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Abstract

Machine learning is becoming increasingly common in our society, from recommenda-
tion systems, audio assistants, and autonomous cars to gadgets like image filters for so-
cial media. Many other branches in research and industry are also planning to integrate
artificial intelligence in their workflows shortly. However, developing and improving
such algorithms for many specific tasks requires corresponding quantities of funding and
labor, both of which are often scarce.

In machine learning, automated hyper-parameter optimization techniques are widely
used to find suitable training parameters such as learning rates and batch sizes. They do
not just reduce the required labor but mostly exceed their human competition in speed
and quality. Based on similar concepts, automatically designed neural network archi-
tectures achieved state-of-the-art performance on modern tasks for the first time in2016.
The study of such processes, known as neural architecture search, quickly gained interest
as a possible solution to the shortage of labor and a logical next step in the development
of machine learning. This thesis focuses primarily on two aspects of neural architecture
search:

Firstly, we systematically analyze and improve a baseline search space for the net-
work latency. Architectures discovered in the revised space design have an equivalent
network accuracy but are twice as fast. In a second step, we investigate whether search
space designs can be automated as well. The proposed prune and replace algorithm can
progressively search through and specialize a weakly defined search space, even if it
contains vastly more architectures than before. Due to multiple technical optimizations
and considerations, the search requires less time than before and can discover better ar-
chitectures.

Secondly, we study performance predicting methods in different contexts. We con-
ducted a large-scale hardware prediction study for various common predictors and stud-
ied in detail how multi-objective architecture search is affected by multiple factors such
as predictor quality. We also evaluate a modification to super-networks, a widely used
accuracy prediction approach. While the change is currently hard to apply, it results in a
consistently improved selection of architectures.

We conclude by presenting UniNAS, a framework built to unify various architecture
search concepts and approaches in a single code base. Based on argument trees, experi-
ments can be designed flexibly, in great detail, and even from a graphical user interface.






Kurzfassung

Maschinelles Lernen wird in unserer Gesellschaft immer alltéiglicher, von Empfehlungs-
systemen, Audioassistenten und autonomen Autos bis hin zu Gadgets wie Filtern fiir
Bilder in sozialen Netzwerken. Auch viele andere Branchen in Forschung und Industrie
planen, kiinstliche Intelligenz zeitnah in ihre Arbeitsabldufe zu integrieren. Die Entwick-
lung und Verbesserung solcher Algorithmen fiir viele spezifische Aufgaben erfordert je-
doch finanzielle und personelle Ressourcen, die zumeist knapp sind.

Beim maschinellen Lernen sind automatisierte Hyperparameter-Optimierungsverfahren
weit verbreitet, um geeignete Trainingsparameter wie Lernraten und Batchgroflen zu fin-
den. Sie reduzieren nicht nur den Arbeitsaufwand, sondern iibertreffen meist auch die
menschliche Konkurrenz in Geschwindigkeit und Qualitédt. Auf Basis dhnlicher Konzep-
te erreichten automatisch entworfene neuronale Netzarchitekturen im Jahr 2016/erstmals
Spitzenleistungen bei modernen Aufgaben. Die Untersuchung solcher Prozesse, bekannt
als neuronale Architektursuche (neural architecture search), gewann schnell an Interes-
se als mogliche Losung fiir den Mangel an Arbeitskriften und als logischer nichster
Schritt in der Entwicklung des maschinellen Lernens. Diese Arbeit konzentriert sich
hauptsichlich auf zwei Aspekte der neuronalen Architektursuche:

Erstens analysieren und verbessern wir systematisch einen Baseline-Suchraum im
Hinblick auf die Netzwerk-Latenz. Im tiberarbeiteten Suchraum entdecken wir Architek-
turen mit gleichwertiger Genauigkeit, die aber doppelt so schnell sind. In einem zweiten
Schritt untersuchen wir, ob Suchraumdesigns auch automatisiert werden konnen. Der
vorgeschlagene Prune and Replace-Algorithmus kann einen lose definierten Suchraum
schrittweise durchsuchen und spezialisieren, auch wenn er wesentlich groBer ist als zu-
vor. Aufgrund mehrerer technischer Optimierungen und Uberlegungen benétigt die Su-
che dennoch weniger Zeit und ist in der Lage, bessere Architekturen zu entdecken.

Zweitens untersuchen wir Methoden zur Leistungsvorhersage in verschiedenen Sze-
narios. In einer gro} angelegte Studie zur Hardwarevorhersage fiir verschiedene géngige
Pradiktoren untersuchen wir im Detail, wie die multikriterielle Architektursuche durch
verschiedene Faktoren wie die Qualitdt der Pradiktoren beeinflusst wird. Des weiteren
evaluieren wir eine Anderung an sogenannten Supernetzwerken, einem weit verbreite-
ten Ansatz zur Vorhersage der Netzgenauigkeit. Die Anderung ist zwar derzeit schwer
anzuwenden, fiihrt aber zu einer durchgéngig verbesserten Auswahl von Architekturen.

AbschlieBend stellen wir UniNAS vor, ein Framework zur Vereinheitlichung verschie-
dener Konzepte und Ansitze zur Architektursuche in einer einzigen Codebasis. Auf der
Grundlage von Argumentbdumen (argument trees) konnen Experimente flexibel, sehr
detailliert und sogar iiber eine grafische Benutzeroberflache entworfen werden.
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Chapter 1

Introduction

1.1 Motivation

In the not-so-distant past, the first successful form of artificial intelligence required an ex-
pert to specify a set of detailed decision-making rules. Equipped with if-then instructions
and a body of knowledge, such expert systems emulated the explicit decision-making
abilities of a human specialist. Carried by the enthusiasm of the initial successes of ex-
pert systems and computers in general, it was believed that letting a machine “describe
what’s on the image” could be done in a single summer project (Papert, 1966). It turned
out that, while a human can easily find birds or other entities in an image, explicitly
formulating the bird-detection rules is a complex problem.

Today, a fundamental component of machine learning is to learn such rules from data.
By teaching a machine learning model where an image contains birds, training it to
spot them by itself, we bypass our inability to describe the bird-detection rules. Due to
the availability of computational resources, an abundance of training data, and the ever-
increasing demand for new and improved applications, machine learning is nowadays
found everywhere: Big corporations create extensive profiles of their users to recom-
mend movies or advertisements that we may like. Photos are enhanced through filters,
sometimes adding silly glasses, hats, or other accessories to one’s person. Online ser-
vices such as Google Translate or DeepL. make automated translations to a variety of
languages possible. Personal assistants understand instructions from spoken language,
managing emails, and calendars for us. A smart home only heats when needed, reducing
costs and the CO; footprint. Assistance systems in cars can automatically park correctly,
switch lanes, or slow down if the road ahead is blocked. And much more.

Analogous to the unknown bird-detection rules, many details of such applications are
not well understood either. Evidently, our complete understanding is not an essential
part of their success. Thus, instead of designing and improving explicit rules, machine
learning has primarily shifted to the design and improvement of systems that discover
and optimize such rules automatically. In other words, to train a model.

While tremendously successful, this abstraction has its disadvantages. Aside from
the computing power and data needed for the training, the thus added complexity is re-
markable: The data often requires target values that the machine learning model has to
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predict. It may be necessary to pre-process the data and account for distribution imbal-
ances and rare events. Through various augmentation techniques, the amount of training
data can be artificially increased. The model’s design needs to promote a correct map-
ping from input data to target outputs, often under hardware- and task-related constraints.
Additional techniques and model components regularize the training, ensuring that the
model generalizes well to unseen data. In the case of the predominant gradient-based
optimization, the model training is governed by sophisticated update rules and learning
rate schedules. It may also be beneficial or necessary to choose specific hardware for the
training process or distribute it across multiple devices. In short, the success of machine
learning is governed by an intimidating wealth of techniques and configuration choices.

However, how can we find satisfactory or even optimal settings for a particular prob-
lem? Since an exhaustive evaluation is too expensive by many orders of magnitude, the
typical answer is intuition and experience. Laboriously created and evaluated by domain
experts, better models, training components, and configurations gradually replace their
predecessors. Another answer is using hyper-parameter optimization methods, which
use sophisticated search strategies and heuristics to optimize the training configuration
automatically. Indeed, since configuring the discovery and optimization of bird-detection
rules is a tremendously complex problem, a pragmatic approach is to guide their opti-
mization with an automated meta-optimization. Such methods are part of AutoML, the
growing field of Automated Machine Learning, the idea of learning to learn.

However, does adding another layer of complexity really improve the situation? Like
the optimal bird-detection rules, it stands to reason that automatically designed training
configurations are better than human-designed ones. And indeed, hyper-parameter op-
timization improves the experimental results in almost all cases. The ideal of AutoML
goes even further: Every part of machine learning should be automatically optimized,
even the meta-optimization itself. While AutoML is still in its early stages today, it has
already influenced the wider field of machine learning significantly. Initial works that
automatically design activation functions (Ramachandran et al.,|[2018)), gradient-descent
update rules (Bello et al.l 2017) and especially data augmentations (Cubuk et al.,[2018)),
as well as their successors, have become part of many state-of-the-art records.

The topic of this dissertation is Neural Architecture Search (NAS), a large subfield
of AutoML. With the focus on optimizing and designing neural network architectures,
NAS takes care of the one thing that remains after the learning process is completed:
the model. NAS aims to deliver high-quality networks for the ever-increasing variety of
tasks and hardware platforms while reducing the user’s efforts to a minimum. Given that
neural networks are currently a dominant and popular form of machine learning models,
NAS is applicable to almost any task.

Today, 28 of the top 100 ImageNet classification methods use EfﬁcientNet one of

'https://paperswithcode.com/sota/image-classification-on-imagenet, 08.10.2021


https://paperswithcode.com/sota/image-classification-on-imagenet

1.2 Outline and Contributions

the most widely known NAS models. Corporations like Googleﬂ and Microsofﬂ already
offer cloud-based AutoML solutions that require little previous knowledge of machine
learning. In the future, AutoML may revolutionize and ultimately dominate the larger
field of machine learning. The ability to solve many problems automatically, even if ini-
tially not as well as through an expert’s work, will vastly accelerate the usage of machine
learning in business applications and our everyday lives.

1.2 Outline and Contributions

After Chapter [I} the remainder of this dissertation is organized as follows. Chapter [2]
starts by presenting the timeline for important NAS milestones and the presented works.
NAS is then formulated as a meta-learning problem and broadly categorized along three
axes: the search space, the search strategy, and the performance estimation strategy.
The chapter concludes by presenting important efficiency tricks and methods for a fair
evaluation used in the subsequent chapters and many NAS works.

Chapter @ builds on ENAS (Pham et al., 2018), the first economical NAS method.
Due to the search space design, its discovered models are very complicated and slow.
The chapter is based on the following publication where the search space is strategi-
cally redesigned, resulting in discovered models of equivalent performance and half the
latency:

* K. A. Laube and A. Zell, ”ShuffleNASNets: Efficient CNN models through modi-
fied Efficient Neural Architecture Search”, 2019 International Joint Conference on
Neural Networks (IJCNN), 2019, pp. 1-6, doi: 10.1109/IJCNN.2019.8852294.

Chapter [] describes an approach to adjust the search space during the NAS process
automatically. In contrast to methods where the search space is fixed, as in most modern
NAS works, the proposed Prune and Replace method is capable of automated further
specialization.

* K. A. Laube and A. Zell, ”Prune and Replace NAS”, 2019 18th IEEE International
Conference on Machine Learning and Applications (ICMLA), 2019, pp. 915-921,
doi: 10.1109/ICMLA.2019.00158.

Many modern NAS methods use prediction models to estimate architecture- and device-
dependent metrics such as latency. We describe a large-scale study of different prediction
methods in Chapter [5] and investigate how using such models affects the selection of ar-
chitectures:

* K. A. Laube, M. Mutschler, and A. Zell, ”What to expect of hardware metric
predictors in NAS”, accepted at AutoML-Conf 2022 https://openreview.net/
forum?id=HHrzAgpHUgq

Thttps://cloud.google.com/automl/
*https://www.microsoft.com/en-us/research/project/automl/
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In this work, Maximus Mutschler made valuable suggestions regarding the code imple-
mentation of the experiments.

Chapter [0 presents conditional super-network weights, a general approach to improve
the accuracy predictions in different methods. While the results are promising, utilizing
the concept in real-world applications is currently difficult.

* K. A. Laube and A. Zell, "Exploring single-path Architecture Search ranking cor-
relations”, initially submitted to ICLR 2021 (https://openreview.net/forum?
i1d=J40Fkbd1dTX) but discontinued due to many similar papers emerging at the
same time.

* K. A. Laube and A. Zell, "Conditional super-network weights”, available on arXiv
(https://arxiv.org/abs/2104.11522)

Due to the great variety of NAS-related methods, published code is highly diverse,
fragmented, and generally hard to use. We present UniNAS in Chapter [/, a framework
built with that issue in mind:

* K. A. Laube, "The UniNAS framework: combining modules in arbitrarily complex
configurations with argument trees”, available on arXiv (https://arxiv.org/
abs/2112.01796) and GitHub (https://github.com/cogsys-tuebingen/uninas)

Chapter [§] then concludes this dissertation with a summary and outlook towards future
work.

Finally, due to the thematic difference, a publication in which I assisted with the im-
plementation is only mentioned here:

e M. Mutschler, K. A. Laube, and A. Zell, "Using a one dimensional parabolic
model of the full-batch loss to estimate learning rates during training”, avail-
able on arXiv (https://arxiv.org/abs/2108.13880) and presented as a poster
at the NeurIPS 2021 workshop ”Optimization for Machine Learning” (https:
//neurips.cc/Conferences/2021/Schedule?showEvent=21836)
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https://arxiv.org/abs/2108.13880
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Chapter 2

Neural Architecture Search

Following the motivation for Neural Architecture Search (NAS) in Section|[I.T] this chap-
ter aims to provide a broad overview of the topic and to formally introduce NAS as a
subfield of meta-learning. A short timeline of this recent field of study is presented in
Section [2.1] followed by a formal description in Section [2.2] The major components of
NAS methods are then introduced in Section [2.3] and two major efficiency tricks, which
make the public usage of NAS possible, are detailed in Section [2.4 The chapter con-
cludes with Section[2.5] which introduces the required benchmarks and metrics for a fair
comparison between NAS methods.

2.1 Timeline

Architecture search only gained significant traction in the recent five years, initiating
an ever-increasing stream of interest and publications in both academia and industry, as
visualized in Figure[2.1] This section provides a summary of relevant milestones for this
dissertation and puts them into context.

Although the idea of automatically designing neural networks dates back over three
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Figure 2.1: Interest in Neural Architecture Search over time. Left: number of publica-
tions per year, tracked by automl.org. Right: smoothed Google search trend.
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decades (see[Ienorio and Lee (1988)), Kitano| (1990) or Angeline et al.|(1994)), the com-
parably tiny amounts of computational resources proved insufficient for wide-ranging
studies and applications. The earliest dissertation-relevant work is Net2Net (Chen ez al.,
2016). This network transformation method increases the sizes of convolution kernels in
a trained network so that the network function remains identical (e.g., by padding with
zeros). While its initial performance is thus unchanged, it can be improved further with
additional training of the increased network capacity.

The pioneering work that led to NAS becoming a mainstream research topic is the au-
tomatic creation of network architectures for the CIFAR10 (Krizhevsky et al., 2009) and
Penn Treebank (Marcus et al., [1993) benchmarks with competitive performance (Zoph
and Le, 2016). Their architecture search method employs a recurrent network that out-
puts an encoded sequence translated into building instructions, from layer connections,
kernel sizes, and strides in convolutions to activation functions. Each created child ar-
chitecture is trained for 50 epochs, using its final validation accuracy to improve the
recurrent network through reinforcement learning. Although the best architecture dis-
covered performed better than the popular variants of ResNets (He et al.,[2016), training
the recurrent network took the Google Brains team 800 GPUs running for 28 days, for a
total of 22,400 GPU hours.

By reformulating the search problem to optimize a building block, rather than an en-
tire network, a subsequent work cut the costs to around 2,000 GPU hours (Liu et al.,
2018). Since this widely used trick is utilized in Chapters [3|and [} it is detailed in Sec-
tion The cost reduction also made further research directions possible, such as
using evolutionary algorithms (Real ef al., 2018) instead of reinforcement learning, and
a progressive architecture design (Liu et al., 2018).

A further search space reformulation of even greater importance was introduced by
ENAS (Pham et al.l [2018): All possible networks in the search space are considered
sub-configurations of a single “over-complete” network, an idea that is elaborated in
Section When two disjoint networks are trained, both have to be trained from
scratch, and their weights are irrelevant once evaluated. However, training a single net-
work in an over-complete network also trains some weights for most other networks in
the search space. They are no longer trained from scratch, and their training efforts are
not lost once their architecture is evaluated. Consequentially, the massive reduction in
training time for architecture evaluation enables this search method to run in a single day
on a single GPU.

I excitedly started working with NAS and modern neural network design when I began
my own Ph.D. time only three months later, resulting in my first publication based on
ENAS and ShuffleNets (Ma et al., 2018) in early 2019 (Laube and Zell, 2019b).

In parallel, the over-complete trick enabled another interesting development, aside
from the computational efficiency: the usage of gradient-based optimization (DARTS,
Liu et al. (2019)), which is significantly less complex than using hyper-parameter opti-
mization via reinforcement learning or other external methods. A second fact that pos-
sibly contributed to DARTS’ popularity was the decision to release public code based
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on PyTorch (Paszke et al., 2019), which was already in the process of replacing Tensor-
Flow (Abadi et al., 2016) in academia due to its simplicity.

My second publication directly manipulates the over-complete architecture. DARTS
implicitly weighs the different paths in this architecture design, i.e., the candidate op-
erations. By the process of Prune and Replace, Net2Net transformations are used to
incrementally replace badly performing candidate operations and specialize the search
space (Laube and Zell, 2019a).

However, the elegant design of gradient-based search methods comes with increased
resource requirements. All architecture choices must be evaluated in every forward pass,
making each update step several times more expensive. This initially led to the depen-
dence on smaller proxy networks and proxy tasks, where architectures are discovered in
a similar but less expensive environment. |(Cai et al.|(2019) and Stamoulis et al.| (2019)
overcame this limitation, designing methods that discovered good networks directly even
on ImageNet (Deng et al., 2009).

However, gradient-based methods have another critical disadvantage: considering
multiple optimization objectives such as accuracy, memory consumption, and latency.
While optimizing for multiple objectives is generally possible by carefully weighing
their components in the loss function (”scalarizing”), guaranteeing hard constraints was
achieved only recently (Nayman ef al., 2021). In contrast, hyper-parameter optimization
techniques like reinforcement learning and evolutionary algorithms face no such issues.
They complete the architecture search process with an entire selection of potentially suit-
able candidates, providing a performance tradeoff among the different objectives. While
Zoph et al.|(2018) and Real et al. (2018) fully trained every considered architecture and
spent thousands of GPU hours, |Guo et al.| (2020) use a single over-complete network
as a cheap accuracy predictor. Once the model is trained, evaluating a specific architec-
ture means simply selecting its corresponding subset in the over-complete network and
computing a few batches on the validation dataset. Furthermore, their Single Path One-
Shot method requires no more computational resources than training the most expensive
architecture in the search space. It can be applied directly to the target task, data set,
and network design. Performance tricks, such as the search for building blocks on proxy
data, are not necessary.

Almost two years later, Single Path One-Shot 1s a widely used approach and the foun-
dation for my recent works. One of its key aspects is the use of an over-complete network
as a cheap prediction model. Even though many changes to the search space, evaluation
method, and training schedule have been proposed, a fair comparison under the same cir-
cumstances was missing. We presented such a study in (Laube and Zell, [2021a), where
we evaluate how different approaches affect its prediction quality. We then reused the de-
veloped techniques to present and evaluate conditional super-network weights in (Laube
and Zell, 2021b). Unlike the weights normally used in over-complete networks (also
named super-networks), our conditional weights can specialize towards the different can-
didate operations in previous layers. While this improves the selection of architectures
consistently, the technique is currently difficult to apply and requires additional work.
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In another study, we research which hardware metric predictors are the most useful for
multi-objective architecture search (Laube et al., 2022) and find that the widely used
Lookup Tables ought to be replaced with MLPs. We also simulated how such predictors
affect the selection of architectures and quantified how different evaluation settings affect
the NAS results.

2.2 Problem formulation

Neural Architecture Search (NAS) is a subfield of Automated Machine Learning (Au-
toML), a subfield of Meta-learning. Meta-learning is intuitively described as “’learning
to learn”, a process of finding the best model parameters (i.e. learning), but also to learn
and improve the learning process itself. The meta-learning process is, therefore, a learn-
ing process on the metadata of machine learning experiments.

A particular instance of meta-learning is known to every machine learning practitioner:
finding good hyper-parameters. In order to do so, the learning process has to be run
multiple times, giving the person running these experiments performance feedback that
may be used to guide the hyper-parameter choices in further attempts. A second widely
known instance of meta-learning is transfer learning, where an already-trained machine
learning model is finetuned on new data. While almost any kind of pre-training is helpful,
this technique is most effective when both data sets are similar and the additional data
plentiful.

To formally describe meta-learning, it is best to start with traditional machine learning:

Training a machine learning model Supervised learning encompasses a variety of
machine learning tasks and data types, such as image to class in classification, text to
text 1n translation, or audio to text in transcription. This is formally described as pairs
of inputs x and targets y in a dataset D = {(x1,y1),..., (xn,¥~)}. A machine learning
model § = f(x; 6) is then trained to predict the correct target § = y for a given input x by
adapting the model parameters 6:

0" (Q) = argrrgnﬁ(D;G) (2.1)

where L is the objective function that measures the loss of predicting y instead of y.
The training process is further subject to many decisions €2, such as the model design f,
the parameter update rule, learning rate schedule, regularization techniques, and more.

Furthermore, in contrast to pure optimization, the goal of machine learning is to find
0* with respect to a test dataset D'*" C D, while the parameter training uses the disjoint
training set D" C D, DI"inN\D'*! = . While this increases the difficulty of the
problem significantly, there is a practical reason for doing so: the trained model has to
generalize to unseen data in order to make useful predictions ¥, since D does not contain
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all possible pairs x and y. If that were the case, a lookup-table over D would have already
solved the problem.

Meta-Learning Conventional machine learning considers a pre-defined and fixed train-
ing configuration Q, and is performed from scratch for every problem D. In contrast,
meta-learning learns the training parameters €2, and is commonly formalized as a bi-level
optimization problem. Such a problem consists of two hierarchically ordered problems,
called outer and inner, which minimize £"¢¢ and £'** respectively:

* _ . meta (yvalid (i). g*(i)
Q argngnz[ﬁ (pratid (i), g (Q))] 2.2)

1

where 6 (Q) = argmeinﬁm“‘k(l)’mm O) (2.3)

M
=1

This general formulation considers €2 to be optimized on a set of tasks M, where each
task M) is associated with a dataset D). In this dissertation, M| =1 in all cases. Only
a single training and validation dataset exist, which are disjoint subsets of the original
training set D",

This formulation emphasizes the hierarchical relationship of the inner and outer opti-
mization problems: the inner optimization problem (Equation is subject to a training
configuration Q, which is defined by the outer optimization problem (Equation 2.2). It
is essential to realize that, in every update step of €, the currently optimal model param-
eters 0°(Q) have to be computed anew. Due to the immense costs, practical solutions
depend on approximations and efficiency tricks.

Neural Architecture Search Most AutoML and architecture search literature consider
Q to be mostly fixed, with only the model design being optimized. The optimal archi-
tecture a* is then searched in the architecture space A and with otherwise fixed hyper-
parameters Q. = Q\ A:

at = argmin LS (DY 9% (a, Q) (2.4)
ac
where 0% (a, Qas) = Mgrrgn£’“5k(D’r“i”;9) (2.5)

Since A is orders of magnitude smaller than Q, AutoML and NAS can be consid-
ered simplified meta-learning. Intuitively, this simplification makes sense: if we were
able to rank all architectures in the search space by their performance, small changes
in Q4 (e.g., to the learning rate of the optimizer) are unlikely to impact this ranking
significantly. It is computationally much more efficient to first find the architecture with
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reasonable Q,,,, and then optionally tune only €, in an additional round of hyper-
parameter optimization for the final result.

2.3 Categorizing Architecture Search

Following Elsken et al.| (2019)), NAS can be broadly categorized by three dimensions.
They are presented in Figure and described below:

Search Space .A: NAS methods can only represent, train, evaluate, test, and discover
the architectures in the search space .A. Since the search for optimal architectures in
larger search spaces becomes increasingly difficult, the problem is often simplified by in-
corporating prior knowledge or intuitions about the expected solutions rather than using
a space that contains everything imaginable. On the other hand, this human-introduced
bias may also remove good and possibly novel candidates from the search space, pre-
venting the NAS method from discovering them.

As the design of neural network architectures offers great possibilities, so does the
design of search spaces. The currently predominant approach is to start with a special-
ized human-designed architecture and then extend the search space by questioning the
details of its design. This may include the number of layers and their connectivity, such
as skip connections and the number of channels. Other design options are the activa-
tion functions and operation details, such as kernel size and the number of groups in
Convolutions.

As an example, the popular EfficientNet V1 models (Tan and Le, 2019) are, as many
other NAS results, based on MobileNetV2 (Sandler et al.l, 2018). The main changes of
the EfficientNet-BO architecture to MobileNetV?2 are the kernel sizes and the expansion
ratios of MobileNet’s inverted bottleneck blocks, as well as the addition of Squeeze and
Excitation modules (Hu et al.| [2018)).

Search Strategy: The search space A is generally assumed to have exploitable char-
acteristics that enable a methodical search to perform better than a random baseline. One
prominent property is locality, which implies that any two architectures with a very sim-
ilar design also perform similarly well (Ying ef al., 2019). Another is the existence of
schemata, building blocks that are used in many top-performing candidate solutions.

There is a variety of optimization techniques capable of exploiting such properties.
While the predominant approaches have historically been reinforcement learning (RL,
/Zoph and Le (2016)); Zoph et al.|(2018); Pham et al.|(2018))), by now any common hyper-
parameter optimization technique has been attempted. Some examples are progressive
search (Liu et al., 2018)), evolutionary algorithms (EA, Real ef al.| (2018))), stochastic
optimization (Xie ef al.l 2018)), bayesian optimization (White et al., 2019)), performance
prediction (Wen et al., 2020), and even a number of gradient-based methods (Liu et al.,
2019; ICai et al.[2019; Stamoulis et al., 2019; [Hu et al., 2020).
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Performance Estimation Strategy

Stand-alone training
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Figure 2.2: An overview of the NAS categories and some examples.

Performance Estimation Strategy: In order to traverse the search space A with a
search strategy, it is necessary to evaluate the performance of each candidate architec-
ture deandidare € A. Although the approach of fully training acungigare from scratch is
undoubtedly the most obvious and reliable, the computational demands of thousands of
GPU days (Zoph and Le, 2016} Zoph et al., 2018} Real et al., 2018) render it impracti-
cal for everyday usage. Instead, the estimation correctness is relinquished for efficiency
by using proxy metrics. These may include reduced network sizes, training epochs, or
training set size, as well as learning curve extrapolation or performance prediction. A
particularly efficient performance prediction technique is detailed in Section the
training of a single over-complete model which contains the weights of all architectures
in the search space a € A at once.

2.4 Efficient Architecture Search

Although the early modern NAS methods already achieved competitive performance,
investing 20,000 GPU hours (Zoph and Le, 2016) into solving CIFARI1O is not broadly
applicable. The following sections detail two changes that reduced this investment hurdle
by orders of magnitude and enabled the widespread research and usage of NAS methods
and results that we experience today.

11
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Figure 2.3: Designing cell-based neural networks. Top left: A recurrent network samples
fixed-length codes that describe blocks in the cell below. Each block requires two input
sources (gray) and one operation for each (yellow). Bottom left: The code is translated
into a building block topology, called cell. Within are B = 5 blocks (only the first is
visualized for clarity), which take inputs from either of the previous two cell outputs, or
any previous block in the current cell. The cell output is then the concatenated output of
all of its blocks. Right: Cells are stacked to create a network, depending on the data set.

2.4.1 Optimal building blocks

The first approach of letting a recurrent network design every detail of a network topol-
ogy faced many difficulties, including an astronomical resource consumption (Zoph and
Le, 2016). The output sequence of the recurrent network continued until a fixed stop
signal was produced so that arbitrarily-sized child networks could be generated. Further-
more, the number of consecutive sequence values that define a computational graph node
also varied since convolutions have more configurations (kernel size, stride, ...) than an
identity function.

Zoph et al.| (2018]) simplified the problem in two ways, which are visualized in Fig-
ure Firstly, instead of creating a complete network from scratch, networks are de-
fined by the two building blocks Normal Cell and Reduction Cell. This concept was
previously popularized, e.g., in the successful GooglLeNet (Szegedy et al. 2015) and
ResNet (He et al., [2016) architectures, where stacking a few different block designs
constitutes the network architecture. Secondly, only fixed-length sequences are used to

12
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create a topology. Each cell in their search space consists of B =5 blocks, and each block
is defined by four numbers, resulting in a total of 40 numbers for both cell topologies.
Unlike before, there exist only 15 different candidate operations such as Identity, 3x3
average pooling, 5x5 depthwise-separable convolution, or Zero. In combination, these
two changes reduced the required architecture search time to 2,000 GPU hours while
also achieving state-of-the-art results in image classification on CIFAR10 and ImageNet,
and object detection on COCO (Lin et al., [2014).

A crucial part of utilizing a cell-based search space, also called micro-level search
space, is the ability to scale the network size. This enables reusing the results on other
datasets and tasks and the actual architecture search to run on a much smaller network.
While [Zoph et al.| (2018) train their search results on CIFAR10 by stacking N = 6 cells
per stage for a total of 20 cells in the network, the actual search was performed using a
much smaller proxy network of only eight cells (N = 2) and fewer channels. The changed
search space thus enables the usage of a much cheaper performance estimation metric
based on surrogate networks, datasets, and even tasks.

Although still widely used, cell-based search spaces lost some popularity since the
first NAS methods proved that a search with fully-sized networks on target tasks is pos-
sible; in early 2019 (Cai et al.| 2019). It is currently agreed upon that early network
layers benefit differently from convolution kernel sizes than later ones, especially when
considering different hardware metrics (see e.g. [Cai et al. (2019)). Instead of searching
for a cell design that is used everywhere in a network, many modern spaces use proven
human-designed building blocks from MobileNet V2 (Sandler ef al.,[2018)) or ShuffleNet
V2 (Ma et al., 2018). The NAS methods optimize the finer configuration details of each
block in the network, such as expansion ratios, kernel sizes, activation functions, and
attention mechanisms.

