffic load and
the backup capacity needed for BIER networks is only little
more tha the one of pure IPMC networks. Below the line,
subdomains are a good means to scale BIER to large networks,
but they need to be carefully chosen to minimize extra traffic
due to redundant packets.

Further studies may improve BIER clustering algorithms
with regard to quality. They may also consider alternate
optimization goals such as the ability to take advantage of
overlapping subdomains for known multicast groups. Further-
more, scaling BIER-TE is a related problem but it requires
different approaches.

REFERENCES

[1] I. Wijnands et al., RFC 8279: Multicast Using Bit Index
Explicit Replication (BIER), https://datatracker.ietf.org/doc/
rfc8279/, Nov. 2017.

[2] S. Islam et al., “A Survey on Multicasting in Software-
Defined Networking,” IEEE Communications Surveys Tuto-
rials (COMST), vol. 20, 2018.

[3] Z. Al-Saeed et al., “Multicasting in Software Defined Net-
works: A Comprehensive Survey,” Journal of Network and
Computer Applications (JNCA), vol. 104, 2018.

[4] M. Shahbaz et al., “Elmo: Source Routed Multicast for Public
Clouds,” in ACM SIGCOMM, 2019.

[5] A. Iyer et al., “Avalanche: Data Center Multicast using
Software Defined Networking,” in International Conference
on Communication Systems and Networks, 2014.

[6] W. Cui et al., “Scalable and Load-Balanced Data Center
Multicast,” in IEEE GLOBECOM, 2015.

[7] X. Zhang et al., “A Centralized Optimization Solution for
Application Layer Multicast Tree,” IEEE Transactions on
Network and Service Management (TNSM), vol. 14, 2017.

[8] K. Mokhtarian et al., “Minimum-delay multicast algorithms
for mesh overlays,” IEEE/ACM Transactions on Networking,
vol. 23, 2015.

[9] X. Li et al., “Scaling IP Multicast on Datacenter Topologies,”
in ACM CoNEXT, 2013.

[10] M. A. Kaafar et al., “A Locating-First Approach for Scalable
Overlay Multicast,” in IEEE INFOCOM, 2006.

[11] J. Rückert et al., “Software-Defined Multicast for Over-the-
Top and Overlay-based Live Streaming in ISP Networks,”
Journal of Network and Systems Management (JNSM),
vol. 23, 2015.

[12] J. Rueckert et al., “Flexible, Efficient, and Scalable Software-
Defined Over-the-Top Multicast for ISP Environments With
DynSdm,” IEEE Transactions on Network and Service Man-
agement (TNSM), vol. 13, 2016.

[13] Y.-D. Lin et al., “Scalable Multicasting with Multiple Shared
Trees in Software Defined Networking,” Journal of Network
and Computer Applications (JNCA), vol. 78, 2017.

[14] M. J. Reed et al., “Stateless Multicast Switching in Software
Defined Networks,” in IEEE International Conference on
Communications (ICC), 2016.

[15] S.-H. Shen, “Efficient SVC Multicast Streaming for Video
Conferencing With SDN Control,” IEEE Transactions on
Network and Service Management (TNSM), vol. 16, 2019.

[16] T. Humernbrum et al., “Towards Efficient Multicast Com-
munication in Software-Defined Networks,” in IEEE Interna-
tional Conference on Distributed Computing Systems Work-
shops (ICDCSW), 2016.

[17] W. K. Jia et al., “A Unified Unicast and Multicast Routing and
Forwarding Algorithm for Software-Defined Datacenter Net-
works,” IEEE Journal on Selected Areas in Communications
(JSAC), vol. 31, 2013.

[18] C. A. S. Oliveira et al., “Steiner Trees and Multicast,” Math-
ematical Aspects of Network Routing Optimization, vol. 53,
2011.

[19] L. H. Huang et al., “Scalable and Bandwidth-Efficient Multi-
cast for Software-Defined Networks,” in IEEE GLOBECOM,
2014.

[20] S. Zhou et al., “Cost-Efficient and Scalable Multicast Tree in
Software Defined Networking,” in Algorithms and Architec-
tures for Parallel Processing, 2015.

[21] Z. Hu et al., “Multicast Routing with Uncertain Sources
in Software-Defined Network,” in IEEE/ACM International
Symposium on Quality of Service (IWQoS), 2016.

[22] J.-R. Jiang et al., “Constructing Multiple Steiner Trees for
Software-Defined Networking Multicast,” in Conference on
Future Internet Technologies, 2016.

[23] B. Ren et al., “The Packing Problem of Uncertain Multicasts,”
Concurrency and Computation: Practice and Experience,
vol. 29, 2017.

[24] S.-H. Shen et al., “Reliable Multicast Routing for Software-
Defined Networks,” in IEEE INFOCOM, 2015.

[25] A. Giorgetti et al., “First Demonstration of SDN-based Bit
Index Explicit Replication (BIER) Multicasting,” in IEEE
European Conference on Networks and Communications (Eu-
CNC), 2017.

[26] ——, “Bit Index Explicit Replication (BIER) Multicasting in
Transport Networks,” in International Conference on Optical
Network Design and Modeling (ONDM), 2017.

[27] D. Merling et al., “P4-Based Implementation of BIER and
BIER-FRR for Scalable and Resilient Multicast,” Journal of
Network and Computer Applications (JNCA), vol. 169, 2020.

[28] ——, “Hardware-Based Evaluation of Scalable and Resilient
Multicast With BIER in P4,” IEEE Access, vol. 9, 2021.

[29] H. Chen, M. McBride, S. Lindner, M. Menth, A. Wang, G.
Mishra, Y. Liu, Y. Fan, L. Liu, and X. Liu, BIER Fast ReRoute,
https://tools.ietf.org/html/draft-ietf-bier-frr, Jul. 2022.

[30] Y. Desmouceaux et al., “Reliable Multicast with B.I.E.R.,”
Journal of Communications and Networks, vol. 20, 2018.

[31] ——, “Reliable BIER with Peer Caching,” IEEE Transactions
on Network and Service Management (TNSM), vol. 16, 2019.

[32] T. Eckert et al., Tree Engineering for Bit Index Explicit
Replication (BIER-TE), https://datatracker.ietf.org/doc/html/
draft-ietf-bier-te-arch, Jul. 2021.

[33] W. Braun et al., “Performance Comparison of Resilience
Mechanisms for Stateless Multicast using BIER,” in
IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), 2017.

[34] G. Karypis et al., “A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs,” SIAM Journal on Scientific
Computing (SISC), vol. 20, 1998.

[35] R. Diekmann et al., “Shape-Optimized Mesh Partitioning
and Load Balancing for Parallel Adaptive FEM,” Parallel
Computing, vol. 26, 2000.

[36] S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE
Transactions on Information Theory, vol. 28, 1982.

[37] A. Medina et al., “BRITE: An Approach to Universal Topol-
ogy Generation,” in International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS), 2001.

[38] B. M. Waxman, “Routing of Multipoint Connections,” IEEE
Journal on Selected Areas in Communications (JSAC), vol. 6,
1988.

[39] F. Liu et al., “The packet size distribution patterns of the
typical internet applications,” in IEEE International Confer-
ence on Network Infrastructure and Digital Content, 2012,
pp. 325–332.

Publications

1.8 Learning Multicast Patterns for Efficient BIER Forwarding with P4

176

1

Learning Multicast Patterns for Efficient BIER
Forwarding with P4

Steffen Lindner, Daniel Merling, Michael Menth
Chair of Communication Networks, University of Tuebingen, Tuebingen, Germany

{steffen.lindner, daniel.merling, menth}@uni-tuebingen.de

Abstract—
Bit Index Explicit Replication (BIER) is an efficient domain-

based transport mechanism for IP multicast (IPMC) that in-
dicates receivers of a packet through a bitstring in the packet
header. Recently, BIER forwarding has been implemented on 100
Gbit/s hardware using the P4 programming language. However,
the implementation requires packet recirculation to iteratively
serve one next-hop after another. The objective of this paper is
to reduce this inefficiency.

Static multicast groups can be configured on P4 switches so
that traffic can be sent to all next-hops without recirculation. We
leverage that feature to make BIER forwarding more efficient.
However, only a limited number of static multicast groups can
be configured on a switch, which is not sufficient to cover all
potential port patterns. In a first step, we develop efficient BIER
forwarding that utilizes static multicast groups derived from
so-called configured port clusters. In a second step, we design
port clustering algorithms that observe multicast patterns and
compute configured port clusters which are more efficient than
randomly selected port clusters. These methods are based on
Spectral Clustering, an unsupervised machine learning technique.
We perform simulations that underline the effectiveness of this
approach to reduce inefficient packet recirculations. We further
implement the new forwarding behaviour on programmable
hardware and provide a controller that samples BIER packets on
the switch, runs the port clustering algorithms, and updates the
configured static multicast groups. We validate this open source
implementation in a testbed and show that the experimental
results are in line with the simulation results.

Index Terms—Software-Defined Networking, Bit Index Explicit
Replication, Multicast, Resilience, Scalability, Unsupervised Ma-
chine Learning

I. INTRODUCTION

IP multicast (IPMC) is an efficient way to distribute one-
to-many traffic. It is organized into multicast groups that are
identified by unique IP addresses. Traffic of a multicast group
is sent to all subscribers along a distribution tree, i.e., nodes
replicate and forward packets to specific neighbors towards
the subscribers. Therefore, only one packet is sent over each
involved link, which reduces the load in comparison to unicast.
To that end, core nodes store for each multicast group the
neighbours that should receive a packet copy. As a result,
traditional IPMC has two scalability issues. First, whenever
the composition of an IPMC group changes, signaling to core
nodes is necessary to update the neighbors that should receive
packet copies. Second, link or node failures, and topology

The authors acknowledge the funding by the Deutsche Forschungsgemein-
schaft (DFG) under grant ME2727/1-2. The authors alone are responsible for
the content of the paper.

changes may affect multiple multicast groups, which puts high
signaling and processing load on core devices.

The IETF proposed Bit Index Explicit Replication (BIER)
[1] as an efficient and stateless domain-specific transport
mechanism for IPMC traffic. Ingress routers equip an IPMC
packet with a bitstring in the BIER header which contains all
destinations of the packet within the domain. Core nodes repli-
cate and forward the BIER packet according to its bitstring
and the paths from the interior gateway protocol (IGP) which
is called routing underlay. Egress routers remove the BIER
header, and IPMC processing continues. With BIER, only
ingress and egress routers of a domain know IPMC groups
and are involved in signalling, but not the core routers.

Recently, we presented an open source BIER implementa-
tion for 100 Gbit/s in P4 for the Tofino ASIC hardware [2].
This implementation is inefficient as it requires one processing
cycle per next-hop of a BIER packet as packets are transmitted
iteratively instead of simultaneously. On the one hand this
is due to the fact that packet replication to a dynamic set
of outgoing ports is not supported on the specific hardware
device. On the other hand, it is difficult to derive the set of
outgoing ports from the bitstring within a single processing
cycle, which is a general challenge for all switch architectures.

In this paper we present an efficient BIER implementation
in P4 for the Tofino ASIC. First, we propose a forwarding
algorithm that utilizes static multicast groups to simultane-
ously forward BIER packets to many outgoing ports. However,
the number of configurable static multicast groups is limited
and does not suffice to cover all port combinations on a
32-port switch. Therefore, the algorithm leverages smaller
“configured” port clusters for which all port combinations are
configured as static multicast groups. This allows efficient
BIER forwarding within a very few processing cycles (at
most 3 or 4 on the Tofino). To further improve the effi-
ciency, we suggest to choose configured port clusters such that
they contain ports over which BIER packets are frequently
forwarded together. To that end, we propose port clustering
algorithms that learn port patterns from sampled BIER traffic
and compute configured port clusters that reduce the number
of required forwarding cycles. The methods are based on
Spectral Clustering which is an unsupervised machine-learning
technique. In practice, a controller applies port clustering from
time to time on recently sampled BIER traffic and updates the
configured port clusters on the switch.

The paper is structured as follows. In Section II and III
we describe related work and give an introduction to Bit
Index Explicit Replication (BIER). Sections IV and V give

2

a primer on the programming language P4 and cover impor-
tant aspects of the existing P4-based BIER implementation.
Section VI proposes the efficient BIER forwarding algorithm
and shows simulation results for arbitrarily selected configured
port clusters. Section VII suggests various port clustering
methods. Their performance is compared by simulation in
Section VIII and by hardware experiments in Section IX.
Finally, we conclude the paper in Section X.

II. RELATED WORK

In this section we first review related work on traditional
multicast and resilience. Then, we present work related to both
SDN- and BIER-based multicast. Finally, we review clustering
approaches.

A. Traditional Multicast

Islam et al. [3] and Al-Saeed et al. [4] investigate related
work for traditional multicast. The majority of cited papers aim
to improve the scalability of traditional IPMC. They present
intelligent tree-building mechanisms for multicast to make it
more efficient, e.g., by reducing required state, or signaling.

Elmo [5] encodes topology information of data centers in
packet headers to improve the scalability of IPMC. It leverages
characteristic properties of those topologies to reduce the size
of the forwaring information base (FIB) of core routers. The
Avalanche Routing Algorithm (AvRA) [6] follows a similar
approach where it optimizes link utilization for multicast by
leveraging topology characteristics of data center networks.
Dual-Structure Multicast (DuSM) [7] separates forwarding
structures for high-bandwidth and low-bandwidth traffic to
improve scalability and link utilization in data centers. Li et al.
[8] optimize the FIB to improve the scalability of traditional
multicast in data center networks. To that end, they propose
to partition the multicast address space and aggregate those at
bootleneck switches.

Application layer multicast (ALM) [9] monitors the traffic
on application-specific distribution trees to optimize their
structures for the corresponding group objective. Mokhtarian
et al. [10] construct minimum-delay trees to reduce latency
for delay sensitive data with different requirements like min-
average, min-maximum, real-time requirements, etc. Adaptive
SDN-based SVC multicast (ASCast) [11] follows a similar
approach. The authors describe an integer-linear program to
build optimal distribution trees and fast forwarding tables to
optimize multicast forwarding in terms of latency and delay
for live streaming.

Kaafar et al. [12] present a building scheme for efficient
overlay multicast trees based on location-information of sub-
scribers. Boivie et al. [13] propose small group multicast
(SGM) which aims at avoiding management and set up over-
head for multicast groups with a small number of receivers.
To that end, the multicast packets of such groups carry
the distribution information in their headers, which avoids
signaling in the core. Simple explicit multicast (SEM) [14]
stores multicast information only on branching nodes of the
distribution tree. Non-branching nodes forward packets to the
next-branching node via unicast. Jia et. al. [15] leverage prime

numbers and the Chinese remainder theorem to efficiently
organize the FIB. They reduce the size of the FIB in core
devices and facilitate implementation.

Steiner trees [16] are tree structures that are used to build
efficient multicast trees. Many research papers modify Steiner
trees to build multicast trees optimized with regard to a specific
metric, e.g., link costs [17], delay [18], number of hops [19],
number of branch nodes [20], retransmission efficiency [21],
or optimal placement of IPMC sources [22].

B. Resilience for Multicast

Shen et al. [23] extend Steiner trees so that distribution trees
contain recovery nodes. Such nodes cache multicast traffic for
retransmission to cut of receivers after recomputation of the
FIB. The authors of [24] investigate resilience of several multi-
cast algorithms against node failures. Kotani et al. [25] deploy
primary and backup multicast trees that are identified by a field
in the packet header. After failure detection, the source sends
its packet over a working backup tree by indicating the backup
path in the packet header. Pfeiffenberger et al. [26] propose
that each node in a distribution tree is also the root of a backup
tree that reaches all downstream destinations over paths that
do not include the failed link/node. Nodes switch packets on
a backup tree by setting a VLAN tag in the packet header.

C. SDN-Based Multicast

Rückert et al. [27], [28] propose and extend Software-
Defined Multicast (SDM) which is an OpenFlow-based multi-
cast platform to facilitate management. It focuses on overlay-
based live streaming services for P2P video live streaming.
The authors of [29] describe address translation in OpenFlow
switches to reduce the number of multicast-dependent for-
warding entries in near-to-leaf nodes. To that end, the forward-
ing action from the last hop towards the receivers is done with
a unicast address. Lin et al. [30] implement shared multicast
trees between different IPMC groups on OpenFlow switches.
Thereby, the number of forwarding entries is reduced. The
authors of [31] leverage bloom filters to reduce the number of
TCAM-entries that is required for SDN-based multicast.

D. BIER Multicast

In [32], [33] we presented an early prototype of a BIER
implementation in P4 for the software switch bmv2 [34].
However, bmv2 yields only low throughput (900 Mbit/s) [35].
Therefore, we developed a P4 implementation of BIER and
BIER-FRR for the P4-programmable switching ASIC Tofino
[2] with a switching capacity of 3.2 Tb/s, i.e., 100 Gbit/s
per port in a 32-port switch. We demonstrated its technical
feasibility and performance limits.

Giorgetti et al. [36], [37] presented an OpenFlow imple-
mentation of BIER. However, it requires extensive state or
controller interaction for efficient BIER forwarding. Further-
more, it is capable of addressing only 20 receivers per packet
due do the limited size of MPLS labels which are used to
implement arbitrary header fields.

Desmouceaux et al. [38] investigate the retransmission
efficiency of BIER. That is, when subscribers signal missing

3

packets, BIER allows to retransmit packets to only specific
subscribers while still forwarding only one packet copy per
link. Traditional multicast retransmits either via unicast or to
the entire multicast group. The evaluations show that BIER
is significantly more efficient than traditional multicast, i.e.,
it causes fewer retransmitted packets and achieves better link
utilization.

BIER with tree engineering (BIER-TE) [39] encodes the en-
tire distribution tree in the packet header to have more control
of the paths. Carrier grade minimalist multicast (CGM2) [40]
is a novel derivate of BIER-TE. It encodes the distribution
tree in a recursive manner in the packet header. Thereby, it
can scale to larger networks than BIER-TE. However, CGM2
has not been implemented, yet, and is still under development.

Braun et al. [41] propose 1+1 protection for BIER where
traffic is transported on two disjoint trees. As a result, traffic
is delivered successfully to receivers even when a failure
interrupts one tree.

E. Clustering

Clustering is an unsupervised machine learning technique
that solves the problem of identifying clusters of data points
in a multidimensional space. Given a set of D-dimensional
points {x1, ..., xN}, the goal of clustering is to partition the
data into groups/clusters such that points in the same cluster
are similar and points in different groups are dissimilar.

k-Means [42] is one of the most applied clustering algo-
rithms. Its incentive is to find an assignment of data points
to k cluster centers such that the sum of the squares of the
distances of each data point to its cluster center is minimized.

DBSCAN [43] is a density-based clustering algorithm that
can form arbitrary clusters and is especially suited for outlier
detection. In contrast to k-Means, it is not suited for high-
dimensional data sets.

Spectral Clustering [44] is a clustering algorithm that is
based on graph properties. It uses the normalized Laplacian
of the similarity matrix of the data points to build k clusters.
Data points are embedded in Rk through the so-called spectral
embedding. Thereby, the first k eigenvectors of the Laplacian
are computed and used to project the data points. Finally, the
embedded data points are clustered with a simple clustering
algorithm, e.g, k-Means.

III. BIT INDEX EXPLICIT REPLICATION (BIER)

In this section we give a short primer on BIER. BIER is
a domain-based transport mechanism for multicast traffic. It
can be explained with three layers as shown in Figure 1. On
the IPMC layer sources and receivers send and receive IPMC
packets. The BIER layer is responsible for the transport of the
IPMC packets from the IPMC sources to the IPMC receivers
along paths from the unicast routing, i.e., the routing underlay,
through the so-called BIER domain.

The BIER domain consists of three types of BIER devices.
First, bit forwarding ingress routers (BFIRs) are the entry
points to the BIER domain. They encapsulate IPMC packets
with a BIER header for forwarding within the BIER domain.
The BIER header contains a bit string that indicates all

2

IP
M

C

la
ye

r
B

IE
R

la
ye

r
R

ou
tin

g
un

de
rl

ay

Source Receiver Receiver

BFIR BFER BFER

BFR

1,2 1 2

Paths

Figure 1: Layered BIER architecture according to [33].

destinations of the BIER packet. That is, each bit position
corresponds to a specific destination. A bit is activated if the
corresponding destination should receive a copy of the packet.
Second, bit forwarding routers (BFRs) forward BIER packets
towards their destinations according to the activated bits in
the BIER header. That is, a BFR sends a packet copy to the
first next-hop over which at least one destination is reached. It
leaves only those bits activated in the bit string of the packet
copy which correspond to destinations that are reached via that
next-hop, and clears all other bits to prevent duplicates at the
receivers. The BFR repeats this procedure until all destinations
are served. As a result, the forwarding path of a BIER packet
is a tree whose links carry only a single packet copy. Third, bit
forwarding egress routers (BFERs) remove the BIER header
and pass the IPMC packet to the IPMC layer.

Next-hops on the BIER distribution tree may not be reach-
able due to link or node failures. In this case, downstream
destination nodes do not receive any BIER traffic until BIER
forwarding tables are updated Therefore, two BIER fast
reroute (BIER-FRR) concepts have been proposed [45] to
forward BIER traffic over backup paths from the detection of
the failure until BIER forwarding tables have been updated.
The methods have been compared in [46] and tunnel-based
BIER-FRR has been implemented in [2].

IV. INTRODUCTION TO P4

In this section we give an overview of P4, explain the P4
processing pipeline, packet cloning, packet recirculation, and
multicast groups in P4.

A. P4 Overview

P4 (programming protocol-independent packet processors)
[47] is a high-level programming language to describe the data
plane of P4-programmable devices. It is applied in a wide
range of applications and research [48]. Target-specific com-
pilers map the P4 programs to the programmable processing
pipeline of the target devices which are also called targets.
The compiled P4 programs offer a control plane API for
configuration, e.g., writing forwarding entries, during runtime.

4

B. P4 Pipeline
Figure 2 shows the abstract pipeline model of P4 [47].

A programmable parser deserializes the packet header and

Pa
ck

et
 b

uf
fe

r

Pa
rs

er

Match
action D

ep
ar

se
r

Match
action

Header fields and metadata

Payload

Ingress pipeline Egress pipeline

Figure 2: P4 abstract forwarding model according to [47].

stores the information in so-called header fields. The header
fields are carried through the pipeline together with packet-
specific metadata fields which are comparable to variables
from other high-level programming languages. Only header
fields and metadata are processed afterwards in the ingress
pipeline, i.e., the payload of the packet remains untouched.
The ingress pipeline consists of one or more match-action-
tables (MATs) that map header fields or metadata to actions.
Examples for actions are changing header fields or metadata,
or setting the egress port of the packet. After processing in the
ingress pipeline, the packet is temporarily buffered so that it
can be processed by the egress pipeline which works similarly
to the ingress pipeline. Finally, the deparser serializes the
possibly changed header fields, forwards the packet through
the designated egress port, and discards the metadata.

C. Packet Cloning
P4 has an operation for packet cloning. It sets a flag

that the packet should be cloned after its processing in the
ingress pipeline has concluded. However, the header fields
and metadata of the clone resemble the packet that is initially
parsed before the ingress pipeline. Figure 3 shows the concept.
After the ingress pipeline has finished, the packet is cloned

Dst. IP: 10.0.0.1 Change Dst.
IP to 10.0.0.2

Header field
of parsed packet

clone Change Dst.
IP to 10.0.0.3

End of the
ingress pipeline

Dst. IP: 10.0.0.3

Dst. IP: 10.0.0.1

Original packet

Cloned packet

 Start of the
ingress pipeline

Figure 3: When a packet is cloned, the copy is created only
after the ingress pipeline and its header fields are reset to the
initial value after the packet has been parsed.

and both the original packet, i.e., with header changes, and
the packet copy, i.e., without header changes, enter the egress
pipeline where they are processed independently of each other.

D. Packet Recirculation
Packet recirculation in P4 allows a packet to be processed a

second time by the entire pipeline, i.e., by ingress and egress

pipeline. To recirculate a packet, its egress port, i.e., a special
metadata field, is set to a particular port ID that corresponds
to a switch-intern recirculation port. The recirculation port
functions as a regular port of the switch with the exception
that it has no physical connector, i.e., only the switch itself
can send to and receive traffic from the recirculation port.

After the packet has been processed by both the ingress and
egress pipeline, it is sent to the recirculation port. Afterwards,
the packet is processed again as if it has been received on a
physical port.

E. Static Multicast Groups

P4 allows controllers to configure multicast groups on
forwarding devices. A multicast group consists of a tuple
of multicast group identifiers and a set of egress ports. In
addition, there is a special metadata field that allows the
ingress pipeline to assign a multicast group identifier to a
packet. After the ingress pipeline has completed, the packet is
replicated to the pre-defined set of egress ports.

In the following we refer to those configured multicast
groups as “static multicast groups” to differentiate them from
multicast groups of IPMC. A static multicast group is a local
mechanism on a switch to simultaneously forward a packet to
multiple egress ports.

V. SIMPLE P4-BASED BIER IMPLEMENTATION

In this section we review the simple P4-based BIER im-
plementation of [2]. The target is the Intel Tofino high-speed
switching ASIC [49]. It is used for a prototype on the Edgecore
Wedge 100BF-32X [50] with 32 100 Gbit/s ports. The im-
plementation makes heavy use of packet recirculation, which
causes capacity issue. The efficient BIER implementation in
Section VI builds upon the simple implementation and greatly
reduces the need for recirculations.

A. BIER Processing

BFRs leverage the Bit Index Forwarding Table (BIFT) to
determine the next-hops of a BIER packet. We implement the
BIFT as common match-action table in P4. For each BFER
there is one entry in the BIFT. The match key is a bitstring
with only the single bit activated for the corresponding BFER.
The other entry fields are a next-hop and a forwarding bitmask
(FBM). The FBM is a bit string similar to the BIER bitstring
and it indicates the BFERs with the same next-hop. When
a packet arrives, the BFR first copies the bitstring of the
packet to a temporary metadata field which we call “remaining
bits”. The remaining bits indicate the BFERs that still have
to be served. Then, the least-significant activated bit in the
remaining bits is matched against the BIFT. The match-action
table entry returns the corresponding next-hop and FBM for
that BFER. The BFR clears all bits in the bitstring of the
packet that are not activated in the FBM. Thus, only the
bits of BFERs that are reached through this next-hop remain
in the BIER bitstring. The BFER further clears all bits in
the remaining bits that are activated in the FBM as they
have already been served. Afterwards, the clone operation is

5

Ingress pipeline Egress pipeline

Path of cloned BIER packet Path of original BIER packet
Figure 4: The original BIER packet is sent through an egress
port while the packet copy is recirculated.

applied. Figure 4 shows the processing flow of the original
and cloned BIER packet. The original packet is sent through
the appropriate egress port to reach the selected next-hop. The
packet copy is cloned to the egress pipeline and recirculated
to a recirculation port. Within the egress pipeline, the BIER
bitstring of the packet copy is set to the remaining bits so
that only the remaining BFERs are served in the next pipeline
iteration.

B. Recirculation Capacity and Problem Statement

The Tofino ASIC has a switch-intern recirculation port
which has the same packet processing capacity as regular
ports. If its capacity does not suffice, packet loss occurs.
To increase the recirculation capacity, physical ports may be
turned into loopback mode, and recirculation traffic may be
distributed over the internal ports and the loopback ports in a
round-robin manner [2]. As these ports cannot be utilized for
other traffic, recirculations are costly.

The simple BIER implementation requires n− 1 recircula-
tions for BIER packets with n next-hops. This approach obvi-
ously does not scale well with increasing number of next-hops
and traffic rate. The objective of this paper is a more efficient
P4-based implementation that requires fewer recirculations per
BIER packet (see Section VI) and an optimized configuration
thereof using clustering methods (see Section VII).

VI. EFFICIENT BIER FORWARDING WITH P4

We explain how static multicast groups can be leveraged
to make BIER forwarding using P4 more efficient, and how
BIER-FRR can be integrated. To demonstrate the efficiency
of the new forwarding algorithm, we present a simulative
performance study.

A. Efficient BIER Forwarding with Static Multicast Groups

We first explain how BIER forwarding can profit from
configured port clusters consisting of static multicast groups
such that multiple next-hops can be served within a single pro-
cessing cycle. Then we explain how the forwarding algorithm
determines a port cluster and the appropriate static multicast
group for a BIER packet, and forwards it.

The presented algorithm is specific to P4 and the archi-
tecture of the Tofino ASIC. However, efficient forwarding
algorithms for any switch architecture need to determine the
set of egress ports for a BIER packet. This is a difficult task as
bitstrings are at least 256 bits large. Therefore, the presented

approach may be a base for efficient BIER forwarding on other
switch architectures.

1) Use of Static Multicast Groups: The idea to make the
BIER forwarding more efficient is the use of static multicast
groups so that multiple egress port can be simultaneously
served.

A naive solution is configuring static multicast for all
possible combinations of egress ports. When a packet arrives,
the set of egress ports is determined and the corresponding
static multicast group forwards the packet to all needed egress
ports without packet recirculation. However, on a 32 port
switch this requires 232 = 4294967296 static multicast groups,
which exceeds the number of configurable static multicast
ports.

We propose now a more sophisticated approach which
requires fewer static multicast groups. We define so-called
“configured port clusters” (or port sets) C = {C1, ..., Ck} such
that they cover together all ports of a switch. For each port
set Ci, static multicast groups Mj ⊆ Ci are configured for
all subset of ports in Ci. Thus, a configured port cluster C
implies

m(C) = 2|C| − |C| − 1 (1)
static multicast groups that need explicit configuration on
the switch; the empty group and groups with only a single
destination do not need to be configured. On a 32-port switch
three port clusters with 10, 11, and 11 ports may be configured,
which requires in total 5085 explicitly configured static mul-
ticast groups. This is well feasible on a switch like the Tofino
which supports up to 216 = 65536 static multicast groups1.
Moreover, the administrator may set another threshold mmax

on the number of static multicast groups usable for efficient
BIER forwarding. With this approach, a BIER packet needs to
be sent to at most |C| static multicast groups, which requires
|C| − 1 recirculations instead of nh − 1 with nh being the
number of next-hops of a BIER packet.

2) Forwarding Procedure: We first describe how the for-
warding procedure selects a set of configured port cluster
Si ⊆ C for BIER forwarding, and then we present how the
appropriate static multicast group is chosen from a selected
configured port cluster Cj ∈ Si.

a) Selection of Set of Configured Port Clusters: We
consider all subets of configured port clusters Si ⊆ C. C-
FBM(Si) is the combined forwarding bitmask of such a subset.
We set up a match-action table with one entry per subset Si
in increasing order with regard to subset size |Si|. The entry
is the C-FBM(Si). The objective is to find the smallest subset
that serves all BFERs of a BIER packet. To that end, the
bitstring of a packet is bitwise ANDed with the complement
of the C-FBM in the match-action table. We define a match
if the result of that operation is zero. Then, all BFERs of the
BIER packet are served by the corresponding subset Si. Due
to the order within the match-action table, the first match Si
is the smallest subset with that property. The first configured
port cluster Cj in that subset Si is selected for the remainder
of the forwarding process.

1The actual usable number of available resources depends on the program
complexity.

6

1

2

4

8

16

32

1 2 4 8 16 32
configured port clusters k

re

ci
rc

ul
at

io
ns

 p
er

 p
ac

ke
t

next−hops nh 1 2 4 8 16 32

(a) Average number of recirculations per packet for nh ∈ {1, 2, 4, 8, 16, 32}
random next-hops.

24

211

218

225

232

1 2 4 8 16 32
configured port clusters k

st

at
ic

 m
ul

tic
as

t g
ro

up
s

(b) Number of required static multicast groups.

Figure 5: Average number of recirculations and number of static multicast groups for k ∈ {1, 2, 4, 8, 16} configured port
clusters.

We consider a trivial example with two BFERs reachable
over Port 1 and Port 2. Configured port clusters are C = {C1 =
{1}, C2 = {2}}; the C-FBMs for all subsets Si ⊆ C: C-
FBM(∅) = 00, C-FBM({C1}) = 10, C-FBM({C2}) = 01, C-
FBM({C1, C2}) = 11. We assume the bitstring of a BIER
packet to be 11; then only Si = {C1, C2} can cover all BFERs
of the packet.

b) Selection of the Static Multicast Group: We now
determine the appropriate static multicast group from the
configured port cluster Cj . To that end, we take a similar
approach as in Section VI-A2a. We set up a match-action
table for Cj which has an entry for any static multicast group
Mh ⊆ Cj . The entries are sorted by increasing group size
|Mh| and contain the C-FBM of the corresponding multicast
group. Single ports are also considered as static multicast
groups although they do not require explicit configuration on
the switch. The bitstring of a BIER packet is first ANDed with
the C-FBM of the selected configured port cluster Cj . This
excludes all BFERs from the bitstring that cannot be served
by Cj . The result is bitwise ANDed with the complement of
the C-FBM(Mh) of the multicast groups in the table entries.
We define a match if the result is zero. Due to the increasing
order of entries in the match-action table, the first match refers
to the smallest static multicast group Mh within the configured
port cluster that covers all relevant BFERs.

c) Forwarding and Bitstring Adaptation: At the end of
the ingress pipeline, the activated bits in C-FBM(Si) are
deactivated in the bitstring of the orginal packet; if the bitstring
is not zero, the packet is recirculated. In addition, a clone of the
packet is sent to all egress ports of the selected static multicast
group Mh. The egress pipelines of these ports clear all bits in
the packet’s bitstring that are not activated in the FBM of the
corresponding port and then they transmit the packets.

B. Integration of BIER-FRR

The proposed efficient forwarding scheme is compatible
with BIER-FRR if BIER-FRR is integrated as follows. First,
the switch processes the egress ports that are affected by a
failure, i.e., a failed link or a failed node. To that end, the
BIER packets are forwarded by regular BIER forwarding but
over alternate ports. When all affected egress ports have been

served, the BIER packet is recirculated and the remaining
ports, i.e., working ports, are processed by the presented, effi-
cient forwarding algorithm. This approach prevents duplicates
at subscribers and unnecessary double transmissions of the
same packet over one link. Details are given in [2].

C. Simulative Performance Evaluation

We evaluate the concept of static multicast groups for
efficient BIER forwarding through the following experiment.
We examine different numbers of disjoint configured port
clusters k ∈ {1, 2, 4, 8, 16, 32}. With k configured port
clusters and a 32 port switch, each configured port cluster
contains 32

k ports. Further, we simulate BIER packets with
nh ∈ {1, 2, 4, 8, 16, 32} random next-hops. They are processed
by the different configured port clusters. Figure 5(a) and
Figure 5(b) show the average number of recirculations per
packet and the required static multicast groups.

The average number of recirculations increases with the
number of next-hops nh and the number of configured port
clusters k. In fact, the number of recirculations is bound by
k−1. For k = 32, the results are equivalent to the simple BIER
forwarding. Higher values of k lead to smaller configured port
clusters, and hence, to fewer next-hops that can be served
in one shot. The number of required static multicast groups
decreases with the number of configured port clusters k. To
keep the number of recirculations low, larger configured port
clusters should be preferred. However, the number of available
static multicast groups may be limited due to technical reasons
or based on administrative decisions.

In the given traffic model, we randomly selected next-hops
for BIER packets. This is not a realistic model for multicast
traffic. The next-hops of subsequent BIER packets are likely
to be correlated and so are the ports over which the packets
are sent. Therefore, some configured port clusters reduce
the average recirculation more than others. To effectively
minimize the number of recirculations, it is necessary to form
meaningful configured port clusters that take the current traffic
model into account.

7

VII. PORT CLUSTERING ALGORITHMS FOR EFFICIENT
BIER FORWARDING

In this section, we first illustrate the optimization poten-
tial of efficient BIER forwarding through configuration of
appropriate port clusters. Then, we present three clustering
algorithms to reduce the average recirculations per packet:
random port clustering (RPC) as a simple baseline, port
clustering based on Spectral Clustering (PCSC), and recursive
clustering with overlaps (RPCO) which also leverages Spectral
Clustering for subroutines. For the latter two algorithms we
present a graph embedding method that turns ports of sampled
packets into a graph structure from which the algorithms learn
correlated port clusters.

A. Optimization Potential and Approach

The bits in the BIER header require a packet to be sent
to a certain set of next-hops, and, thereby, to specific ports
of a switch. To be brief, we talk about “ports of a packet”.
In the previous section we showed how multiple ports of a
BIER packet can be served at once to speed up the forward-
ing process. For example, port clusters {1, .., 8}, {9, .., 16},
{17, .., 24}, and {25, .., 32} may be configured. Then, a BIER
packet needs to be processed at most four times, i.e., it must
be recirculated three times, no matter how many BFERs are
set in the BIER header. If a packet has only ports in the range
{1, .., 8}, the packet does not need to be recirculated at all.
However, if a packet has ports {1, 9, 17, 25}, it still requires
three recirculations.

We now assume that ports of a packet are not random but
correlated. That is, certain ports sets tend to occur together. We
call them correlated port clusters. We propose to learn these
correlated port clusters from sampled traffic and to utilize them
as configured port clusters. Then it is likely that BIER packets
can be forwarded with fewer processing steps and, thereby,
the number of recirculations may be reduced. In practice,
a controller can continuously sample multicast traffic from
a switch, learn the correlated port clusters of the sampled
multicast traffic, and adjust the configured port clusters on
the switch.

Large configured port clusters require lots of static multicast
groups, but they have the potential to effectively reduce the
number of recirculations. A constraint is the maximum number
mmax of static multicast groups usable for configured port
clusters which may be a technical limit or defined by the
administrator.

B. Random Port Clustering (RPC)

With RPC, np ports are randomly partitioned into approx-
imately k equal-size clusters. The number of clusters k is
determined such that the resulting number of configured static
multicast groups is at most mmax. As the algorithm is trivial,
we do not provide any further details. The method will serve
as a baseline for a performance comparison.

C. Port Clustering based on Spectral Clustering (PCSC)

We first present a graph embedding method that turns ports
of sampled packets into a graph structure from which the

algorithms learn correlated port clusters. Then we present the
PCSC algorithm which is based on Spectral Clustering. It
partitions np ports into approximately equal-size port clusters.

1) Graph Embedding: We embed the port information
of sampled packets into a graph which is needed by the
algorithms for PCSC and RPCO. The nodes of the graph
represent the ports of a switch. The graph is fully connected
and the edges have weights. All weights are initially zero. The
embedding iteratively processes the sampled packets. For any
two ports of a packet, the weight of the link between these
ports is increased by one. Figure 6(a)-Figure 6(b) illustrate
how two sampled packets with ports {1, 2, 3} and {4, 5},
respectively, modify an embedded graph with 5 nodes whose
edges are initially all zero.

(a) The edge weights between
egress ports 1, 2, and 3 are in-
creased by one.

(b) The edge weights between
egress ports 4 and 5 are increased
by one.

Figure 6: Graph embedding: a full-mesh graph is augmented
by port information from sampled packets: high edge weights
indicate port pairs that frequently occur together in a BIER
packet.

2) PCSC Algorithm: We first develop a metric for port
clusters that correlates with the number of recirculations
needed for the sampled traffic. Then we propose pseudocode
for PCSC that minimizes that number while respecting the
number of usable static multicast groups.

a) Metric: We consider two port clusters C1 and C2.
The clustering is good if only a few BIER packets need to
be sent through ports of C1 and C2. We identify a metric
for the graph embedding that correlates with that number of
packets although it is not an exact measure for it. The function
cut(C1, C2) is the sum of the weights on the edges between
any two nodes v1 ∈ C1 and v2 ∈ C2. It gives an upper bound
on the number of packets with ports in both C1 and C2. It
is an upper bound and not the exact number as a packet may
have multiple ports from C1 and/or C2. To assess whether the
clustering is good, we need to relate cut(C1, C2) to the overall
number of nodes in the considered clusters. This can be done
with the so-called normalized cut (Ncut) and is given below,
generalized for multiple clusters.

Ncut(C1, ..., Ck) =
k∑

i=1

cut(Ci, Ci)

vol(Ci)

Thereby, cut(Ci, Ci) measures the sum of the edge weights
between nodes in Ci and nodes that are not in Ci (Ci). The

8

1
4

2
3

5

6

7

(a) Two almost equal-size port clusters need 15
static multicast groups.

1

4

2

3

5

6

7

(b) Three almost equal-size port clusters need 6
static multicast groups.

1
4

2
3

5

6

7

(c) The optimal port clusters have unequal size
and need 11 static multicast groups.

Figure 7: Most BIER packets are sent to ports {1, 2, 3, 4}, {3, 4}, and {4, 5} on a 7-port switch and the maximum number
of usable static multicast groups is mmax = 12. PCSC produces equal-size port clusters while the optimum port clusters
minimizing the overall number of recirculations has unequal size.

function vol(Ci) sums up the edge weights of all nodes in Ci –
as a result, edge weights between nodes within the cluster are
counted twice, weights of outgoing edges are counted once.
The objective is to find clusters C1, ..., Ck that minimize the
normalized cut. Ncut is known to be NP hard and therefore
cannot be solved efficiently. However, Spectral Clustering is
a relaxation of Ncut. It yields a partition C with preferably
equal-size clusters Ci ∈ C and can be solved efficiently [44].

b) Pseudocode for PCSC: PCSC is described in Algo-
rithm 1. It first performs the graph embedding for the set of
sampled packets S and the given number of nodes np. Then,
Spectral Clustering is called to provide a partition C of the np

nodes into k clusters. This is performed in a loop, starting from
a single cluster up to np clusters. As soon as a partition C is
found that requires at most mmax static multicast groups, the
algorithm stops and C is returned. It is the clustering with the
lowest number of clusters that can be configured with mmax

static multicast groups.

Algorithm 1 PCSC
Input: samples: S

number of ports: np

number of multicast groups: mmax

graph = graphEmbedding(np,S)
for k from 1 to np do
C = SpectralClustering(graph, k)
if number of multicast groups for C ≤ mmax then

return C
end

end

D. Recursive Port Clustering with Overlap (RPCO)

We first explain two major shortcomings of PCSC. Then
we explain how RPCO solves these shortcomings. Finally, we
give a high-level pseudocode description of RPCO.

1) Shortcomings of PCSC: PCSC has two major shortcom-
ings. First, if the configured port clusters cannot be built,
the number of clusters is increased by one. As a result,

an important cluster that significantly reduces the number
of recirculations may not be built although a less important
cluster could be split to save static multicast groups.

We illustrate that with a 7-port switch and mmax = 12
usable static multicast groups. We assume that most multicast
packets are sent to port clusters {1, 2, 3, 4}, {3, 4}, and {4, 5}.
When PCSC is called with k = 2, the clusters in Figure 7(a)
may be returned which require 15 static multicast groups,
which exceeds mmax so that it is not a valid solution.
Therefore, PCSC increases k to 3, which may return the
clusters in Figure 7(b) which require only 6 static multicast
group. As this is feasible, this clustering is PCSCs final result.
However, the optimal clustering that minimizes the overall
number of recirculations might be the one in Figure 7(c) with 4
unequal-size clusters. They require 11 static multicast groups,
which is also feasible.

Second, PCSC creates disjoint clusters. This, however,
may not be optimal. We illustrate that by a small example.
We consider packets with ports {1, 2, 3} and {2, 3, 4} and
mmax = 8 usable static multicast ports. A single, large cluster
C = {1, 2, 3, 4} requires m(C) = 11 static multicast groups
so that it cannot be configured. When working with smaller,
non-overlapping clusters, it is not possible to cover the port
sets of both packets with only a single port cluster. However,
when working with overlapping port clusters C1 = {1, 2, 3}
and C2 = {2, 3, 4}, only 7 static multicast groups are needed2,
which is feasible. Moreover, the port sets of both packets can
be covered. Thus, overlapping clusters may help to further
reduce the number of recirculations with a limited number of
usable static multicast groups.

2) Design Ideas: We discuss major design ideas of RPCO.
If the number of usable static multicast groups mmax does not
suffice to configure k clusters proposed by Spectral Clustering,
RPCO selects the clusters that reduce recirculations in the most
efficient way and recursively re-clusters the remaining clusters.
To that end, we review and adapt the knapsack algorithm to

2When working with overlapping port clusters, the static multicast groups
required by multiple port clusters need to be configured only once on the
switch.

9

select the clusters that reduce recirculations most efficiently.
Given a clustering, we further suggest how to add nodes also to
other clusters they are not yet part of, which facilitates cluster
overlaps.

a) The Knapsack Algorithm: In the knapsack problem
[51], a set of items is given, and each item has a weight and
a value. The knapsack objective is to select items such that
their overall weight is less than a given limit while their overall
value is maximized.

We apply the knapsack algorithm as follows. The set of
items is given as set of port clusters C = {C1, ..., Ck}.
The value of a port cluster Ci is given by the number of
recirculation it saves for the set of packets S which is evaluated
by simulation. The weight of a port cluster Ci is given by
its number of required static multicast groups m(Ci). The
limit is the number of usable static multicast groups. The
algorithm selects those clusters that maximize the number of
saved recirculations with the available static multicast groups.

b) Adding Single Nodes to Multiple Clusters: We first
define the so-called port-cluster relevance r(x,C) of a port x
and a cluster C, x /∈ C. Then, we explain how the port-cluster
relevance is used to add single nodes to multiple clusters.

The port-cluster relevance measures the connectivity be-
tween port x and cluster C. It is the sum of the edge weights
w between x and C, i.e., r(x,C) =

∑
y∈C w(x, y).

Ports are initially assigned to a cluster with Spectral Cluster-
ing. However, ports may also be important for other clusters.
The list of all port-cluster pairs sorted by decreasing port-
cluster relevance suggests the order in which nodes should be
additionally added to another cluster provided the remaining
static multicast groups suffice. As a result, a partition of ports
becomes a port clustering with overlaps.

3) Pseudocode for RPCO: We give a high-level pseu-
docode for RPCO and refer to the Github repository3 for
details.

Algorithm 2 describes the outer control loop of RPCO.
First, the graph embedding of the samples S is computed and
stored in graph. Then, the best clustering Cbest is initialized
with single node clusters. A graph with np nodes (number
of ports on the switch) can be partitioned into up to np

clusters. Therefore, the subsequent loop is called with k
between 1 and np. Within the loop, the current clustering C is
initialized empty and the number of remaining static multicast
groups mleft is initialized with mmax. Both C and mleft are
global variables so that they can be modified by subroutines.
RecursiveClustering computes a partition of all nodes and
stores it in C. Details of the procedure will be explained
later. Then, OverlapClusters utilizes remaining usable static
multicast groups mleft to add nodes to other clusters they are
not yet part of (see Section VII-D2b). This leads to overlapping
clusters. Afterwards, the best clustering Cbest is updated by
C if C requires fewer recirculations than the best clustering.
The function Recirculations(C,S) computes the number of
recirculations required for clustering C for the packets in S.
Finally, RPCO returns the best clustering of all switch ports

3Github: https://github.com/uni-tue-kn/rpco

that minimizes the number of recirculations for the samples
S.

Algorithm 2 RPCO
Input: samples: S

number of ports: np

max. number of multicast groups: mmax

graph = GraphEmbedding(np,S)
Cbest = {{1}, ...{np}}
for k ∈ [1, np] do
C = {∅}
mleft = mmax

RecursiveClustering(graph, k)
OverlapClusters(graph)
if Recirculations(C,S) <Recirculations(Cbest,S) then
Cbest = C

end
end
return Best port clustering Cbest

RecursiveClustering is described in Algorithm 3. If the
graph contains only a single node v, the node is added as
a separate cluster to C and the recursion ends. Otherwise,
Spectral Clustering is executed to produce clustering C′ with
the desired number of clusters k. Then, the cluster set C∗
is identified which makes best use of the remaining static
multicast groups mleft to reduce recirculations. All clusters
in C∗ are added to the current clustering result C and mleft is
decreased by their number of required static multicast groups.
The clusters not selected by knapsack (C′ \C∗) are recursively
clustered. To that end, the corresponding embedded subgraph
is computed. The recursion ends if either the recursion was
called with a single node or if all clusters C′ can be selected.

Algorithm 3 RecursiveClustering
Input: graph embedding: graph

number of clusters: k

if graph contains only the single node v then
C = C ∪ {{v}}
return

end
C′ = SpectralClustering(graph, k)
C∗ = knapsack(C′,S,mleft)
for C ∈ C∗ do
C = C ∪ {C}
mleft = mleft −m(C)

end
for C ∈ C′ \ C∗ do

subgraph = subgraph of graph limited to nodes in C
RecursiveClustering(subgraph, 2)

end

VIII. SIMULATIVE PERFORMANCE COMPARISON

In this section we compare the performance of the three
port clustering methods Random Port Clustering (RPC), Port
Clustering based on Spectral Clustering (PCSC), and Re-
cursive Port Clustering with Overlaps (RPCO). We first de-
velop a model for correlated multicast traffic and explain the

10

performance evaluation methodology. Then, we compare the
performance of the mentioned clustering methods for various
correlated multicast traffic models. Finally, we compare the
runtime of the algorithms.

A. Traffic Model and Evaluation Methodology
We define a simple model for correlated multicast traffic

and explain the methodology for the subsequent comparison
of the port clustering methods.

1) Model for Correlated Multicast Traffic: In Section VI-C
we utilized a model for multicast traffic that assumes random
ports for subsequent multicast packets. However, random ports
are not realistic for two reasons. First, subsequent multicast
packets belong to a set of active multicast groups and packets
of a multicast group have identical ports as long as the groups
do not change. Second, receivers of multicast groups are users
or connected upstream aggregation points in specific time
zones, geographical regions, or neighborhoods. Therefore, we
assume the users have common interests for certain multicast
content so that they belong to multicast groups with correlated
receivers. We have not found any literature studying this issue
and think this would be useful future work.

We propose a model for correlated multicast traffic for use
in the subsequent performance comparison. We define a set
of generating port clusters Cg = {C1, C2, ..., Ck} from which
ports of a packet are preferentially chosen. First, we randomly
choose one generating port cluster Ci; thereby all Ci have
equal probability. Then, we determine a random number of
ports which is equally distributed between 1 and the size |Ci|
of the chosen cluster. We draw these ports with a probability p
from Ci (without duplicates) and with probability 1− p from
ports outside Ci (without duplicates).

For p = 1, all ports of a sampled BIER packet are
from a single, generating port cluster Ci. In that case, if
the generating port clusters Cg are configured for efficient
BIER forwarding, BIER packets can be recirculated without
recirculation. As p decreases, a sampled BIER packet is likely
to have increasingly more ports outside the selected generating
port cluster Ci. That means, the resulting multicast traffic is
more random and more recirculations are needed. We take p
as a measure for port correlation in the generated multicast
traffic.

2) Evaluation Methodology: The objective of port cluster-
ing algorithms for efficient BIER forwarding is the reduction
of recirculations. Therefore, we take the average number
of recirculations per packet as performance metric for the
subsequent comparisons.

We generate 1000 BIER packets. Based on these packets
we compute sets of port clusters for optimized configuration
using the considered port clustering methods and various
numbers of usable static multicast ports mmax. Then, we
generate another 10000 packets and simulate efficient BIER
forwarding using the optimized configuration. We count the
number of recirculations and compute the average number
of recirculations per packet. We conduct the experiments 100
times and produce 95% confidence intervals for the average
number of recirculations. As they are very small, we omit them
in the figures for the sake of readability.

B. Performance Comparison of Port Clustering Methods
We compare the efficiency of the port clustering algorithms

for different traffic models. We consider disjoint and overlap-
ping generating port clusters of equal and unequal size. We
choose the models such that they all lead to 4.5 ports per BIER
packet, which makes their results comparable.

1) Multicast Traffic Generated from Disjoint Port Clusters:
We study correlated multicast traffic generated from disjoint
generating port clusters. We consider symmetric and asym-
metric generating port clusters.

a) Symmetric Generating Port Clusters: We consider
four symmetric, disjoint, generating port clusters of size 8:
C1 = {1, .., 8}, C2 = {9, .., 16}, C3 = {17, .., 24}, C4 =
{25, .., 32}. If they are used for configuration, 4·(28−8−1) =
988 static multicast groups are needed.

Figure 8(a) shows the average number of recirculations
per packet for traffic models with port correlation p ∈
{0.7, 0.9, 0.99}, for usable static multicast groups mmax ∈
{0, 32, 64, 128, 256, 10.24, 2048, 4096, 8192, 16384}, and for
the port clustering methods RPC, PCSC, and RPCO.

If no static multicast group is available for efficient BIER
forwarding (mmax = 0), the port clustering is disabled,
and the forwarding behaviour is the same as the one for
simple BIER forwarding. Therefore, packets with 4.5 ports
on average require 3.5 recirculations on average. Increasing
the number of usable multicast groups mmax allows efficient
BIER forwarding to decrease the average number of recir-
culations per packet. This holds for all traffic models and
for all port clustering methods. However, if sufficient static
multicast groups are available, the degree to which the average
number of recirculations can be reduced depends on the port
correlation p and the port clustering method.

If a packet with l ports is generated from a specific
generating port cluster, all the ports are taken from that cluster
with a probability of pl. Setting l = 4.5 yields 20.1% for
p = 0.7, 62.2% for p = 0.9, and 95.6% for p = 0.99.
Thus, the chosen traffic models are quite divers. For port
correlation p = 0.7, the average number of recirculations
are similar for all considered port clustering algorithms. The
advanced port clustering algorithms hardly outperform the
random method due to the lack of sufficient port correlation in
the generated multicast traffic. For port correlation p = 0.99,
most packets are entirely drawn from a single generating port
cluster. As a result, the advanced packet clustering methods
lead to significantly fewer packet recirculations than random
clustering. With mmax = 1024 or more usable multicast
groups, PCSC and RPCO reduce the average number of
recirculations to almost zero. Apparently they are able to learn
the right port clusters. The generating port clusters are optimal
for configuration; as mentioned above, they require 988 static
multicast groups. This explains why mmax = 512 or fewer
static multicast groups require more recirculations, also with
advanced port clustering methods. The results in Figure 8(a)
show that PSCS and RPCO lead to about the same number
of recirculations per packet for symmetric, disjoint, generating
port clusters.

In the following, we choose port correlation p = 0.9
as this generates sufficiently correlated multicast traffic with

11

p = 0.7 p = 0.9 p = 0.99

RPC PCSC RPCO RPC PCSC RPCO RPC PCSC RPCO

1

2

3

4

re

ci
rc

ul
at

io
ns

 p
er

 p
ac

ke
t

usable static multicast groups mmax
0 32 64 128 256

1024 2048 4096 8192 16384

(a) Traffic sampled from four generating port clusters of size 8 with different
port correlation p.

1

2

3

4

0 32 64 128 256 1024 2048 4096 8192 16384
usable static multicast groups mmax

re

ci
rc

ul
at

io
ns

 p
er

 p
ac

ke
t

Clustering algorithm RPC PCSC RPCO

(b) Traffic sampled from four clusters of size 12, 10, 6, 4 with port correlation
p = 0.9.

Figure 8: Impact of port clustering methods and number mmax

of usable, static multicast groups on the average number of
recirculations per packet; multicast traffic is sampled from
disjoint generating port clusters.

substantial port deviation from the generating port clusters.
b) Asymmetric Generating Port Clusters: We consider

four asymmetric, disjoint, generating port clusters of size 12,
10, 6, 4: C1 = {1, .., 12}, C2 = {13, .., 22}, C3 = {23, .., 28},
and C4 = {29, .., 32}. If used for configuration, they require
(212−12−1)+(210−10−1)+(26−6−1)+(24−4−1) = 5164
static multicast groups.

Figure 8(b) illustrates the average number of recirculations
per packet for port correlation p = 0.9. Again, more usable
static multicast groups cause fewer recirculations. We now ob-
serve that RPCO reduces the average number of recirculations
to lower numbers than PCSC, in particular for mmax ≤ 4096.
For larger mmax, PCSC and RPCO lead to almost equal
results. This is in line with the design goal of RPCO: it
makes better use of a limited number of static multicast
groups than PCSC by proposing unequal-size port clusters.
For mmax = 64, PCSC causes 3 recirculations per packet
while RPCO causes only 2. For port correlation p = 0.99,
which is not shown in the figure, both PCSC and RPCO
reduce the average number of recirculations to almost zero
for mmax ≥ 8192.

2) Multicast Traffic Generated from Overlapping Port Clus-
ters: We study the performance of the presented clustering
algorithms for overlapping, generating port clusters.

a) Symmetric Generating Port Clusters: We consider six
overlapping, generating port clusters of size 8: C1 = {1, .., 8},
C2 = {6, .., 13}, C3 = {11, .., 18}, C4 = {17, .., 24}, C5 =

1

2

3

4

0 32 64 128 256 1024 2048 4096 8192 16384
usable static multicast groups mmax

re

ci
rc

ul
at

io
ns

 p
er

 p
ac

ke
t

Clustering algorithm RPC PCSC RPCO

(a) Traffic sampled from six clusters of size 8.

1

2

3

4

0 32 64 128 256 1024 2048 4096 8192 16384
usable static multicast groups mmax

re

ci
rc

ul
at

io
ns

 p
er

 p
ac

ke
t

Clustering algorithm RPC PCSC RPCO

(b) Traffic sampled from six clusters of size 12, 10, 8, 8, 6, 4.

Figure 9: Impact of port clustering methods and number mmax

of usable, static multicast groups on the average number of
recirculations per packet; multicast traffic is sampled from
overlapping, generating port clusters with port correlation
p = 0.9.

{22, .., 29}, and C6 = {28, .., 32, 1, .., 3}. Configuring them
as port clusters requires 6 · (28 − 8− 1)− 4 · (23 − 3− 1)−
2 · (22 − 2− 1) = 1464 static multicast groups.

