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Abstract 

Parkinson's disease (PD) is a common progressive neurodegenerative disorder with 

a complex and heterogeneous genetic landscape. Approximately 90% of all PD cases 

are driven by the cumulative effect of several common low-risk genetic variants.  

Over the last years, genetic studies of familial and sporadic PD cases identified a 

range of high and low-risk variants, representing approximately 40% of estimated 

heritability. However, the role of structural variants (SV) in the PD missing 

heritability remains understudied. Therefore, we investigated SVs in the human 

cohort enriched for the PD phenotype to expand our knowledge about the putative 

PD genetic risk factors.  We leveraged the matching omics datasets obtained from 

95 iPSC lines differentiated into the dopaminergic neuronal-like state to run the SV 

calling and to directly assess their impact on the gene and transcript expression. We 

demonstrated a conceptual approach for the genome-wide SV annotation and 

pathogenicity assessment, addressing the challenges of functional SV effect 

prediction based on the known properties of genome regions and available multi-

omics data.  Using this approach, we prioritized a group of non-coding SVs absent 

in the healthy controls with a strong association with the differential expression of 

genes whose dysregulation can trigger the development of PD or PD-related 

phenotype. Discovered variation impacts molecular mechanisms involved in the 

regulation of signaling processes, oxidative stress response, and neuronal DNA 

reparation.  Additional analysis on the larger PD patient and control cohort has to be 

conducted for variant-expression association validation and exploration of the allele 

effect size and penetrance of the prioritized hits. The dataset is publicly available to 

facilitate the further discovery of SV PD risk association as well as to study sequence 

signatures and neurological disease-specific SV hot spots.
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1 Introduction 

1.1 Parkinson's disease - missing heritability and molecular 

pathways 

Parkinson's disease (PD) is a complex progressive neurodegenerative disorder that 

manifests both motor and non-motor impairments. In Europe, prevalence and 

incidence rates for PD are estimated at approximately 108–257/100 000 and 11–

19/100 000 per year, respectively [1]. In Germany, PD prevalence is estimated to be 

217/100,000 [2]. Globally, PD is expected to reach a prevalence of 12.4 million cases 

by 2040 [3].  

PD is characterized by a selective loss of dopaminergic neurons in the substantia 

nigra pars compacta, accumulation of α-synuclein aggregates, and, in some cases, 

Lewy Bodies formation. The clinical hallmark of PD is motor symptoms, including 

resting tremor, rigidity, bradykinesia, and gait alterations. Several clinical challenges 

accompany the PD complexity, including difficulties to make a definitive diagnosis 

during the early disease stages, personalized treatment to ameliorate motor and non-

motor symptoms, and lack of technology to slow down the neurodegenerative 

process [4]. PD diagnosis and diagnostic differentiation from atypical parkinsonian 

disorders are challenging in routine clinical practice. The diagnostic accuracy was 

assessed to be only 80.3%, and 10% of cases with alternative pathologies were 

diagnosed with PD [5,6].  

Both environmental and genetic factors were shown to contribute to the disease via 

a system of complex interactions. For example, potential associations were found 

between PD and coffee intake, smoking, and exposure to pesticides [4,7]. The 

genetics of PD is represented by a complex interplay of highly pathogenic rare causal 

variants and more frequent variants with a small risk effect size. Even though the 

variant penetrance in PD is very likely to be affected by different genetic and non-

genetic factors, the term ‘monogenic’ is being actively used for PD as a convenient 

simplification to describe familial cases with highly penetrant mutations [8]. It was 

shown that approximately 10% of all PD cases exhibit a clear Mendelian inheritance 

pattern through a dominant or recessive mode with a high risk of PD recurrence 

within a family [9].  

https://paperpile.com/c/Pow9hH/sjAa
https://paperpile.com/c/Pow9hH/k6KB
https://paperpile.com/c/Pow9hH/3Xee
https://paperpile.com/c/Pow9hH/gMBf
https://paperpile.com/c/Pow9hH/r3Js+eYpc
https://paperpile.com/c/Pow9hH/gMBf+P6UQ
https://paperpile.com/c/Pow9hH/46kD
https://paperpile.com/c/Pow9hH/ye6N
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Up to 20 genes have been discovered to cause monogenic forms of PD, and the gene 

list is constantly updated [8,10].  The first proven genetic factor was discovered in 

1997 during a family study which occurred to be a missense variant in SNCA (A53T) 

[11]. SNCA pathogenic mutations can be classified into three main classes: point 

missense mutations, repeat expansions in the promoter region, and loci 

multiplications [10]. Missense mutations in SNCA are highly penetrant and 

associated with early onset autosomal dominant (AD) PD and a good response to L-

DOPA treatment [12]. The main pathogenic effect of the SNCA mutations occurs 

through a change in the affinity of SNCA to lysosomal transmembrane receptors, 

thus inhibiting protein autophagy-dependent clearance and triggering the formation 

of protein oligomers [13–15].  In addition, a growing amount of evidence suggests 

that mutated SNCA prevents the dopamine vesicle release leading to the 

neurotransmitter cytoplasmic accumulation and subsequent metabolic dysfunction 

in dopaminergic neurons due to oxidative stress [16–18].  

The most frequent genetic cause of familial AD PD is pathogenic variation in 

LRRK2 [19,20]. LRRK2 mutations can be both low and high penetrant and typically 

associated with late-onset AD PD features, presumably including motor symptoms 

[21].  Known LRRK2 mutations lead to hyperactivation of the enzyme catalytic 

domain triggering an increased level of autophosphorylation and LRRK2 target 

protein phosphorylation and affecting microtubule elaboration [22,23]. The 

complexity of LRRK2 and its participation in many crosstalk molecular pathways 

make this kinase one of the main targets for developing a PD cure [24]. 

Another gene implicated in the AD form of PD is VPS35 [25]. The only known 

missense variant in PD (D620N) is present in different populations with an overall 

prevalence of 0.115% [26,27]. The mutation impairs the endosomal trafficking 

pathway causing disturbance of endolysosome maturation and membrane receptor 

recycling and affecting autophagy and mitophagy processes [28,29].  

Mutations in GBA, a gene associated with the lysosomal storage disorder Gaucher 

disease, are among the highest genetic risk factors for PD. Approximately 3-20% of 

PD patients in different populations harbor GBA pathogenic mutations [30–32]. It 

was recently discovered that certain variants increase the risk of PD development in 

GBA carriers at SNCA and CTSB loci [33]. GBA mutations are acting through both 

https://paperpile.com/c/Pow9hH/46kD+7opa
https://paperpile.com/c/Pow9hH/t1V8
https://paperpile.com/c/Pow9hH/7opa
https://paperpile.com/c/Pow9hH/EQZd
https://paperpile.com/c/Pow9hH/ZqL8+noTe+n3ar
https://paperpile.com/c/Pow9hH/ChiZ+y4IG+YfSI
https://paperpile.com/c/Pow9hH/W2a4+kAac
https://paperpile.com/c/Pow9hH/cIxy
https://paperpile.com/c/Pow9hH/4wyV+sd3t
https://paperpile.com/c/Pow9hH/8qVs
https://paperpile.com/c/Pow9hH/MDEV
https://paperpile.com/c/Pow9hH/AqI3+jdXf
https://paperpile.com/c/Pow9hH/QV4N+ztUs
https://paperpile.com/c/Pow9hH/r1R8+jFcL+PUoI
https://paperpile.com/c/Pow9hH/c7Bh
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loss- and gain-of-function mechanisms affecting autophagic-lysosomal pathways, 

triggering aggregation of SNCA protein and inflammatory response [34]. 

Pathogenic variants in other PD genes, such as DJ-1, PRKN (parkin), PINK1, and 

FBXO7 were associated with the early-onset autosomal recessive (AR) forms of PD 

affecting presumably mitochondrial and mitophagy functions [35–38]. Mutations in 

PRKN are the most common genetic factors in AR early-onset PD forms, followed 

by pathogenic variation in PINK1 [39]. The main PD causal small variation types 

described for PRKN and PINK1 include missense and frameshift mutations [40].  

Mutations in these genes disturb the PINK1/parkin mitophagy signaling pathway 

affecting mitochondrial homeostasis [41,42].  

Other known genes with PD causal variants impairing lysosomal and mitochondrial 

functions and synaptic transmission process are ATP13A2 [43], CHCHD2 [44], 

DNAJC6 [45], PLA2G6 [46], VPS13C [47], and SYNJ1 [48]. 

However, most PD cases cannot be explained by a highly penetrant pathogenic 

variation. PD is believed to follow the “common disease common variant” (CDCV) 

hypothesis that suggests that the genetic component of PD is the cumulative result 

of several common low-risk variants [49]. Genome-wide association study (GWAS) 

is a powerful tool to explore the complex genetics of PD, allowing us to investigate 

most of the common human genetic variation hypothesis-freely. Recent meta-GWA 

studies identified 92 independent genome-wide significant association signals in 

European and Asian populations, representing 20-36% of estimated heritability 

[50,51]. Several GWAS signals are localized close to known PD genes such as 

SNCA, LRRK2, GBA, and VPS13C, implying that more frequent variants in these 

genes can increase the risk for PD. Notably,  a recent GWAS discovered several loci 

that influence PD onset [52].  

It is essential not only to identify the genetic risk loci but also to investigate the 

biological effect of the observed variation to determine the actual causal mutation 

and perturbed molecular pathways [53]. Expression quantitative loci analysis 

(eQTL) allowed researchers to associate the discovered GWAS SNPs with gene 

expression and gene tissue-specific expression, indicating possible molecular 

interactions between PG GWAS loci and pointing out the most relevant tissues and 

cell types[50].  Collected omics data and results of functional studies are 

https://paperpile.com/c/Pow9hH/NbaG
https://paperpile.com/c/Pow9hH/waqr+TbeI+jd2Q+2Jvp
https://paperpile.com/c/Pow9hH/yW8o
https://paperpile.com/c/Pow9hH/VXet
https://paperpile.com/c/Pow9hH/6Pon+jFy1
https://paperpile.com/c/Pow9hH/Wnix
https://paperpile.com/c/Pow9hH/oVNQ
https://paperpile.com/c/Pow9hH/bqH9
https://paperpile.com/c/Pow9hH/M2Yz
https://paperpile.com/c/Pow9hH/jgIi
https://paperpile.com/c/Pow9hH/Pkpr
https://paperpile.com/c/Pow9hH/yRv1
https://paperpile.com/c/Pow9hH/i66O+bXnt
https://paperpile.com/c/Pow9hH/lfej
https://paperpile.com/c/Pow9hH/y437
https://paperpile.com/c/Pow9hH/i66O
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accumulated on the PD GWAS Locus Browser platform developed by the 

International Parkinson’s Disease Genomics Consortium (IPDGC)  to facilitate 

further novel gene and variant prioritization: Locus Browser 

https://github.com/ipdgc/PD-Wiki-Loci [53]. However, despite the valuable insights 

into PD genetics provided by recent studies, the role of structural variants is 

understudied due to the technical and biological challenges. Nevertheless, SVs are 

believed to contribute to the missing heritability of PD substantially [54]. 

 

1.2 Structural variants as risk factors for neurological 

disorders 

Structural variants (SVs) are arbitrarily defined as chromosomal genomic 

rearrangements greater than 50 bps [55]. SVs are classified based on their nature into 

classes that include DNA unbalanced gains - duplicates (DUPs) and insertions 

(INSs), or losses such as deletions (DELs), and balanced rearrangements that occur 

without dosage alterations such as inversions (INVs) and translocations (TRAs). 

Unbalanced genomic rearrangements are usually referred to as copy number variants 

(CNVs) [55]. 

The source of SVs roots in mutational processes occurring during DNA 

recombination, replication, and repair mechanisms. A common mechanism of SV 

formation is non-allelic homologous recombination (NAHR) [56,57]. The 

recombination occurs between non-homologous loci (ectopic recombination) due to 

the high similarity of the sequences, which are most often located in the repetitive 

regions, including transposable elements or segmental duplications. The ectopic 

recombination usually happens on the same chromosome or between two 

homologous chromosomes; more rarely, it occurs between two non-homologous 

chromosomes giving rise to DELs and DUPs with a size of several kbps to Mbps 

[58–60]. It was discovered that most NAHR events happen due to recombination 

errors in SINEs [61]. Shorter SVs are often generated during the DNA replication 

and transposable elements activity dominated by Alu-Alu-mediated events in 

primates [62–64]. The investigation of genome-wide distribution patterns of large 

https://github.com/ipdgc/PD-Wiki-Loci
https://paperpile.com/c/Pow9hH/y437
https://paperpile.com/c/Pow9hH/NuIa
https://paperpile.com/c/Pow9hH/M0LV
https://paperpile.com/c/Pow9hH/M0LV
https://paperpile.com/c/Pow9hH/xn1Y+zC2g
https://paperpile.com/c/Pow9hH/o7AK+uJqt+owDu
https://paperpile.com/c/Pow9hH/0WG5
https://paperpile.com/c/Pow9hH/xKZL+HXYg+2TwH
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repeats revealed that they quite often overlap SVs associated with different 

pathogenic phenotypes [65,66]. 

SVs play a profound role in human genome evolution and genetic adaptation, 

shaping population diversity [67–70]. The adaptive and detrimental effects of SVs 

can be explained through the alteration of gene expression. The direct impact can 

manifest through the gene dosage change or coding region alteration [71,72]. SVs 

can affect regulatory elements and locally change the 3D DNA structure impacting 

the organization of topologically associating domains (TAD) in the genome and 

leading to the dysfunction or rewiring of gene-enhancer interactions [73–75].  

Several SVs, presumably CNVs, were already associated with neurological and 

neurodevelopmental disorders. It was estimated that approximately 15% of 

neurodevelopmental disorders are caused by large CNVs [76]. For example, DUP or 

recombination-derived DEL in PMP22 gene leads to  Charcot–Marie–Tooth disease 

type 1A or hereditary neuropathy with liability to pressure palsies respectively [77–

79], and SNCA locus multiplication causes the familial type of PD and parkinsonism 

[80,81].   Structural variants in PRKN account for 43.2% of AR familial PD cases 

associated with PRKN mutations. This group includes exonic deletions, 

duplications, and triplications [40,82]. Exonic duplications and deletions in PINK1 

and exonic deletions in DJ1 were discovered to be causative for PD and PD-related 

phenotypes[40]. Several dosage-altering events were associated with autism 

spectrum disorder, schizophrenia, intellectual disability, epilepsy, and other 

neurodevelopmental diseases [83–86]. Variation in transcript structure also plays a 

significant role in human disease manifestation [87,88]. SVs affecting splicing 

regulation and leading to transcript structure disruption were associated with several 

monogenic diseases, including familial PD [89–91].  

Apart from the simple canonical SVs, more complex genetic rearrangements present 

in the human genome possess clinical relevance [55].  Several complex SVs were 

associated with rare genetic disorders [92]. For example, a complex event that 

involves duplication, triplication, and inversion (DUP-triplication-INV-DUP) 

affects MECP2 and PLP1 loci leading to the development of MECP2 duplication 

syndrome, Lubs syndrome, or Pelizaeus-Merzbacher disease [93,94]. Investigation 

of signaling pathways enriched for the genes affected by validated pathogenic CNVs 

https://paperpile.com/c/Pow9hH/ll6q+yLbn
https://paperpile.com/c/Pow9hH/dUPp+Y2q8+N8Fn+0r1w
https://paperpile.com/c/Pow9hH/GQ4A+JoSI
https://paperpile.com/c/Pow9hH/D9o7+CZjT+Y1gh
https://paperpile.com/c/Pow9hH/cme7
https://paperpile.com/c/Pow9hH/685I+KWYx+f3E6
https://paperpile.com/c/Pow9hH/685I+KWYx+f3E6
https://paperpile.com/c/Pow9hH/IKMY+0bIG
https://paperpile.com/c/Pow9hH/VXet+RqVn
https://paperpile.com/c/Pow9hH/VXet
https://paperpile.com/c/Pow9hH/NyoN+VqFI+qIwN+sTeB
https://paperpile.com/c/Pow9hH/Ssgx+WMP0
https://paperpile.com/c/Pow9hH/YKfM+Jitw+cDYG
https://paperpile.com/c/Pow9hH/M0LV
https://paperpile.com/c/Pow9hH/5gGt
https://paperpile.com/c/Pow9hH/nMHs+pceG
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causal for brain diseases revealed proteasomal and vesicular functioning pathway 

clusters to be the most significant [95]. 

