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Abstract

An ever increasing amount of data in the life sciences sparked the era of truly personalized

medicine. A medicine, where treatments are tailored to individual patients and therapeutic de-

cisions are based on data driven disease profiles. Biological networks enable the computational

processing of the relationships and properties of the cellular processes. They help to elucidate

emerging properties and downstream effects of mutations and pharmaceutical interventions

alike. Network representations of the cellular processes that aid therapeutic decisions have

to be manually assembled in labor-intensive preparation phases, before they can be discussed

by the experts in the field. In research, most publications that do report biological networks

as part of their methodology or results, fail to adequately disclose the provenance of their

networks. By not providing machine-readable representations of the processes they discuss,

reproducibility of the findings is hampered.

Here, we present SBML4j, a service-oriented application that provides customizable biolog-

ical networks through annotation, filtering and various graph-algorithmic computations. It is

easily integrated into existing clinical tool chains through the provided RESTful interface and

the intuitive Python library. We demonstrate this with the integration of SBML4j with a clinical

variant annotation pipeline and a web-based frontend for visual exploration of variants in their

genetic neighborhood. SBML4j creates network mappings from standardized and curated sys-

tems biology models and pathways. By using well-defined biological qualifiers and ontologies,

the provenance of the networks and their biological entities is clearly defined. A comprehensive

provenance report for any network provided by SBML4j ensures reproducibility. This prove-

nance can even be tracked when external applications consume networks that are provided by

SBML4j or when externally created networks are uploaded to SBML4j as derivatives of existing

networks.

With this, SBML4j delivers reproducible biological-network knowledge to personalized

medicine approaches. At the same time it enables research groups to provide detailed prove-

nance information and machine-readable representations of biological networks. As an open-

source project with a non-restrictive license, SBML4j will be further developed by an active

research community and can help to shape the future of personalized medicine.
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Zusammenfassung

Die ständig wachsende Menge an Daten in den Biowissenschaften hat die Ära der wirklich

personalisierten Medizin eingeleitet. Eine Medizin, in der Behandlungen auf den einzelnen

Patienten zugeschnitten sind und therapeutische Entscheidungen auf datengestützten Krank-

heitsprofilen beruhen. Biologische Netzwerke ermöglichen die computergestützte Verarbeitung

der Beziehungen und Eigenschaften zellulärer Prozesse. Sie helfen dabei, neue Eigenschaften

und nachgelagerte Wirkungen von Mutationen und pharmazeutischen Eingriffen gleicherma-

ßen aufzuklären. Netzwerkdarstellungen, die therapeutische Entscheidungen unterstützen,

müssen in arbeitsintensiven Vorbereitungsphasen manuell zusammengestellt werden, bevor

sie von Experten auf dem Gebiet diskutiert werden können. Biologische Netzwerke, die in

wissenschaftlichen Veröffentlichungen genutzt oder präsentiert werden, sind häufig weder

maschinenlesbar noch ist ihre Herkunft eindeutig ersichtlich. Dies erschwert die Reproduzier-

barkeit der Ergebnisse und verhindert ihre effektive Weiterverwendung.

Hier stellen wir SBML4j vor, eine serviceorientierte Anwendung, die anpassbare biologische

Netzwerke bereitstellt. Sie lässt sich durch die vorhandene REST-basierte Schnittstelle und die

intuitive Python-Bibliothek leicht in bestehende klinische Softwareprozesse integrieren. Wir

demonstrieren dies anhand der Integration von SBML4j mit einer Annotationspipeline für kli-

nische Varianten in ein webbasiertes Frontend. Dieses ermöglicht die visuelle Untersuchung

von Varianten in ihrer genetischen Nachbarschaft. SBML4j erstellt Netzwerk-Mappings aus

standardisierten und kuratierten systembiologischen Modellen und Pathways. Ein umfassender

Provenance-Report für jedes von SBML4j bereitgestellte Netzwerk gewährleistet die Reprodu-

zierbarkeit. Diese Provenance kann sogar nachverfolgt werden, wenn externe Anwendungen

die von SBML4j bereitgestellten Netzwerke nutzen oder wenn extern erstellte Netzwerke als

Derivate bestehender Netzwerke in SBML4j hochgeladen werden.

Damit liefert SBML4j reproduzierbares biologisches Netzwerkwissen für Ansätze der per-

sonalisierten Medizin. Gleichzeitig ermöglicht es Forschungsgruppen, detaillierte Herkunfts-

informationen und maschinenlesbare Darstellungen biologischer Netzwerke bereitzustellen.

Als Open-Source-Projekt mit einer nicht restriktiven Lizenz wird SBML4j von einer aktiven

Forschungsgemeinschaft weiterentwickelt und kann die Zukunft der personalisierten Medizin

mitgestalten.
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General Remarks

• In accordance with the standard scientific protocol, I will use the personal pronoun we

to indicate the reader and the writer, or my scientific collaborators and myself.
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Chapter 1

Introduction

Motivation

In March 2022, “the Telomere-to-Telomere [...] Consortium presents a complete 3.055 bil-

lion–base pair sequence of a human genome”1, covering the additional eight percent of missing

sequence from the heterochromatin regions. Their draft genome includes gapless assemblies

for all 22 autosomes and the complete sequence of the X-Chromosome. It contains around

200 million novel base pairs containing 1,956 paralogous gene copies, of which they predict

99 protein coding genes. With this the total amount of protein-coding genes is believed to be

19,969. This marks the most complete genomic sequence that has been published to date.

Which proteins are all those genes encoding? What biological function does each of them

have? How do they influence the complex machinery that runs in each of our cells? Which

consequences on the cellular level does a malfunction have?

These are some of the questions that we need to answer to reach a truly personalized

medicine. A medicine that has the ambition to find individualized therapies for a variety

of diseases. A medicine that tailors pharmaceutical interventions to a patient’s genetic and

transcriptomic profile. A genetic mutation in a patient’s gene can lead to the malfunction or

inactivation of the enzyme it encodes and subsequently disrupt a cell’s metabolic, signaling

or regulatory mechanics. This can lead to unchallenged proliferation or prevent the cell’s

natural death and ultimately result in uncontrolled growth and the emergence of tumor tissue.

However, it is not the single genetic variation, called a variant, by itself that leads to disease

but rather its impact on the cellular machinery. The ripple effects that emanate from this

one malfunction in the connected network of the cell’s inner mechanisms disrupt the whole

system. Therefore, it is necessary to understand the effects of an observed variant on the

complex network of interactions and pathways in the patient’s cells. With this understanding,

a personalized pharmaceutical intervention tailored to the patient’s needs and genetic profile
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1. Introduction

can be found, with the goal of curing the disease or at least alleviating symptoms with minimal

side effects.

In today’s modern medicine and research landscape the amount of data collected is con-

stantly growing. This makes computational methods indispensable as tools to care for patients,

decide on the right therapeutic intervention and discover new pharmaceuticals. The traditional

biological process for generating knowledge about cellular function involved dissecting a single

part of the puzzle and learning about its function. The aim was to find a chemical compound

that affects this sole part and observe the changes in its behavior.

More recently, science tries to elucidate the mechanism of the whole system, find disrupted

entities, and find entry points within the system to circumvent these disruptions. The discipline

that tries to understand and model the functioning of the system is called systems biology. Both

systems biology and human comprehension need interpretable representations of the complex

interactions found in the cell. Without a proper representative model experts would not be

able to discuss and report their findings or calculate mathematical and statistical properties

of these systems. A popular means of describing these processes are biological networks. The

concept of nodes and edges is easily understandable by humans and, if properly represented,

also machine-readable and thus processable by computational methods.

Many systems biology approaches create biological networks from experimental data of

biological systems or they use networks to model these processes. Experts need to investigate

patient data in the context of these networks to decide on therapeutic interventions. This

emphasizes the need for biological networks in science and clinical settings. Both scenarios

need clear information about the networks’ origins as well as about the modifications that

have been applied to them in order to reach a certain clinical decision or scientific conclusion.

In short, the networks must be reproducible. However, many online resources and scientific

publications that offer their networks for download fail to provide machine-readable repre-

sentations or to disclose vital provenance information. To enable reproducible science that

involves biological-network knowledge, a network resource should track the provenance and

provide instructions for recreating a certain representation.

Biological networks must be accessible. This means that there have to be ways for retriev-

ing networks without expert knowledge on the complex database schemata in which these

types of networks are stored. Network-oriented web services offer easy-to-use search- and

programming-interfaces for getting network representations of interactions between biological

entities. However, using these services in a clinical context can be challenging. For instance,

it is impossible to upload sensitive patient data, like genetic variants, onto these websites as

data privacy laws prohibit such actions. Therefore, these mapping and analysis steps have

to be performed and documented locally after retrieving a network. This leads to a lack of

interoperability, because a manually created network representation cannot easily be reused

in another computational system for further analysis. Many available research frameworks
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that are intended for local use require hand-crafted input files and the execution of complex

scripts to initialize the databases. Users often require advanced knowledge of database-query

languages like SQL or Cypher to obtain knowledge for hypothesis generation. In addition, the

integration of these frameworks into more complex research pipelines is difficult due to the

nature of the required expertise for information extraction and lack of programmatic access

points.

We present a service-oriented application for biological networks that provides machine-

readable representations and all necessary provenance information for reproducing the net-

works. The knowledge graph in the database is derived from hand-curated systems-biology

models. These models are annotated with terms from well-known ontologies and biological-

qualifier systems. This allows us to integrate models from various sources that use different

internal identifier systems. Network-mappings reduce the complexity of the contained infor-

mation for automatic processing and allow different views on the cellular processes. Popular

examples are metabolic networks, regulatory events or signaling cascades. These mappings

can be programmatically generated, annotated, filtered, and analyzed with various graph algo-

rithms. A local installation using containerized application- and database-instances guarantees

data-protection conform access to these features, as no internet connection is required once

a database is set up and all computations can be performed on readily available desktop-

hardware. Access to the networks is provided via a RESTful interface and an intuitive Python

library. This allows easy integration of a full range of network-biology related analysis and com-

putations into analysis pipelines and environments. With the integrated provenance tracking

the reproducibility of the provided networks is ensured.

Structure of the thesis

This thesis introduces the software SBML4j, a service-oriented approach for creating and work-

ing with biological networks for reproducible science and clinical decision making. It offers

standardized data input for the network sources as well as data mapping, comprehensive ana-

lytical power accessible via REST endpoints, and an intuitive Python library for the integration

in existing analytics pipelines. This approach offers data reproducibility, generation of indi-

vidual network representations using patient data and biological network knowledge across

traditional pathway boundaries within the limitations of modern data-privacy regulations.

Chapter 2 will provide the medical background of cancer and its treatment options, the sys-

tems bioinformatics terminology of the network-representations and information-technology

methods at the heart of the application. Chapter 3 will present the software SBML4j. We show

the implementation details of the Java-based software and the accompanying Python library

pysbml4j and give details about the underlying database structure. Chapter 4 highlights

how external network-analysis tools can be seamlessly integrated into the provenance tracking

3



1. Introduction

mechanisms of SBML4j by providing networks to an application that calculates deregulated

subnetworks. The resulting subnetworks are then integrated into the database of SBML4j.

We demonstrate how additional provenance information about such an external analysis step

can be integrated into the provenance graph to ensure reproducibility. In Chapter 5, we then

present PeCaX, the Personalized Cancer and network eXplorer, which demonstrates

the integration of SBML4j into a web-based analysis platform. It combines the clinical-variant

annotation-pipeline ClinVAP, our network resource SBML4j and the network-visualization

tool BiographVisart. It is a comprehensive and easy-to-use platform for the analysis of can-

cer patient data, which offers auto-generated patient-specific biological networks for annotated

variants.

Chapter 6 concludes the thesis and gives a brief outlook on future directions of SBML4j for

shaping personalized medicine and network-based research.
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Chapter 2

Background

2.1 Personalized Medicine

The first mention of the term Personalized Medicine can be found as early as 1998 in the title

of the monograph “Personalized Medicine: the impact of pharmacogenetics on drug develop-

ment”2. Later, the author K. K. Jain, stated that “[p]ersonalized medicine simply means the

prescription of specific therapeutics best suited for an individual based on pharmacogenetic

and pharmacogenomic information”3. On that basis, Pharmacogenetics focuses on relating

alterations in heritable traits, such as genes, to variation in drug response4. Pharmacogenomics

aims towards defining genetic markers in the human genome that are able to reliably predict

the carrier’s response to certain drugs5.

An early example of this principle can be found in the increased response to a specific

tyrosine kinase inhibitor in patients with the Philadelphia translocation in their genomes6.

This inhibitor was later patented under the name Imatinib and its development “as a specific

molecularly targeted therapy”7 is one of the earliest and most prominent examples of drug

development driven by genetic aberrations. The advances in this area are also visible in the

number of approvals of drugs that use pharmacogenetic information. Their numbers rose

from fewer than ten in the decade from 1976 to 1985 to more than 70 in the years 1996

to 20058. Since then, a multitude of tailored therapies based on genetic profiles and other

biomarkers have been developed. For instance, algorithms for detecting differentially regulated

pathways based on gene-set enrichment analysis (GSEA)9 have become a popular method.

More recently, the effect of functional variants in human drug-related genes on drug efficacy

have been investigated10. Furthermore, personalized peptide vaccines are targets of current

research into personalized vaccination strategies11,12. With the emergence of Machine Learning

(ML) methods, algorithms and techniques using ML are actively investigated for their use in

personalized medicine approaches13.
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2. Background

2.1.1 Therapeutic Strategies

When determining a treatment one can distinguish between three different types of strategies

for choosing a pharmaceutical intervention for a patient as is shown in Fig. 2.1. The classical

one-drug for one disease approach (see Fig. 2.1A) determines the phenotype of the disease and

assigns all patients to the same recommended uniform treatment plan. Additionally, two major

strategies for personalizing medicine can be formulated, patient stratification (see Fig. 2.1B)

and individualized therapy (see Fig. 2.1C).

Figure 2.1: Three strategies for pharmaceutical intervention selection. A) Uniform
treatment plan for a disease. A patient with a diagnosed disease receives the uniform
intervention defined for this disease. B) Patient stratification. A patient gets assigned
to a subgroup of patients with a similar disease-driving mechanism. For each subgroup
a suitable therapy needs to be found and administered. C) Individualized therapy. The
genetic profile of a patient is analyzed and a therapeutic intervention is tailored to their
needs.

Patient Stratification

In the stratification strategy, an individual is assigned to a patient-cohort based on a specific

set of biomarkers (see Fig. 2.1B). This cohort represents a subgroup of patients for which an

improved response to a specific drug has already been shown14. The goal of stratification is

to find a therapy for any of the patient-subgroups that has a better chance of helping or even

curing all patients in this group than a uniform treatment plan across all patients suffering from

this disease. These subtypes are defined by differences in the genetic profile of the patients.

This allows for specific means of attacking the disease mechanism in these patients.

One challenge is to identify such a group of patients and reliably distinguish them from all

other patients. Another challenge is to find a treatment tailored to this group of patients and

the specific mechanism that led to the onset and progression of the disease in said patients.
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Personalized Medicine

The third challenge is to identify an individual patient as part of this group based only on the

data of this single patient.

Individualized Therapy

In a truly personalized medicine, an appropriate drug is selected based on the biomarkers from

one patient (see Fig. 2.1C). The genetic profile of this patient is assessed individually and the

selected therapeutic intervention will only work for this specific patient. Nowadays, this can

be found for difficult-to-treat tumors, whose biomarkers are assessed in so-called Molecular-

Tumor-Board (MTB) Meetings15. For the context of this thesis, we will focus on this type of

therapy in the field of oncology. The reader may be advised that this form of individualized

therapeutic interventions can be found in other fields of medicine as well.

2.1.2 Personalized Therapies in Oncology

Disease Symptoms of Cancer

Cancer describes a set of similar diseases that are characterized by the development of malignant

tumors. These tumors grow uncontrollably by suppressing processes that normally lead to the

tumor cells’ death and by activating pathways that lead to cell division and growth. The

National Cancer Institute lists more than 150 types of cancer16. Malignant tumors that grow

to macroscopically visible sizes are a serious health risk. Untreated tumors will result in failure

of the affected organs and can spread to other parts of the body by forming metastases. These

malignant secondary tumor sites usually worsen the symptoms and make a positive outcome

of any therapy highly unlikely. Once metastases have been formed eradicating all tumor sites

from the body is nearly impossible. This highlights the need for the early discovery and efficient

therapy of cancer.

Standard Therapy

The standard therapy for most cancers is a combination of several interventions, with chemo-

therapy, radiation therapy, and surgery being the most widely used. In radiation therapy,

the tumor tissue is bombarded with high doses of radiation, which directly kills cancer cells.

Chemotherapy uses pharmaceuticals to target fast-growing cells, which are often found in

tumor tissue. There is an abundance of different drugs for this therapy type, which have to

be approved for specific cancer types. Choosing the right chemotherapeutic can already be

considered to be a targeted approach, as the tumor type plays a major role in this decision.

Both radiation- and chemotherapy have the goal to reduce the size of the tumors or slow their

growth. The third standard therapy is surgery in which the tumor tissue is removed from the

body. Surgery can be performed before or after other therapies, again highlighting the fact
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that the standard therapy approach is already targeted towards the tumor and the progression

of the disease. A successful therapy eradicates all traces of the tumor from the patient’s body

and effectively cures the patient. However, if these classical therapies do not prove effective,

the next step is targeted therapy.

Targeted Therapies

Based on the genetic factors, which influence disease onset and progression, various person-

alized therapies can be conducted. They aim at specific proteins inside the tumor cells and

have the goal to disrupt the cancer-causing mechanism inside the cells. At the beginning of

targeted therapies stands the search for biomarkers that are specific to the tumor tissue and

are not present in healthy tissue. This makes them viable candidates for therapeutic inter-

vention, as potential drugs specifically target the tumor tissue. This keeps side effects to a

minimum as healthy tissue surrounding the tumor is not affected by the drugs. To find cancer-

specific biomarkers, the tumor tissue needs to be screened for genetic variation and differential

expression of proteins compared to healthy tissue.

Genetic Basics of Tumor Development and Growth

A lot of research has been done to elucidate the mechanisms of tumor development and

different theories about its genesis were formulated throughout the years. First signs of genetic

influences on tumor growth were found in research conducted with the Rous sarcoma virus

(RSV) which infects chicken17. Stehelin et al. discovered that a gene in the viral genome

called src could cause an infected normal cell to become a tumor cell17. Genes like the viral

src (v-src) that have the ability to cause cancer are called oncogenes. Comparable viruses that

affect chicken are missing this gene and without it do not have the ability to cause tumors in

their hosts. This hints at the fact that the progenitor of RSV did not possess this v-src gene but

has acquired it during its normal cellular replication cycle from its host. A host variant of the

src gene, called cellular src (c-src) can also be found in uninfected vertebrates18. C-src has the

ability to induce cancer when mutated and is thus called a proto-oncogene.

Three main activating mutations affect (proto-)oncogenes and can lead to the development

of tumors. First, there are single nucleotide variants (SNVs), mutations of a single nucleotide

in a gene. They can result in altered or improper protein-function, complete loss of enzymatic

activity of the resulting protein or no protein production at all.

Second, a gene or a whole section of a chromosome can be multiplied, leading to copy-

number variations (CNVs). These alterations lead to different rates of expression of the genes

on these regions of the genome, altering the transcriptional state of the cell. This in turn

can have different regulatory effects within the cellular apparatus and disrupt transcriptional

balance, activate, or inhibit signaling cascades and alter metabolic processes.
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The third mutational mechanism is the chromosomal translocation. Here parts of a chro-

mosome are transferred onto another chromosome, which puts all genes on this part of the

genome under the regulatory influence of the new location. This can lead to different expres-

sion patterns that affect a whole range of proteins and regulatory factors, which alter the state

of the cell and allow for potential malignant growth.

Another class of genes that play a role in the transition of a cell from a normal state to a

tumor state are so-called tumor suppressor genes (TSGs)19. In their wild-type form, these types

of genes govern cell proliferation. Their presence in the genome limits a cell’s proliferation

capacity, which keeps cell division rates in a desired range. If they are affected by mutations

that limit or inhibit their function, those control mechanisms are missing. This can contribute

to an increased rate of proliferation and to the development of neoplasms. As two independent

mutations in both alleles of the genome must appear to show a dominant phenotypic behavior,

these tumor-inducing mutations are susceptible for a germline-inherited increased risk of cancer.

Numerous heritable cancer syndromes with an association to this type of inherited defective

TSGs are reported in literature20,21.

With each cell-division the genome of dividing cells is duplicated. During the copy process

of the double stranded deoxyribonucleic acid (DNA) mistakes will happen, which need to be

repaired by cellular repair mechanisms. A mutation in one of the genes that encode the enzymes

responsible for the repair will result in a lack of adequate DNA repair. Such uncorrected errors

are then persisted in the cell’s genome and will be passed on to any descendants of the cell.

If such an error affects, for example, a proto-oncogene or TSG, the initial mutation in the

repair-encoding gene indirectly contributes to the development of tumor tissue. One example

of such an effect can be found in the hereditary form of non-polyposis colorectal cancer, in

which the apparatus responsible for detecting mistakes in DNA replication is mutated and its

function limited22,23.

In addition, epigenetic factors play a role in the development of tumor tissue. A prominent

example is the methylation of cytidine residues which are present in so-called CpG dinucleotide

sequences. These sequences are often found in the surroundings of promotor regions of various

genes that are involved in the development of tumors24. Promotors are sequences of DNA

where a class of enzymes, called transcription factors, can bind and initiate the transcription

of genes that lie downstream on the DNA. The attachment of methyl-groups to these DNA

regions can prevent the binding of these factors and inhibit the attachment of RNA polymerase,

the enzyme that synthesizes RNA. Additionally, this modification can lead to a change in

the arrangement of nearby chromatin, which in turn can suppress the transcription of whole

sections of DNA25. Through special DNA methylases, this modification will be reintroduced

into the DNA strands of daughter cells after cell division, which manifests the methylation

in this cell’s heritage-line. This transmits the repression of certain genes without the need of

changes in the DNA sequence. In fact, it could be shown that in ovarian clear cell carcinoma
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the loss-of-function of TSGs and DNA repair genes is more frequently due to DNA methylation

than direct mutation26.

Tumor cells often exhibit aberrations in the gene which encode the enzyme telomerase or in

regions that regulate the expression of this gene. This enzyme can extend the telomers, which

are long stretches of non-coding DNA at the end of each chromosome. Naturally these ends get

shortened with each cell-division and result in an end-to-end fusion of chromosomes when they

become too short. This leads to karyotypic instability and will send a cell into programmed

cell-death27. An increased expression of the telomerase enables tumor cells to prolong the

telomers of the chromosomes, which enables the cells to proliferate almost indefinitely28.

Non-genetic Factors Influencing Disease Progression

Apart from these genetic and epigenetic factors for disease onset and progression, non-genetic

factors influence the disease. The micro-environment of the tumor is believed to trigger cas-

cades, which allow the malignant tissue to recruit blood vessels in a process called angio-

genesis29. This process is needed to sufficiently provide the tumor tissue with nutrients and

oxygen and is one example of a growth-enabling mechanism that has no direct genetic ori-

gin. It has been subject of intense research for treating cancer and other diseases that rely on

angiogenesis30–32.

To form metastasis, tumor cells need to complete a complex sequence of steps, which

collectively have been termed the invasion-metastasis cascade33. Some of these steps include the

ability to enter blood or lymph vessels, to travel to distant sites in the body and to successfully

colonize the tissue at these sites. A process called epithelial-mesenchymal-transitions (EMT)34

is one possible explanation for how cancer cells manage to complete these complicated and

unlikely steps. This process is known from early embryonic morphogenesis, where normally

immobilized epithelial cells acquire the ability for motility and invasiveness — phenotypical

traits of mesenchymal cells — by changing their differentiation program. These changes can

be triggered by a few transcription factors, whose activation can repress epithelial genes and

activate mesenchymal genes35. Thiery et al. showed in their experiments that these highly

conserved processes, which are essential for the development of multicellular organisms, can

be exploited by malignant carcinoma. The extracellular environment of the tumor tissue gives

rise to signals that can trigger signal-transduction pathways leading to EMT, allowing a tumor

to metastasize36. Once the cells are settled in the new tissue, the inter-cellular signals from

the healthy environment revert the changes from EMT, which allows them to return to their

malignant epithelial state and start growing again, thus forming a metastasis. Chemokine

receptors that are mediators of this spreading of tumors could potentially be future targets for

individualized therapy37,38.
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As shown, the development and progression of cancer is influenced by many factors. In

rare cases, classical treatment or standardized therapy based on biomarkers do not lead to

remission or slow down tumor growth. For these patients, the MTB suggestions are the last

hope for successful treatment.

Molecular Tumor Boards

An MTB is a meeting where clinical experts discuss cases of difficult-to-treat tumors to find

new treatment options based on the tumor’s molecular profile. They assess the patient’s tumor

according to their individual genetic profile and propose new, unconventional therapeutic

interventions based on these discussions. With growing numbers of cancer-patients and an

abundance of genomic data, the need and opportunity for individualized therapy is rising.

Experienced participants of MTB discussions spend less than four minutes on a single case39.

Therefore, decisions have to be made fast and on solidly prepared casefiles.

One area where there is a need for decision support systems are the MTB meetings them-

selves. The Cancer Core Europe Consortium implemented a web-based portal solution for

aiding MTBs, the Molecular Tumor Board Portal39. Their website offers a modern design and

enables interactive investigation of variants and drugs, even for germline mutations when

used on-site. It is backed by a unified and automated bioinformatics-analysis pipeline that

promises to deliver consistently processed data. Their portal40 provides statistical data about

the cases but, at the time of writing, does not seem to use biological networks for relationship

investigation.

Another area, which needs supporting systems is the labor-intensive preparation-phase

of the MTB meetings41. During preparation, patient-data is analyzed with bioinformatics

pipelines to extract all variants of interest for each case. These variants are then manually in-

vestigated on portals like OncoKB42 and the results tediously assembled in static presentations.

Inquiries of relationships of potential drug-targets to their genetic neighborhood are often part

of this process. Popular resources for these investigations are the String database43 or the Kyoto

Encyclopedia of Genes and Genomes (KEGG)44.

Providing automated and reproducible biological networks for preparation and presentation

that can be annotated with patient data and expert knowledge can lead to better decisions for

patients.

2.2 Systems Bioinformatics

Systems Bioinformatics is an interdisciplinary field of research that aims to elucidate cellular

processes using Bioinformatics methods. One area of the field uses Bioinformatics to analyze

and process biological data in the form of genetic, transcriptomic, or proteomic data. From
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this data, interactions of biological entities can be derived and system-wide pictures of the

cellular apparatus can be created. Another aspect of the field employs Bioinformatics methods

to elucidate emerging properties from these networks of cellular function. For both there is a

need to represent the biological processes in a machine-readable format, which describes the

biological entities and their relations. This format must ensure that all entities can be identified

and semantically integrated with pre-existing knowledge.

2.2.1 Biological Networks

Biological networks are a representation of biological entities and the relations between them.

The entities in the network are called nodes or vertices, the relationships are represented as

edges connecting these nodes. The most prominent form of a biological network is a biological

pathway. A pathway describes a subset of cellular processes dedicated to the production of

some chemical compound, the regulation of a gene, or the transmission of a chemical signal

through signaling cascades. It can be understood as “a series of actions among molecules in a

cell that leads to a certain product or a change in the cell”45. Often these actions are grouped

into functional complementary units or processes with similar targets and are then depicted

as so-called pathway maps.

One of the most recognizable visual representations of these pathway-maps are found in the

Kyoto Encyclopedia of Genes and Genomes (KEGG) from the Kanehisa Labs in Kyoto, Japan44.

Their hand-curated database features visual representations of many cellular processes for a

variety of species, which are used by the scientific community around the world. Fig. 2.2 shows

the Notch signaling pathway from the KEGG pathway database, which depicts the intracellular

effects of the binding of an extracellular ligand to the membrane-bound receptor Notch. The

colors and style of the layout are signature elements of the KEGG pathway maps. The green

rectangles represent proteins, which can be grouped together to protein-complexes. The white

circle depicts a chemical compound, in this case a piece of DNA. The rounded white rectangle

is a reference to another pathway map, which is affected by the events depicted here. The

vertical gray bars show the cell membrane, the dotted vertical line indicates the membrane

of the nucleus. The black lines between the proteins represent the signaling events, an arrow

indicates a positive signal, which stimulates the receiving enzyme. The T-shaped connection

indicates an inhibition of the protein at the T-head, mediated by the entity on the other end. The

arrow between the box labeled “CSL” and the DNA indicate that the expression is stimulated,

which results in elevated expression levels of the genes that are connected with arrows coming

from the DNA symbol. Dotted lines stand for indirect links or unknown reactions, in this

case the reference to another pathway map and to potentially more genes whose expressions

are increased. White boxes indicate proteins that have no known homolog in the currently

visualized organism, but can play an important role in the same pathway in other organisms.
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Figure 2.2: Notch signaling pathway map from the KEGG pathway database44. Sig-
naling cascade of the membrane-bound protein “Notch”. Green and white rectangular
boxes show proteins, connecting arrows indicate activating or inhibitory signaling events.
Through these events, the binding of Delta or Serrate to the membrane-bound Notch
protein influences the expression of several proteins, including Hes1/5, Hey, and PreTα.

In this case the protein named “Hairless” has not been found in Homo sapiens, but can act as

a co-repressor in some insects like Drosophila melanogaster46.

This stylized representation conveys a lot of information about the processes it describes.

For this reason, these visual depictions are a perfect medium for transporting such complex

information to the human mind. Therefore, it is not surprising that these pathway maps and

their recognizable features are used by scientists and clinicians alike.

A major drawback of purely visual representations is that they cannot be easily processed

in a programmatic fashion and their contents cannot be used in an automated way. Visualizing

more semantic information usually has a negative impact on overall visibility and understand-

ability and is often realized by links to external sources that provide the desired content. It

is necessary to represent the information of these pathways in a machine-readable way. This

enables automatic processing in computational models and methods.

2.2.2 Machine-readable Network Representations

Machine readability requires a predefined structure for describing the elements and their rela-

tionships. Biological entities are described as nodes of a network. Relationships are modeled

as edges between pairs of nodes.
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There are many different description languages for biological networks, which use different

vocabularies and cover different aspects of the networks. They are all based on the de-facto

standard for machine-readable languages, the eXtensible Markup Language (XML)47. With so-

called tags, attributes, and namespaces it is possible to describe objects in a standardized

manner.

The Systems-Biology Graphical Notation (SBGN)48 is used to describe the topology and

visual appearance of biological networks.

The language used by KEGG, the KEGG markup language (KGML)49 is a proprietary format

for their own pathway maps. It is rarely used or supported outside of KEGG.

The Graph Markup Language (GraphML)50 is a versatile language for the generic description

of graphs and networks. It is designed as an interchange format for all applications dealing

with graphs and networks and does not use a custom syntax as some other XML-based markup-

languages do.

The Biological Pathway Exchange (BioPAX)51 language is based on the Resource Description

Format (RDF) and is a Web Ontology Language (OWL). It is used to describe biological pathways

and is meant to be a universal exchange format. The development of the BioPAX specification

has been dormant for almost a decade and no new features have been introduced since.

The Systems Biology Markup Language (SBML)52 is being developed and extended by the

“Computational Modeling in Biology Network” (COMBINE)53 initiative. It has an active com-

munity that steadily improves and extends the language with new features. It is widely used

in systems biology methods, which play an important role in elucidating cellular processes

that drive new discoveries for personalized medicine. Consequently, SBML is the description

language of choice when searching for a source-format to build a network-resource application

in this domain.

2.2.3 SBML

SBML was initially developed to describe mathematical models of biochemical reactions and

the quantitative properties of biological systems. These processes are described by the core-

module of SBML. The description language is an XML format with the top-level entry “sbml”.

It defines the XML namespaces and the prefixes of the SBML modules and versions used by the

model. The namespaces allow different modules to have elements with the same name, since

they will always be prefixed by the namespace they are defined in. Each namespace defines a

prefix that is used throughout the rest of the document whenever an element is defined in that

namespace. The only direct child element of the “sbml” entry is the “model”, which is defined

by a name and an id. The child elements of this “model” are described in more detail in the

next section.
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1 <listOfCompartments>
2 <compartment constant="true" id="extracellular" />
3 <compartment constant="true" id="intracellular" />
4 <compartment constant="true" id="nucleus" />
5 </listOfCompartments>
6 <listOfSpecies>
7 <species name="Delta" id="DELTA" compartment="extracellular" ... >
8 </species>
9 <species name="Notch" id="NOTCH" compartment="intracellular" ... >
10 </species>
11 <species name="CSL" id="CSL" compartment="nucleus" ... >
12 </species>
13 <species name="DNA" id="DNA" compartment="nucleus" ... >
14 </species>
15 </listOfSpecies>
16 <listOfReactions>
17 <reaction id="react_ex" name="Example Reaction" reversible="false">
18 <listOfReactants>
19 <speciesReference species="CSL" ...
20 </listOfReactants>
21 <listOfProducts>...
22 <listOfModifiers>...
23 </reaction>
24 </listOfReactions>

Listing 2.1: Specification of the SBML-core module entities: compartments,
species and reactions

SBML Core Module

The SBML core module defines tags for compartments, species and reactions, which are

used as the basic elements for the description of biochemical reactions and the spaces they

occur in (see Listing 2.1).

They are organized in “listOf” XML-tags, which is a special listing type in SBML (see

Listing 2.1, lines 1, 6, 16). Compartments describe the physical spaces in which the described

reactions take place. There are three different compartments in the Notch signaling pathway

example: the extracellular space, the intracellular space and the cellular nucleus, which is

encoded in their “id”-attribute (Listing 2.1, lines 2–4). Species are used to describe simple

chemicals, like CO2, and biological entities like stretches of RNA or DNA and polypeptide-chains

(Listing 2.1, lines 7–14). They have the mandatory attributes “name”, “id” and “compartment”,

where the latter one references a previously defined compartment by its “id” attribute. Species

themselves are referenced by their “id” attribute in reactions. Here, only a limited number

of species is shown for demonstration purposes, while in reality, each entity and entity-state
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in the model is defined by an entry of this type. The reaction-element (Listing 2.1, lines

17–23) contains lists of reactants and products. They link to previously defined species
that make up the chemical compounds that take part in this reaction (see Listing 2.1, lines

18–21). Additionally, a reaction defines a list of modifiers, where each such modifier

references a species that has been defined earlier in the document. In most cases, a modifier
is an enzyme that catalyzes the reaction by lowering the activation energy needed for the

reaction to take place. Each reaction partner is wrapped in a “speciesReference”, which allows

the definition of additional properties like “stoichiometry” (see Listing 2.1, line 19). Other

important definitions in the core module of SBML that are important for the modeling aspect

of systems biology are omitted here for brevity, as this work does not rely on them. The reader

is referred to the specification-document54,55 of SBML for details.

SBML Qualitative Models Extension

For describing qualitative aspects of biological processes, like regulation or signal transduction,

the vocabulary of the language has to be expanded. SBML was designed with these kinds of

expansions in mind. It is a highly extensible language where every entity defined in the core

specification, including the model itself, can be extended with attributes or entirely new entities.

For the description of qualitative aspects of cellular processes, SBML offers the qualitative

models56 extension. This extension defines two new elements, the qualitativeSpecies
and the transition. A qualitativeSpecies refers to an entity, or a pool of entities that

are indistinguishable, which are characterized by their qualitative influence on the processes

or other qualitativeSpecies that are described in the model (see Listing 2.2, lines 1–7).