Figure 9(a) indicates the average number of recirculations
per packet for port correlation p = 0.9. Here, PCSC outper-
forms RPC, and RPCO outperforms PCSC for any number
mmax > 0 of usable static multicast groups. While PCSC
computes only disjoint port clusters, RPCO may yield over-
lapping port clusters. This can lead to fewer recirculations
when frequently observed port groups of packets are partly
overlapping. For port correlation p = 0.99, which is not
shown in the figure, only RPCO reduces the average number
of recirculations to almost zero for mmax ≥ 2048.

b) Asymmetric Generating Port Clusters: We consider
six overlapping, generating port clusters of size 12, 10, 8, 8, 6,
4: C1 = {1, .., 12}, C2 = {9, .., 16}, C3 = {16, .., 19}, C4 =
{18, .., 23}, C5 = {22, .., 29}, and C6 = {27, .., 32, 1, .., 5}.
Configuring them as port clusters requires 5630 static multicast
groups.

Figure 9(b) illustrates the average number of recirculations
per packet for port correlation p = 0.9. The results are very
similar to those in Figure 9(a), only a few recirculations
more are required. That means, PCSC clearly outpeforms
RPC, and RPCO outperforms PCSC. For p = 0.99 and
mmax ≥ 8192, which is not shown here, RPCO even reduces
the average number of recirculations to almost zero. That is,
it is able to find optimal clusters for configuration even under

12

challenging conditions (overlapping, unequal-size, generating
port clusters).

C. Runtime

The presented clustering algorithms, especially RPCO, seem
rather complex at first glance. We measure the runtime of the
presented algorithms for the evaluation in Section VIII-B2b.
The experiments are executed on a 2022 Mac Studio with M1
Max and 32 GB of RAM. Figure 10 compiles the results.

p = 0.7 p = 0.9 p = 0.99

RPC PCSC RPCO RPC PCSC RPCO RPC PCSC RPCO
0.0

0.1

0.2

0.3

0.4

0.5

R
un

tim
e

(s
)

usable static multicast groups mmax
0 32 64 128 256

1024 2048 4096 8192 16384

Figure 10: Average runtime in seconds for the clustering algo-
rithms RPC, PCSC, and RPCO while performing experiments
for Section VIII-B2b.

Random Port Clustering (RPC) has the shortest runtime with
at most 9 ms. It partitions all ports into equal-size clusters
and its runtime is therefore independent of port correlation p.
PCSC reveals the second lowest runtime with up to 86 ms. It
calls the Spectral Clustering subroutine at most np times where
np is the number of ports. PCSC’s runtime decreases with
increasing mmax because larger values of mmax lead to fewer
subroutine calls (return leaves the loop in Algorithm 1). RPCO
has the longest runtime with up to 527 ms. It also performs
np iteration steps but may call Spectral Clustering multiple
times within a single iteration step. Its runtime primarily
depends of the number of recursive calls. With decreasing
p, RPCO’s runtime decreases. Lower values of p lead to
more uncorrelated packets, which leads to a blurred graph
structure in the sense of more homogeneous edge weights. The
Spectral Clustering subroutine tends to return larger clusters
on a blurred graph. When not all clusters can be built, RPCO
recursively re-clusters them. This is more likely with a blurred
graph structure than with a sharp graph structure, i.e., a higher
correlation between packets.

Although RPCO has the longest runtime, RPCO can be
carried out sufficiently fast so that it can be well applied in
practice as configured port clusters may be adapted rather on
the time scale of minutes than seconds.

IX. EXPERIMENTAL PERFORMANCE EVALUATION

In this section we perform experiments in a hardware
testbed to demonstrate the practical feasibility of the pro-
posed concepts and to validate the theoretical results from
Section VIII. First, we explain the concept and the testbed
setup. Then, we describe the performed experiments.

A. Concept
Figure 11 illustrates the concept for the hardware testbed.

Sampling

BIER traffic

1 4

2

3

Learn MC groups
1 4

2

3

Install multicast
groups

After n samplings

Cluster egress ports
into sets

Tofino Controller

Figure 11: Concept for the hardware evaluation.

The Tofino [49], a P4-programmable switching ASIC, is
the core of the hardware testbed. We utilize a Tofino-based
Edgecore Wedge 100BF-32X switch [50] with 32 100 Gbit/s
ports that runs the adapted BIER implementation as described
in Section VI. BIER traffic is sampled at the Tofino with a rate
of 0.1%, i.e., every 1000th BIER packet. Sampled packets are
sent to the controller and used for the graph embedding as
described in Section VII. For 100 Gbit/s incoming multicast
traffic, this amounts to 100 Mbit/s which can be efficiently
handled by the controller. After 210 samples, the controller ap-
plies the optimization heuristic and installs the static multicast
groups of the configured port clusters. We measure the average
recirculation traffic on the Tofino to assess the effectiveness
of the presented optimization heuristics. To that end, packets
on the recirculation port are cloned to a separate end host that
measures the incoming bandwidth which equals the rate of the
recirculation traffic.

B. Traffic Generation
Generating UDP traffic at high rate according to a given

distribtion is a difficult task. We leverage Iperf [52] to generate
homogeneous UDP traffic on an end host. It is sent to the
Tofino which adapts it according to a specified distribution
of BIER headers. When the Tofino receives a UDP packet
generated by Iperf, it generates a random number between 0
and 2w − 1. The generated random number is then used as
index to a match-action table that maps the random number
to a BIER header (see Figure 12). Then, the header of the
UDP packet is substituted by the BIER header indicated in
the table. Thereby, a UDP packet stream with any distribution
of BIER headers can be generated.

The match-action tables is populated a priori by a controller
which has sampled 2w BIER headers according to the traffic
model in Section VIII-A1 for a given set of generating port
clusters and a port correlation p. As a result, the Tofino turns
homogeneous UDP traffic into BIER traffic whose headers
follow a desired distribution.

C. Experiment
We validate our hardware implementation by conducting

the same experiments as in Section VIII-B2b. Thus, the traffic

13

Traffic

Match key Action data

Match-action-table (MAT)

1 BIER header 1
BIER header 2

...
2
...

BIER pktRandom
number

Tofino

Install BIER header

Controller

Figure 12: A match-action table is used to turn homogeneous
UDP traffic into BIER traffic with headers following a desired
distribution.

model consists of six overlapping generating port clusters of
size 12, 10, 8, 8, 6, and 4. We choose port correlation p =
0.9, and use w = 14 to install 2w sampled BIER headers
of that distribution in the match-action table on the Tofino.
We generate 5 Gbit/s UDP traffic via Iperf and send it to
the Tofino which turns it into BIER traffic with the desired
header distribution. We perform 5 runs per experiment and
report average values.

The controller samples the BIER traffic and computes opti-
mized port clusters for configuration on the Tofino. Thereby,
different port clustering methods and different numbers mmax

of usable static multicast groups are considered. Figure 13
shows the average recirculation traffic in Gbit/s.

0

5

10

15

0 64 256 2048 8192
usable static multicast groups mmax

R
ec

irc
ul

at
io

n
tr

af
fic

 (
G

bi
t/s

)

RPC PCSC RPCO

Figure 13: Average recirculation traffic for RPC, PCSC and
RPCO and different numbers mmax of usable static multicast
groups; the traffic model has six overlapping generating port
clusters and port correlation p = 0.9; the results are to be
compared with those in Figure 9(b).

If no static multicast group is available (mmax = 0),
efficient BIER forwarding is essentially disabled, and the
observed behaviour is the same as the one for simple BIER
forwarding. Therefore, packets with 4.5 ports on average
require 3.5 recirculations on average, which results in 3.5 · 5
Gbit/s = 17.5 Gbit/s recirculation traffic. This closely matches
the results of Section VIII-B2b. An increasing number mmax

of usable static multicast groups decreases the average number
of recirculations per packet and therefore the recirculation
traffic. Again, PCSC and RPCO clearly outperform RPC and
RPCO performs better than PCSC (for mmax > 0). In fact,
for mmax = 8192, RPCO reduces the recirculation traffic

by 71% compared to RPC and 52% compared to PCSC.
The experimental results in Figure 13 are in line with the
simulation results in Figure 9(b) as they show the same
proportions.

We performed this experiment with only 5 Gbit/s incoming
traffic due to the lack of a fast generator for contant bit rate
traffic. However, efficient BIER forwarding runs at line rate
at the Tofino4, i.e., it is capable of handling 32 × 100 Gbit/s
incoming traffic.

X. CONCLUSION

Bit Index Explicit Replication (BIER) forwards multicast
traffic without signalling and states within BIER domains.
Thereby, it greatly improves scalability for multicast in core
networks. However, a simple implementation of that concept
implies iterative packet transmission so that capacity cannot
be saved [2] on a single switch. In this paper we presented
efficient BIER forwarding with static multicast groups such
that a BIER packet can be sent to multiple next-hops in a single
pipeline iteration. To that end, we configure port clusters on
the switch and install all combinations of ports within each
port cluster as static multicast group. Simple match-action
operations choose the appropriate port clusters and therein the
right static multicast group so that packets are transmitted to
multiple next-hops in a single iteration step. As a result, a
BIER packet can be processed in high-speed with a single or at
most a few iteration steps. We demonstrated by simulation that
randomly selected disjoint equal-size configured port clusters
can decrease the required recirculations by 90% with only
1024 static multicast groups on a 32 port switch with 32
next-hops (Section VI-C) compared to simple iterative BIER
forwarding. Further, we presented port clustering algorithms
based on Spectral Clustering which learn the current BIER
traffic pattern and compute port clusters for configuration.
Recursive Port Clustering with Overlap (RPCO) reduces the
required recirculations by up to 96% compared to randomly
selected port clusters (Section VIII). We implemented efficient
BIER forwarding on the Edgecore Wedge 100BF-32X, a 32
100 Gbit/s port high-performance P4 switch, and validated the
simulation results in a hardware testbed.

The work comes with a few byproducts. We developed
efficient BIER forwarding for data plane programming with
the Tofino ASIC. Other switch architectures will also face the
challenge to determine outgoing ports of a BIER packet within
short time and can benefit from the presented algorithms. We
proposed a traffic model for the outgoing ports of multicast
traffic on a switch for evaluation purposes. Future work may
validate that traffic model based on measured data. Finally,
we developed a simple method for data plane programming
to modify traffic such that its headers correspond to a specific
distribution. This may also be useful in other experimental
work.

REFERENCES

[1] I. Wijnands et al., RFC 8279: Multicast Using Bit Index
Explicit Replication (BIER), https://datatracker.ietf.org/doc/
rfc8279/, Nov. 2017.

4Every P4 program that compiles for the Tofino runs at line rate.

14

[2] D. Merling et al., “Hardware-Based Evaluation of Scalable
and Resilient Multicast With BIER in P4,” IEEE Access,
vol. 9, 2021.

[3] S. Islam et al., “A Survey on Multicasting in Software-
Defined Networking,” IEEE Communications Surveys Tuto-
rials (COMST), vol. 20, 2018.

[4] Z. Al-Saeed et al., “Multicasting in Software Defined Net-
works: A Comprehensive Survey,” Journal of Network and
Computer Applications (JNCA), vol. 104, 2018.

[5] M. Shahbaz et al., “Elmo: Source Routed Multicast for Public
Clouds,” in ACM SIGCOMM, 2019.

[6] A. Iyer et al., “Avalanche: Data Center Multicast using
Software Defined Networking,” in International Conference
on Communication Systems and Networks, 2014.

[7] W. Cui et al., “Scalable and Load-Balanced Data Center
Multicast,” in IEEE GLOBECOM, 2015.

[8] X. Li et al., “Scaling IP Multicast on Datacenter Topologies,”
in ACM CoNEXT, 2013.

[9] X. Zhang et al., “A Centralized Optimization Solution for
Application Layer Multicast Tree,” IEEE Transactions on
Network and Service Management (TNSM), vol. 14, 2017.

[10] K. Mokhtarian et al., “Minimum-delay multicast algorithms
for mesh overlays,” IEEE/ACM Transactions on Networking,
vol. 23, 2015.

[11] S.-H. Shen, “Efficient SVC Multicast Streaming for Video
Conferencing With SDN Control,” IEEE Transactions on
Network and Service Management (TNSM), vol. 16, 2019.

[12] M. A. Kaafar et al., “A Locating-First Approach for Scalable
Overlay Multicast,” in IEEE INFOCOM, 2006.

[13] R. Boivie, N. Feldman, and C. Metz, “Small Group Multicast:
A New Solution for Multicasting on the Internet,” IEEE
Internet Computing, vol. 4, 2000.

[14] A. Boudani and B. Cousin, “sem: A new small group multicast
routing protocol,” in International Conference on Telecommu-
nications (ICT).

[15] W. K. Jia et al., “A Unified Unicast and Multicast Routing and
Forwarding Algorithm for Software-Defined Datacenter Net-
works,” IEEE Journal on Selected Areas in Communications
(JSAC), vol. 31, 2013.

[16] C. A. S. Oliveira et al., “Steiner Trees and Multicast,” Math-
ematical Aspects of Network Routing Optimization, vol. 53,
2011.

[17] L. H. Huang et al., “Scalable and Bandwidth-Efficient Multi-
cast for Software-Defined Networks,” in IEEE GLOBECOM,
2014.

[18] J.-R. Jiang et al., “Constructing Multiple Steiner Trees for
Software-Defined Networking Multicast,” in Conference on
Future Internet Technologies, 2016.

[19] Z. Hu et al., “Multicast Routing with Uncertain Sources
in Software-Defined Network,” in IEEE/ACM International
Symposium on Quality of Service (IWQoS), 2016.

[20] S. Zhou et al., “Cost-Efficient and Scalable Multicast Tree in
Software Defined Networking,” in Algorithms and Architec-
tures for Parallel Processing, 2015.

[21] S.-H. Shen et al., “Reliable Multicast Routing for Software-
Defined Networks,” in IEEE INFOCOM, 2015.

[22] B. Ren et al., “The Packing Problem of Uncertain Multicasts,”
Concurrency and Computation: Practice and Experience,
vol. 29, 2017.

[23] S. H. Shen, L. H. Huang, D. N. Yang, and W. T. Chen,
“Reliable Multicast Routing for Software-Defined Networks,”
in IEEE INFOCOM, 2015.

[24] M. Popovic et al., “Performance Comparison of Node-
Redundant Multicast Distribution Trees in SDN Networks,”
International Conference on Networked Systems, 2017.

[25] D. Kotani et al., “A Multicast Tree Management Method Sup-
porting Fast Failure Recovery and Dynamic Group Member-
ship Changes in OpenFlow Networks,” Journal of Information
Processing (JIP), vol. 24, 2016.

[26] T. Pfeiffenberger et al., “Reliable and Flexible Commu-
nications for Power Systems: Fault-tolerant Multicast with
SDN/OpenFlow,” in IFIP International Conference on New
Technologies, Mobility and Security (NTMS), 2015.

[27] J. Rückert et al., “Software-Defined Multicast for Over-the-
Top and Overlay-based Live Streaming in ISP Networks,”
Journal of Network and Systems Management (JNSM),
vol. 23, 2015.

[28] J. Rueckert et al., “Flexible, Efficient, and Scalable Software-
Defined Over-the-Top Multicast for ISP Environments With
DynSdm,” IEEE Transactions on Network and Service Man-
agement (TNSM), vol. 13, 2016.

[29] T. Humernbrum et al., “Towards Efficient Multicast Com-
munication in Software-Defined Networks,” in IEEE Interna-
tional Conference on Distributed Computing Systems Work-
shops (ICDCSW), 2016.

[30] Y.-D. Lin et al., “Scalable Multicasting with Multiple Shared
Trees in Software Defined Networking,” Journal of Network
and Computer Applications (JNCA), vol. 78, 2017.

[31] M. J. Reed et al., “Stateless Multicast Switching in Software
Defined Networks,” in IEEE International Conference on
Communications (ICC), 2016.

[32] W. Braun et al., “Demo: Scalable and Reliable Software-
Defined Multicast with BIER and P4,” in IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM),
2017.

[33] D. Merling et al., “P4-Based Implementation of BIER and
BIER-FRR for Scalable and Resilient Multicast,” Journal of
Network and Computer Applications (JNCA), vol. 169, 2020.

[34] p4lang, Behavioral-model, https : / / github . com / p4lang /
behavioral-model, Accessed: 01.28.2021, 2021.

[35] A. Bas, BMv2 Throughput, https : / / github . com / p4lang /
behavioral - model / issues / 537 \ #issuecomment - 360537441,
Jan. 2018.

[36] A. Giorgetti et al., “First Demonstration of SDN-based Bit
Index Explicit Replication (BIER) Multicasting,” in IEEE
European Conference on Networks and Communications (Eu-
CNC), 2017.

[37] ——, “Bit Index Explicit Replication (BIER) Multicasting in
Transport Networks,” in International Conference on Optical
Network Design and Modeling (ONDM), 2017.

[38] Y. Desmouceaux et al., “Reliable Multicast with B.I.E.R.,”
Journal of Communications and Networks, vol. 20, 2018.

[39] T. Eckert et al., Traffic Engineering for Bit Index Ex-
plicit Replication BIER-TE, http://tools.ietf.org/html/draft-
eckert-bier-te-arch, Nov. 2017.

[40] T. Eckert and B. Xu, Carrier Grade Minimalist Multicast
(CGM2) using Bit Index Explicit Replication (BIER)
with Recursive BitString Structure (RBS) Addresses,
https://datatracker.ietf.org/doc/html/draft-eckert-bier-cgm2-
rbs-01, Feb. 2022.

[41] W. Braun et al., “Performance Comparison of Resilience
Mechanisms for Stateless Multicast using BIER,” in
IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), 2017.

[42] J. B. MacQueen, “Some Methods for Classification and Anal-
ysis of MultiVariate Observations,” in Proc. of the fifth Berke-
ley Symposium on Mathematical Statistics and Probability,
vol. 1, University of California Press, 1967.

[43] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-
Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise,” in Proceedings of the Second Interna-
tional Conference on Knowledge Discovery and Data Mining,
1996.

[44] U. v. Luxburg, “A Tutorial on Spectral Clustering,” Statistics
and Computing, vol. 17, 2007.

[45] H. Chen, M. McBride, S. Lindner, M. Menth, A. Wang,
G. Mishra, Y. Liu, Y. Fan, L. Liu, and X. Liu, “BIER Fast
ReRoute,” Internet Engineering Task Force, Internet-Draft

15

draft-chen-bier-frr-04, Jan. 2022, Work in Progress, 31 pp.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-
chen-bier-frr-04.

[46] D. Merling, S. Lindner, and M. Menth, “Comparison of
Fast-Reroute Mechanisms for BIER-Based IP Multicast,” in
2020 Seventh International Conference on Software Defined
Systems (SDS), 2020.

[47] P. Bosshart et al., “P4: Programming Protocol-Independent
Packet Processors,” ACM SIGCOMM Computer Communica-
tion Review, vol. 44, 2014.

[48] F. Hauser, M. Haeberle, D. Merling, S. Lindner, V. Gurevich,
F. Zeiger, R. Frank, and M. Menth, “A Survey on Data Plane
Programming with P4: Fundamentals, Advances, and Applied
Research,” currently under submission, 2021.

[49] Intel, Intel Tofino, https://www.intel.de/content/www/de/de/
products/network- io/programmable- ethernet- switch/tofino-
series.html, 2021.

[50] Edge-Core Networks, Wedge100BF-32X/65X Switch, https://
www.edge- core .com/ upload/ images/2021- 048- DCS800
Wedge100BF-32X-DS-R08.pdf, 2021.

[51] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems.
Springer, Berlin, Germany, 2004.

[52] iperf2 team, iperf, https://iperf.fr.

Publications

1.9 A Survey on Data Plane Programming with P4: Fundamentals,
Advances, and Applied Research

192

A Survey on Data Plane Programming with P4:
Fundamentals, Advances, and Applied Research

Frederik Hausera, Marco Häberlea, Daniel Merlinga, Steffen Lindnera,
Vladimir Gurevichb, Florian Zeigerc, Reinhard Frankc, Michael Mentha

aUniversity of Tuebingen, Department of Computer Science, Chair of Communication
Networks, Tuebingen, Germany

bIntel, Barefoot Division (BXD), United States of America
cSiemens AG, Corporate Technology, Munich, Germany

Abstract

Programmable data planes allow users to define their own data plane algorithms
for network devices including appropriate data plane application programming
interfaces (APIs) which may be leveraged by user-defined software-defined net-
working (SDN) control. This offers great flexibility for network customization,
be it for specialized, commercial appliances, e.g., in 5G or data center networks,
or for rapid prototyping in industrial and academic research. Programming
protocol-independent packet processors (P4) has emerged as the currently most
widespread abstraction, programming language, and concept for data plane pro-
gramming. It is developed and standardized by an open community, and it is
supported by various software and hardware platforms.

In the first part of this paper we give a tutorial of data plane programming
models, the P4 programming language, architectures, compilers, targets, and
data plane APIs. We also consider research efforts to advance P4 technology.
In the second part, we categorize a large body of literature of P4-based applied
research into different research domains, summarize the contributions of these
papers, and extract prototypes, target platforms, and source code availability.
For each research domain, we analyze how the reviewed works benefit from P4’s
core features. Finally, we discuss potential next steps based on our findings.

Keywords: P4, SDN, programmable data planes

Email addresses: frederik.hauser@uni-tuebingen.de (Frederik Hauser),
marco.haeberle@uni-tuebingen.de (Marco Häberle), daniel.merling@uni-tuebingen.de
(Daniel Merling), steffen.lindner@uni-tuebingen.de (Steffen Lindner),
vladimir.gurevich@intel.com (Vladimir Gurevich), florian.zeiger@siemens.com (Florian
Zeiger), reinhard.frank@siemens.com (Reinhard Frank), menth@uni-tuebingen.de (Michael
Menth)

Preprint submitted to JNCA 10.03.2022

1. Introduction

Traditional networking devices such as routers and switches process packets
using data and control plane algorithms. Users can configure control plane
features and protocols, e.g., via CLIs, web interfaces, or management APIs, but
the underlying algorithms can be changed only by the vendor. This limitation
has been broken up by SDN and even more by data plane programming.

SDN makes network devices programmable by introducing an API that al-
lows users to bypass the built-in control plane algorithms and to replace them
with self-defined algorithms. Those algorithms are expressed in software and
typically run on an SDN controller with an overall view of the network. Thereby,
complex control plane algorithms designed for distributed control can be re-
placed by simpler algorithms designed for centralized control. This is beneficial
for use cases that are demanding with regard to flexibility, efficiency and secu-
rity, e.g., massive data centers or 5G networks.

Programmable data planes enable users to implement their own data plane
algorithms on forwarding devices. Users, e.g., programmers, practitioners, or
operators, may define new protocol headers and forwarding behavior, which is
without programmable data planes only possible for a vendor. They may also
add data plane APIs for SDN control.

Data plane programming changes the power of the users as they can build
custom network equipment without any compromise in performance, scalabil-
ity, speed, or power on appropriate platforms. There are different data plane
programming models, each with many implementations and programming lan-
guages. Examples are Click [1], VPP [2], NPL [3], and SDNet [4].

Programming protocol-independent packet processors (P4) is currently the
most widespread abstraction, programming language, and concept for data
plane programming. First published as a research paper in 2014 [5], it is now
developed and standardized in the P4 Language Consortium, it is supported by
various software- and hardware-based target platforms, and it is widely applied
in academia and industry.

In the following, we clarify the contribution of this survey, point out its
novelty, explain its organization, and provide a table with acronyms frequently
used in this work.

1.1. Contributions
This survey pursues two objectives. First, it provides a comprehensive intro-

duction and overview of P4. Second, it surveys publications describing applied
research based on P4 technology. Its main contributions are the following:

• We explain the evolution of data plane programming with P4, relate it
to prior developments such as SDN, and compare it to other data plane
programming models.

• We give an overview of data plane programming with P4. It comprises
the P4 programming language, architectures, compilers, targets, and data

2

plane APIs. These sections do not only include foundations but also
present related work on advancements, extensions, or experiences.

• We summarize research efforts to advance P4 data planes. It comprises
optimization of development and deployment, testing and debugging, re-
search on P4 targets, and advances on control plane operation.

• We analyze a large body of literature considering P4-based applied re-
search. We categorize 245 research papers into different application do-
mains, summarize their key contributions, and characterize them with
respect to prototypes, target platforms, and source code availability. For
each research domain, we analyze how the reviewed works benefit from
P4’s core features.

We consider publications on P4 that were published until the end of 2020
and selected paper from 2021. Beside journal, conference, and workshop papers,
we also include contents from standards, websites, and source code repositories.
The paper comprises 519 references out of which 377 are scientific publications:
73 are from 2017 and before, 66 from 2018, 113 from 2019, 116 from 2020, and
9 from 2021.

1.2. Novelty
There are numerous surveys on SDN published in 2014 [6, 7], 2015 [8, 9, 10],

and 2016 [11, 12] as well as surveys on OpenFlow (OF) from 2014 [13, 14, 15].
Only one of them [12] mentions P4 in a single sentence. Two surveys of data
plane programming from 2015 [10, 9] were published shortly after the release of
P4, one conference paper from 2018 [16] and a survey from 2019 [17] present P4
just as one among other data plane programming languages. Likewise, Michel
et al. [18] gives an overview of data plane programming in general and P4 is one
among other examined abstractions and programming languages. Our survey is
dedicated to P4 only. It covers more details of P4 and a many more papers of
P4-based applied research which have mostly emerged only within the last two
years.

A recent survey focusing on P4 data plane programming has been published
in [19]. The authors introduce data plane programming with P4, review 33 re-
search works from four research domains, and discuss research issues. Another
recent technical report [20] reviews 150 research papers from seven research do-
mains. While typical research areas of P4 are covered, others (e.g., industrial
networking, novel routing and forwarding schemes, and time-sensitive network-
ing) are not part of the literature review. The different aspects of P4, e.g., the
programming language, architectures, compilers, targets, data plane APIs, and
their advancements are not treated in the paper. In addition, a survey solely
focusing on P4 for network security [21] was recently published. Gao et al. in-
troduce the P4 language and review 60 research works in the field of network
security applications. They analyze the core idea of the reviewed literature
and point out limitations. Finally, a short comparison on P4 targets regarding

3

throughput, delay, jitter, resource constraints, flexibility and proportion in the
research literature is given. In contrast to the mentioned surveys on P4, we
cover a greater level of detail of P4 technology and their advancements, and our
literature review is more comprehensive.

1.3. Paper Organization
Figure 1 depicts the structure of this paper which is divided into two main

parts: an overview of P4 and a survey of research publications.
In the first part, Section 2 gives an introduction to network programmabil-

ity. We describe the development from traditional networking and SDN to data
plane programming and present the two most common data plane programming
models. In Section 3, we give a technology-oriented tutorial of P4 based on its
latest version P416. We introduce the P4 programming language and describe
how user-provided P4 programs are compiled and executed on P4 targets. Sec-
tion 4 presents the concept of P4 architectures as intermediate layer between
the P4 programs and the targets. We introduce the four most common archi-
tectures in detail and describe P4 compilers. In Section 5, we categorize and
present platforms that execute P4 programs, so-called P4 targets that are based
on software, FPGAs, ASICs, or NPUs. Section 6 gives an introduction to data
plane APIs. We describe their functions, present a characterization, introduce
the four main P4 data plane APIs that serve as interfaces for SDN controllers,
and point out controller use case patterns. In Section 7, we summarize research
efforts that aim to improve P4 data plane programming.

The second part of the paper surveys P4-based applied research in com-
munication networks. In Section 8, we classify core features of P4 that make
it attractive for the implementation of data plane algorithms. We use these
properties in later sections to effectively reason about P4’s value for the im-
plementation of various prototypes. We present an overview of the research
domains and compile statistics about the included publications. The super-
ordinate research domains are monitoring (Section 9), traffic management and
congestion control (Section 10), routing and forwarding (Section 11), advanced
networking (Section 12), network security (Section 13), and miscellaneous (Sec-
tion 14) to cover additional, different topics. Each category includes a table to
give a quick overview of the analyzed papers with regard to prototype imple-
mentations, target platforms, and source code availability. At the end of each
section, we analyze how the reviewed works benefit from P4’s core features.

In Section 15 we discuss insights from this survey and give an outlook on
potential next steps. Section 16 concludes this work.

1.4. List of Acronyms
The following acronyms are used in this paper.

ACL access control list

ALU arithmetic logic unit

API application programming interface

4

Part I: Overview of P4

Network Programmability (Sect. II)

The P4
Programming

Language
(Sect. III)

Part II: Applied Research Domains

Discussion & Outlook (Sect. XV)

Monitoring
(Sect. IX)

Introduction (Sect. I)

P4
Architectures
& Compilers

(Sect. IV)

P4
Targets

(Sect. V)

P4 Data
Plane APIs
(Sect. VI)

Advances in P4 Data Plane Programming (Sect. VII)

Classification & Overview (Sect. VIII)

Advanced
Networking
(Sect. XII)

Network
Security

(Sect. XIII)

Routing and
Forwarding
(Sect. XI)

Miscellaneous
Research Domains

(Sect. XIV)

Traffic Management and
Congestion Control

(Sect. X)

Conclusion (Sect. XVI)

Figure 1: The paper is organized in two parts: Part I gives an overview on P4; Part II reviews
P4-based applied research in communication networks.

AQM active queue management

ASIC application-specific integrated circuit

AWW adjusting advertised windows

bmv2 Behavioral Model version 2

BGP Border Gateway Protocol

BPF Berkeley Packet Filter

CLI command line interface

DAG directed acyclic graph

DDoS distributed denial of service

DPI deep packet inspection

DPDK Data Plane Development Kit

DSL domain-specific language

eBPF Extended Berkeley Packet Filter

ECN Explicit Congestion Notification

FPGA field programmable gate array

FSM finite state machine

GTP GPRS tunneling protocol

HDL hardware description language

HLIR high-level intermediate representation

IDE integrated development environment

IDL Intent Definition Language

IDS intrusion detection system

INT in-band network telemetry

5

LDWG Language Design Working Group
LPM longest prefix matching
LUT look up table
MAT match-action-table
ML machine learning
NDN named data networking
NF network function
NFP network flow processing
NFV network function virtualization
NIC network interface card
NPU network processing unit
ODM original design manufacturer
ODP Open Data Plane
OEM original equipment manufacturer
OF OpenFlow
ONF Open Networking Foundation
OVS Open vSwitch
PISA Protocol Independent Switching Architecture
PSA Portable Switch Architecture
REG register
RPC remote procedure call
RTL register-transfer level
SDK software development kit
SDN software-defined networking
SF service function
SFC service function chain
SRAM static random-access memory
TCAM ternary content-addressable memory
TSN Time-Sensitive Networking
TNA Tofino Native Architecture
uBPF user-space BPF
VM virtual machine
VNF virtual network function
VPP Vector Packet Processors
WG working group
XDP eXpress Data Path

6

2. Network Programmability

In this section, we first define the notion of network programmability and
related terms. Then, we discuss control plane programmability and data plane
programming, elaborate on data plane programming models, and point out the
benefits of data plane programming.

2.1. Definition of Terms
We define programmability as the ability of the software or the hardware

to execute an externally defined processing algorithm. This ability separates
programmable entities from flexible (or configurable) ones; the latter only allow
changing different parameters of the internally defined algorithm which stays
the same.

Thus, the term network programmability means the ability to define the pro-
cessing algorithm executed in a network and specifically in individual processing
nodes, such as switches, routers, load balancers, etc. It is usually assumed that
no special processing happens in the links connecting network nodes. If nec-
essary, such processing can be described as if it takes place on the nodes that
are the endpoints of the links or by adding a "bump-in-the-wire" node with one
input and one output.

Traditionally, the algorithms, executed by telecommunication devices, are
split into three distinct classes: the data plane, the control plane, and the man-
agement plane. Out of these three classes, the management plane algorithms
have the smallest effect on both the overall packet processing and network be-
havior. Moreover, they have been programmable for decades, e.g., SNMPv1 was
standardized in 1988 and created even earlier than that. Therefore, management
plane algorithms will not be further discussed in this section.

True network programmability implies the ability to specify and change both
the control plane and data plane algorithms. In practice this means the ability
of network operators (users) to define both data and control plane algorithms
on their own, without the need to involve the original designers of the network
equipment. For the network equipment vendors (who typically design their own
control plane anyway), network programmability mostly means the ability to
define data plane algorithms without the need to involve the original designers
of the chosen packet processing application-specific integrated circuit (ASIC).

Network programmability is a powerful concept that allows both the network
equipment vendors and the users to build networks ideally suited to their needs.
In addition, they can do it much faster and often cheaper than ever before and
without compromising the performance or quality of the equipment.

For a variety of technical reasons, different layers became programmable at
different point in time. While the management plane became programmable in
the 1980s, control plane programmability was not achieved until late 2000s to
early 2010s and a programmable switching ASICs did not appear till the end of
2015.

Thus, despite the focus on data plane programmability, we will start by dis-
cussing control plane programmability and its most well-known embodiment,

7

called software-defined networking (SDN). This discussion will also better pre-
pare us to understand the significance of data plane programmability.

2.2. Control Plane Programmability and SDN
Traditional networking devices such as routers or switches have complex data

and control plane algorithms. They are built into them and generally cannot
be replaced by the users. Thus, the functionality of a device is defined by its
vendor who is the only one who can change it. In industry parlance, vendors
are often called original equipment manufacturers (OEMs).

Software-defined networking (SDN) was historically the first attempt to
make the devices, and specifically their control plane, programmable. On se-
lected systems, device manufacturers allowed users to bypass built-in control
plane algorithms so that the users can introduce their own. These algorithms
could then directly supply the necessary forwarding information to the data
plane which was still non-replaceable and remained under the control of the
device vendor or their chosen silicon provider.

For a variety of technical reasons, it was decided to provide an APIs that
could be called remotely and that is how SDN was born. Figure 2 depicts SDN
in comparison to traditional networking. Not only the control plane became
programmable, but it also became possible to implement network-wide control
plane algorithms in a centralized controller. In several important use cases,
such as tightly controlled, massive data centers, these centralized, network-wide
algorithms proved to be a lot simpler and more efficient, than the traditional
algorithms (e.g. Border Gateway Protocol (BGP)) designed for decentralized
control of many autonomous networks.

The effort to standardize this approach resulted in the development of Open-
Flow (OF) [22]. The hope was that once OF standardized the messaging API
to control the data plane functionality, SDN applications will be able to lever-
age the functions offered by this API to implement network control. There
is a huge body of literature giving an overview of OF [13, 14, 15] and SDN
[6, 7, 8, 9, 11, 10, 12].

However, it soon became apparent that OF assumed a specific data plane
functionality which was not formally specified. Moreover, the specific data
plane, that served as the basis for OF, could not be changed. It executed the
sole, although relatively flexible, algorithm defined by the OF specifications.

In part, it was this realization that led to the development of modern data
plane programming that we discuss in the following section.

2.3. Data Plane Programming
As mentioned above, data plane programmability means that the data plane

with its algorithms can be defined by the users, be they network operators or
equipment designers working with a packet processing ASIC. In fact, data plane
programmability existed during most of the networking industry history because
data plane algorithms were typically executed on general-purpose CPUs. It is

8

Traditional
networking

Data plane

Control plane

API
Programmability

(a) With traditional networking, pro-
grammability is limited to configuration of
functionality via an API.

Control plane

SDN with fixed-
function data

plane

API

Agent

Data plane

Programmability

(b) SDN with fixed-function data planes
allows full programmability of the control
plane.

Figure 2: Distinction between traditional networking and SDN with fixed-function data planes.

only with the advent of high-speed links, exceeding the CPU processing capabil-
ities, and the subsequent introduction of packet processing (switching) ASICs
that data plane programmability (or lack thereof) became an issue.

The data plane algorithms are responsible for processing all the packets that
pass through a telecommunication system. Thus, they ultimately define the
functionality, performance, and the scalability of such systems. Any attempt
to implement data plane functionality in the control plane typically leads to
significant performance degradation. When data plane programming is provided
to users, it qualitatively changes their power. They can build custom network
equipment without any compromise in performance, scalability, speed, or energy
consumption.

For custom networks, new control planes and SDN applications can be de-
signed and for them users can design data plane algorithms that fit them ideally.
Data plane programming does not necessarily imply any provision of APIs for
users nor does it require support for outside control planes as in OF. Device
vendors might still decide to develop a proprietary control plane and use data
plane programming only for their own benefit without necessarily making their
systems more open (although many do open their systems now). Figure 3 visu-
alizes both options.

Four surveys from [10, 9, 16, 17] give an overview on data plane program-
ming, but do not set a particular focus to P4.

2.4. Data Plane Programming Models
Data plane algorithms can and often are expressed using standard program-

ming languages. However, they do not map very well onto specialized hardware
such as high-speed ASICs. Therefore, several data plane models have been pro-
posed as abstractions of the hardware. Data plane programming languages are
tailored to those data plane models and provide ways to express algorithms

9

Control plane

Data plane

Vendor-based creation of
network devices with

data plane programming

API

Programmability

(a) Vendors utilize data plane programma-
bility for more efficient development. Users
can utilize only provided APIs to control the
devices.

Control plane

Data plane

API
Programmability

Full network
programability with data

plane programming

(b) Data plane programming is available to
users. They can program the data plane and
define new APIs through which they can con-
trol their devices.

Figure 3: Different usages of data plane programmability.

for them in an abstract way. The resulting code is then compiled for execu-
tion on a specific packet processing node supporting the respective data plane
programming model.

Data flow graph abstractions and the Protocol Independent Switching Ar-
chitecture (PISA) are examples for data plane models. We give an overview
of the first and elaborate in-depths on the second as PISA is the data plane
programming model for P4.

2.4.1. Data Flow Graph Abstractions
In these data plane programming models, packet processing is described by

a directed graph. The nodes of the graph represent simple, reusable primitives
that can be applied to packets, e.g., packet header modifications. The directed
edges of the graph represent packet traversals where traversal decisions are per-
formed in nodes on a per-packet basis. Figure 4 shows an exemplary graph for
IPv4 and IPv6 packet forwarding.

Examples for programming languages that implement this data plane pro-
gramming model are Click [1], Vector Packet Processors (VPP) [2], and BESS
[23].

2.4.2. Protocol-Independent Switching Architecture (PISA)
Figure 5 depicts the PISA. It is based on the concept of a programmable

match-action pipeline that well matches modern switching hardware. It is a gen-
eralization of reconfigurable match-action tables (RMTs) [24] and disaggregated
reconfigurable match-action tables (dRMTs) [25].

PISA consists of a programmable parser, a programmable deparser, and a
programmable match-action pipeline in between consisting of multiple stages.

10

Ethernet
inPacket

IPv6
input

IPv4
input

IPv6
lookup

IPv4
lookup

IPv6
out

IPv6
local

IPv4
out

IPv4
local

IPv6 forwarding

IPv4 forwarding

Figure 4: Example graph showing how data flow graph abstractions are applied to implement
IPv4 and IPv6 forwarding.

• The programmable parser allows programmers to declare arbitrary headers
together with a finite state machine that defines the order of the head-
ers within packets. It converts the serialized packet headers into a well-
structured form.

• The programmable match-action pipeline consists of multiple match-action
units. Each unit includes one or more match-action-tables (MATs) to
match packets and perform match-specific actions with supplied action
data. The bulk of a packet processing algorithm is defined in the form of
such MATs. Each MAT includes matching logic coupled with the mem-
ory (static random-access memory (SRAM) or ternary content-addressable
memory (TCAM)) to store lookup keys and the corresponding action data.
The action logic, e.g., arithmetic operations or header modifications, is im-
plemented by arithmetic logic units (ALUs). Additional action logic can
be implemented using stateful objects, e.g., counters, meters, or registers,
that are stored in the SRAM. A control plane manages the matching logic
by writing entries in the MATs to influence the runtime behavior.

• In the programmable deparser, programmers declare how packets are seri-
alized.

A packet, processed by a PISA pipeline, consists of packet payload and
packet metadata. PISA only processes packet metadata that travels from the
parser all the way to the deparser but not the packet payload that travels
separately.

Packet metadata can be divided into packet headers, user-defined and in-
trinsic metadata.

• Packet headers is metadata that corresponds to the network protocol head-
ers. They are usually extracted in the parser, emitted in the deparser or
both.

11

Match
logic ...

Programmable
match-action pipelineProgrammable

parser
Programmable

deparser

Match-action
unit

Action
logic

Match
logic

Action
logic

Match
logic

Action
logic

Action
logic

Action
logic

Match
logic

Action
logic

Match
logic

Action
logic

Match
logic

Action
logic

Action
logic

Action
logic

Match-action
unit

M
et
ad

at
a

M
et
ad

at
a

M
et
ad

at
a

Figure 5: The Protocol-Independent Switch Architecture (PISA) contains a programmable
parser, a programmable match-action pipeline, and a programmable deparser.

• Intrinsic metadata is metadata that relates to the fixed-function compo-
nents. P4-programmable components may receive information from the
fixed-function components by reading the intrinsic metadata they produce
or control their behavior by setting the intrinsic metadata they consume.

• User-defined metadata (often referred as simply metadata) is a temporary
storage, similar to local variables in other programming languages. It
allows the developers to add information to packets that can be used
throughout the processing pipeline.

All metadata, be it packet headers, user-defined or intrinsic metadata is
transient, meaning that it is discarded when the corresponding packet leaves
the processing pipeline (e.g., is sent out of an egress port or dropped).

PISA provides an abstract model that is applied in various ways to create
concrete architectures. For example, it allows specifying pipelines containing
different combinations of programmable components, e.g., a pipeline with no
parser or deparser, a pipeline with two parsers and deparsers, and additional
match-action pipelines between them. PISA also allows for specialized com-
ponents that are required for advanced processing, e.g., hash/checksum calcu-
lations. Besides the programmable components of PISA, switch architectures
typically also include configurable fixed-function components. Examples are
ingress/egress port blocks that receive or send packets, packet replication en-
gines that implements multicasting or cloning/mirroring of packets, and traffic
managers, responsible for packet buffering, queuing, and scheduling.

The fixed-function components communicate with the programmable ones
by generating and/or consuming intrinsic metadata. For example, the ingress
port block generates ingress metadata that represents the ingress port number
that might be used within the match-action units. To output a packet, the

12

match-action units generates intrinsic metadata that represents an egress port
number; this intrinsic metadata is then consumed by the traffic manager and/or
egress port block.

Figure 6 depicts a typical switch architecture based on PISA. It comprises a
programmable ingress and egress pipeline and three fixed-function components:
an ingress block, an egress block, and a packet replication engine together with
a traffic manager between ingress and egress pipeline.

Programmable
ingress pipeline

Pa
ck

et
 re

pl
ic

at
io

n
en

gi
ne

+
tra

ffi
c

m
an

ag
er

In
gr
es
s

Eg
re
ss

Programmable
egress pipeline

Fixed-function components

Figure 6: Exemplary switch architecture based on PISA with the ingress and egress pipeline
as programmable parts. The ingress, the egress, the packet replication engine, and the traffic
manager are fixed-function components.

P4 (Programming Protocol-Independent Packet Processors) [5] is the most
widely used domain-specific programming language for describing data plane
algorithms for PISA. Its initial idea and name were introduced in 2013 [26]
and it was published as a research paper in 2014 [5]. Since then, P4 has been
further developed and standardized by the P4 Language Consortium [27] that is
part of the Open Networking Foundation (ONF) since 2019. The P4 Language
Consortium is managed by a technical steering committee and hosts five working
groups (WGs). P414 [28] was the first standardized version of the language. The
current specification is P416 [29] which was first introduced in 2016.

Other data plane programming languages for PISA are FAST [30], Open-
State [31], Domino [32], FlowBlaze [33], Protocol-Oblivious Forwarding [34],
and NetKAT [35]. In addition, Broadcom [3] and Xilinx [4] offer vendor-specific
programmable data planes based on match-action tables.

2.5. Benefits
Data plane programmability entails multiple benefits. In the following, we

summarize key benefits.
Data plane programming introduces full flexibility to network packet pro-

cessing, i.e., algorithms, protocols, features can be added, modified, or removed
by the user. In addition, programmable data planes can be equipped with a
user-defined API for control plane programmability and SDN. To keep com-
plexity low, only components needed for a particular use case might be included

13

in the code. This improves security and efficiency compared to multi-purpose
appliances.

In conjunction with suitable hardware platforms, data plane programming
allows network equipment designers and even users to experiment with new
protocols and design unique applications; both do no longer depend on vendors
of specialized packet-processing ASICs to implement custom algorithms. Com-
pared to long development circles of new silicon-based solutions, new algorithms
can be programmed and deployed in a matter of days.

Data plane programming is also beneficial for network equipment developers
that can easily create differentiated products despite using the same packet
processing ASIC. In addition, they can keep their know-how to themselves
without the need to share the details with the ASIC vendor and potentially
disclose it to their competitors that will use the same ASIC.

So far, modern data plane programs and programming languages have not
yet achieved the degree of portability attained by the general-purpose program-
ming languages. However, expressing data plane algorithms in a high-level lan-
guage has the potential to make telecommunication systems significantly more
target-independent. Also, data plane programming does not require but encour-
ages full transparency. If the source code is shared, all definitions for protocols
and behaviors can be viewed, analyzed, and reasoned about, so that data plane
programs benefit from community development and review. As a result, users
could choose cost-efficient hardware that is well suited for their purposes and
run their algorithms on top of it. This trend has been fueled by SDN and is
commonly known as network disaggregation.

2.6. Differences Between SDN and P4
SDN introduces programmability on the control plane. SDN-capable net-

work devices such as switches include an API allowing that the device-local
control plane can be substituted by an external, software-based control plane.
This control plane comprises control plane algorithms managing the data plane.
The centralized view of an external controller facilitates the implementation of
simpler algorithms that may replace complex distributed protocols from legacy
network devices. The control plane leverages an API offered by the data plane
devices for control. The data plane however merely features fixed functions that
can be used and configured by the control plane.

In contrast, P4 is a domain-specific language for data plane programming,
i.e., programmability is extended to the data plane. Instead of supporting fixed
functions only, the functionality of the data plane devices is described by a
P4 program that is compiled into target-specific code that can be executed by
the programmable network hardware. While the P4 language itself focuses on
data plane programmability, P4 targets typically offer APIs so that software-
based SDN control planes can manage the runtime behavior of those data plane
devices.

14

3. The P4 Programming Language

We give an overview of the P4 programming language. We briefly recap its
specification history and describe how P4 programs are deployed. We introduce
the P4 processing pipeline and data types. We discuss parsers, match-action
controls, and deparsers. Finally, we give an overview of tutorials and guides to
P4.

3.1. Specification History
The P4 Language Design Working Group (LDWG) of the P4 Language Con-

sortium has standardized so far two distinct standards of P4: P414 and P416.
Table 1 depicts their specification history.

Table 1: Specification history of P414 and P416.

P414
Version 1.0.2 03/2015
Version 1.1.0 01/2016
Version 1.0.3 11/2016
Version 1.0.4 05/2017
Version 1.0.5 11/2018

P416
Version 1.0.0 05/2017
Version 1.1.0 11/2018
Version 1.2.0 11/2018
Version 1.2.1 06/2020

The P414 programming language dialect allows the programmers to describe
data plane algorithms using a combination of familiar, general-purpose imper-
ative constructs and more specialized declarative ones that provide support for
the typical data-plane-specific functionality, e.g., counters, meters, checksum
calculations, etc. As a result, the P414 language core includes more than 70
keywords. It further assumed a specific pipeline architecture based on PISA.

Table 2: Core differences between P414 and P416.

P414 P416
Modularity - X
Pipeline architectures single multiple
Target-specific functions - X
of language keywords >70 <40
Strict typing - X
Nested data structures - X
Declarative constructs X -

P416 has been introduced to address several P414 limitations that became
apparent in the course of its use. Those include the lack of means to describe
various targets and architectures, weak typing and generally loose semantics
(caused, in part, by the above-mentioned mix of imperative and declarative
programming constructs), relatively low-level constructs, and weak support for
program modularity. The core differences between P414 and P416 are summa-
rized in Table 2.

15

Support for multiple different targets and pipeline architecture is the ma-
jor contribution of the P416 standard and is achieved by separating the core
language from the specifics of a given architecture, thus making it architecture-
agnostic. The structure, capabilities and interfaces of a specific pipeline are
now encapsulated into an architecture description, while the architecture- or
target-specific functions are accessible through an architecture library, typically
provided by the target vendor. The core components are further structured into
a small set of language constructs and a core library that is useful for most P4
programs. Compared to P414, P416 introduced strict typing, expressions, nested
data structures, several modularity mechanisms, and also removed declarative
constructs, making it possible to better reason about the programs, written in
the language. Figure 7 illustrates the concept which is subdivided into core
components and architecture components.

P414
language

P416 language

Core library

Core
components

Architecture
components

Architecture description

Architecture library

Figure 7: Evolvement from the P414 programming language to the P416 language (similar
to [29]). P414 comprised all components as part of the programming language. In P416, the
different parts of the programming language are split into core components and architecture
components.

Due to the obvious advantages of P416, P414 development has been discon-
tinued, although it is still supported on a number of targets. Therefore, we focus
on P416 in the remainder of this paper where P4 implicitly stands for P416.

3.2. Development and Deployment Process
Figure 8 illustrates the development and deployment process of P4 programs.
P4-programmable nodes, so-called P4 targets, are available as software or

specialized hardware (see Section 5). They feature packet processing pipelines
consisting of both P4-programmable and fixed-function components. The exact
structure of these pipelines is target-specific and is described by a corresponding
P4 architecture model (see Section 4) which is provided by the manufacturer of
the target.

P4 programs are supplied by the user and are implemented for a particular
P4 architecture model. They define algorithms that will be executed by the
P4-programmable components and their interaction with the ones implemented
in the fixed-function logic. The composition of the P4 programs and the fixed-
function logic constitutes the full data plane algorithm.

16

P4 compilers (see Section 4) are also provided by the manufacturers. They
translate P4 programs into target-specific code which is loaded and executed by
the P4 target.

The P4 compiler also generates a data plane API that can be used by a
user-supplied control plane (see Section 6) to manage the runtime behavior of
the P4 target.

P4 program
(data plane)

Control plane

P4 architecture
model

P4 targetSupplied by the manufacturer

Supplied by the user

Data plane API
CodeP4 compiler

Figure 8: P4 deployment process (similar to [29]): A P4 compiler transforms a P4 program
formulated for a particular P4 architecture model into code which is executed by a P4 target.
The code provides a data plane API which can be leveraged by a user-supplied control plane.

3.3. Information Flow
P416 adopts PISA’s concept of packet metadata. Figure 9 illustrates the

information flow in the P4 processing pipeline. It comprises different blocks,
where packet metadata (be it headers, user-defined or intrinsic metadata) is
used to pass the information between them, therefore representing a uniform
interface.

The parser splits up the received packet into individual headers and the
remaining payload. Intrinsic metadata from the ingress block, e.g., the ingress
port number or the ingress timestamp, is often provided by the hardware and can
be made available for further processing. Many targets allow the user metadata
to be initialized in the parser as well. Then, the headers and metadata are
passed to the match-action pipeline that consists of one or more match-action
units. The remaining payload travels separately and cannot be directly affected
by the match-action pipeline processing.

While traversing the individual match-action pipeline units, the headers can
be added, modified, or removed and additional metadata can be generated.

The deparser assembles the packet back by emitting the specified headers
followed by the original packet payload. Packet output is configured with in-
trinsic metadata that includes information such as a drop flag, desired egress
port, queue number, etc.

3.4. Data Types
P416 is a statically typed language that supports a rich set of data types for

data plane programming.

17

Text

Parser Deparser

Intrinsic
metad.

Headers

Payload

Intrinsic
metad.

Intrinsic
md.

Headers

P4 block w/
interface

Match-
action unit

Match-
action unit

P4 block w/
interface

P4 block w/
interface

P4 block w/
interface

Headers

User
metad.

User
metad.

User
metad.

Figure 9: Information flow in the P4 processing pipeline. Metadata (headers, user metadata,
intrinsic metadata) transport information between the different P4 blocks of the processing
pipeline.

3.4.1. Basic Data Types
P416 includes common basic types such as Boolean (bool), signed (int),

and unsigned (bit) integers which are also known as bit strings. Unlike many
common programming languages, the size of these integers is specified at bit
granularity, with a wide range of supported widths. For example, types such as
bit<1>, int<3>, bit<128> and wider are allowed.

In addition, P4 supports bit strings of variable width, represented by a spe-
cial varbit type. For example, IPv4 options can be represented as varbit<320>
since the size of IPv4 options ranges from zero to 10 32-bit words.

P416 also supports enumeration types that can be serializable (with the
actual representation specified as bit<N> or int<N> during the type definition)
or non-serializable, where the type representation is chosen by the compiler and
hidden from the user.

3.4.2. Derived Data Types
Basic data types can be composed to construct derived data types. The

most common derived data types are header, header stack, and struct.
The header data type facilitates the definition of packet protocol headers,

e.g., IPv4 or TCP. A header consists of one more fields of the serializable types
described above, typically bit<N>, serializable enum, or varbit. A header also
has an implicit validity field indicating whether the header is part of a packet.
The field is accessible through standard methods such as setvalid(), setInvalid(),
and isValid(). Packet parsing starts with all headers being invalid. If the parser
determines that a header is present in the packet, the header fields are extracted
and the header’s validity field is set valid. The standard packet emit() method
used by a deparser equips packets only with valid headers. Thus, P4 programs
can easily add and remove headers by manipulating their validity bits. A sample
header declaration is shown in Figure 10.

18

A header stack is used to define repeating headers, e.g., VLAN tags or
MPLS labels. It supports special operations allowing headers to be “pushed”
onto the stack or “popped” from it.

Struct in P4 is a composed data type similar to structs in programming
languages like C. Unlike the header data type, they can contain fields of any
type including other structs, headers, and others.

typedef bit <48> macAddr_t;

header ethernet_t {
macAddr_t dstAddr;
macAddr_t srcAddr;
bit <16> etherType;

}

Figure 10: Sample declaration of the Ethernet header with the help of a type definition for
the MAC addresses used in the header.

3.5. Parsers
Parsers extract header fields from ingress packets into header data and meta-

data. P4 does not include predefined packet formats, i.e., all required header for-
mats including parsing mechanisms need to be part of the P4 program. Parsers
are defined as finite state machine (FSM) with an explicit Start state, two ending
states (Accept and Reject), and custom states in between.

Figure 11 depicts the structure of a typical P4 parser for Ethernet, MPLS,
IPv4, TCP, and UDP headers. Figure 12 shows the source code fragment of the
example parser in a P416 program. The process starts in the Start state and
switches to the Ethernet state. In this state and the following states, information
from the packet headers is extracted according to the defined header structure.

State transitions may be either conditional or unconditional. In the given
example, the transition from the Start state to the Ethernet state is uncondi-
tional while in the Ethernet state the transition to the MPLS, IPv4, or Reject
state depends on the value of the EtherType field of the extracted Ethernet
header. Based on previously parsed header information, any number of further
headers can be extracted from the packet. If the header order does not comply
with the expected order, a packet can be discarded by switching to the Reject
state. The parser can also implicitly transition into the Reject state in case of
a parser exception, e.g., if a packet is too short.

3.6. Match-Action Controls
Match-action controls express the bulk of the packet processing algorithm

and resemble traditional imperative programs. They are executed after success-
ful parsing of a packet. In some architectures they are also called match-action
pipeline units. In the following, we give an overview of control blocks, actions,
and match-action tables.

19

Start

Ethernet

MPLS

ethertype=
0x8847

UDPTCP

protocol=6

IPv4

ethertype=
0x0800

default

Custom States

Accept

Reject
default

protocol=17

Figure 11: Example for the FSM of a P4 parser that parses packets with Ethernet, MPLS,
IPv4, TCP, and UDP headers.

3.6.1. Control Blocks
Control blocks, or just controls, are similar to functions in general-purpose

languages. They are called by an apply() method. They have parameters and
can call also other control blocks. The body of a control block contains the
definition of resources, such as tables, actions, and externs that will be used for
processing. Furthermore, a single apply() method is defined that expresses the
processing algorithm.

P4 offers statements to express the program flow within a control block.
Unlike common programming languages, P4 does not provide any statements
that would allow the programmer to create loops. This ensures that all the
algorithms that can be coded in P4 can be expressed as directed acyclic graphs
(DAGs) and thus are guaranteed to complete within a predictable time interval.
Specific control statements include:

• a block statement {} that expresses sequential execution of instructions.

• an if() statement that expresses an execution predicated on a Boolean
condition

• a switch() statement that expresses a choice from multiple alternatives

• an exit() statement that ends the control flow within a control block and
passes the control to the end of the top-level control

Transformations are performed by several constructs, such as

• An assignment statement which evaluates the expression on its right-hand-
side and assigns the result to a header or a metadata fields

20

parser SampleParser(packet_in p, out headers h) {

state start {
transition parse_ethernet;

}

state parse_ethernet {
p.extract(h.ethernet);
transition select(h.ethernet.etherType) {

0x8847: parse_mpls;
0x0800: parse_ipv4;

default: reject;
};

}

state parse_ipv4 {
p.extract(h.ipv4);
transition select(h.ipv4.protocol) {

6: parse_tcp;
17: parse_udp;

default: accept;
}

}

state parse_udp {
p.extract(h.udp);
transition accept;

}
/* Other states follow */

}

Figure 12: Sample parser implementation of the FSM in Figure 11.

• A match-action operation on a table expressed as the table’s apply()
method

• An invocation of an action or a function that encapsulate a sequence of
statements

• An invocation of an extern method that represents special, target- and
architecture-specific processing, often involving additional state, preserved
between packets

A sample implementation of basic L2 forwarding is provided in Figure 13.

3.6.2. Actions
Actions are code fragments that can read and write packet headers and

metadata. They work similarly to functions in other programming languages
but have no return value. Actions are typically invoked from MATs. They can
receive parameters that are supplied by the control plane as action data in MAT
entries.

