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Zusammenfassung

Im ersten Teil dieser Doktorarbeit untersuchen wir Gezeitenphänomene in der Premerger-

phase von sich verschmelzenden Binärsystemen, in denen mindestens ein Neutronenstern

(NS) involviert ist. Insbesondere während der letzten paar Minuten der Annäherung kann

das Gezeitenfeld des Begleitsterns im Primärstern gewisse Quasinormalmoden stark anregen,

welche zu beobachtbaren Effekten führen. Unter anderem kann Resonanz von Niedrigfre-

quenzmoden (z.B. g- und i-Moden) das Brechen der Kruste verursachen, wodurch die Energie

freigesetzt wird, die dort gespeichert war; dies kann zu einer Vorläuferemission von einem

sogenannten Short Gamma Ray Burst (SGRB) führen, wenn der NS stark magnetisiert ist.

Insbesondere halten wir es für möglich zwei Vorläuferemissionen von SGRB 090510 mit den

durch Resonanz angeregten g1- und g2-Moden zu assoziieren. Zusätzlich präsentieren wir,

dass die beobachteten Frequenzen dieser zwei g−Moden einen neuartigen Pfad eröffnen um

die Rotationsrate des NS zu bestimmen, welche auf jeden SGRB angewendet werden kann, der

zwei oder mehr Vorläufersignale hat. Dieses wahrscheinlich g-Moden-verwandte Phänomen

kann also das Eingrenzen der nuklearen Zustandsgleichung begünstigen, da die Kandidaten

hierfür anhand der g-Modenfrequenz gruppiert werden können. Andererseits beschleunigt die

Erregung der f -Mode die Verschmelzung und führt zu einer “Gezeitensturzphase”; dadurch

bildet sich in der Gravitationswellenform eine Phasenverschiebung aus, welche den evolu-

tionären Pfad des Binärsystems bestimmt. Auch wenn die adiabatischen Gezeiten viel stärker

zur Phasenverschiebung beitragen als die dynamischen wenn der NS langsam rotiert, ist die

Situation eine andere für schnell rotierende Sterne: Eine Phasenverschiebung von mehreren

Hundert Radiant könnte das Ergebnis sein.

Der zweite Teil der Arbeit ist der Dynamik von kompakten Objekten, d.h. von NS und

schwarzen Löchern, beschrieben in alternativen Theorien der Gravitation im Regime von

starker Gravitation, gewidmet. Insbesondere untersuchen wir einige Theorien, welche Skalar-

felder beinhalten, wie z.B. die (Multi-)Skalar-Tensor-Theorien oder die Skalar-Gauß-Bonnet

Theorie. In der Theorie mit drei Skalarfeldern fällt das Skalarfeld von statischen Sternen

quadratisch mit der Distanz ab und ist deshalb nicht von Beobachtungen von Pulsaren

eingeschränkt und sie haben diskrete Arten von Topologien, welche durch eine topologis-

che Ladung beschrieben werden. Wir zeigen für die Konfigurationen ohne Ladung, dass bis

zu drei verschiedene Gleichgewichtskonfigurationen von Sternen für gewisse Intervalle von
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zentralen Energiedichten existieren können und dass deren Stabilität verloren geht, sobald

der massereichste Stern (entweder skalarisiert oder nicht-skalarisiert) erreicht wird. Akkre-

tion kann daher einen stabilen, skalarisierten NS in einen instabilen Zustand überführen,

welche allerdings keine Deskalarisierung in Gang setzt und stattdessen einen gravitativen

Phasenübergang auslöst. Dieser neuartige Phasenübergang führt zu einer plötzlichen Ver-

ringerung der Größe des Sterns, welche einen gewöhnlichen materiellen Phasenübergang

mimt. Allerdings wird der erstere Phasenübergang von eine Skalarfeld-induzierten Gravita-

tionswelle begleitet, welche bei materiellen Phasenübergängen nicht präsent sind. Zusätzlich

zum Akkretionsprozess untersuchen wir den kugelsymmetrischen Kernkollaps eines Sterns

in Skalar-Tensor und Skalar-Gauß-Bonnet Theorien. Obwohl ein skalarisiertes schwarzes

Loch in erstgenannter Theorie auf Grund des sogenannten No-Hair-Theorems nicht existiert,

können wir ein solches in zweitgenannter Theorie konstruieren. Insbesondere demonstrieren

wir numerisch die Skalarisierung in einem schwarzen Loch, welches nach einem Sternkol-

laps übrig bleibt, um ein erstes Beispiel eines Produktionskanals für skalarisierte schwarze

Löcher in Skalar-Gauß-Bonnet Theorie zu geben. Die Skalarfeld-induzierten Gravitation-

swellen, welche zusammen mit der (De-)Skalarisation in beiden Theorien gebildet werden,

werden auch diskutiert.
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Abstract

In the first part of this thesis, we investigate some tidal phenomena in the pre-merger stage of

coalescing binaries with at least one neutron star (NS) involved. In particular, during the last

few minutes of coalescences, the tidal field exerted by the companion can force the primary

strongly to excite certain quasi-normal modes thus resulting in various observable effects.

Among other things, resonance of low frequency modes (e.g., g- and i-modes) may result in

crustal fracture, whereby unleash the energy used to be stored in the cracked area, possibly

constituting a pre-emission of short gamma-ray burst (SGRB) if the NS is highly magnetised.

In particular, we find it possible to associate two pre-emissions of SGRB 090510 with the

resonantly excited g1- and g2-modes. We present, in addition, that the inferred frequencies

of these two g-modes provide a novel avenue to estimate the spin of the NS, which can

be applied to any SGRB preceded by two or more precursors. This presumably, g-mode-

related phenomenon can also benefit in constraining the equation of state (EOS) since the

EOS candidates can be grouped in terms of g-mode frequency. On the other hand, f -mode

excitation accelerates the merger course, leading to a “tidal plunge” phase; thereby, a phase

shift is rendered in the associated gravitational waveform, which dictates the evolutionary

track of the binary. Although the adiabatic tide attributes much more to the phase shift than

the dynamical ones if the NS rotates slowly, the situation for fast spinning stars is different:

a few hundred radiants of shift may be rendered.

The second part of this thesis is dedicated to the study of the dynamics of compact objects,

viz. NSs and black holes (BHs), in alternative gravity theories in the strong gravity regime.

In particular, we consider some theories involving scalar field(s) as additional mediator(s)

of gravitational interaction such as the (multi-)scalar-tensor theory and scalar-Gauss-Bonnet

theory. In the former theory, it can happen that the scalar field of static stars dies out in

the power of −2 of the distance, suppressing the scalar dipole radiation thus not constrained

by pulsar experiments. In addition, these solutions are of discrete topological types, charac-

terised by topological charge. For the zero charge configurations, we show that up to three

stable stars exist for a certain range of central energy density, and the stability is lost right at

the occurrence of the most massive (either scalarized or non-scalarized) star. Accretions may

therefore bring a stable scalarized NS into an unstable state, where a descalarization would

be triggered, generating the gravitational phase transition (PT). This novel kind of PT leads
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to a sudden shrink in size of the star, mimicking well the traditional, material PT. How-

ever, the former transition will be accompanied by scalar-induced gravitational waves that

are absent in material PT. In addition to the accreting process, we consider the spherically-

symmetric core collapse for the scalar-tensor and the scalar-Gauss-Bonnet theories. Although

a scalarized BH is absent in the former theory due to no-hair reason, we can construct one in

the latter theory. In particular, we numerically demonstrate scalarization in a remnant BH

behind stellar collapse, giving a first example on the production channel for scalarized BHs

in the scalar-Guass-Bonnet theory. The scalar-induced gravitational waves generated along

with (de)scalarization in both theories are also discussed.
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Chapter 1

Introduction

Contents

1.1 Evolutionary Study of Binary Neutron Stars . . . . . . . . . . . . . . . . . . . . 2

1.2 Testing Gravities beyond General Relativity . . . . . . . . . . . . . . . . . . . . 5

The geocentric model once ruled our knowledge of the universe, when the whole visual

scenery was meant by the term “universe”. Limited to the intuition of humankind, helio-

centrism had been greatly underestimated when it first burst onto the scientific horizon led

by Nicolaus Copernicus in the late 15th century, while Galileo’s observations and the mod-

ification introduced by Kepler during the cross of the late 16th and the early 17th century

started to shed some light on this revolutionary model that had sat in the dark corner for

a while. Before too long after Kepler elucidated the fundamental role of elliptical orbits,

Isaac Newton came up with three laws that satisfy, again, the whole visual scenery at that

time. Only this time, people had gained more knowledge about the “universe”. History then

brings Maxwell’s equations to our understanding of nature, which translate, though highly

non-trivially, into special relativity in a young man’s mental universe at the beginning of 20th

century. As of the fifteenth year since the idea of special relativity had been contemplated,

the same gentleman, Albert Einstein, managed to lead our knowledge of nature to an even

further place: time has become a parameter, which functions in much the same way as other

long-known spatial coordinates. The theory remains effective today even though scientists

have tested it with ever more precise measurements, with most wild speculative experiments,

and with phenomena at an ever wider scale range. Fortunate enough, the astrophysics com-

munity is now ushering in a novel era heralded by the ever first witnessing of gravitational

waves (GWs) emanating from a black hole binary, coded by GW150914 [11], which coinci-

dentally celebrated the centennial of Einstein’s theory. As the later wave will always push

the former one, novel observation will always push forward our sight about the whole visual

scenery.



2 1.1. Evolutionary Study of Binary Neutron Stars

Despite the fact that the first detection of GW150914 [11] suffices to prove the GW

prediction of Einstein’s theory, an event that opens a new direction to investigate equation of

state (EOS) at supranuclear density only came in two years later, when the very first detected

binary neutron star (NS) was observed via the gravitational wave event GW170817 [12].

Since then GW physics has attracted enormous attention as this kind of weakly-interacting-

with-matter radiations delivers undistorted information of the source, therefore providing

an invaluable avenue to acquire the yet-to-be-understood particulars of the interior of NSs,

viz. EOS, and to test gravity theories. I aim to touch on these two perspectives in this

dissertation, which is accordingly divided into two parts with each devoted to one of the

subjects.

1.1 Evolutionary Study of Binary Neutron Stars

One of the most promising source for GWs is thought to be coalescing binaries consisting of

compact objects, viz. NSs and/or black holes (BHs). Without delicate internal structures,

gravitational waveforms emanating from binary BHs are easier to model; for those, the ana-

lytic wave form has been derived up to 3.5 PN order [13], while the step towards 4 PN and

even 4.5 PN order effects has been attempted recently [14–16]. In contrast, those launched

by binaries with at least one NS involved channel the information of interior particulars of

NSs thus the tidal effects have to be considered as well, and the analytic study has been

carried out up to 7.5 PN order recently [17,18]. Owing to its extreme gravitational strength,

supra-nuclear regime can be realised in NS which lies in the otherwise inaccessible QCD

phase diagram, and thus provides a unique avenue to probe the supra-nuclear EOS, a pursue

towards which is a “holy-grail” of nuclear physics and relativistic astrophysics.

From the detailed analysis of gravitational waveforms, the chirp mass of the binary can be

measured to a great accuracy, and the symmetric mass ratio can also be determined though

with a marginally less precision [19–21]. These two parameters suffice to make an estimate

of the individual masses of the two constituents. On top of these are point-like properties,

finite-size effects gradually become measurable; for instance, in the milestone observation of

GW170817 [12], the (mutual) tidal deformability of the binary has been estimated, while at

this stage the waveform template including spin-effects is not well understood yet so that the

spins of the progenitors can only be treated as a free parameter [22]. For this particular event,

we turned out to be incredibly fortunate in the sense that the associated multi-messenger

phenomena have been observed, viz. the follow-up launch of SGRB, the afterglow, and an

late-time optical-infrared transient (kilonova) caused by r-process nucleosynthesis [23–29].