Repeat expansions were proven to be causal pathogenic factors in a number of 

neurological diseases [96]. For instance, intronic extensions of ATTCC in ATXN10 

cause progressive spinocerebellar ataxia [97]. Another expansion pattern of the exact 

repeat in ATXN10 was associated with early-onset levodopa-responsive 

parkinsonism [98]. Non-coding CAG expansions in HTT and SCA1 were proven 

causal in Huntington's disease and spinocerebellar ataxia type 1 [99]. 

Retrotransposition of SINE elements within an intron of TAF1 was associated with 

early stages of X-linked dystonia-parkinsonism [100]. 

The largest SV reference dataset was compiled and highly curated for several 

populations, including African/African-American, Latino, East Asian, European, 

and others. The dataset includes 433,371 SVs and is part of the Genome Aggregation 

Database (gnomAD) [101]. Other large-scale human genetic studies, such as the 

1000 Genomes Project, Genome of the Netherlands Project, and Genotype-Tissue 

Expression Project (GTEx) revealed 68,818[55], 67,357[102] and 23,602[103] SVs, 

respectively. The accumulating short- and LR WGS datasets allow us to expand the 

genome-wide knowledge about structural variation and to improve the estimation of 

sequence-specific mutation rates and genome intolerance to non-coding SVs.  

 

1.3 Discovery and genotyping of SVs 

   1.3.1 Chromosomal microarray analysis    

Systematic and comprehensive SV discovery and genotyping are essential for 

investigating inherited human diseases.  Microarrays are often used for CNV 

genotyping as a standard approach in clinical diagnosis as well as in genetic studies. 

In addition, the technology allows to identify loss of heterozygosity, mosaicism, and 

uniparental disomy events [104,105]. The microarray-based methods are 

represented by array comparative genomic hybridization technique [106] (array-

CGH) and SNP microarrays [107]. The array-CGH experiment design is based on 

the comparison of labeled test and reference samples hybridized with long 

https://paperpile.com/c/Pow9hH/N9jE
https://paperpile.com/c/Pow9hH/snpB
https://paperpile.com/c/Pow9hH/Gcta
https://paperpile.com/c/Pow9hH/vInt
https://paperpile.com/c/Pow9hH/rB94
https://paperpile.com/c/Pow9hH/6Fj9
https://paperpile.com/c/Pow9hH/7hK1
https://paperpile.com/c/Pow9hH/M0LV
https://paperpile.com/c/Pow9hH/5sZr
https://paperpile.com/c/Pow9hH/VISl
https://paperpile.com/c/Pow9hH/qn7Z+O26A
https://paperpile.com/c/Pow9hH/ztWz
https://paperpile.com/c/Pow9hH/4ma0


Introduction 
____________________________________________________________________________ 

 
 

8 

oligonucleotides or bacterial artificial chromosome (BAC) clones on the same chip. 

The signal ratio between the test and the reference samples is then used as a proxy 

to estimate the genome material gain or loss in the test sample [108][109]. SNP 

microarray platforms are also based on the hybridization technique and are used for 

single-nucleotide and copy number variation detection between DNA sequences 

[110,111]. The advantage of the SNP microarray platform is the possibility of 

performing the allele-specific CNV calling [107]. Today, microarray chips available 

on the market are equipped with hundreds of thousands to millions of probes 

allowing for an accurate determination of the CNV breakpoints and detection of 

CNVs with up to 0.5kbp and allele frequency up to 0.5% [112,113]. Due to the 

CNV's high genotyping throughput and low-cost microarray analysis is actively used 

in the clinics for the diagnosis of inherited disorders such as autism [114], 

intellectual disability [115], neurodevelopmental disorders[116], and other rare 

genetic diseases[116,117].  

The limitations of chromosomal microarray analysis are associated with the 

hybridization process and resolution, which is influenced by the coverage and 

density of the chosen microarray chips. The availability of many commercial array 

platforms loaded with different probe content and density made the method sensitive 

to the choice of analysis algorithm [118–120]. Due to the SV complexity and 

tendency to locate in the repetitive genomic regions and segmental duplications, 

accurate SV characterization remains difficult [121,122]. The microarray analysis 

ability to discriminate the signal coming from the duplicated regions drops 

significantly if the copy ratio does not match the expected diploid ratio [123]. The 

whole genome CNV screen is limited to variation with a size larger than the region 

between two adjacent probes. The microarray-based assays do not detect balanced 

rearrangements such as TRAs and INVs, and their detection ability is skewed 

towards the DEls [124].  

 

 

https://paperpile.com/c/Pow9hH/HMdn
https://paperpile.com/c/Pow9hH/zGgu
https://paperpile.com/c/Pow9hH/0Gs4+qlNb
https://paperpile.com/c/Pow9hH/4ma0
https://paperpile.com/c/Pow9hH/Etl8+iBRq
https://paperpile.com/c/Pow9hH/SC1W
https://paperpile.com/c/Pow9hH/UG5c
https://paperpile.com/c/Pow9hH/Czy3
https://paperpile.com/c/Pow9hH/Czy3+VexN
https://paperpile.com/c/Pow9hH/Oosx+ZM0d+wAgI
https://paperpile.com/c/Pow9hH/I7uy+Hd6Y
https://paperpile.com/c/Pow9hH/vapt
https://paperpile.com/c/Pow9hH/pOMk
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   1.3.2 Next generation sequencing and assembly-based approaches  

The rise of the high-throughput sequencing era with the development of next 

generation sequencing technology (NGS) significantly accelerated SV discovery 

and annotation [55,125,126]. A previous study showed that SV calls from NGS are 

at least as sensitive as those from microarray genotyping [127]. Whole-genome 

sequencing (WGS) allows the entire genome hypothesis-free screen to detect 

balanced and unbalanced DNA rearrangements.  NGS can also be performed on a 

specific region of the genome. For example, whole-exome sequencing (WES) and 

targeted genome sequencing involve the pre-selection of specific DNA sequences, 

enriching the DNA fragment library for the coding portion of the genome or specific 

target loci [128].  NGS data is becoming more widely used in clinical medicine to 

detect hereditary forms of different diseases, including neurological disorders [129–

131].  

Modern alignment algorithms start with building an index database from the 

reference genome and then query it for the read subsequences (seeds) to determine 

read global position in the genome. The next step includes a pairwise alignment 

between the read and each of the genome corresponding regions which can be 

implemented through different algorithms and heuristics such as Needleman-

Wunsch [132]  and Smith-Waterman [133–139] algorithms, Hamming distance 

approach [140,141],  Dynamic programming [142], Non-Dynamic programming 

heuristic [143–146], and methods combinations.   

The choice of the aligner and the alignment's accuracy is important for detecting SV 

signatures. The sequencing-based SV detection methods are based on the 

identification of abnormally oriented or split reads from the test samples after the 

reads mapping to the reference genome. The obtained alignment signatures and 

patterns are then used to determine the position, size, and type of SVs. This goal is 

tackled from several directions, which are used in a complementary manner by most 

of the current SV calling pipelines. The first approach is based on a so-called read 

pair concept, where aberrations in the distances between the mapped paired-end 

reads or in the read orientation are used as a landmark for the presence of structural 

variation [147–149].  For instance, a smaller insert size indicates the presence of a 

DEL. However, small SVs can be missed if the length is within the insert size 

https://paperpile.com/c/Pow9hH/HQg4+wdOG+M0LV
https://paperpile.com/c/Pow9hH/VZsh
https://paperpile.com/c/Pow9hH/GQgY
https://paperpile.com/c/Pow9hH/6IQ1+Fue0+q0JY
https://paperpile.com/c/Pow9hH/6IQ1+Fue0+q0JY
https://paperpile.com/c/Pow9hH/LgGx
https://paperpile.com/c/Pow9hH/I6Ug+DPUz+Bnvf+sCDB+IZ1y+vylc+gQUH
https://paperpile.com/c/Pow9hH/vmUV+bdXF
https://paperpile.com/c/Pow9hH/6kRB
https://paperpile.com/c/Pow9hH/ff1X+sK9o+6hCZ+LEXc
https://paperpile.com/c/Pow9hH/xwMk+c7jy+WHUm
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standard variability. Thus, it is important to combine several approaches. In the split-

read approach, the events are detected where a part of the read was not mapped to 

the reference genome or mapped to another region (soft-clipped reads) [150,151]. 

The number of copies of certain genomic features can be assessed via a read-depth 

approach [152,153].  This algorithm records coverage changes within the sliding 

window, which screens through the whole genome or a target sequence.  SV 

signature clustering and the solvent of the classification problem are performed 

during the final and the most crucial step of SV calling. This task is often approached 

with machine learning methods using alignment signatures, local nucleotide content, 

and alignment quality (MAPQ) as the input features [154–156].  

Although a range of small SVs can be successfully resolved with the mentioned 

methods directly from the read alignments, larger SVs complicate the discordant 

read mate clustering process. Assembly-based methods suggest first assembling 

overlapping reads into longer fragments using the overlap layout consensus (OLC) 

and de Bruijn graph methods [157,158].  Whole genome assembly and local 

assembly can be utilized for SV calling. However, the whole genome assembly and 

alignment remain long and computationally intensive. In contrast, local assembly 

approaches decrease computational requirements and are often applied to detect SVs 

in a whole genome or a targeted fashion [159–161]. To increase the method power 

and sensitivity, the local assembly algorithms extract aberrantly mapped or 

unmapped reads to enrich the sequence subset in reads that support an SV. The 

variant-supporting reads are then assembled into longer contigs which are 

subsequently mapped to the reference genome [161]. Modern short-read (SR) SV 

calling pipelines include several approaches and tools to output reliable consensus 

results, which could be used for population genetics studies and clinical diagnostics 

[126]. 

NGS-based SV discovery comes with its limitations. For example, coverage-based 

SV detection approaches are complicated by GC content bias [162]. Currently, the 

typical read length for an NGS study ranges from 100 to 250 bps. This fact 

challenges the read alignment in regions with SVs, leads to the generation of high 

numbers of false positive results, and causes limitations to the accurate SV detection 

of larger sizes [163,164]. SVs within the repetitive regions or segmental duplications 

are usually underestimated within NGS datasets [126]. According to a recent 

https://paperpile.com/c/Pow9hH/pkZT+A6eA
https://paperpile.com/c/Pow9hH/viZq+Fv6v
https://paperpile.com/c/Pow9hH/R8EJ+2uSW+vgwi
https://paperpile.com/c/Pow9hH/Qy7p+e8JU
https://paperpile.com/c/Pow9hH/NP4Q+3eWS+QDxh
https://paperpile.com/c/Pow9hH/QDxh
https://paperpile.com/c/Pow9hH/wdOG
https://paperpile.com/c/Pow9hH/qFe8
https://paperpile.com/c/Pow9hH/Z8Ht+ucaz
https://paperpile.com/c/Pow9hH/wdOG
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estimation, more than half of SVs are located in repetitive human genome sequences 

[68]. De novo assembly methods come in handy to increase the efficiency of SV 

calling. However, global assembly-based workflows remain computationally 

intensive, and local assembly-based methods often miss SVs near centromeres and 

within simple repeats [161]. Long reads can account for these challenges allowing 

more sophisticated SV calling within the problematic genome regions and reducing 

alignment ambiguity. 

 

   1.3.3 Long-read sequencing technologies 

The third-generation sequencing technologies produce reads with an average length 

of more than a thousand bps.  The Pacbio platform performs real-time sequencing 

of single DNA/RNA molecules through uninterrupted template-directed synthesis 

using fluorescently labeled nucleotides: single-molecule real-time sequencing 

(SMRT) [165]. Another actively used 3GS technique, the Oxford nanopore 

technology (ONT), is based on the measurement of system impedance changes 

induced by a single-stranded DNA/RNA molecule passing through a nanopore. The 

converted impedance changes are then converted to the nucleotide sequences during 

basecalling [166,167]. The development of the HiFi sequencing method allowed 

Pacbio to produce long-read (LR) sequencing datasets with an accuracy of more than 

99.5% [168]. The ONT is less costly; however, it also yields less accurate 

sequencing results. Recent advancements in the nanopore system design and 

basecalling methods increase the sequencing accuracy reaching more than 90% 

[169]. For SV calling purposes, however, accuracy is dominated by sufficient 

coverage and read length [170].  

Multiple studies reported a significant improvement in LR-based SV calling 

precision and recall (especially for SVs located in ‘dark DNA’), facilitating large-

scale SV studies in various populations worldwide [68,163,171–173] (Table I). 

Approximately 25% of unresolved rare genetic disease cases can be recovered when 

longer reads are applied [174]. Interestingly, a recent population-scale study 

discovered that even though the majority of SVs were missed in the SR-based 

https://paperpile.com/c/Pow9hH/Y2q8
https://paperpile.com/c/Pow9hH/QDxh
https://paperpile.com/c/Pow9hH/oQr5
https://paperpile.com/c/Pow9hH/7X3O+dWEk
https://paperpile.com/c/Pow9hH/g1c6
https://paperpile.com/c/Pow9hH/sh1V
https://paperpile.com/c/Pow9hH/kgXK
https://paperpile.com/c/Pow9hH/Z8Ht+Y2q8+p1Zd+zeNO+j6Pf
https://paperpile.com/c/Pow9hH/5Gs0
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analysis, more than 60% of LR-based SV calls can be genotyped and validated with 

NGS sequencing [175].  

A recent hybrid SR and LR-based study presented a more comprehensive small 

variant and SV benchmarks for hard-to-access regions, including clinically-relevant 

genes [176]. A family-based study showed that the usage of LR datasets increased 

the recall of de novo small and structural variants by 20% [177]. 3GS technologies 

allow for a precise genotyping of short tandem repeat expansion (STR) expansions 

overcoming the challenges of low sequence complexity, large repeat size, and high 

GC content [178–181]. LR data were proven to be indispensable for the 

sophisticated resolvement and validation of complex SVs associated with Mendelian 

disorders [92,182].  

The usage of one reference genome for all populations leads to the mapping bias 

towards the reference allele, subsequent incorrect SV genotyping, and inaccurate SV 

population frequency estimation [68,183]. LR technologies enable resolving this 

issue via an efficient construction of pan-genomes, graph-based structures which 

incorporate reference and alternative alleles, enabling more accurate read alignment 

[184,185]. However, large complex rearrangements remain to be resolved only by 

the whole genome assembly approach being completely inaccessible with standard 

benchmarking pipelines, including the sequencing-based methods [176]. The de 

novo genome assembly complexity is successfully simplified with ONT and SMRT 

datasets [186–188]. The LR sequencing datasets are often coupled with the SR and 

chromatin interactions information data (Hi-C) to improve the basecalling accuracy 

and produce more continuous error-free whole genome assemblies [188,189]. The 

Telomere-to-Telomere (T2T) Consortium took advantage of LR sequencing to 

resolve the complete human genome by releasing telomere-to-telomere gap-free 

haploid human assembly [190].  The Human Pan Genome Project leverages hybrid 

and pairwise assembly alignment algorithms using minmap2 and Winnowmap to 

capture genetic variation in different populations [191].  The project aims to create 

a global map for genetic diversity and facilitate the further annotation of the 

complete human genome and its application in evolution and disease research [191].   

 

 

https://paperpile.com/c/Pow9hH/YF3k
https://paperpile.com/c/Pow9hH/Q0tk
https://paperpile.com/c/Pow9hH/Vkez
https://paperpile.com/c/Pow9hH/o2Ua+J0jm+zI3Q+OvQ3
https://paperpile.com/c/Pow9hH/JGen+5gGt
https://paperpile.com/c/Pow9hH/Y2q8+W6fB
https://paperpile.com/c/Pow9hH/pUK0+PHhO
https://paperpile.com/c/Pow9hH/Q0tk
https://paperpile.com/c/Pow9hH/qrfZ+k1Lh+EODi
https://paperpile.com/c/Pow9hH/EODi+9U1V
https://paperpile.com/c/Pow9hH/iyLU
https://paperpile.com/c/Pow9hH/cedg
https://paperpile.com/c/Pow9hH/cedg


Introduction 
____________________________________________________________________________ 

 
 

13 

Table I. LR and hybrid-based population-scale structural variation studies. 