21

control SampleControl(inout headers h, inout standard_metadata_t
standard_metadata) {

action l2_forward(egressSpec_t port) {
standard_metadata.egress_spec = port;

}

table l2 {
key = {

h.ethernet.dstAddr: exact;
}
actions = {

l2_forward; drop;
}
size = 1024;
default_action = drop();

}

apply {
if (h.ethernet.isValid ()) {

l2.apply ();
}

}
}

Figure 13: Sample control block implementing basic L2 forwarding.

As in most general-purpose programming languages, the operations are writ-
ten using expressions and the results are then assigned to the desired header
or metadata fields. The operations available in P4 expressions include stan-
dard arithmetic and logical operations as well as more specialized ones such
as bit slicing (field[high:low]), bit concatenation (field1 ++ field2), and
saturated arithmetic (|+| and |-|).

Actions can also invoke methods of other objects, such as headers and
architecture-specific externs, e.g., counters and meters. Other actions can also
be called, similar to nested function calls in traditional programming languages.

Action code is executed sequentially, although many hardware targets sup-
port parallel execution. In this case, the compiler can optimize the action code
for parallel execution as long as its effects are the same as in case of the sequen-
tial execution.

3.6.3. Match-Action Tables (MATs)
MATs are defined within control blocks and invoke actions depending on

header and metadata fields of a packet. The structure of a MAT is declared
in the P4 program and its table entries are populated by the control plane at
runtime. A packet is processed by selecting a matching table entry and invoking
the corresponding action with appropriate parameters.

The declaration of a MAT includes the match key, a list of possible actions,
and additional attributes.

22

The match key consists of one or more header or metadata fields (variables),
each with the assigned match type. The P4 core library defines three standard
match types: exact, ternary, and longest prefix matching (LPM). P4 archi-
tectures may define additional match types, e.g., the v1model P4 architecture
extends the set of standard match types with the range and selector match.

The list of possible actions includes the names of all actions that can be
executed by the table. These actions can have additional, directional parameters
which are provided as action data in table entries.

Additional attributes may include the size of the MAT, e.g., the maximum
number of entries that can be stored in a table, a default action for a miss, or
static table entries.

Lookup
key

Key ID Data

Action

Default Action

ID Data

Action

H
it / m

iss selector

M
atching

H
it

Data

Match-action table

ID

Control plane

Headers

Metadata

Headers

Metadata

Figure 14: Structure of MATs in P4. Lookup keys are constructed based on packet metadata
and used for row matching in the MAT. In case of a hit, the defined action is applied with
the specified action data. In case of a miss, the default action is applied.

Figure 14 illustrates the principle of MAT operation. The MAT contains
entries with values for match keys, the ID of the corresponding action to be
invoked, and action data that serve as parameters for action invocation. For
each packet, a lookup key is constructed from the set of header and metadata
fields specified in the table definition. It is matched against all entries of the
MAT using the rules associated with the individual field’s match type. When
the first match in the table is found, the corresponding action is called and the
action data are passed to the action as directionless parameters. If no match is
found in the table, a default action is applied.

As a special case, tables without a specified key always invoke the default
action.

3.7. Deparser
The deparser is also defined as a control block. When packet processing

by match-action control blocks is finished, the deparser serializes the packet.
It reassembles the packet header and payload back into a byte stream so that

23

the packet can be sent out via an egress port or stored in a buffer. Only valid
headers are emitted, i.e., added to the packet. Thus, match-action control blocks
can easily add and remove headers by manipulating their validity. Figure 15
provides a sample implementation.

control SampleDeparser(packet_out p, in headers h) {
apply {

p.emit(h.ethernet);
p.emit(h.mpls);
p.emit(h.ipv4);
/* Normally , a packet can contain either
* a TCP or a UDP header (or none at all),
* but should never contain both
*/

p.emit(h.tcp);
p.emit(h.udp);

}
}

Figure 15: Sample deparser implementation.

3.8. P4 Tutorials
The P4 Language Consortium provides a GitHub repository with simple

programming exercises and a development VM containing all required software
[36]. A guide on GitHub lists useful information for P4 newcomers, e.g. demo
programs, information about other GitHub repositories, and an overview of
P4 [37]. The Networked Systems Group at ETH Zürich provides resources for
people who want to learn programming in P4, including lecture slides, references
to useful documentation, examples and exercises [38].

4. P4 Architectures & Compilers

We present P416 architectures and introduce P4 compilers.

4.1. P416 Architectures
We summarize the concept of P416 architectures, describe externs, and give

an overview of the most common P416 architectures.

4.1.1. Concept
As described before, P416 introduces the concept of P4 architectures as an

intermediate layer between the core P4 language and the targets. A P4 archi-
tecture serves as programming models that represents the capabilities and the
logical view of a target’s P4 processing pipeline. P4 programs are developed for
a specific P4 architecture. Such programs can be deployed on all targets that
implement the same P4 architecture. The manufacturers of P4 targets provide
P4 compilers that compile architecture-specific P4 programs into target-specific
configuration binaries.

24

4.1.2. Externs
P4 architectures may provide additional functionalities that are not part

of the P4 language core. Examples are checksum or hash computation units,
random number generators, packet and byte counters, meters, registers, and
many others. To make such extern functionalities usable, P416 introduces so-
called externs.

Most of the externs have to be explicitly instantiated in P4 programs using
their constructor method. The other methods provided by these externs can
then be invoked on the given extern instance. Other externs (extern functions)
do not require explicit instantiating.

Along with tables and value sets, P4 externs are allowed to preserve addi-
tional state between packets. That state may be accessible by the control plane,
the data plane, or both. For example, the counter extern would preserve the
number of packets or bytes that has been counted so that each new packet can
properly increment it. The specifics of the state depend on the nature of the
extern and cannot be specified in the language; this is done inside the vendor-
specific API definitions.

While the P4 processing pipeline only allows packet header manipulation,
extern functions may operate on packet payload as well.

4.1.3. Overview of Common P416 Architectures
We describe the four most common P416 architectures.

v1model. The v1model mimics the processing pipeline of P414. As depicted
in Figure 16, it consists of a programmable parser, an ingress match action
pipeline, a traffic manager, an egress match-action pipeline, and a deparser. It
enables developers to convert P414 programs into P416 programs. Additional
functionalities tracking the development of the reference P4 software switch
Behavioral Model version 2 (bmv2) (see Section 5) are continuously added. All
P4 examples in this paper are written using v1model.

In
gr

es
s

Eg
re

ss

Tr
af

fic
 m

an
ag

er

Parser
Ingress

match-action
pipeline

Egress
match-action

pipeline
Deparser

Figure 16: v1model architecture with a programmable parser, programmable ingress and
egress match-action pipelines with a traffic manager in between, and a programmable parser.

25

Portable Switch Architecture (PSA). The PSA is a P4 architecture created and
further developed by the Architecture WG [39] in the P4 Language Consortium.
Besides, the WG also discusses standard functionalities, APIs, and externs that
every target mapping the PSA should support. Its last specification is Version
1.1 [40] from November 2018. Figure 17 illustrates the P4 processing pipeline
of the PSA. It is divided into an ingress and egress pipeline. Each pipeline
consists of the three programmable parts: parser, multiple control blocks, and
deparser. The architecture also defines configurable fixed-function components.

PSA specifies several packet processing primitives, such as:

• Sending a packet to an unicast port

• Dropping a packet

• Sending the packet to a multicast group

• Resubmitting a packet, which moves the currently processed packet from
the end of the ingress pipeline to the beginning of the ingress pipeline for
the purpose of packet re-parsing

• Recirculating a packet, which moves the currently processed packet from
the end of the egress pipeline to the beginning of the ingress pipeline for
the purposes of recursive processing, e.g., tunneling

• Cloning a packet, which duplicates the currently processed packet. Clone
ingress to egress (CI2E) creates a duplicate of the ingress packet at the end
of the ingress pipeline. Clone egress to egress (CE2E) creates a duplicate of
the deparsed packet at the end of the egress pipeline. In both cases, cloned
instances start processing at the beginning of the egress pipeline. Cloning
can be helpful to implement powerful applications such as mirroring and
telemetry.

SimpleSumeArchitecture. The SimpleSumeArchitecture is a simplified P4 ar-
chitecture that is implemented by FPGA-based P4 targets. As depicted in
Figure 18, it features a parser, a programmable match-and-action pipeline, and
a deparser.

Tofino Native Architecture (TNA). TNA is a proprietary P416 architecture de-
signed for Intel Tofino switching ASICs (see Section 5.3). Intel has published
the architecture definitions and allows developers to publish programs written
by using it.

The architecture describes a very high-performance, “industry-strength” de-
vice that is relatively complex. The basic programming unit is a so-called
Pipeline() package that resembles an extended version of the Portable Switch
Architecture (PSA) pipeline and consists of 6 top-level programmable compo-
nents: the ingress parser, ingress match-action control, ingress deparser, and
their egress counterparts. Since Tofino devices can have two or four processing

26

In
gr

es
s

Eg
re

ss

Tr
af

fic
 m

an
ag

er

Parser
Match-action

units DeparserDeparser Parser

Resubmit

Recirculate

CE2E

C
I2

E

Match-action
units

Ingress pipeline Egress pipeline

Figure 17: Portable Switch Architecture (PSA) with an ingress and egress pipeline and a traffic
manager in between. Both include a programmable parser, programmable match-action units,
a programmable deparser, fixed-function parts, and special packet processing primitives.

In
gr

es
s

Eg
re

ss

Tr
af

fic
 m

an
ag

er

Parser Match-action
pipeline Deparser

Figure 18: SimpleSumeArchitecture with a programmable parser, a programmable match-
action pipeline, and a programmable parser followed by a traffic manager.

pipelines, the final switch package can be formed anywhere from one to four
distinct pipeline packages. More complex versions of the Pipeline() package
allow the programmer to specify different parsers for different ports.

TNA also provides a richer set of externs compared to most other archi-
tectures. Most notable is TNA RegisterAction() which represents a small
code fragment that can be executed on the register instead of simple read/write
operations provided in other architectures. TNA provides a clear and consis-
tent interface for mirroring and resubmit with additional metadata being passed
via the packet byte stream. The same technique is also used to pass intrinsic
metadata which greatly simplifies the design.

Additional externs that are not present in other architectures include low-
pass filters, weighted random early discard externs, powerful hash externs that
can compute CRC based on user-defined polynomials, ParserCounter, and oth-

27

ers.
The set of intrinsic metadata in Tofino is also larger than in most other P4

architectures as presented before. Notable is support for two-level multicasting
with additional source pruning, copy-to-cpu functionality, and support for IEEE
1588.

4.2. P4 Compiler
P4 compilers translate P4 programs into target-specific configuration bina-

ries that can be executed on P4 targets. We first explain compilers based on the
two-layer model which are most widely in use. Then we mention other compilers
in less detail.

4.2.1. Two-Layer Compiler Model
Most P4 compilers use the two-layer model, consisting of a common frontend

and a target-specific backend.
The frontend is common for all the targets and is responsible for parsing,

syntactic and target-independent semantic analysis of the program. The pro-
gram is finally transformed into an intermediate representation (IR) that is then
consumed by the target-specific backend which performs target-specific trans-
formations.

The first-generation P4 compiler for P414 was written in Python and used
the so-called high-level intermediate representation (HLIR) [41] that represented
P414 program as a tree of Python objects. The compiler is referred to as p4-hlir.

P4 program
(.p4) ...

Back-end
compiler A

Front-end
compiler

Back-end
compiler Z

Target A

Target Z

Intermediate
representation

Figure 19: Structure and operation principle of P4 compilers using the two-layer model. The
front-end compiler translates the given P4 program into an intermediate representation that
is then compiled into target-specific code by back-end compilers.

The new P4 compiler (p4c) [42] is written in C++ and uses C++-object-
based IR. As an additional benefit, the IR can be output as a P416 program or a
JSON file. The latter allows the developers and users to build powerful tools for
program analysis without the need to augment the compiler. Figure 19 visualizes
its structure and operating principle. The compiler consists of a generic frontend
that accepts both P414 and P416 code which may be written for any architecture.
It furthermore has several reference backends for the bmv2, eBPF, and uBPF
P4 targets as well as a backend for testing purposes and a backend that can
generate graphs of control flows of P4 programs. In addition, p4c provides the
so-called “mid-end” which is a library of generic transformation passes that are

28

used by the reference backends and can also be used by vendor-specific backends.
The compiler is developed and maintained by P4.org.

P4 target vendors design and maintain their own compilers that include the
common frontend. This ensures the uniformity of the language which is accepted
by different compilers.

4.2.2. Other Compilers
MACSAD [43] is a compiler that translates P4 programs into Open Data

Plane (ODP) [44] programs. Jose et al. [45] introduce a compiler that maps
P4 programs to FlexPipe and RMT, two common software switch architectures.
P4GPU [46] is a multistage framework that translates a P4 program into inter-
mediate representations and other languages to eventually generate GPU code.

5. P4 Targets

We describe P4 targets based on software, FPGA, ASIC, and NPU. Ta-
ble 3 compiles an overview of the targets, their supported architectures, and the
current state of development.

5.1. Software-Based P4 Targets
Software-based P4 targets are packet forwarding programs that run on a

standard CPU. We describe the 9 software-based P4 targets mentioned in Ta-
ble 3.

5.1.1. p4c-behavioural
p4c-behavioral [47] is a combined P4 compiler and P4 software target. It

was introduced with the first public release of P4. p4c-behavioral translates the
given P414 program into an executable C program.

5.1.2. Behavioral Model version 2 (bmv2)
The second version of the P4 software switch Behavioral Model (bmv2) [48]

was introduced to address the limitations of p4c-behavioural (see also [49]). In
contrast to p4c-behavioral, the source code of bmv2 is static and independent
of P4 programs. P4 programs are compiled to a JSON representation that is
loaded onto the bmv2 during runtime. External functions and other extensions
can be added by extending bmv2’s C++ source code. bmv2 is not a single
target, but a collection of targets [50]:

• simple_switch is the bmv2 target with the largest range of features. It con-
tains all features from the P414 specification and supports the v1model ar-
chitecture of P416. simple_switch includes a program-independent Thrift
API for runtime control.

• simple_switch_grpc extends simple_switch by the P4Runtime API that
is based on gRPC (see Section 6.3.1).

29

Table 3: Overview of P4 targets.

Target P4 Version P416
Architecture

Active
Development

Software
p4c-behavioral P414 n.a. X
bmv2 P414, P416 v1model, psa X
eBPF P416 ebpf_model.p4 X
uBPF P416 ubpf_model.p4 X
XDP P416 xdp_model.p4 X
T4P4S P414, P416 v1model, psa X
Ripple n.a n.a n.a
PISCES P414 n.a. X
PVPP n.a. n.a. X
ZodiacFX P416 zodiacfx_model.p4 n.a.

FPGA
P4→NetFPGA P416 SimpleSumeSwitch X
Netcope P4 n.a. n.a. X
P4FPGA P414, P416 n.a. X

ASIC
Barefoot Tofi-
no/Tofino 2

P414, P416 v1model, psa,
TNA

X

Pensando Capri P416 n.a X
NPU
Netronome P414, P416 v1model X

• psa_switch is similar to simple_switch, but supports PSA instead of
v1model.

• simple_router and l2_switch support only parts of the standard meta-
data and do not support P416. They are intended to show how different
architectures can be implemented with bmv2.

Although bmv2 is intended for testing purposes only, throughput rates up
to 1Gbit/s for a P4 program with IPv4 LPM routing have been reported [51].
bmv2 is under active development, i.e., new functionality is added frequently.

5.1.3. BPF-based Targets
Berkeley Packet Filters (BPFs) add an interface on a UNIX system that

allows sending and receiving raw packets via the data link layer. User space
programs may rely on BPFs to filter packets that are sent to it. BPF-based P4
targets are mostly intended for programming packet filters or basic forwarding
in P4.

30

eBPF. Extended Berkeley Packet Filters (eBPFs) are an extension of BPFs for
the Linux kernel. eBPF programs are dynamically loaded into the Linux kernel
and executed in a virtual machine (VM). They can be linked to functions
in the kernel, inserted into the network data path via iproute2, or bound to
sockets or network interfaces. eBPF programs are always verified by the kernel
before execution, e.g., programs with loops or backward pointers would not be
executed. Due to their execution in a VM, eBPF programs can only access
certain regions in memory besides the local stack. Accessing kernel resources is
protected by a white list. eBPF programs may not block and sleep, and usage
of locks is limited to prevent deadlocks. The p4c compiler features the p4c-ebpf
back-end to compile P416 programs to eBPF [52].

uBPF. user-space BPFs (uBPFs) relocate the eBPF VM from the kernel space
to the user space. p4c-ubpf [53] is a backend for p4c that compiles P4 HLIR for
uBPF. In contrast to p4c-ebpf, it also supports packet modification, checksum
calculation, and registers, but no counters.

XDP. eXpress Data Path (XDP) is based on eBPF and allows to load an eBPF
program into the RX queue of a device driver. p4c-xdp [54] is a backend for
p4c that compiles P4 HLIR for XDP. Similar to p4c-ubpf, it supports packet
modification and checksum calculation. In contrast to p4c-ebpf, it supports
counters instead of registers.

5.1.4. T4P4S
T4P4S (pronounced "tapas") [55, 56] is a software P4 target that relies on

interfaces for accelerated packet processing such as Data Plane Development Kit
(DPDK) [57] or Open Data Plane (ODP) [44]. T4P4S provides a compiler that
translates P4 programs into target-independent C code that interfaces a network
hardware abstraction library. Hardware-dependent and hardware-independent
functionalities are separated from each other. Its source code is available on
GitHub [58]. Bhardwaj et al. [59] describe optimizations for improving T4P4S
performance by up to 15%.

5.1.5. Ripple
Ripple [60] is a P4 target based on DPDK. It uses a static universal binary

that is independent of the P4 program. The data plane of the static binary is
configured at runtime based on P4 HLIR. This results in a shorter downtime
when updating a P4 program in contrast to targets like T4P4S. Ripple uses
vectorization to increase the performance of packet processing.

5.1.6. PISCES
PISCES [61] transforms the Open vSwitch (OVS) [62] into a software P4 tar-

get. OVS is a popular SDN software switch that is designed for high throughput
on virtualization platforms for flexible networking between VMs. The PISCES
compiler translates P4 programs into C code that replace parts of the source
code of OVS. This makes OVS dependent on the P4 program, i.e., OVS must

31

be recompiled with every modification of the P4 program. PISCES does not
support stateful components such as registers, counters, or meters. The devel-
opers claim that PISCES does not add performance overhead to OVS. As the
last commit in the public repository [63] is from 2016, PISCES seems not to be
under active development.

5.1.7. PVPP
PVPP [64, 65] integrates P4 programs into plugins for Vector Packet Proces-

sors (VPP) (see Section 2.4.1). The P4-to-PVPP compiler comprises two stages.
First, a modified p4c compiler translates P4 programs into target-dependent
JSON code. Then, a Python compiler translates the JSON code into a VPP
plugin in C source code. According to the authors, performance decreases by 5-
17% compared to VPP but is still significantly better than OVS. Unfortunately,
the source code and further information are not available for the public.

5.1.8. ZodiacFX
The ZodiacFX is a lightweight development and experimentation board orig-

inally designed as OF switch featuring four Fast Ethernet ports. It is based on
an Atmel processor and an Ethernet switching chip [66]. The authors provided
an extension [67, 68] to run P4 programs on the board. P4 programs are com-
piled using an extended version of p4c and the p4c-zodiacfx backend compiler.
Then, the result of this compilation is used to generate a firmware image. Zanna
et al. [69] compare the performance of P4 and OF on that target, and find out
that differences among all test cases are small.

5.2. FPGA-Based P4 Targets
Several tool chains translate P4 programs into implementations for field

programmable gate arrays (FPGAs). The process includes logic synthesis, ver-
ification, validation, and placement/routing of the logic circuit for the FPGA.
We describe the P4→NetFPGA, Netcope P4, and P4FPGA tool chain. Finally,
we mention research results for FPGA-based P4 targets.

5.2.1. P4→NetFPGA
The P4→NetFPGA workflow [70, 71] provides a development environment

for compiling and running P4 programs on the NetFPGA SUME board that
provides four SFP+ ports [72]. The development environment is built around
the P4-SDnet compiler and the SDnet data plane builder from Xilinx, i.e., a full
license for the Xilinx Vivado design suite is needed. Custom external functions
can be implemented in a hardware description language (HDL) such as Verilog
and included in the final FPGA program. This also allows external IP cores
to be integrated as P4 externs in P4 programs. The P4→NetFPGA tool chain
supports P416 based on the P4 architecture SimpleSumeSwitch (see Section 4.1).

32

5.2.2. Netcope P4
Netcope P4 [73] is a commercial cloud service that creates FPGA firmware

from P4 programs. Knowledge of HDL development is not needed and all nec-
essary IP cores are provided by Netcope. The cloud service can be used in
conjunction with the Netcope software development kit (SDK). This combi-
nation allows developers to combine the VHDL code of the cloud service with
custom HDL code, e.g., from an external function. As target platform, Netcope
P4 supports FPGA boards from Netcope, Silicom, and Intel that are based on
Xilinx or Intel FPGAs.

5.2.3. P4FPGA
P4FPGA [74] is a P414 and P416 compiler and runtime for the Bluespec

programming language that can generate code for Xilinx and Altera FPGAs.
The last commit in the archived public repository [75] is from 2017.

5.2.4. Research Results
Benácek and Kubátová [76, 77] present how P4 parse graph descriptions

can be converted to optimized VHDL code for FPGAs. The authors demon-
strate how a complex parser for several header fields achieves a throughput
of 100Gbit/s on a Xilinx Virtex-7 FPGA while using 2.78% slice look up ta-
bles (LUTs) and 0.76% slice registers (REGs). In a follow-up work [78], the
optimized parser architecture supports a throughput of 1Tbit/s on Xilinx Ul-
traScale+ FPGAs and 800Gbit/s on Xilinx Virtex-7 FPGAs. Da Silva et al.
[79] also investigate the high-level synthesis of packet parsers in FPGAs. Kekely
and Korenek [80] describe how MATs can be mapped to FPGAs. Iša et al. [81]
describe a system for automated verification of register-transfer level (RTL)
generated from P4 source code. Cao et al. [82, 83] propose a template-based
process to convert P4 programs to VHDL. They use a standard P4 frontend
compiler to compile the P4 program into an intermediate representation. From
this representation, a custom compiler maps the different elements of the P4
program to VHDL templates which are used to generate the FPGA code.

5.3. ASIC-Based P4 Targets
5.3.1. Intel Tofino

Intel Tofino is the world’s first user programmable Ethernet switch ASIC.
It is designed for very high throughput of 6.5Tbit/s (4.88 B pps) with 65 ports
running at 100Gbit/s. Its successor, the Tofino 2 ASIC, supports throughput
rates of up to 12.8Tbit/s with ports running at up to 400Gbit/s. Tofino has
been built by Barefoot Networks, a former startup company that was acquired
by Intel in 2019.

The Tofino ASIC implements the TNA, a custom P4 architecture that signif-
icantly extends PSA (see Section 4.1). It provides support for advanced device
capabilities which are required to implement complex, industrial-strength data
plane programs. The device comes with 2 or 4 independent packet processing
pipelines (pipes), each capable of serving 16 100Gbit/s ports. All pipes can

33

run the same P4 program or each pipe can run its own program independently.
Pipes can also be connected together, allowing the programmers to build pro-
grams requiring longer processing pipelines.

The Tofino ASIC processes packets at line rate irrespective of the complex-
ity of the executed P4 program. This is achieved by a high degree of pipelining
(each pipe is capable of processing hundreds of packets simultaneously) and par-
allelization. In addition to standard arithmetic and logical operations, Tofino
provides specialized capabilities, often required by data plane programs, such as
hash computation units and random number generators. For stateful processing
Tofino offers counters, meters, and registers, as well as more specialized process-
ing units. Some of them support specialized operations, such as approximate
non-linear computations required to implement state-of-the-art data plane algo-
rithms. Built-in packet generators allow the data plane designers to implement
protocols, such as BFD, without using externally running control plane pro-
cesses. These and other components are exposed through TNA which is openly
published by Intel [84].

Tofino fixed-function components offer plenty of advanced functionality. The
buffering engine has a unified 22MB buffer, shared by all the pipes, that can
be subdivided into several pools. Tofino Traffic Manager supports both store-
and-forward as well as the cut-through mode, up to 32 queues per port, precise
traffic shaping and multiple scheduling disciplines. Tofino provides nanosecond-
precision timestamping that facilitates both the implementation of time synchro-
nization protocols, such as IEEE 1588, as well as precise delay measurements.
Additional intrinsic metadata support a variety of telemetry applications, such
as INT.

The development is conducted using Intel P4 Studio which is a software
development environment containing the P4 compiler, the driver, and other
software necessary to program and manage the Tofino. A special interactive vi-
sualization tool (P4i) allows the developers to see the P4 program being mapped
onto the specific hardware resources further assisting them in fitting and opti-
mizing their programs. Intel P4 compiler for Tofino has special capabilities,
allowing it to parallelize the code thereby taking advantage of the highly paral-
lel nature of Tofino hardware.

A number of original design manufacturers (ODMs) produce open systems
(white boxes) with the Tofino ASIC that are used for research, development,
and production of custom systems. Examples include the EdgeCore Wedge
100BF-32X [85], APS Networks BF2556-1T-A1F [86] and BF6064-T-A2F [87],
NetBerg Aurora 610 [88], and others.

Most white box systems follow a modern, server-like design with a separate
board management controller, responsible for handling power supplies, fans,
LEDs, etc., and a main CPU, typically x86_64, running a Linux operating sys-
tem. The main CPU is connected to the Tofino ASIC via a PCIe interface. Some
boards also provide one or more high-speed on-board Ethernet connections for
faster packet interface. External Ethernet ports support speeds from 10Gbit/s
to 100Gbit/s using standard QSFP28 cages although some systems offer lower-
speed (1Gbit/s) ports as well. Most of these systems are also powerful enough

34

to support running development tools natively, e.g., a P4 compiler, even though
this is not necessarily required.

Tofino ASICs are also used in proprietary network switches, e.g., by Arista
[89] and Cisco [90]. Some Tofino-based switches are supported by Microsoft
SONiC [91].

5.3.2. Pensando Capri
The Capri P4 Programmable Processor [92, 93] is an ASIC that powers

network interface cards (NICs) by Pensando Systems aimed for cloud providers.
It is coupled with fixed function components for cryptography operations like
AES or compression algorithms and features multiple ARM cores.

5.4. NPU-Based P4 Targets
Network processing units (NPUs) are software-programmable ASICs that

are optimized for networking applications. They are part of standalone network
devices or device boards, e.g., PCI cards.

Netronome network flow processing (NFP) silicons can be programmed with
P4 [94] or C [95]. A C-based programming model is available that supports
program functions to access payloads and allows developing P4 externs. The
Agilio P4C SDK consists of a tool chain including a backend compiler, host
software, and a full-featured integrated development environment (IDE). All
current Agilio SmartNICs based on NFP-4000, NFP-5000, and NFP-6480 are
supported. Harkous et al. [96] investigate the impact of basic P4 constructs on
packet latency on Agilio SmartNICs.

6. P4 Data Plane APIs

We introduce data plane APIs for P4, present a characterization, describe the
three most commonly used P4 data plane APIs, and compare different control
plane use cases.

6.1. Definition & Functionality
Control planes manage the runtime behavior of P4 targets via data plane

APIs. Alternative terms are control plane APIs and runtime APIs. The data
plane API is provided by a device driver or an equivalent software component.
It exposes data plane features to the control plane in a well-defined way. Figure
20 shows the main control plane operations. Most important, data plane APIs
facilitate runtime control of P4 entities (MATs and externs). They typically
also comprise a packet I/O mechanism to stream packets to/from the control
plane. They also include reconfiguration mechanisms to load P4 programs onto
the P4 target. Control planes can control data planes only through data plane
APIs, i.e., if a data plane feature is not exposed via a corresponding API, it
cannot be used by the control plane.

It is important to note that P4 does not require a data plane APIs. P4 targets
may also be used as a packet processor with a fixed behavior that is defined by
the P4 program where static MAT entries are part of the P4 program itself.

35

Control plane

Runtime
control

Packet
I/O

Load
P4 program

P4 target

Data plane
API

MAT Extern
CPU port

Figure 20: Runtime management of a P4 target by the control plane through the data plane
API. The figure depicts the four most central operations: Runtime control of MATs and
extern objects, packet-in/out, and loading of P4 programs.

6.2. Characterization of Data Plane APIs
Data plane APIs in P4 can be characterized by their level of abstraction,

their dependency on the P4 program, and the location of the control plane.

6.2.1. Level of Abstraction
Data plane APIs can be characterized by their level of abstraction.

• Device access APIs provide direct access to hardware functionalities like
device registers or memories. They typically use low-level mechanisms like
DMA transactions. While this results in very low overhead, this type of
API can be neither vendor- nor device-independent.

• Data plane specific APIs are APIs with a higher level of abstraction. They
provide access to objects defined by the P4 program instead of hardware-
specific parts. In contrast to device access APIs, vendor- and device-
independence is possible for this type of API.

6.2.2. Dependency on the P4 Program
Data plane APIs can be characterized by their dependency on the P4 pro-

gram.

• Program-dependent APIs have a set of functions, data structures, and
other names that are derived from the P4 program itself. Therefore, they
depend on the P4 program and are applicable to this P4 program only.
If the corresponding P4 program is changed, function names, data struc-
tures, etc., might change, which requires a recompilation or modification
of the control plane program.

• Program-independent APIs consist of a fixed set of functions that receives
a list of P4 objects that are defined in the P4 program. Thus, the names
of the API functions, data structures, etc., do not depend on the program
and are universally applicable. If the corresponding P4 program changes,
neither the names, nor the definitions of the API functions will change

36

as long as the control plane “knows” the names of the right tables, fields
and other object that need to be operated on. Program-independent APIs
model configurable objects either with the object-based or the table-based
approach. As known from object-oriented programming, the object-based
approach relies on methods that are defined for each class of data plane
objects. In contrast, the table-based approach treats every class of data
plane object as a variation of a table. This reduces the number of API
methods as only table manipulations need to be provided as methods.

6.2.3. Control Plane Location
Data plane APIs can be characterized by the location of the control plane.

• APIs for local control are implemented by the device driver and are exe-
cuted on the local CPU of the device that hosts the programmable data
plane. Usually, the APIs are presented as set of C function calls just like
for other devices that operating system are accessing.

• APIs for remote control add the ability to invoke API calls from a separate
system. This increases system stability and modularity, and is essential
for SDN and other systems with centralized control. Remote control APIs
follow the base methodology of remote procedure calls (RPCs) but rely
on modern message-based frameworks that allow asynchronous commu-
nication and concurrent calls to the API. Examples are Thrift [97] or
gRPC [98]. For example, gRPC uses HTTP/2 for transport and includes
many functionalities ranging from access authentication, streaming, and
flow control. The protocol’s data structures, services, and serialization
schemes are described with protocol buffers (protobuf) [99].

6.3. Data Plane API Implementations
We introduce the three most common data plane APIs: P4Runtime, Bare-

foot Runtime Interface (BRI), and BM Runtime. All of them are data-plane
specific and program-independent. Table 4 lists their properties that have been
introduced before.

6.3.1. P4Runtime API
P4Runtime is one of the most commonly used data plane APIs that is stan-

dardized in the API WG [100] of the P4 Language Consortium. For implement-
ing the RPC mechanisms, it relies on the gRPC framework with protobuf. Its
most recent specification v1.3.0 [101] was published in December 2020.

Operating Principle. Figure 21 depicts the operating principle of P4Runtime.
P4 targets include a gRPC server, controllers implement a gRPC client. To
protect the gRPC connection, TLS with optional mutual certificate authenti-
cation can be enabled. The API structure of P4Runtime is described within
the p4runtime.proto definition. The gRPC server on P4 targets interacts
with the P4-programmable components via platform drivers. It has access to

37

P4 entities (MATs or externs) and can load target-specific configuration bina-
ries. The structure of the API calls to access P4 entities are described in the
p4info.proto. It is part of the P4Runtime but developers can extend it to
use custom data structures, e.g., to implement interaction with target-specific
externs. P4Runtime provides support for multiple controllers. For every P4
entity, read access is provided to all controllers whereas write access is only
provided to one controller. To manage this access, P4 entities can be arranged
in groups where each group is assigned to one primary controller with write ac-
cess and arbitrary, secondary controllers with read access. Interaction between
controllers and P4 targets works as follows. P4 compilers (see Section 4.2)
with support for P4Runtime generate a P4Runtime configuration. It consists
of the target-specific configuration binaries and P4Info metadata. P4Info de-
scribes all P4 entities (MATs and externs) that can be accessed by controllers
via P4Runtime. Then, the controllers establish a gRPC connection to the gRPC
server on the P4 target. The target-specific configuration is loaded onto the P4
target and P4 entities can be accessed.

P4 entities
Target-specific
configuration

binaries

Controller
(optional)

P4Runtime
configuration

P4Info
Target-specific
configuration

binaries

P4
program

p4info.proto

gRPC client

Controller
(primary)

P4Runtime interface

gRPC client

gRPC server

P4Runtime API
specification

Declaration of
P4 entities

Platform drivers

P4
compiler

p4runtime.proto

P4 target

Figure 21: P4Runtime architecture (similar to [101]). P4 targets can be managed by a primary
controller and multiple, optional controllers. The P4 entities and P4Runtime API specification
is part of protocol definitions.

Implementations. gRPC and protobuf libraries are available for many high-
level programming languages such as C++, Java, Go, or Python. Thereby,
P4Runtime can be implemented easily on both controllers and P4 targets.

• Controllers: P4Runtime is supported by most common SDN controllers.
P4 brigade [102] introduces support for P4Runtime on the Open Network

38

Operating System (ONOS). OpenDaylight (ODL) introduces support for
P4Runtime via a plugin [103]. Stratum [104] is an open-source network
operating system that includes an implementation of the P4Runtime and
OpenConfig interfaces. Custom controllers, e.g., for P4 prototypes, can
be implemented in Python with the help of the p4runtime_lib [105].

• Targets: The PI Library [106] is the open-source reference implementa-
tion of a P4Runtime gRPC server in C. It implements functionality for
accessing MATs and supports extensions for target-specific configuration
objects, e.g., registers of a hardware P4 target. The PI Library is used by
many P4 targets including bmv2 [107] and the Tofino.

6.3.2. Barefoot Runtime Interface (BRI)
The BRI consists of two independent APIs that are available on Tofino-based

P4 hardware targets. The BfRt API is an API for local control. It includes C,
C++ and Python bindings that can be used to implement control plane pro-
grams. The BF Runtime is an API for remote control. As for P4Runtime, it
is based on the gRPC RPC framework and protobuf, i.e., bindings for different
languages are available. An additional Python library implements a simpler,
BfRt-like interface for cases where simplicity is more essential than the perfor-
mance of BF Runtime.

6.3.3. BM Runtime API
BM Runtime API is a program-independent data plane API for the bmv2

software target. It relies on the Thrift RPC framework. bmv2 includes a com-
mand line interface (CLI) program [108] to manipulate MATs and configure the
multicast engine of the bmv2 P4 software target via this API.

Table 4: Characterization of data plane specific APIs.

API Program
independence

Control plane location

P4Runtime X Remote (gRPC)
BF Runtime X Remote (gRPC)
BfRt API X Local (C, C++ and Python bindings)
BM Runtime X Remote (Thrift RPC)

6.4. Controller Use Case Patterns
We present three use case patterns which are abstractions of the controller

use cases introduced in the P4Runtime specification [101]. However, these are
neither conclusive nor complete as derivations or extensions are possible.

39

6.4.1. Embedded/Local Controller
P4 hardware targets (see Section 5) comprise or are attached to a com-

puting platform. This facilitates running controllers directly on the P4 target.
Figure 22 depicts this setup. The controller application may either use a local
API, e.g., C calls, or just execute a controller application that interfaces the
data plane via an RPC channel.

Programmable
data plane

Embedded
controller

Local/
remote

API

P4 target

Figure 22: Embedded/local controller use case pattern. The P4 target comprises an embedded
controller that is running a control plane program.

6.4.2. Remote Controllers
Remote controllers resemble the typical SDN setup where data plane devices

are managed by a centralized control plane with an overall view on the network.
Controllers need to be protected against outages and capacity overload, i.e.,
they need to be replicated for fail-safety and scalability. Figure 23 depicts two
possible use cases. In the first shown use case (a), the programmable data plane
on the P4 target is managed by remote controllers. In the second shown use
case (b), the P4 target is managed by both, the embedded controller and remote
controllers. Remote controllers might be interfaced using the remote API of the
programmable data plane or an arbitrary API that is provided by the embedded
controller. This option is often used for the implementation of so-called hierar-
chical control plane structures where control plane functionality is distributed
among different layers. Control plane functions that do not require a global view
of the network, e.g., link discovery, MAC learning for L2 forwarding, or port
status monitoring, can be solely performed by the embedded/local controller.
Other control plane functions that require an overall view of the network, e.g.,
routing applications, can be performed by the remote controller, possibly in
cooperation with the embedded/local controller where the local controller acts
as proxy, i.e., it relays control plane messages between the P4 target and the
global controller. Hierarchical control planes improve load distribution as many
tasks can be performed locally, which reduces load on the remote controllers.
In particular, time-critical operations may benefit from local controllers as ad-
ditional delays caused by the communication between a P4 target and a global
controller are avoided.

40

Remote API

Programmable
data plane

Remote
controller

...

P4 target

Programmable
data plane

Embedded
controller

Local/
remote

API

P4 target

Remote API

Remote
controller

...

(a) Remote
controllers

(b) Local/embedded controller +
remote controllers

Remote API

Remote
controller

...

Figure 23: Two use case patterns for remote controllers: The P4 target may be solely managed
by remote controllers or it may be managed by an embedded controller and remote controllers.

7. Advances in P4 Data Plane Programming

We give an overview on research to improve P4 data plane programming.
Figure 24 depicts the structure of this section. We describe related work on
optimization of development and deployment, testing and debugging, research
on P4 targets, and research on control plane operation.

7.1. Optimization of Development and Deployment
We describe research work on optimizing the development & deployment

process of P4.

7.1.1. Program Development
Graph-to-P4 [109] generates P4 program code for given parse graphs. This

introduces a higher abstraction layer that is particularly helpful for beginners.
Zhou et al. [110] introduce a module system for P4 to improve source code
organization. DaPIPE [111] enables incremental deployment of P4 program
code on P4 targets. SafeP4 [112] adds type safety to P4. P4I/O [113] presents
a framework for intent-based networking with P4. Network operator describe
their network functions with an Intent Definition Language (IDL) and P4I/O
generates a complete P4 program accordingly. To that end, P4I/O provides a
P4 action repository with various network functions. During reconfiguration,
table and register state are preserved by applying backup mechanisms. P4I/O is
implemented for a custom bmv2. Mantis [114] is a framework to implement fast
reactions to changing network conditions in the data plane without controller
interaction. To that end, annotations in the P4 code specify dynamic compo-
nents and a quick control loop of those components ensure timely adjustments

41

Research &
development

on P4

Testing &
debugging

Optimization of
development &

deployment
Program development
Compiler optimization

Simulation
Program verification
Testing
Benchmarking
Debugging

Research on P4
targets

Virtualization of P4 data planes
Composite P4 targets
P4 externs
Secure behavior of targets
Testbeds

Research on
control plane

operation

Figure 24: Organization of Section 7.

if necessary. Lyra [115] is a pipeline abstraction that allows developers to use
simple statements to describe their desired data plane without low-level target-
specific knowledge. Lyra then compiles that description to target-specific code
for execution. GP4P4 [116] is a programming framework for self-driven net-
works. It generates P4 code from behavioral rules defined by the developer. To
that end, GP4P4 evaluates the quality of the automatically generated programs
and improves them based on genetic algorithms. FlowBlaze.p4 [117, 118, 119]
implements an executor for FlowBlaze, an abstraction based on an extended fi-
nite state machine for building stateful packet processing functions, in P4. This
library maps FlowBlaze elements to P4 components for execution on the bmv2.
It also provides a GUI for defining the extended finite state machine. Flight-
plan [120] is a programming tool chain that disaggregates a P4 program into
multiple P4 programs so that they can be executed on different targets. The
authors state that this improves performance, resource utilization, and cost.

7.1.2. Compiler Optimization
pcube [121] is a preprocessor for P4 that translates primitive annotations in

P4 programs into P4 code for common operations such as loops. CacheP4 [122]
introduces a behavior-level cache in front of the P4 pipeline. It identifies flows
and performs a compound of actions to avoid unnecessary table matches. The
cache is filled during runtime by a controller that receives notifications from
the switch. P5 [123] optimizes the P4 pipeline by removing inter-feature de-
pendencies. dRMT [25] is a new architecture for programmable switches that
introduces deterministic throughput and latency guarantees. Therefore, it gen-

42

erates schedules for CPU and memory resources from a P4 program. P2GO [124]
leverages monitored traffic information to optimize resource allocation during
compilation. It adjusts table and register size to reduce the pipeline length, and
offloads rarely used parts of the program to the control plane. Yang et al. [125]
propose a compiler module that optimizes lookup speed by reorganizing flow
tables and prioritization of popular forwarding rules. Vass et al. [126] analyze
and discuss algorithmic aspects of P4 compilation.

7.2. Testing and Debugging
We describe research work on simulation, program verification, testing, bench-

marking, and debugging.

7.2.1. Simulation
PFPSim [127] is a simulator for validation of packet processing in P4. NS4

[128, 129] is a network simulator for P4 programs that is based on the network
simulator NS3.

7.2.2. Program Verification
McKeown et al. [130] introduce a tool to translate P4 to the Datalog declar-

ative programming language. Then, the Datalog representation of the P4 pro-
gram can be analyzed for well-formedness. Kheradmand et al. [131] introduce
a tool for static analysis of P4 programs that is based on formal semantics. P4v
[132] adapts common verification methods for P4 that are based on annota-
tions in the P4 program code. Freire et al. [133, 134] introduce assertion-based
verification with symbolic execution. Stoenescu et al. [135] propose program
verification based on symbolic execution in combination with a novel description
language designed for the properties of P4. P4AIG [136] proposes to use hard-
ware verification techniques where developers have to annotate their code with
First Order Logic (FOL) specifications. P4AIG then encodes the P4 program
as an Advanced-Inverter-Graph (AIG) which can be verified by hardware verifi-
cation techniques such as circuit SAT solvers and bounded model checkers. bf4
[137] leverages static code verification and runtime checks of rules that are in-
stalled by the controller to confirm that the P4 program is running as intended.
netdiff [138] uses symbolic execution to check if two data planes are equivalent.
This can be useful to verify if a data plane behaves correctly by comparing it
with a similar one, or to verify that optimizations of a data plane do not change
its behavior. Yousefi et al. [139] present an abstraction for liveness verification
of stateful network functions (NFs). The abstraction is based on boolean for-
mulae. Further, they provide a compiler that translates these formulae into P4
programs.

7.2.3. Testing
P4pktgen [140] generates test cases for P4 programs by creating test packets

and table entries. P4Tester [141] implements a detection scheme for runtime

43

faults in P4 programs based on probe packets. P4app [142] is a partially auto-
mated open source tool for building, running, debugging, and testing P4 pro-
grams with the help of Docker images. P4RL [143] is a reinforcement learning
based system for testing P4 programs and P4 targets at runtime. The correct
behavior is described in a simple query language so that a reinforcement agent
based on Double DQN can learn how to manipulate and generate packets that
contradict the expected behavior. P4TrafficTool [144] analyzes P4 programs
to produce plugin code for common traffic analyzers and generators such as
Wireshark.

7.2.4. Benchmarking
Whippersnapper [145] is a benchmark suite for P4 that differentiates between

platform-independent and platform-specific tests. BB-Gen [146] is a system to
evaluate P4 programs with existing benchmark tools by translating P4 code into
other formats. P8 [147] estimates the average packet latency at compilation time
by analyzing the data path program.

7.2.5. Debugging
Kodeswaran et al. [148] propose to use Ball-Larus encoding to track the

packet execution path through a P4 program for more precise debugging ca-
pabilities. p4-data-flow [149] detects bugs by creating a control flow graph of
a P4 program and then identifies incorrect behavior. P4box [150] extends the
P416 reference compiler by so-called monitors that insert code before and after
programmable blocks, e.g., control blocks, for runtime verification. P4DB [151]
[152] introduces a runtime debugging system for P4 that leverages additional de-
bugging snippets in the P4 program to generate reports during runtime. Neves
et al. [153] propose a sandbox for P4 data plane programs for diagnosis and
tracing. P4Consist [154] verifies the consistency between control and data plane.
Therefore, it generates active probe-based traffic for which the control and data
plane generate independent reports that can be compared later. KeySight [155]
is a troubleshooting platform that analyzes network telemetry data for detecting
runtime faults. Gauntlet [156] finds both crash bugs, i.e., abnormal termination
of compilation operation, and semantic bugs, i.e., miscompilation, in compilers
for programmable packet processors.

7.3. Research on P4 Targets
We describe research work on virtualization of P4 data planes, composite

targets, P4 externs, secure behavior of targets, and testbeds.

7.3.1. Virtualization of P4 Data Planes
P4 targets are designed to execute one P4 program at any given time. Virtu-

alization aims at sharing the resources of P4 targets for multiple P4 programs.
Krude et al. [157] provide theoretical discussions on how ASIC- and FPGA-
based P4 targets can be shared between different tenants and how P4 programs
can be made hot-pluggable.

44

HyPer4 [158] introduces virtualization for P4 data planes. It supports sce-
narios such as network slicing, network snapshotting, and virtual networking.
To that end, a compiler translates P4 programs into table entries that configure
the HyPer4 persona, a P4 program that contains implementations of basic prim-
itives. However, HyPer4 does not support stateful memory (registers, counters,
meters), LPM, range match types, and arbitrary checksums. The authors de-
scribe an implementation for bmv2 and perform experiments that reveal 80 to
90% lower performance in comparison to native execution.

HyperV [159, 160, 161] is a hypervisor for P4 data planes with modular
programmability. It allows isolation and dynamic management of network func-
tions. The authors implemented a prototype for the bmv2 P4 target. In com-
parison to Hyper4, HyperV achieves a 2.5x performance advantage in terms of
bandwidth and latency while reducing required resources by a factor of 4. Hy-
perVDP [162] extends HyperV by an implementation of a dynamic controller
that supports instantiating network functions in virtual data planes.

P4VBox [163], also published as VirtP4 [164], is a virtualization framework
for the NetFPGA SUME P4 target. It allows executing virtual switch instances
in parallel and also to hot-swap them. In contrast to HyPer4, HyperV and Hy-
perVDP, P4VBox achieves virtualization by partially re-configuring the hard-
ware.

P4Visor [165] merges multiple P4 programs. This is done by program over-
lap analysis and compiler optimization. Programming In-Network Modular Ex-
tensions (PRIME) [166] also allows combining several P4 programs to a single
program and to steer packets through the specific control flows.

P4click [167] does not only merge multiple P4 programs, but also combines
the corresponding control plane blocks. The purpose of P4click is to increase
the use of data plane programmability. P4click is currently in an early stage of
development.

The Multi Tenant Portable Switch Architecture (MTPSA) [168] is a P4
architecture that offers performance isolation, resource isolation, and security
isolation in a switch for multiple tenants. MTPSA is based on the PSA. It
combines a Superuser pipeline that acts as a hypervisor with multiple user
pipelines. User pipelines may only perform specific actions depending on their
privileges. MTPSA is implemented for bmv2 and NetFPGA-SUME [169].

Han et al. [170] provide an overview of virtualization in programmable data
planes with a focus on P4. They classify virtualization schemes into hypervisor
and compiler-based approaches, followed by a discussion of pros and cons of
the different schemes. The aforementioned works on virtualization of P4 data
planes are described and compared in detail.

7.3.2. Composite P4 Target
Da Silva et al. [171] introduce the idea of composite P4 targets. This tries

to solve the problem of target-dependent support of features. The composed
data plane appears as one P4 target; it is emulated by a P4 software target but
relies on an FPGA and ASIC for packet processing.

45

eXtra Large Table (XLT) [172] introduces gigabyte-scale MATs by leveraging
FPGA and DRAM capabilities. It comprises a P4-capable ASIC and multiple
FPGAs with DDR4 DRAM. The P4-capable ASIC pre-constructs the match
key field and sends it with the full packet to the FPGA. The FPGA sends back
the original packet with the search results of the MAT lookup. The authors
implement a DPDK based prototype for the T4P4S P4 software target.

HyMoS [173] is a hybrid software and hardware switch to support NFV
applications. The authors create a switch by using P4-enabled Smart NICs as
line cards and the PCIe interface of a computer as the switch fabric. P4 is used
for packet switching between the NICs. Additional processing may be done
using DPDK or applications running on a GPU.

7.3.3. P4 Externs
Laki et al. [174, 175] investigate asynchronous execution of externs. In con-

trast to common synchronous execution, other packets may be processed by the
pipeline while the extern function is running. The authors implement and eval-
uate a prototype for T4P4S. Scholz et al. [176] propose that P4 targets should
be extended by cryptographic hash functions that are required to build secure
applications and protocols. The authors propose an extension of the PSA and
discuss the PoC implementation for a CPU-, network processing unit (NPU)-,
and FPGA-based P4 target. Da Silva et al. [177] investigate the implementation
of complex operations as extensions to P4. The authors perform a case study
on integrating the Robust Header Compression (ROHC) scheme and conclude
that an implementation as extern function is superior to an implementation as
a new native primitive.

7.3.4. Secure Behaviour of Targets
Gray et al. [178] demonstrate that hardware details of P4 targets influence

their packet processing behavior. The authors demonstrate this by sending a
special traffic pattern to a P4 firewall. It fills the cache of this target and results
in a blocking behavior although the overall data rate is far below the capacity
of the used P4 target. Dumitru et al. [179] investigate the exploitation of pro-
gramming bugs in bmv2, P4-NetFPGA, and Tofino. The authors demonstrate
attack scenarios by header field access on invalid headers, the creation of infinite
loops and unintentionally processing of dropped packets in the P4 targets.

7.3.5. Testbeds
Large testbeds facilitate research and development on P4 programs. The

i-4PEN (International P4 Experimental Networks) [180] is an international P4
testbed operated by a collaboration of network research institutions from the
USA, Canada, and Taiwan. Chung et al.[181] describe how multi-tenancy is
achieved in this testbed. The 2STiC testbed [182], a national testbed in the
Netherlands comprising six sites with at least one Tofino-based P4 target, is
connected to i-4PEN.

46

7.4. Research on Control Plane Operation
When new forwarding entries are computed by the controller, the data plane

has to be updated. However, updating the targets has to be performed in a
manner that prevents negative side effects. For example, microloops may occur
if packets are forwarded according to new rules at some targets while at other
devices old rules are used because updates have to arrive yet.

Sukapuram et al. [183, 184] introduce a timestamp in the packet header that
contains the sending time of a packet. When switches receive a packet during an
update period, they compare the timestamp of both the packet and the update
to determine whether a packet has been sent before the update, and thus, old
rules should be used for forwarding.

Liu et al. [185] introduce a mechanism where once a packet is matched
against a specific forwarding rule, it cannot be matched downstream on a rule
that is older. To that end, the packet header contains a timestamp field that
records when the last applied forwarding rule has been updated. If the packet is
matched against an older rule, the packet is dropped, otherwise the timestamp
is updated and the packet is forwarded.

Ez-Segway [186] facilitates updating by including data plane devices in the
update process. When a data plane device receives an update, it determines
which of its neighbors is affected by the update as well, and forwards the update
to that neighbor. This prevents loops and black holes.

TableVisor [187] is a transparent proxy-layer between the control plane and
data plane. It provides an abstraction from heterogeneous data plane devices.
This facilitates the configuration of data plane switches with different properties,
e.g., forwarding table size.

Molero et al. [188] propose to offload tasks from the control plane to the
data plane. They show that programmable data planes are able to run typical
control plane operations like failure detection and notification, and connectivity
retrieval. They discuss trade-offs, limitations and future research opportunities.

8. Applied Research Domains: Classification & Overview

In the following sections, we give an overview of applied research conducted
with P4. In this section, we classify P4’s core features that make it attractive
for the implementation of data plane algorithms. We define research domains,
visualize them in a compact way, and explain our method to review correspond-
ing research papers in the subsequent sections. Finally, we delimit the scope of
the surveyed literature.

8.1. Classification of P4’s Core Features
We identify P4’s core features for the implementation of prototypes. We

classify them in the following to effectively reason about P4’s usefulness for the
surveyed research works.

47

Applied
Research
Domains

Routing and
Forwarding
Section XI

Source Routing
Multicast

Publish/Subscribe Systems
Named Data Networks
Data Plane Resilience

Traffic Management and
Congestion Control

Section X

Data Center Switching

Active Queue Management (AQM)

Traffic Scheduling

Load Balancing
Congestion Notification

Traffic Offloading

Traffic Aggregation

Miscellaneous Applied
Research Domains

Section XIV

Network Coding
Distributed Algorithms
State Migration

Monitoring
Section IX

Network
Security

Section XIII

Advanced
Networking
Section XII

Cellular Networks (4G/5G)
Internet of Things (IoT)
Industrial Networking
Time-Sensitive Networking (TSN)
Network Function Virtualization (NFV)

Service Function Chaining (SFC)

Firewalls

DDoS Attack Mitigation
Intrusion Detection Systems (IDS)

Detection of Heavy Hitters
Flow Monitoring

Sketches
In-Band Network Telemetry

DSL-based Monitoring Systems

Other Fields of Application
Path Tracking

Port Knocking

Connection Security
Other Fields of Applications

Application Support

Other Fields of Applications

Figure 25: Categorization of the surveyed works into applied research domains and subdomains
– they correspond to sections and subsections in the remainder of this paper.

8.1.1. Definition and Usage of Custom Packet Headers
P4 requires the definition of packet headers (Section 3.5). These may be

headers of standard protocols, e.g., TCP, use-case-specific protocols, e.g., GTP
in 5G, or new protocols. As P4 supports the definition of custom headers, it is
suitable for the implementation of data plane algorithms using new protocols
or extensions of existing protocols, e.g., for in-band signalling.

8.1.2. Flexible Packet Header Processing
Control blocks with MATs (Section 3.6) comprise the packet processing logic.

Packet processing includes default actions, e.g., forwarding and header field
modifications, or custom, user-defined actions. Both may be parameterized
via MATs or metadata. Entries in the MATs are maintained by a data plane
API (Section 6). The flexible use of actions, the definition of new actions, and
their parameterization offer high flexibility for header processing, which is often
needed for research prototypes.

8.1.3. Target-Specific Packet Header Processing Functions
While the above-mentioned features are part of the P4 core language and

supported by any P4-capable platform, devices may offer additional architecture-
or target-specific functionality which is made available as P4 extern (Section 4).
Typical externs include components for stateful processing, e.g., registers or

48

counters, operations to resubmit/recirculate the packet in the data plane, mul-
ticast operations, or more complex operations, e.g., hashing and encryption/de-
cryption. P4 software targets allow users to integrate custom externs and use
them within P4 programs. While this is also possible to some extent on some
P4 hardware targets, e.g., the NetFPGA SUME board, high-throughput P4 tar-
gets based on the Tofino ASIC have only a fixed set of externs (Section 5.3).
Depending on the use case, the availability of externs may be essential for the
implementation of prototypes. Thus, externs facilitate the implementation of
more complex algorithms but make implementations platform-dependent.

8.1.4. Packet Processing on the Control Plane
Similar to control plane SDN (e.g., OF), more complex, and optionally cen-

tralized packet processing can be outsourced to an SDN control plane; packet
exchange and data plane control is performed via a data plane API (Section 6).
While OF only allows the exchange of complete packets, P4 enables the end-
users to define the packet formats.

8.1.5. Flexible Development and Deployment
Users are able to easily change the P4 programs on P4 targets that are

installed in a network. This facilitates agile development with frequent deploy-
ments and incremental functionality extensions by deploying new versions of a
P4 programs.

8.2. Categorization of Research Domains
To organize the survey in the following sections, we define research domains

and structure them in a two-level hierarchy as depicted in Figure 25. This
categorization helps the reader to get a quick overview in certain applied areas
and improves the readability of this survey. The choice of the research domains
is dominated by the fields of applications, but the summaries of the sections will
show that the prototypes in these areas benefit from different core features of
P4.

For each research domain, we provide a table that lists the publications with
publication year, P4 target platforms, and source code availability. This sup-
ports efficient browsing of the content and backs our conclusions in the section-
specific summaries.

8.3. Scope of the Surveyed Literature
We consider the literature until the end of 2020 and selected papers from

2021, including journal papers, conference papers, workshop papers, and preprints.
Out of the 377 scientific publications we surveyed in this work (see Section 1),
245 fall in the area of applied research. 68 of those research papers were pub-
lished in 2018 or before, 80 were published in 2019, 93 were published in 2020,
and 4 were published in 2021. 60 out of all 245 research publications released
the source code of their prototype implementations.

49

Table 5 depicts a statistic on major publication venues for the papers of
applied research domains. It helps the reader to identify potential venues for
prospective own publications based on P4 technology.

9. Applied Research Domains: Monitoring

We describe applied research on detection of heavy hitters, flow monitoring,
sketches, in-band network telemetry, and other areas of application. Table 6
shows an overview of all the work described. At the end of the section, we
summarize the work and analyze it with regard to P4’s core features described
in Section 8.1.

9.1. Detection of Heavy Hitters
Heavy hitters [269] (or "elephant flows") are large traffic flows that are the

major source of network congestion. Detection mechanisms aim at identifying
heavy hitters to perform extra processing, e.g., queuing, flow rate control, and
traffic engineering.