2.4.2 Super-Networks

The primary intent of super-networks is to share (nearly) all trainable weights among dif-
ferent network architectures. The concept has several names in literature, such as super-
network, one-shot model, or over-complete graph, which are all used synonymously in
this dissertation.

Theory and Implementation A common way to describe neural networks is based on
graph theory, considering the network a directed acyclic graph (DAG) of computations.
The vertices and edges describe the operations and information flow, respectively. This
view was used very explicitly in TensorFlow V1 (Abadi ef al.| 2016) and is still at the
core of all modern deep learning frameworks, but often hidden behind more convenient
high-level perspectives. |Pham et al. (2018)) extend this view by considering each specific
architecture as a graph subset of the single, over-complete graph that contains all possible
architectures: the over-complete super-network.

13
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Figure 2.4: A sequential super-network with three displayed layers and five candidate op-
erations in each. The connecting arrows constitute one specific architecture in the search
space, a subset of the over-complete computational graph. Other possible representa-
tions of a specific architecture are layer-wise one-hot gates or the indices of the currently
selected operations, here [2,4,0,...]. The network weights are in the graph vertices and
thus shared among all possible architectures.

An example is visualized in Figure The white boxes are the candidate operations,
grouped by which layer they correspond to. In this design, a particular architecture
(marked by the edges connecting operation-vertices) consists of precisely one operation
per layer, chosen among five candidates. Since the network weights are placed in the
vertices, the displayed subgraph (network) would share the weights in the first layer (a
Conv 5x5 operation) with every other subgraph that also uses this particular candidate
operation. For argument’s sake, consider an over-complete network with ten layers and
any specific architecture a,, in it. This super-network contains a total of 5'° valid unique
architectures, of which four are identical to a.,, except for the first operation. Indeed,
4 - 10 = 40 unique networks differ from a.,, in only a single operation, which is also
called an edit-distance of 1 (Ying et al., 2019).

While the example in Figure [2.4|is straightforward, more complicated super-network
designs are also possible. Covering the previously described cell-based search (see Fig-
ure [2.3)) requires operations to consider multiple input sources that may produce tensors
of different shapes. There are two easy solutions: Firstly, each candidate operation has
one set of weights for every possible input source with a different tensor shape. By using
the correct weights per input tensor, an output with consistent size can be guaranteed.
Secondly, depending on the candidate operation, it may be possible to combine differ-
ent sets of weights into one. Suppose two image-tensors have the same spatial size but
128 and 256 channels respectively, and the candidate K| x K, convolution has weights of
shape [cour, Cin, K1, K2], with ¢;, € {128,256}. By considering the smaller weight tensor a
subset of the larger one, i.e. [cour, 128, K1, K3]| C [cour, 256, K1, K>], weight sharing across
input sources becomes possible as well. Finally, operations like Skip or Pooling can only
change the input tensor size in limited ways. Adding a linear convolution operation (no
activation function) to them may be necessary to guarantee the shape of their output.
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Disadvantages Despite ongoing efforts (see|Sciuto ez al.| (2019) and Yu et al.| (2020b)
for examples), the impact of using super-networks in architecture search is still poorly
understood. Early NAS methods have been shown to suffer from a performance-gap be-
tween networks trained as a subset of a super-network and those trained independently,
which following works mitigate with different approaches (e.g., Chen et al.|(2019)). Fur-
thermore, super-networks require well-defined search spaces in which all possible con-
nections and candidate operations are known from the start. Finally, early gradient-based
approaches required executing every possible operation in the graph for every network
forward pass, which necessitated the use of small proxy networks (Liu ez al.| (2019), also
see Section [2.4.1). This issue has been solved by several different approaches (see e.g.
Chen et al.| (2019), Dong and Yang (2019), or Hu et al.| (2020)) at the cost of increased
complexity.

Advantages The supreme advantage of super-networks is the incredible cost-efficiency.
Previous NAS methods required the evaluation accuracy of several thousand trained can-
didate architectures to guide the search, which needed to be trained independently on
hundreds of GPUs over days. The super-network approach replaces this extremely costly
performance estimation strategy with a much cheaper one: training only one super-
network once and evaluating any candidate in the search space by simply running the
appropriate subgraph on the validation data. Pham ez al.| (2018) thus reduced the pre-
vious search costs of 2,000 GPU hours to 12, albeit also using only eight of the 15
candidate operations. While the super-networks’ specific training and evaluation details
are a highly contested research question, their concept has become a central component
in most modern NAS methods.

A significant factor for the weight sharing efficiency is that, while the search space
grows exponentially with the number of candidates, the super-network increases only
linearly in size. Even though the super-network in Figure contains 5! possible ar-
chitectures, only 5 - 10 nodes with weights are required and need to be trained. Since the
major memory consumption during network training stems from storing all intermedi-
ate output tensors of the graph nodes, not the network’s weights, the increased size of a
super-network alone generally poses no problems.

2.5 Comparing Architecture Search

As a new discipline that received much attention quickly, many initial NAS works lack
the baselines and practices for fair comparisons found in more mature fields of study.
Common issues are missing (random) baselines, lack of ablation studies, unclear hyper-
parameter choices, the unavailability of the code for reproduction, and even unfair com-
parisons. Attempts to compare published methods fairly are “frustratingly hard” (Yang
et al.,2019), and show that many early methods perform no better than a random baseline
(L1 and Talwalkar, 2020)).
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However, progress is being made. Lindauer and Hutter (2020) propose a set of best
practices for NAS research, and an increasing number of modern NAS publications pro-
vide nearly-standardized performance metrics on newly available benchmarks.

2.5.1 Benchmarks

Benchmarks and baselines are indispensable tools for fair comparisons. NAS bench-
marks contain important statistics for many architectures in a specific search space, such
as the test loss or the number of parameters. [Ying ef al.| (2019) took a critical first step in
this direction, compiling the results of over 5 million trained models in a public dataset
named NAS-Bench 101. Their search space contains roughly 423k unique architectures,
which have all been trained on CIFAR10 multiple times.

By querying the benchmark for result metrics of a specific architecture, the otherwise
costly performance estimation metric can be performed for almost free and without any
random training factors. Hyper-parameter optimization frameworks can thus perform a
reproducible architecture search in mere seconds. Methods that require a super-network
(e.g., gradient-based) still need to train one, but can at least look up the performance of
the discovered architecture.

Additionally, knowing all results of an entire search space provides further insights.
One of many significant findings is that the correlation between validation and test ac-
curacy is extremely high (r = 0.999), showing that overfitting on validation metrics is
very unlikely. They also showed that very similar network structures, measured by edit-
distance, also have a very similar performance. This effect of locality vanishes with
increasing distance and is no longer noticeable after around six changes. In practice, that
shows that many networks of high quality generally surround top-performing ones.

Other benchmark datasets followed, with different search spaces and foci. |Dong and
Yang| (2020)) published NAS-Bench 201, which provides detailed statistics throughout
the training process for each of the 15625 networks in the search space on three vi-
sion datasets. L1 ef al.| (2021a) extended NAS-Bench 201 with detailed hardware met-
rics on different devices, such as Pixel smartphones or Raspberry Pis, in their HW-NAS
benchmark. The recent TransNAS-Bench 101 (Duan et al.,|2021) provides performance
statistics of 7.3k architectures across seven tasks such as image classification, object de-
tection, or pixel-level prediction. While all benchmarks mentioned above provide tabular
lookup data, Siems et al. (2020) experiment with surrogate models for predicting metrics
correctly in their NAS-Bench 301, a promising avenue for much larger search spaces.

A curious development following NAS-Benchmarks are NAS methods that require no
training at all (e.g., Mellor et al.| (2020)). The authors find that probing uninitialized
networks can indicate the final test performance and even compete with established NAS
approaches. White et al.| (2020) find that even local search can be competitive on NAS
benchmarks. However, neither training-free nor local search approaches are competi-
tive with other NAS methods in larger search spaces, indicating the need for improved
benchmarks.
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2.5.2 Metrics

The intention behind NAS methods is to find the best-performing architecture. A stable
and correct ranking of architectures is thus more important than predicting each archi-
tecture’s performance correctly. The commonly favored ranking correlation metrics are
Spearman’s rank correlation coefficient (SCC, p) and Kendall’s Tau (KT, 7). Both cor-
relations share the property that they are bounded in the interval [—1, 1], and that a value
of 0 indicates statistical independence between the measured variables X and Y.

In the case of architecture search, X and Y are the performance predictions and ground-
truth accuracy values, respectively. The true function f(a), which maps every architec-
ture a € A to an accuracy value, is approximated by a prediction function f,,(a) such as
a super-network. Using the unseen architectures A,y C A:

X = {fp(a)’a € Atest}7 Y = {f(a)|a € -Atest} (2.6)

The Spearman’s correlation is defined as the Pearson correlation coefficient between
rank variables. The variables X and Y are first converted to ranks R, and Ry, on which
the Pearson correlation is computed:

Pxy = ——"—"—" 2.7

This metric measures how X and Y are monotonically related, with values close to —1
or 1 indicating a strong relationship.
In contrast, Kendall’s Tau counts how often all pairs of observations (x;,y;) and (x;,y;)

1. are concordant, agreeing on a sorting order
(xi<xjandy; <y; or x;>xjandy;>y;)

2. are discordant, disagreeing on a sorting order
(xi<xjandy; >y; or x;>xjandy; <y;)

3. are neither

Kendall’s Tau is then calculated by their difference and normalized by the number of
possible different pairs:

(num concordant ) — (num discordant)

T= - (2.8)
(2)
7 ranges from -1 in perfect disagreement to +1 in perfect agreement, and is close to
zero when X and Y are independent. Both ranking metrics are visualized in Figure 2.5]
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Figure 2.5: Left: The Pearson and Spearman correlation metrics on a sequence of mono-
tonic points. Right: Kendall’s Tau visualized. Image sources: [Wikipedia (2021)).

However, estimating the ranking correlation requires the availability of a NAS bench-
mark and the ability to evaluate any architecture in the search space. The first require-
ment was not fulfilled for many early NAS works since simply no benchmark existed.
The second requirement may not be possible for the NAS method in question, especially
if it uses gradients for a continuous transition into a finalized result state. Nonetheless,
the ability to quickly query how well the discovered architecture ranks in the search space
is a huge benefit of benchmarks. If such benchmark data is not available, it is necessary
to perform the search multiple times, report the average results, perform ablation studies,
and compare with random baselines and other methods in mostly identical environments.
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An efficient cell search space

In this Chapter, we redesign the NASNet cell search space following the design guide-
lines of ShuffleNet V2 (Ma et al., 2018|). The discovered architectures in this search
space are less complex and two times faster while maintaining their baseline’s parameter
efficiency and accuracy. Most aspects of this chapter were described and published more
compactly in|Laube and Zell (2019b).

3.1 Introduction and Motivation

For the first time, automatically designed neural network architectures convincingly out-
performed their hand-crafted competition in image classification and object detection
(Zoph and Le, 2016; Zoph et al., 2018). Although NAS was prohibitively expensive,
Efficient Neural Architecture Search (ENAS, by Pham et al.| (2018))) reduces the costs
to mere hours on a single GPU, thus facilitating its extensive use in research and indus-
try. Admittedly, the thereby discovered architectures have a severe flaw: their inference
speed.

A fast execution time, however, is critical in many modern applications. A self-driving
car at speed has to detect pedestrians in time, and failures in control systems have to
be recovered before any damage is caused. The network designs for such tasks follow
very different design principles: they have to be fast, often at the cost of correctness
and operate with limited available computing power or memory. Another example of
extensive research is not quite as dangerous but subject to the same conditions: image
classification on smartphones. The two predominant lines of this research are Mobilenet
V1 and V2 (Howard et al.l 2017} [Sandler et al., 2018)) as well as ShuffleNet V1 and V2
(Zhang et al., 2018; | Ma et al., 2018), both of which also became increasingly important
in NAS designs shortly after.

To apply NAS in low-latency environments, a complete redesign of the architecture
search space is unavoidable. Using a fully sized network during the search phase is not
yet possible, so the NAS method must search for optimal building blocks instead, using
smaller and cheaper proxy networks. We follow the ShuffleNet V2 guidelines for fast
and efficient architectures, creating a new NAS search space in which we find our new
and improved models: ShuffleNASNets.
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3.2 Related work

There are two main categories for related work: inexpensive NAS approaches optimizing
the network accuracy and the manually designed patterns that improve execution speed.

3.2.1 Architecture Search

A fundamental requirement for widely applicable NAS is a fast and economical archi-
tecture search method. Elsken et al|(2018]) add new connections and operations to a
network in an iterative fashion based on greedy hill-climbing and random mutations.
Brock et al.| (2018) use a hyper-network to predict the weights of candidate architectures
in the search space, thus significantly reducing the training overhead. However, neither
method reaches the performance and cost-effectiveness of Efficient Neural Architecture
Search (ENAS) by Pham et al.| (2018)), the first pillar of this work. In contrast to its
expensive predecessors (Zoph et al., 2018} Real et al.,[2018) that required thousands of
GPU hours to discover the architectures that dominated image classification and object
detection, ENAS takes half a GPU day. Even though ENAS performs slightly worse and
uses a smaller search space, the economic effectiveness makes it an attractive foundation.

The primary invention of ENAS is the cheap architecture performance estimation
based on a weight-sharing super-network, a concept that has been detailed in Section[2.4.2,
Fundamentally, all candidate architectures trained by ENAS are subsets of a single over-
complete computational acyclic graph. Akin to a predictor, this graph (also called super-
network) is then used as an inexpensive performance estimator for any graph subset
(architecture). To select an architecture for training or validation, ENAS generates a se-
quence of integers using a recurrent controller network of 100 LSTM units (Hochreiter
and Schmidhuber, [1997). Interpreted as graph-edges, this sequence uniquely encodes
the topology of one specific architecture. Its validation performance is used as a guid-
ing signal to train the controller network using reinforcement learning (Williams, [1992)
so that prospective sampling is more likely to discover well-performing architectures.
Specifically, ENAS trains one particular architecture for an epoch and evaluates another
ten at its end. Their estimates are used to train the controller; and the best candidate is
selected for training in the next epoch. At the end of the search process, the candidate
with the highest estimated validation accuracy is considered the search result.

While an overview of cell-based search spaces and their advantages has already been
given in Section 2.4.1] we briefly review the essential details again: The NASNet search
space contains various possible designs for building blocks, called cells, which are stacked
to create task-specific network architectures. Figure 2.3] visualizes the ENAS search re-
sult and the cell embedding in an image classification network. Each cell contains B =5
blocks that take two inputs from two previous cells or previous blocks in the same cell.
One operation is applied to each input, their sum forming the block output. All block
outputs that other blocks have not used are concatenated and used as cell output, with an
optional 1x 1 convolution that can adjust the number of feature channels. As visualized,
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ENAS stacks a total of six Normal Cells and two Reduction Cells in the search network,
which are used to respectively keep and reduce the spatial size of the image tensors.

3.2.2 Fast architectures

While the aforementioned NAS-based architectures are often remarkably efficient con-
cerning accuracy or parameters, their inference speed is terrible. Although attempts to
search for fast and even device-aware architectures existed (e.g., |Dong et al. (2018)),
they were not economical at that time.

Instead, the predominant architectures in this field were hand-crafted with specific
care for low memory footprints and fast execution times. MobileNet V2 (Sandler et al.,
2018]) features the famous MBConv block, an inverse bottleneck structure that temporar-
ily expands the number of channels using a 1x1 convolution by up to six times. Shuf-
fleNets (Zhang et al.,2018; Ma et al.,|2018) introduced a shuffle unit that inexpensively
rearranges the order of channels in a tensor. This concept is only meaningful when com-
bined with operations that are applied to subsets of channels, as visualized in Figure
Given C feature channels, a 1x 1 convolution spanning them all has C?> parameters and
C? multiplications per image pixel. When separated into G groups, the costs reduce to
G-(C/ G)C/ G which is considerably less expensive. The price of such grouped convolu-
tions is a reduced information flow, which makes their consecutive application disadvan-
tageous. However, by rearranging the channels, shuffle units improve the information
flow. In addition, not applying any non-linear functions to some channels implicitly cre-
ates shortcut connections of different lengths across the layers. Furthermore, |[Ma et al.
(2018)) revealed bottlenecks for inference speed in a series of experiments, which we
made the second pillar of our work:

* G1: Equal channel width minimizes memory access costs.

* G2: Excessive group convolutions increase the memory access costs.
* G3: Network fragmentation reduces the degree of parallelism.

* G4: Element-wise operations are non-negligible.

Most architectures violate one or more of these rules, impairing their inference speed,
especially with constrained memory or computing power. For example, inception mod-
ules (Szegedy et al.,|2015) concatenate several paths, violating G3. Ma et al.| find that the
inference speed on GPUs can drop by a factor of 1.6 when using two parallel paths and
by 3.5 when using four, though the drop is much less severe on ARM hardware. ResNet
(He et al., 2016) bottleneck blocks and the inverse bottleneck blocks of MobileNet V2
violate G1. Both change the channel number by a factor of around four and then restore
it to the original count with another convolution. Almost all architectures violate G4
by adding many biases, applying many activation functions, and using skip connections
that contribute to G3 and G4. In sum, MobileNet V2 spends almost half as much GPU
inference time on element-wise operations as on convolutions.
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Figure 3.1: Three variants of convolutions (green) applied to the 16 channels numbered
0 to f. Left: Since each convolution considers all channels, the operations are expensive
and require many parameters but have a good information flow. Center: Group convolu-
tions consider only small groups of channels at a time. They have a limited information
flow but are much cheaper. Right: Shuffle units cheaply rearrange the channels, enabling
the use of successive cost-effective group convolutions with an improved information
flow. Additionally, half of the channels skip these operations, providing shortcut paths
of different lengths.
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Figure 3.2: Left: The Normal and Reduction Cells discovered by ENAS. Right: Two
representations of the network embedding these cells. While the right representation
is the commonly used one, it is also simplified. The left one describes the connectivity
better, since each cell takes the outputs of two prior cells. The search network uses N = 2,
the fully-sized evaluation model N = 5. The numbers in the cells are example channel
sizes, highlighting some issues with the design.

22



3.3 Method

3.3

Method

3.3.1 Identifying the NASNet design issues

The first step of improving a design is to identify its key issues. Since the NASNet
search space was not designed with inference time in mind but correlates speed with a
low number of parameters, their resulting architectures severely violate the guidelines
GI1 to G4. We list structural issues that lead to slow inference time based on the ENAS
architecture in Figure [3.2] as points S:

S1: NASNet cells are based on inception modules and are highly fragmented (G3).
S2: Some computational paths, such as convolutions of the same size, could be
combined (G1, G3). The 3x3 avg pooling in the Normal Cell is even redundant.
S3: A total of 10 operations are applied in B = 5 blocks, which each need to sum
their operation results (G4). To maintain the cell channel count after concatenating
the block outputs as cell output, every operation has to reduce the channel count
by a factor B (G1), unless the input already has that size. Since some operations
(e.g., pooling or identity) preserve the channel count, they require an additional
linear 1x1 convolution (G1, G4).

S4: A detail that is hidden for visual clarity is that every single displayed separable
convolution operation actually consists of two stacked ones (G2, G4).

SS: The network fragmentation is not only limited to the cell designs. Since each
cell receives the outputs of two prior cells, parallel paths are necessary (G3).

Furthermore, there are also many drawbacks and points of complicated design C.
Some are especially apparent when constructing the super-network:

C1: Cells receive the outputs of two prior cells, which may have different spatial
and channel sizes. They need to pre-process each input tensor with an additional
convolution to match them (not visualized).

C2: All operations may receive their input tensors from previous cells or blocks,
which have different channel sizes. ENAS makes a copy of each operation for each
possible channel count and activates only the needed one.

C3: The cell output concatenates only the unused block outputs, which varies
depending on the currently active graph subset (i.e. architecture). While the pre-
processing convolutions (C1) in both following cells could compensate for that,
this solution makes learning more difficult. ENAS adds an additional linear 1x 1
convolution instead (not visualized).

C4: Since it is necessary to reduce the channel size after an operation, a genuine
skip connection is not possible.

CS: The only way to reduce the cell complexity is the Zero operation, which can
be used with a second operation in a block. However, not using an entire block
(both operations are Zero) this way is hardly beneficial since the block results are
concatenated. The influence of all other blocks on the cell output stays the same.
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Figure 3.3: An example sampling process for B = 3 blocks. Left: The controller network
generates B pairs of indices per cell, which are interpreted as input sources (gray) and
applied operations (yellow). Center: The sequence of indices is translated into a cell
topology. All operations take input O, which is the cell input. Right: The current cell
graph is only a subset of the super-network. Following the controller’s instructions, the
connections to the cell inputs are currently active (black), the others to blocks within the
cell are not (gray).

3.3.2 The ShuffleNASNet search space

As the analysis in Section [3.3.1| shows, the search space has to be redesigned from
scratch. The first major change is that each cell has only a single input, which reduces
the degree of parallelism in the network (G3, S5, C1). We instead use shuffle units to
provide skip connections of different lengths, regardless of cell design. While NASNet
uses B blocks with two operations each, we use only B = 5 operations in total and make
their sum the cell output, as visualized in Figure This significantly reduces the to-
tal number of operations and fragmentation (G3, S3) and solves the issue of having a
variable amount of tensors in concatenations (C3). Since the new architecture is conse-
quently encoded in shorter sequences, the sampling controller network should also learn
the problem better.

Each ShuffleNASNet cell operates only on half of the current image tensor channels
and does not change that amount anywhere. This enables using identity functions as
genuine skip connections (C2, C4) and reduces complexity when used before or after any
other operation (C2, C5). Since doing so effectively reduces the number of operations B,,,
the corresponding search space .4, fully contains all smaller spaces and can be regarded
as an upper bound of cell complexity:

By >B, — A1 DA (3.1)

We furthermore add a 1x1 convolution to the pool of ENAS’ candidate operations,
which enables reorganizing the channels before they are shuffled. The six available can-
didate operations are:

* 1x1 convolution * Max. 3x3 Pooling
 Separable 3 x3 conv., dilation = 1 * Avg. 3x3 Pooling
» Separable 5x5 conv., dilation = 1 * Identity or Factorized Reduction
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Identity is the only candidate operation that can

not easily reduce the spatial size of image tensors, input 1x1*
as required in reduction cells. Following ENAS, ,Wl
we use Factorized Reduction operations (1x1%*) in 7y 7y

such cases: two linear 1 x 1 convolutions with stride
two are applied spatially shifted, their results are
concatenated. This creates a grid pattern, which is 5 1x
visualized in Figure

It is unclear whether adding BatchNorm (loffe
and Szegedy, 20135)) is beneficial to the networks. Figure 3.4: Factorized reduction
While it is known to improve the performance in
deep architectures, it also adds additional element-wise operations (G4) that may not be
necessary.

While the resulting search space will still produce fragmented cells, the overall frag-
mentation, amount of operations, and complexity have been significantly reduced. Con-
sequentially, the search space is also much smaller but still far too huge to evaluate
exhaustively.

1x1

3.4 Experimental evaluation

3.4.1 Search

Except for the changed search space, our experiments closely follow the ENAS baseline.
We search for the optimal topologies of Normal and Reduction cells in a super-network
that contains all possible configurations as graph subsets. This search network stacks a
total of six Normal and two Reduction cells with shared topology but differing weights
and tensor sizes. The network weights 0 are trained on CIFAR10 Krizhevsky et al.
(2009), which consists of 60,000 32 <32 pixel color images, each belonging to one of 10
classes. Ten thousand images belong to the test set, and we reserve another 5,000 as a
validation set to train the controller network’s parameters .

The ENAS search process is a significant simplification of the original meta-learning
stated in Equations [2.4{ and [2.5[since it interleaves the training of network and controller
parameters (0 and o respectively, the current architecture a depends on ). Following
ENAS, we use a controller to sample ten candidate architectures per epoch and evaluate
them on the validation set. Their performance feedback is used to train ® using rein-
forcement learning (Williams|, [1992)) and the ADAM optimizer (Kingma and Ba, 2015)),
the best architecture ap,,; is used to train 8 with SGD for one epoch. Both optimizers are
subject to cosine annealing with warm restarts (Loshchilov and Hutter, 2017). All archi-
tectures share 0 via the super-network, so the training of any specific ap.s also benefits
most other architectures.

One entire search process requires only eight to ten hours on a single Nvidia 1080 Ti
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GPU, with some randomness that depends on the selected architectures in each epoch.
Since it is unclear whether BatchNorm is beneficial, we run separate search processes
for cells both with and without.

The controller network generates several candidate architectures during the search pro-
cess. We consider the best architectures in the final epoch of training and sampling
and the architecture with the best validation accuracy during the entire search process.
ShuffleNASNet-A is the best performing design without BatchNorm, selected from the
all-time highest validation accuracy during the search process. It is slightly smaller than
the BatchNorm-using ShuffleNASNet-B, which was selected from the final controller
suggestions in a separate search process to ShuffleNASNet-A.
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Figure 3.5: The two discovered ShuffleNASNet variants embedded in network structure.
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3.4.2 Cell analysis

Both resulting ShuffleNASNet variants are visualized in Figure 3.5] embedded in Shuf-
fleNet’s structure of channel splitting, concatenating, and shuffling. As designed, the
cells are much less complex and fragmented than NASNet cells and do not change the
number of channels anywhere.

We find that the Normal Cells of both discovered architectures each use two identity
paths. This is interesting, since half of the channels already bypass the entire cell in
ShuffleNet-like architectures. Also adding two skip connections in the cell may appear
redundant at first glance. However, the channels will be concatenated with the skip path
and shuffled, and the sum operation within is not weighted. The discovered topology
thus combines a ShuffleNet and ResNet approach, and puts additional emphasis on the
skip information not being outweighed four-to-one.

Another interesting property of ShuffleNASNet-B is an identity function after a con-
volution in its Normal Cell. This arrangement effectively reduces the cell complexity to
B = 4 blocks and should also improve the inference time, despite not being specifically
optimized for. In a re-built inference network, this operation can be removed.

3.4.3 Retraining

The discovered cells designs can now be used in task-specific networks. We train mod-
els on CIFAR10 and CIFAR100, which have 10 and 100 classes, respectively, but are
otherwise very similar. We do not reserve any data for validation and apply the com-
mon data augmentations of image shifting and random horizontal flipping. We find that
Cutout (Devries and Taylor, 2017) further improves all CIFAR10 results by about 0.6%,
but omit these statistics for conciseness.

Following ENAS, we stack N = 5 Normal Cells in each of the three network stages,
in which all image tensors have the same shape. There are two Reduction Cells in be-
tween, each halving height and width while doubling the number of feature channels.
The network parameters 6 are trained with SGD over 630 epochs, the learning rate being
subject to cosine decay with six warm restarts. Weight decay and drop-path (Larsson
et al.,2017) regularize 0 to prevent overfitting.

The training results can be found in Table[3.1] of which we visualize the CIFAR10 re-
sults in Figure[3.6al We report the average test error of the last five epochs, averaged over
three independent trials. By changing the number of feature channels for the first cell, we
can trade a higher complexity (i.e., FLOPs and parameters) for a better accuracy, which
we find to saturate at around 96.4%. ShuffleNASNet-B thus retains ENAS’ performance,
despite the significant reduction in cell complexity and requiring fewer parameters. Al-
though the best networks are arguably AmoebaNet-B, NASNet-A, and PNAS-5, these
methods are not economical since finding suitable architectures requires 3100, 1800, and
250 GPU hours, respectively, while ENAS and ShuffleNASNet need only around ten.

ShuffleNASNets also improve over manual designs on CIFAR 100, except for the com-
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Table 3.1: CIFAR results with standard regularization (flipping, shifting, weight decay,
drop-path). The models in the top group are hand-crafted by human experts; those
in the bottom group have been discovered automatically. ShuffleNASNets match the
ENAS baseline and are vastly more parameter efficient than manually designed mod-
els with similar performance. The low-parameter models are additionally visualized in

Figure [3.6a]
Network structure test error (%)

Method layers params | CIFAR10 CIFAR100
FractalNet 2017 20 38.6M 4.60 22.85
PreAct ResNet 2016 164 1.7M 5.46 24.33
DenseNet-BC (k=12)2017 | 100 0.8M 4.51 22.27
DenseNet-BC (k=40)2017 | 190 25.6M 3.46 17.60
WRN-40-4 2016 40 8.9M 4.53 21.18
WRN-28-1012016 28 36.5M 3.89 19.25
PyramidNet (a=48) 2017 110 1.7M 4.58 23.12
PyramidNet (a=84) 2017 110 3.8M 4.26 20.66
Method \ cells features params \ CIFAR10 CIFAR100
SMASHvV1 2018 4.6M 5.53 22.07
DPP-Net-WS 2018 1.0M 4.78

DPP-Net-M 2018 0.45M 5.84
DPP-Net-Panacea 2018 0.52M 4.62

NASNet-A 2018 18+2 32 3.3M 341
PNAS-512018 9+2 36 3.2M 341
AmoebaNet-B 2018 1842 36 2.8M 3.37

ENAS 2018 15+2 36 4.6M 3.54
ShuffleNASNet-A (ours) 12+2 36 0.24M 4.93 22.92
ShuffleNASNet-A (ours) 15+2 48 0.47M 4.40 20.12
ShuffleNASNet-A (ours) 15+2 64 0.80M 4.10 19.11
ShuffleNASNet-B (ours) 15+2 96 1.79M 3.69 17.21
ShuffleNASNet-B (ours) 15+2 128 3.10M 3.57 16.37
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Figure 3.6: ShuffleNASNet results in comparison.

parably huge DenseNet-BC. This is especially noteworthy since the cell designs were
discovered on a similar but different data set, attesting to the transferability of network
building blocks.

3.4.4 Time performance

We compare the inference speed of different ShuffleNASNet configurations with that of
the ENAS baseline in Figure for different batch sizes between 1 and 256. The time
is averaged over 1000 consecutive forward passes on a single Nvidia 1080 Ti without
any data augmentation.

We find that both ShuffleNASNets are much faster than ENAS’ network, which is
the anticipated outcome. They feature a speedup factor of 2.00 and 2.05, respectively,
which changes after batch size 32 due to what seems to be a hardware property. It is
further possible to achieve a speedup factor of 2.49 by only using N = 4 Normal Cells
per stage, at the cost of accuracy. In all cases, the networks can be executed with around
25 inferences per second, which is just enough to achieve real-time capability.