They are given an “id” within the “qual” XML namespace by which they can be referenced by

transitions. Not depicted are shared attributes with the SBMLSpecies entity from the core-

model, like the compartment, which can be defined separately for qualitativeSpecies
if needed. Optional attributes can be provided to declare initial and maximal levels of the

described entity in the compartments.

The transition element (see Listing 2.2, lines 9–18) defines a list of inputs and a list of

outputs. Each input and output refers to a qualitativeSpecies that participates in this

transition. The kind of effect the transition has on these qualitativeSpecies is given

by the attribute transitionEffect. Additionally, a sign attribute can determine whether

the effect is positive, negative, both or unknown. The qualitative models extension further

defines a functionTerm attribute. In the context of this thesis this attribute is not relevant

and is thus omitted. The reader is referred to the official specification document57 for details.
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1 <qual:listOfQualitativeSpecies>
2 <qual:qualitativeSpecies qual:name="q_Delta" qual:id="q_DELTA" ...>
3 </qual:qualitativeSpecies>
4 <qual:qualitativeSpecies qual:name="q_Notch" qual:id="q_NOTCH" ... >
5 </qual:qualitativeSpecies>
6 ...
7 </qual:listOfQualitativeSpecies>
8 <qual:listOfTransitions>
9 <qual:transition qual:id="transition_1">
10 <qual:listOfInputs>
11 <qual:input qual:qualitativeSpecies="q_DELTA"
12 qual:transitionEffect="none" />
13 </qual:listOfInputs>
14 <qual:listOfOutputs>
15 <qual:output qual:qualitativeSpecies="q_NOTCH"
16 qual:transitionEffect="assignmentLevel" />
17 </qual:listOfOutputs>s
18 </qual:transition>
19 </qual:listOfTransitions>

Listing 2.2: Specification of the SBML qualitative-models-extension elements
qualitativeSpecies and Transition.

2.2.4 Semantic Description with Ontologies

An ontology in computer science is understood as a catalog of properties, entities and relations

for a certain field of study. It standardizes the use of certain terms for describing a system

by defining one or more controlled vocabularies. The Systems Biology Ontology (SBO)58 is

primarily used in the mathematical modeling of biological systems in the systems-biology

community, but also contains elements for other aspects of the cellular processes.

SBML incorporates the use of SBO terms in their specification by specifying an attribute

called sboTerm that is optionally available on every entity defined (see Listing 2.3, lines 3, 6,

11). This allows modelers to use terms from the SBO to semantically describe the nature of

entities and relations in their models. Table 2.1 lists some common terms from the SBO used

in modeling of metabolic models, regulatory processes, and signaling cascades. The SBO is

hierarchically organized, which allows the use of more general terms where either no specific

one fits the entity, or where an entity can be of any of the subtypes defined in the ontology.

2.2.5 Entity Annotations using Qualifiers

Many entities in SBML models are annotated with additional resource information. This anno-

tation is organized in the RDF format and provides qualification information to the annotated
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1 <qual:listOfQualitativeSpecies>
2 <qual:qualitativeSpecies qual:name="q_Delta" qual:id="q_DELTA"
3 sboTerm="SBO:0000252" ... >
4 </qual:qualitativeSpecies>
5 <qual:qualitativeSpecies qual:name="q_C02" qual:id="q_C02"
6 sboTerm="SBO:0000247" ... >
7 </qual:qualitativeSpecies>
8 ...
9 </qual:listOfQualitativeSpecies>
10 <qual:listOfTransitions>
11 <qual:transition qual:id="transition_1" sboTerm="SBO:0000170">
12 ...
13 </qual:transition>
14 </qual:listOfTransitions>

Listing 2.3: Demonstration of the “sboTerm” attribute on the entities
qualitativeSpecies and Transition.

1 <qual:qualitativeSpecies qual:name="q_Notch" qual:id="q_NOTCH"
2 sboTerm="SBO:0000252" ... >
3 <annotation>
4 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"
5 xmlns:bqbiol="http://biomodels.net/biology−qualifiers/">
6 <rdf:Description rdf:about="#meta_qual_NOTCH1">
7 <bqbiol:hasProperty>
8 <rdf:Bag>
9 <rdf:li rdf:resource="http://identifiers.org/omim/164951" />
10 </rdf:Bag>
11 </bqbiol:hasProperty>
12 </rdf:Description>
13 </rdf:RDF>
14 </annotation>
15 </qual:qualitativeSpecies>

Listing 2.4: Demonstration of the RDF annotation with biomodels.net biological
qualifiers on a qualitativeSpecies entity.
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Table 2.1: Selected examples for common terms from the SBO that are useful for de-
scribing cellular processes like metabolic reactions, regulatory events and signaling
cascades. The Accession Number gives the term used in an SBML document, the name is
provided by the ontology. The Definition column gives the first sentence of the definition
as given in the ontology provided by the COMBINE initiative59.

Accession
number Name Definition

0000010 reactant Substance consumed by a chemical reaction.

0000011 product Substance that is produced in a reaction.

0000015 substrate Molecule which is acted upon by an enzyme.

0000252
polypeptide
chain

Naturally occurring macromolecule formed by the
repetition of amino-acid residues linked by peptidic bonds.

0000247
simple
chemical

Simple, non-repetitive chemical entity.

0000170 stimulation Positive modulation of the execution of a process.

0000216
phospho-
rylation

Addition of a phosphate group (-H2PO4) to a chemical entity.

0000656 activation A conformational change in a protein resulting in its activation.

data. The COMBINE network actively maintains the Biomodels.net lists of model qualifiers and

biological qualifiers for this purpose60,61. While elements in the first list are used to qualify the

modeling concept of an entity, those in the latter one are used to qualify the biological object

itself that is represented by an entity. An example of such an RDF annotation element can be

seen in Listing 2.4. The “bqbiol” tag with type “hasProperty” provides a “resource” that gives

qualified information about the annotated entity. In this case, the resource type qualifies as

providing additional properties for the entity that cannot be described directly in SBML.

Table 2.2 shows some Biomodels.net qualifier names along with their description. By using

these qualifiers on elements of biological networks their relationship to uniquely identifiable

resources can be established. This allows the identification of the network entities themselves.

In addition, the annotation objects can give more semantic meaning to the entities without

the need for the model language to offer these specific attributes. For a complete list of

Biomodels.net qualifiers we refer the reader to the respective COMBINE website60,61.

Different systems-biology methods require different types of networks. Depending on

which part of a biological system is to be analyzed, certain aspects are of greater interest than

others. To focus on the important aspects, different types of networks are defined. Each type

highlights a different layer of the biological machinery and allows different types of data to be
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Table 2.2: Example qualifier from the biomodels.net qualifier list60,61. Qualifier name
and a partial description are shown as provided on the website of the COMBINE initiative.

Model qualifier

Qualifier name Description

is
The modeling object represented by the model element is identical
with the subject of the referenced resource.

isDerivedFrom
The modeling object represented by the model element is derived
from the modeling object represented by the referenced resource.

isDescribedBy
The modeling object represented by the model element is described
by the subject of the referenced resource.

Biological qualifier

Qualifier name Description

is
The biological entity represented by the model element
has identity with the subject of the referenced resource.

hasVersion
The subject of the referenced resource is a version or an instance
of the biological entity represented by the model element.

isEncodedBy
The biological entity represented by the model element is encoded,
directly or transitively, by the subject of the referenced resource.

used with it. In the following section we are going to list example systems-biology methods

and introduce the types of networks — so-called network mappings — that are inferred by

these methods or used for computational analyses.

2.2.6 Network Mappings

Common abstractions of the biological processes are represented in network mappings. In

these, the functional units and their interactions are limited to the respective viewpoint on

these processes. This section briefly introduces the four main types of mappings and gives

examples of systems biology methods that are either creating or using them.

Gene expression data is used in mechanistic modeling approaches to estimate the values

of unknown states in the network. This type of analysis requires a signaling mapping of the

network. In this mapping the nodes of the network are proteins or more general polypeptide

chains and non-covalent complexes of these proteins or of proteins with chemical compounds.

The edges of the network are directed and represent events that are associated with signaling

events. Those include activation of an enzyme via a conformational change and the general

positive and negative modulation of the execution of a process.
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Scientists attempt to map protein interaction with methods like affinity purification-tandem

mass-spectrometry and co-elution–mass spectrometry62, protein-fragment complementation

assays63 or yeast two-hybrid screening64. The resulting network mapping is a protein-protein-

interaction (PPI) network, where the nodes represent polypeptide chains and undirected edges

connect any two proteins that are interacting with each other in any way. The type of interaction

is not defined or sometimes unknown. If a complex of proteins is interacting with another

protein, the hierarchy of the complex in this type of network is broken down, meaning that

every individual part of the complex will be connected to the interacting protein.

To integrate metabolic processes with gene expression data, so-called flux balance
analyses65,66 are performed. A metabolic mapping is a bipartite graph with reaction partners

in one node partition and the reactions in the other. The reaction partners are either simple

chemicals when they represent substrates and products or are enzymes catalyzing the reaction.

The nodes are connected with directed edges that indicate their respective role in the reaction.

Regulatory analysis can reveal upstream master regulator genes and infer gene regulatory

networks from gene-wide expression profiles67,68. Those regulatory mappings show the effects

of proteins on gene regulation and gene expression.

Those network mappings are the essential representations that are used in publications

and computational analysis. A central network resource needs to offer easy-to-use interfaces

for accessing those mappings and offer intuitive ways to work with them. Storing them in such

a way that facilitates fast computations and efficient searches is another important feature.

Those topics will be discussed in the next chapter.

2.3 Information Technology Methods

Three important concepts from information science are at the heart of SBML4j, the software

presented in this thesis. The first is the so-called RESTful interface, a type of application pro-

gramming interface (API) that a service-oriented software offers to potential client applications.

The second is the graph-database backend, which SBML4j uses to store the network data. The

third concept revolves around tracking the origin of data, the so-called provenance.

2.3.1 RESTful Interface

Representational state transfer (REST) is a form of software architecture initially developed by

Roy Fielding69 for distributed systems, which exchange messages using hypermedia. Hyper-

media is an extension of Hypertext, which was introduced by Theodor Nelson in 1965 as “a file

structure for the complex, the changing and the indeterminate”70. Hypermedia extends the

contents of the file structure beyond text-based information to any kind of media, like image

data or video material.
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Fielding’s software architecture facilitates the communication between a client and a server.

Each representation that a server delivers to the client contains links to other representations in

the server application, for example a blog-post entry or a thread in a message board. By clicking

such a link in a web browser, the receiving server is instructed to transfer this representation

to the client, which is addressed by the link that was clicked on. It is important to note that

no information about the client session must be stored on the server side in order to serve a

request by the client. The interaction is then said to be stateless. Each request contains all

necessary information for the server to understand the request.

The Hypertext Transfer Protocol (HTTP)71 is a well-known protocol for this kind of commu-

nication. It defines a set of methods that a client can issue to a server in the form of requests.

The four main types of interest are GET, POST, PUT, and DELETE operations. They are issued

with a so-called uniform resource identifier (URI), which specifies the resource that is subject

of the request. In the web-page example, this URI would be the uniform resource locator (URL)

of the link that is clicked in the browser.

Each such request consists of the path to the URI, followed by optional query parameters.

These query parameters are separated from the path by the question mark symbol and multiple

query parameters are separated from each other with the ampersand character. In addition,

the POST and PUT requests contain a body element, which can consist of xml or json-formatted

text, or binary data, like image-files or other documents that are to be uploaded to a REST

service.

The simplest operation is the GET request. By issuing a GET operation a client requests a

resource from the receiving end. The resource to be fetched is identified by the URI of the

request.

A POST operation transfers an entity enclosed in the request from the client to the server.

The server is expected to accept this entity as a subordinate of the resource that is given by the

URI of the request. This requires that the provided URI must point to a resource that is capable

of handling the provided entity. Such a request usually stores the entity in the internal storage

or database of the server. It can then be accessed using a newly provided URI or as part of the

URI of the initial request.

The PUT operation is similar to the POST operation in the sense that an enclosed entity is

uploaded to the server. However, the PUT request identifies an exact resource on the server

side in the provided URI with the instruction that “the enclosed entity should be considered as

a modified version of the one residing on the origin server”71. In case the provided URI does

not denote an already existing resource, it can be created by the server instead.

The DELETE operation instructs the server to remove the resource identified by the provided

URI of the request. Whether the server actually deletes the identified resource or just marks it

as deleted and hides it in future requests is implementation specific. Future GET requests that

would contain the undeleted entity as part of listings are required to hide it in any case.
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1 MATCH p = ( s t a r t : P ro te in )−[ r e l : a c t i v a t i o n | i n h i b i t i o n *..3]−>(end : chemicalCompound )
2 WHERE s t a r t . name = " Del ta "
3 RETURN p

Listing 2.5: Example Cypher Query. Query for retrieving a path with directed relation-
ships with labels activation or inhibition from a start-node with label Protein whose name
property has the value “Delta”, and an end-node with label chemicalCompound. The paths
consisting of nodes and relationships that match these criteria are returned.

The operations GET, PUT and DELETE share a property called idempotence. This denotes

that any number of identical requests these types must result in the same side effects as a

single request of that type. Side effects mean any changes of state on the server side that

affect other resources or would change the response to this or any other request. The same

cannot be required from a POST request, as such a request usually results in the creation of

a new resource on the server side. Multiple identical requests for the creation of a resource

can result in the creation of multiple identical resources, which only differ in their identifier.

The side effects of multiple such requests change the response to GET operations that list these

resources.

An API that implements these protocols and adheres to their restrictions is said to be

RESTful. Such RESTful APIs are often used in service-oriented software architectures, where

multiple services dedicated to individual tasks are combined to perform a larger unit of work.

This is usually the design of choice in bioinformatics pipelines and analysis settings. A popular

description language for RESTful APIs is the OpenAPI standard72.

2.3.2 Graph Databases

Graph databases are database systems that use graph structures to represent and store data.

Individual data points are represented as nodes and their relationships are modeled as edges

that connect these nodes as shown in Fig. 2.3A. The example illustrates how parts of the Notch

signaling pathway could be stored in a graph database. The data is stored as a so-called labeled

property-graph. The nodes and relationships are first-class citizens in the database, and thus

can have labels and properties attached to them. This means that the types of nodes, (e.g.,

Protein) or relationships, (e.g., inhibition) are implemented as labels (see Fig. 2.3B), which can

be used in queries to determine the types of nodes or relationships. All additional attributes on

nodes or relationships are properties, which are realized using key-value pairs (see Fig. 2.3C).

Storing the data as a graph enables queries that follow the natural path on the graph data

structure. Listing 2.5 shows an example of a query in the Cypher73 query language that is used

by the graph database Neo4j74.

It starts with the keyword MATCH, which indicates a search query. Then a path is defined,

which is given the name “p”. The path starts with a node of type Protein, where Protein is a
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Figure 2.4: Example query result of the query in Listing 2.5. Visualization of the query
result from the Neo4j browser including legend for node and relationship labels. Nodes
are named using the name property of the node entity, relationships are named with their
assigned label.

label on the node. The parentheses indicate that the first element of the path is supposed to

be a node. The word “start” before the colon specifies the name of this node for the rest of the

query. The colon indicates that a mandatory label follows. The next part in square brackets

defines a directed relationship, where the “>”-symbol gives the direction. After the colon the

required relationship labels are provided, which are connected with a logical “OR” in the form

of the “|”-symbol. This query searches for relationships of type “activation” or “inhibition”. The

character sequence “∗..3” denotes that up to three relationships may lie between the start and

end node of the requested path. The relationship ends in a node of type chemicalCompound

and is assigned the name “end” for this query.

The WHERE clause is used to limit the search to certain properties of nodes or relationships,

in this case to start in a node whose name-property value is equal to “Delta”.

The RETURN statement defines what the database should return as the result set. In this

example, the result set contains all paths that satisfy the query conditions including the start

node, the relationships, and the end node. The result of this query on the graph from the Notch

signaling pathway example can be seen in Fig. 2.4. Note that the output is also a graph that

contains nodes and relationships from the result set. The visualization consists of the nodes

and edges from the query result and is configured to show the name properties for the nodes

and the labels of the relationships. The color assignment of the respective types can be seen in

the legend of the figure.

With these features a graph database can offer more elaborated access compared to tradi-

tional relational databases. A graph database can query data along the relationships defined on

the graph and extract all related entities to a requested node. Similarly, it is possible to write

new data into the database, as related entities and their relationships are persisted alongside

the initial entity. This makes graph databases ideal candidates for storing and working on bio-

logical networks since the structure of the data directly matches the structure of the database

system. Additionally, nodes can have multiple labels defined on them simultaneously, which
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allows them to be part of multiple subsets or levels of granularity at the same time. This is a

vital feature for managing data on the network level, on a warehousing level, and on the level

of keeping track of the origin of data in the database.

For advanced computational power, the Neo4j database offers procedures that can be

executed directly on the data in the database core. The Awesome Procedures on Cypher

(APOC)75 is an add-on library for Neo4j, which makes extensive use of this ability. It provides

many procedures and implementations of graph algorithms, which can be used in custom

Cypher queries.

2.3.3 Provenance Tracking

The term provenance in the computational sciences refers to the origin of data and the formal

representation of all consecutive steps performed on this data by computational processes76.

In bioinformatics, the process provenance describes the sequence of transformative

processes that were applied to a set of source data. The standard means of documenting

the steps of this sequence are workflow managers and their respective description languages,

such as Nextflow77, KNIME78 or Snakemake79. They allow the documentation of analysis-tool

metadata, parameters as well as input and output data. At the same time, they manage the

execution of the correct tool with the matching data. When a publication includes these work-

flow files and offers access to the original raw data, it enables other researchers to reproduce

the data analysis part of a study.

For biological networks these processes are oftentimes not as well documented and only

the resulting network is provided in publications80. This is largely because many steps are

performed manually and can therefore not be documented by the bioinformatics workflow

language. The same is true for the clinical setting of MTBs, where the presentations for the

expert meetings are created by hand and simply stored as static images.

This emphasizes the need for a network resource that tracks the provenance of internal and

external modification steps alongside the networks themselves. To enable this tracking, the

data model of an application needs to incorporate structures for storing this kind of information.

The World Wide Web Consortium (W3C) put out a set of specifications named PROV that enables

the publication of provenance information and was designed for use in the World Wide Web81.

The W3C PROV Data Model

The W3C PROV data model82 defines three basic core concepts, an Agent, an Activity, and

the Entity. In addition, relationships between these concepts are defined, as can be seen in

Fig. 2.5.

An Entity is any element in a system whose provenance is to be tracked. An Activity

represents any process that either generates or alters the state of an Entity by using it. The
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Figure 2.5: Core concepts of the PROV data model with its main relationships. Entity,
Activity and Agent denote the core concepts to describe provenance in information systems.
An Entity in a certain state is generated or used by an Activity, whereby the Entity gets
derived from another Entity or Entity-state. An Agent gets associated with the Activity
and the new Entity is attributed to that Agent.

Entity thereby gets derived from some other Entity, which can also be the same Entity in a

different state. The Agent indicates the user that was associated with this Activity and to

whom the Entity in its new state is attributed to.

With the implementation of the W3C PROV data model in the graph database, it is possible

to store the network provenance alongside the networks in the database. This offers the

unique opportunity to provide a resource for biological networks that keeps track of and

allows the extraction of network provenance alongside the network data. It can be seamlessly

integrated in existing infrastructure via provided RESTful interfaces, which facilitates complete

reproducibility of biological networks in research and clinical settings alike. The details of the

implementation of the software SBML4j will be discussed in the next chapter.
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Chapter 3

SBML4j – A Service Hub for

Reproducible Biological Networks

3.1 Introduction

Biological networks are essential for understanding mechanisms in biomedical phenomena.

They explain the relationships between individual biological components, the genes, proteins

and chemical compounds that make up the cellular apparatus. Often it is these relationships,

like interactions between proteins, stimulation of enzymatic activity or regulation of gene

expression, that govern the onset and progression of diseases. Typically these networks are

collated from literature or based on experimental findings and predictions and made available

in comprehensive databases. A wealth of tools is available to manipulate and visualize them.

Due to their size and complex nature, network data is best managed in database management

systems. In the past, relational systems were used to organize any kind of data in tabular form.

To answer biomedical questions, many individual elements and their relationships need to be

evaluated, which requires complex queries on these tables. A graph-based data architecture

promises better performance and more comprehensible querying mechanics.

Here we present SBML4j, a service-oriented application that leverages the efficient man-

agement and querying of graph data in a modern graph database for the analysis of biological

network data. SBML4j relies on SBML as a standardized representation of biological network

data and renders these networks accessible in an efficient manner through a RESTful inter-

face. In addition, it provides an easy to use Python client library to query the database and

manipulate query results.

SBML4j can be deployed conveniently through prebuilt Docker containers, making it avail-

able on all major platforms. The interface permits graph-based queries, for example shortest

path queries or adjacency queries. Additional scalar and categorical data (e.g., expression
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levels, predefined pathways) can be mapped to the network through the REST API as well as

via the Python client library.

A special focus has been put on tracking the provenance of the networks. SBML files that

are uploaded via the RESTful interface are integrated into a biological knowledge graph and

the origin of the created entities is recorded. During the creation of a specific network mapping

from this knowledge graph the chosen parameter settings are tracked and stored alongside the

mapping data. For each processing step that alters a network the REST request is recorded

and parameters as well as data are stored alongside a new instance of the network. When

external tools are used to manipulate or process a network retrieved from SBML4j, the resulting

network can be reuploaded into the database management system. SBML4j offers specific REST

endpoints that allow the addition of custom provenance information regarding the external

tool and parameters or data used for the processing step. This way the complete provenance

is tracked in the SBML4j database and is provided in addition to the GraphML representation

of the network. This enables reproducible biological networks, where each analysis step is

recorded and every intermediary network is available for inspection.

Related Work

Many public repositories for network and pathway related information can be found online, like

the String database, KEGG, the Biomodels Database83 and Wikipathways84. These databases

are used widely and provide a comprehensive view of many physiological processes.

The Network Data Exchange, NDEx85,86, is an online resource where scientists can upload

their own networks, share them with collaborators and publicly distribute them. By linking an

uploaded network with an already existing one a provenance connection between the two is

established. However, this does not document the details of the changes or the methods applied

to create the one from the other. Resources like Reactome87 or Recon88, for example, provide

organism-wide networks containing expert-curated cellular processes. They regularly update

their representations with new data but do not disclose the provenance of their networks in

a machine-readable way. The SEMS Project89 explored how to use a graph database to store

biological models and accompanying simulations with their Management System for Models

and Simulations — MaSyMoS90. Due to a lack of funding, their project is now dormant.

Software tools like SBGN to Neo4j (STON)91 and Recon2Neo4j92 aim to add extended

query features to these kinds of networks by transferring them to local graph database instances.

They use custom translations of the entities and relationships and give users the ability to

explore the contents using the Cypher Query Language. Lysenko et al.93 demonstrated the

feasibility of this approach by using the Recon2Neo4j framework to fill a graph database with

assembled data from various sources. They successfully showed how to use Cypher to generate

new hypotheses from the graph data model. These frameworks rely on hand-crafted input
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files to populate their databases, which makes tracking of its origin difficult. Additionally,

data in these frameworks is only accessible via direct database queries. To generate new

hypotheses from these data sources, knowledge about the Cypher query language as well as

the underlying database schema is necessary. Proprietary, commercial tools like MetaCore94

promise to fulfill all needs of industrial professionals regarding network based analysis but

are not freely available to the research community and are therefore not suited for scientific

workflows.

The network-based navigation and analysis tool BiNA95 with the corresponding network

resource framework UniPAX96 aimed to provide a scalable system for analyzing data in a

network context. The software performed well but failed to transparently track and report

network provenance. In addition, the project fell victim to the often observed loss of knowledge

in the scientific community when one generation of researchers leaves a group and the next

generation fails to reinstate the dormant software.

To enable reproducible results the documentation of the exact transformation steps taken

to integrate the data as well as the queries to extract knowledge from the database is of utmost

importance.

Motivation

We address these shortcomings with SBML4j by reading biological models in the well estab-

lished SBML format as input source. By replicating the structure of this standard in the knowl-

edge graph data layout the data remains understandable for researchers proficient in SBML.

Additionally we are deriving easy to understand network mappings from this graph structure

which enables reproducible programmatic access to the networks using a RESTful interface.

SBML4j makes extensive use of the SBO terms and the biomodels.net qualifier information

that are found in the SBML models. This means that a scientist who is familiar with the SBML

syntax can explore the knowledge graph directly on the database using Cypher and the built-in

web-based browser. In addition, we implemented a well-documented RESTful interface to

query for information in the SBML structured data and to build, extend, annotate and explore

network mappings from this knowledge base. All created networks are reported in the versatile

GraphML format which can be processed by many tools and be visualized using open source

software like Cytoscape97, commercial software like yFiles98 or the freely available Jupyter99

widget ipycytoscape100. We provide a python client library, pysbml4j101, which offers intuitive

access to the full functionality of the RESTful interface. It enables script-based automatic load-

ing of models, creation of collections and network mappings. It offers methods for annotating

network nodes with data from CSV files which allows the use of classical Excel-based data

in network analysis as well as JavaScipt Object Notation (JSON)-based annotation of nodes

and relationships. In the following sections we present the design and implementation of
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the software SBML4j and all of its components as well as the python client library pysbml4j.

We will demonstrate the viability of the service-oriented approach and its easy integration by

showcasing the creation of a knowledge graph built from the KEGG pathway database. We

show how to create network mappings from this knowledge graph and how we can use differ-

ent mappings to answer real world biological questions with just a few lines of python code.

Finally, we demonstrate the provenance-tracking mechanism and show how SBML4j enables

reproducible biological-network analysis for research and the clinical settings.

3.2 Design Considerations

In software engineering certain considerations have to be made before implementation can

begin. First, the goals of the software have to be formulated. Then, to reach these goals,

specific choices regarding base technologies must be made that influence the development

substantially. Rated among the most important are the choice of the database backend as well

as the programming language.

3.2.1 Design Goals

A software that offers versatile persistence, exploration and provenance tracking of biological

networks, lends itself to be an essential building block in a broad spectrum of disciplines.

It must therefore stay open to new developments and provide a solid foundation for future

extensions and use-cases. The software should reflect those needs and the design should strive

to reach the following goals.

Standardized Source

The first major goal of this software is the ability to read in biological models from a stan-

dardized input source that is already adopted in a large proportion of the target audience. It

should also be able to integrate multiple models together in a knowledge graph and create

network mappings from this graph which can then be provided as network resources. No prior

or additional knowledge should have to already exist in the database or at application level to

build a network resource from these source-models. Only information present in the models

and data that can directly be retrieved from online-source with the information provided in

the models should be taken into account when building the knowledge graph. As we laid

out in Section 2.2.2, SBML is the most widely used format in systems biology with an active

community. Since SBML is a highly extensible language, this software needs to be able to deal

with these extensions, if needed. To be able to map regulatory, signaling and protein-protein-

interaction networks the SBML extension “qualitative models” must be supported from the start.

In addition, many available visualization tools for network data and programming libraries
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dealing with networks operate on the versatile GraphML format. All network exchanges should

therefore be performed via GraphML.

Accessibility

The second major goal is the possibility to access the networks managed by the software in

a way that does not require complex database queries. No knowledge about the internal

workings of the database or software itself should be needed to obtain or perform an operation

on a network. The most broadly used means of access in distributed knowledge systems, of

which SBML4j should become a part of in many settings, is a RESTful interface. All operations

on the networks should be made available via REST endpoints. Since many research settings

favor automated analysis processes over manually performed steps, a means of scripted access

to this interface should be developed and provided alongside the main software. This should

be realized in the popular language Python and the goal is to give access to a network and any

offered method on or with this network in just a few lines of code. In addition, the database

layout should still enable manual queries using a suitable query language to facilitate complex

use cases and manual inspection of the data.

Reproducibility

The third major goal is to enable the complete tracking of data provenance for biological

network data. This is a vital building block towards FAIR data principles, which any new

software should adhere to. For any network that is retrieved from the software a complete

history should be available that tracks the network’s provenance from the input-sources to the

final product. If provenance cannot be tracked automatically for a specific step, the software

should provide means to manually add provenance-information to the documentation of the

performed step. In addition, any network that was the result of an intermediate step in the

creation of one specific network should be retrievable and its data provenance transparent.

Readability

This software is developed in a scientific research setting, where doctoral candidates or post-

doctoral researchers that work on such a software are only assigned to this project for a

limited amount of time. This can often lead to limited support after launch and a loss of

knowledge about the software when the initial developers leave the working group. It is

therefore essential to build a code base, which can be picked up by the next generation of

students without the absolute need for a knowledgeable peer around to teach them. To achieve

this, the documentation needs to be extensive and kept up-to-date. To further this development

with design decisions, the source code must be understandable and documented well enough

to enable readability and insight into the functionality. To facilitate this, variables and method
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names should be chosen to be non-cryptic and self-explanatory. A name of a function should

preferably be spelled out to convey the purpose it is serving. Variable names should describe

the content they contain and, in places where it is beneficial to the understanding of the code,

have suffixes added to them, which denote their type. This ensures that the source code can

be read and understood by the future generation of scientists that aim to improve on the work

presented here.

3.2.2 Choice of Database

The first choice to be made was which database should be used for the persistence of the models,

the creation, management and exploration of the networks and the provenance tracking. For

instance, UniPAX made use of an object-relational mapping for object persistence. This allowed

for a flexible backend implementation of a relational database on the one hand, but, on the

other hand, resulted in a complex relational database-schema. In doing so UniPAX was able to

store its data in an Oracle database or a MySQL database, depending on user choice, which also

resulted in programming overhead to accommodate both SQL implementations. To generate a

single network representation, complex table joins and index traversals where needed.

In contrast, graph databases store the network data in a graph format, which enables data

queries based on relations of objects. This mode of database access especially facilitates the

work with and operation on biological networks. As Recon2Neo4j has shown, graph databases

are able to closely represent the entities and relationships encoded in an SBML model. The

MaSyMoS application used a graph database to relate different models to one another as well

as with ontology information. These examples demonstrate the viability of graph databases

for storing biological network information.

The Neo4j graph database has widely available database drivers in a number of program-

ming languages and frameworks, which makes it a suitable pick for development purposes.

Neo4j is already used in many production environments, for instance for fraud detection102 or

drug-repurposing10. This proves the suitability for the future productive use of SBML4j in the

clinical context.

3.2.3 Choice of Programming Language

The second choice to be made is concerned with the programming language to use. The first

requirement for this decision was the ability to process SBML files. There are two main imple-

mentations of the SBML standard, libSBML and jSBML for the C programming language and

the Java programming language respectively. Both implementations are suitable for processing

SBML core models as well as those using the qualitative models extension, which we need to

support in order to process non-metabolic models.
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The second requirement concerns the availability of a database driver, which was a crucial

factor in the decision for or against a certain programming language. At decision time no

stable C/C++ database driver for neo4j was available, which made this language not feasible

for this project despite potential performance benefits of C++ over Java. Neo4j provides a

well-documented Java driver. The Java Spring framework103 features a fully functional data

module that communicates with the database using the provided driver. It offers graph-based

enhancements to common repository elements. The integrated object-graph mapper (OGM)

enables a direct mapping of database structures to the domain model and vice versa. The

Java Spring framework therefore provides a stable, extensible and well tested framework for

working with the neo4j graph database.

3.2.4 Organizational Layout

As a service-oriented network resource with full provenance-tracking, SBML4j sets out to handle

various tasks.

The first task is to persist biological models from multiple SBML files and to create an

integrated knowledge graph. A model representation in the database is termed a pathway in

SBML4j, multiple such pathways can be combined to collections. The union of all pathways

builds the knowledge-graph in the SBML layer.

The second task is the creation of network mappings from this knowledge-graph or

subgraphs thereof. This is achieved by flattening the relationships and hierarchies in the

models. Those flat network mappings are the core data-structure that is available to clients

of the SBML4j service. Certain warehousing elements are required to track the different

networks and provide inventory-type information about them.

The third task is to provide diverse functionality for these networks. These include general

operations, like filtering a network by type of entity and annotating the nodes or relationships

with arbitrary data. In addition, popular graph algorithms should be offered for use in analysis,

like the calculation of shortest paths, or the generation of neighborhood networks.

The fourth task is to track each of these operations, store this provenance information

as metadata alongside the network data and provide a detailed provenance report for each

network per user request. This includes provenance tracking even for network-based tasks that

are performed in external applications, where the source networks are obtained from SBML4j,

or the results networks are provided to SBML4j.

To facilitate these tasks, the application and the data model are divided into organizational

units. The main units are SBML, Network, Warehouse, and Provenance.

From a graph perspective on the database level, this layout creates three main graph

subtypes: The provenance graph, the warehouse graph and the content graph. The latter one

combines the nodes and relationships from the SBML knowledge graph and the contents of the
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Figure 3.1: Architecture of SBML4j with client applications and database backend.
The SBML4j application (yellow) consists of the REST API and the application layers for
controller, service and repository interfaces. The database backend (green) is accessed by
the repository interfaces and stores all data, metadata and provenance information in a
single graph. Clients can directly issue HTTP requests (blue) or make use of the pysbml4j
client library for python (purple) to communicate with the REST API. Application and
database are realized with the Java Spring framework and the Neo4j Graph database,
respectively.

network mappings. They are typically not requested in the same request and the distinction

will be made depending on the connection of these contents to the respective type in the

warehouse graph. By limiting queries to specific subsets of node and relationship types, the

different subgraphs can be selected and their contents extracted.

This organizational layout can be found throughout the rest of this chapter where the data

model, the services and the controller functionality are presented.

3.3 Implementation

3.3.1 Architecture

The overall structure of the SBML4j ecosystem is shown in Figure 3.1. It consists of the core

application, the independent Neo4j graph database instance, and the Python client library
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pysbml4j. Additionally, examples of client applications that directly interact with the REST

interface of SBMl4j are included for illustration.

The database holds a single database graph. It contains all models that are uploaded to the

service, which are combined to a knowledge graph as well as all created network mappings

with user-generated networks and all warehousing and provenance-tracking information. This

graph is composed of entities and relationships which reflect the classes of the application data

model. They are mapped via the OGM of the Spring Data component. This data model is

described in detail in Section 3.3.2.

The SBML4j core application consists of four layers, which are implemented in the Java

Spring framework. The lowest layer contains the repository interfaces, which manage

the persistence and retrieval of elements from the underlying graph database. All reposi-

tory interfaces extend the Neo4jRepository, which adds special graph-based query features to

the standard operations create, read, update and delete that are found in traditional

interfaces for relational databases. The communication between the repositories and the

database use the Neo4j Bolt protocol104. Details about the repository interfaces can be

found in Section 3.3.3.

The second layer consists of the Services. Each service provides functionality for handling

entities and relationships, manipulating the database-graph structure or performing other tasks

required to fulfill requests by a client. The structure of the services and selected details are

described in Section 3.3.4.

The third layer consists of the controller classes that implement the API interfaces

that are defined by the REST API. These classes deal with general user handling and control

the sequence of steps that are needed for each individual endpoint. The general outline of

these tasks is laid out in Section 3.3.5.

The topmost layer contains the REST API interfaces. These interfaces define the end-

points that are available for the interaction with SBML4j. The API is described in detail in

Section 3.3.6.