HashPipe [189] integrates a heavy hitter detection algorithm entirely on the
P4 data plane. A pipeline of hash tables acts as a counter for detected flows.
To fulfill memory constraints, the number of flows that can be stored is limited.
When a new flow is detected, it replaces the flow with the lowest count. Thus,
light flows are replaced, and heavy flows can be detected by a high count. Lin
et al. [191] describe an enhanced version of the algorithm.

Popescu et al. [192] introduce a heavy hitter detection mechanism. The
controller installs TCAM entries for specific source IP prefixes on the switch. If
one of these entries matches more often than a threshold during a given time
frame, the entry is split into two entries with a larger prefix size. This procedure
is repeated until the configured granularity is reached.

Harrison et al. [193] presents a controller-based and distributed detection
scheme for heavy hitters. The authors make use of counters for the match key
values, e.g., source and destination IP pair or 5-tuple, that are maintained by
P4 switches. If a counter exceeds a certain threshold, the P4 switch sends a
notification to the controller. The controller generates more accurate status
reports by combining the notifications received from the switches.

Kucera et al. [194] describe a system for detecting traffic aggregates. The
authors propose a novel algorithm that supports hierarchical heavy hitter detec-
tion, change detection, and super-spreader detection. The complete mechanism
is implemented on the P4 data plane and uses push notifications to a controller.

IDEAFIX [195] is a system that detects elephant flows at edge switches of
Internet exchange point networks. The proposed system analyzes flow features,
stores them with hash keys as indices in P4 registers, and compares them to
thresholds for classification.

Turkovic et al. [196] propose a streaming approach for detecting heavy hit-
ters via sliding windows that are implemented in P4. According to the authors,
interval methods that are typically used to detect heavy hitters are not suitable

50

Table 5: Statistics of scientific publications regarding applied research conducted with P4.

Venue #Publications

Journals 41

IEEE ACCESS 9
IEEE/ACM ToN 7
IEEE TNSM 6
JNCA 4
Miscellaneous 15

Conferences 168

ACM SOSR 14
IEEE NFV-SDN 12
IEEE ICNP 12
IEEE ICC 10
ACM SIGCOMM 10
IEEE/IFIP NOMS 8
ACM CoNEXT 7
IEEE NetSoft 7
USENIX NSDI 6
IEEE INFOCOM 6
ACM/IEEE ANCS 5
IFIP Networking 5
IEEE GLOBECOM 4
CNSM 4
IEEE CloudNet 3
APNOMS 3
IFIP/IEEE IM 3
Miscellaneous 49

Workshops 36

EuroP4 11
Morning Workshop on In-Network Computing 5
SPIN 3
ACM HotNets 3
INFOCOM Workshops 3
Miscellaneous 11

51

Table 6: Overview of applied research on monitoring (Section 9).

Research work Year Targets Code

Detection of Heavy Hitters (Section 9.1)

HashPipe [189] 2017 bmv2 [190]
Lin et al. [191] 2019 Tofino
Popescu et al. [192] 2017 -
Harrison et al. [193] 2018 Tofino
Kucera et al. [194] 2020 bmv2
IDEAFIX [195] 2018 -
Turkovic et al. [196] 2019 Netronome
Ding et al. [197] 2020 bmv2 [198]

Flow Monitoring (Section 9.2)

TurboFlow [199] 2018 Tofino, Netronome [200]
∗Flow [201] 2018 Tofino [202]
Hill et al. [203] 2018 bmv2
FlowStalker [204] 2019 bmv2
ShadowFS [205] 2020 bmv2
FlowLens [206] 2021 bmv2, Tofino [207]
SpiderMon [208] 2020 bmv2
ConQuest [209] 2019 Tofino
Zhao et al. [210] 2019 bmv2, Tofino

Sketches (Section 9.3)

SketchLearn [211] 2018 Tofino [212]
MV-Sketch [213] 2020 bmv2, Tofino [214]
Hang et al. [215] 2019 Tofino
UnivMon [216] 2016 p4c-behavioural
Yang et al. [217, 218] 2018/19 Tofino [219]
Pereira et al. [220] 2017 bmv2
Martins et al. [221] 2018 bmv2
Lai et al. [222] 2019 Tofino
Liu et al. [223] 2020 Tofino
SpreadSketch [224] 2020 Tofino [225]

52

Research work Year Targets Code

In-Band Network Telemetry (Section 9.4)

Vestin et al. [226] 2019 Netronome
Wang et al. [227] 2019 Tofino
IntOpt [228] 2019 P4FPGA
Jia et al. [229] 2020 bmv2 [230]
Niu et al. [231] 2019 Tofino, Netronome
CAPEST [232] 2020 bmv2 [233]
Choi et al. [234] 2019 bmv2
Sgambelluri et al. [235] 2020 bmv2
Feng et al. [236] 2020 Netronome
IntSight [237] 2020 bmv2, NetFPGA-SUME [238]
Suh et al. [239] 2020 -

DSL-Based Monitoring Systems (Section 9.5)

Marple [240, 241] 2017 bmv2 [242]
MAFIA [243] 2019 bmv2 [244]
Sonata [245] 2018 bmv2, Tofino [246]
Teixeira et al. [247] 2020 bmv2, Tofino

Path Tracking (Section 9.6)

UniRope [248] 2018 bmv2, PISCES
Knossen et al. [249] 2019 Netronome
Basuki et al. [250] 2020 bmv2

Other Areas of Application (Section 9.7)

BurstRadar [251] 2018 Tofino [252]
Dapper [253] 2017 -
He et al. [254] 2018 Tofino
Riesenberg et al. [255] 2019 bmv2 [256]
Wang et al. [257] 2020 Tofino
P4STA [258] 2020 bmv2, Netronome [259]
Hark et al. [260] 2019 -
P4Entropy [261] 2020 bmv2 [262]
Taffet et al. [263] 2019 bmv2
NetView [264] 2020 bmv2, Tofino
FastFE [265] 2020 Tofino
Unroller [266] 2020 bmv2, Netcope P4-to-VHDL
Hang et al. [267] 2019 Tofino
FlowSpy [268] 2019 bmv2

53

for programmable data planes because of high hardware resources, bad accuracy,
or a need for too much intervention by the control plane.

Ding et al. [197] propose an architecture for network-wide heavy hitter
detection. The authors’ main focuses are hybrid SDN/non-SDN networks where
programmable devices are deployed only partially. To that end, they also present
an algorithm for an incremental deployment of programmable devices with the
goal of maximizing the number of network flows that can be monitored.

9.2. Flow Monitoring
In flow monitoring, traffic is analyzed on a per-flow level. Network devices

are configured to export per-flow information, e.g., packet counters, source and
target IP addresses, ports, or protocol types, as flow records to a flow collector.
These flow records are often duplicates of network packets without payload data.
The flow collector then performs centralized analysis on this data. The three
most widely deployed protocols are Netflow [270], sFlow [271], and IPFIX [272].

TurboFlow [199] is a flow record generator designed for P4 switches that
does not have to make use of sampling or mirroring. The data plane generates
micro-flow records with information about the most recent packets of a flow.
On the CPU module of the switch, those micro-flow records are aggregated and
processed into full flow records.

“∗Flow” [201] partitions measurement queries between the data plane and a
software component. A switching ASIC computes grouped packet vectors that
contain a flow identifier and a variable set of packet features, e.g. packet size
and timestamps, while the software component performs aggregation. “∗Flow”
supports dynamic and concurrent measurement applications, i.e., measurement
applications that operate on the same flows without impacting each other.

Hill et al. [203] implement Bloom filters on P4 switches to prevent sending
duplicate flow samples. Bloom filters are a probabilistic data structure that can
be used to check whether an entry is present in a set or not. It is possible to
add elements to that set, but it is not possible to remove entries from it. For
flow tracking, Bloom filters test if a flow has been seen before without control
plane interaction. Thereby, only flow data is forwarded to the collector from
flows that were not seen before.

FlowStalker [204] is a flow monitoring system running on the P4 data plane.
The monitoring operations on a packet are divided in two phases, a proactive
phase that identifies a flow and keeps a per-flow packet counter and a reactive
phase that runs for large flows only and gathers metrics of the flow, e.g., byte
counts and packet sizes. The controller gathers information from a cluster of
switches by injecting a crawler packet that travels through the cluster at one
switch. ShadowFS [205] extends FlowStalker with a mechanism to increase the
throughput of the monitored flows. It achieves this by dividing forwarding tables
into two tables, a faster and a slower one. The most utilized flows are moved to
the faster table if necessary.

FlowLens [206] is a system for traffic classification to support security net-
work applications based on machine learning algorithms. The authors propose

54

a novel memory-efficient representation for features of flows called flow marker.
A profiler running in the control plane automatically generates an application-
specific flow marker that optimizes the trade-off between resource consumption
and classification accuracy, according to a given criterion selected by the oper-
ator.

SpiderMon [208] monitors network performance and debugs performance fail-
ures inside the network with little overhead. To that end, SpiderMon monitors
every flow in the data plane and recognizes if the accumulated latency exceeds
a certain threshold. Furthermore, SpiderMon is able to trace back the path of
interfering flows, allowing to analyze the cause of the performance degradation.

ConQuest [209] is a data plane mechanism to identify flows that occupy
large portions of buffers. Switches maintain snapshots of queues in registers to
determine the contribution to queue occupancy of the flow of a received packet.

Zhao et al. [210] implement flow monitoring using hash tables. Using a
novel strategy for collision resolution and record promotion, accurate records
for elephant flows and summarized records for other flows are stored.

9.3. Sketches
Flow monitoring as described in Section 9.2 requires high sampling rates to

produce sufficiently detailed data. As an alternative, streaming algorithms pro-
cess sequential data streams and are subject to different constraints like limited
memory or processing time per item. They approximate the current network
status based on concluded summaries of the data stream. The streaming al-
gorithms output so-called sketches that contain summarized information about
selected properties of the last n packets of a flow.

SketchLearn [211] is a sketch-based approach to track the frequency of flow
records. It features multilevel sketches that aim for small memory usage, fast
per-packet processing, and real-time response. Rather than finding the perfect
resource configuration for measurement traffic and regular traffic, SketchLearn
characterizes the statistical error of resource conflicts based on Gaussian distri-
butions. The learned properties are then used to increase the accuracy of the
approximated measurements.

Tang et al. [213] present MV-Sketch, a fast and compact invertible sketch.
MV-Sketch leverages the idea of majority voting to decide whether a flow is a
heavy hitter or heavy changer. Evaluations show that MV-Sketch achieves a
3.38 times higher throughput than existing invertible sketches.

Hang et al. [215] try to solve the problem of inconsistency when a controller
needs to collect the data from sketches on one or more switches. As accessing
and clearing the sketches on the switches is always subject to latency, not all
sketches are reset at the same time, and there might be some delay between
accessing and clearing the sketches. The authors propose to use two asymmetric
sketches on the switches that are used in an interleaved way. Furthermore, the
authors propose to use a distributed control plane to keep latency low.

UnivMon [216] is a flow monitoring system based on sketches. After sampling
the traffic, the data plane produces sketches and determines the top-k heaviest

55

flows by comparing the number of sketches for each flow. Those flows are passed
to the control plane which processes the data for the specific application.

Yang et al. [217, 218] propose to adapt sketches according to certain traffic
characteristics to increase data accuracy, e.g., during congestion or distributed
denial of service (DDoS) attacks. The mechanism is based on compressing and
merging sketches when resources in the network are limited due to high traffic
volume. During periods with high packet rates, only the information of elephant
flows is recorded to trade accuracy for higher processing speed.

Pereira et al. [220] propose a secured version of the Count-Min sketch. They
replace the function with a cryptographic hash function and provide a way for
secret key renewal.

Martins et al. [221] introduce sketches for multi-tenant environments. The
authors implement bitmap and counter-array sketches using a new probabilistic
data structure called BitMatrix that consists of multiple bitmaps that are stored
in a single P4 register.

Lai et al. [222] use a sketch-based approach to estimate the entropy of
network traffic. The authors use CRC32 hashes of header fields as match keys
for match-action tables and subsequently update k-dimensional data sketches
in registers. The content of the registers is then processed by the control plane
CPU which calculates the entropy value.

Liu et al. [223] use sketches for performance monitoring. They introduce
lean algorithms to measure metrics like loss or out-of-order packets.

SpreadSketch [224] is a sketch data structure to detect superspreaders. The
sketch data structure is invertible, i.e., it is possible to extract the identification
of superspreaders from the sketch at the end of an epoch.

9.4. In-Band Network Telemetry
Barefoot Networks, Arista, Dell, Intel and VMware specified in-band net-

work telemetry (INT) specifically for P4 [273]. It uses a pure data plane imple-
mentation to collect telemetry data from the network without any intervention
by the control plane. It was specified by INT is the main focus of the Applica-
tions WG [274] of the P4 Language Consortium. Instructions for INT-enabled
devices that serve as traffic sources are embedded as header fields either into
normal packets or into dedicated probe packets. Traffic sinks retrieve the results
of instructions to traffic sources. In this way, traffic sinks have access to infor-
mation about the data plane state of the INT-enabled devices that forwarded
the packets containing the instructions for traffic sources. The authors of the
INT specification name network troubleshooting, advanced congestion control,
advanced routing, and network data plane verification as examples for high-level
use cases.

In two demos, INT was used for diagnosing the cause of latency spikes during
HTTP transfers [275] and for enforcing QoS policies on a per-packet basis across
a metro network [276].

Vestin et al. [226] enhance INT traffic sinks by event detection. Instead of
exporting telemetry items of all packets to a stream processor, exporting has to

56

be triggered by an event. Furthermore, they implement an INT report collector
for Linux that can stream telemetry data to a Kafka cluster.

Wang et al. [227] design an INT system that can track which rules in MATs
matched on a packet. The resulting data is stored in a database to facilitate
visualization in a web UI.

IntOpt [228] uses INT to monitor service function chains. The system com-
putes minimal monitoring flows that cover all desired telemetry demands, i.e.,
the number of INT-sources, sinks, and forwarding nodes that are covered by
this flow is minimal. IntOpt uses active probing, i.e., monitoring probes for the
monitoring flows are periodically inserted into the network.

Jia et al. [229] use INT to detect gray failures in data center networks
using probe packets. Gray failures are failures that happen silently and without
notification.

Niu et al. [231] design a multilevel INT system for IP-over-optical networks.
Their goal is to monitor both the IP network and the optical network at the
same time. To that end, they implement optical performance monitors for
bandwidth-variable wavelength selective switches. Their measurements can be
queried by a P4 switch that is connected directly to it.

CAPEST [232] leverages P4-enabled switches to estimate the network ca-
pacity and available bandwidth of network links. The approach is passive, i.e.,
it does not disturb the network. A controller sends INT probe packets to trigger
statistical analysis and export results.

Choi et al. [234] leverage INT for run-time performance monitoring, veri-
fication, and healing of end-to-end services. P4-capable switches monitor the
network based on INT information and the distributed control plane verifies
that SLAs and other metrics are fulfilled. They leverage metric dynamic logic
(MDL) to specify formal assertions for SLAs.

Sgambelluri et at. [235] propose a multi-layer monitoring system that uses
an OpenConfig NETCONF agent for the optical layer an P4-based INT for the
packet layer. In their prototype, they use INT to measure the delay of packets
by computing the processing time at each switch.

Feng et al. [236] implement an INT sink for Netronome Smart NICs. After
parsing the INT headers using P4, they use algorithms written in C to perform
INT tasks like aggregation and notification. Compared to a pure P4 implemen-
tation, this increases the performance.

IntSight [237] is a system for detecting and analyzing violations of service-
level objects (SLOs). SLOs are performance guarantees towards a network, e.g.,
concerning bandwidth and latency. IntSight uses INT to monitor the perfor-
mance of the network during a specific period of time. Egress devices gather
this information and produce a report at the end of the period if an SLO has
been violated.

Suh et al. [239] explore how a sampling mechanism can be added to INT.
Their solution supports rate-based and event-based sampling. Based on these
sampling strategies, INT headers are only added to a fraction of the packets to
reduce overhead.

57

9.5. DSL-Based Monitoring Systems
Monitoring tasks can often be broken down in a set of several basic opera-

tions, e.g., map, filter, or groupby. A domain-specific language (DSL) allows to
combine these basic operations in more complex tasks.

Marple [240, 241] is a performance query language that supports existing
constructs like map, filter, groupby, and zip. A query compiler translates the
queries either to P4 or to a simulator for programmable switch hardware. State-
less constructs of the query language, e.g., filters, are executed on the data plane.
Stateful constructs, e.g., groupby, use a programmable key-value store that is
split between a fast on-chip SRAM cache and a large off-chip DRAM backing
store. The results are streamed from the switch to a collection server.

MAFIA [243] is a DSL to describe network measurement tasks. They identify
several fundamental primitive operations, examples are match, tag, timestamp,
sketch, or counter. MAFIA is a high-level language to describe more com-
plex measurement tasks composed of those primitives. The authors provide a
Python-based compiler that translates MAFIA code into a P4 program in P414
or P416 for a PISA-based P4 target.

Sonata [245] is a query-driven telemetry system. It provides a query interface
that provides common operators like map and reduce that can be applied on
arbitrary packet fields. Sonata combines the capabilities of both programmable
switches and stream processors. The queries are partitioned between the pro-
grammable switches and the stream processors to reduce the load on the stream
processors. Teixeira et al. [247] extend the Sonata prototype by functionalities
to monitor the properties of packet processing inside switches, e.g., delay.

9.6. Path Tracking
In path tracking, or packet trajectory tracing, information about the path a

packet has taken in a network is gathered.
UniRope [248] consists of two different algorithms for packet trajectory trac-

ing that can be selected dynamically to be able to choose the trade-off between
accuracy and efficiency. These two algorithms are compact hash matching and
consecutive bits filling. With compact hash matching, the forwarding switch
calculates a hash value and stores it in the packet. With consecutive bits filling,
the packet trajectory is recorded in the packet hop by hop and reconstructed at
the controller.

Knossen et al. [249] present two different approaches for path tracking in P4.
In hop recording, all forwarding P4 nodes record their ID in the header of the
target packet. The last node can then reconstruct the path. In forwarding state
logging, the first P4 node records the current version of the global forwarding
state of the network and its node identifier in a header of the target packet. If
the version of the global forwarding state does not change while the packet flows
through the network, the last P4 node in the network can reconstruct the path
using the information in the header.

Basuki et al. [250] propose a privacy-aware path-tracking mechanism. Their
goal is that the trajectory information in the packets cannot be used to draw

58

conclusions about the network topology or routing information. They achieve
this by recording the information in an in-packet bloom filter.

9.7. Other Fields of Application
BurstRadar [251] is a system for microburst detection for data center net-

works that runs directly on P4 switches. If queue-induced delay is above a
certain threshold, BurstRadar reports a microburst and creates a snapshot of
the telemetry information of involved packets. This telemetry information is
then forwarded to a monitoring server. As it is not possible to gather telemetry
information of packets that are already part of the egress queue, the telemetry
information of all packets and their corresponding egress port are temporarily
stored in a ring buffer that is implemented using P4 registers.

Dapper [253] is a P4 tool to evaluate TCP. It implements TCP in P4 and
analyzes header fields, packets sizes, and timestamps of data and ACK packets
to detect congestion. Then, flow-dependent information are stored in registers.

He et al. [254] propose an adaptive expiration timeout mechanism for flow
entries in P4 switches. The switches implement a mechanism to detect the last
packet of a TCP flow. In case of a match, it notifies the controller to delete the
corresponding flow entries.

Riesenberg et al. [255] implement alternate marking performance measure-
ment (AM-PM) for P4. AM-PM measures delay and packet loss in-band in a
network using only one or two bit overhead per packet. These bits are used for
coordination and signalling between measurement points (MPs).

Wang et al. [257] describe how TCP-friendly meters can be designed and
implemented for P4-based switches. According to their findings, meters in com-
mercial switches interact with TCP streams in such a way that these streams
can only reach about 10% of the target rate. The experimental evaluation of
their TCP-friendly meters shows achieved rates of up to 85% of the target rate.

P4STA [258] is an open-source framework that combines software-based traf-
fic load generation with accurate hardware packet timestamps. Thereby, P4STA
aggregates multiple traffic flows to generate high traffic load and leverage pro-
grammable platforms.

Hark et al. [260] use P4 to filter data plane measurements. To save re-
sources, only relevant measurements are sent to the controller. The authors
implement a prototype and demonstrate the system by filtering measurements
for a bandwidth forecast application.

P4Entropy [261] presents an algorithm to estimate the entropy of network
traffic within the P4 data plane. To that end, they also developed two new
algorithms, P4Log and P4Exp, to estimate logarithms and exponential functions
within the data plane as well.

Taffet et al. [263] describe a P4-based implementation of an in-band moni-
toring system that collects information about the path of a packet and whether
it encountered congestion. For this purpose, the authors repurpose previously
unused fields of the IP header.

NetView [264] is a network telemetry framework that uses proactive probe
packets to monitor devices. Telemetry targets, frequency, and characteristics

59

can be configured on demand by administrators. The probe packets traverse
arbitrary paths by using source routing.

FastFE [265] is a system for offloading feature extraction, i.e., deriving cer-
tain information from network traffic, for machine learning (ML)-based traffic
analysis applications. Policies for feature extraction are defined as sequential
programs. A policy enforcement engine translates these policies into primitives
for either a programmable switch or a program running on a commodity server.

Unroller [266] detects routing loops in the data plane in real-time. It achieves
this by encoding a subset of the path that a packet takes into the packet.

Hang et al. [267] use a time-based sliding window approach to measure
packet rates. The goal is to record statistics entirely inside the data plane
without having to use the CPU of a switch. Their approach is able to measure
traffic size without sampling.

FlowSpy [268] is a network monitoring framework that uses load balancing.
Different monitoring tasks are distributed among all available switches by an ILP
solver. This reduces the workload on single switches in contrast to monitoring
frameworks that perform all monitoring tasks on ingress or egress switches only.

9.8. Summary and Analysis
This research domain greatly benefits from all five core features described in

Section 8.1. Definition and usage of custom packet headers enables new monitor-
ing schemes where relevant information can be added to packets while it travels
through a P4-enabled network. One example is In-band Network Telemetry
(INT) (Section 9.4) that has been specified specifically for P4. Another ex-
ample are path tracking mechanisms (Section 9.6) where the path of a packet
is recorded in a dedicated header of the packet. In the case of INT, this goes
hand in hand with flexible packet header processing as INT headers may contain
instructions that other INT-enabled switches need to execute. Target-specific
packet header processing functions in the form of stateful packet processing us-
ing, e.g., registers, is used by all areas of monitoring as it is necessary to gather
data over a certain time frame instead of just looking at a single packet. Because
the register space is severely limited on most hardware targets, an efficient usage
of the available resources is of great importance. Sketches (Section 9.3) is one
approach to solve this. After monitoring data is gathered on the control plane,
the result is often processed on the control plane. This can range from simple
notifications to splitting operations between data plane and control plane where
the resources on the data plane are not sufficient. Some DSL-based monitor-
ing approaches (Section 9.5) make use of flexible development and deployment.
With these approaches, a P4 program is generated automatically on the basis
of a monitoring workflow defined by an administrator.

10. Applied Research Domains: Traffic Management and Congestion
Control

We describe applied research on data center switching, load balancing, con-
gestion notification, traffic scheduling, traffic aggregation, active queue manage-

60

ment (AQM), and traffic offloading. Table 7 shows an overview of all the work
described. At the end of the section, we summarize the work and analyze it
with regard to P4’s core features described in Section 8.1.

10.1. Data Center Switching
Trellis [277, 278] is an open-source multipurpose L2/L3 spine-leaf switch

fabric for data center networks. It is designed to run on white box switches
in conjunction with the ONOS controller where its main functionality is im-
plemented. It supports typical data center functionality such as bridging using
VLANs, routing (IPv4/IPv6 unicast/multicast routing, MPLS segment rout-
ing), and vRouter functionality (BGBv4/v6, static routes, route black-holing).
Trellis is part of the CORD platform that leverages SDN, network function vir-
tualization (NFV), and Cloud technologies for building agile data centers for
the network edge.

DC.p4 [280] implements typical features of data center switches in P4. The
list of features includes support for VLAN, NVGRE, VXLAN, ECMP, IP for-
warding, access control lists (ACLs), packet mirroring, MAC learning, and
packet-in/-out messages to the control plane.

Fabric.p4 is [282, 278] the underlying reference data plane pipeline imple-
mented in P4. By introducing support for P4 switches, the authors aim at in-
creasing the platform heterogeneity for the CORD fabric. Fabric.p4 is currently
based on the V1Model switch architecture, but support for PSA is planned. It
is inspired by the OpenFlow data plane abstraction (OF-DPA) and currently
supports L2 bridging, IPv4/IPv6 unicast/multicast routing, and MPLS segment
routing. Fabric.p4 comes with capability profiles such as fabric (basic profile),
spgw (S/PGW), and INT. For control plane interaction, ONOS is extended by
the P4Runtime.

RARE [284] (Router for Academia, Research & Education) is developed in
the GÉANT project GN4-3 and implements a P4 data plane for the FreeRouter
open-source control plane. Its feature list includes routing, bridging, ACLs,
VLAN, VXLAN, MPLS, GRE, MLDP, and BIER among others.

10.2. Load Balancing
SHELL [286] implements stateless application-aware load balancing in P4. A

load balancer forwards new connections to a set of randomly chosen application
instances by adding a segment routing (SR) header. Each application instance
makes a local decision to either decline or accept the connection attempt. After
connection initiation, the client includes a previously negotiated identifier in
all subsequent packets. In the prototypical implementation, the authors use
TCP time stamps for communicating the identifier, alternatives are identifiers
of QUIC or TCP sequence numbers.

SilkRoad [287] implements stateful load balancing on P4 switches. SilkRoad
implements two tables for stateful processing. One table maps virtual IP ad-
dresses of services to server instances, another table records active connections
identified by hashes of 5-tuples to forward subsequent flows. It applies a Bloom

61

Table 7: Overview of applied research on traffic management and congestion control (Sec-
tion 10).

Research work Year Targets Code

Data Center Switching (Section 10.1)

Trellis [277, 278] 2019 bmv2 [279]
DC.p4 [280] 2015 bmv2 [281]
Fabric.p4 [282] 2018 bmv2 [283]
RARE [284] 2019 bmv2, Tofino [285]

Load Balancing (Section 10.2)

SHELL [286] 2018 NetFPGA-SUME
SilkRoad [287] 2017 Tofino
HULA [288] 2016 -
MP-HULA [289] 2018 -
Chiang et al. [290] 2019 bmv2
W-ECMP [291] 2018 bmv2
DASH [292] 2020 bmv2
Pizzutti et al. [293, 294] 2018/20 bmv2
LBAS [295] 2020 Tofino
DPRO [296] 2020 bmv2
Kawaguchi et al. [297] 2019 bmv2
AppSwitch [298] 2017 PISCES
Beamer [299] 2018 bmv2, NetFPGA-SUME [300]

Congestion Notification (Section 10.3)

P4QCN [301] 2019 bmv2
Jiang et al. [302] 2019 -
EECN [303] 2020 bmv2
Chen et al. [304] 2020 bmv2
Laraba et al. [305] 2020 bmv2

Traffic Scheduling (Section 10.4)

Sharma et al. [306] 2018 bmv2
Cascone et al. [307] 2017 -
Bhat et al. [308] 2019 bmv2
Kfoury et al. [309] 2019 bmv2
Chen et al. [310] 2019 Tofino
Lee et al. [311] 2019 bmv2

Traffic Aggregation (Section 10.5)

Wang et al. [312] 2020 Tofino
RL-SP-DRR [313] 2019 bmv2

62

Research work Year Targets Code

Active Queue Management (AQM) (Section 10.6)

Turkovic et al. [314] 2018 bmv2, Netronome
P4-Codel [315] 2018 bmv2 [316]
P4-ABC [317] 2019 bmv2
P4air [318] 2020 bmv2, Tofino
Fernandes et al. [319] 2020 bmv2
Wang et al. [320] 2018 bmv2, Tofino
SP-PIFO [321] 2020 Tofino
Kunze et al. [322] 2021 Tofino [323]
Harkous et al. [324] 2021 bmv2, Netronome

Traffic Offloading (Section 10.7)

Andrus et al. [325] 2019 -
Ibanez et al. [326] 2019 NetFPGA-SUME
Kfoury et al. [327] 2020 Tofino
Falcon [328] 2020 Tofino
Osiński et al. [329] 2020 Tofino

filter to identify new connection attempts and to record those requests in reg-
isters to remember client requests that arrive while the pool of server instances
changes. In [330], the accompanying demo is described.

HULA [288] implements a link load-based distance vector routing mecha-
nism. Switches in HULA do not maintain the state for every path but the next
hops. They send out probes to gather link utilization information. Probe pack-
ets are distributed throughout the network on node-specific multicast trees. The
probes have a header that contains a destination field and the currently best
path utilization to that destination. When a node receives a probe, it updates
the best path utilization if necessary, sends one packet clone upstream back to
the origin, and forwards copies along the multicast tree further downstream.
This way the origin will receive multiple probe packets with different path uti-
lization to a specific destination. Then, flowlets are forwarded onto the best
currently available path to its destination.

MP-HULA [289] extends HULA by using load information for n best next
hops and compatibility with multipath TCP (MP-TCP). It tracks subflows of
MP-TCP with individual flowlets per sub-flow. MP-HULA aims at distributing
those subflows on different paths to aggregate bandwidth. To that end, it is
necessary to keep track of the best n next-hops which is done with additional
registers and forwarding rules.

Chiang et al. [290] propose a cost-effective congestion-aware load balancing
scheme (CCLB). In contrast to HULA, CCLB replaces only the leaf switches
with programmable switches, and thus is more cost-effective. They leverage Ex-
plicit Congestion Notification (ECN) information in probe packets to recognize

63

congestion in the network and to adapt the load balancing. CCLB further uses
flowlet forwarding and is implemented for the bmv2.

W-ECMP [291] is an ECMP-based load balancing mechanism for data cen-
ters implemented for P4 switches. Weighted probabilities based on path utiliza-
tion, are used to randomly choose the best path to avoid congestion. A local
agent on each switch computes link utilization for the ports. Regular traffic
carries an additional custom packet header that keeps track of the current max-
imum link utilization on a path. Based on the maximum link utilization, the
switches update port weights if necessary.

DASH [292] is an adaptive weighted traffic splitting mechanism that works
entirely in the data plane. In contrast to popular weighted traffic splitting
strategies such as WCMP, DASH does not require multiple hash table entries.
DASH splits traffic based on link weights by portioning the hash space into
unique regions.

Pizzutti et al. [293, 294] implement congestion-aware load balancing for
flowlets on P4 switches. Flowlets are bursts of packets that are separated by a
time gap, e.g., as caused by factors such as TCP dynamics, buffer availability,
or link congestion. For distributing subflows on different paths, the congestion
state of the last route is stored in a register.

LBAS [295] implements a load balancer to minimize the processing latency
at both load balancers and application servers. LBAS does not only reduce the
processing latency at load balancers but also takes the application servers’ state
into account. It is implemented for the Tofino and its average response time is
evaluated.

DPRO [296] combines INT with traffic engineering (TE) and reinforcement
learning (RL). Network statistics, such as link utilization and switch load, are
gathered using an adapted INT approach. An RL-agent inside the controller
adapts the link weights based on the minimization of a max-link-utilization
objective.

Kawaguchi et al. [297] implement Unsplittable flow Edge Load factor Bal-
ancing (UELB). A controller application monitors the link utilization and com-
putes new optimal paths upon congestion. The path computation is based on
the UELB problem. The forwarding is implemented in P4 for the bmv2.

AppSwitch [298] implements a load balancer for key-value storage systems.
However, the focus lies on a local agent and the control plane communication
with the storage server.

Beamer [299] operates in data centers and prevents interruption of connec-
tions when they are load-balanced to a different server. To that end, the Beamer
controller instructs the new target server to forward packets of the load-balanced
connection to the old target server until the migration phase is over.

10.3. Congestion Notification
P4QCN [301] proposes a congestion feedback mechanism where network

nodes check the egress ports for congestion before forwarding packets. If a
node detects congestion, it calculates a feedback value that is propagated up-
stream. The mechanism clones the packet that caused the congestion, updates

64

the feedback value in the header, changes the origin of the flow, and forwards
it as a feedback packet to the sender. The sender adjusts its sending rate to
reduce congestion downstream. The authors describe an implementation where
bmv2 is extended by P4 externs for floating-point calculations.

Jiang et al. [302] introduce a novel adjusting advertised windows (AWW)
mechanism for TCP. The authors argue that the current calculation of the
advertised window in the TCP header is inaccurate because the source node does
not know the actual capacity of the network. AWW dynamically updates the
advertised window of ACK packets to feedback the network capacity indirectly
to the source nodes. Each P4 switch calculates the new AWW value and writes
it into the packet header.

EECN [303] presents an enhanced ECNmechanism which piggybacks conges-
tion information if the switch notices congestion. To that end, the ECN-Echo
bit is set for traversing ACKs as soon as congestion occurs for a given flow.
This enables fast congestion notification without the need for additional control
traffic.

Chen et al. [304] present QoSTCP, a TCP version with adapted congestion
window growth that enables rate limiting. QoSTCP is based on a marking ap-
proach similar to ECN. When a flow exceeds a certain rate, the packet gets
marked with a so-called Rate-Limiting Notification (RLN) and the congestion
window growth is adapted proportional to the RLN-marked packet rate. Me-
tering and marking is done using P4.

Laraba et al. [305] detect ECN misbehavior with the help of P4 switches.
They model ECN as extended finite state machine (EFSM) and store states and
variables in registers. If end hosts do not conform to the specified ECN state
machine, packets are either dropped or, if possible, the misbehavior is corrected.

10.4. Traffic Scheduling
Sharma et al. [306] introduce a mechanism for per flow fairness scheduling in

P4. The concept is based on round-robin scheduling where each flow may send
a certain number of bytes in each round. The switch assigns a round number
for each arriving packet that depends on the number of sent bytes of flow in the
past.

Cascone et al. [307] introduce bandwidth sharing based on sending rates
between TCP senders. P4 switches use statistical byte counters to store the
sending rate of each user. Depending on the recorded sending rate of the user,
arriving packets are pushed into different priority queues.

Bhat et al. [308] leverage P4 switches to translate application layer header
information into link-layer headers for better QoS routing. They use Q-in-Q
tunneling at the edge to forward packets to the core network and present a
bmv2 implementation for HTTP/2 applications, as HTTP/2 explicitly defines
a Stream ID that can directly be translated in Q-in-Q tags.

Kfoury et al. [309] present a method to support dynamic TCP pacing with
the aid of network state information. A P4 switch monitors the number of
active TCP flows, i.e., they monitor the SYN, SYN-ACK, and ACK flags and

65

notify senders about the current network state if a new flow starts or another
terminates. To that end, they introduce a new header and show by simulations
that the overall throughput increases.

Chen et al. [310] present a design for bandwidth management for QoS with
SDN and P4-programmable switches. Their design classifies packets based on
a two-rate three-color marker and assigns corresponding priorities to guarantee
certain per flow bandwidth. To that end, they leverage the priority queuing
capabilities of P4-switches based on the assigned color. Guaranteed traffic goes
to a high-priority queue, best-effort traffic goes to a low-priority queue, and
traffic that exceeds its bandwidth is simply dropped.

Lee et al. [311] implement a multi-color marker for bandwidth guarantees in
virtual networks. Their objective is to isolate bandwidth consumption of virtual
networks and provide QoS for its serving flows.

10.5. Traffic Aggregation
Wang et al. [312] introduce aggregation and dis-aggregation capabilities for

P4 switches. To reduce the header overhead in the network, multiple small pack-
ets are thereby aggregated to a single packet. They leverage multiple register
arrays to store incoming small packets in 32 bit chunks. If enough small packets
are stored, a larger packet gets assembled with the aid of multiple recirculations;
each recirculation step appends a small packet to the aggregated large packet.

RL-SP-DRR [313] is a combination of strict priority scheduling with rate
limitation (RL-SP) and deficit round-robin (DRR). RL-SP ensures prioritiza-
tion of high-priority traffic while DRR enables fair scheduling among different
priority classes. They extend bmv2 to support RL-SP-DRR and evaluate it
against strict priority queuing and no active queuing mechanism.

10.6. Active Queue Management (AQM)
Turkovic et al. [314] develop an active queue management (AQM) mecha-

nism for programmable data planes. The switches are programmed to collect
metadata associated with packet processing, e.g., queue size and load, that are
used to prevent, detect, and dissolve congestion by forwarding affected flows
on an alternate path. Two possible mechanisms for rerouting in P4 are de-
scribed. In the first mechanism, primary and backup entries are installed in the
forwarding tables and according to the gathered metadata, the suitable action
is selected. The second mechanism leverages a local controller on each switch
that monitors flows and installs updated forwarding rules when congestion is
noticed.

P4-CoDel [315] implements the CoDel AQM mechanism specified in RFC
8289 [331]. CoDel leverages a target and an interval parameter. As long as the
queuing delay is shorter than the target parameter, no packets are dropped.
If the queuing delay exceeds the target by a value that is at least as large as
the interval, a packet is dropped, and the interval parameter is decreased. This
procedure is repeated until the queuing delay is under the target threshold again.
The interval is then reset to the initial value. To avoid P4 externs, the authors
use approximated calculations for floating-point operations.

66

P4-ABC [317] implements activity-based congestion management (ABC) for
P4. ABC is a domain concept where edge nodes measure the activity, i.e., the
sending rate, of each user and annotate the value in the packet header. Core
nodes measure the average activity of all packets. Depending on the current
queue status, the average activity, and activity value in the packet header, a
drop decision is made for each packet to prevent congestion. The P416 imple-
mentation for the bmv2 requires externs for floating-point calculations.

P4air [318] attempts to provide more fairness for TCP flows with different
congestion control algorithms. To that end, P4air groups flows into different
categories based on their congestion control algorithm, e.g., loss-, delay- and
loss-delay-based. Afterwards, the most aggressive flows are punished based on
the previous categorization with packet drops, delay increase, or adjusted receive
windows. P4air leverages switch metrics and flow reactions, such as queuing
delay and sending rate, to determine the congestion control algorithm used by
the flows.

Fernandes et al. [319] propose a bandwidth throttling solution in P4. Incom-
ing packets are dropped with a certain probability depending on the incoming
rate of the flow and the defined maximum bandwidth. Rates are measured us-
ing time windows and byte counters. Fernandes et al. extend the bmv2 for this
purpose.

Wang et al. [320] present an AQM mechanism for video streaming. Data
packets are classified as base packets (basic image information) or enhancement
packets (additional information to improve the image quality). When the queue
size exceeds a certain threshold, enhancement packets are preferably dropped.

SP-PIFO [321] features an approximation of Push-In First-Out (PIFO) queues
which enables programmable packet scheduling at line rate. SP-PIFO dynam-
ically adapts the mapping between packet ranks and available strict-priority
queues.

Kunze et al. [322] analyze the design of three popular AQM algorithms
(RED, CoDel, PIE). They implement PIE in three different variants for Tofino-
based P4 hardware targets and show that implementation trade-offs have sig-
nificant performance impacts.

Harkous et al. [324] use virtual queues implemented in P4 for traffic man-
agement. A traffic classifier in the form of MATs assigns a data plane slice
identifier to traffic flows. P4 registers are used to implement virtual queues for
each data plane slice for traffic management.

10.7. Traffic Offloading
Andrus et al. [325] propose to offload video stream processing of surveillance

cameras to P4 switches. The authors propose to offload stream processing for
storage to P4 switches. In case the analytics software detected an event, it
enables a multistage pipeline on the P4 switch. In the first step, video stream
data is replicated. One stream is further sent to the analytics software, the
other stream is dedicated to the video storage. The P4 switch filters out control
packets and rewrites the destination IP address of all video packets to the video
storage.

67

Ibanez et al. [326] try to tackle the problem of P4’s packet-by-packet
programming model. Many tasks, such as periodic updates, require either
hardware-specific capabilities or control-plane interaction. Processing capabili-
ties are limited to enqueue events, i.e., data plane actions are only triggered if
packets arrive. To eliminate this problem, the authors propose a new mechanism
for event processing using the P4 language.

Kfoury et al. [327] propose to offload media traffic to P4 switches which act
as relay servers. A SIP server receives the connection request, replaces IP and
port information with the relay server IP and port, and forwards the request to
the receiver. Afterwards, the media traffic is routed through the relay server.

Falcon [328] offloads task scheduling to programmable switches. Job requests
are sent to the switch and the switch assigns a task in first-come-first-serve
order to the next executor in a pool of computation nodes. Falcon reduces the
scheduling overhead by a factor of 26 and increase scheduling throughput by a
factor of 25 compared to state-of-the-art schedulers.

Osinski et al. [329] present vBNG, a virtual Broadband Network Gateway
(BNG). Some components, such as PPPoE session handling, are offloaded to
programmable switches.

10.8. Summary and Analysis
The research domain of traffic management and congestion control benefits

from three core properties of P4: custom packet headers, flexible header process-
ing and target-specific packet header processing functions. Data center switching
mainly relies on packet header parsing of well-known protocols, such as IPv4/v6
or MPLS. More advanced protocol solutions, such as VXLAN and BIER, can be
implemented by leveraging the flexible packet header processing property of P4.
The presented efforts on load balancing (Section 10.2) also use this property
of P4 to implement novel approaches. Target-specific packet header processing
functions such as externs are widely used in Section 10.3. Most works lever-
age externs such as metering and marking which may not be supported on all
hardware targets. A similar phenomenon appears in Section 10.4. Here, many
papers are based on priority queues. The approaches on AQM in Section 10.6
encounter similar limitations. Floating-point operations are not part of the P4
core. Some targets may provide an extern for this functionality. Multiple works
avoid this problem by either using approximations or by relying on self-defined
externs in software.

11. Applied Research Domains: Routing and Forwarding

We describe applied research on source routing, multicast, publish-subscribe-
systems, named data networking, data plane resilience, and other fields of appli-
cation. Table 8 shows an overview of all the work described. At the end of the
section, we summarize the work and analyze it with regard to P4’s core features
described in Section 8.1.

68

Table 8: Overview of applied research on routing and forwarding (Section 11).

Research work Year Targets Code

Source Routing (11.1)

Lewis et al. [332] 2018 bmv2 [333]
Luo et al. [334] 2019 bmv2 [335]
Kushwaha et al. [336] 2020 Xilinx

Virtex-7
Abdelsalam et al. [337] 2020 bmv2

Multicast (11.2)

Braun et al. [338] 2017 bmv2 [339]
Merling et al. [340, 341] 2020/21 bmv2,

Tofino
[342, 343]

Elmo [344] 2019 - [345]
PAM [346] 2020 bmv2

Publish/Subscribe Systems (11.3)

Wernecke et al. [347, 348, 349, 350] 2018/19 bmv2
Jepsen et al. [351] 2018 Tofino
Kundel et al. [352] 2020 bmv2 [353]
FastReact-PS [354] 2020 -

Named Data Networks (11.4)

NDN.p4 [355, 356] 2016/18 bmv2 [357, 358]
ENDN [359] 2020 bmv2

Data Plane Resilience (11.5)

Sedar et al. [360] 2018 bmv2 [361]
Giesen et al. [362] 2018 Tofino, Xil-

inx SDNet
SQR [363] 2019 bmv2,

Tofino
[364]

P4-Protect [365] 2020 bmv2,
Tofino

[366, 367]

Hirata et al. [368] 2019 -
Lindner et al. [369] 2020 bmv2,

Tofino
[370, 371]

D2R [372] 2019 bmv2
PURR [373] 2019 bmv2,

Tofino
Blink [374] 2019 bmv2,

Tofino
[375]

69

Research work Year Targets Code

Other Fields of Applications (11.6)

Contra [376] 2019 -
Michel et al. [377] 2016 bmv2
Baktir et al. [378] 2018 bmv2
Froes et al. [379] 2020 bmv2
QROUTE [380] 2020 bmv2
Gimenez et al. [381] 2020 bmv2
Feng et al. [382] 2019 bmv2
PFCA [383] 2020 bmv2
McAuley et al. [384] 2019 bmv2
R2P2 [385] 2019 Tofino [386]

11.1. Source Routing
With source routing, the source node defines the processing of the packet

throughout the network. To that end, a header stack is often added to the
packet to specify the operations the other network devices should execute.

Lewis et al. [332] implement a simple source routing mechanism with P4
for the bmv2. The authors introduce a header stack to specify the processing
of the packet towards its destination. That header stack is constructed and
pushed onto the packet by the source node. Network devices match the header
segments to determine how the packet should be processed.

Luo et al. [334] implement segment routing with P4. They introduce a
header which contains segments that identify certain operations, e.g., forwarding
the packet towards a specific destination or over a specific link, updating header
fields, etc. Network nodes process packets according to the topmost segment in
the segment routing header and remove it after successful execution.

Kushwaha et al. [336] implement bitstream, a minimalistic programmable
data plane for carrier-class networks, in P4 for FPGAs. The focus of bitstream
is to provide a programmable data plane while ensuring several carrier-grade
properties, like deterministic latencies, short restoration time, and per-service
measurements. To that end, the authors implement a source routing approach
in P4 which leaves the configuration of the header stack to the control plane.

The authors of [337] show a demo of segment routing over IPv6 data plane
(SRv6) implementation in P4. It leverages the novel uSID instruction set for
SRv6 to improve scalability and MTU efficiency.

11.2. Multicast
Multicast efficiently distributes one-to-many traffic from the source to all

subscribers. Instead of sending individual packets to each destination, multicast
packets are distributed in tree-like structures throughout the network.

Bit Index Explicit Replication (BIER) [387] is an efficient transport mecha-
nism for IP multicast traffic. In contrast to traditional IP multicast, it prevents

70

subscriber-dependent forwarding entries in the core network by leveraging a
BIER header that contains all destinations of the BIER packet. To that end,
the BIER header contains a bit string where each bit corresponds to a spe-
cific destination. If a destination should receive a copy of the BIER packet, its
corresponding bit is activated in the bit string in BIER header of the packet.
Braun et al. [338] present a demo implementation of BIER-based multicast in
P4. Merling et al. [340] implement BIER-based multicast with fast reroute
capabilities in P4 for the bmv2 and for the Tofino [341].

Elmo [344] is a system for scalable multicast in multi-tenant datacenters.
Traditional IP multicast maintains subscriber dependent state in core devices
to forward multicast traffic. This limits scalability, since the state in the core
network has to be updated every time subscribers change. Elmo increases scal-
ability of IP multicast by moving a certain subscriber-dependent state from the
core devices to the packet header.

Priority-based adaptive multicast (PAM) [346] is a control protocol for data
center multicast which is implemented by the authors in P4. Network adminis-
trators define different policies regarding priority, latency, completion time, etc.,
which are installed on the core switches. The network devices than monitor link
loads and adjust their forwarding to fulfill the policies.

11.3. Publish/Subscribe Systems
Publish/subscribe systems are used for data distribution. Subscribers are

able to subscribe to announced topics. Based on the subscriptions, the data
packets are distributed from the source to all subscribers.

Wernecke et al. [347, 348, 349, 350] implement a content-based publish/sub-
scribe mechanism with P4. The distribution tree to all subscribers is encoded
directly in the header of the data packets. To that end, the authors introduce
a header stack which is pushed onto the packet by the source. Each element
in the stack consists of an ID and a value. When a node receives a packet, it
checks whether the header stack contains an element with its own ID. If so, the
value determines to which neighbors the packet has to be forwarded.

Jepsen et al. [351] introduce a description language to implement pub-
lish/subscriber systems. The data plane description is translated into a static
pipeline and dynamic filters. The static pipeline is a P4 program that describes
a packet processing pipeline for P4 switches, the dynamic filters are the for-
warding rules of the match-action tables that may change during operation,
e.g., when subscriptions change.

Kundel et al. [352] propose two approaches for attribute/value encoding
in packet headers for P4-based publish/subscribe systems. This reduces the
header overhead and facilitates adding new attributes which can be used for
subscription by hosts.

FastReact-PS [354] is a P4-based framework for event-based publish/sub-
scribe in industrial IoT networks. It supports stateful and stateless processing
of complex events entirely in the data plane. Thereby, the forwarding logic can
be dynamically adjusted by the control plane without the need for recompila-
tion.

71

11.4. Named Data Networking
Named data networking (NDN) is a content-centric paradigm where infor-

mation is requested with resource identifiers instead of destinations, e.g., IP
addresses. Network devices cache recently requested resources. If a requested
resource is not available, network devices forward the request to other nodes.

NDN.p4 [355] implements NDN without caching for P4. However, the imple-
mentation cannot cache requests because of P4-related limitations with stateful
storage. Miguel et al. [356] leverage the new functionalities of P416 to extend
NDN.p4 by a caching mechanism for requests and optimize its operation. The
caching mechanism is implemented with P4 externs.

Enhanced NDN (ENDN) [359] is an advanced NDN architecture. It offers a
larger catalog of content delivery features like adaptive forwarding, customized
monitoring, in-network caching control, and publish/subscribe forwarding.

11.5. Data Plane Resilience
Sedar et al. [360] implement a fast failover mechanism without control plane

interaction for P4 switches. The mechanism uses P4 registers or metadata fields
for bit strings that indicate if a particular port is considered up or down. In
a match-action table, the port bit string provides an additional match field to
determine whether a particular port is up or down. Depending on the port
status, default or backup actions are executed. The authors rely on a local P4
agent to populate the port bit strings.

Giesen et al. [362] introduce a forward error correction (FEC) mechanism
for P4. Commonly, unreliable but not completely broken links are avoided. As
this happens at the cost of throughput, the proposed FEC mechanism facilitates
the usage of unreliable links. The concept features a link monitoring agent that
polls ports to detect unreliable connections. When a packet should be forwarded
over such a port, the P4 switch calculates a resilient encoding for the packet
which is then decoded by the receiving P4 switch.

Shared Queue Ring (SQR) [363] introduces an in-network packet loss recov-
ery mechanism for link failures. SQR caches recent traffic inside a queue with
slow processing speed. If a link failure is detected, the cached packets can be
sent over an alternative path. While P4 does not offer the possibility to store
packets for a certain amount of time, the authors leverage the cloning operation
of P4 to keep packets inside the buffer. If a cached packet has not yet met
its delay, it gets cloned to another egress port which takes some time. This
procedure is repeated until the packet has been stored for a given time span.

P4-Protect [365] implements 1+1 protection for IP networks. Incoming pack-
ets are equipped with a sequence number, duplicated, and sent over two disjoint
paths. At an egress point, the first version of each packet is accepted and
forwarded. As a result, a failure of a single path can be compensated without
additional signaling or reconfiguration. P4-Protect is implemented for the bmv2
and the Tofino. Evaluations show that line-rate processing with 100 Gbit/s can
be achieved with P4-Protect at the Tofino.

Hirata et al. [368] implement a data plane resilience scheme based on multi-
ple routing configurations. Multiple routing configurations with disjoint paths

72

are deployed, and a header field identifies the routing configuration according to
which packets are forwarded. In the event of a failure, a routing configuration
is chosen that avoids the failure.

Lindner et al. [369] present a novel prototype for in-network source pro-
tection in P4. A P4-capable switch receives sensor data from a primary and
secondary sensor, but forwards only the data from the primary sensor if avail-
able. It detects the failure of the primary sensor and then transparently forwards
data from a secondary sensor to the application. Two different mechanisms are
presented. The counter-based approach stores the number of packets received
from the secondary sensor since the last packet from the primary sensor has
been received. The timer-based approach stores the time of the last arrival of
a packet from the primary sensor and considers the time since then. If certain
thresholds are exceeded, the P4-switch forwards the data from the secondary
sensor.

D2R [372] is a data-plane-only resilience mechanism. Upon a link failure,
the data plane calculates a new path to the destination using algorithms like
breadth-first search and iterative deepening depth-first search. As one pipeline
iteration has not enough processing stages to compute the path, recirculation is
leveraged. In addition, Failure Carrying Packets (FCP) is used to propagate the
link failure inside the network. While the authors claim that their architecture
works with hardware switches, e.g., the Tofino, they only present and evaluate
a bmv2 implementation.

Chiesa et al. [373] propose a primitive for reconfigurable fast ReRoute
(PURR) which is a FRR primitive for programmable data planes, in partic-
ular for P4. For each destination, suitable egress ports are stored in bit strings.
During packet processing, the first working suitable egress port is determined by
a set of forwarding rules. Encoding based on Shortest Common Supersequence
guarantees that only few additional forwarding rules are required.

Blink [374] detects failures without controller interaction by analyzing TCP
signals. The core concept is that the behavior of a TCP flow is predictable when
it is disrupted, i.e., the same packet is retransmitted multiple times. When this
information is aggregated over multiple flows, it creates a characteristic failure
signal that is leveraged by data plane switches to trigger packet rerouting to
another neighbor.

11.6. Other Fields of Applications
Contra [376] introduces performance-aware routing with P4. Network paths

are ranked according to policies that are defined by administrators. Contra
applies those policies and topology information to generate P4 programs that
define the behavior of forwarding devices. During runtime, probe packets are
used to determine the current network state and update forwarding entries for
best compliance with the defined policies.

Michel et al. [377] introduce identifier-based routing with P4. The authors
argue that IP addresses are not fine-granular enough to enable adequate for-
warding, e.g., in terms of security policies. The authors introduce a new header

73

that contains an identifier token. Before sending packets, applications transmit
information on the process and user to a controller that returns an identifier
that is inserted into the packet header. P4 switches are programmed to forward
packets based on that identifier.

Baktir et al. [378] propose a service-centric forwarding mechanism for P4.
Instead of addressing locations, e.g., by IP addresses, the authors propose to
use location-independent service identifiers. Network hosts write the identifier
of the desired service into the appropriate header field, the switches then make
forwarding decisions based on the identifier in the packet header. With this
approach, the location of the service becomes less important since the controller
simply updates the forwarding rules when a service is migrated or load balancing
is desired.

Froes et al. [379] classify different traffic classes which are identified by a
label. Packet forwarding is based on that controller-generated label instead of
IP addresses. The traffic classes have different QoS properties, i.e., prioritization
of specific classes is possible. To that end, switches leverage multiple queues to
process traffic of different traffic classes.

QROUTE [380] is a quality of service (QoS) oriented forwarding scheme
in P4. Network devices monitor their links and annotate values, e.g., jitter or
delay, in the packet header so that downstream nodes can update their statistics.
Furthermore, packet headers contain constraints like maximum jitter or delay.
According to those values, forwarding decisions are made by the network devices.

Gimenez et al. [381] implement the recursive internet-work architecture
(RINA) in P4 for the bmv2. RINA is a networking architecture which sees
computer networking as a type of inter-process communication where layering
should be based on scope/scale instead of function. In general, efficient imple-
mentations require hardware support. However, up to date only software-based
implementations are available. The authors hope that with the advance of pro-
grammable hardware in the form of P4, hardware-based RINA will soon be
possible.

Feng et al. [382] implement information-centric network (ICN) based for-
warding for HTTP. To that end, they propose mechanisms to convert packets
from ICN to HTTP packets and vice-versa.

PFCA [383] implements a forwarding information base (FIB) caching ar-
chitecture in the data plane. To that end, the P4 program contains multiple
MATs that are mapped to different memory, i.e., TCAM, SRAM, dynamic ran-
dom access memory (DRAM), with different properties regarding lookup speed.
Counters keep track of cache hits to move (un)popular rules to other tables.

McAuley et al. [384] present a hybrid error control booster (HEC) that can
be deployed in wireless, mobile, or hostile networks that are prone to link or
transport layer failures. HECs increase the reliability by applying a modified
Reed-Solomon code that adds parity packets or additional packet block acknowl-
edgments. P4 targets include an error control processor that implements this
functionality. It is integrated into the P4 program as P4 extern so that the
data plane can exchange HEC packets with it. A remote control plane includes
the booster manager that controls HEC operations and parameters on the P4

74

targets via a data plane API.
R2P2 [385] is a transport protocol based on UDP for latency-critical RPCs

optimized for datacenters or other distributed infrastructure. A router module
implemented in P4 or DPDK is used to relay requests to suitable servers and
perform load balancing. It may also perform queuing if no suitable server is
available. The goal of R2P2 is to overcome problems that typically come with
TCP-based RPC systems, e.g., problems with load distribution and head-of-
line-blocking.

11.7. Summary and Analysis
The research domain of routing and forwarding greatly benefits from P4’s

core features. First, the definition and usage of custom packet headers enables
administrators to tailor the packet header to the specific use case. Two exam-
ples are source routing (Section 11.1) and multicast (Section 11.2). Both areas
leverage custom headers to define lightweight mechanisms based on additional
information in the packet header which are not part of any standard protocol.
Although most of the projects were developed only for the bmv2, they should
be easily portable to hardware platforms as more complex, target specific oper-
ations are not required. Second, users are able to define flexible packet header
processing depending on the information in the packet header, e.g., publish/-
subscribe systems (Section 11.3), named data networks (Section 11.4), and data
plane resilience (Section 11.5). Parametrized custom actions and (conditional)
application of multiple MATs allow for adaptable packet processing for many
specific use cases. Similar to the previous P4 core feature, most projects were
developed for the bmv2 but they should be easy to transfer if no target-specific
actions are used. Third, we found that many papers in the area of data plane
resilience (Section 11.5) leverage target-specific packet header processing func-
tions. Often registers are used to store information whether egress ports are
up or down to execute backup actions if necessary. Most projects were imple-
mented for the hardware platform Tofino. As a result, the implementations are
highly target-specific and transferring them to other hardware platforms highly
depends on the capabilities of the target platform and the used externs.

12. Applied Research Domains: Advanced Networking

We describe applied research on cellular networks (4G/5G), Internet of
things (IoT), industrial networking, Time-Sensitive Networking (TSN), network
function virtualization (NFV), and service function chains (SFCs). Table 9
shows an overview of all the work described. At the end of the section, we
summarize the work and analyze it with regard to P4’s core features described
in Section 8.1.