3.4.5 Variations

We experimented with minor variations to the search space and training setup to see if
our initial design could be easily improved. Since the space already enables the creation
of smaller cells through identity functions, explicitly varying the number of blocks (i.e.,
operations) B was not attempted.
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Merge operations within cells: A ShuffleNASNet cell sums the results of B = 5
blocks (i.e., operations) unless they are already used as input in a later one. An alter-
native to the sum is concatenation, after which a 1x 1 convolution is necessary to correct
for the increased feature channel count. This approach violates rule G1 and significantly
increases the parameter count but may also improve the model accuracy.

We searched for and tested several promising cells, none of which is competitive to
the more straightforward initial design. The best-performing cells achieve 4.45% / 4.23%
test error with 64 / 96 initial features and 1.1M / 2.4M parameters, respectively, making
them strictly worse than ShuffleNASNet-A.

Bypassing reduction cells: The image tensors in reduction cells have their spatial di-
mensions reduced by a factor of two. The same is necessary for the tensor that bypasses
the cell, making the use of a genuine identity skip connection impossible. We test three
reasonable choices for the bypassing path:

» Using a factorized reduction as shown in Figure[3.4] The results of spatially shifted
1 x1 convolutions are concatenated, each providing half of the required channels.
While this is inexpensive and matches ENAS’ and our initial design, important
information may be lost.

* Two stacked 3x3 depthwise-separable convolutions, of which the first one uses
a stride of 2 to reduce the spatial dimensions. This design is similar to Shuf-
fleNet V2.

* Using the reduction cell on both channel splits.

Instead of searching for new architectures from scratch, we evaluate the three options
on ShuffleNASNet-B with 96 initial feature channels. The results are in favor of our
initial design, the first option. Using separable convolutions increases the parameter
count by 3% and the runtime by 2%, but increases the test error by 0.15%. Applying the
reduction cell on both paths worsens the performance, increasing the parameter count by
17%, the runtime by 16%, and the test error by 0.11%. Additional experiments, where
the third option is already implemented in the search network rather than added late, fail
to improve over ShuffleNASNet-B. Despite violating G1, the factorized reduction path
is the fastest, requires the fewest parameters, and has the lowest error.

Optimal drop-path: A strong regularization technique for fragmented networks is
drop-path (Larsson et al., [2017), which is effectively DropOut (Srivastava et al., 2014)
for parallel paths. Every path has a chance to be randomly zeroed during training, reg-
ularizing the network by decreasing the dependency on specific operations. To com-
pensate for the dropped paths, all tensors are divided by their keep chance. ENAS uses
drop-path with a 50% chance, a choice that may not be optimal for our ShuffleNAS-
Nets. Since our cells are less fragmented and come in two variations, with and without
BatchNorm, we tune the drop-path chance separately.
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For ShuffleNASNet-B, which uses BatchNorm, the optimal probabilities match the
expected 50% drop chance. In contrast, the optimal drop chance for ShuffleNASNet-
A is only 0% to 10%, effectively removing the regularization technique. The effect
disappears if the network is trained with additional BatchNorm, even though drop-path
already adjusts the tensor magnitudes. We presume that the impact of drop-path is too
powerful for the small models with less than 1M parameters unless they are additionally
stabilized. Still, since they do not benefit from drop-path and BatchNorm, we use neither
for our ShuffleNASNet-A results.

Auxiliary head: ENAS and other methods in the NASNet search space use an addi-
tional auxiliary head to train the final models. The idea was introduced in Googl.eNet
Szegedy et al.| (2015), which also heavily influenced the NASNet search space design.
The auxiliary head is an optional structure attached at around two-thirds of the network
and provides shorter paths for gradients during training.

In contrast to ENAS, we find no benefit whatsoever in using an auxiliary head and
speculate that there are two reasons: Firstly, ShuffleNASNets have many skip connec-
tions within cells and through bypassing channels. Neither ResNets nor ShuffleNets
require auxiliary heads, in contrast to networks from the NASNet search space with no
genuine identity paths. Secondly, the auxiliary head consists of roughly 400k param-
eters. The comparably small ShuffleNASNets may not benefit from adding this many
parameters on an optional structure that is removed later.

3.5 Conclusions

This chapter presents an alternate search space to NASNet, created by analyzing and
redesigning NASNet according to ShuffleNet V2’s inference speed guidelines. The re-
sulting ShuffleNASNet space produces significantly less complex and fragmented cells
than its predecessor. It contains all architectures of smaller search spaces, enabling the
search with only an upper bound on complexity.

We use the economical architecture search method ENAS to find ShuffleNASNet-A
and -B, two pairs of cell designs that are stacked in target-specific networks. Both models
have been experimentally validated, performing much better than their human-designed
competition and even comparable to the ENAS baseline. They are also structurally sim-
pler, have fewer network parameters, and require only half of the inference time.
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Chapter 4

Searching through vast architecture
spaces

As seen in Chapter[3] it is possible to tailor a search space to a specific problem. Doing so
ensures that the resulting architectures meet all requirements and may even be necessary
to meet them, but also requires delicate changes made by domain experts. In contrast,
the ideal AutoML application is set up with just the data and constraints, run without
considering any details, and obtains an outstanding result. A decent and possibly infinite
search space is necessary for this ambition.

This chapter explores the Prune and Replace approach, which was published in Laube
and Zell/ (2019a) and made available on GitHub (Laube, 2019). We successfully remove
some of the search space limitations by iteratively adapting the search space to the best
candidate solutions, which explores increasingly specific architectures over time.

4.1 Introduction

Although architecture search methods have proven their merit by exceeding the per-
formance of their human-designed competition in several vision tasks, they have their
disadvantages. In the current state, most architecture search methods replace operations
in a fixed architecture with several possible variations, resulting in a search space, and
then employ a search method to select the best architectures within. Inspired by the orig-
inally human-designed network, the candidate architectures are strongly limited to fixed
structures and operations. This approach generally works well since the search space is
designed to contain many viable but similar solutions, which fit the data at hand.

A very different approach is the idea of evolving a network design from scratch with-
out taking strong cues from human-designed solutions. Such methods feature a much
more open search space, capable of exploring operations and network structures that hu-
man designers did not consider. Although granting more autonomy, the search space’s
vastly increased size and difficulty typically result in worse architectures.

The best of both worlds is necessary for NAS to truly replace human designs. While
fixed search spaces offer efficient searches with good performance guarantees, open
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search spaces reduce human bias, required labor, and improve task autonomy. We com-
bine features of both sides in our Prune and Replace method, which searches for optimal
candidates in a fixed search space that is periodically modified to contain additional
promising candidate operations.

We implement the Prune and Replace method in DARTS (Liu et all 2019), a pop-
ular gradient-based NAS method using ENAS’ search space. Our approach is faster,
more robust, and discovers architectures that improve over the DARTS baseline despite
considering significantly more candidate operations.

4.2 Related work

A requirement for our Prune and Replace approach is a fast and stable search method,
which enables us to rank candidate operations by their usefulness. While standard hyper-
parameter optimization techniques such as evolutionary algorithms or reinforcement
learning enable the ranking of candidate architectures, ranking operations within such
additionally requires methods such as Monte-Carlo sampling. In contrast, a gradient-
based approach converges into a single result and is thus incapable of ranking differ-
ent architectures but implicitly ranks all operations through their respective weightings.
Therefore, we present Prune and Replace based on Differentiable Architecture Search
(DARTS, Liu et al.|(2019)), which is detailed in Section|4.2.1

As Prune and Replace implies, we further require ways to remove undesired candidate
operations from our search space and a way to add better ones. Sections [4.2.2]and 4.2.3|
provide a brief overview of these complementary operations, network pruning and net-
work morphisms, from an architecture search perspective.

4.2.1 Differentiable Architecture Search

Architecture search aims to find the topology and operations that maximize some objec-
tive, such as accuracy, while possibly adhering to additional objectives or constraints.
The final architecture uses precisely one of the candidate operations in each place, which
effectively turns NAS into a discrete optimization problem. As such, the predominant ap-
proaches originate in hyper-parameter optimization techniques like reinforcement learn-
ing or evolutionary algorithms. However, redefining the performance estimation strategy
to use a single over-complete super-network (see Section [2.4.2)) comes with significant
benefits: Firstly, since only a single network needs to be trained, the search efficiency
is tremendously increased. Secondly, all possible network operations and paths exist in
parallel and can be compared to one another.

DARTS (Differentiable Architecture Search, by Liu et al.|(2019)) relaxes the formerly
discrete optimization problem to a continuous one, where the search method eventually
converges into a discrete result. Since this approach does not require optimization via re-
inforcement learning or evolutionary algorithms, its complexity is reduced significantly.
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Figure 4.1: A search network based on NASNet. For conciseness, only one block and
one operation from one input are displayed. DARTS learns the weighting o of the mixed
substitute operation o) (x), to smoothly converge into a discrete operation choice.

DARTS utilizes the reduced NASNet search space of ENAS, which is thoroughly de-
scribed in Chapter [3] and partially visualized in Figure The design of two cells has
to be optimized by choosing input sources and operations in B = 4 blocks. The critical
invention of DARTS is the relaxed optimization of operations, which can be seen in the
left part of the image and is further explained below.

The final architecture will apply one operation o from the set of all candidates O (such
as a convolution, Zero, or Max Pooling) to the current input tensor x. This categorical
choice is relaxed by considering a Softmax weighting over all possible operations:

(J:1)
00y = Y PO @.1)
0€0 Y.oco €XP(%(/”))
for an operation between a pair of computational nodes (j,i), parameterized by an
architecture weight vector al/¥) of size |©O|. The architecture search task is thus reduced
to learning a set of continuous variables ot = {a(f 7i)} that weigh the relative importance
of all candidate operations o € O on all edges (j,i) in the over-complete super-network.
At the end of the search process, the architecture is discretized by replacing each mixed

operation 3/) with the single operation o that has the highest weighting o'/

As known from Equations and NAS is fundamentally a bi-level optimization
problem: To find the optimal architecture a*, it is required to know the optimal network
weights 0*(a) for any considered architecture a € A. Since an exact solution is pro-
hibitively expensive, it is approximated by updating o and 0 in turns, using single-step
gradient updates:
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VO = Vo L(D'"" 6(at)) (4.2)

Vo =V L(D g(ar)) (4.3)
6 and « are updated on the disjoint training and validation data sets D'"*" and D"%/d
respectively, to improve the generalizability of the single discovered solution. The con-
tinuous architecture changes further result in a smooth and stable search phase.

However, continuous search has its drawbacks. Since the gradient computation re-
quires computing all possible paths in every step, even a tiny proxy search network has
high computational costs and memory requirements. Additionally, the gradient-based
updates implicitly favor non-parameterized operations such as Skip or Pooling. DARTS
imposes a hard limit on their number to avoid networks consisting of almost exclusively
skip connections. Both problems have been approached in a variety of ways, in the
many methods derived from DARTS. Since our method requires solving the first prob-
lem uniquely and is not prone to the second, we refrain from further details.

4.2.2 Network pruning

The removal of (nearly) unimportant weights is a widely used technique in the history of
deep neural networks. By setting their values to zero, the resulting sparse matrices can
be optimized to require fewer FLOPs and memory storage, often increasing inference
speed and network generalizability. It is further possible to structure the pruning process
to set all weights connecting unimportant neurons to zero. These neurons are effectively
removed, resulting in smaller and cheaper networks.

Both pruning approaches can be seen as a subset of architecture search. Due to the
improved network efficiency, structured pruning is of particular interest. Frameworks
such as NetAdapt (Yang et al., 2018) or Network Slimming (Liu et al.,[2017) iteratively
remove feature channels from trained networks where they are least required and even-
tually reduce the model to a fraction of its former size.

Furthermore, given an over-complete super-network, finding the best-performing ar-
chitecture can be viewed as a pruning task. Redundant connections and operations are
removed until only the single candidate of the highest importance remains. ASAP (An-
neal, Search and Prune, Noy et al.|(2020)) use a gradient-based optimization that prag-
matically prunes every candidate below a weighting threshold while steadily increasing
an architecture temperature factor for faster convergence. P-DARTS (Progressive Dif-
ferentiable Architecture Search, (Chen et al.| (2019)) iteratively runs the DARTS method
three times. The lowest weighted candidates are removed after every iteration, which
reduces the memory requirement. This makes using a larger super-network possible in
the next iteration, which more accurately resembles the full-sized stand-alone networks.
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4.2.3 Network morphisms

The term network morphism stems from mathematics, where a morphism is a function-
preserving mapping from one structure to another of the same type. For neural networks,
morphisms change the network in a way that keeps its function identical. The created
child network thus inherits its parent’s knowledge.

Wei et al.| (2016) perform a systematic study of morphism operations on linear and
non-linear network structures. An analogous work, Net2Net by (Chen e al.| (2016), stud-
ies morphism operations with the explicit goal of creating child networks that are capable
of improving over their parents. Both works were published simultaneously and share
many of their ideas, of which some are introduced in this Section.

Formally, a morphism operation M preserves the network F* with parameters 0 if

Vx, F(x,0)=M(F)(x,0") (4.4)

Aside from case-specific exceptions, such a transformation M adds additional com-
ponents and parameters to the network F and is therefore complementary to parameter
pruning. Trivial examples of M are the addition of a bias vector initialized with zeros or
a multiplicative factor of 1 anywhere in the network.

Convolution Kernels Padding the spatial components of a convolution kernel with
zeros is a trivial way to retain its former function, irrespective of the prior and final sizes,
which is visualized in Figure 4.2

Voo - Vo0 - V20 0O 0 0 0O
increase the increase the

dilation V0,0 V1,0 V2,0 kernel size 0 Yoo V10 V20 O

Y1 - (V11 - (V21 Vo,1 V1,1 | V2,1 0 Vo1 V1,1 V21| O

V0,2 V1,2 V22 0 Vo2 V12 V22 O

Vo2 - (V12 - (V22 0O 0 0 0O

Figure 4.2: Network morphisms from a convolution kernel perspective. A 3x3 convolu-
tion (center) is turned into a 5x5 convolution (right) by padding the kernel with zeros.
Increasing the dilation factor (left) only preserves the function in edge-cases (such as
1 x 1 convolutions) and is thus not considered a typical network morphism operation.

Inserting layers Convolution kernels (without activation function) can be initialized as
an identity operation. Therefore, they can be trivially inserted at any network position, in
any number, and with any spatial kernel size, without changing the network function. An
example is visualized at the top of Figure .3l However, consecutive linear operations
can be reduced to a single one. For the new layers to become useful, they must use
non-linear components: activation functions.
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separable convolution

point-wise  depth-wise feature channels separable convolution separable convolution

image height

add a separable
3x3 convolution

increase the increase the
kernel size channel size

Figure 4.3: Network morphisms from a channel perspective. Every gray rectangle is an
image tensor (channels x height); the convolutions operating on them are blue. A sepa-
rable convolution consists of a point-wise kernel operating only on the spatial component
and a depth-wise 1x1 kernel that operates only across channels. Starting in the top left,
the kernel width can be expanded (bottom left), or an entirely new separable convolution
can be inserted (top right). Intermediate separable convolutions can increase channel
sizes (bottom right) without affecting the initial or final tensor shapes.

Inserting non-linear activation functions With
few exceptions, inserting an activation function is
not a network morphism: TnH

31 —— lambda = 0.0
lambda = 0.2

—— lambda = 0.4

ReLU (x) = ReLU (ReLU (x)) (4.5) 2| mwe-os
TanH (x) # TanH (TanH (x)) 4.6)

—— lambda = 1.0

All other cases can be solved with parameterized -1
activation functions. When interpolating between
a linear and the desired non-linear activation func-

tion, simply initializing the interpolation parameter = 2 a0 1z 3
A with approximately zero suffices: Figure 4.4: Parameterized TanH
PTanH(x) = (1 —A)-x+ A - TanH (x) A el0,1] 4.7)
TanH (x) ~ PTanH (TanH (x)) A=~0 (4.8)

Although inserted as a linear function, further training may gradually adjust A to make
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use of the intended non-linearity, as seen in Figure

Widening layers The last introduced network morphism operation is the widening of
existing layers, which is visualized in Figure[d.3] bottom right. Since the input and output
tensor sizes are considered immutable for simplicity, two successive convolutions are
necessary to enlarge only the intermediate tensor shape. The original network function
is retained if one convolution is extended with random weights, the other with zeros.
Experiments by [Chen et al.| (2016)) also find that widening layers with random weights
in all convolutions do not result in worse performance, although the child networks’
learning speed decreases.

Network morphisms have been successfully applied in architecture search, often based
on hill-climbing optimization. Such methods use the current parent network to generate a
small number of child networks, which are trained and evaluated independently. For the
next iteration, the best-performing child is selected as the new parent. Typical morphism-
based architecture search thus consists of a series of locally greedy steps.

Elsken et al.| (2018) start with a small network on CIFAR and uniform randomly in-
sert convolution layers between randomly chosen layers and with random kernel sizes,
or widen an existing layer by a random factor. Although producing results inferior to
carefully designed network topologies or NAS methods, these random networks take
only one GPU day to create and are on par with ResNet-18 (He ef al.| 2016). NetAdapt
(Yang et al., 2018) attempts to decrease the network resource consumption by applying
pruning techniques but also considers widening layers to improve the performance. |Cai
et al. (2018) use network morphisms to modify a tree-structure embedded in PyramidNet
bottleneck blocks (Han ez al., [2017), using a meta-controller to guide the changes. The
resulting networks improve over their originals in performance while requiring much
fewer parameters.

4.3 Method

4.3.1 Overview

Although architecture search based on network morphisms technically searches through
a near-infinite architecture configuration space, each child network evaluation necessi-
tates further training. Given the vast possibilities, finding the optimal solution at each
step is infeasible. On the other hand, NAS methods using a super-network to evaluate
changes can be comparably cheap but are restricted to fixed search spaces. If the search
space is fixed, it can be evaluated efficiently. If the search space is not fixed, it has a
higher potential to decrease human bias and labor.

Our approach attempts a compromise: The search space in each iteration is fixed, thus
enabling cheap training, evaluation, and comparisons, based on over-complete super-
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Figure 4.5: An example pool of available candidate operations over two iterations, on
one edge in the super-network. The method quickly discards both Pooling operations
and replaces them with variants of convolutions.

networks (see Chapter [2.4.2)). The results of each iteration guide the subsequent search
space changes, producing an improved fixed search space for the next iteration. Since
super-networks already provide some freedom for layer connectivity, our work focuses
on operations such as Identity, Pooling, and various configurations for convolutions. Our
Prune and Replace process thus consists of three major steps in each iteration, which are
exemplarily visualized in Figure 4.5}

1. Training the super-network with its current pool of candidate operations (gray).

2. Evaluating the super-network and pruning the worst candidates on each edge, re-
moving their weights (orange).

3. Sampling parent operations among the survivors, weighted by their relative perfor-
mance. Network morphisms are used to generate child operations, whose weights
in the super-network can be initialized from their respective parent (green).

Our method thus performs locally greedy improvements of the candidate operation
pool, similar to evolutionary optimization. This approach has several advantages:

* Training a super-network is much cheaper than training all the architectures it con-
tains, even when leveraging knowledge transfer from network morphisms.

* The pool of considered candidate operations is much more comprehensive than
other super-networks methods, enabling more specialized solutions. Imposing lim-
its on allowed morphisms also introduces less human bias than providing a fixed
set of operations.

* Only a limited number of candidates is considered at any time, preventing the
super-network training from requiring too many resources.

* Since operations are evaluated for their usefulness over multiple iterations and in
increasingly specific configurations, the results are expected to be more robust.

This iterative Prune and Replace (PR) process is implemented using the Differentiable
Architecture Search (DARTS) method and thus named PR-DARTS. Future experiments
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may replace DARTS in favor of more advanced operation ranking methods, which were
not available at this time.

Naturally, there are also drawbacks. Our implementation limits complexity by not
considering the addition of new edges between disconnected nodes in the computational
graph, but it is theoretically possible to do so. Furthermore, since the available operations
change for each super-network training iteration, so do the memory requirements. We
solve this issue by automatically scaling the batch size, further detailed in Section [4.3.4]
Another problem is the similarity of operations created from the same parent, including
the parent itself, since they inherit the same network weights. We describe why that is a
problem and how it can be solved in Section[4.3.3] The final drawback is the unavoidable
amount of newly introduced hyper-parameters, such as the number of iterations. Since
NAS experiments are expensive, our evaluation is limited to only one carefully designed
set of hyper-parameters.

4.3.2 Exploring vast operation spaces with morphisms

The search space Our super-network training and evaluation methods are based on
DARTS, making only the necessary search space changes enables more fair comparisons.
DARTS uses a reduced variant of NASNet ((Zoph et al.,|2018), see Section : There
are eight different candidate operations: Identity, Zero, Max, and Average Pooling, and
four separable convolutions with kernel sizes k € {3,5} and dilation factors d € {1,2}.

Since DARTS uses B = 4 blocks and two operations per block, the super-network con-
tains a total of 2- (2+3 44+ 5) = 28 edges in each cell, which are connected to their
candidate input sources. Considering the eight operations, DARTS has 28 x 8 architec-
ture weights o per cell. The search result contains only the two best combinations of
input sources and applied operations per block, for a total of 2- B = 8.

Our method applies on a per-edge basis. The 28 edges in each cell start with the same
initial candidate operation pool but differ after a few steps of pruning and replacing.
Some edges may immediately remove the Identity function to explore more variants of
convolutions, while others will later select it as the best possible candidate.

Properties and transformations of convolutions Even though Pooling may also ben-
efit from kernel size changes, we limit all morphism operations exclusively to separable
convolutions. The initial operation pool must therefore contain all operations that can
not be created later: Identity, as well as 3x3 Max and Average Pooling. The fourth and
final operation is a separable convolution with four dimensions of interest:

1. The number of stacked separable convolutions n, also named depth. All opera-
tion candidates in the NASNet search space consist of n = 2 stacked separable
convolutions, which is variable in our case. Our initial operation uses n = 1.

2. As visualized in the bottom right of Figure .3] given n > 1, the layer width w; €
{wi,...w,} of intermediate tensors #; may be changed.
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3. The spatial kernel size, which is initialized as k = 3.
4. The kernel dilation factor, which is initialized as d = 1.

To modify the single initial convolution along the four dimensions, we use the fol-
lowing six transformations. Although only the first three are true network morphisms,
they all allow us to initialize the weights of the generated child operations based on their
respective parents.

1. Increasing the spatial kernel size by padding it with zeros, as seen in the right
of Figure 4.2] and the bottom left of Figure 4.3] To limit complexity, all stacked
convolutions of the same candidate always use the same kernel size.

2. Widening a layer, as seen in the bottom right of Figure This transformation
requires the candidate operation to have at least n = 2 stacked layers so that the
final tensor shape remains unaffected. Since the stacked layers may have different
widths if n > 2, the transformation will always enlarge the smallest widening factor
w; of an operation with factors {wy,...w, }, and prefer the leading convolution if all
are equally wide. The width w; is considered a multiplicative factor to the default
output channel count and is always increased by 1.

3. Inserting a layer at the end of an existing convolution candidate, increasing the
depth n by 1. The new separable convolution is initialized as identity function
and with width w,, = 1. Since the activation function is always ReLU, it is not
necessary to parameterize it to retain the network function (see Section 4.2.3).

4. Decreasing the spatial kernel size k by 2, which applies to all stacked separable
convolutions in one candidate operation. The child operations inherit only the
spatial center weights; all outer weights are removed.

5. Increasing the kernel dilation factor d by 1, thus widening the receptive field. Al-
though this child operation retains all weights of its parent, as shown in Figure 4.2}
the network function changes.

6. Decreasing the kernel dilation factor d by 1.

With limited reversibility, this set of transformations can change a separable convo-
lution operation along the four dimensions of interest. The spatial kernel is allowed to
increase and decrease both size k and dilation d. However, the stacking n and widen-
ing w of layers can only be increased to avoid accidental performance drops by pruning
relevant network structures. Furthermore, as we impose restrictions to the dimensions
{n,w,k,d}, a given separable convolution can usually not be modified in all six ways.

Implementation choices The concrete algorithm implementation on GitHub (Laube,
2019)) features some additional heuristics that are added to improve the efficiency:

Firstly, except when discretizing the architecture after the final iteration, at least one
convolution operation must remain in each candidate pool. Doing so guarantees that the
replacement of candidates via network morphisms is always possible.
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Secondly, it is avoided to try any convolution variation in the same candidate pool
twice. Since such an operation currently exists or was already removed, it is more
promising to evaluate a different candidate that is not redundant or known to perform
poorly. The only exception happens when all transformations fail to produce novel vari-
ations, in which case a previously discarded candidate may be accepted again.

4.3.3 Operation similarity

Similarity as a problem Prune and Replace is intended to gradually specialize the
architecture search space by removing poorly performing operations and adding further
variations of the survivors. The therefor required operation ranking is obtained from
training the super-network with DARTS, which weighs all candidate operations o € O
on a super-network edge (j,i) with a Softmax over the architecture weights ali) =

{Otl(J ’l), ...Ot|(é’|l)}. At the end of each algorithm iteration, the candidates with the lowest
a values are removed.

Suppose the two operations o; and 0, on edge (j,i) are identical in every aspect, and
they start with Ocl(j - éj A, Consequentially, their network and architecture parameters
will remain identical even after training. This becomes a problem when o and o, are
ranked against a competing operation 03, which has no such twin. Since o; and o, are
identical and therefor redundant, their individual Softmax weighting is much lower than
that of an equally important 03:

(J:) (i)Y ~ (J:)
exp(o,””) +exp(ay”) = exp(03"") 4.9)
As aresult, both o1 and 0, are likely removed in the next Pruning step.

While an operation pool will not contain identical candidates, newly generated ones
start with inherited network weights and a very similar structure as their respective par-
ents. Consequentially, not taking precautions first encourages a good candidate operation
to father children, only to eliminate the entire family one iteration later. Even if a member
survives, the lower architecture weighting significantly reduces its probability of being
selected as a parent. We refer to this as the group similarity problem.

Given the operation ranking via DARTS, there is no elegant solution to solve the prob-
lem. Instead, a collection of design decisions attempt to mitigate the issue:

* Atleast one convolution candidate must survive at all times, except when finalizing
the network in the last pruning step.

* Prune and replace only a few operations in each iteration. Having fewer very sim-
ilar candidates reduces the sharing problem and makes removing other operations
possible. To compensate, use more iterations that are individually shorter (fewer
training epochs).

* Prefer pruning at most as many candidates as the previous iteration added. Even in
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the worst case, at least one of the similar operations survives, which can automati-
cally be considered the best among them.

* Finalize the architecture slowly by pruning only one candidate per operation pool
in the last few iterations. Similar candidates can be safely eliminated one by one
without disposing of them all at once.

Quantifying similarity Although the design decisions mentioned before do not require
the quantification of similarity, it is a much-needed metric to analyze the algorithm’s
behavior and the changes in the search spaces.

As described in Section each convolution operation has four mutable prop-
erties: how many separable convolutions are stacked n, their channel width factors
w = {wi,...w, }, their spatial kernel size k, and their dilation factor d. Since w already
implies 7, only three need to be compared. Identity is parameter-free, while Pooling
operations have two parameters: kernel size and type (mean or max pooling).

We define the similarity between any two operations as 0 if they are of different types
and up to 1 if their properties are the same, independent of their network weights 6. As
presented in Table [4.1] every property that differs between the two operations reduces
the similarity value, depending on the number of compared properties. Candidates may
partially agree on a specific width w, which is also reflected in the similarity value. Since
each morphism operation changes only a single property, newly generated separable con-
volutions have a similarity of at least 0.75 to their respective parent,

By computing the average pair-wise similarity of every candidate with all others, the
concept of operation similarity can also be transferred to candidate pools. A constantly
low similarity value would indicate that the group similarity problem slows or prevents
the specialization of a pool, while a value that rises quickly indicates the opposite.

Table 4.1: Example similarity values between pairs of operations.

Pooling SepConv
k=3 max | k=3,d=1, w={2,1}

Identity ‘ 0 ‘ 0

Pooling k=3, max 1.00 0

Pooling k=3, mean 0.67 0

SepConv k=3,d=1, w={2,1} 0 1.00
SepConv k=3,d=1, w={l,1} 0 0.92
SepConv k=3,d=1, w={l1} 0 0.75
SepConv k=3,d=2, w={1} 0 0.50
SepConv k=5,d=2, w={1} 0 0.25
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Figure 4.6: GPU memory consumption of a ResNet-18 on 224 x224 x 3 sized images, as
commonly used when training on ImageNet (Deng et al.,[2009).

4.3.4 Changing hardware requirements

A common choice for batch sizes is to simply fill the GPU memory, which minimizes the
network training time. For a DARTS super-network with eight highly fragmented cells,
an Nvidia 1080 Ti GPU with roughly 11 GB VRAM supports the training on CIFAR10
using batch size 64. Chen et al.| find that training a larger super-network improves the
search result, which strains the memory requirements even further. They progressively
free GPU memory by pruning the worst performing candidate operations, thus enabling
them to increase the network size.

In the case of Prune and Replace, the candidate operation pool on each network edge
changes once per iteration. At first, many of the initially cheap Identity and Pooling
candidates will be replaced by more expensive convolutions. The memory requirement
will decrease again when the architecture is slowly finalized in the later iterations; since
the candidates are then gradually removed. While a constantly small batch size would
prevent out-of-memory issues at any point, using it from the start would be wasteful and
slow. We therefor automatically scale the batch size during the super-network training to
cope with the unknown and ever-changing requirements.

Given a minimum batch size b,,;,, and a value b,,,;;, we try to find n that maximizes the
batch size by, +n - by, The term is bounded both by the maximum batch size by, and
the available memory, which must never be reached to prevent out-of-memory errors. As
seen in Figure {.6] the roughly linear relationship of batch size and GPU memory can be
exploited to predict the expected requirements with a safety margin.

Our implementation increases the batch size every five training steps by b,,,;; = 8, if
the linear extrapolation predicts the resulting memory consumption to stay below 95%.
This approach is both simple and effective and enables training the super-network as
quickly as possible at all times.
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4.4 Experiments and results

In order to evaluate the Prune and Replace approach explained in this chapter, we search
and evaluate architectures in three spaces of increasing size. The exact configurations
are detailed in Section4.4.1] and their results evaluated using fully sized models in Sec-
tion .4.2] Section [4.4.3] takes a closer look at the memory requirements during the
search phase, which vary depending on the currently available candidate operations. The
changing candidate pools and the resulting cells are finally analyzed in Sections 4.4.4]

and respectively.