The second binary NS merger observed by the LIGO-Virgo collaboration is GW190925 [30]

for which no EM counterparts came into sight, while its total mass (∼ 3.4M⊙) exceeds any

of the known galactic binary NSs [31, 32], thus hinting that at least one of the progenitors
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may be a fast-spinning NS. In addition, in the witnessed events, NS is a sight for sore eyes;

other than the aforementioned two binary NSs, there are only two more events with a NS

involved, and both are black hole-NS binaries, viz. GW200105 and GW200115 [33].

Electromagnetic (EM) counterparts throughout the coalescing course, in general, include

precursor flares, short gamma-ray bursts (SGRBs), and multi-band afterglows. Each of those

helps us acquire source properties when we deepen our knowledge of their central engines.

As perfect systems to examine EOS in either GR framework or modified gravity theories,

each of the aforementioned EM phenomena warrant further investigation. In particular, pre-

emissions have been detected for a few SGRBs [34–38], and are hypothesised to be associated

with tidal resonances of quasi-normal modes (QNMs) during the inspiral [39–41] or interacting

magnetospheres [42–44]. In any case, there is observational evidence that those systems which

produce precursors may be strongly magnetised (≳ 1015 G; see, e.g., [41]). We will adhere our

attention to the resonant shattering scenario in Chap. 4 which is to explore this mechanism.

By virtue of the timing of the observed precursors, any mode with frequency of ∼ 100 Hz

may be a candidate responsible for precursors in this context, such as interface- and g-modes

for slow-rotating NSs, and f - and r-modes for fast-rotating stars. Although the logic behind

this scenario is simple, the physics is rather involved: Not only depend mode frequencies on

several physical aspects, e.g., the EOS, the spin rate, the structure and the strength of the

inhabited magnetic field, and the degree of stratification, but also the maximal sustainable

strain the crust can bear is uncertain [45–49]. Keeping this latter uncertainty in mind,

however, we adopt a specific value of the maximal bearable strain to examine the mechanism

with a particular emphasis on g-modes.

Unlike the pressure restored modes (e.g., f - and p-modes), g-modes manifest from either

thermal and/or compositional gradients [50–52], or discontinuities [53, 54] in NSs; therefore,

this class of modes encodes the particulars of the interior of NSs. In addition, the g-mode

spectrum may discern the nature of the inner core of NSs since certain imprints will be caused

by a superfluid core [55–57] or phase transitions either to free quark or hyperon condensa-

tion [58, 59]. Asteroseismology of stellar oscillations has proven useful in astrophysics when

(i) inferring properties of protoneutron stars left behind after core collapses [60–63], and coa-

lescing binary NSs before [64] and after [65,66] merger, and (ii) connecting stellar parameters

of pre- and post-merger stars [67]. Here we list just a few examples, and the mentioned ap-

plications are absolutely far from complete; however, the importance of asteroseismology is

obvious. Among other modes, the asteroseismology of g-modes may particularly help probe

the fabric constituting NSs, thus limiting EOS in an aspect other than acoustic modes. In

Chap. 3, we aim at making the first step towards this direction by establishing several univer-

sal relations for g-modes, which can be quite useful, from experience, in determining source

properties thus leading to certain conditions for EOS candidate to satisfy.

Adopting a piecewise-polytropic approximation for several equations of state [68, 69] –
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by which we are effectively considering barotropic EOS without compositional particulars,

we show in Chap. 3 that there exist three groups of equations of state regarding g-mode

frequencies. The grouping originates from the physics involved in certain equations of state.

Those belonging to groups I and II assume that neutron stars are made from neutrons,

protons, electrons and muons. Although having the same constituents, some of them can

support stars with more than 2 solar mass, while others cannot. Those able to realise heavy

stars are members in group I, and those not belong to group II. It is a fresh view connecting

the maximal mass of an EOS, which is a bulk property of stars, to the g-mode spectrum,

which is determined by microscopic physics. There still is group III, whose members assume

phase transitions either to free quarks or hyperon condensation inside stars. Putting group

III aside, the other two groups admit universal relations with other parameters such as tidal

deformability. At our proposal, two-fold benefits can be extracted out from g-mode-related

phenomena to narrow down candidates of equations of state: (i) the source can be mapped

onto the established g-space, whereby it is possible to set constraints on g-mode branches,

and (ii) certain parameters can be derived through universal relations to help limit EOS, e.g.,

the derived f -mode frequency and the g-mode frequency can be incorporated to constrain

the mass-radius curves.

To employ the g-mode asteroseismology, observations related to g-mode have to be studied.

The candidate phenomena that may be caused by g-modes include precursors [34, 36–38],

and quasi-periodic oscillations in X-ray tails [70–72]. We pay especially attention to the

precursors, and show that the two early emissions of GRB090510 may be attributed to g1-

and g2-modes. In general, for systems exhibiting double precursors, additional information

on spin priors of pre-merger neutron stars can be obtained if we attribute the two pre-

emissions to two resonantly excited modes of one of the constituents: the almost constant

ratio between their free frequencies together with the rotation-modified frequencies indicated

by the precursor timing admit an algebraic relation for the star’s spin (detailed in Chap. 5).

The increased knowledge about the spin helps reduce systematic errors in some parameters

of pre-merger stars, such as mutual tidal deformability. Since some remnants’ properties

correlate strongly to those of progenitors, including this spin-extracting scheme in the analysis

of future gravitational waves from systems showing two precursors will therefore ameliorate

measurements of stellar parameters in both pre- and post-merger stages, thus may place

stricter constraint on the EOS.

In addition, f -modes contribute to setting constraints on EOS in another aspect. Although

other modes are rather “invisible” in GW data stream, f -mode effects have a good chance to

be seen in future observations (e.g., [73, 74]) owing to their marginally strong coupling with

tidal field exerted by the companion. The tidal effect produced by f -modes is dubbed as

dynamical tidal effect, while that caused by the deformation of the star is called equilibrium

tidal effect. The imprint in gravitational waveform left by the latter tides is well described
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by the Love number of stars [21, 75–77], while the influence in GW of the dynamical ones

are still under research [73, 78–80]. Although the adiabatic tide attributes much more to

the phase shift than the dynamical ones if the neutron star rotates slowly, the dynamical

tides would impact the gravitational waveform more significantly for increasing spin of NSs

in the pre-merger stage. Mode excitations will be enhanced for increasing stellar spin since

mode frequencies will be reduced by spin (at least for the most relevant oscillation modes)

thus expediting the onset of excitation for each mode, where the most dominant excitation

contributing to dephasing is f -mode. Especially, there are astrophysical processes that may

lead to fast rotating NSs in coalescing binaries, such as dynamical encounters in a star

cluster [81,82], hierarchical triple system [83], and tidal capture of a natal NS kicked off from

its born site by a compaction object [84, 85]. We examine the tidal dephasing for binaries

embracing one rapidly spinning neutron star in Chap. 6, where a phase shift of up to a few

hundred radians is found to be possible. Our results thus explain themselves as an imperative

concern in the GW analysis.

1.2 Testing Gravities beyond General Relativity

Theories of gravity other than general relativity are motivated by certain theoretical concerns

such as renormalisability when catering gravity to a quantum context [86, 87] (see also [88]

for a review). Balancing the simplicity of an alternative theory so that it is manageable

and the ability to alleviate the tension with aforementioned concerns, the most popular way

is to introduce scalar field(s) to the theory. Owing to the additional degree(s) of freedom

introduced in alternative theories, configurations and dynamical behaviours of compact ob-

jects, viz. NSs and BHs, will deviate from that in GR. In particular, the phenomenon of

scalarization may happen in a variety of theories, e.g., [89–95]. Measuring the extent of

such deviation will provide tests upon the nature of gravity (see [96] for a detailed review).

In addition to the modifications in the physics present in GR, certain novel physics will be

introduced. Among others, we will specialise ourselves to the (multi-)scalar-tensor theories

and the scalar-Gauss-Bonnet theories. Several free parameters are introduced accordingly

with the coupling function as proxy. To constrain these parameters, we have to connect

them with some observables. For instance, scalarization in these theories can only occur for

a certain range of parameters, thus a detection of scalarized object then serves as evidence

to rule out regions in the parameter space. A timely relevant observation to test theory pa-

rameters is GWs. Although the waveform of gravitational radiation in general relativity has

been understood to a great accuracy after 40 years of effort of the community, gravitational

waveforms of alternative gravities are still at the stage as 1990’s general relativity. The be-

yond 2.5 post-Newtonian order waveforms for some theories are just developed in these two

years (2021 and 2022; e.g., [97–100]). In particular, scalarization and descalarization enrich
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by much the waveform modelling. We here make one of the early steps towards modelling

such scalar-radiations in the considered theories.

Focusing on spherically symmetric spacetime, we first examine the stability of scalarized

NSs in Chap. 7 for multi-scalar-tensor theories, where we show that the conventional criterion

for the stability of neutron stars in the general relativity still holds: Models with the central

energy density less than that of the configuration having the maximal mass are stable. In

this class of theories, this criterion indicates that there can be up to three stable stars for a

certain range of central energy densities. On the other hand, similar to single scalar-tensor

theories, there exists no stable solution (neither scalarized nor GR-like one) for a range

of central energy densities. For unstable solutions, they will migrate to a scalarized star

having the same baryonic mass as the initial state; if the initial star is scalarized then it will

undergo a reconfiguration of scalar field, while an initially non-scalarized star will undergo a

scalarization.

According to the above observation, a scalarized solution having the mass close to the

maximal mass will become unstable and activate some non-linear dynamics if certain amount

of accretion has fallen onto the star. Although the over-accreted, scalarized star in the multi-

scalar-field theories considered in Chap. 7 will collapse to a black hole, a different scenario

can occur if the maximal mass of the scalarized solution is less than the maximal mass of

the unscalarized ones. We examine this latter scenario in scalar-tensor theories in Chap. 8

by over-accreting a star, where a descalarization of a NS will lead it to another stable state

instead of collapsing to a BH. The migration triggers a gravitational phase transition, bearing

a striking similarity with the matter phase transition in general relativity, thus indicating

a degeneracy in phenomena adding to the already known ‘EOS vs non-Einstein gravity’

one (e.g., [101]). In addition, this phenomenon will be accompanied by scalar gravitational

emission, thereby alter the evolution track of the star. Some imprints may also be left in

the electromagnetic outburst; the rapid reduction of radius followed the descalarization may

generate a ‘dent’ in the X-ray flux, manifesting a ‘broken plateaus’ of afterglow light-curves.

The sudden compactification caused by a gravitational transition may trigger a nuclear phase

transition, leading to successive transitions. If double transitions occur in massive scalar-

tensor theories, the scalar-radiation by the first transition will arrive at the detector later

than the tensorial gravitational wave caused by the second transition. This double transition

scenario, as well as the direction of considering stars with differential rotation, and relatively

high temperature, may be worth of further investigation. Apart from completing more the

scenario, an extension to the multi-scalar-tensor theories is also considered, and is now in

preparation.

We then go on to consider realistic core collapse in massive scalar-tensor theories with or

without a self-interaction of scalar field in Chap. 9. The chirp pattern of scalar-gravitational-

waves dictated in the massive theories is observed. While we choose to formalise the theory
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in the Einstein frame for numerical simulation, we cannot be confident a prior if the chosen

frame is suitable for the physical process in study or not [102–104]; that said, we do not

know if this reformulation of the theory would introduce frame-dependent singularities or

not. To justify that the introduced auxiliary scalar field in the Einstein frame can actually

be smoothly converted back to the scalar field in the physical frame, i.e., the Jordan frame, we

derive a condition for the scalar field in the Einstein frame. We specifically identify the region

on the parameter space over which the simulated results obey the above condition, so that the

scalar field in the Einstein frame is legitimate for expressing the scalar-gravitational-waves

in the Jordan frame.