12.1. Cellular Networks (4G/5G)
P4EC [388] builds a local exit for LTE deployments with cloud-based EPC

services. A programmable switch distinguishes traffic and reroutes traffic for
edge computing. Non-critical traffic is forwarded to the cloud-based EPC.

75

Table 9: Overview of applied research on advanced networking (Section 12).

Research work Year Targets Code

Cellular Networks (4G/5G) (12.1)

P4EC [388] 2020 Tofino
Trellis [282] - - [389]
SMARTHO [390] 2018 bmv2
Aghdai et al. [391, 392] 2018/19 Netronome
GRED [393] 2019 bmv2
HDS [394] 2020 -
Shen et al. [395] 2019 Xilinx SDNet
Lee et al. [396] 2019 Tofino
Ricart-Sanchez et al. [397] 2019 NetFPGA-SUME
Singh et al. [398] 2019 Tofino
TurboEPC [399] 2020 Netronome
Vörös et al. [400] 20200 Tofino
Lin et al. [401] 2019 Tofino

Internet of Things (12.2)

BLESS [402] 2017 PISCES
Muppet [403] 2018 PISCES
Wang et al. [404] 2019 Tofino
Madureira et al. [405] 2020 bmv2
Engelhard et al. [406] 2019 bmv2

Industrial Networking (12.3)

FastReact [407] 2018 bmv2
Cesen et al. [408] 2020 bmv2
Kunze et al. [409] 2020 Tofino, Netronome

Time-Sensitive Networking (TSN) (12.4)

Rüth et al. [410] 2018 Netronome
Kannan et al. [411] 2019 Tofino
Kundel et al. [412] 2019 Tofino

76

Research work Year Targets Code

Network Function Virtualization (NFV) (12.5)

Kathará [413] 2018 -
P4NFV [414] 2018 bmv2
Osiński et al. [415] 2019 -
Moro et al. [416] 2020 -
DPPx [417] 2020 bmv2
Mohammadkhan et al. [418] 2019 Netronome
FOP4 [419, 420] 2019 bmv2, eBPF
PlaFFE [421] 2020 Netronome

Service Function Chains (SFCs) (12.6)

P4SC [422, 423] 2019 bmv2, Tofino [424]
Re-SFC [425] 2019 bmv2
FlexMesh [426] 2020 bmv2
P4-SFC [427] 2019 bmv2, Tofino [428]

The Trellis switch fabric (introduced in Section 10.1) features the spgw.p4
profile [282, 278], an implementation of a Serving and PDN Gateway (SPGW)
for 5G networking. ONOS runs an SPGW-u application that implements the
3GPP control and user plane separation (CUPS) protocol to create, modify, and
delete GPRS tunneling protocol (GTP) sessions. It provides support for GTP
en- and decapsulation, filtering, and charging.

SMARTHO [390] proposes a handover framework for 5G. Distributed units
(DUs) include real-time functions for multiple 5G radio stations. Several DUs
are controlled by a central unit (CU) that includes non-real-time control func-
tions. P4 switches are part of the CU and all DU nodes. SMARTHO introduces
a P4-based mechanism for preparing handover sequences for user devices that
take a fixed path among 5G radio stations controlled by DUs. This decreases
the overall handover time, e.g., for users traveling in a train.

Aghdai et al. [391] propose a P4-based transparent edge gateway (EGW)
for mobile edge computing (MEC) in LTE or 5G networks. Delay-sensitive and
bandwidth-intense applications need to be moved from data centers in the core
network to the edge of the radio access network (RAN). 5G networks rely on
GTP-U for encapsulating IP packets from the mobile user to the core network.
IP routers in between forward packets based on the outer IP address of GTP-
U frames. The authors deploy EGWs as P4 switches at the edge of the IP
transport network where service operators can deploy scalable network functions
or services. Each MEC service gets a virtual IP address, the P4-based EGWs
parse the inner IP destination address of GTP-U. If it sees traffic targeting a
virtual IP address of a MEC service, it forwards it to the IP address of one of
the serving instances of the MEC application. In their follow-up work [392], the

77

authors extend EGWs by a handover mechanism for migrating network state.
GRED [393] is an efficient data placement and retrieval service for edge

computing. It tries to improve routing path lengths and forwarding table sizes.
They follow a greedy forwarding approach based on DT graphs, where the for-
warding table size is independent of the network size and the number of flows
in the network. GRED is implemented in P4, but the authors do not specify on
which target.

HDS [394] is a low-latency, hybrid, data sharing framework for hierarchical
mobile edge computing. The data location service is divided into two parts:
intra-region and inter-region. The authors present a data sharing protocol called
Cuckoo Summary for fast data localization for the intra-region part. Further,
they developed a geographic routing scheme to achieve efficient data location
with only one overlay hop in the inter-region part.

Shen et al. [395] present an FGPA-based GTP engine for mobile edge com-
puting in 5G networks. Communication between the 5G back-haul and the
conventional Ethernet requires de- and encapsulation of traffic with GTP. As
most network entities do not have the capability to process GTP, the authors
leverage P4-programmable hardware for this purpose.

Lee et al. [396] evaluate the performance of GTP-U and SRv6 stateless
translation as GPT-U cannot be replaced by SRv6 without a transition period.
To that end, they implement GTP and SRv6 on P4-programmable hardware.
They found that there are no performance drops if stateless translation is used
and that SRv6 stateless translation is acceptable for the 5G user plane.

Ricart-Sanchez et al. [397] propose an extension for the P4-NetFPGA frame-
work for network slicing between different 5G users. The authors extend the
capabilities of the P4 pipeline and implement their mechanism on the NetFPGA-
SUME. However, the authors do not provide any details about their implemen-
tation.

Singh et al. [398] present an implementation for the Evolved Packet Gateway
(EPG) in the Mobile Packet Core of 5G. They show that they can offload the
functionality to programmable switching ASICs and achieve line rate with low
latency and jitter while scaling up to 1.7 million active users.

TurboEPC [399] presents a redesign of the mobile packet core where parts
of the control plane state is offloaded to programmable switches. State is stored
in MATs. The switches then process a subset of signaling messages within the
data plane itself, which leads to higher throughput and reduced latency.

Vörös et al. [400] propose a hybrid approach for the next generation NodeB
(gNB) where the majority of packet processing is done by a high-speed P4-
programmable switch. Additional functions, such as ARQ or ciphering, are
offloaded to external services such as DPDK implementations.

Lin et al. [401] enhance the Content Permutation Algorithm (eCPA) for
secret permutation in 5G. Packet payloads are split into code words and shuffled
according to a secret cipher. They implement eCPA for switches of the Inventec
D5264 series.

78

12.2. Internet of Things (IoT)
BLESS [402] implements a Bluetooth low energy (BLE) service switch based

on P4 that acts as a proxy enabling flexible, policy-based switching and in-
network operations of IoT devices. BLE devices are strictly bound to a central
device such as a smartphone or tablet. IoT usage requires cloud-based solutions
where central devices connect to an IoT infrastructure. The authors propose a
BLE service switch (BLESS) that is transparently inserted between peripheral
and central devices and acts like a transparent proxy breaking up the peer-to-
peer model. It maintains BLE link layer connections to peripheral devices within
its range. A central controller implements functionalities such as service discov-
ery, access policy enforcement, and subscription management so that features
like service slicing, enrichment, and composition can be realized by BLESS.

Muppet [403] extends BLESS by supporting the Zigbee protocol in parallel
to BLE. In addition to the features of BLESS, inter-protocol services between
Zigbee and BLE and BLE/Zigbee and IP protocols are introduced. An example
for the latter are HTTP transactions that are automatically sent out by the
switch if it sees a specified set of BLE/Zigbee transactions. The data plane
implementation of BLESS is extended by protocol-dependent packet parsers and
processing and support for encrypted Zigbee packets via packet recirculation.

Wang et al. [404] implement aggregation and disaggregation of small IoT
packets on P4 switches. For a small IoT packet, the header holds a large propor-
tion of the packet’s total size. In large streams of IoT packets, this causes high
overhead. The current aggregation techniques for IoT packets are implemented
by external servers or on the control plane of switches, both resulting in low
throughput and added latency. Therefore, the authors propose an implemen-
tation directly on P4 switches where IoT packets are buffered, aggregated, and
encapsulated in UDP packets with a custom flag-header, type, and padding. In
disaggregation, the incoming packet is cloned to stripe out the single messages
until all messages are separated.

Madureira et al. [405] present the Internet of Things Protocol (IoTP), an
L2 communication protocol for IoT data planes. The main purpose of IoTP is
data aggregation at the network level. IoTP introduces a new, fixed header and
is compatible with any forwarding mechanism. The authors implemented IoTP
for the bmv2 and store single packets of a flow in registers until the data can be
aggregated.

Engelhard et al. [406] present a system for massive wireless sensor networks.
They implement a physically distributed, and logically centralized wireless ac-
cess systems to reduce the impairment by collisions. P4 is leveraged as connec-
tion between a physical access point and a virtual access point. To that end,
they extend the bmv2 to provide additional functionality. However, they give
information about their P4 program only in form of a decision flow graph.

12.3. Industrial Networking
FastReact [407] outsources sensor data packet processing from centralized

controllers to P4 switches. The sensor data is recorded in variable-length time

79

series data stores where an additional field holds the current moving average
calculated on the time series. Both data for all sensors can be polled by a cen-
tral controller. For controlling actuators directly on the data plane, FastReact
supports the formulation of control logic in conjunctive normal form (CNF).
It is mapped to actions to either forward signal data to the controller, discard
it, or directly send it to the actuator. FastReact also features failure recovery
directly on the switch. For every sensor and actuator, timestamps for the last
received packets along a timeout limit is recorded. If failures are detected, sensor
data are forwarded following failover rules with backup actuators for particular
sensors.

Cesen et al. [408] leverage P4-capable switches to move control logic to
the network. Control applications reside in controllers that are responsible for
emergency intervention, e.g., if a given threshold is exceeded. The connection
to the controller may be faulty and, therefore, controller intervention may not
be fast enough. In this work, the authors generate emergency packets, i.e., stop
commands, directly in the data plane. The action is triggered if the switch
receives a packet with a specific payload.

Kunze et al. [409] investigate the applicability of in-network computing to
industrial environments. They offload a simple task, i.e., coordinate transfor-
mation, to different programmable P4 targets. They come to the conclusion,
that, while in general possible, even simple task have heavy demands on pro-
grammable network devices and that offloading may lead to inaccurate results.

12.4. Time-Sensitive Networking (TSN)
Rüth et al. [410] introduce a scheme for implementing in-network control

mechanisms for linear quadratic regulators (LQR). LQRs can be described by
a multiplication of a matrix and a vector. The vector describes the control
of the actuator, the matrix describes the current system state. The result of
the multiplication is a control command. The destination of a switch describes
a specific actuator. When a switch receives a control packet, it matches the
destination of the packet onto a match-and-action table. The lookup provides
the control vector for the actuator. The control vector from the lookup is then
multiplied with the system state matrix that is stored in a register to calculate
the control command for the actuator. The resulting control command is written
into the packet header and the packet is forwarded to the target actuator.

Kannan et al. [411] introduce the Data Plane Time synchronization Proto-
col (DPTP) for distributed applications with computations directly on the P4
data plane. DPTP follows a request-response model, i.e., all P4 switches re-
quest the global time from a designated master switch. Therefore, each switch
features a local control plane that generates time requests sent to the master
switch. Additionally, the control plane handles overflows in time calculation for
administration.

Kundel et al. [412] demonstrate timestamping with nanosecond accuracy.
They describe a simple setup with a Tofino-based switch and a breakout cable to
connect two ports of the switch. In the experiment, timestamps at the moment

80

of sending and reception are recorded in the packet header. The authors compare
those two timestamps to show that very fine-grained measurements are possible.

12.5. Network Function Virtualization (NFV)
Kathará [413] runs NFs as P4 programs either on software or hardware

targets. For software-based deployment, the framework leverages Docker con-
tainers that run NFs as container images or individual setups for Quagga, Open
vSwitch, or bmv2 container images. For hardware-based deployment on P4
switches, NFs are either replicated on every P4 switch or distributed on mul-
tiple P4 switches as needed. In both cases, a load balancer or service classifier
forwards flows to the appropriate P4 switch. As a main advantage, P4 programs
can be shifted between the bmv2-based P4 software targets and hardware tar-
gets depending on the required performance.

P4NFV [414] also deals with the idea of running NFs either on software-
or hardware-based P4 targets. The authors adopt the ETSI NFV architecture
with control and monitoring entities and add a layer that abstracts various
types of software- and hardware-based P4 targets as P4 nodes. For optimized
deployment, the targets performance characteristics are part of the P4 node de-
scription. For runtime reconfiguration, the authors propose two approaches. In
pipeline manipulation, the P4 program features multiple match-action pipelines
that can be enabled or disabled by setting register flags. In program reload, a
new P4 program is compiled and loaded to the P4 target. The authors propose
to perform state management and migration either directly on the data plane
or via a control plane.

Osiński et al. [415] use P4 to offload the data plane of virtual network
functions (VNFs) into a cloud infrastructure by allowing VNFs to inject small
P4 programs into P4 devices like SmartNICs or top-of-rack switches. This
results in better performance and a microservice-based approach for the data
plane. A new P4 architecture model that integrates abstractions used to develop
VNF data planes was developed.

Moro et al. [416] present a framework for NF decomposition and deployment.
They split NFs into components that can run on CPUs or that can be offloaded
to specific programmable hardware, e.g., P4 programmable switches. The pre-
sented orchestrator combines multiple functions into a single P4 program that
can be deployed to programmable switches.

DPPx [417] implements a framework for P4-based data plane programma-
bility and exposure which allows enhancing NFV services. They introduce data
plane modules written in P4 which can be leveraged by the application plane.
As an example, a dynamic optimization of packet flow routing (DOPFR) is
implemented using DPPx.

Mohammadkhan et al. [418] provide a unified P4 switch abstraction frame-
work where servers with software NFs and P4-capable SmartNICs are seen as
one logical entity by the SDN controller. They further leverage Mixed Integer
Linear Programming (MILP) to determine partitioning of P4 tables for optimal
placement of NFs.

81

FOP4 [419] [420] implements a rapid prototyping platform that supports
container-based, P4-switch-based, and SmartNIC-based NFs. They argue that
a prototyping platform is needed to quickly develop and evaluate new NFV use
cases.

PlaFFE [421] introduces NFV offloading where some features of VNFs or
embedded Network Functions (eNFs) are executed on SmartNICs using P4.
Additionally, P4 is used to steer traffic either through the eNFs or through
VNFs using SR-IOV.

12.6. Service Function Chains (SFCs)
P4SC [422] [423] implements a SFC framework for P4 targets. SFCs are

described as directed acyclic graph of service functions (SFs). In P4SC, SFs
are represented by blocks. Each block has a unique identifier, a P4 program for
ingress processing, and a P4 program for egress processing. P4SC includes 15
SF blocks, e.g., L2 forwarding, which are extracted from switch.p4. After the
user specified all SFCs for a particular P4 target, the P4SC converter merges
the directed acyclic graphs of all SFCs with an LCS-based algorithm into an
intermediate representation. Then, the P4SC generator creates the final P4
program based on the intermediate representation to be deployed onto the P4
target. P4 program generation includes runtime management, i.e., the gener-
ator creates one API per SFC while hiding SF-specific details, e.g., names of
particular match-and-action tables.

Re-SFC [425] improves P4SC’s resource usage by using resubmit operations.
If the specified order of SFs in an SFC does not match the pre-embedded SF of
the P4 switch, incoming flows cannot be processed. P4SC solves this problem by
permitting redundant NF embeds, i.e., if SFs of one SFC are required by another
SFCs, those SFs are just replicated. To reduce the costly usage of match-and-
action tables, Re-SFC introduces resubmit actions where packets are re-bounced
to the ingress.

FlexMesh [426] tackles the problem of fixed SFC flow control, i.e., when
the specified order of SFs does not match the pre-embedded SF, by leveraging
MATs. SFs can be dynamically bypassed, and recirculation is used to build any
desired SF chain.

P4-SFC [427] is an SFC framework based on MPLS segment routing and
NFV. P4 is used to implement a traffic classifier. A central orchestrator deploys
service functions as VNFs and configures the traffic classifier based on definitions
of SFCs.

12.7. Summary and Analysis
As the research domain of advanced networking covers different topics, al-

most all core properties of P4 are covered. The area of cellular networks (Section
12.1) greatly benefits from the definition and usage of custom packet headers as
many works are based on tunneling technologies, such as GTP. Further, flexible
packet header processing allows implementing new 5G concepts such as gNB
or EPG. Some use cases still require offloading tasks to specialized hardware

82

or software by leveraging the target-specific packet header processing function
property of P4, e.g., for ARQ or ciphering in the context of gNB. Network func-
tion virtualization (NFV) (Section 12.5) benefits from flexible development and
deployment as single network functions (NFs) can be replaced or relocated dur-
ing operation. New protocols and extensions to existing protocols presented in
Section 12.6 rely on definition and usage of custom packet headers and flexible
packet header processing.

13. Applied Research Domains: Network Security

We describe applied research on firewalls, port knocking, DDoS attack mit-
igation, intrusion detection systems, connection security, and other fields of
application. Table 10 shows an overview of all the work described. At the end
of the section, we summarize the work and analyze it with regard to P4’s core
features described in Section 8.1.

13.1. Firewalls
Ricart-Sanchez et al. [429] present a 5G firewall that analyzes GTP data

transmitted between edge and core networks. P4 allows an implementation of
parsing and matching GTP header fields such as 5G user source IP, 5G user
destination IP, and identification number of the GTP tunnel. The P4 pipeline
implements an allow-by-default policy, DROP actions for specific sets of keys
can be installed via a data plane API. In a follow-up work [430], the authors
extend the 5G firewall by support for multi-tenancy with VXLAN.

CoFilter [431] implements an efficient flow identification scheme for stateful
firewalls in P4. To solve the problem of limited table sizes on SDN switches,
flow identifiers are calculated by applying a hashing function to the 5-tuple of
every packet directly on the switch. The proposed concept includes a novel
hash rewrite function that is implemented on the data plane. It resolves hash
commission and hash table optimization using an external server.

P4Guard [432] replaces software-based firewalls by P4-based virtual firewalls
in the VNGuard [480] system. VNGuard introduces controller-based deploy-
ment and management of virtual firewalls with the help of SDN and NFV. The
P4-based firewall comprises a single MAT that allows ALLOW/DROP decision
for Layer 3/4 header fields as match keys. The flow statistics are recorded with
the help of counters. Another MAT allows enabling/disabling the firewall at
runtime.

Vörös and Kiss [433] present a firewall implemented in P4. The parser sup-
ports Ethernet, IPv4/IPv6, UDP, and TCP headers. A ban list comprises MAC
address/IP address entries that represent network hosts. Packets matching this
ban list are directly dropped. To mitigate port scan or DDoS attacks, coun-
ters track packet rate and byte transfer statistics. Another MAT implements
whitelist filtering.

83

Table 10: Overview of applied research on network security (Section 13).

Research work Year Targets Code

Firewalls (13.1)

Ricart-Sanchez et al. [429, 430] 2018/19 NetFPGA-SUME
CoFilter [431] 2018 Tofino
P4Guard [432] 2018 bmv2
Vörös and Kiss [433] 2016 p4c-behavioral

Port Knocking (13.2)

P4Knocking [434] 2020 bmv2
Almaini et al. [435] 2019 bmv2

DDoS Mitigation Mechanisms (13.3)

LAMP [436] 2018 bmv2
TDoSD@DP [437, 438] 2018/19 bmv2
Kuka et al. [439] 2019 Xilinx UltraScale+, Intel

Stratix 10
Paolucci et al. [440, 441] 2018/19 bmv2, NetFPGA-SUME
ML-Pushback [442] 2019 -
Afek et al. [443] 2017 p4c-behavioral
Cardoso Lapolli et al. [444] 2019 bmv2 [445]
Cai et al. [446] 2020 -
Lin et al. [447] 2020 bmv2
Musumeci et al. [448] 2020 bmv2
DIDA [449] 2020 bmv2
Dimolianis et al. [450] 2020 Netronome
Scholz et al. [451] 2020 bmv2, T4P4S,

Netronome, NetFPGA
SUME

[452]

Friday et al. [453] 2020 bmv2
NetHide [454] 2018 -

Intrusion Detection Systems & Deep Packet Inspection (13.4)

P4ID [455] 2019 bmv2
Kabasele and Sadre [456] 2018 bmv2
DeepMatch [457] 2020 Netronome [458]
Qin et al. [459] 2020 bmv2, Netronome [460]
SPID [461] 2020 bmv2

84

Research work Year Targets Code

Other Fields of Application (13.6)

Chang et al. [462] 2019 bmv2
Clé [463] 2019 -
P4DAD [464] 2020 bmv2
Chen [465] 2020 Tofino [466]
Gondaliya et al. [467] 2020 NetFPGA SUME
Poise [468] 2020 Tofino [469]

Connection Security (13.5)

P4-MACsec [470] 2020 bmv2, NetFPGA-SUME [471]
P4-IPsec [472] 2020 bmv2, NetFPGA-SUME, Tofino [473]
SPINE [474] 2019 bmv2 [475]
Qin et al. [476] 2020 bmv2
P4NIS [477] 2020 bmv2 [478]
LANIM [479] 2020 bmv2

13.2. Port Knocking
Port knocking is a simple authentication mechanism for opening network

ports. Network hosts send TCP SYN packets in predefined sequences to certain
ports. If the sequence is completed correctly, the server opens up a desired port.
Typically, port knocking is implemented in software on servers.

P4Knocking [434] implements port knocking on P4 switches. The authors
propose four different implementations for P4. In the first implementation,
P4 switches track the state of knock sequences in registers where the source
IP address is used as an index. The second implementation uses a CRC-hash
of the source IP address as index for the knocking state registers. To resolve
the problem of hash collisions, the third implementation relies on identifiers
that are calculated and managed by the controller. The fourth implementation
solely relies on the controller, i.e., P4 switches forward all knocking packets to
the controller.

Almaini et al. [435] implement port knocking with a ticket mechanism on P4
switches. Traffic is only forwarded if the sender has a valid ticket. Predefined
trusted nodes have a ticket by default, untrustworthy nodes must obtain a ticket
by successful authentication via port knocking. The authors use the HIT/MISS
construct of P4 as well as stateful P4 components to implement the concept.
Port knocking sequences and trusted/untrusted hosts can be maintained by the
control plane.

13.3. DDoS Attack Mitigation
LAMP [436] presents a cooperative mitigation mechanism for DDoS attacks

that relies on information from the application layer. Ingress P4 switches add

85

a unique identifier to the IP options header field of any processed packet. The
last P4 switch ahead of the target host stores this mapping and empties the
IP options header field. If a network hosts, e.g., a database server, detects an
ongoing DDoS attack on the application layer, it adds an attack flag to the IP
options header field and sends it back to the switch. The switch forwards this
packet to the ingress switch to enable dropping of all further packets of this
flow.

TDoSD@DP [437] is a P4-based mitigation mechanism for DDoS attacks
targeting SIP proxies. Stateful P4 registers record the number of SIP INVITE
and SIP BYE messages. Then, a simple state machine monitors sequences of
INVITE and BYE messages. Many INVITES followed by zero BYE messages
lead to dropping SIP INVITE packets where valid sequences of INVITE and
BYE messages will keep the port open. In a follow-up work [438], the authors
present an alternative approach where P4 switches act as distributed sensors.
An SDN controller periodically collects data from counters of P4 switches to
perform centralized attack detection. Then, attack mitigation is performed by
installing DROP rules on the P4 switches.

Kuka et al. [439] present a DDoS mitigation system that targets volumet-
ric DDoS attacks called reflective amplification attacks. The authors port an
existing VHDL implementation into a P4 program that runs on FPGA targets.
The implementation selects the affected subset of the incoming traffic, extracts
packet data, and forwards it as a digest to an SDN controller. The SDN con-
troller continuously evaluates this information; a heuristic algorithm identifies
aggressive IP addresses by looking at the volumetric contribution of source IP
addresses to the attack. In case of a detected attack, the SDN controller installs
DROP rules.

Paolucci et al. [440, 441] present a stateful mitigation mechanism for TCP
SYN flood attacks. It is part of a P4-based edge packet-over-optical node that
also comprises traffic engineering functionality. P4 registers keep per-session
statistics to detect TCP SYN flood attacks. One register records the port num-
ber of the last TCP SYN packet, the another one records the number of at-
tempts matching the TCP SYN flood behavior. If the latter one exceeds a
defined threshold, the packets are dropped.

ML-Pushback [442] proposes an extension of the Pushback DDoS attack
mitigation mechanism by machine learning techniques. P4 switches implement
a data collector mechanism that collects dropped packets and forwards them
as digest messages to the control plane. On the control plane, a deep learning
module extracts signatures and classifies the collected digest with a decision
tree model. Attack mitigation is performed by throttling attacker traffic via
rate limits.

Afek et al. [443] implement known mitigation mechanisms for SYN and DNS
spoofing in DDoS attacks for OpenFlow and P4 targets. The OpenFlow imple-
mentation targets Open vSwitch and OpenFlow 1.5 where P4 implementations
are compiled for p4c-behavioral without control plane involvement. In addi-
tion, the authors implemented a set of algorithms and methods for dynamically
distributing the rule space over multiple switches.

86

Cardoso Lapolli et al. [444] describe an algorithmic approach to detect and
stop DDoS attacks on P4 data planes. The algorithm was specifically created
under the functional constraints of P4 and is based on the calculation of the
Shannon entropy.

Cai et al. [446] propose a novel method for collecting traffic information to
detect TCP port scanning attacks. The authors propose the "0-replacement"
method as an efficient alternative to existing sampling and aggregation methods.
It introduces a pending request counter (PRcounter) and relies on registers to
bind hashing identifiers of the attackers’ IP addresses to PRcounter values. The
authors describe the concept as compliant to PSA, but only simulation results
are given.

Lin et al. [447] present a comparison of OF- and P4-based implementations
of basic mitigation mechanisms against SYN flooding and ARP spoofing attacks.

Musumeci et al. [448] present P4-assisted DDoS attack mitigation using an
ML classifier. An ML-based DDoS attack detection module with a classifier
is running on a controller. The P4 switch forwards traffic to the module; the
DDoS attack detection module responds with a decision. The authors consider
three use cases: packet mirroring + header mirroring + metadata extraction. In
metadata extraction, P4 switches implement counters that store occurrences of
IP, UDP, TCP, and SYN packets. In the case that one of the counters exceeds
a defined threshold, the P4 switch inserts a custom header with the counter
values and sends it to the DDoS attack detection module.

DIDA [449] presents a distributed mitigation mechanism against amplified
reflection DDoS attacks. In this type of DDoS attack, spoofed requests lead to
responses that are by magnitude larger. An example is a DNS ANY query. The
authors rely on count-min sketch data structures and monitoring intervals to
put the number of requests and responses into relation. In case of a detected
DDoS attack, ACLs are used to block the traffic near to the attacker.

Dimolianis et al. [450] introduce a multi-feature DDoS detection scheme
for TCP/UDP traffic. It considers the total number of incoming traffic for a
particular network, the significance of the network, and the symmetry ratio of
incoming and outgoing traffic for classifications. The feature analysis is time-
dependent and focuses on distinct time intervals.

Scholz et al. [451] propose a SYN proxy that relies on SYN cookies or
SYN authentication as protection against SYN flooding DDoS attacks. The
authors present a software implementation based on DPDK and compare it to a
bmv2-based P4 implementation that is ported to the T4P4S P4 software target,
Netronome P4 hardware target, and NetFPGA SUME P4 hardware target.
Evaluation results, benefits, and challenges for each platform are discussed.

Friday et al. [453] present a two-part DDoS detection and mitigation scheme.
In the first part, a P4 target applies a one-way traffic analysis using bloom
filters and time-dependent statistics such as moving averages. In the second
part, the P4 target analyzes the bandwidth and transport protocols used by
various applications to perform a volumetric analysis. The processing pipeline
then decides about malicious traffic to be dropped. Administrators may supply
custom network parameters used for dynamic threshold calculation that are

87

then installed via an API on the data plane. The authors demonstrate the
effectiveness of the proposed approach by three use cases: UDP amplification
DDoS attacks, SYN flooding DDoS attacks, and slow DDoS attacks.

NetHide [454] prevents link-flooding attacks by obfuscating the topology of
a network. It achieves this by modifying path tracing probes in the data plane
while preserving their usability.

13.4. Intrusion Detection Systems (IDS) & Deep Packet Inspection (DPI)
P4ID [455] reduces intrusion detection system (IDS) processing load by ap-

ply pre-filtering on P4 switches (IDS offloading/bypassing). P4ID features a
rule parser that translates Snort rules with a multistage mechanism into MAT
entries. The P4 processing pipeline implements a stateless and a stateful stage.
In the stateless stage, TCP/ICMP/UDP packets are matched against a MAT
to decide if traffic should be dropped, forwarded to the next hop, or forwarded
to the IDS. In the stateful stage, the first n packets of new flows are forwarded
to the IDS. This allows that traffic targeting well-known ports can be also ana-
lyzed. Combining the feedback of the IDS for packet samples with the stateless
stage is future work.

Kabasele and Sadre [456] present a two-level IDS for industrial control system
(ICS) networks. The IDS targets the Modbus protocol that runs on top of TCP
in SCADA networks. The first level comprises two whitelists: a flow whitelist
for filtering on the TCP layer and a Modbus whitelist. If no matching entry is
found for a given packet, it is forwarded to the second layer. This is in stark
contrast to legacy whitelisting where packets are just dropped. In the second
level, a Zeek network security analyzer acts as deep packet inspector running on
a dedicated host. It analyzes the given packet, makes a decision, and instructs
the controller to update filters on the switch.

DeepMatch [457] introduces deep packet inspection (DPI) for packet pay-
loads. The concept is implemented with the help of network processors; its
prototype is built with the Netronome NFP-6000 SmartNIC P4 target. The
authors present regex matching capabilities that are executed in 40Gbit/s (line
rate of the platform) for stateless intra-packet matching and about 20Gbit/s
for stateful inter-packet matching. The DeepMatch functionalities are natively
implemented in Micro-C for the Netronome platform and integrated into the P4
processing pipeline with the help of P4 externs.

Qin et al. [459] present an IDS based on binarized neural networks (BNN)
and federated learning. BNNs compress neural networks into a simplified form
that can be implemented on P4 data planes. Weights are compressed into single
bits and computations, e.g., activation functions, are converted into bit-wise
operations. P4 targets at the network edge then apply BNNs to classify incoming
packets. To continuously train the BNNs on the P4 targets, the authors propose
a federated learning scheme. Each P4 target is connected to a controller that
trains an equally structured neural network with samples received from the P4
target. A cloud service aggregates local updates received from the controllers
and responds with weight updates that are processed into the local model.

88

In the Switch-Powered Intrusion Detection (SPID) framework [461], switches
compute and store flow statistics, and perform traffic change detection. If a
relevant change in traffic is detected, measurement data is pushed to the control
plane. In the control plane, the measurement data is fed to a ML-based anomaly
detection pipeline to detect potential attacks.

13.5. Connection Security
P4-MACsec [470] presents an implementation of IEEE 802.1AE (MACsec)

for P4 switches. A two-tier control plane with local switch controllers and a cen-
tral controller monitor the network topology and automatically set up MACsec
on detected links between P4 switches. For link discovery and monitoring, the
authors implement a secured variant of LLDP that relies on encrypted payloads
and sequence numbers. MACsec is directly implemented on the P4 data plane;
encryption/decryption using AES-GCM is implemented on the P4 target and
integrated in the P4 processing pipeline as P4 externs.

P4-IPsec [472] presents an implementation of IPsec for P4 switches. IPsec
functionality is implemented in P4 and includes ESP in tunnel mode with sup-
port for different cipher suites. As in P4-MACsec, the cipher suites are imple-
mented on the P4 target and integrated as P4 externs. In contrast to standard
IPsec operation, IPsec tunnels are set up and renewed by an SDN controller
without IKE. Site-to-site operation mode supports IPsec tunnels between P4
switches. Host-to-site operation mode supports roadwarrior access to an inter-
nal network via a P4 switch. To make the roadwarrior host manageable by the
controller, the authors introduce a client agent tool for Linux hosts.

SPINE [474] introduces surveillance protection in the network elements by IP
address obfuscation against surveillance in intermediate networks. In contrast
to software-based approaches such as TOR, SPINE runs entirely on the data
plane of two nodes with intermediate networks in between. It applies a one-time-
pad-based encryption scheme with key rotation to encrypt IP addresses and, if
present, TCP sequence and acknowledgment numbers. The SPINE nodes add a
version number representing the encryption key index to each packet by which
the receiving switch can select the appropriate key for decryption. The key sets
required for the key rotation are maintained by a central controller.

Qin et al. [476] introduce encryption of TCP sequence numbers using
substitution-boxes to protect traffic between two P4 switches. An ONOS-based
controller receives the first packet of each new flow and applies security poli-
cies to decide whether the protection should be enabled. Then, it installs the
necessary data in registers and updates MATs to enable TCP sequence number
substitution.

P4NIS [477] proposes a scheme to protect against eavesdropping attacks. It
comprises three lines of defense. In the first line of defense, packets that belong
to one traffic flow are disorderly transmitted via various links. In the second line
of defense, source/destination ports and sequence/acknowledgment numbers are
substituted via s-boxes similar to the approach of Qin et al. [476]. The third
line of defense resembles existing encryption mechanisms that are not covered
by P4NIS.

89

LANIM [479] presents a learning-based adaptive network immune mecha-
nism to prevent against eavesdropping attacks. It targets the Smart Identifier
Network (SINET) [481], a novel, three-layer Internet architecture. LANIM ap-
plies the minimum risk ML algorithm to respond to irregular conditions and
applies a policy-based encryption strategy focusing on the intent and applica-
tion.

13.6. Other Fields of Application
Chang et al. [462] present IP source address encryption. It accomplishes

non-linkability of IP addresses as proactive defense mechanism. Network hosts
are connected to trusted P4 switches at the network edges. In between, packets
are exchanged via untrusted switches/routers. The P4 switch next to the sender
encrypts the sender IP address by applying an XOR operation with a hash
calculated by a random number and a shared key. The P4 switch next to the
receiver decrypts the original sender IP address. The mechanism includes a
dynamic key update mechanism so that transformations are random.

Clé [463] proposes to upgrade particular switches in a legacy network to P4
switches that implement security network functions (SNFs) such as rule-based
firewalls or IDS on P4 switches. Clé comprises a smart device upgrade selection
algorithm that selects switches to be upgraded and a controller that forwards
traffic streams to the P4 switches that implement SNFs.

P4DAD [464] presents a novel approach to secure duplicate address detec-
tion (DAD) against spoofing attacks. Duplicate address detection is part of
NDP in IPv6 where nodes check if an IPv6 address to be applied conflicts with
another node. As the messages exchanged in duplicate address detection are
not authenticated or encrypted, it is vulnerable to message spoofing. As simple
alternative to authentication or encryption, P4DAD introduces a mechanism
to filter spoofed NDP messages. The P4 switch maintains registers to create
bindings between IPv6 addresses, port numbers, and address states. Thereby,
it can detect and drop spoofed NDP messages.

Chen [465] shows how AES can be implemented on Tofino-based P4 targets
in P4 using MATs as lookup tables. Expansion of the AES key is performed in
the control plane. MAT entries specific to the encryption keys are generated by
a controller.

Gondaliya et al. [467] implement six known mechanisms against IP ad-
dress spoofing for the NetFPGA SUME P4 target. Those are Network Ingress
Filtering, Reverse Path Forwarding (Loose, Strict and Feasible), Spoofing Pre-
vention Method (SPM), and Source Address Validation Improvement (SAVI).
The authors compare the different mechanisms with regard to resource usage
on the FPGA and report that the implementations of all mechanisms achieve
a throughput of about 8.5Gbit/s and a processing latency of about 2µs per
packet.

Poise [468] introduces context-aware policies for securing P4-based networks
in BYOD scenarios. Instead of relying on a remote controller or software-based
solution, Poise implements context-aware policy enforcement directly on P4 tar-

90

gets. Network administrators define context-aware security policies in a declara-
tive language based on Pyretic NetCore that are then compiled into P4 programs
to be executed on P4 targets. BYOD clients run a context collection module
that adds context information headers to network packets. The P4 program gen-
erated by Poise then parses and uses this information to enforce ACLs based on
device runtime contexts. P4 targets in Poise are managed by a Poise controller
that compiles the P4 programs, installs them on the P4 targets, and provides
configuration data to the collection modules. The authors present a prototype
including PoiseDroid, an implementation of the context collection module for
Android devices.

13.7. Summary and Analysis
Several prototypes apply P4’s custom packet headers, e.g., for building a

GTP firewall for 5G networks, a DDoS attack mitigation mechanism for the
SIP, or an IDS for the Modbus protocol in industrial networks. It is also used
for in-band signaling, e.g., in cooperative DDoS attack detection. All prototypes
rely on flexible packet header processing ; outstanding for this section, many of
them also rely on target-specific packet header processing functions offered by
the P4 target. Some works require custom externs, e.g., for applying MACsec or
IPsec on P4 data planes. As for prototypes from the research area Monitoring
(Section 9), many prototypes rely on registers and counters for recording statis-
tics, e.g., for detecting attacks in DDoS mitigation or in IDSs. While custom
packet headers and basic packet header processing are supported by all P4 hard-
ware targets, the portability of prototypes using these specific functions is very
limited. Several prototypes also rely on packet processing on the control plane
where information (e.g., from blocking lists, IDS rules) is translated into MAT
rules for data plane control or data received from the data plane (e.g., statistical
data or packet digests) is used for runtime control. Flexible deployment allows
to re-deploy network security programs on P4 switches in large networks.

14. Miscellaneous Applied Research Domains

This section summarizes work that falls outside of the other application do-
mains. We describe applied research on network coding, distributed algorithms,
state migration, and application support. Table 11 shows an overview of all the
work described. At the end of the section, we summarize the work and analyze
it with regard to P4’s core features described in Section 8.1.

14.1. Network Coding
In Network Coding (NC) [521], linear encoding and decoding operations are

applied on packets to increase throughput, efficiency, scalability, and resilience.
Network nodes apply primitive operations, e.g., splitting, encoding, or decoding
packets, to implement NC mechanisms such as multicast, forward error correc-
tion, or rerouting (resilience).

91

Table 11: Overview of applied research on miscellaneous research domains (Section 14).

Research work Year Targets Code

Network Coding (Section 14.1)

Kumar et al. [482] 2018 bmv2 [483]
Gonçalves et al. [484] 2019 bmv2

Distributed Algorithm (Section 14.2)

P4CEP [485] 2018 bmv2, Netronome
DAIET [486] 2017 -
Sankaran et al. [487] 2020 -
Zang et al. [488] 2017 bmv2
Dang et al. [489, 490] 2016/20 Tofino [491]
P4BFT [492, 493] 2019 bmv2, Netronome
SwiShmem [494] 2020 -
SC-BFT [495] 2020 bmv2 [496]
LODGE [497] 2018 bmv2
LOADER [498] 2020 [499]
FLAIR [500] 2020 Tofino

State Migration (Section 14.3)

Swing State [501] 2017 bmv2
P4Sync [502] 2020 bmv2 [503]
Xue et al. [504] 2020 bmv2
Kurzniar et al. [505] 2020 bmv2
Sankaran et al. [506] 2020 NetFPGA-SUME

Application Support (Section 14.4)

P4DNS [507] 2019 NetFPGA SUME [508]
P4-BNG [509] 2019 bmv2, Tofino, Netronome,

NetFPGA-SUME
[510]

ARP-P4 [511] 2018 bmv2
Glebke et al. [512] 2019 Netronome
COIN [513] 2019 -
Lu et al. [514] 2019 Tofino
Yazdinejad et al. [515] 2019 bmv2
P4rt-OVS [516] 2020 - [517]
SwitchML [518] 2021 Tofino [519]
SwitchAgg [520] 2019 NetFPGA-SUME

92

Kumar et al. [482] implement primitive NC operations such as splitting, en-
coding, and decoding for a PSA software switch. This is the first introduction
of NC for SDN, as fixed-function data plane switches, e.g., as in OF, did not
support such operations. The authors describe details of their implementation.
The open-source implementation [483] relies on clone and recirculate operations
to generate additional packets for encoding and decoding operations and packet
processing loops. Temporary packet buffers for gathering operations are imple-
mented with P4 registers. However, P4 hardware targets are not considered.

Gonçalves et al. [484] implement NC operations that may use information
from multiple packets during processing. The authors implement their concept
for PISA in P416. It features multiple complex NC operations that focus on
multiplications in Galois fields used for encoding and decoding operations. NC
operations are implemented in P4 externs that extend the capabilities of the
software switch to store a specific amount of received packets. Again, hardware
targets are not considered.

14.2. Distributed Algorithms
We describe related work on event processing and in-network consensus.

14.2.1. Event Processing
Data with stream characteristics often require specific processing. For ex-

ample, sensor data may be analyzed to determine whether values are within
certain thresholds, or chunks of data are aggregated and preprocessed.

P4CEP [485] shifts complex event processing from servers to P4 switches
so that event stream data, e.g., from sensors, is directly processed on the data
plane. The solution requires several workarounds to solve P4 limitations regard-
ing stateful packet processing.

DAIET [486] introduces in-network data aggregation where the aggregation
task is offloaded to the entire network. This reduces the amount of traffic and
reliefs the destination of computational load. The authors provide a prototype
implementation in P414 but only a few details are disclosed.

Sankaran et al. [487] increase the processing speed of packets by reducing
the time that is required by forwarding nodes to parse the packet header. To
that end, ingress routers parse the header stack to compute a so-called unique
parser code (UPC) which they add to the packet header. Downstream nodes
need to parse only the UPC to make forwarding decisions.

14.2.2. In-Network Consensus
Distributed algorithms or mechanisms may require consensus to determine

the right solution or processing. This includes communication between partici-
pating entities and some ways to determine the right solution.

Zhang et al. [488] propose to offload parts of the Raft consensus algorithm
to P4 switches. However, the mechanisms require an additional client to run on
the switch. The authors implement their application for a P4 software switch,
but details are not presented.

93

Dang et al. [489, 490] describe a P4 implementation of Paxos, a protocol
that solves consensus for distributed algorithms in a network of unreliable pro-
cessors based on information exchange between switches. This work contains a
detailed description of a complex P4 implementation. The authors explain all
components, provide code snippets, and discuss their design choices.

P4BFT [492, 493] introduces a consensus mechanism against buggy or mali-
cious control plane instances. The controller responses are sent to trustworthy
instances which compare the responses and establish consensus, e.g., by choos-
ing the most common response. The authors propose to offload the comparison
process to the data plane.

SwiShmem [494] is a distributed shared state management layer for the
P4 data plane to implement stateful distributed network functions. In high-
performance environments controllers are easily overloaded when consistency of
write-intensive distributed network functions, like DDoS detection, or rate lim-
iters, is required. Therefore, SwiShmem offloads consistency mechanisms from
the control plane to the data plane. Then, consistency mechanisms operate at
line rate because switches process traffic, and generate and forward state update
messages without controller interaction.

Byzantine fault refers to a system where consensus between multiple entities
has to be established where one or more entities are unreliable. Byzantine fault
tolerance (BFT) describes mechanisms that handle such faults. However, BFTs
often require significant time to reach consensus due to high computational
overhead to reduce uncertainty. Switch-centric BFT (SC-BFT) [495] proposes to
offload BFT functionalities, i.e., time synchronization and state synchronization,
into the data plane. This significantly accelerates the consensus procedure since
nodes process information at line rate.

LODGE [497] implements a mechanism for switches to make forwarding
decisions based on global state without control of a central instance. Developers
define global state variables which are stored by all stateful data plane devices.
When such a node processes a packet that changes a global state variable, the
switch generates and forwards an update packet to all other stateful switches
on a predefined distribution tree. LOADER [498] introduces global state to
the data plane. Consensus is maintained by the data plane devices through
distributed algorithms, i.e., the switches send notification messages when global
state changes. This increases scalability in comparison to mechanisms where
consensus is managed by a central control entity.

FLAIR [500] accelerates read operations in leader-based consensus protocols
by processing the read requests in the data plane. To that end, FLAIR devices
in the core maintain persistent information about pending write operations on
all objects in the system. When a client submits a read request, the FLAIR
switch checks whether the requested object is stable, i.e., if it has pending write
operations. If the object is stable, the FLAIR switch instructs another client
with a stable version of the object, to send it to the requesting client. If the
object is not stable, the FLAIR switch forwards the write request to the leader.

94

14.3. State Migration
In Swing State [501], switches maintain state in registers that should be

migrated to other nodes. For migration, state information is carried by regular
packets created by the P4 clone operation throughout the network.

P4Sync [502] is a protocol to migrate data plane state between switches.
Thereby, it does not require controller interaction and provides guarantees on the
authenticity of the transferred state. To that end, it leverages the switch’s packet
generator to transfer the content of registers between devices. Authenticity in a
migration operation is guaranteed by a hash chain where each packet contains
the hashed values of both the current payload and the payload of the previous
packet.

Xue et al. [504] propose a hybrid approach for storing flow entries to address
the issue of limited on-switch memory. While some flow entries are still stored in
the internal memory of the switch, some flow entries may be stored on servers.
Switches access them with only low latency via remote direct memory access
(RDMA).

Kuzniar et al. [505] propose to leverage programmable switches to act as
in-network cache to speed up queries over encrypted data stores. Encrypted
key-value pairs are thereby stored in registers.

Sankaran et al. [506] describe a system to relieve switches from parsing
headers. They propose to parse headers at an ingress switch only and add a
unique parser code to the packet that identifies the set of headers of the packet.
With this information, following switches can parse relevant information from
the headers without having to parse the whole header stack.

14.4. Application Support
This subsection describes work that focuses on support or implementation

of existing applications and protocols.
P4DNS [507] is an in-network DNS system. The authors propose a hybrid

architecture with performance-critical components in the data plane and compo-
nents with flexibility requirements in the control plane. The data plane responds
to DNS requests and forwards regular traffic while cache management, recursive
DNS requests, and uncached DNS responses are handled by the control plane.

P4-BNG [509] implements a carrier-grade broadband network gateway (BNG)
in P4. The authors aim to provide an implementation for many different tar-
gets. To that end, they introduce a layer between data plane and control plane.
This hardware-specific BNG data plane controller runs directly on the targets
to provide a uniform interface to the control plane. It then configures the data
plane according to the control commands from the control plane.

ARP-P4 [511] implements MAC address learning based on ARP solely on
the P4 data plane. To substitute a control plane, the authors integrate MAC
learning as an external function.

Glebke et al. [512] propose to offload computer vision functionalities, in
particular, time-critical computations, to the data plane. To that end, the

95

authors leverage convolution filters on a P4-programmable NIC. The necessary
computations are distributed to various MATs.

COordinate-based INdexing (COIN) [513] is a mechanism to ensure efficient
access to data on multiple distributed edge servers. To that end, the authors
introduce a centralized instance that indexes data and its associated location.
When an edge server requires data that it has not cached itself, it requests the
data index at the centralized instance which provides a data location.

Lu et al. [514] propose intra-network inference (INI) and implement it in
P4. It offloads neural network computations into the data plane. To that end,
each P4 switch communicates via USB with a dedicated neural compute stick
which performs computations.

Yazdinejad et al. [515] present a P4-based blockchain enabled packet parser.
The proposed architecture focuses on FPGAs and aims to bring the security
characteristics of blockchains into the data plane to greatly increase processing
speed.

P4rt-OVS [516] is an extension for the OVS based on BPFs to combine the
programmability of P4 and the well-known features of the OVS. P4rt-OVS
enables runtime programming of the OVS, in particular, the deployment of new
network features without recompilation of the OVS. It contains a P4-to-BPF
compiler which allows developers to write data plane code for the OVS in P4.

SwitchML [518] proposes to accelerate distributed machine learning training
with programmable switch data planes. Within distributed machine learning,
so-called worker nodes compute model updates on a subset of the training data.
Afterwards, these model updates are synchronized and merged on the worker
nodes. The authors of SwitchML design a communication primitive to perform
parts of the model aggregation within the network. They evaluate their algo-
rithm on the Tofino platform and show an increase in training performance up
to a factor of 5.5.

SwitchAgg [520] proposes a switch design for in-network aggregation that
solves shortcomings of common reprogrammable switches. It processes packets
at line rate and drastically reduces the required network traffic for distributed
algorithms. The authors implement and evaluate their switch design in Verilog
HDL on a NetFPGA-SUME.

14.5. Summary and Analysis
P4 facilitates the development of prototypes in the domain of network cod-

ing (see Subection 14.1) by providing target-specific packet header processing
functions. The prototypes heavily rely on externs to implement complex packet
processing behavior, i.e., encoding and decoding operations, packet splitting
and packet merging. Such prototypes were mainly developed for the bmv2 and
portability to hardware platforms depends on the properties of the used ex-
terns and the capabilities of the hardware targets. Distributed algorithms (see
Section 14.2) leverage all sorts of P4’s core features. Some prototypes define
and use custom packet headers to transport information that are not available
in standard protocols. Others rely on flexible packet header processing and

96

target-specific packet header processing functions to implement unconventional
and complex packet processing behavior. Some prototypes require packet pro-
cessing on the control plane to resolve consistency issues or make network-wide
configuration decisions. In the context of state migration (see Section 14.3)
the prototypes mainly leverage externs to enable stateful processing. As a re-
sult, most projects were developed for the bmv2 with only limited portability
to hardware platforms. Finally, some prototypes reimplement traditional net-
work protocols or network elements, e.g., DNS, BNG, or ARP. Those projects
mainly define and use custom packet headers for information transport, flexible
packet header processing to implement the functionality of the specific protocol
or network element, target-specific packet header processing functions for com-
plex packet processing, and packet processing on the control plane for corner
cases.

15. Discussion & Outlook

We discuss the findings of this survey and present an outlook.

15.1. P4 as a Language for Programmable Data Planes
From a variety of data plane programming approaches, P4 became the cur-

rently most widespread standard. Learning resources (Section 3.8) and the bmv2
P4 software target (Section 5.1) constitute low entry barriers for P4 technology.
This is appealing for academia, and hardware support on high-speed platforms
make P4 relevant for industry. The large body of literature that we surveyed
in this work demonstrates that P4 has the right abstractions to build proto-
types for many use cases in different application domains. Moreover, P4 allows
simple and flexible definition of data plane APIs (Section 6) that can be used
by simple control plane programs or complex, enterprise-grade SDN controllers.
Thus, P4 allows practitioners and researchers to express their data plane and
control plane algorithms in a simple way and thereby unleashes a great innova-
tion potential. As P4 is supported by multiple platforms, there is a potentially
large user group. In addition, P4 is an open programming language so that the
source code can be published as open source. Therefore, public P4 code can
profit from a large user community, both in quantity and quality, which is a
benefit for software maintenance and security.

We consider P4 as a milestone technology. It offers great flexibility and
an easy, generalized, yet powerful abstraction to describe data plane behavior.
Its main objective is high-speed packet header processing. Its wide support by
high-speed hardware targets enables prototype development for many different
use cases.

15.2. P4 Targets Revisited
We have listed many available P4 targets in Section 5. However, our litera-

ture overview showed that mostly the bmv2 development and testing platform

97

as well as P4 hardware targets based on the Tofino ASIC were applied in the
reviewed papers.

The vast majority of prototypes runs on the software switch bmv2. One
reason is that it is freely available for everyone. In addition, the complexity of
the code is not constrained by hardware restrictions. And finally, any required
extern can be customized. Therefore, there is no limit on algorithmic complex-
ity so that bmv2 can serve as a platform for any use case – but only from a
functional point of view. As it is a pure software-based prototyping solution, it
cannot provide high throughput and is, therefore, not suitable for deployment
in production environments.

The Intel Tofino family of Intelligent Fabric Processor (IFP) ASICs is cur-
rently the most popular hardware target and the only programmable data plane
platform with throughput rates up to 25.6Tbit/s and ports running at up to
400Gbit/s, making it appropriate for production environments like data centers
or core networks. Tofino uses P4 as native programming language. Therefore,
comprehensive tools are offered to support the P4 development process on this
platform. Moreover, P4 gives access to all features of the Tofino chip so that
there is no penalty of using P4 as a programming language. Existing restrictions
are due to the functional limitation of a high-speed platform. Thus, prototypes
for Tofino are more challenging but prove the technical feasibility of a new con-
cept at commercial scale. Probably for these reasons the Tofino turned out to
be the mostly used hardware platform in our survey.

P4 can be also used on FPGA- or NPU-based targets. They come with only
a few ports and lower throughput rates so that they may be used for special-
purpose server applications but not for typical switching devices. They ex-
cel through the possibility to extend the target functionality with user-defined
externs. These cards are typically programmed by vendor-specific languages.
P4 support is achieved by trans-compilers that translate P4 programs into the
vendor-specific format. P4 programmability might be limited to a restricted
feature set while access to all features of a target is only possible through the
vendor-specific programming language. Whether the application of P4 for such
targets is beneficial compared to vendor-specific programming languages or in-
terfaces, mainly depends on the use case, level of knowledge of the programmer,
and if prospect target-independence is a goal.

15.3. Portability, Target- and Vendor-Independence
Portability is an important advantage of using a high-level programming lan-

guage such as P4. While the subject of portability is explicitly discussed in the
P416 specification (see Section 3), practical implications are frequently misun-
derstood. In general, P4 programs are not expected to be portable across differ-
ent P4 architectures. P4 programs written for a given P4 architecture should be
portable across all P4 targets that implement the corresponding model, provided
there are sufficient resources on the P4 target. Even if two P4 targets support
the same P4 architecture, a P4 program written for one P4 target might not
compile to the other P4 target because of the differences in the available re-
sources. The only portability guarantee that is made is that if the program can

98

be successfully compiled on both P4 targets, it will exhibit the same behavior
and produce the same results. This guarantee is somewhat weaker, compared
to what portability means in the general purpose programming languages.

There have been several efforts to define portable P4 architectures. For
network switches, it is mainly the Portable Switch Architecture (PSA). Their
main challenge is not in the language, but the capabilities of existing high-speed
hardware. While software P4 targets such as the bmv2 have no difficulties imple-
menting any P4 architecture, it is almost impossible to emulate a non-existing
capability or provide an adaptation layer on a high-speed hardware P4 target;
simply because of the lack of sufficient resources. This is especially true for any
differences that can be found in fixed-function components and externs. As a
result, today’s efforts tend to codify the “lowest common denominator” func-
tionality that is guaranteed to be found on multiple P4 targets while carefully
avoiding codifying any behavior that might differ. This severely limits the abil-
ity of P4 programs to fully use the capabilities of the chosen P4 targets and thus
almost all P4 code surveyed today tends to use native P4 architectures instead.

Portable P4 architectures still do not provide target- or vendor-independence,
i.e., the ability to simply recompile a P4 program without any changes on a dif-
ferent P4 target for either the same or a different vendor. This is due to the
fact that the availability of specific resources differs among P4 targets.

We evaluated the specific P4 targets chosen by the authors of the surveyed
works. Thereby, we noticed several important trends. First, the majority of
works have been implemented either for the bmv2 P4 target, P4 targets with the
Tofino ASIC, or both. When both implementations were present, the authors
tend to keep their implementations for the bmv2 P4 target and Tofino P4 target
separate as two independent P4 programs. Quite often, the implementations
are highly different and many authors had dedicated sections in their works
explaining the required major changes in porting a P4 program written for
the bmv2 P4 target into a P4 program for Tofino P4 targets. A number of
authors specifically mention that they could implement their P4 program only
on some targets but not on others. Reasons are specific hardware resource limits,
e.g., number of stages, and hardware constraints, e.g., available operations and
number of operations per packet. They are naturally present on all high-speed
targets. Additional reasons are special externs and fixed-function functionality
that are only available on specific P4 targets.

15.4. A Business Perspective for P4-Programmable Data Planes
Today, the most prevalent hardware network appliances are proprietary de-

vices for which customized hardware and software are jointly developed.
Data plane programming breaks with this process. Programmable packet

processing ASICs such as the Tofino may be sold by specialized manufacturers
and integrated by other vendors with a motherboard, CPU, memory, and con-
nectors in white box switches. The accompanying software, i.e., data plane and
control plane programs, might be provided by the same vendor, a third party,
or implemented by the users themselves.

99

Because software is developed independently of hardware, the agility of the
development process can be increased, which can reduce the time to market.
Hardware platforms become reusable; they can be leveraged for multiple pur-
poses with the help of appropriate P4 programs.

Network solution providers may leverage the lowered entry barrier for cus-
tomized hardware appliances to develop and sell P4 software for various P4-
capable targets, at least with moderate adaptation effort. A decade of imple-
mentation experience may no longer be a prerequisite for that business.

In addition, companies with large networks and particular use cases, e.g.,
special applications in data centers, may use customized algorithms to overcome
inefficiencies of standardized protocols or mechanisms.

Large companies can avoid vendor lock-in by acquisition of programmable
components instead of black boxes. The components are assembled possibly
with open-source software leveraging data plane programming, SDN, and NFV.
The ACCESS 4.0 architecture [522] and the O-RAN Alliance [523] are examples.
This type of disaggregation also enables cost scaling effects where off-the-shelf
components are bought at moderate cost instead of expensive specialized appli-
ances.

15.5. Outlook
P4 is a programming language for a diverse set of programmable network

targets. Currently, its main practical application are high-speed switches. It
is supported by Intel’s Tofino ASIC, but other manufacturers like Xilinx and
Pensando recently also launched P4-based products.