4.4.1 Search configuration

All hyper-parameters can be categorized into three broad groups, which are outlined
separately:

1. All parameters commonly required for training neural networks, such as the num-
ber of epochs and the learning rate.

2. The parameters belonging to Prune and Replace that do not have a direct effect
on the search spaces. Examples are the number of iterations or the candidate pool
sizes. They are fixed in all experiments to improve comparability.

3. The parameters that restrict operation morphisms and thus define the search space
limits. We vary these to experiment with different search spaces.

1. Network training parameters All hyper-parameters follow the default DARTS
configuration where possible, to promote comparability of the experiments. As illus-
trated in Figured.1] a small proxy network of six normal and two reduction cells is used
to optimize the architecture parameters ¢, which guide the Prune and Replace changes
in every iteration. These weights are trained using ADAM (Kingma and Ba, 2015) with a
constant learning rate of 0.0006, B; = 0.5, B, = 0.999, and a weight decay of 0.001. The
super-network operation weights 6 are trained using stochastic gradient descent (SGD),
subject to cosine annealing in every iteration, which reduces the learning rate from 0.025
to 0.01. SGD furthermore uses a momentum term of 0.9 and a weight decay of 0.0003
to reduce overfitting.

The search network is trained on CIFAR10 (Krizhevsky et al., 2009), regardless of the
target data or task. CIFAR1O0 consists of 60,000 color images of size 32x32, of which
10,000 are reserved as a test set. The remaining 50,000 images are split evenly into a
training and validation set, and used to train the network and architecture parameters,
0 and o, respectively. All training images are normalized by the mean and standard
deviation of the data set, randomly horizontally flipped, zero-padded to size 40x40, and
randomly cropped back to 32x32.

Due to having optimization iterations, some adaptions become necessary. The SGD
learning rate is reset back to its initial value at the start of each iteration, which turns
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Table 4.2: The shared Prune and Replace configuration across the three experiments.
Every operation pool (one on each of the 28 edges) starts with the four initial candidates
and is changed a total of nine times.

| iteration
parameter 0|1 2 3 4 5|6 7 8 9
total epochs 15 15 10 10 10|10 10 10 10
grace epochs 5 5 3 3 3|13 3 3 3
prune worst candidates 1 3 3 3 3,2 1 1 1
replace via morphisms 33 3 3 3]0 0 0 O
candidate pool size 416 6 6 6 6|4 3 2 1
expf()rring conv:z?ging

every individual iteration into a short DARTS version. We also train for an increased
amount of total epochs due to the changing search space and automatically adjust the
batch size to use the GPU efficiently under varying hardware requirements.

2. Shared Prune and Replace settings Aside from the concrete search space restric-
tions, the Prune and Replace method also raises the question of ~ow to prune and replace.

We divide 100 training epochs for the search networks into nine iterations and apply
the search space transformations at the end of each. As listed in Table 4.2} all iterations
have 10 to 15 training epochs, for a total of 100. The first two iterations are slightly
longer to compensate for the initially untrained network weights. Since the weights in
subsequent iterations are partially trained or inherited from such parent candidate op-
erations, ranking them requires less training time. Additionally, the first third of each
iteration are so-called grace epochs (Chen et al., 2019), during which the architecture
weights are frozen. Their purpose is first to enable each candidate operation to fit the
data before ranking them against each other. This primarily benefits the newly generated
candidates but also all others which depend on now-pruned paths.

The design of how many operations are pruned and replaced in each of these iterations
follows an exploring-converging pattern. As shown in Table 4.2} the first five iterations
are used to explore the candidate space. The total number of candidates per pool is
limited to six, half of which are pruned and replaced every iteration.

This approach limits the resource consumption during training and satisfies the design
decisions that are theorized to mitigate the operation similarity problem, as described in
Section .3.3] Since there are never more operations pruned than added, the chance to
remove entire promising candidate families is reduced significantly. Following the same
idea, the final four iterations are used to slowly prune operations without adding any
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Table 4.3: Morphing constraints for our experiment settings. The total number of config-
urations includes only the obtainable configurations as described in Section 4.3.2] within
five morphism steps, as well as the three initial Identity and Pooling operations. All
variations of kernel size k = 1 combined with dilation d = 2 have been excluded.

convolutions layer expansions
setting kernel sizes k dilations d depthn  width w; total
DARTS-like (DL) {3,5,7} {1,2} {1,2} {1} 1243
depth-restricted (DR)  {1,3,5,7} {1,2} {1,2}  {1,2,3,4,5} 3643
unrestricted (UR) {1,3,5,7} {1,2} N I\ 80+3

replacements. Removing them one by one keeps at least one of the similar candidates in
each operation pool until the network is finalized.

3. Search space restrictions Our experiments vary only by the restrictions we impose
on transforming the kernel sizes k, dilations d, depth n, and widths w of separable convo-
lution operations; all other parameters are kept constant. We consider three search spaces
of interest and list the allowed choices for {k,d,n,w} in Table

* To enable a comparison with the baseline algorithm, the DARTS-like search space
is restricted to operations resembling the eight candidates used by DARTS. As
opposed to DARTS, we allow a kernel size of kK = 7 and use convolutions without
stacking them (n = 1), resulting in almost twice as many candidates.

* The restrictions of the DARTS-like search space are loosened in the depth-restricted
search space, which, as the name suggests, primarily restricts the depth of the net-
work. Contrary to before, the separable operations can now be created with kernel
size k = 1 and a widening factor w; > 1.

* The unrestricted search space imposes no restrictions on layer depth n and width
w, enabling the exploration of wide and deeply stacked candidates.

As mentioned in the accompanying text of Table 4.3] the given number of operations
is limited to the obtainable configurations within five morphism steps, which is the num-
ber of exploration iterations (see Table [4.2)). Especially obvious in the unrestricted set-
ting, the theoretical number of candidates satisfying the restrictions may be much larger.
However, given a limited number of iterations, only a limited subset of candidates can
be explored. This limitation is related to the general disadvantage of network morphism-
based architecture search, where the theoretically unlimited search space suffers from
non-negligible evaluation costs for every considered change.
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Chapter 4 Searching through vast architecture spaces

4.4.2 Retraining results

The discovered cells of four architecture searches have been evaluated on CIFAR10
and CIFAR100, using fully-sized networks that stack 18 normal and two reduction cells
each. As seen in Table although the primary intent of Prune and Replace is to con-
sider vast and weakly defined search spaces, the resulting networks are on par with their
competition. Since most other DARTS-derived methods attempt to mitigate the DARTS
problems and improve the resulting performance, the similar test accuracy is a success
for the Prune and Replace approach. The PR-DARTS UR cells from the unrestricted
search space are an interesting failure in that respect, which is further investigated in
Section

4.4.3 Resource analysis

As seen in Table d.4] PR-DARTS generally finds networks in less than one GPU day.
Interestingly, this is considerably faster than DARTS, despite training the super-networks
for twice as many epochs.

The first reason for this is that DARTS considers eight candidate operations in every
operation pool at all times, which have to be computed in every forward pass. Our
PR-DARTS method considers at most six, and even less in the last few iterations (see
Table §.2)). This significantly reduces the computational costs per batch.

The second reason is connected to the first and can be found in Figure[d.7c} the dynam-
ically increased batch size. While DARTS is limited to batch size 64 for the entire search
process, the search experiment leading to the PR-DARTS DL2 cells maintained a larger
batch size in most iterations. The batch size is continuously reduced as more variants
of convolutions are added and finally increased again once operations are pruned with-
out replacement. Exploiting the varying memory requirements may reduce the time per
training epoch considerably, especially in the early and late iterations where the allowed
maximum batch size of 128 is reached.

A third and final reason is the usage of grace epochs at the beginning of each iteration,
during which the architecture weights o are fixed. They make up almost a third of all
epochs and reduce their cost by around half.

However, a search time difference of 0.7 GPU days has only a minor significance for
practical matters. Evaluating the discovered cells in a full-sized network on CIFAR takes
almost two days, which is still minuscule compared to ImageNet or object detection
tasks. If these costs are considered, the time difference is less critical than it may appear.
Nonetheless, the automatically adjusted batch size fits the goal of NAS very well, where
a user can just run a search algorithm without being bothered by all the little details.
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4.4.4 Operation similarity analysis

Contrary to all other methods in Table 4.4] Prune and Replace may consider only a
subset of all theoretically possible operations. The amounts of actually discovered’ and
potentially discoverable* operations are therefore listed separately. A candidate counts
as discovered if it was part of any operation pool of a normal cell, even if it was discarded
immediately after.

Considering that the total number of initial and generated operations in the search iter-
ations already exceeds 15, finding 157/15% operations in the DARTS-like space is hardly
surprising. The more interesting results are those of the depth-restricted and unrestricted
search spaces, where only a subset of all candidates was ever considered. Since mor-
phism transformations to separable convolutions are selected by chance and the number
of discovered” operations includes all candidate pools, a much higher number was ex-
pected. The small amount of discovered” operations indicates that one configuration
trait of the candidates consistently dominates the others, which are then either directly
removed or unable to generate offspring.

Figure displays the relative amounts of operation types in all candidate pools of
both cell types and their similarity in every iteration. All initial candidate pools start
with one Identity, two Poolings, and one 3 x3 separable convolution but eventually differ
as the non-renewable operations are removed in favor of convolution variations. The
relative amount of convolutions only stops increasing after epoch 60, when the total
number of candidates is gradually reduced. A small number of the initial Identity and
Pooling operations survive all nine iterations of candidate pruning and are adopted in the
final PR-DARTS DL2 cell design, as visualized in Figure 4.8b

Interestingly, while the average operation similarity of all candidate pools in both cells
is generally increasing (Figure[d.7d), this is not the case in every iteration. The similarity
of the normal cells stagnates twice, which points to the group similarity problem (Sec-
tion[4.3.3), where candidates are easily pruned when they are very similar to a competing
operation. Many newly generated candidates have likely been removed immediately af-
ter, only exchanging the parent for the best child. Nonetheless, the similarity values are
greater than 0.5, which means that most candidates are generally similar to one another.

After epoch 60, when the network topology converges, the similarity rises faster. Since
the pools are getting smaller, the removal of a different candidate has an increased effect.
At epoch 90, when only two candidates per pool remain, the average similarity in both
cells is around 0.75. Most of the final two candidates thus differ by only a single property.

In summary, the group similarity problem slows the candidate exploration until epoch
60 but is less pronounced in the converging phase afterward. Epoch 60 is the turning
point when no further candidates are added, and the pruning of existing ones is slowed
down. The main reason for the stagnation is, therefore, likely the simultaneous pruning
of multiple operations. Future Prune and Replace experiments should thus prune even
fewer candidates per iteration, requiring more iterations to explore as many candidates
as before.
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4.4.5 Cell analysis

The cells of all four different network architectures from Table[4.4] are visualized in Fig-
ures and Almost all cells have at least one Identity operation, while Pooling is
found exclusively in reduction cells. These operations proved their usefulness by sur-
viving nine iterations of pruning, which inadvertently solves the DARTS failure case of
selecting harmfully many Identity operations. Other methods explicitly limit the number
of Identity operations (Chen et al., 2019)), use conditional early stopping (Liang et al.,
2019)), regularize the loss (Zela et al., 2020), or carefully adjust the operation ranking
formulation (Chu et al., [2020a) to achieve the same effect.

The two pairs of cells from the DARTS-like search space (Figures and both
prefer stacking the separable convolutions with w = {1, 1}, and have only two levels of
hierarchy in their normal cells. Contrary to DL1, the DL2 normal cell uses much fewer
Identity operations and generally larger kernel sizes, which results in roughly 30% more
network parameters and an increase in accuracy (see Table {4.4)).

Once the widths of operations can be increased, as seen in Figure we find that
half of the convolutions possess this trait. Even though the DR (depth-restricted) normal
cell has many more Identity functions than DL2 (DARTS-like 2), the widened layers
result in more total network parameters. Nonetheless, the significant increase in possible
candidate operations was handled successfully.

However, an interesting failure case is a result of the unrestricted search space, dis-
played in Figure 4.9b] Although a network with these cells still competes with many
manual designs, it is outclassed by its NAS competition. The UR (unrestricted) normal
cell not only has three hierarchy levels, but many convolution candidates themselves are
also deeply stacked. Since the cells were searched in a small proxy network of only eight
cells, it seems likely that the deeply stacked convolutions were helpful to compensate for
the small model size. However, when transferred to a full-sized network of twenty cells,
the deep cells without skip connections become a disadvantage.
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4.5 Conclusions

In summary, we presented a compromise between the rigid super-network optimization
and the free design changes of network morphism-based architecture search. The pro-
posed Prune and Replace approach inherits many advantages from both sides, as it al-
lows the efficient evaluation of the search space components and iterative improvements
thereof. Applied to DARTS, the resulting PR-DARTS algorithm is faster and yields bet-
ter results than its precursor while it additionally considers a more comprehensive range
of candidate operations. These candidates are not defined explicitly but weakly by spec-
ifying limits to operation transformations. PR-DARTS successfully finds competitive
architectures even when the width constraints are loosened, thus proving the method.
However, the search for arbitrarily deep operations in small proxy networks can be con-
sidered a failure since the resulting cells can no longer be easily stacked.

The experiments are made technologically efficient by using an adaptive batch size,
which predicts the GPU memory consumption from a linear extrapolation. Although
simple, the training speed is maximized, and out-of-memory problems are prevented.

The major downside of Prune and Replace is complexity. There are many hyper-
parameters to set, and as each NAS experiment is costly, their optimal configuration is
not entirely clear. Our own parameter choices were primarily guided by considerations
about the group similarity problem, which was still affecting the cell search and reduced
the exploration speed.

An interesting change in future experiments regards the candidate pools, which could
be changed asynchronously and more frequently, with only minor changes each time.
This should prevent the sudden pruning of many similar operations at once and im-
prove the co-adaption of different pools. A second significant change only became pos-
sible after the original paper’s publication: using a better operation ranking method than
DARTS. Modern approaches provide many benefits such as being faster, requiring less
GPU memory, being less susceptible to collapses, yielding better results, and being able
to search directly on full-sized networks.
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Chapter 5

What to expect of hardware metric
predictors in NAS

In contrast to Chapters [3| and [4] that focused on search spaces and how to adapt them,
the focus of this Chapter is the evaluation of hardware metric predictors. These models
estimate device- and architecture-specific statistics, such as latency or energy consump-
tion. Predictors play an important role in hardware-aware architecture search given the
ever-increasing variety of network tasks and hardware platforms.

Even though predictors for hardware metrics are an important and widely used compo-
nent in modern architecture search, little is known about how different models compare
and affect the NAS process. This chapter is based on [Laube et al.| (2022), where these
points are investigated in a large-scale study. We consider a total of 18 predictors across
ten diverse datasets and find that network-based models generally perform best, although
tree-based models are competitive for large amounts of training data. We then simulate
the selection of architectures for different datasets, test set sizes, and degrees of predic-
tor preciseness. These results provide insights into predictor-based NAS, what to expect
from inaccurate predictors, and when they are preferable to live measurements.

5.1 Introduction and motivation

Modern neural network architectures are designed not only considering their primary
objective, such as accuracy or IoU (intersection over union). Even though existing ar-
chitectures can be scaled down to work with the limited available memory and computa-
tional power of, e.g., mobile phones, they are significantly outperformed by specifically
designed architectures (Howard et al., 2017} Sandler et al., 2018};|Zhang et al., 2018; Ma
et al.,[2018). Standard hardware metrics are memory usage, the number of model param-
eters, multiply-accumulate operations, energy consumption, latency, and more; each of
which may become an optimization objective or constraint. While a low-latency objec-
tive for image classification may serve only as user convenience (objective), it becomes
a necessity (constraint) in real-time person detection of autonomous cars. Additionally,
the often specialized hardware may pose further restrictions on the architecture design,
if e.g. the memory capacity is limited. As the range of tasks and target platforms grows,
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specialized architectures and the methods to find them efficiently are gaining impor-
tance. More specifically, the efficient incorporation of hardware-specific objectives and
constraints is becoming an increasingly important aspect of Neural Architecture Search.

There are two typical ways to use predictors in NAS. In the first, the search method
considers all architectures separately. The candidates are sampled, evaluated (often accu-
racy and latency), and then ranked. An example case is presented in Chapter 3] where the
network accuracy was the sole objective. Such approaches can be generalized to multiple
objectives by including additional metrics as optimization targets or constraints. Instead
of selecting a single architecture of maximum accuracy or minimum loss, the goal is to
find the architectures that have an optimal tradeoff between the different objectives. A
latency predictor is not required since directly measuring the latency of every candidate
is a viable alternative. In the second usage type, a search method selects exactly one
architecture from the search space, often guided by gradients. One example is DARTS,
which was used to rank the candidate operations (but not architectures) in Chapter 4]
However, to account for additional objectives, they must be differentiable with respect
to the architecture. Ordinarily, this is not the case for latency, memory consumption, or
other metrics of interest. A differentiable prediction model can provide the required gra-
dients, not only for different architectures but also for continuous compositions thereof.
In this case, a differentiable prediction model is a requisite, and live measurements are
not sufficient.

Nonetheless, even if a predictor is not required, it may still be preferable. While
measuring live has the advantage of not suffering from inaccurate predictions, the corre-
sponding hardware needs to be available during the search process. Measuring live and
on-demand may also significantly slow down the search process and necessitates further
measurements for each new architecture search. In comparison, evaluating a predictor
is effectively instant, scalable, and possible without the actual hardware, e.g., in a cloud
environment. The dataset required to train a predictor has to be collected only once,
while its size allows some control over the predictor’s precision. Finally, changing the
optimization targets simply requires the replacement of one predictor with another.

While the many advantages make predictors a popular choice of hardware-aware NAS
(e.g. ICai et al.| (2019); |Xu et al.| (2020); Wu et al.| (2019); Wan et al.| (2020); Dai et al.
(2020); Nayman et al.|(2021))), there are no guidelines on which predictors perform best,
how many training samples are required, or what happens when a predictor is inaccurate.
This Chapter investigates the above points by conducting large-scale experiments on ten
hardware-metric datasets chosen from HW-NAS-Bench (Li ef al.|[2021a) and TransNAS-
Bench-101 (Duan et al., 2021). We explore how powerful the different predictors are
when using different amounts of training data and whether these results generalize across
different network architecture types. To investigate the impact of inaccurate predictors,
we extensively simulate the subsequent architecture selection. Our results demonstrate
the effectiveness of network-based prediction models; provide insights into predictor
mistakes and what to expect from them.
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5.2 Related work

NAS Benchmarks Benchmarks for NAS problems are a vital component of this chap-
ter’s evaluation of predictors and their effects. An overview is provided in Chapter[2.5.1]
While most benchmarks generally focus on the accuracy or loss of each architecture,
TransNAS-Bench-101 (Duan et al.,|2021)) also includes latency measurements. Further-
more, HW-NAS-Bench (L1 ez al.l 2021a) extends the popular NAS-Bench-201 bench-
mark (Dong and Yang, 2020) with 30 different combinations of datasets, metric, and
hardware platforms. Major findings include that FLOPs and the number of parameters
are a poor approximation for other metrics such as latency. Many existing NAS methods
use such inadequate substitutes for their simplicity and would benefit from their replace-
ment with better prediction models. [Li et al.| also find that hardware-specific costs do
not correlate well across hardware platforms. While accounting for each device’s char-
acteristics improves the NAS results, it is also expensive. Predictors can reduce costs by
requiring fewer measurements and shorter query times.

Predictors in NAS: Aside from real-time measurements (Tan et al.} 2019; Yang et al.,
2018)), hardware metric estimation in NAS is commonly performed via Lookup Table
(Wu et al.| 2019), Analytical Estimation or a Prediction Model (Dai et al., [2020; Xu
et al., 2020). While a Lookup Table can accurately estimate hardware-agnostic metrics,
such as FLOPs or the number of parameters (Cat et al., 2019; /Guo et al., 2020; Chu et al.,
2019b)), they may be suboptimal for device-dependent metrics. Latency and energy con-
sumption have non-obvious factors that depend on hardware specifics such as memory,
cache usage, the ability to parallelize each operation, and an interplay between different
network operations. Such details can be captured with neural networks (Dai et al., 2020;
Mendoza and Wang, 2020; [Ponomarev et al.,|2020; Xu et al., 2020) or other specialized
models (Yao et al.,[2018; |Wess et al..,[2021).

Of particular interest is the correct prediction of the model loss or accuracy, possibly
reducing the architecture search time by orders of magnitude (Mellor ez al., 2020; Wang
et al., 2021bj L1 et al., 2021b). In addition to common predictors such as Linear Re-
gression, Random Forests (Liaw et al., [ 2002) or Gaussian Processes (Rasmussen, 2003);
specialized techniques may exploit training curve extrapolation, network weight sharing
or gradient information. The experiments of this chapter follow the large-scale study
of White et al.| (2021), who compare 31 diverse accuracy prediction methods based on
initialization and query time, using three NAS benchmarks.
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5.3 Background

5.3.1 Multiple objectives

In the design and search for optimal neural networks architectures, it may be beneficial to
incorporate additional objectives into the optimization process. While Chapters 3| and
compared networks by their accuracy and number of parameters, their presented methods
optimize a single objective, the network accuracy.

In contrast, a multi-objective optimization method can simultaneously maximize net-
work accuracy and minimize its latency or FLOPs. As seen in this example, the different
objectives may conflict with one another. It is highly unlikely for a single network ar-
chitecture to have both, the lowest latency and the highest accuracy. Indeed, the slower
network architectures often have more parameters, which generally benefits their accu-
racy. Therefore, a multi-objective optimization method proposes the set of candidates
with the optimal tradeoff, the Pareto set. For every other candidate, there exists a mem-
ber in the Pareto set that is equal or better in every objective. An example is visualized

in Figure[5.1]

Mathematical formulation The multi-objective problem f is composed of individual
optimization problems f;. Without loss of generality, each f; is considered a minimiza-
tion problem. Any architecture a in the search space A can be evaluated for k objectives,
represented as a vector:

fitA=R,  f:A=RY fa) = (fila), frla), ... fila)", acA (5.1
A solution (i.e. candidate architecture) a; dominates a, when:

1. filar) < fi(a2), forall ie{l,2,....k} and (5.2)
2. filar) < fi(a2), for at least one j € {1,2,....k} (5.3)

For example, candidate a; dominates a; if it achieves a higher accuracy but at most the
same FLOPs and latency. All candidates that are not dominated by any other candidate
are Pareto-optimal and thus part of the Pareto set. These optimal candidates are the
best possible tradeoff between the different objectives. Improving some objective f; then
always degrades at least one other objective f;.

Comparing sets of solutions Comparing two single-objective solutions, a; and a», is
easy: if f(ay) is smaller than f(a;), a; is the winner. Generalizing this approach to
sets of solutions and multiple objectives is much harder. However, a simple and com-
prehensive metric does exist: the hypervolume. As visualized in the right of Figure[5.1]
the hypervolume corresponds to the integral under the Pareto front with a given refer-
ence point. A large hypervolume thus corresponds to a set of solutions that, e.g., feature
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Figure 5.1: Left: The distances of a selected candidate architecture C1 to the Pareto
front. C1 is dominated by A2, A3, and A4 of the Pareto set. A2 has a slightly higher
accuracy than C1 while being much better on the hardware metric, e.g. latency. A4 has a
slightly better hardware metric value, but much higher accuracy. Given several candidate
architectures, their differences are averaged.

Right: We choose the reference point for the hypervolume (for two objectives: area
under a Pareto front) by multiplying the highest hardware metric value from the true
Pareto front with 1.1, and accuracy O.

high accuracy and low latency values. Any unique and non-dominated solution that is
removed from the evaluated set causes a reduction in this metric. For the experiments in
this chapter, the reference point was dynamically chosen to be at accuracy 0, and m = 1.1
times the maximum hardware-metric value of the Pareto optimal architectures. This arbi-
trary choice is the middle ground between making the accuracy of the rightmost member
of the Pareto front irrelevant (m = 1.0) and overemphasizing it (m >> 1.0).

However, the hypervolume metric has two clear weaknesses. Firstly, outliers with
very high or low objective values (such as accuracy or latency) may distort the overall
evaluation. This is no issue in our case, since the space is densely populated (as later seen
in Figure [5.5). Secondly, hypervolume is not easily interpretable. It is not clear what
a hypervolume value of 4.0 means, nor how much different other solutions are when
their value is only 3.8. We therefore also compute the Mean Reduction in Accuracy
(MRA), i.e., how much higher the accuracy of the Pareto set is compared to that of the
currently evaluated set. If MRA is close to zero, the difference is marginal. For a single
candidate C1, this is visualized in the left of Figure 5.1 Computing MRA requires the
Pareto set to be known, which is infeasible in most practical problems. Still, MRA is
much more intuitive than the hypervolume, since this metric clearly states how much the
average network accuracy is reduced if a non-optimal set of solutions is selected. As a
disadvantage, MRA makes no statements about the hardware metric, so that the absence
of e.g. low-latency architectures is not reflected.
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Scalarizing and differentiability As seen in Chapter @ gradient-based NAS methods
select only a single candidate architecture from the search space. Although not required
in this chapter, it is possible to account for several differentiable objective functions
through the means of scalarization. In the simplest form, the different objectives f; are
weighted linearly:

k
min Z w; fi(a) (5.4)

acA =

By adjusting the weights w = {w,w», ..., w}, it becomes possible to converge to any
specific Pareto optimal architecture. Cai et al.|(2019) are the first to use this technique to
find architectures with high accuracy and low latency.

The linear scalarization requires choosing w in advance, without knowing the required
parameters to find solutions of particular accuracy or latency. In most cases, it is prefer-
able to set constraints:

mijl fi(a) sothat fi(a) <g for ie {l,...,k}\{/j} (5.5)
ac

Doing so enables finding the architecture that maximizes accuracy, for any particular
requirements. While gradient-based architecture search with constraints is challenging,
it is nonetheless possible (Nayman etz al., 2021)).

No matter how f is scalarized, gradient-based methods require every single objec-
tive function f; to be differentiable with respect to the architecture. Chapter ] presented
DARTS, which adds architecture weights o to the competing paths in over-complete
super-networks. By differentiating the loss, their gradient Vo enables the continuous
optimization of the architecture. For other objectives like latency or FLOPs, an estab-
lished practice is to use a differentiable prediction model. (Cai et al.|(2019) and Nayman
et al.|(2021) use a lookup table that assigns every candidate option a latency-cost. As the
sum over this cost is weighted by the architecture weights «, latency becomes differen-
tiable. Another approach is the use of neural networks (Xu et al., 2020), which predict a
differentiable latency for the current architecture weights o.

5.3.2 Differences between accuracy and hardware predictors

There are fundamental differences when predicting hardware metrics and the accuracy
of network topologies. The most essential is the cost to obtain a helpful predictor, which
may vary widely for accuracy prediction methods. While determining the test accuracy
requires the costly and lengthy training of networks, measuring hardware metrics does
not necessitate any network training. Consequentially, specialized accuracy-estimation
methods that rely on trained networks, loss history, learning curve extrapolation, or early
stopping do not apply to hardware metrics. Furthermore, so-called zero-cost proxies
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that predict metrics from the gradients of a single batch are dependant on the network
topology but not on the hardware the network is placed on. Therefore, the dominant
hardware-metric predictor family is model-based.

Since all relevant predictors are model-based, they can be compared by their train-
ing set size. This simplifies the initialization time of a predictor as the number of prior
measured architectures on which they are trained. In stark contrast, some accuracy pre-
dictors do not need any training data, while others require several partially or fully trained
networks. Since an untrained network and a few batches suffice to measure a hardware-
metric, the collection of such a training set is comparably inexpensive.

Additionally, hardware predictors are generally used supplementary to a one-shot net-
work optimized for loss or accuracy. Depending on the NAS method, a fully differen-
tiable predictor is required in order to guide the gradient-based architecture selection.
Typical choices are Lookup Tables (Ca1 et al., |2019; Nayman et al., 2021) and neural
networks (Xu et al.,[2020).

5.3.3 Model-based predictors

The goal of a predictor f,(a) is to accurately approximate the function f(a), which may
be, e.g., the latency of an architecture a from the search space .A. A model-based predic-
tor is trained via supervised learning on a set D;,4;,, of datapoints (a, f(a)), after which it
can be inexpensively queried for estimates on further architectures. The collection of the
dataset and the duration of the training are referred to as initialization time and training
time respectively.

The quality of such a trained predictor is generally determined by the (ranking) corre-
lation between measurements { f(a)|a € Ay } and predictions {f,(a)|a € Aseq } on the
unseen architectures A;.;; C A. Common correlation metric choices are Pearson (PCC),
Spearman (SCC) and Kendall’s Tau (KT) (Chu er all 20194; Yu et al., [2020b; [Siems
et al.,2020).

5.4 Methods

Our methods follow the large-scale study of White et al. (2021), who compared a total of
31 accuracy prediction methods. The differences between accuracy and hardware-metric
prediction, our selection of predictors, and the general training pipeline are described in
this section. We then compare these predictors across different training set sizes in our
experiments on HW-NAS-Bench and TransNAS-Bench-101, described in Section@
Our experiments include 18 model-based predictors from different families: Lin-
ear Regression, Ridge Regression (Saunders et al., [1998), Bayesian Linear Regression
(Bishopl, [2007), Support Vector Machines (Cortes and Vapnik, [1995), Gaussian Process
(Rasmussen, 2003), Sparse Gaussian Process (Candela and Rasmussen, 2005), Ran-
dom Forests (Liaw et al., [2002), XGBoost (Chen and Guestrin, [2016), NGBoost (Duan
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et al., [2020), LGBoost (Ke et al., [2017), BOHAMIANN (Springenberg et al., 2016),
BANANAS (White et al. 2019), BONAS (Shi et al. 2020), GCN (Wen et al., 2020),
small and large Multi-Layer-Perceptrons (MLP), NAO (Luo et al., 2018)), and a layer-
operation-wise Lookup Table model. We provide further descriptions and implementa-
tion details in Appendix [A.1]

Hyper-parameter tuning: The default hyperparameters of the used predictors vary
significantly in their levels of hyper-parameter tuning, especially in the context of NAS.
Additionally, some predictors may internally make use of cross-validation, while others
do not. Following |White et al.| (2021), we attempt to level the playing field by running
a cross-validation random-search over hyper-parameters each time a predictor is fit to
data. Each search is limited to 5000 iterations and a total run time of 15 minutes and
naturally excludes any test data. The predictor-specific parameter details are given in

Appendix [A.2]

Training pipeline To make a reliable comparison, we use the NASLib library (Ruchte
et al.,[2020). Each predictor is fit 50 times on each dataset and training size, using seeds
{0,...,49}.

