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Abstract
This dissertation takes an empirically based perspective on optimization in deep
learning. It is motivated by the lack of empirical understanding of the loss land-
scape’s properties for typical deep learning tasks and a lack of understanding of why
and how optimization approaches work for such tasks. We solidified the empiri-
cal understanding of stochastic loss landscapes to bring color to these white areas
on the scientific map with empiric observations. Based on these observations, we
introduce understandable line search approaches that compete with and, in many
cases outperform, state-of-the-art line search approaches introduced for the deep
learning field.

This work includes a comprehensive introduction to optimization focusing on line
searches in the deep learning field. Based on and guided by this introduction, empir-
ical observations of typical image-classification benchmark tasks’ loss landscapes are
presented. Further, observations of how optimizers perform and move on such loss
landscapes are given. From these observations, the line search approaches Parabolic
Approximation Line Search (PAL) and Large Batch Parabolic Approximation Line
Search (LABPAL) are derived. In particular, the latter method outperforms all
competing line searches in this field in most cases. Furthermore, these observations
reveal that well-tuned Stochastic Gradient Descent is already well approximating
an almost exact line search, which in parts explains why it is so hard to beat.

Given the empirical observations made, it is straightforward to comprehend why
and how our optimization approaches work. This contrasts the methodology of
many optimization papers in this field which builds upon non-empirically justi-
fied theoretical assumptions. Consequently, a general contribution of this work is
that it justifies and demonstrates the importance of empirical work in this rather
theoretical field.
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Kurzfassung
Diese Dissertation nimmt eine empirisch basierte Perspektive auf Optimierung im
Feld Deep Learning ein. Sie ist durch das fehlende empirische Verständnis von Ei-
genschaften der Fehlerlandschaften für typische Deep-Learning-Aufgaben und das
mangelnde Verständnis, warum und wie Optimierungsansätze für solche Aufga-
ben funktionieren, motiviert. Um diese weißen Flecken auf der wissenschaftlichen
Landkarte mit empirischen Beobachtungen zu beleuchten, haben wir das empiri-
sche Verständnis von stochastischen Fehlerlandschaften gefestigt. Auf der Grund-
lage dieser Beobachtungen stellen wir interpretierbare Liniensuchverfahren vor, die
mit den modernsten Liniensuchverfahren des Bereichs Deep Learning konkurrieren
und diese in vielen Fällen sogar übertreffen.

Diese Arbeit enthält eine umfassende Einführung in die Optimierung mit Schwer-
punkt auf Liniensuchverfahren im Bereich des Deep Learning. Basierend auf dieser
Einführung werden empirische Beobachtungen der Verlustlandschaften typischer
Bildklassifizierungs-Benchmark-Aufgaben und Beobachtungen, wie Optimierer sich
bei diesen Aufgaben verhalten, vorgestellt. Aus diesen Beobachtungen werden die
Liniensuchverfahren Parabolic Approximation Line Search (PAL) und Large Batch
Parabolic Approximation Line Search (LABPAL) abgeleitet. Insbesondere die letzt-
genannte Methode übertrifft in den meisten Fällen alle konkurrierenden Liniensuch-
verfahren in diesem Bereich. Darüber hinaus zeigen diese Beobachtungen, dass ein
gut parametrisierter stochastischer Gradientenabstieg bereits ein nahezu exaktes
Liniensuchverfahren approximiert, was zu Teilen erklärt, warum dieser so schwer
zu übertreffen ist.

Angesichts der empirischen Beobachtungen ist es einfach zu verstehen, warum
und weshalb unsere Optimierungsansätze funktionieren. Dies steht im Gegensatz
zur Methodik vieler Optimierungsarbeiten in diesem Bereich, die auf nicht-empirisch
begründeten theoretischen Annahmen aufbauen. Folglich besteht ein allgemeiner
Beitrag dieser Arbeit darin, dass sie die Bedeutung von empirischen Beobachtun-
gen in diesem eher theoretischen Bereich hervorhebt und demonstriert.
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Chapter 1

Introduction

1.1 Motivation
Optimization is an omnipresent and intrinsic mechanism of nature. In the course of
evolution, the intelligence, efficiency, and effectiveness of life forms have improved
step by step. As a result, today’s life forms can quickly adapt to the environment
through innate, highly optimized, and self-learning brains or, put simply, informa-
tion processing units. The human brain, in particular, is so powerful that up today,
the field of artificial intelligence and information processing has not yet been able to
design an algorithm that is as intelligent as a human across tasks. The field catches
up, however, and in recent decades increasingly powerful artificial intelligence al-
gorithms have been designed that surpass humans at specific tasks: for example,
at Chess (Campbell et al., 2002; Silver et al., 2017), Go (Silver et al., 2016), and
Atari games (Espeholt et al., 2018). In addition, it begins to challenge humans in
real-world applications, such as driving cars (Yurtsever et al., 2020), playing table
tennis (Tebbe et al., 2021), creating realistic images of people (Karras et al., 2021),
or pattern recognition (Dodge and Karam, 2017). The current flagships of artifi-
cial intelligence algorithms are deep neural networks (see Goodfellow et al. (2016)),
which can be trained on a task quickly, even faster than a human, and significantly
faster than using evolution.

At the very heart of these achievements is optimization. Specifically, training
a neural network means numerically solving an extraordinarily high-dimensional,
non-convex, stochastic optimization problem. The latter is based on an approxi-
mately known loss function used to search for a deep neural network in a specific
function-hypothesis space. Solving such optimization problems is mainly guided by
intuition-based heuristics in practice and relatively strong assumptions in theory.
For example, in most cases, it is unknown why commonly used hyperparameters
work well in practice (Gencoglu et al., 2019); if theoretical results support these
hyperparameters, they are often based on simplifying assumptions such as a convex
loss function. This lack of knowledge of why and how specific hyperparameters or
optimization routines work originates from a vague understanding of typical prop-
erties of loss functions. In this work, we first empirically uncover properties of the
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Chapter 1 Introduction

loss function of image classification tasks that help to explain why and how specific
optimization approaches work; or in other terms, why and how neural networks
learn. Based on this increased understanding, we then exploit these properties of
loss-functions to design optimization methods for the deep learning field. We fo-
cus on line search-based approaches because, first, they are closely related to our
empirical observations and, second, although solved in the deterministic scenario
(Nocedal and Wright, 2006, §3), they are still an unsolved field in the stochastic
deep learning scenario. Furthermore, line search methods make the tuning of the
learning rate redundant. The latter is a sensitive hyperparameter that often has to
be tediously adjusted by hand. All in all, this work is motivated by the long-term
goal of making optimization for deep neural networks faster, better, more robust,
and most importantly for science, more explainable. Working towards this goal
will pave the path towards more intelligent algorithms that could challenge human
intelligence in even more domains.

1.2 Contribution & Outline
This dissertation improves the empirical understanding of deep learning tasks’ loss
landscape. We exploit this new understanding to explain, design, and improve opti-
mization approaches in the stochastic line search subfield of optimization. Thereby,
our focus is on image classification tasks as they are standard benchmarks for op-
timization in deep learning.

This work is mainly based upon three peer-reviewed and published conference or
workshop papers:

1. Mutschler, M. and Zell, A. (2020). Parabolic Approximation Line Search
for DNNs. Advances in Neural Information Processing Systems, 33, 5405-
5416 (NeurIPS)

2. Mutschler, M. and Zell, A. (2021). Empirically explaining SGD from
a Line Search Perspective. International Conference on Artificial Neural
Networks (pp. 459-471). Springer, Cham. (ICANN)

3. Mutschler, M., Laube K., and Zell, A. (2021). Using a one dimensional
parabolic model of the full-batch loss to estimate learning rates
during training. 13th International Workshop on Optimization for Machine
Learning (NeurIPS Optimization Workshop)

2



1.2 Contribution & Outline

This work is further structured as follows:

Chapter 2 Introduction to Optimization and Line Searches in Deep
Learning: We begin with a comprehensive introduction to optimiza-
tion in deep learning. This, inter alia, includes explaining empirical
risk minimization (Section 2.1), surrogate losses (Section 2.2), neural
networks (Section 2.3), line searches in the deterministic and stochas-
tic scenario (Section 2.6), the simple loss landscape (Section 2.9) and
finally, the relationship between batch sizes and learning rates (Sec-
tion 2.10).

Chapter 3 Experimental platform: Since our empirical evaluations are com-
putationally expensive, we introduce the experimental platform we
used and designed: the TCML-Cluster. It has been essential for this
work and a part of the project that funded this research.

Chapter 4 Parabolic approximation line search: This chapter shows that
the mini-batch loss along the negative gradient direction tends to
have a locally parabolic shape for typical image classification tasks.
We further demonstrate, that the minimum of the mini-batch loss
along such a line estimated by a parabolic approximation is a good
estimator for the minimum of the full-batch loss along the same line.
The resulting optimizer Parabolic Approximation Line search (PAL)
challenges other line search approaches across base-line models and
datasets. This chapter is based on (Mutschler and Zell, 2020a).

Chapter 5 Empirically explaining SGD from a line search perspective:
Here, we analyze the shape of the full-batch loss and mini-batch
losses along lines in negative gradient directions encountered during
a Stochastic Gradient Descent (SGD) training. In addition, we assess
how optimal SGD’s update steps are and how the batch size affects
the optimal learning rate. We made the following core observations:

• The full-batch loss along lines exhibits an almost parabolic shape
locally.

• Exact line searches on the mini-batch loss perform poorly.
• SGD performs almost exact line searches on the full-batch loss.
• From a global perspective, a step size larger than the step to

the minimum of the full-batch loss along a line performs better,
although it yields less improvement locally.

This chapter is based on (Mutschler and Zell, 2021).

3



Chapter 1 Introduction

Chapter 6 Large batch parabolic approximation line search: We exploit
the observations made in Chapter 4 and 5 to build a robust line
search approach called Large Batch Parabolic Approximation Line
Search (LABPAL), which efficiently approximates the full-batch loss.
It mostly outperforms state-of-the-art line search approaches intro-
duced for deep learning and challenges SGD tuned with a piece-wise
constant learning rate schedule. This chapter is based on (Mutschler
et al., 2021).

Chapter 7 Finally, we discuss and summarize our results and derive further in-
teresting research questions that might take this field another step
forward.

4



Chapter 2

Introduction to Optimization and
Line Searches in Deep Learning

This chapter provides an introduction to empirical risk minimization (Section 2.1),
surrogate losses (Section 2.2), neural networks (Section 2.3), line searches in the de-
terministic and stochastic scenario (Sections 2.5, 2.6), relevant optimization meth-
ods (Sections 2.4, 2.7, 2.8), the simple loss landscape (Section 2.9), and finally, the
relationship between batch sizes and learning rates (Section 2.10). We conclude
with a controversial high-level optimizer and a critical reflection on this field in
Section 2.11.

2.1 Empirical Risk Minimization with Relations
to Deep Learning

The following is based on (Shalev-Shwartz and Ben-David, 2014) providing a com-
prehensive introduction to empirical risk minimization (ERM), which we have ex-
tended to include the relations to deep learning. ERM is the underlying framework
for supervised machine learning and deep learning tasks:

Let the training set of size m be T := ((x1,y1), . . . ,(xm,ym))⊂ X×Y, where X
is the input set and Y the label set. A learning algorithm receives a training set T
sampled from an unknown data-generating distribution D as input. This algorithm
aims to find a predictor hT : X→ Y, which maps any input to its corresponding
label, both sampled from D, by only knowing T. The empirical zero-one loss,
also known as empirical error or empirical risk, is given by:

LT : H→Q, hT 7→
|(xi,yi) ∈ T : hT(xi) ̸= yi|

|T| . (2.1)

This corresponds to one minus the training accuracy commonly used in deep
learning. The optimal ERM algorithm ERMH will find the best predictor from the

5



Chapter 2 Introduction to Optimization and Line Searches in Deep Learning

space of possible predictors. The latter is also called the hypothesis class H:

ERMH : X×Y→H, T 7→ arg min
h∈H

LT(h). (2.2)

However, without restricting H the following worst-case predictor could be chosen:

hworst case(xi) =
yi if (xi,yi) ∈ T

0 otherwise.
(2.3)

This predictor does not generalize to any data not included in T. The phenomenon
of a predictor focusing too much on training data and, therefore, generalizing worse
to unseen data is known as overfitting. Since the predictor of Equation 2.3 does
not generalize to any unknown data, H has to be restricted to a particular set of
predictors. This restriction is usually referred to as inductive bias. In deep learn-
ing, H is usually called the neural network, model, or architecture. A neural
network’s internal structure provides specific inductive biases. A fundamental ques-
tion in learning theory is for which hypothesis classes/models the ERM results in
less overfitting.

The true zero-one loss, also known as the true risk, measured over the data
generating distribution, is given by:

LD : H→ R, h 7→ E(x,y)∼D

1 if h(x) ̸= y,

0 otherwise.

 (2.4)

In deep learning, this measure is approximated by the test accuracy, which mea-
sures the zero-one loss over a set of unseen data. We call the distance between the
zero-one loss of a predictor chosen by a learning algorithm and the optimal true
zero-one loss the true error or the Bayesian error. Let h∗ be the optimal predic-
tor that minimizes LD(h) and h∗

H the optimal predictor in H and h the predictor
chosen by ERM. The true error can now be divided into two components: first, the
approximation error given by the distance of the true zero-one loss of h∗

H and
h∗. Second, the estimation error given by the distance of the true zero-one loss
of h and h∗:

LD(h)−LD(h∗)︸ ︷︷ ︸
true error

= (LD(h∗
H)−LD(h∗))︸ ︷︷ ︸

approximation error

+(LD(h)−LD(h∗
H))︸ ︷︷ ︸

estimation error

(2.5)

This relationship is also figuratively explained in Figure 2.1. The approximation
error is a measure of the inductive bias, or in other words, it indicates how much
of the true zero-one loss is induced by using a specific hypothesis class. This error
is independent of the training set size. The estimation error indicates the distance
of loss between the predictor found by ERM and the actual best optimizer in H.

6



2.2 Surrogate Losses in Deep Learning

H

h
h∗
H

h∗

Figure 2.1: Figurative explanation of the estimation error between h ∈H and the
best predictor h∗

H of the hypothesis class H and the approximation error between
h∗
H ∈H and the best predictor h∗ possibly not in H.

This error can be reduced by increasing the training data size. If T is a -possibly
infinite- set with exactly the same distribution as D the estimation error vanishes.

In deep learning, two different sub-fields have formed to minimize one of these
two errors, respectively. Architecture Search searches for neural networks, or
in other words, for H. Consequently, it focuses on minimizing the approximation
error. Moreover, it aims to provide a H where it is easy to find h∗

H. On the other
hand, Optimization searches for an optimal solution contained in H. Therefore,
it focuses on the estimation error. Optimization can then again be divided into
Minimization - mechanisms to decrease the loss - and Regularization. Regular-
ization usually modifies the loss function so that the solutions found are closer to
the optimal solution of the hypothesis class considered. Consequently, it minimizes
the estimation error.

2.2 Surrogate Losses in Deep Learning
This section is based on (Goodfellow et al., 2016) and (Shalev-Shwartz and Ben-
David, 2014). Optimization in deep learning is the search for a predictor in H that
minimizes the estimation error. This search is based on the training data and some
regularization assumptions. However, performing this search is not trivial since the
empirical zero-one loss LT (Equation 2.1), and the true zero-one loss LD are not
differentiable. Consequently, it is hard to find a good descent direction that guides
optimization on these functions. For a differentiable function, the steepest descent
direction, which is the negative gradient, is often used to guide numerical optimiza-
tion methods. To make the latter applicable to ERM, differentiable surrogate losses
of LT and a differentiable predictor h have to be used. The differentiable surrogate
loss of LD is the true loss Ltrue, which replaces the zero-one sample-wise loss by
a differentiable loss:

Ltrue : Rn→ R, θ 7→ E(x,y)∼D
[
L(x,y)(θ)

]
, (2.6)

where D denotes the data generating distribution, θ the parameters to optimize,
and L a differential loss function applied to each sample, penalizing the distance

7



Chapter 2 Introduction to Optimization and Line Searches in Deep Learning

between the predicted label and y. Often used examples of such sample losses are
the Cross-Entropy (CE) loss and the quadratic loss. The CE loss is:

LCE
(x,y) : Rn→ R, θ 7→ y⊤(− log(hx(θ)). (2.7)

In this case, y and hx(θ) are column vectors of probabilities. The CE loss min-
imizes the CE between the distribution of the true labels y and the distribution
of the predicted labels hx(θ). In detail, the CE measures the average amount of
information (number of bits) required if labels are encoded in an encoding that is
optimal for the distribution of the predicted labels hx(θ) rather than encoded in an
encoding that is optimal for the distribution of the correct labels. Consequently,
minimizing the CE makes both distributions more similar.

The quadratic loss minimizes the squared Euclidean distance between the vector
of predicted labels and true labels:

Lquadratic
(x,y) : Rn→ R, θ 7→ (hx(θ)−y)⊤(hx(θ)−y). (2.8)

In practice, D is usually unknown. However, we can get a finite dataset D of
elements sampled from it. Consequently, the best approximation of Ltrue we can
obtain is the full-batch loss L which takes into account the full dataset and
resembles a surrogate for LT:

L : Rn→ R, θ 7→ 1
|D|

∑
(x,y)∈D

L(x,y)(θ). (2.9)

Since computing L for large D is computationally impractically, a subset B of D is
used in practice. This subset is referred to as mini-batch. The resulting mini-batch
loss LB is a noisy surrogate of Ltrue and L, which can be efficiently computed if |B|
is reasonably small:

LB : Rn→ R, θ 7→ 1
|B|

∑
(x,y)∈B⊂D

L(x,y)(θ), (2.10)

with |B|≪ |D|. However, this comes at the cost of inducing noise into the optimiza-
tion process: a new mini-batch is sampled for each evaluation of LB. Fortunately,
all samples in a batch are drawn from D. If we additionally assume that they
are drawn independently, they are independent and identically distributed
(i.i.d.). In this case, LB is an unbiased estimator of Ltrue and has a standard
error of σ/

√
|B|, where σ is the true standard deviation of the distribution of sample

losses. The denominator shows that the error decreases less than linearly if a larger
batch size is used. This is also relevant for L since it resembles just a special case of
LB with the largest batch size possible. Considering the last two points, the most
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straightforward and most efficient approach we can do to minimize Ltrue in prac-
tice is to find a minimum of L with evaluations of LB. Additionally, regularization
heuristics are applied to increase the chance of finding a minimizer, which is also a
minimizer of Ltrue.

We denote the mini-batch gradient of LB (=∇θLB(θ)) as gB, and correspond-
ingly the gradient of L (= ∇θL(θ)) as g. It is often assumed that gradients of
sample losses are i.i.d. or even independent and Gaussian distributed (Mahsereci
and Hennig, 2015).

In practice, however, those assumptions are usually not entirely given. For ex-
ample, sample losses and gradients are not independent if regularization techniques
such as BatchNorm (Ioffe and Szegedy, 2015) are used, resulting in network-intrinsic
information flows between all sample losses in one batch. Further, elements in
datasets are usually not independent.

2.3 Neural Networks from an Optimization
Perspective

From an optimization point of view, each neural network is a special kind of hy-
pothesis class containing a set of predictors. Optimization methods are then used
to identify a predictor that fits the given data and has a low estimation error. In
deep learning, this process is called training. The identified predictor is called the
trained network. Neural networks are functions mapping from parameter space
θ⊂Rn to Y. Having the parameters as input may feel wrong to a machine learner,
but from an optimization perspective, the parameters θ ∈ θ are inputs, and elements
of the dataset are handled as constants. The hypothesis classes that artificial neural
network (NN) and deep neural network (DNN) represent are not exactly defined.
However, NNs often, but not always, share the following characteristics:

• |θ| is large. They often contain more than a million parameters.

• The whole network or part of it have a layer-like structure. Usually, each
layer consists of a linear map on which a simple, point-wise nonlinearity is
applied:

NNx : θ→ Y, θ 7→ f (n)(θn,f (...)(f (2)(θ2,f (1)(θ1,x)))), (2.11)

where a layer f (i)(θi,x) is of the form σ(x⊤θi1 + θi2). σ is a point-wise
applied nonlinear mapping. θi1 and θi1 are disjunct parts of θi which are a
part of θ. θi1 are called the weights and perform a linear transformation on
x. θi2 are known as the biases, performing a linear translation (Goodfellow
et al., 2016). For σ the ReLU function x 7→ x+ is a typical candidate.

9
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• The first derivative with respect to θ exists. If a layer-like structure is present,
this derivative can be numerically efficiently computed by the Backpropaga-
tion algorithm (Rumelhart et al., 1986; LeCun et al., 2012).

• The loss landscape is non-convex (Li et al., 2018)(see also Section 2.9).

The boundary between NNs and DNNs is vaguely defined by the number of
layers. Often NNs are referred to as DNNs if they have more than three layers
and as shallow NNs if they have three or fewer. Several subfamilies of DNNs vary
the layer-like network structure of Equation 2.11: In recurrent neural networks
(RNNs) (Hochreiter and Schmidhuber, 1997), some layers have an internal state,
influencing the next evaluation. Convolutional neural networks (CNNs) (LeCun
et al., 1999) use weight sharing in θ to apply convolutional-like filters on spatial
input vectors. residual neural networks (ResNets) (He et al., 2016) use an additional
linear residual connection for each layer similar to σ(x⊤θi1 + θi2) + x. Layers in
dense neural networks (DenseNets) (Huang et al., 2017) do use the output not only
of the previous layer but of multiple previous layers. MobileNets (Sandler et al.,
2018; Howard et al., 2019) increase the granularity of convolutional filters for each
or a subset of the layer’s input.

2.4 Gradient Descent and Stochastic Gradient
Descent

Due to the non-linearity and high dimensionality of NNs, it, is by far too costly to
derive an analytic solution for a minimum. Thus, numerical optimization methods
are required to minimize the mini-batch or full-batch loss (Equation 2.10 and 2.9).
A helpful heuristic to do so is to follow the direction of steepest descent. Since NNs
are differentiable, this direction is given by the negative gradient. Exploiting this
heuristic, Gradient Descent (GD) (Cauchy et al., 1847) is an optimization method
that consecutively performs a step in the direction of the negative gradient with
respect to the current parameters. However, in our scenario, the exact gradient is
never known. Recall that we want to minimize the true loss Ltrue but only have
its stochastic estimators LD or LB to do so. Therefore, a stochastic but unbiased
estimate of Ltrue’s gradient is used in practice. The resulting algorithm is Stochastic
Gradient Descent (SGD) (Robbins and Monro, 1951). Its update rule is:

θt+1 = θt−λt∇θtLBt(θt) = θt−λtgB,t, (2.12)

where λ is the learning rate and t is the current update step. The pseudo-code
of SGD is given in Algorithm 1. Note that gB,t is not necessarily the direction of
steepest descent of Ltrue(θt) and could even point in a direction where Ltrue(θt)
increases. Thus, it is not apparent that this algorithm decreases the loss or even
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converges to a minimum. Fortunately, (Robbins and Monro, 1951) were able to
show that the sequence of SGD’s consecutive θt converges in probability to a min-
imizer θ∗ if the sequence of λ’s used satisfies

∞∑
t=0

λt =∞ and
∞∑

t=0
λ2

t <∞, (2.13)

and θ∗ is the only stationary point. Convergence in probability means that
lim

t→∞
E[||θt− θ∗||22]→ 0, where the random variable is the gradient of step t− 1.

Simply put, SGD must follow an infinitely long path with decreasing steps to con-
verge. An exemplary schedule fulfilling Equation 2.13 is λt = 1

t . Note that the
convergence is in probability; thus, SGD might never exactly reach the minimum.
In practice, other well-performing learning rate schedules such as piece-wise con-
stant learning rate or cosine decay are often used (see (Loshchilov and Hutter, 2017;
Smith, 2017)). von Bachmann and Mutschler (2020), analyzed the convergence of
SGD in practice and found that SGD tends to move consistently away from al-
ready visited positions, even when a schedule with decreasing learning rate is used.
Figuratively speaking, it moves continuously in a low-loss subspace.

Algorithm 1 Stochastic Gradient Descent (SGD) (Robbins and Monro, 1951)

Input:

symbol explanation default value
LB mini-batch loss −
λ(t) learning rate schedule usually starting with 10−1 to 10−4

θ0 initial parameters usually sampled with Xavier
(Glorot) initialization (Glorot
and Bengio, 2010)

- stopping criterion usually a fixed number of update
steps

1: θ← θ0
2: t← 0
3: while stopping criterion not met do
4: Bt← sampleMiniBatch()
5: θ← θ−λ(t)gBt

6: t← t+1
7: end while
8: return θ

In non-stochastic optimization, a typical improvement of first-order methods such
as GD are second-order methods such as the Newton method. These methods
exploit the second derivative with respect to θ known as the Hessian H , and
therefore approximate the loss locally by a parabola of dim(θ)×dim(θ) dimensions.
However, the computation of H is practically unfeasible because memory capacities
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are often too small to hold dim(θ)×dim(θ) full-precision floating-point numbers.
E.g., the gradient for a ResNet requires approximately 150 MB of memory, resulting
in 22.5 GB of memory for the Hessian, which exceeds the memory capacities of
most today’s GPUs. For example, an Nvidia GeForce RTX 3080 Ti (NVIDIA,
2021) has 12 GB of memory. Consequently, classical second-order methods are
not applicable for DNNs. Nevertheless, some research considers stochastic second-
order methods, showing that those can achieve higher per-step performance than
SGD (Schraudolph et al., 2007; Berahas et al., 2021; Martens and Grosse, 2015;
Ramamurthy and Duffy, 2017; Botev et al., 2017; Dangel et al., 2020). However,
this advantage is compensated by significantly longer wall-clock time required for
one update step.

2.5 Line Searches in the Classical, Deterministic
Scenario

The following section is based on (Nocedal and Wright, 2006) and (Luenberger et al.,
1984). GD performs a step of size λ in the negative gradient direction; however, if
this step is too large, the loss might increase; if it is too small, optimization might
take long since the loss is only slightly decreased at each step. Therefore, it is
important to automatically infer a λ that decreases the loss “sufficiently” far. This
eliminates λ as a hyperparameter, which is often a very sensitive hyperparameter to
tune. Doing this by hand can be very tedious. Line searches are a general approach
to estimate λ’s. In classical non-stochastic and low-dimensional optimization, line
searches are straightforward to apply because the measurements are exact and
computationally inexpensive. However, as we will discuss later, this is not the case
in the stochastic scenario.

Let f(θ) : Rn→ R be a non-stochastic differentiable function to be optimized.
Moreover, let f be bounded from below and continuously differentiable. f along a
line through the current position θt ∈ Rn in unit direction dt ∈ Rn is given by:

fline : R→ R, s 7→ f(θt + s ·dt), (2.14)

where s is the step size along the line. Note that we now have a univariate domain
to optimize only depending on s. In this work, we will use the term step size (s)
if it represents a step in unit direction (i.e., the direction vector has length 1) and
the term learning rate (λ) otherwise. f ′

line(s) is the directional derivative given
by the projected gradient:

f ′
line : R→ R, s 7→ ∇θt+s·dtf(θt + s ·dt)⊤dt. (2.15)

In the case where dt is the negative unit gradient, ∇θtf(θt)⊤dt simplifies to −||dt||
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since ∇θtf(θt)⊤ −∇θt
f(θt)

||−∇θt
f(θt)|| =− ||dt||2

||dt|| =−||dt||. An exact line search estimates an
step size s that is a global minimizer along the line:

smin = arg min
s

fline(s). (2.16)

However, exact line searches are only applicable if fline can be approximated by
a reasonably simple function, e.g., a lower-order polynomial. Otherwise, a search
for smin must be performed, e.g., by bracketing or backtracking, which is computa-
tionally expensive. Consequently, if no suitable approximation is known, a λ must
be determined that satisfies specific conditions that assure sufficiently fast decrease
and convergence. The two most common conditions are the sufficient decrease
condition, also known as the first Wolfe condition or Armijo condition, and
the curvature condition, also known as the second Wolfe condition. The
sufficient decrease condition holds if s satisfies

fline(s)≤ f(θt)+ c1sf ′
line(0), (2.17)

where c1 is the sufficient decrease constant. A commonly used value for c1 is
10−4. As shown in Figure 2.2 all values of fline(s) that are below the line f(θt) +
c1s∇θtf(θt)⊤dt are of sufficient decrease.