The many prototypes surveyed in this paper showed that there is a need
for more functionality on programmable switches, which may be provided by
extern functions. While they reduce portability, they enable more use cases.
Examples for such extern functions are features that have been used in some
of the pure software-based P4 prototypes. They encrypt and decrypt packet
payload, support floating-point operations, provide flexible hash functions, or
allow more complex calculations. Those externs might be provided by the target
manufacturers for common use cases or integrated by users.

Hardware with a vendor-specific programming language may benefit from
offering interfaces and cross-compilers for P4 together with useful extern func-
tions. Although this may not give access to the full functionality of the plat-
form, users with P4 programming knowledge can customize such devices for
their needs without worrying about hardware details.

The biggest driver for P4 is possibly disaggregation. While currently de-
vices from different vendors can be orchestrated by a customized controller, P4
may have the potential to extend disaggregation towards specialized appliances
based on off-the-shelf programmable hardware. Hardware without an open pro-
gramming interface cannot profit from that market.

100

16. Conclusion

In this paper, we first gave a tutorial on data plane programming with P4.
We delineated it from SDN and introduced programming models with a special
focus on PISA which is most relevant for P4. We provided an overview of the
current state of P4 with regard to programming language, architectures, com-
pilers, targets, and data plane APIs. We reported research efforts to advance P4
that fall in the areas of optimization of development and deployment, research
on P4 targets, and P4-specific approaches for control plane operation.

In the second part of the paper, we analyzed 245 papers on applied research
that leverage P4 for implementation purposes. We categorized these publica-
tions into research domains, summarized their key points, and characterized
them by prototype, target platform, and source code availability. For each re-
search domain, we presented an analysis on how works benefit from P4. To that
end, we identified a small set of core features that facilitate implementations.
The survey proved a tremendous uptake of P4 for prototyping in academic re-
search from 2018 to 2021. One reason is certainly the multitude of openly
available resources on P4 and the bmv2 P4 software target. They are an ideal
starting point for creating P4-based prototypes, even for beginners.

The many P4-based activities which emerged only within short time show
that P4 technology can speed up the evolution of computer networking. While
multiple hardware targets are available, most hardware-based prototypes lever-
age the Tofino ASIC that is optimized for high throughput on many ports and
particularly suited for data center and WAN applications. However, the ma-
jority of P4-based prototypes was implemented with the bmv2 software switch.
Many of them were not ported to hardware, probably due to the complexity
of their data plane algorithms and lack of required extern functions on cur-
rent hardware. This may change in the future if new P4 hardware targets are
available. We expect P4 to become a base technology for multiple hardware
appliances, in particular in the context of disaggregation and for small-scale
markets.

17. Acknowledgement

This work was partly supported by the Deutsche Forschungsgemeinschaft
(DFG) under grant ME2727/1-2. The authors alone are responsible for the
content of this paper.

References

[1] E. Kohler, R. Morris, B. Chen, J. Jannotti, M. F. Kaashoek, The Click
Modular Router, ACM Transactions on Computer Systems (TOCS) 18
(2000) 217–231.

[2] VPP/What is VPP?, https://bit.ly/2mrxVGE, accessed 01-20-2021
(2021).

101

[3] GitHub: NPL-Spec, https://github.com/nplang/NPL-Spec, accessed
01-20-2021 (2021).

[4] Software Defined Specification Environment for Networking (SDNet),
https://www.xilinx.com/support/documentation/backgrounders/
sdnet-backgrounder.pdf, accessed 01-20-2021 (2021).

[5] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, D. Walker, P4:
Programming Protocol-independent Packet Processors, ACM SIGCOMM
Computer Communications Review (CCR) 44 (2014) 87–95.

[6] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, T. Turletti,
A Survey of Software-Defined Networking: Past, Present, and Future
of Programmable Networks, IEEE Communications Surveys & Tutorials
(COMST) 16 (2014) 1617–1634.

[7] Y. Jarraya, T. Madi, M. Debbabi, A Survey and a Layered Taxonomy of
Software-Defined Networking, IEEE Communications Surveys & Tutorials
(COMST) 16 (2014) 1955–1980.

[8] W. Xia, Y. Wen, C. H. Foh, D. Niyato, H. Xie, A Survey on
Software-Defined Networking, IEEE Communications Surveys & Tutorials
(COMST) 17 (2015) 27–51.

[9] D. F. Macedo, D. Guedes, L. F. M. Vieira, M. A. M. Vieira,
M. Nogueira, Programmable Networks—From Software-Defined Radio to
Software-Defined Networking, IEEE Communications Surveys & Tutorials
(COMST) 17 (2015) 1102–1125.

[10] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodol-
molky, S. Uhlig, Software-Defined Networking: A Comprehensive Survey,
Proceedings of the IEEE 103 (2015) 14–76.

[11] R. Masoudi, A. Ghaffari, Software defined networks: A survey, Journal of
Network and Computer Applications (JNCA) 67 (2016) 1–25.

[12] C. Trois, M. D. Del Fabro, L. C. E. de Bona, M. Martinello, A Survey on
SDN Programming Languages: Toward a Taxonomy, IEEE Communica-
tions Surveys & Tutorials (COMST) 18 (2016) 2687–2712.

[13] W. Braun, M. Menth, Software-Defined Networking Using OpenFlow:
Protocols, Applications and Architectural Design Choices, MDPI Future
Internet Journal (FI) 6 (2014) 302–336.

[14] F. Hu, Q. Hao, K. Bao, A Survey on Software-Defined Network and Open-
Flow: From Concept to Implementation, IEEE Communications Surveys
& Tutorials (COMST) 16 (2014) 2181–2206.

102

[15] A. Lara, A. Kolasani, B. Ramamurthy, Network Innovation using Open-
Flow: A Survey, IEEE Communications Surveys & Tutorials (COMST)
16 (2014) 493–512.

[16] R. Bifulco, G. Rétvári, A Survey on the Programmable Data Plane: Ab-
stractions, Architectures, and Open Problems, in: IEEE International
Conference on High Performance Switching and Routing (HPSR), 2018,
pp. 1–7.

[17] E. Kaljic, A. Maric, P. Njemcevic, M. Hadzialic, A Survey on Data Plane
Flexibility and Programmability in Software-Defined Networking, IEEE
ACCESS 7 (2019) 47804–47840.

[18] O. Michel, R. Bifulco, G. Rétvári, S. Schmid, The Programmable Data
Plane: Abstractions, Architectures, Algorithms, and Applications, ACM
Computing Surveys 1 (2021).

[19] S. Kaur, K. Kumar, N. Aggarwal, A review on p4-programmable data
planes: Architecture, research efforts, and future directions, Computer
Communications 170 (2021).

[20] E. F. Kfoury, J. Crichigno, E. Bou-Harb, An exhaustive survey on p4
programmable data plane switches: Taxonomy, applications, challenges,
and future trends, ArXiv e-prints (2021).

[21] Y. Gao, Z. Wang, A Review of P4 Programmable Data Planes for Network
Security, Mobile Information Systems (2021).

[22] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, J. Turner, OpenFlow: Enabling Innovation in
Campus Networks, ACM SIGCOMM Computer Communications Review
(CCR) 38 (2008) 69–74.

[23] BESS: Berkeley Extensible Software Switch, http://span.cs.berkeley.
edu/bess.html, accessed 01-20-2021 (2021).

[24] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,
F. Mujica, M. Horowitz, Forwarding Metamorphosis: Fast Programmable
Match-Action Processing in Hardware for SDN, ACM SIGCOMM Con-
ference 43 (2013) 99–110.

[25] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda, T. Edsall,
DRMT: Disaggregated Programmable Switching, in: ACM SIGCOMM
Conference, 2017, p. 1–14.

[26] Google Presentations: P4 Tutorial, http://bit.ly/p4d2-2018-spring,
accessed 01-20-2021 (2018).

103

[27] Website of the P4 Language Consortium, https://p4.org/, accessed 01-
20-2021 (2021).

[28] The P4 Language Specification, https://p4.org/p4-spec/p4-14/v1.0.
5/tex/p4.pdf, accessed 01-20-2021 (2018).

[29] P4 16 Language Specification (v.1.2.1, https://p4.org/p4-spec/docs/
P4-16-v1.2.1.html, accessed 01-20-2021 (2020).

[30] M. Moshref, A. Bhargava, A. Gupta, M. Yu, R. Govindan, Flow-level
State Transition as a New Switch Primitive for SDN, in: ACM SIGCOMM
Conference, 2014, p. 61–66.

[31] G. Bianchi, M. Bonola, A. Capone, C. Cascone, OpenState: Programming
Platform-independent Stateful Openflow Applications Inside the Switch,
ACM SIGCOMM Computer Communications Review (CCR) 44 (2014)
44–51.

[32] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakrish-
nan, G. Varghese, N. McKeown, S. Licking, Packet Transactions: High-
Level Programming for Line-Rate Switches, in: ACM SIGCOMM Confer-
ence, 2016, p. 15–28.

[33] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani, V. Bruschi,
D. Sanvito, G. Siracusano, A. Capone, M. Honda, F. Huici, G. Siracusano,
FlowBlaze: Stateful Packet Processing in Hardware, in: USENIX Sympo-
sium on Networked Systems Design & Implementation (NSDI), 2019, p.
531–547.

[34] H. Song, Protocol-Oblivious Forwarding: Unleash the Power of SDN
Through a Future-proof Forwarding Plane, in: ACM Workshop on Hot
Topics in Networks (HotNets), 2013, p. 127–132.

[35] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, D. Walker, NetKAT: Semantic Foundations for Networks,
in: ACM Symposium on Principles of Programming Languages (POPL),
2014, p. 113–126.

[36] P4 Tutorial, https://github.com/p4lang/tutorials, accessed 05-05-
2021 (2021).

[37] P4 Guide, https://github.com/jafingerhut/p4-guide, accessed 05-
05-2021 (2021).

[38] P4 Learning, https://github.com/nsg-ethz/p4-learning, accessed
05-05-2021 (2021).

[39] Charter of the P4 Architecture WG, https://github.com/p4lang/
p4-spec/blob/master/p4-16/psa/charter/P4_Arch_Charter.mdk, ac-
cessed 01-20-2021 (2021).

104

[40] P4_16 PSA Specification (v1.1), https://p4lang.github.io/p4-spec/
docs/PSA-v1.1.0.html, accessed 01-20-2021 (2018).

[41] P4-HLIR Specification v.0.9.30, https://github.com/p4lang/p4-hlir/
blob/master/HLIRSpec.pdf, accessed 01-20-2021 (2016).

[42] GitHub: p4c, https://github.com/p4lang/p4c, accessed 01-20-2021
(2021).

[43] P. G. Patra, C. E. Rothenberg, G. Pongracz, MACSAD: High Performance
Dataplane Applications on the Move, in: IEEE International Conference
on High Performance Switching and Routing (HPSR), 2017, pp. 1–6.

[44] Open Data Plane, https://opendataplane.org/, accessed 01-20-2021
(2021).

[45] L. Jose, M. R. N. M. Lisa Yan, Stanford University; George Varghese,
Compiling Packet Programs to Reconfigurable Switches, in: USENIX
Symposium on Networked Systems Design & Implementation (NSDI),
2015, p. 103–115.

[46] P. Li, Y. Luo, P4GPU: Accelerate Packet Processing of a P4 Program with
a CPU-GPU Heterogeneous Architecture, in: ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS),
2016, pp. 125–126.

[47] GitHub: p4c-behavioural, https://github.com/p4lang/
p4c-behavioral/tree/master/p4c_bm, accessed 01-20-2021 (2021).

[48] GitHub: Behavioural Model Version 2 (BMv2), https://github.com/
p4lang/behavioral-model, accessed 01-20-2021 (2021).

[49] P4 Behaviour Model: Why did we need BMv2,
https://github.com/p4lang/behavioral-model\
#why-did-we-replace-p4c-behavioral-with-bmv2, accessed 01-
20-2021 (2021).

[50] GitHub: Behavioral model targets, https://github.com/p4lang/
behavioral-model/blob/master/targets/README.md, accessed 01-20-
2021 (2021).

[51] BMv2 Performance, https://github.com/p4lang/behavioral-model/
blob/master/docs/performance.md, accessed 01-20-2021 (2021).

[52] GitHub: eBPF Backend for p4c, https://github.com/p4lang/p4c/
tree/master/backends/ebpf, accessed 01-20-2021 (2021).

[53] p4c-ubpf: a New Back-end for the P4 Compiler, https://p4.org/p4/
p4c-ubpf.html, accessed 01-20-2021 (2021).

105

[54] GitHub: p4c-xdp, https://github.com/vmware/p4c-xdp, accessed 01-
20-2021 (2021).

[55] P4@ELTE, http://p4.elte.hu/, accessed 01-20-2021 (2021).

[56] S. Laki, D. Horpácsi, P. Vörös, R. Kitlei, D. Leskó, M. Tejfel, High speed
packet forwarding compiled from protocol independent data plane speci-
fications, in: ACM SIGCOMM Conference, 2016, p. 629–630.

[57] Data Plane Development Kit (DPDK), https://www.dpdk.org/, ac-
cessed 01-20-2021 (2021).

[58] GitHub: T4P4S, https://github.com/P4ELTE/t4p4s, accessed 01-20-
2021 (2021).

[59] A. Bhardwaj, A. Shree, V. B. Reddy, S. Bansal, A Preliminary Perfor-
mance Model for Optimizing Software Packet Processing Pipelines, in:
ACM SIGOPS Asia-Pacific Workshop on System (APSys), 2017, pp. 1–7.

[60] X. Wu, P. Li, T. Miskell, L. Wang, Y. Luo, X. Jiang, Ripple: An Efficient
Runtime Reconfigurable P4 Data Plane for Multicore Systems, in: Inter-
national Conference on Networking and Network Applications (NaNA),
2019, pp. 142–148.

[61] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, J. Rex-
ford, PISCES: A Programmable, Protocol-Independent Software Switch,
in: ACM SIGCOMM Conference, 2016, p. 525–538.

[62] Open vSwitch, https://www.openvswitch.org/, accessed 01-20-2021
(2021).

[63] GitHub: PISCES, https://github.com/P4-vSwitch, accessed 01-20-
2021 (2021).

[64] S. Choi, X. Long, M. Shahbaz, S. Booth, A. Keep, J. Marshall, C. Kim,
The Case for a Flexible Low-Level Backend for Software Data Planes, in:
Asia-Pacific Workshop on Networking (APnet), 2017, p. 71–77.

[65] S. Choi, X. Long, M. Shahbaz, S. Booth, A. Keep, J. Marshall, C. Kim,
PVPP: A Programmable Vector Packet Processor, in: ACM Symposium
on SDN Research (SOSR), 2017, p. 197–198.

[66] Northbound Networks - Who are You?, https://northboundnetworks.
com/pages/about-us, accessed 01-20-2021 (2021).

[67] GitHub: ZodiacFX-P4, https://github.com/NorthboundNetworks/
ZodiacFX-P4, accessed 01-20-2021 (2021).

[68] GitHub: p4c-zodiacfx, https://github.com/NorthboundNetworks/
p4c-zodiacfx, accessed 01-20-2021 (2021).

106

[69] P. Zanna, P. Radcliffe, K. G. Chavez, A Method for Comparing OpenFlow
and P4, in: International Telecommunication Networks and Applications
Conference (ITNAC), 2019, pp. 1–3.

[70] GitHub: P4-NetFPGA, https://github.com/NetFPGA/
P4-NetFPGA-public/wiki, accessed 01-20-2021 (2021).

[71] S. Ibanez, G. Brebner, N. McKeown, N. Zilberman, The P4-NetFPGA
Workflow for Line-Rate Packet Processing, in: ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays (FPGA), 2019,
p. 1–9.

[72] N. Zilberman, Y. Audzevich, G. A. Covington, A. W. Moore, NetFPGA
SUME: Toward 100 Gbps as Research Commodity, IEEE Micro 34 (2014)
32–41.

[73] Netcope P4, https://www.netcope.com/Netcope/media/content/
NetcopeP4_2019_web.pdf, accessed 01-20-2021 (2021).

[74] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster,
H. Weatherspoon, P4FPGA: A Rapid Prototyping Framework for P4, in:
ACM Symposium on SDN Research (SOSR), 2017, p. 122–135.

[75] GitHub: P4FPGA, https://github.com/p4fpga/p4fpga, accessed 01-
20-2021 (2021).

[76] P. Benácek, V. Pu, H. Kubátová, P4-to-VHDL: Automatic Generation
of 100 Gbps Packet Parsers, in: IEEE Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), 2016, pp.
148–155.

[77] P. Benáček, V. Puš, J. Kořenek, M. Kekely, Line Rate Programmable
Packet Processing in 100Gb Networks, in: International Conference on
Field Programmable Logic and Applications (FPL), 2017, pp. 1–1.

[78] J. Cabal, P. Benáček, L. Kekely, M. Kekely, V. Puš, J. Kořenek, Config-
urable FPGA Packet Parser for Terabit Networks with Guaranteed Wire-
Speed Throughput, in: ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), 2018, p. 249–258.

[79] S. da Silva, Jeferson, Boyer, François-Raymond, Langlois, J. Pierre, P4-
Compatible High-Level Synthesis of Low Latency 100 Gb/s Streaming
Packet Parsers in FPGAs, in: ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA), 2018, p. 147–152.

[80] M. Kekely, J. Korenek, Mapping of P4 Match Action Tables to FPGA, in:
International Conference on Field Programmable Logic and Applications
(FPL), 2017, pp. 1–2.

107

[81] R. Iša, P. Benáček, V. Puš, Verification of Generated RTL from P4 Source
Code, in: IEEE International Conference on Network Protocols (ICNP),
2018, pp. 444–445.

[82] Z. Cao, H. Su, Q. Yang, J. Shen, M. Wen, C. Zhang, P4 to FPGA-A Fast
Approach for Generating Efficient Network Processors, IEEE ACCESS 8
(2020) 23440–23456.

[83] Z. Cao, H. Su, Q. Yang, M. Wen, C. Zhang, A Template-based Framework
for Generating Network Processor in FPGA, in: IEEE Conference on
Computer Communications Workshops (INFOCOMWKSHPS), 2019, pp.
1057–1058.

[84] Open Tofino, https://github.com/barefootnetworks/open-tofino, accessed
01-22-2021 (2021).

[85] EdgeCore Wedge 100BF-32X, https://www.edge-core.com/
productsInfo.php?cls=1&cls2=180&cls3=181&id=335, accessed
01-20-2021 (2021).

[86] APS Networks BF2556X-1T-A1F, https://stordirect.com/shop/
switches/25g-switches/aps-networks-bf2556x-1t-a1f/, acessed 01-
22-2021 (2021).

[87] APS Networks BF6064X-T-A2F, https://stordirect.com/shop/
switches/100g-switches/aps-networks-bf6064x-t-a2f/, acessed
01-22-2021 (2021).

[88] Netberg Aurora 610, https://netbergtw.com/products/aurora-610/,
accessed 01-20-2021 (2021).

[89] Arista Press Release: Arista Announces New Multi-function Platform
for Cloud Networking, https://www.arista.com/en/company/news/
press-release/5148-pr-20180605, accessed 01-20-2021 (2021).

[90] Cisco Blog: Increase Flexibility with Cisco’s Programmable
Cloud Infrastructure, https://blogs.cisco.com/datacenter/
increase-flexibility-with-ciscos-programmable-cloud-infrastructure,
accessed 01-20-2021 (2021).

[91] SONiC - Supported Platforms, https://azure.github.io/SONiC/
Supported-Devices-and-Platforms.html, accessed 01-20-2021 (2021).

[92] A. Seibulescu, M. Baldi, Leveraging P4 Flexibility to Expose Target-
Specific Features, in: P4 Workshop in Europe (EuroP4), 2020, p. 36–42.

[93] The Pensando Distributed Services Platform, https://pensando.io/
our-platform/, accessed 01-20-2021 (2021).

108

[94] Netronome: P4 Data Plane Programming, https://netronome.com/
media/documents/WP_P4_Data_Plane_Programming.pdf, accessed 01-
20-2021 (2018).

[95] Netronome: Programming with P4 and C, https://www.netronome.
com/media/documents/WP_Programming_with_P4_and_C.pdf, accessed
09-20-2019 (2018).

[96] H. Harkous, M. Jarschel, M. He, R. Pries, W. Kellerer, Towards Under-
standing the Performance of P4 Programmable Hardware, in: ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems (ANCS), 2019, pp. 1–6.

[97] Apache Thrift, https://thrift.apache.org/, accessed 01-20-2021
(2021).

[98] gRPC, https://grpc.io/, accessed 01-20-2021 (2021).

[99] Google Protocol Buffers, https://developers.google.com/
protocol-buffers/, accessed 01-20-2021 (2021).

[100] Charter of the P4 API WG, https://github.com/p4lang/p4-spec/
blob/master/api/charter/P4_API_WG_charter.mdk, accessed 01-20-
2021 (2021).

[101] P4 Runtime API Specification v.1.3.0 (2019-12-01), https://p4.org/
p4runtime/spec/v1.3.0/P4Runtime-Spec.html, accessed 01-20-2021
(2020).

[102] ONOS: P4 brigade, https://wiki.onosproject.org/display/ONOS/
P4+brigade, accessed 01-20-2021 (2021).

[103] OpenDaylight: P4 brigade, P4PluginDeveloperGuide, accessed 09-23-
2019 (2019).

[104] B. O’Connor, Y. Tseng, M. Pudelko, C. Cascone, A. Endurthi, Y. Wang,
A. Ghaffarkhah, D. Gopalpur, T. Everman, T. Madejski, J. Wanderer,
A. Vahdat, Using P4 on Fixed-Pipeline and Programmable Stratum
Switches, in: P4 Workshop in Europe (EuroP4), 2010, pp. 1–2.

[105] GitHub: P4tutorial, https://github.com/p4lang/tutorials/tree/
master/utils/p4runtime_lib, accessed 01-20-2021 (2021).

[106] GitHub: PI Library, https://github.com/p4lang/PI, accessed 01-20-
2021 (2021).

[107] GitHub: Behavioural Model - simple_switch_grpc, https:
//github.com/p4lang/behavioral-model/tree/master/targets/
simple_switch_grpc, accessed 01-20-2021 (2021).

109

[108] GitHub: bmv2 Runtime CLI, https://github.com/p4lang/
behavioral-model/blob/master/tools/runtime_CLI.py, accessed
01-20-2021 (2021).

[109] E. O. Zaballa, Z. Zhou, Graph-to-P4: A P4 Boilerplate Code Generator
for Parse Graphs, in: P4 Workshop in Europe (EuroP4), 2019, pp. 1–2.

[110] Y. Zhou, J. Bi, ClickP4: Towards Modular Programming of P4, in: ACM
SIGCOMM Conference Posters and Demos, 2017, p. 100–102.

[111] M. Baldi, daPIPE A Data Plane Incremental Programming Environment,
in: P4 Workshop in Europe (EuroP4), 2019, pp. 1–6.

[112] M. Eichholz, E. Campbell, N. Foster, G. Salvaneschi, M. Mezini, How to
Avoid Making a Billion-Dollar Mistake: Type-Safe Data Plane Program-
ming with SafeP4, in: European Conference on Object-Oriented Program-
ming (ECOOP), 2019, pp. 1–28.

[113] M. Riftadi, F. Kuipers, P4I/O: Intent-Based Networking with P4, in:
IEEE Conference on Network Softwarization (NetSoft), 2019, pp. 438–
443.

[114] L. Yu, J. Sonchack, V. Liu, Mantis: Reactive Programmable Switches, in:
ACM SIGCOMM Conference, 2020, p. 296–309.

[115] J. Gao, E. Zhai, H. H. Liu, R. Miao, Y. Zhou, B. Tian, C. Sun, D. Cai,
M. Zhang, M. Yu, Lyra: A Cross-Platform Language and Compiler for
Data PlaneProgramming on Heterogeneous ASICs, in: ACM SIGCOMM
Conference, 2020, p. 435–450.

[116] M. Riftadi, J. Oostenbrink, F. Kuipers, GP4P4: Enabling Self-
Programming Networks, ArXiv e-prints (2019).

[117] D. Moro, D. Sanvito, A. Capone, FlowBlaze.p4: a library for quick pro-
totyping of stateful SDN applications in P4, in: IEEE Conference on
Network Function Virtualization and Software-Defined Networking (NFV-
SDN), 2020, pp. 95–99.

[118] D. Moro, D. Sanvito, A. Capone, Demonstrating FlowBlaze.p4: fast pro-
totyping for EFSM-based data plane applications, in: IEEE Conference on
Network Function Virtualization and Software-Defined Networking (NFV-
SDN), 2020, pp. 116–117.

[119] D. Moro, D. Sanvito, A. Capone, Developing EFSM-Based Stateful Ap-
plications with FlowBlaze.P4 and ONOS, in: P4 Workshop in Europe
(EuroP4), 2020, p. 52–53.

[120] N. Sultana, J. Sonchack, H. Giesen, I. Pedisich, Z. Han, N. Shyamkumar,
S. Burad, A. DeHon, B. T. Loo, Flightplan: Dataplane disaggregation
and placement for p4 programs, in: USENIX Symposium on Networked
Systems Design & Implementation (NSDI), 2021, pp. 571–592.

110

[121] R. Shah, A. Shirke, A. Trehan, M. Vutukuru, P. Kulkarni, pcube: Primi-
tives for Network Data Plane Programming, in: IEEE International Con-
ference on Network Protocols (ICNP), 2018, pp. 430–435.

[122] Z. Ma, J. Bi, C. Zhang, Y. Zhou, A. B. Dogar, CacheP4: A Behavior-level
Caching Mechanism for P4, in: ACM SIGCOMM Conference Posters and
Demos, 2017, p. 108–110.

[123] A. Abhashkumar, J. Lee, J. Tourrilhes, S. Banerjee, W. Wu, J.-M. Kang,
A. Akella, P5: Policy-driven Optimization of P4 Pipeline, in: ACM Sym-
posium on SDN Research (SOSR), 2017, p. 136–142.

[124] P. Wintermeyer, M. Apostolaki, A. Dietmüller, L. Vanbever, P2GO: P4
Profile-Guided Optimizations, in: ACM Workshop on Hot Topics in Net-
works (HotNets), 2020, p. 146–152.

[125] S. Yang, L. Baia, L. Cui, Z. Ming, Y. Wu, S. Yu, H. Shen, Y. Pan, P4
Edge node enabling stateful traffic engineering and cyber security, Journal
of Network and Computer Applications (JNCA) 171 (2020) A84–A95.

[126] B. Vass, E. Bérczi-Kovács, C. Raiciu, G. Rétvári, Compiling Packet Pro-
grams to Reconfigurable Switches: Theory and Algorithms, in: P4 Work-
shop in Europe (EuroP4), 2020, p. 28–35.

[127] S. Abdi, U. Aftab, G. Bailey, B. Boughzala, F. Dewal, S. Parsazad,
E. Tremblay, PFPSim: A Programmable Forwarding Plane Simulator,
in: ACM/IEEE Symposium on Architectures for Networking and Com-
munications Systems (ANCS), 2016, pp. 55–60.

[128] J. Bai, J. Bi, P. Kuang, C. Fan, Y. Zhou, C. Zhang, NS4: Enabling
Programmable Data Plane Simulation, in: ACM Symposium on SDN
Research (SOSR), 2018, pp. 1–7.

[129] C. Fan, J. Bi, Y. Zhou, C. Zhang, H. Yu, NS4: A P4-Driven Network
Simulator, in: ACM SIGCOMM Conference Posters and Demos, 2017, p.
105–107.

[130] N. McKeown, D. Talayco, G. Varghese, N. P. Lopes, N. Bjørner,
A. Rybalchenko, Automatically Verifying Reachability and Well-
Formedness in P4 Networks, https://www.microsoft.com/en-us/
research/wp-content/uploads/2016/09/p4nod.pdf, accessed 01-20-
2021 (2016).

[131] A. Kheradmand, G. Rosu, P4K: A Formal Semantics of P4 and Applica-
tions, ArXiv e-prints (2018).

[132] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé, H. Wang,
C. Caşcaval, N. McKeown, N. Foster, P4V: Practical Verification for
Programmable Data Planes, in: ACM SIGCOMM Conference, 2018, p.
490–503.

111

[133] L. Freire, M. Neves, L. Leal, K. Levchenko, A. Schaeffer-Filho, M. Barcel-
los, Uncovering Bugs in P4 Programs with Assertion-based Verification,
in: ACM Symposium on SDN Research (SOSR), 2018, p. 1–7.

[134] M. Neves, L. Freire, A. Schaeffer-Filho, M. Barcellos, Verification of P4
Programs in Feasible Time using Assertions, in: ACM Conference on
emerging Networking EXperiments and Technologies (CoNEXT), 2018,
p. 73–85.

[135] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, C. Raiciu, De-
bugging P4 Programs with Vera, in: ACM SIGCOMM Conference, 2018,
p. 518–532.

[136] M. A. Noureddine, A. Hsu, M. Caesar, F. A. Zaraket, W. H. Sanders,
P4AIG: Circuit-Level Verification of P4 Programs, in: IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks – Supplemen-
tal Volume (DSN-S), 2019, pp. 21–22.

[137] D. Dumitrescu, R. Stoenescu, L. Negreanu, C. Raiciu, bf4: towards bug-
free P4 programs, in: ACM SIGCOMM Conference, 2020, p. 571–585.

[138] D. Dumitrescu, R. Stoenescu, M. Popovici, L. Negreanu, C. Raiciu, Dat-
aplane equivalence and its applications, in: USENIX Symposium on Net-
worked Systems Design & Implementation (NSDI), 2019, pp. 683–698.

[139] F. Yousefi, A. Abhashkumar, K. Subramanian, K. Hans, S. Ghor-
bani, A. Akella, Liveness Verification of Stateful Network Functions, in:
USENIX Symposium on Networked Systems Design & Implementation
(NSDI), 2020, pp. 257–272.

[140] A. Nötzli, J. Khan, A. Fingerhut, C. Barrett, P. Athanas, P4Pktgen:
Automated Test Case Generation for P4 Programs, in: ACM Symposium
on SDN Research (SOSR), 2018, pp. 1–7.

[141] Y. Zhou, J. Bi, Y. Lin, Y. Wang, D. Zhang, Z. Xi, J. Cao, C. Sun,
P4Tester: Efficient Runtime Rule Fault Detection for Programmable Data
Planes, in: IEEE International Workshop on Quality of Service (IWQoS),
2019, pp. 1–10.

[142] GitHub: P4app, https://github.com/p4lang/p4app, accessed 01-20-
2021 (2021).

[143] A. Shukla, K. N. Hudemann, A. Hecker, S. Schmid, Runtime Verification
of P4 Switches with Reinforcement Learning, in: Workshop on Network
Meets AI & ML, 2019, p. 1–7.

[144] D. Jindal, R. Joshi, B. Leong, P4TrafficTool: Automated Code Generation
for P4 Traffic Generators and Analyzers, in: ACM Symposium on SDN
Research (SOSR), 2019, p. 152–153.

112

[145] H. T. Dang, H. Wang, T. Jepsen, G. Brebner, C. Kim, J. Rexford,
R. Soulé, H. Weatherspoon, Whippersnapper: A P4 Language Bench-
mark Suite, in: ACM Symposium on SDN Research (SOSR), 2017, p.
95–101.

[146] F. Rodriguez, P. G. K. Patra, L. Csikor, C. E. Rothenberg, P. Vörös,
S. Laki, G. Pongrácz, BB-Gen: A Packet Crafter for P4 Target Evaluation,
in: ACM SIGCOMM Conference Posters and Demos, 2018, p. 111–113.

[147] H. Harkous, M. Jarschel, M. He, R. Pries, W. Kellerer, P8: P4 with Pre-
dictable Packet Processing Performance, IEEE Transactions on Network
and Service Management (TNSM) (2020) 1–1.

[148] S. Kodeswaran, M. T. Arashloo, P. Tammana, J. Rexford, Tracking P4
Program Execution in the Data Plane, in: ACM Symposium on SDN
Research (SOSR), 2020, p. 117–122.

[149] K. Birnfeld, D. C. da Silva, W. Cordeiro, B. B. N. de França, P4 Switch
Code Data Flow Analysis: Towards Stronger Verification of Forwarding
Plane Software, in: IEEE/IFIP Network Operations and Management
Symposium (NOMS), 2020, pp. 1–8.

[150] M. Neves, B. Huffaker, K. Levchenko, M. Barcellos, Dynamic Property
Enforcement in Programmable Data Planes, in: IFIP-TC6 Networking
Conference (Networking), 2019, pp. 1–9.

[151] C. Zhang, J. Bi, Y. Zhou, J. Wu, B. Liu, Z. Li, A. B. Dogar, Y. Wang,
P4DB: On-the-fly Debugging of the Programmable Data Plane, in: IEEE
International Conference on Network Protocols (ICNP), 2017, pp. 1–10.

[152] Y. Zhou, J. Bi, C. Zhang, B. Liu, Z. Li, Y. Wang, M. Yu, P4DB: On-the-
Fly Debugging for Programmable Data Planes, IEEE/ACM Transactions
on Networking (ToN) 27 (2019) 1714–1727.

[153] M. Neves, K. Levchenko, M. Barcellos, Sandboxing Data Plane Programs
for Fun and Profit, in: ACM SIGCOMM Conference Posters and Demos,
2017, p. 103–104.

[154] A. Shukla, S. Fathalli, T. Zinner, A. Hecker, S. Schmid, P4Consist: To-
ward Consistent P4 SDNs, IEEE Journal on Selected Areas in Communi-
cations (JSAC) 38 (2020) 1293–1307.

[155] Z. Xia, J. Bi, Y. Zhou, C. Zhang, KeySight: A Scalable Troubleshooting
Platform Based on Network Telemetry, in: ACM Symposium on SDN
Research (SOSR), 2018, pp. 1–2.

[156] F. Ruffy, T. Wang, A. Sivaraman, Gauntlet: Finding Bugs in Compilers
for Programmable Packet Processing, in: USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI), 2020, pp. 1–17.

113

[157] J. Krude, J. Hofmann, M. Eichholz, K. Wehrle, A. Koch, M. Mezini, On-
line Reprogrammable Multi Tenant Switches, in: ACM CoNEXT Work-
shop on Emerging In-Network Computing Paradigms, 2019, p. 1–8.

[158] D. Hancock, J. van der Merwe, HyPer4: Using P4 to Virtualize the Pro-
grammable Data Plane, in: ACM Conference on emerging Networking
EXperiments and Technologies (CoNEXT), 2016, p. 35–49.

[159] C. Zhang, J. Bi, Y. Zhou, A. B. Dogar, J. Wu, HyperV: A High Perfor-
mance Hypervisor for Virtualization of the Programmable Data Plane,
in: IEEE International Conference on Computer Communications and
Networks (ICCCN), 2017, pp. 1–9.

[160] C. Zhang, J. Bi, Y. Zhou, A. B. Dogar, J. Wu, MPVisor: A Modular
Programmable Data Plane Hypervisor, in: ACM Symposium on SDN
Research (SOSR), 2017, p. 179–180.

[161] GitHub: HyperVDP, https://github.com/HyperVDP, accessed 01-20-
2021 (2021).

[162] C. Zhang, J. Bi, Y. Zhou, J. Wu, HyperVDP: High-Performance Virtual-
ization of the Programmable Data Plane, IEEE Journal on Selected Areas
in Communications (JSAC) 37 (2019) 556–569.

[163] M. Saquetti, G. Bueno, W. Cordeiro, J. R. Azambuja, P4VBox: Enabling
P4-Based Switch Virtualization, IEEE Communications Letters 24 (2020)
146–149.

[164] M. Saquetti, G. Bueno, W. Cordeiro, J. R. Azambuja, VirtP4: An Ar-
chitecture for P4 Virtualization, in: IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW), 2019, pp. 75–78.

[165] P. Zheng, T. Benson, C. Hu, P4Visor: Lightweight Virtualization and
Composition Primitives for Building and Testing Modular Programs, in:
ACM Conference on emerging Networking EXperiments and Technologies
(CoNEXT), 2018, p. 98–111.

[166] R. Parizotto, L. Castanheira, F. Bonetti, A. Santos, A. Schaeffer-Filho,
PRIME: Programming In-Network Modular Extensions, in: IEEE/IFIP
Network Operations and Management Symposium (NOMS), 2020, pp. 1–
9.

[167] E. O. Zaballa, D. Franco, M. S. Berger, M. Higuero, A Perspective on
P4-Based Data and Control Plane Modularity for Network Automation,
in: P4 Workshop in Europe (EuroP4), 2020, p. 59–61.

[168] R. Stoyanov, N. Zilberman, MTPSA: Multi-Tenant Programmable
Switches, in: P4 Workshop in Europe (EuroP4), 2020, p. 43–48.

114

[169] GitHub: MTPSA, https://github.com/mtpsa, accessed 01-20-2021
(2021).

[170] S. Han, S. Jang, H. Choi, H. Lee, S. Pack, Virtualization in Programmable
Data Plane: A Survey and Open Challenges, IEEE Open Journal of the
Communications Society 1 (2020) 527–534.

[171] J. Santiago da Silva, T. Stimpfling, T. Luinaud, B. Fradj, B. Boughzala,
One for All, All for One: A Heterogeneous Data Plane for Flexible P4 Pro-
cessing, in: IEEE International Conference on Network Protocols (ICNP),
2018, pp. 440–441.

[172] C. Beckmann, R. Krishnamoorthy, H. Wang, A. Lam, C. Kim, Hurdles
for a DRAM-based Match-Action Table, in: Conference on Innovation in
Clouds, Internet and Networks and Workshops (ICIN), 2020, pp. 13–16.

[173] A. Aghdai, Y. Xu, H. J. Chao, Design of a hybrid modular switch,
in: IEEE Conference on Network Function Virtualization and Software-
Defined Networking (NFV-SDN), 2017, pp. 1–6.

[174] S. Laki, D. Horpacsi, P. Voros, M. Tejfel, P. Hudoba, G. Pongracz, L. Mol-
nar, The Price for Asynchronous Execution of Extern Functions in Pro-
grammable Software Data Planes, in: Workshop on Flexible Network Data
Plane Processing (NETPROC@ICIN), 2020, pp. 23–28.

[175] D. Horpácsi, P. Vörös, M. Tejfel, S. Laki, G. Pongrácz, L. Molnár, Asyn-
chronous Extern Functions in Programmable Software Data Planes, in:
P4 Workshop in Europe (EuroP4), 2019, pp. 1–2.

[176] D. Scholz, A. Oeldemann, F. Geyer, S. Gallenmüller, H. Stubbe, T. Wild,
A. Herkersdorf, G. Carle, Cryptographic Hashing in P4 Data Planes, in:
P4 Workshop in Europe (EuroP4), 2019, pp. 1–6.

[177] J. S. da Silva, F.-R. Boyer, L.-O. Chiquette, J. P. Langlois, Extern Objects
in P4: an ROHC Header Compression Scheme Case Study, in: IEEE
Conference on Network Softwarization (NetSoft), 2018, pp. 517–522.

[178] N. Gray, A. Grigorjew, T. Hosssfeld, A. Shukla, T. Zinner, Highlighting
the Gap Between Expected and Actual Behavior in P4-enabled Networks,
in: IFIP/IEEE Symposium on Integrated Management (IM), 2019, pp.
731–732.

[179] M. V. Dumitru, D. Dumitrescu, C. Raiciu, Can We Exploit Buggy P4
Programs?, in: ACM Symposium on SDN Research (SOSR), 2020, p.
62–68.

[180] J. Mambretti, J. Chen, F. Yeh, S. Y. Yu, International P4 Networking
Testbed, in: ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS), 2019, pp. 1–2.

115

[181] B. Chung, C. Tseng, J. H. Chen, J. Mambretti, P4MT: Multi-Tenant Sup-
port Prototype for International P4 Testbed, in: ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS),
2019, pp. 1–2.

[182] A national programmable infrastructure to experiment
with next-generation networks, https://www.2stic.nl/
national-programmable-infrastructure.html, accessed 01-20-2021
(2021).

[183] R. Sukapuram, G. Barua, PPCU: Proportional Per-packet Consistent Up-
dates for SDNs using Data Plane Time Stamps, Computer Networks 155
(2019) 72–86.

[184] R. Sukapuram, G. Barua, ProFlow: Proportional Per-Bidirectional-Flow
Consistent Updates, IEEE Transactions on Network and Service Manage-
ment (TNSM) 16 (2019) 675–689.

[185] S. Liu, T. A. Benson, M. K. Reiter, Efficient and Safe Network Updates
with Suffix Causal Consistency, in: European Conference on Computer
Systems (EUROSYS), 2019, p. 1–15.

[186] T. D. Nguyen, M. Chiesa, M. Canini, Decentralized Consistent Network
Updates in SDN with ez-Segway, ArXiv e-prints (2017).

[187] S. Geissler, S. Herrnleben, R. Bauer, A. Grigorjew, T. Zinner, M. Jarschel,
The Power of Composition: Abstracting aMulti-Device SDN Data Path
Through a Single API, IEEE Transactions on Network and Service Man-
agement (TNSM) (2019) 722–735.

[188] E. C. Molero, S. Vissicchio, L. Vanbever, Hardware-Accelerated Network
Control Planes, in: ACMWorkshop on Hot Topics in Networks (HotNets),
2018, p. 120–126.

[189] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, J. Rex-
ford, Heavy-Hitter Detection Entirely in the Data Plane, in: ACM Sym-
posium on SDN Research (SOSR), 2017, p. 164–176.

[190] GitHub: Hashpipe, https://github.com/vibhaa/hashpipe, accessed
01-20-2021 (2021).

[191] Y. Lin, C. Huang, S. Tsai, SDN Soft Computing Application for Detecting
Heavy Hitters, IEEE Transactions on Industrial Informatics (ToII) 15
(2019) 5690–5699.

[192] D. A. Popescu, G. Antichi, A. W. Moore, Enabling Fast Hierarchical
Heavy Hitter Detection using Programmable Data Planes, in: ACM Sym-
posium on SDN Research (SOSR), 2017, p. 191–192.

116

[193] R. Harrison, Q. Cai, A. Gupta, J. Rexford, Network-Wide Heavy Hit-
ter Detection with Commodity Switches, in: ACM Symposium on SDN
Research (SOSR), 2018, pp. 1–7.

[194] J. Kučera, D. A. Popescu, H. Wang, A. Moore, J. Kořenek, G. Antichi,
Enabling Event-Triggered Data Plane Monitoring, in: ACM Symposium
on SDN Research (SOSR), 2020, p. 14–26.

[195] M. Silva, A. Jacobs, R. Pfitscher, L. Granville, IDEAFIX: Identifying
Elephant Flows in P4-Based IXP Networks, in: IEEE Global Communi-
cations Conference (GLOBECOM), 2018, pp. 1–6.

[196] B. Turkovic, J. Oostenbrink, F. Kuipers, Detecting Heavy Hitters in the
Data-plane, ArXiv e-prints (2019).

[197] D. Ding, M. Savi, G. Antichi, D. Siracusa, An Incrementally-Deployable
P4-Enabled Architecture for Network-Wide Heavy-Hitter Detection,
IEEE Transactions on Network and Service Management (TNSM) 17
(2020) 75–88.

[198] GitHub: Network-Wide Heavy-Hitter Detection Implemen-
tation in P4 Language, https://github.com/DINGDAMU/
Network-wide-heavy-hitter-detection, accessed 01-20-2021 (2021).

[199] J. Sonchack, A. J. Aviv, E. Keller, J. M. Smith, Turboflow: Informa-
tion Rich Flow Record Generation on Commodity Switches, in: European
Conference on Computer Systems (EUROSYS), 2018, p. 1–16.

[200] GitHub: TurboFlow, https://github.com/jsonch/TurboFlow, accessed
01-20-2021 (2021).

[201] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, J. M. Smith, Scaling
Hardware Accelerated Network Monitoring to Concurrent and Dynamic
Queries With *Flow, in: USENIX Annual Technical Conference (ATC),
2018, pp. 823–835.

[202] GitHub: StarFlow, https://github.com/jsonch/starflow, accessed
01-25-2021 (2021).

[203] J. Hill, M. Aloserij, P. Grosso, Tracking Network Flows with P4, in:
IEEE/ACM Innovating the Network for Data-Intensive Science (INDIS),
2018, pp. 23–32.

[204] L. Castanheira, R. Parizotto, A. E. Schaeffer-Filho, FlowStalker: Com-
prehensive Traffic Flow Monitoring on the Data Plane using P4, in: IEEE
International Conference on Communicaotions (ICC), 2019, pp. 1–6.

[205] R. Parizotto, L. Castanheira, R. H. Ribeiro, L. Zembruzki, A. S. Jacobs,
L. Z. Granville, A. Schaeffer-Filho, ShadowFS: Speeding-up Data Plane
Monitoring and Telemetry using P4, in: IEEE International Conference
on Communicaotions (ICC), 2020, pp. 1–6.

117

[206] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. V. Ramos,
A. Madeira, FlowLens: Enabling Efficient Flow Classification for ML-
based Network Security Applications, in: Network and Distributed Sys-
tems Security Symposium (NDSS), 2021, pp. 1–18.

[207] GitHub: FlowLens, https://github.com/dmbb/FlowLens, accessed 04-
14-2021 (2021).

[208] W. Wang, P. Tammana, A. Chen, T. S. E. Ng, Grasp the Root Causes in
the Data Plane: Diagnosing Latency Problems with SpiderMon, in: ACM
Symposium on SDN Research (SOSR), 2020, p. 55–61.

[209] X. Chen, S. Landau-Feibish, Y. Koral, J. Rexford, O. Rottenstreich, S. A.
Monetti, T.-Y. Wang, Fine-Grained Queue Measurement in the Data
Plane, in: ACM Conference on emerging Networking EXperiments and
Technologies (CoNEXT), 2019, p. 15–29.

[210] Z. Zhao, X. Shi, X. Yin, Z. Wang, Q. Li, HashFlow for Better Flow Record
Collection, in: IEEE International Conference on Distributed Computing
Systems (ICDCS), 2019, pp. 1416–1425.

[211] Q. Huang, P. P. C. Lee, Y. Bao, Sketchlearn: Relieving User Burdens
in Approximate Measurement with Automated Statistical Inference, in:
ACM SIGCOMM Conference, 2018, p. 576–590.

[212] GitHub: SketchLearn, https://github.com/huangqundl/SketchLearn,
accessed 01-20-2021 (2021).

[213] L. Tang, Q. Huang, P. C. Lee, A Fast and Compact Invertible Sketch
for Network-Wide Heavy Flow Detection, IEEE/ACM Transactions on
Networking (ToN) 28 (2020) 2350–2363.

[214] GitHub: MV-Sketch, https://github.com/Grace-TL/MV-Sketch, ac-
cessed 01-20-2021 (2021).

[215] Z. Hang, M. Wen, Y. Shi, C. Zhang, Interleaved Sketch: Toward Consis-
tent Network Telemetry for Commodity Programmable Switches, IEEE
ACCESS 7 (2019) 146745–146758.

[216] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, V. Braverman, One Sketch
to Rule Them All: Rethinking Network Flow Monitoring with UnivMon,
in: ACM SIGCOMM Conference, 2016, p. 101–114.

[217] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X. Li,
S. Uhlig, Elastic Sketch: Adaptive and Fast Network-wide Measurements,
in: ACM SIGCOMM Conference, 2018, p. 561–575.

[218] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X. Li,
S. Uhlig, Adaptive Measurements Using One Elastic Sketch, IEEE/ACM
Transactions on Networking (ToN) 27 (2019) 2236–2251.

118

[219] GitHub: ElasticSketch, https://github.com/BlockLiu/
ElasticSketchCode, accessed 01-20-2021 (2021).

[220] F. Pereira, N. Neves, F. M. V. Ramos, Secure network monitoring using
programmable data planes, in: IEEE Conference on Network Function
Virtualization and Software-Defined Networking (NFV-SDN), 2017, pp.
286–291.

[221] R. F. T. Martins, F. L. Verdi, R. Villaça, L. F. U. Garcia, Using Probabilis-
tic Data Structures for Monitoring of Multi-tenant P4-based Networks, in:
IEEE Symposium on Computers and Communications (ISCC), 2018, pp.
204–207.

[222] Y.-K. Lai, K.-Y. Shih, P.-Y. Huang, H.-P. Lee, Y.-J. Lin, T.-L. Liu, J. H.
Chen, Sketch-based Entropy Estimation for Network Traffic Analysis us-
ing Programmable Data Plane ASICs, in: ACM/IEEE Symposium on Ar-
chitectures for Networking and Communications Systems (ANCS), 2019,
pp. 1–2.

[223] Z. Liu, S. Zhou, O. Rottenstreich, V. Braverman, J. Rexford, Memory-
Efficient Performance Monitoring on Programmable Switches with Lean
Algorithms, in: SIAM Symposium on Algorithmic Principles of Computer
Systems (APOCS), 2020, pp. 31–44.

[224] L. Tang, Q. Huang, P. P. C. Lee, SpreadSketch: Toward Invertible and
Network-Wide Detection of Superspreaders, in: IEEE International Con-
ference on Computer Communications (INFOCOM), 2020, pp. 1608–1617.

[225] GitHub: SpreadSketch, http://adslab.cse.cuhk.edu.hk/software/
spreadsketch/, accessed 01-20-2021 (2021).

[226] J. Vestin, A. Kassler, D. Bhamare, K. Grinnemo, J. Andersson, G. Pon-
gracz, Programmable Event Detection for In-Band Network Telemetry, in:
IEEE International Conference on Cloud Networking (IEEE CloudNet),
2019, pp. 1–6.

[227] S. Wang, Y. Chen, J. Li, H. Hu, J. Tsai, Y. Lin, A Bandwidth-Efficient
INT System for Tracking the Rules Matched by the Packets of a Flow, in:
IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1–6.

[228] D. Bhamare, A. Kassler, J. Vestin, M. A. Khoshkholghi, J. Taheri, IntOpt:
In-Band Network Telemetry Optimization for NFV Service Chain Mon-
itoring, in: IEEE International Conference on Communicaotions (ICC),
2019, pp. 1–7.

[229] C. Jia, T. Pan, Z. Bian, X. Lin, E. Song, C. Xu, T. Huang, Y. Liu, Rapid
Detection and Localization of Gray Failures in Data Centers via In-band
Network Telemetry, in: IEEE/IFIP Network Operations and Management
Symposium (NOMS), 2020, pp. 1–9.

119

[230] GitHub: Gray Failures Detection and Localization, https://github.
com/graytower/INT_DETECT, accessed 01-20-2021 (2021).

[231] B. Niu, J. Kong, S. Tang, Y. Li, Z. Zhu, Visualize Your IP-Over-Optical
Network in Realtime: A P4-Based Flexible Multilayer In-Band Network
Telemetry (ML-INT) System, IEEE ACCESS 7 (2019) 82413–82423.

[232] N. S. Kagami, R. I. T. da Costa Filho, L. P. Gaspary, CAPEST: Offloading
Network Capacity and Available Bandwidth Estimation to Programmable
Data Planes, IEEE Transactions on Network and Service Management
(TNSM) 17 (2020) 175–189.

[233] GitHub: Capest, https://github.com/nicolaskagami/capest, ac-
cessed 01-20-2021 (2021).

[234] N. Choi, L. Jagadeesan, Y. Jin, N. N. Mohanasamy, M. R. Rahman,
K. Sabnani, M. Thottan, Run-time Performance Monitoring, Verification,
and Healing of End-to-End Services, in: IEEE Conference on Network
Softwarization (NetSoft), 2019, pp. 30–35.

[235] A. Sgambelluri, F. Paolucci, A. Giorgetti, D. Scano, F. Cugini, Exploit-
ing Telemetry in Multi-Layer Networks, in: International Conference on
Transparent Optical Networks (ICTON), 2020, pp. 1–4.

[236] Y. Feng, S. Panda, S. G. Kulkarni, K. K. Ramakrishnan, N. Duffield, A
SmartNIC-Accelerated Monitoring Platform for In-band Network Teleme-
try, in: IEEE International Symposium on Local and Metropolitan Area
Networks (LANMAN), 2020, pp. 1–6.

[237] J. Marques, K. Levchenko, L. Gaspary, IntSight: Diagnosing SLO Viola-
tions with in-Band Network Telemetry, in: ACM Conference on emerging
Networking EXperiments and Technologies (CoNEXT), 2020, p. 421–434.

[238] GitHub: IntSight, https://github.com/jonadmark/intsight-conext,
accessed 01-20-2021 (2021).

[239] D. Suh, S. Jang, S. Han, S. Pack, X. Wang, Flexible sampling-based
in-band network telemetry in programmable data plane, ICT Express 6
(2020) 62–65.

[240] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, C. Kim, Language-Directed Hardware Design for Net-
work Performance Monitoring, in: ACM SIGCOMM Conference, 2017,
p. 85–98.

[241] V. Nathan, S. Narayana, A. Sivaraman, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, C. Kim, Demonstration of the Marple System for Network
Performance Monitoring, in: ACM SIGCOMM Conference Posters and
Demos, 2017, p. 57–59.

120

[242] GitHub: Marple, https://github.com/performance-queries/marple,
accessed 01-20-2021 (2021).

[243] P. Laffranchini, L. Rodrigues, M. Canini, B. Krishnamurthy, Measure-
ments As First-class Artifacts, in: IEEE International Conference on Com-
puter Communications (INFOCOM), 2019, pp. 415–423.

[244] GitHub: Mafia, https://github.com/paololaff/mafia-sdn, accessed
01-20-2021 (2021).

[245] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, W. Willinger,
Sonata: Query-Driven Streaming Network Telemetry, in: ACM Sympo-
sium on SDN Research (SOSR), 2018, p. 357–371.

[246] GitHub: SONATA, https://github.com/Sonata-Princeton/
SONATA-DEV, accessed 01-20-2021 (2021).

[247] R. Teixeira, R. Harrison, A. Gupta, J. Rexford, PacketScope: Monitor-
ing the Packet Lifecycle Inside a Switch, in: ACM Symposium on SDN
Research (SOSR), 2020, p. 76–82.

[248] Y. Gao, Y. Jing, W. Dong, UniROPE: Universal and Robust Packet Tra-
jectory Tracing for Software-Defined Networks, IEEE/ACM Transactions
on Networking (ToN) 26 (2018) 2515–2527.

[249] S. Knossen, J. Hill, P. Grosso, Hop Recording and Forwarding State Log-
ging: Two Implementations for Path Tracking in P4, in: IEEE/ACM
Innovating the Network for Data-Intensive Science (INDIS), 2019, pp.
36–47.

[250] A. Indra Basuki, D. Rosiyadi, I. Setiawan, Preserving Network Privacy
on Fine-grain Path-tracking Using P4-based SDN, in: International Con-
ference on Radar, Antenna, Microwave, Electronics, and Telecommunica-
tions (ICRAMET), 2020, pp. 129–134.

[251] R. Joshi, T. Qu, M. C. Chan, B. Leong, B. T. Loo, BurstRadar: Practi-
cal Real-time Microburst Monitoring for Datacenter Networks, in: ACM
SIGOPS Asia-Pacific Workshop on System (APSys), 2018, pp. 1–8.

[252] GitHub: BurstRadar, https://github.com/harshgondaliya/
burstradar, accessed 01-20-2021 (2021).

[253] M. Ghasemi, T. Benson, J. Rexford, Dapper: Data Plane Performance
Diagnosis of TCP, in: ACM Symposium on SDN Research (SOSR), 2017,
p. 61–74.

[254] C.-H. He, B. Y. Chang, S. Chakraborty, C. Chen, L. C. Wang, A Zero
Flow Entry Expiration Timeout P4 Switch, in: ACM Symposium on SDN
Research (SOSR), 2018, pp. 1–2.

121

[255] A. Riesenberg, Y. Kirzon, M. Bunin, E. Galili, G. Navon, T. Mizrahi,
Time-Multiplexed Parsing in Marking-Based Network Telemetry, in:
ACM International Conference on Systems and Storage (SYSTOR), 2019,
p. 80–85.

[256] GitHub: P4 Alternate Marking Algorithm, https://github.com/
AlternateMarkingP4/FlaseClase, accessed 01-20-2021 (2021).

[257] S. Y. Wang, H. W. Hu, Y. B. Lin, Design and Implementation of TCP-
Friendly Meters in P4 Switches, IEEE/ACM Transactions on Networking
(ToN) 28 (2020) 1885–1898.

[258] R. Kundel, F. Siegmund, J. Blendin, A. Rizk, B. Koldehofe, P4STA: High
Performance Packet Timestamping with Programmable Packet Proces-
sors, in: IEEE/IFIP Network Operations and Management Symposium
(NOMS), 2020, p. 1–9.

[259] GitHub: P4STA, https://github.com/ralfkundel/P4STA, accessed 01-
20-2021 (2021).

[260] R. Hark, D. Bhat, M. Zink, R. Steinmetz, A. Rizk, Preprocessing Monitor-
ing Information on the SDN Data-Plane using P4, in: IEEE Conference on
Network Function Virtualization and Software-Defined Networking (NFV-
SDN), 2019, pp. 1–6.

[261] D. Ding, M. Savi, D. Siracusa, Estimating Logarithmic and Exponential
Functions to Track Network Traffic Entropy in P4, in: IEEE/IFIP Net-
work Operations and Management Symposium (NOMS), 2020, pp. 1–9.

[262] GitHub: P4Entropy, https://github.com/DINGDAMU/P4Entropy, ac-
cessed 01-20-2021 (2021).

[263] P. Taffet, J. Mellor-Crummey, Lightweight, Packet-Centric Monitoring of
Network Traffic and Congestion Implemented in P4, in: IEEE Symposium
on High-Performance Interconnects (HOTI), 2019, pp. 54–58.

[264] Y. Lin, Y. Zhou, Z. Liu, K. Liu, Y. Wang, M. Xu, J. Bi, Y. Liu, J. Wu,
NetView: Towards On-Demand Network-Wide Telemetry in the Data
Center, in: IEEE International Conference on Communicaotions (ICC),
2020, pp. 1–6.