Some predictors internally normalize the training values (subtract mean, divide by
standard deviation). We choose to explicitly do this for all predictors and datasets, which
reduces the dependency of hyper-parameters (e.g. learning rate) on the dataset and allows
us to analyze and compare the prediction errors across datasets more effectively.

5.5 Predictor Experiments

We compare the different predictor models based on two NAS benchmarks, HW-NAS-
Bench (Li et all 2021a) and TransNAS-Bench-101 (Duan et all 2021). They differ
considerably by their network tasks, hardware devices, and architecture designs.

HW-NAS-Bench architecture design and datasets
In HW-NAS-Bench, each architecture is solely de-
fined by the topology of a building block (’cell”,
see Section [2.4.1)), which is stacked multiple times
to create a complete network. Each cell is com-
pletely defined by choosing six candidate opera-
tions. Since they select from five different candi-
dates each time, there are 5° = 15625 unique cell Figure 5.2: Basic NAS-Bench-201
topologies. These cells are not fully sequential but / HW-NAS cell design. Each of the
contain paths of different lengths, which is visual- six orange paths is finalized with
ized in Figure[5.2] exactly one out of five candidate
operations.
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HW-NAS-Bench provides ten hardware statis-
tics on CIFAR10, CIFAR100 (Krizhevsky et al.,
2009) and ImageNet16-120 (Chrabaszcz et al., 2017), of which we exclude the incom-
plete EdgeTPU metric. Thus there are 27 data sets of varying difficulty. As detailed
in Appendix [A.3] 12 of them can be accurately fit with Linear Regression and only 25
training samples. Many are also very similar since their measured networks differ only
by the number of image classes. We therefore select five datasets that are not trivial to
learn as they are non-linear and also not redundant:

* CIFAR100, edgegpu, energy consumption * CIFAR100, pixel3, latency
* ImageNetl6-120, eyeriss, arithmetic intensity o CIFAR10, edgegpu, latency
* ImageNet16-120, raspi4, latency

TransNAS-Bench-101 architecture design and datasets TransNAS-Bench-101 con-
tains information for 7,352 different network architectures, used as backbones in seven
diverse vision tasks. Since 4,096 are also a subset of HW-NAS-Bench, we focus on
the remaining 3,256 architectures with a macro-level search space. Unlike a micro-level
search space, where a cell is stacked multiple times to create a network, each network
layer and block is considered individually. In particular, the TransNAS-Bench-101 net-
works consist of four to six pairs of ResNet blocks (He ez al., 2016), which may modify
the image size and channels in four ways: not at all, double the channel count, halve
the spatial size, and both. Every network has to double the channel count 1 to 3 times,
resulting in 3,256 unique architectures. The networks may consequentially differ in their
number of layers (depth), the number of channels (width), and image size at any layer.

As done for HW-NAS-Bench, we select five of the seven available datasets for their
latency measurements. Aside from the self-supervised Jigsaw task, there is little differ-
ence between the cross-task latency measurements (see Appendix [A.3]). We evaluate the
possibly redundant datasets nonetheless, since latency predictions in macro-level search
spaces are an important domain for NAS on image classification and object detection
tasks:

* Object classification * Jigsaw

* Scene classification  Semantic segmentation
* Room layout

Fitting results and comparison The results, averaged over all selected HW-NAS-
Bench and TransNAS-Bench-101 datasets, are presented in Figures [5.3a) and [5.3b] re-
spectively. The left plots present the absolute predictor performance, the right ones make
relative comparisons easier.

Unsurprisingly, more training samples (i.e., evaluated architectures) generally lead to
better prediction results, even until the entire search space is known (aside from the test
set). This is true for most of the predictors, although e.g. Gaussian Processes and BO-
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(a) Results on HW-NAS-Bench. NAO performs decently at all times, and none of the prediction
models requires more than 60 training samples to improve over a Lookup Table model.
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(b) Results on TransNAS-Bench-101. Since all network architectures are purely sequential by
design, we do not evaluate predictors that specifically encode the architecture connectivity (BA-
NANAS, BONAS, GCN, NAO). After as few as 20 training samples, MLP models outclass all
other predictors.

Figure 5.3: How well the different predictors rank the test architectures, depending on
the training set size and averaged over the five selected datasets. Left plots: absolute
Kendall’s Tau ranking correlation, higher is better. Right plots: same as left, but centered
on the predictor-average.
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HAMIANN saturate early. The simple Linear Regression and Ridge Regression models
also fail to make proper use of hundreds of data points but perform decently when only a
few training samples are available. Interestingly, the same is true for the graph-encoding
network-based predictors BONAS and GCN. While knowing how the different paths
within each cell connect (see Appendix [A.T)) is especially useful given less than fifty
training samples, the advantage disappears afterward. In contrast, the graph-encoding
encoder-decoder approach of NAO performs decently at all times.

Due to their powerful rule-based approach, tree-based models perform much better
given many training samples. Under such circumstances, LGBoost is a candidate for the
best predictor model. Similarly, the predictions of Support Vector Machines also benefit
strongly from more samples.

The model we find to perform best for most training set sizes are MLPs. They are
among the top predictors at almost all times in the HW-NAS-Bench, although tree-based
models are competitive given enough data. After around 3,000 training samples, thinner
and deeper MLPs improve over the wider and smaller ones. The path-encoding BA-
NANAS model behaves similarly to a regular large MLP but requires more samples to
reach the same performance. This is interesting since, aside from the data encoding, BA-
NANAS is an ensemble of three large MLP models. Even though only the first network
layer is affected by the data encoding, the more complicated path-encoding proves harm-
ful when the connectivity of the architectures in the search space is fixed. On TransNAS-
Bench-101, MLP perform exceptionally well. They are much better than any other tested
predictor once more than just 20 training samples are available. The small MLP model
can achieve a KT correlation of 80% with just 200 training samples, which takes the best
non-network-based predictor (Support Vector Machine) four times as many. They are
also the only models that achieve a KT correlation of over 90%, about 5% higher than
the next best model (LGBoost).

Finally, the Lookup Table models (black horizontal lines) perform poorly in compar-
ison to any other predictor. Even though building such a model for HW-NAS-Bench
datasets requires only 25 neighbored architectures, NAO and GCN perform better after
just ten random samples. More than half of the predictor models require less than 25
random samples, while the worst need at most 60. On TransNAS-Bench-101, Lookup
Tables perform comparably better. Building one requires only 21 neighbored archi-
tectures, and it takes most models between 50 and 100 random training samples to
achieve better performance. When measured on a per dataset basis, we find that the
Lookup Table models display a severe performance difference ranging from about 20%
KT correlation (cifar10-edgegpu_latency and Jigsaw) to over 70% (ImageNetl6-120-
eyeriss_arithmetic_intensity and Semantic Segmentation, see Appendix[A.3). Other mod-
els prove to be much more stable.
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HW-NAS-Bench TransNAS-Bench-101
Raspi4 FPGA Eyeriss Pixel3 EdgeGPU Tesla V100
latency 0.45(0.75)  0.99 (0.97) 0.99(0.96) 0.49(0.78) 0.21(0.79) 0.60 (0.70)
energy 0.99 (0.97)  1.00 (0.99) 0.23 (0.79)
arithmetic_intensity 0.84 (0.81)

Table 5.1: The Kendall’s Tau correlation of lookup tables and linear regression (in brack-
ets, using only 124 training samples) across metrics and devices. Lookup tables perform
only marginally better on the FPGA and Eyeriss devices, but considerably worse in all
other cases. More detailed statistics are available in Appendix

Devices and Metrics The previously described results are based on a specific selection
of HW-NAS-Bench and TransNAS-Bench-101 datasets that are hard to fit for Lookup Ta-
ble models. As shown in Table that is not always the case. The FPGA and Eyeriss
hardware devices are very suitable for Lookup Tables, achieving an almost perfect rank-
ing correlation is possible. Nonetheless, Linear Regression requires only 124 training
samples to compete even there and is significantly better in every other case. We finally
observe that the difficulty of fitting predictors primarily depends on the hardware device,
much more than the measured metric.

5.6 Evaluating the predictor-guided architecture
selection

Although the experiments in Section [5.5] greatly assist us in selecting a predictor, it is
not clear what a specific Kendall’s Tau correlation implies for the subsequent architec-
ture selection. Given a perfect hardware metric predictor (Kendall’s Tau = 1.0), we can
expect that an ideal architecture search process will select the architectures with the best
tradeoff of accuracy and the hardware metric, i.e., the true Pareto front. On the other
hand, imperfect predictions result in the selection of supposedly-best architectures that
are wrongly believed to be better.

To study how hardware predictors affect NAS results, we extensively evaluate the
selection of such supposedly-best architectures in simulation. This approach can evaluate
any combination of predictor quality, test set size, and dataset, without the technical
difficulties of obtaining actual predictor models that precisely match such requirements.
Since the hardware and accuracy prediction models are usually independent and can be
studied in isolation, we use ground-truth accuracy values in all cases.
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Figure 5.4: A trained XGBoost prediction model on normalized ImageNet16-120 raspi4-
latency test data. Left: The latency prediction (y-axis) for every architecture (blue dot)
is approximately correct (red line). Center: The same data as on the left, the distribution
of deviations made by the predictor (blue) and a normal distribution fit to them (orange).
Right: A mixed distribution can simulate typical deviation distributions as that in the
center plot.

5.6.1 Simulating predictors

The main challenge of the simulation is to quickly and accurately model predictor out-
puts. We base our simulation on how predictor-generated values deviate from their
ground-truth targets on the test set, which is explained in Figure [5.4] and further detailed
in Appendix [A.5] Since the simulated deviations are similar to those of actual predic-
tors, simulated predictions are obtained by drawing random values from this deviation
distribution and adding them to the ground-truth hardware measurements.

A single example of a simulation can be seen in Figure[5.5] Although most selected ar-
chitectures (orange) are close to the true optimum (red Pareto front), there almost always
exists an architecture that has superior accuracy and, at most, the same latency. Sim-
ply accepting the 13 selected architectures in this particular example results in a mean
reduction of accuracy (MRA,;;) of 1.06%. In other words, the average selected architec-
ture has 1.06% lower accuracy than a comparable one on the true Pareto front. However,
simply verifying the hardware metric predictions through actual measurements reveals
that some selected architectures are suboptimal. By choosing only the Pareto subset of
the selection, the opportunity loss can be reduced to 0.43% (MRA parero)-

An important property of this approach is that it is independent of any particular op-
timization method. The supposedly-best architectures are always correctly identified,
which is an upper bound on how well Bayesian Optimization, Evolutionary Algorithms,
and other approaches can perform. The exemplary MRA ,;¢1, Opportunity loss of 0.43%
is therefore unavoidable and depends solely on the hardware metric predictor, the dataset,
and the number of considered architectures.
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Figure 5.5: An example of predictor-guided architecture selection, std=0.5. Left: The
simulated predictor makes an inaccurate latency prediction for each architecture (blue),
resulting in the selection of the supposedly-best architectures (orange dots). Even though
the predicted Pareto front (orange line) may differ significantly from the ground-truth
Pareto front (red line), most selected architectures are close to optimal. Right: Same
data as left. The true Pareto front (red) and that of the selected architectures (orange).
Simply accepting all selected architectures results in a Mean Reduction of Accuracy
(MRA) of 1.06%, while verifying the predictions and discarding inferior results improves
that to 0.43%. The hypervolume (HV, area under the Pareto-fronts) is reduced by 0.07.

5.6.2 Results

We simulate 1,000 architecture selections for each of the five chosen HW-NAS-Bench
datasets, six different test set sizes, and eleven distribution standard deviations between
0.0 and 1.0. As exemplarily shown in Figure [5.5] each such simulation allows us to
compute the mean reduction in accuracy (MRA) and the hypervolume (HV) under the
Pareto fronts. The most important insights are visualized in Figures [5.6] and and
summarized below.

Verifying the predicted results matters (Figure [5.6] left). The best prediction models
achieve a KT correlation of almost 0.9, which translates to a mean reduction in accuracy
of MRA,;; =~1.5%. That means, for each selected architecture, there exists an architec-
ture of equal or lower latency in the true Pareto set (if latency is the hardware metric)
that improves the average accuracy by 1.5%. Even though all selected architectures are
believed to form a Pareto set, that is not the case. Their optimal subset has a reduction
of only MRA 4¢10 = 0.5%, a significant improvement. However, finding this optimal
subset requires actually measuring the hardware metrics of the architectures selected by
the used NAS method.

Furthermore, the left of Figure[5.6|aids in anticipating the MRA given a specific pre-
dictor. If one used e.g. BOHAMIANN (KT~0.8, see Figurd5.3a)) instead of MLPs or
LGBoost (KT~0.9), MRA ¢, increases from around 0.5% to roughly 1.2%. The av-
erage accuracy of the selected architectures is thus reduced by another 0.7%, just by
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Figure 5.6: Simulation results, with the standard deviation of the predictor deviations and
the resulting KT correlation on the x-axis. Left: Verifying the hardware predictions can
significantly improve the results, even more so for better predictors. Center: The drops
in average accuracy are dependant on the dataset and hardware metric.

using an unsuitable hardware metric predictor. Lookup Tables (KT~0.45) are not even
visualized anymore, they have an MRA ¢, Of over 2.5%.

Another interesting observation is that the gap between MRA,;; and MRA ¢ 18
wider for better predictors. This is a shortcoming of the MRA metric that we elaborate

on in Appendix

The dataset and metric matter (Figure [5.6] right). While we generally present the re-
sults averaged over datasets, there exists some discrepancy among them. Most interest-
ingly, predicting hardware metrics on harder classification problems (ImageNet16-120 is
harder than CIFAR10) also results in a higher MRA. This is especially important since
MRA is an absolute accuracy reduction. Even though the CIFAR10 networks achieve
twice the accuracy of ImageNet16-120 networks, they lose less absolute accuracy to im-
perfect predictions. The order of MRA/dataset is primarily stable for any predictor KT
correlation. Finally, as visualized by the shaded areas, the standard deviation of the MRA
is generally huge. Consequentially, predictor-guided NAS is very likely to produce re-
sults of varying quality for each different predictor or search attempt, especially with less
accurate predictors.

The number of considered architectures matters (Figure [5.7). We measure the hyper-
volume of the discovered Pareto front (i.e., the area beneath it, see Section[5.3.1]), which,
unlike MRA, also considers the hardware metric. Quite obviously, if the architectures
from the true Pareto set are not considered, they can not be selected. To achieve the
highest possible hypervolume of around 4.2 (i.e. find the true Pareto set), every architec-
ture in the search space must be evaluated with a perfect predictor. This is impossible in
most real-world cases, where only a tiny fraction of all possible architectures can ever be
considered.
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For HW-NAS-Bench, considering 5000 architectures with perfect live measurements
and predicting the metrics for all 15625 with ranking correlation KT~0.73 results in
selecting equivalent sets of architectures. As seen in Figure Ridge Regression can
achieve this performance with fewer than 100 training samples. Thus, a worse predictor
leads to better results if it enables considering more architectures.

There is an intuitive explanation why the number of considered architectures has this
effect, even for inaccurate predictions. If the predictors are perfect, sampling more archi-
tectures increases the chances of finding and identifying the (almost) optimal candidates.
The same is true even if the predictors are not perfect. The example in Figure [5.5 has a
small set of Pareto-optimal architectures, but many other architectures that are very close.
Since candidates further away from the Pareto front are only selected if they are wrongly
assigned decent predictions (e.g. for latency), having more actually-better candidates
available reduces the chance for that to happen.

This insight is especially crucial for live measurements, which are accurate but slow.
Similarly, estimating the network accuracy with super-networks takes much more time
than predicting their performance with a neural predictor (Wen et al., 2020). If the mea-
surement of any metrics is the limiting factor, a guided selection of a cheap predictor is
likely to do better.

5.7 Discussion

Chosen prediction methods Given the nature of hardware-metric prediction, only the
subset of model-based predictors evaluated by [White et al.| (2021) is suitable. We ex-
tended this subset with four models, including the popular Lookup Table. We abstained
from evaluating layer-wise predictors (e.g. Wess et al.| (2021))) since such data is not
available, and meta-learning predictors (Lee et al.l [2021) due to the vast possibilities
to configure them. A separate and specialized comparison between classic and meta-
learning predictors seems favorable to us.
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Simulation limitations In contrast to evaluating real predictors, the simulation allows
us to quickly make statements for any test set sizes and predictor-inaccuracies. How-
ever, naturally, the results are only approximations. While they match actual values, they
are generally slightly pessimistic (see Appendix [A.7). We also limit the simulation to
HW-NAS-Bench since the changes to classification results are more accessible to inter-
pretation than changes to loss values across different problem types. Finally, the current
simulation approach can not investigate methods that require a trained one-shot network,
such as gradient-based approaches. Including such methods is an interesting direction
for future research.

Transferability of the results Our evaluation includes five challenging and diverse
datasets based on the micro-level search space of HW-NAS-Bench and five latency-
based datasets of various macro-level search space architectures in TransNAS-Bench-
101. Nonetheless, we find shared trends: All tested prediction models improve over
Lookup Tables with little amounts of training data. Furthermore, most predictors benefit
from more training data, even until the entire search space (aside from the test set) is
known. We also find that network-based predictors are generally best but may be chal-
lenged by tree-based predictors if enough training‘ data is available. Given only a few
samples, Ridge Regression performs better than most other models.

Recommendations While Lookup Tables are a cheap, simple, and popular model
in gradient-based architecture selection, we find a significant variance in performance
across tasks and devices (see Table [S.1] and Appendix [A.3). We recommend replacing
such models with either MLPs or Ridge Regression, which are more stable, fully differ-
entiable, and often take less than 100 training samples to achieve better results.

For most realistic scenarios where more than 100 training samples are available, MLP
models are the most promising. They are among the top predictors on HW-NAS-Bench
and demonstrate outstanding performance on the TransNAS-Bench-101 datasets. We
found that specialized architecture encodings are primarily beneficial for little training
data but suspect that they enjoy an additional advantage when network topologies are
more complex and diverse (White et al., 2021).

While the query time for all predictors is less than 0.05s and thus negligible, there
is a notable difference in training time (see Appendix [A.4), primarily due to the hyper-
parameter optimization. We recommend Ridge Regression for tiny amounts of training
data and LGBoost otherwise if that is an essential factor.

If a NAS method selects architectures based on hardware metric predictions, we strongly
suggest verifying the results by measuring the true metric value afterward. Doing so may
eliminate inferior candidates and improve the average result substantially. Finally, if the
limiting factor to a NAS method is the slow measurement of hardware metrics, using a
much faster predictor may lead to an improvement, even if the prediction model is less
accurate.

73



Chapter 5 What to expect of hardware metric predictors in NAS

5.8 Conclusions

This work evaluated various hardware-metric prediction models on ten problems of dif-
ferent metrics, devices, and network architecture types. Our results emphasize the su-
periority of network-based predictors and act as a baseline for future works. We then
simulated the selection process for different test set sizes and predictor inaccuracies to
improve our understanding of predictor-based architecture selection. We find that the
difficulty of fitting predictors primarily depends on the hardware device. Even imperfect
predictors may improve NAS results if their low query time enables considering more
candidate architectures. Furthermore, verifying the predictions for the selected candi-
dates can lead to a drastic improvement in their average performance.

Finally, there are multiple interesting avenues for future research. Firstly, meta-learning
hardware predictors are becoming increasingly powerful and popular but were excluded
from the study due to their various configuration possibilities. A dedicated study could
detail how they compare to regular predictors; and how much data and human effort
are required. Secondly, the simulation currently provides an upper bound on the archi-
tecture selection. Comparisons exist between different optimization methods, such as
Bayesian Optimization or Evolutionary Algorithms, but not for this particular problem.
Thirdly, gradient-based or Reinforcement Learning methods are challenging to simulate
since they depend on partially trained super-networks. However, as some NAS bench-
marks provide extensive training information like the epoch-wise validation accuracy, an
accurate simulation may be possible.
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Chapter 6

Conditional super-network weights

The fast and accurate prediction of network metrics plays a central role in the search for
optimal architectures. While the various predictors in Chapter [5] are trained to predict
hardware metrics like latency and energy consumption, the methods used in Chapters [3]
and [] focus solely on accuracy estimation using an over-complete super-network. The
cheap and accurate estimation of an architecture’s loss and accuracy is arguably the most
important component for an efficient architecture search process.

As presented in Chapter 3] it is generally preferable to replace slow and accurate mea-
surements with fast but inaccurate predictors if doing so enables the evaluation of many
more architectures. This is precisely the point of a super-network as used in Chapter
While its training costs are comparable to that of a single architecture, the capability to
cheaply estimate the accuracy of any contained architecture reduces the search costs by
orders of magnitude. This Chapter presents conditional super-network weights (Laube
and Zell, 2021b)), an attempt to improve the super-network’s predictions through spe-
cialized network weights. Each of these weights allows candidates of different network
paths to specialize towards each other, improving the super-network’s estimates of the
individual architectures.

6.1 Introduction

Ever since the super-network approach was first introduced by Pham et al| (2018)), it
has become the central component of many architecture search methods. By replacing
the costly training of hundreds of candidate networks with the performance prediction
using an over-complete network (see Chapter [2.4.2), NAS can be run in a reasonable
time, even on a single GPU. The state-of-the-art methods use a variety of search strate-
gies, such as reinforcement learning (Cai et al., 2019), evolutionary algorithms (Guo
et al.,[2020; |Chu et al., 2019b)), and bayesian optimization (Shi et al.,[2019; White et al.,
2019). Gradient-based approaches (Liu et al., 2019} Xie et al., 2018; Dong and Yang,
2019; [Stamoulss et al., 2019; Nayman et al., 2021) are especially popular since they do
not require an additional optimization method. However, these methods assume that the
super-network-based predictions are generally correct for any queried architecture. Con-
sequentially, a growing research trend focuses on deepening the understanding of the
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super-network training, and evaluation processes (Sciuto et al., [2019; Yu et al., 2020c}
Chu et all [2019a; L1 et al., 2020; |Peng et all [2020b; Nayman et al., 2021). An im-
provement to this prediction component is also likely to improve the quality of any NAS
method using it. Popular representatives include EfficientNets (Tan and Le}, 2019]2021)),
FBNet V3 (Dai et al., 2020), and HardCoRe-NAS (Nayman et al., 2021), which already
deliver state-of-the-art results in the ImageNet classification and object detection chal-
lenges (Tan et al., 2020). This chapter investigates a novel super-network improvement
attempt based on conditional network weights.

6.2 Foundations and Related work

Super-networks This paragraph extends Chapter to improve the intuition about
the over-complete super-networks. An example of such a super-network is visualized
in Figure [6.1] The colored arrows indicate three graph subsets that constitute different
candidate architectures and share network weights by using the same operations (graph
nodes).

Any graph subset that contains exactly one node per layer is a conceivable candidate
network. Since the number and order of layers and their candidate operations of this
example can be clearly defined, any network can be compactly described with only the
indices of its graph nodes. In this case, Networks 2 and 3 can be uniquely identified with
the descriptions Net( 3 3) and Net(; 4 3).

Layer 1 Layer 2 Layer 3

conv 1x1 conv 1x1

Stem \ —
conv 5x5 \ conv 5x5

conv 7x7 /

conv 1x1

:

|
Wi

»| conv 3x3

\

Head

> conv 5x5

Network 1: 1 conv 1x1 2 conv 3x3 3 conv 5x5

Network 2: ’ 2 ‘ conv 3x3 }—{ 3 ‘ conv 5x5 }—{ 3 ‘ conv 5x5 ‘
Network 3: ‘ 2 ‘ conv 3x3 }—{ 4 ‘ conv 7x7 }—{ 3 ‘ conv 5x5 ‘

Figure 6.1: A small sequential super-network with three layers and four candidate opera-
tions in each. The connecting arrows constitute three specific architectures in the search
space, subsets of the over-complete computational graph. All of them use the conv 5x5
operation in the last layer and thus share its weights. Aside from Layer 2, Networks 2
and 3 are identical.

conv 7x7
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Single-Path One-Shot While ENAS (Pham ez al.|(2018), used in Chapter [3) changed
the currently used architecture in a super-network only once per epoch, the Single-Path
One-Shot method (SPOS, Guo et al.| (2020)) samples a new network topology for ev-
ery single training batch. In both methods, every sampled architecture corresponds to
a possible candidate solution, as exemplary visualized in Figure [6.1] Since the network
weights of the candidates are shared, the training of each particular candidate also affects
many other possible candidates in the same super-network. In contrast, gradient-based
methods consider a continuous and differentiable mixture of topologies (as seen in Chap-
ter ) where only the converged result corresponds to a candidate solution.

While previous methods use evolutionary algorithms or other optimization techniques
to guide the candidate sampling even during the super-network training, SPOS uses a
simpler approach: uniform sampling. For every training batch, candidate operations
are picked at random. For example, three consecutive batches could use the candidate
networks Net(q 5 5), Net(3 4 1), and finally Net(; 3 4). Thus trained, the super-network is
viewed as an unbiased collection of individually trained architectures.

The actual architecture search is performed after the super-network training. In this
decoupled step, the super-network is used akin to a prediction model. Any particular
architecture can be extracted from the super-network and estimated on a separate valida-
tion dataset without any additional training. Aside from training the super-network just
once, evaluating an architecture thus requires only a few batches. Given that each candi-
date architecture can be represented with a small number of integers (e.g., Net(; » 7)) and
evaluated cheaply, proven hyper-parameter optimization techniques for discrete values
are widely used. Guo et al.|(2020) use a simple evolutionary algorithm, which maxi-
mizes the network accuracy under a FLOPs constraint.

Adaptions to Single-Path One-Shot While the adaptions and improvements to SPOS
in this paragraph are not required to understand the proposed work, they provide helpful
context to the importance and current state of the field. While a distinct categorization of
the various lines of work is difficult, special attention should be paid to the design of the
super-networks, their training, and the subsequent search process.

Chu et al.|(2019a) find an improved performance by sampling candidate operations in
a strictly fair way, instead of uniformly random. By replacing SPOS’ naive evolutionary
algorithm with NSGA-II (Deb et al., [2002), a sophisticated method for multi-objective
optimization, |Chu et al.|(2019b) find many promising candidates with an optimal accura-
cy/FLOPs trade-off in a single search. Using an external teacher network, L1 et al.| (2020)
obtain target outputs of intermediate layers that provide a block-wise super-network loss.
Research teams from Google, Microsoft, and Facebook (Yu et al.| 2020a; |Peng et al.,
2020b; Wang et al., 2021a) identify specific architectures during the super-network train-
ing, which receive extra attention. Their methods are related to the Once-For-All (OFA)
approach by (Cai et al.| (2020), which ranks a vast number of candidate architectures by
several criteria. Trained constraint- and device-specific networks can be extracted from
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OFA’s super-network through the generated ranking table. This approach enables Google
to supply optimized detection networks for many different Android smartphones, even
though only a single super-network needs to be trained with an OFA-like method. With
a novel training approach, Nayman et al.| (2021) introduced a gradient-based architec-
ture selection with hard latency constraints. Their approach is also based on OFA, so
that specialized architectures can be extracted and finetuned in only a few hours. Lu
et al.| (2020) further demonstrate that the OFA’s super-networks can be transferred and
finetuned to new datasets, where they achieve exceptional performance.

Nonetheless, the changes mentioned above apply to the search for architectures and
the training setup of the super-network, but not its design. (Chu ez al.| (2020b) introduce
shadow batch normalization layers that make multi-path architectures possible (as op-
posed to Single-Path One-Shot). [Zhao et al.| (2020) explore few-shot NAS (as opposed
to Single-Path One-Shot), where a trained super-network is finetuned in different subsets
of the original search space. A space that initially contained five operations can be frag-
mented into five different space subsets by pruning any single candidate operation. |Chu
et al.| (2019b) stabilize the super-network training by adding linear 1x1 convolution to
all skip-operation-candidates. This improves the gradient weighting across layers so that
training candidate networks with different effective depths becomes possible.

6.3 Method

6.3.1 The problem

The super-network serves as a cheap evaluation model substituting all stand-alone net-
works in its search space to reduce their immense combined training costs. As seen in
Figure [6.1] its weights are shared by the different candidate architectures. In particular,
the three example networks use the 5x5 convolution in layer 2. However, does it make
sense to use the same weights for this operation, no matter what comes before or after?
Formally, denote O, 3) as the third candidate operation (55 convolution) in layer 2.
The example network 3, Net(, 4 3), is thus uniquely defined by the set of its candidates
{0(1,2)70(2_‘4),0(373)}. Any Oy, ) uses the same weights no matter which particular
candidate architecture is currently used. O(33) is thus part of all three example net-
works in Figure A logical consequence is that all candidate operations in the sec-
ond layer {O(3,1),---,O(2,,) } need to produce structurally similar information, otherwise
O 3,3) could not function properly. However, the candidates {0(271), v 0(27,1)} may have
different complexity and capacity. In this example, they differ only by their convolu-
tion kernel sizes. Still, for a 1x1 and a 7x7 convolution to produce similar outputs,
the latter must not use most of its capacity. Furthermore, every operation in the third
layer {O(3 1),-.,0(3 ») } must adapt to the similar outputs of any {O 1),.--,0(2) }. To
summarize the problem: All candidates of any one layer must adapt to similar inputs and
produce similar outputs. In the worst case, the candidates with the lowest capacity limit
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the intermediate network information.

In practice, several works find a substantial performance disparity between architec-
tures that are trained independently and their equivalent subsets in a super-network (e.g.
Chu et al.|(2020a)); Peng et al.| (2020b); L1 et al.|(2020); [Zhao et al.|(2020)). Even worse,
the ranking correlation between the super-network-based predictions {f,(a)|a € Ases }
and their results in stand-alone training { f(a)|a € Ases } may be low (see Section[5.3.3).
In such cases, a super-network is an unsatisfactory prediction tool. Nonetheless, they are
a proven central component of many state-of-the-art methods such as (Cai et al.| (2020);
Peng et al. (2020b); Wang et al. (2021a); Nayman et al.|(2021)).