Reference 

study 

Sample size 3GS 

technology 

Method used for SV 

discovery 

Represented populations 

Huddleston 

et al., 2017 

[175] 

2 (CHM13 

and CHM1 

cell lines) 

ONT Long read/whole 

genome assembly 

alignments 

- 

Chaisson et 

al., 2019 

[171] 

3 (HG00733, 

HG00514, 

NA19240) 

ONT, SMRT Long read 

/Haplotype-resolved 

whole genome 

assembly alignments 

Native American, Han Chinese, 

African 

Audano et 

al., 

2019)[68] 

15 (2 from 

Huddleston et 

al. (2017)) 

ONT, SMRT Long read/whole 

genome assembly 

alignments 

African, South Asian, Han 

Chinese, Vietnamese, 

European, Native American 

Yan et al., 

2021 [192] 

15 (from 

Audano et al. 

(2019) ) 

SMRT Long read alignment African, South Asian, Han 

Chinese, Vietnamese, 

European, Native 

American 

Quan et al., 

2021 [70] 

25 ONT Long read alignment Asian (Chinese Tibetan and 

Han) 

Ebert et al., 

2021 [193] 

35 ONT Haplotype-resolved 

whole genome 

assembly alignment 

South Asian, East Asian, 

Admixed American, African, 

European,  

Beyter et al., 

2021 [183] 

3,622  ONT Long read alignment European (Icelandic) 

Sano et al., 

2022  [194] 

15 ONT Long read alignment Asian (Japanese)  

 

 

 

https://paperpile.com/c/Pow9hH/YF3k
https://paperpile.com/c/Pow9hH/p1Zd
https://paperpile.com/c/Pow9hH/Y2q8
https://paperpile.com/c/Pow9hH/CMlD
https://paperpile.com/c/Pow9hH/0r1w
https://paperpile.com/c/Pow9hH/QXGB
https://paperpile.com/c/Pow9hH/W6fB
https://paperpile.com/c/Pow9hH/CVf7
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1.4 Structural variant annotation and clinical prioritization 

While treatments are available for alleviating PD symptoms in some patients, no 

cure is currently available for the disease. Systematic screening of disease-causing 

variants and their effect on gene expression is required to bridge the gap between 

molecular and clinical phenotypes and to facilitate the identification of therapeutic 

targets for precision medicine. The genetic variant interpretation remains 

challenging given that not only pathogenicity estimation should be assessed, but also 

the true causal variant has to be prioritized among putatively pathogenic variation 

[126,195]. Estimation of the functional effects of SVs is even more complex due to 

their large size, which very often leads to the impact of several molecular targets. In 

addition, one has to take into account the mechanistic type of the SVs, since the 

deleteriousness effects do not result only from the DNA sequence alteration [196]. 

The standard procedure for the variant interpretation pipeline was designed and 

tested by a collaborative effort of the American College of Medical Genetics and 

Genomics (ACMG) and the Association for Molecular Pathology (AMP), who 

published their guidelines first for small variants [195] and later expanded them with 

CNVs in collaboration with Clinical Genome Resource (ClinGen) project[197] 

providing a joint consensus recommendation in the form of the semi-quantitative 

system [198]. The proposed categorization rules classify variants into five different 

classes: “Pathogenic”, “Likely pathogenic”, “Benign”, “Likely benign”, and 

“Variant of Uncertain Significance (VUS)” based on the different characteristics 

such as population allele frequencies, functional annotation, and predicted degrees 

of pathogenicity.  A growing number of SVs datasets allow to obtain variant counts 

and frequencies across a variety of populations and clinical phenotypes (PS4 and 

PM2 ACMG/AMP criteria for strong and moderate evidence of pathogenicity), 

however additional evidence levels such as a consensus verdict from several in silico 

methods and functional variants annotation have to be systematically assessed (PP3 

and PS3 ACMG/AMP criteria for supporting and strong evidence of pathogenicity).  

A number of in silico approaches based on a scoring system or machine learning 

algorithms were developed to incorporate ACMG/AMP guideline criteria and 

automatically predict the pathogenicity and phenotype association [196,199–202].  

Even though most of the algorithms exhibit good recall and specificity during the 

https://paperpile.com/c/Pow9hH/wdOG+kWuf
https://paperpile.com/c/Pow9hH/IYwa
https://paperpile.com/c/Pow9hH/kWuf
https://paperpile.com/c/Pow9hH/fBEs
https://paperpile.com/c/Pow9hH/MzOI
https://paperpile.com/c/Pow9hH/lJc2+Mlxa+R53Q+IYwa+BYNr
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benchmarking, the training datasets and positive controls are represented mainly by 

known highly detrimental coding SVs and “easy-to-detect-and-associate” regulatory 

variants leaving the method's ability to detect and prioritize cryptic causal non-

coding SVs usually unassessed.   

SV annotation benefits  from the accumulated datasets of genome annotations, 

including coding and non-coding genes [203–206], epigenetic and regulatory 

activity [207,208], 3D genome organization [206,209], and conserved/constrained 

genome regions [210–212]. Functional variant annotation is becoming less 

challenging with the advancement of omics assay techniques and a growing number 

of publicly available omics datasets. For example, RNA sequencing allows for 

accurate measurement of genome-wide gene expression, alternative splicing events, 

and allele-specific expression [213–215]. Chromatin 3D organization and 

accessibility can be explored with Hi-C and ATAC sequencing assays [216,217]. 

Epigenetic markers can be used as proxies to assess gene and regulatory element 

regions' activity via methylation, acetylation, and other histone modification 

profiling [218–220]. Proteomics datasets obtained through mass spectrometry or 

single-molecule protein sequencing are indispensable to investigating the variant 

effect on the protein isoform molecular organization, function, activity, and 

interaction networks [221,222]. The development of single cell multiomics 

technologies [223] shed light on the specific cell types which are affected the most 

by the DNA variation leading to a better understanding of molecular mechanisms 

triggering the pathogenic processes and providing refined information about the 

targets for precision medicine. 

It is essential to perform a semi-automated or manual assessment of individual 

candidate SVs using such tools as UCSC genome browser, Integrated Genome 

Viewer (IGV) [224], samplot [225], Ribbon [226], or svviz [227]. First, visualization 

of the read alignments helps to discard false positive calls and artifacts which were 

missed by the automatic quality control system. Second, the complement of SV loci 

with the gene annotation, functional regulatory elements associations, trait-

associated regions, and omics data analysis results has occurred to be a powerful tool 

to trace the variant effect on molecular pathways and prioritize candidates for the 

genetic disease risk variation.  

https://paperpile.com/c/Pow9hH/Wxh0+ZZO9+dNvz+wh68
https://paperpile.com/c/Pow9hH/iEtt+wLNi
https://paperpile.com/c/Pow9hH/OcuG+wh68
https://paperpile.com/c/Pow9hH/gQFR+EE6y+tbni
https://paperpile.com/c/Pow9hH/w2AN+InEE+Z9NL
https://paperpile.com/c/Pow9hH/KvqJ+KH4U
https://paperpile.com/c/Pow9hH/gSvQ+hqCL+ntfn
https://paperpile.com/c/Pow9hH/MQx2+YiOM
https://paperpile.com/c/Pow9hH/jtqc
https://paperpile.com/c/Pow9hH/NCQr
https://paperpile.com/c/Pow9hH/Qvqu
https://paperpile.com/c/Pow9hH/hr6K
https://paperpile.com/c/Pow9hH/UuW4
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Before incorporation into the clinical diagnostic panel, causal SVs should be 

validated using standard approaches, including Sanger sequencing and PCR-based 

validation [228]. The findings have to be replicated in other unrelated and 

nonoverlapping cohorts of the minimal size, which depend on the power of the 

analysis methods [228,229].  
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2 Aim of my study 

 

The aim of this study is to expand our knowledge about the role of the most 

understudied type of DNA variation in the genetics of PD via a systematic discovery 

and annotation of SVs in the cohort enriched for the familial and idiopathic PD cases. 

For this purpose, we used a long-read sequencing-based SV detection method, which 

already laid down an important foundation for SV investigation covering the full 

frequency spectrum and genomic regions so far inaccessible to other technologies. 
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3 Materials and methods 

iPSC lines and donor background 

The induced pluripotent stem cell (iPSC) lines were obtained from the Parkinson’s 

Progression Marker Initiative (PPMI; https://www.ppmi-info.org/) and 

differentiated to the dopaminergic like state in the scope of The Foundational Data 

Initiative for Parkinson's Disease project (FOUNDIN-PD;   

(https://www.foundinpd.org/). 95 samples were included in the current analysis. The 

cell line collection included healthy controls (n=9), PD cases without mutations in 

known PD mendelian and high-risk genes (n=36), and PD-affected and unaffected 

individuals harboring pathogenic mutations, including LRRK2+ G2019S (n=25) or 

R1441G (n=1), GBA1+ N370S (n=19), T369M (n=1) or E326K (n=1), SNCA+ 

A53T (n=4). One iPSC line carries both LRRK2 G2019S and GBA1 p.N370S, and 

another iPSC line carries both LRRK2 G2019S and GBA1 T369M. 

 

FOUNDIN-PD omics datasets 

The molecular readouts protocol and data analysis for 95 iPSCs on day0, da25 and 

day65 are described in FOUNDIN-PD resource paper (Bressan et al., 2022, 

Unpublished manuscript) 

Bulk RNA sequencing data generated on day 65 was used. A non-redundant genome 

annotation combined from GENCODE 29 and LNCipedia5.2 50 

(https://github.com/FOUNDINPD/annotation-RNA) was used for the read counting. 

The analysis pipeline can be found here: 

https://github.com/FOUNDINPD/bulk_RNASeq. 

Single cell RNA sequencing data generated on day 65 was used. The pipelines used 

in this study are available at https://github.com/FOUNDINPD/FOUNDIN_scRNA. 

Bulk ATAC-seq dataset obtained from day 65 iPSC lines was used. The full analysis 

pipeline is stored here: https://github.com/FOUNDINPD/ATACseq_bulk 

https://www.ppmi-info.org/
https://www.foundinpd.org/
https://github.com/FOUNDINPD/annotation-RNA
https://github.com/FOUNDINPD/bulk_RNASeq
https://github.com/FOUNDINPD/FOUNDIN_scRNA
https://github.com/FOUNDINPD/ATACseq_bulk
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Methylation profiling dataset obtained from day 65 iPSC lines was used. The quality 

controlled data normalized using quantile normalization was included in the current 

exploratory analysis. The methylation profiling analysis pipeline is stored here: 

https://github.com/FOUNDINPD/METH 

 

Nanopore sequencing 

DNA has been isolated from the iPS FOUNDIN cell lines at day 0 by QIAamp DNA 

Mini kit according to the standard operating procedure provided by QIAamp. The 

extracted DNA was detected by NanoDrop™ 2000 spectrophotometer (Thermo 

Fisher Scientific, USA) for DNA purity (OD260/280 ranging from 1.8 to 2.0 and 

OD 260/230 is between 2.0 and 2.2); then, Qubit 3.0 Fluorometer (Life 

Technologies) was used to quantify DNA accurately. The Short Read XS Eliminator 

Kit (Circulomics) was used to size-select long DNA fragments. The sequencing 

adapters from the SQK-LSK109 kit were attached to the DNA ends. Finally, Qubit 

3.0 Fluorometer (Life Technologies) was used to quantify the size of library 

fragments. The Nanopore PromethION 24 sequencer (Oxford Nanopore 

Technologies, UK) was used, one flow cell per sample. All samples were sequenced 

with 1D R9.4.1 nanopores. Each genome was sequenced to a minimum of 28X 

coverage depth. 

RNA was successively purified and concentrated using the Qiagen RNeasy micro 

kit according to the standard operating procedure provided by Qiagen. RNA 

concentration was determined by Qubit HS RNA assay and RNA integrity was 

determined by analyzing 1ul on a RNA Tape on a 4200 TapeStation. Libraries were 

prepared using the ONT cDNA-PCR sequencing kit SQK-PCS109. This kit is 

suitable for low total RNA input amounts and generates high cDNA data output.  

 

Processing of raw ONT DNA and RNA sequencing datasets 

Fast5 files containing nanopore ionic current underwent basecalling analysis. 

Basecalling was performed with Guppy (v 4.4.1), a 3GS data processing toolkit that 

includes a neural network-based basecaller. Guppy was used to filter low quality 
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reads with a score less than 7.  RNA sequencing datasets underwent the primer and 

adapter trimming,  and read reorientation with Pychopper (v2.5.0). Quality control 

(QC) reports were obtained with NanoPlot (v1.32.1). 

 

LR aligner benchmarking analysis 

Benchmarking analysis was run against the Genome in a bottle (GIAB) SV truth set 

for HG002 consisting of 7281 sequence-resolved insertions and 5464 deletions 

within benchmark regions covering 2.5 Mbp [230].  

HG002 ONT sequencing dataset was downloaded from https://github.com/human-

pangenomics/HG002_Data_Freeze_v1.0.  The raw FASTQ files were filtered for 

the minimal read quality equal to 7 and obtained reads were submitted to the SV 

calling pipeline. SV calling pipeline includes LRA or Winnowmap as aligner and 

CuteSV as LR SV caller.  

The workflow script can be found here: 

https://github.com/illarionovaanastasia/pipeline-structural-variation 

Reads were aligned to the human assembly build GRCh38/hg38 build. The pipeline 

discovered simple SVs including INS, DEL, DUP and INV classes. Obtained SV 

calls were filtered for SVs located within GIAB HG002 benchmark regions. The 

GIAB HG002 SV truth set and benchmark regions were downloaded from ftp://ftp-

trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/. Positional annotation of 

filtered SV calls and The GIAB HG002 SVs was performed with Variant Effect 

predictor (VEP). The GIAB HG002 SVs were clustered with the filtered SV calls 

using Jasmine [231] to detect common SVs and calculate sensitivity and specificity 

of the two tested versions of SV calling pipeline. Pipeline sensitivity and specificity 

were calculated using custom R (v 4.4.1) script with default R packages.  

Benchmarking results, SV counts and SV length distribution were visualized with R 

package ggplot2 (v 3.3.6).  

 

 

https://paperpile.com/c/Pow9hH/OLbH
https://github.com/human-pangenomics/HG002_Data_Freeze_v1.0
https://github.com/human-pangenomics/HG002_Data_Freeze_v1.0
https://github.com/illarionovaanastasia/pipeline-structural-variation
https://paperpile.com/c/Pow9hH/jDrM
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SV calling on FOUNDIN PD dataset 

The benchmarked SV calling pipeline included Winnowmap aligner and CuteSV 

variant caller. Reads were aligned to the human assembly build GRCh38/hg38 build. 

The pipeline was run sample-wise, then SV calls missing genotypes were removed. 

Obtained SV calls were clustered with Jasmine [231] to obtain the cohort-level SV 

callset.  

 

Differential gene expression analysis 

A list of SV-gene pairs was compiled to test for the variant-gene expression 

association. SV-gene pairs are defined based on SV annotation: intragenic SVs and 

SV within 5 kb gene flanking regions were included in the analysis. SV list was 

filtered down further to include only the SV-gene pairs which had the SV present in 

at least 3 and absent in at least 3 of the samples. For each of the SV-gene pairs, the 

samples were split into two groups: SV carriers (genotype 0/1 or 1/1) and non-

carriers (genotype 0/0). Bulk RNA sequencing count results generated on day 65 

were used to discover perturbed molecular pathways on the transcriptome level. Raw 

counts were analyzed in R (v 4.4.1) with DESeq2 which performs quantitative 

analysis of comparative RNA-seq data using shrinkage estimators for dispersion and 

fold change (v 1.30.1) [232]. PD status, iPSC line differentiation batch, donor sex, 

and age were included as confounding factors in the design matrix. FDR-adjusted p-

value 5 % was used as a threshold for a statistically significant signal, logFC was 

calculated as log2 of the SV carrier to non-carrier normalized gene counts ratio.  