The sufficient decrease condition is insufficient to ensure reasonable progress since
unnecessary small s are valid, which would decrease f only slightly. The curvature
condition solves the latter:

f ′
line(s)≥ c2f ′

line(0), (2.18)

where c2 denotes the curvature constant, typically chosen to be 0.9. As shown in
Figure 2.2, this condition holds for all values of fline(s) that have a larger slope
than c2f ′

line(0). Considering convergence, it is evident that the loss decreases at
each step if both conditions are satisfied. In addition, global convergence to a
stationary point - meaning that limt→∞∇θf(θt) = 0 - is given if the cosine of the
angle αt between ∇θtf(θt) and dt,

cos(αt) = ∇θtf(θt)⊤dt

||∇θtf(θt)|| ||dt||
(2.19)

is bounded away from 0, which means that there exists a δ such that cos(αt)≥ δ > 0
for all t (Nocedal and Wright, 2006, §3.2).

As an alternative to the curvature condition, a backtracking line search (see
Algorithm 2) can be performed to avoid too small step sizes: An initial large ex-
trapolation step size ŝ is chosen. Then it is decreased by a factor ρ in (0,1) until
the sufficient decrease condition is satisfied. As long as ŝ is reasonably large, a
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Figure 2.2: Figurative explanation of update step intervals that fulfill the sufficient
decrease (Eq. 2.17) and curvature conditions (Eq. 2.18). The sufficient decrease
condition excludes all s for which fline(s) is greater than the line of sufficient de-
crease. The curvature condition additionally excludes all s for which f ′

line(s) is
smaller than the desired slope to ensure that very small s are excluded. Note that
θt is located at the origin s = 0. In practice, points of acceptance are determined
by sampling along the line. Further note that the line of the desired slope is plotted
multiple times at relevant positions. Figure from (Nocedal and Wright, 2006); used
and adapted with permission.

suitable s is found before unsuitable small ones. The latter lead to an unneces-
sary small decrease of loss. Consequently, checking the curvature condition is not
required. ŝ is often chosen to be 1. Global convergence on real analytic func-
tions was shown by (Absil et al., 2005). Moreover, for strictly convex stochastic

Algorithm 2 Backtracking Line Search. This covers only the line search routine,
omitting the weight update.

Input:

symbol explanation default value
fline(s) univariate line function of f −
ŝ extrapolation step size > 0 1
β step size decrease factor ∈ (0,1) 0.9 or 0.99
c1 sufficient decrease constant ∈ (0,1) 10−4

1: s← ŝ
2: while fline(s)≥ fline(0)+ c1sf ′

line(0) do
3: s← βs
4: end while
5: return s
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functions, global convergence was shown by (Bertsekas and Tsitsiklis, 2000) if the
gradient is Lipschitz continuous and the assumptions of Equation 2.13 hold. A
function f : R→ R is Lipschitz contiuous if there exists a constant k ∈ R+ for
which |f(x1)−f(x2)| ≤ k|x1−x2| holds for all x1 and x2.

Another branch of line searches uses lower-order polynomials or splines to ap-
proximate fline (Nocedal and Wright, 2006, § 3.5). In particular, the quadratic case
is efficient since only three measurements are needed: fline(0), fline(s′) and f ′

line(0),
where s′ is the sample step size. A proof of convergence on a deterministic quadratic
function is given in (Luenberger et al., 1984, page 235). On non-quadratic func-
tions, global convergence can often not be assured; e.g., parabolic approximations
already diverge on x4. Chapter 4 and 6 will introduce and analyze two parabolic
approximation line searches for the stochastic scenario.

2.6 Line Searches in the Stochastic Scenario
This section introduces line searches designed for the stochastic scenario. We will
focus on practically applicable approaches, which can be used to train neural net-
works efficiently, but in most cases, do not provide theoretical justifications. Af-
ter two introductory sections about definitions and challenges for stochastic line
searches (Section 2.6.1, 2.6.2), we introduce the Stochastic Line Search (Vaswani
et al., 2019) (Section 2.6.3), the Gradient Only Line Search that is Inexact (Kafka
and Wilke, 2019) (Section 2.6.4) and the Probabilistic Line Search (Mahsereci and
Hennig, 2015) (Section 2.6.5).

2.6.1 Definitions for Stochastic Line Searches

In the following, we will define the notions of full-batch and mini-batch losses along
lines and their corresponding gradients and projected gradients. These definitions
and associated symbols will be retained in this and all of the following chapters.

The full-batch loss L (see Equation 2.9) along a line in the direction of the
current mini-batch gradient gB,t through the current parameter position θt ∈ Rn

at optimization step t ∈ N is defined as:

lt : R→ R, s 7→ L(θt + sgB,t). (2.20)

The univariate derivative along the line is given by:

l′t : R→ R, s 7→ d
ds

L(θt + sgB,t) =∇θt+sgB,t
L(θt + sgB,t)⊤gB,t. (2.21)

Similarly, the loss along a line of the mini-batch loss LBi,t in direction gBj ,t is
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defined as:
lBi,t : R→ R, s 7→ LBi,t(θt + sgBt,t). (2.22)

Note that the batch Bi from which the mini-batch loss is computed might differ
from the batch Bt the gradient is computed from. The batch indices are omitted if
both batches are identical. Also, the subscript t is omitted in the following if it is
irrelevant in the context. lBi,t’s directional derivative is given by:

l′Bi,t : R→ R, s 7→ d
ds

LBi,t(θt +sgBt,t) =∇θt+sgBt,t
LBi,t(θt +sgBt,t)

⊤gBt,t. (2.23)

2.6.2 Challenges for Stochastic Line Searches

In the deterministic scenario, function evaluations are usually cheap and exact.
This makes it easy to validate the sufficient decrease or curvature condition or
perform a parabolic approximation. Further, since measurements are exact, the
search space of s can be narrowed down efficiently. In the stochastic scenario,
this is not the case since function evaluations are noisy and, thus, it is not clear
whether s has to be increased or decreased to find a desired position along the
line. Furthermore, it is not clear whether a condition valid for lB,t(s) also holds
for lt(s). Consequently, deterministic line searches in general cannot be directly
applied to the stochastic scenario, i.e., on LB. However, they still work under
certain assumptions or observed properties, such as Stochastic Backtracking Line
Search (Section 2.6.3 and Parabolic Approximation Line Search (Chapter 4)) do.
In addition, specific line searches for the stochastic scenario were designed, such as
Gradient Only Line Search (Section 2.6.4), Probabilistic Line Search (Section 2.6.5)
and Large-Batch Parabolic Approximation Line Search (Chapter 6). All in all, line
searches in the deterministic scenario are considered a solved problem (Nocedal
and Wright, 2006, §3), whereas science is still struggling to develop efficient and
effective stochastic line searches with proven convergence guarantees.

2.6.3 Stochastic Line Search

This section is based on (Vaswani et al., 2019). Stochastic Line Search (SLS)
(Vaswani et al., 2019) is a slightly adapted variant of a typical Backtracking Line
Search (see Algorithm 2) used in the deterministic scenario. SLS works in the
stochastic case if the interpolation assumption holds:

Assumption 1 (Interpolation). The gradient with respect to each mini-batch con-
verges to zero at the optimum of a function. This implies that if L(θ) is minimized
at θ∗ and thus ∇θ∗L(θ∗) = 0, then for all L(x,y)(θ), with (x,y)∈D, ∇θ∗L(x,y)(θ∗) =
0 holds.
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For example, interpolation is satisfied for a linear model with the squared hinge
loss for binary classification on linearly separable data (Vaswani et al., 2019). In
addition, interpolation is assumed that it might hold for other typical deep learning
scenarios using the CE loss (Equation 2.7) or the quadratic loss (Equation 2.8)
on non-linear models, especially if the models are over-parameterized, meaning
that n = dim(θ)≫ |D|. SLS is proven to converge on strongly convex and convex
functions assuming interpolation, and Lipschitz continuous gradients.

In the following, we introduce the best performing variant of SLS, which adapts
SGD to perform line searches based on the sufficient decrease condition. The
pseudo-code is found in Algorithm 3. It performs a basic backtracking line search
(see Algorithm 2) on LB; thus, it evaluates the sufficient decrease condition on
noisy estimates of L. Since it considers gB as the direction vector and not the
normalized variant ĝB,t we use the symbol λ for the step size along the line. As
decreasing the learning rate continuously may not work for non-convex problems, a
heuristic is introduced that increases λ before each line search by γ|B|/|D|, where γ is
a learning rate increase factor, |B| the batch size and |D| the dataset size. This is a

Algorithm 3 SGD + sufficient decrease condition variant of SLS (adapted from
Vaswani et al. (2019))

Input:

symbol explanation default value
LB mini-batch loss −
θ0 initial parameters −
|D| data set size −
|B| batch size 128
λinit initial learning rate 1
c1 sufficient decrease constant 0.1
β learning rate decrease factor 0.9
γ learning rate increase factor 2.0
T amount of training steps -

1: λ← λinit
2: for t = 0, . . . ,T do
3: Bt← sample mini-batch of size |B|
4: λ← λγ|B|/|D|/β
5: repeat
6: λ← βλ
7: θ̃t← θt−λgBt

8: until LBt(θ̃t)≤ LBt(θt)− c1λ||gBt
||2

9: θt+1← θ̃t

10: end for
11: return θt+1
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well-established heuristic that indirectly accounts for the noise introduced into opti-
mization by using mini-batches. This heuristic is also considered by (Schmidt et al.,
2017, 2015; Paquette and Scheinberg, 2018; Truong and Nguyen, 2018). Vaswani
et al. (2019) showed in their experiments that SLS can outperform SGD on training
loss and validation accuracy if used to train a ResNet-34 (He et al., 2016) or a bot-
tleneck DenseNet-121 (Huang et al., 2017) on CIFAR-10 or CIFAR-100 (Krizhevsky
et al., 2009).

2.6.4 Gradient-Only Line Search that is Inexact
This section is based on Kafka and Wilke (2019). A line search approach designed
specifically for the stochastic scenario is Gradient-Only Line Search that is Inexact
(GOLS-I) (Kafka and Wilke, 2019). In this approach, directional derivatives in line
direction are sampled until two consecutive measure points are found, for which the
directional derivative changes from negative to positive. In the deterministic case,
these points have to enclose at least one minimum. Kafka and Wilke (2019) show
empirically that the noise of batch-wise directional derivatives along a line is much
lower than the noise of mini-batch losses. Consequently, searching for a point near
which the sign of the directional derivative changes from negative to positive is a
better indicator of a minimum on l, than a minimum on lB’s is.

In detail, the algorithm works as follows: First, it checks whether the current
λ satisfies a modified strong curvature condition (compare to Equation 2.18 and
2.23):

0≤ l′Bi
(λ)≤ c2|l′Bj

(0)|, (2.24)
with c2 > 0 and Bi, Bj denote two different batches drawn from the same distribu-
tion. If this condition is satisfied, λ is returned. If not, and if l′Bi

(λ) is negative,
λ is consecutively increased by a factor η > 1 until l′Bi

(λ) becomes positive. In the
same way, if l′Bi

(λ) is positive λ is consecutively divided by η until l′Bi
(λ) becomes

negative. Note that for each evaluation of l′Bi
(λ) a different Bi is used and that the

algorithm assumes the existence of a minimum along the line. Figure 2.3 shows
an explaining illustration of this procedure. A detailed pseudo code is provided in
Algorithm 4. [§4.2](Kafka and Wilke, 2019) prove global convergence under specific
assumptions using Lyapunov’s global stability theorem (Lyapunov, 1992). These
assumptions include that the algorithm decreases the loss in expectation at each
update step, and that a unique global minimizer exists.
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Figure 2.3: Illustrative explanation of GOLS-I’s behavior along a line. In stage one,
it is evaluated whether the first step λi is in the immediate acceptance range (see
Eq. 2.24). If so, it is returned. In this example, this is not the case. Since l′B1

(λi)
is negative, λi is increased to λj . Now l′B2

(λj) is positive, therefore, a sign change
occurred and λj is returned. Note that each directional derivative is measured with
a different batch. Figure adapted with permission from (Kafka and Wilke, 2019).
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Algorithm 4 Gradient-Only Line Search that is Inexact (GOLS-I) (adapted from
Kafka and Wilke (2019)). The weight update is omitted for clarity. Consequently,
only the internal line search routine is described.

Input:

symbol explanation default value
l′B directional mini-batch

derivative along a line
(see Eq. 2.23)

−

λinit initial learning rate 10−8 or λ of last search
c2 curvature constant from Eq 2.24 0.9
η learning rate scaling factor 2
λmin minimal learning rate 10−8

1: λmax = min( 1
||d||2 ,107)

2: λ← clip to limit(λinit,λmin,λmax)
3: B0,B1← sample batches()
4: if 0≤ l′B1

(λ)≤ c2|l′B0
(0)| then � # see Eq. 2.24

5: return λ
6: else if l′B1

(λ) < 0 then
7: flag ← 1, increase step size
8: else
9: flag ← 2, decrease step size

10: end if
11: while True do
12: Bi← sample batch()
13: if flag == 1 then
14: λ← λ ·η
15: if λ > λmax

η or l′Bi
(λ)≥ 0 then

16: return λ
17: end if
18: end if
19: if flag == 2 then
20: λ← λ

η

21: if λ < λmin ·η or l′Bi
(λ) < 0 then

22: return λ
23: end if
24: end if
25: end while

20



2.6 Line Searches in the Stochastic Scenario

2.6.5 Probabilistic Line Search
This section is based on Mahsereci and Hennig (2015). Probabilistic Line Search
(PLS) (Mahsereci and Hennig, 2015) is designed specifically for the stochastic sce-
nario. It combines traditional concepts of line searches in the deterministic scenario
with methods of Bayesian optimization. Specifically, a Gaussian Process (GP) pos-
terior is utilized as a surrogate for lt. The latter is estimated over several mea-
surements of lB,t. Then, a Bayesian Optimization objective is used to estimate the
next sample position along the line. Finally, a probabilistic version of the sufficient
decrease and curvature conditions (see Equation 2.17 and 2.18) is used as the ter-
mination criterion for a candidate position. Figure 2.4 exemplarily illustrates the
difference between a traditional interpolating line search and a GP posterior. Note
that the line direction is not normalized; consequently, we use the symbol λ for
steps along the line. In this section, following Mahsereci and Hennig (2015), we
will use the terms first and second Wolf condition for the sufficient decrease and
curvature conditions, respectively.

Before we begin the detailed derivation of the algorithm, let us briefly dive into
the basics of probability calculus: Let X, Y be random variables. Their conditional
probability is given as p(X|Y ) = p(X,Y )

p(Y ) , where p(X,Y ) is their joined probability.
The fundamental Bayesian Theorem is given as:

p(X|Y )︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(Y |X)

prior︷ ︸︸ ︷
p(X)

p(Y )︸ ︷︷ ︸
evidence

, with p(Y ) ̸= 0. (2.25)

p(X = x) denotes the probability that X takes the value x; in short, p(x). If X
is continuous, p denotes a probability density function (pdf). p(X ≤ x) is then
given as

∫ x
−∞ p(a)da. An often assumed distribution is the univariate Gaussian

distribution: p(x) = N (x;µ,σ) = 1√
2πσ2 exp

(
− (x−µ)2

2σ2

)
, where µ and σ denote the

mean and standard deviation, respectively. The univariate case can be generalized
to the multivariate case, where x is a vector of n random variables:

p(x) = N (x;µ,Σ) = 1√
(2π)n det(Σ)

exp
(
−1

2(x−µ)⊤Σ−1(x−µ)
)

, (2.26)

where µ is a vector of means and Σ is a positive definite covariance matrix. In
the case that the joint distribution of x and y is a multivariate Gaussian, Σ can

be separated into blocks: Σ =
{

Σx,x Σx,y

Σy,x Σy,y

}
. A multivariate Gaussian distribu-

tion can solely represent a finite-dimensional vector of random variables; thus, an
infinite-dimensional function cannot be modeled with it. For this, GPs are the ap-

21



Chapter 2 Introduction to Optimization and Line Searches in Deep Learning

0 1 2 3 4

−1

−0.5

0

0.5

λ

l t
(λ

)
GP posterior surrogate of lt

Classical cubic interpolation of lt
exact measurements
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λ

noisy measurements

Figure 2.4: Comparison of lt’s approximation with a once integrated Wiener Pro-
cess’ posterior introduced in Eq. 2.30, and a traditional interpolating line search:
GP posterior mean is given in solid orange, the two standard deviations in thinner
solid orange, and the local pdf marginal as shading. Function value observations
are shown as gray circles. Dark blue represents the noise ignoring interpolation by
piece-wise cubic splines as used in traditional line searches. Left: observations are
exact; the mean of the GP and the cubic spline interpolator of a classic line search
coincide. Right: same observations with additive Gaussian noise (error-bars indi-
cate ± 1 standard deviations). The noise-free interpolator is given in dashed gray
for comparison. The classic interpolator in dark blue, which matches the obser-
vations exactly, becomes unreliable; the GP reacts robustly to noisy observations;
the GP-mean still consists of piece-wise cubic splines. Caption and figure from
(Mahsereci and Hennig, 2015); adapted with permission.

propriate tool. A GP is a potentially infinite set of random variables {f(i) : i ∈ I}
indexed by a set I such that the joint distribution of every finite subset of random
variables is a multivariate Gaussian (Chuong, D, 2008). E.g., I might index a line
in R. A GP is fully specified by a mean function µ(i) : I→ R and a covariance or
kernel function k(z,z′) : I× I→ R, representing a potentially infinite-dimensional
covariance matrix. It is of use that the set of Gaussian distributions and the set of
GPs are closed under linear maps.

Coming back to PLS, its goal is to find a probabilistic surrogate of lt that best
describes lt subject to measurements of lB,t and l′B,t at different λ’s. Such mea-
surements are interpreted below as realizations of Gaussian random variables given
as vectors: lB,t and l′

B,t. For the probabilistic surrogate, a reasonable approxima-
tion of the posterior probability p(lt | lB,t, l

′
B,t) has to be found, whose mean is the

surrogate for lt.
Assuming Gaussian distributed losses and gradients, the conditional probability

of a single lB,t and l′B,t given lt, also called the likelihood, is given as:
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2.6 Line Searches in the Stochastic Scenario

p(lB,t(λ), l′B,t(λ)|lt(λ)) = N
[lB,t(λ)

l′B,t(λ)

]
;
[
lt(λ)
l′t(λ)

]
,

σ2
lt(λ) 0
0 σ2

l′t(λ)

 , (2.27)

where N denotes a Normal distribution and σ2 is the variance. For simplicity,
lB,t(λ) and l′B,t(λ) are assumed to be independent.

To keep things clear, we will at first consider the prior for lt and afterwards
introduce the joint prior for lt and l′t. As prior, a once-integrated Wiener process,
i.e., a GP p(lt) = GP(lt;0,k) with zero mean and covariance function k : R×R→R
is assumed:

k(λ,λ′) = m2
(1

3(min(λ,λ′)+ τ)3 + 1
2 |λ−λ′|(min(λ,λ′)+ τ)2

)
, (2.28)

where m is a scaling factor, which can be eliminated by specific scaling of lB and
l′B (see (Mahsereci and Hennig, 2015, §3.4) and τ a shifting factor. In the final
algorithm, the τ is chosen to be 10, and λ and λ′ are chosen to be greater than or
equal to 0. With the latter property Equation 2.28 can be simplified to:

k(λ,λ′) =
m2(1

2 λ̃λ̃′2− 1
6 λ̃′3) if λ > λ′

m2(1
2 λ̃2λ̃′− 1

6 λ̃3) if λ≤ λ′,
(2.29)

where λ̃ = λ+ τ and λ̃′ = λ′ + τ .
Using Equation 2.28 as a prior is reasonable because, first, discrete candidate

points can be computed analytically and, second, the equation is robust to the
noise introduced by using lB,t and l′B,t.

Equation 2.28, which defines a once integrated Wiener Process for lt, suggests a
Wiener Process for l′t because the derivative is a linear operator (Papoulis, 1991,
§10). The derived bivariate Wiener Process p(lt; l′t) is:

p(lt; l′t) = GP
([

lt
l′t

]
;
[
0
0

]
,

[
k k∂

k∂ k∂ ∂

])
, (2.30)

k∂ = ∂k(λ,λ′)
∂λ′ =

m2(λ̃λ̃′− 1
2 λ̃′2) if λ > λ′,

m2 1
2 λ̃2 if λ≤ λ′ , (2.31)

k∂ = ∂k(λ,λ′)
∂λ

=
m2 1

2 λ̃′2 if λ > λ′,
m2(λ̃λ̃′− 1

2 λ̃2) if λ≤ λ′ , (2.32)

k∂ ∂ = ∂2k(λ,λ′)
∂λ∂λ′ = m2 min(λ̃, λ̃′) (2.33)
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Chapter 2 Introduction to Optimization and Line Searches in Deep Learning

Now, let a set of evaluations (λ, lB,t, l
′
B,t) (vectors, with elements λi, lBi,t, (λi),

l′Bj ,t(λj)) with independent likelihoods (Eq. 2.27) be given. Combining the joined
likelihood p(lB,t, l

′
B,t|lt) (Eq. 2.27, 2.30) with the prior p(lt) (Eq. 2.28) yields a

GP posterior surrogate of lt: p(lt | lB,t, l
′
B,t). Its mean function µ and covariance

function k̃ are:

µ(λ) =
[
k(λ,λ) k∂ (λ,λ)

]([k(λ,λ)+σ2
lt

I k∂(λ,λ)
k∂ (λ,λ) k∂ ∂(λ,λ)+σ2

l′t
I

])−1

︸ ︷︷ ︸
=:v⊤(λ)

[
lB,t

l′
B,t

]
(2.34)

and
k̃(λ,λ′) = k(λ,λ′)−v⊤(λ)

[
k(λ,λ′)
k∂ (λ,λ′)

]
, (2.35)

where k∂ is the derivative with respect to the first entry, k∂ the derivative with
respect to the second entry, and k∂ ∂ the derivative with respect to both entries.
Between each of the N measurements at different λ’s µ is a cubic spline. A cubic
spline is a continuous piece-wise cubic function, having continuous first and second
derivatives. That µ is a cubic spline is shown by (Mahsereci and Hennig, 2015, Eq.
8) by proving that µ has at most three non-vanishing derivatives . For N values
of lB,t and l′B,t a local minimum of µ can be found in O(N). This is because only
the cubic spline between each measurement position must be considered. The local
minimum of a cubic spline can be computed inexpensively and straightforward.

During the line search, and after evaluating the two values of lB,t and l′B,t at
the current candidate position λcand the next candidate position has to be chosen.
Therefore, a list of candidate λ’s (λcand) consisting of less than or equal to N local
minimizers of µ and one additional extrapolation position at λmax +α is generated,
where λmax is the currently largest evaluated λ and α an extrapolation step size,
which is set to one in the beginning and then doubled after each extrapolation step.

Two factors are considered in selecting the next λcand from λcand. First, the
expected improvement: this measures the expected amount by which lt might
be smaller than the smallest of the N measurements lmin = min(l(λcand) : λcand ∈
λcand):

uEI(λ) = Ep(lt|lB,t,l′
B,t)[min(0, lmin− lt(λ))]. (2.36)

Second, a probabilistic belief over the first and second Wolf conditions is con-
sidered. Let a(λ) and b(λ) be normal distributed random variables representing a
probabilistic belief over the first and second Wolfe condition, respectively:

p(a(λ), b(λ)) = N
([

a(λ)
b(λ)

]
;
[
µ(0)−µ(λ)+ c1λµ′(0)

µ′(λ)− c2µ′(0)

]
,

[
Caa(λ) Cab(λ)
Cba(λ) Cbb(λ)

])
, (2.37)
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2.6 Line Searches in the Stochastic Scenario

The exact form of the Covariances C∗∗ is found in (Mahsereci and Hennig, 2015,
Equation 13). The probability for both conditions to hold is given by:

pWolfe(λ) = p(a(λ) > 0∧ b(λ) > 0), (2.38)

which is calculated by integration over p(a(λ), b(λ)).
The λ out of λcand maximizing the product pWolfe(λ) ·uEI(λ) is chosen as the next
measurement point λcand. An exemplary determination of pWolfe(λ) ·uEI(λ) is illus-
trated in Figure 2.5 With the lB,t(λcand) and l′B,t(λcand) measurements, the GP is
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Figure 2.5: Candidate selection of PLS. Top: GP posterior. The mean is solid or-
ange, two standard deviations in thinner solid orange, local pdf marginal as shading.
The red and the blue point are lB,t evaluations, collected by the line search. Mid-
dle: GP marginal posterior of corresponding derivatives. The colors are the same
as in the top plot. In all three plots, the locations of the two candidate points are
indicated as vertical dark red lines. The left one at about λcand

1 ≈ 1.54 is a local
minimum of the posterior mean between the red and blue points. The right one at
λcand

2 = 4 is a candidate for extrapolation. Bottom: Decision criterion in arbitrary
scale: the expected improvement uEI (Eq. 2.36) is shown in dashed light blue, the
Wolfe probability pWolfe (Eq. 2.37) in light red, and their decisive product in solid
dark blue. For illustrative purposes, all criteria are plotted for the whole λ-space.
In practice, solely the values at λcand

1 and λcand
2 are computed and compared, and

the candidate with the higher uEI ·pWolfe value is chosen for evaluation. In this ex-
ample, this would be the candidate at λcand

1 . Caption and Figure from (Mahsereci
and Hennig, 2015); adapted with permission.
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Chapter 2 Introduction to Optimization and Line Searches in Deep Learning

Algorithm 5 Sketch of Probabilistic Line Search adapted from Mahsereci and
Hennig (2015). The weight update is omitted for clarity; consequently, only the
internal line search routine is described. The subscript ts are omitted. ⊙ is the
element-wise multiplication.

Input:

symbol explanation default value
lB mini-batch loss function

along direction dt

) −

l′B derivative of lB −
σl(0) estimated full-batch loss’

variance at position 0
estimation over mini-
batch losses of first
batch

σl′(0) estimated full-batch direc-
tional derivative’s variance
at position 0

estimation over mini-
batch derivatives of
first batch

cW threshold for wolfe probability (Eq. 2.38) 0.3
c1 first wolfe (sufficient decrease) constant 0.05
c2 second wolfe (curvature) constant 0.8
Nmax maximal number of lBi

evaluations 10
1: B0← sampleBatch()
2: GP ←initGaussianProcess(lB0(0),l′B0

(0), σl(0), σl′(0))
3: λ, lB, l′

B←initStorage(0, lB0(0), l′B0
(0)) � with observed measur. at λ = 0

4: λ← 1 � initial learning rate candidate
5: while budget Nmax not used and no Wolfe-point found do
6: Bi← sampleBatch()
7: λ, lB, l′

B←updateStorage(λ, lBi
(λ), l′Bi

(λ))
8: GP ←updateGP(lBi

(λ),l′Bi
(λ))

9: pWolfe←probWolfe(λ,c1,c2 GP ) � get Wolfe prob. (Eq. 2.38) for all λi

in λ
10: if any element pj ∈ pWolfe > cW then
11: return λj � return Wolfe-Point λj

12: else
13: λcand←computeCandidates(GP ) � new learning rate candidates
14: e←expectedImprovement(λcand, GP )
15: p←probWolfe(λcand,c1,c2, GP )
16: λ← where (e⊙p) is maximal � find best candidate among λcand
17: end if
18: end while
19: return λi in λ with lowest GP mean since ∀pj ∈ pWolfe : pj ≤ cW

updated, and then a new λcand is estimated. This is repeated until either a λcand
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2.7 Descent Direction choosing Methods

is found for which pWolfe(λ) > cW holds or if the budget for new measurements is
exhausted. The latter defaults to 10. In the first case, λcand (called a Wolfe Point)
is returned. In the second case, the λ ∈ λ with the lowest µ(λ) is returned.

A pseudo-code of the whole algorithm containing the essentials can be found in
Algorithm 5.

PLS is essentially based on two assumptions: first, that sample losses and their
gradients are Gaussian distributed, and second, that lt can be locally approximated
with cubic splines. The PLS paper does not provide empirical evidence that these
assumptions hold; however, as we will see in Chapter 4, 5, and 6 a cubic spline
approximation is appropriate because lt almost always behaves locally quadratically.
Further, the results of (Smith et al., 2018) and (Smith and Le, 2018) support that
losses and gradients could be Gaussian distributed. No theoretical convergence
results are provided for this algorithm, yet.