In Chap. 10, we study the core collapse in the context of the scalar-Gauss-Bonnet the-

ory, where spontaneous scalarization is induced by curvature. Here we do not introduce an

auxiliary frame to carry out numerical evolution, and all fields are evolved in the Jordan

frame. Although there is the no-hair theorem for (multi-)scalar-tensor theories, black holes

in scalar-Gauss-Bonnet can be scalarized [105,106], which has been examined by constructing

such scalarized configuration. However, there has been proposed no realistic physical mech-

anism for the formation of isolated scalarized black holes and neutron stars in Gauss-Bonnet

theories of gravity. We demonstrate for the very first time that scalarized black holes can be

produced in a dynamical process. In particular, we show a scenario where the non-scalarized

protoneutron star generated by a core collapse undergoes a scalarization as of the formation

of a black hole remnant, though such scalarized black holes exist only for a certain range

of parameters. On top of this specific outcome, we also demonstrate all possible paths to

the final scalarized state. The richness of the evolution tracks is suggestive of interesting

possibilities for observational manifestations; any observation of such kind can therefore pose

constraints on the theory parameters.
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Overview

In this Chapter, we lay out the equations and the numerical scheme for resolving stellar quasi-

normal modes, aiming to pave the way for the later applications of, in particular, fundamental

(f -) and gravity (g-) modes. We will not go into the detail of the restoring forces for different

kinds of modes here, but rather to introduce the method for finding modes in general. Some

information about the origin of the aforementioned modes will be provided where appropriate

in the later Chapters.

2.1 Stellar structure

We consider a static, spherically symmetric line element

ds2 = −e2Φ(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θ2dϕ2), (2.1)

where (t, r, θ, ϕ) are the usual Schwarzschild coordinates, and Φ and λ are functions of r only.

The Einstein equations

Gµν = 8πTµν , (2.2)
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Figure 2.1: Mass-radius diagrams for the EOS considered here (see plot legends).

for the stress-energy tensor associated with a single, perfect fluid,

T µν = (ρ+ p)uµuν + pgµν , (2.3)

describe the structure of a static, non-rotating star. Here ρ is the energy-density, p is the

stellar pressure, gµν is the metric tensor defined in (2.1), and uµ = e−Φ∂t is the 4-velocity

of a generic fluid element (rotational corrections to the stellar structure are considered in

Sec. 4.4.3). The metric function λ is related to the mass distribution function m(r), which

yields the mass inside the circumferential radius r, through

e−2λ = 1− 2m(r)

r
. (2.4)

The conservation law,

0 = ∇µTµν , (2.5)

relates the functions ρ(r), and p(r) to the metric variables, and forms the following system

dΦ

dr
=

1

p(r) + ρ(r)

dp

dr
, (2.6a)

dm

dr
= 4πr2ρ(r), (2.6b)
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and

dp

dr
= − [ρ(r) + p(r)] [m(r) + 4πr3p(r)]

r2
[
1− 2m(r)

r

] . (2.6c)

Non-rotating, spherically symmetric equilibrium stellar models are then obtained as solutions

to the above, so-called, Tolman-Oppenheimer-Volkoff equations [107, 108], and the star’s

radius R⋆ and mass M⋆ are defined by the boundary conditions p(R) = 0 and m(R⋆) =

M⋆, respectively. Outside of the star, where p = ρ = 0, the metric (2.1) reduces to the

Schwarzschild metric of mass M⋆. The aforementioned equations should be completed by

an EOS, for which we adopt the piece-wise polytropic approximation to several [68, 69]; see

Fig. 2.1 for the EOS list and their mass-to-radius relations. The EOS are chosen to cover a

wide range, from those obtained for NSs with purely nepµ matters, to those influenced by the

hypothetically existing hyperons (e.g., GNH3, H4) possibly even displaying phase transition

to free quarks (i.e., hybrid stars; e.g., ALF2). Although some of the considered EOS cannot

support the heaviest pulsar observed to-date, namely PSR J0740+6620 [109] with the mass of

∼ 2.14M⊙, they are included for the sake of demonstrating the generality of the trifurcation

of EOS space, while we note that only EOS in Group I support the mass of PSR J0740+6620.

2.2 Perturbation Equations

Oscillatory patterns of motion in a star can be resolved into QNMs with complex eigenfre-

quency ϖ = ωα + i/τα, where α denotes the ensemble of quantum numbers α = (nlm) for

overtone number n, and spherical harmonic indices l and m. The oscillating frequency is

the real part of the eigenfrequency ωα, while the reciprocal of the imaginary part defines the

damping rate τα due to radiation-reaction.

The perturbed metric tensor with even parity of a general relativistic stellar model reads

[110]

ds2 =− e2Φ(1 + rlH0Ylme
iϖt)dt2 − 2iϖrl+1H1Ylme

iωtdtdr

+ e2λ(1− rlH0Ylme
iϖt)dr2 + r2(1− rlKYlmeiϖt)dΩ2, (2.7)

and the associated (Lagrangian) displacement vector ξ can be expressed by

(ξr, ξθ, ξϕ) =

(
rl−1e−λWYlme

iϖt,−rl−2V ∂θYlme
iϖt,−r

l−2V

sin2 θ
∂ϕYlme

iϖt

)
. (2.8)

Here H0, H1, K,W, V are functions of r only, reflecting the spherical symmetry assumed for

the equilibrium. Linearising the Einstein’s equations renders a coupled, differential equation

set for these five functions, which constitutes an eigenproblem if being augmented with some
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boundary conditions. As relevant to the stellar pulsations, we consider three conditions at

the centre, stellar surface, and spatial infinity. In particular, we require eigenfunctions to be

regular at r = 0, the perturbation of pressure

∆p = −rle−ΦXYln (2.9)

to vanish at the surface, and, lastly, eigenfunctions to be purely out-going at infinity (see

below). In the above definition, X is defined as

X = ϖ2(ρ+ p)e−ΦV − r−1p′eΦ−λW +
1

2
(ρ+ p)eΦH0, (2.10)

which is connected to H0, H1, and K through the equality

[3M +
1

2
(l + 2)(l − 1) + 4πr3p]H0 = 8πr3e−ΦX −

[
1

2
l(l + 1)(M + 4πr3p)−ϖ2r3e−2Φ−2λ

]
H1

+

[
1

2
(l + 2)(l − 1)r −ϖ2r3e−2Φ − r−1e2λ(M + 4πr3p)(3M − r + 4πr3p)

]
K. (2.11)

We can see that the coefficients of Eq. (2.10) are non-zero inside the star, which admits that

rephrase the differential equation set for {H0, H1, K,W, V } to one for {H0, H1, K,W,X}. On

the other hand, the coefficient of H1 in Eq. (2.11) is not vanishing in general; in fact, it will

be zero wherever the relation

ϖ2 =
1

4
l(l + 1)

1

r

d

dr
(eΦ), (2.12)

holds. Despite that H1 is not be derivable from H0, K, and X (or V ) for stars that the

aforementioned equality is met somewhere inside, H0 is always solvable if other functions are

provided. This indicates that we can reduce the degrees of freedom by one, resulting in a

four dimensional perturbation equation set [111], given by

H ′
1 =−

1

r

[
l + 1 +

2m

r
e2λ + 4πr2(p− ρ)e2λ

]
H1 +

1

r
e2λ [H0 +K − 16π(ρ+ p)V ] , (2.13)

K ′ =
l(l + 1)

2r
H1 +

H0

r
+

[
Φ′ − l + 1

r

]
K − 8π

r
(ρ+ p)eλW, (2.14)

W ′ =− l + 1

r
W + reλ

[
1

Γp
e−ΦX − l(l + 1)

r2
V +

H0

2
+K

]
=−

(
l + 1

r
+

p′

Γp

)
W + reλ

[
H0

2
+K − l(l + 1)

r2
V +

ρ+ p

Γp

(
e−2Φϖ2V +

H0

2

)]
, (2.15)
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and

X ′ =− l

r
X + (ρ+ p)eΦ

{
1

2

(
1

r
− Φ′

)
H0 +

1

2

(
ϖ2re−2Φ +

l(l + 1)

2r

)
H1 +

(
3

2
Φ′ − 1

2r

)
K

− l(l + 1)

r2
Φ′V − 1

r

[
ϖ2e−2Φ+λ + 4π(ρ+ p)eλ − r2 d

dr

(
1

r2
e−λΦ′

)]
W

}
, . (2.16)

The latter equation (2.16) can be replaced by

V ′ =
1

2ϖ2
e2Φ
(
p′

Γp
− ρ′

ρ+ p

)(
H0 +

2

r
e−λΦ′W

)
+ rH1 +

(
p′

Γp
− ρ′

ρ+ p
+ 2Φ′ − l

r

)
V − 1

r
eλW.

(2.17)

Here the prime denotes the derivative with respect to r, γ stands for the radially-dependent

adiabatic index for the background stellar model, defined by

γ =
ρ+ p

p

dp

dρ
, (2.18)

while Γ represents the adiabatic index for perturbations in the star, which does not necessarily

equal to γ (see Chap. 3 for more detail).

The linearised Einstein equations summarised above, together with proper boundary con-

ditions, are then solved numerically. Eigenvalues of the perturbation equations determine the

quasi-normal mode spectrum. We will address these boundary conditions and the procedure

of solving the eigenproblem in the next subsection.

2.3 Numerical Scheme

As addressed in [112], in order to resolve eigenfrequencies down to a few tens of Hz (typical

for g−modes), the appropriate set of functions to be solved near the centre is {H1, K,W, V }.
Since the perturbation equations are singular at the origin, it is beneficial to have the Taylor

expansion of the solutions about r = 0 being of the form

Υ(r) = Υ0 +
1

2
r2Υ′′(0) +O(r4), (2.19)

where Υ ∈ {H1, K,W, V } to extract the physical nonsingular solutions from these equations.

We note that the field equations imply that the linear coefficients vanish. Expand the fluid

profiles (λ, Φ, p, and ρ) of the equilibrium in the same manner, one can show that the second

order coefficients are related to the central values of pressure pc, density ρc, and adiabatic
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index γc through

λ′′ =
8πρc
3

, Φ′′ =
4π

3
(ρc + 3pc), p′′ = −Φ′′(ρc + pc), and ρ′′ =

p′′(ρc + pc)

γcpc
(2.20)

Similar to the above expression, the relations of Υ′′ are expressed by the central values of

relevant functions, which are given by

− Γp

[
(n+ 1)V ′′ +

l + 3

2
W ′′
]
= −1

2
(3Γp+ ρ+ p)K(0) + [(n+ 1)λ′′Γp− lp′′ − e−2Φω2(ρ+ p)]V (0),

(2.21)

(l + 2)V ′′ +W ′′ = 2H1(0)−
e2Φ

ω2

(
ρ′′

ρ+ p
− p′′

Γp

)
K(0)

+

{
lλ′′ + 4Φ′′ + 2(1− lω−2e2ΦΦ′′)

[
p′′

Γp
− ρ′′

ρ+ p

]}
V (0), (2.22)

− n(l + 3)

2
H ′′

1 + nK ′′ − 8πn(ρ+ p)V ′′ = n(Φ′′ − λ′′)H1(0)− nλ′′K(0) + 2QaV (0) +Qb,

(2.23)

n(n+ 1)

2
H ′′

1 −
n

2
(l + 2)K ′′ − 4π(ρ+ p)nW ′′ = QaW (0)− nΦ′′K(0) +Qb, (2.24)

where

Qa =4πn[(ρ′′ + p′′) + λ′′(ρ+ p)], (2.25)

Qb =[(n+ 1)Φ′′ − ω2e−2Φ]H1(0) + (ω2e−2Φ − Φ′′)K(0)

− [8πω2e−2Φ(ρ+ p)V (0)− p′′W (0)], (2.26)

n = (l+ 2)(l− 1)/2, and Γc is the central value of Γ. Here we drop the subscript of c for the

ease of presentation, which should not raise a risk of confusion.