6.3.2 Conditional super-network weights

As just described, the weight sharing of the super-network paradigm encourages ques-
tionable co-adaptions of all candidate operations in the same layers. Zhang et al.| (2020)
find that decreasing the degree of weight sharing improves the search results but substan-
tially increases the costs. The presented conditional super-network weights approach the
problem from a different perspective by decreasing the pressure for candidate operations
to co-adapt. The fundamental idea of the approach is to give each candidate operation
the ability to behave differently depending on which operation generated its input. O3 3
in Figure @ should be able to behave differently, depending on which O, ) is part of
the current network. Such pair-wise specializations are desired between any candidates
in subsequent layers (O(mx) , 0(n+17y)).

A simple approach to achieve this specialization is by choosing the weights of every
candidate operation in a topology-aware way. More precisely: every single candidate has
different sets of weights, which are tied to the candidate operations in the layer before.
O3,y does not depend on the previous layer, but O3 (,y) does. While the previous layer
does not affect the type of operation (e.g., a 5x5 convolution), its specific weights are
finetuned individually. This is visualized in Figure

Due to the complexity of this approach, there are two significant concerns: Firstly,
the number of super-network weights has effectively been multiplied by the number of
candidate operations. Consequentially, given the same amount of training as a regular
super-network, the weights will not adapt well. An increased training time would address
this issue but is naturally undesired. Secondly, while the specialized weights of each
candidate (e.g., {0(37(A7C)), e 0(37(E7C))}) are not supposed to be identical, it is unlikely
that they should be vastly different. However, if they are trained entirely independently,
this is likely to be the case. Both concerns can be addressed with a simple approach
that we call weight splitting: Until a specific training epoch, say at three-quarters of
the allocated time, the specialized weights are disabled and the super-network trained as
usual. Only then are the weights of all operations O, ,y split, i.e., copied once for each
candidate operation in the previous layer. A set {O(X,(Ay)), v 0(x7(E7y))} is created from
every candidate O, ), to enable specialization towards the prior operations A to E for
the remainder of the training. Since all weight sets are initially trained as one, they are
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Figure 6.2: An example of conditional
weights in a purely sequential super-
network that has five candidate oper-
ations (A to E) in each layer. Every
candidate has different weights for each A
candidate in the previous layer. In this B (B.A) (B.B) (B,C) (B.D) (B.E)
particular forward pass, layer 2 issetto [ c [} » (C.A) (©B) (€0 (€ D[CE)
D
E
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(A,A) (A,B) (A,C) (A,D) (AE)

operation C, and layer 3 to E (marked (0.A) (0,B) (D,C) (D.D) (O,E)
red). The used operation in layer 3 is
thus 0(3 (C.E))- candidate operations

syybiam pazijeroads

(E,A) (E,B) (E,C) (E,D) (E,E)

similar to one another and require no additional training time. As a disadvantage, the
choice of when to split each candidate is an open question.

6.3.3 Search spaces

We evaluate super-networks modified with conditional weights in four different search
spaces from the following two NAS benchmarks:

NAS-Bench-201

In the popular NAS-Bench-201 benchmark (Dong and Yang, 2020), architectures are
defined by the design of a building block (cell) that is stacked multiple times to create a
network. The cells differ by their chosen candidate operations, which are placed on each
of the six marked edges in Figure Thus there are 5% = 15625 topologies, with paths
of different lengths. We evaluate the conditional super-network weights on three search
space subsets of increasing difficulty:

1. All operations are available. Finding above-average models is easy since many
networks contain several zero or pooling operations and thus perform poorly.

2. The zero operation has been removed. The search space thus contains 4% = 4096
architectures. Since most poorly-performing networks are not part of this search
space, it is more difficult to find above-average ones.

3. Only the 1x1 and 3x3 convolutions remain, reducing the search space to just
the 26 = 64 architectures that make up most top-performers in both other search
spaces. Since all candidates perform well, finding the best architectures in this
subset is the most difficult.
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Candidate operations: 4 N
* Zero 1 3
* skip 5
* 1x1 convolution O 2 O 5
* 3x3 convolution

* 3x3 average pooling \_ 4 J

Figure 6.3: The NAS-Bench 201 candidate operations and cell design. There are three
intermediate nodes and six choices among the available five operations, once for each
numbered orange edge.

Implementing the added super-network weights in this search space is not as straight-
forward as depicted in Figure[6.2] Since there are parallel paths in a cell, choosing which
other candidates to depend on is ambiguous. With respect to Figure [6.3] we have im-
plemented the meaning of “prior” in the following way: The candidates on Paths 1, 2,
and 4 have no dependency and are thus never split. Candidates on Paths 3 and 5 depend
on Path 1. Those on Path 6 depend on Paths 2 and 3 and therefore split twice. The
default cells have 6 -2 = 12 candidates with operation weights (Zero, Skip, and Pooling
do not have any and therefore always perform the same function). Due to the splitting,
the total number of weight sets is increased to 3-2-5942.2.5!41.2.52 = 76. The
super-network structure is detailed in Appendix [B.2

NAS-Bench-Macro

The recent NAS-Bench-Macro benchmark (Su er al., 2021) lists the test accuracy of
6561 fully sequential networks evaluated on CIFAR10. Their design is inspired by the
MobileNet V2 family (Sandler et al., |2018), a popular starting point for modern NAS
search space designs. After starting with a 3 x3 convolution layer, one of three available
candidates must be chosen for each of the eight subsequent layers (3% = 6561). The
available candidate operations are:

* an inverted bottleneck block with kernel size 33 and expansion ratio 3
* an inverted bottleneck block with kernel size 5x5 and expansion ratio 6
* a skip connection

The networks have an average accuracy of roughly 90.4%, with the best network achiev-
ing 93.13%. Ordinarily, there exist 8 -2 = 16 weight sets (skip connections do not have
weights). Splitting increases that to 1-2-3%47.2.3! = 44 (the weights in the first
network layer do not depend on any previous layer).
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6.3.4 Evaluation metrics

Even though the super-network-based predictions are often used in multi-objective op-
timization, we simplify the problem by considering only the network accuracy. The
different objectives are generally measured or predicted independently (e.g., accuracy
via super-network, latency via lookup table), so that improving them in isolation still
benefits their combined application.

For a comprehensive evaluation, we first let the trained super-networks rank all ar-
chitectures in the test set A;.;. Since detailed network statistics are known, we extend
an evaluation approach that we introduced in (Laube and Zell, 2021a)) and compare the
mean ground-truth accuracy of the top-N selected architectures. To better understand the
scale of the improvement gained from using a super-network, we also provide a normal-
ized improvement value. It is O for the average and 1 for the maximum network accuracy
in A¢r. Both metrics can be seen in the experimental results in Figures [6.4] and [6.5] on
the left and right y-axis, respectively. Since this form of visualization is not suitable for
a detailed comparison between different experiments, the relative performance changes
of the selected top-1, top-5, and top-10 networks are displayed in the right column.

6.4 Experimental evaluation

This section evaluates the effect of adding conditional super-network weights with re-
spect to the regular super-network baseline. Results are consistently averaged over ten in-
dependently trained super-networks, both for their architecture selections in Section|6.4.1
and the resource consumption analysis in Section [6.4.2] Their training details are listed

in Appendix

6.4.1 Search results

NAS-Bench-201 The results of splitting weights in the multi-path cell-based NAS-
Bench-201 super-networks are visualized in Figure 6.4 A fascinating property that
all search space subsets have in common is an improvement window when splitting
at around 150 epochs of training. If the timing for weight splitting is just right, the
super-networks make notably better suggestions on which networks to select, resulting
in improved average accuracy.

As seen in Figure [6.4a) The baseline in the full search space selects networks that
achieve around 92.2% accuracy and therefore improves considerably over the space av-
erage of around 87.8%. This is also apparent in the improvement value, which is at
0.7. The selected networks are therefore already close to optimal, with little room for
improvement. Nonetheless, splitting weights at around 150 epochs enhances the archi-
tecture selection further. The best value is achieved when splitting the weights after 155
epochs of training, resulting in an average improvement value of around 0.8 for the top-1
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Figure 6.4: Visualized results of splitting weights in the NAS-Bench-201 subsets. There
is a visible improvement when splitting in a narrow window of around 145 to 155 epochs

of training.
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Figure 6.5: Visualized results of splitting weights in NAS-Bench-Macro. Since the base-
line networks poorly select the top-1 architectures (left image, red), many split variants
do better. However, there is little structured effect on the top-10 or top-5 selections.

selected architectures.

For the super-networks in the No Zero search space, this improvement peak is even
more pronounced. As visualized in Figure [0.4b] the average accuracy changes of the
top-5 and top-10 selections reach up to 0.8%. The selected networks are considerably
better than those of the baseline if the super-network weights are split between 125 and
155 epochs of training. A notable difference to the full search space is that all super-
networks have a wider standard deviation. In the absence of the Zero candidate opera-
tion, which is not present in any of the best models, the super-networks are less certain
which architectures are relatively better. Nonetheless, splitting at 145 epochs of training
can raise the improvement value from around 0.61 to 0.72, much closer to the optimal
network performance. The average accuracy of the top-1 selected networks is improved
from 92.3% to 92.8%.

Finally, the Only Convolutions search space is the only one where the top-N-selected
networks never improve over the baseline by more than one standard deviation. As seen
in Figure the reason is primarily that the baseline’s standard deviation is huge.
Another interesting aspect of this search space is that even random sampling results in
93.2% average network accuracy, much higher than for the other search spaces. Find-
ing the best networks here proves more challenging. Nonetheless, an increase of the
selected top-1 network improvement value from around 0.53 to 0.64 is still obtainable.
The average accuracy of the selected networks increases from 93.6% to 93.7%.
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6.4 Experimental evaluation

NAS-Bench-Macro As seen in Figure [6.5] the effect of splitting the network weights
is somewhat incomparable to any NAS-Bench-201 search space. Most notably, the top-
1 selected networks are considerably better than those of the baseline at any point. To
a lesser degree, the same is true for the top-5 and top-10 selected networks. The most
outstanding epoch for splitting is 42, which is already close to the end of training. At this
time, all top-N selections improve by more than one standard deviation over the baseline.

While the improvement peak at epoch 42 is outstanding, it is possibly not unique.
However, based on only ten super-networks per splitting point, interpreting too much
into the minor improvements (such as at 35 epochs) is likely premature. Further experi-
ments are needed to verify the results in such fully sequential architecture designs and to
research whether the poor performance of the selected baseline top-1 networks is purely
coincidental.

Finally, the Kendall’s Tau ranking correlation values across the search spaces and split-
ting configurations are listed in Appendix Interestingly, we observe that the ranking
correlation does improve over the baseline, but only by a small amount of up to 0.05.
In contrast, Figure [6.4a| displays an observable peak at around 155 epochs. Splitting the
super-network weights with the correct timing facilitates a consistently better selection
of architectures. Nonetheless, some correlation values improved notably. In the No Zero
NAS-Bench-201 search space, when computing the correlation across all architectures or
just the top 50, the baseline value can be increased by around 0.05. While that does not
seem like much, it is still one step towards a perfect architecture performance predictor.

6.4.2 Resource analysis

As described in Section splitting increases the total number of super-network
weights significantly. While the purely sequential NAS-Bench-Macro super-networks
only have 2.75 times as many candidate operation weight sets as the baseline (16 to 44),
this factor is 6.3 for the multi-path NAS-Bench-201 super-networks (12 to 76). As de-
tailed in Table[6.4.2] the increase in GPU memory is marginal nonetheless, with a peak of
only 1.2%. The most memory-costly component of training is the saving of intermediate
tensors for backpropagation so that storing additional network weights has little effect.

Estimating changes in the training time is less reliable due to the random selection
of candidate operations during training. However, a somewhat consistent trend is that
NAS-Bench-201 super-networks require slightly more training time when split early.
Unsurprisingly, search spaces that contain more zero-cost operations (Zero, Skip) have
a shorter average training time and are thus affected more strongly by the splitting-
overhead than search spaces without.
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Chapter 6 Conditional super-network weights

NAS-Bench 201

NAS-Bench-Macro

full no Zero only Conv. full

time GPU time GPU time GPU time GPU
baseline 1862 1895 2193 1895 2783 1895 baseline 729 3294
splitat 125 +17.7%  +12%  +9.6% +0.6% +2.5% +0.0% splitat2s  +0.7%  +0.7%
splitat 140 +14.6%  +1.2%  +9.9% +0.6% +22% +0.0% splitat30  —0.9%  +0.7%
splitat 145 +17.1%  +12% +7.9% +0.6% +2.6% +0.0% splitat35  +1.9%  +0.7%
splitat 150~ +13.8%  +1.2%  +8.1% +0.6% +3.0% +0.0% splitat38  —0.6%  +1.0%
splitat 155 +14.8%  +1.2%  +8.9% +0.6% +2.1% +0.0% splitat40  —2.0%  +0.7%
splitat 160 +13.0%  +1.2%  +7.5% +0.6% +23%  +0.0% splitatd2  +0.4%  +0.7%
splitat 175 +11.0%  +12%  +7.1%  +0.6% +2.1%  +0.0% splitatds  +1.0%  +1.0%
splitat200  +9.4%  +12% +57% +0.6% +1.9% +0.0% splitatd7  —3.0%  +0.3%

Table 6.1: Required training resources of the super-networks different scenarios. We

list the baseline training time in seconds, and the maximum required GPU memory in
MB. All variations are listed with their respective relative cost increase over the baseline.
Each network was trained on a single Nvidia 1080 Ti GPU (11GB VRAM), the results
are averaged over ten independent runs. The super-networks for NAS-Bench-201 and
NAS-Bench-Macro have been trained for 250 and 50 epochs, respectively. The measured
time is not perfectly reliable due to the random selection of candidate operations during
training.

6.4.3 Ablation study

Since splitting weights comes with a reduced amount of training per weight, it is unclear
whether the observed improvement window can be attributed to splitting or the reduced
training. Additional NAS-Bench-201 No Zero super-networks have been trained and
evaluated to answer this question. They follow the baseline schedule, except that their
training has been suddenly stopped at specific epochs. As the results in Figure [6.6|show,
stopping early slightly improved the architecture selection, but not as much or as system-
atic as the conditional weights.
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6.5 How to find the improvement window
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Figure 6.7: The average validation loss and accuracy during the training of the super-
network baselines. While the stochastic selection of candidate operation causes spikes,
the averaged network metrics keep improving.

6.5 How to find the improvement window

As seen in Figure [6.4] spitting weights with the correct timing can improve the super-
network as a predictor, which results in the selection of significantly better architectures.
However, this evaluation requires prior knowledge of how all selected architectures per-
form. If such information was available for real-world problems, there would be no need
to apply architecture search.

The true difficulty of the weight splitting method is, therefore to predict the improve-
ment window in advance. Limited to the super-network metrics during training, the clue
when to split weights is likely given by validation statistics. However, as visualized in
Figure[6.7] that is not necessarily the case. The improvement window, situated at around
150 epochs of training, is not matched by any eye-catching property in the validation
loss or accuracy. On the contrary, all super-networks keep improving until the end of
their training. This is especially interesting with respect to Figure 6.6 which shows that
stopping the training early hardly affects the quality of the subsequently selected archi-
tectures. For now, the connection between the structured improvement windows and any
super-network metrics is unclear.

6.6 Conclusions

In summary, this chapter described the fundamental problem of candidate co-adaptation
pressure in super-networks and how conditional weights may reduce its impact. The
presented weight splitting approach enables specializing the weights of every candidate
operation to whichever predecessor candidate is currently selected. Even though the total
number of network weights is increased multiple times, the training time and memory
consumption are hardly affected.
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Applying the approach to NAS-Bench-201 results in a curious phenomenon: splitting
weights is most effective when done at around 60% of the total training epochs and
much less so otherwise. This can be expressed as a window of opportunity when weight
splitting should be applied. With the correct timing, the resulting super-networks are
much better in their task of selecting high-accuracy networks. While the original baseline
network selections usually achieve improvement values between 0.5 and 0.7 and are
therefore somewhat far from the optimal selection possible (value of 1). the split weights
can reduce this distance by about a third. On average, this results in selecting networks
in the Full, No Zero, and Only Convolutions search spaces that have around 0.4%, 0.8%,
and 0.15% higher accuracy, respectively.

However, an open question impairs the applicability: Finding out when to split the
weights. This currently requires prior knowledge about the selected architectures that
is only available in NAS benchmarks. Nonetheless, as the experiments demonstrate,
conditional weights are mostly beneficial even when not split optimally.

Another topic of interest is the performance on much larger datasets. While the exper-
iments on the MobileNet-based NAS-Bench-Macro demonstrated that improving a typ-
ical ImageNet architecture is possible, they were ultimately limited to CIFAR10. This
is primarily due to the deterring costs of creating an ImageNet-based NAS benchmark,
where training even a single architecture costs over 200 GPU hours.

In future experiments, finding out when to split the weights has priority. Many state-
of-the-art NAS approaches are based on the Single-Path One-Shot technique but do not
change their super-network. Existing approaches could be supplemented with remark-
able effects if exploiting the improvement window of weight splitting becomes possible
without prior knowledge.
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Chapter 7
The UniNAS framework

In this final chapter before the conclusions, I will briefly introduce UniNAS (Laube,
2021)), the code base used for a variety of experiments such as those in Chapter [6| The
name UniNAS is a wordplay of University and Unified NAS, since the framework is
extremely flexible and capable of incorporating almost any kind of architecture search
approach.

7.1 Introduction

As shown in the introduction chapter of this dissertation, specifically Figure[2.1] there is
an increasing supply and demand for the automatic design of neural network architec-
tures. Consequentially, the amount of published code grows almost by the day. While
code availability is obviously advantageous, this section describes technical nitpicks that
can quickly dampen the enthusiasm. We start by listing the most popular NAS-related
code bases and some of their common disadvantages.

7.1.1 Available frameworks

The landscape of NAS codebases is severely fragmented, owing to the vast differences
between various NAS methods and the deep-learning libraries used to implement them.
Some of the best supported and most widely known ones are:

* NASLib (Ruchte et al., [2020), which is probably most promising framework for
many research questions in the foreseeable future. It is under active development
by a team from the University of Freiburg and was used for the hardware-metric
prediction experiments in Chapter [5

* Microsoft NNI (Zhang| 2019), which is the most promising framework for NAS
in industry. It supports common deep-learning frameworks (TensorFlow and Py-
Torch, among others) and many deployment features, model compression, hyper-
parameter optimization, scalable search, and more. However, only a tiny handful
of NAS algorithms are currently supported, limiting its usefulness in research.
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* Microsoft Archai (Shah et al., 2020), a more research-focused but less actively
developed NAS project by Microsoft that combines several other open source code
bases.

* Huawei Noah Vega (Jiajin, [2020), a multi-framework NAS pipeline primarily de-
veloped by a Chinese Huawei team. It is under active development and incor-
porates many NAS and hyper-parameter optimization techniques, especially for
object detection tasks.

* Google TuNAS (Bender et al., 2020), which demonstrated the superiority of NAS
algorithms over comparably simple strategies like random search. It only features
a few algorithms and no longer receives any updates, probably in favor of the
unpublished PyGlove project (Peng et al., [2020a).

Counterintuitively, the overwhelming majority of publicly available NAS code is not
based on any such framework or service but simple and typical network training code.
Such code is generally quick to implement but lacks exact comparability, scalability,
and configuration power, which may be a secondary concern for many researchers. In
addition, since the official code is often released late or never, and generally only in either
TensorFlow (Abadi et al., 2016) or PyTorch (Paszke et al., 2019), popular methods are
sometimes re-implemented by some third-party repositories.

Further projects include the newly available and closed-source cloud services by, e.g.,
Googlfﬂ and Microsofﬂ Since they require very little user knowledge in addition to the
training data, they are excellent for deep learning in industrial environments.

7.1.2 Common disadvantages of code bases

With so many frameworks available, why start another one? The development of Uni-
NAS started in early 2020, before most of these frameworks arrived at their current fea-
ture availability or were even made public. In addition, the frameworks rarely provide
current state-of-the-art methods even now and sometimes lack the flexibility to include
them easily. Further problems that UniNAS aims to solve are detailed below:

Research code is rigid As stated in Section[7.1.1] the majority of published NAS code
is very simplistic. While that is an advantage to extract important method-related details,
the ability to reuse the available code in another context is severely impaired. Almost all
details are hard-coded, such as:

* the used gradient optimizer and learning rate schedule

* the architecture search space, including candidate operations and network topology
* the data set and its augmentations

» weight initialization and regularization techniques

"https://cloud.google.com/automl/
Thttps://www.microsoft.com/en-us/research/project/automl/
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* the used hardware device(s) for training
* most hyper-parameters

This inflexibility is sometimes accompanied by the redundancy of several code pieces
that differ slightly for different experiments or phases in NAS methods. Redundancy is a
fine way to introduce subtle bugs or inconsistencies and also makes the code confusing to
follow. Hard-coded details are also easy to forget, which is especially crucial in research
where reproducibility depends strongly on seemingly unimportant details. Finally, if any
of the hard-coded components is ever changed, such as the optimizer, configurations of
previous experiments can become very misleading. Their details are generally not part
of the documented configuration (since they are hard-coded), so earlier results no longer
make sense.

A configuration clutter In contrast to such simplistic single-purpose code, frame-
works usually offer a variety of optimizers, schedules, search spaces, and more to choose
from. By configuring the related hyper-parameters, an optimizer can be easily and safely
exchanged for another. Since doing so is a conscious and intended choice, it is also doc-
umented in the configuration. In contrast, the replacement of hard-coded classes was not
intended when the code was initially written. The disadvantage of this approach comes
with the wealth of configurable hyper-parameters, in different ways:

Firstly, the parametrization is often cluttered. While implementing more classes (such
as optimizers or schedules) adds flexibility, the list of available hyper-parameters be-
comes increasingly bloated and opaque. The wealth of parametrization is intimidating
and impractical since it is often nontrivial to understand exactly which hyper-parameters
are used and which are ineffective. As an example, the widely used PyTorch Image Mod-
els framework (Wightman, 2019) (the example was chosen due to the popularity of the
framework, it is no worse than others in this respect) implements an intimidating mix of
regularization and data augmentation settings that are partially exclusiveﬂ

Secondly, to reduce the clutter, parameters can be used by multiple mutually exclusive
choices. In the case of the aforementioned PyTorch Image Models framework, one exam-
ple would be the selection of gradient-descent optimizers. Sharing common parameters
such as the learning rate and the momentum generally works well, but can be confus-
ing since, once again, finding out which parameters affect which modules necessitates
reading the code or documentation.

Thirdly, even with an intimidating wealth of configuration choices, not every option is
covered. To simplify and reduce the clutter, many settings of lesser importance always
use a sensible default value. If changing such a parameter becomes necessary, the frame-
work configurations become more cluttered or changing the hard-coded default value
again results in misleading configurations of previous experiments.

3https://github.com/rwightman/pytorch-image-models/blob/
ba65dfe2c6681404£35a9409£802aba2a226b761/train. py, checked Dec. 1st 2021; see
lines 177 and below.

91


https://github.com/rwightman/pytorch-image-models/blob/ba65dfe2c6681404f35a9409f802aba2a226b761/train.py
https://github.com/rwightman/pytorch-image-models/blob/ba65dfe2c6681404f35a9409f802aba2a226b761/train.py

Chapter 7 The UniNAS framework

To summarize, the hyper-parametrization design of a framework can be a delicate
decision, trying for them to be complete but not cluttered. While both extremes appear to
be mutually exclusive, they can be successfully united with the underlying configuration
approach of UniNAS: argument trees.

Nonetheless, it is great if code is available at all. Many methods are published without
any code that enables verifying their training or search results, impairing their repro-
ducibility. Additionally, even if code is overly simplistic or accompanied by cluttered
configurations, reading it is often the best way to clarify a method’s exact workings and
obtain detailed information about omitted hyper-parameter choices.

7.2 Argument trees

The core design philosophy of UniNAS is built on so-called argument trees. This con-
cept solves the problems of Section while also providing immense configuration
flexibility. As its basis, we observe that any algorithm or code piece can be represented
hierarchically. For example, the task to train a network requires the network itself and a
training loop, which may use callbacks and logging functions.

Sections [7.2.1] and [7.2.2] briefly explain two requirements: strict modularity and a
global register. As described in Section this allows each module to define which
other types of modules are needed. In the previous example, a training loop may use
callbacks and logging functions. Sections [7.2.4] and [7.2.5] explain how a configuration
file can fully detail these relationships and how the desired code class structure can be
generated. Finally, Section shows how a configuration file can be easily manip-
ulated with a graphical user interface, allowing the user to create and change complex
experiments without writing a single line of code.

7.2.1 Modularity

As practiced in most non-simplistic codebases, the core of the argument tree structure
is strong modularity. The framework code is fragmented into different components with
clearly defined purposes, such as training loops and gradient descent optimizers. Ex-
changing modules of the same type for one another is a simple issue, for example, the
optimizers SGD, ADAM, and RMSprop. If all implemented code classes of the same
type inherit from one base class (e.g., AbstractOptimizer) that guarantees specific class
methods for a stable interaction, they can be treated equally. In object-oriented program-
ming, this design is termed polymorphism.
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7.2 Argument trees

UniNAS extends typical PyTorch (Paszke et al.| 2019) classes with additional func-
tionality. An example is image classification data sets, which ordinarily do not contain
information about image sizes. Adding this specification makes it possible to use fake
data easily and to precompute the tensor shapes in every layer throughout the neural
network.

7.2.2 A global register

A second requirement for argument trees is a global register for all modules. Its functions
are:

* Allow any module to register itself with additional information about its purpose.
The example code in Figure shows this in Line 1.

 List all registered classes, including their type (task, model, optimizer, data set,
and more) and their additional information (search, regression, and more).

* Filter registered classes by types and matching information.

* Given only the name of a registered module, return the class code located anywhere
in the framework’s files.

@Register.task(search=True)
class SingleSearchTask(SingleTask):

@classmethod
def args_to_add(cls, index=None) -> [Argument]:
return [
Argument (’is_test_run’, default=’False’, type=str),
Argument (’seed’, default=0, type=int), "
Argument (’save_dir’, default=’{path_tmp}’, type=str),
]

@classmethod
def meta_args_to_add(cls) -> [MetaArgument]:
methods = Register.methods.filter_match_all(search=True)
return [
MetaArgument (’cls_device’, Register.devices_managers, num=1),
MetaArgument (’cls_trainer’, Register.trainers, num=1),

MetaArgument (’cls_method’, methods, num=1),

]

Figure 7.1: Example UniNAS code for a SingleSearchTask. The decorator function in
Line 1 registers the class with type “task” and additional information. The method in
Line 5 returns all arguments for the task to be set in a config file. The method in Line 13
defines the local tree structure by stating how many modules of which types are needed.
It is also possible to specify additional requirements, as done in Line 14.
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As seen in the following sections, this functionality is indispensable to UniNAS’ de-
sign. The only difficulties in building such a register is that the code should remain
readable and that every module has to register itself when the framework is used. Both
can be achieved by scanning through all code files whenever a new job starts, which takes
less than five seconds. Python executes the decorators (see Figure Line 1) by doing
so, which handle registration in an easily readable fashion.

7.2.3 Tree-based dependency structure

A SingleSearchTask requires exactly one hardware device and exactly one training
loop (named trainer, to train an over-complete super-network), which in turn may use
any number of callbacks and logging mechanisms. Their relationship is visualized in
Figure

Argument trees are extremely flexible, since they allow every hierarchical one-to-any
relationship imaginable. Multiple optional callbacks can be rearranged in their order and
configured in detail. Moreover, module definitions can be reused in other constellations,
including their requirements. The ProfilingTask does not need a training loop to measure
the runtime of different network topologies on a hardware device, reducing the argument
tree in size. While not implemented, a MultiSearchTask could use several trainers in
parallel on several devices.

The hierarchical requirements are made available using so-called MetaArguments, as
seen in Line 16 of Figure They specify the local structure of argument trees by
stating which other modules are required. To do so, writing the required module type
and their amount is sufficient. As seen in Line 14, filtering the modules is also possible
to allow only a specific subset. This particular example defines the upper part of the
tree visualized in Figure The names of all MetaArguments start with “cls_ which
improves readability and is reflected in the visualized arguments tree (Figure 7.2} white-
colored boxes).

7.2.4 Tree-based argument configurations

While it is possible to define such a dynamic structure, how can it be represented in a
configuration file? Figure presents an excerpt of the configuration that matches the
tree in Figure As stated in Lines 6 and 9 of the configuration, CudaDevicesManager
and SimpleTrainer fill the roles for the requested modules of types “device” and “trainer”.
Lines 14 and 17 list one class of the types "logger” and “callback” each, but could provide
any number of comma-separated names. Also including the stated “task™ type in Line 1,
the mentioned lines state strictly which code classes are used and, given the knowledge
about their hierarchy, define the tree structure.

Additionally, every class has some arguments (hyper-parameters) that can be modified.
SingleSearchTask defined three such arguments (Lines 7 to 9 in Figure in the visu-
alized example, which are represented in the configuration (Lines 2 to 4 in Figure [7.3).
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7.2 Argument trees
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| CheckpointCallback#0 | | TensorBoardExpLogger#0 |
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Figure 7.2: Part of a visualized SingleSearchTask configuration, which describes the
training of a one-shot super-network with a specified search method (omitted for clar-
ity, the complete tree is visualized in Figure [C.3). The white colored tree nodes state
the type and number of requested classes, the turquoise boxes the specific classes used.
For example, the SingleSearchTask requires exactly one type of to be
specified, but the SimpleTrainer accepts any number of or loggers. The colors
match those in Figure

"cls_task": "SingleSearchTask",
"{cls_task}.save_dir": "{path_tmpl}/search/",
"{cls_task}.seed": O,
"{cls_task}.is_test_run": true,
"cls_device": s
"{cls_devicel}.num_devices": 1,
"cls_trainer": "SimpleTrainer",
"{cls_trainer}.max_epochs": 3,
"{cls_trainer}.ema_decay": 0.5,
"{cls_trainer}.ema_device": "cpu",
"cls_exp_loggers": "TensorBoardExpLogger",

"{cls_exp_loggers#0}.log_graph": false,

"cls_callbacks": s
"{cls_callbacks#0}.top_n": 1,
"{cls_callbacks#0}.key": "train/loss",
"{cls_callbacks#0}.minimize_key": true,

Figure 7.3: Example content of the configuration text-file (JSON format) for the tree in
Figure The first line in each text block specifies the used class(es), the other lines
their detailed settings. For example, the SimpleTrainer is set to train for three epochs and
track an exponential moving average of the network weights on the CPU.
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If the configuration is missing an argument, maybe to keep it short, its default value is
used. Another noteworthy mechanism in Line 2 is that ”{cls_task }.save_dir” references
whichever class is currently set as “’cls_task™ (Line 1), without naming it explicitly. Such
wildcard references simplify automated changes to configuration files, since, indepen-
dently of the used task class, overwriting ”{cls_task }.save_dir” is always an acceptable
way to change the save directory. A less general but perhaps more readable notation is
”SingleSearchTask.save_dir”, which is also accepted here.