2.7 Descent Direction choosing Methods
For numerical optimization algorithms, not only the step size along a direction is of
relevance, but also the direction itself. In classical deterministic optimization, the
direction of steepest descent (i.e., the negative gradient), the conjugate gradient
direction, or the Newton direction (Nocedal and Wright, 2006; Luenberger et al.,
1984) are commonly used candidates. Especially in the case of a quadratic loss, the
conjugate gradient direction and the Newton direction lead to significantly faster
convergence but are harder to compute than the direction of steepest descent.
Let E(θ) = 1

2(θ−θ∗)⊤Q(θ−θ∗) be a quadratic loss, where θ∗ is the minimizer,
θ are the parameters to optimize - both of dimension N -, and Q is a square
matrix of dimension N×N. When we consider exact line searches on E(θ) and using
the steepest descent direction, the convergence depends on the condition number
r = vmax(Q)

vmin(Q) of the problem, where v denotes the eigenvalue. The decrease of loss
per step is bounded by E(θt+1) ≤ (r−1

r+1)2E(θt). Consequently for ill-conditioned
problems, an exact line search following the steepest descent direction can take
unreasonably long to converge. An exact line search using the conjugate gradient
direction, i.e., a direction dt for which d⊤

t−1Qdt = 0 holds, requires N steps to
converge in the worst case, while using the Newton direction requires at most one
one step (Luenberger et al., 1984).

Applying the introduced directions is only suitable if better update steps compen-
sate for the longer time needed for their computation. However, in the stochastic
scenario, already calculating the exact gradient∇θtL(θt) is impractically expensive.
Consequently, the computation of a conjugate gradient direction, which is based on
the gradient, is also impractical. One could use noisy estimates of these directions.
However, calculating the conjugate gradient direction requires the gradient with
respect to the parameters of the previous update step, but on the mini-batch of the
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Chapter 2 Introduction to Optimization and Line Searches in Deep Learning

current update step. This calculation has to be done in addition and is expensive.
Computing the noisy Newton direction of a batch is often impractical because GPU
memory is usually too small to hold the Hessian.

Consequently, other directions, heuristically proven to be practical, are consid-
ered in the stochastic scenario. They usually focus on reducing the noise of con-
secutive update steps and consequently follow a smoother optimization path. This
is done by preferring less noisy dimensions. This effect is exemplified in Figure
2.6. Such methods are called adaptive methods. Most adaptive approaches com-
pute heuristics for each dimension independently and neglect dependencies between
dimensions entirely. The two most prominent adaptive methods, SGD with mo-
mentum and ADAM are introduced below:
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Figure 2.6: A noisy quadratic toy example that gives insight into the behavior of
SGD’s, SGD with momentum’s and ADAM’s training process. ADAM and SGD
with momentum choose a smoother path. The plotted loss is the average over 100
quadratics whose parameters are sampled from a normal distribution. One of these
quadratics is chosen for each update step of an optimizer.
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2.7 Descent Direction choosing Methods

SGD with momentum: The most widely used direction in the stochastic sce-
nario is the momentum direction, an exponential moving average over all previously
measured mini-batch gradients. SGD using this direction is called SGD with mo-
mentum. The update rule changes to (compare to Algorithm 1):

mt =
gt if t = 0

βmt−1 +gt else
(2.39)

θt+1 = θt−λmt, (2.40)

where mt is an additional momentum term that must be held in memory, and
β ∈ [0,1) is a factor that regulates the influence of previously measured gradients.
Typically, β is chosen to be 0.9. A pictorial explanation of this method is a ball
rolling down the loss landscape, building up some momentum influenced by the
acceleration gt and the drag −(1−β) mt−1. Equation 2.39 does influence not only
the direction but also the step size as the norm of the direction changes. If the
gradient is constant, each element (mt)i converges to (gt)i

1−β since mt =
T∑

t=0
βT −tgt.

Considering gt as a vector of random variables, (mt)i converges to E[(gt)i]
1−β . This

implies that dimensions for which |E[(gt)i]| is small are less considered in the update
direction. This is particularly apparent if the noise leads to frequent sign changes
in a dimension. The latter is not preferable because in this case SGD oscillates in
this dimension and, thus, does not make much improvement. The pseudo-code of
SGD with momentum is given in Algorithm 6. SGD with momentum consistently
outperforms SGD and is the most widely used optimizer in deep learning. In the
deterministic scenario, it is usually argued that momentum performs well since it
can escape local minima. This intuition tends not to hold in the deep learning
scenario, as it is assumed that all local minima are almost as good as a global one
(Kawaguchi, 2016; Kawaguchi and Kaelbling, 2020; Fort and Jastrzebski, 2019).
Although momentum is a popular method, its theoretical analysis is limited in the
stochastic setting (Sutskever et al., 2013; Arnold et al., 2019). Surprisingly, some
analyses even show slower convergence rates for β > 0 (Schmidt et al., 2011); the
latter implies that SGD with momentum does not have to converge faster than
SGD. Recent work might provide even better convergence analysis. However, the
theoretical analysis of adaptive methods is not our primary focus.
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Algorithm 6 Stochastic Gradient Descent with momentum (SGD with momen-
tum) (Polyak, 1964)

Input:

symbol explanation default value
LB mini-batch loss −
λ(t) learning rate schedule usually starting with 10−1 to 10−4

β momentum parameter 0.9 to 0.99
θ0 initial parameters usually sampled with Xavier/-

Glorot initialization (Glorot and
Bengio, 2010)

- stopping criterion usually a fixed number of update
steps

1: θ← θ0
2: t← 0
3: m← 0
4: while stopping criterion not met do
5: Bt← sampleBatch()
6: m← βm+gBt

7: θ← θ−λ(t)m
8: t← t+1
9: end while

10: return θ

ADAM Adaptive Momentum estimation (ADAM) (Kingma and Ba, 2015) is
another widespread heuristic to choose a less noise-prone update direction than the
noisy mini-batch gradient. This can be exemplarily seen in ADAM’s optimization
trajectory in Figure 2.6. ADAM is derived from the popular methods RMSProp (see
2.8) (Tieleman and Hinton, 2012) and AdaGrad (Duchi et al., 2011). As in these
approaches, each gradient dimension is considered independently, and strengthened
or weakened depending on the estimated noise. In particular, ADAM approximates
the first mathematical moment, also known as the mean E[gt], and the second
moment, also known as the uncentered variance E[g2

t ], for the gradient of each
parameter, respectively. Note that the square of g2

t is element-wise. Here, gt is
interpreted as a vector of independent random variables. Then Kingma and Ba
(2015) take the fraction of the first and the root of the second moment to get the
so-called signal-to-noise ratio: E[gt]√

E[g2
t ]

. This ratio is an indicator for the distribution
of gt independently of any linear scale change of θ. An exponential moving average
approximates the first moment m over the last mini-batch gradients:

E[(gt)i]≈ (mt)i = β1(mt−1)i +(1−β1)(gB,t)i, (2.41)

30



2.7 Descent Direction choosing Methods

where i indicates the i-th element. Similarly, the second moment v of the gradient
is approximated by an exponential moving average over the squared mini-batch
gradient:

E[(gt)2
i ]≈ (vt)i = β2(vt−1)i +(1−β2)(g2

B,t)i. (2.42)
These approximations are improved by eliminating the initialization bias originat-
ing from a zero vector initialization of m and v. In the case of v, the discrepancy
between E[(gt)2

i ] and E[(vt)2
i ] is considered. E[(vt)2

i ] rather than (vt)2
i is of rele-

vance since the average error that appears when E[(gt)2
i ] is approximated by (vt)2

i

has to be considered:

E[vt] = E
[
β2vt−1 +(1−β2)g2

t

]
In iterative from:

= E

[
(1−β2)

t∑
i=1

βt−i
2 g2

i

]
Assuming g2

i to be stationary and introducing error term ζ:

= E[g2
t ](1−β2)

t∑
i=1

(βt−i
2 )+ ζ

Factoring the brackets out:

= E[g2
t ](

t−1∑
i=0

βt
2−

t∑
i=1

βt
2)+ ζ

= E[g2
t ](1−βt

2)+ ζ,

(2.43)

where all operations are point-wise, and ζ is the error term that arises if E[g2
i ]

is non-stationary. In practice, ζ is small because the exponential average assigns
exponentially decreasing weights to gradients in the past but a large weight to the
current gradient. The derivation of E[mt] is done in the same way. The term
(1− βt

2) is caused by initializing the running average with 0. Consequently, the
division of v by (1− βt

2) leads to the correction of this initialization. The same
holds for m, which must be divided by (1− βt

1). The resulting error-corrected
approximations are:

E[(gt)]≈ m̂t = mt

1−βt
1

(2.44)

E[(g2
t )]≈ v̂t = vt

1−βt
2
. (2.45)

Finally, the linear scale-invariant parameter update step is given by:

θt+1 = θt−λ ·m̂/(
√

v̂ + ϵ), (2.46)
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where ϵ is added to avoid division by zero. See Algorithm 7 for the complete pseudo
code.

Since m̂/(
√

v̂ + ϵ) approximates E[gt]√
E[g2

t ]
its size is approximately bounded by

±1 because
∣∣∣∣ E[gt]√

E[g2
t ]

∣∣∣∣ ≤ 1. The latter holds because E[g2
t ] = E[gt]2 + VAR[gt] ≥

E[gt]2. (m̂/(
√

v̂))i is often interpreted as the signal-to-noise ratio for parameter
i. If we further interpret noise as sign changes, the following can be intuitively
deduced: If the past gradients were large, similar, and of the same sign, then
(m̂/(

√
v̂))i is large, since in this case,

√
E[(g2

t )i] ≈ E[(gt)i] holds. In general,√
E[(g2

t )i] grows equal to or faster than E[(gt)i]. Especially in the case of sign
changes, E[(g2

t )i] grows significantly faster. This holds since the expectation is over
the always positive distance to zero. Consequently, the i-th parameter’s influence

Algorithm 7 ADAM, an algorithm for stochastic optimization. See section 4.4 for
details. Algorithm adapted from Kingma and Ba (2015).√ denotes the element-
wise root and ⊙ denotes the element-wise multiplication.

Input:

symbol explanation default value
θ0 initial parameters −
LB,t mini-batch loss −
λ learning rate 10−3

β1 momentum factor for the gradient 0.9
β2 momentum factor for the element-

wise squared gradient
0.999

ϵ for numerical stability 10−8

1: m← 0 � Initialize initial 1st moment vector
2: v← 0 � Initialize initial 2nd moment vector
3: t← 0
4: θ← θ0
5: while θ not converged do
6: Bt← sampleBatch()
7: g←∇θLBt(θ) � Get mini-batch loss gradient
8: m← β1 ·m+(1−β1) ·g � Update biased first moment estimate
9: v← β2 ·v +(1−β2) ·g⊙g � Update biased second raw moment estimate

10: m̂←m/(1−βt+1
1 ) � Compute bias-corrected first moment estimate

11: v̂← v/(1−βt+1
2 ) � Compute bias-corrected second raw moment estimate

12: θ← θ−λ ·m̂/(
√

v̂ + ϵ) � Update parameters
13: t← t+1
14: end while
15: return θ � Resulting parameters
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2.8 Further Optimization Methods

on the search direction converges to zero if the noise is high and converges to one
if the noise is low.

(Kingma and Ba, 2015) show that ADAM converges on a sum over convex mini-
batch loss functions, with bounded gradients, bounded update step sizes, and a
learning rate decay of 1√

t
.

Combining line searches with direction given algorithms such as ADAM and SGD
with momentum raises the problem that direction heuristics rely on very small
learning rates to obtain sufficiently good low noise direction estimate from past
gradients. Line searches estimate larger learning rates; thus, the gradient estimates
become worse. Further, it is unclear whether applying line searches along such
directions is fruitful.

2.8 Further Optimization Methods
In the following section, the optimization methods RMSprop, SGD-HD, and
ALI-G are introduced in short. These methods are not as fundamental for the line
search field or the adaptive direction field as the already introduced algorithms.
However, the method we will present in Chapter 4 will be compared to these, as it
was requested by external experts.

RMSprop Root mean square propagation (RMSprop or RMSP) (Tieleman and
Hinton, 2012) is an adaptive optimization method similar to ADAM, often used
for recurrent neural networks. It differs form ADAM (2.7) in that it uses only the
second momentum estimate in combination with the gradient for an update step:

θt← θt−1−λ
1√

v + ϵ
gt. (2.47)

See Algorithm 7 line 12 for comparison.

SGD-HD The idea of Hypergradient Descent (SGD-HD) (Baydin et al., 2018)
is to compute the derivative with respect to the learning rate and in a next step
update the learning rate by using a gradient descent algorithm on a hyper level.
The derivative with respect to λ is simply given as:

∂

∂λ
LB,t(θt−1−λgt−1) =−L′

B,t(θt−1−λgt−1)gt−1 =−L′
B,t(θt)gt−1 =−g⊤

t gt−1.

(2.48)
This is an equivalent derivation to that of (Baydin et al., 2018), which -in our
opinion- is clearer. Now a gradient descent step is performed to update λ:

λt+1 = λt +αg⊤
t gt−1, (2.49)
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where α is the learning rate of the hyper level gradient descent optimizer. This
algorithm can be considered as a line search approach that changes the learning
rate such that a step closer to the minimum of lB,t is taken and after that the line
search is terminated. To clarify this approach Figure 2.7 describes the different
data flows of SGD and SGD-HD. (Baydin et al., 2018) argue that the sensitivity
of α is lower than that of λ and therefore easier to tune. However, in some sample
experiments, which we performed on training scenarios other than those of (Baydin
et al., 2018), it was hard to find a working α (Elkersh et al., 2020).

Figure 2.7: Figurative comparison of data flows in SGD (left) and SGD-HD (right).
In our case, the parameters of the optimizer θopt is just the learning rate, but in
general can be the parameters of any optimizer, which have a derivative.

ALI-G Adaptive Learning rates for Interpolation with Gradients (ALI-G) (Berrada
et al., 2020) utilizes a linear approximation of lB,t to perform an update step to the
point where the approximation becomes zero. Under the interpolation assumption
(Assumption 1 page 16) and the assumption that L’s minimum value is 0, they
show that linear approximations of lB,t converge in the stochastic convex setting.
For each update step, λ is automatically inferred by:

λupd = min
(

LB,t(θt)
||gB,t||2 + ϵ

,η

)
= min

(
lB,t(0)

l′B,t(0)+ ϵ
,η

)
, (2.50)

where ϵ is for numerical stability, η is a maximal step size, and ||gB,t||2 is the
directional derivative in gB,t direction. From another perspective, this algorithm
is the Newton method applied to find a root in gradient direction bounded by a
maximal step size. The resulting learning rate is also known as the Polyak Step
Size (Polyak, 1969).
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0 λoptλupd

0

λ in line direction

lo
ss

Mini-batch loss along a line
Linearization at λ = 0 (θt)
Min of L = 0

Figure 2.8: Illustration of ALI-G’s update rule. A linear function approximates the
mini-batch loss along a line in mini-batch gradient direction. An update step to the
zero point of the approximation is performed. Illustration adapted from Berrada
et al. (2020).

COCOB The COntinuous COin Betting (COCOB) (Orabona and Tommasi,
2017) optimizer based on gambling theory. It simulates a gambler who repeat-
edly bets that the next gradient has the same sign as the performed weight update.
The latter is performed per dimension. The reward is the weight update times the
gradient. Consequently, if both have the same sign, the reward is positive, other-
wise it is negative. A fraction of the accumulated reward is then used as the next
update step. This results in large update steps if the gradient noise is low, and
small update steps if the gradient noise is high. See (Orabona and Tommasi, 2017)
for further information.

2.9 The simple Loss Landscape
Considering the full-batch loss formula 2.9, loss landscapes of deep learning prob-
lems, in general, can be highly non-convex and thus challenging to optimize. As
seen throughout the chapter, all optimization methods presented only converge un-
der specific assumptions. However, it is rarely verified whether and to what extent
these assumptions hold in practice. Fortunately, there is at least some empirical
evidence that loss landscapes of image classification problems typically considered
tend to have simple shapes, making the assumptions more plausible (Li et al.,
2018; Xing et al., 2018; Chae and Wilke, 2019; Mahsereci and Hennig, 2015; Good-
fellow and Vinyals, 2015; Fort and Jastrzebski, 2019; Draxler et al., 2018; Hille and
Mutschler, 2020; Hochreiter and Schmidhuber, 1994; Keskar et al., 2017):

(Li et al., 2018) presents a simple method to visualize and compare different
minima by considering 2D contour plots:

C(α,β) = L(θ∗ +αδ +βµ), (2.51)
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where θ∗ is the center point of the contour and α, β are step sizes in the direction
of δ and µ, respectively. The contour directions are chosen randomly from a Gaus-
sian distribution. To overcome the problem that weights of NNs can be rescaled
without changing the output, each dimension/weight of the direction is scaled by
the Frobenius norm of the convolution filter it is part of. The latter is referred to as
filter normalization. Furthermore, the smoothness of minima is measured by con-
sidering the absolute ratio

∣∣∣ λmin
λmax

∣∣∣ of the minimal and maximal eigenvalues λmin and
λmax of the Hessian. This is comprehensible since the eigenvalue is the directional
curvature (second derivative) in eigenvector direction. The following observations
have been made by (Li et al., 2018), which, however, might be questionable for
their application to generality based on their limited number of samples: For clas-
sical networks that do not have skip-connections, such as a VGG-Net (Simonyan
and Zisserman, 2015), the loss landscape behaves roughly convex if the network is
shallow; the deeper it becomes, the more chaotic it becomes. However, when skip-
connections are used, the near convex shape is maintained even when the network
becomes deeper. In addition, skip-connections tend to lead to flat minima. Some
example visualizations of minima of networks with and without skip-connections
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1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.600

1.1001.600
2.100

2.6
00

3.100 3.
60

0

4.100

4.1
00

4.600

4.600

4.600

5.100

5.100

5.6
00

5.600

5.600

5.600

5.600

6.1
00

6.100
6.100

6.100

6.600 6.
60

0

6.600

7.100

7.100

7.600

8.100

8.100

8.600

9.100

9.
60

0

9.600

(f) ResNet-110-NS,16.44%

Figure 2.9: 2D visualizations of the loss landscape around minima of ResNets (He
et al., 2016) and VGGNet-like ResNets (Simonyan and Zisserman, 2015) without
skip-connections (NS). Different depths of these networks are considered. One can
observe that -at least for the considered perpendicular random directions δ and µ-
minima of ResNet are much smoother and more convex than those of the VGG-like
ResNets. The number after the model name indicates the test error. Figure from
(Li et al., 2018).
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Figure 2.10: For each point in the filter-normalized surface plots of Figure 2.9
(ResNet-56, middle row), the absolute value of the ratio of the maximum and
minimum eigenvalue of the Hessian are plotted. The eigenvalue is the directional
curvature in eigenvector direction. One can observe that with skip-connections, the
ratio of eigenvalues (curvatures) is significantly lower in most cases, and therefore,
the loss is smoother in all directions. Figure from (Li et al., 2018).

can be found in Figure 2.9; the corresponding eigenvalue analysis is shown in Figure
2.10.

Several works support (Li et al., 2018)’s observation that the loss landscape is
rather simple, albeit from different perspectives: (Xing et al., 2018) shows that
the full-batch loss is roughly convex along SGD update step directions and that
SGD bounces of walls of a valley-like structure during training. (Chae and Wilke,
2019) reveal that the mini-batch loss along update step directions is locally almost
parabolic for simple examples. Similarly, (Mahsereci and Hennig, 2015) assume
that cubic splines can fit the full-batch loss along negative gradient directions (see
Section 2.6.5). (Goodfellow and Vinyals, 2015) points out that optimizers do not
encounter any significant areas of increasing loss values in the loss landscape on
a straight path from initialization to solution. Other works showed empirically
that the loss landscape is not fully convex, as several minima exist; however, they
are connected by low-loss sub-spaces: (Fort and Jastrzebski, 2019) models the loss
landscape as a set of high-dimensional wedges and demonstrates the existence of
a low-loss subspace connecting a set of minima. Similarly, (Draxler et al., 2018)
constructs continuous low-loss paths between minima and suggests that minima
are best viewed as points on a single connected low-loss sub-space. In (Hille and
Mutschler, 2020) we combined the approaches of both works and measured as well
as visualized two-dimensional low-loss sub-spaces with mesh-grids. Further on,
(Hochreiter and Schmidhuber, 1994) introduces a simple algorithm to find con-
nected flat regions. (Keskar et al., 2017) shows that wide minima are found by
SGD with small batch size, whereas, with increasing batch size the area around the
found minimum becomes sharper.
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2.10 The Relation of Batch Sizes and Learning
Rates

Besides the learning rate λ, the batch size |B| is important in the stochastic scenario
since it controls the noise in the optimization process. This section considers the
mutual influence of λ and |B|. (Smith and Le, 2018) introduces the expression:

ν = λ

(
|D|
|B| −1

)
, (2.52)

where ν is the gradient noise scale, which is a factor that scales the covariance
matrix of mini-batch gradients in simplified terms. A larger covariance matrix
indicates larger fluctuations (noise) of the gradient and, thus, is an indicator of the
error of using mini-batch losses instead of the full-batch loss. This formula reveals
how the optimal step size depends on λ, |B| and the size the training set size |D|.
Further on, the formula explains why increasing the batch size has a similar effect
to decreasing the learning rate in practice. The latter has been empirically shown
for typical classification tasks by (Smith et al., 2018). We will consider this effect
again in Chapter 5.

In the following, we will derive expression 2.52 in detail and introduce the as-
sumptions on which it is built. We have adapted and supplemented (Smith and Le,
2018)’s derivation to make it syntactically more convenient and significantly easier
to understand. First, the SGD gradient update is rephrased as follows:

∆θ =−λ(∇θL(θ)+(∇θLB(θ)−∇θL(θ))︸ ︷︷ ︸
mini-batch gradient

error α

), (2.53)

where ∇θL is the full-batch gradient, and ∇θLB is its mini-batch gradient estimate.
LB is the mean of sample losses Li (see Equation 2.9 and 2.10). All losses and
gradients are ∈ RN , where N represents the number of parameters in θ. Each
(∇θLi)n ∈R (the sample loss gradient of parameter n) is interpreted as a Gaussian
distributed random variable with mean (∇θL)n. (Smith and Le, 2018, Figure 9)
empirically provides some evidence that this holds when using batch sizes larger
than 30. The random vectors ∇θLi are assumed to be i.i.d., and consequently
have the same covariance matrix Kθ in RN×N . Kθ describes the covariances of
the gradients with respect to each parameter in θn. The i.i.d. assumption for the
gradients is appropriate if, first, i.i.d dataset elements are assumed and, second, if
a network does not have any exchange of information between consecutive inputs.
The frequently used Batch Normalization Layer (Ioffe and Szegedy, 2015) leads to
some exchange of information between inputs but does not harm in practice, since
empirically, the following derivations still hold (Smith et al., 2018). Under these
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2.10 The Relation of Batch Sizes and Learning Rates

assumptions, the mini-batch gradient error α
2.53= (∇θLB(θ)−∇θL(θ)) is Gaussian

distributed due to the central limit theorem of probability theory (Patrick, 1995,
Page 357). The latter states that the distribution of the difference of the average
of i.i.d. random variables to their identical mean values approximates a normal
distribution for an increasing number of variables. In Equations 2.54 to 2.59 we
derive that E[α] = 0, and E[αα⊤] = 1

|D|(
|D|
|B|−1)Kθ, where αα⊤ is an outer product

describing the covariance of α since E[α] = 0. We added these essential derivations
because they are lacking in Smith and Le: Let us define the following:

∇θL(θ) = 1
|D|

|D|∑
i=1
∇θLi(θ) ∈ RN (2.54)

∇θLB(θ) = 1
|B|

|B|∑
j=1
∇θLj(θ) ∈ RN (2.55)

∇θLj(θ) are i.i.d. and normal distributed with the following expectation vector
and covariance matrix:

E[∇θLj(θ)] :=∇θL(θ)
Kθ ∈ RN×N := COV[∇θLj(θ),∇θLj(θ)],

where ∇θL̂(θ) is now the expected value over a discrete distribution of random
variables. It is simple to show that E[α] = 0:

E[α] = E [∇θLB(θ)−∇θL(θ)]

= E

 1
|B|

|B|∑
j=1
∇θLj(θ)− 1

|D|
|D|∑
i=1
∇θLi(θ)


= |B||B|∇θL(θ)− |D||D|∇θL(θ)

= 0.

(2.56)

In the following, we derive that E[αα⊤] = 1
|D|(

|D|
|B| −1)Kθ holds:
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E[αα⊤] =E
[
(∇θLB(θ)−∇θL(θ))(∇θLB(θ)−∇θL(θ))⊤]

=E

( 1
|B|

|B|∑
j=1
∇θLj(θ)− 1

|D|
|D|∑
i=1
∇θLi(θ))( 1

|B|
|B|∑
j=1
∇θLj(θ)− 1

|D|
|D|∑
i=1
∇θLi(θ))⊤


=E

 1
|B|2

|B|∑
j=1
∇θLj(θ)(

|B|∑
j=1
∇θLj(θ))⊤


︸ ︷︷ ︸

a

+E

 1
|D|2

|D|∑
i=1
∇θLi(θ)(

|D|∑
i=1
∇θLi(θ))⊤


︸ ︷︷ ︸

b

−E

 2
|B||D|

|B|∑
j=1
∇θLj(θ)(

|D|∑
i=1
∇θLi(θ))⊤


︸ ︷︷ ︸

c

.

(2.57)
Now, we simplify a, b and c:

a = 1
|B|2 E

 |B|∑
j=1
∇θLj(θ)

E

 |B|∑
j=1
∇θLj(θ)

⊤

+ 1
|B|2 COV

 |B|∑
j=1
∇θLj(θ),

|B|∑
j=1
∇θLj(θ)


= 1
|B|2 |B|∇θL(θ)|B|∇θL(θ)⊤ + 1

|B|2
|B|∑
j=1

|B|∑
k=1

COV[∇θLj(θ),∇θLk(θ)]

=∇θL(θ)∇θL(θ)⊤ + 1
|B|Kθ.

(2.58)

The latter holds since∇θLj(θ) are i.i.d.; consequently, the covariance matrix is non-
zero only if j = k. In the same way as above it can be shown that b =∇θL∇θL⊤ +
1

|D|Kθ.
Next, c is:

c = 2
|B||D|E

 |B|∑
j=1
∇θLj(θ)

E

 |D|∑
i=1
∇θLi(θ)

⊤

+ 2
|B||D|COV

 |B|∑
j=1
∇θLj(θ),

|D|∑
i=1
∇θLi(θ)


= 2
|B||D| |B|∇θL(θ)|D|∇θL(θ)⊤ + 2

|B||D|
|B|∑
j=1

|D|∑
i=1

COV[∇θLj(θ),∇θLi(θ)]

= 2∇θL(θ)∇θL(θ)⊤ + 2
|D|Kθ.

(2.59)
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Finally we obtain:

E[αα⊤] 2.57= a+ b− c

=∇θL(θ)∇θL(θ)⊤ + 1
|B|Kθ +∇θL(θ)∇θL(θ)⊤

+ 1
|D|Kθ−2∇θL(θ)∇θL(θ)⊤− 2

|D|Kθ

= 1
|B|Kθ + 1

|D|Kθ−
2
|D|Kθ

= 1
|B|Kθ−

1
|D|Kθ

= ( |D||B| −1)Kθ

|D| .

(2.60)

After these side steps, we proceed to derive expression 2.52 as a function of λ, |B|
and |D|. Following (Li et al., 2017; Gardiner, 1985), we reinterpret Equation 2.53
as the discrete update of a stochastic differential equation. In detail, the stochastic
differential equation describing the dynamic changes of the parameter is modeled
as follows:

dθ

dt
=−dL

dθ
+η(t), (2.61)

where t is a continuous variable, η(t) models the mini-batch induced gradient-noise
with E[η(t)] = 0 and

E[η(t)η(t′)⊤] = COV [η(t),η(t′)] = ν
Kθ

|D| δ(t− t′), (2.62)

where δ is the Dirac delta function, implying that E[η(t)η(t′)⊤] is non-zero only
if t = t′, which in turn implies that the noise η is independent in time. Using this
model, we can see that the noise scale ν controls the scale of random fluctuations
in the dynamics, i.e., the covariance matrix. The division by |D| is needed for the
covariance matrix to have the correct scale since we consider the mean of random
variables.

To relate Equation 2.61 to the SGD update step in Equation 2.53, we consider
the weight update over a time interval (learning rate) λ:

∆θ =
∫ λ

0

dθ

dt
dt =−λ

dL
dθ

+
∫ λ

0
η(t)dt. (2.63)

To obtain an expression for ν, we compare the mini-batch gradient error times
the learning rate in the discrete case (αλ) with the integrated gradient noise∫ λ
0 η(t)dt. Specifically, we equate the covariances of the gradient error times the
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learning rate E[λα(λα)⊤] and the covariance of the integrated gradient noise
E[
∫ λ
0 η(t)dt

∫ λ
0 η(t′)⊤dt′]:

It is simple to derive that

E[λα(λα)⊤] 2.60= λ2

|D|

(
|D|
|B| −1

)
Kθ (2.64)

and

E[
∫ λ

0
η(t)dt

∫ λ

0
η(t′)⊤dt′] =

∫ λ

0

∫ λ

0
E[η(t)η(t′)⊤]dtdt′ 2.62= λν

Kθ

|D| (2.65)

holds. Equating both results in:

λ2

|D|

(
|D|
|B| −1

)
Kθ = λν

Kθ

|D| . (2.66)

After rearranging, the SGD noise scale reads:

ν = λ( |D||B| −1)≈ λ
|D|
|B| . (2.67)

The latter approximation holds if |D| ≫ |B|, which is typically the case. Thus, ν is
inversely proportional to |B| and proportional to |D| and λ. This property will be
used in Chapter 6

Figure 2.11 shows that Equation 2.67 holds in practice.