The architecture also includes potential client applications that communicate with the

REST API directly by sending HTTP requests. These can be general biological, medical, or

other workflows that create, manipulate and request networks. Other, more specific, exam-

ples include DeRegNet105, an application for calculating maximally-deregulated subnetworks

(Chapter 4), PeCaX ? , the Personalized Cancer and Network Explorer, which uses SBML4j for

network-neighborhood creation, annotation and storage (Chapter 5), and other REST client

applications for manual interaction with the API, like the Application Postman106.

Another method for making use of the features of SBML4j is given by the python client

library pysbml4j. It offers convenient python methods for all available REST functions. The

pysbml4j client library is described in detail in Section 3.3.8.
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3.3.2 Data Model

The data model used by SBML4j is a combination of a hierarchical model and an entity graph

model (Fig. 3.2). In entity graph models each entity in the data model is represented by a node

or relationship in the database graph. This mapping is done automatically by the OGM, which

is part of the Spring Data package. Annotations on the Java classes denote whether an entity

is mapped to a node or relationships, as well as the name of the graph element. The hierarchy

is introduced to be able to separate different aspects of the data into different layers and in

order to uniformly define common attributes on different types of nodes and relationships.

The base layer consists of a single entity, the GraphBaseEntity, responsible for general

graph-database specific attributes, like id and version. As every other entity in SBML4j

inherits from this base entity, all entities can be persisted in the graph database and can

be managed by the OGM. At the core lies the PROV data model, whose basic entity is the

ProvenanceEntity, which directly inherits from GraphBaseEntity. All further entities in

the class hierarchy inherit from this entity, which provides the basic features for tracking the

provenance. This means that every entity in the database has one of the three provenance

types, Activity, Agent or Entity. While the Activity and Agent entities are specifically

tracking the provenance and user relationship to the data, the Entity type denotes all entities

that are to be tracked by the PROV data model. These entities are divided into the Warehouse
and Content graphs. The warehouse graph entities have the purpose of keeping an inventory

of available data. The Pathway and PathwayCollection entities bundle all entities from the

SBML layer, grouped by the original SBML models, and user-defined collections of these models,

respectively. Each such model is derived from an input file, represented by the FileNode entity,

which itself is derived from a certain source. This source is represented by the DatabaseNode.

Additionally, each SBML model, and thus each Pathway is associated with a specific organism,

which is captured by the Organism entity. The MappingNode entity is the inventory entity for

network mappings, which were created from one or more SBML models.

The Content graph is divided into the SBML layer and the Network Layer, which contain

the SBML knowledge graph and the flattened network mappings, respectively. The SBML layer

consists of the core-model entities and is based on the SBML specification model, albeit in a

simplified version for the purpose of this application. The main entities of the core model are

SBMLSpecies and SBMLSimpleReaction, which together represent the metabolic aspects

of the biological models. Multiple SBMLSpecies can form a group, which are indicated in

the SBML model as being of type group and are represented in SBML4j as the entity type

SBMLSpeciesGroup. The compartments in which these metabolic reactions take place are

represented by the SBMLCompartment entity. Species and reaction entities are derived from

the SBMLCompartmentalizedSBase type, which holds the reference to such one compart-
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Figure 3.2: Overview of the SBML4j data model. Data model classes of SBML4j in an
inheritance graph. Node shape denotes entity type, combined arrows give the direction
of inheritance from a common ancestor. Color of nodes indicates the layer to which this
entity belongs.
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ment and which itself inherits from the SBMLSBase entity. The SBMLSBase defines the basic

attributes of the SBML model.

In addition, the two main entities from the qualitative species extension are included in this

layer. The SBMLQualSpecies is the qualitative representation of the SBMLSpecies entity.

It is also derived from the SBMLCompartmentalizedSBase entity and can be grouped in

SBMLQualSpeciesGroup entities, too. The SBMLSimpleTransition entity describes non-

metabolic processes, like signaling events through chemical interaction, regulatory events or

general protein-protein interactions. To represent the biomodels.net qualifier annotations, three

additional entities are part of the SBML layer. The ExternalResourceEntity represents the

annotation elements, which are typically in the form of links, or URIs to an external source

giving detailed information about the annotated entity. The BiomodelQualifier relationship

entity is used to encode the type of relationship that exists between the entity in the model

and the external qualifier. For all external resources that get resolved and the external web

service queried for additional data (e.g., the KEGG REST API), NameNode entities are created

for all secondary names found for the connected entity.

When creating network mappings from the knowledge graph that is formed by the SBML

layer, the hierarchies of entities in the models get flattened. This is why the node and rela-

tionship entities in the Network Layer are called FlatSpecies and FlatEdge, respectively.

One FlatSpecies represents one set of ExternalResourceEntities that describe one biological

entity, or multiple variants of said entity that takes part in one or more metabolic and non-

metabolic activities. These activities are subtypes of the FlatEdge entity, which connect the

nodes in the flattened network mappings.

The FlatEdge relationship entity is one of the explicit relationships defined in SBML4j,

next to the BiomodelsQualifier relationship and the WarehouseGraphEdge. The latter

one is used to link elements from the content-derived layers (i.e., SBML layer and Flat layer)

to the warehouse layer, showing which contents are contained in the different pathways and

networks that can be accessed via the RESTful interface. All other relationships, for instance

the affiliation of an SBML entity to a compartment, are implicit. They are defined on the

node-entity by reference and are built on the database upon persistence of the nodes.

Explicit relationships can be accessed through the OGM independently from the node

entities they connect, while implicit relationships have to be extracted using the node entity,

which holds the implicit reference to another entity.

In addition to the entities shown in Figure 3.2, the data model includes definitions of

API request and response bodies, such as the inventory items for networks and pathways,

the annotation and filter items for manipulating networks as well as the components of the

provenance-report response. The section concludes with a brief introduction of enumerations

and exceptions, which are defined in SBML4j.
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GraphBaseEntity

+ id: Long

+ version: Long

+ entityUUID: String

+ isActive: boolean

+ annotation: Map

+ annotationType: Map

+ addAnnotation(String, Object): void

+ addAnnotationType(String, String): void

Figure 3.3: UML Diagram of the GraphBaseEntity. This basic entity holds the common
attributes for each node or relationship, the id and version fields required by the database,
the entityUUID as global unique identifier of this entity across all layers, the isActive flag
to allow deactivation of parts of the graph, and two maps for storing annotation data for
this entity. Additionally, custom methods for adding individual annotations to an entity
are included. Standard methods, like getters and setters are omitted for brevity.

Base Layer

The most basic graph element is the GraphBaseEntity (Fig. 3.3). It holds the database-

curated id and version attributes of type java.lang.Long. The id attribute is used by the database

to identify individual entities and reconnect them to the graph that is stored in memory. It is

unique to one database instance, but is not guaranteed to point to the same entity throughout

the lifetime of the database. Deleted ids will be reused after a certain period of time. The version

attribute is an optional database-managed attribute that will be used to support optimistic

locking. This mechanic is useful when multiple threads access the data in parallel and try to

modify the same entity. On a collision of the version number the OptimisticLockingException

will be thrown allowing the implementation to resolve this issue. For instance, this can be done

by refetching the entity and reapplying the desired modification before attempting to save the

entity again. SBML4j offers support for optimistic locking by using the version attribute on the

base class. Since all entities that are used in SBML4j are supposed to be stored in the neo4j

database, all objects need to be derived from this base class.

In addition, the GraphBaseEntity object contains the entityUUID attribute, which is used

as the primary key to uniquely identify any database object. In contrast to the database-

managed id attribute, the entityUUID is managed by SBML4j and needs to be generated using

the GraphBaseEntityService method setGraphBaseEntityProperties, which will generate a

new UUID using the generation strategy randomUUID from the java.util.UUID package. With an

index on the entityUUID attribute across all entities, this is the primary means of retrieving
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elements from the database. The Boolean isActive can be used to deactivate any object and

is set to true when the entityUUID is generated. The GraphBaseEntity also holds two Java

HashMaps annotation and annotationType, which are used to store arbitrary data on any of the

database objects. We store the datatype of each element in addition to the actual annotation as

those data are converted to String representations when persisted in the database. When the

GraphBaseEntity is retrieved from the database again, the annotation elements need to be

cast into their appropriate type if they are to be presented to the user or used in calculations.

Without the help of the annotationType attributes this would be more time consuming as several

types need to be checked rather than fetching the appropriate type from the HashMap and

converting it accordingly. For convenience we provide addAnnotation(String, Object)
and addAnnotationType(String, String) methods to add an annotation and its type

respectively. These methods will initialize the underlying HashMaps when the first elements

are added and they have not yet been initialized.

Provenance Layer

To ensure reproducibility of generated networks, SBML4j implements the W3C PROV data

model (Fig. 3.4). The data model includes the Agent, Activity and Entity types from the

specification and connects appropriate nodes with provenance relations of the types hadMember
(hM), used, wasAssociatedWith (wAW), wasAttributedTo (wAT), wasGeneratedBy
(wGB), and wasDerivedFrom (wDF).

The ProvenanceEntity is the only class that directly inherits from GraphBaseEntity.

It is the basic provenance component from which all further entities are derived. It provides

a Java HashMap provenance which enables the addition of provenance-related annotation-

information on any object in the database.

The three provenance node types are implemented as NodeEntity objects that inherit from

ProvenanceEntity. Their names are prefixed with ProvenanceGraph and suffixed with

Node, as all entities that derive from them must be node entities. Additionally, the basic

relationship entity ProvenanceGraphEdge is also derived from ProvenanceEntity. It uses

the same prefix, but instead the suffix Edge to denote that all entities that inherit from it must

be relationship entities in the graph. It receives the custom label PROV and a type attribute,

which enables the specific traversal of this part of the database graph based on the type of

provenance relationship.

To capture metadata in the provenance graph, a ProvenanceGraphMetadataNode entity

is added to the W3C model. Each entity that is derived from the ProvenanceEntity contains a

list of these nodes. As ProvenanceGraphMetadataNode derives from ProvenanceEntity,

it itself contains one such list. This enables the storage of nested metadata information where

each nesting layer is represented by one node in the graph. The relationship that gets cre-
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Figure 3.4: Provenance layer class hierarchy. The ProvenanceEntity inherits from the
GraphBaseEntity and all other entities are derived from ProvenanceEntity. Standard meth-
ods like getters and setters are omitted for brevity.

ated between a parent and a child ProvenanceGraphMetadataNode as well as to the initial

ProvenanceEntity are of type PROV_SUBELEMENT.

A typical provenance graph is shown in Figure 3.5. The wDF edges form a route from the

latest network back to the database-representing node from which the source files originated.

With the wGB and used edges the Activity nodes are connected to the warehouse nodes that

contain the inventory information about the networks and pathways as well as other warehouse

entities that were created in the process. The Activity nodes contain the provenance infor-

mation about the task being carried out, which led from the network they used to the network

that was generated by them. The Agent nodes get attributed to the warehouse entities which

were created by the activities they are associated with.

To enable additional labels on nodes, the ProvenanceGraphEntityNode offers a list of

string elements that represent the additional labels on the underlying entities. This list is

recognized by the OGM via the @Labels annotation and creates node labels when persisting

these entities. Neo4j does not allow custom labels on relationship entities. Therefore, this

custom-label feature is added to this specific entity, as it is the first entity in the inheritance

hierarchy that has the @NodeEntity annotation. All entities that extend this entity will also
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Figure 3.5: Provenance graph for one pathway and two derived networks. Colors and
shapes of nodes correspond to the PROV data model (see Fig. 2.5). An uploaded SBML
file results in the creation of a FileNode, a Pathway and an Activity “persistFile”. They
are connected to the Agent node, the database and the organism. A network mapping
that is created from this pathway results in a Network node and an accompanying Activity
“createMapping”. Both are connected to the responsible Agent, in this case the “public
user”. Another Agent, a “private user”, makes use of this network and adds an annotation
to it. This is documented in the Activity “addAnnotation” and results in a new network
node, which is attributed to this Agent.

be considered node entities, even if they do not use the @NodeEntity annotation themselves.

If a custom label were to be assigned to a relationship entity, the OGM transforms it to a node

entity instead and adds additional relationships that connect it to the intended source and

target nodes. This would result in different query terms to extract this specific relationship

compared to relationships that do not have custom labels added. To avoid potential loss of

data on extraction, SBML4j restricts custom labels to the nodes in the graph.
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Warehouse Layer

The Warehouse layer holds the metadata of the models that have been loaded. Each node in

this layer is derived from the type WarehouseGraphNode, which itself is derived from the type

ProvenanceGraphEntityNode. Figure 3.6 shows the entities in this layer and their connec-

tions with each other. The WarehouseGraphNode holds an additional Map for annotations con-

cerning warehouse metadata, which are prefixed with warehouse. Each WarehouseGraphNode
is linked to an instance of Organism, which has to be provided when a model is uploaded to

SBML4j. An Organism is defined by the attribute orgCode, the three letter organism identifier

defined by KEGG.

As each model has to be uploaded from a textual representation in a file, a FileNode is

created for each model. The FileNode is defined by the attributes filename, fileNodeType and

md5sum, providing the original filename from the uploaders file system, a filetype of the input

file of the custom type FileNodeType and the 128-bit MD5 hash107 of the original file calculated

on the server, respectively.

A DatabaseNode is created for every combination of source and version, which are pro-

vided when uploading SBML models. The unique key for the DatabaseNode entity consists of

the attributes source and sourceVersion. If multiple models are uploaded for the same database

source and version, they are connected to the same database-representing entity.

Each model that is uploaded to SBML4j results in the creation of a PathwayNodewhich rep-

resents the model in the database. Its attributes are pathwayIdString and pathwayNameString

which are populated with the attributes id and name from the input model which is of type

org.sbml.jsbml.Model. All entities that are created as part of this model in the SBML layer are

connected to the PathwayNode with relationships of type CONTAINS. Multiple pathways can be

grouped together in a collection, which results in the creation of a PathwayCollectionNode
and an additional PathwayNode. Together these two nodes define the collection, while the first

one is used to identify the pathway as being a collection, and the latter one holds the references

to the entities in the collection. Each PathwayNode that is part of the group gets connected to

the PathwayCollectionNode with a provenance relationship of type hadMember. Further-

more, the PathwayCollectionNode is attributed to the provided user and connected to the

organism of the contained pathways. The PathwayNode that gets created is connected to the

Organism which is associated with the DatabaseNode of the pathways in the collection.

For the creation of network mappings from a pathway (see Section 3.3.4), a MappingNode
is created in the warehouse layer. The attributes of this node type are mappingType, map-

pingName, mappingNodeTypes, mappingRelationTypes, mappingNodeSymbols and mappingRe-

lationSymbols. They describe the content of the mapping for inventory presentation via the

REST interface. The MappingNode gets connected to its content in the mapping layer with

relationships of type CONTAINS.
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1 resource = " h t tp :// i d e n t i f i e r s . org/kegg . genes/hsa :2064 " ;
2 i f ( resource . con ta ins ( " kegg . genes " )) {
3 newExternalResourceEnt i ty . setType ( ExternalResourceType .KEGGGENES) ;
4 newExternalResourceEnt i ty . setDatabaseFromUri ( "KEGG" ) ;
5 }

Listing 3.1: Java source code for database extraction from a given URI that points
to identifiers.org.

The nodes in the Warehouse layer are used when creating responses to inventory-type

requests (e.g., list all pathways) and when creating network mappings or user-derived networks.

The relationships in this layer are used to identify the contents of individual pathways or

networks.

SBML Layer

The SBML layer replicates the entities found in the SBML specification for the core and quali-

tative species package and adds additional entities for the expression of biomodels.net annota-

tions on the entities (Fig. 3.7).

The entities in the SBML layer are derived from the two entities, which separates the con-

tent from the provenance and warehouse parts of the database graph, the ContentGraphNode
and ContentGraphEdge entities. SBMLSBase, the ExternalResourceEntity and the

NameNode entity are derived directly from ContentGraphNode. There is one relationship

entity in the SBML layer that inherits from ContentGraphEdge, the BiomodelsQualifier
entity.

The SBMLSBase entity is modeled after the sBase entity in the SBML core specification

and holds the basic attributes sBaseId, sBaseName, and the sBaseSboTerm, which provides the

identifier to the SBO ontology. In addition to these attributes, a list of BiomodelsQualifier
entities represents the biomodels.net qualifier annotations that can be found on the corre-

sponding entity in the SBML model. This BiomodelsQualifier entity is derived from the

ContentGraphEdge entity and is the only explicit relationship entity in this layer. It is charac-

terized by the qualifier and type attributes from the CVTerm class from the org.sbml.jsbml pack-

age. Each such entity connects one SBMLSBaseEntitywith one ExternalResourceEntity.

It defines the relationship type between this external resource and the biological entity it anno-

tates. The ExternalResourceEntity is defined by the URI given in the attribute uri. It can

be connected to different BiomodelsQualifier relations to multiple SBMLSBaseEntity-

derived species. For URIs that point to the identifiers.org website, the corresponding

source and type will be extracted and are stored in the databaseFromUri and type attributes,

respectively (see Listing 3.1).

For external resources that point to the KEGG database, the REST endpoint given by the

URI is queried and the information added to the knowledge graph. For genes, all names are
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Figure 3.8: Top part of the KEGG genes web-response to the URI
“http://identifiers.org/kegg.genes/hsa:2064”. The entry number identifies this
response element, the symbol field gives all known gene symbols for this entry, the
name field provides a human-readable name derived from the NCBI Reference Sequence
Database (RefSeq), the KO field links to the KEGG orthology, and the organism field
provides the three-letter organism code that this gene specific gene entity is found in.
Page last visited on Oct 20th, 2022

extracted from the list of known symbols (Fig. 3.8). The first symbol in this list is used as

the primaryName attribute of the ExternalResourceEntity. For each additional symbol,

a NameNode entity is created and added to the list of known names by relating it with a

relationship of type KNOWNAS.

By linking the external resource directly to the SBMLSBaseEntity, it is ensured that all

biological entities in the SBML layer can be enriched with biomodels.net qualified data.

The three entities ExternalResourceEntity, BiomodelsQualfier and NameNode
have no direct counterpart in the SBML specification and are used for model-enrichment in the

SBML4j database only. For that reason, those three entities are treated as their own data-model

extension and can be found in the package model.sbml.ext.sbml4j.

Most biological entities in the SBML specification are bound to a compartment. These

compartments are represented by the SBMLCompartment entity, which provides the same

attributes as the SBML specification version, spatialDimensions, size and constant,

which define the compartment in addition to the provided name that can be found in the

SBMLSBaseEntity attributes. In addition, a compartment is bound to one database source,

and has a relationship of type OF to the DatabaseNode, which represents this source.

The reference to any biological entity to such a compartment is stored in the compartment
attribute of the SBMLCompartmentalizedSBase entity. The relationship that links the two

is of type CONTAINED_IN.

The two biological entities from the SBML core specification that have representatives in

the SBML4j data model are the SBMLSpecies and the SBMLSimpleReaction entities. They

derive from SBMLCompartmentalizedSBase, as each such entity must be located in exactly

one compartment. The SBMLSpecies entity is the main entity for representing biological

entities, such as genes, proteins, and chemical compounds. They take part in biochemical
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reactions, which are represented by the SBMLSimpleReaction entity. Multiple SBMLSpecies
entities can form a group, and are then linked to a SBMLSpeciesGroup entity. As such groups

can act as participants in biochemical reactions, they derive from SBMLSpecies. This way

these groups can be treated equally to SBMLSpecies in any further computation.

The reaction entity which is defined in the SBML specification has a complex structure

that serves the kinetic calculations, which are performed on these models. Since these types

of calculations are not part of SBML4j, a simplified variant of the reaction element, the

SBMLSimpleReaction has been implemented. It holds references to participants of the reac-

tion and a Boolean flag for denoting if the reaction is reversible, but omits details about the

kinetic properties of the reaction. With these elements from the core specification of SBML, the

general biochemical processes that are described in the models can be stored in the database,

while keeping unused elements for the kinetic calculations out of the data model for brevity.

For the representation of qualitative models, the two main elements from this extension

are integrated into the SBML data model. The SBMLQualSpecies entities are the main

elements from the qualitative models extension. They are connected to a corresponding

SBMLSpecies to be able to link metabolic and non-metabolic parts of the knowledge graph.

The remaining attributes on the SBMLQualSpecies entities are used for qualitative descrip-

tions of the biological entity and are directly copied from the corresponding SBML-model

elements. In the same way as SBMLSpecies, the SBMLQualSpecies entities can be grouped

to SBMLQualSpeciesGroup entities, which are again modeled as SBMLQualSpecies them-

selves.

The SBMLSimpleTransition is derived from the SBMLSBaseEntity as it is not bound

to a single compartment, but can describe processes that cross compartment boundaries as

well. The SBMLSboTerm attribute from the SBMLSBaseEntity is used to encode the type

of the transition. In addition, the SBMLSimpleTransition entity is given a string-based

id, transitionId, which is built from the primary names of the participating entities and

the name of the SBO-term, like “FGD1-stimulation->CDC42”. The name of the SBOTerm

is extracted from the SBO-class in org.sbml.jsbml, which defines short characterization of

every SBO-term. The participating entities are referenced in the lists inputSpecies and

outputSpecies for the input and output entities, respectively, and contain one or more

SBMLQualSpecies entities.

Network Layer

The Network layer consists of the contents of the flattened network mappings and user-derived

versions of these networks. Since we flatten the relationships and species details into simple net-

work representations, the entities making up this layer are called FlatSpecies and FlatEdge
(Fig. 3.9). The FlatSpecies entity is derived from the ContentGraphNode entity and is
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Figure 3.9: Classes of the Network layer with base classes in the Content layer from
which they inherit.

used to represent SBMLSpecies or SBMLQualSpecies from the SBML layer in the network

mappings. Multiple such species from the SBML layer can be collated to one FlatSpecies,

if they are expressed by the same ExternalResourceEntity. The primaryName attribute

of this external resource will be used as the symbol attribute of the FlatSpecies and all

known secondary symbols from NameNodes are combined into a comma-separated string for

the secondaryNames attribute. The sboTerm attribute contains the SBO term of the corre-

sponding SBML-layer entity.

Biochemical reactions, which are modeled as SBMLSimpleReaction entities in the SBML

layer, will also be mapped to a FlatSpecies entity. To mark them as reactions in the network

layer, they get the additional label FlatReaction during the mapping process. Reaction par-

ticipants in the form of other FlatSpecies are then connected to these reaction entities with

the FlatEdge subtypes REACTANTOF, PRODUCTOF, and CATALYZES. By building reactions as

nodes in the network layer, a metabolic network mapping forms a bipartite graph, where the

reaction entities form one partition, and the participants form the other partition.

Non-metabolic mappings are composed of only one partition, which contains the rela-

tion partners as FlatSpecies entities. The SBMLSimpleTransition entities get mapped

directly onto subtypes of the FlatEdge relationship entity. These relationships connect two

FlatSpecies entities and assume the type of transition by the translated name of the SBO

term. The only additional method getTypeString() on the FlatEdge entities returns the

assigned label of the relationship entity. Since relationships in SBML4j can only have one label,
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3. SBML4j – A Service Hub for Reproducible Biological Networks

Figure 3.10: API response entity classes for inventory items. A. Inventory item for the
GET /pathways endpoint, which lists the inventory of available pathways. B. Inventory
item for the GET /networks endpoint, which lists the inventory of available networks.

they do not have the additional label of FlatEdge, but only the one, which denotes their

subtype.

Table 3.1 gives the implemented relationship types of FlatEdge-derived entities and the

mapping types in which these relationships are found. This list is based on the interactions

that are present in the KEGG pathways.

API Request and Response Entities

API POST requests and responses use JSON-formatted content for transporting data between

the client and SBML4j. To process and create those contents, custom classes are used, which

derive from ApiRequestItem and ApiResponseItem.

The entities that extend ApiResponseItem provide inventory-type information to the

client, with the two main inventory elements being for pathways (Fig. 3.10A) and networks

(Fig. 3.10B). For reporting provenance three additional entities are defined in this category,

the PathwayCollectionItem for listing the contents of a collection of pathways, and the

FileInventoryItem and DatabaseInventoryItem for providing data on the source files

and source database, respectively.

The other category of API entities extend the ApiRequestItem class and are used to

provide structured data by the client. The FilterOptions class (Fig. 3.11A) lists all available

types of nodes and edges, as well as all individual elements in a network. By providing subsets

of these lists for a network, a filtered network is derived, which only contains the elements
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3. SBML4j – A Service Hub for Reproducible Biological Networks

Figure 3.11: API response entity classes for filtering and annotation. A. Lists all
available node and edge labels, as well as individual elements by name and can be provided
with reduced content to filter accordingly. B. Provides maps for matching names of nodes
and edges to potential annotation data, which a client can provide by filling in the map
values. C. Bundles the two elements for annotation and filtering in one response element,
which can be requested for each network.

present in the provided lists. If any list is omitted, no filter will be applied for it. To filter out

all elements in a list, an empty list must be provided.

The AnnotationItem (Fig. 3.11B) provides two maps for defining annotations on nodes

and edges, which are matched to NULL values initially. By providing subsets of these maps

with values other than NULL for a network, the provided values will be added to the node or

edge entities as annotations.

These options are bundled together in the NetworkOptions element (Fig. 3.11C), which

can be requested for each network. The client can modify their contents and provide either of

the two elements for annotation or filtering to the REST api to perform the requested actions

on the network.

The PathwayCollectionCreationItem element is provided by the client to define the

Pathway entities that are to be bundled to a pathway collection. Such a pathway collection

can then be mapped to a single network mapping, which allows the creation of mappings of

arbitrary subsets of pathways in the service. This element gives a name and description for the

collections as well as a list of entityUUIDs of Pathways to collect.

The NodeList class consists of a List of Strings for providing symbols of nodes which

should be used to calculate so-called context networks, which give the neighborhood of the

provided nodes.

In addition, the OverviewNetworkItem extends the NodeList class with the elements

baseNetworkUUID, edgeweightproperty, annotationName, and networkName. It is

used in the convenience endpoint /overview, which generates a context network and adds a

boolean annotation with the given name to the provided nodes in the resulting network.

For reporting the provenance information of a network, all relevant information is collected

in the ProvenanceInfoItem (Fig. 3.12). It gives the type of entity and the content as the
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Figure 3.12: Provenance Report Item. Response Body for the /prov endoint.
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3. SBML4j – A Service Hub for Reproducible Biological Networks

Figure 3.13: Entity Info Item. Response Body for the /entityInfo endpoints.

corresponding ApiResponseItem-derived inventory item. An AgentItem gives information

on the user which requested the activity that generated this network. The ActivityItem
contains the name and type of the activity, the type of REST request that was sent and the

full name of the REST endpoint it was made to. Additionally, all data that was provided by

the client to the endpoint is extracted. This includes the parameter names and values of the

REST call in the list params, as well as potential body elements that were sent in POST and

PUT requests. The body element consists of the ApiRequestItem-derived entity that was sent

as JSON-payload in the request. The wasDerivedFrom attribute lists all entities from which

this specific entity was derived from. Each such entity is itself of type ProvenanceInfoItem
and contains the same information for the respective warehouse node at the end of the wDF
relationship.

To inspect entities from the SBML knowledge graph, the EntityInfoItem (Fig. 3.13) is

used. It contains the known secondary names of a given node, the reactions and transitions

the entity takes part in, as well as the pathways it is found in and the Biomodels.net qualifiers

which describe it.
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Exceptions

To control error reporting for internal server errors, several custom exceptions are defined in

SBML4j that extend the general Exception class. They do not implement special constructors,

as they do not need to provide additional information to the general exception message. They

control the correct handling and reporting of errors to the clients by the controller classes if

an error occurred during the execution of the service class methods. When such an exception

is thrown by a service method, the provided error message is relayed to the client in the reason
header of the API response. It is therefore important that the provided error messages are

human-readable and give enough information to the client for identifying the cause of the

problem.

Enumerations

To uniformly define certain types of entities, enumerations are used. They are collected in

the GraphEnum class. Noteworthy examples in this category include the available types of

Activity entities and possible types of ProvenanceGraphEdge entities. Other enumerations

define the type of network mapping, a standardized spelling for the network-manipulation

steps, and the types of ExternalResourceEntity that are implemented, to name a few.

3.3.3 Repository Layer

The repository layer contains the database interfaces for retrieving and writing objects of

the graph to and from the database. As with the data model, this layer is divided into several

organizational units, which are represented by the package structure of the repository pack-

age. In the beginning of this section, the basic concept of the repositories will be laid out. The

Neo4jRepository will be introduced, which serves as the basis for data extraction and persis-

tence methods. In the rest of the section, specific repository methods will be highlighted, which

make use of custom cypher queries on interface methods to handle complex data access logic.

These methods are chosen to illustrate important operations. These include the querying of the

SBML knowledge graph, the creation of network mappings from the SBML knowledge graph,

the execution of the APOC graph algorithms, and the retrieval of the contents of networks as

well as reading and writing provenance information.

Neo4jRepository

The Neo4jRepository is provided by the Spring Data module for the Neo4j database

and offers the basic save, find/findAll and delete methods for individual elements and

collections of elements. The optional depth parameter of these methods is used to reduce the

number of related entities that are stored in or retrieved from the database. The parameter
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3. SBML4j – A Service Hub for Reproducible Biological Networks

1 @Query( "MATCH "
2 + " ( s : SBMLSpecies ) "
3 + "−[b :BQ]−>"
4 + " ( e : Ex te rna lResourceEnt i t y ) "
5 + "WHERE b . type = \ " BIOLOGICAL_QUALIFIER \ " "
6 + "AND b . q u a l i f i e r IN [ \ "BQB_HAS_VERSION\ " , \ " BQB_IS \ " , \ "BQB_IS_ENCODED_BY\ " ] "
7 + "AND e . primaryName = $name "
8 + "AND e . databaseFromUri = $databaseFromUri "
9 + "RETURN s " )
10 public I t e r a b l e<SBMLSpecies> findByBQConnectionTo ( S t r i ng name , S t r ing databaseFromUri ) ;

Listing 3.2: Custom query for traversing the biomodels.net relations.

defines the number of relationships that can be traversed to find nodes, which are related to

the provided entities.

The repository provides support for parameter-name extraction from method names. An

interface method named findByName will result in the creation of a search query that uses the

“name” element for result filtering. The keyword find triggers the creation of a MATCH query,

while the so-called predicate, which is delimited by the By keyword results in the addition of

the WHERE clause of the query. Multiple such predicates can be concatenated using the And
keyword in the method name. More details and further options of query creation by method

name can be found in the official documentation of the Spring Data Neo4j module108.

In addition to query building from method names, custom Cypher queries can be created

inside the repository interfaces using the @Query annotation from the Spring Data Neo4j
package. Method arguments can be passed into the cypher query to modify the query according

to previously collected data. This feature is used in most of the repositories of SBML4j to retrieve

collections of elements of the graph with specific relationships and properties.

Querying the SBML Knowledge Graph

To retrieve specific entities from the SBML knowledge graph, the ExternalResourceEntity
and the biomodels.net qualifier relation BQ can be traversed (see Listing 3.2).

The interface method findByBQConnectionTo (Listing 3.2, line 10) takes two arguments.

The name or symbol of the requested entity is given by the name argument. The assigned

database of the ExternalResourceEntity that was extracted from the original URI is pro-

vided by databaseFromUri. The query matches all biomodels.net qualifier relations “b”,

which have the label BQ that connect an SBMLSpecies “s” and an ExternalResourceEntity
“e”. The WHERE clause limits the result set to these “e”, which match the provided name and

database, and the type and qualifier of “b” as defined by the query. The hard-coded limitation

to the three qualifier HAS_VERSION, IS, and IS_ENCODED_BY (line 6) is used throughout

SBML4j. On the one hand, this bridges the gap between the DNA and protein level by allowing

encoding genes as source for proteins (i.e., IS_ENCODED_BY), on the other hand it enables
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1 @Query( "MATCH "
2 + " (p : PathwayNode) "
3 + "−[w: Warehouse]−>"
4 + " ( r : SBMLSimpleReaction ) "
5 + "WHERE p . entityUUID = $pathwayUUID "
6 + "AND w. warehouseGraphEdgeType=\"CONTAINS\ " "
7 + "WITH r "
8 + "MATCH "
9 + " ( r ) "
10 + "−[ r e l : IS_PRODUCT|IS_REACTANT|IS_CATALYST]−>"
11 + " ( s : SBMLSpecies ) "
12 + "WHERE s . sBaseSboTerm IN $nodeSBOTerms "
13 + "WITH r , re l , s "
14 + "MATCH "
15 + " ( s ) "
16 + "−[b :BQ]−>"
17 + " ( e : Ex te rna lResourceEnt i t y ) "
18 + "WHERE b . type = \ " BIOLOGICAL_QUALIFIER \ " "
19 + "AND b . q u a l i f i e r IN [ \ "BQB_HAS_VERSION\ " , \ " BQB_IS \ " , \ "BQB_IS_ENCODED_BY\ " ] "
20 + "RETURN e , "
21 + " b , "
22 + " s as spec ie s , "
23 + " type ( r e l ) as typeOfRelat ion , "
24 + " r as r ea c t i on " )
25 I t e r a b l e<MetabolicPathwayReturnType> getAl lMetabol icPathwayReturnTypes (
26 S t r ing pathwayUUID ,
27 L i s t<Str ing> nodeSBOTerms ) ;

Listing 3.3: Custom Cypher query for extracting metabolic interactions in a pathway.

hits for species that are described through multiple variants (i.e., HAS_VERSION) or exact

matches (i.e., IS). The query returns a collection of matching SBMLSpecies entities, which

are returned by the repository method via an Iterable collection in Java.

Mapping Creation

When network mappings are created from the SBML knowledge graph, either the metabolic

parts or a subset of the non-metabolic parts of a pathway have to be extracted. To extract

the metabolic parts, all reactions in a pathway are first matched by traversing the warehouse

relations of type CONTAINS (Listing 3.3, lines 1–6) that connect all entities to the warehouse

node of type PathwayNode. With these reactions, all reaction partners that are connected via

the relations IS_PRODUCT, IS_REACTANT, and IS_CATALYST are matched (Listing 3.3, lines

7–12). For all such partners, the external resources are queried that describe them (Listing 3.3,

lines 13–19). Again, the same type and qualifier values are used as when querying the SBML

knowledge graph for SBMLSpecies based on their symbol. This query returns multiple entities

(i.e., e, b, s, r) and the type of the relationship “rel” named “typeOfRelation” (Listing 3.3, lines

20–24). The entities “s” and “r” as well as the string “typeOfRelation” are found as class

variables in the MetabolicPathwayReturnType, while the describing entities “e” and “b”

are populated in the SBMLSpecies entities, because they are part of the result set of the query.
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1 @Query( value = "MATCH "
2 + " (pw: PathwayNode) "
3 + "−[w: Warehouse]−>"
4 + " ( t : SBMLSimpleTransit ion ) "
5 + "WHERE pw. entityUUID = $pathwayEntityUUID "
6 + "AND w. warehouseGraphEdgeType = \ "CONTAINS\ " "
7 + "AND t . sBaseSboTerm in $transit ionSBOTerms "
8 + "WITH t "
9 + "MATCH p="
10 + " ( t ) "
11 + "−[ t r : IS_OUTPUT|IS_INPUT]−>"
12 + " (q : SBMLQualSpecies ) "
13 + "−[bq :BQ]−>"
14 + " ( e : Ex te rna lResourceEnt i t y ) "
15 + "WHERE bq . type = \ " BIOLOGICAL_QUALIFIER \ " "
16 + "AND bq . q u a l i f i e r IN [ \ "BQB_HAS_VERSION\ " , \ " BQB_IS \ " , \ "BQB_IS_ENCODED_BY\ " ] "
17 + "AND q . sBaseSboTerm in $nodeSBOTerms "
18 + "RETURN p " )
19 I t e r a b l e<SBMLSimpleTransition> f indMatchingPathsInPathway (
20 S t r ing pathwayEntityUUID ,
21 L i s t<Str ing> transit ionSBOTerms ,
22 L i s t<Str ing> nodeSBOTerms ) ;

Listing 3.4: Custom query for extraction of non-metabolic transitions of a pathway.