 

Expression outlier analysis 

The context-dependent outlier detection analysis was performed with R package 

OUTRIDER (v 1.8.0) [233] to reveal gene expression outliers based on the 

identification of significantly deviated gene counts in comparison to the count 

expectations in the given RNA-seq dataset. In brief, OUTRIDER fits a negative 

binomial model to gene read counts performing correction for variations in 

sequencing depth and known co-variations across the cohort. The OUTRIDER 

https://paperpile.com/c/Pow9hH/jDrM
https://paperpile.com/c/Pow9hH/UvUF
https://paperpile.com/c/Pow9hH/MxW6
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autoencoder module was used to control for confounders. Bulk RNA sequencing 

count results generated on day 65 were used.  

 

Differential transcript usage analysis 

Reference-guided transcript annotation and quantification was performed with 

bambu (v 0.3.0) based on GENCODE (v.29) expanded with LNCipedia (v 5.2). 

Novel and annotated transcripts from annotated genes were used for the differential 

transcript usage analysis conducted in R with DRIMSeq (v 1.18.0). 

 

PD GWAS hits and LD calculation 

PD GWAS sentinel SNPs were obtained from Meta 5 PD GWAS [50]. LD regions 

for Meta5 SNPs were calculated using 1000 Genomes project European population 

(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.wgs.phase3_sha

peit2_mvncall_integrated_v5c.20130502.sites.vcf.gz).  

Plink 1.9 (https://www.cog-genomics.org/plink/) was used to obtain proxies for 

sentinel SNPs with R2 > 0.5 

Segment liftover (https://github.com/baudisgroup/segment-liftover, ‘First public 

version’) was used to convert most left and most right sentinel SNPs proxies 

coordinated from hg19 to hg38 build. The chain file was downloaded from UCSC 

liftover http://hgdownload.cse.ucsc.edu/goldenPath/hg38/liftOver/ 

Bedtools (v2.26.0) were used to extract FOUNDIN-PD SVs located within obtain 

LD block coordinates.  

 

 

 

 

https://paperpile.com/c/Pow9hH/i66O
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.wgs.phase3_shapeit2_mvncall_integrated_v5c.20130502.sites.vcf.gz
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.wgs.phase3_shapeit2_mvncall_integrated_v5c.20130502.sites.vcf.gz
https://github.com/baudisgroup/segment-liftover
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/liftOver/
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Statistical tests and data visualization 

Fisher exact test, Mann-Whitney U test and Chi Square test were run in R. Gene 

ontology enrichment analysis was performed in gProfiler 

(https://biit.cs.ut.ee/gprofiler/, Ensembl 106). Plots were visualized with ggplot2 (v 

3.3.6) in R. Figures were arranged and annotated in BioRender (BioRender.com, 

DZNE license).  

 

Data availability 

● FOUNDIN iPSC lines are available upon request at  https://www.ppmi-

info.org/access-data-specimens/request-cell-lines/. 

● Molecular assay protocols and generated data can be accessed at  

https://www.ppmi-info.org 

● Data analysis code is available at https://github.com/FOUNDINPD and 

https://github.com/illarionovaanastasia/ 

● FOUNDIN data is available in the FOUNDIN-PD data browser located at  

https://www.foundinpd.org 

https://biit.cs.ut.ee/gprofiler/gost
https://www.ppmi-info.org/access-data-specimens/request-cell-lines/
https://www.ppmi-info.org/access-data-specimens/request-cell-lines/
https://www.ppmi-info.org/
https://github.com/FOUNDINPD
https://github.com/illarionovaanastasia/pipeline-structural-variation
https://www.foundinpd.org/
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4 SV calling: long read aligner benchmarking 

 

4.1 SV calling summary statistics 

Reads derived from highly repetitive loci or regions adjacent to unresolved gaps in 

the reference genome are prone to incorrect mapping which subsequently leads to 

an increase of false positive and false negative variant calling rate [234].  To 

investigate the effect of the read mapping pattern on SV calling of different SV 

lengths and in different genome regions, we conducted a benchmarking analysis 

comparing the performance of the two state-of-art long read aligners: lra [235] and 

Winnowmap [236]. CuteSV was used for the identification of SV signatures and SV 

filtering[237].   Benchmarking analysis was run against the Genome in a bottle SV 

truth set for HG002 consisting of 7281 sequence-resolved insertions and 5464 

deletions within benchmark regions covering 2.5 Mbp [230]. ONT sequencing data 

from HG002 was mapped to GRCh37 with lra or Winnowmap. We first compared 

summary result metrics from the alignment step (Table1). An overall number of 

alignments reached 4,258,585 and 6,053,699 for lra and Winnowmap, respectively. 

The number of alignments passed MAPQ 10 reached 4,201,945 and 4,890,338 for 

lra and Winnowmap, respectively. Next, we checked the number of high-quality 

alignments within the repetitive regions. The number of mapped  reads ( MAPQ > 

10)  reached 3,957,088 and 4,357,175 for lra and Winnowmap, respectively. 

Table 1. Comparison of mapping performance between lra and Winnowmap using 

HG002 ONT DNA sequencing dataset. 

Aligner Mapped reads Unmapped 

reads (%) 

Mapped reads 

with MAPQ > 10  

Mapped reads with 

MAPQ > 10 within 

repeats 

lra 4,258,585 33.02 4,201,945 3,957,088 

Winnowmap 6,053,699 4.78 4,890,338 4,357,175 

https://paperpile.com/c/Pow9hH/4tBn
https://paperpile.com/c/Pow9hH/1NkW
https://paperpile.com/c/Pow9hH/06kL
https://paperpile.com/c/Pow9hH/6FKl
https://paperpile.com/c/Pow9hH/OLbH
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Alignments passed MAPQ10 were used for a subsequent SV calling with CuteSV 

(Figure 1, A). Obtained SV calls were filtered using the following metrics: SV type, 

minimum and maximum SV length, and a read support threshold defined 

automatically for each locus (see Materials and Methods section). The filtered SV 

set comprises 66,375 variants after lra mapping and 54,638 variants after 

Winnowmap mapping. Variant callset after lra has an imbalance of SV type 

frequency: a significant enrichment in DEL is observed in comparison to the SV 

calls after Winnowmap (Two-sided Fisher’s exact test, odds ratio 1.4, p-value < 

0.001) (Table 2). SV comparison against the truth set as well as between two aligners 

was performed using truvari without a sequence similarity comparison with the 

same SV type and with a genomic coordinate variance smaller than 1 kbp [238]. The 

common SV set encompasses 43,372 SVs (Figure 1, B).   

Benchmarking results for SV discovery are depicted in Figure 1, C-D. The following 

measurements of method accuracy were used: 

● Specificity, defined as the number of true positives (TP) divided by the sum 

of true positives and false positives (FP).  

● Recall (sensitivity), as the number of true positives divided by the sum of true 

positives and false negatives (FN).  

● F1 score, calculated as the number of true positives divided by the sum of true 

positives and the half sum of false positives and false negatives. 

 In general, CuteSV achieved a higher accuracy performance with Winnowmap: F1 

score = 0.93 after Winnowmap mapping, F1 score = 0.89 after lra mapping (Figure 

1, C). No significant difference between TP callset counts and total affected genome 

length was observed (Table 2).  

https://paperpile.com/c/Pow9hH/Znkf
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Figure 1. Benchmarking workflow and results of SV calling on GIAB HG002 truth 

set for lra+CuteSv and Winnowmap+CuteSV combinations. A. SV calling 

workflow. B. SV counts obtained after alignment with lra or Winowmap and an 

intersection SV call set. C. Value of F1 score, sensitivity and specificity. D. Counts 

of TP, FP and FN SVs. 
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Table2. Summary of SV callsets from Winnowmap and lra 

Aligner SV type SV counts Total callset size TP SV counts Total TP callset size 

lra DEL 45095 14.3 Mbp 4096 2.8 Mbp 

INS 21810 16.6 Mbp 4945 2.9 Mbp 

Winnowm

ap 

DEL 32697 9.3 Mbp 4127 2.9 Mbp 

INS 22224 8.8 Mbp 5161 2.9 Mbp 

 

Singleton SVs, SVs which were called only after one of the two aligners, were 

analyzed separately (Figure 2). Winnowmap- and lra-specific call sets include 

11,549 (5,858 DELs and 5,691 INSs) and 23,533 (5,277 INSs and 18,256 DELs) 

SVs, respectively. The lra-specific call set was significantly enriched in FP DELs 

and FN INSs (odds ratio 6.28, 4.37, p-value<0.0001). The Winnowmap-specific call 

set was significantly enriched in FP INSs (odds ratio 1.73, p-value<0.001). 

 

 

 

Figure 2. Distribution of TP, 

FP, and FN SV calls in the 

subset of lra and Winnowmap 

singletons.  
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4.2 SV size distribution and genome feature enrichment 

The SV size may vary from 30 bp up to 100 kbp creating a demand for the high-

resolution identification of the SV start and end breakpoints. SVs were sorted 

according to their length among the bins from 100 to 1000 bp bins with a step of 100 

bps and from 1000 to 10000 bp bins with a step of 1000 bps. To investigate the 

effectiveness of different mapping approaches for the SV calling, benchmarking 

metrics were calculated for each bin and compared between two aligners (Figure 3, 

A-B). Sensitivity and recall for both aligners were above 75% for the majority of 

SV-size bins. The overall accuracy of the deletions calling of both aligners was 

above 88% for variants smaller than 1 kbp and above 86% for variants with a size 

varying between 1 kbp and 10 kbp. The general accuracy of the insertion calling of 

both aligners was above 80% for variants  smaller than 1 kbp and above 75% for 

variants with a size varying between 1 kbp and 10 kbp. Both aligners showed a 

similar level of accuracy for deletions and insertions across the investigated length 

ranges with two exceptions. lra demonstrated a lower F1 score (F1 = 0.73) for the 

short deletions with a length up to 200 bp in comparison with Winnowmap (F1 = 

0.95, Figure 3, A). The number of FP DELs in the bin of 100 bp are significantly 

higher than the number of SVs in the respective group called after Winnowmap 

(Fisher’s exact test, odds ratio 0.14, p-value 2e-16). In contrast,  Winnowmap shows 

a lower level of recall (Recall = 0.5) for large deletions with a length of around 10 

kbp (Figure 3, B). Note that SV counts within the 10kbp bin were low (2 TP DELs 

after lra, 1 TP DEL, and 1 FN DEL after Winnowmap), which prevents any solid 

conclusions about the accuracy of both aligners for the mentioned bin size. 
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Figure 3. Distribution of SV counts and method accuracy measurements in different 

SV size bins. Negative and positive SV lengths refer to DEL and INS, respectively. 

A. Results are shown for SV size bins from 100bp to 1000bp. B. Results are shown 

for SV size bins from 1000bp to 10,000bp. 

 

To investigate further lra and Winnowmap performance and specifically check for 

the potential SV calling biases related to the read alignment in specific genomic 

regions, we performed an enrichment test comparing SV distribution within a set of 

genomic features.  A two-sided Fisher's exact test was performed within each 
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benchmarking group of SV calls (TP, FP, FN) for INS and DEL individually and for 

a unified call (Figure 4). SVs were annotated with the following genomic features: 

Gencode annotation (v19) of exons, introns, UTR, and intergenic regions, 

Repeatmasker annotation of repeats, SD regions, assembly gaps, and problematic 

regions (Materials and Methods Section). Fisher's exact test p-values were adjusted, 

controlling for the false discovery rate.  

      A                                                                                              B 

 

Figure 4. Heatmap demonstrating the p-value distribution for SV enrichment called 

after the WGS alignment with lra or Winnowmap. A. Unified SV call. B. Subset of 

singleton SVs. 

 

FP SV calls from lra were enriched in simple and other repeats (odds ratio 2.09, 2.15; 

p-value < 0.05; Figure 4, A). At the same time, TP SVs prevail in simple repeat 

regions after lra mapping (odds ratio 1.16, p-value < 0.05). Other examined regions 

did not show statistically significant results for SV call enrichment. FP singleton 

SVs demonstrated the same pattern of enrichment as general FP SVs in simple and 

other repeats (odds ratio 1.28, 3.3; p-value < 0.05; Figure 4, B). We have additionally 

explored the origin of short FP DELs (SV length up to 300 bp). Short FP DELs 

occurred to be enriched in SINEs (short interspersed nuclear elements which include 
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Alu elements, primate-specific transposons) with an odds ratio reaching 2.5, p-value 

< 0.01. According to our observations, the Winnowmap-produced alignments 

decrease the number of false positive SV calls on the genome-wide level and within 

repetitive regions. 

 

4.3 Discussion  

Accurate SV detection is indispensable for a comprehensive investigation of 

genomic variation, which plays an essential role in clinical diagnostics [239][240].  

LR sequence alignment-based approaches were shown to be gold standard tools for 

the efficient and reliable calling of simple and complex SVs [241]. Identification of 

SV breakpoints is highly dependent on the accurate detection of aberrant read 

alignment patterns, thus making a choice of the aligner to be a crucial step in the 

overall workflow. A recently developed long-sequence alignment tool, lra, is based 

on the seeding and chaining heuristic with a modified minimizer approach and 

outperforms most other long read aligners by the alignment metrics, variant 

discovery, and computational runtime [235]. However, the accuracy of SV calling 

within the repetitive genomic regions remained to be poorly assessed. A novel 

concept of the ‘weighted minimizers’ was claimed to be able to avoid excessive 

amounts of false-positive matches within repeats and maintain high alignment 

accuracy [236,242]). The algorithm was implemented as a stand-alone aligner 

Winnowmap designed based on the efficient seed and chaining algorithm of 

minimap2 [236,242]. In this study, we performed a benchmarking analysis 

comparing ONT SV calling after lra or Winnowmap alignment. We ran CuteSV for 

the variant calling because it was shown to have the best performance results after a 

number of state-of-art long sequences aligners including lra[243]. Both lra and 

Winnowmap follow a typical seed-chain-align procedure, however, the following 

key aspects distinguish the algorithms from each other: 

 

https://paperpile.com/c/Pow9hH/ds8e
https://paperpile.com/c/Pow9hH/kZFS
https://paperpile.com/c/Pow9hH/Nefl
https://paperpile.com/c/Pow9hH/1NkW
https://paperpile.com/c/Pow9hH/06kL+1Ysk
https://paperpile.com/c/Pow9hH/06kL+1Ysk
https://paperpile.com/c/Pow9hH/pgbu
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1. Seeding. Winnowmap applies weights on minimizers, lra masks repetitive 

minimizers, and uses a second local minimizer index to refine chained 

anchors.  

2. Chaining. Both aligners use the concave-gap penalty function, however, lra 

calculates the exact solution of seed chaining sparse dynamic programming, 

whereas Winnowmap uses a heuristic inherited from its predecessor 

minimap2.  

Winnowmap mapped a higher read number than lra on a genome-wide level 

achieving at the same time a higher percentage of high-quality mappings (MAPQ > 

10). The results are in agreement with the previous study where the minimap2 

performed better in terms of alignment numbers than lra suggesting that the 

minimap2 chaining heuristic works more effectively [235,242]. The number of 

reported SV calls genome-wise after lra mapping prevails over the respective 

number of SV calls after Winnowmap, however, the Winnowmap algorithm 

outperformed lra by the number of TP SV calls within the benchmarking regions. In 

addition, lra alignments lead to a higher false positive rate both genome-wise and 

within repetitive regions. Since the human genome harbors 50-70% of repeats which 

affect different gene networks[244,245] the reduction of false positive variant 

signals from these regions is crucial for the sophisticated characterization of genome 

variation. The dissimilarity in aligner performance may be driven by the difference 

in dealing with minimizers coming from repeats. Recall and precision is higher for 

DELs in comparison to INS for both aligners which is replicated in general for other 

aligner-caller pairs[235]. However, this study demonstrates that the calling precision 

of small DELs (up to 300 bp) by cuteSV is almost 1.5 times lower after lra alignment. 