In addition, the first-order constraints imposed on these functions by the perturbation

equations are

H1(0) =
2lK(0) + 16π(ρc + pc)W (0)

l(l + 1)
, V (0) = −W (0)

l
, H0(0) = K(0), (2.27)

indicating there are only two free parametersK0 andW0 to specify a solution. Following [111],

we fix W (0) = 1 and solve the equation set twice with K0 = ±(ρc + pc). On the other hand,

the vanishing pressure perturbation at the surface leads to the boundary condition X(R) = 0

from (2.9).

For a given trial frequency, we solve the equations (2.13)-(2.17) from the centre and surface

towards a matching point at rm. For the region of 0 ≤ r ≤ rm, there are two linearly
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independent solutions from the initial values we feed in, while there are three for the other

region. We linearly superpose the solutions in each region such that the values match at rm. In

practice, we compute the equilibrium adiabatic index self-consistently from the pressure and

density profile, then we use 4-th order Runge-Kutta (RK4) method to integrate Eqs. (2.13)-

(2.17). Since RK4 algorithm needs to evaluate functions between two grids, namely f(ri+h/2)

where f is the function appearing as a coefficient in Eqs. (2.13)-(2.17) and h = ri+1 − ri is
the grid size, we extrapolate linearly the functions at points between two grids.

In general, eigenfunctions of the perturbation equations consist of outgoing and incoming

components at spatial infinity, whereas those identified as a stellar quasi-normal mode should

possess no incoming component. The ratio between incoming and outgoing waves can be

determined by the values of Zerilli functions at the surface as explained in the following. In

the exterior of the star, material perturbations (W,V and/or X) are absent, while two metric

perturbations H1 and K remain relevant. Instead of solving the asymptotic values of metric

perturbations directly, we introduce the Zerilli function Z(r), and consider also its derivative

with respect to the tortoise coordinate, defined by

d

dr∗
=

(
1− 2M⋆

r

)
d

dr
, (2.28)

where M⋆ is the stellar mass. Both Z and dZ/dr∗ are a linear combination of H1 and K

(see, e.g., Eq. (A27) of [110]), and the equations for H1 and K can be translated to a simple

function for Z(r), given by[
d2

dr2∗
+ [ϖ2 − V (r)]

]
Z = 0, for V (r) = 2

(
1− 2M⋆

r

)
n2(n+ 1)r3 + 3n2M⋆r

2 + 9nM2
⋆ r + 9M3

⋆

r3(nr + 3M⋆)2
.

(2.29)

In order to match to the interior solution, we rephrase the above equation so as to get rid of

the derivative with respect to the tortoise coordinate. In particular, we consider an auxiliary

function Ψ, defined through

Ψ =

(
1− 2M⋆

r

)1/2

Z, (2.30)

which recast Eq. (2.29) to(
d2

dr2
+ U(r)

)
Ψ = 0, with U(r) =

(
1− 2M⋆

r

)−2 [
ω2 − V (r) +

2M⋆

r3
− 3M2

⋆

r4

]
. (2.31)

The Wronskian of any two linearly independent solutions to Eq. (2.31) can be shown to
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be a constant, which allows for expressing them as [113,114]

ψ± = q−1/2 exp

[
±i
∫
qdr

]
(2.32)

for some function q(r) satisfying (see Eq. (18) of [114])

1

2q

d2q

dr2
− 3

4q2

(
dq

dr

)2

+ q2 − U = 0. (2.33)

The general solution to Eq. (2.31) is therefore

Ψ = Ainψ
+ + Aoutψ

−. (2.34)

Without lost of generality we can set the lower bound of the phase integral in Eq. (2.32) to

be the stellar radius R⋆, thus Ψ(R⋆) = (Ain + Aout)q
−1/2(R⋆). The ratio between Ain and

Aout is [114]

Aout

Ain

=
Zs(1− 2M⋆/R⋆)[iq − (1/2q)(dq/dr)]−M⋆/R

2
⋆ − Z ′

s

Zs(1− 2M⋆/R⋆)[iq + (1/2q)(dq/dr)] +M⋆/R2
⋆ + Z ′

s

(2.35)

for Zs = Z(R⋆) and Z
′
s = (dZ/dr∗)(R⋆). The poles of this ratio are then related to quasi-

normal modes.
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Chapter 3

g-mode asteroseismology
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critical comments on the manuscript.

Overview

Buoyancy-restored modes inside neutron stars depend sensitively on both the microphysical

(e.g., composition and entropy gradients) and macrophysical (e.g., stellar mass and radius)

properties of the star. Asteroseismology efforts for g-modes are therefore particularly promis-

ing avenues for recovering information concerning the nuclear equation of state. In this work

it is shown that the overall low-temperature g-space consists of multiple groups correspond-

ing to different classes of equation of state (e.g., hadronic vs. hybrid). This is in contrast

to the case of pressure-driven modes, for example, which tend to follow a universal relation
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regardless of microphysical considerations. Using a wide library of currently-viable equa-

tions of state, perturbations of static, stratified stars are calculated in general relativity to

demonstrate in particular how g-space groupings can be classified according to the mean mass

density, temperature, central speed of sound, and tidal deformability. Considering present

and future observations regarding gravitational waves, accretion outbursts, quasi-periodic os-

cillations, and precursor flashes from gamma-ray bursts, it is shown how one might determine

which group the g-modes belong to.

3.1 Introduction

Neutron stars (NSs), with their extremely high core densities, reside in an otherwise hard-to-

realise region of the QCD phase diagram. The details of the (supra-)nuclear equation of state

(EOS) can only be accessed by connecting their observed outbursts or manifestations with,

for example, theoretical predictions of the quasi-normal mode (QNM) spectrum, the maxi-

mal supportable mass, and gravitational radiation. Although substantial progress regarding

constraints on the EOS from, e.g., the tidal deformability measured by the phase shift in the

gravitational waveform for merging binaries [22, 115, 116] and observations of the moments

of inertia [117], have been made in the literature, uncertainties remain and a wide pool of

possibilities remain viable. Universal relations between certain stellar properties, however,

offer additional avenues that are EOS-independent to infer inaccessible unknowns, and thus

can indirectly narrow the space of valid candidate descriptions for the stellar interior.

In particular, the QNM spectrum of a NS is strongly associated with the global properties

of the star, in the sense that several universal expressions relating mode frequencies and/or

damping times to the bulk quantities of the star, like average density, moment of inertia,

and tidal Love number, have been established for the f -, p-, and w-modes [118–123]. This

EOS-insensitive information provides hope for independent constraints by offering a critical

tool in rephrasing the detected quantities in terms of others. For example, the mutual tidal

deformability of a not-too-massive NSNS binary equates, in a roughly one-to-one fashion,

into a compactness of the long-lived remnant because the f -mode properties of both the

pre-merging and post-merger stars follow the same universal relation [67]. To account for

the compositional structure, universal relations for g-modes, which distinguish one chemical

configuration from another, need to be established.

In this article, we aim to introduce some global formulae for g-modes of NSs in various

configurations and at various stages of their lives, either isolated or in binaries. The fre-

quencies of this class of oscillatory modes are encoded in the Brunt-Väisälä frequency, which

measures the mismatch in the adiabatic index between the equilibrium and the mode-driven

motions (see, e.g., [124]). Using the (non-isentropic) general-relativistic pulsation equations,

one of our main results is that we can encapsulate the Brunt-Väisälä frequency into the
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temperature-modified mean density of the star, and draw a relation to the g-mode frequency,

viz.

fg ∝ ρ(1−ς)/2mean T, (3.1)

for some EOS- and mode-number-dependent constant −0.7 ≲ ς ≲ 0.5 (see Sec. II). We also

obtain two invertible mappings for the g-mode frequencies in terms of the central speed of

sound, vs, and tidal deformability, Λ, expressed as

log

(
fg1

100 Hz
M

)
=

3∑
i=0

ai(log Λ)
i, (3.2)

fg1
100 Hz

(
vs
R

)
=

3∑
i=0

bi(ρmean)
i/2, (3.3)

with certain coefficients {ai} and {bi}, stellar mass M , and radius R. Importantly, the first

relation (3.1) divides EOS into three quotient sets, and introduces the concept of g-space,

which characterises a specific EOS in terms of the g-mode spectrum. This occurs essentially

because ς takes values in different blocks for different EOS families in a sense that is made

precise in the main text. By representing a (hypothetically) observed g-mode as a point in

g-space, we can, in principle, place constraints on the associated EOS for a wide range of

systems including pulsars, progenitors of binary mergers, and the remnants of mergers. On

the other hand, the latter two relations (3.2) and (3.3) are common for the set of twenty EOS

considered in this article (i.e., the ai and bi are roughly constant among EOS). Leveraging this

universality, we can deduce certain otherwise inaccessible quantities from g-mode observables.

Although still a matter of debate, it has been suggested that various NS phenomena may be

triggered by the excitation of g-modes. For instance, a small percentage of short gamma-ray

bursts display precursor phenomena [38,125], where energetic flashes are observed even many

seconds prior to the main event in some cases. If the stellar oscillation modes briefly come

into resonance with the orbital motion while the stars are inspiralling, significant amounts

of tidal energy may be deposited into the mode(s), possibly to the point that the crust

yields due to the exerted shear stresses exceeding the elastic maximum [39, 40]. g-modes in

particular appear to lie in a sweet-spot, frequency wise, where the expected mode frequencies

match the orbital frequency at the time of the precursor flashes (Chap. 4). Similarly, g-mode

frequencies match those observed in quasi-periodic oscillations (QPOs) of X-ray light curve

from several NS systems and thus provide another promising avenue for detecting g-modes

(see, e.g., [70] for such speculation).

In addition, a new and quite important asteroseismological relation emerged through this
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study connecting the f -mode frequency ff , with the radius and tidal deformability of an

oscillating neutron star

log

(
ff
kHz

R

)
=

2∑
i=0

ci(log Λ)
i . (3.4)

This relation can be considered as complementary to the one by [120].

This Chapter is organised as follows. We first introduce the stellar structure that will be

relevant throughout the Part I of the present thesis in Sec. 2.1, and the existence of g-mode in

the stellar QNM spectrum is justified in Sec. 3.2. The grouping of EOS in terms of the range

of g-mode frequencies, and we discuss the tidal effects of g-modes in Section 3.1. We then

turn to investigate the uniformity among the EOS set considered, producing some universal

relations of g-modes in Section 3.3. We speculate some circumstances, where we may be able

to detect g-mode frequencies in Section 3.4. A discussion on the possible application of the

obtained results is offered in Section 3.5. Some EOS are found to allow for NSs with g-modes

immune to external tidal field, which is discussed in Appendix A.

Except where stated otherwise, we adopt in this Chapter the normalisation of 10 km =

1 = 1 M⊙ for the mass and the radius of stars, and we reduce the dimension of velocity by

unitising the speed of light, c = 1.

3.2 g-mode grouping

In general, QNMs are categorised according to the nature of the restoring force. For example,

p−modes are supported by pressure, while g-modes are supported by buoyancy: Inhomo-

geneities in composition and/or temperature give rise to stellar stratification and buoyancy

as gravity tends to smooth out these gradients [50, 53, 126, 127]. Explicitly, stratification

prevents the Schwarzschild discriminant,

A := e−λ
dp

dr

1

p

(
1

γ
− 1

Γ

)
, (3.5)

from vanishing. The parameter Γ represents the adiabatic index of the perturbation, which

need not match that of the background for non-isentropic perturbations [128].