To retrieve non-metabolic interactions in a pathway, all SBMLSimpleTransition entities

have to be matched that are contained in the pathway (Listing 3.4, lines 1–6). Additionally,

they must have a matching SBO term found in the transitionSBOTerms list (Listing 3.4, line

7). With these transitions, a path “p” is declared, which consists of the match of the transition

entity “t” from the first part of the query, the relationship of either IS_INPUT or IS_OUTPUT,

the corresponding SBMLQualSpecies entity, and the external resource “e” that is connected

through the biomodel.net qualifier “bq” (Listing 3.4, lines 8–17). Here, the SBO-term of the

SBMLQualSpecies entity has to match one of the provided terms in the list nodeSBOTerms.

In the end the path “p” is returned by the query (Listing 3.4, line 18). As all entities in the

path are connected either directly to the SBMLSimpleTransition or indirectly through the

SBMLQualSpecies, all elements of the path get populated in the SBMLSimpleTransition
entity. The repository method (Listing 3.4, lines 19–22) can therefore return an iterable of

SBMLSimpleTransition, in which each element holds references to the other parts of the

corresponding path on the object level in the Java code.

Network Traversal and Extraction

The path expander function from the APOC procedures is the main method for finding network

neighborhoods in the Neo4j database (see Listing 3.5). It performs a breadth-first search

(bfs) and returns all traversed relationships of successful path expansion that satisfy the given

criteria. The function call (Listing 3.5, line 5) is performed inside a regular Cypher query. As

it needs a reference to a node from which the expansion should start, the function call needs

to be preceded by a MATCH clause that uses a WITH statement in place of the regular RETURN
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1 @Query( "MATCH "
2 + " ( s t a r t : F l a t S p e c i e s ) "
3 + "WHERE s t a r t . entityUUID = $startNodeEntityUUID "
4 + "WITH s t a r t "
5 + " CALL apoc . path . expand ( "
6 + " s t a r t , "
7 + " $apocRe la t ionsh ipSt r ing , "
8 + " $apocNodeString , "
9 + " $minDepth , "
10 + " $maxDepth "
11 + " ) "
12 + " YIELD "
13 + " path as apocPath "
14 + "RETURN r e l a t i o n s h i p s ( apocPath ) as pathEdges ; "
15 )
16 L i s t<FlatEdge> runApocPathExpandFor ( S t r i ng startNodeEntityUUID ,
17 S t r ing apocRe la t ionsh ipS t r ing ,
18 S t r ing apocNodeString ,
19 in t minDepth ,
20 in t maxDepth ) ;

Listing 3.5: Cypher query and interface method for the path.expand APOC function.

statement (Listing 3.5, lines 1–4). The start node is identified by the entityUUID, which is

provided as the first method argument of the interface. The path.expand function takes four

additional arguments, which configure how the expansion is performed on the graph. The

apocRelationshipString defines which relationships can be traversed during expansion,

including their direction. Multiple relationships can be provided by separating them with

the “|”-character. The direction in which the algorithm may traverse a given relationship can

be set using the “<” and “>” before or after the name of the relationship. To allow both

directions, these symbols have to be omitted. The apocNodeString gives a list of node labels

for determining the nodes which the algorithm may include in the search. Again, the “|”-

character can be used to provide multiple node labels. Using the “+” or “-”-character, nodes

can be explicitly included or excluded, respectively. Of further importance is the “/”-character

in front of a node label, which determines that the expansion should stop at the specified

label, and only paths that end with a node of this label are included in the result set. The last

two parameters, minDepth and maxDepth determine the minimum and maximum number of

relationships that need to be traversed for a path to be eligible for returning.

After the APOC-method call, the query defines which parts of the return value of the

algorithm should be yielded for building the result set of the query, in this case the whole

path (Listing 3.5, lines 12–13). In the final part of the query the return values are defined

(Listing 3.5, line 14). Only the relationships need to be returned, since they contain explicit

references to the nodes they connect and therefore will be part of the returned relationships.

All relationships are returned as FlatEdge entities in a List by the interface method.

The second query that is used from the APOC package is the shortest path search, which is

an implementation of Dijkstra’s shortest path algorithm109 (Listing 3.6, line 7). This function
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1 @Query( value="MATCH ( f s1 : F l a t S p e c i e s ) "
2 + "WHERE f s1 . entityUUID = $startNodeEntityUUID "
3 + "WITH fs1 "
4 + "MATCH ( f s2 : F l a t S p e c i e s ) "
5 + "WHERE f s2 . entityUUID = $endNodeEntityUUID "
6 + "WITH fs1 , f s2 "
7 + " CALL apoc . a lgo . d i j k s t raWi thDefau l tWe igh t ( "
8 + " fs1 , "
9 + " fs2 , "
10 + " $re la t ionTypesApocStr ing , "
11 + " $propertyName , "
12 + " $defaul tWeight ) "
13 + " YIELD "
14 + " path as apocPath , "
15 + " weight as w "
16 + "RETURN r e l a t i o n s h i p s ( apocPath ) as pathEdges ; "
17 )
18 L i s t<FlatEdge> apocDi jks t raWithDefaul tWeight (
19 S t r ing startNodeEntityUUID ,
20 S t r ing endNodeEntityUUID ,
21 S t r ing re la t ionTypesApocSt r ing ,
22 S t r ing propertyName ,
23 f l o a t defaul tWeight ) ;

Listing 3.6: Cypher query and interface method for the dijkstraWithDefaultWeight
APOC function.

takes two nodes as start and endpoints, which are matched by their entityUUID with the

first two MATCH parts of the query (Listing 3.6, lines 1–6). It also requires a string defining

the relationships that are to be traversed during the shortest path search, which has the same

syntax as in the path.expand function. In addition, propertyName gives the name of an

annotation key that contains a numeric value that acts as weight for the path-length calculation

in Dijkstra’s algorithm. If any or all relationships are missing this annotation, the provided

value in the defaultWeight attribute will be used. Again, the relationships of the path are

returned as FlatEdge entities in a list.

For extracting all contents of a network, usually to return it to the requesting client, the

FlatEdge entities of a network are matched and populated with the FlatSpecies they

connect (see Listing 3.7). This query matches these relationships, without specifying their

individual label, by querying for direct relationships of two FlatSpecies entities that are

contained in the same network. First, the MappingNode “m” is matched according to its

entityUUID (Listing 3.7, lines 1–2). This enables its use in multiple positions of the MATCH
query that follows. Then, the FlatEdge-derived relationships are matched (Listing 3.7, line 6),

by providing it without a label (i.e., -[r]->). The query returns these found relationships and

populates it with the matched FlatSpecies entities “s” and “s2” from the query (Listing 3.7,

line 11). The repository method ((Listing 3.7, line 12) can then return a list of FlatEdge
entities, which keep their individual derived type during return value generation.
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1 @Query( " match (m: MappingNode) "
2 + "WHERE m. entityUUID = $entityUUID "
3 + "WITH m MATCH "
4 + " (m) "
5 + "−[w1: Warehouse]−>"
6 + " ( s : F l a t S p e c i e s )−[ r]−>(s2 : F l a t S p e c i e s ) "
7 + "<−[w2: Warehouse]− "
8 + " (m) "
9 + "WHERE w1. warehouseGraphEdgeType = \ "CONTAINS\ " "
10 + "AND w2. warehouseGraphEdgeType = \ "CONTAINS\ " "
11 + "RETURN s , r , s2 " )
12 L i s t<FlatEdge> getNetworkContentsFromUUID ( S t r i ng entityUUID ) ;

Listing 3.7: Custom query for network contents extraction.

1 @Query( value = "MATCH "
2 + " ( s t a r t : ProvenanceEnt i ty ) "
3 + "−[edge :PROV]−>"
4 + " ( end : ProvenanceEnt i ty ) "
5 + "WHERE edge . provenanceGraphEdgeType = $edgetype "
6 + "AND s t a r t . entityUUID = $startNodeEntityUUID "
7 + "RETURN end " )
8 I t e r a b l e<ProvenanceEnt i ty> f indAllByProvenanceGraphEdgeTypeAndStartNode (
9 ProvenanceGraphEdgeType edgetype ,
10 S t r i ng startNodeEnti tyUUID ) ;

Listing 3.8: Cypher query and interface method for finding the end node of a prove-
nance relationship with a given start node.

Provenance-graph Traversal

The provenance graph is traversed by matching all provenance relationships of a given type

and providing either the start or the end node in a query. The nodes on the other side of the

relationships are returned. This class of queries makes use of two facts. First, every node entity

in the data model is derived from ProvenanceEntity, which makes every node selectable

by this node label. Second, all relationships are directed. The direction is indicated by the “>”

symbol in line three of Listing 3.8. This way results can be limited to nodes on specific ends of

relationships.

1 @Query( value = "MATCH "
2 + " ( s t a r t : ProvenanceEnt i ty ) "
3 + "−[edge :PROV]−>"
4 + " ( end : ProvenanceEnt i ty ) "
5 + "WHERE edge . provenanceGraphEdgeType = $edgetype "
6 + "AND end . entityUUID = $endNodeEntityUUID "
7 + "RETURN s t a r t " )
8 I t e r a b l e<ProvenanceEnt i ty> findAllByProvenanceGraphEdgeTypeAndEndNode (
9 ProvenanceGraphEdgeType edgetype ,
10 S t r i ng endNodeEntityUUID ) ;

Listing 3.9: Cypher query and interface method for finding the start node of a prove-
nance relationship with a given end node.
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1 import j ava . u t i l . UUID ;
2
3 @Service
4 public c lass GraphBaseEnt i tyServ ice {
5 private S t r ing getNewUUID () {
6 return UUID . randomUUID ( ) . t o S t r i n g ( ) ;
7 }
8 }

Listing 3.10: EntityUUID generation in the GraphBaseEntityService class.

The query in Listing 3.8 traverses the provenance relationship in the direction of the rela-

tionship by providing the entityUUID of the start node and returning all found end nodes.

The opposite query in Listing 3.9 traverses the relationship against the direction by providing

the entityUUID of the end node and returning all found start nodes.

3.3.4 Service Layer

SBML4j consists, at its core, of a multitude of small services that interact with each other

through dependency injection to fulfill requests that are sent to the REST API by clients.

The first category of services handle the connections to the database through the reposi-

tories and create or manipulate graph entities. One service of interest in this category is the

GraphBaseEntityService, which will be introduced in this section.

The other category of services is responsible for receiving data from the controller layer

and processing client input from the API. The main tasks that will be covered in this section are

building the SBML knowledge graph from SBML models, creating network mappings from this

knowledge graph, the copying step of network contents for various network-related activities

as well as the tracking and extraction of provenance information for a network.

GraphBaseEntity Service

The GraphBaseEntity service handles the core attributes id and version of every entity

that is created in SBML4j. It is also responsible for generating entityUUIDs for new entities.

The private class method getNewUUID generates a pseudo-randomly generated UUID using

the static factory from java.util.UUID (Listing 3.10). The string representation is used on

the entity, as the OGM cannot natively map UUIDs to attributes on nodes or relationships.

Since the GraphBaseEntity class holds the map for client-provided annotation data, this

service is responsible for adding that data to the entity. The method addAnnotation (List-

ing 3.11) receives the value of the annotation as generic java.lang.Object type and needs

to be provided with a string representation of the type of data that is added. This representation

is later used to cast the object to the appropriate type. A service that uses this method must

therefore determine the type of the object before the call. The last argument appendExisting
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1 public GraphBaseEnti ty addAnnotation (
2 GraphBaseEnti ty en t i t y ,
3 S t r i ng annotationName ,
4 S t r i ng annotationType ,
5 Object annotat ionValue ,
6 boolean appendExis t ing
7 ) ;

Listing 3.11: GraphBaseEntityService class-method signature for adding annota-
tions to entities.

defines whether an existing annotation with that name should be replaced or the new data

appended at the end of it. The default separator for appending string-type annotations is the

comma character and is always followed by a whitespace. Custom separators for a variety of

standard annotation names can be configured in the main application configuration. A full list

of available names can be found in Table D.1. The method returns the modified entity, but

does not persist the changes in the database. The calling service has to take care of persisting

the entity after adding the annotation.

Building the SBML Knowledge Graph

The SBMLSimpleModelService class is responsible for extracting the entities from the SBML

model. In a first step the compartments are extracted from the model and created in the

database. Existing SBMLCompartment nodes are reused if they match in all attributes. For

each model, the containing SBMLSpecies, SBMLSimpleReaction, SBMLQualSpecies, and

SBMLSimpleTransition are always created as new entities. While this may lead to redun-

dant node entities if two models use the same biological entities with the same properties, it

ensures that each model can be viewed isolated from the rest of the knowledge graph.

ExternalResourceEntities and accompanying NameNodes will be reused if they are

encountered in multiple models. If an ExternalResourceEntity already exists on model

persistence, the entity is retrieved from the database and a new BiomodelsQualifier rela-

tionship is built, connecting it to the new model entity that it annotates.

Network Mapping

The NetworkMappingService service interface is responsible for creating network mappings

and provides one public method named createMappingFromPathway (Listing 3.12). Based

on the contents of a provided pathway and a type of network mapping, this method builds the

mapping by flattening the hierarchies and relationships, connects the contents to the warehouse

and the provenance layer and returns the warehouse entity, which represents the created map-

ping. The four available mapping types can be divided in metabolic and non-metabolic
mappings. While the metabolic mapping contains only the biochemical reactions as a bipartite
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1 public in ter face NetworkMappingService {
2
3 public MappingNode createMappingFromPathway (
4 PathwayNode pathway ,
5 NetworkMappingType type ,
6 ProvenanceGraphActivityNode ac t iv i tyNode ,
7 ProvenanceGraphAgentNode agentNode ,
8 S t r i ng newMappingName)
9 throws NetworkAlreadyExis tsExcept ion , Except ion ;
10 }

Listing 3.12: Service interface for creating network mappings from pathway data.

directed graph, the non-metabolic mappings are divided further by the node types and rela-

tionship types that are extracted from the SBML layer. Node types are restricted to polypeptide

chains and non-covalent complexes for PPI and signaling mappings, while regulatory map-

pings can also contain simple chemicals. The relationship types for the mapping are filtered

by SBO-terms and result in the available relationships per mapping as illustrated in Table 3.1.

The question whether a certain mapping type is directed or undirected is not considered at

creation time as this only influences traversal of the relationships, which can be controlled at

access time.

One important aspect of the mapping-building process is the flattening of hierarchies in

groups of biological entities. In the SBML knowledge graph, a SBMLQualSpecies group will

be a direct partner in a transition, but not the individual SBMLQualSpecies that are part of

this group. In the network mapping, this group is to be resolved in the following way. First,

all group members are connected to the transition partner of the group by the appropriate

FlatEdge that represents the SBO term of the SBMLSimpleTransition. Additionally, all

group members are connected to each other to add the group information to the network map-

ping. Here, two possible relationships are built. If all group members are of type polypeptide,

the connecting relationship is of type protein complex formation and it gets assigned the

SBO-term SBO:0000526. If at least one member is of a different type (e.g., simple chemical),

the relationship between the partners is of type molecular interaction and instead gets

assigned the SBO-term SBO:0000344.

The four different network mappings that can be built in SBML4j are illustrated with a

theoretical example in Figure 3.14. It shows which elements of the SBML knowledge graph

are considered for each type of network mapping.

Copying Network Contents

Unless otherwise configured or requested specifically by a client, networks get duplicated when

any action is performed on them. This way, all intermediary steps of a network analysis pipeline

will be available at all times and provenance of all these steps can be tracked independently
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Figure 3.14: Differences in network-mapping creation from the same SBML knowl-
edge graph. Regulatory and signaling mappings are directed graphs containing different
subsets of transition types and the same set of node types. In the SBML area (yellow)
a synthetic SBML knowledge graph is depicted with Gene A and Gene B connected to
two shared Transitions of different types (phosphorylation, stimulation). Addition-
ally, Gene B acts as a catalyst of reaction X with reaction partners Compound C1 and
Compound C2. In the Mapping area (blue) the four different mapping types are shown.
A regulatory network mapping consists of transitions of regulatory nature (Stimulation,
Inhibition) that connect the FlatSpecies node entities derived from the SBML entities Gene
A and Gene B as A and B respectively. A signaling network mapping contains additional
transition types like phosphorylation events but does not include node entities other than
polypeptide chains, groups of polypeptide chains, and any transitions connecting those
omitted entities. A protein-protein interaction mapping is an undirected graph with only
polypeptide-chain nodes. The undirected edges signify that there is at least one inter-
action between the two, but the type is omitted. The nodes labeled “A” and “B” correspond
here to the proteins that are encoded by Gene A and Gene B, respectively. A metabolic
network mapping ignores transitions from the SBML knowledge graph and focuses on
the reactions present. The result is a bipartite graph with reaction partners (reactants,
products, catalysts) in one node partition and the reactions in the other.
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1 public void r e se tGraphBaseEn t i t yP rope r t i e s ( GraphBaseEnti ty t a r g e t ) {
2 t a r g e t . setEnt i tyUUID ( th i s . getNewUUID ( ) ) ;
3 t a r g e t . s e t I d ( nul l ) ;
4 t a r g e t . s e tVe r s i on ( nul l ) ;
5 }

Listing 3.13: GraphBaseEntityService-class method for resetting basic attributes on
an entity.

1 import org . neo4j . ogm. s e s s i o n . Sess ion ;
2
3 @Service
4 public c lass NetworkService {
5 Sess ion s e s s i o n ;
6 . . .
7 public MappingNode copyNetwork ( . . . ) {
8 . . .
9 // r e s e t a l l o b j e c t s
10 th i s . s e s s i o n . c l e a r ( ) ;
11 // p e r s i s t r e s e t o b j e c t s as new database e n t i t i e s
12 }
13 }

Listing 3.14: NetworkService-class method excerpt illustrating the “clear” operation
of the OGM session during network duplication.

of one another. To copy the contents of a network, the following procedure is used: First, the

network is extracted and all nodes and relationships are instantiated by the OGM. Instead of

issuing copy procedures in code, the duplication process is relayed to the database, where the

new network contents need to be created in any way after applying the requested operations

of the current activity. To relay the duplication process to the database, the basic attributes

of all entities are reset (Listing 3.13). A new UUID is generated for the entity and the id and

version attributes are set to null. All other attributes of the target entity are left as they

are, to create a duplicate entity that differs only in the basic attributes that are responsible

for entity matching by the OGM. After resetting all objects in the network in this way, the

OGM session is cleared of all known mappings between database entities and class objects

(Listing 3.14, line 11). When the reset objects are then persisted in the database, they will be

assigned new id and version values by the OGM and created as new entities in the database.

Provenance

The Provenance services are central services in SBML4j. The ProvenanceGraph service

is used to build the provenance relationships, find nodes based on their connectedness with

provenance relationships and is also responsible for creating Agent and Activity nodes

as well as adding provenance annotation to these nodes. It is used by most controllers and

services in SBML4j that create or manipulate data. The most frequently used provenance

task is to connect two entities with a ProvenanceGraphEdge. Since all entities derive from
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1 void connect ( ProvenanceEnt i ty source ,
2 ProvenanceEnt i ty ta rge t ,
3 ProvenanceGraphEdgeType edgetype ) ;
4
5 void connect ( ProvenanceEnt i ty source ,
6 S t r i ng targetEnt i tyUUID ,
7 ProvenanceGraphEdgeType edgetype ) ;
8
9 void connect ( S t r i ng sourceEntityUUID ,
10 ProvenanceEnt i ty ta rge t ,
11 ProvenanceGraphEdgeType edgetype ) ;
12
13 void connect ( S t r i ng sourceEntityUUID ,
14 S t r i ng targetEnt i tyUUID ,
15 ProvenanceGraphEdgeType edgetype ) ;

Listing 3.15: ProvenanceGraphService method signatures for connecting two enti-
ties with a ProvenanceGraphEdge.

ProvenanceEntity, the connect methods work with these types of objects and can thus

connect any two entities in the database (Listing 3.15).

In addition to methods that take two such entities as arguments, oftentimes during pro-

cessing one entity is instantiated, while the other entity is referenced by the entityUUID, or

just two entityUUIDs are known. For this reason, the method is overloaded with different

combinations of arguments.

The ProvenanceReport service gathers the provenance information that is stored for

a specific network and all its predecessors including the initial SBML file information. The

main traverse follows the wDF relationships from the requested network up to the database

node, which marks the origin of the data (see Fig. 3.5). For each warehouse node on this

path, the inventory information about the contents are extracted. Then all activities that were

involved in generating this node and its contents are visited by following the wGB relationship.

The activity nodes contain the provenance information about the modification step that was

performed, including the request parameters that were sent to the API endpoint as well as the

request body of POST and PUT requests.

In case that no used relationships are found for an activity (e.g., see the activity “persistFile”

in Fig. 3.5), incoming wGB relationships are evaluated instead. PathwayCollectionNodes

on the wDF path follow the hM relationships to the individual PathwayNode entities, whose

inventory items are included in the report. Finally, when the DatabaseNode is reached, which

has no outgoing wDF relationship, the connected organism is collected via the warehouse graph

connection. All collected data is returned to the controller, which builds the JSON-formatted

response for the client.
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Input and Output (I/O)

This domain is responsible for receiving and sending files from and to the clients, processing the

contents of the files and requesting data from external resources via calls to RESTful interfaces.

Input from files is processed in the SBML, GraphML and CSV services when clients provide

files of one of these types. For SBML files, the contained SBML model is extracted with the

JSBML library and returned to the calling controller. The GraphML service handles both input

and output of GraphML files. When it receives a collection of FlatEdges with referenced

FlatSpecies entities, it creates the corresponding GraphML representation that is sent to the

client. On receiving the contents of a GraphML file that was uploaded to SBML4j, it creates

a collection of FlatEdges and FlatSpecies and returns them to the calling controller or

service.

Files with comma-separated values are processed by the CSV service. It uses the univocity
parser110 to process the rows of the input file. To define which column in the file matches

the FlatSpecies symbol attribute in the network two options are available. Either the client

provides a column name in the REST request, or the column name is preconfigured in the

SBML4j configuration using the option sbml4j.csv.matching-column-name.

The KEGG REST service provides methods for requesting data entries from the KEGG API. It

gathers secondary names for genes and chemical properties for compounds and drugs during

the creation of the SBML knowledge graph for an SBML model that contains biomodels.net

qualifiers to KEGG identifiers.

3.3.5 Controller Layer

The Controller classes implement the API interfaces, which define the REST endpoints of the

application. The first step for each endpoint is to handle the user, which is given in the header

field of the request. Then the execution order of service methods is controlled, provenance

connections are established and provenance metadata is added to the activity node responsible

for the current request. Lastly, exceptions are handled and appropriate responses are built and

returned to the client.

User Handling

SBML4j defines a configurable public user, whose data is available for all users of the service.

This user owns all publicly available networks from which any user can derive their own

private network instances. If a request omits the user header, this public user will be used

for this request. Any network created in this way will therefore also be owned by this public

user and will be available for all users of the service. It is important to note that these public

networks can only be deleted if the configuration is set to allow it. More information about
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this and other configuration options can be found in Section 3.3.7. If a client requests to use a

network, which is attributed to another non-public user, the access is denied and a badRequest
response is returned. The reason header then contains the message “User xy is not authorized

to access network”, while keeping the identity of the owning user disclosed.

Provenance Tracking

During the execution of processing steps for a request, the controllers are responsible for

tracking the provenance of the entities that are created.

This involves logging of the request parameters and the provided data by the client. This

data is added as provenance annotation to the Activity node, which represents the current

task in the data model. The structure of the annotation is illustrated in Listing 3.16 on the

example of creating a neighborhood network, also called a context network. All provenance

information is collected in a java.util.HashMap. The body of the request, the name and

UUID of the newly created network are stored directly as string variables. The map keys for the

parameters of the request are prefixed with “params” to indicate their nature. This notation will

result in the creation of an additional Map named “params”, when the provenance information

is extracted again from the Activity node. This way, the conversion to a JSON-formatted object

is straightforward when building the provenance report of the network later on.

As the last step, the map is provided as an argument to the addProvenanceAnnotation
method alongside the Activity-node instance, which is to be annotated. This adds each

element in the map to the provenance map of the receiving node.

Exception Handling

All exceptions thrown by the services are caught in the controller methods. The controller then

returns an Error 400 Bad Request to the client. The exception message gets relayed to

the client in the reason header of the response. Details on the possible response types of the

different endpoints can be found in the OpenAPI documentation of SBML4j111.

3.3.6 REST API

SBML4j as a service-oriented application offers a diverse set of REST endpoints to provide

access to the application functionality. Together, these endpoints form the API of SBML4j.

The API has been specified according to the OpenAPI Specification version 3.0.3. It has been

designed using the toolset available at swagger.io112 and stored in a text-based definition

file. The complete definition file can be found in the sbml4j-compose GitHub repository113.

Additionally, the API documentation of SBML4j can be accessed online at swaggerhub111. A

list of available API endpoints can be found in appendix in Table D.2. This section is going to

focus on the important endpoints and highlight relevant aspects of the API.
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1 Map<Str ing , Object> provenanceAnnotation = new HashMap<>();
2
3 // body
4 provenanceAnnotation . put ( " body " , bodyStr ing ) ;
5 // networkname
6 provenanceAnnotation . put ( " networkname " , newNetworkMappingName ) ;
7 // uuid
8 provenanceAnnotation . put ( " networkUUID " , newNetworkEntityUUID ) ;
9 // r e q u e s t parameters
10 // base uuid
11 provenanceAnnotation . put ( " params . UUID" , uuid ) ;
12 // minSize
13 provenanceAnnotation . put ( " params . minSize " , minDepth ) ;
14 // maxSize
15 provenanceAnnotation . put ( " params . maxSize " , maxDepth ) ;
16 // t e rmina t eA t
17 provenanceAnnotation . put ( " params . terminateAt " , t e rmina teAtS t r ing ) ;
18 // d i r e c t i o n
19 provenanceAnnotation . put ( " params . d i r e c t i o n " , d i r e c t i o n S t r i n g ) ;
20 // we i gh tp rope r t y
21 i f ( weightproperty != nul l )
22 provenanceAnnotation . put ( " params . weightproperty " , weightproperty ) ;
23 // pref ixName
24 i f ( prefixName != nul l )
25 provenanceAnnotation . put ( " params . prefixName " , prefixName ) ;
26
27 th i s . provenanceGraphService . addProvenanceAnnotation ( a c t i v i t y , provenanceAnnotation ) ;

Listing 3.16: Sequence of steps for tracking the provenance of the creation of a
context network.

The User Header

Most API endpoints have the optional header field named user. If any string is provided, it

will be used as the name for the provenance Agent, to which the created networks will be

attributed. Any subsequent request that aims to use this network will have to provide the same

user header value. In case this header value is omitted any network created will belong to

the public user and is accessible to every other user that accesses the service.

SBML API

The SBML API is dedicated to processing SBML files for creating the knowledge graph in

the database. As each SBML file creates new Pathway entities, the request is modeled as a

POST-request. The important aspect of the /sbml endpoint is the necessity of transporting

multiple xml files in the content of the request (see Listing 3.17). In the OpenAPI Spec 3,

file transfers are realized with the content type multipart/form-data. To be able to upload

multiple files with one request, a property of type array has to be provided in the specification.

The framework component for the RESTful interface in Java Spring translates this content to

a list of elements of type MultipartFile, where each such element represents one provided

SBML file. In addition to the SBML files and the user header field, this API endpoint requires

the parameters source and version for the name and version of the file source respectively,
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1 requestBody :
2 d e s c r i p t i o n : The xml f i l e s conta in ing the sbml models
3 requ i red : t rue
4 content :
5 mul t ipa r t / form−data :
6 schema :
7 p r o p e r t i e s :
8 # The proper ty name ’ f i l e s ’ w i l l be used f o r a l l f i l e s .
9 f i l e s :
10 type : ar ray
11 items :
12 type : s t r i n g
13 format : b inary

Listing 3.17: OpenAPI 3.0 definition of the request body of the POST /sbml request.

as well as a three-letter organism code in the organism parameter. These parameters for

defining the file source and organism are used to identify the DatabaseNode and Organism
node to which the provenance information of this file is linked.

For retrieving information on the stored SBML model components, two sets of endpoints

are included in the SBML API. The first set consists of a GET and a POST request to the URI

/entityInfo. Both endpoints take individual or multiple symbols, either in the query part

of the request or in the body of the request, respectively. They provide a JSON-formatted

information object, which gives detailed information about the known properties of SBML

knowledge-graph elements that are found for the provided symbols. The information includes

reactions and transitions the entity takes part in as well as the biomodels.net qualifiers that

are associated with this entity. While the GET request is provided for retrieving information

about individual entities or a small number of entities, the POST request can be used for batch
processing of a large number of symbols.

The second set consists of a GET and a POST request to the /idMap endpoint. They can be

used to retrieve source-specific IDs to given symbols that are available in the SBML knowledge

graph. If an entity is associated with the provided symbol, the biomodels.net qualifiers which

are connected to this entity are searched for database IDs. The tuple of qualifier and ID is

then returned. If the request limits the requested IDs to certain systems, only those IDs will

be returned, otherwise all found IDs are returned. Again, the GET endpoint is provided for

individual requests, while the POST endpoint is for batch processing.

Pathway API

The Pathway API offers a GET request for listing all available pathways and collections of

pathways which can be used to create network mappings. The creation of a mapping can be

triggered with a POST request to the endpoint /mapping/{UUID}, where the UUID path pa-

rameter must be the entityUUID of a pathway. The required query parameter mappingType
denotes which type of network mapping should be created from the given pathway. Further
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optional parameters for defining the name of the resulting network can be provided. The

reader is referred to the REST API documentation111 for details.

Network API

The Network API offers a variety of different endpoints for listing available networks, applying

analysis steps to networks, providing and retrieving provenance information to networks and

retrieving the contents of networks. An overview of available networks can be requested with

a GET request to /networks without any query parameters.

If the user header is omitted, only networks owned by the public user will be listed. When

the user header is provided, the response includes networks that are attributed to the provided

user and are not available to other users of the service. With a POST request to the endpoint

/networks?parentUUID={UUID}, a copy of the network provided by the parentUUID can

be created.

All other requests in this API use the {UUID} as path parameter and operate with or on

the network given by this UUID. SBML4j defines an API endpoint for each operation that

can be performed on a network. A GET request to /networks/{UUID} will download the

network denoted by this UUID in the GraphML format, if the network belongs to the user that

is provided in the appropriate header of the request or is owned by the public user. A network

can be deleted with a DELETE request to the same endpoint. Only networks owned by the

provided user can be deleted with that request unless SBML4j is configured to allow deleting of

public networks. A GET request to the /networks/{UUID}/options endpoint will send the

available filter and annotation options for the network that is denoted by the provided UUID.

The filter options can be sent in a POST request to the /networks/{UUID}/filter endpoint

to create a filtered subnetwork of the network with given UUID. In the same manner, the

annotation options can be used in a POST request to the /networks/{UUID}/annotation
endpoint to add arbitrary data onto the nodes and edges of the network with given UUID.

Unless otherwise requested, both the filter and the annotation requests result in a new

network resource being created that receives a new UUID to be used in follow up requests.

Annotation data can also be added to a network from a CSV file by issuing a POST request to the

/networks/{UUID}/csv endpoint, using the given or configured column in the CSV file to

match data entries to network nodes. Lastly, the /networks/{UUID}/context endpoint can

receive both a GET and a POST request. For a GET request, a context network for the provided

request parameters is calculated on the network with given UUID and immediately return to

the client as GraphML content. No new network resource is created in SBML4j. In contrast, a

POST request triggers the same calculation of a context network for the same parameters, but

instead of returning the created resource, it creates a new network instance in the database that

contains the context network and returns the NetworkInventoryItem of that new network.
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This new context network can then be fetched repeatedly with GET requests using the new

UUID that is found in the NetworkInventoryItem without having to recalculate its contents.

For more details on these requests, the reader is referred to the official documentation of the

API111.

Overview API

For workflow convenience, the endpoint /overview with a GET and POST method bundles

the extraction and creation of neighborhood networks with the annotation of provided nodes

by a named Boolean annotation. It can be used in conjunction with dedicated configuration

properties in workflows and applications that specifically aim at generating neighborhood

networks for defined sets of genes (e.g., Drivergene networks) with a single REST call.

GraphML API

The GraphML API is dedicated to receiving GraphML files through a POST request to /graphml.

For each file uploaded to this endpoint, a network is created that contains the nodes and edges

that are defined in the xml document. If the parentUUID parameter is set, SBML4j attempts to

connect the newly created network to the network with the given UUID with a wasDerivedFrom

relationship to indicate provenance. This parent network has to be accessible by the provided

user, which means it must either be owned by that user or the public user.

Warehouse API

The Warehouse API allows the retrieval of UUIDs for two types of warehouse nodes. First, the

UUID of a database node with given name and version can be extracted with a GET request

to /databaseUUID. Second, the UUID of a FileNode that is the parent entity of the network

or pathway with the provided UUID can be requested by using GET /fileorigin. With the

received UUIDs from each of the endpoints, provenance information can be added to these

entities when used in the Provenance API.

Provenance API

The Provenance API features the /prov/{UUID} endpoint, which accepts GET and PUT re-

quests. With a GET request the provenance report for a given Warehouse entity (i.e., Pathway,

Network) can be downloaded in a JSON-formatted response. A PUT request will add the pro-

vided JSON-formatted request body to the provenance information of the entity with given

UUID.
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Table 3.2: Important Configuration properties in SBML4j.

prefix property description

context minSize
Minimum number of relations to traverse for
the neighborhood path search

context maxSize
Maximum number of relations to traverse for
the neighborhood path search

context terminateAt
Nodelabel which terminates the paths in the
neighborhood path search

context direction
Direction in which relations can be traversed in
the neighborhood path search

annotation append
Boolean to control whether existing annota-
tions should be appended (TRUE) or replaced
(FALSE)

network public-user Name of the public user to use for this instance

csv matching-column-name
Name of column in csv files, that will be used to
match gene symbols for annotation (can have
multiple entries)

3.3.7 Configuration

The configuration is handled via the Spring configuration properties. These properties are

defined using the @ConfigurationProperties annotation on specific classes. The configu-

ration values are accessible through the Sbml4jConfig class, which gets injected into services

and controllers that need to access them.

Table 3.2 lists some important configuration properties with the prefix they use and a short

description of their meaning. The values for these properties can be supplied by an applica-

tion.properties file or through environment variables. The environment variables will override

previously defined properties in the properties files. SBML4j supports different configurations

for development, test, and production environment profiles. By adding a suffix with the

respective short handle string to the filename of the application.properties file, each profile

can be configured separately, for instance application-dev.properties.

In addition to the application-specific configuration properties, SBML4j makes use of built-

in properties for defining the application context path and the connection details for the Neo4j

database (see Tab. 3.3). A full properties file can be found in the appendix as Listing E.2.