Figure 2.11: Experiments of (Smith and Le, 2018) show that Equation 2.67 holds
in practice. A shallow neural network with 800 hidden units and ReLU activation
function is trained on MNIST using SGD with momentum. (Smith et al., 2018)
shows similar results when training ResNets on CIFAR-10. Figure from (Smith and
Le, 2018).
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Some further works consider the relation of batch size and learning rate: (Mc-
Candlish et al., 2018) introduces another empirically-based scale that predicts the
largest beneficial batch size over datasets and models. (De et al., 2016) adaptively
increases the batch size over update steps to assure that the negative gradient
is a descent direction. (Balles et al., 2017) introduces an optimization algorithm
that jointly adapts the batch size and the learning rate. In detail, the algorithm
builds on the assumption that as the batch size increases, the gradient variance
decreases proportionally to an exponential running average of former mini-batch
losses. (Jastrzebski et al., 2017) shows that the ratio of learning rate to batch size
is an indicator for the width of minima and thus of the generalization ability. The
larger the ratio, the wider the found minimum gets. Furthermore, they show that
learning rate schedules can be replaced by batch size schedules, which will be of
interest in Chapter 6.

2.11 Grad Student Descent
In this section, based on (Gencoglu et al., 2019), we consider optimization in the
deep learning field from a more general perspective. From this perspective, the most
successful and controversial optimization algorithm in the deep learning field in re-
cent years is Grad(uate) Student Descent (Gencoglu et al., 2019). As discussed
in Section 2.1 and 2.2, optimization is not only about minimizing the empirical loss,
but also about selecting a good hypothesis space. In practice, numerous design de-
cisions have to be made for the hypothesis space: the model design (including the
number of layers, the number of neurons, the activation function, ...), hyperparam-
eters for weight initialization, data augmentation, data normalization, et cetera.
The problem is that there are almost no direct relationships between the hyperpa-
rameters and the model performance known, not even between the hyperparameters
themselves. Consequently, those hyperparameters are manually engineered for each
specific application. This contrasts the traditional hypothesis-driven scientific ap-
proach: Instead of forming hypotheses based on theory or detailed empirical studies,
grad student descent is applied:

Improvement on a specific problem is achieved by assigning it to multiple gradu-
ate students, who then try out what works and what does not. Each student follows
an iterative approach, starting with a baseline architecture with state-of-the-art re-
sults and then applying modifications by trial-and-error. These modifications are
usually not based on hypotheses derived from theory or solid empirical evidence.
Once some improvements are found, further research is done in this direction until
a local optimum is reached and the results are published.

Usually, no profound empirical or theoretical explanation is given as to why the
found approach works and excels. Often hypotheses are made after the results are
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Chapter 2 Introduction to Optimization and Line Searches in Deep Learning

known, masquerading posterior hypotheses as prior hypotheses, which arguably
resembles improper scientific practice. In short, this practice continuously leads
to better and better results but not to comprehensive explanations of why things
work. Consequently, we generally do not know why and when SGD performs better
than other optimizers or why ResNets (He et al., 2016) and DenseNets (Huang
et al., 2017) perform better than VGGNets (Simonyan and Zisserman, 2015). In
the following chapters, we do better by deriving optimization methods based on
priorly measured and comprehensive empirical observations. This provides a more
comprehensive understanding of when and why these methods work.
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Experimental Platform:

In this chapter, we introduce our experimental platform so that our methodology
can be comprehended and our results can be reproduced.

3.1 The TCML-Cluster
A large number of processing resources was needed for the experiments performed
in this work. Therefore it was of great advantage that the project accompany-
ing this dissertation was to set up and maintain the Training Center Machine
Learning-Cluster (TCML-Cluster, also see (University of Tuebingen, 2021)) within
the BMBF project “Training Center Machine Learning, Tübingen” with grant num-
ber 01|S17054. The setup and maintenance was mainly done by the author of this
work with support by Uli Ulmer, Klaus Bayreuther and Martin Meßmer. This of-
ten tedious to maintain, but simple to use and very flexible computing environment
paved the way for at least 30 scientific works, including (Mutschler and Zell, 2020a;
Mutschler et al., 2021; Mutschler and Zell, 2021; Laube and Zell, 2021; Laube,
2021; Laube and Zell, 2019a,b; Gao et al., 2021; Tebbe et al., 2021, 2020; ul Mo-
qeet Riaz et al., 2022, 2020; Lange et al., 2019, 2020; Bolz et al., 2019; Mutschler
and Zell, 2020b; Sanzenbacher et al., 2020; Butz et al., 2019b,a; Otte et al., 2019a,b;
Hobbhahn et al., 2020; Varga et al., 2022a; Laube et al., 2022; Varga et al., 2021;
Varga and Zell, 2021; Rahim et al., 2021; Kiefer et al., 2021; Varga et al., 2022b)
and (Shamsafar et al., 2022). In addition, it has been used by approximately 400
students for lecture exercises and a considerable amount of bachelor’s and master’s
theses, programming projects, and practical courses. Consequently, maintaining
the TCML-Cluster has made a small but important contribution to a large body
of scientific work. Also, the TCML-Cluster was essential for this work to compute
often highly resource demanding calculations such as measuring empirical data of
loss landscapes or to compare several optimization approaches on benchmark prob-
lems. The cluster is used for all experiments in this work presented in Chapter 4,
5 and 6.

The following provides a detailed overview of the hardware and software used:

45



Chapter 3 Experimental Platform:

Figure 3.1: Physical overview of the TCML-Cluster consisting of 40 compute nodes
used for calculations, four storage nodes holding the users’ data and, the head node
that controls the functionalities of the cluster and is the access point for users. This
cluster was used for all experiments performed in this work.

3.1.1 Hardware
An overview of the cluster’s physical structure is shown in Figures 3.1 and 3.2. To
separate control access, computations, and data storage, the cluster is divided into
one head node, 40 compute nodes and four storage nodes. All computations for
experiments are performed on the compute nodes(University of Tuebingen, 2021).

Each compute node originally had the following hardware specifications: 2 TB
of SSD space; 256 GB of memory; an Intel XEON CPU E5-2650 v4 processor; and
four Nvidia GeForce GTX 1080 graphics cards; In 2021, the GPUs of two nodes
got replaced with Nvidia RTX A4000 GPUs; however, Nvidia GeForce GTX 1080
graphics cards were used for all the experiments of this work. The two data nodes
and meta-data nodes hold all the cluster’s user data on 146 TB of storage. They
are connected to the compute nodes with a 10-gigabit link. This is a bottleneck
in the speed at which data can be transferred to the compute nodes, particularly
relevant when training on larger datasets.

The head (master) node controls all the functionalities of the cluster in a central-
ized manner. It ensures that the jobs (tasks) on the cluster are properly scheduled
and monitored. Users are only allowed to access this node and have to submit their
jobs there.

3.1.2 Software
The heart of the TCML-Cluster is the workload manager Slurm (Yoo et al., 2003),
an open-source, fault-tolerant, and highly scalable cluster management and job
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scheduling system for Linux clusters. It assigns users access to the compute nodes
for a particular duration of time and amount of hardware resources. The automatic
job scheduling system was beneficial for the many grid searches performed in this
work.

In order to allow users to use any Linux working environment, the high-
performance-computing container visualization software Singularity (Sylabs, 2015)
is used. Consequently, a suited Linux operating system with any libraries installed
can be used for any use case. Unlike a virtual machine, a singularity container does
not require an emulated kernel but runs directly on the host kernel as a process.
This makes the execution of an application in a container almost as fast as that of
an ordinary application. Singularity containers are fully compatible with the often-
used Docker (Docker, Inc., 2013) containers, allowing the use of a huge amount of
preconfigured containers provided at hub.docker.com. For the experiments in this
work, we used the cluster’s default containers that provided environments with the
latest versions of CUDA (NVIDIA, 2007), cuDNN (NVIDIA, 2015), TensorFlow
(Abadi et al., 2016), and PyTorch (Paszke et al., 2019) versions at the time of
executing the corresponding experiment.

Figure 3.2: Server racks of the TCML-Cluster.
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Chapter 4

Parabolic Approximation Line
Search
This chapter introduces PAL, our line search approach operating on the mini-batch
loss (LB,t). Supported by empirical evidence, it approximates the mini-batch loss
along a line (lB,t) with a positively curved parabola. It is one of the few optimization
methods for deep learning that is derived from empirical evidence about the shape
of the loss landscape, and thus provides a more comprehensive understanding than
other approaches of why and how it works in practice. The following chapter is
based on (Mutschler and Zell, 2020a).

4.1 Motivation and Introduction
Automatic determination of optimal step sizes for each update step of stochastic
gradient descent is a major challenge in current optimization research for deep
learning (Roĺınek and Martius, 2018; Berrada et al., 2020; Mahsereci and Hennig,
2015; Kafka and Wilke, 2019; Paquette and Scheinberg, 2018; Vaswani et al., 2019;
De et al., 2016; Baydin et al., 2018; Lancewicki and Kopru, 2020). One default
approach to tackle this challenge is to apply line search methods. Several of these
have been introduced for deep learning (Mahsereci and Hennig, 2015; Kafka and
Wilke, 2019; Paquette and Scheinberg, 2018; Vaswani et al., 2019; De et al., 2016).
However, these approaches have not analyzed the shape of loss functions in update
step direction in detail, which is important since the optimal step size stands in
strong relation to this shape. To shed light on this, we empirically analyzed the
shape of the loss function along update step direction for deep learning scenarios
often considered in optimization. We further elaborate on the properties found to
define a simple and empirically justified optimizer. In relation to Section 2.11 about
Grad Student Descent we derive our approach from a clear prior hypothesis.
Our contributions to the community are as follows:
1: Our empirical analysis suggests that the mini-batch loss in the negative gradient
direction mostly exhibits locally convex shapes. Furthermore, we empirically show
that parabolic approximations are well suited to estimate the minima in these di-
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rections (Section 4.3).
2: Exploiting this parabolic observation, we build a simple line search optimizer
that constructs its loss function-dependent learning rate schedule. The performance
of our optimization method is extensively analyzed, including a comprehensive com-
parison to other optimization methods (Sections 4.4,4.5).
3: We provide a theoretical convergence analysis that supports our empirical re-
sults under strong assumptions (Section 4.4.4).
4: We provide a general investigation of exact line searches on batch losses and
their relation to line searches on the exact loss as well as their relation to our line
search approach (Section 4.6) and, finally, analyze the relation of our approach to
interpolation (Section 4.7).

In this chapter, we consider LB,t at optimization step t in negative gradient
direction as defined in Equation 2.22 but we normalize the direction:

lB,t : R→ R, s 7→ LB,t(θt + s
−gB,t

||gB,t||
), (4.1)

where gB,t is ∇θtLB,t(θt). We denote lt as mini-batch loss along a line and s as
the step along this line. The motivation of our work builds upon the following
assumption:

Assumption 2. (Informal) The position θmin = θt + smin
−gB,t

||gB,t|| of a minimum of
lB,t is a good enough estimator for the position of a minimum of the full-batch loss
L on the same line to perform a successful optimization process.

We empirically analyze Assumption 2 further in Section 4.6.

4.2 Related Work
Our optimization approach is based on well-known methods, such as line search,
the non-linear conjugate gradient method (see Section 2.7), and quadratic approx-
imation, which can be found in Numerical Optimization (Nocedal and Wright,
2006). In addition, (Nocedal and Wright, 2006, §3.5) describes a similar line search
routine for the deterministic setting. The concept of parabolic approximations is
also exploited by the well-known line search of (Moré and Thuente, 1994), which
is also designed for the deterministic setting. Our work contrasts common opti-
mization approaches in deep learning by directly exploiting the observation of lB,t

being locally parabolic (see Section 4.3). Similarly, SGD-HD (Baydin et al., 2018)
(see Section 2.8) performs update steps towards a minimum of lB,t, by performing
gradient descent on the learning rate. The L4 adaptation scheme (Roĺınek and
Martius, 2018) as well as ALIG (Berrada et al., 2020) (see Section 2.8) estimate
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step sizes by approximating the loss function linearly in negative gradient direction,
whereas our approach approximates the loss function parabolically in negative gra-
dient direction. (Chae and Wilke, 2019) explores a similar direction as this work
by analyzing possible line search approximations for DNN loss landscapes but does
not exploit these for optimization.

Stochastic Line Search (SLS) (Vaswani et al., 2019) (in detail introduced in
Section 2.6.3), searches -like our line search- for a position on lB,t. However, it
does not perform an exact line search, (i.e., determining a minimum almost ex-
actly along the line), but checks that the first Wolfe condition is fulfilled. Whereas
our approach builds upon empirical findings, their approach relies on the rather
theoretical interpolation assumption (Assumption 1 Page 16). SLS exhibits com-
petitive performance against multiple optimizers on several DNN tasks. (Paquette
and Scheinberg, 2018) introduces a related idea but does not provide empirical
results for DNNs. (De et al., 2016) also uses a backtracking Armijo line search,
but to regulate the optimal batch size. The methodically appealing but complex
Probabilistic Line Search (PLS) (in detail introduced in Section 2.6.5) (Mahsereci
and Hennig, 2015) approximates L along lines with a GP posterior based on real-
izations of LBi

for different batches Bi. The mean of this posterior is a cubic spline.
A suitable update step size is found by exploiting a probabilistic formulation of
the Wolf conditions. In contrast to PLS, PAL does not approximate the full-batch
loss at all and relies on a non-probabilistic parabolic approximations of LB,t. Gra-
dient Only Line Search (GOLSI ) (Kafka and Wilke, 2019)(in detail introduced in
Section 2.6.4) searches for a minimum on lines by looking for a sign change of the
first directional mini-batch derivative in search direction. For each measurement,
another Bi is chosen. Our approach, in contrast, just sticks to one Bi for a line
search and uses empirical evidences to approximate LB,t.

From the perspective of assumptions about the shape of the loss landscape, sec-
ond order methods such as oLBFGS (Schraudolph et al., 2007), KFRA (Botev
et al., 2017), L-SR1 (Ramamurthy and Duffy, 2017), QUICKPROP (Fahlman
et al., 1988), S-LSR1 (Berahas et al., 2021), and KFAC (Martens and Grosse,
2015) generally assume that the loss function can be approximated locally by a
parabola of the same dimension as the loss function. However, those methods are
computationally expensive. Thus, our optimizer follows the cheaper approach by
using a one dimensional parabolic approximation in negative gradient direction.
Adaptive methods such as SGD with momentum (Robbins and Monro, 1951) (see
Section 2.8), ADAM (Kingma and Ba, 2015) (Section 2.8), ADAGRAD (Duchi
et al., 2011), ADABOUND (Luo et al., 2019), AMSGRAD (Reddi et al., 2018) or
RMSProp (Tieleman and Hinton, 2012) (Section 2.8) focus more on finding direc-
tions of less gradient noise than on shape assumptions. Our approach could be
easily applied upon such directions, too.
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4.3 Empirical Analysis of the Shape of
mini-batch Losses along Lines

In this section, we analyze mini-batch losses along lines (see Eq. 4.1) during the
training of multiple architectures and show that they locally exhibit mostly convex
shapes, which are well suited for parabolic approximations. We focus on CIFAR-10,
as it is extensively analyzed in optimization research for deep learning. However,
we observed similar results on MNIST, CIFAR-100, and ImageNet, considering
random samples. We analyzed mini-batch losses along the lines in the first 10,000
SGD update step directions for four commonly used architectures (ResNet-32 (He
et al., 2016), DenseNet-40 (Huang et al., 2017), EfficientNet (Tan and Le, 2019),

Figure 4.1: Representative mini-batch losses along lines in negative normalized
gradient direction (blue), parabolic approximations (orange) and the position of the
approximated minima (red). Further plots are provided in Appendix A.1. Row 1:
ResNet32, Row 2: DenseNet40. Row 3: MobilenetV2. Row 4: EfficientNet.
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Figure 4.2: Angles between the line direction and the gradient at the estimated
minimum measured on the same mini-batch. If the angle is 90◦, the estimated
minimum is a real local minimum. We know from additional line plots that the
found extrema or saddle points are minima. Left: measurement over the first 10
epochs. Right: measurement over the first 60 epochs. Update step adaptation
(see Section 4.4.3) is applied.

MobileNetV2 (Sandler et al., 2018)). Along each line, we sampled 50 losses and
performed a parabolic approximation (see Section 4.4). A representative selection
of our results on a ResNet32 is shown in Figure 4.1. Further results are given
in Appendix A.1. In accordance with (Xing et al., 2018), we conclude that the
mini-batch losses along the analyzed lines tend to be locally convex; except for
the approximately first 200 lines when training on EfficientNet and MobileNet. In
addition, one-dimensional parabolic approximations of the form f(s) = as2 + bs +
c with a ̸= 0 are well suited to estimate the position of a minimum along such
directions. For EfficientNet the latter does not hold; but as we will see in Section
4.5 applying parabolic approximations still leads to a good optimization process.

To substantiate the later observation, we analyzed the angle between the line
direction and the gradient at the -by a parabola- estimated minimum during train-
ing. A position is a local extremum or saddle point of the loss along a line if and
only if the angle between the line direction and the gradient at the position is 90◦,
if measured on the same mini-batch.1 Measuring step sizes and update step adap-
tations factors (see Sections 4.4.1 and4.4.3) were chosen to fit the mini-batch loss
along the line decently. As shown in Figures 4.2 and 4.3, the parabolic observation
holds well for several architectures trained on MNIST, CIFAR-10, CIFAR-100 and
ImageNet. The observation fits best for MNIST and gets worse for more complex
tasks such as ImageNet. We can ensure that the extrema found are minima since

1This holds because if the directional derivative of the measured gradient in line direction is 0,
the current position is an extremum or saddle point along the line and the angle is 90◦. If the
position is not an extremum or saddle point, the directional derivative is not 0 (Nocedal and
Wright, 2006).
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Figure 4.3: Angles between the line direction and the gradient at the estimated
minimum measured on the same batch plotted over a whole training process on
several networks and datasets. This figure clarifies that the parabolic observation
holds also on further datasets and during the training process. It fits best for
MNIST and becomes worse for ImageNet. Measuring step sizes and update step
adaptations factors (see Sections 4.4.1,4.4.3) were used to fit the loss along the line
decently.

we additionally plotted the mini-batch loss along the line for each update step.
In addition, we analyzed the mini-batch loss along lines in conjugate-like directions
and random directions. Mini-batch losses along lines in conjugate like directions
also tend to have convex shapes (Figure 4.6 ). However, mini-batch losses along
lines in random directions rarely exhibit convex shapes.

4.4 The Line Search Algorithm
We introduce Parabolic Approximation Line Search (PAL), which exploits the
observation that parabolic approximations are suited to estimate the minimizer of
the mini-batch loss along lines. This simple approach combines well-known methods
from basic optimization such as parabolic approximation and line search (Nocedal
and Wright, 2006) to perform an efficient line search. We note that the general
idea of this method can be applied to any optimizer that provides an update step
direction, such as ADAM, RMSP, or AdaGrad. PAL’s pseudo code is given in
Algorithm 8.

4.4.1 Parameter Update Rule
An intuitive explanation of PAL’s parameter update rule based on a parabolic
approximation is given in Figure 4.4. Since lB,t (see Eq. 4.1) is assumed to exhibit
a convex and almost parabolic shape, we approximate it with l̂t(s) = as2 + bs + c
with a ∈ R+ and b,c ∈ R. Consequently, we need three measurements of lB,t to
define a,b and c. Those are given by the current loss lB,t(0), the derivative in
gradient direction l′B,t(0) = −||gB,t|| (see Eq. 4.4) and an additional loss lB,t(µ)
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4.4 The Line Search Algorithm

Figure 4.4: Basic idea of PAL’s parameter update rule. The blue curve is the
mini-batch loss along the negative gradient starting at LB,t(θt). It is defined as
lB,t(s) = LB,t(θt + s −gt

||gB,t||) where gt is ∇θtLB,t(θt). The red curve is its parabolic
approximation l̂(s). l(0), l(µ) and gB,t (orange) are the three parameters needed to
determine the update step supd to the minimum of the parabolic approximation.

with measuring distance µ ∈R+. It is simple to show that a = lB,t(µ)−lB,t(0)−l′B,t(0)µ
µ2 ,

b = l′B,t(0), and c = lB,t(0). The update step supd to the minimum of the parabolic
approximation l̂t(s) is thus given by:

supdt
=− l̂′t(0)

l̂′′t (0)
=− b

2a
=

−l′B,t(0)

2 lB,t(µ)−lB,t(0)−l′B,t(0)µ
µ2

. (4.2)

Note, that l̂′′t (0) is the second derivative of the approximated parabola and is only
identical to the exact directional derivative −gB,t

||gB,t||H(LB,t(θt))
−gT

B,t

||gB,t|| if the parabolic
approximation fits. The normalization of the gradient to unit length (Equation
4.1) was chosen to have the measuring distance µ independent of the gradient size
and of weight scaling. Note that two network inferences are required to determine
lB,t(0) and lB,t(µ). Consequently, PAL needs two forward passes and one backward
pass through a model. Further on, LB,t may include random components, but to
ensure continuity during one line search, drawn random numbers have to be reused
for each value determination of LB,t at t (e.g., for Dropout (Srivastava et al., 2014)).
The memory required by PAL is similar to SGD with momentum, since only the
last update direction has to be saved.
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Figure 4.5: PAL’s case discrimination as described in Section 4.4.2. Note that
b = l̂′(0) = l′B,t(0) and a = 0.5l̂′′(0) ≈ 0.5 l′′B,t(0). The blue curve is the real mini-
batch loss; red are its approximations; black crosses are the first measuring point;
orange crosses the second measuring point. Green arrows show the corresponding
resulting update step positions. From left to right the exemplary cases correspond
to case two, one and three of Section 4.4.2.

4.4.2 Case Discrimination of Parabolic Approximations

Since not all parabolic approximations are suitable for parameter update steps,
the following cases are considered separately. Note that b = l̂′(0) = l′B,t(0) and
a = 0.5l̂′′(0) ≈ 0.5l′′B,t(0). They are figuratively explained in Figure 4.5. 1: a > 0
and b < 0: the parabolic approximation has a minimum in line direction, thus, the
parameter update is done as described in Section 4.4.1. 2: a ≤ 0 and b < 0: the
parabolic approximation has a maximum in negative line direction or is a line with
a negative slope. In those cases, a parabolic approximation is inappropriate. supd
is set to µ, since the second measured point has a lower loss than the first. 3: Since
b = −||gB,t|| cannot be greater than 0, the only case left is an extremum at the
current position (l′(0) = 0). In this case, no weight update is performed. However,
the mini-batch loss function changes with the next batch, which likely does not
have an extremum at exactly the same point. In accordance with Section 4.3, cases
two and three appeared very rarely in our experiments.

4.4.3 Additions

Here multiple additions to fine-tune PAL’s performance and handle degenerate
cases are introduced. Our hyperparameter sensitivity analysis (Appendix A.2.2)
suggests that the influence of the introduced hyperparameters on the optimizer’s
performance is low. Thus, they only need to be adapted to fine-tune the results.
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Figure 4.6: Angles between the line direction and the gradient at the estimated
minimum measured on the same batch are plotted over a whole training process
on several networks on CIFAR-10. This figure clarifies, that parabolic observation
is also valid if a direction adaptation factor of 0.4 is applied. Measuring step
sizes and update step adaptations factors (see Sections 4.4.1,4.4.3) were set to fit
loss along the line decently.

Direction adaptation: Instead of following the direction of the negative gradient
we follow an adapted conjugate-like direction dt:

dt =−∇θtLB,t(θt)+βdt−1 d0 =−∇θ0LB,t(θ0), (4.3)

with β ∈ [0,1]. Since now an adapted direction is used, l′B,t(0) changes to:

l′B,t(0) =∇θtLB,t(θt)
dt

||dt||
. (4.4)

This approach aims to find a more optimal search direction than the negative gra-
dient. We implemented and tested the formulas of Fletcher-Reeves (Fletcher and
Reeves, 1964), Polak-Ribière (Ribière and Polak, 1969), Hestenes-Stiefel (Hestenes
and Stiefel, 1952), and Dai-Yuan (Dai and Yuan, 1999) to determine conjugate
directions under the assumption that the loss function is a quadratic. However,
choosing a constant β of value 0.2 or 0.4 performs equally well. The influence of β
and dynamic update steps on PAL’s performance is discussed in Section 4.5.3. In
the analyzed scenario, β can both increase and decrease the performance, whereas
dynamic update steps mostly increase the performance. A combination of both is
needed to achieve optimal results. Figure 4.6 suggests that the parabolic observa-
tion also holds in these adapted conjugate-like directions.
Update step adaptation: Our preliminary experiments revealed a systematic
error caused by constantly approximating with slightly too narrow parabolas. There-
fore, supd is multiplied by a parameter α ≥ 1 (compare to Equation 4.2). This is
useful to estimate the minimum’s position along a line more exactly but has minor
effects on training performance.
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Maximum step size: To hinder the algorithm from failing due to inaccurate
parabolic approximations, we use a maximum step size smax. The new update step
is given by min(supd , smax). However, most of our experiments with smax = 100.5 ≈
3.16 never reached this step size and still performed well.

Algorithm 8 PAL, our proposed line search algorithm for DNNs. See Section
4.4 for details. This algorithm provides the full description of PAL including the
additions described in Section 4.4.3. PyTorch and TensorFlow implementations are
found at https://github.com/cogsys-tuebingen/PAL.

Input:

symbol explanation default value
LB,t mini-batch loss function −
θ0 initial parameter vector −
µ measuring step size 0.1,0.01
α update step adaptation 1.0,1.6
β direction adaptation factor 0.4,0
smax maximum step size 3.16

1: t← 0
2: dt← 0 � initialize direction vector
3: while θt not converged do
4: Bt← sampleBatch()
5: l0← LBt(θt) � get first loss at line origin
6: dt←−∇θtLBt(θt)+βdt−1 � define new line direction
7: lµ← LBt(θt +µ dt

||dt||) � get second loss value along the line
8: b←∇θtLBt(θt) dt

||dt|| � get b = directional derivative at line origin
9: a← lµ−l0−bµ

µ2 � get a = approx. second derivative at line origin / 2
10: if a > 0 and b < 0 then
11: supd ←−α b

2a � get Newton update step to minimum of the app. parabola
12: else if a≤ 0 and b < 0 then � saveguard against inoperable parabolas

(see Section 4.4.2)
13: supd ← µ � step to µ decreases the loss
14: else
15: supd ← 0 � step in line direction would incraese the loss
16: end if
17: if supd > smax then � saveguard against excessive large update steps
18: supd ← smax
19: end if
20: θt+1← θt + supd

dt
||dt|| � perform parameter update

21: t← t+1
22: end while
23: return θt
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4.4.4 Theoretical Considerations
Usually, convergence in deep learning is shown for convex stochastic functions with
an L-Lipschitz continuous gradient. However, since our approach originates from
empirical results, it is not given that a profound theoretical analysis is possible. In
order to show any convergence guarantees for parabolic approximations, we have
to fall back to uncommonly strong assumptions, which lead to quadratic models. If
those assumptions are valid at all, they are likely more valid locally than globally.

We assume that each slice of the loss function is a one-dimensional parabolic
function:

Assumption 3. Let n∈N be the number of parameters and let p,d∈Rn be vectors.
Then for all p,d there exists a,b,c∈R with a > 0, such that LB(p+ds) = as2 +bs+c
for all s ∈ R.

This strong assumption is a simplified adaptation to our empirical results that
lines in negative gradient direction behave locally almost parabolic (see Section
4.3). For the following derivations we assume a basic PAL without the additions
introduced in Section 4.4.3. Proofs are provided in Appendix A.1.1. At first we
show that LB(θ) is an n-dimensional parabolic function:

Lemma 1. Let f : Rn→ R be a k-times continuously differentiable function. Fur-
thermore, assume there exists a,b,c∈R with a > 0, such that f(p+ds) = as2 +bs+c
for all s∈R. Then there exist c∈R,r ∈Rn and a positive definite Matrix Q∈Rn×n

such that f(x) = c+rT x+xT Qx for all x ∈ Rn.