A very interesting property of such dynamic configuration files is that they contain
only the hyper-parameters (arguments) of the used code classes. Adding any additional
arguments will result in an error since the configuration-parsing mechanism, described
in Section is then unable to piece the information together. Even though UniNAS
implements several different optimizer classes, any such configuration only contains the
hyper-parameters of those used. Generated configuration files are always complete (con-
tain all available arguments), sparse (contain only the available arguments), and never
ambiguous.

A debatable design decision of the current configuration files, as seen in Figure is
that they do not explicitly encode any hierarchy levels. Since that information is already
known from their class implementations, the flat representation was chosen primarily for
readability. It is also beneficial when arguments are manipulated, either automatically
or from the terminal when starting a task. The disadvantage is that the argument names
for class types can only be used once (“cls_device”, ’cls_trainer”, and more); an unam-
biguous assignment is otherwise not possible. For example, since the SingleSearchTask
already owns cls_device”, no other class that could be used in the same argument tree
can use that particular name. While this limitation is not too significant, it can be mildly
confusing at times.

Finally, how is it possible to create configuration files? Since the dynamic tree-based
approach offers a wide variety of possibilities, only a tiny subset is valid. For example,
providing two hardware devices violates the defined tree structure of a SingleSearchTask
and results in a parsing failure. If that happens, the user is provided with details of which
particular arguments are missing or unexpected. While the best way to create correct
configurations is surely experience and familiarity with the code base, the same could
be said about any framework. Since UniNAS knows about all registered classes, which
other (possibly specified) classes they use, and all of their arguments (including defaults,
types, help string, and more), an exhaustive list can be generated automatically. How-
ever, resulting in almost 1600 lines of text, this solution is not optimal either. The most
convenient approach is presented in Section[7.2.6} Creating and manipulating argument
trees with a graphical user interface.
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Algorithm 1 Pseudo-code for building the argument tree, best understood with Fig-
ures and For a consistent terminology of code classes and tree nodes: If the
Task class uses a Trainer, then in that context, Trainer the child. Lines starting with #
are comments.

Require: Configuration > Content of the configuration file
Require: Register > All modules in the code are registered

# recursive parsing function to build a tree
function PARSE(class, index) > E.g. (SingleSearchTask, 0)
node = ArgumentTreeNode(class, index)

# first parse all arguments (hyper-parameters) of this tree node

for (idx,argument name) in class.get _arguments() do > E.g. (0, "save_dir’)
value = get used value(Configuration, class, index, argument _name)
node.add _argument (argument _name, value)

end for

# then recursively parse all child classes, for each module type...

for child class_type in class.get _child types() do > E.g. cls_trainer
class_names = get _used _classes(Con figuration, child_classes_type)
Assert The number of class_names is in the specified limits

# for each module type, check all configured classes
for (idx, class_name) in class_names do > E.g. (0, "SimpleTrainer’)
child _class = Register.get (child_class_name)
child _node =PARSE(child_class, idx)
node.add _child(child class_type, idx, child node)
end for
end for
return node
end function

tree =PARSE(Main,0) > Recursively parse the tree, Main is the entry point
Ensure: every argument in the configuration has been parsed
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7.2.5 Building the argument tree and code structure

The arguably most important function of a research code base is to run experiments.
In order to do so, valid configuration files must be translated into their respective code
structure. This comes with three major requirements:

* Classes in the code that implement the desired functionality. As seen in Sec-
tion and Figure each class also states the types, argument names and
numbers of additionally requested classes for the local tree structure.

* A configuration that describes which code classes are used and which values their
parameters take. This is described in Section and visualized in Figure (/.3

* To connect the configuration content to classes in the code, it is required to ref-
erence code modules by their names. As described in Section this can be
achieved with a global register.

Algorithm [I| realizes the first step of this process: parsing the hierarchical code struc-
ture and their arguments from the flat configuration file. The result is a tree of Argu-
mentTreeNodes, of which each refers to exactly one class in the code, is connected to all
related tree nodes, and knows all relevant hyper-parameter values. While they do not yet
have actual class instances, this final step is no longer difficult.

7.2.6 Creating and manipulating argument trees with a GUI

Manually writing a configuration file can be perplexing since one must keep track of
tree specifications, argument names, available classes, and more. The graphical user
interface (GUI) visualized in Figures[7.4]and solves these problems to a large extent,
by providing the following functionality:

* Interactively add and remove nodes in the argument tree, thus also in the configu-
ration and class structure. Highlight violations of the tree specification.

* Setting the hyper-parameters of each node, using checkboxes (boolean), dropdown
menus (choice from a selection), and text fields (other cases like strings or num-
bers) where appropriate.

* Functions to save and load argument trees. Since it makes sense to separate the
configurations for the training procedure and the network design to swap between
different constellations easily, loading partial trees is also supported. Additional
functions enable visualizing, resetting, and running the current argument tree.

* A search function that highlights all matches, since the size of some argument trees
can make finding specific arguments tedious.

In order to do so, the GUI manipulates ArgumentTreeNodes (Section , which can
be easily converted into configuration files and code. As long as the required classes (for
example, the data set) are already implemented, the GUI enables creating and changing
experiments without ever touching any code or configuration files. While not among the
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7.2 Argument trees

original intentions, this property may be especially interesting for non-programmers that
want to solve their problems quickly.

Still, the current version of the GUI is a proof of concept. It favors functionality over
design, written with the plain Python Tkinter GUI framework and based on little previous
GUI programming experience. Nonetheless, since the GUI (frontend) and the functions
manipulating the argument tree (backend) are separated, a continued development with
different frontend frameworks is entirely possible. The perhaps most interesting would
be a web service that runs experiments on a server, remotely configurable from any web

browser.

UniNAS Args GUI ]

Load Load Add Save SaveAs Visualize Run Reset Exit |

Search: ‘

Main m
cls_task (allowed: 1) - -
SingleSearchTask
6 Arguments
is_test_run r
seed |u
is_deterministic r
note |51 random path training SingleSearchTask
= o
save_dir |,'datafwnrkspace/unlnasftmpllsﬂ / Y e
save_del_old g A/| cls_device (1) ‘ cls_trainer (1 | | cls_method (1) | ‘ tls_benchmark (0-1)
cls_device (allowed: 1) 4+ =
cls_trainer (allowed: 1) + = DartsSearchMethod
cls_method (allowed: 1) - = /
DartsSearchMethod
2 Arguments
amp_enabled [
mask_indices ‘
cls_data (allowed: 1) + =
cls_network (allowed: 1) + —
cls_criterion (allowed: 1) + =
|clsﬁmetrics(allnwed: 0-n) + —
|c|5_initia|izers(allowed: 0-n) B —
|c|sfregularizers(allowed: 0-n) + -
Iclsﬁoptimizers (allowed: 2) + — I
|c|5_5chedulers(allowed: 0-2) B —
‘clsﬁbenchmark (allowed: 0-1) + =

Figure 7.4: The graphical user interface (left) that can manipulate the configurations of
argument trees (visualized right). Since many nodes are missing classes of some type
(cls_device”, ...), their parts in the GUI are highlighted in red. The eight child nodes of

DartsSearchMethod are omitted for visual clarity.
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7.2.7 Using external code

There is a variety of reasons why it makes sense to include external code into a frame-
work. Most importantly, the code either solves a standing problem or provides the users
with additional options. Unlike newly written code, many popular libraries are also thor-
oughly optimized, reviewed, and empirically validated.

External code is also a perfect match for a framework based on argument trees. As
shown in Figure external classes of interest can be thinly wrapped to ensure compat-
ibility, register the module, and specify all hyper-parameters for the argument tree. The
integration is seamless so that finding out whether a module is locally written or external
requires an inspection of its code. On the other hand, if importing the AdaBelief (Zhuang
et al., 2020) code fails, the module will not be registered and therefore not be available
in the graphical user interface. UniNAS fails to parse configurations that require unreg-
istered modules but informs the user which external sources can be installed to extend its
functionality.

Due to this logistic simplicity, several external frameworks extend the core of UniNAS.
Some of the most important ones are:

* pymoo (Blank and Deb, 2020), a library for multi-objective optimization methods.
Scikit-learn (Pedregosa et al., 2011), which implements many classical machine
learning algorithms such as Support Vector Machines and Random Forests.
PyTorch Image Models (Wightman, 2019), which provides the code for several
optimizers, network models, and data augmentation methods.

albumentations (A. Buslaev and Kalinin, 2018]), a library for image augmentations.

from uninas.register import Register
from uninas.training.optimizers.abstract import WrappedOptimizer

from adabelief_pytorch import AdaBelief

# if the import was successful,

# register the wrapped optimizer

QRegister.optimizer ()

class AdaBeliefOptimizer (WrappedOptimizer):
# wrap the original

except ImportError as e:
# if the import failed,
# inform the user that optional libraries are not installed
Register .missing_import (e)

Figure 7.5: Excerpt of UniNAS wrapping the official AdaBelief optimizer code. The
complete text has just 45 lines, half of which specify the optimizer parameters for the
argument trees.
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7.3 Reproduced results

Table 7.1: The reported and reproduced results of training NAS-related network archi-
tectures on CIFAR10 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009).

CIFAR-10 error [%] ImageNet error [%]

Network reported reproduced reported reproduced
DARTS V1 (Liu et al..|2019) 2.75 2.78 26.90 26.06
PDARTS (Chen et al.,[2019) 2.50 2.56

PR-DARTS DL1 (Laube and Zell, 2019a) 2.74 2.64

PR-DARTS DL2 (Laube and Zell,|2019a) 2.51 2.44

ASAP (Noy et al.,2020) 2.50 2.70

MobileNet V2 (Sandler et al.,[2018) 28.00 27.82
Proxyless RM (Cai et al.l, 2019) 25.40 25.34
FairNasC (Chu et al.,|2019a) 25.31 25.45

7.3 Reproduced results

An essential feature of any framework is to produce results. More concretely, searching
and (re)training neural networks should produce equivalent results as other implemen-
tations and reported outcomes. For a variety of reasons, exact reproduction is usually
not possible. As described in Section incomplete information about experiments is
one common cause. Different software versions or hardware setups may also have subtle
effects, including the rather obvious limit to the batch sizes. Additionally, training on
Nvidia GPUs is not deterministic by default to speed up the training with out-of-order
processing. However, exact reproduction is generally not required. This Section briefly
compares reported and reproduced results of popular methods.

Training networks Even for an architecture search code base, correctly training net-
works is arguably the most important. The training code parts are reused for the search
routines and are also required to evaluate the performance of an architecture search re-
sult.

The reported and reproduced results of several popular NAS-related architectures are
listed in Table Unlike the originals, all reproductions use the same data, augmenta-
tions, hyper-parameters, and the SGD optimizer with cosine decay. Thus any differences
in the performance are likely due to the actual architectures, not their respective training
setups. Nonetheless, the reproduced results are generally close to the respective origi-
nals.

Searching for networks Unfortunately, evaluating the correctness of NAS methods is
much more complicated. They are often dependent on delicate hyper-parameter con-
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Chapter 7 The UniNAS framework

figurations and other non-obvious factors. In terms of the primarily used Single-Path
One-Shot (SPOS) based approaches, figuring out whether a problem is due to the super-
network or the hyper-parameter optimization method using it is an additional difficulty.
In fact, reproducing the reported SPOS results is known to be difﬁcultﬂ Consequentially,
most comparisons are limited to benchmark problems (see Chapter [2.5.1).

Dong and Yang|(2020) present NAS-Bench-201 search results for several different al-
gorithms and data sets in Table 5 of their paper. Exact reproductions of the benchmark
results were not attempted, especially since SPOS is not among the evaluated methods.
Nonetheless, our own SPOS-based results (Chapter [6] Figure 92.2%) perform con-
siderably better than the baselines except for GDAS (Dong and Yang, 2019) and the
methods with access to ground-truth test results.

7.4 Dynamic network designs

As seen in the previous sections, the unique design of UniNAS enables powerful cus-
tomization of all components. In most cases, a significant portion of the architecture
search configuration belongs to the network design. The FairNAS search example in
Figure contains 25 configured classes, of which 11 belong to the search network.
While it would be easy to create a single configurable class for each network architec-
ture of interest, that would ignore the advantages of argument trees. On the other hand,
there are many technical difficulties with highly dynamic network topologies. Some of
them are detailed below.

7.4.1 Decoupling components

In many published research codebases, network and architecture weights jointly exist in
the network class. This design decision is disadvantageous for multiple reasons. Most
importantly, changing the network or NAS method requires a lot of manual work. The
reason is that different NAS methods need different amounts of architecture parameters,
use them differently, and optimize them in different ways. For example:

* DARTS (L1u et al.,|2019) requires one weight vector per architecture choice. They
weigh all different paths, candidate operations, in a sum. Updating the weights is
done with an additional optimizer (ADAM), using gradient descent.

* MDENAS (Zheng et al., 2019) uses a similar vector for a weighted sample of
a single candidate operation that is used in this particular forward pass. Global
network performance feedback is used to increase or decrease the local weightings.

4https://nni.readthedocs.io/en/v2.5/NAS/SPOS.html, see the current reproduction results at
the bottom of the website.
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7.4 Dynamic network designs

Architecture definition

Cell 1 Cell 2 Cell 3
Stem > - > " > % > > Head
] j A
Candidate operations Weight strategy

Zero

- create and manage architecture weights (shared or different)
- decide how to forward the input

{ Skip J
[ 1x1 Convolution J - DARTS, GDAS, ASAP, SPOS, FairNAS, ...

- independent of the network topology!

3x3 Convolution

3x3 Avg Pooling

Figure 7.6: The network and architecture weights are decoupled.

Top: The structure of a fully sequential super-network. Every layer (cell) uses the same
set of candidate operations and weight strategy. Bottom left: One set of candidate op-
erations that is used multiple times in the network. This particular experiment uses the
NAS-Bench-201 candidate operations. Bottom right: A weight strategy that manages
everything related to the used NAS method, such as creating the architecture weights or
which candidates are used in each forward pass.

* Single-Path One-Shot (Guo et al., 2020) does not use weights at all. Paths are
always sampled uniformly randomly. The trained network is used as an accuracy
prediction model and used by a hyper-parameter optimization method.

* FairNAS (Chu et al. 2019a)) extends Single-Path One-Shot to make sure that all
candidate operations are used frequently and equally often. It thus needs to track
which paths are currently available.

The same is also true for the set of candidate operations, which affect the sizes of the
architecture weights. Once the definitions of the search space, the candidate operations,
and the NAS method (including the architecture weights) are mixed, changing any part
is tedious. Therefore, strictly separating them is the best long-term approach. Similar
to other frameworks presented in Section|[/.1.1] architectures defined in UniNAS do not
use an explicit set of candidate architectures but allow a dynamic configuration. This
is supported by a WeightStrategy interface, which handles all NAS-related operations
such as creating and updating the architecture weights. The interaction between the
architecture definition, the candidate operations, and the weight strategy is visualized in

Figure
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The easy exchange of any component is not the only advantage of this design. Some
NAS methods, such as DARTS, update network and architecture weights using differ-
ent gradient descent optimizers. Correctly disentangling the weights is trivial if they
are already organized in decoupled structures but hard otherwise. Another advantage is
that standardizing functions to create and manage architecture weights makes it easy to
present relevant information to the user, such as how many architecture weights exist,
their sizes, and which are shared across different network cells. An example is presented

in Figure

o 1 |"cell 3": {
3 " o &_’ 2 "name": "SingleLayerCell",
g—»% ] %,, 3 "kwargs": {
@ = = 4 "name": "cell_3",
_ S5 5 "features_mult": 1,
.............. 6 "features_fixed": -1
............ 7 },
"cell_3", SingleLayerCell 8 "submodules": {
9 "op": {
"op", MobilelnvConvLayer 10 "name": "MobileInvConvLayer",
Sum 11 "kwargs": {
X 12 "kernel_size": 3,
n 13 "kernel_size_in": 1,
14 "kernel_size_out": 1,
Conv 1x1 15 "stride": 1,
vy 16 "expansion": 6.0,
6*n 17 "padding": "same",
> ; "dilation": 1,
n St?i%tehvlvisge?;(g 19 "bn_affine": true,
A 20 "act_fun": "relu6",
6*n 21 "act_inplace": true,
22 "att_dict": null,
C%ne‘fu%ﬂ 23 "fused": false
24 }
n 25 }
26 }
input 27  },

Figure 7.7: A high-level view on the MobileNet V2 architecture (Sandler et al., 2018)
in the top left, and a schematic of the inverted bottleneck block in the bottom left. This
design uses two 1x 1 convolutions to change the channel count n by an expansion factor
of 6, and a spatial 3x3 convolution in their middle. The text on the right-hand side
represents the cell structure by referencing the modules by their names ("name”) and
their keyworded arguments ("kwargs”).
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7.4.2 Saving, loading, and finalizing networks

As mentioned before, argument trees enable a detailed configuration of every aspect of
an experiment, including the network topology itself. As visualized in Figure [C.3] such
network definitions can become almost arbitrarily complex. This becomes disadvanta-
geous once models have to be saved or loaded or when super-networks are finalized into
discrete architectures. Unlike TensorFlow (Abadi ef al., 2016), the used PyTorch (Paszke
et al., 2019) library saves only the network weights without execution graphs. External
projects like ONNX (Bai et al., [2019) can be used to export limited graph information
but not to rebuild networks using the same code classes and context.

The implemented solution is inspired by the official codeE] of ProxylessNAS (Cai et al.,
2019), where every code module defines two functions that enable exporting and import-
ing the entire module state and context. As typical for hierarchical structures, the state
of an outer module contains the states of all modules within. An example is visualized
in Figure where one cell in the famous MobileNet V2 architecture is represented
as readable text. The global register can provide any class definition by name (see Sec-
tion [/.2.2)) so that an identical class structure can be created and parameterized accord-
ingly.

The same approach that enables saving and loading arbitrary class compositions can
also be used to change their structure. More specifically, an over-complete super-network
containing all possible candidate operations can export only a specific configuration sub-
set. The network recreated from this reduced configuration is the result of the architecture
search. This is made possible since the weight strategy controls the use of all candidate
operations, as visualized in Figure Similarly, when their configuration is exported,
the weight strategy controls which candidates should be part of the finalized network
architecture. In another use case, some modules behave differently in super-networks
and finalized architectures. For example, Linear Transformers (Chu et al., [2019b)) sup-
plement skip connections with linear 1x 1 convolutions in super-networks to stabilize the
training with variable network depths. When the network topology is finalized, it suffices
to simply export the configuration of a skip connection instead of their own.

Another practical way of rebuilding code structures is available through the argument
tree configuration, which defines every detail of an experiment (see Section[7.2.4)). Pars-
ing the network design and loading the trained weights of a previous experiment requires
no further user interaction than specifying its save directory. This specific way of recre-
ating experiment environments is used extensively in Single-Path One-Shot tasks. In the
first step, a super-network is trained to completion. Afterward, when the super-network is
used to make predictions for a hyper-parameter optimization method (such as Bayesian
optimization or evolutionary algorithms), the entire environment of its training can be
recreated. This includes the network design and the dataset, data augmentations, which
parts were reserved for validation, regularization techniques, and more.

>https://github.com/mit-han-lab/proxylessnas/tree/master/proxyless_nas
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7.5 Discussion and Conclusions

This chapter presented the underlying concepts of UniNAS, a PyTorch-based framework
with the ambitious goal of unifying a variety of NAS algorithms in one codebase. Even
though the use cases for this framework changed over time, mostly from DARTS-based
to SPOS-based experiments, its underlying design approach made reusing old code pos-
sible at every step. However, several technical details could be changed or improved in
hindsight. Most importantly, configuration files should reflect the hierarchy levels (see
Section for code simplicity and to avoid concerns about using module types mul-
tiple times. The current design favors readability, which is now a minor concern thanks
to the graphical user interface. Other considered changes would improve the code read-
ability but were not implemented due to a lack of necessity and time.

In summary, the design of UniNAS fulfills all original requirements. Modules can be
arranged and combined in almost arbitrary constellations, giving the user an extremely
flexible tool to design experiments. Furthermore, using the graphical user interface does
not require writing even a single line of code. The resulting configuration files contain
only the relevant information and do not suffer from a framework with many options.
These features also enable an almost arbitrary network design, combined with any NAS
optimization method and any set of candidate operations. Despite that, networks can
still be saved, loaded, and changed in various ways. Although not covered in this chap-
ter, several unit tests ensure that the essential framework components keep working as
intended.

While it is unlikely that UniNAS will be developed further, primarily due to a lack
of development time, other projects will probably adopt argument trees. They are an
elegant way to avoid suffering from feature bloat while also making it possible to visu-
alize and manipulate experiments without any coding knowledge. This goal aligns well
with AutoML, which is also intended to make machine learning available to a broader
audience.
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Chapter 8

Conclusions

8.1 Summary

The topic of this dissertation is the study and improvement of Neural Architecture Search,
the automated design of neural networks. Reinvented less than ten years ago, this field of
study changes rapidly and largely lacks established practices and traditions. The chapters
of this dissertation reflect some of these changes by considering different search space
designs, methods that operate on them, and strategies to compare them.

Based on the observation that the initial NASNet networks are complicated and slow,
we used the ShuffleNet V2 guidelines for efficient network designs to reinvent the orig-
inal search space in Chapter [3] Compared to their ENAS baseline, the discovered Shuf-
fleNASNets models achieve the same accuracy while being significantly less complex,
twice as fast, and using fewer network parameters.

In the ideal scenario, however, NAS can find suitable architectures without creating
an elaborate search space in the first place. Morphism-based approaches grow and mu-
tate networks from scratch but generally perform worse than methods using fixed super-
networks. We combined many of their advantages in Chapter 4, where network mor-
phisms are periodically used to improve an otherwise fixed super-network-based search
space. The proposed Prune and Replace approach considers many more candidate op-
erations than otherwise possible, by gradually adjusting properties of Convolutions such
as kernel sizes and strides. Although using a more open and challenging search space
than the DARTS baseline, our PR-DARTS method discovered higher accuracy models
in a shorter time.

Chapters [3] and [ considered the number of model parameters and FLOPs as impor-
tant metrics but did not explicitly optimize them. In contrast, many modern approaches
consider the multi-objective problem of maximizing accuracy while minimizing latency
or energy consumption. Even though prediction models are widely used to estimate such
device- and architecture-specific metrics, a comprehensive study that compares predic-
tors was missing. We present such a study in Chapter [5] and find that, in most cases,
the extensively used Lookup Tables are easily outperformed even by Linear Regression.
Across a wide range of training set sizes, MLPs perform best. We also extensively simu-
lated a multi-objective selection of architectures from a search space, using predictors of
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different quality, data sets, and numbers of considered architectures. This allowed us to
quantify how different prediction models affect the NAS results and demonstrate the ben-
efit of considering more candidate architectures, even at the cost of using lower-quality
predictors.

An improvement approach of a specific predictor, the super-network, is evaluated in
Chapter [0} We observed that the widely used single-path methods implicitly pressure all
candidate operations in a layer to co-adapt, which limits their capacity. We proposed con-
ditional architecture weights to approach this issue since they allow candidate operations
to specialize towards each other, in different constellations and across network layers.
This can be achieved with only a minor effect on the training time and required mem-
ory by a process of weight splitting. If done correctly, the trained super-networks have
a higher ranking correlation and select better top-performing models. However, since
it is not yet clear how to predict this moment in advance, an application in real-world
problems is currently tricky.

As exemplary seen from the presented works, there is a great variety in NAS search
spaces, algorithm designs, components, their underlying principles, and more. The vari-
ety results in an almost equally high fragmentation of published code, despite the avail-
ability of multiple well-supported NAS frameworks. We present UniNAS in Chapter|[7] a
framework designed to handle almost arbitrarily complex and diverse algorithm designs.
This is made possible with argument trees, a concept that allows code modules to be
reused and combined in various ways. We also demonstrated that argument trees can be
manipulated with a graphical user interface to create and change complex experiments
without writing a single line of code.

8.2 Discussions and Future Work

Even though Neural Architecture Search ideally solves the problem at hand without re-
quiring search space adaptions or any domain knowledge, that is currently not quite
possible. Most fundamental design decisions are left to a human engineer, such as the
initial network structure, layers, channels, and available candidate operations; although
some NAS methods can change these in limited ways. Like classic hyper-parameter op-
timization methods that find the best learning rate in a given interval, NAS methods find
promising architectures in a defined search space. A suitable design, as systematically
developed in Chapters [3] is therefore indispensable.

A related topic of equally high importance is device awareness. Depending on the
hardware platform, network topologies and candidate operations differ significantly by
their execution times, energy consumption, and more (Benmeziane et al., 2021). Multi-
objective NAS methods can find suitable task- and device-specific architectures, which
makes them a promising approach for many current and future applications. Vital compo-
nents of such multi-objective methods are prediction models, likewise for hardware met-
rics and network loss. The study presented in Chapter [5| provides comprehensive base-
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lines and recommendations, which will serve as a guideline for future methods. Meta-
learning and layer-wise prediction approaches were not included but are an interesting
research direction for proceeding experiments. We also investigated an improvement
approach for an essential accuracy prediction model in Chapter [6] the super-networks.
The proposed conditional super-network weights show promising results, despite their
current limitations.

Even though carefully and systematically engineered search spaces and NAS methods
are dominant right now, that may change shortly. Freely grown and mutated networks do
not reach the same performance as their competition but require far less domain knowl-
edge and general understanding of machine learning. Therefore, they are an ideal starting
point and baseline for many uncommon real-world problems that an established archi-
tecture can not easily solve. Furthermore, if their performance is acceptable, investing in
a sophisticated search space is no longer necessary. Although not quite usable yet, Real
et al.| (2020) showed that even entire machine learning algorithms could be automati-
cally created and improved from scratch, not just their models. We presented an initial
work for another potential future approach in Chapter ] a hybrid of fixed and weakly
defined search spaces. If methods such as the proposed prune and replace approach
can efficiently modify the number of layers and their connections, not just the candidate
operations, manually designing search spaces may no longer be needed.
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Appendix A

What to expect of hardware metric
predictors in NAS

A.1 Encodings and Predictors

Data encodings

Every architecture a € A requires a unique representation, which depends on the used
predictor. The common encoding types are:

Adjacency one-hot: Each architecture a is uniquely defined by the chosen candidate
operation on every path. For example, each architecture in NAS-BENCH-201 consists
of a repeated cell structure, which has five candidate operations on each of the six paths.
Therefore there are 5° = 15625 unique architectures, each referenced by a sequence of
operation-indices such as [0 1 2 3 4 0]. Many predictors perform better if the sequence is
presented as a one-hot encoding, which is in this case [10000 01000 00100 00010 00001 10000)].

Similarly, the path-encoding (used by BANANAS) is a one-hot representation over
the used candidate operation on all possible paths between any two network graph nodes.
Since the connectivity within cells for HW-NAS-Bench and TransNAS-Bench-101 is
fixed, it provides no more information than the adjacency one-hot encoding (all other
paths would use the Zero operation). If the connectivity can be adjusted more freely, as
in the NAS-Bench-101 search space, the additional information may improve the fit.

The encodings for BONAS, GCN, and NAO each provide further information in
addition to the Adjacency one-hot vector, most notably the adjacency-matrix. This
{0, 1}<N +2)x(N+2) matrix lists describes which of the N architecture paths (rows) serves
as inputs for each other path (column), and also includes input/output.
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Predictors

We briefly describe the 18 predictor methods in our experiments. We adopt their imple-
mentations from the NASLib library, which we extend with Linear Regression, Ridge
Regression, and Support Vector Machines from the scikit-learn package; and a simple
Lookup Table implementation. Unless specified otherwise, the methods use the adja-
cency one-hot encoding.

* BANANAS An ensemble of three MLP models with five to 20 layers, each using
the path-encoding (White et al., 2019).

* Bayesian Linear Regression A bayesian model that assumes (1) a linear depen-
dency between inputs and outputs, and (2) that the samples are normally distributed
(Bishop, 2007).

* BOHAMIANN A bayesian inference predictor using stochastic gradient Hamil-
tonian Monte Carlo (SGHMC) to sample from a bayesian neural network (Sprin-
genberg et al.,[2016).

* BONAS Bayesian Optimization for NAS (Shi et al., 2020) uses a GCN predictor
within an outer loop of bayesian optimization, as a meta-learning task. The GCN
requires encoding the adjacency matrix of each architecture.

* Gaussian Process A simple model that assumes a joint Gaussian distribution un-
derlying the training data (Rasmussen, |2003)).

* GCN A Graph Convolutional Network that makes use of an adjacency-matrix en-
coding of each architecture (Wen et al.,|2020).

* Linear Regression A simple model that assumes an independent value/cost for
each operation/layer, which only need to be summed up. Unlike the Lookup Table
model, it uses a least-square fit on the training data.

* Lookup Table The most simple and perhaps widely used model for differentiable
architecture selection. It generally assumes a single baseline architecture (e.g.
[001 001] in adjacency one-hot encoding), and a lookup matrix R(mum layers)x (num candidates)
that contains the increases/reductions in the metric for each layer and candidate op-
eration. The metric value of a new architecture can be predicted with a simple sum
over the respective matrix entries and the baseline value. The model is obtained
from measuring either each candidate operation in isolation, or by computing the
differences between the baseline architecture and specific variations (e.g. [010 001]
or [100 001], to measure the first candidates). This model always requires 14(num
layers) - (num candidates—1) neighbored architectures to fit. We detail the result-
ing correlation values for each used dataset in Appendix [A.3]
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LGBoost Light Gradient Boosting Machine (LightGBM or LGBoost, Ke et al.
(2017)) 1s a lightweight gradient-boosted decision tree model.

MLP We use fully-connected Multi Layer Perceptrons in two size-categories.

NAO NAO (Luo et al.,[2018) uses an encoder-decoder topology, which encodes/-
compresses an architecture to a continuous representation, and decodes it again.
This representation is further used to make architecture predictions.