Detailed descriptions of the properties not mentioned here can be found in the documentation

of SBML4j114.
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Table 3.3: Spring Framework and server configuration properties used in SBML4j.

prefix property description

spring.data.neo4j uri
URI of the Neo4j database to use in the
format protocol://host:port (example:
bolt://localhost:7687)

spring.data.neo4j username The username to use for the Neo4j database

spring.data.neo4j password The password to use for the Neo4j database

server.servlet contextPath
The contextPath of the tomcat server that han-
dles the HTTP requests

server.servlet.session timeout
Define a timeout for client sessions (use -1 for
no timeout)

server port
The port to be used by the tomcat server for
accepting requests)

3.3.8 The Python Client Library pysbml4j

In addition to the SBML4j server application, the Python client module pysbml4j has been

developed as part of this software suite. This section gives some insights into the design

considerations and introduces the three components that make up the client.

Design Considerations

The main focus for the Python client library design was the usability aspect. A potential user

will usually create a network from some pathway or collection of pathways, or use a pre-

built network that is already available. With this, the most prominent tasks will be filtering,

annotation and context generation. All these activities should be achievable with just a few

lines of code and without having to refetch newly created networks between individual steps.

The main return type for network data from SBML4j is the GraphML format, which can be used

in existing network libraries that are available in Python, like networkx115. This eliminates

the necessity to reimplement the features that are offered by these libraries, which makes it

possible to keep the SBML4j Python client library compact. This improves maintainability and

reduces the number of bugs that could potentially be introduced in an implementation. For

ease of use, the configuration of the client instance should be straightforward and the default

option should cover the most frequently used setup.
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Table 3.4: REST endpoints of SBML4j and the respective pysbml4j method in the
Sbml4j class. The request type and the endpoint URI with the Python method that
targets the endpoint and the type of the returned value.

Request
type Endpoint URI Return type Python method

GET /networks json listNetworks

POST /sbml json uploadSBML
POST /graphml json uploadGraphML

GET /pathways json pathwayList
POST /pathwayCollection json createPathwayCollection
POST /mapping/{UUID} json mapPathway

The Configuration Class

Each instance of the SBML4j client has to be instantiated with a Configuration object, where

a default one is created if it is omitted. The default configuration will resolve to a server exposed

at the URL http://localhost:8080/sbml4j, which is also the default configuration of the

SBML4j server application. The URL is composed of the server address (i.e., http://localhost),

the port 8080 and the application context (i.e., /sbml4j). Each of these can be passed to the

constructor of the Configuration class to change the server details. In addition to the URL,

the Configuration class allows changes to the headers of the requests that are sent to the

server. This is used internally for requests that send JSON-content to the server which sets

the Content-type-header to application/json. The header value for providing a user to SBML4j

endpoints can be set directly using the provided setter method.

Whenever a change to the server parameters occurs, the internal Boolean _isInSync is set

to False. All requests made to the server check the status of this flag. If the value of the flag

is False, the list of networks is refreshed before the request is issued. This ensures that the

client has an up-to-date view of the networks that are available on the server for the current

user.

The Sbml4j Class

The Sbml4j class keeps a list of available networks, executes the http-calls to the server instance

and processes the responses. It uses the urllib3 library116 for making the REST calls and

implements dedicated methods for the RESTful endpoints of the SBML4j server.

The methods of the Sbml4j class and their respective REST endpoints are listed in Table 3.4.

All Pathway-related tasks are handled directly by this class, as well as listing available networks

and submitting GraphML and SBML files to the server. The Sbml4j object keeps a list of

networks that are available for the currently configured user. To ensure that the information is
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1 def checkSyncStatus ( s e l f ) :
2 i f not s e l f . _ con f i gu ra t i on . i s InSync :
3 s e l f . r e f r e shNetworkL i s t ( )
4 s e l f . _ con f i gu ra t i on . i s InSync = True

Listing 3.18: Python method checkSyncStatus of the SBML4j class in pysbml4j to
keep the internal network list in sync with the server data.

1 def getNetworkByName ( s e l f , name ) :
2 s e l f . checkSyncStatus ()
3 networkInfoDic t = s e l f . _nameToNetworkMap [name ] . g e t I n f o D i c t ()
4 return Network ( networkInfoDict , s e l f )

Listing 3.19: Python method getNetworkByName of the SBML4j class in pysbml4j
to select networks by their name.

up-to-date, each method that uses or manipulates this list, has to check whether the list is still

in sync to the server data (Listing 3.18). The Boolean isInSync is kept in the configuration

and gets set to False whenever the configuration changes, for example when the user-header

value is changed.

The method Sbml4j.getNetwork(UUID) can be used to retrive a Network object from

the SBML4j server. It requires a network UUID as an argument. Since UUIDs are inconvenient

to use for the end user, pysbml4j instead operates on the names of the networks. For that,

the Sbml4j class keeps a dictionary matching the names of networks to the network-objects.

This allows a user to select networks based on their name instead of using the UUID using the

method Sbml4j.getNetworkByName(name) (see Listing 3.19).

1 c lass Network ( object ) :
2 uuid : s t r
3 name : s t r
4 organismCode : s t r
5 numberOfNodes : in t
6 numberOfRelations : in t
7 numberOfReactions : in t
8 nodeTypes : l i s t
9 re l a t i onTypes : l i s t
10 networkMappingType : s t r
11
12 sbml4jApi = None
13
14 def _ _ i n i t _ _ ( s e l f , d ic t_ f rom_api , ap i ) :
15 s e l f . sbml4jApi = api
16 s e l f . updateInfo ( d ic t_ f rom_ap i )

Listing 3.20: Network object of pysbml4j with available fields and constructor.
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1 def updateInfo ( s e l f , d i c t _ w i t h _ i n f o ) :
2 s e l f . uuid = d i c t _ w i t h _ i n f o [ ’ uuid ’ ]
3 s e l f . name = d i c t _ w i t h _ i n f o [ ’ name ’ ]
4 s e l f . organism_code = d i c t _ w i t h _ i n f o [ ’ organismCode ’ ]
5 i f d i c t _ w i t h _ i n f o [ ’ numberOfNodes ’ ] != None :
6 s e l f . numberOfNodes = d i c t _ w i t h _ i n f o [ ’ numberOfNodes ’ ]
7 else :
8 s e l f . numberOfNodes = 0
9 t ry :
10 s e l f . numberOfRelations = d i c t _ w i t h _ i n f o [ ’ numberOfRelations ’ ]
11 except :
12 s e l f . numberOfRelations = 0
13 t ry :
14 s e l f . numberOfReactions = d i c t _ w i t h _ i n f o [ ’ numberOfReactions ’ ]
15 except :
16 s e l f . numberOfReactions = 0
17
18 s e l f . nodeTypes = d i c t _ w i t h _ i n f o [ ’ nodeTypes ’ ]
19 s e l f . r e l a t i onTypes = d i c t _ w i t h _ i n f o [ ’ r e l a t i onTypes ’ ]
20 s e l f . networkMappingType = d i c t _ w i t h _ i n f o [ ’ networkMappingType ’ ]

Listing 3.21: Python code of the method for updating the contents of a Network
object.

Network Object

The Network object (Listing 3.20) is the main element of interaction for a client. It con-

tains all fields that are found in the NetworkInventoryItem and a reference to the SBML4j

instance it originated from. The constructor requires such an instance in the api parameter

and a dictionary element containing the initial values for the inventory values.

Although many operations create new network instances in the database, the user can

continue to work with the original Network object, as it gets updated with the new information.

This way, multiple network-manipulation steps can be performed on a single Python object,

without the need to introduce a new object for the result of each step. This is done internally

by calling the method updateInfo (see Listing 3.21). The argument needs to be a dictionary

object, which contains the elements from the data element of the response of the initial request.

All endpoints that modify or create a network in SBML4j return the NetworkInventoryItem,

which contains all the necessary elements for this update method. Table 3.5 lists the methods

on the Network object that directly target specific endpoints of the SBML4j REST API. In

addition, the convenience method shortestPath is available that allows direct calculation

of a shortest path on a given network.

3.3.9 Deployment

The SBML4j server application is maintained by the “kohlbacherlab” organization on GitHub114.

It is provided as an open-source application with an MIT license from the “Open Source

Initiative”117.
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Table 3.5: REST endpoints of SBML4j and the respective pysbml4j method in the
Network class. The request type and the endpoint URI with the Python method that
targets the endpoint and type of the returned value. Return types with value Network
update the current Network object to contain the newly created network in SBML4j.

Request
type Endpoint URI Return type Python method

POST /networks Network copy
GET /networks/{UUID} GraphML String graphML
POST /networks/{UUID}/csv Network addCsvData
GET /networks/{UUID}/context GraphML String getContext
POST /networks/{UUID}/context Network postContext
GET /networks/{UUID}/options json getOptions
POST /networks/{UUID}/filter json filter
POST /networks/{UUID}/annotation Network annotate

PUT /prov/{UUID}/ json addProvenance
GET /prov/{UUID}/ json getProvenance

The java application is managed by apache maven118 and can be built into a Java ARchive

(JAR file), which can be executed with locally installed Java runtime environments. SBML4j is

also available as pre-built docker image, which can be found at DockerHub119.

The necessary Neo4j database instance is not part of SBML4j and a running instance needs

to be provided before the start of the application.

The recommended deployment method is via docker compose. The project on GitHub,

sbm4j-compose113, bundles the configuration of SBML4j, the startup and controlled termina-

tion of the SBML4j container as well as a Neo4j container, and additionally provides a shell script

for downloading the docker images, setting up the volumes and managing the database dumps.

An example docker-compose.yml file can be found as supporting Listing E.1 in the appendix.

As a further benefit from the compose setup, it can initialize and start a swagger-api con-

tainer120 that provides the Swagger UI121, an interactive API documentation. The OpenAPI

definition file that is part of the docker-compose GitHub repository can be customized to fit the

server address of an individual setup. This enables the real-time use of the REST API through

the interactive API documentation.

The Python client library pysbml4j101 is available on the Python Package Index122 and

can be installed via the package installer for Python123. The source code is maintained as a

project on GitHub124.
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3.4 Results

To demonstrate the feasibility of the SBML4j software three use-cases are presented: Finding

upstream driver genes for a given input gene, revealing a gene neighborhood network for

multiple genes and finding a shortest path between two input genes. The use-cases include

simple python code blocks that demonstrate the use of these methods along with different

visualization options for the networks using the packages networkx and ipycytoscape, the Neo4j

Browser that comes with the database itself and the graph drawing tool BiographVisArt125. At

the end of this section, the provenance report layout is presented.

3.4.1 KEGG Knowledge Graph

For these examples the list of KEGG pathway maps shown in tables 3.6 and 3.7 were used.

They were downloaded in the KGML format from the KEGG web service. The KEGG pathway

database release was: Release 97.0+/02-16, Feb 21. Those KGML files were translated to

SBML using KEGGtranslator version 2.5126,127. The command line arguments for translation

with KEGGtranslator are listed in the appendix under Listing E.3. Those translated SBML files

were then uploaded to an empty SBML4j instance using Python and pysbml4j (see Listing E.5

in the appendix for a source code example). The entities that were created from the SBML

knowledge graph serve as the basis for the network mappings used in the examples below.

3.4.2 KEGG Network Mappings

From these 61 pathways a collection pathway was created using the /pathwayCollection
endpoint. Then regulatory, signaling, metabolic and protein-protein interaction network map-

pings were created from this collection, named REG-KEGG61-97.0, SIG-KEGG61-97.0, MET-

KEGG61-97.0 and PPI-KEGG61-97.0 respectively. Table 3.8 lists the number of nodes and

relationships in the different mapping types created in that manner. These network mappings

were used in the following examples.

3.4.3 Shortest-path

Figure 3.15 (a) shows the shortest path between the two genes CCND2 and PTEN in a protein-

protein interaction network visualized using the ipycytoscape widget. The Python code used

to generate the network (excluding the visualization) can be found in Figure 3.15 (b).

3.4.4 Gene Neighborhood

Given a set of gene symbols, a context network was calculated. It contains all genes matching

the given symbols, all connecting paths between those genes and all direct neighborhoods of
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Table 3.6: Non-disease related pathways used in the results section. Listed are the
entry identifiers and associated definitions from the KEGG pathway database – Release
97.0+/02-16, Feb 21.

identifier definition
hsa03320 PPAR signaling pathway
hsa04010 MAPK signaling pathway
hsa04012 ErbB signaling pathway
hsa04014 Ras signaling pathway
hsa04015 Rap1 signaling pathway
hsa04020 Calcium signaling pathway
hsa04022 cGMP-PKG signaling pathway
hsa04024 cAMP signaling pathway
hsa04060 Cytokine-cytokine receptor interaction
hsa04064 NF-kappa B signaling pathway
hsa04066 HIF-1 signaling pathway
hsa04068 FoxO signaling pathway
hsa04070 Phosphatidylinositol signaling system
hsa04071 Sphingolipid signaling pathway
hsa04072 Phospholipase D signaling pathway
hsa04080 Neuroactive ligand-receptor interaction
hsa04110 Cell cycle
hsa04115 p53 signaling pathway
hsa04150 mTOR signaling pathway
hsa04151 PI3K-Akt signaling pathway
hsa04152 AMPK signaling pathway
hsa04210 Apoptosis
hsa04218 Cellular senescence
hsa04310 Wnt signaling pathway
hsa04330 Notch signaling pathway
hsa04340 Hedgehog signaling pathway
hsa04350 TGF-beta signaling pathway
hsa04370 VEGF signaling pathway
hsa04371 Apelin signaling pathway
hsa04390 Hippo signaling pathway
hsa04510 Focal adhesion
hsa04512 ECM-receptor interaction
hsa04520 Adherens junction
hsa04630 JAK-STAT signaling pathway
hsa04915 Estrogen signaling pathway

the given genes. First the input genes are sorted alphabetically and the first two genes are

connected using a shortest path search. The sorting step is necessary to have a determinism

regarding the choice of the first nodes to connect. All found genes or nodes and the relationships

on this path are added to the result set. For each remaining gene, the shortest path to any
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Table 3.7: Human Disease pathways related to cancer used in the results section.
Listed are the entry identifiers and associated definitions from the KEGG pathway database
– Release 97.0+/02-16, Feb 21.

identifier definition
hsa05200 Pathways in cancer
hsa05202 Transcriptional misregulation in cancer
hsa05203 Viral carcinogenesis
hsa05204 Chemical carcinogenesis
hsa05205 Proteoglycans in cancer
hsa05206 MicroRNAs in cancer
hsa05210 Colorectal cancer
hsa05211 Renal cell carcinoma
hsa05212 Pancreatic cancer
hsa05213 Endometrial cancer
hsa05214 Glioma
hsa05215 Prostate cancer
hsa05216 Thyroid cancer
hsa05217 Basal cell carcinoma
hsa05218 Melanoma
hsa05219 Bladder cancer
hsa05220 Chronic myeloid leukemia
hsa05221 Acute myeloid leukemia
hsa05222 Small cell lung cancer
hsa05223 Non-small cell lung cancer
hsa05224 Breast cancer
hsa05225 Hepatocellular carcinoma
hsa05226 Gastric cancer
hsa05230 Central carbon metabolism in cancer
hsa05231 Choline metabolism in cancer
hsa05235 PD-L1 expression and PD-1 checkpoint pathway in cancer

Table 3.8: Number of nodes and relationships for KEGG Mappings derived from 61
KEGG pathways used in this work.

Mapping Type Number of nodes Number of relations
PROTEIN-PROTEIN INTERACTION 671 1311
SIGNALING 1369 2457
REGULATORY 1521 2773
METABOLIC 107 221

gene in the result set is searched and the nodes and relationships of that path are added to the

resulting network. This might not ensure the smallest possible network to connect all given

input genes, but it guarantees to find one if all input genes are on one connected graph. If a

gene cannot be connected to the network, it is dropped from the result set. Figure 3.16 (a)
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Figure 3.15: Shortest-path network between the genes CCND2 and PTEN in a PPI net-
work with respective python code. (a) Shortest-path network between the genes CCND2
and PTEN in a protein-protein-interaction network visualized using the ipycytoscape wid-
get in an IPython notebook. (b) Complete code example for retrieving the shortest path be-
tween the two genes in a protein-protein-interaction network. Line 1 imports the Sbml4j
client connector from the pysbml4j package, line 2 establishes a connection to a local
instance of SBML4j running at the default address of http://localhost:8080/sbml4j. In line
3 a network is selected by its given network name and stored in the network variable.
The shortestPath method on the network that starts in line 4 queries for a context
network connecting the two input genes with the shortest path assuming a default weight
of 1 on each relationship that is traversed. The resulting graph is reported in the GraphML
format.

shows the gene neighborhood network for three genes FOS, PTEN and BAX in the signaling

network created above. The Python source code used to generate the network can be seen in

Figure 3.16 (b).

3.4.5 Upstream Cancer Driver Genes

To elucidate disease driving mechanisms in rare case cancer patients it is often useful to find

cancer driver genes that are located upstream in the regulatory network of an affected gene or

genes that are specific to this patient. SBML4j enables the exploration of regulatory networks

in that manner in a few simple steps. After choosing the regulatory network of interest as a

base network, driver gene information can be added to it using a simple csv file linking the

gene symbol to the driver type and further optional information. One such source can be the

driver gene atlas by Vogelstein et.al128. By providing this list of genes in the csv file format

to SBML4j, the driver gene information can be added on the network nodes, marking them as

Driver. This keyword can then be used as termination criterion for an expanding path search

in the upstream-regulation direction, which results in a network tree rooted in the given genes

with the leaves being the driver genes. Figure 3.17 (a) shows the upstream driver gene network

for the Gene MMP9 visualized by BiographVisArt. The respective Python code for uploading

the csv file and retrieving the network is shown in Figure 3.17 (b).
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Figure 3.16: Multi-gene neighborhood network visualization from the Neo4j
Browser and python code for generating the network. (a) Multi-gene neighborhood
network for the genes FOS, PTEN and BAX on a signaling network with specific interac-
tions on the relationships visualized in the Neo4j Browser. (b) Complete code example
for generating the shown gene neighborhood network from a KEGG-based signaling net-
work. Line 1 imports the Sbml4j client connector from the pysbml4j package, line 2
establishes a connection to a local instance of SBML4j running at the default address of
http://localhost:8080/sbml4j. In line 3 a network is selected by its given network name
and stored in the network variable. The createContext method on the network that
starts in line 4 triggers the creation of a new network instance in the database, but the
response does not include the generated network itself. The provided geneList specifies
the genes that are to be connected to a gene neighborhood. The direction parameter
(line 5) denotes that relationships should be traversed in any direction (upstream and
downstream), the maxSize parameter in line 6 limits the number of relations to traverse
before stopping the context expansion when searching the direct neighborhood of the in-
put genes. The optional parameter newNetworkName in line 7 will be set as the name for
the newly created network. Line 8 receives the newly created network from the SBML4j
service by its given name and in line 8 the graphML representation of the calculated net-
work is requested from the service which is then saved in the variable nhNetGraphML for
further use, i.e. visualization.
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Figure 3.17: Upload drivergene data from a csv file to a network and retrieve up-
stream hits for a given input gene. (a) Upstream driver gene network for the MMP9
gene on a regulatory network visualized using BioGraphVisArt. Driver genes are shown in
red, non-driver genes in white. The arrows with pointed heads denote stimulation events
while the ones with flat heads indicate inhibition events. (b) Complete code example for
adding annotation from a csv file on a network and using this annotation to search for
hits of the annotation type upstream of a given gene. Line 1 imports the Sbml4j client
connector from the pysbml4j package, line 2 establishes a connection to a local instance
of SBML4j running at the default address of http://localhost:8080/sbml4j. In line 3 a
network is selected by its given network name and stored in the network variable. The
addCsvData method on the network that starts in line 4 adds the annotation contained
in the given file drivergenes.csv. The dataName parameter in line 5 gives the name for
the label a node will receive when annotation is added to it. The optional parameter
newNetworkName in line 6 will be set as the name for the newly created network. Line
7 receives the newly created network from the SBML4j service by its given name. The
method getContext starting in line 8 takes the arguments geneList for providing one
or more node symbols as starting points for context generation, terminateAt for pro-
viding the generated node label from the csv data to serve as stop sign for the context
extension, direction for limiting the context extension to upstream relations and the
maxSize parameter to limit the number of relations to traverse before stopping the con-
text expansion. All paths that end in a node with the given node label that are maxSize
steps away from any input gene in geneList are reported in a connected graph which is
reported in the GraphML format.
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3.4.6 Provenance Report

We downloaded the Notch Signalling Pathway from the KEGG pathway database (compare

Fig. 2.2 in Chapter 2) in the KGML format, translated it to the SBML format using KEGGtrans-

lator and uploaded the translated file to an emtpy SBML4j instance. We added provenance

data to the resulting pathway and created a signalling network mapping from it. Here, we

present the provenance report of this process.

The provenance report can be generated by sending a GET request to the /prov/{UUID}
endpoint or by calling the Python method getProvenance while providing the UUID of the

signalling network in question. The content of the report is the serialized version of the

ProvenanceInfoItem (see Fig. 3.12) and is reported in JSON format.

For brevity, key elements of the report are presented here, while the full report can be

found in the appendix as Listing E.4.

1 {
2 " type " : " Network " ,

3 " content s " : {
4 " uuid " : " b5f3b7c9−820b−4e8e−8549−4d30eff67127 " ,

5 "UUID " : " b5f3b7c9−820b−4e8e−8549−4d30eff67127 " ,

6 "name " : "NOTCH_SIGNALLING_MAPPING " ,

7 " organismCode " : " hsa " ,

8 " numberOfNodes " : 22 ,

9 " numberOfRelations " : 44 ,

10 " numberOfReactions " : 0 ,

11 " nodeTypes " : [
12 " po lypept ide chain "

13 ] ,

14 " r e l a t i onTypes " : [
15 " INHIBITION " ,

16 "STIMULATION " ,

17 "PROTEINCOMPLEXFORMATION"

18 ] ,

19 " networkMappingType " : " SIGNALLING "

20 } ,

Listing 3.22: Top Element of the Provenance report that describes the network’s

contents and its type

The top element of the report describes the network’s contents and its type as shown in

Listing 3.22. It also gives information about the user that is attributed to this network as well

as the activity that generated the network. The information about the activity includes the

type of REST call that has been made, the endpoint it was made to as well as the parameter

values that were provided in the call (see Listing E.4 lines 25–58).

The next section of the report advances one level down the provenance hierarchy along the

wasDerivedFrom provenance relation. It provides details about the warehouse entity that

served as basis for the generation activity that has been described above and contains the same

sections as the top level element, namely the content and type of the entity, which in this case
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is a Pathway (see Listing E.4 lines 60–86). Again, this is followed by information about the

user and the activity that created this entity, where in this case the latter is the POST request

to the /sbml endoint, since the Pathway is created when the model in the uploaded file is

persisted (see Listing E.4 lines 87–90 and 93–119).

1 " provenance " : [
2 {
3 " t r a n s l a t i o n " : {
4 "name " : " KEGGtranslator " ,

5 " arguments " : {
6 " gene−names " : " FIRST_NAME " ,

7 " format " : "SBML_CORE_AND_QUAL" ,

8 " add−layout−extens ion " : " FALSE " ,

9 " use−groups−extens ion " : " FALSE " ,

10 " remove−pathway−r e f e r en c e s " : "TRUE" ,

11 " remove−white−gene−nodes " : "TRUE" ,

12 " autocomplete−r e a c t i o n s " : "TRUE"

13 } ,

14 " ve r s ion " : " 2 . 5 "

15 }
16 } ,

17 {
18 " o r i g i n " : {
19 " Download date " : " Oct 18 , 2022 19:15:42 +0000 (UTC) " ,

20 " Creat ion date " : " Oct 3 , 2022 16:25:37 +0900 (GMT+9) " ,

21 " f i lename " : " hsa04330 . xml " ,

22 " source " : "KEGG Pathways database " ,

23 " ve r s ion " : "104 .0 "

24 }
25 } ,

26 {
27 " SBML4j " : {
28 " ve r s ion " : " 1 . 2 . 2 "

29 }
30 }

Listing 3.23: Provenance annotation data on the File entity in the Provenance

report

The next level along the wasDerivedFrom provenance relation is dedicated to the SBML

file. It starts with the provenance information that has been added after the uploading process

and can be seen in Listing 3.23. It contains three subsections: translation, origin, and

SBML4j. The translation section gives details about the tool that has been used to translate

the input file and contains the name, the version and the runtime arguments that were provided

to that tool (see Listing 3.23 lines 3–15). Then, the origin of the translation process is given

in the origin section (see Listing 3.23 lines 18–25). It contains the name and version of the

file source, the filename, as well as the original creation date of the file and the date of the

download. Lastly, provenance information about SBML4j itself has been added to the report.
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In this case it consists of the software version that has been used to create this File in the

database (see Listing 3.23 lines 27–29).

Following this provenance information is the metadata about the SBML file itself (see

Listing E.4 lines 154–159), which contains the name of the file and its computed MD5 sum.

The file has been created by the same activity as the pathway entity, which is repeated at this

point in the report for completeness (see Listing E.4 lines 164–193).

The final level of the JSON hierarchy describes the Database entity that is at the basis of

this provenance and is described by the source and version that was provided in the POST
request when uploading the SBML file. Again, it was created by the same activity, whose info

is repeated on this level for completeness.

This report provides all available provenance information on the network resource, which

traces back the creation steps to the original source and gives details about transformation

steps and data origin where available. This type of report is available for every network in

SBML4j. The comprehensiveness of the provenance information in such reports depends on

the amount of data that is provided for the indivdual steps. The sections wasDerivedFrom,

wasAttributedTo and wasGeneratedBy are automatically populated when working with

the data in SBML4j. The additional data in the provenance subsections have to be provided

by external clients that manipulate or describe the data within SBML4j.

3.5 Discussion and Conclusion

We presented SBML4j, a service-oriented software for storing, manipulating, exploring and

retrieving of biological networks and biomedical data. By offering full functionality through

a RESTful interface and Python client library no individual database queries are necessary to

populate the database, annotate and manipulate the networks or retrieve network resources.

This provides a standardized method to interact with biological networks and gives the ability

to add reproducible biological network knowledge to research projects and clinical decision

support systems.

A graph database for storing biological-network data enables the native representation of

the data by the database model. Further, it enables the application of graph algorithms on the

database level. For the traversal of the networks and calculation of neighborhoods, SBML4j uses

the APOC extension to Neo4j. More recently the Graph Data Science129 library is offering

comparable algorithms on in-memory representations of the graph, which can potentially speed

up these calculations.

This thesis puts a focus on the KEGG pathway database as a source for the biological models.

Given adequate SBML models of other data sources, the software presented here can be used to

build network mappings for those. The mapping process in SBML4j relies on the biomodels.net

qualifier annotations and SBO terms. These elements are often missing in models from other
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sources, like PathwayCommons, Reactome or WikiPathways. With a growing interest in systems

biology, the amount of well annotated models will grow and more input sources will become

available in the future.

With improvements in the frameworks and tools that SBML4j relies on, many enhancements

can be implemented in the future. A next-generation update of SBML4j can, for instance, move

the UUID management into the database, since newer versions of the Neo4j database now

support these types. Additionally, a change to the reactive query layout, with implications for

all layers that make use of query results as well as the API request and response mechanics.

Due to the graph structure of the database, as well as the stored data, it is also recommended

to investigate whether a GraphQL130-based layout of the API is to be preferred over the REST

layout that SBML4j currently uses. The newly introduced auditing features of the Spring

modules are also a good extension of the provenance-tracking mechanisms, which make the

recording of changes more reliable and easier to track.

For the purposes of this thesis, the aspect of user authentication, which is critical for pro-

duction use of SBML4j, has been kept aside. While keeping user-generated networks separated

by attributing them to the provided username in the header of the request is working for

prototyping use, in a production environment this needs to be combined with proper user

authentication. Any properly authenticated user, for instance through OAuth2131 can then be

attributed to their networks and the data kept truly secure.

To speed up database queries, advanced indices are needed on combinations of labels and

properties. Unfortunately, these types of indices are not supported by the free community

edition of the Neo4j database, but are only available via a paid subscription to the enterprise

version. Here, an evaluation of a potential speedup from these composite indices and keys

warrants the costs of an enterprise license. Alternatively, the underlying graph database could

be changed to an unrestricted open-source one. In the past years significant advancements have

been made to several open-source graph database solutions, for instance DGraph, ArangoDB

or MongoDB, which need to be evaluated towards their viability for this application.

SBML4j creates a simplified SBML knowledge graph through its data model and the database

entities that are persisted from it by the OGM. For the current use cases, generating mostly non-

metabolic network mappings for investigating qualitative features of the biological processes,

this simplified model is sufficient. For future expansions it should be investigated whether

more features of the SBML core model, as well as more SBML extensions, should be incorpo-

rated into the SBML4j data model. One example is the groups extensions, which encodes

the connections between a group and its member entities in a structured manner, compared

to the current encoding in annotation objects of the groups. Furthermore, it is possible to

make use of the data model from jSBML directly by extending the jSBML classes as Node or

Relationship entities and providing conversion classes for data types that are not supported

by Neo4j. Additional investigations should be made to evaluate if this approach leads to a
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more detailed reflection of the SBML data in the graph database, without the need to manually

model all parts and translate between the two data models.

Moreover, the creation of physical copies or derivatives of network mappings for each

modification step is beneficial to recording the provenance of the networks. However, this

leads to the growth of the database over time and a potential decline in query performance. A

detailed comparison about the alternative use of labels for denoting network membership and

additional properties for keeping track of the provenance needs to be performed. Advancements

in the database driver and OGM could make this approach more feasible now.

To enable performant graph traversals and effective use in graph algorithms, the FlatEdge
entities are modeled as Java Classes and persisted with the respective relationship type as label.

This necessitates the implementation of more classes to be able to reflect further relationship

types. An investigation into alternative means of representing the relationship types for network

mappings should be carried out. Possible scenarios include the definition of the relationship

types using external XML files, which can be dynamically loaded, or the further incorporation

of the SBO terms directly as relationship types as they are provided by jSBML.

The biomodels.net qualifier types that are used for matching entities are hard coded in

the respective database queries. This made sense at the time, as the three used types IS,

HAS_VERSION, and ENCODED_BY were the only sensible choices. It might however be possible,

that future SBML models make use of different types of biomodels.net qualifier, which would

need to be reflected in these queries. Incorporating these types into the configuration of SBML4j

can help make this future proof.

The provenance tracking mechanics in SBML4j allow the tracking of the origin of a network

through all steps of the network manipulation process. The available provenance report gives

all necessary details to recreate a network from the sources. However, it cannot be directly

used in a single request to reproduce the results. A good future extension might therefore be

a dedicated endpoint for uploading the provenance report alongside the needed input data

(i.e., SBML source files, potential CSV files for annotation), which automatically applies all

described steps with the given parameters to recreate the network. Furthermore, the inclusion

of external processing steps into the provenance tracking is limited to the manual addition of

results and provenance information about the external tool. Possible improvements here might

include the integration of automated processing steps with REST calls to these external tools.

Giving access to network analysis methods through a standardized REST interface with

accompanying Python client libraries enables the integration of biological-network knowledge

in existing bioinformatics and medical informatics pipelines and workflows without the need

for hand-crafted database queries. By providing a locally executable database application,

sensitive data can be analyzed in the context of biological networks without the need for data

transfers to external servers or cloud infrastructure. With SBML4j biological-network creation,

manipulation and extraction is reproducible and the standardized output format GraphML
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makes it easy to share generated networks. The accompanying provenance report enables

the reliable reproduction of the networks from the same input sources. By using SBML input

files to initially construct the network database, no hand-crafted input scripts are required

and setup can be scripted in Python. This also adds to the reproducibility of any results

produced with SBML4j, as SBML models follow a strict specification, can be kept up to date

using biomodels.net qualifier information and can be easily shared among research projects.
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Chapter 4

Application: Network provenance in

research pipelines

4.1 Introduction

Like many other disciplines, medicine and related fields are in danger of falling victim to the

replication crisis, often also termed reproducibility crisis132. In 2016, Baker et al.133 published

the results of their survey concerning the state of reproducible science. They found that “[m]ore

than 70% of researchers tried and failed to reproduce another scientist’s experiments”133.

Conversely, 66% of the participants in the survey stated that their lab had procedures in place

for reproducibility, where the most frequently given answer was that a lab member is instructed

to redo the experiment in question. Allison et al.134 paint a similar picture in their report on

reproducibility for their respective fields, obesity, nutrition, and energetics. They found a lot

of mistakes in published articles and encountered many hurdles when they tried to contact the

authors or the journals about these issues. One particularly striking point they make is that

many authors refused to provide raw data for their analysis, which hinders other researchers

from attempting to reproduce the results134.

4.2 Background

In cancer research only 11% of scientific findings regarding new approaches for targeting

tumors could be confirmed in replication studies, according to a survey performed by Begley

and Ellis135. Similar inquiries in systems-biology modeling reveals that 37% of 455 investigated

mathematical models could not be reproduced, even with empirical correction or with the

support of the original authors136. Even more striking are the numbers stated by Kuenzi et

al. in their groundbreaking analysis “A census of pathway maps in cancer systems biology”80,

where they assessed to what degree publications of systems-biology approaches, which map
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and model cancer pathways, capture and extend current knowledge. They found that for

pathway maps used in cancer research, 96% of the publications they surveyed did not provide

enough information on their biological networks for automated processing. Many studies only

provided their networks in publication figures or in a way that omits vital information, for

instance details about which reported entities interact with each other80.

Reproducibility of research is significantly impaired when scientists do not disclose the

full information needed to recreate an experiment or investigate the correctness of published

results. Timothy M. Errington, a lead investigator of the “Reproducibility project: Cancer

biology”137 stated: “Perhaps the clearest finding from the project is that many papers include

too few details about their methods.”138. The project draws a “muddy” picture of the state of

reproducible science. This is especially true when publications show or use biological networks

whose origins are unknown and which cannot be accessed programmatically or at least be

recreated from the information provided80.

In the clinical context, where therapeutic decisions are more and more frequently based on

recent research results and clinical studies, the process of decision making has to be documented

in full. Keeping track of the steps taken to create biological network depictions that are used

in MTB meetings is challenging because of the wealth of online resources and the manual

processing steps applied to a chosen base network. In addition, such a network is often

only the starting point of an investigation into cellular processes that can be exploited for

patient treatment or therapeutic intervention. In these cases, the representation of the network

needs to encompass all necessary information for conducting further analysis. This so-called

provenance of a network needs to be recorded in such a way that it is accessible at any point

in time.

We use public datasets from The Cancer Genome Atlas (TCGA)139 to demonstrate how

SBML4j can act as data and metadata storage at the center of existing research efforts and

clinical decision processes. The TCGA project collected molecular data from 20,000 primary

cancer and corresponding control groups. Most of the data has access restrictions for certified

research consortia, while some datasets were put in the public domain to be used by anybody.

We downloaded a public dataset and preprocessed it using Python scripts that fetch them from

the TCGA web API139.

Then, they are used as scores for the software DeRegNet105, which calculates maximally

deregulated subnetworks in a provided source network. This source network is defined to be a

directed graph G = (V, E) with V denoting the nodes, or vertices, of the graph, and E ⊂ V × V

denoting the edges of the graph that connect two vertices. Each edge is represented by the two

vertices it connects as defined in Eq. 4.1. The direction of the edge is given by the ordering of
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the nodes, where the first node is the source and the second node in the notation denotes the

target of the edge.

(u, v) ∈ E⇔∃ edge e that connects node u ∈ V and node v ∈ V (4.1)

The result network was uploaded to SBML4j and connected to the provided base network.