Now we show that PAL converges on LB(θ):

Proposition 1. PAL converges on f :Rn→R,x 7→ c+rT x+xT Qx with Q∈Rn×n

hermitian and positive definite.

In this scenario, PAL is identical to the method of steepest descent for which
the convergence, including convergence rates on quadratics, is already proven in
(Luenberger et al., 1984, Page 235). Nevertheless, we have added our own agnostic
proof which better adapts to this scenario and was made independent of the existing
proof.

For a noisy scenario where each batch defines a quadratic, PAL has no conver-
gence guarantee. Given two shifted one-dimensional parabolas, ax2 + bx + c and
a(x + d)2 + b(x + d) + c, which are presented to PAL alternately, PAL will always
perform an update step to the minimum position of one of these but never to
the minimum position of the average of both. By slightly changing the training
procedure and assuming that each LB(θ) has the same Q this can be fixed:

Proposition 2. If L(θ) : Rn→ R θ 7→ L(θ) = 1
m

∑m
i=1 ci + rT

i θ + θT Qiθ and ci +
rT

i θ +θT Qiθ = LBi(θ) with m being the number of batches Bi. (Each batch defines
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a parabola. The empirical loss L(θ) is the mean of these parabolas). And for all
i, j ∈N it holds that Qi = Qj and that Qi is positive definite. Then arg min

θ
L(θ) =

1
m

∑m
i=1 arg min

θ
LBi(θ) holds.

This implies that under Assumption 3 and a fixed Q the position of the minimum of
the empirical loss is given by the average of the positions of the mini-batch losses’
minima. The minimum position of full-batch loss is found by PAL, by slightly
adapting PAL to search on one batch until it finds the minimum’s position and
then averages over the minimum of each batch. As a result, PAL converges in this
noisy scenario. However, we have to emphasize at this point that our assumptions
about p and Q are likely not valid for general deep learning scenarios. Nevertheless,
if it is locally valid, this direction might be a further explanation, in addition to
those of (He et al., 2019; Fort and Jastrzebski, 2019), why averaging the weights of
each update step in the last epoch (stochastic weight averaging) (Izmailov et al.,
2018) performs well.

4.5 Evaluation

4.5.1 Experimental Design
We performed a comprehensive evaluation to analyze the performance of PAL on a
variety of deep learning optimization tasks. Therefore, we tested PAL on commonly
used architectures trained on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and
ImageNet (Deng et al., 2009).

For CIFAR-10 and CIFAR-100, we evaluated on DenseNet40 (Huang et al., 2017),
EfficientNetB0 (Tan and Le, 2019), ResNet32 (He et al., 2016) and MobileNetV2
(Sandler et al., 2018). On ImageNet we evaluated on DenseNet121 and ResNet50.
In addition, we considered an RNN trained on the Tolstoi war and peace text
prediction task.

We compare PAL to SLS (Vaswani et al., 2019), whose Armijo variant is state-
of-the-art in the line search field for DNNs at the time of writing. In addition, we
compare against the following well studied and widely used first order optimizers:
SGD with momentum (Robbins and Monro, 1951), ADAM (Kingma and Ba, 2015),
and RMSProp (Tieleman and Hinton, 2012) as well as against SGDHD (Baydin
et al., 2018) and ALIG (Berrada et al., 2020), which automatically estimate learning
rates in negative gradient direction and, finally, against the coin betting approach
COCOB (Orabona and Tommasi, 2017). For more details about these optimizers
see Section 2.8.

To perform a fair comparison, we compared various hyperparameter combinations
of commonly used hyperparameters for each optimizer. In addition, we utilized
those combinations to analyze the hyperparameter sensitivity for each optimizer.
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Since a grid search on ImageNet was too expensive, the best hyperparameter config-
uration of CIFAR-100’s evaluation was used to test hyperparameter transferability.

A detailed explanation of the experiments including hyperparameters and data
augmentations used, is given in Appendix A.2.3.

All in all, we trained over 4500 networks with TensorFlow 1.15 (Abadi et al.,
2016) on Nvidia Geforce GTX 1080 TI graphics cards (see Chapter 3). Since PAL
is a line search approach, the predefined learning rate schedules of SGD and the
generated schedules of SLS, ALIG, SGDHD, and PAL were compared. Due to
normalization, PAL’s learning rate is given by supdt

/||dt||.

4.5.2 Results
A selection of our results on DenseNets is given in Figure 4.7. Figure 4.8,4.9 show
the results of other architectures trained on CIFAR-10 and CIFAR-100, respectively.
The results for ImageNet and Tolstoi are found in Appendix Figure A.4. A table
with exact numerical results of all experiments is provided in Appendix A.2.4.

In most cases PAL decreases the training loss faster and to a lower value than the
other optimizers (row 1 of Figures 4.7,4.8,4.9, and App. Figure A.4). Considering
validation and test accuracy, PAL surpasses ALIG, SGDHD and COCOB, com-
petes with RMSProp and ADAM but gets surpassed by SGD (rows 2,3 of Figures
4.7,4.8,4.9, and App. Figure A.4). However, RMSProp, ADAM and SGD were
tuned with a step size schedule. If we compare PAL to their basic implementations
without a schedule, which roughly corresponds to the first plateau reached in row
2 of Figures 4.7,4.8,4.9, and App. Figure A.4, PAL would surpass the other op-
timizers and shows that it can find a well performing step size schedule. This is
especially interesting for problems for which default schedules might not work.

SLS decreases the training loss further than the other optimizers on a few prob-
lems but shows weak performance and poor generalization on most. This contrasts
to the results of (Vaswani et al., 2019), where SLS behaves robustly and excels. To
exclude the possibility of errors on our side, we reimplemented the SLS experiment
on ResNet34 and could reproduce a similar well performance as in (Vaswani et al.,
2019) (Appendix A.2.1). Our results suggest that the interpolation assumption on
which SLS is based is not always valid for the considered tasks.
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Figure 4.7: Comparison of PAL on DenseNets against SLS, SGD, ADAM, RM-
SProp, ALIG, SGDHD, and COCOB on training loss (row 1), val. acc. (row 2),
test. acc. (row 3) and SLS, SGD, ALIG, SGDHD, and PAL on learning rates (row
4). Comparison is done across several datasets and models. Further results are
found in Figure (4.8, 4.9 and Appendix Figure A.4). Results are averaged over 3
runs. Box plots result from comprehensive hyperparameter grid searches in plau-
sible intervals. Learning rates are averaged over epochs. PAL surpasses, ALIG,
SGDHD, and COCOB and competes well against all other optimizers.
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Figure 4.8: Comparison of PAL on CIFAR-10 against SLS, SGD, ADAM, RM-
SProp, ALIG, SGDHD, and COCOB on training loss (row 1), val. acc. (row 2),
test. acc. (row 3) and SLS, SGD, ALIG, SGDHD and PAL on learning rates
(row 4). Results are averaged over 3 runs. Box plots result from comprehensive
hyperparameter grid searches in plausible intervals. Learning rates are averaged
over epochs. PAL surpasses SLS, ALIG, SGDHD and competes against all other
optimizers. The learning rate schedule comparison shows that PAL performs com-
petitive although elaborating significantly different schedules.
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Figure 4.9: Comparison of PAL on CIFAR-100 against SLS, SGD, ADAM, RM-
SProp, ALIG, SGDHD, and COCOB on training loss (row 1), val. acc. (row 2),
test. acc. (row 3) and SLS, SGD, ALIG, SGDHD and PAL on learning rates
(row 4)). Results are averaged over 3 runs. Box plots result from comprehensive
hyperparameter grid searches in plausible intervals. Learning rates are averaged
over epochs. PAL surpasses SLS, ALIG, SGDHD and competes against all other
optimizers. The learning rate schedule comparison shows that PAL performs com-
petitive although elaborating significantly different schedules.
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Table 4.1: Required seconds per epoch of PAL, SLS, ALIG, SGDHD, COCOB
and SGD on CIFAR-10. RMSP and ADAM reach a similar speed as SGD. The
comparison was performed on a Nvidia Geforce GTX 1080 TI. PAL and SLS per-
form slower, since they have to measure additional losses, whereas the additional
operations of ALIG, SGDHD, COCOB tend to be cheap.

seconds / epoch
network PAL SLS SGD ALIG SGDHD COCOB
ResNet32 20.9 21.7 10.7 11.0 11.1 16.4
MobilenetV2 53.2 52.4 34.1 34.01 34.2 36.6
EfficientNet 55.5 52.2 30.7 31.2 32.2 37.5
DenseNet40 88.8 87.5 59.7 61.3 64.6 61.4

Considering the box plots of Figures 4.7 and 4.9, which represent the sensitivity
to hyperparameter combinations, one would likely try on a new unknown objective.
We can see that PAL has a strong tendency to exhibit low sensitivity in combination
with good performance. To emphasize this statement, a sensitivity analysis of
PAL’s hyperparameters (Appendix Figure A.6) shows that PAL performs well on
a wide range for each hyperparameter on a ResNet32.)

Considering the learning rate schedules of PAL (row four of Figures 4.7,4.8,4.9,A.4)
we achieved unexpected results. PAL, which estimates the learning rate directly
from approximated local shape information, does not follow a schedule that is sim-
ilar to the one of SLS, ALIG, SGDHD or any of the commonly used handcrafted
schedules such as piece-wise constant or cosine decay. However, it achieves similar
results. An interesting side result is that ALIG and SGDHD tend to perform best if
hyperparameters are chosen in a way that the learning rate is only changed slightly
and, therefore, virtually an SGD training with a fixed learning rate is performed.

On wall-clock-time PAL performs as fast as SLS but slower than the other op-
timizers, which achieve similar speeds (Table 4.1). However, an automatic, well-
performing learning rate schedule might compensate for the slower speed depending
on the scenario.
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Figure 4.10: Comparison of PAL to PLS (Mahsereci and Hennig, 2015).
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For the sake of completeness we also did a basic comparison to PLS : We used the
only existing implementation of PLS (Mahsereci and Hennig, 2015) for TensorFlow
1 (Lukas Balles, 2017). This implementation is empirically improved and slightly
variates from (Mahsereci and Hennig, 2015). However, the sum of squared gradients
still has to be derived manually for each layer, which is a considerable amount of
work for modern architectures. Consequently, we limited our comparison to a
ResNet-32 trained on CIFAR-10. Figure 4.10 shows that PAL and PLS perform
similarly in this scenario when default hyperparameters were used.

4.5.3 Influence of Dynamic Step Sizes and of the Direction
Adaptation

This section analyzes, whether PAL’s performance originates from dynamically
chosen step sizes or from the non-linear conjugate gradient-like update step adap-
tation. We consider EfficientNets trained on CIFAR-10, since for those the update
step adaptation factor β is needed to achieve optimal results. We consider the
following 6 scenarios:
1,2) PAL without update step adaptation (β = 0) and with and without dynamic
step sizes (Figure 4.11 left).
3,4) PAL with an update step adaptation of β = 0.2 and with and without dynamic
step sizes (Figure 4.11 middle).
5,6) PAL with an update step adaptation of β = 0.4 with and without fixed step
sizes (Figure 4.11 right). The case with fixed step sizes result in normalized SGD
(NSGD) with a adaptation factor β. As fixed update step size we use the measuring
step size µ.

The results show that dynamic step sizes always increase the performance if
direction adaptation is not applied and if it is applied in six out of eight cases.
Direction adaptation can increase or decrease the performance in both, the dynamic
and the fixed step size cases. The best performance is achieved with a direction

10−1.5 10−1 10−0.5 1000.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

measuring step size µ

Te
st

Ac
cu

ra
cy

direction adaptation factor β = 0.0
PAL

PAL with fixed step size

10−1.5 10−1 10−0.5 1000.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

measuring step size µ

direction adaptation factor β = 0.2

10−1.5 10−1 10−0.5 1000.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

measuring step size µ

direction adaptation factor β = 0.4

Figure 4.11: Analysis of the influences of dynamic step sizes and the direction
adaptation factor β.
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adaptation factor of 0.2 and a measuring step size of 10−1.5, which shows that both
factors influence the best results in this scenario.

4.6 On the Exactness of Line Searches on
mini-batch Losses

In this section, we investigate the general question of whether line searches, that
estimate the position of a minimum of mini-batch losses exactly, are beneficial. In
Figure 4.2 we showed that PAL can perform an almost exact line search on batch
losses if we use a fixed update step adaptation factor (Section 4.4.3). However,
PAL’s best hyperparameter configuration does not perform an exact line search
(see Figure 4.12). Consequently, we analyzed how an exact line search, which ex-
actly estimates a minimum along the line, behaves. We implemented an inefficient
binary line search, which measured up to 20 values on each line to estimate the
position of a minimum. The results shown in Figure 4.12, indicate that an optimal
line search does not optimize well. Thus, the reason why PAL performs well is not
the exactness of its update steps. In fact, slightly inexact update steps seem to be
beneficial.
These results query Assumption 2, which assumes that the position of a mini-
mum on a line in negative gradient direction of LB,t is a suitable estimator for the
minimum of the full-batch loss L on this line to perform a successful optimiza-
tion process. To investigate this further, we measured L and the distribution of
mini-batch losses for multiple SGD update directions on a ResNet32. Our results
suggest, as exemplarily shown in Figure 4.13 that the position of LBi’s minimum
along a line in negative gradient direction is not always a good estimator for the
position of L’s corresponding minimum. This explains why exact line searches on
the batch loss perform weakly.

Corollaries are that the empirical loss on the investigated lines also tends to be
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Figure 4.12: Comparison of PAL against an exact line search. The first plot shows
the angle between the direction and gradient vector at the update step position.
A ResNet32 was trained on CIFAR-10. One can observe that an exact line search
(blue) exhibits poor performance.
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Figure 4.13: Distributions (blue) overall mini-batch losses along representative
lines during a training of a ResNet32 on a subset of CIFAR-10. The full-batch loss,
which is the mean value of the distribution, is given in red. Quartiles are given in
black. The mini-batch loss, whose negative gradient defines the search direction, is
given in green. It can be observed that the minimum of the green mini-batch loss
is not always an adequate estimator of the minimum of the full-batch loss along
the line.

locally convex and that the optimal step size tends to be smaller than the step
size given by the mini-batch loss along such lines. This is a possible explanation
why the slightly too narrow parabolic approximations of PAL without update step
adaptation perform well.

4.7 PAL and Interpolation
This section analyzes how the interpolation condition is related to PAL’s perfor-
mance. Formally, interpolation requires that the gradient with respect to each
sample converges to zero at the optimum (see Assumption 1, page 16). We re-
peated the experiments of the SLS paper (see (Vaswani et al., 2019) Section 7.2
and 7.3), which analyzes the performance on problems for which interpolation does
or does not hold.

Figure 4.14 shows that PAL such as SLS converge faster to an artificial opti-
mization floor on non-over-parameterized models (k = 4) of the matrix factoriza-
tion problem of (Vaswani et al., 2019, §7.2). In the interpolation case PAL and
SLS converge linearly to machine precision. On the binary classification problem
of (Vaswani et al., 2019) Section 7.3, which uses a softmax loss and RBF kernels on
the mushrooms and IJCNN datasets, we observe that PAL and SLS converge fast
on the mushrooms task, for which the interpolation condition holds (Figure 4.15).
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Figure 4.14: The matrix factorization problem of (Vaswani et al., 2019, §7.2).
For k = 1 and k = 4 interpolation does not hold. Rank 1 factorization is under-
parameterized, whereas rank 4 and rank 10 factorizations are over-parameterized.

Figure 4.15: Binary classification task of (Vaswani et al., 2019, §7.3) using a soft-
max loss and RBF kernels for mushrooms and ijcnn datasets. With RBF kernels,
the mushrooms dataset is linearly separable in kernel-space with the selected kernel
bandwidths, while the IJCNN dataset is not.
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However, PAL converges faster on the IJCNN task, for which the interpolation
condition does not hold.

The results indicate that the interpolation condition is beneficial for PAL, but,
PAL performs also robust when the condition is likely not satisfied (see Figure
4.7,4.8,4.9,A.4). In those experiments PAL mostly performs competitive but SLS
does not. However, the relation of the parabolic observation to interpolation needs
to be investigated more closely in the future.

4.8 Conclusions and Outlook

This chapter tackled a major challenge in current optimization research for deep
learning: to automatically find optimal step sizes for each update step. In detail, we
focused on line search approaches to deal with this challenge. We introduced a ro-
bust and straightforward line search approach based on one-dimensional parabolic
approximations of mini-batch losses. The introduced algorithm PAL is an alterna-
tive to SGD for objectives where default decays are unknown or do not work.

Loss functions of DNNs are commonly perceived as being highly non-convex.
Our analysis suggests that this intuition does not hold locally since lines of loss
landscapes across models and datasets can be approximated parabolically to high
accuracy. This new knowledge might further help to explain why update steps of
specific optimizers perform well.

To gain more comprehensive insights into line searches in general, we analyzed
how an expensive but exact line search on batch losses behaves. Intriguingly, its
performance is weak, which lets us conclude that the minor inaccuracies of the
parabolic approximations are beneficial for training.

This chapter focused heavily on empirical observations of LB,t. However, such
observations can only be exploited if LB,t is a good estimator of L. In other words,
if the batch size is large enough. Therefore, the following chapter focuses on the
empirical analysis of L along lines in SGD-update direction. In addition, we will
explain why and how optimizers that rely on LB,t perform on L. Furthermore,
we will consider the influence of batch sizes, which has been neglected so far since
we have stuck to default batch sizes typically used in optimization. In Chapter 6
we will present some weaknesses of the PAL approach found later and based on
the empirical findings of Chapter 5 we will introduce an even better line search
approach for the stochastic setting in Chapter 6.
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4.9 Retrospective from 02/2022
After publishing the PAL paper (Mutschler and Zell, 2020a), we conducted further
research in this field and found that PAL’s performance is sensitive to the weight
initialization and batch size used. In general, it does not get to its full potential
when Pytorch’s default weight initialization is used. Note that the experiments here
were performed with TensorFlow 1.5. In addition, it is not trivial to find hyper-
parameters that compete with SGD. Nevertheless, (Paren et al., 2021) was able to
reproduce PAL’s good performance and assured that it is one of the top-performing
line search approaches, especially in the interpolation scenario. Furthermore, (Hao
et al., 2021) also reproduced PAL’s good performance and designed an improved
version of PAL by combining it with conjugate gradient and momentum adaptation
techniques.
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Chapter 5

Empirically explaining SGD from
a Line Search Perspective
This chapter provides a more detailed, empirically-based understanding of how
L is shaped along the trajectory taken by SGD and how it changes during the
training process from a line search perspective. Specifically, a resource expensive
quantitative analysis of L along SGD trajectories of commonly used models trained
on a subset of CIFAR-10 is performed. This chapter is based upon Mutschler and
Zell (2021).

5.1 Introduction
Although the field of deep learning has made impressive progress in recent years,
both in theory and application, little is known about why and how approaches work
in detail. In general, deep learning approaches are based on vague intuitions in
practice or rather strong assumptions in theory,1 without providing comprehensive
empirical evidence that their intuitions and assumptions hold (e.g.: (Smith, 2017;
Roĺınek and Martius, 2018; Rumelhart et al., 1986; Berrada et al., 2020; Vaswani
et al., 2019; Ioffe and Szegedy, 2015; He et al., 2016; Huang et al., 2017; Simonyan
and Zisserman, 2015)).2 Consequently, empirical analyses that search for a deeper
reaching understanding and explain why specific approaches work are rare to find.

This is particularly valid for optimization, which, in this domain, is optimizing the
mean of a stochastic loss function with an extremely high-dimensional parameter
space. The landscape of such a loss function is generally assumed to be highly non-
convex; however, recent works (Li et al., 2018; Xing et al., 2018; Mutschler and Zell,
2020a; Chae and Wilke, 2019; Mahsereci and Hennig, 2015; Goodfellow and Vinyals,
2015; Fort and Jastrzebski, 2019; Draxler et al., 2018) claim that loss landscapes
look rather simplistic for typical deep learning benchmarks used in optimization.3
This is shown to be valid for L with low evidence and for LB with stronger evidence.

1E.g., convexity, lipschitz continuity, interpolation, skip connections, batch normalization.
2Better performance does not imply that the assumptions used are correct.
3Image classification on MNIST, SVHN, CIFAR-10, CIFAR-100 and ImageNet.
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So far, there existed no detailed analysis of the relation of mini-batch losses to the
full-batch loss to be optimized and of the actual performance of approaches using
mini-batches on the full-batch loss. Globally, such an empirical analysis is not
feasible in terms of resources and time, even if performed for a single model only.
To nevertheless shed light on the subject, this work focuses on the quantitative
analysis of L and LB along lines in SGD update step directions of a ResNet-20, a
ResNet-18 (He et al., 2016) and a MobileNetV2 (Sandler et al., 2018) trained on a
computationally feasible subset of CIFAR-10 (Krizhevsky et al., 2009). Since the
evaluation on each of the models supports our claims, we concentrate on the results
of ResNet-20. Results for the other models are given in Appendix B. Note that the
analysis of a small set of problems might not provide general evidence, and thus,
our results have to be handled with care if applied to different scenarios.

Our core results are:
1. We provide further quantitative evidence that the full-batch loss along lines
in update step direction behaves locally parabolically to a high degree (Sections
5.3,5.4).
2. We analyze the behavior of SGD (Rumelhart et al., 1986), Parabolic Approx-
imation Line Search (Mutschler and Zell, 2020a) and further approaches on the
full-batch loss when trained on mini-batch losses (Section 5.5). We empirically
show that there exists a leaning rate for which SGD always performs almost exact
line searches on L. The former is since the optimal update step size on L and the
norm of LB,t’s gradient behave approximately proportional.
3. We consider the behavior of optimization approaches for different batch sizes
(Section 5.6) and, from a new perspective, can quantitatively explain why increas-
ing the batch size has virtually the same effect as decreasing the learning rate by
the same factor, as experienced by (Smith et al., 2018).

5.2 Closely Related Work
The following are extracts of relevant parts of Sections 2.6 (stochastic line searches),
2.9 (the simple loss landscape) and 2.10 (batch size and learning rate). These
sections introduce the corresponding fields in more detail.

SGD trajectories: Similar to the work introduced in this chapter, (Xing et al.,
2018) analyzes the loss along SGD trajectories, but with less focus on line searches
and the exact shape of the full-batch loss. (Jastrzebski et al., 2019) and (Li et al.,
2020) consider second-order information along SGD trajectories. Where (Jastrzeb-
ski et al., 2019) investigates the spectral norm of the Hessian (highest curvature)
along the SGD trajectory and shows, inter alia, that SGD initially visits increasingly
sharp regions.
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The simple loss landscape: For more detailed information see Section 2.9.
Loss landscapes of deep learning problems can generally be highly non-convex, and
thus, hard to optimize. In practice, however, loss landscapes tend to be simple:
(Li et al., 2018) suggests that loss landscapes of networks with skip connections
behave smoothly. (Xing et al., 2018) shows that the full-batch loss along SGD
update step directions is roughly convex and that SGD bounces of walls of a valley
like structure. (Mutschler and Zell, 2020a; Chae and Wilke, 2019) reveal that LB
along SGD update step directions is almost parabolically, and (Mutschler and Zell,
2020a) (see Chapter 4) suggests with weak empirical evidence that this also holds
for the full-batch loss. Regarding this, (Mahsereci and Hennig, 2015) claims that L
can be fitted by cubic splines along negative gradient directions. (Goodfellow and
Vinyals, 2015) points out that on a straight path from initialization to solution,
optimizers do not encounter any significant obstacles on the loss landscape. This
chapter will provide further empirical evidence that the parabolic observation also
holds for L. Furthermore, all of the here introduced observations are supported by
our empirical study.

Batch size and learning rate: (Smith et al., 2018) claims that decreasing the
learning rate has virtually the same effect as increasing the batch size by the same
factor (see Section 2.9). In this chapter we explain from a new perspective, why
this is the case. For more detailed information see Section 2.10.

5.3 The Empirical Method
For the empirical analysis, a deep learning problem has to be chosen, which is (a)
computationally so cheap that the analysis of L can be performed in a reasonable
amount of time and (b) still is representative for typical deep learning benchmarks
used in optimization. Therefore, this work considers the problem of training a
ResNet-20 (He et al., 2016) on eight percent of the CIFAR-10 dataset(Krizhevsky
et al., 2009). ResNet-like architectures are widely used in practice and CIFAR-10
is a commonly used baseline. The dataset is scaled down, so that computations for
one training process take less than three weeks on a single Nvidia Geforce GTX
1080 TI graphic card. Typical data augmentation is applied: Cropping, horizontal
flipping and normalization with mean and standard deviation. Using PyTorch
(Paszke et al., 2019), the model is trained with SGD (Robbins and Monro, 1951)
with learning rate λ = 0.1, which is the best performing λ chosen of a grid search
over {10−i|i ∈ {0,1,1.3,2,3,4}}, batch size 128 and momentum β of 0 and 0.9 for
10000 steps.

Figure 5.1 shows the results of these SGD trainings. We note that the shown
accuracies and losses do not provide much insight on what happens on a deeper
level. E.g., it does not provide much information why SGD performs well. To
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Figure 5.1: Training processes of a ResNet-20 trained on 8% of CIFAR-10 with
SGD with momentum 0 and 0.9. In the course of this work, these processes will be
analyzed in significantly deeper detail.

deal with this and further issues, the full-batch loss for each SGD update step is
measured along lines in update step direction. We revise l from Equation 2.20 and
consider a line along a direction d (similar to Equation 2.20). In detail, it is the
full-batch loss L along a direction d through the current parameters θt at update
step t:

lt : R→ R, s 7→ L(θt + sd) = 1
|D|

∑
d∈T

Ld(θt + sd), (5.1)

where s is the step size along the line, Ld is the loss of sample d and D is the dataset.
In the case of SGD without momentum, d is the negative unit gradient −gB/||gB||
of the original SGD trajectory whereas, in the case of SGD with momentum, d is
the negative unit momentum direction −m/||m||.

For each of the 10000 update steps, we analyze the full-batch loss along the
corresponding line in the interval s ∈ [−0.5,0.5] with a fine-grained resolution of
0.006. For each of the 167 sample step sizes along the line the sample loss of each
element in the dataset is calculated. Then, all losses at a step size are averaged.
All in all, this procedure requires more than 52 million inferences or 1.67 million
epochs.

Representative visualizations of mini- and full-batch losses along such lines are
given in Figure 5.2. The following is observed considering all 10000 visualizations:
The full-batch loss along lines has a simple, almost parabolic shape and does not
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Figure 5.2: Losses along lines of the SGD training processes exhibit a simple shape.
There is a significant difference between the full batch loss (red) and the loss of the
direction defining batch (green). The loss of the direction defining batch is always
steeper around 0. A mini-batch size of 128 is used. Row 1: SGD with momentum
0.0. Row 2: SGD with momentum 0.9. The mini-batch loss distributions exclude
the direction defining mini-batch.

change substantially across all lines. Furthermore, the slope of the direction defin-
ing mini-batch’s loss is consistently steeper than the full-batch loss around s = 0.
The following sections provide further quantitative evidence that these observations
hold.

In addition, we found the following interesting observations but do not inves-
tigate them further. There is a significant difference between the full-batch loss
and the loss of the direction defining mini-batch. Further, the loss of the direc-
tion defining mini-batch does not follow the distribution of any other mini-batch
loss along the line, especially for SGD without momentum. In addition, for SGD
without momentum this loss is always lower and steeper than the other mini-batch
losses.

5.4 On the Similarity of the Shape of full-batch
Losses along Lines

The visualization of the full-batch loss along 10000 lines suggests that the shape of
this loss does not vary significantly during the training process. For a more detailed
investigation, the Mean Absolute Error (MAE) of the full-batch loss between each
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Figure 5.3: Distances of the shape of full-batch losses along lines in a window
around the current position s = 0. Row 1: SGD without momentum. Row 2:
SGD with momentum. Since the offset is not of interest the minimum is shifted
to 0 on the y-axis. The distances are rather high for the first 10 lines (left). For
the following lines the distances are less than 0.3 MAE (middle) and concentrate
around 0.01. The MAEs of the full-batch loss of pairs of consecutive lines are given
on the right.

pair of lines is analyzed on a relevant interval. Since solely the shape of the loss
is of interest and not the offset, each loss along a line is shifted along the y-axis,
such that the minimum is at zero. The interval from s ∈ [−0.2,0.2] is considered
for SGD and from s∈ [−0.5,0.5] for SGD with momentum. The latter ensures that
the minimum position and the origin are always included. The resulting distance
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Figure 5.4: Distances (MAE) of the shape of full-batch losses along lines in multiple
noisy gradient direction in a window of 0.3 around the line origin s = 0. The
minimum is shifted to 0 on the y-axis. At fixed positions in parameter space the
full-batch loss along lines in several noisy gradient directions reveals low distances.
Those plots are representative for the 100 positions that we analyzed.
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matrices are depicted in Figure 5.3. They show that only the shapes of the
full-batch loss of the very first lines vary strongly, whereas, later shapes
behave more alike. In particular, the full-batch loss along consecutive
lines behaves similarly. This favors optimization with fixed step sizes, since the
optimal update step does not change much. These results are also valid for the full-
batch loss along each line in multiple noisy gradient directions starting from the
same position in parameter space (Figure 5.4). This implies from an optimization
point of view that it does not matter which of the descent directions is taken.