The variant length and origin coincide with that of the SINEs including the primate-

specific Alu elements which point again to the suboptimal generation of mapping 

patterns within repetitive regions by lra algorithm.   Observed results demonstrate 

that the weighted-minimizer-based approach outputs more accurate and informative 

alignments for the subsequent genome-wise SV calling.

https://paperpile.com/c/Pow9hH/1NkW+1Ysk
https://paperpile.com/c/Pow9hH/y64i+wQHc
https://paperpile.com/c/Pow9hH/1NkW
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5 SV detection and annotation on FOUNDIN-PD 

cohort: database construction 

 

5.1 SV database construction 

Structural variants vary in their size and sequence structure, causing a large impact 

on phenotype and triggering pathogenic processes[246]. Here we identified and 

annotated a set of reliable SVs across 95 iPSC lines that can be used for functional 

impact analyses in the context of PD. SVs calling was performed with the pipeline 

described and benchmarked in Chapter 4. The analysis was conducted individually 

for each sample, and the resulting SVs were clustered based on their type, genome 

position, and affected sequence length across the whole cohort (Figure 5, A). SV 

with missing genotypes and SVs which failed QC were filtered out before the 

clustering (on average 0.8% SVs per sample). This approach yielded a total of 

150,809 SVs that met quality filters and became a basis for follow-up analyses.  

The final SV set predominantly consisted of INSs and DELs with a size under 1 kbps 

(90.1%, Figure 5, B). SINE mobile elements and DNA satellite INSs and DELs 

peaks were marked at approximately 300 and 150 bps, respectively, as expected. A 

total length of non-reference INSs reaches 24 kbps (0.8% of the human genome) and 

is primarily represented by nonrepetitive sequences (45% of occupied sequence 

length), simple repeats (18%), LINEs (14%), and SINEs (11%, dominated by Alus: 

10,8%). We detected consistent SV numbers and type proportions per sample 

genome (Figure 5, C). The median genome contained 32k SVs, with a cumulative 

length of the affected genome reaching 2.2%. Approximately 50% of SVs are 

singletons or rare variants (MAF < 5%). The prevalence of rare variants grows with 

the SV size: a group of SVs larger than 10 kbp is significantly enriched for the 

variants present in less than 5% of samples (p-value < 0.001, Chi-squared test) 

(Figure 5, D). 

https://paperpile.com/c/Pow9hH/7H7O
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Figure 5. SV collection general results. A. SV calling workflow and sample PD 

genetic status. B. SV length distribution grouped by type. C. Per sample SV counts. 

D. SV frequency bin distribution grouped by size. 
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We accounted for potential FP SV calls from problematic genomic regions, such as 

gap-juxtaposed regions and regions within high somatic variability. We flagged 

variants located within segmental duplication regions and regions adjacent to gaps 

in GRCh38/hg38 build (12.7% and 4.8% of SV call set, respectively; Figure 6, A). 

DELs coincided with homopolymers, and SVs from HLA loci (cumulatively 3% of 

SVs) were removed from the further analyses (Figure 6, A).  

Next, we assessed for putative iPSC-specific variation. Cells were collected for the 

LR sequencing assay on day 0; therefore, mutations originating from the mitotic 

divisions during the extended iPSC culturing are not expected to occur in the current 

dataset. Genetic changes can be introduced in iPCS lines during the reprogramming 

process. The reprogramming process can induce DNA double-strand breaks 

triggering activation of DNA repair mechanisms such as homologous recombination 

(HR) and non-homologous end-joining (NHEJ)[247,248]. Large chromosomal 

rearrangements were checked as a part of the FOUNDIN-PD iPSC line genome 

integrity screen [249]. However, smaller SVs (< 100 kbp) can still be present in the 

final SV callset and interfere with the interpretation of the results. A recent meta-

study conducted extensive research collecting systematically recurrent CNVs in 

human iPSC lines [250].  We used 20 publicly available common abnormal regions, 

which cover 90.7% of all reported iPSC recurrent CNVs [250]. During the liftover 

from GRCh19/hg19, GRCh38/hg38 continuous coordinates from 17 regions were 

successfully obtained, comprising 81.4% of known iPSC-specific CNVs and 

spanning over a 7.9% of the human genome (Appendix table iPSC specific CNV 

regions GRCh38). We used the defined iPSC-specific CNV genetic hot spots to flag 

the variants located inside these regions. As a result, 4.5k CNVs were marked with 

a putative iPSC-specific variation label. No enrichment was found for a specific 

frequency group (common vs rare CNVs, MAF 5%) or for a specific CNV length 

group (long, >1kbps vs short CNVs, <1kbps) (Figure 6, B). Common CNVs under 

iPSC hot spots were depleted for variants affecting coding sequences and splice sites 

(Figure 6, C). 

 

https://paperpile.com/c/Pow9hH/Z9UQ+cOsx
https://paperpile.com/c/Pow9hH/8F9h
https://paperpile.com/c/Pow9hH/W4Ip
https://paperpile.com/c/Pow9hH/W4Ip
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Figure 6. SV collection quality control and reference comparison. A. SV counts 

within problematic regions, including segmental duplications, homopolymer 

regions, HLA loci, and regions adjacent to gaps. B. Distribution of CNVs grouped 

by frequency and length under iPSC-specific CNV hot spots. C. Counts of CNVs 

under iPSC-specific CNV hot spots based on their positional annotation. D. SV 

callset comparison with deCODE SV collection: number of common and unique 

SVs. E. Distribution of deCODE/FOUNDIN-PD common SVs grouped by 

frequency and length. 
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SV collection was compared to the deCODE SVs callset where SV calling was 

carried out for ~3k Icelanders [183]. Both cohorts contain comparable SV numbers: 

151k and 147k for FOUNDIN-PD and deCODE, respectively. After SV clustering 

based on their position, type, and length, we discovered 65k SVs shared by two 

cohorts which comprise 43-44% of SV collections (Figure 6, D). There was no 

detected over- or -underrepresentation of any specific frequency group or 

enrichment of a particular SV size group (Figure 6, E). We observed a more balanced 

representation of DELs vs. INSs in our cohort: 87% vs. 74% DEL/INS ratio for 

FOUNDIN-PD and deCODE SV call sets, respectively. 

 

5.2 SV positional annotation and a prediction of their effect 

SVs can span regions from hundreds to thousands of base pairs, thus affecting 

several genomic features e.g., one SV can be annotated to affect promoter, 5`UTR, 

and exonic regions. Positional SV annotation and variant consequence prediction 

was performed with Variant Effect predictor (VEP). We prioritized positional effects 

and assigned each SV the most severe consequence according to VEP annotation.  

The majority of SVs are located within intergenic or non-coding regions, including 

introns, non-coding exons, and regulatory regions (Figure 7, A). SVs are expected 

to alter the expression of multiple genes in their vicinity. Each SV affected or was 

annotated to, on average, 1.14 unique genes. The number of SVs affecting coding 

sequences (coding exons, splicing variants, frameshift variants, AF = 0.015) were 

notably lower than intergenic and intronic SVs (AF = 0.04) and enriched for 

singletons and rare variants (p-value<0.001, Chi-Square test).  

SVs overlapping regulatory regions were one of the dominant groups (Figure 7, A). 

The number of SVs intersecting promoters, enhancers, and TF binding sites reaches 

~7% of the SV callset following intronic and intergenic SVs.  The majority of 

regulatory SVs are located within promoter flanking regions (7981 SVs, median 

MAF 0.04) preceding the number of SVs in CTCF binding sites (6263 SVs, median 

MAF 0.03) and open chromatin regions (4154 SVs, median MAF 0.05) (Figure 7, 

B). Notably, the median MAF of enhancer SV (0.02), promoter SVs (0.03), and SVs 

https://paperpile.com/c/Pow9hH/W6fB
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within TF binding sites (including CTCF, MAF 0.03) are lower than intronic and 

intergenic SVs MAF, which reaches 4%. 

 

 

Figure 7. SV annotation according to their genome position and putative effect on 

gene expression.  A. Distribution of SV effect groups and fraction of singletons 

within each group across 95 genomes. B. Distribution of SVs located within 

regulatory features across 95 genomes. C. Coding sequence altering SVs leading to 

gene inactivation, dosage increase, or lack of direct effect with counts of total SVs 

and median SV size. D. Distribution of SV MAF within LoF-intolerant and tolerant 

genes based on SV predicted effect. pLoF - loss-of-function, CG - copy gain, IEDUP 

- whole exon duplication, other - remaining predicted effects excluding intergenic 

SVs. 
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As it was suggested previously, any SVs altering coding nucleotides or altering 

ORFs are predicted to have a loss-of-function (pLoF) effect [126]. Whole gene 

DUPs are predicted to cause an increased gene-dosage effect whereas whole gene 

INVs are not expected to have any direct effects on gene expression. We detected 

1953 pLoF SVs (median MAF 0.01), 19 CG (copy-gain) DUPs (median MAF 0.01), 

and 4 whole-gene INVs (median MAF 0.04) (Figure 7, C). When restricted to rare 

SVs (MAF < 0.05), we observed on average 16, 7, and 2 pLoF SVs, CG DUPs, and 

whole-gene INVs per genome respectively. In total, pLoF SVs affected 1863 genes, 

out of which 8,5% were pLoF-intolerant, including 874 protein-coding genes, 140 

ncRNA genes, and 314 pseudogenes. We discovered that protein-coding pLoF SVs 

were significantly depleted for homozygous variants in comparison to pseudogene 

pLoF SVs (p value 0.0015, Chi-Square Test). On average, MAF of pLoF SVs 

affecting protein-coding genes and pseudogenes reached 0.015 and 0.02 

respectively. The majority of pLoF SVs are represented by INS and DELs with a 1:2 

ratio. Whole gene DUPs impact 38 genes including 32 protein-coding genes with an 

average MAF of 0.0052. We assessed SV distribution and predicted consequences 

in the LoF-intolerant protein-coding genes. We used the gnomAD upper bound of a 

90% confidence interval of expected/observed LoF variation (LOEUF < 0.35) 

calculated per gene [251]. We obtained ~3.000 LoF-intolerant coding genes where 

SV set was compared versus variation in ~17.000 “tolerant” genes. We discovered 

that CG and exon duplications (IEDUP) are absent from the pLoF-intolerant genes 

(Figure 7, D).  In addition, data shows the apparent tendency of pLoF SV MAF 

affecting pLoF-genes to be lower than pLoF SV MAF within tolerant genes although 

no significant signal was detected on the level of FDR 5% (p-value = 0.058, two-

sided Mann-Whitney U Test). The fraction of SVs within intronic regions of LoF-

intolerant genes reaches on average of 37.3%. In comparison, the fraction of exonic 

and splicing SVs affecting LoF-intolerant genes ranges on average between 0.8 and 

4%.  

 

 

https://paperpile.com/c/Pow9hH/wdOG
https://paperpile.com/c/Pow9hH/hiJH


SV detection and annotation on FOUNDIN-PD cohort: database construction 

____________________________________________________________________________ 
 
 

 

40 

The detrimental effect of pLoF SVs is usually avoided by the presence of the second 

functional gene copy unless the gene exhibits a high probability of 

haploinsufficiency (HI). We tested the hypothesis that genes harboring predicted 

loss-of-function SVs should not have a high HI probability. Indeed, the results 

demonstrate the decrease of pLoF SV fraction while walking up the HI gene 

probability percentiles with pLoF SVs being significantly depleted in the highest 

percentile (75-100%, p-value < 2.2e-16, Chi-Square Test) (Figure 8, A). We 

explored further if there is a difference in pLoF SV distribution between healthy 

controls and PD affected or prodromal cases (Figure 8, B). We calculated an SV 

prevalence for each of the two groups in the following way: variant was considered 

as “PD-prevalent” if healthy controls MAF < 0.05 and PD-cohort MAF > 0.05 

(opposite conditions had be to meet for the “HC prevalence” and other combinations 

were considered as “No prevalence”). We discovered that while intronic and 

up/downstream variants do not show any difference in their target gene HI 

probability distribution among SV prevalence groups, rare in general cohort PD-

pLoF SVs are observed in genes with a significantly high HI probability (p-value  

0.006, two-sided Mann-Whitney U Test). The most significant molecular pathways 

enriched with genes affected by the given SV subset are signaling transduction, 

nervous system development, and axonal guidance, while cellular compartments are 

highly enriched for the neuron-specific subcellular parts such as axons, synapses, 

and dendrites (Supplementary Figure S1). 

Human-lineage-specific regions defined as constrained non-conserved regions 

(CNCR) were shown to be enriched for the neurological and neurodevelopmental 

diseases associated variation. Exploration of FOUNDIN-PD SV datasets reveals that 

8.35 % of SV overlap CNCRs including 282 pLoF SVs and 7 CG DUPs. We found 

a significant depletion of pLoF SVs (p-value < 0.00001, Chi-Square Test). In 

addition, we discovered a significant correlation between the CNCR score of SVs 

and the target gene biotypes as well as regulatory features (Figure 8, C). The protein 

coding gene and lncRNA biotypes were depleted for the highest percentile of the 

CNCR score, while interestingly the enhancer and CTCF sites were enriched for the 

same CNCR score range.   
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Figure 8. Properties of SVs affecting haploinsufficient genes and human lineage-

specific regions. A. Presence of pLoF SVs within genes with different HI probability 

percentiles. B. HI probability distribution for genes harboring pLoF and Other (non-

pLoF, excluding intergenic) mutations and for genes without observed SVs across 

HC and PD SV prevalence groups. The variant was considered as “PD-prevalent” if 

HC MAF < 0.05 and PD-cohort MAF > 0.05 (opposite conditions had be to meet for 

the “HC prevalence” and other combinations were considered as “No prevalence”) 

C. Observed vs expected ratio of biotypes with SVs overlapping CNCRs and their 

fraction across different CNCR score percentiles.  
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During our next step, we focused on SVs localized within PD-associated loci. Since 

all individuals from the FOUNDIN-PD cohort have European ancestry, we used the 

largest PD meta GWAS which discovered 90 loci in the European population [50].   

We obtained 542 SVs (322 INS, 245 DEL, and 2 DUP, 0.37% of total callset, 

223,407 bps of cumulative length) within the LD regions of 90 GWAS loci (R2 > 

0.5 in EU populations). A major part of the SV callset within PD GWAS hits was 

represented by intronic and regulatory region SVs, followed by intergenic, intronic, 

and coding variants (Figure 9, A). The predicted variation which drives the GWAS 

signal should be common and prevalent in the PD cases cohort. We explored the SV 

MAF for PD and HC prevalence SV groups. The groups were determined as 

explained above, briefly, PD-prevalence means that the variant is common in the 

PD-affected and PD high risk mutation carriers and rare in healthy controls, while 

for the HC-prevalence the opposite conditions have to be true.  In general, we did 

not catch a significant difference for most SV consequences except for intronic SVs, 

those MAF within the PD cohort were significantly higher under PD GWAS regions 

(p-value 0.003523, two-sided Mann-Whitney U Test). We specifically focused on 

the PD-prevalent SVs, investigating the consequence, and affected gene biotypes 

(Figure 9, C).  The prevailing consequences of the given SV subset were intronic 

and regulatory region variation. Interestingly, both common and rare intronic SVs 

in the general cohort targeted protein-coding genes, but only rare SVs were found in 

the introns of lncRNAs.  The coding variants were represented by one DEL 

overlapping a CTCF binding site and a pseudogene exonic region. The regulatory 

regions affected by PD prevalent SVs were mainly promoter and promoter flanking 

regions of protein-coding, RNA genes, and pseudogenes.  