The polytropic (adiabatic) index of the star expresses the pressure exerted by a bulk of

certain density, and depends on the detailed thermodynamic balance, chemical composition,

and degeneracy status of the system [129]. However, weak interactions (e.g., Urca processes)

and/or diffusive processes within the star modulate the relative particle abundances over time

[130, 131], leading to entropy [50, 127] and/or compositional gradients [53]. These variations

permit mobile fluid elements to experience buoyancy whenever perturbed away equilibrium,

giving rise to the existence of g-modes. The frequencies of these modes therefore depend
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strongly on the strength of the stratification. In principle, one could determine δ from first

principles by calculating the sound speed and the determinant of the Brunt-Väisälä frequency

from the nuclear Hamiltonian together with the Gibbs equation describing the evolution of the

chemical composition [124,127]. However, here we approximate the cold EOS as barotropic,

i.e., p = p(ρ), which erases the compositional information in practice. The composition and

thermal gradients, which offers buoyancy for g-modes, is therefore, strictly speaking, absent.

The artificial parameter Γ is used as a proxy for perturbation-induced changes in the chemical

potentials and/or temperature resulting from a non-adiabatic perturbation. In addition, as

shown by [132], NSs are in general stably stratified due to the interior equilibrium composition

gradient, implying A < 0 inside the star (i.e. γ < Γ). We thus consider positive δ hereafter.

Aiming to provide a proof-of-principle framework in the present thesis, we assume that

the adiabatic indices for the perturbation (Γ) and the equilibrium (γ) have a constant ratio

1 + δ, viz.

Γ = γ(1 + δ), (3.6)

which provides a simple parameterisation for the forces supporting g-modes; see Chap. 4 for

a discussion on the validity of this approximation. We identify δ with the temperature T of

isothermal stars in Sec. 3.2.1. Although we find that the correlation between δ and T holds

only for T ≲ 1010 K, we show the validity of the justification for binaries undergoing the tidal

heating of g-modes Sec. 3.2.2. Respect to the simple parametrisation of stratification, three

divisions of EOS are illustrated in Sec. 3.2.3. Overtones are denoted by gn-mode, for which

the radial eigenfunction has n nodes.

The numerical calculation of the complex g−mode frequencies is known to be difficult

because |1/τα| ≪ |ωα|, meaning that high precision is necessary to prevent errors in the real

parts contaminating the imaginary parts, as discussed by [133]. Searching for low-frequency

g-modes and their respective eigenfunctions entails a delicate separation of the ingoing- and

outgoing-waves at spatial infinity, so that one can impose the purely outgoing boundary

condition1. Techniques based on phase integrals have been proven to be adequate for this

purpose [114]. On top of that, the minute displacements of g−modes, which is translated from

eigenfunctions, make the differential system of the eigenproblem put forward by [110, 111]

inappropriate for solving g−modes. The issue for these long-lived modes (due to their small

imaginary components) has been addressed in [112] by solving a slightly different set of

differential equations (see also [133]). In this work we adopt the combined algorithm of [114]

and [112] to compute g−modes (see Appendix for details). Our code is capable of determining

the real parts of mode frequencies to within a tolerance of ∼ 10 Hz. Shown in Fig. 3.1 are

the radial displacement ξr for the first five g-modes of a particular star.

1Solutions to the perturbation equations include those of purely ingoing- and outgoing-waves, and even the hybrid waves.
However, only those pulsate energy outward, i.e., purely outgoing ones, are physically realised [134].
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Figure 3.1: Normalized radial displacement ξr for the n = 1− 5, l = 2, g-modes of the star with EOS SLy,
M⋆ = 1.27M⊙, and δ = 0.005.

It has been shown that the f -mode frequency of a given star is largely determined by the

square root of its mean density,

ρmean =
M

4
3
πR3

, (3.7)

over a plethora of EOS for non-rotating NSs [135] and for (rapidly-)rotating NSs [121]; there-

fore, the eigenfrequencies of f−modes can be inferred by the square root of the mean density

of the background star and vice versa [119, 136, 137]. Similar relations have been found for

other modes also [118, 138, 139]. In particular, though restricted to polytropic EOS, [140]

found universal relations between the frequencies of l = 2, g1-modes and the strength of

stratification (i.e., δ in our notation). Similar to [140], we find a similar empirical relation

but augmented with a dependence on stratification, given by

ωg/
√
δ ∝ ρ(1−ς)/2mean , (3.8)

for quadrupolar (l=2) g1-, g2-, and g3-modes in stars having mass larger than 1M⊙ for a

variety of EOS. Here ς is the fitting parameter2 is collated in Table 3.1, which varies for

different EOS, while the proportionality constant depends on the mode quantum numbers

for fixed overtone numbers (g1-, g2-, ...) as well as the EOS. However, despite this dependence,

we find that it behaves in a quantitatively similar manner between different EOS groups (see

Sec. 3.2.3). Furthermore, the fact that g1- to g3-modes follow the same relation indicates

that the ratio between their frequencies can be approximated by a constant, e.g., we find

that (though in Chap. 5 we will have a more accurate treatment of the relations between the

frequencies of g1- and g2-modes)

ωg2/ωg1 ≃ 0.68 (3.9)

2For the polytropic EOS studied in [140], the corresponding constant is ς = 0.5 — it is lower for realistic EOS.
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for every EOS considered.

3.2.1 Temperature dependence

We consider EOS to be barotropic at the background level as stated before, hence g-modes

are supported by the entropy gradient. In general, the temperature profile of NSs in different

systems can differ significantly. For instance, mature, isolated NSs are expected to be almost

isothermal [112] (with the notable exception of magnetars, where the decaying magnetic

field may provide an internal heat source [141]), while NSs in binaries [142], post-merger

NS remnants [143, 144], and especially accreting pulsars [141, 145, 146] can have spatially-

dependent temperature profiles that span several orders of magnitude. The resultant position-

dependent thermal pressure makes the ratio between the effective adiabatic index of the

equilibrium and that for the perturbation a function of position.

For mature NSs, the temperature is typically low enough to allow the appearance of solid

crust, superfluid core, and superconductivity of protons. Taking the multilayer complexity in

full, g-modes can be distinguished into two classes, viz. core and crust g-modes, depending

on the configuration of the rendered motions [51,52]. For instance, the radial motion caused

by a crust g-mode will be viscously-quenched at the crust-core interface, leading to only

slight perturbations in the crust. The mode frequencies for both classes will acquire some

modifications by the inclusion of superfluidity, which tends to increase the frequencies of

crust g-modes. Nonetheless, we do not take the multilayer influences on the spectrum into

account as the first step to reveal the trifurcation of EOS in terms of g-modes.

Assuming single component fluid NSs, the justification for δ introduced above may then

be obtained by separating the contribution of the thermal pressure,

pxth =
π2

6

nx
Ex
F

(kT )2, (3.10)

in the perturbation equations used to solve for QNMs, where x = {n, p, ...} runs over the

different constituents of the fluid. Here pxth represents the thermal pressure provided by the

species x, whose Fermi energy is Ex
F . In particular, the thermal pressure contributes to

the linearised equations of the radial and the tangential displacements (cf. Eqs. (B3) and

(B4) of [112]), which replace the term γp for NSs, where thermal gradients are absent, with

(cf. Eq. (B5) of [112])

Γp := γp+
∑
x=n,p

∂pxth
∂nx

nx = γ(1 + δ)p (3.11)
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where

δ =

[
k2π2

6

∑
x=n,p

(Ex
F )

−1

]
T 2 (3.12)

is proportional to T 2. Although this implies that Eq. (3.8) can be translated to

ω ∝ ρ(1−ς)/2mean T (3.13)

if the NS is isothermal, such a parameterisation needs to be justified for an inhomogeneous

temperature profile. To evaluate the reliability of Eq. (3.13) for a NS with more general

temperature distribution, we have compared the mode frequencies in isothermal stars with

the cases of stars with radial temperature profiles that fall by one to two orders of magnitude

from centre to the surface by using the code described in [112]. In particular, we solve for

the frequencies of the g1-mode for a particular stellar model with the following temperature

profiles (in the unit of K):

1. isothermal with log T = {10, 9.5, 9};

2. falling temperature by an order of magnitude as approaching the surface from the tem-

perature at the center being log T = {11, 10};

3. fixing surface temperature as log T = 9, temperature falls by more than one order of

magnitude from a central temperature of log T = {11, 10.8, 10.6, 10.4, 10.2, 10}

where the falling temperatures profiles are such that the temperature decreases linearly with

the radius on a logarithmic temperature scale. As such, those profiles are highly artificial

and given the multitude of different cooling and heating mechanisms operating inside a neu-

tron star it would be difficult, and beyond the scope of the present work, to reproduce a

realistic temperature profile. However, as we argue below, the most important part of the

temperature profile is only that close to the surface of the star and since we are mostly inter-

ested in a qualitative understanding of temperature-related effects, such a simply constructed

temperature distribution suits our needs.

We found that the spectrum of NSs with the same surface temperature differs only slightly

among the above three scenarios, indicating that, to leading order, the QNM spectrum is

unaffected by the temperature gradient except in extreme circumstances (cf. the case of

proto-neutron stars discussed by [61]; see also [63]). This finding makes sense as the thermal

pressure pth is a function quadratic in the temperature; being causal for the buoyancy, it

can compete with the static pressure, which grows substantially toward the center of the

star, only in the outer regions of the star and, hence, the surface temperature is the primary

quantity to determine the g-mode spectrum of a star. This argument also tells us that the

shell below the surface which impacts the g-mode spectrum grows in depth with increasing
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surface temperature. We do observe this effect: Linearity between f and T was observed for

T ≲ 1010 K, and a more complicated pattern arises only for T > 1010 K.

3.2.2 Tidal Heating

For stars within compact binaries permitting “tidally-neutral g-modes” (see Appendix A for

details), mode-related tidal effects are dominated by the non-resonant f -mode until merger.

Resonant g-modes may contribute to the tidal effects comparable to f -mode for stars whose

g-modes are tidally-susceptible, e.g., the produced stress may cause crust yielding (Sec. 4.5;

see also [147]), and the heating via shear viscosity may be as important as that resulting

from the f -mode [124]. For the latter heating process, we find that the energy absorbed into

the star via g-modes up to g16-mode3 can amount to Ekin ∼ 1043 erg for binaries consisting

of identical components, where the kinetic energy of each mode acquired during the tidal

excitation is consistent within a factor of∼ 5 with the stationary-phase-approximated formula

(see Eq. (6.11) in [124]),

Enl ≃ 9.70× 1042
(ρmean

0.49

)−1
(

fnl
100 Hz

)1/3(
Qln

10−5

)2

erg. (3.14)

A portion of the mechanical energy will be converted into thermal energy via viscosity [124,

149] mainly provided by lepton shear viscosity when T < 109 K [cf. Fig. (1) of [150] and

also [151]], and chemical reactions, such as direct or modified Urca processes [152]. To set

an upper limit for the heating effect, we assume the whole energy budget deposited by the

finite series of g-modes is converted into thermal energy through the aforementioned channels;

consequently, NSs will be heated up to a temperature

T ≃ 4.7× 106
(

Ekin

1043 erg

)1/2

K, (3.15)

by equating the dissipated energy to the heat content U of NSs [124, 152], which related to

the averaged temperature over the core via (Eq. (8.28) in [124])

U ≃ 4.5× 1045
(

T

108 K

)2

erg. (3.16)

Although f -mode excitation may also extract orbital energy thus attributing to the tidal

heating, the amount of the kinetic energy is estimated to be comparable to the gross value

of g-modes [124]. The square root dependence of the temperature to the kinetic energy, as

expressed in Eq. (3.15), therefore indicates the resultant temperature will be of the same

3We note that ∼ 80% of the energy budget is deposited by g1-g5 modes. In addition, there is a caveat that high order
g-modes, whose oscillatory period are smaller than the timescale of the involved reaction rate, are likely swept off from the
spectrum [148].
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Table 3.1: Fitting index ς defined in Eq. (3.8) for a variety of EOS. Although there are a few outliers, we
see that those listed in the first column have ς ≳ 0.2, the second column features the range 0-0.2, and in the
final column are ς ≲ 0.