[265] J. Bai, M. Zhang, G. Li, C. Liu, M. Xu, H. Hu, FastFE: Accelerating
ML-Based Traffic Analysis with Programmable Switches, in: Workshop
on Secure Programmable Network Infrastructure (SPIN), 2020, p. 1–7.

[266] J. Kučera, R. B. Basat, M. Kuka, G. Antichi, M. Yu, M. Mitzenmacher,
Detecting Routing Loops in the Data Plane, in: ACM Conference on
emerging Networking EXperiments and Technologies (CoNEXT), 2020,
p. 466–473.

122

[267] Z. Hang, Y. Shi, M. Wen, C. Zhang, TBSW: Time-Based Sliding Win-
dow Algorithm for Network Traffic Measurement, in: IEEE International
Conference on High Performance Computing and Communications; IEEE
International Conference on Smart City; IEEE International Conference
on Data Science and Systems (HPCC/SmartCity/DSS), 2019, pp. 1305–
1310.

[268] B. Guan, S. Shen, FlowSpy: An Efficient Network Monitoring Framework
Using P4 in Software-Defined Networks, in: IEEE Semiannual Vehicular
Technology Conference (VTC), 2019, pp. 1–5.

[269] Heavy Hitter Detection: Guest lecture for CS344 at Stanford, https://
cs344-stanford.github.io/lectures/Lecture-4-HHD.pdf, accessed
01-20-2021 (2018).

[270] B. Claise, Cisco Systems NetFlow Services Export Version 9, RFC 3954,
RFC Editor (10 2004).
URL http://www.rfc-editor.org/rfc/rfc3954.txt

[271] P. Phaal, S. Panchen, N. McKee, InMon Corporation’s sFlow: A Method
for Monitoring Traffic in Switched and Routed Networks, RFC 3176, RFC
Editor (09 2001).
URL http://www.rfc-editor.org/rfc/rfc3176.txt

[272] B. Claise, B. Trammell, P. Aitken, Specification of the IP Flow Infor-
mation Export (IPFIX) Protocol for the Exchange of Flow Information,
STD 77, RFC Editor (09 2013).
URL http://www.rfc-editor.org/rfc/rfc7011.txt

[273] In-band Network Telemetry (INT), https://p4.org/assets/
INT-current-spec.pdf, accessed 01-20-2021 (2021).

[274] Charter of the P4 Applications WG, https://github.com/p4lang/
p4-applications/blob/master/docs/charter.pdf, accessed 01-20-
2021 (2021).

[275] C. Kim, A. Sivaraman, N. P. Katta, A. Bas, A. Dixit, L. J. Wobker,
In-band Network Telemetry via Programmable Dataplanes, https://
nkatta.github.io/papers/int-demo.pdf (2015).

[276] F. Cugini, P. Gunning, F. Paolucci, P. Castoldi, A. Lord, P4 In-Band
Telemetry (INT) for Latency-Aware VNF in Metro Networks, in: Optical
Fiber Communication Conference (OFC), 2019, pp. 1–3.

[277] Open Networking Foundation: Trellis, https://www.opennetworking.
org/trellis/, accessed 01-20-2021 (2021).

[278] Google Presentations: Trellis & P4 Tutorial, http://bit.ly/
trellis-p4-slides, accessed 01-20-2021 (2018).

123

[279] GitHub: ONF Trellis, https://github.com/opennetworkinglab/
routing/tree/master/trellis, accessed 01-20-2021 (2021).

[280] A. Sivaraman, C. Kim, R. Krishnamoorthy, A. Dixit, M. Budiu, DC.P4:
Programming the Forwarding Plane of a Data-center Switch, in: ACM
SIGCOMM Conference, 2015, p. 1–8.

[281] GitHub: DC.p4, https://github.com/p4lang/papers/tree/master/
sosr15, accessed 01-20-2021 (2021).

[282] Open Network Foundation: P4 apps at ONF, https://github.com/
p4lang/p4-applications/blob/master/meeting_slides/2018_04_
19_ONF.pdf, accessed 01-20-2021 (2018).

[283] GitHub: fabric.p4, https://github.com/opennetworkinglab/onos/
blob/master/pipelines/fabric/impl/src/main/resources/fabric.
p4, accessed 01-20-2021 (2021).

[284] RARE (Router for Academia, Research & Education),
https://wiki.geant.org/display/RARE/Home, accessed 04-16-2021
(2021).

[285] GitHub: RARE, https://github.com/frederic-loui/RARE, accessed
04-16-2021 (2021).

[286] B. Pit-Claudel, Y. Desmouceaux, P. Pfister, M. Townsley, T. Clausen,
Stateless Load-Aware Load Balancing in P4, in: IEEE International Con-
ference on Network Protocols (ICNP), 2018, pp. 418–423.

[287] R. Miao, H. Zeng, C. Kim, J. Lee, M. Yu, SilkRoad: Making Stateful
Layer-4 Load Balancing Fast and Cheap using Switching ASICs, in: ACM
SIGCOMM Conference, 2017, p. 15–28.

[288] N. Katta, M. Hira, C. Kim, A. Sivaraman, J. Rexford, HULA: Scalable
Load Balancing using Programmable Data Planes, in: ACM Symposium
on SDN Research (SOSR), 2016, p. 1–12.

[289] C. H. Benet, A. J. Kassler, T. Benson, G. Pongracz, MP-HULA: Multipath
Transport Aware Load Balancing using Programmable Data Planes, in:
Morning Workshop on In-Network Computing, 2018, p. 7–13.

[290] B. T. Chiang, K. Wang, Cost-effective Congestion-aware Load Balancing
for Datacenters, in: International Conference on Electronics, Information,
and Communication (ICEIC), 2019, pp. 1–6.

[291] J.-L. Ye, C. Chen, Y. H. Chu, A Weighted ECMP Load Balancing Scheme
for Data Centers using P4 Switches, in: IEEE International Conference
on Cloud Networking (IEEE CloudNet), 2018, pp. 1–4.

124

[292] K.-F. Hsu, P. Tammana, R. Beckett, A. Chen, J. Rexford, D. Walker,
Adaptive Weighted Traffic Splitting in Programmable Data Planes, in:
ACM Symposium on SDN Research (SOSR), 2020, p. 103–109.

[293] M. Pizzutti, A. Schaeffer-Filho, An Efficient Multipath Mechanism Based
on the Flowlet Abstraction and P4, in: IEEE Global Communications
Conference (GLOBECOM), 2018, pp. 1–6.

[294] M. Pizzutti, A. Schaeffer-Filho, Adaptive Multipath Routing based on
Hybrid Data and Control Plane Operation, in: IEEE International Con-
ference on Computer Communications (INFOCOM), 2020, pp. 730–738.

[295] J. Zhang, S. Wen, J. Zhang, H. Chai, T. Pan, T. Huang, L. Zhang,
Y. Liu, F. R. Yu, Fast Switch-Based Load Balancer Considering Appli-
cation Server States, IEEE/ACM Transactions on Networking (ToN) 28
(2020) 1391–1404.

[296] Q. Li, J. Zhang, T. Pan, T. Huang, Y. Liu, Data-driven Routing Op-
timization based on Programmable Data Plane, in: IEEE International
Conference on Computer Communications and Networks (ICCCN), 2020,
pp. 1–9.

[297] E. Kawaguchi, H. Kasuga, N. Shinomiya, Unsplittable flow Edge Load
factor Balancing in SDN using P4 Runtime, in: International Telecom-
munication Networks and Applications Conference (ITNAC), 2019, pp.
1–6.

[298] E. Cidon, S. Choi, S. Katti, N. McKeown, AppSwitch: Application-layer
Load Balancing withina Software Switch, in: Asia-Pacific Workshop on
Networking (APnet), 2017, p. 64–70.

[299] V. Olteanu, A. Agache, A. Voinescu, C. Raiciu, Stateless Datacenter Load-
balancing with Beamer, in: USENIX Symposium on Networked Systems
Design & Implementation (NSDI), 2018, pp. 125–139.

[300] GitHub: Beamer, https://github.com/Beamer-LB, accessed 01-25-2021
(2021).

[301] J. Geng, J. Yan, Y. Zhang, P4QCN: Congestion Control using P4-Capable
Device in Data Center Networks, Electronics Journal 8 (2019) 280.

[302] J. Jiang, Y. Zhang, An Accurate Congestion Control Mechanism in Pro-
grammable Network, in: IEEE Annual Computing and Communication
Workshop and Conference (CCWC), 2019, pp. 673–677.

[303] S. Shahzad, E. Jung, J. Chung, R. Kettimuthu, Enhanced Explicit Con-
gestion Notification (EECN) in TCP with P4 Programming, in: In-
ternational Conference on Green and Human Information Technology
(ICGHIT), 2020, pp. 35–40.

125

[304] C. Chen, H. Fang, M. S. Iqbal, QoSTCP: Provide Consistent Rate Guar-
antees to TCP flows in Software Defined Networks, in: IEEE International
Conference on Communicaotions (ICC), 2020, pp. 1–6.

[305] A. Laraba, J. François, I. Chrisment, S. R. Chowdhury, R. Boutaba, De-
feating Protocol Abuse with P4: Application to Explicit Congestion No-
tification, in: IFIP-TC6 Networking Conference (Networking), 2020, pp.
431–439.

[306] N. K. Sharma, M. Liu, K. Atreya, A. Krishnamurthy, Approximating
Fair Queueing on Reconfigurable Switches, in: USENIX Symposium on
Networked Systems Design & Implementation (NSDI), 2018, p. 1–16.

[307] C. Cascone, N. Bonelli, L. Bianchi, A. Capone, B. Sansò, Towards Ap-
proximate Fair Bandwidth Sharing via Dynamic Priority Queuing, in:
IEEE International Symposium on Local and Metropolitan Area Networks
(LANMAN), 2017, pp. 1–6.

[308] D. Bhat, J. Anderson, P. Ruth, M. Zink, K. Keahey, Application-based
QoE support with P4 and OpenFlow, in: IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2019, pp. 817–823.

[309] E. F. Kfoury, J. Crichigno, E. Bou-Harb, D. Khoury, G. Srivastava, En-
abling TCP Pacing using Programmable Data Plane Switches, in: Inter-
national Conference on Telecommunications and Signal Processing (TSP),
2019, pp. 273–277.

[310] Y. Chen, L. Yen, W. Wang, C. Chuang, Y. Liu, C. Tseng, P4-Enabled
Bandwidth Management, in: Asia-Pacific Network Operations and Man-
agement Symposium (APNOMS), 2019, pp. 1–5.

[311] S. S. W. Lee, K. Chan, A Traffic Meter Based on a Multicolor Marker for
Bandwidth Guarantee and Priority Differentiation in SDN Virtual Net-
works, IEEE Transactions on Network and Service Management (TNSM)
16 (2019) 1046–1058.

[312] S.-Y. Wang, J.-Y. Li, Y.-B. Lin, Aggregating and disaggregating packets
with various sizes of payload in P4 switches at 100 Gbps line rate, Journal
of Network and Computer Applications (JNCA) 165 (2020) 102676.

[313] K. Tokmakov, M. Sarker, J. Domaschka, S. Wesner, A Case for Data Cen-
tre Traffic Management on Software Programmable Ethernet Switches, in:
IEEE International Conference on Cloud Networking (IEEE CloudNet),
2019, pp. 1–6.

[314] B. Turkovic, F. Kuipers, N. van Adrichem, K. Langendoen, Fast Network
Congestion Detection and Avoidance using P4, in: Workshop on Network-
ing for Emerging Applications and Technologies (NEAT), 2018, p. 45–51.

126

[315] R. Kundel, J. Blendin, T. Viernickel, B. Koldehofe, R. Steinmetz, P4-
CoDel: Active Queue Management in Programmable Data Planes, in:
IEEE Conference on Network Function Virtualization and Software-
Defined Networking (NFV-SDN), 2018, pp. 1–4.

[316] GitHub: P4-CoDel, https://github.com/ralfkundel/p4-codel, ac-
cessed 01-20-2021 (2021).

[317] M. Menth, H. Mostafaei, D. Merling, M. Häberle, Implementation and
Evaluation of Activity-Based Congestion Management using P4 (P4-
ABC), MDPI Future Internet Journal (FI) 11 (2019) 159.

[318] B. Turkovic, F. Kuipers, P4air: Increasing Fairness among Competing
Congestion Control Algorithms, in: IEEE International Conference on
Network Protocols (ICNP), 2020, pp. 1–12.

[319] L. B. Fernandes, L. Camargos, Bandwidth throttling in a P4 switch,
in: IEEE Conference on Network Function Virtualization and Software-
Defined Networking (NFV-SDN), 2020, pp. 91–94.

[320] G. Wang, C. Chen, C. Chen, L. Pan, Y. Wang, C. Fan, C. Hsu, Streaming
Scalable Video Sequences with Media-Aware Network Elements Imple-
mented in P4 Programming Language, in: IEEE/IFIP Network Opera-
tions and Management Symposium (NOMS), 2018, pp. 1–2.

[321] A. G. Alcoz, A. Dietmüller, L. Vanbever, SP-PIFO: Approximating Push-
In First-Out Behaviors using Strict-Priority Queues, in: USENIX Sympo-
sium on Networked Systems Design & Implementation (NSDI), 2020, pp.
59–76.

[322] I. Kunze, M. Gunz, D. Saam, K. Wehrle, J. Rüth, Tofino + P4: A Strong
Compound for AQM on High-Speed Networks?, in: IFIP/IEEE Interna-
tional Symposium on Integrated Network Management, 2021, pp. 72–80.

[323] GitHub: PIE for Tofino, https://github.com/COMSYS/
pie-for-tofino, accessed 04-15-2021 (2021).

[324] H. Harkous, C. Papagianni, K. De Schepper, M. Jarschel, M. Dimolianis,
R. Preis, Virtual queues for p4: A poor man’s programmable traffic man-
ager, IEEE Transactions on Network and Service Management (TNSM)
(2021) 1–1.

[325] B. Andrus, S. A. Sasu, T. Szyrkowiec, A. Autenrieth, M. Chamania, J. K.
Fischer, S. Rasp, Zero-Touch Provisioning of Distributed Video Analyt-
ics in a Software-Defined Metro-Haul Network with P4 Processing, in:
Optical Fiber Communication Conference (OFC), 2019, pp. 1–3.

[326] S. Ibanez, G. Antichi, G. Brebner, N. McKeown, Event-Driven Packet
Processing, in: ACM Workshop on Hot Topics in Networks (HotNets),
2019, p. 133–140.

127

[327] E. F. Kfoury, J. Crichigno, E. Bou-Harb, Offloading Media Traffic to
Programmable Data Plane Switches, in: IEEE International Conference
on Communicaotions (ICC), 2020, pp. 1–7.

[328] I. Kettaneh, S. Udayashankar, A. Abdel-hadi, R. Grosman, S. Al-Kiswany,
Falcon: Low Latency, Network-Accelerated Scheduling, in: P4 Workshop
in Europe (EuroP4), 2020, p. 7–12.

[329] T. Osiński, M. Kossakowski, M. Pawlik, J. Palimąka, M. Sala, H. Tarasiuk,
Unleashing the Performance of Virtual BNG by Offloading Data Plane to
a Programmable ASIC, in: P4 Workshop in Europe (EuroP4), 2020, p.
54–55.

[330] J. Lee, R. Miao, C. Kim, M. Yu, H. Zeng, Stateful Layer-4 Load Balancing
in Switching ASICs, in: ACM SIGCOMM Conference Posters and Demos,
2017, p. 133–135.

[331] K. Nichols, V. Jacobson, A. McGregor, J. Iyengar, Controlled Delay Active
Queue Management, RFC 8289, RFC Editor (01 2018).
URL https://tools.ietf.org/rfc/rfc8289.txt

[332] B. Lewis, L. Fawcett, M. Broadbent, N. Race, Using P4 to Enable Scalable
Intents in Software Defined Networks, in: IEEE International Conference
on Network Protocols (ICNP), 2018, pp. 442–443.

[333] GitHub: P4 Source Routing, https://github.com/BenRLewis/
P4-Source-Routing, accessed 01-20-2021 (2021).

[334] L. Luo, H. Yu, S. Luo, Z. Ye, X. Du, M. Guizani, Scalable Explicit Path
Control in Software-Defined Networks, Journal of Network and Computer
Applications (JNCA) 141 (2019) 86–103.

[335] GitHub: P4 Paco, https://github.com/an15m/paco, accessed 01-20-
2021 (2021).

[336] A. Kushwaha, S. Sharma, N. Bazard, A. Gumaste, B. Mukherjee, Design,
Analysis, and a Terabit Implementation of a Source-Routing-Based SDN
Data Plane, IEEE Systems Journal (2020).

[337] A. Abdelsalam, A. Tulumello, M. Bonola, S. Salsano, C. Filsfils, Pushing
Network Programmability to the limits with SRv6 uSIDs and P4, in: P4
Workshop in Europe (EuroP4), 2020, p. 62–64.

[338] W. Braun, J. Hartmann, M. Menth, Demo: Scalable and Reliable
Software-Defined Multicast with BIER and P4, in: IFIP/IEEE Sympo-
sium on Integrated Management (IM), 2017, pp. 905–906.

[339] Bitbucket: p4-bfr), https://bitbucket.org/wb-ut/p4-bfr, accessed
01-20-2021 (2021).

128

[340] D. Merling, S. Lindner, M. Menth, P4-Based Implementation of BIER
and BIER-FRR for Scalable and Resilient Multicast, Journal of Network
and Computer Applications (JNCA) 169 (2020) 102764.

[341] D. Merling, S. Lindner, M. Menth, Hardware-based evaluation of scalable
and resilient multicast with bier in p4, IEEE ACCESS 9 (2021) 34500–
34514.

[342] GitHub: P4-BIER, https://github.com/uni-tue-kn/p4-bier, ac-
cessed 01-20-2021 (2021).

[343] GitHub: P4-BIER for Tofino, https://github.com/uni-tue-kn/
p4-bier-tofino, accessed 04-26-2021 (2021).

[344] M. Shahbaz, L. Suresh, J. Rexford, N. Feamster, O. Rottenstreich,
M. Hira, Elmo: Source Routed Multicast for Public Clouds, in: ACM
Special Interest Group on Data Communication, 2019, pp. 2587–2600.

[345] GitHub: Elmo MCast, https://github.com/Elmo-MCast/p4-programs,
accessed 01-20-2021 (2021).

[346] S. Luo, H. Yu, K. Li, H. Xing, Efficient File Dissemination in Data Cen-
ter Networks with Priority-based Adaptive Multicast, IEEE Journal on
Selected Areas in Communications (JSAC) 38 (2020) 1161–1175.

[347] C. Wernecke, H. Parzyjegla, G. Mühl, P. Danielis, D. Timmermann, Real-
izing Content-Based Publish/Subscribe with P4, in: IEEE Conference on
Network Function Virtualization and Software-Defined Networking (NFV-
SDN), 2018, pp. 1–7.

[348] C. Wernecke, H. Parzyjegla, G. Mühl, E. Schweissguth, D. Timmermann,
Flexible Notification Forwarding for Content-Based Publish/Subscribe
Using P4, in: IEEE Conference on Network Function Virtualization and
Software-Defined Networking (NFV-SDN), 2020, pp. 1–5.

[349] C. Wernecke, H. Parzyjegla, G. Mühl, Implementing Content-based Pub-
lish/Subscribe on the Network Layer with P4, in: IEEE Conference on
Network Function Virtualization and Software-Defined Networking (NFV-
SDN), 2020, pp. 144–149.

[350] C. Wernecke, H. Parzyjegla, G. Mühl, P. Danielis, E. Schweissguth,
D. Timmermann, Stitching Notification Distribution Trees for Content-
based Publish/Subscribe with P4, in: IEEE Conference on Network Func-
tion Virtualization and Software-Defined Networking (NFV-SDN), 2020,
pp. 100–104.

[351] T. Jepsen, M. Moshref, A. Carzaniga, N. Foster, R. Soulé, Packet Sub-
scriptions for Programmable ASICs, in: ACM Workshop on Hot Topics
in Networks (HotNets), 2018, p. 176–183.

129

[352] R. Kundel, C. Gaertner, M. Luthra, S. Bhowmik, B. Koldehofe, Flexi-
ble Content-based Publish/Subscribe over Programmable Data Planes, in:
IEEE/IFIP Network Operations and Management Symposium (NOMS),
2020, pp. 1–5.

[353] GitHub: p4bsub, https://github.com/ralfkundel/p4bsub/, accessed
01-20-2021 (2021).

[354] J. Vestin, A. Kassler, S. Laki, G. Pongrácz, Towards In-Network Event
Detection and Filtering for Publish/Subscribe Communication using Pro-
grammable Data Planes, IEEE Transactions on Network and Service Man-
agement (TNSM) (2020) 415–428.

[355] S. Signorello, R. State, J. François, O. Festor, NDN.p4: Programming
Information-Centric Data-Planes, in: IEEE Conference on Network Soft-
warization (NetSoft), 2016, pp. 384–389.

[356] R. Miguel, S. Signorello, F. M. V. Ramos, Named Data Networking with
Programmable Switches, in: IEEE International Conference on Network
Protocols (ICNP), 2018, pp. 400–405.

[357] GitHub: NDN.p4, https://github.com/signorello/NDN.p4, accessed
01-20-2021 (2021).

[358] GitHub: NDN.p4-16, https://github.com/netx-ulx/NDN.p4-16, ac-
cessed 01-20-2021 (2021).

[359] O. Karrakchou, N. Samaan, A. Karmouch, ENDN: An Enhanced NDN
Architecture with a P4-programmable Data Plane, in: International Con-
ference on Networking (ICN), 2020, p. 1–11.

[360] R. Sedar, M. Borokhovich, M. Chiesa, G. Antichi, S. Schmid, Support-
ing Emerging Applications With Low-Latency Failover in P4, in: Work-
shop on Networking for Emerging Applications and Technologies (NEAT),
2018, p. 52–57.

[361] GitHub: P4-FRR, https://bitbucket.org/roshanms/p4-frr/src/
master/, accessed 01-20-2021 (2021).

[362] H. Giesen, L. Shi, J. Sonchack, A. Chelluri, N. Prabhu, N. Sultana,
L. Kant, A. J. McAuley, A. Poylisher, A. DeHon, B. T. Loo, In-Network
Computing to the Rescue of Faulty Links, in: Morning Workshop on In-
Network Computing, 2018, pp. 1–6.

[363] T. Qu, R. Joshi, M. Chan, B. Leong, D. Guo, Z. Liu, SQR: In-network
Packet Loss Recovery from Link Failures for Highly Reliable Datacen-
ter Networks, in: IEEE International Conference on Network Protocols
(ICNP), 2019, pp. 1–12.

[364] GitHub: P4 SQR, https://git.io/fjbnV, accessed 01-20-2021 (2021).

130

[365] S. Lindner, D. Merling, M. Häberle, M. Menth, P4-Protect: 1+1 Path
Protection for P4, in: P4 Workshop in Europe (EuroP4), 2020, p. 21–27.

[366] GitHub: P4-Protect BMv2, https://github.com/uni-tue-kn/
p4-protect, accessed 01-20-2021 (2021).

[367] GitHub: P4-Protect Tofino, https://github.com/uni-tue-kn/
p4-protect-tofino, accessed 01-20-2021 (2021).

[368] K. Hirata, , T. Tachibana, Implementation of Multiple Routing Config-
urations on Software-Defined Networks with P4, in: Asia-Pacific Signal
and Information Processing Association Annual Summit and Conference
(APSIPA ASC), 2019, pp. 13–16.

[369] S. Lindner, M. Häberle, F. Heimgaertner, N. Nayak, S. Schildt, D. Grewe,
H.Loehr, M. Ment, P4 In-Network Source Protection for Sensor Failover,
in: IFIP-TC6 Networking Conference (Networking), 2020, pp. 791–796.

[370] GitHub: P4 Source Protection BMv2, https://github.com/
uni-tue-kn/p4-source-protection, accessed 01-20-2021 (2021).

[371] GitHub: P4 Source Protection Tofino, https://github.com/
uni-tue-kn/p4-source-protection-tofino, accessed 01-20-2021
(2021).

[372] K. Subramanian, A. Abhashkumar, L. D’Antoni, A. Akella, D2R:
Dataplane-Only Policy-Compliant Routing Under Failures (2019).

[373] M. Chiesa, R. Sedar, G. Antichi, M. Borokhovich, A. Kamisiński, G. Niko-
laidis, S. Schmid, PURR: A Primitive for Reconfigurable Fast Reroute, in:
ACM Conference on emerging Networking EXperiments and Technologies
(CoNEXT), 2019, p. 1–14.

[374] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio,
L. Vanbever, Blink: Fast Connectivity Recovery Entirely in the Data
Plane, in: USENIX Symposium on Networked Systems Design & Imple-
mentation (NSDI), 2019, pp. 161–176.

[375] GitHub: Blink, https://github.com/nsg-ethz/Blink, accessed 01-20-
2021 (2021).

[376] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, D. Walker, Contra: A Pro-
grammable System for Performance-aware Routing, in: USENIX Sympo-
sium on Networked Systems Design & Implementation (NSDI), 2020, pp.
701–721.

[377] O. Michel, E. Keller, Policy Routing using Process-Level Identifiers,
in: IEEE International Conference on Cloud Engineering Workshop
(IC2EW), 2016, pp. 7–12.

131

[378] A. C. Baktir, A. Ozgovde, C. Ersoy, Implementing Service-Centric Model
with P4: A Fully-Programmable Approach, in: IEEE/IFIP Network Op-
erations and Management Symposium (NOMS), 2018, pp. 1–6.

[379] W. Froes, L. Santos, L. N. Sampaio, M. Martinello, A. Liberato, R. S.
Villaca, ProgLab: Programmable Labels for QoS Provisioning on Software
Defined Networks, Computer Communications 161 (2020) 99–108.

[380] N. VARYANI, Z.-L. ZHANG, D. DAI, QROUTE: An Efficient Quality
of Service (QoS) Routing Scheme for Software-Defined Overlay Networks,
IEEE ACCESS 8 (2020) 104109–104126.

[381] S. Gimenez, E. Grasa, S. Bunch, A Proof of Concept Implementation of a
RINA Interior Router using P4-enabled Software Targets, in: Conference
on Innovation in Clouds, Internet and Networks and Workshops (ICIN),
2020, pp. 57–62.

[382] W. Feng, X. Tan, Y. Jin, Implementing ICN over P4 in HTTP Scenario, in:
IEEE International Conference on Hot Information-Centric Networking
(HotICN), 2019, pp. 37–43.

[383] G. Grigoryan, Y. Liu, M. Kwon, PFCA: A Programmable FIB Caching
Architecture, IEEE/ACM Transactions on Networking (ToN) 28 (2020)
1872–1884.

[384] A. McAuley, Y. M. Gottlieb, L. Kant, J. Lee, A. Poylisher, P4-Based
Hybrid Error Control Booster Providing New Design Tradeoffs in Wireless
Networks, in: IEEE Military Communications Conference (MILCOM),
2019, pp. 731–736.

[385] M. Kogias, G. Prekas, A. Ghosn, J. Fietz, E. Bugnion, R2P2: Making
RPCs first-class datacenter citizens, in: USENIX Annual Technical Con-
ference (ATC), 2019, pp. 863–880.

[386] GitHub: R2P2 - Request Response Pair Protocol, https://github.com/
epfl-dcsl/r2p2, accessed 01-25-2021 (2021).

[387] D. Merling, M. Menth, N. Warnke, T. Eckert, An Overview of Bit Index
Explicit Replication (BIER), IETF Journal (2018).

[388] M. Hollingsworth, J. Lee, Z. Liu, J. Lee, S. Ha, D. Grunwald, P4EC:
Enabling Terabit Edge Computing in Enterprise 4G LTE, in: USENIX
Workshop on Hot Topics in Edge Computing (HotEdge), 2020, pp. 1–7.

[389] GitHub: spgw.p4, https://github.com/opennetworkinglab/
onos/blob/master/pipelines/fabric/impl/src/main/resources/
include/control/spgw.p4, accessed 01-20-2021 (2021).

[390] P. Palagummi, K. M. Sivalingam, SMARTHO: A Network Initiated Han-
dover in NG-RAN using P4-based Switches, in: International Conference
on Network and Services Management (CNSM), 2018, pp. 338–342.

132

[391] A. Aghdai, M. Huang, D. Dai, Y. Xu, J. Chao, Transparent Edge Gate-
way for Mobile Networks, in: IEEE International Conference on Network
Protocols (ICNP), 2018, pp. 412–417.

[392] A. Aghdai, Y. Xu, M. Huang, D. H. Dai, H. J. Chao, Enabling Mobility in
LTE-Compatible Mobile-edge Computing with Programmable Switches,
ArXiv e-prints (2019).

[393] J. Xie, C. Qian, D. Guo, X. Li, S. Shi, H. Chen, Efficient Data Place-
ment and Retrieval Services in Edge Computing, in: IEEE International
Conference on Distributed Computing Systems (ICDCS), 2019, pp. 1029–
1039.

[394] J. Xie, D. Guo, X. Shi, H. Cai, C. Qian, H. Chen, A Fast Hybrid Data
Sharing Framework for Hierarchical Mobile Edge Computing, in: IEEE In-
ternational Conference on Computer Communications (INFOCOM), 2020,
pp. 2609–2618.

[395] C. Shen, D. Lee, C. Ku, M. Lin, K. Lu, S. Tan, A Programmable and
FPGA-accelerated GTP Offloading Engine for Mobile Edge Computing in
5G Networks, in: IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS), 2019, pp. 1021–1022.

[396] C. Lee, K. Ebisawa, H. Kuwata, M. Kohno, S. Matsushima, Performance
Evaluation of GTP-U and SRv6 Stateless Translation, in: International
Conference on Network and Services Management (CNSM), 2019, pp. 1–6.

[397] R. Ricart-Sanchez, P. Malagon, J. M. Alcaraz-Calero, Q. Wang, P4-
NetFPGA-based network slicing solution for 5G MEC architectures, in:
ACM/IEEE Symposium on Architectures for Networking and Communi-
cations Systems (ANCS), 2019, pp. 1–2.

[398] S. K. Singh, C. E. Rothenberg, G. Patra, G. Pongracz, Offloading Vir-
tual Evolved Packet Gateway User Plane Functions to a Programmable
ASIC, in: ACM CoNEXT Workshop on Emerging In-Network Computing
Paradigms, 2019, p. 9–14.

[399] R. Shah, V. Kumar, M. Vutukuru, P. Kulkarni, TurboEPC: Leveraging
Dataplane Programmability to Accelerate the Mobile Packet Core, in:
ACM Symposium on SDN Research (SOSR), 2020, p. 83–95.

[400] P. Vörös, G. Pongrácz, S. Laki, Towards a Hybrid Next Generation
NodeB, in: P4 Workshop in Europe (EuroP4), 2020, p. 56–58.

[401] Y. Lin, T. Huang, S. Tsai, Enhancing 5G/IoT Transport Security Through
Content Permutation, IEEE ACCESS 7 (2019) 94293–94299.

[402] M. Uddin, S. Mukherjee, H. Chang, T. V. Lakshman, SDN-Based Ser-
vice Automation for IoT, in: IEEE International Conference on Network
Protocols (ICNP), 2017, pp. 1–10.

133

[403] M. Uddin, S. Mukherjee, H. Chang, T. V. Lakshman, SDN-Based Multi-
Protocol Edge Switching for IoT Service Automation, IEEE Journal on
Selected Areas in Communications (JSAC) 36 (2018) 2775–2786.

[404] S.-Y. Wang, C.-M. Wu, Y.-B. Linm, C.-C. Huang, High-Speed Data-Plane
Packet Aggregation and Disaggregation by P4 Switches, Journal of Net-
work and Computer Applications (JNCA) 142 (2019) 98–110.

[405] A. L. R. Madureira, F. R. C. Araújo, L. N. Sampaio, On supporting IoT
data aggregation through programmable data planes, Computer Networks
177 (2020) 107330.

[406] P. Engelhard, A. Zachlod, J. Schulz-Zander, S. Du, Toward scalable and
virtualized massive wireless sensor networks, in: International Conference
on Networked Systems (NetSys), 2019, pp. 1–6.

[407] J. Vestin, A. Kassler, J. Åkerberg, FastReact: In-Network Control
and Caching for Industrial Control Networks using Programmable Data
Planes, in: IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), 2018, pp. 219–226.

[408] F. E. R. Cesen, L. Csikor, C. Recalde, C. E. Rothenberg, G. Pongrácz,
Towards Low Latency Industrial Robot Control in Programmable Data
Planes, in: IEEE Conference on Network Softwarization (NetSoft), 2020,
pp. 165–169.

[409] I. Kunze, R. Glebke, J. Scheiper, M. Bodenbenner, R. H. Schmitt,
K. Wehrle, Investigating the Applicability of In-Network Computing to
Industrial Scenarios, in: International Conference on Industrial Cyber-
Physical Systems (ICPS), 2021, pp. 334–340.

[410] J. Rüth, R. Glebke, K. Wehrle, V. Causevic, S. Hirche, Towards In-
Network Industrial Feedback Control, in: Morning Workshop on In-
Network Computing, 2018, p. 14–19.

[411] P. G. Kannan, R. Joshi, M. C. Chan, Precise Time-Synchronization in the
Data-Plane using Programmable Switching ASICs, in: ACM Symposium
on SDN Research (SOSR), 2019, p. 8–20.

[412] R. Kundel, F. Siegmund, B. Koldehofe, How to Measure the Speed of
Light with Programmable Data Plane Hardware?, in: P4 Workshop in
Europe (EuroP4), 2019, pp. 1–2.

[413] G. Bonofiglio, V. Iovinella, G. Lospoto, G. D. Battista, Kathará: A
Container-Based Framework for Implementing Network Function Virtu-
alization and Software Defined Networks, in: IEEE/IFIP Network Oper-
ations and Management Symposium (NOMS), 2018, pp. 1–9.

134

[414] M. He, A. Basta, A. Blenk, N. Deric, W. Kellerer, P4NFV: An NFV
Architecture with Flexible Data Plane Reconfiguration, in: International
Conference on Network and Services Management (CNSM), 2018, pp. 90–
98.

[415] T. Osiński, H. Tarasiuk, M. Kossakowski, R. Picard, Offloading Data
Plane Functions to the Multi-Tenant Cloud Infrastructure using P4, in:
P4 Workshop in Europe (EuroP4), 2019, pp. 1–6.

[416] D. Moro, G. Verticale, A. Capone, A Framework for Network Function De-
composition and Deployment, in: International Workshop on the Design
of Reliable Communication Networks (DRCN), 2020, pp. 1–6.

[417] T. Osiński, H. Tarasiuk, L. Rajewski, E. Kowalczyk, DPPx: A P4-based
Data Plane Programmability and Exposure framework to enhance NFV
services, in: IEEE Conference on Network Softwarization (NetSoft), 2019,
pp. 296–300.

[418] A. Mohammadkhan, S. Panda, S. G. Kulkarni, K. K. Ramakrishnan, L. N.
Bhuyan, P4NFV: P4 Enabled NFV Systems with SmartNICs, in: IEEE
Conference on Network Function Virtualization and Software-Defined
Networking (NFV-SDN), 2019, pp. 1–7.

[419] D. Moro, M. Peuster, H. Karl, A. Capone, FOP4: Function Offload-
ing Prototyping in Heterogeneous and Programmable Network Scenarios,
in: IEEE Conference on Network Function Virtualization and Software-
Defined Networking (NFV-SDN), 2019, pp. 1–6.

[420] D. Moro, M. Peuster, H. Karl, A. Capone, Demonstrating FOP4: A Flex-
ible Platform to Prototype NFV Offloading Scenarios, in: IEEE Confer-
ence on Network Function Virtualization and Software-Defined Network-
ing (NFV-SDN), 2019, pp. 1–2.

[421] D. R. Mafioletti, C. K. Dominicini, M. Martinello, M. R. N. Ribeiro,
R. d. S. Villaça, Piaffe: A place-as-you-go in-network framework for flex-
ible embedding of vnfs, in: IEEE International Conference on Communi-
caotions (ICC), 2020, pp. 1–6.

[422] X. Chen, D. Zhang, X. Wang, K. Zhu, H. Zhou, P4SC: Towards High-
Performance Service Function Chain Implementation on the P4-Capable
Device, in: IFIP/IEEE Symposium on Integrated Management (IM),
2019, pp. 1–9.

[423] D. Zhang, X. Chen, Q. Huang, X. Hong, C. Wu, H. Zhou, Y. Yang, H. Liu,
Y. Chen, P4SC: A High Performance and Flexible Framework for Service
Function Chain, IEEE ACCESS 7 (2019) 160982–160997.

[424] GitHub: P4SC, https://github.com/P4SC/p4sc, accessed 01-20-2021
(2021).

135

[425] H. Lee, J. Lee, H. Ko, S. Pack, Resource-Efficient Service Function Chain-
ing in Programmable Data Plane, in: P4 Workshop in Europe (EuroP4),
2019.

[426] Y. Zhou, J. Bi, C. Zhang, M. Xu, J. Wu, FlexMesh: Flexibly Chaining
Network Functions on Programmable Data Planes at Runtime, in: IFIP-
TC6 Networking Conference (Networking), 2020, pp. 73–81.

[427] A. Stockmayer, S. Hinselmann, M. Häberle, M. Menth, Service Function
Chaining Based on Segment Routing Using P4 and SR-IOV (P4-SFC),
in: Workshop on Virtualization in High-Performance Cloud Computing
(VHPC), 2020, pp. 297–309.

[428] GitHub: P4-SFC, https://github.com/uni-tue-kn/p4-sfc-faas, ac-
cessed 01-20-2021 (2021).

[429] R. Ricart-Sanchez, P. Malagon, J. M. Alcaraz-Calero, Q. Wang,
Hardware-Accelerated Firewall for 5G Mobile Networks, in: IEEE In-
ternational Conference on Network Protocols (ICNP), 2018, pp. 446–447.

[430] Ruben Ricart-Sanchez and Pedro Malagon and Jose M. Alcaraz-Calero
and Qi Wang, NetFPGA-Based Firewall Solution for 5G Multi-Tenant
Architectures, in: IEEE International Conference on Edge Computing
(EDGE), 2019, pp. 132–136.

[431] J. Cao, J. Bi, Y. Zhou, C. Zhang, CoFilter: A High-Performance Switch-
Assisted Stateful Packet Filter, in: ACM SIGCOMM Conference Posters
and Demos, 2018, p. 9–11.

[432] R. Datta, S. Choi, A. Chowdhary, Y. Park, P4Guard: Designing P4
Based Firewall, in: IEEE Military Communications Conference (MIL-
COM), 2018, pp. 1–6.

[433] P. Vörös, A. Kiss, Security Middleware Programming Using P4, in: Inter-
national Conference on Human Aspects of Information Security, Privacy,
and Trust (HAS), 2016, pp. 277–287.

[434] E. O. Zaballa, D. Franco, Z. Zhou, M. S. Berger, P4Knocking: Offloading
host-based firewall functionalities to the network, in: Conference on In-
novation in Clouds, Internet and Networks and Workshops (ICIN), 2020,
pp. 7–12.

[435] A. Almaini, A. Al-Dubai, I. Romdhani, M. Schramm, Delegation of Au-
thentication to the Data Plane in Software-Defined Networks, in: IEEE
International Conferences on Smart Computing, Networking and Services
(SmartCNS), 2019, pp. 58–65.

[436] G. Grigoryan, Y. Liu, LAMP: Prompt Layer 7 Attack Mitigation with
Programmable Data Planes, in: ACM/IEEE Symposium on Architectures
for Networking and Communications Systems (ANCS), 2018, pp. 1–4.

136

[437] A. Febro, H. Xiao, J. Spring, Telephony Denial of Service Defense at Data
Plane (TDoSD@DP), in: IEEE/IFIP Network Operations and Manage-
ment Symposium (NOMS), 2018, pp. 1–6.

[438] A. Febro, H. Xiao, J. Spring, Distributed SIP DDoS Defense with P4, in:
IEEE Wireless Communications and Networking Conference (WCNC),
2019, pp. 1–8.

[439] M. Kuka, K. Vojanec, J. Kučera, P. Benáček, Accelerated DDoS Attacks
Mitigation using Programmable Data Plane, in: ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS),
2019, pp. 1–3.

[440] F. Paolucci, F. Cugini, P. Castoldi, P4-based Multi-Layer Traffic Engi-
neering Encompassing Cyber Security, in: Optical Fiber Communication
Conference (OFC), 2018, pp. 1–3.

[441] F. Paolucci, F. Civerchia, A. Sgambelluri, A. Giorgetti, F. Cugini, P. Cas-
toldi, An efficient pipeline processing scheme for programming Protocol-
independent Packet Processors, IEEE/OSA Journal of Optical Commu-
nications and Networking 11 (2019) 88–95.

[442] Y. Mi, A. Wang, ML-Pushback: Machine Learning Based Pushback De-
fense Against DDoS, in: ACM Conference on emerging Networking EX-
periments and Technologies (CoNEXT), 2019, p. 80–81.

[443] Y. Afek, A. Bremler-Barr, L. Shafir, Network Anti-Spoofing with SDN
Data Plane, in: IEEE International Conference on Computer Communi-
cations (INFOCOM), 2017, pp. 1–9.

[444] A. C. Lapolli, J. A. Marques, L. P. Gaspary, Offloading Real-time DDoS
Attack Detection to Programmable Data Planes, in: IFIP/IEEE Sympo-
sium on Integrated Management (IM), 2019, pp. 19–27.

[445] GitHub: ddosd-p4, https://github.com/aclapolli/ddosd-p4, ac-
cessed 01-20-2021 (2021).

[446] Y.-Z. Cai, C.-H. Lai, Y.-T. Wang, M.-H. Tsai, Improving Scanner Data
Collection in P4-based SDN, in: Asia-Pacific Network Operations and
Management Symposium (APNOMS), 2020, pp. 126–131.

[447] T.-Y. Lin, J.-P. Wu, P.-H. Hung, C.-H. Shao, Y.-T. Wang, Y.-Z. Cai, M.-
H. Tsai, Mitigating SYN flooding Attack and ARP Spoofing in SDN Data
Plane, in: Asia-Pacific Network Operations and Management Symposium
(APNOMS), 2020, pp. 114–119.

[448] F. Musumeci, V. Ionata, F. Paolucci, M. Cugini, Filippo Tornatore,
Machine-learning-assisted DDoS attack detection with P4 language, in:
IEEE International Conference on Communicaotions (ICC), 2020, pp. 1–
6.

137

[449] X. Z. Khooi, L. Csikor, D. M. Divakaran, M. S. Kang, DIDA: Distributed
In-Network Defense Architecture Against Amplified Reflection DDoS At-
tacks, in: IEEE Conference on Network Softwarization (NetSoft), 2020,
pp. 277–281.

[450] M. Dimolianis, A. Pavlidis, V. Maglaris, A Multi-Feature DDoS Detection
Schema on P4 Network Hardware, in: Workshop on Flexible Network Data
Plane Processing (NETPROC@ICIN), 2020, pp. 1–6.

[451] D. Scholz, S. Gallenmüller, H. Stubbe, G. Carle, SYN Flood Defense in
Programmable Data Planes, in: P4 Workshop in Europe (EuroP4), 2020,
p. 13–20.

[452] GitHub: syn-proxy, https://github.com/syn-proxy, accessed 01-20-
2021 (2021).

[453] K. Friday, E. Kfoury, E. Bou-Harb, J. Crichigno, Towards a Unified In-
Network DDoS Detection and Mitigation Strategy, in: IEEE Conference
on Network Softwarization (NetSoft), 2020, pp. 218–226.

[454] R. Meier, P. Tsankov, V. Lenders, L. Vanbever, M. Vechev, NetHide: Se-
cure and Practical Network Topology Obfuscation, in: USENIX Security
Symposium, 2018, pp. 693–709.

[455] Benjamin Lewis and Matthew Broadbent and Nicholas Race, P4ID: P4
Enhanced Intrusion Detection, in: IEEE Conference on Network Function
Virtualization and Software-Defined Networking (NFV-SDN), 2019, pp.
1–4.

[456] Gorby Kabasele Ndonda and Ramin Sadre, A Two-level Intrusion Detec-
tion System for Industrial Control System Networks using P4, in: Interna-
tional Symposium for ICS & SCADA Cyber Security Research (ICS-CSR),
2018, pp. 1–10.

[457] J. Hypolite, J. Sonchack, S. Hershkop, N. Dautenhahn, A. DeHon, J. M.
Smith, DeepMatch: Practical Deep Packet Inspection in the Data Plane
Using Network Processors, in: ACM Conference on emerging Networking
EXperiments and Technologies (CoNEXT), 2020, p. 336–350.

[458] GitHub: DeepMatch, https://github.com/jhypolite/DeepMatch, ac-
cessed 01-20-2021 (2021).

[459] Q. Qin, K. Poularakis, K. K. Leung, L. Tassiulas, Line-Speed and Scalable
Intrusion Detection at the Network Edge via Federated Learning, in: IFIP-
TC6 Networking Conference (Networking), 2020, pp. 352–360.

[460] GitHub: syn-proxy, https://github.com/vxxx03/IFIPNetworking20,
accessed 01-20-2021 (2021).

138

[461] J. Amado, S. Signorello, M. Correia, F. Ramos, Poster: Speeding up net-
work intrusion detection, in: IEEE International Conference on Network
Protocols (ICNP), 2020, pp. 1–2.

[462] D. Chang, W. Sun, Y. Yang, A SDN Proactive Defense Mechanism Based
on IP Transformation, in: International Conference on Safety Produce
Informatization (IICSPI), 2019, pp. 248–251.

[463] W. Feng, Z.-L. Zhang, C. Liu, J. Chen, Clé: Enhancing Security with
Programmable Dataplane Enabled Hybrid SDN, in: ACM Conference on
emerging Networking EXperiments and Technologies (CoNEXT), 2019, p.
76–77.

[464] P. Kuang, Y. Liu, L. He, P4DAD: Securing Duplicate Address Detection
Using P4, in: IEEE International Conference on Communicaotions (ICC),
2020, pp. 1–7.

[465] X. Chen, Implementing aes encryption on programmable switches via
scrambled lookup tables, in: Workshop on Secure Programmable Network
Infrastructure (SPIN), 2020, p. 8–14.

[466] GitHub: Tofino AES encryption, https://github.com/
Princeton-Cabernet/p4-projects/tree/master/AES-tofino, ac-
cessed 01-20-2021 (2021).

[467] H. Gondaliya, G. C. Sankaran, K. M. Sivalingam, Comparative Evaluation
of IP Address Anti-Spoofing Mechanisms Using a P4/NetFPGA-Based
Switch, in: P4 Workshop in Europe (EuroP4), 2020, p. 1–6.

[468] Q. Kang, L. Xue, A. Morrison, Y. Tang, A. Chen, X. Luo, Programmable
In-Network Security for Context-aware BYOD Policies, in: USENIX Se-
curity Symposium, 2020, pp. 595–612.

[469] GitHub: Poise, https://github.com/qiaokang92/poise, accessed 01-
20-2021 (2021).

[470] F. Hauser, M. Schmidt, M. Häberle, M. Menth, P4-MACsec: Dynamic
Topology Monitoring and Data Layer Protection With MACsec in P4-
Based SDN, IEEE ACCESS 8 (2020) 58845–58858.

[471] GitHub: P4-MACsec, https://github.com/uni-tue-kn/p4-macsec,
accessed 01-20-2021 (2021).

[472] F. Hauser, M. Häberle, M. Schmidt, M. Menth, P4-IPsec: Site-to-Site and
Host-to-Site VPN With IPsec in P4-Based SDN, IEEE ACCESS 8 (2020)
139567–139586.

[473] GitHub: P4-IPsec, https://github.com/uni-tue-kn/p4-ipsec, ac-
cessed 01-20-2021 (2021).

139

[474] T. Datta, N. Feamster, J. Rexford, L. Wang, SPINE: Surveillance Protec-
tion in the Network Elements, in: USENIX Workshop on Free and Open
Communications on the Internet (FOCI), 2019, pp. 1–7.

[475] GitHub: SPINE, https://github.com/SPINE-P4/spine-code, accessed
01-20-2021 (2021).

[476] Y. Qin, W. Quan, F. Song, L. Zhang, G. Liu, M. Liu, C. Yu, Flexible En-
cryption for Reliable Transmission Based on the P4 Programmable Plat-
form, in: Information Communication Technologies Conference (ICTC),
2020, pp. 147–152.

[477] G. Liu, W. Quan, N. Cheng, N. Lu, H. Zhang, X. Shen, P4NIS: Improving
network immunity against eavesdropping with programmable data planes,
in: IEEE Conference on Computer Communications Workshops (INFO-
COM WKSHPS), 2020, pp. 91–96.

[478] GitHub: P4NIS, https://github.com/KB00100100/P4NIS, accessed 01-
20-2021 (2021).

[479] M. Liu, D. Gao, G. Liu, J. He, L. Jin, C. Zhou, F. Yang, Learning based
adaptive network immune mechanism to defense eavesdropping attacks,
IEEE ACCESS 7 (2019) 182814–182826.

[480] J. Deng, H. Hu, H. Li, Z. Pan, K. Wang, G. Ahn, J. Bi, Y. Park, VNGuard:
An NFV/SDN Combination Framework for Provisioning and Managing
Virtual Firewalls, in: IEEE Conference on Network Function Virtualiza-
tion and Software-Defined Networking (NFV-SDN), 2015, pp. 107–114.

[481] H. Zhang, W. Quan, H.-c. Chao, C. Qiao, Smart identifier network: A col-
laborative architecture for the future internet, Networks Magazine 30 (3)
(2016) 46–51.

[482] R. Kumar, V. Babu, D. Nicol, Network Coding for Critical Infrastruc-
ture Networks, in: IEEE International Conference on Network Protocols
(ICNP), 2018, pp. 436–437.

[483] GitHub: AquaFlow, https://github.com/gopchandani/AquaFlow, ac-
cessed 01-20-2021 (2021).

[484] D. Goncalves, S. Signorello, F. M. V. Ramos, M. Medard, Random Linear
Network Coding on Programmable Switches, in: ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS),
2019, pp. 1–6.

[485] T. Kohler, R. Mayer, F. Dürr, M. Maaß, S. Bhowmik, K. Rothermel,
P4CEP: Towards In-Network Complex Event Processing, in: Morning
Workshop on In-Network Computing, 2018, p. 33–38.

140

[486] A. Sapio, I. Abdelaziz, M. Canini, P. Kalnis, DAIET: A System for Data
Aggregation Inside the Network, in: ACM Symposium on Cloud Comput-
ing (SoCC), 2017, p. 1.

[487] G. C. Sankaran, K. M. Sivalingam, Design and Analysis of Fast IP
Address-Lookup Schemes based on Cooperation among Routers, in: Inter-
national Conference on COMmunication Systems and NETworks (COM-
SNETS), 2020, pp. 330–339.

[488] Y. Zhang, B. Han, Z.-L. Zhang, V. Gopalakrishnan, Network-Assisted
Raft Consensus Algorithm, in: ACM SIGCOMM Conference Posters and
Demos, 2017, p. 94–96.

[489] H. T. Dang, M. Canini, F. Pedone, R. Soulé, Paxos Made Switch-y, ACM
SIGCOMM Computer Communications Review (CCR) 46 (2016) 18–24.

[490] H. T. Dang, P. Bressana, H. Wang, K. S. Lee, N. Zilbermanand, H. Weath-
erspoon, M. Canini, F. Pedone, R. Soulé, P4xos: Consensus as a Network
Service, IEEE/ACM Transactions on Networking (ToN) 28 (2020) 1726–
1738.

[491] GitHub: P4xos, https://github.com/P4xos/P4xos, accessed 01-20-2021
(2021).

[492] E. Sakic, N. Deric, E. Goshi, W. Kellerer, P4BFT: Hardware-Accelerated
Byzantine-Resilient Network Control Plane, in: IEEE Global Communi-
cations Conference (GLOBECOM), 2019, pp. 1–7.

[493] E. Sakic, N. Deric, C. B. Serna, E. Goshi, W. Kellerer, P4BFT: A Demon-
stration of Hardware-Accelerated BFT in Fault-Tolerant Network Control
Plane, in: ACM SIGCOMM Conference Posters and Demos, 2019, p. 6–8.

[494] L. Zeno, D. R. K. Ports, J. Nelson, M. Silberstein, SwiShmem: Distributed
Shared State Abstractions for Programmable Switches, in: ACM Work-
shop on Hot Topics in Networks (HotNets), 2020, p. 160–167.

[495] S. Han, S. Jang, H. Lee, S. Pack, Switch-Centric Byzantine Fault Toler-
ance Mechanism in Distributed Software Defined Networks, IEEE Com-
munications Letters 24 (2020) 2236–2239.

[496] GitHub: SC-BFT, https://github.com/MNC-KOR/SC-BFT, accessed 01-
20-2021 (2021).

[497] G. Sviridov, M. Bonola, A. Tulumello, P. Giaccone, A. Bianco, G. Bianchi,
LODGE: LOcal Decisions on Global statEs in Progrananaable Data
Planes, in: IEEE Conference on Network Softwarization (NetSoft), 2018,
pp. 257–261.

141

[498] G. Sviridov, M. Bonola, A. Tulumello, P. Giaccone, A. Bianco, G. Bianchi,
LOcAl DEcisions on Replicated States (LOADER) in programmable data-
planes: Programming abstraction and experimental evaluation, Computer
Networks 181 (2020) 107637.

[499] GitHub: LOADER, https://github.com/german-sv/loader, accessed
01-20-2021 (2021).

[500] H. Takruri, I. Kettaneh, A. Alquraan, S. Al-Kiswany, FLAIR: Accelerat-
ing Reads with Consistency-Aware Network Routing, in: USENIX Sym-
posium on Networked Systems Design & Implementation (NSDI), 2020,
pp. 723–737.

[501] S. Luo, H. Yu, L. Vanbever, Swing State: Consistent Updates for Stateful
and Programmable Data Planes, in: ACM Symposium on SDN Research
(SOSR), 2017, p. 115–121.

[502] J. Xing, A. Chen, T. E. Ng, Secure State Migration in the Data Plane,
in: Workshop on Secure Programmable Network Infrastructure (SPIN),
2020, p. 28–34.

[503] GitHub: P4Sync, https://github.com/jiarong0907/P4Sync, accessed
01-20-2021 (2021).

[504] Y. Xue, Z. Zhu, Hybrid Flow Table Installation: Optimizing Remote
Placements of Flow Tables on Servers to Enhance PDP Switches for In-
Network Computing, IEEE Transactions on Network and Service Man-
agement (TNSM) (2020) 429–440.

[505] C. Kuzniar, M. Neves, I. Haque, POSTER: Accelerating Encrypted Data
Stores Using Programmable Switches, in: IEEE International Conference
on Network Protocols (ICNP), 2020, pp. 1–2.

[506] G. C. Sankaran, K. M. Sivalingam, Collaborative Packet Header Parsing in
NetFPGA-Based High Speed Switches, IEEE Networking Letters 2 (2020)
124–127.

[507] J. Woodruff, M. Ramanujam, N. Zilberman, P4DNS: In-Network DNS,
in: P4 Workshop in Europe (EuroP4), 2019, pp. 1–6.

[508] GitHub: P4DNS, https://github.com/cucl-srg/P4DNS, accessed 01-
20-2021 (2021).

[509] R. Kundel, L. Nobach, J. Blendin, H.-J. Kolbe, G. Schyguda, V. Gurevich,
B. Koldehofe, R. Steinmetz, P4-BNG: Central Office Network Functions
on Programmable Packet Pipelines, in: International Conference on Net-
work and Services Management (CNSM), 2019, pp. 1–9.

[510] GitHub: p4se, https://github.com/opencord/p4se, accessed 01-20-
2021 (2021).

142

[511] I. Martinez-Yelmo, J. Alvarez-Horcajo, M. Briso-Montiano, D. Lopez-
Pajares, E. Rojas, ARP-P4: A Hybrid ARP-Path/P4Runtime Switch,
in: IEEE International Conference on Network Protocols (ICNP), 2018,
pp. 438–439.

[512] R. Glebke, J. Krude, I. Kunze, J. Rüth, F. Senger, K. Wehrle, Towards
Executing Computer Vision Functionality on Programmable Network De-
vices, in: ACM CoNEXT Workshop on Emerging In-Network Computing
Paradigms, 2019, p. 15–20.

[513] J. Xie, C. Qian, D. Guo, M. Wang, S. Shi, H. Chen, Efficient Indexing
Mechanism for Unstructured Data Sharing Systems in Edge Computing,
in: IEEE International Conference on Computer Communications (INFO-
COM), 2019, pp. 820–828.

[514] Y.-S. Lu, K. C.-J. Lin, Enabling Inference Inside Software Switches,
in: Asia-Pacific Network Operations and Management Symposium (AP-
NOMS), 2020, pp. 1–4.

[515] A. Yazdinejad, R. M. Parizi, A. Dehghantanha, K.-K. R. Choo, P4-to-
blockchain: A secure blockchain-enabled packet parser for software defined
networking, Computers & Security Journal 88 (2019) 101629.

[516] T. Osiński, H. Tarasiuk, P. Chaignon, M. Kossakowski, P4rt-OVS: Pro-
gramming Protocol-Independent,Runtime Extensions for Open vSwitch
with P4, in: IFIP-TC6 Networking Conference (Networking), 2020, pp.
413–421.

[517] GitHub: P4rt-OVS, https://github.com/Orange-OpenSource/
p4rt-ovs, accessed 01-20-2021 (2021).

[518] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krishna-
murthy, M. Moshref, D. Ports, P. Richtarik, Scaling Distributed Machine
Learning with In-Network Aggregation, in: USENIX Symposium on Net-
worked Systems Design & Implementation (NSDI), 2021.