 

https://paperpile.com/c/Pow9hH/i66O
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Figure 9.  SVs under PD GWAS hits. A. SV consequence and variant frequency in 

the FOUNDIN-PD cohort. B. Distribution of SV MAF within HC and PD prevalence 

cohorts under and outside PD GWAS regions (R2 > 0.5 in EU populations). The 

variant was considered as “PD-prevalent” if healthy controls MAF < 0.05 and PD-

cohort MAF > 0.05 (opposite conditions had to be met for the “HC prevalence” and 

other combinations were considered as “No prevalence”). C. SV from the PD-

prevalence subset (MAF PD > 0.05) and their highest gene consequences and 

affected gene biotypes. Common and rare (MAF < 0.05) in FOUNDIN-PD cohort 

groups were compared. 
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The previous SR-based SV metastudy (which incorporates a subset of FOUNDIN-

PD patients) identified eight SVs from WGS of patient blood under PD GWAS hits 

(Billingsley et al., 2022, unpublished manuscript). Three SVs were in silico 

confirmed in the LR-based SV callset from blood DNA sequencing and detected in 

the current study. Three DELs are Alu mobile element deletions located upstream of 

gene ZSCAN9, downstream of gene NEK1, and in the third intron of gene LRRN4. 

 

5.3 Discussion 

Genetic research capturing the complete variation landscape in individual genomes 

from patients with different phenotypes is essential for profound clinical diagnostics. 

In this thesis, we have conducted whole genome SV calling in the cohort enriched 

for PD phenotype which includes both familiar and idiopathic cases. The use of LR 

sequencing and high (more than 28x) coverage allowed us to map common and rare 

SVs at high genomic resolution and predict the SV effect highlighting putatively 

deleterious variants.  We identified on average 32k SVs per genome, which exceeds 

the SV number in the recent large-scale LR-based dataset (median 22k per genome) 

[68,183]. This observation can be explained by the different minimal SV sizes used 

for the final SV callset generation: we lowered boundaries defined for SVs and 

started with 30bp length to capture small repetitive DELs and INSs, which are 

normally filtered out during the NGS InDel calling process.  One of the major classes 

of SVs occurred to be CNVs (92 %) which agrees with the previous results 

[126,252]. The majority of SVs increasing genome length is INSs which contrasts 

with SR-based SV studies where numbers of INSs (predominantly mobile element 

INSs) and DUPs are similar, pointing out a potential LR-biased misclassification of 

DUPs as INSs due to the basecalling errors which artificially decreases the sequence 

similarity. We detected more INSs than DELs which aligns well with the results 

from LR-based SV studies [68,183] but differs from the results based on SR SV 

calling [251]. The observations implicate that NGS technologies allow easier 

identification of DEL breakpoints in comparison to INSs which might arise due to 

the repetitive nature of inserted sequences and insufficient long read length to cover 

https://paperpile.com/c/Pow9hH/W6fB+Y2q8
https://paperpile.com/c/Pow9hH/wdOG+YqNw
https://paperpile.com/c/Pow9hH/W6fB+Y2q8
https://paperpile.com/c/Pow9hH/hiJH
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and identify the non-reference sequences. We replicated the finding that the SV 

length grows with the drop of MAF [55,68,246,251]: less than 200 SVs >10kbps 

were identified which were enriched for rare variants. The finding is a piece of clear 

evidence for the strong positive correlation between the DNA rearranged amount 

and the natural negative selection.  

We systematically analyzed predicted SV effects on genomic features to facilitate 

further SV functional annotation and genotype-phenotype association. A negative 

selection leads to low frequencies of deleterious variants, enabling the use of 

frequency estimates as a proxy factor for the assessment of a variant's negative 

impact on the phenotype [251]. The dataset is highly enriched for intergenic and 

non-coding SVs, with the fraction of singletons rising from non-coding to coding 

loci due to the natural negative selection. We showed that SVs within coding regions 

and SVs overlapping promoters, enhancers, and CTCF binding sites were observed 

at lower frequencies than other non-coding SVs supporting earlier findings, which 

prioritizes protein coding exonic and regulatory region SVs based on their profound 

detrimental effect [252]. We also identified that the whole gene/locus DUPs are 

mostly rare variants and depleted for common and homozygous SVs. This finding is 

in line with the suggested deleterious effect of large DUPs, which affect and 

rearrange the TADs, thus interfering with the gene expression regulation [253]. 

Coding SVs with a predicted LoF effect were enriched for singletons and rare 

variants, pointing out the highly detrimental effect and high penetrance of SVs 

overlapping protein-coding exons. This conclusion is also supported by the fact that 

LoF-intolerant genes are affected by rarer pLoF variants than tolerant genes. The 

LoF intolerance was calculated from the expected vs. observed number of non-

synonymous SNPs. Obtained results tell us that genes intolerant to LoF small 

variants are intolerant to LoF-SVs as well. However, it is assumed that SNP-tolerant 

genes may be not tolerant to pLoF SV, thus to assess SV-specific intolerance, LR-

based SV calls from larger cohorts, including related individuals and different 

populations, have to be explored [126]. We also showed that the fraction of pLoF 

variants drops drastically with the growth of gene probability to be haploinsufficient 

https://paperpile.com/c/Pow9hH/7H7O+M0LV+Y2q8+hiJH
https://paperpile.com/c/Pow9hH/hiJH
https://paperpile.com/c/Pow9hH/YqNw
https://paperpile.com/c/Pow9hH/NGzo
https://paperpile.com/c/Pow9hH/wdOG
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since negative selection reveals itself more intensively for the genes where the 

unaffected copy cannot fully compensate for the lost function. 

Further investigation of SV rare in the general cohort but common in the PD affected 

and PD high risk mutation-positive individuals revealed that pLoF SVs, on average, 

affect HI genes with a significantly higher MAF. Affected molecular pathways and 

cellular compartments with enrichment for these genes are related to the nervous 

system development, organization, and functioning. Obtained results are expected 

to appear regarding HI genes in general. However, an increased frequency of 

detrimental variation in HI genes, which we observe in the PD cohort, implies the 

presence of rare pLoF SVs in a unique combination in PD-affected and prodromal 

cases leading to the decrease of genome fitness and increased vulnerability to 

pathogenic processes.  

Identification of human-lineage-specific elements provided more insights into 

human neurological disease genetics, demonstrating that combined usage of 

constraint and non-conserved metrics significantly increases the information gain 

about the functionally important genomic features [211].  The study which 

introduced CNCRs already showed that these genomic regions are enriched for 

lncRNA genes and regulatory elements [211]. It was shown that the proportion of 

protein-coding exons overlapping CNCRs remains the same, and the ratio of protein-

coding intron and lncRNA exons rises from low to high CNCR score distribution 

percentiles [211]. However, we observed that protein-coding genes and lncRNA 

genes harboring exonic and intronic SVs are significantly depleted from the high 

percentiles of the CNCR score distribution. This finding indicates that protein-

coding intronic regions and lncRNA genes are under human lineage specific 

negative selection and highlights intronic and lncRNA SV overlapping CNCRs as 

candidates for further disease association. 

Recent PD GWA studies identified 90 loci in European and 2 loci in Asian 

populations. However, we still have a limited understanding of the genetic variants 

that drive the association signals. In contrast to familiar cases, variants under GWAS 

hits are expected to have low risk effect size and cumulative contribution to the 

disease development. We discovered that the frequency of PD-prevalent intronic 

https://paperpile.com/c/Pow9hH/EE6y
https://paperpile.com/c/Pow9hH/EE6y
https://paperpile.com/c/Pow9hH/EE6y
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SVs is significantly increased under PD GWAS hits, which supports the hypothesis 

of the several causal intronic SVs with a small risk effect size. We expanded a list 

of candidate SNPs and InDels with SVs located under PD GWAS hits that could 

potentially drive the observed association signal. Previously identified SV hits 

within PD associated loci (Billingsley et al., 2022, unpublished manuscript) were 

found in our study. Follow-up functional annotation and replication of findings have 

to be performed for further SV candidate prioritization. 

 

 

 

 

 

 

 

 

 



SV functional annotation and PD risk factor prioritization 

____________________________________________________________________________ 

 

 

48 

6 SV functional annotation and PD risk factor 

prioritization 

 

6.1 SV impact on nearby gene expression 

The advent of SR and LR genome sequencing technologies facilitated SV detection 

in different populations on a large scale [126,183]. Despite this progress, the 

functional impact of SVs remains to be understudied. The sophisticated SV 

functional annotation is essential to understand the role of SVs in phenotypic 

manifestation in general and assess functional evidence of candidate variants in the 

scope of PS3/BS3 ACMG/AMP guidelines criterion for variant clinical 

interpretation [254]. SVs can affect the expression of nearby genes by altering the 

coding or cis-regulatory sequence of a target gene [103].   To explore the impact of 

SVs on gene expression, we used bulk RNA sequencing data from FOUNDIN-PD 

collection performed on day 65 of iPSC lines differentiation into a dopaminergic 

neuronal-like state [249].  

To quantify the transcriptional consequences of SV, we first assess the gene relative 

expression as the median expression of SV carriers divided by noncarrier expression 

defined in counts per million (cpm) and converted to logFC under a hypothesis that 

SV with a greater probability will affect the nearest gene. First, we investigated the 

difference in gene expression harboring pLoF and CG SVs (Figure 10, A-B). Here 

we also investigated the functional effect of CNCR regions, testing a hypothesis that 

variation interfering with CNCRs should cause a larger impact. Indeed, we observed 

that pLoF SVs overlapping CNCRs on average show significant downregulation of 

the target genes (mean logFC = -0.2, p-value < 0.00001, two-sided Mann-Whitney 

U Test). CG DUPs not overlapping with CNCRs demonstrated an insignificant 

upregulation (logFC = 0.21), whereas logFC distribution shifts of genes with other 

SVs, including intronic, regulatory, and up/downstream variants equal to 0 (Figure 

10, A). We break further these SV groups studying the putative effect of SV types 

and consequences (Figure 10, B) separately. We classified pLoF variants into coding 

https://paperpile.com/c/Pow9hH/wdOG+W6fB
https://paperpile.com/c/Pow9hH/YRVs
https://paperpile.com/c/Pow9hH/VISl
https://paperpile.com/c/Pow9hH/8F9h
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(purely exonic) and splicing (affecting exon-intron sites) SVs. We discovered that 

observed downregulation associated with pLoF SVs was specifically driven by 

coding (intra-exon) variation, while genes harboring splicing variants were up- and 

downregulated. In addition, we observed that transcript ablation variant genes were 

on average downregulated (logFC = -0.56) regardless of whether the associated SV 

overlaps the CNCR or not. Interestingly, no INS were found to be within CNCRs, 

and no observed effect was detected of any of the INS consequences.  

 

Figure 10. Change in target gene average expression between SV carriers and non-

carriers expressed in logFC. A. Effect of different SV groups overlaid with the 

information of CNCR overlap. B. Effect of different SV types and consequences on 

gene expression based on CNCR overlap. pLoF - loss-of function SVs including 

coding and start/stop codon loss SVs; CG - whole gene duplications; Other - other 

SVs including intronic variants and up/downstream SVs. The dashed red line 

indicates logFC 0.  

Next, we set out to explore the changes in gene expression that associated regulatory 

elements were affected by SVs. We started with the promoters of the protein-coding 

genes (Figure 11, A). A high confidence set of promoters from the ENCODE 

database was used. We discovered 92 unique SVs overlapping promoters of 89 

unique genes [255]. On average genes with transcripts ablation, splicing, exonic and 

https://paperpile.com/c/Pow9hH/0hRr
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5`UTR variants showed a consistent downregulation (logFC -2.3 to -1.1), while 

genes with transcript amplification and variants in the introns of their other 

transcripts were on average upregulated (logFC 0.22-0.55).  

 

 

 

Figure 11.   SV disruption of regulatory regions and 3D chromatin structure. A. 

Effect of SV overlapping promoter regions of protein-coding genes on the target 

gene expression. B. Predicted consequence and gene expression effect of SVs based 

on their overlap with cis-eQTLs active in brain regions. C. Predicted consequence 

and gene expression effect of SVs based on their TAD intra or boundary localization. 

The dashed red line indicates logFC 0. 

 

We explored SVs affecting cis-eQTLs under a hypothesis that deletion or 

duplication of associated cis-eQTL should also affect the expression of the cis-

eQTL-associated gene. For this purpose, we used eQTLs GTEx V8 release, which 
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includes significant eQTL-gene pairs for 18,262 protein-coding and 5,006 lncRNA 

genes. We discovered 3,635 DELs and DUPs interfering with cis-eQTLs active in 

different brain regions, including the substantia nigra, basal ganglia circuit, and 

cerebellar cortex. On average, the median MAF of SVs interfering with cis-eQTLs 

(median MAF = 0.01) is lower than the MAF of eQTL-nonoverlapping SVs (median 

MAF = 0.03), which is replicated for all SVs types. We checked if any expression 

changes effects were observed for the CNVs overlapping brain cis-eQTLs (Figure 

11, B). On average, genes with whole transcript deletions and splicing DELs and 

DUPs overlapping eQTLs were significantly downregulated (logFC -0.3 - (-0.8), p-

value < 0.01, two-sided Mann-Whitney U Test).  Specifically, genes with splice sites 

affecting DELs overlapping eQTLs were significantly downregulated than genes 

with eQTL-non-overlapping DELs (p-value 2.42e-07, two-sided Mann-Whitney U 

Test). This observation was not replicated for the genes with splice affecting DUPs, 

which demonstrated various expression changes regardless of the cis-eQTL overlap. 

Genes with exonic CNVs were systematically downregulated regardless of eQTL 

interference.  Genes with intronic and up/downstream CNVs did not show any 

consistent up or downregulation, with an average logFC equaling 0. 

SVs are expected to disrupt gene expression regulation through direct interference 

with regulatory elements and via perturbation of TADs and rewiring associated 

gene-regulatory region pairs. We explored if there is an observable difference in 

gene expression with SV disrupting TADs (overlapping the TAD boundary) and 

located inside the TADs (Figure 11, C). We used estimated TAD regions from Hi-C 

sequencing of A549 and Caki2 human cell lines [207].  The SV was predicted to 

disrupt TAD if it overlapped the TAD boundary in both datasets. SV was predicted 

to localize within the TAD region if both datasets supported it. Otherwise, SV was 

considered to have an undefined impact on TAD. On average, genes with CNVs 

inside TADs and on their boundaries did not demonstrate a significant change in the 

expression level in comparison to genes with CNVs with undefined impact on 

TADs, except for genes with coding CNVs inside TADs and on their boundaries 

which were significantly downregulated in comparison to TAD undefined CNVs (p-

value 0.02993, two-sided Mann-Whitney U Test). 

 

https://paperpile.com/c/Pow9hH/iEtt
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Exploratory analysis of gene expression changes revealed interesting patterns based 

on the consequences of present SVs, however further statistical analysis has to be 

performed to infer the real differential signal accounting for the data variability. We 

run a differential expression analysis to capture statistically significant SV-gene 

expression change association. The candidate SVs were chosen according to the 

following criteria:  

● SV presence (0/1, 1/1) and absence (0/0) at least in three samples 

● SV candidate for a cis-regulation: intergenic SVs excluded 

For this analysis, we run ~60,000 DEAs to test candidate SVs individually (Figure 

12, A). We identified 177 candidate SVs predicted to alter gene expression directly, 

eSVs (Figure 12, A), including 76 INSs, 94 DELs, 4 INVs, and 3 DUPs.  Most hits 

were intronic and upstream SVs, mainly affecting their protein-coding gene targets 

(Figure 12, B). Predicted eSVs were not enriched in any variant consequences. We 

checked the general patterns of logFC distribution for the DE hits (Figure 12, C). 

Interestingly, while protein-coding genes with coding, splicing and 5`UTR variants 

were downregulated, lncRNAs with intronic and splicing variants were on average 

upregulated.  
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Figure 12. Design of DE analysis for SV functional annotation. A. Criteria for SVs 

to be included into the DE analysis according to their positional annotation and 

resulting numbers of SV types. B. Effect of SVs for which DEA revealed target 

genes to be differentially expressed (hit SVs). C. logFC distribution for the 

differentially expressed target genes based on the consequence of associated SV. 