Group I Group II Group III

EOS ς EOS ς EOS ς
APR4a 0.413 SLyf 0.158 H4j -0.094
MPA1b 0.321 WFF3d 0.027 H7j -0.221
MS1c 0.266 FPSg 0.011 GNH3k -0.081
MS1bc 0.333 BBB2h 0.101 PAL6l 0.059
WFF1d 0.453 APR1a 0.128 PCL2m -0.309
WFF2d 0.461 BHFh 0.143 ALF2n -0.657
ENGe 0.179 KDE0Vi 0.200

a [155]. b [156]. c [157]. d [158]. e [159]. f [160]. g [161]. h [162]. i [163]. j [164]. k [165]. l [166]. m [167]. n [168].

Figure 3.2: g-mode frequency for δ = 0.005 as a function of the square root of the mean density,
√
ρmean,

for each of the EOS under study. The circles represent those models drawn with solid line in Fig. 2.1, the
asterisks pair the dashed-line EOS, and the triangles correspond to the dash-dot EOS.

order, which is cold enough not only for the appropriateness of our implementation of cold

EOS, but for the justification of δ ∝ T 2.

We note that the above temperature may be too cold to admit g1-mode with frequency

of ≳ 100 Hz since we estimate the heating effect for non-spinning NSs. For the rotating

stars, r-modes, even f -mode, may undergo a period of resonance [153,154] thus soaking more

energy in expense of orbital one to heat further the star.

3.2.3 Three Groups

In Eq. (3.8), the exponent is determined as follows: for a certain value of ς, a least-squares

fitting is applied to fg/
√
δ and ρ

(1−ς)/2
mean , from which we calculate the correlation coefficient; we

then define the parameter to be the value of ς that maximises the correlation coefficient. We

collate the fitting parameters ς in Tab. 3.1. We see that ς can be divided into three ranges
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(with a few outliers): ≳ 0.2 (Group I ; first column), ∼ 0–0.2 (Group II ; second column), and

≲ 0 (Group III ; final column). The width of the 95% confidence interval of ς for each EOS

is ≲ 0.01, indicating the grouping presented here is statistically sharp. The three divisions

intriguingly correspond to EOS consisting of only hadronic matters that can support heavy

stars of mass ≳ 2.12M⊙ or more (Group I), those that cannot (Group II; ≲ 2.07M⊙ or

less), and EOS involving phase transitions leading to either hyperon condensation or quark

deconfinement (Group III). We note that the considered EOS of Group III cannot support

stars much heavier than ∼ 2M⊙. The two peculiar EOS are ENG and PAL6; the first is

an outlier of Group I with ς < 0.2, while the latter EOS is an exception of Group III since

it has a positive ς and the matter consists of hadrons. This slight mixing between Group

III and the others is not entirely surprising, since first-order transitions in EOS that only

support relatively light stars will not play a big role. In general, we see that the mass-radius

relation is ‘flattened’ with decreasing ς, and becomes a one-to-one mapping when ς ≲ 0.2

except for the Group I EOS ENG and the Group III EOS ALF2. A natural question about

this grouping is whether they are classified by “softness”? While this may be a general trend

it is not absolute since, for example, the stiffest EOS are MS1 and MS1b, which are in Group

I, while members in Group III tend to be stiffer than those in the other two groups.

We illustrate the nature of the groups by plotting the g-mode frequency for a fixed δ as

a function of (the square root of) ρmean in Fig. 3.2, where the different markers are used to

indicate the different correlations between the range of ς. For instance, EOS for which ς ≳ 0.2

(group I) are represented by solid circles. One observes that the g-mode frequencies even of

very stiff EOS like MS1 and MS1b align well [in the sense of Eq. (3.8)] with other EOS of

Group I, especially when the difference in the radius for NSs with a fixed mass among these

EOS can be as large as 1.5 times (between WFF1 and MS1). This observation is similar

for respective members of the other two groups, clearly indicating that global parameters

associated with the EOS are not the only factor in contributing to g-modes. On the other

hand, it has been shown that g-modes in proto-NS following a core collapse, which may be

detected in the near future by third generation detectors [62, 169], tend to obey a universal

relation, and there is no obvious partition (see, e.g., Fig. (2) in [61]). The absence of grouping

in proto-NSs may arise for two reasons: (i) they have very high temperature, likely indicating

that they are thermally-stratified to the degree that δ ≳ 1 (for which the correlation we find

between T and δ may no longer hold), and thus the situation may be different from cold NSs

(see Sec. 3.2.3 for the discussion on valid range of the introduced parameter δ); (ii) the EOS

families that have been previously considered in this context may incidentally belong to the

same branch. Although beyond the scope of this paper, it would be worth revisiting g-mode

studies in proto-NS with a wider EOS library to investigate these points.

Cold NSs with similar bulk properties display universal relations between the f -, p- and w-

modes, indicating the particulars of internal structure does not impact these modes much [118,
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Figure 3.3: Symbolic g-space (see main text for the definition) for three EOS – one from each group, and four
hypothetical observations. The chosen EOS trifurcates around a certain point in the space, so that all three
branches can explain observation (A). However, suppose that, for demonstration purposes, Group I (EOS 1)
governs NS from different systems (and thus passes through each observation). The member(s) in Group II
(EOS 2) can fit the observation in system (A), and may be able to explain observation (D) depending on the
error bars of the measurement, though are incapable of matching the data for (C) or (B). The group III case
(EOS 3), by contrast, is unable to explain any observation except (A).

121–123]. However, the compositional content of NSs, which is to a large extent unknown,

will substantially affect the g-mode spectrum. The uncertainty in the internal physics, on top

of the various methods and/or assumptions adopted to model the nuclear interactions, leads

to the richness in variations of EOS candidates; the grouping we observe therefore indicates

that microphysical considerations can be broadly categorised into three channels, each leading

to a family of g-modes in Fig. 3.2. For instance, the constituents in the core depend on their

evolution track since certain cooling/reaction channels have density-dependent activation

thresholds. In addition, atomic abundances in the crust may vary from system to system,

depending on their birth site [170,171]. Crustal variations are unlikely to considerably modify

the core g-mode spectrum however, and thus would not be responsible for the grouping.

Due to the limited precision of any given observation, it is likely that we can only distin-

guish one family of EOS from another rather than two EOS in the same family. If it happens

that there are two phenomena caused by g-modes, and these are found to reside in different

groups, it might imply that the NSs have followed a different evolutionary track as far as the

EOS is concerned. Nonetheless, if we assume that a certain functional EOS applies to NSs in

different systems, such as binaries and long-lived remnants of mergers, these compact objects

will belong to the same line (solid line in Fig. 3.3) describing the g-mode frequency as a

function of ρ
(1−ς)/2
mean T , just at different stages. Defining the g-space as the set consisting of the

gn-mode frequencies that can be possessed by at least one star with this EOS, we indicatively

draw the g1-space in Fig. 3.3 for EOS 1-3, each belongs to Group I-III, respectively. The

observations of several events can therefore be incorporated to provide a mutual constraint

on the EOS candidates (see below) but in a manner that is distinct from Bayesian analyses,

where various observations shape the prior of the parameterization of EOS differently to
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gradually reduce the viable region for EOS candidates (see, e.g., [172–174]). We note that

in a formal, Bayesian analysis, this common EOS assumption will shape the (informative)

prior of model parameters differently than the situation when the assumption is absent, thus

affecting the statistical inference [144].

As an illustrative example, we consider the particular combination of systems; (A) repre-

sents a NS in a binary undergoing the inspiral, (B) stands for a newly-born NS from merger

after the temperature has dropped sufficiently to validate Eq. (3.13) and differential rotation

has largely stabilised4, and (C) denotes an old, long-lived remnant from an NS merger, with

finally a less-compact version in (D) (see also below). Each type of observation from different

NSs is designated as a point in the space spanned by fg1 and ρ
(1−ς)/2
mean T , and the solid line

connecting these three points indicates a hypothetical case where one EOS “branch” satisfies

(A)-(D). We see that the lines for different groups diverge, but with only one measurement

point (A), one cannot tell which line it is unless some additional observations are available;

branches can be ruled out by incorporating the multi-stage information across (A) to (C),

depending on the relative error bars on the measurements. Nonetheless, we emphasise that

the above analysis surrounding Fig. 3.3 does not necessarily reflect the reality. Instead, it is

simply a demonstration of the idea.

In order to map a certain system onto the g-space, the mean density, which implies we are

able to probe the mass and radius to certain extent, and volume-averaged temperature, must

be known. Although certain constraints can already be set by the simultaneous determina-

tions of the mass and the radius by, e.g., marking a valid region on the mass-radius diagram

for EOS, there will still be a bunch of EOS surviving such restriction if the radius has even

small error bars (e.g., [178,179]). Information from the g-mode frequency can, in such cases,

provide additional constraints of a different flavour. Considering a NS with a canonical mass

of 1.5M⊙ and a radius of 11− 12 km (corresponding to
√
ρmean = 0.46− 0.52), for example,

several members of Group I and II are adequate in terms of the mass and the radius observa-

tions, viz. APR4, MPA1, WFF2, SLy, WFF3, FPS, KDE0V, and BBB2 (though considering

higher mass or more compact stars reduces the pool; [179]). Some of these EOS will be ruled

out if fg1 can be acquired; for instance, fg1 ≲ 80 Hz will exclude ones belonging to Group II

thus making a 62.5% reduction in the aforementioned EOS candidates (see. Fig. 3.2).

To observe a given system on the g1-space, there must be some phenomena attributed to

its g1-mode. The candidate systems allowing for g-mode measurement will be discussed in

Sec. 3.4, where we consider electromagnetic precursor flares prior to merger (Sec. 3.4.1), and

quasi-periodic oscillations (QPOs) in the X-ray light curves of accreting millisecond X-ray

pulsars (AMXPs; Sec. 3.4.2).

4A NS remnant from a merger forms in a differentially-rotating state, and is likely to be highly magnetised due to the Kelvin-
Helmholtz instability occurring at the shear boundary formed upon the contact of the two progenitors [175]. The non-uniform
rotation will wind the field lines and is thought to produce a turbulent viscosity however, which diffuses the angular momentum
from the fast to slow regions, thus unifying the rotation profile (or at least confining it to vary only along flux lines in accord
with the axisymmetric Ferraro theorem) in just a few tens of milliseconds [176,177].
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3.3 Universal relations

In addition to the EOS-dependent relation (3.8) [or Eq. (3.13)], we provide three EOS in-

sensitive relations bearing g-mode frequencies to f -mode frequency, dimensionless tidal de-

formability Λ (Sec. 3.3.1), and the central speed of sound (Sec. 3.3.2), respectively. These

relations offer extra means not only to distinguish EOS groups, but to extract information

on the properties of NSs from gravitational- and/or electromagnetic-radiation observations.

We consider hereafter only EOS of Group I and II, pondering that these are favoured by

precursor events (see the discussion near the end of Sec. 3.4.1).