NGBoost Natural Gradient Boosting (NGBoost, |Duan et al.| (2020)) is a gradient-
boosted decision tree model that uses natural gradients to estimate uncertainty.

Ridge Regression Ridge Regression (Saunders et al., |1998) extends the Linear
Regression least-squares fit with a regularization term that serves as bias-variance
tradeoff.

Random Forests An ensemble of decision trees (Liaw et al., 2002).

Sparse Gaussian Process an approximation of Gaussian Processes that summa-
rizes training data (Candela and Rasmussen) 2005).

Support Vector Machine A model that maps its inputs to a high-dimensional
space, where training samples are used as support-vectors for decision-boundaries
(Cortes and Vapnik, |1995).

XGBoost eXtreme Gradient Boosting (XGBoost, |(Chen and Guestrin (2016)) is a
gradient-boosted decision tree model.
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A.2 Hyperparameters

We list our default and hyper-parameter sample ranges in Table[A.T] For comparability
with White et al. (2021), we only change the values of newly introduced parameterized
predictors: Ridge Regression, Support Vector Machines, and small MLPs.

Table A.1: Hyper-parameter ranges and default values of the configurable predictors

Model Hyper-parameter Range/Choice Log-transform  Default
Num. Layers [5,25] false 20
BANANAS Layer width [5,25] false 20
Learning rate [0.0001,0.1] true 0.001
Num. Layers [16,128] true 64
BONAS Batch size [32,256] true 128
Learning rate [0.00001,0.1] true 0.0001
Num. Layers [64,200] true 144
GCN Batch size [5,32] true 7
Learning rate [0.00001,0.1] true 0.0001
Weight decay [0.00001,0.1] true 0.0003
Num. leaves [10,100] false 31
LGBoost Learning rate [0.001,0.1] true 0.05
Feature fraction [0.1,1] false 0.9
Num. layers [2,5] false 3
Layer width [16,128] true 32
MLP (small) Learning rate [0.0001,0.1] true 0.001
Activation function  {relu, tanh, hardswish} relu
Num. layers [5,25] false 20
MLP (huge) Layer width [5,25] false 20
Learning rate [0.0001,0.1] true 0.001
Num. layers [16,128] true 64
NAO Batch size [32,256] true 100
Learning rate [0.00001,0.1] true 0.001
Num. estimators [128,512] true 64
Learning rate [0.001,0.1] true 0.081
NGBoost Max depth [1,25] false 6
Max features [0.1,1] false 0.79
Ridge Regression Regularization o [0.25,2.5] false 1.0
Num. estimators [16,128] true 116
Random Forests Max features [0.1,0.9] true 0.17
Min samples (leaf)  [1,20] false 2
Min samples (split)  [2,20] true 2
o Regularization C [0.5,1.5] false 1.0
Support Vector Machine Kernel {linear, poly, rbf, sigmoid} rbf
Max depth [1,15] false 6
Min child weight [1,10] false 1
XGBoost Col sample (tree) [0,1] false 1
Learning rate [0.001,0.5] true 0.3
Col sample (level) [0,1] false 1




A.3 Selection of datasets

A.3 Selection of datasets

Linear Regression XGBoost LUT
11 25 55 124 276 614 1366 3036 6748 15000 15000

ImageNet16-120-raspi4_latency 0.324 0.205 0.606 0.676 0.705 0.716 0.715 0.723 0.728 0.729 0.757 0.443
cifar100-pixel3_latency 0.392 0.292 0.732 0.780 0.797 0.803 0.806 0.809 0.812 0.812 0.877 0.484
cifar10-edgegpu_latency 0.370 0.258 0.724 0.790 0.806 0.819 0.820 0.822 0.830 0.829 0.926 0.175
cifar100-edgegpu_energy 0.376 0.275 0.732 0.793 0.812 0.821 0.821 0.823 0.831 0.831 0.920 0.221
ImageNet16-120-eyeriss arith. int. ~ 0.369 0293 0748  0.805  0.817  0.827 0.825 0832 0843 0846 0.970 0.861
cifar10-pixel3_latency 0.388 0.300 0.733 0.780 0.797 0.805 0.805 0.810 0.813 0.813 0.878 0.475
cifar10-raspi4_latency 0.393 0.315 0.740 0.787 0.799 0.805 0.807 0.810 0.813 0.813 0.890 0.462
cifar100-raspi4_latency 0.393 0.308 0.744 0.786 0.801 0.807 0.810 0.810 0.814 0.814 0.888 0.445
ImageNet16-120-pixel3_latency 0.398 0.312 0.739 0.786 0.799 0.807 0.809 0.812 0.815 0.816 0.884 0.509
cifar100-edgegpu_latency 0.375 0.268 0.728 0.793 0.810 0.821 0.820 0.822 0.831 0.831 0.924 0.191
cifar10-edgegpu_energy 0.375 0.284 0.728 0.792 0.810 0.821 0.823 0.824 0.831 0.831 0.922 0.183
ImageNet16-120-edgegpu_energy 0.377 0.281 0.733 0.797 0.814 0.825 0.825 0.826 0.834 0.833 0.926 0.280
ImageNet16-120-edgegpu_latency 0.379 0.264 0.737 0.799 0.817 0.826 0.826 0.828 0.836 0.835 0.938 0.277
cifar10-eyeriss arith. int. 0.384 0.296 0.757 0.811 0.826 0.835 0.832 0.843 0.854 0.854 0.969 0.826
cifar100-eyeriss arith. int. 0.384 0.297 0.757 0.811 0.826 0.835 0.833 0.844 0.855 0.856 0.971 0.830
ImageNet16-120-fpga_latency 0.443 0.494 0.904 0.936 0.947 0.951 0.948 0.951 0.952 0.952 0.983 0.965
ImageNet16-120-fpga_energy 0.443 0.494 0.905 0.935 0.947 0.951 0.948 0.951 0.952 0.952 0.983 0.965
ImageNet16-120-eyeriss_latency 0.457 0.937 0.953 0.954 0.954 0.954 0.953 0.953 0.954 0.954 0.952 0.989
cifar10-eyeriss_latency 0.461 0.943 0.959 0.959 0.960 0.960 0.959 0.960 0.960 0.960 0.958 0.995
cifar100-eyeriss_latency 0.462 0.946 0.963 0.963 0.963 0.963 0.963 0.963 0.964 0.963 0.962 0.998
cifar10-eyeriss_energy 0.456 0.967 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.975 0.996
ImageNet16-120-eyeriss_energy 0.458 0.967 0.985 0.985 0.986 0.985 0.986 0.985 0.985 0.986 0.972 0.998
cifar100-eyeriss_energy 0.457 0.967 0.985 0.985 0.985 0.986 0.985 0.986 0.986 0.986 0.976 0.998
cifar10-fpga_energy 0.458 0.973 0.987 0.987 0.987 0.987 0.987 0.987 0.987 0.987 0.986 0.999
cifar100-fpga_energy 0.458 0.973 0.987 0.987 0.987 0.987 0.987 0.987 0.987 0.987 0.986 0.999
cifar100-fpga_latency 0.457 0.973 0.987 0.987 0.987 0.987 0.987 0.987 0.987 0.987 0.986 0.999
cifar10-fpga_latency 0.457 0.973 0.987 0.987 0.987 0.987 0.987 0.987 0.987 0.987 0.986 0.999

Table A.2: Kendall’s Tau test correlation for Linear Regression, XGBoost, and Lookup
Tables (LUT) on all HW-NAS-Bench datasets (rows), for different amounts of available
training data (columns), tested on the remaining 625 samples. The Lookup Table model
is tested on all 15625 architectures. We selected the five data sets at the top.

HW-NAS-Bench: To select five datasets that are (1) non-linear and (2) different from
one another, we first fit Linear Regression to every available dataset, with the results
listed in Table The bottom 12 datasets can be accurately fit with only 25 training
samples, so they are not very interesting as a challenge. On these datasets, the Lookup
Table model achieves exceptional performance. Since the networks for CIFAR10, CI-
FAR100 and ImageNet16-120 only differ slightly, their measurements on the same de-
vice and metric (e.g. raspi4 latency) is very similar. To improve the generalizability of
our results, we thus select datasets on different devices and metrics, which are listed at
the top of Table[A.2] As displayed in Figure [A.1] their data distributions are generally
different.

TransNAS-Bench-101: Since the latency measurements of the architectures is gener-
ally very similarly distributed (see Figure[A.2), it is not necessary to train the predictors
on all of them. We select all data sets that provide the test_loss and inference_time at-
tributes for all architectures, resulting in exactly the five datasets listed in Section [5.5]
(the other two datasets contain more specific test losses).
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Figure A.1: How the data of each selected HW-NAS-Bench dataset is distributed (not
normalized).
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Figure A.2: How the data of each selected TransNAS-Bench-101 dataset is distributed
(not normalized). Since all architectures are measured for latency on the same hardware,
the resulting datasets are much less diverse than the HW-NAS-Bench ones.
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A.4 Predictor fit time

Linear Regression XGBoost LUT

9 18 34 65 123 234 442 837 1585 2999 2999
jigsaw 0.201 0.227 0.410 0.535 0.586 0.605 0.616 0.624 0.631 0.632 0.661 0.201
class_object 0.268 0.262 0.518 0.646 0.711 0.741 0.759 0.771 0.780 0.780 0.828 0.701
room_layout 0.275 0.271 0.527 0.653 0.721 0.753 0.768 0.780 0.789 0.789 0.896 0.685
class_scene 0.275 0.268 0.527 0.653 0.721 0.755 0.768 0.782 0.789 0.790 0.907 0.710
segmentsemantic 0.282 0.259 0.545 0.684 0.746 0.780 0.798 0.809 0.816 0.818 0.871 0.726

Table A.3: Kendall’s Tau test correlation for Linear Regression and XGBoost on the
five used TransNAS datasets (rows), for different amounts of available training data
(columns), tested on the remaining 256 samples. The Lookup Table model (LUT) is
tested on all 3256 architectures.

A.4 Predictor fit time

Average over TransNAS datasets Average over HW-NAS datasets
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Figure A.3: Fit time (in seconds) of predictors to data, depending on the training set size.
By far the most expensive methods are network-based. However, a significant portion of
this time is spent on the hyper-parameter optimization prior to the actual fitting.

A.5 Approximating predictor mistakes

Intuitively, the predictor deviation distributions (see Figures [5.4] and [A.4) generally re-
semble a normal distribution. However, most predictors:

(1) Have a notable peak, sometimes off-center (e.g. at x=0.2)

(2) Have less density than a normal distribution almost everywhere else

(3) Have some outliers (e.g. at x>1.5) that are extremely unlikely for a normal distribu-
tion
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Predictor deviations Predictor deviations Predictor deviations
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Figure A.4: Further examples of predictor deviation distributions, as visualized in the
center of Figure[5.4] Left: Linear Regression on CIFAR100, edgegpu, energy consump-
tion. Center: Support Vector Machine on Jigsaw. Right: small MLP on ImageNet16-
120, raspi4, latency.

Table A.4: P-values of different distributions, trying to fit the distribution of all predictor
mistakes according to a t-test. Larger values are better, but comparing many empirically
sampled points with a true density function tends to push the p-values to 0.

p-value

normal 0.028
cauchy 0.030
lognorm  0.028
t 0.028
uniform 0.037

We measured the p-value for different distributions on the first 100 test samples using
a T-Test every time we evaluated a predictor. The average statistics can be found in
Table Since many empirical observations generally push the p-value to O, this only
serves to compare them to each other. We find that the outliers (3) appear often enough
and are so unlikely to happen for a normal distribution that even a uniform distribution
has higher statistical support. Consequentially, we approximate the common predictor
deviations by sampling from a mixed distribution that addresses (1) to (3).

This mixed distribution consists of two Normal distributions (N, N,) and one Uniform
distribution (U), from which we sample with 72.5%, 26.5% and 1% respectively. For
some constant v:

* We uniformly sample a shift ¢ from [0,2 -], that is used to push the centers of N}
and N, to x > 0 and x < O respectively.

* We sample each value from Nj(c,v), No(—c¢,3-v), and U;(—15-v,15-v) randomly,
with the weighting given above.
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A.5 Approximating predictor mistakes

* We normalize (subtract mean, divide by standard deviation) our sampled distribu-
tion and then scale it to the desired standard deviation.

* The predictors produce non-smooth distributions. We simulate that by sampling
15 times fewer values as needed, and repeat them as often.

As part of the simulation, the code for the mixed distribution was made available.
Figure [A.5]shows that the resulting simulated deviation distributions generally resemble
a common predictor pattern. We do not account for differences in predictors, training set
sizes or more, since that may become too specific and over-engineered.

Appendix visualizes simulation sanity checks. We find that the simulation is
slightly pessimistic and simplified but resembles the results of actual predictors.

Simulated predictor deviations Simulated predictor deviations Simulated predictor deviations
1.6
—— normal fit, std=0.500 —— normal fit, std=0.500 141 —— normal fit, std=0.500
1.44 mmm mixed dist. generated with std=0.5 129 mmm mixed dist. generated with std=0.5 1.2 mmm mixed dist. generated with std=0.5
1.24 1.04
> 1.0 08
2 0.8 2
E $ 0.6
0.6
0.41
0.4
0.2 0.24
4 . e
0.0 0.0 —
-2 0 2 -2 -1 0 1 2 -2 0 2
deviation of the simulated predictions deviation of the simulated predictions deviation of the simulated predictions

Figure A.5: The sampled values of gaussian+uniform fit the measured predictor mistakes
better than a single distribution, as they are roughly normally distributed, but include
outliers.
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A.6 Limits of MRA
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Figure A.6: Similar to Figure When the discovered Pareto set is considerably worse
than the true Pareto set, it is possible for the Mean Reduction of Accuracy of the Pareto
subset (MRA pqre10) to be worse than the average over all architectures (MRA,;;). This
naturally happens more frequently for worse predictors with a high sampling standard
deviation and low KT correlation. Consequentially, the difference between MRA,; and
MRA p4rero 1s wider for better predictors (see Figure @

Additionally, all of the selected non-Pareto-front members are clustered in a high-latency
area and redundant with each other. This emphasizes the limitations of just considering
drops of accuracy, as the hardware metric aspect is ignored. In this case, the predictor-
guided selection failed to find a low-latency solution. Hypervolume solves these prob-
lems but is a less intuitive metric.
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A.7 Simulation sanity check

A.7 Simulation sanity check
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Figure A.7: Standard deviation over the predictor deviations (x axis) and Kendall’s Tau
correlation (y axis), for the trained predictors on HW-NAS-Bench (left) and in simulation
(right). The simulated predictor inaccuracies are slightly pessimistic (low KT) but still
match the true values.
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Table A.5: How a trained XGB predictor deviates from the ground-truth values for differ-

ent architecture subsets, akin to Figure[5.4] While they are not exactly the same, they still

resemble the distribution over the entire test set (top plot, 625 samples). One notewor-
thy exception is when no Conv3x3 operations are used at all, in which case the standard

deviation is considerably smaller.
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Conditional super-network weights

B.1 Super-network correlations

Table B.1: Kendall’s Tau ranking correlation values between super network predictions
and ground truth values, computed on all (KT all) and only the top 50 ground truth net-

works (KT 50). The best column-wise values are marked in bold.

We find that is possible but not certain to improve the ranking correlation over the base-
line values, and also not by much. Nonetheless, this results in clearly observable im-
provement peaks as seen in Section[6.4.1}

NAS-Bench 201

NAS-Bench-Macro

full no Zero only Conv. full
KTall KTS50 KTall KT50 KTall KTS50 KTall KT 50
baseline 0.56 -0.06 046 0.14 0.56 0.31 0.73 0.30
split at 25 0.72 0.34
split at 30 0.73 0.31
split at 35 0.72 0.34
split at 38 0.73 0.36
split at 40 0.73 0.31
split at 42 0.73 0.34
split at 45 0.73 0.36
split at 47 0.74 0.26
splitat 125 0.56  -0.08  0.50 0.19 0.54 0.26
splitat 140  0.55  -0.11 0.49 0.13 0.54 0.29
splitat 145 056  -0.10  0.50 0.12 0.58 0.34
splitat 150  0.57  -0.04  0.51 0.17 0.60 0.36
splitat 155 0.56  -0.04  0.51 0.16 0.56 0.33
splitat 160  0.57  -0.07 048 0.19 0.57 0.32
splitat 175 0.57  -0.09  0.51 0.19 0.56 0.31
splitat200 0.56  -0.04  0.51 0.19 0.54 0.27
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Appendix B Conditional super-network weights

B.2 Network designs

Tables B.2]and [B.3|summarize the super-networks for NAS-Bench-201 and NAS-Bench-
Macro, respectively. Both closely follow the design of the original full-sized networks,
except for having all candidate operations available. While NAS-Bench-201 networks
usually have five cells of shared topology per stage, our super-network uses only two.
This is a typical choice to increase the search efficiency (Zoph et al.| (2018); Real et al.
(2018); [Pham ez al.|(2018); Liu et al.| (2019) and more, see Chapter [2.4.1).

input size Ltslze

cell index  channels  spatial params layerindex  channels  spatial params
stem 3 32x32 464 stem 3 32x32 928
0 16 32x32 16,896 0 32 32x32 36,896

1 16 32%32 16,896 1 64 16x16 87,616
2 16 32x32 14,464 2 64 16x16 133,184
3 32 16x16 67,584 3 128 8x8 322,688

4 32 16x16 67,584 4 128 8x8 322,688

5 32 16x16 57,600 5 128 8x8 503,936
6 64 8x8 270,336 6 256 4x4 1,235,200

7 64 8x8 270,336 7 256 4x4 1,235,200
head 64 8% 8 778 head 256 4x4 343,050
sum 782,938 sum 4,221,386

Table B.2: NAS-Bench 201 super- Table B.3: NAS-Bench-Macro super-

network without additional weights on
CIFARI10, using two cells per stage (cells
2 and 5 are fixed reduction cells). As
the cell topologies are shared, only six
operation choices exist.
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network without additional weights on
CIFARI10. In each of the 8 layers, one
of the three available operations is chosen
for the final architecture.



B.3 Training and evaluation details

Table B.4: Training details of super-networks and the evaluation networks for all NAS-
Bench 201 and NAS-Bench-Macro networks. Due to using the same method on the same
dataset (Single-Path One-Shot on CIFAR10), the configurations are almost identical. If
details are not mentioned (such as gradient clipping or dropout), they have not been used.

NAS-Bench 201 NAS-Bench-Macro

Optimizer SGD SGD
initial learning rate 0.025 0.025
final learning rate le-5 le-5
learning rate decay cosine cosine
momentum 0.9 0.9
weight decay 3e-4 3e-4
weight decay applies to BatchNorm no no
epochs 250 50
data input shape 3x32x32 3x32x32
batch size 256 256
training augmentations

pixel shift 4 4
random horizontal flipping yes yes
normalization yes yes

evaluation augmentations
normalization yes yes

B.3 Training and evaluation details

The baseline super-networks (without additional weights) are outlined in Appendix [B.2
These networks are trained following exactly the same protocol, except for the optional
weight splitting in specific epochs. The most important details are summarized in Ta-
ble The training protocols loosely follow DARTS (Liu et al.,[2019). All models are
trained on CIFAR10 (Krizhevsky et al., 2009), where 5000 images are withheld for val-
idation. All experiments were performed using PyTorch 1.7.0 on Nvidia 1080 Ti GPUs
with driver version 440.64, CUDA 10.2, CuDNN 7605, and random seeds {0, ..., 9}.

It is also noteworthy that the BatchNorm statistics of every architecture within the
super-network have to be adjusted by performing 20 forward passes (without computing
gradients) just prior to evaluating that specific architecture. This is a standard routine of
SPOS (Guo et al., 2020) which significantly improves the ranking correlation. However,
we did not reset the statistics entirely before the evaluation, which we found detrimental
in nearly all tested cases.
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Appendix C
UniNAS

Load Load Add Save SaveAs Visualize Run Reset Exit ‘ Load Load Add Save SaveAs Visualize Run Reset Exit ‘
Search: | | search (4 hits):  [as
Main W Main
cls_task (allowed: 1) o cls_task (allowed: 1)
il ask SingleSearchTask
6 Arguments 6 Arguments
is_test_run r is_test_run I
seed [o seed [o
is_deterministic | is_deterministic I
note [s1 random path training note [s1 random path training
save_dir |/dataworkspace/uninastmpy/s1/ save_dir |/datamworkspace/uninas/tmp//s1/
save_del_old v save_del_old v
cls_device (allowed: 1) + —‘I cls_device (allowed: 1)
cls_trainer (allowed: 1) CpubevicesManager i
| g CudaDevicesManager cls_trainer (allowed: 1)

cls_method (allowed: 1) _ TestCpubevicesManager cIs_method (allowed: 1)
DartssearchMethod DartssearchMethod
Eiﬁutes all choices, leams how to weights them ina 2 Arguments
rweighted sum | =
amp_enabled I

DARTS: Differentiable Architecture Search P
https://arxiv.org/abs/1806.09055
https://github.com/quarko/darts

mask_indices |

cls_data (allowed: 1)

cls_network (allowed: 1)
(implemented in:
Hfhome/laube/rnﬁ Git/uninas/unit by)

cls_criterion (allowed: 1)

|cls_metrics (allowed: 0-n) |cls_metrics (allowed: 0-n)

[cls_initializers (allowed: 0-n) [cls_initializers (allowed: 0-n)

[cls_regularizers (allowed: 0-n) |cls_regularizers (allowed: 0-n}

Jcis_optimizers (allowed: 2) |cls_optimizers (allowed: 2)

[cls_schedulers (allowed: 0-2) |cls_schedulers (allowed: 0-2)

‘clsﬁbenchmalk (allowed: 0-1) |cl5_henchmark (allowed: 0-1)

Figure C.1: Additional images for the graphical user interface (GUI).

Left: Hovering the mouse cursor over any name brings up a tooltip, describing the com-
ment in the code and in which file it is implemented. Pressing the Plus and Minus
dropdown buttons on the right side enables adding and removing any appropriate classes
in the tree structure.

Right: By adding a search text (top), matches are highlighted in blue. The text ’as”
can be present in argument names (’cls_task”, “mask indices”), module names (”’Single-
SearchTask™), or argument values (”save_dir” has ”.../uninas/...”).
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Appendix C UniNAS

cls_network_cells
cls_network_cells_primitives

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYV

VoV

ConvStem.features

StackedCellsNetworkBody.cell_order

Bench201CNNSearchCell, Bench201ReductionCell
Bench201Primitives, Bench201Primitives

n,n, r,n n r,nn

16

Args
cls_task SingleSearchTask task
cls_device CudaDevicesManager device manager
cls_trainer SimpleTrainer trainer
cls_method UniformRandomMethod method
cls_benchmark immediately look up the search result in this [...]
cls_callbacks CheckpointCallback training callbacks
cls_clones training clones
cls_exp_loggers TensorBoardExpLogger experiment logger
cls_data CifariOData data set
cls_network SearchUninasNetwork network
cls_criterion CrossEntropyCriterion criterion
cls_metrics AccuracyMetric training metric
cls_initializers weight initializer
cls_regularizers DropOutRegularizer regularizer
cls_optimizers SGDOptimizer optimizer
cls_schedulers CosineScheduler scheduler
cls_augmentations DartsCifarAug data augmentation
cls_network_body StackedCellsNetworkBody network
cls_network_stem ConvStem network stem
cls_network_heads Bench201Head network heads

network cells
network cells primitives

SingleSearchTask.is_test_run True test runs stop epochs early

SingleSearchTask.seed 0 random seed for the experiment
SingleSearchTask.is_deterministic False use deterministic operations

SingleSearchTask.note s1 SP0S-like training just to take notes

SingleSearchTask.save_dir /tmp/demo/icw/train_supernet/ where to save

SingleSearchTask.save_del_old True wipe the save dir before starting
CudaDevicesManager.num_devices 1 number of available devices
CudaDevicesManager.use_cudnn True try using cudnn
CudaDevicesManager.use_cudnn_benchmark True use cudnn benchmark

SimpleTrainer.max_epochs 10 max training epochs, affects schedulers + regularizers
SimpleTrainer.stop_epoch -1 stop after training n epochs anyway, if > 0
SimpleTrainer.log_fs False log file system usage

SimpleTrainer.log_ram False log RAM usage

SimpleTrainer.log_device True log device usage

SimpleTrainer.eval_last 10 run eval for the last n epochs, always if <0
SimpleTrainer.test_last 10 run test for the last n epochs, always if <0
SimpleTrainer.accumulate_batches 1 accumulate gradients over n batches before stepping [...]

arrangement of cells
num output features of this stem

setting up...

Data Set: splitting the training set, will use 5000 data points as validation set

Building StackedCellsNetworkBody:

cell index name class input shapes output shapes #params
- ConvStem Shape (3, 32, 32) [Shape(16, 32, 32)] 464
0 n Bench201CNNCell [Shape (16, 32, 32)] [Shape (16, 32, 32)] 18160
1 n Bench201CNNCell [Shape (16, 32, 32)] [Shape (16, 32, 32)] 18160
2 r SingleLayerCell [Shape (16, 32, 32)] [Shape (32, 16, 16)] 14464
3 n Bench201CNNCell [Shape (32, 16, 16)] [Shape (32, 16, 16)] 67040
4 n Bench201CNNCell [Shape (32, 16, 16)] [Shape (32, 16, 16)] 67040
5 r SingleLayerCell [Shape (32, 16, 16)] [Shape (64, 8, 8)] 57600
6 n Bench201CNNCell [Shape (64, 8, 8)] [Shape (64, 8, 8)] 256960
7 n Bench201CNNCell [Shape (64, 8, 8)] [Shape (64, 8, 8)] 256960
- Bench201Head Shape (64, 8, 8) Shape (10) 778
complete network Shape (3, 32, 32) [Shape (10)] 757626

Network built, it has 757626 parameters!

Using device: CudaDeviceMover([0])

Continuously logging (devices=CudaDeviceMover([0]), RAM=False, file_system=False) each 5s

Weight strategy

RandomChoiceStrategy("default", 6 architecture weights)

Weights:
name num choices used

> n/block-0/1/0p-0 5 6x
> n/block-1/2/0p-0 5 6x
> n/block-1/2/0p-1 5 6x
> n/block-2/3/0p-0 5 6x
> n/block-2/3/op-1 5 6x
> n/block-2/3/op-2 5 6x

Figure C.2: Excerpts of UniNAS’ text output. Top: The names, values, and help text of
all (meta-) arguments. The effect of the last two can be observed in the network structure.
Center: Since the network code is well-defined, it is possible to generate an overview
of layers, inputs, outputs, and parameters. Bottom: The weight strategy can present the
interesting information about the used architecture weights. There are five candidates in
the chosen operation set (Bench201Primitives), and six cells ’n” with shared architecture.
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Appendix C UniNAS

1 @Register.network_mixed_op ()
2 |class MixedOp(SumParallelModules):
3 def init__(self, submodules: list, name, strategy_name):

4 # store all arguments, thus including them in the config

5 super () .__init__(submodules)

6 self._add_to_kwargs (name=name, strategy_name=strategy_name)

7

8 # create the needed architecture weights

9 self .sm = StrategyManager () # singleton class

10 self .ws = self.sm.make_weight(strategy_name, name, submodules)

11

12 def forward(self, x: torch.Tensor) -> torch.Tensor:

13 # let the weight strategy decide how to forward inputs

14 return self.ws.combine(self.name, x, self.submodules)

15

16 def config(self, finalize=True, **_) -> dict:

17 # describe this module, so that it can be rebuilt later

18 if finalize:

19 # only a subset of the candidates are requested

20 # ask the weight strategy which candidates are best

21 indices = self.ws.get_finalized_indices(self.name)

22 modules = [self.submodules[i] for i in indices]

23 if len(modules) == 1:

24 return modules[0].config(finalize, **_)

25 return SumParallelModules (modules).config(finalize, #**x_)

26 else:

27 # the entire super-network is requested

28 return super().config(finalize=finalize, *x_)

29

30 @classmethod

31 def from_config(cls, **kwargs):

32 # the rebuilding of owned code sub-modules is omitted

33 # the global register is used to create Modules by name

34 submodules_ = ...

35 submodule_lists_ = .

36 submodule_dicts_ = ...

37 # rebuild this module with the exact same arguments as before

38 return cls(**submodules_, **submodule_lists_, x*x*
submodule_dicts_, #*xkwargs)

Figure C.4: Excerpt of the UniNAS MixedOp code, an operation that manages multi-
ple candidate operations. They are stored (Lines 5 and 6) and used in a forward pass
(Line 14). The methods starting in Lines 16 and 31 define how this MixedOp module
is exported as a JSON description and later rebuilt from such. The from_config func-
tion belongs to a super-class that every UniNAS network module inherits from and is not
required to be implemented again in any new class. It is only displayed for completeness.
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Symbols

(i.J)

e DA IO D

architecture weight of operation o;

set of all possible architectures, architecture space

number of blocks in a cell

data set with pairs of inputs and targets { (x1,y1),..., (xn,yn)}

in the context of architecture metric prediction: true measurements
and predictor-based estimates, respectively

objective function, loss function, error function

candidate operation o at edge i (Chapter

candidate operation number j at layer/edge i (Chapter@)

set of all candidate operations

Spearman’s rank correlation coefficient

Kendall’s Tau, a ranking correlation metric

parameters of a network

parameters of the controller that samples networks

training configuration. Includes optimizer, schedule, network de-
sign, regularization, ...
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Abbreviations

AutoML
DARTS
DAG
EA
ENAS
GUI
HPO
HV

KT

ML
MRA
NAS
OFA
PR-DARTS
PR-NAS
RL

SCC
SGD
SPOS

Automated Machine Learning

Differentiable Architecture Search (Liu et al.,|2019))
Directed Acyclic Graph

Evolutionary Algorithm

Efficient Neural Architecture Search (Pham et al., 2018))
Graphical User Interface

Hyper-Parameter Optimization

Hypervolume, the area or volume under the Pareto front
Kendall’s Tau, a ranking correlation metric

Machine Learning

Mean Reduction of Accuracy

Neural Architecture Search

Once-For-All (Cai et al.,2020)

Prune and Replace DARTS, PR-NAS based on DARTS
Prune and Replace NAS (Laube and Zell, 2019a)
Reinforcement Learning

Spearman’s rank correlation coefficient

Stochastic Gradient Descent

Single Path One-Shot (Guo et al.,[2020)
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