 

We focused on SVs whose genotype split coincided with the patient PD phenotype, 

comparing healthy controls with PD-affected individuals and carriers of PD 

mendelian mutations. We identified three hits, which can be prioritized as candidates 

to disturb molecular pathways implicated in PD and PD-related disorders.  
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The first hit - DEL (CNCR = 4, 50-75% percentile, MAF in PD cohort 0.04) located 

in the promoter/5’UTR region of gene CBR1, mitochondrial protein Carbonyl 

Reductase 1 (Figure 13, A). CBR1 was significantly downregulated in 1 1/1 and 4 

0/1 DEL carriers with logFC = -1 (Figure 13, B). We leveraged a large FOUNDIN-

PD database of assays available for the studied samples which include scRNA-seq, 

bulk ATAC-seq, and methylation profiling performed on day 65 of iPSC lines 

differentiation. We observed the same pattern of CBR1 expression for 1/1, 0/1, and 

0/0 DEL carriers in the dopaminergic neuronal cluster from the scRNA seq dataset 

(Figure 13, C).  We detected that the first CBR1 exon was less accessible in the DEL 

carriers according to the analysis of ATAC-seq dataset (0/1 and 1/1 genotypes) 

(Figure 13, D). In addition, the upstream region and CBR1 gene body showed a 

higher level of methylation in DEL carriers compared to DEL non-carriers (Figure 

13, E). Other than the CBR1, another 3 protein-coding genes were differentially 

expressed in the CBR1-DEL GT: CLR1, GJA8, CLEC3A. Their protein products 

are involved in the cell adhesion activity and gap and synapse junction organization. 

Two other hits, DEL and INS, are located in the intronic regions of PTPRN2 

(Supplementary Figure S2) and PTPRG (Supplementary Figure S3) genes. PTPRN2 

and PTPRG were significantly downregulated for the DEL (logFC = -1, MAF = 

0.03) and INS (logFC = -0.85, MAF = 0.052) hit carriers, respectively. The results 

were not replicated for the dopaminergic neuronal clusters (Supplementary figures 

S2-S3). Analysis of epigenetics in the corresponding regions did not reveal any 

differences between SV hit carriers and non-carriers. We investigated the regions 

affected by these hits to account for potential known genetic features discovered in 

large cohorts or in samples with similar phenotypes. We discovered that PTPRN2-

intronic-DEL intersects a differentially methylated region in AD patients according 

to the recent genome-wide histone 3 lysine 27 acetylation (H3K27ac) profiling 

[256]. Gene ontology enrichment analysis for the PTPRN2-DEL and PTPRG-INS 

revealed enrichment for synaptic signaling and mRNA alternative splicing 

biological processes, respectively (Supplementary Figure S4). 

 

 

https://paperpile.com/c/Pow9hH/Z7TO
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Figure 13.  DEL (DEL-CBR1) in promoter/UTR region of CBR1 and CBR1 

expression in multi omics datasets by DEL-CBR1 GT groups. A. Schematic 

representation of DEL localization and volcano plot of DEA results for DEL-CBR1 

GT split. B. CBR1 expression in bRNA-seq (day 65). C. CBR1 expression in DA 

clusters of scRN-seq (day 65). D. Chromatin availability detected by bATAC-seq in 

the region of CBR1 TSS/exon1 (day 65). E. Methylation profile of CBR1 gene body 

and upstream region (day 65).  
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6.2 Expression outlier analysis 

Most studies in the functional variant annotation focus on common variants for 

which statistical power can be gained to account for the sample group variability and 

identify the direct association between the variant and its transcriptional 

consequences. However, a recent analysis revealed a substantial role of rare and 

ultra-rare regulatory variants in gene expression by identifying gene expression 

outliers (eOutliers) [257].  

We ran eOutlier detection analysis using autoencoder to account for batch effects 

and unknown covariation [233] (Supplementary Figure S5).  After filtering for lowly 

expressed genes, we ended up with 72,655 coding genes and lnRNAs from 92 

samples which were input in the eOutlier analysis. As a result, we identified 124 

aberrantly expressed genes from 47 samples. On average, we detected one aberrantly 

expressed gene per sample with three aberrant genes/sample being in the 90th 

percentile (Figure 14, A). During the next step, we explored SV presence in the 

vicinity of or within the detected genes matching the SV genotypes. We identified a 

total of 96 unique SVs (median MAF 0.3, median size 161.5 bps), including 27 rare 

SVs located in the gene body or within 5 kb flanking regions of 43 gene eOutliers. 

Most eOutlier associated SVs (eoSVs) were intronic variants, followed by upstream 

SVs. However, we discovered that 17% of intronic SVs were localized within 

transcribed pseudogenes (Figure 14, B). SVs affecting coding sequences and 5`UTR 

regions were represented solely by rare SVs interfering with protein-coding genes.  

We checked the distribution of gene expression for the subset of genes with eo-SVs. 

The transcriptional consequences were specifically notable for the genes harboring 

rare SVs (Figure 14, C-D). Genes with rare DELs removing one or both copies of 

cis-eQTLs were significantly downregulated: the median logFC of gene expression 

was -0.98 (p-value 6.994e-08, two-sided Mann-Whitney U Test). In addition, 

eOutlier genes with rare pLoF SVs were significantly downregulated with median 

logFC  -0.9 (p-value 1.404e-05, two-sided Mann-Whitney U Test).  

https://paperpile.com/c/Pow9hH/V0os
https://paperpile.com/c/Pow9hH/MxW6
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Figure 14. Overview of SVs (eoSV) associated with eOutliers. A. Number of 

aberrantly expressed genes per sample. B. Positional annotation and predicted effect 

of SVs localized in the vicinity of aberrantly expressed genes based on their 

predicted effect on the gene.  C. Box plots demonstrating change in target gene 

average expression between eoSV carriers and non-carriers expressed in logFC for 

eoSVs affecting brain cis-eQTLs and D. for eoSVs pLoF - loss-of function SVs 

including coding, 5`UTR upstream and start/stop codon loss SVs; SP - SVs affecting 

splicing sites; Other - other SVs including intronic variants and up/downstream SVs. 

 

We identified 18 rare eoSVs, including ten pLoF SVs which could trigger aberrant 

gene expression in PD affected samples or samples with high penetrance variants. 
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We replicated our finding of CBR1 gene downregulation in the promoter DEL 

carriers: CBR1 was detected to be an eOutlier in the 1/1 CBR1-DEL carrier (LRRK2 

+ unaffected individual).   

 

 

Figure 15. Heterozygous singleton DEL associated with MPST aberrant expression. 

A. Schematic representation of MPST region affected by the DEL and volcano plot 

showing differentially expressed genes for the eOutlier male iPD sample. B. MPST 

raw counts (adjusted for covariates) vs expected counts for MPST within 

FOUNDIN-PD cohort.  

 

Another detected hit is a large singleton heterozygous DEL affecting 5’UTR and the 

first two exons of gene MPST (Figure 15, A). The DEL is specific for a sample from 

an iPD male individual. MPST was significantly downregulated in the given sample 

(z score = -5.57, p-value 2.448537e-02, Figure 15, B)). Apart from MPST, there 

were 22 aberrantly expressed genes detected for the given sample. Pathway 

enrichment analyses revealed dysregulation in iron-sulfur metabolism and export 

from mitochondria as well as protein metabolism and chromatin organization 

(Supplementary Figure S6). 
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Several eoSVs were identified to be associated with expression changes of genes 

previously associated with PD or other neurodegenerative disorders:  ZNF543[258], 

FEM1A[259], UEVLD [260]. A complete table of eoSVs hits absent in the samples 

from healthy individuals can be found in Supplementary materials (Supplementary 

table 2). 

 

6.3 Differential transcript usage analysis 

Genetic variation changes transcript structure and generates transcript diversity 

playing an essential role in disease manifestation. We generated a LR PCR-cDNA 

RNA-seq dataset from 10 samples of the FOUNDIN-PD cohort. Reference-guided 

transcript annotation and quantification were performed with bambu (v 0.3.0) based 

on GENCODE (v.29) expanded with LNCipedia (v 5.2). The resulting transcript set 

comprised 45,539 annotated genes and 228,775 transcripts, including 46,657 

(20.4%) novel transcripts. We compared FOUNDIN-PD annotation with 

GENCODE (v.26) reference expanded with GTEx LR-annotated novel transcripts 

[214]. The number of transcripts with a complete and exact intron chain match 

reached 23,813 (13% of the annotated transcript set). Most transcripts (~50%) have 

at least one matched intron junction between the reference and query annotation set.  

We explored the presence of intron-retainment events. The group of transcripts with 

retained introns where all or several introns are matched comprised 6720 transcripts 

(~ 3%). In addition, we identified 3081 transcripts (56.7% novel transcripts) fully 

contained in the reference introns. A group of transcripts annotated on the opposite 

strand included 5703 features, with 65% being novel transcripts.  

Next, we explored the transcript length distribution and level of expression across 

different comparison classes. Classes with transcripts with at least one intron 

junction match and classes with partially overlapped exons, overlapped introns on 

another strand, or no overlaps, were compared. We identified that transcripts 

belonging to the first group are significantly longer (median length 1029 and 841 

bps for group 1 and 2 respectively, p-value < 0.05, two-sided Mann-Whitney U Test) 

and expressed on a significantly higher level (median normalized counts 6.88 and 

https://paperpile.com/c/Pow9hH/LaxF
https://paperpile.com/c/Pow9hH/gl1o
https://paperpile.com/c/Pow9hH/x6I7
https://paperpile.com/c/Pow9hH/InEE
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2.9 for group 1 and 2 respectively, p-value < 0.05, two-sided Mann-Whitney U Test) 

than transcripts from the second group. We have used annotated and novel 

transcripts with at least one intron junction match on the same strand with the 

reference annotation for further downstream analysis. 

SVs were screened for potential association with differentially used transcripts. For 

this purpose, we run a differential transcript usage (DTU) analysis to capture 

statistically significant SV-transcript expression association.  

The candidate SVs were chosen according to the following criteria:  

● SV presence (0/1, 1/1) and absence (0/0) at least in three samples for which 

we had long read RNAseq data 

● SV candidate for a cis-regulation: intergenic SVs excluded. 

For this analysis, we run ~30,000 DTU analysis runs to test candidate SVs 

individually. As a result, we obtained ~15,000 GT splits where DU transcripts were 

detected. Exploratory analysis of gene bodies and 5 kbp gene flanking regions 

revealed 46 SVs associated with 37 unique genes with 51 DU transcripts. A major 

part of DU transcripts was represented by protein-coding transcripts (78.9%). The 

remaining isoforms were transcripts with retained introns (13.1%), transcripts 

directed to nonsense-mediated decay (5.4%), and lncRNA transcripts (2.6%).  

Similar to the DEA results exploration, we focused on SVs whose genotype split 

coincided with the patient PD phenotype, comparing healthy controls with PD-

affected individuals and carriers of PD mendelian mutations. Out of 46 discovered 

hits, we found 1 DEL, which was absent in the healthy controls: heterozygous DEL 

(DEL-DUT, MAF = 0.14, absent in healthy controls) located in the 

upstream/promoter region of gene DUT, Deoxyuridine Triphosphatase (Figure 16, 

A). DUT is an enzyme involved in the metabolism of nucleotides and DNA 

preparation, catalyzing the hydrolysis reaction of dUTP to dUMP and pyrophosphate 

[261]. The two main isoforms encoded by DUT are the following: the MANE 

transcript encodes the mitochondrial isoform (ENST00000331200.7, DUT-M) and 

the second transcript encodes nucleus isoform (ENST00000455976.6, DUT-N) 

(Ensembl release 107). We identified that while the DUT-M expression level 

https://paperpile.com/c/Pow9hH/hwPC


SV functional annotation and PD risk factor prioritization 

____________________________________________________________________________ 

 

 

61 

remains similar across the DEL GT groups, DUT-N is significantly downregulated 

in the DEL carriers. DEL-DUT genes with DUTs were enriched in the regulation of 

RNA splicing, mitotic DNA integrity, damage checkpoint signaling, and dUMP 

biosynthetic process (Figure 16, B).  

 

 

Figure 16. Differential usage of DUT transcripts. A. Exon-intron structure of the top 

expressed DUT transcripts, red rectangle indicates DU transcript 

(ENST00000455976.6), red dashed line indicates the position of associated DEL. B. 

Pathway analysis of genes with DTUs obtained from DEL_DUT- vs DEL_DUT+ 

comparison.  
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6.4 Discussion 

SVs comprise a substantially larger fraction of gene expression-altering genetic 

variants compared to other forms of genetic and genomic variation [103,262]. Due 

to the complexity of SVs the assessment of their consequences depends heavily on 

available functional assays and cannot be inferred reliably from only positional 

genomic annotation [263].  The integration of genomic, transcriptomic, and 

epigenomic data from the same iPSC lines provided a unique opportunity for large-

scale characterization of the SV functional impact on gene expression.  We screened 

through the annotated SVs with predicted consequences obtained in the previous 

chapter in order to observe to which extent the variant effect directly reveals itself 

in the change of the target gene expression. Our results show that genes with coding 

DELs and DUPs are predictably downregulated. However, genes with coding INSs 

do not demonstrate a certain direction in their expression change which is in line 

with findings of the largest multi tissue SV-eQTL study of common and rare SVs 

[103]. Our findings suggest that genes with coding DELs and DUPs overlapping 

human lineage-specific regions and known SNP-eQTLs tend to have a more 

pronounced change in their expression. However, again these results were not 

replicated for coding INSs. As was already shown in the previous SR and LR-based 

SV-eQTL studies, only a minor set of INSs were associated with the gene expression 

demonstrating bidirectional behavior of the allele effect size [103]. INSs work 

through a different functional mechanism in comparison to other CNVs, which 

indicates the importance of additional information other than reference sequence 

context such as assessment of non-reference INS sequence pathogenicity via a GC 

content, repetitiveness and classes of present repeats, and presence of potential 

regulatory elements and TF factor binding sites which may interfere with the gene 

expression regulation.  

Our study demonstrated that 34% of gene eOutliers could be explained by the 

presence of SVs within the gene body or in the vicinity. These results are lower than 

previous findings  [103],  which can be explained by the lower number of samples 

and higher variability in the gene expression due to the presence of heterogeneous 

PD genetic and idiopathic groups. We also showed the importance of the 3D 

https://paperpile.com/c/Pow9hH/VISl+f976
https://paperpile.com/c/Pow9hH/9asq
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chromatin organization information, demonstrating that genes with CNVs localized 

within or on the boundaries of TADs recurrent in several cell lines are significantly 

downregulated. These results should be further refined with the recalculation and 

assessment of TAD boundaries for different SV genotype groups of the actual SV 

carriers and non-carriers to capture the dynamics of chromatin organization in 

response to the genomic variation and distinguish between intra-, extra, and 

boundary TAD CNVs.   

Returning to the coding DELs and DUPs, we found that genes with exonic DEL and 

DUPs are notably downregulated compared to genes with splice-site affecting 

CNVs. This result implies that while exonic SVs are expected to impact the general 

gene expression, the effect of splicing SVs can be hidden on the gene level and 

revealed only on the level of individual transcript expression.    LR transcriptome 

data provides important insights into how rare and common SVs alter transcript 

expression and modify the risk of disease development.  

In this study, we also leveraged the availability of matched LR RNA sequencing data 

to explore the potential effect of SVs on transcript usage changes. We identified 

228,775 transcripts, a middle between one sample-based and multi-sample multi-

tissue meta-LR RNA studies [214,264,265]. FOUNDIN-PD transcript dataset 

includes novel transcripts with intron retention, which indicates the presence of pre-

mRNA. However, the number of these transcripts is considerably lower in 

comparison to the findings of a recent LR multi-tissue RNA study [214].  Most 

transcripts annotated on the opposite strand in the current study were novel, 

implicating several points: discovery of novel genetic features such as lncRNA and 

antisense RNA genes or/and artifacts occurring during the computational process 

such as issues with the read reorientation and incorrect read strand assignment. 

Further benchmarking and novel transcripts validation analyses have to be 

performed to test suggested hypotheses. 

We identified several SV hits prioritized as risk factors to perturb molecular 

pathways leading to the PD or PD-related clinical phenotype in the current study. 