3.3.1 Gravitational Waves

In the analysis of GW waveform, the chirp mass,

M =
(M1M2)

3/5

(M1 +M2)1/5
(3.17)

of the system can be determined to a relatively high precision since it enters the phase

evolution at the lowest post-Newtonian order [19, 180]. Although not with the same level of

accuracy, the symmetric mass ratio,

η =
M1M2

(M1 +M2)2
, (3.18)

can also be obtained by exploiting its post-Newtonian order contribution to the GW phase

(see, e.g., Eq. (32) in [20]). Therefore, the individual masses M1 and M2 can be estimated

from M and η. In addition, a detailed extraction of the phase shift δΨ = δΨeq + δΨdyn

may shed light on both equilibrium and dynamical tidal effects [181], for which the mutual,

dimensional tidal deformability [12, 77],

Λ̃ =
16

13

(M1 + 12M2)M
4
1Λ1 + (M2 + 12M1)M

4
2Λ2

(M1 +M2)5
, (3.19)

is the agency of the former, and the latter is mainly produced by the late stage growth

of f -mode [78, 80, 182]. Here Λ1(2) is the tidal deformability of the primary (companion).

With observables M, η, and Λ̃, we get a relation for Λ1 and Λ2, and the masses M1 and

M2 though with certain error. However, the uncertainty of EOS involved in such analysis

has a ramification on measuring stellar properties, which can be mitigated by implementing

EOS-insensitive relations.

Although there are several universal relations in hand, most of them pertain to properties

of individual NSs, such as I-Love-Q relation [183], and can only become useful when the mass

ratio between two components of a binary is provided. We, therefore, are seeking a scheme
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Figure 3.4: Three-dimensional universal relation among mass-scaled g1-mode frequency, the tidal deforma-
bility, and the stratification for EOS in Group I and II.

to obtain the properties of individual star from the observables without the a prior input

of the mass ratio. We illustrate that with g-mode frequency obtained from electromagnetic

observations, e.g., the timing of precursors (Sec. 4.6.1), such methodology can be established.

In Fig. 3.4 we show a universal sheet associating the g1-mode frequency, the tidal de-

formability, and the stratification. The caveat of this relation is that δ may be identified

with different temperature for different EOS; therefore, it may not be useful even the tem-

perature can be observed or estimated. To circumvent this dilemma, we can count on an

additional information of g2-mode, whose frequency is linearly correlated with that of g1-mode

through

fg1 = a0 + a1fg2 , (3.20)

where the coefficients a0 and a1 are found to be rather insensitive with δ, e.g., a0 = 4.3162

and a1 = 0.620 for δ = 0.005, and a0 = 5.7221 and a1 = 0.623 for δ = 0.01. Nonetheless, the

difference fg1 − fg2 depends strongly on δ thus limiting δ to a certain range if the frequencies

of these two modes can be observed. One of the possible scenario, where such detection is

plausible, is precursor flares of SGRBs, and we will give a concrete example in Sec. 3.4.1 of

limiting the range of δ via the frequency difference.
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Figure 3.5: Universal relations for the EOS considered here: the mass-scaled g1-mode frequency as a function
of the radius-scaled f -mode frequency (top panel), and the compactness-scaled g1-mode frequency as a
function of Λ (bottom panel).
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Denoting δ5 = δ/0.005, we plot as the solid line the universal behaviour,

fg1
100 Hz

M√
δ5

= −48.641 + 70.782

(
ff

1 kHz
R

)
− 34.426

(
ff

1 kHz
R

)2

+ 5.695

(
ff

1 kHz
R

)3

,

(3.21)

relating the radius-scaled f -mode frequency and the mass-scaled g1-mode frequency in the

top panel of Fig. 3.5. The above equation suggests that the quantity of g1-mode frequency

divided by
√
δ5 depends on the global quantities of the star given f -mode frequencies strongly

correlated to the mean density, which matches to the indication of Eq. (3.8). Although the

relation is valid for, as far as we have checked, 0.001 ≤ δ ≤ 0.05, we present only the results

for δ5 = 1 (coloured dots) in Fig. 3.5 for ease of presentation. In the bottom panel, we

plot a certain section of the sheet in Fig. 3.4, which shows a bearing on dimensionless tidal

deformability via the relation (solid line),

log

(
fg1

100 Hz

M√
δ5

)
=0.411 + 0.106 log Λ− 0.126(log Λ)2 + 0.015(log Λ)3. (3.22)

Here the individual quantity Λ must not be confused with the observed mutual deformability

Λ̃. Additionally, there has been a relation between the mass-scaled f -mode frequency and Λ

proposed by [120], which reads

log

(
ff
kHz

M

)
= 0.814− 0.050(log Λ)− 0.035(log Λ)2, (3.23)

for the EOS considered here. We note that Eqs. (3.21) and (3.22) are invertible maps over

the domains of interest, suggesting a one-to-one relation connecting ff×R and log Λ. Despite

the fact that inverting these two equations and then using the common factor fg1 ×M to

parametrically fit ff ×R and log Λ can establish such a relation, we instead directly establish

a fitting formula between the data, given by

log

(
ff
kHz

R

)
= 0.409 + 0.013(log Λ)− 0.013(log Λ)2, (3.24)

which can be viewed as an equivalent of Eq. (3.23), and both are shown in Fig. 3.6. Combining

above relations (3.22) and (3.23), the ratio between the frequencies of f - and g1-modes can

be expressed as a function of Λ, given by

log

(
fg1/
√
δ5

ff

)
=− 1.403 + 0.156(log Λ)− 0.091(log Λ)2 + 0.015(log Λ)3. (3.25)

The aforementioned relations are powerful in rephrasing observables in terms of unob-

servable but important quantities. Stipulating that we get individual masses from the mea-
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Figure 3.6: Universal relations established in [120] relating the mass-scaled f -mode frequency to Λ, and
relation (3.24) associating the radius-scaled f -mode frequency to Λ, for the EOS considered here.

surements of the chirp mass and the symmetric mass ratio (see below), and the frequency

of g1-mode of the primary from, e.g., precursor observations, we can deduce the individual

deformability Λ1 from Eq. (3.22). Subsequently, Eq. (3.23) translates the mass into ff of

the primary, which then returns the radius R1 via Eq. (3.21). If we also have knowledge of

the mutual tidal deformability, the companion’s individual deformability Λ2 can be obtained

which, together its mass, gives the secondary’s f -mode frequency via Eq. (3.23). Accordingly,

Eq. (3.25) provides an estimate on the g1-mode frequency of the companion, which, combined

with aforementioned companion properties, returns the radius through Eq. (3.21).

In reality, the measurements of η, Λ̃, andM all come with error, though the uncertainty on

M is typically smaller than the others (see, e.g., [19,184]). On top of the above, an uncertainty

of ∼ 10 Hz in fg1 could also be expected, which effectively translates into error bars for the

temperature. All these errors will be reflected in the predictions of Eqs. (3.21)-(3.25). As a

specific example, we assume fg1 = 100 ± 10 Hz, and adopt the chirp massM = 1.167 with

η = 0.242−0.25 and the mutual tidal deformability Λ̃ = 200−800 of a GW170817-like binary

(e.g., [116,185]) in Fig. 3.7, where the derived tidal deformability of the primary (top panel)

and the companion (bottom panel) are plotted for 0.005 ≤ δ ≤ 0.01. Here the blue lines

represent the stratification δ = 0.005, typical for mature NSs in coalescing binaries [e.g., [154]],

while the red lines depict a relatively large δ = 0.01, which may be realised in heated stars

(achieved, e.g., through close, tidal interaction or accretion). The mid point, δ = 0.0075, is

plotted as orange lines. The region bounded by the lines encapsulates the possible range. We

first look at the influence of δ by taking, for instance, η = 0.25, Λ̃ = 800, and fg1 = 100 Hz.

We find for the primary Λ1 = 692.72+552.47
−389.44, R1 = 1.55+0.42

−0.44, and ff = 1829.31−256.62
+394.23 Hz, while

Λ2 = 907.28−552.47
+389.44, R2 = 1.26−0.20

+0.09, and ff = 1708.63+454.48
−152.89 Hz for the companion, where

the values correspond to δ = 0.0075 with the superscript (subscript) associated to δ = 0.01

(δ = 0.005).

Among the uncertainties in M, η, and Λ̃, the latter is the most significant since it is
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Figure 3.7: Inferred, individual tidal deformability of the primary (top panel) and the companion (bottom
panel), determined via Eqs. (3.21)-(3.23), using a fixed value ofM = 1.167. The width of each band is due
to an assumed uncertainty in the stratification δ. Three specific δ are plotted as solid lines on the shaded
area: δ = 0.005 (blue lines), typical for mature NSs, δ = 0.01 (red lines), which may be relevant if the star
is heated by some processes (see the main text), and a mid-point stratification δ = 0.0075 (orange lines). In
each cell, one of η, Λ̃, and fg1 is varied (as per the horizontal axis) while the other two are fixed at η = 0.25,

Λ̃ = 800, and fg1 = 100 Hz.
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extracted from 5-th post-Newtonian (PN) order effects in the gravitational waveform [75,76],

which leaves a smaller imprint than the Newtonian-order parameterM and 1PN parameter

η. Although in our scheme, the large uncertainty in the mutual tidal deformability does not

alter the inference of the parameters of the primary if the g1-mode frequency and the masses

of the NSs are well-constrained (see, e.g., the second column in the top panel of Fig. 3.7), the

inferred properties of the companion are affected considerably. For example, Λ2 = 97–1297

and R2 = 0.86–1.36 correspond to this error given η = 0.25, fg1 = 100 Hz, δ = 0.005, and

the above parameters of the primary. Physically speaking, this is because we attribute a

g-mode to the primary and not the secondary, so that less information is obtained about the

latter using the formulae derived here. In addition, the predictions are sensitive to η and

fg1 as illustrated in Fig. 3.7, where the inferred tidal deformability can drop by 50% from

symmetric case (η = 0.25) to a mildly asymmetric case with η = 0.242. On the other hand,

they can increase by a factor of two if the g1-mode frequency of the primary is fg1 = 90 Hz

instead of 110 Hz.

Although the individual masses M1 and M2 can be determined by the chirp mass and the

symmetric mass ratio measurements, with an error mainly due to the latter [see, e.g., Sec. 5

and 6 of [20] for a discussion], the radii of constituents can not be easily constrained. The

g-mode methodology, however, can additionally determine the radii of binary members with

high accuracy if the temperature is modest. As the radius of NSs with a mass of 1.4M⊙ still

spans a range of 11–13 km for EOS candidates that pass the observations [e.g., [186–189]],

such a novel way to measure the radius may therefore constitute a valuable tool in whittling

down the pool of currently-viable EOS.

On top of this arguably already executable application of universal relations, we speculate

on the possibility of detecting, though indirectly, the f -mode frequency from the accumulation

of phase, δΦdyn. This is expected to be a plausible with detectors in the near future. In

particular, ff of the progenitors of GW 170817 may be determined to within tens of Hz with

the Einstein Telescope [181].

The determination of ff has a double-dose of implications. Firstly, incorporation of

Eqs. (3.21)-(3.23) results in an “on-shell” (physically realisable) condition of M(R) if ff and

fg1 are provided. In Fig. 3.8, we overlap the “on-shell” M(R) to the mass-to-radius diagram

of the EOS considered here for the typical values of ff = 2− 2.2 kHz and fg = 80− 120 Hz.

Here the solid line corresponding to ff = 2 kHz and fg1 = 100 Hz. Secondly, we can know si-

multaneously the mean density due to its universal relation with f -mode frequency [120,121].

According to the derived mean density and the g1-mode frequency, we can represent the NS

on Fig. 3.2, and thereby sift the branch of EOS for this system. We note that even for binaries

without precursors, fg1 can be determined through Eq. (3.22) if the tidal deformability Λ is

measured.