Then, we added the provenance information regarding the settings and parameters of DeRegNet

to that newly created network.

Both the publication effort as well as the clinical decision system can then extract all

relevant data and metadata including the provenance of input data and network data from a

single source, namely the SBML4j service. This enables the peer review process to retrace the

experimental steps and evaluate the submitted work. At the same time, clinicians and medical

experts can verify the source and provenance of the provided candidate genes and base their

decisions for therapeutic interventions on solid evidence.

4.3 Materials and Methods

The research setting that has been set up for this project can be seen in Fig. 4.1. It consists of the

independent graph and data pipelines as well as the two standalone applications SBML4j and

DeRegNet105. The flow of data and metadata is shown by the green and red arrows, respectively.

The graph pipeline collects pathway maps from the KEGG database, translates them to the SBML

format and uploads these files to SBML4j to create a network resource. Provenance information

about the source of the network resource are stored alongside the network. This network

resource is preprocessed for the use with DeRegNet by filtering incompatible elements from the

graph. The data pipeline downloads biological data from the TCGA web service, preprocesses

the files to be used as scoring input to DeRegNet and annotates the network resource with these

data and available metadata. The network and the score data are provided to DeRegNet, which

calculates the maximally deregulated networks. We then uploaded these results to SBML4j

and annotated them with relevant provenance information about the DeRegNet application.

A clinical process like the MTB preparation phase or a publication effort in a research lab can

access the network resource as well as the provenance report directly from SBML4j.

4.3.1 Graph Pipeline

The graph pipeline (see Fig. 4.1) consists of multiple Python programs and makes use of

KEGGtranslator126 for translating between the KGML49 and the SBML format. Additionally,

a Python program is dedicated to preparing a network instance in SBML4j for the use with

DeRegnet. The sequence of requests and responses between these parts of the pipeline can be

seen in Fig. 4.2.
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Figure 4.1: Research pipeline for generating deregulated subnetworks from TCGA
data with SBML4j provenance tracking. The Graph Pipeline downloads pathway maps
from KEGG, translates and preprocesses them for SBML4j and combines them into a single
network resource. This network is further preprocessed for DeRegNet and made available
via the GraphML export. In the Data Pipeline biological data is collected from the TCGA
database, preprocessed and provided to DeRegNet. The result of DeRegNet is uploaded
to SBML4j and appropriate metadata added to the created network resource. Publication
and clinical processes can access the result networks and provenance reports directly from
SBML4j.
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KEGG Pathway Downloader

The KEGG pathway downloader (KPWD) is a Python program dedicated to searching and

downloading KEGG pathway maps in the KGML format from the KEGG API140, a RESTful

application interface to the KEGG data. To download a specific pathway map from the service,

a GET request to the URL http://rest.kegg.jp/get/<pathway-identifier>/kgml
(see Fig. 4.2A) can be sent, where <pathway-identifier> has to be replaced with the exact

identifier of a pathway map, including the organism code (e.g., hsa05200). KPWD allows to

specify a set of such pathway identifiers or search terms in a configuration file. Each pathway

in the provided set will be downloaded and stored on the local harddrive. If a search term

is provided, an additional call to the /find endpoint is sent, which returns a list of pathway

entries that contain the search term. Each of those pathways is then downloaded to the local

harddrive. In addition, KPWD creates a metadata file for each downloaded pathway file that

contains the reported creation date from KEGG, which is extracted from the KGML file as well

as the date of the download. These files are provided to a later stage of the pipeline (see

Fig. 4.2B), where their content is added to the corresponding objects in SBML4j as provenance

information to document the file origin.

Table 4.1: Pathway ids used for the creation of the base network and downloaded
by KPWD.

identifier definition
05210 Colorectal cancer
05212 Pancreatic cancer
05225 Hepatocellular carcinoma
05226 Gastric cancer
05214 Gslioma
05216 Thyroid cancer
05221 Acute myeloid leukemia
05220 Chronic myeloid leukemia
05217 Basal cell carcinoma
05218 Melanoma
05211 Renal cell carcinoma
05219 Bladder cancer
05215 Prostate cancer
05213 Endometrial cancer
05224 Breast cancer
05222 Small cell lung cancer
05223 Non-small cell lung cancer

The source code for KPWD is available in the GitHub repository https://github.com/
thortiede/KPWD, which gives instructions on how to configure and build the docker image
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1 docker run − i t −−volume=${PWD}/ data :/ data \
2 −−volume=${PWD}/ con f i g :/ con f i g \
3 kpwd examples/deregnet . i d s

Listing 4.1: Command to run the docker container KPWD. Runs the docker container
of name kpwd and passes the given file in the examples folder to the Python script. The
data folder will contain the downloaded pathway maps, the config folder contains the
config files and the example file listing the pathway ids.

that is being used here. The configuration file that is used with KPWD can be found in the

appendix as Listing E.6.

For this application, we configured KPWD to download all the pathways under section

6.2 Cancer: specific types of the KEGG pathway database141 (see Tab. 4.1). The run

command for KPWD is shown in Listing 4.1, while the provided file that contains the pathway

identifiers can be found on GitHub at https://github.com/thortiede/KPWD/config/
examples/deregnet.ids.

KEGGtranslator

Before the KEGG pathway maps can be uploaded to SBML4j they need to be translated into the

SBML format. KEGGtranslator126 is a command line tool to translate the KGML files from KEGG

into various other formats, including SBML. Here, we have used version 2.5 of KEGGtranslator.

The previously downloaded KGML files are provided to KEGGtranslator and the translation

process (Fig. 4.2C) is started. The command-line arguments to the KEGGtranslator application

can be found in the appendix in Listing E.3. A corresponding SBML file is created for each

KGML file in the input set.

SBML4j Initializer

The SBML4j Initializer is a Python program to populate an SBML4j database with a given set

of SBML models, combine those models in a PathwayCollection and create one or more

network mappings from this collection. For each SBML model a POST request is made to

SBML4j (see Fig. 4.2D) which creates a Pathway object in its database. The request includes

version information for the KEGG database from which this model was originally downloaded.

Additionally, metadata information about KEGGtranslator is collected (see Fig. 4.2E) and added

alongside the KGML Provenance information (see Fig. 4.2B) to each Pathway to ensure the

complete provenance of the data (see Fig. 4.2F). The returned UUIDs for the pathways are

collected and used in a POST request to create a PathwayCollection (see Fig. 4.2G). This

results in a new pathway object with a unique UUID, which gets returned to the caller. This

UUID is then used in another POST request (Fig. 4.2H) to create a signalling mapping from

this collection, whose UUID is then provided to the next step.
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Figure 4.2: Sequence diagram for the graph pipeline. A dispatch signal triggers the
download of KEGG pathway maps (A) which are translated to SBML by KEGGtranslator (B).
Provenance metadata from KEGG is provided to the initializer script (C) and combined
with metadata from KEGGtranslator (D). The SBML files are uploaded to SBML4j (E),
enriched with the collected metadata (F), combined to a PathwayCollection (G) and a
network mapping is created from it (H). With the UUID of that network, available filter
options can be requested from SBML4j and the network subsequently filtered (J). The
UUID of the finished network is reported to the original caller (K).
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The source code of the SBML4j Initializer is available in the GitHub repository https:
//github.com/thortiede/S4IWP, while the configuration file for this project can be found

in the appendix as Listing E.7.

Graph Preprocessing

The graph that is used for the calculation of subnetworks is assumed to have no self-loops, so

in the notation of Eq. 4.1 the edgeset E of the graph G has to satisfy the condition in Eq. 4.2105.

(v, v) /∈ E∀v ∈ V (4.2)

Any source network that is provided to DeRegNet must adhere to this restriction. As net-

works in SBML4j can contain self-loops, a preprocessing step that eliminates them has to be per-

formed. This is achieved by filtering out those relationships in a network for which source and

target nodes are equal. First, we request the network options of a base network from SBML4j via

the networks/<UUID>/options endpoint or the Python method network.getOptions()
(see Fig. 4.2J). From the resulting JSON response, the filter object contains a list element

named “relationSymbols” that contains all relation symbols in the network. We scanned these

symbols for relationships that have the same start and end node (see Listing 4.2). To accom-

plish this, the symbol is split at the “->” substring (line 2). The last element of the resulting

array contains the target node symbol (line 3). The substring of the symbol up to the “->”

string contains the source node symbol and the relation name (lines 4–5). Since the target

node symbol can be a substring of the source node symbol, a substring match for the target

node symbol on the source_and_type string does not suffice for self-loop detection. To

identify the full name of the source node of the relation, the source_and_type string is split

by the “-” character, which is used to separate the source node symbol from the relation name

(line 6). The last element in the resulting array is the name of the relation, since the relation

name does not contain dashes (line 6). The substring of source_and_type string that spans

from its start to the position that is one character before the beginning of the relation name

is then identified as the full source node symbol (line 7). If the source and target strings are

identical, the relation symbol denotes a self loop and the return value of True is returned,

False otherwise. We removed all relation symbols that are detected this way from the list

of relation symbols and used this updated list in the filter-options payload to a POST filter
call (see Fig. 4.2K) of the base network. The response contains the UUID of the final network

that will be used with DeRegNet and is returned to the calling agent of the graph pipeline (see

Fig. 4.2L).

The source code for the graph preprocessing can be found in the Python subfolder of the

DeRegNet Pipeline GitHub repository142 in the file DeRegNet_Graph_Preprocessing.py.
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1 def i s _ s e l f _ l o o p ( re la t ionSymbol ) :
2 pa r t s = re la t ionSymbol . s p l i t ( ’−> ’ )
3 t a r g e t = pa r t s [ len ( pa r t s )−1]
4 end = len ( re la t ionSymbol)−len ( t a r g e t )−2
5 source_and_type = re la t ionSymbol [0: end ]
6 relat ion_name = source_and_type . s p l i t ( "−" )[−1]
7 source = source_and_type [ : len ( source_and_type ) − len ( relat ion_name ) − 1]
8 i f source == t a r g e t :
9 return True
10 else :
11 return Fa l se

Listing 4.2: Python method to identify self-loops from a relation symbol obtained
from the filter options of an SBML4j network.

4.3.2 Data Pipeline

The data pipeline (see Fig. 4.1) starts with the Data Loader Python program that fetches data

and metadata from the TCGA API and stores both alongside the base network in SBML4j. The

data file is then passed on to the preprocessing script that extracts the relevant data points for

use with DeRegNet and creates a score file. The metadata about the preprocessing script is

added to the Provenance data of the base network and the processed score file is returned to

the calling agent. The sequence of requests and responses between these parts of the pipeline

can be seen in Fig. 4.3 and will be described in more detail in the following sections.

TCGA Datasets

In this project, publicly available research data from TCGA is used in a research pipeline,

specifically differential gene expression (DGE) data from the Clinical Proteomic Tumor Analysis

Consortium (CPTAC)143,144. The experimental strategy used for data generation was single-

cell RNA Sequencing and post-processing using the Seurat R package145. The datafiles are

tabular separated values (tsv) files, where the columns gene_names and avg_log2FC were of

interest for this work. A complete documentation of the file format can be found at the official

GitHub repository146. This dataset has been analysed by the consortium using the Seurat146

R toolkit and the differentially expressed genes were reported as logarithmic (base 2) fold

changes (Log2FC). The Log2FC value provides a measure for the differentially expressed genes

in tumor tissue compared to healthy tissue from control groups. Details on the analysis and

the specific patient cohort are outside of the scope of this work and the reader is referred to

the consortium143,144 for an in-depth analysis and report.

The gene_names column contains the HGNC symbol of the coding gene for the measured

mRNA and is used to match the data to the appropriate node in the SBML4j network upon

uploading the file for annotation. The avg_log2FC column holds the averaged Log2 Fold

Change value as calculated from the data by Seurat. It provides the fold change of gene

expression on a logarithmic scale. We used this value as score for the DeRegNet algorithm
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Figure 4.3: Sequence diagram for the data pipeline. (A) A dispatch signal to the Data
Loader triggers the download of a TCGA data file. (B) Metadata for the file and the TCGA
project is fetched from the TCGA API. (C) The file data is annotated on the prepared net-
work in SBML4j. (D) Collected Metadata from TCGA is added as Provenance information
to the network. (E) The downloaded file is provided to the preprocessing program via
the filesystem. (F) After preprocessing and creating the score file for DeRegNet, metadata
about this step is added to the network in SBML4j. (G) Score file is returned to the initial
caller.

for determining the deregulation of genes. To apply these scores to nodes in the network

in DeRegNet, we matched the entry in the column gene_names to the name attribute on

the nodes of the base network. For this application, we used the file with UUID 69a92ea6-

7d1e-4cac-a65f-b8afa2380e97 from this dataset. It can be accessed via the download URL

https://api.gdc.cancer.gov/data/69a92ea6-7d1e-4cac-a65f-b8afa2380e97.
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Data Loader

The Data Loader is a Python script that uses the package urllib3116 to make requests to the

TCGA API. For downloading individual files from this API, the TCGA UUID has to be known and

provided to the endpoint https://api.gdc.cancer.gov/data/<UUID> (see Fig. 4.3A).

The file is stored on the local harddrive, where the follow-up preprocessing script can access it

(see Fig. 4.3E).

In addition to the raw file, we fetched some metadata about the TCGA project and the

file itself from the TCGA API. Metadata about the file were extracted from the header fields

of the file download response. The filename is extracted from the Content-Disposition
header, while the Date of the download, the Content-Length and Content-MD5 head-

ers are stored in their entirety. Furthermore, the download URL and the UUID are stored

alongside this file metadata. To get the project metadata, we issue a GET request to the URL

https://api.gdc.cancer.gov/projects/CPTAC-3 (see Fig. 4.3B). The request includes

the parameter expand, which can be used to request details about sections of the project data.

We provided expand keywords for the summary, the experimental strategies and the

data categories of the project. The complete response of this request is stored in a Python

dictionary alongside the file metadata.

Then the raw data file is uploaded to SBML4j in a POST request to the endpoint /network
/<UUID>/csv (see Fig. 4.3C), which annotates all matching nodes with the provided data

columns in the file, where <UUID> is replaced by the UUID of the base network that was created

by the graph pipeline. We use the column gene_names to match the rows of the CSV file to

the graph nodes. This creates a new network instance in SBML4j in order to keep track of the

provenance steps that were performed on the data. The UUID of this new network is returned

at the end of the script to the calling module, which will provide the respective network to

DeRegNet for subnetwork calculation. Lastly, we upload the metadata dictionary in a POST

request to the SBML4j API endpoint /prov/<UUID> (see Fig. 4.3D). This adds all entries in

the dictionary to the Provenance Report of that network under the provenance item name that

corresponds to the UUID of the TCGA file. The <UUID> in this request corresponds to the

annotated base network that will be provided to DeRegNet and which is returned to the calling

agent upon completion of the pipeline (see Fig. 4.3F).

The data loader is part of the pipeline project on GitHub142 and can be found in the source

file TCGA_Data_Loader.py in the Python subfolder.

Data Preprocessing

A score file for DeRegNet needs to be a CSV file with two columns, where the first column is

named id and the second column is named score. The id column is used to match the score
value to the nodes in the graph within DeRegNet. Here, the gene_names column matches with

105

https://api.gdc.cancer.gov/data/<UUID>
https://api.gdc.cancer.gov/projects/CPTAC-3


4. Application: Network provenance in research pipelines

the name attribute on the network graph. The values in the gene_names and the avg_log2FC
columns are written to the output score file.

Details about this preprocessing, including the name and version of the script, the names

of the matching colum and the data column in the original file as well as the name of the

original file are provided as provenance information to the base network for DeRegNet in

SBML4j (see Fig. 4.3G). Finally, the score file is stored on the harddrive and made available to

the dispatching agent to be used in the call of DeRegNet (see Fig. 4.3H).

The source code for the data preprocessing can be found in the Python subfolder of the

DeRegNet Pipeline GitHub repository142 under the name TCGA_Data_Preprocessing.py.

4.3.3 DeRegNet

The software DeRegNet105 calculates deregulated subnetworks from a base network and pro-

vided score values that get interpreted as a deregulation measure. DeRegNet performs maxi-

mum likelihood estimation on a defined probalistic model that takes network connectedness

and topolgy into account to identify subgraphs in the given network. This optimization prob-

lem is solved with fractional integer programming and uses the software Gurobi147 for this

process. We used the latest version of the Gurobi solver, which at the time of writing is ver-

sion 9.5.2. It supports containerized environments using individual license tokens for each

container. For details on the algorithm and the various runtime options the reader is referred

to the publication105 and the offical GitHub repository148.

Here, we used the latest version “grb9.5.2” of DeRegNet, which is available from the first

author’s DockerHub repository149. For this application demonstration, all options except the

graph input were left at their default setting. The command that was used to run the DeRegNet

docker container can be seen in Listing 4.3. The input network to DeRegNet is a directed graph

without self-loops in the GraphML format, which is what the Graph Pipeline produced earlier.

The graph file to use is provided to DeRegNet on the command-line with the --graph option

(see Listing 4.3line4). Likewise, the score file that was created by the Data Pipeline is passed

to DeRegNet with the --scores option (see Listing 4.3line5). In addition, the character that

separates the columns in the scores file is provided to the --sep option and the name of the

node attribute that is to be used for matching the score provided to the graph is given in the

--graph-id-attr option (see Listing 4.3 lines 5&6).

The local directory io/ is passed to the container environment for facilitating data input

and output from and to the host machine (see Listing 4.3line1). The input folder must contain

the result of the Graph Pipeline in the file network.graphml and the result of the Data

Pipeline in the file scores.csv. The result of DeRegNet is in our case a single graphml file

that contains the optimal solution produced by the algorithm and will then be placed in the
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1 docker run - i t - - rm - v $(pwd}/ i o :/ i o \
2 - v $/path/ to /gurobi / l i c e n s e :/ gurobi / l i c \
3 sebwink/deregnet : grb9 . 5 . 2 avgdrgnt . py \
4 - - graph / i o / in /network . graphml \
5 - - s co re s / i o / in / score . csv \
6 - - sep ’ ; ’ \
7 - - graph - id - a t t r name \
8 - - output - path / i o /out

Listing 4.3: Command-line execution of the DeRegNet docker container with the
graph and scores produced in this work.

out/ subdirectory. The license file for the Gurobi solver was made available to the container

environment in the folder /gurobi/lic (see Listing 4.3 line 2).

4.3.4 SBML4j

In this work, SBML4j version 1.2.2 has been used. It is executed through the docker-compose

setup found on GitHub113 and uses version v1.0.0 of that repository. The setup configures

and starts SBML4j in the required version as a docker container. In addition, the official Neo4j

docker image150 version 4.1.6 is started and configured according to the configuration file

in the repository.

After initialization as described in the repository, no further action is required. We use

an empty database and start the compose setup with docker-compose up –attach-dependencies

sbml4j. This ensures that the console output of all containers is displayed on the terminal.

4.3.5 Pipeline Orchestration

The modules of this research pipeline need to be executed in the correct order. With an instance

of SBML4j running with an empty database, we execute KPWD, KEGGtranslator and the SBML4j

Initializer as described in this work.

As these three steps are the most time consuming, we used the ./sbml4j.sh script from

the sbml4j-compose repository to store the database state in a backup for later use. We provided

the script with the option -b deregnet_base_mapping_prov, which creates two .dump files

in the subfolder db_backups. This backup can be restored at a later time with the command

./sbml4j.sh -r deregnet_base_mapping_prov in the sbml4j-compose main directory.

The rest of the Research Pipeline is executed using a set of shell scripts that can be found

in the GitHub repository142. In this work we used version v1.0.0 of this repository. The main

script run_pipeline.sh runs the Python modules Data Loader, Data Preprocessing
and Graph Preprocessing sequentially. Then it calls the script that executes the previ-

ously configured DeRegNet docker container. After DeRegNet has finished, two additional

Python scripts are executed that upload the result network and annotate it with metadata
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information about the tool. After the pipeline finishes successfully, the result folder con-

tains the three result files optimal.graphml, optimal_uuid, and optimal_prov.json.

The file optimal.graphml contains the solution network that was created by DeRegNet.

The file optimal_uuid contains the UUID of that same solution network in SBML4j and

optimal_prov.json contains the provenance report of the solution network in JSON for-

mat.

4.4 Results

The three result files optimal.graphml, optimal_uuid, and optimal_prov.json that

are produced by the pipeline in this work contain the main results of the research setting

presented here. The optimal solution network that has been calculated by the DeRegNet

algorithm is available as GraphML output in the file optimal.graphml. It can also be retrieved

from the SBML4j service using the UUID that can be found in the file optimal_uuid. A

detailed provenance report that traces the origins of the result network all the way back to

the original input files from KEGG and TCGA is available in the file optimal_prov.json. It

can also be downloaded from SBML4j using the same UUID as before in a GET request to the

/prov/<UUID> endpoint of the running instance.

4.4.1 Result Network

The result network from the DeRegNet calculation can be seen in Fig. 4.4. It has been visualized

using BioGraphVisart125.

The color of the nodes show the deregnet_score, which corresponds to the reported

avg_Log2FC fold change value in the data from TCGA. It shows deregulated cascades starting

at the gene with the HGNC symbol FGFR2 and ending in various upregulated target genes. The

biological interpretation of this network is outside the scope of this work and serves purely a

demonstration purpose.

4.4.2 Provenance Report

The Provenance report for this network contains all added metadata throughout the pipelines

and gives a detailed listing of all source files, transformations and analysis steps that have

been performed to reach this network. A visual representation of the contents of the report is

shown in Fig. 4.5, while the report itself is in JSON format, with each layer corresponding to

subelements of the previous element, thus giving the typical nested structure of the format. The

JSON formatted Provenance report can be found in the appendix as Listing E.8. For brevity, only

one Pathway section with nested SBMLfile section is included in the report (see Listing E.8

lines 437–614) and the entries for nodeSymbols and relationSymbols are trimmed to two

108



Results

Figure 4.4: Result network from DeRegNet. Color of the nodes shows the deregulation
score, arrows denote stimulation signals.

entries each (see Listing E.8 lines 120–129). The untrimmed provenance report can be found

in the result folder of the Pipeline GitHub repository142.
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Figure 4.5: Visualization of the contents of the Provenance report. Green Boxes
represent sections of the report that describe entities in the database. The vertical arrows
indicate a nested relation of the elements with respect to the upper element being derived
from the lower element. Red Circles indicate Metadata that are added to the elements via
provenance upload, with the bend arrows indicating at which element they are attached.
SBML input files are the initial entry and include provenance information about the original
datasource.

The top most layer (see Fig. 4.5A) represents the network entity that has been created by

uploading the DeRegNet optimal solution results file to SBML4j. It is accompanied by metadata

information about the DeRegNet application and its configuration, if applicable. As DeRegNet

has been run with default options, no additional metadata apart from the application info
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is provided (see Listing E.8 lines 1–23). The next layer describes the base network that was

created by the last step in the Graph Pipeline (see Fig. 4.5B). This network is the result of a

standard filtering operation for which the request parameters as well as the complete body of

the request are included in the report (see Listing E.8 lines 87–132).

The output of the data pipeline serves as parent network for this filtering operation, which

is generated by the Data Preprocessing Python program (see Fig. 4.5C). It is annotated with

provenance data concerning the preprocessing step (see Listing E.8 lines 184–191) as well as

metadata about the file containing the annotation data and provenance information about the

TCGA source (see Listing E.8 lines 135–183).

The network that served as basis for the Data Preprocessing Pipeline is depicted by the Base
Net element (see Fig. 4.5D). It is the result of a mapping processing from a Pathway entity in

SBML4j and its provenance information includes details about the request that triggered the

mapping creation (see Listing E.8 lines 251–308).

The pathway from which the mapping is derived is a collection of smaller pathways (see

Fig. 4.5E), whose creation is tracked by details about the request to the SBMl4j API for building

this collection pathway (see Listing E.8 lines 311–375). It includes a list of all UUID of the path-

ways that are collected, and is internally derived from an entity of type PathwayCollection
(see Listing E.8 lines 376–436).

For each of the pathways that were collected a list entry is present in the provenance report

(see Fig. 4.5F). For illustration the entry for one pathway is included in the provenance report

(see Listing E.8 lines 439–466), while the others are left out for brevity. Each pathway is

generated by a POST request to the /sbml endpoint of SBML4j, whose provenance details are

part of the report (see Listing E.8 lines 471–500).

The SBML file (see Fig. 4.5H) that was uploaded in this request is represented in the

provenance report by a File type (see Fig. 4.5G), for which default metadata like the filename

and MD5 sum are collected in SBML4j by handling the POST request itself (see Listing E.8

lines 529–534). Additional provenance information about the file’s origin (see Listing E.8

lines 504–510) as well as the translation operation using KEGGtranslator (see Listing E.8 lines

512–525) is added to the report entry.

4.5 Discussion and Conclusion

The application DeRegNet calculates maximally deregulated subnetworks from a given base

network and provided deregulation scores on the nodes of this network. DeRegNet provides

a precalculated base network that was derived from the pathways of the KEGG pathways

database. This provided base network is created with hand-crafted procedures and scripts,

which are available at the GitHub repository of DeRegNet148. When DeRegNet is used by

other researchers who want to calculate deregulated networks on the pathways of KEGG, they
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can make use of this provided base network. However, when reporting their results in their

publications, they can only refer back to this provided base network and the scripts that were

used to create them as the source for their calculations. Tracing back the results to the exact

version of the KEGG pathways database is cumbersome and makes evidence-based decisions

rely on a single source of truth, in this case the pre-calculated base network that DeRegNet

provides for KEGG.

In comparison, the base network provided by SBML4j comes with a complete provenance

report that details the source files, their origin and KEGG version, the way the network has

been created from these source files with SBML4j as well as the transformation steps that have

been performed during this process. This allows for a more reliable recreation of the base

network, which results in an increased reproducibility.

In the same manner, information about the biological data, which is used to create the

deregulation scores that are used by the algorithm can be stored in SBML4j alongside the

network data. CSV data from external sources can be added to any network in the service and

provenance information about the source of the data files ensures reproducibility.

With the ability to upload not only SBML files but also GraphML-based networks, SBML4j

can track the provenance of biological networks even when networks are consumed and created

by external applications, as has been shown here with DeRegNet. The result network from

DeRegNet can be provided to SBML4j and linked to the base network to allow a complete

provenance history of the deregulated network.

With the support for the widely used GraphML format, many network-oriented research

applications can already make use of this feature of SBMl4j. The support of more graph formats,

like the LEMON151 Graph Format152 and the Simple Interchange Format153 could open

this up to even more applications in the bioinformatics and medical informatics disciplines and

could be a viable direction for the development of SBML4j.

There is still manual work required to fully annotate the result network and all previous

steps in the process. The scientist is responsible to add appropriate metadata as provenance

information to individual steps. However, this manual work can be integrated in the workflow

during creation of the base network and the calculation of the results. This enables the au-

tomation of these steps and helps to clearly define the necessary inputs for the achieved result.

Once a deregulated network has been calculated and stored in SBML4j, its contents and the

accompanying provenance report are available through the RESTful interface. This enhances

the reproducibility of the results and makes scientific findings with DeRegNet more reliable for

publications and clinical investigations. With the versatile graph interchange format GraphML,

a network that is downloaded from SBML4j can be programmatically analysed, visualized and

used in follow-up work.

The provenance report of such a network can be made available in publications, which

enables other researchers to trace back the steps necessary for recreating the work. This report
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can also serve as evidence for clinical decision systems, where therapeutic advice is based on

biological network knowledge that has been provided by researchers using SBML4j.

With these mechanisms, SBML4j provides a central provenance repository for biological

networks. It can provide networks and their detailed provenance to applications and publica-

tions. At the same time, it serves as central storage and provenance repository for networks

that are created by any application and uploaded to SBML4j. This makes SBML4j and the

accompanying pipeline tools presented here valuable software packages for any research lab

that aims to improve their reproducibility.
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Chapter 5

Application: Personalized Cancer and

Network Explorer – PeCaX

The content of this chapter is an extended version of the article:

Figaschewski M., Sürün B., Tiede, T., Kohlbacher O.:

The Personalized Cancer Network Explorer (PeCaX) as a visual analytics tool to support

molecular tumor boards154

5.1 Introduction

Cancer is typically caused by genomic alterations inducing unchecked cellular proliferation. In

personalized oncology155, molecular data (e.g., genomics) is used jointly with clinical data to

stratify therapies and choose the therapy best-suited for a specific patient. Next Generation

Sequencing (NGS) is widely used to find those genomic alterations, such as single-nucleotide

variants (SNVs), copy number variations (CNVs), or gene fusions.

Based on this data, the typical analysis workflow is usually as follows:

1. The (cancer) genome of a patient is sequenced and the SNVs and CNVs are stored in a

Variant Call Format (VCF) file.

2. Variants are annotated with their effect.

3. Usually only variants with a strong effect are considered.

4. The remaining variants are looked up in databases to identify driver genes and to find

drugs associated with these potential targets.
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5. If no drug can be found for this specific variant or it is not applicable for the patient,

pathways containing the related gene are considered to find druggable targets up- or

downstream of the actionable variant.

This process of revealing drug-gene information based on the variant annotations and incor-

porating pharmacogenomics information which is an indicator of the effect of the genes on a

patient’s drug response is called clinical annotation.

5.2 Background

Numerous tools exist for displaying and storing the information of a VCF file in the common tab

separated values format (step 1) and to filter the variants for given annotations (step 3), e.g.

VCF-Miner156, BrowseVCF157, VCF-Explorer158. But only few applications include the analysis

of the SNVs and CNVs and the annotation of the variant effect (step 2), e.g. VCF-Server159.

Perera-Bel et al. offer the additional option to find drugs targeting the variants (step 4) but

their method does not perform variant effect prediction (step 2) and is limited to a specific

data structure160. It also lacks a graphical user interface (GUI). OncoPDSS performs steps 1 to

4 but it is a web-server which can be a data security issue. Therefore, OncoPDSS does not store

the input or results of the analysis161. These are displayed in unsearchable tables focusing on

information about available pharmacotherapies which can be downloaded as TSV files. But it

does not give information on the pathway context of a gene. So far, this information has to be

collected manually.

We present PeCaX (Personalized Cancer Network Explorer), an integrated application for

personalized oncology workflows. PeCaX performs clinical variant annotation by processing

SNVs and CNVs and identifying clinically relevant variants and their targeting therapeutics

using ClinVAP162. Networks containing the connections between the driver genes and the genes

in their neighborhood as well as drugs targeting genes in this network are created through

the novel SBML4j114 and they are visualized with the use of BioGraphVisart125, developed

specifically for PeCaX. Our user-friendly, web-based graphical user interface does not only

interactively display the report generated by ClinVAP and the networks with a few clicks, but

adds web links to external gene and drug databases and gives the option to take notes which

are stored in PeCaX along with the information presented in the tables and networks. This, for

instance, allows the user to interactively work on and present the results in Molecular Tumor

Board (MTB) meetings where oncologists and clinicians of different areas meet and discuss

individual case files. The report can be downloaded as PDFs. In addition, the networks are

available for download in publication-ready file formats (PNG, SVG and GraphML).
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In contrast to many VCF-analysis and clinical decision support tools, PeCaX is a local ap-

plication with a graphical user interface working on the user’s local machine avoiding data

privacy issues arising from the use of cloud-based services.

5.3 Implementation

Technical Overview

PeCaX is a service-oriented local application and has been built using the NuxtJS framework

for its web-based front end and integrates several other local services developed by us via REST

APIs (see Fig. 5.1).

It was developed in close interaction with persons responsible for MTB case management,

scientific analysis, case preparation, and presentation at the University Hospital Tübingen to

ensure a user-friendly user interface. It supports concurrent use and works on any modern web

browser independent of the operating system. Its design as a web service allows access from

browsers not running on the same machine as the service. Sensitive data is only processed

on the machine PeCaX is installed on, not the machines that access it with the GUI. It is easy

to deploy via pre-built docker containers and easily integrated using docker compose. The

individual docker containers and the communication via REST APIs allow to update the services

individually without the need to setup everything from the start.

5.3.1 Clinical Variant Annotation

The first major task that is performed by PeCaX is the annotation of clinical variants based on

provided VCF files. These provide information on SNVs. Optionally, a TSV file can be provided

that contains CNV information. The validity of files to be uploaded is checked by the filename

extension (.vcf, .tsv). If an uploaded file contains semantic or syntactic errors, the analysis

process is aborted and the user is notified that the input file is corrupt.

PeCaX integrates ClinVAP to create a case report by processing variants using functional

and clinical annotations of the genomic aberrations observed in a patient. ClinVAP employs

Ensemble Variant Effect Predictor (VEP)163 to obtain functional effects of the observed variants

and filters them based on the severity of the predictions.

It also performs clinical annotation which reveals the driver genes, actionable targets and

enriches them with their known therapeutic associations using an integrated knowledge base

from publicly available databases (e.g., COSMIC164, CGI165). Moreover, it provides an option

to filter the results based on the diagnosis type given as ICD10 code which was achieved by

obtaining the gene-disease links from the background databases and mapping those diseases to

their corresponding ICD10 codes. The mapping between the disease names from the databases

and from ICD10 is done by matching their disease related features such as system, organ,
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Figure 5.1: Architecture of PeCaX. PeCaX consists of five building blocks. The
GUI is repsonsible for data input and out and presentation of the results to the user.
The Data Management is responsible for keeping all relevant data available. The
Variant Annotation processes the input files and generates the variant report. The
Network repository creates and stores the neighborhood networks. The Network
Visualization is responsible for providing interactive visualizations of the network
within the GUI.

histology type. As soon as the annotation is finished the variant files are deleted and PeCaX

receives the resulting report as JSON file with information structured into five categories:

known driver genes, drugs targeting the variants, therapeutics targeting the affected genes,

cancer drugs targeting the mutated genes, and drugs with known adverse effects.

5.3.2 Network Generation

Cancer is a complex and heterogeneous disease typically caused by genomic alterations. Even

a single mutation can modulate the complex interaction network of genes to cause cancer
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1 import pysbml4j
2 import os
3
4 c l i e n t = pysbml4j . Sbml4j ()
5 f i l e P a t h = " / abso lu te /path/ to /sbml/model/ "
6
7 pathwayUUIDs = []
8 f i l e l i s t = os . l i s t d i r ( f i l e P a t h )
9 for f i l e in f i l e l i s t :
10 f u l l f i l e n a m e = os . path . j o i n ( f i l e P a t h , f i l e )
11 resp = c l i e n t . uploadSBML ( [ f u l l f i l e n a m e ] , " hsa " , "KEGG" , " 97.0 " )
12 pwuuids . append ( resp . get ( f u l l f i l e n a m e ) . get ( " uuid " ))

Listing 5.1: Upload translated KEGG pathway models to SBML4j in python using
pysbml4j.

phenotypes. Since these mutations can occur in arbitrary genes, it is useful to understand

the role of the altered genes in their physiological context, i.e., within the context of their

regulatory networks. By examining the network neighborhood of an altered gene, potential

new treatment approaches can be identified for patients without other treatment options (e.g.,

through targeted therapies). Examining the interplay of gene-drug interactions using networks

gives insights into the effect of an intervention, for example, for a patient resistant to a drug.

If the altered gene is not a drug target or cannot be targeted because of drug resistance or

intolerance of the patient, the genes up- or downstream of it might be suitable drug targets.

Setting up SBML4j for PeCaX

The networks are provided by an instance of SBML4j. Before the first use of SBML4j, the

required volumes for the database need to be set up. This can be done with the shell script

./sbml4j.sh -i at the root folder of the pecax-compose project. It will create the three

volumes sbml4j_service_vol, sbml4j_neo4j_vol and sbml4j_documentation_vol,

which are used to store the SBML4j logfiles, the neo4j database files and the API-documentation

data, respectively.