While the major expression changes were observed among the genes altered by 

coding SVs, almost all prioritized SV occurred to be intronic and regulatory common 

https://paperpile.com/c/Pow9hH/SD2X+AjdJ+InEE
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and rare CNVs supporting on one hand side the low effect risk variants and 

“common disease common variant” theory underlying the PD genetics basis, and on 

the other hand - revealing the presence of rare and singleton potentially moderately 

pathogenic CNVs, the rareness of which can be explained by their novelty.  

A promoter/5`UTR CBR1-DEL absent in healthy individuals was associated with 

the CBR1 downregulation on transcriptomic and epigenomic levels. CBR1,  

NADPH-dependent carbonyl reductase, reduces  reactive quinones and lipid 

aldehydes, playing a protective role against ROS-induced cellular damage and 

neurodegeneration [266,267].  In addition, it was shown that the CBR1 promoter 

possesses at least one antioxidant response element (ARE) and that CBR1 

transcription is regulated by NRF2, a TF that regulates the expression of antioxidant 

proteins, and overexpression of this enzyme is crucial for the survival of cancer cells 

[268]. These findings indicate a major role of CBR1 in response to oxidative stress; 

those dysregulations can be critical for neuronal cell survival. Interestingly, in our 

cohort, the largest downregulation was observed in the homozygous CBR1-DEL 

carrier, a LRRK2 positive individual unaffected with PD by the time the patient 

metadata was collected when the patient was younger than 65 years. On one hand, it 

might be an indication of the cumulative effect of the CBR1-DEL alleles. On the 

other hand, we see that the variant penetrance is not high. However, it is expected to 

contribute to the organism's vulnerability to neurodegeneration, thus increasing the 

overall risk of developing the pathogenic process.  

An intronic (ACA)-repeat INS was associated with the PTPRN2 downregulation on 

the transcriptomic level. Even though we did not observe any methylation changes 

in the INS carriers, we discovered that the PTPRN2-INS is located within the island 

of increased acetylation in the AD patients, which points out its potential role in the 

chromatin accessibility in the given region and subsequent regulation of PTPRN2 

expression. PTPRN2, Protein Tyrosine Phosphatase Receptor Type N2, is an 

important protein in the presynaptic density and the cellular membrane of the 

pancreatic islets, which is involved in the vesicle-mediated secretory processes 

controlling the release of catecholamine neurotransmitters and insulin [269]. It is 

worth mentioning that recent metastudy demonstrated and supported the increased 

risk of PD development in patients diagnosed with diabetes mellitus [270]. PTPRN2 

https://paperpile.com/c/Pow9hH/6gMG+sl5P
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dysregulation was associated with diabetes type I and II, and with childhood obesity 

[271].  Increased methylation within the PTPRN2 gene body was previously 

associated with faster motor progression in PD affected individuals [272]. 

Collectively, these findings highlight the important link between neurodegeneration 

and insulin signaling in the brain expanding potential treatment targets for PD which 

can be approached with antidiabetic medications.   

An intronic DEL was associated with the PTPRG downregulation on the 

transcriptome level. Receptor PTPRG is a Protein Tyrosine Phosphatase Receptor 

Type G, which has a high probability of HI (p(HI) = 0.94). It is located in one of the 

loci associated with AD in the family based GWAS [273]. PTPRG is involved in the 

mitochondrial autophagy process regulation, which was demonstrated in the cohort 

of AD patients [274]. PTPRG was also determined to be a causal gene in other 

neurological and neuropsychiatric disorders [275][274].  

A heterozygous DEL removing promoter and first exons of MPST was associated 

with the MPST low expression in one sample from one iPD individual. The p(HI) is 

0.48. However, in this case, we observe a clear haploinsufficiency mode of SV 

pathogenicity. This example indicates that SNP and InDel-based HI probability 

metrics have to be recalculated and updated for the larger sizes of genetic variability. 

MPST encodes for mercaptopyruvate sulfurtransferase, an enzyme that catalyzes the 

transfer of a sulfur ion from 3-mercaptopyruvate to thiol compounds. MPST was 

previously proven to play an essential role in brain aging and neurodegeneration 

through a process of persulfidation[276]. Depletion of MPST leads to reduced 

metabolic rate and impaired mitochondrial protein transport in mice [277]. Thus, the 

discovered DEL impacting one of the MPST copies can be considered as one of the 

risk factors contributing to the development of PD in the given idiopathic patient. 

A common DEL located in the upstream/promoter region of gene DUT, a 

deoxyuridine triphosphatase, was linked to the differential transcript usage of the 

DUT isoform which is specifically active in the nucleus (DUT-N) in comparison to 

the mitochondrial isoform (DUT-M) which was not dysregulated in our dataset. 

Interestingly, that gene level expression for the DUT-DEL GT split did not 

demonstrate any differences highlighting the importance of transcript level 

https://paperpile.com/c/Pow9hH/FR6P
https://paperpile.com/c/Pow9hH/IdVx
https://paperpile.com/c/Pow9hH/r6eV
https://paperpile.com/c/Pow9hH/u76C
https://paperpile.com/c/Pow9hH/zLDz
https://paperpile.com/c/Pow9hH/u76C
https://paperpile.com/c/Pow9hH/YaI7
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expression assessment. DUT hydrolyses dUTP to dUMP and pyrophosphate, 

removing dUTP from the nucleotide pool during the processes of DNA reparation 

and replication [261].  Notably, neurons as non-dividing cell types are particularly 

dependable on the unimpacted genome integrity [278]. Dysregulation of DUT-N 

suggests that while the mitochondrial DNA reparation process is intact, nucleus 

DNA reparation is dealing with insufficient concentration of the DUT which leads 

to elevated incorporation of U into DNA molecules and triggering of active DNA 

reparation, occurrences of double-strand breaks, and subsequent apoptosis.  

Prioritized hits are subjects for further validation to prove that the SVs are indeed 

present in the donor patients. The upcoming large study of LR DNA sequencing of 

PPMI patients will be an ideal data source for the hit SV validation. Additional 

analysis on the larger PD patient and control cohort has to be conducted to validate 

the observed variant-expression associations and to explore the allele effect size of 

the prioritized hits.

https://paperpile.com/c/Pow9hH/hwPC
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7 Conclusions 

In conclusion, we generated and systematically annotated the largest LR-based SV 

dataset for the cohort enriched for familial and idiopathic PD. We showed that the 

usage of LR DNA sequencing dataset of sufficient coverage and read length allows 

one to obtain an accurate SV callset genome-wide including the low complexity 

regions. We demonstrated that a combined genome-sequencing and omics assay 

performed for the same samples is essential to interpret further the downstream 

consequences of SVs, to improve predicted variant annotation, and assess the actual 

functional effect of the observed variation. Our results indicate the importance of the 

transcriptome analysis not only on the level of genes but rather on a level of 

transcript structure and expression. The diploid nature of the human genome raises 

a complex interplay among the alleles and diminishes the effect size of potentially 

deleterious variation which acts in the recessive mode. Obtained results have to be 

refined with the SV-eQTL analysis as well as gene LoF-intolerance and HI SV-based 

probability calculations once the statistical power for these kinds of methods is 

sufficient.  

Many genes and GWAS loci were associated with the development of PD and 

modulation of the disease onset age and progression. The current study suggests that 

the ultimate causal PD risk SVs might be less common than we expected, thus 

requiring larger cohorts to be analyzed in order to capture this variation and resolve 

the gap of PD missing heritability.  Here, we also highlight a group of molecular 

pathways, which should be carefully examined in the context of PD in a row with 

mitochondrial and lysosomal malfunctions.  The group includes vesicular release 

signaling processes, oxidative stress response, and neuronal DNA reparation. Novel 

and existing population-wide sequencing studies have to be actively used to quantify 

and validate the pathogenicity of discovered variants and nominated causal genes. 

The genetics of PD is complex and heterogeneous. PD cases should be carefully 

stratified based on their ethnicity, age of onset, symptoms, and disease progression. 

Based on the simple calculations, researchers should aim for a minimal cohort size 

of 60 to 300 individuals to be able to capture a significant variant-trait association 
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assuming the target risk SV MAF is around 0.05 to 0.01. It is essential to leverage 

state-of-art technologies, such as 3GS, to ensure the maximal yield of genetics 

studies covering a wide spectrum of DNA variation.  Given the high heterogeneity 

of molecular process triggering PD, one should focus on the tissue and cell-specific 

level of variant functional annotation for a more homogeneous sample group and a 

clearer result interpretation, which is actively pioneered and demonstrated by the 

FOUNDIN-PD project. We anticipate that future expansion of SV datasets 

accompanied with the sample-matching omics data will provide a better opportunity 

to predict SV phenotypic impact and assess their role in the development of PD and 

other complex disorders.   

The dataset generated in the current study is publicly available to facilitate the further 

discovery of SV-PD risk association to expand and support findings in the genetics 

of neurodegenerative disorders. 
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11 Appendix 

11.1 Abbreviations 

● 3GS         Third generation sequencing (LR sequencing) 

● CG           Copy gain 

● CNV        Copy number variant 

● DE(A)      Differential expression (analysis) 

● DEL         Deletion 

● DT(U)      Differential transcript (usage) 

● DUP         Duplication 

● eSV          SV associated with a DE gene 

● eoSV        SV associated with an expression outlier gene 

● GWAS     Genome-wide association study 

● IEDUP     Intra (whole) exon duplication 

● INS          Insertion 

● INV         Inversion 

● LR            Long read 

● NGS         Next generation sequencing (SR sequencing) 

● ONT        Oxford Nanopore Technologies 

● PD           Parkinson’s disease 

● pLoF        Putative loss-of-function  

● PPMI       Parkinson’s Progression Markers Initiative 

● ROS        Reactive oxygen species 

● SMRT     Single Molecule, Real-Time (SMRT) sequencing 

● SNP        Single nucleotide polymorphism 

● SR           Short read 

● SV          Structural variant 

● TAD       Topologically associated domain 

● WGS      Whole genome sequencing 

●  

●  
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11. 2 Supplementary Figures 

 

 

 

 

 

 

 

 

 

Supplemental Figure S1. Gene ontology (GO) enrichment analysis results of 

haploinsufficient genes affected by PD prevalent pLoF SVs. BP - biological process, 

CC - cellular component. The figure was generated in https://biit.cs.ut.ee/gprofiler. 
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Supplemental Figure S2. DEL (DEL-PTPRN2) in the intronic region of PTPRN2 

and PTPRN2 expression in multi omics datasets by DEL-PTPRN2 GT groups. A. 

Schematic representation of DEL localization and volcano plot of DEA results for 

DEL-PTPRN2 GT split. B. CBR1 expression in bRNA-seq (day 65). C. CBR1 

expression in DA clusters of scRN-seq (day 65). D. Chromatin availability detected 

by bATAC-seq upstream and within the PTPRN2 gene body (day 65). E. 

Methylation profile of PTPRN2 gene body and upstream region (day 65).  
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Supplemental Figure S3. INS (INS-PTPRG) in the intronic region of PTPRG and 

PTPRG expression in multi omics datasets by INS-PTPRG GT groups. A. Schematic 

representation of PTPRG localization and volcano plot of DEA results for INS-

PTPRG GT split. B. PTPRG expression in bRNA-seq (day 65). C. PTPRG 

expression in DA clusters of scRN-seq (day 65). D. Chromatin availability detected 

by bATAC-seq in the region of PTPRG gene body (day 65). E. Methylation profile 

of PTPRG gene body and upstream region (day 65).  

 

 

 

 



Appendix 

____________________________________________________________________________ 

 

 

100 

 

 

Supplemental Figure S4. Gene ontology (GO) enrichment analysis results of DE 

genes obtained from the PTPRN2-DEL (A) and PTPRG-INS (B) GT splits. The 

figure was generated in https://biit.cs.ut.ee/gprofiler. 
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Supplemental Figure S5. Control for the confounding factors in the expression 

outlier analysis. The heatmap shows correlation for the samples before (A) and after 

(B) regulation for the batch effects and unknown covariation with autoencoder-based 

algorithm.  Split1: HC – healthy controls, PD – PD cases and genetic cohort, 

Diagnosis (PPMI): Control – healthy controls, genetic cohort – affected and 

unaffected individuals with high risk PD mutation, prodromal – prodromal PD cases, 

SWEDD - scans without evidence for dopaminergic deficit. 
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Supplemental Figure S6. Gene ontology (GO) enrichment analysis results for 

differentially expressed genes between MPST-DEL carriers and non-carriers. BP - 

biological process. The figure was generated in https://biit.cs.ut.ee/gprofiler. 
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Supplementary Table 1. iPSC specific CNV regions GRCh19-GRCh38 assembly 

build coordinates conversion. 

Rank Chr Start  End  No. of CNVs CNV No., % Cumulated % 

1 chr20 31260580 32166810 169 22.9 22.9 

2 chr12 11784484 25403186 116 15.7 38.6 

3 chr17 53204134 54216532 75 10.2 48.8 

5 chr1 172930860 185830868 34 4.6 53.4 

6 chr5 105164299 118068507 26 3.5 56.9 

7 chr18 58532768 63932766 24 3.3 60.2 

8 chr17 7307685 8140856 21 2.8 63 

9 chr7 132915240 134101006 18 2.4 65.4 

10 chr9 40965786 112137720 17 2.3 67.7 

11 chr11 2778770 10678453 17 2.3 70 

12 chr13 87047745 101047648 16 2.2 72.2 

14 chr1 16200000 17074942 14 1.9 74.1 

15 chr8 92287772 126218574 13 1.8 75.9 

17 chr6 129978855 138678863 12 1.6 77.5 

18 chr15 66907662 67007662 11 1.5 79 

19 chr3 19121 26358509 9 1.2 80.2 

20 chr22 23925838 49174577 9 1.2 81.4 
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Supplementary Table 2. Expression outlier gene-sample pairs and associated SVs. 

Patient Study Arm: GENUN - unaffected individual with PD mendelian mutation.  

GENPD - unaffected individual with PD mendelian mutation. PD - idiopathic 

individual. Brain cis-eQTL: eQTL DEL - SV overlaps cis-eQTL active in the brain. 

 

SV ID PPMI 

Patient 

Study Arm 

SV 

length, 

bp 

SV type Gene SV consequence Brain cis-

eQTL 

1_cuteSV.DEL.21004 GENUN 31 DEL CBR1 Non-coding transcript exon 

variants 

 

10_cuteSV.DEL.28586 GENPD 6319 DEL ZNF543 Coding variants eQTL DEL 

11_cuteSV.DEL.48244 PD 261 DEL GTPBP6 Upstream variants  

21_cuteSV.DEL.26947 PD 15870 DEL FEM1A Transcript ablation eQTL DEL 

22_cuteSV.DEL.36656 GENUN 41327 DEL UBE2B Transcript ablation eQTL DEL 

23_cuteSV.DUP.4527 PD 553 DUP EHMT1 Upstream variants  

26_cuteSV.DEL.30202 GENUN 3954 DEL PLA2G12A Coding variants eQTL DEL 

26_cuteSV.DEL.35148 GENUN 29630 DEL FAM120B Transcript ablation eQTL DEL 

30_cuteSV.DEL.21443 GENPD 12867 DEL ZNF844 Coding variants eQTL DEL 

40_cuteSV.DEL.7746 GENPD 15571 DEL UEVLD Coding variants eQTL DEL 

40_cuteSV.INS.26554 

 
GENPD 

 

75 

 

INS 

 

RAPGEF6 Upstream variants  

FNIP1 Downstream variants  

41_cuteSV.INS.9204 GENPD 244 INS LIG4 Intron variants  

51_cuteSV.INS.1834 GENUN 72 INS LOC101928626 Intron variants  

7_cuteSV.INS.32171 PD 158 INS EHMT1 Intron variants  

70_cuteSV.INS.38376 PD 168 INS EHMT1 Downstream variants  

78_cuteSV.DEL.25137 PD 5368 DEL MPST Coding variants eQTL DEL 

89_cuteSV.DEL.47022 GENUN 2941 DEL MAP7D3 Splicing variants eQTL DEL 

9_cuteSV.INS.35791 PD 32 INS AFF2 Intron variants  

 