[519] SwitchML, https://github.com/p4lang/p4app-switchML, accessed 15-
02-2022 (2021).

[520] F. Yang, Z. Wang, X. Ma, G. Yuan, X. An, SwitchAgg: A Further Step
Towards In-Network Computing, in: IEEE Intl Conf on Parallel & Dis-
tributed Processing with Applications, Big Data & Cloud Computing, Sus-
tainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), 2019.

[521] S. R. Li, R. W. Yeung, N. Cai, Linear Network Coding, IEEE Transactions
on Information Theory 49 (2003) 371–381.

143

[522] Deutsche Telekom AG: Deutsche Telekom’s Access 4.0 platform goes live,
https://www.telekom.com/en/media/media-information/archive/
deutsche-telekom-s-access-4-0-platform-goes-live-615974,
accessed 05-17-2021 (2021).

[523] O-RAN Alliance, https://www.o-ran.org/, accessed 05-17-2021 (2021).

144

2 Accepted Manuscripts (Additional Content)

2 Accepted Manuscripts (Additional Content)

2.1 Implementation and Evaluation of Activity-Based Congestion
Management Using P4 (P4-ABC)

337

future internet

Article

Implementation and Evaluation of Activity-Based
Congestion Management Using P4 (P4-ABC)

Michael Menth 1 , Habib Mostafaei 2,*,† , Daniel Merling 1 and Marco Häberle 1

1 Department of Computer Science, University of Tuebingen, 72076 Tubingen, Germany
2 TU Berlin, 10623 Berlin, Germany
* Correspondence: habib@inet.tu-berlin.de
† Part of this work was conducted while this author was with Roma Tre University, Italy.

Received: 20 June 2019; Accepted: 17 July 2019; Published: 19 July 2019
����������
�������

Abstract: Activity-Based Congestion management (ABC) is a novel domain-based QoS mechanism
providing more fairness among customers on bottleneck links. It avoids per-flow or per-customer
states in the core network and is suitable for application in future 5G networks. However, ABC cannot
be configured on standard devices. P4 is a novel programmable data plane specification which allows
defining new headers and forwarding behavior. In this work, we implement an ABC prototype using
P4 and point out challenges experienced during implementation. Experimental validation of ABC
using the P4-based prototype reveals the desired fairness results.

Keywords: Activity-based congestion management (ABC); programmable data plane; QoS

1. Introduction

Future mobile networks like 5G consist of small cells that issue large traffic rates with high
fluctuations [1]. As quality of service (QoS) is required, economic provisioning of the transport
network is a challenge. Datacenter networks and residential access networks of Internet service
providers (ISPs) have similar requirements [2–4].

To avoid QoS degradation, scalable bandwidth-sharing mechanisms for congestion management
may be helpful, but they need to be simple and effective. That means, light users should be protected
against overload caused by heavy users while avoiding per-user signaling and information within the
transport network for complexity reasons.

In [5], activity-based congestion management (ABC) was initially suggested for that purpose.
It implements a domain concept where edge nodes run an activity meter that measures the traffic rates
of users and add activity information to their packets. Forwarding nodes leverage activity-based active
queue management (activity AQM) which uses this information to preferentially drop packets from
most active users in case of congestion. In [6], ABC has been proposed in its current form and extensive
simulation results have demonstrated that ABC can effectively protect light users against heavy users
to such an extent that a single TCP connection from a light user does not significantly suffer in the
presence of congestion caused by an aggressive non-responsive traffic stream of a heavy user.

As ABC requires additional header information and new features in edge nodes and forwarding
nodes, it cannot be configured on conventional networking gears. However, advances in network
programmability support the definition of new headers and node behavior. The network programming
language P4 is a notable example [7].

In this work, we report about a P4-based prototype for ABC. It demonstrates the technical
feasibility of ABC while revealing challenges and giving hints for the enhancement of P4 support on
switches. Furthermore, we present experimental results which confirm the simulative findings in [6].

Future Internet 2019, 11, 159; doi:10.3390/fi11070159 www.mdpi.com/journal/futureinternet

Future Internet 2019, 11, 159 2 of 12

The remainder of the paper is structured as follows. Section 2 briefly reviews related work.
Section 3 explains the ABC concept in detail. Section 4 gives an introduction to SDN and P4. Section 5
describes the P4-based ABC implementation. Section 6 presents our evaluation methodology and
reports experimental results. Finally, Section 7 concludes this work.

2. Related Work

A comprehensive overview of congestion management techniques can be found in [8]. Here,
we discuss only approaches that are highly related to ABC.

Scheduling algorithms like Weighted Fair Queueing (WFQ) also manage congestion among
traffic aggregates in a fair way. However, they require per-aggregate state information. In contrast,
ABC requires that information only on ingress nodes of a domain, which keeps the core network
simple and allows better scaling.

Core-Stateless Fair Queueing (CSFQ) [9] also improves fairness in core networks without
per-flow state. Edge nodes meter the traffic rate of flows or users and record them in packet
headers. Forwarding nodes leverage this information together with online rate measurement to detect
congestion and to determine suitable drop probabilities for packets. In contrast to ABC, CSFQ requires
more complex actions in core nodes and is less efficient [6].

Rainbow-Fair Queuing (RFQ) [10] marks packets at the edge with different colors whereby colors
correspond to activities in ABC. A major difference to ABC is that packets of a flow are colored with
random values from a range instead of with one specific value. The same is pursued by the fair
activity meter in ABC [6], but simulations have shown that fair activity metering degrades fairness for
congestion-controlled traffic. PPV [11] adopts the ideas of RFQ and is discussed as a base mechanism
for “Statistical Behaviors” which are new service level specifications that are currently discussed in
Metro Ethernet Forum (MEF). They differentiate the impact of congestion among different flows within
a single service class while avoiding per-aggregate states in core networks. The same authors adapt
PPV to deploy it in broadband access networks [12], take user activity on various time scales into
account [13], and target 5G networks [14].

Fair Dynamic Priority Assignment (FDPA) [15] is a fair bandwidth sharing method for TCP-like
senders which is implemented in OpenFlow and P4. Its objective is to make scheduling more scalable,
but it still requires per-user state in forwarding nodes. While FDPA is applicable only for responsive
traffic, ABC works with responsive traffic, non-responsive traffic, and combinations thereof.

Approximate per-flow fair-queueing (AFQ) is proposed in [16] to maintain bandwidth fairness
on flow level. The authors describe how AFQ can be implemented on configurable switches in general
and provide an implementation in P4. In contrast to ABC, AFQ requires per-flow state in core devices
and guarantees per-flow fairness while ABC offers per-user fairness.

In [17], the authors propose CoDel (controlled delay). CoDel minimizes the time packets spend
in queue by periodically checking whether the smallest sojourn time of all queued packets is below
a certain threshold. If the threshold is exceeded, a packet is dropped and the time interval for the
next check is decreased. As soon as the threshold is not exceeded anymore, dropping packets stops
and the time interval is reset. In [18] CoDel is implemented in P4 for the software switch BMv2.
Although CoDel requires floating point calculations, the authors avoid extern functions by leveraging
a workaround that requires a significant amount of table entries.

In [19] the authors propose a congestion avoidance mechanism that they implement in P4.
It leverages pre-established alternative paths to decrease the load on congested routes. When a
network device detects that a latency-critical flow is in danger to be delayed due to queueing delay,
it redirects the traffic of the affected flow to a pre-established alternative path. The authors evaluate
their P4 implementation, which does not require extern functions on either the P4 software switch
BMv2 or the Netronome Agilio CX SmartNIC. In contrast to ABC, the implementation utilizes a local
agent on each network device to reply to congestion in a timely manner.

Future Internet 2019, 11, 159 3 of 12

So far, there is only a small number of P4 implementations for congestion management
mechanisms in the literature, and most of them have been demonstrated on software switches.
In contrast, for monitoring purposes, there are many novel concepts based on P4 technology, and quite a
few have been prototyped on hardware platforms. The work in [20] proposes a monitoring mechanism
for detecting microbursts in datacenter networks at line rate. It has been implemented for the P4
hardware switch Tofino. In [21] the authors present a P4 implementation for the BMv2 software switch
that monitors the network state in real-time without requiring probing packets. In a similar context the
authors of [22] introduce a P4-based mechanism for the BMv2 that leverages bloom filter for both flow
tracking on a single device and full path tracking. The work in [23] proposes IDEAFIX, a monitoring
mechanism that identifies elephant flows in IXP networks by analyzing flow features in edge switches.
IDEAFIX has been implemented for the P4 BMv2 software switch.

3. Activity-Based Congestion Management (ABC)

We give an overview of ABC, introduce the activity meter and the activity AQM in more detail,
and discuss properties of ABC.

3.1. ABC Overview

ABC features a domain concept which is shown in Figure 1. Ingress nodes leverage activity
meters to measure the rate of traffic aggregates that enter the ABC domain. They derive an activity
value for each packet and mark that value in its header. Such an aggregate may be, e.g., the traffic of
a single user or a user group. Thus, ingress nodes require traffic descriptors for any aggregate that
should be tracked.

ABC Domain

Edge node w/
activity meter
& marker,
activity AQM

Core node w/
activity AQM

Figure 1. Activity metering and marking is performed only by ingress nodes. Both ingress and core
nodes apply activity active queue management (AQM) during packet forwarding.

Ingress nodes and core nodes of an ABC domain are forwarding nodes. They use an activity AQM
on each of their outgoing interfaces within the ABC domain to perform an acceptance decision for
every packet. That means, they decide whether to forward or drop a packet depending on its activity.
This enforces fair resource sharing among traffic aggregates within an ABC domain.

Egress nodes just remove the activity information from packets leaving the ABC domain.

3.2. Activity Meter

Ingress nodes run an activity meter per monitored traffic aggregate. The activity meter measures
a time-dependent traffic rate Rm over a short time scale MAM which is called memory. We chose the

Future Internet 2019, 11, 159 4 of 12

TDRM-UTEMA method [24] for this purpose. The meter is configured with a reference rate Rr and
computes the activity of a packet by

A = log2

(
Rm

Rr

)
. (1)

The activity is written into the header of the packet before passing it to the ABC domain.

3.3. Activity AQM

An activity AQM takes acceptance decisions for packets. If the current queue size Q exceeds a
computed drop threshold Tdrop, the packet is dropped, otherwise it is forwarded. The drop threshold
is computed as follows:

Tdrop(A) = max
(
Qmin, Qbase − γ · (A − Aavg)

)
. (2)

We explain the components of that formula. Qmin prevents packet dropping in the absence of
congestion. Qbase is a configured baseline value around which packets are dropped. A is the packet’s
activity and Aavg is a moving average of the activity of recently accepted packets. We utilize the
UTEMA method [24] with memory MAA for the computation of that average. The drop threshold is
proportional to the packet’s activity so that the loss probability of a packet increases with its activity.
The parameter γ > 0 allows to tune that effect.

3.4. Discussion

Ingress nodes are configured per controlled aggregate with traffic descriptors, the memory for
rate measurement, and a reference rate, and they require measurement state for each aggregate. If the
number of traffic aggregates on ingress nodes is moderate, this seems feasible. Forwarding nodes
are configured per egress port with parameters for activity averaging and activity AQM, and they
require averaging state for each egress port. As the number of egress ports is low, ABC scales well for
core nodes.

As packet dropping depends on activity values contained in packet headers, activity meters and
forwarding nodes should be trusted devices. Otherwise, malicious users can avoid packet drops by
inserting low activity values and obtain unfairly high throughput at the expense of other users.

Reference rates Rr specific to aggregates may be used to differentiate their achievable throughput
in case of congestion. Moreover, ABC has been extended to support different delay classes, i.e.,
aggregate-specific throughput and forwarding delay can be controlled independently of each other.
Detailed simulation results backing these claims and recommendations for parameter settings are
provided in [6].

We conclude that ABC provides scalable, QoS-aware congestion management for closed
networking domains.

4. Data Plane Programmability Using P4

We give an overview of data plane programmability using the programming language P4 [25]
and its processing pipeline. P4 allows the definition of new header fields and forwarding behaviour,
which makes it attractive for the implementation of novel forwarding paradigms. P4 programs
are compiled for so-called targets, i.e., P4-capable switches, and offer a program-specific application
programming interface (API) for their configuration. This API serves for either manual configuration or
automatic configuration using a controller. Due to the latter, P4 is often leveraged for software-defined
networking (SDN).

4.1. P4 Processing Pipeline

A P4 program defines a pipeline for packet processing which is visualized in Figure 2. It is
structured into the parser, the ingress pipeline, the egress pipeline, and the deparser.

Future Internet 2019, 11, 159 5 of 12

I
N
P
U
T

P
A
R
S
E
R

Match
Action

B
U
F
F
E
R

Match
Action

D
E
P
A
R
S
E
R

Ingress pipeline

packet modification+
egress selection

Engress pipeline

packet modification

O
U
T
P
U
T

Runtime

forwarding rules

Figure 2. P4 processing pipeline.

The parser reads packet headers and stores their values in header fields. They are carried through
the entire pipeline together with packets and standard metadata, e.g., the port on which the packet has
been received. In addition, user-defined metadata may store values calculated during processing, e.g.,
flags required for decisions later in the pipeline. The ingress and egress pipeline may modify header
fields, add or remove headers, clone packets, and perform many more actions useful for flexible packet
processing. Packets or clones may be even processed several times by the ingress or egress pipeline,
but we do not go into details here as we do not leverage these features for ABC. The ingress pipeline
typically determines the output port for a packet. After completion of the egress pipeline, packets are
deparsed, i.e., their headers are assembled from the possibly modified header fields, and sent.

4.2. Match Action Tables

Within the ingress and egress pipeline, packets are processed by a programmable sequence of
match action tables. Their entries are called rules and each rule consists of a match part and a set of
actions. Rules are installed, modified, or deleted during runtime through the API. When a packet is
processed, its header or metadata fields are compared by the match part of each rule until a matching
rule is found. There are different kinds of match types: exact, longest-prefix, and ternary. In case of
a match, no further matching within this table is performed, and the actions in the action set of the
corresponding rule are executed.

An action set consists of pre-defined primitives like adding or removing a header, reading and
writing header or metadata fields, adding or subtracting values, updating counters, or dropping the
packet. Custom functions, so-called externs, may be utilized within actions. Examples are encryption
or decryption of fields. While the set of supported externs is target-specific, software switches even
allow the definition of new externs. It is possible to define multiple match action tables. One action
is applying another match action table to a packet. Thereby, packets may be processed by a chain of
match action tables. To prevent processing loops, a packet can be processed at most once by any table
within a pipeline.

As an example, IP forwarding can be implemented using a longest-prefix match for the destination
IP address of an IP packet. In case of a match, actions are called to decrement the TTL field, adapt the
IP checksum, and forward the packet to the appropriate egress port.

For the sake of readability we omit technical details about P4 programming, the P4 code, and P4
syntax. For details we refer to the P416 specification [25].

Future Internet 2019, 11, 159 6 of 12

4.3. Variables

For arithmetic operations, P4 supports only signed integers. Therefore, we utilize extern functions
for floating point operations and store floating point numbers as fixed-size bit strings. Metadata and
header fields carry information throughout the processing pipeline, but they are bound to individual
packets. To store information persistently, registers may be used. They can be allocated at program
start and accessed and updated in actions of the ingress and egress pipeline. An example for the use of
registers is keeping connection state.

5. P4-Based Implementation of ABC

We first discuss some issues that impact the overall design of the prototype. Then, we present the
ingress and the egress control flow which define the behavior of the ingress and egress pipeline.

5.1. Design Considerations

We use the software switch BMv2 in the version of 10/15/2018 (unnumbered) as target. As the
software switch and the transmission link are only loosely coupled, we do not have access to the
buffer occupancy of the link and packets are lost in the link’s buffer if the software switch sends too
fast. To cope with this problem, we apply the following workaround. The BMv2 has a “packet buffer”
between ingress and egress pipeline and an “output buffer” after the egress pipeline. The latter is
used only for communication, not for buffering. We limit the packet rate of the egress pipeline to
4170 packets/s, which allows a throughput of 50 Mb/s for packets that are 1500 bytes large. This
ensures that the transmission link cannot get overloaded and that a potential queue builds up in the
BMv2’s packet buffer. With ABC, packets are accepted before being buffered. Therefore, we perform
packet acceptance decisions in the ingress pipeline. It requires the queue length for the egress port to
which the respective packet is destined. However, this value is accessible only in the egress pipeline.
Therefore, the P4 egress pipeline, whenever called to process a packet, copies the egress-port specific
queue length to a register which is also accessible in the ingress pipeline. To keep that register
value up-to-date, the ingress pipeline increments that register value by one whenever a new packet
is accepted for a specific egress port. This design is due to the lack of BMv2 to access the buffer
occupancy of the outgoing link. On hardware switches, it is desirable to have access to queue lengths
of transmission links so that AQMs can be efficiently implemented.

ABC requires externs for floating point operations to support rate measurement,
activity computation, activity averaging and computation of drop threshold. The externs operate on
state variables. These variables are interpreted by the externs as floating point numbers but are kept as
bit strings within P4. As the state variables are related to traffic aggregates or egress ports, we store
their bit string values in registers. As registers cannot be read or written by externs, we copy register
values to local variables and pass them to externs when they are called. Likewise, local variables can
be passed to externs, modified by them, and copied back to registers after the call.

We wrote externs in C++ and manually added their code to the source code of BMv2.
After recompilation, the user-defined externs were available within the P4 program. Adding externs is
more difficult for hardware switches and may require vendor support.

In our experiments we study the congestion management performance of ABC on a single
bottleneck link. In this particular case, only the transmitting side of the link performs activity metering
and runs an activity AQM. Therefore, packets do not need to carry activity information, which removes
the need for coding it in packet headers.

P4 programs provide an API for external control. We leverage this API and a script to populate
match action tables and to initialize state variables in our experiments. Therefore, a controller is not
needed for the prototype.

Future Internet 2019, 11, 159 7 of 12

5.2. Ingress Control Flow

The ingress control flow of the ABC prototype comprises activity metering, determination of the
egress port, and acceptance decision through activity AQM. It leverages two match action tables.

The first table holds rules for each aggregate with exact match on IP source address as this
defines the aggregates in our experiments. The rules contain configuration parameters for activity
metering and register numbers related to state variables. The associated logic calls an extern for
activity metering and stores the resulting activity value in user-defined metadata that is carried
with the packet. Activity metering is implemented as extern because our rate measurement requires
an exponential function and floating point division, and the activity calculation further requires a
logarithm (see Equation (1)). The extern leverages the packet’s arrival date and size which are available
as standard metadata, the configuration parameters passed as table entries, and three state variables
for aggregate-specific rate measurement.

The second table determines the egress port and performs the acceptance decision.
Determination of the egress port works like IP forwarding described above. Then, the egress port
specific queue length is read and an extern is called that performs activity AQM including activity
averaging. Besides the egress port, the rules contain configuration parameters for activity averaging
and activity AQM, and register numbers related to state variables for the purpose of activity averaging.
The extern accepts or denies the packet. In case of acceptance, the register for the egress port specific
queue length is incremented and the packet is forwarded to the egress control flow. Otherwise,
the packet is dropped.

5.3. Egress Control Flow

The egress control flow sends any received packet. In addition, it copies the egress port specific
queue length to the corresponding register.

6. Performance Evaluation

We first present our evaluation methodology and then demonstrate the fairness achieved without
and with ABC.

6.1. Evaluation Methodology

We describe the experimental design of our evaluation, the experimental environment,
and summarize applied parameters.

6.1.1. Experimental Design

Our study quantifies the goodput achieved by two clients uploading traffic to a server over a
joint bottleneck link with 50 Mb/s. Client 0 is mostly a heavy user in our experiments and Client 1 a
light user. We utilize the experimental setup depicted in Figure 3. Clients with different IP addresses
send traffic over fast access links with 100 Mb/s via a switch to a server behind a slow bottleneck link.
Traffic from each client constitutes a traffic aggregate identified by its source IP address. In this specific
experiment, only the client side of the bottleneck link requires ABC functionality. It meters the activity
of packets coming from the clients and drops them depending on that value. We renounce ABC on the
return path because it carries only little traffic, e.g., TCP acknowledgements in some experiment series.

6.1.2. Test Environment

Our testbed is hosted by a virtual machine with Ubuntu 16.04, 4 CPU cores with hyperthreading,
3.5 GHz, and 8 GB RAM. We utilize Mininet version 2.3.0d4 to emulate the mentioned experimental
network. Clients, server, and the switch are implemented as virtual machines. We leverage Iperf 3.6
for TCP and UDP traffic generation between client and server and measure the goodput in terms of
transport layer payload. One run takes 300 s and 10 runs were carried out per data point.

Future Internet 2019, 11, 159 8 of 12

Client 0

Client 1

Activity metering

100 Mb/s P4 switch
 (bmv2)

50 Mb/s

Activity AQM
100 Mb/s

Figure 3. Experimental setup.

6.1.3. Parameters

For the sake of comparability, we choose most experimental parameters as in [6]. The clients
are connected to the switch via 100 Mb/s links with a sufficiently large buffer size, and the switch is
connected to the server via a 50 Mb/s link with a buffer size of 24 packets. All links are configured
with a one-way delay of 5 ms.

Activity meters are configured with a memory of MAM = 3 s and a reference rate of Rr = 10 kb/s.
The activity averager is configured with a memory of MAA = 0.3 s and the activity AQM utilizes the
parameters Qmin = 6 packets, Qbase = 20 packets, and γ = 16 packets.

The results in this study differ from those in [6] in that we measure goodput instead of throughput,
which is due to the Iperf tool, and that we utilize a larger bottleneck bandwidth of 50 Mb/s instead
of 10 Mb/s in [6]. We cannot go to larger bottleneck speeds than 50 Mb/s in our experiments as the
software switch BMv2 cannot read input traffic fast enough and drops packets at the ingress at higher
speeds. Furthermore, we work now with Qmin = 6 packets instead of Qmin = 12 packets.

As ABC artificially limits the queue size, the transmission of a single flow may be hampered,
which is undesirable. However, we validated that with the chosen parameter set; the bottleneck link
can be fully utilized by a single TCP flow.

6.2. Experimental Results

We evaluate the bandwidth sharing performance without and with ABC in three different cases
that were investigated by simulation in [6].

6.2.1. Resource Sharing with CBR Traffic

In a first experiment series, both clients send constant bit rate (CBR) traffic using UDP packets
with 1448 bytes payload. Client 0 transmits at different rates R0 while Client 1 sends at R1 = 40 Mb/s.
Figure 4 shows the obtained goodput for both clients.

Without ABC, the goodput of Client 0 continuously increases with increasing traffic rate R0 while
the goodput of Client 1 decreases. In particular, the goodput is proportional to the sent traffic rate of
both clients. Thus, unfair sending behaviour is rewarded with higher goodput. This is different with
ABC. The goodput of Client 0 continuously increases with increasing traffic rate R0 as long as Client 0
sends less traffic than Client 1. As a consequence, the goodput of Client 1 continuously decreases.
If Client 0 sends more traffic than Client 1, the traffic of Client 0 is preferentially dropped due to
increased activity so that the goodput of Client 0 becomes clearly smaller than the goodput of Client 1.
Thus, ABC creates an ecosystem in which senders benefit from decreased activity in case of congestion
instead of being rewarded for sending at high rate. This incentivizes the use of congestion-controlled
transport protocols.

Future Internet 2019, 11, 159 9 of 12

10

20

30

40

10 20 30 40 50 60 70
Traffic rate R0 of Client 0 (Mb/s)

G
oo

dp
ut

 (
M

b/
s)

Without ABC
With ABC

Client 0
Client 1 (40 Mb/s)

Figure 4. Resource sharing with constant bit rate (CBR) traffic; Client 0 sends CBR traffic as indicated
on the x-axis and Client 1 sends CBR traffic at 40 Mb/s.

6.2.2. Resource Sharing with TCP Traffic

In a second experiment series, both clients send TCP traffic. We vary the number of saturated
TCP connections of Client 0 while Client 1 has only a single saturated TCP connection. Thus, Client 0
is a heavy user while Client 1 is a light user. Figure 5 shows the obtained goodput for both clients.

 0

10

20

30

40

50

1 2 4 8 16 32
Number of TCP connections of Client 0

G
oo

dp
ut

 (
M

b/
s)

Without ABC
With ABC

Client 0
Client 1 (1 TCP con.)

Figure 5. Resource sharing with TCP traffic; the number of saturated TCP connections of Client 0 is
indicated on the x-axis while Client 1 has only one saturated TCP connection.

Without ABC, the goodput of Client 0 increases with increasing number of TCP connections while
the goodput of Client 1 significantly decreases. With ABC, the goodput of both clients remains in the
order of 25 Mb/s if the number of TCP connections for Client 0 increases. Thus, fair resource sharing
is approximated.

Future Internet 2019, 11, 159 10 of 12

6.2.3. Resource Sharing with CBR and TCP Traffic

In the third experiment series, Client 0 sends CBR traffic at different rates R0 while Client 1 has a
single saturated TCP connection. Figure 6 shows the obtained goodput for both clients.

 0

10

20

30

40

50

60

10 20 30 40 50 60 70
Traffic rate R0 of Client 0 (Mb/s)

G
oo

dp
ut

 (
M

b/
s)

Without ABC
With ABC

Client 0 (CBR)
Client 1 (1 TCP con.)

Figure 6. Resource sharing with CBR and TCP traffic; Client 0 sends CBR traffic as indicated on the
x-axis while Client 1 has one saturated TCP connection.

Without ABC, the goodput of Client 0 increases with increasing transmission rate while the
goodput of Client 1 decreases because it can only use the bandwidth left over by Client 0. If the
transmission rate of Client 0 exceeds the capacity of the bottleneck link, Client 1 achieves hardly any
goodput. This is different with ABC. Client 0 can increase its goodput only up to 32 Mb/s by increasing
its transmission rate to very large values, but the remaining capacity is utilized by Client 1. Thus,
ABC approximates fair resource sharing even under challenging conditions.

7. Conclusions

We reviewed activity-based congestion management (ABC) for fair resource sharing, gave an
introduction to P4, and demonstrated the technical feasibility of ABC on programmable software
switches by a prototype implementation in P4. We presented performance results illustrating the
ability of ABC to enforce fairness.

The implementation leveraged several extern functions that can be utilized on a software switch
but may not be available on hardware switches. Thus, P4-capable hardware switches should provide a
wider range of externs to support richer use cases. Moreover, access to queue lengths of transmission
interfaces are desirable to support implementation of simple AQMs.

Experimental results with the prototype implementation illustrated that ABC provides an
ecosystem where users can maximize their throughput by sending at their fair share in case of
congestion, which incentivizes the use of congestion controlled transport protocols. Moreover,
the experimental results are in line with a more comprehensive simulation study [6].

As ABC does not require per-aggregate states in core nodes, it is a scalable technology for core
networks. As it requires trusted network devices, it should be applied only in closed networks.
Extensions for QoS differentiation exist. Thus, ABC provides scalable, QoS-aware congestion
management for closed networking domains. Therefore, it may be an attractive technology for
5G transport networks, data center networks, or residential access networks of ISPs.

Future Internet 2019, 11, 159 11 of 12

Author Contributions: Conceptualization, M.M.; Investigation, H.M.; Project administration, M.M.; Software,
H.M. and M.H.; Supervision, M.M.; Validation, D.M.; Visualization, D.M. and M.H.; Writing—original draft, H.M.
and D.M.; Writing—review and editing, M.M and H.M and D.M.

Funding: This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under Grant ME2727/2-1.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jaber, M.; Imran, M.A.; Tafazolli, R.; Tukmanov, A. 5G backhaul challenges and emerging research directions:
A survey. IEEE Access 2016, 4, 1743–1766. [CrossRef]

2. Kutscher, D.; Mir, F.; Winter, R.; Krishnan, S.; Zhang, Y.; Bernados, C.J. Mobile Communication Congestion
Exposure Scenario. 2015. Available online: http://tools.ietf.org/html/draft-ietf-conex-mobile (accessed on
1 July 2019).

3. Briscoe, B. Initial Congestion Exposure (ConEx) Deployment Examples. 2012. Available online: http:
//tools.ietf.org/html/draft-briscoe-conex-initial-deploy (accessed on 1 July 2019).

4. Briscoe, B.; Sridharan, M. Network Performance Isolation in Data Centres using Congestion Policing. 2014.
Available online: http://tools.ietf.org/html/draft-briscoe-conex-data-centre (accessed on 1 July 2019).

5. Menth, M.; Zeitler, N. Activity-based congestion management for fair bandwidth sharing in trusted packet
networks. In Proceedings of the IEEE/IFIP Network Operations and Management Symposium (NOMS),
Istanbul, Turkey, 23–25 April 2016.

6. Menth, M.; Zeitler, N. Fair resource sharing for stateless-core packet-switched networks with prioritization.
IEEE Access 2018, 6, 42702–42720. [CrossRef]

7. Bosshart, P.; Daly, D.; Gibb, G.; Izzard, M.; McKeown, N.; Rexford, J.; Schlesinger, C.; Talayco, D.; Vahdat, A.;
Varghese, G.; et al. P4: Programming protocol-independent packet processors. ACM SIGCOMM Comput.
Commun. Rev. 2014, 44, 87–95. [CrossRef]

8. Broadband Internet Technical Advisory Group (BITAG). Real-Time Network Management of Internet Congestion;
Technical report; Broadband Internet Technical Advisory Group (BITAG): Denver, CO, USA, 2013.

9. Stoica, I.; Shenker, S.; Zhang, H. Core-stateless fair queueing: A scalable architecture to approximate fair
bandwidth allocations in high-speed networks. IEEE/ACM Trans. Netw. 2003, 11, 33–46. [CrossRef]

10. Cao, Z.; Zegura, E.; Wang, Z. Rainbow fair queueing: Theory and applications. Comput. Netw.
2005, 47, 367–392. [CrossRef]

11. Nádas, S.; Turányi, Z.R.; Rácz, S. Per packet value: A practical concept for network resource haring.
In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA,
4–8 December 2016.

12. Laki, S.; Gombos, G.; Hudoba, P.; Nádas, S.; Kiss, Z.; Pongrácz, G.; Keszei, C. Scalable per subscriber QoS
with core-stateless scheduling. ACM SIGCOMM Demo 2018, 1, 84–86.

13. Nádas, S.; Gombos, G.; Fejes, F.; Laki, S. Towards core-stateless fairness on multiple
timescales. In Proceedings of the ACM/IRTF/ISOC Applied Networking Research Workshop (ANRW),
Montreal, QC, Canada, 22 July 2019.

14. Nádas, S.; Turányi, Z.; Gombos, G.; Laki, S. Stateless resource sharing in networks with multi-layer
virtualization. In Proceedings of the IEEE International Conference on Communications (ICC),
Shangai, China, 20–24 May 2019.

15. Cascone, C.; Bonelli, N.; Bianchi, L.; Capone, A.; Sanso, B. Towards approximate fair bandwidth sharing via
dynamic priority queuing. In Proceedings of the IEEE Workshop on Local & Metropolitan Area Networks
(LANMAN), Osaka, Japan, 12–14 June 2017.

16. Sharma, N.K.; Liu, M.; Atreya, K.; Krishnamurthy, A. Approximating fair queueing on reconfigurable
switches. In Proceedings of the USENIX Syposium on Networked Systems Design & Implementation
(NSDI), Renton, WA, USA, 9–11 April 2018; pp. 1–16.

17. Nichols, K.; Jacobson, V. Controlling queue delay. ACM Queue 2012, 10, 1–15. [CrossRef]
18. Kundel, R.; Blendin, J.; Viernickel, T.; Koldehofe, B.; Steinmetz, R. P4-CoDel: Active queue management in

programmable data planes. In Proceedings of the IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), Verona, Italy, 27–29 November 2018.

Future Internet 2019, 11, 159 12 of 12

19. Turkovic, B.; Kuipers, F.; van Adrichem, N.; Langendoen, K. Fast network congestion detection and
avoidance using P4. In Proceedings of the ACM SIGCOMM 2018 Workshop on Networking for Emerging
Applications and Technologies (NEAT), Budapest, Hungary, 20 August 2018.

20. Joshi, R.; Qu, T.; Chan, M.C.; Leong, B.; Loo, B.T. BurstRadar: Practical real-time microburst monitoring for
datacenter networks. In Proceedings of the 9th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys),
Jeju Island, Korea, 27–28 August 2018.

21. Geng, J.; Yan, J.; Ren, Y.; Zhang, Y. Design and implementation of network monitoring and scheduling
architecture based on P4. In Proceedings of the 2nd International Conference on Computer Science and
Application Engineering, Hohhot, China, 22–24 October 2018.

22. Hill, J.; Aloserij, M.; Grosso, P. Tracking network flows with P4. In Proceedings of the IEEE/ACM Innovating
the Network for Data-Intensive Science (INDIS), Dallas, TX, USA, 11 November 2018.

23. da Silva, M.V.B.; Jacobs, A.S.; Pfitscher, R.J.; Granville, L.Z. IDEAFIX: Identifying elephant flows in P4-based
IXP networks. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Abu Dahbi,
UAE, 9–13 December 2018.

24. Menth, M.; Hauser, F. On moving averages, histograms and time-dependent rates for online measurement.
In Proceedings of the ACM/SPEC International Conference on Performance Engineering (ICPE), L’Aquila,
Italy, 22–27 April 2017.

25. The P4 Language Consortium. P416 Language Specification. Available online: https://p4.org/p4-spec/
docs/P4-16-v1.0.0-spec.pdf (accessed on 1 June 2018).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Publications

2.2 Load Profile Negotiation in Day-Ahead Planning for Compliance with
Power Limits

350

Internationaler ETG-Kongress 2019, 08.–09.05.2019 in Esslingen am Neckar

Load Profile Negotiation for Compliance with
Power Limits in Day-Ahead Planning

Florian Heimgaertner, Sascha Heider, Thomas Stueber, Daniel Merling, and Michael Menth
Chair of Communication Networks, University of Tuebingen, Tuebingen, Germany

Email: {florian.heimgaertner,thomas.stueber,daniel.merling,menth}@uni-tuebingen.de, sascha.heider@student.uni-tuebingen.de

Abstract—The variability of electrical energy prices at the spot
market incentivizes cost-optimized load scheduling. Based on day-
ahead price forecasts, energy costs can be considerably reduced
by shifting energy-intensive processes to times with lower energy
prices. While the mechanism of the market match demand and
supply, they currently do not consider technical limitations of the
electrical power grid. A large number of consumers scheduling
electrical loads according to the same price forecast could result
in congestion in the transmission or distribution systems.

We propose a mechanism for day-ahead scheduling that
enables negotiation of load profiles between multiple consumers
and an aggregator in compliance with overall power limits. We
present two mechanisms for an aggregator without knowledge
about internal details of the participants to achieve this goal and
compare the performance to the results of a centralized scheduler
with global knowledge.

Index Terms—Smart grids, demand-side management,
scheduling, virtual power plant.

I. INTRODUCTION

The increasing share of weather-dependent renewable power
generation leads to a large intraday variability of wholesale
energy prices. Shifting loads to times with lower energy prices
can considerably reduce energy costs and helps to increase the
use of renewable energy by improving the match of demand
and supply. Schedules of multiple consumers optimized for
the same price forecast can lead to extreme load peaks. The
mechanisms of the energy markets match the demand peaks
and the production peaks, so the optimization of schedules
based on price forecasts could be beneficial for both the
generation and consumption domains. However, it can lead
to problems in the transmission and distribution domains as
there is no guarantee that the physical grid is capable of
transporting the purchased energy volumes from generators
to the consumers.

We proposed a distributed control architecture for virtual
power plants [1] where participating enterprises locally opti-
mize their load schedules according to price forecasts provided
by an aggregator. The aggregator trades energy at the spot
market on behalf of the participating enterprises. However, if
the combined load profiles of a set of enterprises violate any
constraints, the aggregator needs to negotiate re-scheduling
with the affected enterprises.

In this work we propose mechanisms for a set of business
units to negotiate load profiles that reduce energy costs while

avoiding the violation of restrictions imposed by bottlenecks
in the power grid.

This paper is structured as follows. Section II discusses
related work. In Section III we present the context for the
optimization and an abstract model for enterprises with load
shifting capabilities. Section IV proposes two mechanisms for
load profile negotiation. In Section V we shows the scenario
and parameters for the evaluation and in Section VI we
evaluate the performance of the negotiation mechanism and
compare its results to an centralized scheduling approach with
global knowledge. Section VII concludes the paper.

II. RELATED WORK

Ibars et. al. present a distributed load management using
dynamic pricing [2]. The approach is based on a network con-
gestion game. The authors show that the system converges to
a stable equilibrium. Biegel et. al. [3] describe a receding hori-
zon control approach for moving shifting loads to minimize
costs for balancing energy while avoiding grid congestion.
Huang et. al. [4] propose a congestion management method for
distribution grids with a high penetration of electrical vehicles
and heat pumps. They use a decomposition-based optimiza-
tion. In [5] they present a real-time approach for congestion
management using flexible demand swap. Boroojeni et. al. [6]
propose an oblivious routing economic dispatch approach for
distribution grids. Bagemihl et. al. [7] describe a market-based
approach to increase the capacity of a distribution grid without
physical grid expansion. Hazra et. al. [8] propose a demand-
response mechanism for grid congestion management using
ant colony optimization. Sundström and Binding [9] propose a
method for the optimization of charging schedules for electric
vehicles while avoiding grid congestion.

Most work in the area of grid congestion management
is based on actual grid topologies and focuses on global
optimizations to avoid grid congestion. This paper uses a sim-
plified approach, limiting congestion to a single bottleneck and
focuses on interactive negotiation without global knowledge.

III. MODEL

In this section, we present the use case. We explain the
concept of load profiles and define the parameters for the
consumer model.

c© 2019 VDE VERLAG GMBH

A. Use Case

The grid connection of a consumer is limited in electrical
power by technical or contractual means. We denote this limit
as lc where c is a consumer. Due to limitations in the distri-
bution grid, similar restrictions apply to groups of consumers,
e.g., urban districts. As the sum of all individual power limits
can be larger than the limit for the group, a group of consumers
could exceed the group power limit L while still complying
with their individual limits, i.e.,

∑
c∈C lc > L where C is

a set of consumers. This problem becomes more severe in
presence of price-optimized day-ahead planning when loads
of all flexible consumers are scheduled for the times with the
lowest energy price forecasts. However, day-ahead planning
usually involves an aggregator providing the forecasts and
trading at the energy markets. As an aggregator requires
load forecasts of all aggregated consumers, we propose a
mechanism for day-ahead demand-side management (DSM)
within the group the aggregated consumers.

Fig. 1: Negotiation process between enterprise and aggregator during day-
ahead planning.

Figure 1 shows the negotiation process to ensure that
limitations for a group of consumers are complied with. The
aggregator distributes price forecasts for the day-ahead energy
market to the aggregated consumers (1). Each consumer
computes price-optimized schedules based on their model pa-
rameters using the price forecast received from the aggregator
(2). After the best schedule is selected, the consumers send the
load profiles to the aggregator (3). After receiving load profiles
from the consumers, the aggregator checks global constraints
(4). An example for a global constraint is a cumulative
power limit for a group of participants imposed by the grid
operator. If such a constraint is violated, the aggregator sends
a rescheduling request to the affected groups or individual
participants (5). The affected consumers perform planning and
optimization based on additional information provided by the

aggregator and submit new load profiles (6). Steps (4)–(6) are
repeated until the global constraints are no longer violated.
Finally, energy is traded at the day-ahead market (7).

B. Consumer Model and Load Profiles

A load profile is a time series of electrical load over a given
period. As we focus on day-ahead optimization, we chose a
period of 24 hours and a granularity of one hour. A time slot is
denoted as t and the set of the time slots of a day is defined as
T := {0, . . . , 23}. We denote the load profile of a consumer
c as etc, t ∈ T , with an energy demand for each hour of a
day. The total energy demand of all consumers in time slot t
is limited by the group power limit Lt.

For our study we use an abstract model of a business
consumer with flexibility for load shifting. We do not con-
sider internal organization and dependencies among processes
within a consumer, but limit the model to energy and cost
parameters. The consumer is defined by a daily demand of
electrical energy Ec, a power limit ltc, and operational costs
At

c. The objective is to find a set of load profiles etc, t ∈ T ,
that satisfy the following conditions.

∑

t∈T
etc = Ec ∀c ∈ C (1)

etc ≤ ltc ∀t ∈ T , c ∈ C (2)∑

c∈C
etc ≤ Lt ∀t ∈ T (3)

Each load profile is associated with costs. F t is the energy
price forecast for time slot t. At

c gives the additional (non-
energy) operation costs of a consumer c in time slot t. The
total costs Cc for a consumer c are given by

Cc =
∑

t∈T
etc · F t +At

c. (4)

IV. MECHANISMS

In this section, we present a linear program that computes
load profiles for each participant resulting in the lowest total
costs while complying with the group power limit. The linear
program needs global knowledge, i.e., it requires information
about internal details such as cost structures of all partici-
pants to compute the solution. However, aggregator operation
without such global knowledge of internal details about the
participating enterprises is an explicit goal of [1]. Therefore,
we propose two methods for load profile negotiation that work
without global knowledge. The sequential approval method
is based on a first-come-first-serve approach combined with
a compensation for swapping time slots. The simultaneous
approval method requests multiple load profiles per participant
to find an acceptable combination of load profiles.

A. Load Optimization Using Global Knowledge

The load profiles etc, t ∈ T , c ∈ C consist of continuous
variables that can be determined by the following linear
program.

minimize
23∑

t=0

∑

c∈C
F tetc +At

c

subject to
∑

c∈C
etc ≤ Lt, t ∈ T

23∑

t=0

etc = Ec, c ∈ C

etc ≤ ltc, t ∈ T , c ∈ C
etc ∈ R, t ∈ T , c ∈ C

B. Sequential Approval of Load Profiles

For the sequential approval method, each submitted load
profile is individually approved after submission unless its
load combined with the previously approved load profiles
would exceed the group power limit. To resolve the violation,
all participants with acknowledged energy demand in the
respective time intervals compute alternative load profiles
avoiding the overloaded time slots t ∈ T ′. They submit load
profiles annotated with the additional costs resulting from
higher energy prices or increased operation costs in alternative
time intervals. The aggregator selects the combination of load
profiles with the lowest total additional costs. The process is
repeated until a load profile for each participant is approved.

A linear program is used to find an appropriate combination
of load profiles. The load profiles are selected such that
the sum of the additional costs, i.e., the differences between
the respective cheapest load profiles, of all enterprises is
minimized. If every consumer c hands in nc load profiles,
let xi

c be a binary variable which is true iff the i-th schedule
of enterprise c ∈ C is selected. Furthermore, let et,ic be the
energy demand of load profile i of consumer c in slot t, Ci

c

the total cost of consumer c for load profile i and Lt the group
power limit of slot t.

minimize
∑

c∈C

nc∑

i=1

(Ci
c − C1

c) · xi
c

subject to
nc∑

i=1

xi
c = 1, c ∈ C

∑

c∈C

nc∑

i=1

et,ic xi
c ≤ Lt, t ∈ T

xi
c ∈ {0, 1}, c ∈ C, i = 1, ..., nc

The inequations ensure that every consumer has exactly one
schedule approved and that the group power limit is not
exceeded in any time slot.

The participant triggering the violation compensates addi-
tional costs for participants with approved load profiles or
selects a different load profile if costs are lower compared
to the required compensation. While a participant can exag-
gerate the additional costs to generate additional revenue from
rescheduling, higher costs lead to a lower chance for a load
profile to be selected by the aggregator or accepted by the
participant that triggers the violation.

C. Simultaneous Approval of Load Profiles

For the sequential approach the order of load profile submis-
sions is important. Therefore late submissions of load profiles
are penalized and the cost increase is distributed unevenly
among the participants. This might lead to acceptance prob-
lems and prevent some enterprises from participating.

A straightforward implementation of an order-agnostic ne-
gotiation method consists of iterative energy price increases
for the overloaded time slots and requests for new load
profiles from all participants. However, this approach leads
to artificially high energy prices and experiments showed that
it fails to resolve violations for low group power limits while
the sequential approval method still succeeds. Therefore, we
propose a simultaneous approval method that works without
modified price forecasts.

The aggregator checks for limit violations after all par-
ticipants have submitted load profiles. In case of a limit
violation the aggregator requests an alternative schedule from
all participants, indicating the affected time slots t ∈ T ′. With
the original load profiles and the alternative load profiles, the
aggregator computes a combination not exceeding the limits.
If such a combination does not exist, the aggregator repeatedly
increases the number of requested load profiles per participant
until there is a combination of load profiles that complies with
the limits. The participants annotate the list of submitted load
profiles with a preference.

The optimal selection of load profiles is computed using a
linear program. If every consumer hands in n load profiles,
let xi

c be a binary variable which is true iff the i-th schedule
of enterprise c ∈ C is selected. Furthermore, let et,ic be the
energy demand of load profile i of consumer c in time slot t,
Ci

c the total cost of consumer c for load profile i and Lt the
group power limit of slot t.

minimize
∑

c∈C

n∑

i=1

i · xi
c

subject to
n∑

i=1

xi
c = 1, c ∈ C

∑

c∈C

n∑

i=1

et,ic xi
c ≤ Lt,t ∈ T

xi
c ∈ {0, 1}, c ∈ C, i = 1, ..., n

The weighting of load profiles by the number i gives the load
profiles a preference by the order of submission. The consumer
c ∈ C indicates that a load profile et,ic is preferred over a load
profile et,i+1

c .

V. EVALUATION MODEL

In this section we describe company-specific operational
costs and day-ahead forecasts used in our experiments. Finally,
we point out how load profiles are calculated for companies
that participate in the negotiation processes described in Sec-
tion IV-B and Section IV-C.

A. Operational Cost Factor

In the model described in Section III-B operating costs
At

c can be given per time slot for each consumer. For our
evaluation, we model the At

c as a dependency of the energy
demand etc and an operating cost factor f t

o,c. We model the
operational cost factor f to, c of a consumer c using an interval
of primary business hours and two intervals of secondary
business hours. The primary business hours start at time slot tpc
and its duration is dpc time slots. The secondary business hours
are dsc time slots before and after the the primary business
hours. During the primary business hours the operational cost
factor is fo,c and 2 · fo,c during the secondary business hours.
Outside of primary and secondary business hours operational
costs are infinite, so business operation is not possible. The
additional operational costs are given by the operational cost
factor and the energy demand in the respective time slot:
At

c = f t
o,c · etc.

Fig. 2: Operation cost factor f t
o,c defined by parameters tpc , dpc , dsc , and n.

An example of operating costs over time defined by those
parameters is given in Figure 2. The operating costs are twice
as large during secondary business hours compared to primary
business hours. During nonproductive hours, operating costs
are infinite.

For our evaluation we chose tpc ∈ {7, . . . , 11}, dpc =
8, and dcs = 2. We define four classes of consumers
by (Ec, fo,c), Ec ∈ {1200 kWh, 3000 kWh} and fo,c ∈
{500e/MWh, 1000e/MWh}. The individual power limit ltc
is set to Ec

6 in all time slots. Each starting time slot tpc is used
once per class resulting in a group size of 20.

B. Day-Ahead Price Forecast

The prices shown in Figure 3 are used as day-ahead price
forecast. While the actual prices are fictitious, the price level
and the development over the 24 hour period are typical for
the German day-ahead energy market.

C. Local Load Scheduling

The total costs of a schedule arise from the energy costs
associated with the load profile and the operation costs. The
price forecast is given as F t, t ∈ T , where F t is the predicted
price per MWh during time slot t.

Fig. 3: Day-ahead energy price forecast.

Data: T t
c for 0 ≤ t < 24, ltc, Ec

Result: etc for 0 ≤ t < 24
t[] := list of times sorted ascending by value of T t

c

i = 0
E := Ec

while E > 0 do
if E > ltc then

e
t[i]
c := ltc
E := E − ltc

else
e
t[i]
c := E
E := 0

i := i+ 1
end

Algorithm 1: Cost-optimized local load scheduling.

As the hourly operation costs At
c in our scenario depend

on the energy consumption the algorithm for producing cost-
optimized schedules is straightforward. The scheduling is
implemented using a greedy approach as shown in Algo-
rithm 1. A scheduler first computes the total operation costs
per kWh T t

c = F t + f t
o,cc. At the time t with the lowest

T t
c , energy consumption etc is set to the maximum allowed

by ltc, proceeding with the second-lowest T t
c and so on until∑23

t=0 e
t
c = Ec. The total cost Cc of a schedule i is computed

according to Equation (4).
For the computation of alternative load profiles, the con-

sumers repeat Algorithm 1 with selectively reduced ltc for the
affected time slots t ∈ T ′. For the sequential approval method,
the consumers use ltc = 0,∀t ∈ T ′. For the simultaneous
approval method, the consumers reduce ltc for the affected time
slots t ∈ T ′ by 1% iteratively.

VI. RESULTS

In this section we present the results of the evaluation. We
show the load profiles resulting from sequential and simulta-
neous approval and compare them to the global optimum. In
the evaluation scenario described in Section V, the sum of all
individual power limits is given by

∑
c∈C l

t
c = 7000 kW ∀t ∈

T . We use relative group power limits of 85%, 65%, and
55%, corresponding to Lt ∈ {5950 kW, 4550 kW, 3850 kW}
for all time slots. We show the cost increase compared to each

TABLE I: Relative total cost increase.

Group power limit
5950 kW (85%) 4550 kW (65%) 3850 kW (55%)

Global optimum 0.03% 0.15% 4.40%
Sequential approval 0.07% 0.23% 6.01%

Simultaneous approval 0.04% 1.02% 12.12%

consumer’s preferred load profile, which would be possible
with a group power limit of Lt = 7000 kW. Finally we
give an overview on the scheduling overhead caused by both
mechanisms.

(a) Results for 85% relative group power limit.

(b) Results for 65% relative group power limit.

(c) Results for 55% relative group power limit.

Fig. 4: Load profiles resulting from simultaneous approval, sequential ap-
proval, and global optimization at different group power limits.

A. Negotiation Results at 85% Relative Group Power Limit

The results for the load profile negotiation at a group power
limit of 5950 kW are shown in Figure 4(a). Both the sequential
and simultaneous approval methods yield load profiles similar
to the global optimum. The only major difference can be seen
at the 9:00 time slot which is only selected in the simultane-
ous approval method. However, Table I shows only minimal
differences regarding the increased costs. While the difference
is negligible, the simultaneous approval method actually leads

(a) Results for 85% relative group power limit.

(b) Results for 65% relative group power limit.

(c) Results for 55% relative group power limit.

Fig. 5: Percentage of consumers with higher relative cost increase at different
group power limits.

to lower increased costs compared to the sequential approval
method. Figure 5(a) shows that no cost increase occurs for
more than 50% of the consumers with the global optimum and
the parallel approval method. With the simultaneous approval
method, cost increase occurs for all consumers, while no
consumer suffers from cost increase of more than 0.1%.

B. Negotiation Results at 65% Relative Group Power Limit

Figure 4(b) shows the results for the load profile negotiation
at a group power limit of 4550 kW. While in most time slots
the load is similar to the global optimum, larger differences
can be seen at 6:00, 8:00, and 15:00. The sequential approval
yields increased costs close to the global optimum as shown in
Table I. While the increased costs caused by the simultaneous

approval method exceed the optimum by a factor of 7, with
approximately 1% they are still very low. However, according
to Figure 5(b) the simultaneous approval method does not only
lead to the highest cost increase but also to the most uneven
distribution of the cost increase among the consumers.

C. Negotiation Results at 55% Relative Group Power Limit

The results for the load profile negotiation at a group power
limit of 3850 kW are shown in Figure 4(c). The low group
power limit compared to the total energy demand forces the
consumers to shift more energy demand to the secondary
business hours. Due to the additional costs, this leads to
higher total costs. In Table I we can see that even the global
optimum leads to an increase of approximately 4% compared
to the preferred load profile of each consumer. The sequential
approval method leads to an increase of 6%, and the simul-
taneous approval leads to an increase of approximately 12%.
Figure 5(c) does not show a significant difference regarding
the evenness of the distribution of the cost increase.

D. Scheduling Overhead

Table II shows the average number of load profiles that a
consumer computes before the violation of the group power
limit is resolved. The sequential approval method requires the
computation of slightly less load profiles compared to the
simultaneous approval method.

TABLE II: Average number of load scheduling cycles per consumer.

Group power limit
5950 kW (85%) 4550 kW (65%) 3850 kW (55%)

Sequential approval 17 53 90
Simultaneous approval 18 63 122

VII. CONCLUSION

Optimized load scheduling based on day-ahead energy price
forecasts may lead to demand peaks that cannot be satisfied
due to grid limitations. In this paper, we proposed approaches
for load profile negotiation that do not require knowledge of
internal enterprise details at the aggregator. The results for
the given scenario are close to the optimum computed using
global knowledge. For lower group power limits compared to
the sum of all individual power limits, the sequential approval
method yields a lower increase of total costs compared to the
simultaneous approval method.

Due to the simplified model, the results cannot be gener-
alized. However, the results show that it is possible to use

The first-come-first-serve property of the sequential ap-
proval method leads to penalties for late submissions and
can be considered unfair. However, the expectation that the
simultaneous approval method leads to a more even distri-
bution of cost increase does not hold for low group power

load profile negotiation to comply with power limits in a day-
ahead price optimization scenario. The cost increase is higher
compared to a central optimization using global knowledge,
but except for very low group power limits (see Section VI-C)
the total cost increase is quite small.
limits. Additionally, for the simultaneous approval method an
incentive for submitting the requested number of different
load profiles and a distance metric to quantify the degree of
difference between submitted load profiles are required.

Opportunities for future research include investigations with
more complex mechanisms and more elaborated consumer
models.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the German Federal Ministry for Economic Affairs and
Energy under the ZIM programme (Zentrales Innovation-
sprogramm Mittelstand), grant no. 16KN039521. The authors
alone are responsible for the content of this paper.

REFERENCES

[1] F. Heimgaertner, U. Ziegler, B. Thomas, and M. Menth, “A Distributed
Control Architecture for a Loosely Coupled Virtual Power Plant,” in
ICE/IEEE International Technology Management Conference (ICE/IEEE
ITMC), Jun. 2018.

[2] C. Ibars, M. Navarro, and L. Giupponi, “Distributed Demand Manage-
ment in Smart Grid with a Congestion Game,” in IEEE International
Conference on Smart Grid Communications (SmartGridComm), 2010, pp.
495–500.

[3] B. Biegel, P. Andersen, J. Stoustrup, and J. Bendtsen, “Congestion
Management in a Smart Grid via Shadow Prices,” in 8th Power Plant
and Power System Control Symposium (PPPSC), Sep. 2012.

[4] S. Huang, Q. Wu, H. Zhao, and C. Li, “Distributed Optimization based
Dynamic Tariff for Congestion Management in Distribution Networks,”
IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 184–192, 2019.

[5] S. Huang and Q. Wu, “Real-Time Congestion Management in Distribution
Networks by Flexible Demand Swap,” IEEE Transactions on Smart Grid,
vol. 9, no. 5, 2018.

[6] K. G. Boroojeni, M. H. Amini, S. S. Iyengar, M. Rahmani, and P. M.
Pardalos, “An Economic Dispatch Algorithm for Congestion Management
of Smart Power Networks,” Energy Systems, vol. 8, no. 3, pp. 643–667,
2017.

[7] J. Bagemihl, F. Boesner, J. Riesinger, M. Künzli, G. Wilke, G. Binder,
H. Wache, D. Laager, J. Breit, M. Wurzinger, J. Zapata, S. Ulli-Beer,
V. Layec, T. Stadler, and F. Stabauer, “A Market-Based Smart Grid
Approach to Increasing Power Grid Capacity Without Physical Grid
Expansion,” Computer Science - Research and Development, vol. 33,
no. 1, pp. 177–183, 2018.

[8] J. Hazra, K. Das, and D. P. Seetharam, “Smart Grid Congestion Man-
agement Through Demand Response,” in IEEE International Conference
on Smart Grid Communications (SmartGridComm). IEEE, 2012, pp.
109–114.

[9] O. Sundstrom and C. Binding, “Flexible Charging Optimization for
Electric Vehicles Considering Distribution Grid Constraints,” IEEE Trans-
actions on Smart Grid, vol. 3, no. 1, pp. 26–37, 2012.

	List of Abbreviations
	Summary
	List of Publications
	Introduction & Overview
	Software-Defined Networking and Data Plane Programming
	Programmable Protocol-Independent Packet Processor (P4)
	Bit Index Explicit Replication (BIER)
	Research Objectives
	Research Context
	Research Results

	Results & Discussion
	Protection of Data Plane Traffic in SDN with P4
	Robust LFA Protection for Software-Defined Networks (RoLPS)
	P4 Protect

	BIER-Based Multicast in P4
	BIER Overview
	BIER Fast Reroute (BIER-FRR)
	BIER Scalability
	BIER Implementation in P4
	Discussion and Outlook

	Additional Content
	P4 ABC
	Load Profile Negotiation

	Personal Contribution
	Publications
	Accepted Manuscripts (Core Content)
	Robust LFA Protection for Software-Defined Networks (RoLPS)
	P4-Protect: 1+1 Path Protection for P4
	An Overview of Bit Index Explicit Replication (BIER)
	Comparison of Fast-Reroute Mechanisms for BIER-Based IP Multicast
	P4-Based Implementation of BIER and BIER-FRR for Scalable and Resilient Multicast
	Hardware-Based Evaluation of Scalable and Resilient Multicast With BIER in P4
	Efficiency of BIER Multicast in Large Networks
	Learning Multicast Patterns for Efficient BIER Forwarding with P4
	A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research

	Accepted Manuscripts (Additional Content)
	Implementation and Evaluation of Activity-Based Congestion Management Using P4 (P4-ABC)
	Load Profile Negotiation in Day-Ahead Planning for Compliance with Power Limits