Figure 5.2 also indicates that the full-batch loss along lines exhibits an
almost parabolic shape locally (core result 1). Figure 5.5 shows in detail that
this is valid since the fitting error of a parabola is always low. In addition, we can
see that the curvature of the fitted parabolas (i.e., the second directional deriva-
tive) decreases. This implies that the approximated loss becomes flatter and
suggests that SGD follows a simple valley-like structure which becomes
continuously wider. Considering the even faster-decreasing curvature of SGD
with momentum, its valley becomes even wider (see also Figure 5.2). This might
be a reason why SGD with momentum optimizes and generalizes better (Keskar
et al., 2017; Hochreiter and Schmidhuber, 1994). In accordance with (Jastrzebski
et al., 2019), we also found that the curvature is increasing rapidly during the very
first steps and then decreases.
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Figure 5.5: MAE of polynomial approximations of the full-batch loss of degree 1
and 2. Row 1: SGD without momentum. Row 2: SGD with momentum. Full-
batch losses along lines can be well fitted by polynomials of degree 2. The slope of
the approximation stays roughly constant whereas the curvature decreases.
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Supporting results are obtained for ResNet-18 and for MobileNetV2, see Ap-
pendix Figures B.2, B.3, B.4, B.5.

5.5 On the Behavior of Line Search Approaches
on the full-batch Loss

The previous section showed that the full-batch loss along lines in update step
direction behaves parabolically and exhibits positive curvature. This means that
l(s)≈ as2 + bs+ c with a > 0 (see Equation 5.1). In the following, the performance
of several parabolic approximation line searches applied on the direction defining
mini-batch loss are analyzed. From now on, we concentrate on SGD without mo-
mentum, but, Figure B.1 (Appendix) shows that the upcoming results for SGD
with momentum mostly support the derivations.

For SGD the mini-batch loss and its gradient gB are given at the origin (s = 0) of
a line. In addition, the directional derivative, which is the negative norm of gB, can
be computed easily (-gB/||gB||gT

B = -||gB||). To perform a parabolic approximation,
either one additional loss along the line has to be considered or the curvature has to
be estimated. PAL was introduced in Chapter 4. For repetition, its default update
step was defined as:

spal =− b

2a
=− l′B(0)µ2

2(lB(µ)− lB(0)− l′B(0)µ) , (5.2)

where lB is the mini-batch loss along a line in the direction of gB and µ is the sample
step size for the second loss. The second approach is a reinterpretation of SGD as a
parabolic approximation line search with estimated curvature. SGD’s update step
is given as −λgB, where λ is the learning rate. Considering a normalized gradient
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Figure 5.6: Several parabolic line approximations and their minimum positions on
representative losses along lines. The optimal update step, from a local perspective,
is depicted by the red dashed line. The other update steps are derived from the
direction defining mini-batch loss.
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Figure 5.7: Several metrics to compare update step strategies: 1. update step sizes
(supd). 2. the distance to the minimum of the full batch loss (sopt− supd), which
is the optimal update step from a local perspective. 3. the loss improvement per
step given as: l(0)− l(supd) where supd is the update step of a strategy. Average
smoothing with a kernel size of 25 is applied. The right lower plot shows almost
proportional behavior between sopt and the directional derivative of the direction
defining mini-batch loss.

and defining k = 1
λ as the curvature, we get

−λgB = λ||gB|| ·
−gB
||gB||

= ||gB||
k
· −gB
||gB||

=−
−gB
||gB||g

T
B

k
· −gB
||gB||

=− first directional derivative
second directional derivative

·direction.

(5.3)
Note that the latter is a Newton update step.

To get a first intuition of how these approaches operate, several parabolic ap-
proximations and their resulting update steps on representative lines are shown in
Figure 5.6.

The next step is to compare several update step strategies using three metrics.
Beforehand, we have to define sopt as the step size to the minimum of the full-batch
loss along a line, which is the optimal update step size from a local perspective. supd
is the update step size of an arbitrary optimization strategy considered. The metrics
are: the update step size supd , the distance of supd to the minimum of the full-batch
loss (sopt−supd), and the loss improvement per step, given as: l(0)− l(supd), where
l is the full-batch loss along a line (see Equation 5.1). Note that this improvement
measure does not represent actual training performance since the next considered
line is independent of the previous update step size. This is valid for all strategies
except for SGD since we consider its training process. However, it does represent
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the performance on full-batch losses along lines, which are likely to occur during
training.

Figure 5.7 shows that some strategies exhibit varying behavior on the metrics. To
strengthen our previous observation, a parabolic approximation on the full-batch
loss (FBPAL) yields almost optimal performance. Surprisingly, SGD with λ = 0.05
estimates the minima of the full-batch loss almost as well. This is because the
step to the minimum of the full-batch loss sopt is almost proportional to
the directional derivative (−||gB||) of the direction defining mini-batch
loss (core result 2), as shown in the lower plot of Figure 5.7. We observe that the
variance becomes larger during the end of the training, and thus the proportional-
ity holds less. This almost proportional behavior explains why a constant
learning rate can lead to a good performance, since it is sufficient to
control the update step size with the norm of the noisy mini-batch gra-
dient. In practice, however, this locally optimal learning rate is unknown. The
globally best performing learning rate of 0.1 always does a step far beyond the
locally optimal step. The latter is what (Xing et al., 2018) described as bouncing
off walls of a valley-like structure. Contrary to their intuition, we have not found
any boundaries at all in the valley. Finally, Figure 5.7 suggests that exact line
searches on the mini-batch loss perform poorly.
Supporting results are obtained for SGD with momentum, for ResNet-18 and for
MobileNetV2 see Appendix Figures B.1, B.6, B.7, B.8, B.9. However, in the case
of SGD with momentum the line search is constantly not as exact.
Combining the last results suggest that the locally optimal step size sopt can
be well approximated by a Newton step on the full-batch loss or by a
simple proportionality:

sopt ≈−
−||gL||

gL
||gL||HL

gT
L

||gL||

≈ c ·−||gLB||, (5.4)

where gL and gLB are the gradients of L and LB, respectively. HL is the Hessian
of L at θt. However, on a global perspective a step size larger than sopt can
perform better, although it yields locally lower improvement (Figure 5.8).
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Figure 5.8: SGD with a locally optimal learning rate of 0.05 performs worse than
SGD with a globally optimal learning rate of 0.01. Trainings are performed on a
ResNet-20 and 8% of CIFAR-10 with SGD without momentum.
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5.6 On the Influence of the Batch Size on
Update Steps

This section analyzes to which extent the performance of SGD and PAL changes
with varying batch sizes. In addition, we show why, on the losses along lines
measured, increasing the batch size has almost the same effect as decreasing the
learning rate by the same factor, as suggested by (Smith et al., 2018).

The presented results are simplified, assuming that the SGD trajectory keeps
identical with changing batch size. Thus, the same losses over lines can be consid-
ered. The original batch size is 128. For larger batch sizes, additional sample losses
from the set of all measured losses are drawn without replacement. For smaller
batch sizes, the sample losses with the highest directional derivatives are removed,
assuming that for smaller batch sizes steeper steepest directions are found.

The upper plots of Figure 5.9 show that SGD performs significantly worse for
smaller batch sizes than PAL does. Both approaches become significantly more
accurate at larger batch sizes. A batch size of 512 is already sufficient to perform
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almost optimally.
(Smith et al., 2018) shows that when training a ResNet-50 (He et al., 2016)

on ImageNet (Deng et al., 2009), increasing the batch size has virtually the same
effect as decreasing the learning rate by the same factor. Their interpretation is
based on the noise on the full-batch gradient introduced by mini-batches, whereas,
we argue from the perspective of mini-batch losses. The SGD update step length
on losses along a line is the absolute of the learning rate times the directional
derivative (λ · |l′m(0)|= λ · ||gB,t||). The lower left plot of Figure 5.9 shows that with
larger batch sizes, the absolute of the directional derivative, and thus the step size,
decreases. This can be figuratively explained with the help of Figure 5.2. As the
batch size increases, the loss of the direction defining batch becomes more similar to
the full-batch loss; consequently, the absolute of the directional derivative decreases.
The lower plot of Figure 5.9 shows by which factor the directional derivative is
divided when the batch size is multiplied by a factor. For batch size 32 to
256 the assumption that if the batch size is increased by a factor, then
the update step size decreases by the same factor, is valid during the
whole training (core result 3). For larger batch sizes, the directional derivative
is divided by a lower factor at the beginning of the training, then the batch size is
multiplied but converges towards the same factor during the training. Based on the
data collected, we cannot estimate the momentum term for a different batch size
for each line; therefore, this analysis was not performed for SGD with momentum.
Supporting results are obtained on ResNet-18 (He et al., 2016) and a MobileNetV2
(Sandler et al., 2018), see appendix Section B.2 Figure B.10 and B.11.

5.7 Discussion and Outlook
With this work, we provided a more comprehensive understanding of what happens
in detail during SGD training from a line search perspective. Inter alia, we quanti-
tatively showed that the full-batch loss along lines in update step direction locally
is highly parabolic. Further on, we found a learning rate for which SGD always
performs an almost optimal line search. This questions if line searches for deep
learning can ever outperform SGD in general. Finally, we quantitatively analyzed
the relation of learning rate and batch size in detail and provided a new perspec-
tive on why increasing the batch size has almost the same effect as decreasing the
learning rate by the same factor.

We have to emphasize that this work only focused on a small set of representative
problems. Therefore, our results have to be handled with care. To get a more
general view about the behavior of SGD and other optimizers across models and
datasets, we propose to repeat these or similar experiments for as many times as
possible. This can be easily done with the published code but is highly time-
consuming (see https://github.com/cogsys-tuebingen/empirically_expla
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5.7 Discussion and Outlook

ining_sgd_from_a_line_search_perspective).
In general, we want to emphasize that a prospective goal of future studies in deep

learning should be, beyond reporting good results, to provide empirical evidence
that the assumptions used hold.

The following chapter will exploit the observations we found to design an im-
proved version of the PAL line search. This version achieves better performance
and is more robust to changing batch sizes due to the empirically validated relation
of batch sizes and update steps.
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Chapter 6

Large Batch Parabolic
Approximation Line Search
In this chapter, we exploit the observations made in Chapter 5 to develop a more ro-
bust, effective, and efficient line search approach than PAL (introduced in Chapter
4). The introduced approach outperforms other line searches introduced for deep
learning in most cases and performs equally well as SGD with momentum tuned by
a piece-wise constant learning rate schedule. In addition, it is easy to understand
why and when this algorithm works since it is directly derived from observations.
This chapter is based on Mutschler et al. (2021).

6.1 Introduction
Automatic determination of an appropriate and loss function-dependent learning
rate schedule to train models with stochastic gradient descent (SGD) or similar
optimizers is still not solved satisfactorily for deep learning tasks. The long-term
goal is to design optimizers that work out-of-the-box for a wide range of deep
learning problems without requiring hyperparameter tuning. Therefore, although
well-working hand-designed schedules such as piece-wise constant learning rate or
cosine decay exist (see (Loshchilov and Hutter, 2017; Smith, 2017)), it is desirable
to infer problem dependent and better learning rate schedules automatically.

This chapter builds on empirical findings from chapter 5; among those are that
the full-batch loss tends to have a simple parabolic shape in SGD update step
direction (Mutschler and Zell, 2021, 2020a) (see Figure 6.1) and that the trend of
the optimal update step changes slowly (Mutschler and Zell, 2021) (see Figure 6.2).
Exploiting these and further observations, we introduce a line search approach,
approximating the full-batch loss along lines in SGD update step direction with
parabolas. One parabola is sampled over several batches to obtain a more exact
approximation of the full-batch loss. The learning rate is then derived from this
parabola. As the trend of the locally optimal update step-size on the full-batch loss
changes slowly, the line search only needs to be performed occasionally; usually,
every 1000th step.
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Figure 6.1: Losses along the lines of the SGD training processes exhibit a parabolic
shape. The loss of the direction defining mini-batch (green) is excluded from the
distribution of mini-batch losses to show that it is significantly different. This
makes line searches on it unfavorable. In addition, the parabolic property articu-
lates stronger for the full-batch loss (red); thus, this work aims to approximate it
efficiently with a parabola.

The major contribution of this chapter is the combination of recent empirical
findings to derive a line search method, which is built upon real-world observations
and less on theoretical assumptions. This method outperforms the most prominent
line search approaches introduced for deep learning across models and datasets
usually considered in optimization for deep learning, in almost all experiments. In
addition, it is on par with SGD with momentum tuned with a piece-wise constant
learning rate schedule.

The second important contribution is that we analyze how the considered line
searches perform under high noise that originates from small batch sizes. While all
considered line searches perform poorly -mostly because they rely on mini-batch
losses only-, our approach adapts well to increasing noise by iteratively sampling
larger batch sizes over several inferences.

The chapter is organized as follows: Section 6.2 provides an overview of related
work. Section 6.3 derives our line search approach and introduces its mathematical
and empirical foundation in detail. In Section 6.4 we analyze the performance of our
approach across datasets, models, and gradient noise levels. Also, a comprehensive
hyperparameter, runtime, and memory consumption analysis is performed. Finally,
we end with a discussion including limitations in Sections 6.5 & 6.6.

6.2 Closely Related Work
The following sums up related work for this chapter. Some of the mentioned works
got explained in detail in Chapter 2.

Deterministic line searches: (see also Section 2.5) According to Nocedal and
Wright (2006, §3), line searches are considered a solved problem in the noise-free
case. However, such methods are not robust to gradient and loss noise and often fail
in such a scenario since they shrink the search space inadequately or use too inexact
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approximations of the loss. Further, Nocedal and Wright (2006, §3.5) introduces
a deterministic line search using parabolic and cubic approximations of the loss,
which motivated our approach.

Line searches on mini-batch and full-batch losses and why to favor the
latter. (See also Section 2.6) The following motivates the goal of our work to
introduce a simple, reasonably fast, and well-performing line search approach that
approximates the full-batch loss.

Many exact and inexact line search approaches for deep learning are applied on
mini-batch losses: i.e., ALI-G, SGD-HD, SLS, PAL (see Sections 2.8, 2.6.3, and
Chapter 4). In Chapter 4, we approximated an exact line search by estimating
the minimum of the mini-batch loss along lines with a one-dimensional parabolic
approximation. The other approaches perform inexact line searches by estimating
positions of the mini-batch loss along lines, which fulfill specific conditions. Such,
inter alia, are the Goldberg, Armijo, and Wolfe conditions (see Nocedal and Wright
(2006)). For these, convergence on convex stochastic functions can be assured under
the interpolation condition (see Section 2.6.3 and Assumption 1), which holds if the
gradient with respect to each batch converges to zero at the optimum of the convex
function. Under this condition, the convergence rates match those of gradient
descent on the full-batch loss for convex functions (Vaswani et al., 2019). However,
relying on those assumptions and on mini-batch losses only does not lead to robust
optimization, especially not if the gradient noise is high, as will be shown in Section
6.4. In Chapters 4, 5, we even showed that exact line searches on mini-batch losses
are not working at all.

Line searches on the non-stochastic full-batch loss show linear convergence on any
deterministic function that is twice continuously differentiable, has a relative mini-
mum, and only positive eigenvalues of the Hessian at the minimum (see Luenberger
et al. (1984)). In addition, they are independent of gradient noise. Therefore, it
is reasonable to consider line searches on the full-batch loss. However, these are
cost-intensive since a massive amount of mini-batch losses for multiple positions
along a line must be determined to measure the full-batch loss.

Probabilistic Line Search (PLS, see Section 2.6.5) Mahsereci and Hennig (2015)
address this problem by performing GP Regressions, which result in multiple one-
dimensional cubic splines. In addition, a probabilistic belief over the first (aka
Armijo condition) and second Wolfe condition is introduced to find appropriate
update positions. The major drawback of this conceptually appealing method is its
high complexity and slow training speed. A different approach working on the full-
batch loss is GOLSI (see Section 2.6.4) (Kafka and Wilke, 2019). It approximates
a line search on the full-batch loss by considering consecutive noisy directional
derivatives whose noise is considerably smaller than the noise of the mini-batch
losses.

Empirical properties of the loss landscape: In deep learning, loss landscapes
of the true loss (over the whole distribution), the full-batch loss, and the mini-
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batch loss can, in general, be highly non-convex. However, to efficiently perform
a line search, some properties of these losses have to be apparent. Little is known
about such properties from a theoretical perspective; however, several works suggest
that loss landscapes tend to be simple and have some characteristic properties:
(Mutschler and Zell, 2021; Li et al., 2018; Xing et al., 2018; Mutschler and Zell,
2020a; Chae and Wilke, 2019; Mahsereci and Hennig, 2015; Goodfellow and Vinyals,
2015; Fort and Jastrzebski, 2019; Draxler et al., 2018).

Mahsereci and Hennig (2015) suggest, according to our observations, that the
full-batch loss L along lines in negative gradient directions tend to exhibit a simple
shape for a set of deep learning problems. This set includes at least classification
tasks on CIFAR-10, CIFAR-100, and ImageNet. In chapter 5, we sampled the
full-batch loss along the lines in SGD update step directions. This was done for
10,000 consecutive SGD and SGD with momentum update steps of a ResNet18’s,
ResNet20’s and MobileNetv2’s training process on a subset of CIFAR-10. Repre-
sentative plots of their 10,000 measured full-batch losses along lines are presented
in Figure 6.1. Relevant insights and found properties of these works will be intro-
duced and exploited to derive our algorithm in Section 6.3. See also Section 2.9 for
further information.
Using the batch size to tackle gradient noise: Besides decreasing the learning
rate, increasing the batch size remains an important choice to tackle gradient noise.
McCandlish et al. exploits empirical information to predict the largest practical
batch size over datasets and models. De et al. adaptively increases the batch size
over update steps to assure that the negative gradient is a descent direction. Smith
and Le introduces the noise scale (see Section 2.10), which controls the magnitude
of the random fluctuations of consecutive gradients interpreted as a differential
equation. The latter leads to the observation that increasing the batch size has a
similar effect as decreasing the learning rate (Smith et al., 2018), which is exploited
by our algorithm. See Section 2.10 for further information.

6.3 The Approach

6.3.1 Mathematical Foundations
In this subsection, we revise the mathematical background relevant for line searches
and challenges that must be solved in order to perform line searches in deep learning.
This in parts, is a summary of Section 2.6.1 slightly adapted to fit to the current
case.
We consider the problem of minimizing the full-batch loss L, which is the mean
over a large amount of sample losses Ld:

L : Rn→ R, θ 7→ 1
|D|

∑
d∈D

Ld(θ), (6.1)
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where D is a finite dataset and θ are n parameters to optimize. To increase training
speed generally, a mini-batch loss LB, which is a noisy estimate of L, is considered:

LB : Rn→ R, θ 7→ 1
|B|

∑
d∈B⊂D

Ld(θ), (6.2)

with |B| ≪ |D|. We define the mini-batch gradient at step t as gB,t ∈ Rn which is
∇θtLB(θt).

For our approach, we need the full-batch loss along the direction of the negative
normalized gradient of a specific mini-batch loss. At optimization step t with
current parameters θt and a direction defining batch Bt, LB along a line with
origin θt in the negative direction of the normalized batch gradient ĝB,t = gB,t/||gB,t||
is given as:

lB,t : R→ R, s 7→ LB(θt + s ·−ĝBt,t), (6.3)
where s is the step size along the line. The corresponding full-batch loss along the
same line is given by:

lt : R→ R, s 7→ L(θt + s ·−ĝBt,t). (6.4)

Let the step size to the first encountered minimum of lt be smin,t.
Two major challenges have to be solved in order to perform line searches on L:

1. To measure lt exactly, it is required to determine every Ld(θt +s ·−ĝBt,t) for
all d ∈ D and for all step sizes s on a line.

2. To assure convergence line searches have to be performed in a descent direc-
tion (De et al., 2016). The simplest form is the direction of steepest descent
(Luenberger et al., 1984). Therefore, the full-batch gradient ∇θL : Rn →
Rn, θ 7→ 1

|D|
∑

d∈D
∇Ld(θt) has to be approximated.

To be efficient, lt has to be approximated sufficiently well with as little data points
d and steps s as possible, and one has to use as little d as possible to approximate
∇θL approximated sufficiently well. Such approximations are highly dependent on
properties of L. Due to the complex structure of deep neural networks, little is
known about such properties from a theoretical perspective. Thus, we fall back to
empirical properties.

6.3.2 Deriving the Algorithm
In the following, we derive our line search approach on the full-batch loss by itera-
tively exploiting empirically found observations of (Mutschler and Zell, 2021) and
solving the challenges for a line search on the full-batch loss (see Section 6.3.1).
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Given default values are inferred from a detailed hyperparameter analysis (Section
6.4.4)

Observation 1: Minima of lB,t can be at significantly different points than min-
ima of lt and can even lead to update steps, which increase L (Figure 6.2 center,
green and red curve).

Derivation Step 1: This consolidates that line searches on a too low mini-batch
loss are unpromising. Consequently, we concentrate on a better way to approximate
lt.

Observation 2: lt can be approximated with parabolas of positive curvature,
whose fitting errors are of less than 0.6 ·10−2 mean absolute distance (exemplarily
shown in Figure 6.1).

Derivation Step 2: We approximate lt with a parabola (l(s)t ≈ ats
2 + bts + ct

with at > 0). A parabolic approximation needs three measurements of lt. However,
already computing lt for one s only is computationally unfeasible. Assuming i.i.d
sample losses, the standard error of lB,t(s), decreases with 1/

√
|B|. Thus, lB,t -with

a reasonable large batch size- is already a good estimator for the full-batch loss
parabola. Consequently, we approximate lt with lBa,t by averaging over multiple
lBi,t measured over multiple inferences. Thus, the approximation batch size Ba,
is significantly larger than the, by GPU memory limited, possible batch size Bi.
In our experiments, Ba is usually chosen to be 1280, which is 10 times larger
than Bi. In detail, we measure lBa,t at the points s = 0,0.0001 and 0.01, then we
simply infer the parabola’s parameters and the update step to the minimum. These
values of s empirically lead to the best and numerically most stable approximations.
Observation 3: The trend of smin,t of consecutive lt changes slowly and consecutive
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Figure 6.2: Several metrics to compare update step strategies on the full-batch
losses along 10,000 lines measured by Mutschler and Zell (2021): 1. update step
sizes, 2. accumulated loss improvement per step given as: l(0)− l(supd) where supd
is the update step of a specific optimizer. This is the locally optimal improvement
to the minimum of the full-batch loss along a line. The right plot shows almost
proportional behavior between the optimal update step and the negative gradient
norm of the direction defining mini-batch loss. The LABPAL&SGD version of our
approach performs almost optimal on ground truth data. Results LABPAL&NSGD
are almost identical and thus omitted.
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lt do not change locally significantly. (Figure 6.2 left, red curve).
Observation 4: smin,t and the direction defining batch’s ||gBt,t|| are almost

proportional during training. (Figure 6.2 right).
Derivation Step 3: Using measurements of lBa,t to approximate lt with a

parabola is by far too slow to compete against SGD if done for each weight up-
date. By exploiting Observation 3 we can approximate lt after a constant amount
of steps and reuse the measured learning rate λ or update step size supd for subse-
quent steps. In this case, λ is a factor multiplied by gB,t, whereas supd is a factor
multiplied by ĝB,t. Consequently, with λ we perform a step in gradient direction
(as SGD also does), whereas, with supd we perform a step in normalized gradient
direction, ignoring the norm of the gradient. Observation 4 allows us to reuse λ. In
our experiments, it is sufficient to measure a new λ or supd every 1000 steps only.

Derivation Step 4: So far, we can approximate lt efficiently and, thus, overcome
the first challenge (see Section 6.3.1). Now, we will overcome the second challenge;
approximating the full batch loss gradient for each weight update step:

For this, we revisit (Smith et al., 2018) who approximates the magnitude of
random gradient fluctuations, that appear if training with a mini-batch gradient,
by the noise scale ν ∈ R:

ν ≈ (λ|D|)/|B|, (6.5)
where λ is the learning rate, |D| the dataset size and |B| the batch size. If the
random gradient fluctuations are reduced, the approximation of the gradient gets
better. Since we want to estimate the learning rate automatically, the only tunable
parameter to reduce the noise scale is the batch size.

Observation 5: The variance of consecutive smin,t is low, however, it increases
continuously during training (Figure 6.2 left, red curve).

Derivation Step 5: It stands to reason that the latter happens because the
random gradient fluctuations increase. Consequently, during training, we increase
the batch size for weight updates by iteratively sampling a larger batch with mul-
tiple inferences. This reduces the variance of consecutive smin,t and lets us reuse
estimated the λ or supd for more steps. After experiencing unusable results with
the approach of (De et al., 2016) to determine appropriate batch sizes, we stick to
a simple piece-wise constant batch size schedule, doubling the batch size after two
and after three-quarters of the training.

Observation 6: On a global perspective an supd that overestimates smin,t opti-
mizes and generalizes better.

Derivation Step 6: Thus, after estimating λ (or smin) we multiply it with a
factor α ∈]1,2[:

λnew = αλ = αsmin,t/||gB,t|| or supd = αsmin,t. (6.6)

Note that under our parabolic property, the first Wolfe condition w1, which is

93



Chapter 6 Large Batch Parabolic Approximation Line Search

commonly used for line searches, simply relates to α: w1 =−α
2 +1: Let f : R→R

be of form x 7→ ay2 + by + c. We start with the first Wolfe condition (a.k.a. Armijo
condition, sufficient decrease condition):

f(x0 +y)≤ f(x0)−y∇f(x0)w1 in our case x0 = 0,w1 wolfe constant
f(y)≤ f(0)+ybw1

ay2 + by + c≤ c+ybw1 use quadratic shape,∇f(x0) = b

ay2 + by−ybw1
!= 0

ay2 + by

by
= ay

b
+1 = w1

−α

2 +1 = w1 set y = α
−b

2a
,α ∈ [1,2)

−2w1 +2 = α
(6.7)

Combining all derivations leads to our line search named Large-Batch Parabolic
Approximation Line Search (LABPAL), which is given in Algorithm 9. It samples
the desired batch size over multiple inferences to perform a close approximation of
the full-batch loss and then reuses the estimated learning rate to train with SGD
(LABPAL&SGD), or it reuses the update step to train with SGD with a normal-
ized gradient (LABPAL&NSGD). While LABPAL&SGD elaborates Observation 4,
LABPAL&NSGD completely ignores information from ||gB,t||.
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Algorithm 9 LABPAL&SGD. Simplified conceptional pseudo-code of our proposed algorithm,
which estimates update steps on a parabolic approximation of the full-batch loss. See the published
source code for technical details. Default values are given in parentheses. For LABPAL&NSGD
SGD is replaced with Normalized SGD (NSGD), and the update step is measured instead of the
learning rate. PyTorch code is provided at https://github.com/cogsys-tuebingen/LABPAL.
Input: Hyperparameters:

- initial parameters θ0
- approximation batch size |Ba| (1280)
- inference batch size |Bi| (128)
- SGD steps nSGD (1000), # or NSGD steps
- step size adaptation α > 1 (1.8)
- training steps tmax(150000)

- batch size schedule k(t) =

1, if t≤ ⌊tmax ·0.5⌋
2, elif t≤ ⌊tmax ·0.75⌋
4, elif t > ⌊tmax ·0.75⌋

1: # Variables have global scope
2: sampledBatchSize ← 0
3: performedSGDsteps ← 0
4: learningRate ← 0
5: θ← θ0
6: state ← ’line search’
7: direction ← current batch gradient
8: t← 0
9: while t < tmax do

10: if state is ’line search’ then
11: perform line search step()
12: end if
13: if state is ’SGDTraining’ then
14: perfrom large batch sgd step()
15: end if
16: end while
17: return θ
18:
19: procedure perform line search step()
20: if sampledBatchSize < |Ba| then
21: update estimate L̂ of L with

over multiple inferences sampled LBt,t with
|Bt|= k(t) · |Bi|

22: increase sampledBatchSize by |Bt| and t by k(t)
23: else
24: learningRate ← perform parabolic approximation with 3 values of L̂ along the search direction and

estimate the learning rate.
25: learningRate ← learningRate ·α
26: set sampledBatchSize and performedSGDsteps to 0
27: state ← ’SGDTraining’
28: end if
29: end procedure
30:
31: procedure perfrom large batch sgd step()
32: if performedSGDsteps < nSGD then
33: θ ← perform SGD update with learningRate and over multiple inferences sampled LBt,t

with |Bt|= k(t) · |Bi|)
34: increase t by k(t)
35: increase performedSGDsteps by 1
36: else
37: direction ← current batch gradient
38: state ← ’line search’
39: end if
40: end procedure
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6.4 Empirical Analysis

Our two approaches are compared against other line search methods across sev-
eral datasets and networks in the following. To reasonably compare different
line search methods, we define a step as the sampling of a new batch.
Consequently, the steps/batches that LABPAL takes to estimate a new learning
rate/step size are considered, and optimization processes are compared on their
data efficiency.
Note that the base ideas of the introduced line search approaches can be applied
upon any direction giving technique such as momentum, Adagrad (Duchi et al.,
2011) or ADAM (Kingma and Ba, 2015). Results are averaged over 3 runs.