For security reasons, the SBML4j service is not exposed to the host machine by default when

PeCaX is run via the docker-compose setup. A direct interaction with SBML4j is necessary to

populate the database with data. This can be enabled by temporarily exposing the SBML4j

port on the host machine via the appropriate setting in the docker-compose.yml file.

The database of SBML4j is populated with 61 cancer-related pathways from the KEGG

pathway database (see Tables 3.6 and 3.7).

Those pathway files were downloaded in the KGML format from the KEGG website and

translated to SBML using KEGGtranslator in version 2.5126,127. The command, including all

command-line arguments for the translation with KEGGtranslator are listed in the appendix

under Listing E.3.
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1 collUUID = c l i e n t . c rea tePa thwayCol lec t ion (
2 "KEGG61−97.0 " ,
3 " C o l l e c t i o n pathway f o r a l l 61 KEGG pathways " ,
4 pathwayUUIDs
5 )

Listing 5.2: Python command for creating a collection for the previously uploaded
pathways

1 resp = c l i e n t . mapPathway( collUUID , "PATHWAYMAPPING" , "PWM−KEGG−61PW" )

Listing 5.3: Python command for creating a network mapping of the artifical type
PATHWAYMAPPING from the previously created pathway collection.

After translation, the SBML models were uploaded to the SBML4j REST interface using

python (see Listing 5.1). To be able to upload the models, the SBML4j service and the database

container need to be running on the host. They will start up alongside PeCaX when docker
compose up pecax is run, or can be started separately with the command docker compose
up sbml4j.

These 61 pathways are collected in a PathwayCollection (see Listing 5.2) and a network

mapping is created from this collection (see Listing 5.3). The mapping has the artificial type

“PATHWAYMAPPING”, which includes all available node types, relationship types as well as

reactions and their reaction partners. This provides a comprehensive overview of many cellular

processes that affect the development and sustainability of malignant carcinoma.

As a final preparation step, Drug-Target information was added to the created network

mapping. This information was taken from DrugBank166. The specific data can be found

in the “Drug target identifiers” file for all approved drug groups, which can be downloaded

from the DrugBank website167. This will allow a broad view on available and possible drugs

and the genes and gene products they target. This data was combined with the DrugBank

vocabulary to map the DrugBankID of drugs to their name, which is available at https:
//go.drugbank.com/releases/latest#open-data.

An R script has been used to combine the two files and prepare the data for upload to

SBML4j and can be found in the appendix under Listing E.9.

The resulting file “drug_genes_approved.csv” can then be provided as annotation data for

the previously created network mapping. The file is uploaded to the /networks/<UUID>/csv
endpoint, where <UUID> is to be replaced by the UUID of mapping that has been created earlier.

With Python, this network can be selected by its name and the annotation file provided to the

addCsvData method on this network. All network nodes, whose names match the values of

the configured symbol-column in the CSV-file are annotated. A boolean annotation with the

name “Drugtarget” indicates that a node has been matched. It receives additional annotation

elements with the column data from the CSV-file. The “networkname”-parameter is used to
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name the resulting network of this annotation operation. The network will be created as

new instance and will be derived from the initial network that is used for annotation (i.e.,

PWM-KEGG-61PW).

After this operation finished successfully, the SBML4j database contains a network mapping

named “PeCaX-Base”, which is enriched with drug-target information from Drugbank in the

form of node annotations.

SBML4j is configured to use the network with this name as base network when using the

/overview-endpoint. The neighborhood networks that are created during the analysis of

PeCaX are derived from this network.

After the successful creation and configuration of the SBML4j database, the exposed port

was closed again to prevent unauthorized access to the network data. Before starting the PeCaX

application with the initialized network database, a backup of this state was created using the

provided shell script and the command ./sbml4j.sh -b PeCaX-Base.

Retrieving Networks from SBML4j

For each table in the ClinVAP report, a list of genes is assembled and provided to the /overview
endpoint in a POST request.

A GET request to the same endpoint /overview with the parameter “name” matching the

provided name during creation (i.e., “Drivergene_network”) will retrieve the network in the

GraphML format. A HTTP response with code 204 is returned, if the creation of the overview

network is not yet finished.

5.3.3 Interactive Graphical User Interface

PeCaX provides a simple graphical user interface to upload variants and display the results. The

report generated by ClinVAP is displayed in an interactive tabular form next to the networks

generated by SBML4j.

For an easier analysis of the networks, they are visualized as network graphs using Bi-

oGraphVisart125. The goal of the network analysis is to not only see the individual component

but also the local neighborhood crosstalk with known pathways, and nearby options for thera-

peutic intervention (druggable genes). BioGraphVisart is a web-based tool written in Javascript.

It automates the layout of the network graph, the labeling of nodes (genes, drugs) and edges

(interactions), the edge style for different interaction types, the node coloring according to

easily modifiable node attributes, and the generation of legends. In addition, human genes

and proteins can be grouped with respect to predefined pathways from KEGG.
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5.3.4 Data Management

The user has to give a project name before starting analysis. This name is used to create a

collection in the local database (ArangoDB) used for data management. By that, the user can

perform multiple analyses gathered in one collection, e.g., different patients presented in one

MTB session. When an analysis is started, the uploaded data and set parameters are sent via

REST API to the ClinVAP container and a unique job id is generated to store the parameters.

The uploaded data is only stored during the clinical annotation and is removed once the process

finishes. The results of the analysis as well as the ids of the networks generated with SBML4j

are stored related to the job ID. The networks themselves are stored in the network database.

5.3.5 Deployment

PeCaX can be installed locally on a personal computer or for groups of users in an access con-

trolled intranet. Containerization enables convenient deployment without complex software

installation and configuration.

5.4 Results

Overview of PeCaX

PeCaX is a comprehensive GUI-based clinical decision support tool that requires no program-

ming knowledge. Users can perform clinical annotation and gene drug interaction network

analysis via the interactive graphical interface. PeCaX provides data security as it comes in

Docker containers and all analyses are performed on local infrastructure. It is supported by all

modern web browsers across platforms. Hence, it is easily integrated into diagnostic and MTB

workflows to investigate the relevance of single variants, complete cases or cohorts, e.g. from

GWAS.

We provide a web page with example data for demonstration purpose only at https:
//pecax.informatik.uni-tuebingen.de.

Data Upload

To annotate and analyze a data set, PeCaX requires (local) submission of the data. All data

is assigned to a specific project, a generic way of grouping data sets and results (e.g., one

project per tumor board meeting or for one tumor entity). PeCaX requires one VCF file as input

containing information on SNVs and (optionally) a TSV file containing information on CNVs.

The specification of the VCF file has to adhere to the fileformat definition of VCFv4.1168

or higher for PeCaX to be able to interpret the contained data. The following columns have to

be present in tab-delimited format: CHROM, POS, ID, REF, ALT, QUAL, FILTER, INFO, FORMAT.
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Mandatory data columns are CHROM, POS, REF, and ALT, while the other columns will be

ignored by PeCaX. The optional file containing information about copy number variations has

to be formatted as tab-delimited text file with file extension .tsv and contain the fields size,

type, copy_number, gene, exons, transcript, chr, start, end, effect. The required

columns for successful application of the contained CNV information are the type and gene
columns, where the gene is to be provided in HGNC gene nomenclature. Example data for

both formats can be found at the official GitHub repository for PeCaX169.

In addition, the assembly of the human reference genome used in the mapping of the

sequencing data is required (both GRCh37 and GRCh38 are supported). The clinical variant

annotation can be filtered by a pre-selected cancer diagnosis given as ICD10 code. After

uploading, the data is automatically submitted to a local instance of ClinVAP. In order to ensure

data privacy, the VCF files are removed from the containers after processing by ClinVAP. The

results of the variant annotation are stored in the project database in JSON format together

with associated metadata (e.g., project name and the job ID). The user can also upload a JSON

file from an earlier analysis which will skip ClinVAP and populate the data tables and networks

from the data contained in the provided file and the linked networks. Alternatively, a job ID

of an already executed analysis can be entered at the startpage. This reopens the associated

session in the UI and loads the linked networks from the network database. These job IDs

can be inspected on a dedicated subpage for each project where the user can select and delete

them individually. Deletion of a job ID removes all information stored for this ID in the project

database as well as the generated networks from the network database to ensure data privacy.

Interactive Visualizations

The results of the clinical variant annotation performed is structured into several sections,

which are all rendered as interactive, responsive tables. The first section contains the list of

known cancer driver genes along with the somatic mutations observed in the patient. The

list of drugs with the evidence of targeting a specific variant of the mutated gene and the

documented drug response for the given mutational profile are displayed in the second section.

The third section contains information on somatic mutations in pharmaceutical target affected

genes and consists of two tables: therapies that have evidence of targeting the affected gene

and the list of cancer drugs targeting the mutated gene. The fifth section contains the list of

drugs with known adverse effects. References supporting the results found are displayed in a

sixth section and all the somatic variants of the patient with their dbSNP and COSMIC IDs are

listed in the last section.

Figure 5.2 shows an example table of the results visualization. Each column of each

table can be queried, filtered and sorted individually (Figure 5.2 (1)). The interactive table

view supports a wide range of table operations in order to simplify navigation of the data,
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Figure 5.2: Interface for the interactive visualization of a table. (1) Filter table. (2)
Sort table or hide/show column. (3) Highlight row across all tables by gene. (4) Genes
and mutations are linked to external databases. (5) User can take notes which are saved.
(6) Download table as PDF. (7) References directly link to their PubMed or clinicaltrials.gov
entry.

for example, hiding/showing columns (Figure 5.2 (2)), highlighting of rows across sections

(Figure 5.2 (3)). For each gene listed, the tables contain links to various external data sources

such as Uniprot170, KEGG44 or Ensembl171. The links can be accessed via the drop-down menu

next to the gene symbol highlighting of rows across sections (Figure 5.2 (3)) and open in a

separate browser tab or window. Likewise, the references given in the tables are directly linked

to the web page of the related publication on PubMed or clinicaltrials.gov highlighting of rows

across sections (Figure 5.2 (7)). At the end of each section, users can add notes to be stored

along with the annotated data in the internal database highlighting of rows across sections

(Figure 5.2 (5)). These notes can be used to record conclusions from the analysis of the data

and can be downloaded together with the table as PDF highlighting of rows across sections

(Figure 5.2 (6)).

When at least one gene symbol of a table can be associated with an entry in the SBML4j

database, a network for this table will be generated and is displayed next to it (see Figure 5.3).

The networks consist of nodes (genes, drugs) and edges (interactions). Genes found in the

table are colored red and labelled with the gene symbol. Drugs associated with any of the genes

in the network are represented as diamonds and are labelled with the drug name (Figure 5.3
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Input file Clinical Annotation Network Generation Overall
VCF 45.48 58.19 91.83
VCF + TSV 177.38 203.38 352.36
Overall 103.19 121.71 205.81

Table 5.1: Average processing time [s].

(1)). If multiple drugs have the same gene target, they are merged into one node which is

expandable in order to make the network representation visually more concise. Different

interaction types (e.g., signaling, regulation) are depicted by different edge styles (Figure 5.3

(2)). If two nodes have multiple interactions, their edges are merged into one, which can be

deactivated by the user (Figure 5.3 (3)). Since drug and gene names may become very long,

they are shortened and moving the mouse over a node reveals the full node name. Edge types

are treated in the same manner (Figure 5.3 (4)). The layout can be changed by the user based

on five different layout types or the user can drag the nodes or the whole network manually

to arrange them in the most informative layout (Figure 5.3 (7)). The nodes are searchable by

the node label (Figure 5.3 (9)) and deletable including connected edges. Gene nodes can be

grouped and highlighted by associated KEGG pathways (Figure 5.3 (5)). A mouse click on a

drug node links to an overview page with links to external databases containing information

on this drug such as Drugbank166, HGNC172, and PDB173.

Exporting Tables and Networks

The clinical variant annotation report including the stored user-created notes and manual

annotations can be downloaded as a whole in PDF and JSON format or every table individually

in PDF format (Figure 5.2 (6)).

The gene drug interaction networks are available for download individually in the formats

PNG, SVG (Figure 5.3 (12)) and GraphML.

Performance

From submitting a VCF file until the full report is displayed, PeCaX takes about 92 s on average.

Clinical annotation takes 45.48 s on average, while network generation is finished after 58.19 s

on average. For a VCF-file in combination with a related TSV-file, average computation time

increases to 352 s. Overall, PeCaX needs 205 s on average for the analysis of the data until

the results are displayed. A detailed performance evaluation of the processing time for the

example data can be found in the appendix in table D.3. A detailed performance evaluation of

ClinVAP and the results of a stress-test on large-scale data have been published previously162.
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Figure 5.3: Interface for the visualization of a network. (1) Gene nodes have a circle
shape, drug nodes a diamond shape. Multiple drugs targeting the same gene can be
collapsed into one node. (2) Edge style legend. (3) Collapse/expand multiple edges
between two nodes. (4) Moving the mouse over an edge displays the interactions. Moving
it over a node displays the node label and secondary names. (5) Group nodes by KEGG
pathways. (6) Selection of node color attribute. (7) Layout selection. (8) Highlight
Boolean node attribute by node shape. (9) Search a node by its label and highlight it.
(10) Withdrawal of node deletion achieved by right click on a node. (11) The network
itself and each individual node can be dragged. The layout can be reset. (12) Download
of the visualization in the formats PNG, SVG.

5.5 Conclusion

The individual nature of the genomic alterations causing cancer directly implies a personalized,

or at least stratified approach to treating cancer if the underlying alterations are known. With

the rapid drop in sequencing cost, sequencing has become routine for most cancers, but the

interpretation of this data is still a major hurdle to clinical implementation of personalized

oncology.

With PeCaX we present a novel tool for the exploration of the mutational landscape of a

cancer patient and for treatment hypothesis generation. It is deployed in Docker containers

guaranteeing full reproducibility independent of the operating system and as it is a local

application it ensures data security and privacy. A local results database is used to keep track

of the results and notes taken by the user. The combination of clinical variant annotation, gene

drug interaction networks visualizing somatic variants in their pathway context and interactive

web-based visualizations makes PeCaX unique and ensures ease of use for all users without the
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requirement of programming experience. Its service-oriented architecture, the front end, the

graph database in the back end, and the interactive graph visualization components constitute

significant developments and in their combination in PeCaX a significant advancement over the

mere tabular annotation of somatic variants. PeCaX supports the diagnostic workflow, e.g. in

a Molecular Tumor Board, to reach transparent personalized therapeutic decisions in a shorter

amount of time.

In the future, we plan to allow the upload of multiple VCF files at once for an easier com-

parison between patients. PeCaX might also include information on the patient’s background

provided by the user, e.g., gender, age, and previous therapies. Additionally, a quantitative

usability study needs to be performed.
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Chapter 6

Conclusion and Outlook

Elucidating the impact on the cellular machinery of one or multiple genes, of mutations in

their sequence and aberrations in their expression is a non-trivial task. The interplay between

the individual components of the cellular processes is complex and their consequences cannot

be detected easily. To help scientists and clinicians to find these types of impacts and discover

emerging properties, the processes as a whole have to be considered. A useful tool in this

endeavor are biological networks that represent the molecular entities as nodes and the inter-

actions as relationships or edges between them. Unfortunately, many research publications

deem the reproducibility of their networks of lower importance than the findings they made

using these networks. In the clinical setting, where complex diseases demand for innovative

treatment plans and uncharted pharmaceutical interventions, these types of networks are be-

coming ever more important. Personalized medicine is looking at the disease mechanisms as a

whole and searches for drug targets at one point in the cellular machinery that may have an

effect at an entirely different location.

To tackle this twofold problem, biological networks must therefore, on the one hand, be-

come more reproducible and, on the other hand, need to be easily accessible for clinicians

and researchers. With SBML4j we provide a single network resource that addresses both these

challenges. As a service-oriented application, SBML4j offers widely used and standardized

access methods in the form of a RESTful interface and an intuitive custom python client library.

With these, existing toolchains and research pipelines can use SBML4j as a central storage of

biological network information with the capabilities for creating knowledge-driven neighbor-

hood networks and shortest-path calculations. By providing means for annotating the networks

with arbitrary data in a privacy preserving way, SBML4j can be used to map sensitive patient

data for personalized exploratory analysis. We integrated SBML4j in PeCaX, the clinical variant

exploration tool that enables visual exploration of the genetic neighborhoods of affected genes.

With the integration of drug-target information, it is becoming a valuable tool in the prepa-
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ration of Molecular Tumor Board Meetings. With presentation-ready network visualizations,

PeCaX demonstrates the integration of SBML4j as a network resource for the clinical setting.

At the same time, the provenance of any network stored in SBML4j is fully preserved, even

when external tools are used to manipulate the networks. The standardized network source

of SBML models allows the construction of a comprehensive knowledge graph. This graph

bridges traditional pathway boundaries by integrating individual entities through their common

biological qualifier information. By encoding biological entities and relationships through well-

known ontologies, SBML4j enables the creation of a variety of specialized network mappings.

These mappings allow differentiated views on the cellular processes and their creation is

fully tracked in the integrated provenance graph. The extensive possibilities for manipulation

and annotation of these network mappings facilitate the creation of personalized network

representations for various use cases. Each of the performed steps is recorded, the intermediate

networks are preserved and the provenance of all networks is stored and retrievable. The

detailed provenance report includes all performed steps, the mapping process and information

about the SBML source models to enable full reproducibility. All parameters and options

of requests to the REST API are tracked and included in the report. In addition, externally

modified networks can be re-uploaded and details about this external provenance step added

to the provenance graph.

With these features, SBML4j enables researchers to provide comprehensive provenance

details for biological networks in their publications without much overhead. An SBML4j prove-

nance report, along with the publicly available SBML source models, enables the reproduction

of reported networks and actively fights back against the raging reproducibility crisis. In the

clinical setting, SBML4j acts as a comprehensive source of biological networks. With its easy

access methods, the containerized deployments scheme and the versatile manipulation and

exploration features, SBML4j is a valuable resource for achieving truly personalized medicine.

The future development of SBML4j may increase the SBML feature set by integrating more

of the already available SBML extensions. At the same time, additional biological qualifier

systems can be included in the knowledge graph, as well as the connection to more ontologies

for more widespread adoption. With the concentration on SBML as reliable source models, it

can be beneficial to the systems biology community to implement an export mechanism for

networks in the SBML format. To further the reproducibility of the created networks, a means

of reading in a previously generated provenance report to recreate the described network in an

unattended fashion will be advantageous. With the advancement of the graph-database tech-

nology, more options for graph-algorithmic calculations become available. For instance, the

newly introduced Neo4j “Graph Data Science” package can speed up neighborhood net-

work generation significantly and should be considered in future releases of SBML4j. Likewise,

the reactive development paradigm can be implemented with newer releases of the Java Spring
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framework and has the potential to dramatically increase productivity and reduce database

load.

In conclusion, SBML4j delivers an extensive feature set for working with biological net-

works, enables the creation of reproducible network representations and can be seamlessly

integrated in existing infrastructure and tool chains. It is a valuable tool for the elucidation of

cellular processes, the discovery of novel therapeutic interventions and it furthers reproducible

science. Since it is an open source project, all it needs is a continuously active community to

drive its development forward.
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Appendix A

Abbreviations

A
API Application programming interface

APOC Awesome Procedures on Cypher

ATP Adenosine triphosphate

B
bfs breadth-first search

BioPAX Biological Pathway Exchange

bp base pair

C
CNV Copy-number variation

COMBINE COmputational Modeling in BIology NEtwork

CPTAC Clinical Proteomic Tumor Analysis Consortium

D
DGE Differential gene expression

DI Dependency injection

DNA Deoxyribonucleic acid

E
EMT Epithelial-mesynchymal-transition

G
GraphML Graph Markup Language

GSEA Gene-set enrichment analysis
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A. Abbreviations

GWAS Genome-wide association study

H
hM hadMember (Provenance edge type)

HNPCC hereditary non-polyposis colon cancer

HPV Human papillomavirus

HTTP Hypertext transfer protocol

J
JSON JavaScript Object Notation

K
KEGG Kyoto Encyclopedia of Genes and Genomes

KGML KEGG markup language

KPWD KEGG Pathway Downloader

L
Log2FC Logarithmic (base 2) fold change

M
ML Machine Learning

MTB Molecular Tumor Board

N
NIH National Human Genome Research Institute

O
OCCC ovarian clear cell carcinoma

OGM object-graph mapper

OWL Web Ontology Language

P
PPI Protein-protein interaction

R
RDF Resource Description Format

RefSeq NCBI Reference Sequence Database

REST Representational state transfer

RNA ribonucleic-acid

RSV Rous sarcoma virus
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S
SBGN Systems Biology Graphical Notation

SBGN-ML Systems Biology Graphical Notation Markup Language

SBML Systems Biology Markup Language

SNV Single-nucleotide variant

SBO Systems Biology Ontology

SQL Structured Query Language

STON SBGN To Neo4j

T
TCGA The Cancer Genome Atlas

TSG Tumor Suppressor Gene

TSV Tabulator Separated Values

U
URI Uniform resource identifier

URL Uniform Resource Locator

W
W3C World Wide Web Consortium

wAT wasAttributedTo (Provenance edge type)

wAW wasAssociatedWith (Provenance edge type)

wDF wasDerivedFrom (Provenance edge type)

wGB wasGeneratedBy (Provenance edge type)

X
XML eXtensible Markup Language
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Appendix B

Contributions

All ideas, approaches and results presented in this work were developed and discussed with

my supervisors Prof. Dr. Oliver Kohlbacher (OK) and Prof. Dr. Kay Nieselt. The following

co-workers also contributed to Chapter 5 Application: Personalized Cancer and Network

Explorer – PeCaX:

• Bilge Sürün (BS)

• Mirjam Figaschewski (MF)

MF wrote the first draft of the manuskript. BS and Thorsten Tiede (TT) revised the first

draft. MF, BS and TT reworked the manuskript together a final time. OK provided final

corrections to this manuskript.

TT extended the manuskript for this thesis in the areas of his work, notably the parts concerning

the tool SBML4j and the network generation.

BS implemented the Variant annotation part of the software, TT implemented the graph service

part of the software, MF implemented the Graph visualization part and the graphical user

interface. MF, BS and TT built the enclosing software setup that ties the three components

together.

The Software that TT contributed to this publication is an essential building block and delivers

the novel feature to view the data in the genetic neighborhood via biological networks.
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Appendix D

Supporting Tables

Table D.1: Available annotation-names for which a custom separator can be config-
ured with the sbml4j.annotation config option.

annotation name

keggGenesSeparator
entrezGeneSeparator
ensembleSeparator
hgncSeparator
omimSeparator
uniprotSeparator
obo_chebiSeparator
pdb_ccdSeparator
ecCodeSeparator
secondaryNamesSeparator
pathwaysSeparator
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Appendix E

Supporting Listings

1 ver s ion : " 3 . 8 "

2 s e r v i c e s :

3 sbml4j_api_doc :

4 image : swaggerapi/swagger−ui

5 container_name : sbml4japidoc

6 volumes :

7 − sbml4 j_api_doc_vol :/ d e f i n i t i o n

8 environment :

9 − SWAGGER_JSON=/d e f i n i t i o n / sbml4j . yaml

10 por t s :

11 − "9080:8080"

12

13 sbml4jdatabase :

14 image : neo4j : 4 . 1 . 6

15 container_name : sbml4jdb

16 volumes :

17 − sbml4j_neo4j_vol :/ vo l

18 por t s :

19 − "7474:7474"

20 − "7687:7687"

21 environment :

22 − NEO4J_CONF=/vo l / conf

23 r e s t a r t : unless−stopped

24 command: [ " neo4j " ]
25 sbml4j :

26 image : t h o r t i e d e / sbml4j : 1 . 0 . 5

27 container_name : sbml4j

28 volumes :

29 − sbml4 j _ s e r v i c e_vo l :/ l og s

30 environment :

31 − SPRING_PROFILES_ACTIVE=t e s t

32 − SPRING_DATA_NEO4j_URI=b o l t :// sbml4jdb :7687

33 − SERVER_SERVLET_CONTEXTPATH=/sbml4j

34 − SERVER_PORT=8080

35 − SBML4J_GENERAL_API−DOCUMENTATION−URL=ht tp :// l o c a l h o s t :9080/
36

37 − SBML4J_context_minSize=1
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38 − SBML4J_context_maxSize=3

39 − SBML4J_context_terminateAt=
40 − SBML4J_context_direct ion=both

41

42 − SBML4J_OUTPUT_HIDE_MODEL_U−U−I−DS=Fa l se

43

44 − SBML4J_NETWORK_HARD−DELETE=True

45 − SBML4J_NETWORK_FORCE−DELETE−OF−PUBLIC−NETWORK=True

46 − SBML4J_NETWORK_DELETE−EXISTING=True

47 − SBML4J_NETWORK_DELETE−DERIVED=True

48 − SBML4J_NETWORK_USE−SHARED−PATHWAY−SEARCH=Fa l se

49 − SBML4J_NETWORK_PUBLIC−USER=sbml4j

50 − SBML4J_NETWORK_SHOW−INACTIVE−NETWORKS=Fa l se

51 − SBML4J_NETWORK_ALLOW−INACTIVE−DUPLICATES=True

52

53 − SBML4J_ANNOTATION_APPEND=True

54 − SBML4J_ANNOTATION_KEGGGENESSEPARATOR=+
55 − SBML4J_ANNOTATION_ANNOTATE−WITH−LINKS=True

56

57 − SBML4J_csv_matching−column−name[0]=gene name

58 − SBML4J_csv_matching−column−name[1]=genename

59 − SBML4J_csv_matching−column−name[2]=gene . name

60 − SBML4J_csv_matching−column−name[3]=gene_name

61 − SBML4J_csv_matching−column−name[4]=gene symbol

62 − SBML4J_csv_matching−column−name[5]=genesymbol

63 − SBML4J_csv_matching−column−name[6]=gene . symbol

64 − SBML4J_csv_matching−column−name[7]=gene_symbol

65 − SBML4J_csv_matching−column−name[8]=gene

66 − SBML4J_csv_matching−column−name[9]= symbol

67

68 − SBML4J_externalresources_mdanderson_add−md−anderson−annotat ion=True

69 − SBML4J_externalresources_mdanderson_genel is t=ABL1 , AKT1 , ALK , \
70 BRAF , CDK4 , CDK6 , CDKN2A, EGFR , ERBB2 , FGFR1 , FGFR2 , FLT3 , \
71 IDH1 , KDR, KIT , KRAS , MDM2, MET, NRAS, NTRK1, NTRK2, PDGFRA, \
72 PIK3CA , PIK3R1 , PTCH1 , PTEN , PTPN11 , PET , ROS1 , SMO

73 − SBML4J_externalresources_mdanderson_baseurl= \
74 h t tp s :// pct . mdanderson . org/home/
75 − SBML4J_externalresources_mdanderson_sect ion=Overview

76 − SBML4J_ex te rna l r e sou r ce s_b io log i ca l qua l i f e r _de fau l t−database=KEGG

77 − SBML4J_externalresources_keggdatabase_pathway−l ink−p r e f i x= \
78 h t tp s ://www. genome . jp /kegg−bin/show_pathway?

79 − SBML4J_externalresources_keggdatabase_pathway−search−p r e f i x= \
80 h t tp s ://www. genome . jp /dbget−bin/www_bfind_sub?dbkey=pathway&keywords=
81 depends_on :

82 − sbml4jdatabase

83 − sbml4j_api_doc

84 por t s :

85 − "12342:8080"

86 r e s t a r t : on−f a i l u r e

87

88 volumes :

89 sbml4 j _ se rv i c e_vo l :

90 sbml4j_api_doc_vol :
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91 sbml4j_neo4j_vol :

Listing E.1: Docker-compose.yml file for the sbml4j-compose project.
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1 spr ing . data . neo4j . u r i=b o l t :// l o c a l h o s t :7687

2 spr ing . data . neo4j . username=neo4j

3 spr ing . data . neo4j . password=sbml4j

4 se rve r . s e r v l e t . contextPath=/sbml4j

5 se rve r . por t=8080

6 se rve r . s e r v l e t . s e s s i o n . t imeout=−1

7

8 sbml4j . genera l . api−documentation−u r l=ht tp :// l o c a l h o s t :80

9

10 sbml4j . contex t . minSize=1

11 sbml4j . contex t . maxSize=3

12 sbml4j . contex t . terminateAt=Drugtarget

13 sbml4j . contex t . d i r e c t i o n=both

14

15 sbml4j . network . hard−de l e t e=f a l s e

16 sbml4j . network . force−dele te−of−publ ic−network=t rue

17 sbml4j . network . de le te−e x i s t i n g=t rue

18 sbml4j . network . de le te−der ived=t rue

19 sbml4j . network . publ ic−user=sbml4j

20 sbml4j . network . show−i n a c t i v e−networks=f a l s e

21 sbml4j . network . allow−i n a c t i v e−d u p l i c a t e s=t rue

22

23 sbml4j . annotat ion . append = t rue

24 sbml4j . annotat ion . keggGenesSeparator = +
25 sbml4j . annotat ion . annotate−with−l i n k s=t rue

26

27 sbml4j . csv . matching−column−name[0]=gene name

28 sbml4j . csv . matching−column−name[1]=genename

29 sbml4j . csv . matching−column−name[2]=gene . name

30 sbml4j . csv . matching−column−name[3]=gene symbol

31 sbml4j . csv . matching−column−name[4]=genesymbol

32 sbml4j . csv . matching−column−name[5]=gene . symbol

33 sbml4j . csv . matching−column−name[6]=gene

34 sbml4j . csv . matching−column−name[7]= symbol

35

36 sbml4j . e x t e r n a l r e s o u r c e s . mdanderson . add−md−anderson−annotat ion=t rue

37 sbml4j . e x t e r n a l r e s o u r c e s . mdanderson . g e n e l i s t = ABL1 , AKT1 , ALK , \
38 BRAF , CDK4 , CDK6 , CDKN2A, EGFR , ERBB2 , FGFR1 , FGFR2 , FLT3 , \
39 IDH1 , KDR, KIT , KRAS , MDM2, MET, NRAS, NTRK1, NTRK2, PDGFRA, \
40 PIK3CA , PIK3R1 , PTCH1 , PTEN , PTPN11 , PET , ROS1 , SMO

41 sbml4j . e x t e r n a l r e s o u r c e s . mdanderson . baseur l = h t tp s :// pct . mdanderson . org/home/
42 sbml4j . e x t e r n a l r e s o u r c e s . mdanderson . s e c t i o n = Overview

43

44 sbml4j . e x t e r n a l r e s o u r c e s . b i o l o g i c a l q u a l i f e r . de fau l t−database=KEGG

45 sbml4j . e x t e r n a l r e s o u r c e s . keggdatabase . pathway−l ink−p r e f i x=
46 h t tp s ://www. genome . jp /kegg−bin/show_pathway?

47 sbml4j . e x t e r n a l r e s o u r c e s . keggdatabase . pathway−search−p r e f i x=
48 h t tp s ://www. genome . jp /dbget−bin/www_bfind_sub?dbkey=pathway&keywords=

Listing E.2: Example application.properties file.
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1 java −j a r KEGGtranslator_v2 . 5 . j a r

2 −−input /path/ to /kgml

3 −−output /path/ to /sbml

4 −−format SBML_CORE_AND_QUAL

5 −−remove−white−gene−nodes TRUE

6 −−autocomplete−r e a c t i o n s TRUE

7 −−gene−names FIRST_NAME

8 −−add−layout−extens ion FALSE

9 −−use−groups−extens ion FALSE

10 −−remove−pathway−r e f e r en c e s TRUE

Listing E.3: KEGGtranslator command to translate kgml files to SBML files.

1 {
2 " type " : " Network " ,

3 " content s " : {
4 " uuid " : " b5f3b7c9−820b−4e8e−8549−4d30eff67127 " ,

5 "UUID " : " b5f3b7c9−820b−4e8e−8549−4d30eff67127 " ,

6 "name " : "NOTCH_SIGNALLING_MAPPING " ,

7 " organismCode " : " hsa " ,

8 " numberOfNodes " : 22 ,

9 " numberOfRelations " : 44 ,

10 " numberOfReactions " : 0 ,

11 " nodeTypes " : [
12 " po lypept ide chain "

13 ] ,

14 " r e l a t i onTypes " : [
15 " INHIBITION " ,

16 "STIMULATION " ,

17 "PROTEINCOMPLEXFORMATION"

18 ] ,

19 " networkMappingType " : " SIGNALLING "

20 } ,

21 " wasAttr ibutedTo " : {
22 "name " : " sbml4j " ,

23 " type " : " User "

24 } ,

25 " wasGeneratedBy " : [
26 {
27 "name " : " Create_NOTCH_SIGNALLING_MAPPING " ,

28 " type " : " createMapping " ,

29 " operat ion " : "POST " ,

30 " endpoint " : "/mapping/14 f1cedf−1eb9−4002−9064−361038ea93b7 " ,

31 " params " : [
32 {
33 " parameter " : " mappingType " ,

34 " value " : " SIGNALLING "

35 } ,

36 {
37 " parameter " : " prefixName " ,

38 " value " : " f a l s e "

39 } ,

40 {
41 " parameter " : " suff ixName " ,
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42 " value " : " f a l s e "

43 } ,

44 {
45 " parameter " : " networkname " ,

46 " value " : "NOTCH_SIGNALLING_MAPPING"

47 } ,

48 {
49 " parameter " : "UUID " ,

50 " value " : "14 f1cedf−1eb9−4002−9064−361038ea93b7 "

51 } ,

52 {
53 " parameter " : " user " ,

54 " value " : " sbml4j "

55 }
56 ]
57 }
58 ] ,

59 " wasDerivedFrom " : [
60 {
61 " type " : " Pathway " ,

62 " content s " : {
63 " uuid " : "14 f1cedf−1eb9−4002−9064−361038ea93b7 " ,

64 "UUID " : "14 f1cedf−1eb9−4002−9064−361038ea93b7 " ,

65 "name " : " Notch s i g n a l i n g pathway " ,

66 " pathwayId " : " path_hsa04330 " ,

67 " organismCode " : " hsa " ,

68 " numberOfNodes " : 31 ,

69 " numberOfTransit ions " : 36 ,

70 " numberOfReactions " : 0 ,

71 " nodeTypes " : [
72 " po lypept ide chain " ,

73 " non−cova len t complex " ,

74 " s imple chemical "

75 ] ,

76 " t r a n s i t i o n T y p e s " : [
77 " i n h i b i t i o n " ,

78 " s t imu la t i on " ,

79 " unknownFromSource " ,

80 " con t ro l " ,

81 " non−cova len t binding "

82 ] ,

83 " compartments " : [
84 " d e f a u l t "

85 ]
86 } ,

87 " wasAttr ibutedTo " : {
88 "name " : " sbml4j " ,

89 " type " : " User "

90 } ,

91 " wasGeneratedBy " : [
92 {
93 "name " : " hsa04330 . sbml . xml " ,

94 " type " : " p e r s i s t F i l e " ,

95 " operat ion " : "POST " ,
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96 " endpoint " : "/ sbml " ,

97 " params " : [
98 {
99 " parameter " : " organism " ,

100 " value " : " hsa "

101 } ,

102 {
103 " parameter " : " f i l e s " ,

104 " value " : " hsa04330 . sbml . xml "

105 } ,

106 {
107 " parameter " : " source " ,

108 " value " : "KEGG"

109 } ,

110 {
111 " parameter " : " user " ,

112 " value " : " sbml4j "

113 } ,

114 {
115 " parameter " : " ve r s ion " ,

116 " value " : "104 .0 "

117 }
118 ]
119 }
120 ] ,

121 " wasDerivedFrom " : [
122 {
123 " provenance " : [
124 {
125 " t r a n s l a t i o n " : {
126 "name " : " KEGGtranslator " ,

127 " arguments " : {
128 " gene−names " : " FIRST_NAME " ,

129 " format " : "SBML_CORE_AND_QUAL" ,

130 " add−layout−extens ion " : " FALSE " ,

131 " use−groups−extens ion " : " FALSE " ,

132 " remove−pathway−r e f e r en c e s " : "TRUE" ,

133 " remove−white−gene−nodes " : "TRUE" ,

134 " autocomplete−r e a c t i o n s " : "TRUE"

135 } ,

136 " ve r s ion " : " 2 . 5 "

137 }
138 } ,

139 {
140 " o r i g i n " : {
141 " Download date " : " Oct 18 , 2022 19:15:42 +0000 (UTC) " ,

142 " Creat ion date " : " Oct 3 , 2022 16:25:37 +0900 (GMT+9)" ,

143 " f i lename " : " hsa04330 . xml " ,

144 " source " : "KEGG Pathways database " ,

145 " ve r s ion " : "104 .0 "

146 }
147 } ,

148 {
149 " SBML4j " : {
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150 " ve r s ion " : " 1 . 2 . 2 "

151 }
152 }
153 ] ,

154 " type " : " F i l e " ,

155 " content s " : {
156 " f i lename " : " hsa04330 . sbml . xml " ,

157 "md5sum " : "0D19DFBEA5E680B3595A6C31C6B77BAC " ,

158 " f i leNodeType " : "SBML"

159 } ,

160 " wasAttr ibutedTo " : {
161 "name " : " sbml4j " ,

162 " type " : " User "

163 } ,

164 " wasGeneratedBy " : [
165 {
166 "name " : " hsa04330 . sbml . xml " ,

167 " type " : " p e r s i s t F i l e " ,

168 " operat ion " : "POST " ,

169 " endpoint " : "/ sbml " ,

170 " params " : [
171 {
172 " parameter " : " organism " ,

173 " value " : " hsa "

174 } ,

175 {
176 " parameter " : " f i l e s " ,

177 " value " : " hsa04330 . sbml . xml "

178 } ,

179 {
180 " parameter " : " source " ,

181 " value " : "KEGG"

182 } ,

183 {
184 " parameter " : " user " ,

185 " value " : " sbml4j "

186 } ,

187 {
188 " parameter " : " ve r s ion " ,

189 " value " : "104 .0 "

190 }
191 ]
192 }
193 ] ,

194 " wasDerivedFrom " : [
195 {
196 " type " : " Database " ,

197 " content s " : {
198 " source " : "KEGG" ,

199 " ve r s ion " : "104 .0 "

200 } ,

201 " wasAttr ibutedTo " : {
202 "name " : " sbml4j " ,

203 " type " : " User "
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204 } ,

205 " wasGeneratedBy " : [
206 {
207 "name " : " hsa04330 . sbml . xml " ,

208 " type " : " p e r s i s t F i l e " ,

209 " operat ion " : "POST " ,

210 " endpoint " : "/ sbml " ,

211 " params " : [
212 {
213 " parameter " : " organism " ,

214 " value " : " hsa "

215 } ,

216 {
217 " parameter " : " f i l e s " ,

218 " value " : " hsa04330 . sbml . xml "

219 } ,

220 {
221 " parameter " : " source " ,

222 " value " : "KEGG"

223 } ,

224 {
225 " parameter " : " user " ,

226 " value " : " sbml4j "

227 } ,

228 {
229 " parameter " : " ve r s ion " ,

230 " value " : "104 .0 "

231 }
232 ]
233 }
234 ]
235 }
236 ]
237 }
238 ]
239 }
240 ]
241 }

Listing E.4: Provenance report for the Notch pathway mapping.

1 import os

2 from pysbml4j import Sbml4j

3

4 c l i e n t = Sbml4j ()

5

6 pwuuids=[]
7 f i l e p a t h = "/ path/ to /sbml / "

8

9 fo r f i lename in os . l i s t d i r ( f i l e p a t h ) :

10 t r y :

11 resp = c l i e n t . uploadSBML(

12 [ os . path . j o i n ( f i l e p a t h , f i lename ) ] ,

13 " hsa " , "KEGG" , " 9 7 . 0 " )
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14 pwuuids . append ( resp [0 ] . get ( " uuid " ) )

15 except :

16 p r i n t ( f " Fa i l ed to p r e s i s t model in : { f i lename } . Response was : { resp } " )

17

18 p r i n t ( pwuuids )

Listing E.5: Python code example for uploading SBML files to a locally running

SBML4j service using pysbml4j.

1 [ kegg_api ]
2 ac t ion= f i l e

3 orgCode = hsa

4 map_ids=
5

6 [ conta iner_env ]
7 download_folder = /data

Listing E.6: Configuration file for the KEGG Pathway Downloader.

1 [ s e r ve r ]
2 host=host . docker . i n t e r n a l

3 por t=12342

4 a p p l i c a t i o n _ c o n t e x t=/sbml4j

5

6 [ data ]
7 sbml_dir=/data/sbml

8

9 [ source ]
10 name=KEGG

11 ver s ion=104.0

12 orgCode=hsa

13

14 [ o r i g i n ]
15 path=/data/ o r i g i n

16 f i l e _ s u f f i x=xml . meta

17

18 [ t rans fo rmat ion ]
19 path=/data/ t rans fo rmat ion

20 s t ep s=k e g g t r a n s l a t o r . j son

21

22

23 [ t a r g e t ]
24 col lec t ion_name=cancer_ types

25 c o l l e c t i o n _ d e s c=C o l l e c t i o n pathway conta in ing a l l cancer type s p e c i f i c pathways

26

27 mapping_types=SIGNALLING

28 mapping_name_suffix=cancer_ types

Listing E.7: Configuration file for the SBML4j Initializer.

1 {
2 " provenance " : [
3 {
4 " DeRegNet " : {
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5 "URL " : " h t tp s :// gi thub . com/KohlbacherLab/deregnet " ,

6 " Release " : " Gurobi 9 . 5 . x Release "

7 }
8 }
9 ] ,

10 " type " : " Network " ,

11 " content s " : {
12 " uuid " : " f8f8d12b−fbea−4ae6−9bf1−13c2c701a228 " ,

13 "UUID " : " f8f8d12b−fbea−4ae6−9bf1−13c2c701a228 " ,

14 "name " : " optimal_69a92ea6−7d1e−4cac−a65f−b8afa2380e97 " ,

15 " organismCode " : " hsa " ,

16 " numberOfNodes " : 15 ,

17 " numberOfRelations " : 15 ,

18 " numberOfReactions " : 0 ,

19 " r e l a t i onTypes " : [
20 "STIMULATION"

21 ] ,

22 " networkMappingType " : " SIGNALLING "

23 } ,

24 " wasAttr ibutedTo " : {
25 "name " : " deregnet " ,

26 " type " : " User "

27 } ,

28 " wasGeneratedBy " : [
29 {
30 "name " : " opt imal . graphml " ,

31 " type " : " p e r s i s t F i l e " ,

32 " operat ion " : "POST " ,

33 " endpoint " : "/ graphml " ,

34 " params " : [
35 {
36 " parameter " : " prefixName " ,

37 " value " : " f a l s e "

38 } ,

39 {
40 " parameter " : " suff ixName " ,

41 " value " : " f a l s e "

42 } ,

43 {
44 " parameter " : " networkname " ,

45 " value " : " optimal_69a92ea6−7d1e−4cac−a65f−b8afa2380e97 "

46 } ,

47 {
48 " parameter " : " f i l e s " ,

49 " value " : " opt imal . graphml "

50 } ,

51 {
52 " parameter " : "UUID " ,

53 " value " : "2366e0e5−5b83−4ad1−8b3b−fcde2a8a494a "

54 } ,

55 {
56 " parameter " : " user " ,

57 " value " : " deregnet "

58 }
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59 ]
60 }
61 ] ,

62 " wasDerivedFrom " : [
63 {
64 " type " : " Network " ,

65 " content s " : {
66 " uuid " : "2366e0e5−5b83−4ad1−8b3b−fcde2a8a494a " ,

67 "UUID " : "2366e0e5−5b83−4ad1−8b3b−fcde2a8a494a " ,

68 "name " : " DeRegNet_SIG_Base_KEGG_Cancer_Types_chapter4 " ,

69 " organismCode " : " hsa " ,

70 " numberOfNodes " : 197 ,

71 " numberOfRelations " : 277 ,

72 " numberOfReactions " : 0 ,

73 " nodeTypes " : [
74 " po lypept ide chain "

75 ] ,

76 " r e l a t i onTypes " : [
77 "STIMULATION " ,

78 " INHIBITION " ,

79 "PROTEINCOMPLEXFORMATION"

80 ] ,

81 " networkMappingType " : " SIGNALLING "

82 } ,

83 " wasAttr ibutedTo " : {
84 "name " : " deregnet " ,

85 " type " : " User "

86 } ,

87 " wasGeneratedBy " : [
88 {
89 "name " : " DeRegNet_Raw_Data_69a92ea6−7d1e−4cac−a65f−b8afa2380e97−f i l t e rNe twork

,→ −>DeRegNet_SIG_Base_KEGG_Cancer_Types_chapter4 " ,

90 " type " : " f i l t e r N e t w o r k " ,

91 " operat ion " : "POST " ,

92 " endpoint " : "/ networks/37035f03−51cf −4212−8ea0−96ff3216a65c/ f i l t e r " ,

93 " params " : [
94 {
95 " parameter " : " prefixName " ,

96 " value " : " f a l s e "

97 } ,

98 {
99 " parameter " : " networkname " ,

100 " value " : " DeRegNet_SIG_Base_KEGG_Cancer_Types_chapter4 "

101 } ,

102 {
103 " parameter " : "UUID " ,

104 " value " : "37035 f03−51cf −4212−8ea0−96ff3216a65c "

105 } ,

106 {
107 " parameter " : " user " ,

108 " value " : " deregnet "

109 }
110 ] ,

111 " body " : {
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112 " nodeTypes " : [
113 " po lypept ide chain "

114 ] ,

115 " r e l a t i onTypes " : [
116 "STIMULATION " ,

117 " INHIBITION " ,

118 "PROTEINCOMPLEXFORMATION"

119 ] ,

120 " nodeSymbols " : [
121 " SPI1 " ,

122 " HHIP " ,

123 . . .

124 ] ,

125 " re la t ionSymbols " : [
126 "CHUK−STIMULATION−>NFKB1 " ,

127 " CREB3L1−INHIBITION−>EP300 " ,

128 . . .

129 ]
130 }
131 }
132 ] ,

133 " wasDerivedFrom " : [
134 {
135 " provenance " : [
136 {
137 "69 a92ea6−7d1e−4cac−a65f−b8afa2380e97 " : {
138 " download_file_69a92ea6−7d1e−4cac−a65f−b8afa2380e97_url " : " h t tp s :// api .

,→ gdc . cancer . gov/data/69a92ea6−7d1e−4cac−a65f−b8afa2380e97 " ,

139 " p r o j e c t _ c p t a c 3 _ u r l " : " h t tp s :// api . gdc . cancer . gov/ p r o j e c t s /CPTAC−3?

,→ expand=summary , summary . expe r imen ta l _ s t r a t eg i e s , summary .

,→ da ta_ca t ego r i e s&p r e t t y=f a l s e " ,

140 " download_file_69a92ea6−7d1e−4cac−a65f−b8afa2380e97_Content−MD5" : "1

,→ a94e07b777f946a794be856bc810e9f " ,

141 " p ro j e c t _ cp ta c3 " : {
142 " data " : {
143 " p r imary_ s i t e " : [
144 " Pancreas " ,

145 " Brain " ,

146 " Other and i l l −def ined s i t e s " ,

147 " Kidney " ,

148 " Bronchus and lung " ,

149 " Uterus , NOS"

150 ] ,

151 " dbgap_accession_number " : " phs001287 " ,

152 " d i sease_ type " : [
153 " Gliomas " ,

154 " Squamous C e l l Neoplasms " ,

155 " Adenomas and Adenocarcinomas " ,

156 " Not App l i cab le " ,

157 " Ductal and Lobular Neoplasms "

158 ] ,

159 " p r o j e c t _ i d " : "CPTAC−3" ,

160 "name " : "CPTAC−Brain , Head and Neck , Kidney , Lung , Pancreas , Uterus

,→ " ,
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161 " r e l e a s a b l e " : true ,

162 " s t a t e " : " open " ,

163 " re l ea sed " : t rue

164 } ,

165 " warnings " : {}
166 } ,

167 " download_file_69a92ea6−7d1e−4cac−a65f−b8afa2380e97_filename " : " s eura t .

,→ deg . t s v " ,

168 " download_file_69a92ea6−7d1e−4cac−a65f−b8afa2380e97_Date " : " Fr i , 14 Oct

,→ 2022 18:08:46 GMT" ,

169 " f i l e _ u u i d s " : [
170 "69 a92ea6−7d1e−4cac−a65f−b8afa2380e97 "

171 ] ,

172 " download_file_69a92ea6−7d1e−4cac−a65f−b8afa2380e97_Content−Length " :

,→ "320113" ,

173 " s t a t u s _ u r l " : " h t tp s :// api . gdc . cancer . gov/ s t a t u s " ,

174 " s t a t u s " : {
175 " da ta_ re l ea se " : " Data Release 35.0 − September 28 , 2022" ,

176 " commit " : "4 dd3680528a19ed33cfc83c7d049426c97bb903b " ,

177 " tag " : " 3 . 0 . 0 " ,

178 " ve r s ion " : 1 ,

179 " s t a t u s " : "OK"

180 }
181 }
182 } ,

183 {
184 " da ta_preprocess ing " : {
185 " i n p u t _ f i l e " : " data/ t cga /69a92ea6−7d1e−4cac−a65f−b8afa2380e97 . t s v " ,

186 " score_column " : " avg_log2FC " ,

187 " match_id " : "name " ,

188 " ve r s ion " : 1 .0 ,

189 " s c r i p t " : " TCGA_Data_Preprocessing . py "

190 }
191 }
192 ] ,

193 " type " : " Network " ,

194 " content s " : {
195 " uuid " : "37035 f03−51cf −4212−8ea0−96ff3216a65c " ,

196 "UUID " : "37035 f03−51cf −4212−8ea0−96ff3216a65c " ,

197 "name " : " DeRegNet_Raw_Data_69a92ea6−7d1e−4cac−a65f−b8afa2380e97 " ,

198 " organismCode " : " hsa " ,

199 " numberOfNodes " : 197 ,

200 " numberOfRelations " : 279 ,

201 " numberOfReactions " : 0 ,

202 " nodeTypes " : [
203 " po lypept ide chain "

204 ] ,

205 " r e l a t i onTypes " : [
206 "STIMULATION " ,

207 " INHIBITION " ,

208 "PROTEINCOMPLEXFORMATION"

209 ] ,

210 " networkMappingType " : " SIGNALLING "

211 } ,
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212 " wasAttr ibutedTo " : {
213 "name " : " deregnet " ,

214 " type " : " User "

215 } ,

216 " wasGeneratedBy " : [
217 {
218 "name " : " SIGNALLING_cancer_types−addCsvAnnotation−>

,→ DeRegNet_Raw_Data_69a92ea6−7d1e−4cac−a65f−b8afa2380e97 " ,

219 " type " : " addCsvAnnotation " ,

220 " operat ion " : "POST " ,

221 " endpoint " : "/ networks/6194654b−f0e f −465e−b81a−9d32d5bd9f49/ csv " ,

222 " params " : [
223 {
224 " parameter " : " prefixName " ,

225 " value " : " f a l s e "

226 } ,

227 {
228 " parameter " : " networkname " ,

229 " value " : " DeRegNet_Raw_Data_69a92ea6−7d1e−4cac−a65f−b8afa2380e97 "

230 } ,

231 {
232 " parameter " : "UUID " ,

233 " value " : "6194654b−f0e f −465e−b81a−9d32d5bd9f49 "

234 } ,

235 {
236 " parameter " : " type " ,

237 " value " : "69 a92ea6−7d1e−4cac−a65f−b8afa2380e97 "

238 } ,

239 {
240 " parameter " : " user " ,

241 " value " : " deregnet "

242 } ,

243 {
244 " parameter " : " der i ve " ,

245 " value " : " t rue "

246 }
247 ]
248 }
249 ] ,

250 " wasDerivedFrom " : [
251 {
252 " type " : " Network " ,

253 " content s " : {
254 " uuid " : "6194654b−f0e f −465e−b81a−9d32d5bd9f49 " ,

255 "UUID " : "6194654b−f0e f −465e−b81a−9d32d5bd9f49 " ,

256 "name " : " SIGNALLING_cancer_types " ,

257 " organismCode " : " hsa " ,

258 " numberOfNodes " : 197 ,

259 " numberOfRelations " : 279 ,

260 " numberOfReactions " : 0 ,

261 " nodeTypes " : [
262 " po lypept ide chain "

263 ] ,

264 " r e l a t i onTypes " : [
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265 "STIMULATION " ,

266 " INHIBITION " ,

267 "PROTEINCOMPLEXFORMATION"

268 ] ,

269 " networkMappingType " : " SIGNALLING "

270 } ,

271 " wasAttr ibutedTo " : {
272 "name " : " sbml4j " ,

273 " type " : " User "

274 } ,

275 " wasGeneratedBy " : [
276 {
277 "name " : " Create_SIGNALLING_cancer_types " ,

278 " type " : " createMapping " ,

279 " operat ion " : "POST " ,

280 " endpoint " : "/mapping/ fa911939−6a f f −4fde−a7fd−c1e2705cbe77 " ,

281 " params " : [
282 {
283 " parameter " : " mappingType " ,

284 " value " : " SIGNALLING "

285 } ,

286 {
287 " parameter " : " prefixName " ,

288 " value " : " f a l s e "

289 } ,

290 {
291 " parameter " : " suff ixName " ,

292 " value " : " f a l s e "

293 } ,

294 {
295 " parameter " : " networkname " ,

296 " value " : " SIGNALLING_cancer_types "

297 } ,

298 {
299 " parameter " : "UUID " ,

300 " value " : " fa911939−6a f f −4fde−a7fd−c1e2705cbe77 "

301 } ,

302 {
303 " parameter " : " user " ,

304 " value " : " sbml4j "

305 }
306 ]
307 }
308 ] ,

309 " wasDerivedFrom " : [
310 {
311 " type " : " Pathway " ,

312 " content s " : {
313 " uuid " : " fa911939−6a f f −4fde−a7fd−c1e2705cbe77 " ,

314 "UUID " : " fa911939−6a f f −4fde−a7fd−c1e2705cbe77 " ,

315 "name " : " C o l l e c t i o n pathway conta in ing a l l cancer type s p e c i f i c

,→ pathways " ,

316 " pathwayId " : " cancer_ types " ,

317 " organismCode " : " hsa " ,
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318 " numberOfNodes " : 836 ,

319 " numberOfTransit ions " : 1416 ,

320 " numberOfReactions " : 0 ,

321 " nodeTypes " : [
322 " po lypept ide chain " ,

323 " non−cova len t complex " ,

324 " s imple chemical "

325 ] ,

326 " t r a n s i t i o n T y p e s " : [
327 " s t imu la t i on " ,

328 " uncer ta in process " ,

329 " i n h i b i t i o n " ,

330 " phosphory la t ion " ,

331 " non−cova len t binding " ,

332 " molecular i n t e r a c t i o n " ,

333 " d i s s o c i a t i o n " ,

334 " unknownFromSource " ,

335 " dephosphory lat ion "

336 ] ,

337 " compartments " : [
338 " d e f a u l t "

339 ]
340 } ,

341 " wasAttr ibutedTo " : {
342 "name " : " sbml4j " ,

343 " type " : " User "

344 } ,

345 " wasGeneratedBy " : [
346 {
347 "name " : " Create_PathwayCollection_for_3734df16_ab97bd7e_7524c678

,→ _6a232d3a_cb1199e6_6181fa25_df64e8b3_70224b7e_0253ffac

,→ _1fb39670_1e2e174c_34b46434_95c13a9f_ddca2875_fd1fe32a

,→ _66e3062c_317194b7 " ,

348 " type " : " c rea tePa thwayCol lec t ion " ,

349 " operat ion " : "POST " ,

350 " endpoint " : "/ pathwayCol lec t ion " ,

351 " body " : {
352 "name " : " cancer_ types " ,

353 " d e s c r i p t i o n " : " C o l l e c t i o n pathway conta in ing a l l cancer type

,→ s p e c i f i c pathways " ,

354 " sourcePathwayUUIDs " : [
355 "3734 df16−7138−45a1−8b33−35adf2c5bd54 " ,

356 " ab97bd7e−a1b1−421a−bb8f−034b97dc3247 " ,

357 "7524c678−75cc−428d−a12c−f041b4a88339 " ,

358 "6 a232d3a−9522−4101−80c2−5a9eb09b2d63 " ,

359 " cb1199e6−7573−472d−91b3−59fe0087a761 " ,

360 "6181 fa25−d804−42d5−8397−49fed001e975 " ,

361 " df64e8b3−a1f6−4a31−a570−c1dc0f417a29 " ,

362 "70224b7e−9c5e−4d15−a9ea−4add945ce737 " ,

363 "0253 f f a c −463b−4dbb−9624−08a9f05c0be5 " ,

364 "1 fb39670−df20−4676−9c33−71d12f12711a " ,

365 "1 e2e174c−cfbc−4abc−bec6−033f5c09fb7c " ,

366 "34b46434−cdf9−4e7e−ae0b−97ca0cc85945 " ,

367 "95 c13a9f−f450−4e5f−90e1−6157b2dcf3b6 " ,
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368 " ddca2875−fc34−4744−82f9−e4830e9a09a3 " ,

369 " fd1fe32a−e901−4fba−ac84−275243ac6ea9 " ,

370 "66 e3062c−eb79−4fae−b79a−908d63bbf554 " ,

371 "317194b7−ef3f −4a76−8f7e−ee487c99b811 "

372 ]
373 }
374 }
375 ] ,

376 " wasDerivedFrom " : [
377 {
378 " type " : " PathwayCol lect ion " ,

379 " content s " : {
380 "name " : " PCN_of_cancer_types " ,

381 " d e s c r i p t i o n " : " PathwayCollectionNode of c o l l e c t i o n : C o l l e c t i o n

,→ pathway conta in ing a l l cancer type s p e c i f i c pathways " ,

382 " hadMember " : [
383 "317194b7−ef3f −4a76−8f7e−ee487c99b811 " ,

384 "66 e3062c−eb79−4fae−b79a−908d63bbf554 " ,

385 " fd1fe32a−e901−4fba−ac84−275243ac6ea9 " ,

386 " ddca2875−fc34−4744−82f9−e4830e9a09a3 " ,

387 "95 c13a9f−f450−4e5f−90e1−6157b2dcf3b6 " ,

388 "34b46434−cdf9−4e7e−ae0b−97ca0cc85945 " ,

389 "1 e2e174c−cfbc−4abc−bec6−033f5c09fb7c " ,

390 "1 fb39670−df20−4676−9c33−71d12f12711a " ,

391 "0253 f f a c −463b−4dbb−9624−08a9f05c0be5 " ,

392 "70224b7e−9c5e−4d15−a9ea−4add945ce737 " ,

393 " df64e8b3−a1f6−4a31−a570−c1dc0f417a29 " ,

394 "6181 fa25−d804−42d5−8397−49fed001e975 " ,

395 " cb1199e6−7573−472d−91b3−59fe0087a761 " ,

396 "6 a232d3a−9522−4101−80c2−5a9eb09b2d63 " ,

397 "7524c678−75cc−428d−a12c−f041b4a88339 " ,

398 " ab97bd7e−a1b1−421a−bb8f−034b97dc3247 " ,

399 "3734 df16−7138−45a1−8b33−35adf2c5bd54 "

400 ]
401 } ,

402 " wasAttr ibutedTo " : {
403 "name " : " sbml4j " ,

404 " type " : " User "

405 } ,

406 " wasGeneratedBy " : [
407 {
408 "name " : "

,→ Create_PathwayCollection_for_3734df16_ab97bd7e_7524c678

,→ _6a232d3a_cb1199e6_6181fa25_df64e8b3_70224b7e_0253ffac

,→ _1fb39670_1e2e174c_34b46434_95c13a9f_ddca2875_fd1fe32a

,→ _66e3062c_317194b7 " ,

409 " type " : " c rea tePa thwayCol lec t ion " ,

410 " operat ion " : "POST " ,

411 " endpoint " : "/ pathwayCol lec t ion " ,

412 " body " : {
413 "name " : " cancer_ types " ,

414 " d e s c r i p t i o n " : " C o l l e c t i o n pathway conta in ing a l l cancer

,→ type s p e c i f i c pathways " ,

415 " sourcePathwayUUIDs " : [
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416 "3734 df16−7138−45a1−8b33−35adf2c5bd54 " ,

417 " ab97bd7e−a1b1−421a−bb8f−034b97dc3247 " ,

418 "7524c678−75cc−428d−a12c−f041b4a88339 " ,

419 "6 a232d3a−9522−4101−80c2−5a9eb09b2d63 " ,

420 " cb1199e6−7573−472d−91b3−59fe0087a761 " ,

421 "6181 fa25−d804−42d5−8397−49fed001e975 " ,

422 " df64e8b3−a1f6−4a31−a570−c1dc0f417a29 " ,

423 "70224b7e−9c5e−4d15−a9ea−4add945ce737 " ,

424 "0253 f f a c −463b−4dbb−9624−08a9f05c0be5 " ,

425 "1 fb39670−df20−4676−9c33−71d12f12711a " ,

426 "1 e2e174c−cfbc−4abc−bec6−033f5c09fb7c " ,

427 "34b46434−cdf9−4e7e−ae0b−97ca0cc85945 " ,

428 "95 c13a9f−f450−4e5f−90e1−6157b2dcf3b6 " ,

429 " ddca2875−fc34−4744−82f9−e4830e9a09a3 " ,

430 " fd1fe32a−e901−4fba−ac84−275243ac6ea9 " ,

431 "66 e3062c−eb79−4fae−b79a−908d63bbf554 " ,

432 "317194b7−ef3f −4a76−8f7e−ee487c99b811 "

433 ]
434 }
435 }
436 ] ,

437 " wasDerivedFrom " : [
438 {
439 " type " : " Pathway " ,

440 " content s " : {
441 " uuid " : "317194b7−ef3f −4a76−8f7e−ee487c99b811 " ,

442 "UUID " : "317194b7−ef3f −4a76−8f7e−ee487c99b811 " ,

443 "name " : " G a s t r i c cancer " ,

444 " pathwayId " : " path_hsa05226 " ,

445 " organismCode " : " hsa " ,

446 " numberOfNodes " : 77 ,

447 " numberOfTransit ions " : 124 ,

448 " numberOfReactions " : 0 ,

449 " nodeTypes " : [
450 " po lypept ide chain " ,

451 " s imple chemical " ,

452 " non−cova len t complex "

453 ] ,

454 " t r a n s i t i o n T y p e s " : [
455 " s t imu la t i on " ,

456 " uncer ta in process " ,

457 " i n h i b i t i o n " ,

458 " non−cova len t binding " ,

459 " phosphory la t ion " ,

460 " d i s s o c i a t i o n " ,

461 " molecular i n t e r a c t i o n "

462 ] ,

463 " compartments " : [
464 " d e f a u l t "

465 ]
466 } ,

467 " wasAttr ibutedTo " : {
468 "name " : " sbml4j " ,

469 " type " : " User "
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470 } ,

471 " wasGeneratedBy " : [
472 {
473 "name " : " hsa05226 . sbml . xml " ,

474 " type " : " p e r s i s t F i l e " ,

475 " operat ion " : "POST " ,

476 " endpoint " : "/ sbml " ,

477 " params " : [
478 {
479 " parameter " : " organism " ,

480 " value " : " hsa "

481 } ,

482 {
483 " parameter " : " f i l e s " ,

484 " value " : " hsa05226 . sbml . xml "

485 } ,

486 {
487 " parameter " : " source " ,

488 " value " : "KEGG"

489 } ,

490 {
491 " parameter " : " user " ,

492 " value " : " sbml4j "

493 } ,

494 {
495 " parameter " : " ve r s ion " ,

496 " value " : "104 .0 "

497 }
498 ]
499 }
500 ] ,

501 " wasDerivedFrom " : [
502 {
503 " provenance " : [
504 {
505 " o r i g i n " : {
506 " Download date " : " Oct 10 , 2022 18:55:46 +0000 (UTC)

,→ " ,

507 " Creat ion date " : " Apr 11 , 2018 17:06:20 +0900 (GMT

,→ +9) " ,

508 " Or i g ina l Filename " : " hsa05226 . xml "

509 }
510 } ,

511 {
512 " t rans fo rmat ion " : {
513 " k e g g t r a n s l a t o r . j son " : {
514 "name " : " KEGGtranslator " ,

515 " arguments " : {
516 " gene−names " : " FIRST_NAME " ,

517 " format " : "SBML_CORE_AND_QUAL" ,

518 " add−layout−extens ion " : " FALSE " ,

519 " use−groups−extens ion " : " FALSE " ,

520 " remove−pathway−r e f e r en c e s " : "TRUE" ,

521 " remove−white−gene−nodes " : "TRUE" ,
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522 " autocomplete−r e a c t i o n s " : "TRUE"

523 } ,

524 " ve r s ion " : " 2 . 5 "

525 }
526 }
527 }
528 ] ,

529 " type " : " F i l e " ,

530 " content s " : {
531 " f i lename " : " hsa05226 . sbml . xml " ,

532 "md5sum " : " F4D464044705FAA389DD303C5885D771 " ,

533 " f i leNodeType " : "SBML"

534 } ,

535 " wasAttr ibutedTo " : {
536 "name " : " sbml4j " ,

537 " type " : " User "

538 } ,

539 " wasGeneratedBy " : [
540 {
541 "name " : " hsa05226 . sbml . xml " ,

542 " type " : " p e r s i s t F i l e " ,

543 " operat ion " : "POST " ,

544 " endpoint " : "/ sbml " ,

545 " params " : [
546 {
547 " parameter " : " organism " ,

548 " value " : " hsa "

549 } ,

550 {
551 " parameter " : " f i l e s " ,

552 " value " : " hsa05226 . sbml . xml "

553 } ,

554 {
555 " parameter " : " source " ,

556 " value " : "KEGG"

557 } ,

558 {
559 " parameter " : " user " ,

560 " value " : " sbml4j "

561 } ,

562 {
563 " parameter " : " ve r s ion " ,

564 " value " : "104 .0 "

565 }
566 ]
567 }
568 ] ,

569 " wasDerivedFrom " : [
570 {
571 " type " : " Database " ,

572 " content s " : {
573 " source " : "KEGG" ,

574 " ve r s ion " : "104 .0 "

575 } ,
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576 " wasAttr ibutedTo " : {
577 "name " : " sbml4j " ,

578 " type " : " User "

579 } ,

580 " wasGeneratedBy " : [
581 {
582 "name " : " hsa05210 . sbml . xml " ,

583 " type " : " p e r s i s t F i l e " ,

584 " operat ion " : "POST " ,

585 " endpoint " : "/ sbml " ,

586 " params " : [
587 {
588 " parameter " : " organism " ,

589 " value " : " hsa "

590 } ,

591 {
592 " parameter " : " f i l e s " ,

593 " value " : " hsa05210 . sbml . xml "

594 } ,

595 {
596 " parameter " : " source " ,

597 " value " : "KEGG"

598 } ,

599 {
600 " parameter " : " user " ,

601 " value " : " sbml4j "

602 } ,

603 {
604 " parameter " : " ve r s ion " ,

605 " value " : "104 .0 "

606 }
607 ]
608 }
609 ]
610 }
611 ]
612 }
613 ]
614 } ,

615 . . .

616 ]
617 }
618 ]
619 }
620 ]
621 }
622 ]
623 }
624 ]
625 }
626 ]
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627 }

Listing E.8: Provenance-report of the optimal solution network created by DeRegNet

that is created in SBML4j in Chapter 4.
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1 # c r e a t e a c s v c on ta in ing one en t r y per drug t a r g e t i n g a human gene
2
3 # load genes with a s s o c i a t e d drugs
4 genes <− read . csv ( " a l l . csv " , header=TRUE, s t r i n g s A s F a c t o r s = FALSE)
5 genes <− genes [ order ( genes$Name) , ]
6
7 # load d i c t i o n a r y f o r drugbank id and drug name
8 drugbank_ vocabulary <− read . csv ( " drugbank_ vocabulary . csv " , header=TRUE,
9 s t r i n g s A s F a c t o r s = FALSE)
10
11 # c r e a t e new dataframe
12 f i l t e r e d _genes <− data . frame ( matrix ( ncol = 2 , nrow = 0))
13 colnames ( f i l t e r e d _genes ) <− c ( " Gene .Name" , " Drug . IDs " )
14
15 i <− 1
16 j <− 2
17
18 drugids <− genes [ i , " Drug . IDs " ]
19
20 # f i l t e r f o r human genes and only have one en t r y per gene
21 while ( j<=nrow( genes ) && i <= (nrow( genes )−1)) {
22 gene1 <− genes [ i , " Gene .Name" ]
23 gene2 <− genes [ j , " Gene .Name" ]
24 spec i e s1 <− genes [ i , " Spec ies " ]
25 spec i e s2 <− genes [ j , " Spec ies " ]
26 i f ( gene1 == gene2 && spec i e s1 == "Humans " &&
27 spec i e s2 == "Humans " ){
28 drugids <− paste ( drugids , as . character ( genes [ j , " Drug . IDs " ] ) ,
29 sep=" ; " )
30 j <− j+1
31 }
32 else {
33 i f ( spec i e s1 == "Humans " && ( i s . na( genes [ i , " Gene .Name" ] ) |
34 nchar ( genes [ i , " Gene .Name" ] ) > 0)){
35 f i l t e r e d _genes [nrow( f i l t e r e d _genes ) + 1 ,] =
36 l i s t ( genes [ i , " Gene .Name" ] , drugids )
37 }
38 i <− j
39 j <− j+1
40
41 drugids <− genes [ i , " Drug . IDs " ]
42 }
43 }
44
45 # merge drug common names and drug i n f o s with a s s o c i a t e d gene s
46 drugcsv <− data . frame ( matrix ( ncol = 8 , nrow = 0))
47 colnames ( drugcsv ) <− c (colnames ( drugbank_ vocabulary ) , " Gene .Name" )
48 for (row in 1:nrow( f i l t e r e d _genes ) ){
49 gene <− f i l t e r e d _genes [row , " Gene .Name" ]
50 drugids <− un l i s t ( s t r s p l i t ( f i l t e r e d _genes [row , " Drug . IDs " ] , " ; " ) )
51 for ( drug in drugids ){
52 drug <− gsub ( " \\ s " , " " , drug )
53 drugcsv [nrow( drugcsv ) + 1 ,] = c (
54 drugbank_ vocabulary [drugbank_ vocabulary$DrugBank . ID==drug , ] ,
55 gene )
56 }
57 }
58
59 # save new c s v
60 write . csv ( drugcsv , " drug_genes_approved . csv " , row . names = FALSE)

Listing E.9: R script to preprocess the drug-target information from DrugBank.
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