6.4.1 Performance Analysis on ground truth full-batch
Loss and Proof of Concept

To analyze how well our approach approximates the full-batch loss along lines, we
extend the experiments of Chapter 5 by LABPAL. In Chapter 5 we measured the
full-batch loss along lines in SGD update step directions of a training process; thus,
this data provides ground truth to test how well the approach approximates the
full-batch loss. In this scenario, LABPAL&SGD uses the full-batch size to estimate
the learning rate and reuses it for 100 steps. No update step adaptation is applied.
Figure 6.2 shows that LABPAL&SGD fits the update step sizes to the minimum of
the full-batch loss and performs near-optimal local improvement. The same holds
for LABPAL&NSGD.
We now test how our approaches perform in a scenario for which we can assure
that the used empirical observations hold. Therefore, we consider the optimization
problem of Chapter 5 from which all empirical observations were inferred, which is
training a ResNet20 on 8% of CIFAR10. Ba of 1280 is used for both approaches.
Learning rates are reused for 100 steps, and α = 1.8 is considered. The batch size
is doubled after 5000 and 7500 steps. For SGD λ is halved after the same steps.
A grid search for the best λ is performed. Figure 6.3 shows that LABPAL&NSGD
with update step adaptation outperforms SGD, even though 9% of the training
steps are used to estimate new update step sizes. This shows that using the esti-
mated learning rates and step sizes leads to better performance than keeping them
constant or decaying them with a piece-wise schedule. Interestingly huge λ’s of
up to 80,000 are estimated, whereas supd ’s are decreasing. LABPAL&SGD shows
similar performance as SGD; however, it seems beneficial to ignore gradient size
information as the better performance of LABPAL&NSGD shows.
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Figure 6.3: Training process on the problem of which the empirical observations
were inferred (ResNet-20 trained on 8% of CIFAR-10 with SGD). LABPAL&NSGD
and LABPAL&SGD outperform SGD. Interestingly LABPAL&NSGD estimated
huge λ’s, whereas supd’s are decreasing

6.4.2 Performance Comparison to SGD and to other Line
Search Approaches

We compare the SGD and NSGD variants of our approach against PLS (Mahsereci
and Hennig, 2015), GOLSI (Kafka and Wilke, 2019), PAL (Mutschler and Zell,
2020a), SLS (Vaswani et al., 2019) and SGD with momentum (Robbins and Monro,
1951). The latter is a commonly used optimizer for deep learning problems and
can be reinterpreted as a parabolic approximation line search on mini-batch losses
(Mutschler and Zell, 2021). PLS is of interest since it approximates the full-batch
loss to perform line searches. PAL, GOLSI, SLS on the other hand are line searches
optimizing on mini-batch losses directly. For SGD with momentum, a piece-wise
constant learning rate schedule divides the learning rate after two and again after
three-quarters of the training by a factor of 10.

Comparison is done across several datasets and models. Specifically, we compare
ResNet-20 (He et al., 2016), DenseNet-40 (Huang et al., 2017), and MobileNetV2
(Sandler et al., 2018) trained on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009),
and SVHN (Netzer et al., 2011). We concentrate on classification problems since
the empirical observations are inferred from a classification task and since those
problems are usually considered as benchmarks for new optimization approaches.

For each optimizer, we perform a comprehensive hyperparameter grid search
on ResNet-20 trained on CIFAR-10 (see Appendix C.4.1). The best performing
hyperparameters on the validation set are then reused for all other experiments.
The latter is done to check the robustness of the optimizer by handling all other
datasets as if they were unknown. This is usually the case in practice, since for
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Figure 6.4: Performance comparison on CIFAR-10 of our approach LABPAL
in the SGD and NSGD variants against several line searches and SGD with mo-
mentum. Optimal hyperparameters are found with an elaborate grid search. Our
approaches challenge and sometimes outperform the other approaches on training
loss, validation, and test accuracy. Columns indicate different models. Rows indi-
cate different metrics.
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Figure 6.5: Performance comparison on CIFAR-100 of our approach LABPAL in
the SGD and NSGD variants against several line searches and SGD with Momen-
tum. Optimal hyperparameters for CIFAR-10 ResNet-20 found with a grid search
are reused (Appendix C.4.1). Here, our approaches surpass the other approaches
on training loss, validation, and test accuracy. Columns indicate different models.
Rows indicate different metrics. Results for CIFAR-10 and SVHN are given in ap-
pendix Figures 6.4, and C.1. The batch-size used is 128. Due to a too high memory
consumption we could not run PLS on MobileNet-V2.

99



Chapter 6 Large Batch Parabolic Approximation Line Search

specific datasets no optimal hyperparameters are known beforehand. Our aim here
is to show that satisfactory results can be achieved on new problems without any
fine-tuning needed. Further experimental details are found in Appendix C.4.

Figure 6.5 as well as Figures 6.4, C.1 show that both LABPAL approaches outper-
form PLS, GOLSI and PAL considering training loss, validation accuracy, and test
accuracy. LABPAL&NSGD tends to perform more robust and better than LAB-
PAL&SGD. LABPAL&NSGD is on pair with SGD with momentum and challenges
SLS on validation and test accuracy. The important result is that hyperparameter
tuning for LABPAL is not needed to achieve good results across several models and
datasets. However, this is also true for pure SGD, which suggests that the simple
rule of performing a step size proportional to the norm of the momentum term
is sufficient to implement a well-performing line search. This also strengthens the
observation of (Mutschler and Zell, 2021), which states that SGD, with the correct
learning rate, is already performing an almost optimal line search.

The derived learning rate schedules of the LABPAL approaches are significantly
different from a piece-wise constant schedule (Figure 6.5, 6.4, C.1 first row). In-
terestingly they show a strong warm up (increasing) phase at the beginning of the
training followed by a rather constant phase which can show minor learning rate
changes with an increasing trend. The NSGD variant sometimes shows a second
increasing phase, when the batch size is changed. The warm up phase is often seen
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Figure 6.6: Left: Training time comparison on CIFAR-10. SGD, SLS, and PAL
show similar training times. GOLSI, and both variants of LABPAL are slightly
slower (up to 19.6%). However, a slightly longer training time is acceptable if less
time has to be spent in hyperparameter tuning. PLS is significantly slower. Note
that in comparison to SGD, the implementations of the other optimizers are not
optimized at CUDA level. Right: Maximum allocated memory comparison on
CIFAR-10. Except for PLS all approaches need approximately the same amount of
memory.
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in sophisticated learning rate schedules for SGD; however, usually combined with
a cool down phase. The latter is not apparent for LABPAL since we increase the
batch size. LABPAL&NSGD indirectly uses learning rates of up to 106 but still
trains robustly. Of further interest is that all line search approaches do not decrease
the learning rate at the end of the training as significantly as SGD, which hinders
the line searches to converge.

A comparison of training speed and memory consumption is given in Figure 6.6.
In short, LABPAL has identical GPU memory consumption as SGD and is on
average only 19.6% slower. However, for SGD usually a grid search is needed to
find a good λ, which makes LABPAL considerably cheaper.

6.4.3 Adaptation to Varying Gradient Noise
Recent literature, e.g., (Mutschler and Zell, 2020a), (Vaswani et al., 2019), (Kafka
and Wilke, 2019) shows that line searches work with a relatively large batch size of
128 and a training set size of approximately 40000 on CIFAR-10. However, a major,
yet not comprehensively considered problem is that line searches operating on the
mini-batch loss vary their behavior with another batch- and training set size leading
to varying gradient noise. E.g., Figure 6.7 shows that training with PAL, GOLSI
or PLS and a batch size of 8 on CIFAR-10 does not work at all. The reason is that
the gradient noise induced by mini-batches, and with it the difference between the
full-batch loss and the mini-batch loss, increases. However, we can adapt LABPAL
to work in these scenarios by holding the noise scale approximately at the same
value as it was for the hyperparameter grid search. As the learning rate is inferred
directly, the batch size has to be adapted. Based on the linear approximation of
the noise scale (see Equation 6.5), we directly estimate a noise adaptation factor
ϵ ∈ R to adapt LABPAL’s hyperparameter:

ϵ := νnew
νori

= |Bori|
|Bnew|

|Dnew|
|Dori|

= 128
|Bnew|

|Dnew|
40,000 . (6.8)

The original batch size |Bori| and the original dataset size |Dori| originate from our
search for best-performing hyperparameters on CIFAR-10 with a training set size
of 40,000, a batch size of 128, and 150,000 training steps. We set the number of
training steps to 150,000ϵ and multiply the batch sizes in the batch size schedule
k by ϵ. This rule makes the approach fully parameter free in practice (at least for
the image classification scenario), since hyperparameters do not have to be adapted
across models, batch sizes and datasets. Figure 6.7 shows a performance comparison
over different batch sizes. Hyperparameters are not changed. By changing the batch
size the noise adaptation factor of the LABPAL approaches gets adapted, which
lets them still perform well with low batch sizes since they iteratively sample larger
batch sizes over multiple inferences. The performance of PLS, PAL and GOLSI
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Figure 6.7: Performance comparison of a DenseNet-121, trained on CIFAR-10
for batch sizes 128, 32 and 8. Hyperparameters are not changed. (For the
evaluation on ResNet-20 and MobileNet-V2 see Appendix Figure C.2 & C.3). PLS
curves are incomplete since training failed. Training steps are increased by a factor
of 4 and 16 for batch size 32 and 8, respectively.

decreases with lower batch size. SLS’s performance stays similar but its learning
rate schedule degenerates. For the evaluation on ResNet-20 and MobileNet-V2 see
Appendix Figure C.2 & C.3. We note that this batch size adaptation approach to
keep the noise scale on a similar level could also be applied to all other line searches,
however this will exceed the scope of this work.

6.4.4 Hyperparameter Sensitivity Analysis
We performed a detailed hyperparameter sensitivity analysis for LABPAL&SGD
and LABPAL&NSGD. To keep the calculation cost feasible, we investigated the
influence of each hyperparameter, keeping all other hyperparameters fixed to the
default values (see Algorithm 9). Figure 6.8 and 6.9 show the following characteris-
tics: Estimating new supd or λ with Ba smaller than 640 decreases the performance
since lt is not fitted well enough (row 1). The performance also decreases if reusing
the λ (or supd) for more update steps (row 2), and if using a step size adaptation
α of less than 1.8 (row 3, except for ResNet). This shows that optimizing for the
locally optimal minimum in line direction only is not beneficial. From a global
perspective, a slight decrease of the loss by performing steps to the other side of
the parabola shows more promise. Interestingly, even using α larger than two still
leads to good results. (Mutschler and Zell, 2021) showed that the loss valley in line
direction becomes wider during training.

This might be a reason why these update steps, which should actually increase
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Figure 6.8: Sensitivity analysis of LABPAL&SGD’s parameters. The default
parameters are: approximation batch size Ba = 1280, SGD steps s = 1000, step size
adaptation α = 1.8, batch size schedule k = (0:1, 75000:2, 112500:4), momentum
β = 0, maximal step size = 1.0, noise-factor ϵ = 1. For the approximation batch
size (row one) the factor 128 is multiplied on the x axis. Results on DenseNet-121
are given in Appendix C.4.2.

the loss, work. Using a maximal step size of less than 1.5 (row 7) and increasing
the noise adaptation factor ϵ (row 9) while keeping the batch size constant also
decreases the performance. The latter indicates that the inherent noise of SGD is
essential for optimization. Further, we conclude that a momentum factor between
0.4 and 0.6 increases the performance for both LABPAL approaches (row 5).
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Figure 6.9: Sensitivity analysis of parameters of LABPAL&NSGD. The default
parameters are: approximation batch size Ba = 1280, SGD steps s = 1000, step size
adaptation α = 1.8, batch size schedule k = (0:1, 75000:2, 112500:4), momentum
β = 0, maximal step size = 1.0, noise-factor ϵ = 1. For the approximation batch
size (row one) the factor 128 is multiplied on the x axis. Results on DenseNet-121
are given in Appendix C.4.2.
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6.5 Limitations
Our approach can only work if the empirically found properties we rely on are
apparent, or are still a well enough approximation. In Section 6.4.2 we showed that
this is valid for classification tasks. In additional sample experiments, we observed
that our approach also works on regression tasks using the square loss. However, it
tends to fail if different kinds of losses from significantly different heads of a model
are added, as it is often the case for object detection and object segmentation.

A theoretical analysis is absent, since the optimization field still does not know the
reason for the local parabolic behavior of lt, and consequently, what an appropriate
function space to consider for convergence is.

6.6 Discussion & Outlook
This work introduced a robust line search approach for deep learning problems
based upon empirically found properties of the full-batch loss. Our approach es-
timates learning rates well across models, datasets, and batch sizes. It mostly
surpasses other line search approaches and challenges SGD with momentum tuned
with a piece-wise constant learning rate schedule. We are the first to analyze and
adapt line searches to varying gradient noise. Furthermore, we show that mini-
batch gradient norm information is not necessary for training. In the future, we
will analyze the causes for the local parabolic behavior of the full-batch loss along
lines to provide further insights about DNN loss landscapes and, in particular, to
understand when specific optimization approaches work.

107





Chapter 7

Overall Conclusion

7.1 Summary
With this dissertation, we have taken the sub-field of line searches in deep learning
a step forward. In particular, we improved the understanding of the stochastic loss
landscape for deep learning image classification tasks and developed line search
approaches that rival or outperform previous approaches. We did this by following
an empirical perspective, rarely found in the more theoretical field of optimization
for deep learning. Thus, another general contribution of this work is that it justifies
and demonstrates the importance of empirical work in this rather theoretical field.

In Chapter 4 we showed -based on (Mutschler and Zell, 2020a)- that parabolic
approximation line searches, which are well known in the non-stochastic setting (see
(Nocedal and Wright, 2006)), are applicable in typical deep learning classification
scenarios. Specifically, we demonstrated with a comprehensive analysis of mini-
batch losses along lines in negative gradient direction that mini-batch losses along
such lines behave locally parabolic. Further, we have shown that PAL competes
with other line search approaches designed for the stochastic scenario and proved
its convergence on quadratics. Especially in the interpolation scenario, PAL excels.

In Chapter 5 -based on (Mutschler and Zell, 2021)- we introduced a compre-
hensive analysis of the full-batch loss along lines in mini-batch gradient direction,
leading to several insights that explain the shape of the loss-landscape and the per-
formance of optimizers on a more comprehensive level. The key observations here
are:
(1) With a suitable learning rate, SGD already performs a near-exact line search,
making it for other approaches hard to compete against SGD.
(2) The effect of halving the learning rate is almost identical to doubling the batch
size and can be simply explained by our measured data.
(3) Update steps to the minimum of the full-batch loss along lines change slowly,
which allows reusing estimated update steps over longer periods.
(4) Taking an update step that overshoots the minimum, resulting in a locally lower
loss decrease, leads to better global optimization performance.

In Chapter 6 -based on (Mutschler et al., 2021)- we exploited the observations
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derived in Chapter 5 to design a line search approach that outperforms previous line
search approaches and performs on par with SGD with momentum. In addition,
it is the first line search in the stochastic scenario that performs well, even when
training with small batch sizes such as 32 or 8.

7.2 Outlook
This work focused on optimization for image classification tasks, which are stan-
dard benchmarking tasks mostly considered in optimization for deep learning (see
(Kingma and Ba, 2015; Duchi et al., 2011; Vaswani et al., 2019; Berrada et al.,
2020)). However, little is known about the extent to which our observations hold
and our algorithms perform in other deep learning sub-fields such as image syn-
thesis, natural language processing, or reinforcement learning. Therefore, further
empirical studies should be conducted to validate whether our observations general-
ize and optimizers work on such sub-fields. And if not, whether other observations
can be found that lead to better-performing algorithms and a more comprehensive
understanding of the loss landscape in such sub-fields.

Of further interest is how line searches perform in combination with other opti-
mization methods. In particular, line searches applied on the directions given by
sophisticated adaptive methods such as ADAM (Kingma and Ba, 2015), AdaGrad
(Duchi et al., 2011), RMSProp (Tieleman and Hinton, 2012), or Nero (Liu et al.,
2021) should be considered, as these approaches already show good performance in
many domains.

The empirical study we presented in Chapter 5 was limited to SGD, SGD with
momentum (Robbins and Monro, 1951), and PAL (Mutschler and Zell, 2020a). It
is of great interest to analyze how the loss landscape behaves in other directions,
for example, directions used by the adaptive methods mentioned above, and how
these methods behave along lines in such directions.

All in all, we hope that our empirical findings will pave the way for further
theoretical and also empirical insights.

Finally, we hope that in the future, the field will pay more attention to em-
pirical studies that lead to a more comprehensive understanding of why and how
optimization methods work in practice. This comprehensive understanding is of
great importance because it guides optimizers to unbiased, well-generalizing, and
well-performing minimizers.
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Appendix A

Parabolic Approximation Line
Search

A.1 Further Line Plots

Figure A.1: DenseNet40 mini-batch losses along in negative gradient direction
(blue) combined with our parabolic approximation (orange) and the position of the
minimum (red). The unit of the horizontal axis is the change of θ.
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Figure A.2: Mini-batch losses along lines of MobileNetV2. For explanations see
Figure A.1. During training the parabolic approximation fits less accurately on the
right hand side and during the first 150 steps it does not fit at all, however, the
minimum of the parabola is still a good estimator for a low loss value on the line.
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Figure A.3: Mini-batch losses along lines of EfficientNet. For explanations see
Figure A.1. The parabolic approximation fits only on the left hand side and during
the first 150 steps it does not fit at all, however, the minimum of the parabola is
still a good estimator for a low loss value on the line.
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A.1.1 Proofs
Lemma 1. Let f : Rn→ R be a k-times continuously differentiable function. Fur-
thermore, assume there exists a,b,c∈R with a > 0, such that f(p+ds) = as2 +bs+c
for all s∈R. Then there exist z ∈R,r ∈Rn and a positive definite Matrix Q∈Rn×n

such that f(x) = c+rT x+xT Qx for all x ∈ Rn.

Proof.

g(x) = u+vT x+xT W x for some u ∈ R,v ∈ Rn and W ∈ Rn×n

⇔∀p,d ∈ Rn∧||d||= 1 :
n∑

j=1

n∑
k=1

n∑
l=1

∂3g(p)
∂xj ,∂xk,∂xl

djdkdl = 0 (A.1)

⇒ holds since we have a polynomial of degree 2 and its third derivative is always
a 0 tensor.
⇐ holds since the reminder of the quadratic Taylor expansion is always 0.
In our case the right part is 0 since:

n∑
j=1

n∑
k=1

n∑
l=1

∂3f(p)
∂xj ,∂xk,∂xl

djdkdl = ∂

∂s3 f(p+ds) = 0 (A.2)

In words: f(x) is a parabolic function if and only if for each location p the third
directional derivative of f(p) in each direction d is 0. Which is the case, since the
third derivative of each intersection is 0.
W is positive definite since:

∀d,p ∈ Rn∧||d||= 1 : dT W d = 1
2dT H(p)d = 1

2
∂

∂s2 f(p+ds) = a > 0 (A.3)

where H is the Hessian.

Proposition 1. PAL converges on f :Rn→R,x 7→ c+rT x+xT Qx with Q∈Rn×n

hermitian and positive definite.

Proof.
For this prove we consider a basic PAL without the features introduced in Section
4.4.3. Note that along the proof we will see, that a > 0 and b < 0. Thus, only the
update step for this case has to be considered (see Section 4.4.2.

f(x) is convex since Q is positive definite. Thus, it has one minimum.
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Without loss of generality we set c = 0,r = 0,xn ̸= 0

f(x) = xT Qx and ∇xf(x) = f ′(x) = 2Qx (A.4)

The values of f(x) along a line through x in the direction of −f ′(x) are given by:

f(−f ′(x)ŝ+x) (A.5)

Now we expand the line function:

f(−f ′(x)ŝ+x) = f(−2Qxŝ+x)
= (−2Qxŝ+x)T Q(−2Qxŝ+x)
= 4xT Q3x︸ ︷︷ ︸

=:a
ŝ2 +−4xT Q2x︸ ︷︷ ︸

=:b

ŝ+xT Qx︸ ︷︷ ︸
=:c

(A.6)

Here we see that f(ŝ) is indeed a parabolic function with a > 0, b < 0 and c > 0
since Q3, Q2 and Q are positive definite.
The location of the minimum smin of f(ŝ) is given by:

ŝmin = arg min
ŝ

f(−f ′(x)ŝ+x) =− b

2a
(A.7)

PAL determines ŝmin exactly with ŝmin = supd
||f ′(x)|| (see equation 1 and 2). ||f ′(x)||> 0

since otherwise we are already in the minimum.
The value at the minimum is given by:

f(ŝmin) = a(−b

2a
)2 + b(−b

2a
)+ c =− b2

4a
+ c =− (−xT Q2x)2

xT Q3x︸ ︷︷ ︸
=:g(x)

+xT Qx =−g(x)+f(x)

(A.8)
Since Q2 and Q3 are positive definite and x ̸= 0:

g(x) > 0 (A.9)

Now we consider the sequence f(xn), with xn defined by PAL (see Equation 1):

xn+1 =− f ′(xn)
||f ′(xn)|| ŝupd +xn =−f ′(xn)ŝmin +xn (A.10)

It is easily seen by induction that:

0 < f(xn+1) < f(xn) =
n−1∑
i=0
−g(xi)+f(x0) < f(x0). (A.11)
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g(xn) converges to 0 since ∀n : g(xn) > 0 and
n−1∑
i=0
−g(xi) is bounded.

Now we have to show that xn converges to 0.
We have:

g(xn) = (xT
n Q2xn)2

xT
n Q3xn

= ⟨xn,Q2xn⟩2
⟨xn,Q3xn⟩

(A.12)

We use the theorem of Courant-Fischer:

⟨x,x⟩min{λ1, . . . ,λn} ≤ ⟨x,Ax⟩ ≤ ⟨x,x⟩max{λ1, . . . ,λn}
for any symmetric A ∈ Rn×n with λ1, . . . ,λn

(A.13)

And get:

g(xn)≥
λ2

Q2 min⟨xn,xn⟩2

λQ3 max⟨xn,xn⟩
= C
||xn||4
||xn||2

= C||xn||2 (A.14)

with

C =
λ2

Q2 min
λQ3 max

> 0 since all λ of the positive definite Q are positive (A.15)

Thus, we have:
g(xn)≥ C||xn||2 ≥ 0 (A.16)

Since g(xn) converges to 0, C||xn||2 converges to 0.
This means, xn converges to 0, which is the location of the minimum.

Proposition 3. If L(θ) : Rn→ R θ 7→ L(θ) = 1
m

∑m
i=1 ci + rT

i θ + θT Qiθ and ci +
rT

i θ +θT Qiθ = LBi(θ) with m being the number of batches Bi. (Each batch defines
a parabola. The empirical loss L(θ) is the mean of these parabolas). And for all
i, j ∈N it holds that Qi = Qj and that Qi is positive definite. Then arg min

θ
L(θ) =

1
m

∑m
i=1 arg min

θ
LBi(θ) holds.

Proof.
Since L(θ) is a sum of convex functions, it is also convex and has one minimum.
At first we determine the derivative of L(θ) with respect to θ:

∂

∂θ
L(θ) = 1

m

m∑
i=1

(ri +2Qiθ) = 2Qθ + 1
m

m∑
i=1

ri (A.17)
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Then we determine the minima:

arg min
θ

L(θ)⇔ ∂

∂θ
L(θ)=0⇔ θ =−1

2(
m∑

i=1
Qi)−1

m∑
i=1

ri =− 1
2m

Q−1
m∑

i=1
ri (A.18)

arg min
θ

LBi(θ) =−1
2Q−1ri (A.19)

Thus, we get:

arg min
θ

L(θ) =− 1
2m

Q−1
m∑

i=1
ri = 1

m

m∑
i=1
−1

2Q−1ri = 1
m

m∑
i=1

arg min
θ

LBi(θ) (A.20)
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A.2 Further Experimental Results

Figure A.4: Comparison of PAL to SGD, SLS, ADAM, RMSProp on training loss,
validation accuracy and learning rates on ImageNet, and a simple RNN, trained on
the Tolstoi War and Peace dataset. Learning rates are averaged over epochs. For
ImageNet the best hyperparameter configuration from the CIFAR-100 evaluation
were used to test hyperparameter transferability.

A.2.1 SLS ResNet34 Test Case Re-Implementation
In the conducted experiments and in contrast to the evaluation of SLS in (Vaswani
et al., 2019), we used TensorFlow default Xavier weight initialization (Glorot and
Bengio, 2010) versus PyTorch default Lecun initialization (LeCun et al., 2012). In
addition, we used L2 regularisation versus no regularization. Furthermore, default
implementations of networks for both frameworks have small differences. All in all,
those differences usually influence the optimizer performance only marginally, as
given by the fact that all other investigated optimizers perform well. However, in
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this case of SLS we see significant differences.
To prove that our implementation of SLS is correct, we re-implemented (Vaswani
et al., 2019)’s ResNet34 test case on CIFAR-10 in TensorFlow and achieved sim-
ilar results as (Vaswani et al., 2019). SLS shows good performance and is not
significantly overfitting as it does in Section 4.5.2.
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Figure A.5: On the re-implemented ResNet34 test case of (Vaswani et al., 2019)
SLS shows good performance and is not significantly overfitting as it does in Section
4.5.2

A.2.2 Sensitivity Analysis:
All in all, PAL tends to have a low hyperparameter sensitivity as shown in Figure
A.6. Since µ is the most sensitive hyperparameter we analyzed its sensitivity over
several further models trained on CIFAR-10 (see Figure A.7). After analyzing the
best hyperparameter combinations of PAL over all experiments, we suggest to use
values from the following parameter intervals: µ = [0.1,1], α = [1.0,1.6], β = [0,0.4],
smax = 3. Where α,β and smax usually have a low sensitivity.
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Figure A.6: Sensitivity analysis for PAL on a ResNet32 trained on CIFAR-10.
The baseline parameters are: µ = 0.1,β = 0.2,α = 1.0, smax = 10. It shows that β
should be chosen ≤ 0.6. α has a low sensitivity, but with a value of 1.4 it reaches
best performance. smax has a low sensitivity and all investigated values perform
similarly. µ should be chosen between 10−2 and 10−0.5.

10−3 10−2 10−1 1000
0.2
0.4
0.6
0.8

1

measuring step size µ

va
l.

ac
cu

ra
cy

ResNet
DenseNet
MobileNet

EfficientNet

Figure A.7: Sensitivity of PAL’s the measuring step size µ for several models on
CIFAR-10. PAL shows low sensitivity.
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A.2.3 Further Experimental Design Details
Training Procedure

On CIFAR-10 and CIFAR-100 we trained 150k steps. On ImageNet each network
was trained for 500k steps. We performed a piecewise constant learning rate decay
by dividing the learning rate by 10 at 50% and 75% of the steps.
The training set to evaluation set split was 45k to 15k for CIFAR-10 and CIFAR-
100. At the time of writing, the default TensorFlow classes did not support the
reuse of the same randomly sampled numbers for multiple inferences, therefore, we
implemented and used our own Dropout (Srivastava et al., 2014) layer.
To get a fair comparison of the optimizers capabilities, we compared the training
loss, the validation accuracy and the test accuracy metrics. For all metrics we
provided the median and the quartiles to analyze the hyperparameter sensitivity.
For each hyperparameter combination we averaged our results over 3 runs using
the seeds 1, 2 and 3 for reproducibility. All in all, we trained over 4500 networks
with TensorFlow 1.15 (Abadi et al., 2016) on Nvidia Geforce GTX 1080 TI graphic
cards.

Data Augmentation

On CIFAR-10 we performed the following augmentations (He et al., 2016):
4 pixel padding and cropping, horizontal image flipping with probability 0.5.
On ImageNet we applied an initial random crop to 224x224 pixels. In addition, we
applied lighting as described in (Krizhevsky et al., 2012). For CIFAR-10, CIFAR-
100 all images were normalized by channel-wise mean and variance. For the Tolstoi
War and Peace dataset we omitted augmentation.
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Hyperparameter grid search

For our evaluation we used all combinations out of the following commonly used
hyperparameters. The batch size is 128 except for DenseNets trained with ALIG,
SGDHD and COCOB for which we encountered memory overflows and had to re-
duce the batch size to 100. Weight decay is always 10−4.
On ImageNet, such a comprehensive grid search was not possible. In this case we
compared with the best hyperparameter combinations found on CIFAR-100.

ADAM :
hyperparameter symbol values
learning rate λ {1,0.1,0.01,0.001,0.0001}
first momentum β1 {0.9,0.95}
second momentum β2 {0.999}
epsilon ϵ {1e−8}

We did not vary the first or second momentum much since (Kingma and Ba, 2015)
states that the values chosen are already good defaults.

SGD:
hyperparameter symbol values
learning rate λ {0.1,0.01,0.001,0.0001}
momentum α {0.85,0.9,0.95}

RMSProp:
hyperparameter symbol values
learning rate λ {0.1,0.01,0.001,0.0001}
discounting factor f {0.9,0.95}
epsilon ϵ {1e−8}

PAL:
hyperparameter symbol values
measuring step size µ {100,10−0.5,10−0.1,10−0.15}
direction adaptation factor β {0,0.4}
update step adaptation α {1, 1

0.8}
maximum step size smax {100.5(≈ 3.16)}

In our implementation we worked with a inverse update step adaptation γ = 1
α .
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SLS :
hyperparameter symbol values
initial step size µ {0.1,1}
step size decay β {0.9,0.99}
step size reset γ {2.0,2.5}
Armijo constant c {0.1,0.01}
maximum step size µmax {10.0}

ALIG:
hyperparameter symbol values
maximal learning rate λ {10,1.0,0.1,0.01}
momentum β {0.85,0.9,0.95}

COCOB:
hyperparameter symbol values
restriction factor α {25,50,75,100,125,150,175,200}

SGDHD:
hyperparameter symbol values
learning rate λ {0.1,0.01,0.001}
hyper gradient learning rate β {0.1,0.01,0.001,0.0001}
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A.2.4 Detailed Numerical Results

Table A.1: Performance comparison of PAL, RMSProp, ADAM, COCOB, SGDHD,
ALIG and SGD. All hyperparameter combinations given in Appendix A.2.3 were
evaluated for each architecture. Results were averaged over three runs starting from
different random seeds, except for training on ImageNet, for which results were not
averaged. Note that tests on ImageNet were performed with the best hyperparam-
eters found on CIFAR-100 to test the transferability of hyperparameters. Medians
and quartiles describe the distribution of results over reasonable hyperparameter
ranges.

dataset network optimizer training loss validation accuracy test accuracy
min median; p25; p75 max median; p25; p75 max median; p25; p75

CIFAR-10 EfficientNet COCOB 0.659 0.824; 0.739; 0.855 0.857 0.837; 0.832; 0.845 0.843 0.824; 0.818; 0.832
ALIG 0.279 0.89; 0.464; 1.911 0.906 0.805; 0.451; 0.895 0.893 0.757; 0.297; 0.878
SGDHD 2.002 6.239; 4.357; 7.803 0.834 0.657; 0.18; 0.74 0.828 0.647; 0.179; 0.731
SLS 2.837 5.596; 4.681; 6.292 0.653 0.357; 0.211; 0.443 0.643 0.357; 0.216; 0.442
RMSP 0.154 0.637; 0.333; 1.261 0.93 0.864; 0.658; 0.902 0.919 0.854; 0.648; 0.889
ADAM 0.155 0.818; 0.292; 2.275 0.926 0.841; 0.211; 0.907 0.919 0.83; 0.1; 0.896
SGD 0.165 2.287; 0.343; 4.221 0.93 0.872; 0.794; 0.915 0.921 0.862; 0.784; 0.906
PAL 0.137 0.244; 0.186; 0.388 0.927 0.912; 0.906; 0.921 0.916 0.902; 0.889; 0.908

CIFAR-10 MobileNetV2 COCOB 0.232 0.282; 0.257; 0.295 0.879 0.87; 0.866; 0.876 0.865 0.852; 0.848; 0.865
ALIG 0.183 0.938; 0.347; 1.926 0.914 0.695; 0.233; 0.888 0.897 0.528; 0.1; 0.851
SGDHD 0.698 2.234; 1.835; 4.366 0.886 0.75; 0.298; 0.807 0.877 0.737; 0.295; 0.791
SLS 1.387 2.462; 2.011; 2.584 0.667 0.443; 0.407; 0.504 0.595 0.4; 0.343; 0.437
RMSP 0.085 0.493; 0.337; 0.918 0.938 0.872; 0.675; 0.895 0.929 0.865; 0.664; 0.882
ADAM 0.095 0.477; 0.314; 1.861 0.939 0.874; 0.309; 0.896 0.93 0.864; 0.289; 0.886
SGD 0.149 0.878; 0.204; 1.552 0.947 0.907; 0.87; 0.933 0.94 0.899; 0.859; 0.925
PAL 0.15 0.377; 0.205; 0.531 0.92 0.905; 0.896; 0.91 0.905 0.886; 0.877; 0.896

CIFAR-10 DenseNet40 COCOB 0.228 0.234; 0.23; 0.24 0.907 0.903; 0.901; 0.904 0.894 0.889; 0.885; 0.892
ALIG 0.188 0.604; 0.227; 2.903 0.918 0.848; 0.438; 0.902 0.902 0.784; 0.336; 0.875
SGDHD 1.094 2.279; 1.349; 2.908 0.775 0.341; 0.099; 0.696 0.762 0.1; 0.1; 0.26
SLS 0.065 0.115; 0.104; 0.189 0.91 0.904; 0.897; 0.905 0.901 0.893; 0.89; 0.897
RMSP 0.147 0.398; 0.256; 0.915 0.927 0.879; 0.737; 0.915 0.92 0.867; 0.717; 0.909
ADAM 0.138 0.749; 0.274; 1.028 0.922 0.777; 0.611; 0.91 0.913 0.806; 0.605; 0.907
SGD 0.147 0.794; 0.396; 1.746 0.932 0.855; 0.537; 0.914 0.93 0.847; 0.528; 0.91
PAL 0.099 0.217; 0.165; 0.343 0.925 0.907; 0.894; 0.919 0.916 0.882; 0.861; 0.9

CIFAR-10 ResNet32 COCOB 0.125 0.128; 0.127; 0.129 0.888 0.886; 0.885; 0.887 0.878 0.872; 0.871; 0.874
ALIG 0.122 0.658; 0.279; 1.485 0.892 0.815; 0.47; 0.881 0.866 0.71; 0.367; 0.852
SGDHD 0.35 0.464; 0.413; 0.701 0.864 0.835; 0.791; 0.843 0.837 0.796; 0.766; 0.827
SLS 0.005 0.006; 0.005; 0.827 0.871 0.856; 0.758; 0.869 0.846 0.824; 0.657; 0.839
RMSP 0.105 0.199; 0.129; 0.498 0.922 0.884; 0.804; 0.904 0.915 0.877; 0.792; 0.896
ADAM 0.105 0.332; 0.133; 1.004 0.917 0.875; 0.677; 0.881 0.914 0.868; 0.654; 0.873
SGD 0.098 0.131; 0.118; 0.322 0.939 0.899; 0.85; 0.924 0.933 0.893; 0.838; 0.92
PAL 0.05 0.105; 0.075; 0.195 0.921 0.893; 0.887; 0.906 0.903 0.88; 0.849; 0.888

CIFAR-100 DenseNet40 COCOB 0.739 0.761; 0.75; 0.772 0.642 0.633; 0.631; 0.637 0.646 0.632; 0.629; 0.637
ALIG 0.488 2.125; 0.988; 3.128 0.637 0.508; 0.391; 0.623 0.616 0.48; 0.264; 0.605
SGDHD 1.78 2.6; 2.179; 3.465 0.566 0.418; 0.274; 0.504 0.55 0.296; 0.159; 0.497
SLS 1.367 1.908; 1.446; 1.96 0.719 0.593; 0.572; 0.698 0.612 0.479; 0.422; 0.554
RMSP 0.348 1.238; 0.78; 1.972 0.716 0.583; 0.481; 0.634 0.712 0.588; 0.482; 0.631
ADAM 0.326 1.114; 0.859; 3.53 0.715 0.601; 0.165; 0.637 0.712 0.599; 0.226; 0.641
SGD 0.376 0.713; 0.431; 2.154 0.75 0.633; 0.489; 0.709 0.753 0.634; 0.498; 0.708
PAL 0.275 0.376; 0.312; 0.459 0.73 0.686; 0.66; 0.705 0.717 0.676; 0.642; 0.695

CIFAR-100 EfficientNet COCOB 0.802 0.817; 0.807; 0.822 0.594 0.583; 0.581; 0.59 0.596 0.582; 0.58; 0.588
ALIG 0.57 2.4; 0.995; 4.085 0.612 0.494; 0.169; 0.6 0.599 0.458; 0.115; 0.597
SGDHD 3.545 6.528; 5.519; 8.917 0.529 0.337; 0.178; 0.463 0.513 0.342; 0.179; 0.468
SLS 3.731 6.713; 6.348; 6.857 0.474 0.212; 0.208; 0.227 0.375 0.203; 0.149; 0.208
RMSP 0.422 1.823; 1.253; 2.968 0.675 0.517; 0.383; 0.588 0.678 0.521; 0.382; 0.59
ADAM 0.45 1.394; 1.312; 4.606 0.684 0.518; 0.025; 0.619 0.684 0.524; 0.01; 0.621
SGD 0.42 2.44; 0.633; 5.214 0.712 0.579; 0.473; 0.661 0.709 0.579; 0.476; 0.658
PAL 0.372 0.471; 0.409; 0.772 0.693 0.666; 0.638; 0.676 0.69 0.664; 0.63; 0.671

CIFAR-100 MobileNetV2 COCOB 0.486 0.513; 0.492; 0.536 0.644 0.63; 0.626; 0.637 0.644 0.63; 0.623; 0.638
ALIG 0.323 2.396; 0.817; 4.247 0.661 0.41; 0.034; 0.623 0.652 0.229; 0.01; 0.602
SGDHD 1.485 3.307; 2.425; 7.002 0.593 0.476; 0.39; 0.545 0.589 0.456; 0.385; 0.525
SLS 3.857 5.086; 5.031; 5.64 0.332 0.2; 0.099; 0.203 0.197 0.081; 0.052; 0.126
RMSP 0.198 1.518; 0.718; 3.368 0.728 0.593; 0.43; 0.635 0.727 0.593; 0.431; 0.634
ADAM 0.218 1.873; 0.776; 4.524 0.729 0.528; 0.025; 0.593 0.729 0.533; 0.02; 0.595
SGD 0.4 0.974; 0.473; 2.151 0.733 0.657; 0.57; 0.7 0.736 0.659; 0.573; 0.701
PAL 0.181 0.602; 0.314; 1.571 0.726 0.666; 0.574; 0.689 0.722 0.664; 0.509; 0.681
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A.2 Further Experimental Results

CIFAR-100 ResNet32 COCOB 0.498 0.569; 0.524; 0.673 0.609 0.608; 0.607; 0.608 0.605 0.602; 0.599; 0.604
ALIG 0.537 1.932; 0.995; 3.572 0.597 0.491; 0.19; 0.58 0.587 0.414; 0.144; 0.549
SGDHD 0.881 1.359; 1.06; 1.772 0.601 0.539; 0.472; 0.586 0.599 0.517; 0.431; 0.571
SLS 2.62 2.808; 2.78; 2.82 0.399 0.388; 0.384; 0.392 0.363 0.305; 0.274; 0.33
RMSP 0.519 1.019; 0.807; 2.083 0.661 0.599; 0.455; 0.651 0.656 0.603; 0.455; 0.65
ADAM 0.402 1.772; 0.768; 3.038 0.659 0.513; 0.262; 0.564 0.658 0.519; 0.255; 0.567
SGD 0.375 0.474; 0.4; 1.522 0.697 0.614; 0.494; 0.672 0.694 0.616; 0.502; 0.667
PAL 0.339 0.485; 0.369; 1.424 0.662 0.636; 0.546; 0.652 0.663 0.621; 0.512; 0.647

TOLSTOI RNN COCOB 1.506 1.56; 1.533; 1.593 0.589 0.58; 0.573; 0.584 0.582 0.572; 0.566; 0.577
ALIG 1.501 1.562; 1.528; 1.766 0.591 0.579; 0.523; 0.586 0.584 0.571; 0.513; 0.577
SGDHD 2.282 2.433; 2.379; 2.445 0.375 0.338; 0.336; 0.348 0.369 0.334; 0.332; 0.344
SLS 3.128 3.149; 3.136; 3.156 0.169 0.159; 0.158; 0.165 0.168 0.158; 0.157; 0.164
RMSP 1.475 1.509; 1.492; 1.556 0.599 0.591; 0.579; 0.595 0.592 0.583; 0.572; 0.587
ADAM 1.516 1.655; 1.596; 1.681 0.588 0.567; 0.55; 0.578 0.581 0.561; 0.543; 0.571
SGD 1.496 1.872; 1.56; 2.675 0.594 0.483; 0.278; 0.573 0.587 0.476; 0.275; 0.566
PAL 1.528 1.569; 1.547; 1.588 0.587 0.581; 0.577; 0.586 0.579 0.571; 0.556; 0.575

ImageNet ResNet50 COCOB 2.0 − 0.51 − 0.518 −
ALIG 1.854 − 0.539 − 0.512 −
SGDHD 2.742 − 0.498 − 0.495 −
RMSP 9.485 − 0.286 − 0.28 −
ADAM 1.863 − 0.562 − 0.559 −
SLS 3.808 − 0.286 − 0.069 −
SGD 1.123 − 0.656 − 0.65 −
PAL 0.773 − 0.608 − 0.608 −

ImageNet DenseNet121 COCOB 6.9 − 0.006 − 0.006 −
ALIG 2.142 − 0.533 − 0.512 −
SGDHD 2.939 − 0.343 − 0.362 −
RMSP 6.901 − 0.0 − 0.0 −
ADAM 6.901 − 0.001 − 0.0 −
SLS 7.768 − 0.001 − 0.001 −
SGD 3.308 − 0.458 − 0.452 −
PAL 1.228 − 0.617 − 0.611 −
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Appendix B

Empirically Explaining SGD from
a Line Search Perspective

B.1 Further Results on ResNet-20
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Figure B.1: SGD training process with momentum 0.9. See Figure 5.7 for
explanations. The core difference is, that for the proportionality, the noise is higher
than in the SGD case. In addition, SGD with momentum overshoots the locally
optimal step size less and does not perform an as exact line search.

129



Appendix B Empirically Explaining SGD from a Line Search Perspective

B.2 Analyses of ResNet-18 and MobileNetV2

B.2.1 Distance Matrices

ResNet-18:
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Figure B.2: ResNet-18: Distances of the shape of full-batch losses along lines in
a window around the current position s = 0. Row 1: SGD without momentum.
Row 2: SGD with momentum. Since the offset is not of interest the minimum
is shifted to 0 on the y-axis. The distances are rather high for the first 20 lines
(left). For the following lines the distances are less than 0.4 MAE (middle) and
concentrate around 0.005. The MAEs of the full-batch loss of pairs of consecutive
lines are given on the right.
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B.2 Analyses of ResNet-18 and MobileNetV2

MobileNet-V2:
momentum 0.0:
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Figure B.3: MobileNet-V2: See Figure B.2 for explanations. The distances are
rather high for the first 25 lines (left). For the following lines the distances are less
then 0.6 MAE (middle) and concentrate around 0.01.
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Appendix B Empirically Explaining SGD from a Line Search Perspective

B.2.2 Parabolic Approximation

ResNet-18:
momentum 0.0:

0 0.2 0.4 0.6 0.8 1
·104

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

line number

M
A

E

MAE of fitted degree 1 polynomials

0 0.2 0.4 0.6 0.8 1
·104

0

0.001

0.002

0.003

0.004

0.005

line number

M
A

E

MAE of fitted degree 2 polynomials

0 0.2 0.4 0.6 0.8 1
·104

−2

0

2

4

line number

co
effi

ci
en

t
siz

e

Coefficients of fitted degree 2 polynomials

c (offset)
b (slope)
a (curvature / 2)

momentum 0.9:

0 0.2 0.4 0.6 0.8 1
·104

0

0.005

0.01

0.015

0.02

0.025

0.03

line number

M
A

E

MAE of fitted degree 1 polynomials

0 0.2 0.4 0.6 0.8 1
·104

0

0.0002

0.0004

0.0006

0.0008

0.001

line number

M
A

E

MAE of fitted degree 2 polynomials

0 0.2 0.4 0.6 0.8 1
·104

0

0.5

1

1.5

2

line number

co
effi

ci
en

t
siz

e

Coefficients of fitted degree 2 polynomials

c (offset)
b (slope)
a (curvature / 2)

Figure B.4: ResNet-18: MAE of polynomial approximations of the full-batch
loss of degree one and two. Row 1: SGD without momentum. Row 2: SGD
with momentum. Full-batch losses along lines can be well fitted by polynomials
of degree 2. The slope of the approximation stays roughly constant whereas the
curvature decreases.
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Figure B.5: MobileNet-V2: For explanations and interpretations see Figure B.4.
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B.2 Analyses of ResNet-18 and MobileNetV2

B.2.3 Optimization Strategy Metrics
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Figure B.6: SGD training process without momentum on ResNet18. Sev-
eral metrics to compare update step strategies: 1. the performed update steps, 2.
the distance to the minimum of the full batch loss (sopt− supd), which is the opti-
mal update step from a local perspective. 3. the loss improvement per step given
as: l(0)− l(supd)) where supd is the update step of a strategy. Average smoothing
with a kernel size of 25 is applied. In this case the ratio of the full batch minimum
location with the norm of the direction defining gradient increases during the end
of the training. The proportionality is only given in the beginning of the training.
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Figure B.7: MobileNet-V2 momentum 0. See Figure B.6 for explanations.
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Appendix B Empirically Explaining SGD from a Line Search Perspective

ResNet-18 momentum 0.9
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Figure B.8: ResNet-18 momentum 0.9. See Figure B.6 for explanations. In
the case of momentum SGD is not able to perform such an exact line search as in
the case without monemtum since the norm of the momentum vector is not directly
related to the loss of the current line considered.
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Figure B.9: MobileNet-V2 momentum 0.9. See Figure B.6 and B.8 for expla-
nations and interpretations.
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B.2 Analyses of ResNet-18 and MobileNetV2

B.2.4 Batch Size Comparison
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Figure B.10: Row 1: Comparing the influence of the batch size on the loss im-
provement. Left: SGD with the original learning rate of 0.1. Right: PAL. Row
2: Analysis of the relation of the batch size to the absolute directional derivative
(=gradient norm) which shows in detail that increasing the batch size has a similar
effect as decreasing the learning rate by the same factor. e.r. stands for expected
ratio.
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MobileNet-V2 momentum 0
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Figure B.11: MobileNet-V2 momentum 0: See Figure B.10 for explanations.

136



Appendix C

Large Batch Parabolic
Approximation Line Search

137



Appendix C Large Batch Parabolic Approximation Line Search

C.1 Further Performance Comparisons
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Figure C.1: Performance comparison on SVHN of our approach LABPAL in the
SGD and NSGD variants against several line search and SGD. Optimal hyper-
parameters found with a detailed grid search for CIFAR-10 are reused. Our ap-
proaches challenge and sometimes surpass the other approaches on training loss,
validation, and test accuracy. Columns indicate different models. Rows indicate
different metrics.
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Figure C.2: Performance comparison of several models on CIFAR-10 with batch
size 32. The same hyperparameters are used as for batch size 128 (see
Figure 6.4). Due to the batch size adaptation to keep the noise scale on a similar
level, the LABPAL approaches perform almost identical compared to batch size
128. The performance off all other line searches decreases; SGD still performs well.
Note that training steps were increased by a factor of 4.
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Figure C.3: Performance comparison of several models on CIFAR-10 with batch
size 8. The same hyperparameters are used as for batch size 128 (see
Figure 6.4). Due to the batch size adaptation to keep the noise scale on a similar
level the LABPAL approaches still perform well. PAL and PLS fail to optimize at
all. SGD still performs well. SLS still shows good performance, however if training
longer this will not hold since the learning rate schedules degenerate. Note that
training steps were increased by a factor of 16.
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C.3 Theoretical Considerations
As the field has not yet identified the reason for the local parabolic behavior of
the full-batch loss is and, thus, what an appropriate function space to consider for
convergence is, we refer to the theoretical analysis of (Mutschler and Zell, 2020a);
in that we show convergence on a quadratic loss. This is also valid for LABPAL,
with the addition that each mini batch-loss can be of any form as long as the mean
over these losses is a quadratic function.

C.4 Further Experimental Details
Further experimental details for the optimizer comparison in Figure 6.4, 6.5, C.1,
C.2, C.3 of Sections 6.4.2 & 6.4.3.
PLS: We adapted the only available and empirically improved TensorFlow (Abadi
et al., 2016) implementation of PLS (Lukas Balles, 2017), which was transferred to
PyTorch (Paszke et al., 2019) by (Vaswani et al., 2019), to run on several state-of-
the-art models and datasets.
The training steps for the experiments in Section 6.4 were 100,000 for DenseNet
and 150,000 steps for MobileNetv2 and ResNet-20. Note that we define one training
step as processing one input batch to keep line search approaches comparable.
The batch size was 128 for all experiments. The validation/training set splits were:
5,000/45,000 for CIFAR-10 and CIFAR-100 20,000/45,000 for SVHN.
All images were normalized with a mean and standard deviation determined over
the dataset. We used random horizontal flips and random cropping of size 32. The
padding of the random crop was 8 for CIFAR-100 and 4 for SVHN and CIFAR-10.
All trainings were performed on Nvidia Geforce 1080-TI GPUs.
Results were averaged over three runs initialized with three different seeds for each
experiment.
For implementation details, refer to the source code provided at
https://github.com/cogsys-tuebingen/LABPAL.
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C.4.1 Hyperparameter Grid Search on CIFAR-10

For our evaluation, we used all combinations out of the following hyperparameters.
SGD:

hyperparameter symbol values
learning rate λ {0.001,0.01,0.1,1.0}
momentum α {0,0.4,0.9}

learning rate schedule


λ, if t≤ ⌊tmax ·0.5⌋
λ/10, elif t≤ ⌊tmax ·0.75⌋
λ/100, elif t > ⌊tmax ·0.75⌋

,

where tmax is the amount of training
steps

PAL:
hyperparameter symbol values
measuring step size µ {0.01,0.1,1}
direction adaptation factor β {0.0,0.4,0.9}
update step adaptation α {1,1.66}
maximum step size smax {3.16 (≈ 100.5)}

LABPAL (SGD and NSGD):
hyperparameter symbol values
step size adaptation α {1.0,1.8,1.9}
momentum {0,0.4,0.9}
SGD steps nSGD {1000,5000}
approximation batch size |Ba| {640,1280}

batch size schedule k(t)


1, if t≤ ⌊tmax ·0.5⌋
2, elif t≤ ⌊tmax ·0.75⌋
4, elif t > ⌊tmax ·0.75⌋

,

where tmax is the amount of training
steps

measure points for lBa,t {(0,0.0001,0.01)}

GOLSI :
hyperparameter symbol values
initial step size µ {0.001,0.01,0.1,1.0}
momentum β {0,0.4,0.9}
step size scaling parameter η {0.2,2.0}
modified Wolfe condition parameter c2 {0.9,0.99}
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PLS :
hyperparameter symbol values
first Wolfe condition parameter c1 {0.3,0.4}
acceptance threshold for the wolfe probability cW {0.1,0.2}
initial step size α0 {0.001,0.01,0.1,1.0}
momentum β {0,0.4,0.9}

SLS :
hyperparameter symbol values
initial step size µ {0.001,0.01,0.1,1.0}
step size decay β {0.9,0.99}
step size reset γ {2.0}
Armijo constant c {0.1,0.01}
maximum step size µmax {10.0}

For SLS no momentum term is considered since (Vaswani et al., 2019) already
showed SLS variants using momentum like acceleration methods to be non-beneficial.

143



Appendix C Large Batch Parabolic Approximation Line Search

C.4.2 Further Hyperparameter Sensitivity Analysis

SGD NSGD

0.98

1.00

1.0 5.0 10.0 20.0 30.0 40.0 50.0

0.88

0.90

0.92

0.94

approximation batch size

ac
cu

ra
cy

0.98

1.00

1.0 5.0 10.0 20.0 30.0 40.0 50.0

0.88

0.90

0.92

0.94

approximation batch size

ac
cu

ra
cy

0.98

1.00

250.0 500.0 1000.0 1500.0 2000.0 10000.0

0.88

0.90

0.92

0.94

SGD steps

ac
cu

ra
cy

0.98

1.00

250.0 500.0 1000.0 1500.0 2000.0 10000.0

0.88

0.90

0.92

0.94

NSGD steps

ac
cu

ra
cy

0.98

1.00

0.8 1.0 1.2 1.4 1.6 1.8 1.9 2.0 2.1 2.2 3.0 4.0

0.88

0.90

0.92

0.94

step size adaptation

ac
cu

ra
cy

0.98

1.00

0.8 1.0 1.2 1.4 1.6 1.8 1.9 2.0 2.1 2.2 3.0 4.0

0.88

0.90

0.92

0.94

step size adaptation

ac
cu

ra
cy

Figure continues on next page.
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Figure C.4: Sensitivity analysis of parameters of LABPAL&SGD and LAB-
PAL&NSGD on a DenseNet-121. The default parameters are: approximation batch
size Ba = 1280, SGD steps s = 1000, step size adaptation α = 1.8, batch size schedule k =
(0:1, 75000:2, 112500:4), momentum β = 0, maximal step size = 1.0, noise-factor ϵ = 1.
For the approximation batch size (row one) the factor 128 is multiplied on the x axis.

145





Symbols

⊙ Hadamard product a.k.a. point wise product
x scalar
x vector
x̂ normalized vector a.k.a. unit vector
X matrix
X set

t number of the current parameter update step
λ learning rate (factor multiplied with the gradient ĝ)
s update step size (factor multiplied with the normalized gradi-

ent g)
supd performed update step
smin update step to the minimum of the loss along a line
R set of real numbers
Q set of rational numbers
N set of integers
B mini-batch
D dataset
L full-batch loss
L loss function e.g. cross entropy (see Section 2.2)
LB mini-batch loss (see Section 2.6.1)
l full-batch loss along a line in mini-batch gradient direction

(see Section 2.6.1). In Chapter 4 to 6 the normalized gradient
direction is used.

lB mini-batch loss along a line in mini-batch gradient direction
(see Section 2.6.1). In Chapter 4 to 6 the normalized gradient
direction is used.

θ parameters to optimize
gB gradient of the mini-batch loss with respect to θ
ĝ normalized gradient (unit gradient)
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Acronyms

ADAM ADAptive Momentum (Kingma and Ba, 2015)
ALI-G Adaptive Learning rates for Interpolation with Gradients

(Berrada et al., 2020)
BMBF Bubdesministerium für Bildung und Forschung (German Fed-

eral Ministry of Education and Research)
CE Cross Entropy
CNN convolution neural network (LeCun et al., 1999)
COCOB COntinuous COin Betting (Orabona and Tommasi, 2017)
DenseNet dense neural network (a CNN) (Huang et al., 2017)
DNN deep neural network
ERM Empirical Risk Minimization
GD Gradient Descent
GOLSI Gradient Only Line Search which is Inexact (Kafka and Wilke,

2019)
GP Gaussian Process
GPU Graphics Processing Unit
i.i.d. independent and identically distributed
LABPAL Large Batch Parabolic Approximation Line search
MobileNet mobile neural network (a CNN) (Sandler et al., 2018)
NN neural network
NSGD Normalized stochastic gradient descent
PAL Parabolic Approximation Line search
PLS Probabilistic Line Search (Mahsereci and Hennig, 2015)
ResNet residual neural network (a CNN) (He et al., 2016)
RMSP Root Mean Square Propagation (Tieleman and Hinton, 2012)
RNN recurrent neural network (Hochreiter and Schmidhuber, 1997)
SGD Stochastic Gradient Descent (Robbins and Monro, 1951)
SGD-HD Stochastic Hyper gradient Descent (Baydin et al., 2018)
SLS Stochastic Armijo backtracking Line Search (Vaswani et al.,

2019)
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