Another scenario where these EOS-insensitive expressions are particularly helpful is black
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Figure 3.8: The curves same in Fig. 2.1 overlapped with Eq. (3.21). The solid line stands for the case with
ff = 2.2 kHz and fg1 = 100 Hz, and the shaded area corresponds to the range of ff = 2 − 2.4 kHz and
fg1 = 80− 120 Hz.

hole-NS binaries since the individual tidal deformability equals to the mutual one, which

is an observable, thus activating the Eqs. (3.22)-(3.25) without the additional processing

translating observables to Λ.

3.3.2 Speed of sound

The measurement of g1-mode can be translated into the central sound speed of the equilibrium

via the strong correlation,

fg1/
√
δ5

100 Hz

(
vs
R

)
=0.124− 0.296ρ0.5mean + 1.685ρmean + 1.442ρ1.5mean, (3.26)
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Figure 3.9: Rescaled g1-mode frequency as a function of ρmean for the EOS considered here, with vs being
the central sound speed.
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shown as the solid black line in Fig. 3.9. Given that the stiffness of a EOS can be characterised

by the maximum sound speed [190], this central value may be informative enough for shedding

light on the stiffness of the EOS since the sound speed culminates at the center. The stiffness

of EOS affects the bulk properties of NSs, such as the maximum mass that is supportable

with the EOS [191, 192], and the tidal deformability [190, 193]; therefore, the constraint on

the stiffness may be translated to either the upper or the lower bound for the sound speed.

For instance, the lower bound of sound speed should be larger than
√
6 if the secondary of

the binary hosting GW 190814 is a NS [194]. In the light of the constraint set by GW 170817,

the determination of the stiffness can augment the GW channel to limit viable EOS. Another

aspect of utilising the speed of sound to benefit astrophysics can be found in, e.g., [195],

where the authors build a family of nuclear interactions in terms of the behaviour of vs, thus

the inferred vs from Eq. (3.25) limits the EOS model.

3.4 g-mode candidate systems

To better utilise the universal relations involving g-modes developed in the present article,

we propose some candidate systems where g-mode detection may be plausible.

3.4.1 Precursor flares

For the NS progenitor of a merger, it has been proposed that mode resonance(s) may trigger

precursor flashes of the SGRB following the merger, notably via interface- [39, 40] and g-

modes (Chap. 4) for slow-rotating NSs, and f - and/or r-modes for fast-spinning NSs [41].

The uncertainties in both the spin rate of NS progenitors and the jet formation timescale of

the main episode allow for candidates of several kinds of mode, where the former quantity

shifts the mode frequency relative to the orbital frequency inferred from the occurrence of

precursors, and the latter timescale blurs the amount of time prior to the merger5.

Seeing that NSs in coalescing binaries are expected to be mature and thus slowly rotating,

we shall examine in Chap. 5 in detail how two precursor flares (associated, for example,

with GRB 090510 [34]) can be accommodated by the lowest two orders of either g-modes

or interface-modes. In there, we find that the indicated spin rate of the host NS is ≲ 50

Hz for the former modes (see also below), while ≪ 10 Hz is suggested by the latter modes.

Nevertheless, we emphasise here that we restrict ourselves to the g-mode resonance scenario

(Chap. 4), but other (e.g., i-mode) possibilities exist [39, 40]. The timing of precursors thus

allows one to infer the (inertial-frame) frequency of the relevant mode, given by

ω ≃ ω0 − 0.89mΩs (3.27)

5Precursors can only be timed relative to the main burst by definition, which occurs only some time after the merger since
jet formation is not instantaneous, but has a development timescale that depends on its formation mechanism (see Sec. II. A
of [41] for a discussion).



Chapter 3. g-mode asteroseismology 41

when the stellar magnetic field strength is small (B ≲ 1014 G), where ω0 is the free mode

frequency (i.e., the frequency not accounting for tidal modulations to stellar structure), Ωs is

the spin rate of the star, andm is the winding number of the mode [Eq. (4.61)]. The numerical

factor 0.89 arises by considering leading-order corrections in the slow-rotation approximation,

though is also, in principle, sensitive to the compactness of the star [Fig. 4.9].

For the specific case of SGRB 090510, the two precursors are detected when Ωorb ≈ 160

Hz and Ωorb ≈ 510 Hz, respectively. If they are attributed to l = m = 2 g1- and g2-modes of

the star, we obtain the equalities

ωg1 − 1.78Ωs = 510 Hz, and ωg2 − 1.78Ωs = 160 Hz, (3.28)

associating with the frequencies of the g1- and g2-modes of the primary. The notation ω = 2πf

gives the angular frequency for linear frequency f . Exploiting the fact that the ratio between

the frequencies of g1- and g2-modes is roughly a constant, viz. ωg2/ωg1 ≃ 0.68 [Eq. (3.9)],

regardless the EOS and δ, we deduce that ωg1 = 174 × 2π Hz, ωg2 = 118 × 2π Hz, and

Ωs = 52.2×2π Hz. The g1-mode frequency can set a lower bound for δ since ω1 is smaller for

decreasing δ. In addition, although the ratio ωg2/ωg1 varies only slightly with respect to EOS

and δ, the difference ωg1 −ωg2 requires δ to fall in certain range resulted from its dependence

on δ, as well as EOS. For instance, the difference of ωg1 − ωg2 = 55.7× 2π Hz here restrains

the stratification to be 0.008 ≲ δ ≲ 0.2 for EOS APR4, and 0.006 ≲ δ ≲ 0.44 for EOS ENG.

We should emphasise that aforementioned requirements for ωg1 , ωg2 , and δ are the neces-

sary conditions for these two g-modes to be responsible for precursors; the sufficient condition

is that the mode amplitude can be resonantly excited beyond certain threshold value. It turns

out the necessary and sufficient requirements are stringent for stellar parameters, and the

viable region on the parameter space is expected to be narrow [see Chap. 4 for a thorough

discussion]. Nonetheless, we note that the EOS of Group I are favoured in igniting precursors

with moderately massive or light stars. Although the g-mode resonance in the quite massive

(≳ 2M⊙) or light (∼ 1M⊙) stars for the EOS of Group II are possible to fuel these early

flares, it is unlikely that stars with EOS of Group III can host such pre-emissions.

In addition, the inferred g1-mode is close to 200 Hz, which is marginally high in terms

of its typical value ∼ 100 Hz. The tidal heating resulted from g- and f -modes investigated

in Sec. 3.2.2 may pose a tension between the realisability of such frequency. Nonetheless,

it is possible for a spinning NS to have low amplitude r-mode excitations, which may not

slow down the star but still heat up the material to make the NS hot enough to admit such

g-modes.
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3.4.2 Quasi-periodic oscillations

Apart from the possibility of precursor flashes observed prior to merger events, there have

not yet been direct g-mode observations in neutron stars, either of the nascent or mature

variety. It has, however, been speculated by [70] that g-modes may be responsible for the

QPOs observed in the X-ray light curves of accreting millisecond X-ray pulsars (AMXPs).

While it is unclear which particular modes may be responsible in these cases (and indeed

it is usually thought that disk g-modes may be responsible rather than stellar g-modes),

it is necessary that their (inertial-frame) frequency matches that was observed, which is

theoretically possible for the class of g-modes considered here.

We take XTE J1751-305 and XTE J1807-294 as examples since their QPO frequencies lie

in the range of interest (i.e., ≲ 400 Hz). Although there are other possibilities, r- and g-

modes are candidates for matching to these frequencies [70–72]. The excitation of the former

modes would generally be expected to sap angular momentum from the star also, especially

if they are driven CFS unstable. However, at least for the specific outburst observed in XTE

J1751-305, it is likely that if r-modes were responsible, the spin-up behaviour of the star

following the first X-ray pulse in 2002 (the small variation in the flux is only observed in

this stage) would have been lower [71], which brings g-modes to our attention. Nevertheless,

we emphasise that the trigger mechanism for QPOs is not well-established, and we consider

g-modes in this context to demonstrate how one may phenomenologically pin the pulsar in

the g1-space given an observation. The above-described scenario is represented by point (D)

in Fig. 3.3.

According to Eq. (3.13), the mass, the radius, and the temperature of stars must be known

in order to mark them on the g-space. Although we can deduce the mean density of two

AMXPs, viz. the range of 0.919-1.214 for6 XTE J1751-305 [71], and the range of 0.499-1.425

for XTE J1807-294 [196], the lack of the knowledge of their temperature prevent us from

locating them on g-space. To better utilise the tool of g-space, future measurement of the

temperature is crucial.

3.5 Discussion

In this article we investigate the dependence of g-mode frequencies on both microscopic (e.g.,

local changes in the adiabatic index) and macroscopic (e.g., stellar compactness) physics,

revealing three families of EOS which still somehow support a number of universal relations.

In particular, we found that g-mode frequencies correlate to the temperature-modified mean

density to the power of a parameter ς [Eq. (3.13)], where the range of ς divides EOS considered

6Note that this density is inferred from the calculations in [71], who operated under the assumption that an r-mode was
responsible for the outburst event, and it is therefore, strictly speaking, inconsistent to use their values in a g-mode analysis
here. We adopt these values however to offer a proof-of-principle.
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here (Tab. 3.1). This empirical fitting formulae define the g-space, where a given point

corresponds to a unique EOS, which is split into three bands depending on ς. Given some

observations, from, e.g., precursors and QPOs, points can be pinned down in the g-space to

scrutinise the EOS candidate (Fig. 3.3). Although joint constraints have been studied via

Bayesian analysis in, e.g., [172–174], our approach here is not interlaced with uncertainties in

the prior of the parameterisation of the EOS. In addition, the appliance of Eq. (3.13) to g1- to

g3-modes implies that the ratios between any two of them are roughly constant. Furthermore,

if we are able to measure both g1- and g2-modes in a NS, e.g., from two precursors in a SGRB

(the double events in GRB090510 may serve as an example Sec. 4.6), we can measure the

spin of the star within some tolerance by solving Eq. (3.28).

On top of the trifurcation, universal dependences of g-modes can be found in terms of

certain quantities [Eqs. (3.21)-(3.23)]. These EOS insensitive information can aid in placing

constraints on EOS without a priori knowledge of the EOS. We show the universal sheet

among the g1-mode frequency, the tidal deformability, the stratification, and the mass of NSs

(Fig. 3.4). Although inferring δ in a certain system is non-trivial, some estimates will be

possible if we can measure additionally ωg2. For a particular value of δ, a specific section of

the universal sheet will be picked up; assuming a typical value δ = 0.005, we reduce the sheet

to Eq. (3.21). For this δ, we also establish the relation between fg1 , M , and Λ [Eq. (3.22)].

Three prospective applications of the above universal relations can be summarised as:

1. Assuming we can measureM, η, Λ̃, and fg1 : the massM , the radius R, and the f -mode

frequency ff can be inferred from Eqs. (3.21)-(3.23). The particular case of GW 170817

is discussed in Sec. 3.3.1.

2. Assuming we can measure the f - and g1-modes: a region of feasible models can be

drawn on the mass-to-radius diagram (Fig. 3.8); such measurements are expected to be

plausible with near-future detectors.

3. Given Λ and the f -mode frequency: the g1-mode value fg1 can be extracted via Eq. (3.25).

In addition, the strong correlation between ff and ρmean gives an estimate of the latter

quantity, which delegates fg1 on a certain region in Fig. 3.2, thus picking a certain group

of EOS for the system.

Besides the global quantities, Eq. (3.26) sheds light on the central sound speed if the radius

and the g1-mode frequency are available. Seeing that the central sound speed of the NSs near

the EOS-related maximal mass reflects the “stiffness” of EOS, this indicates another aspect

to disfavour certain range of “stiffness” other than the analysis having been done to GW

170817, which is based on the measurement of Λ̃ [22].

In addition, universal relations may also be leveraged to pin down observations on g-

space if we can maneuver out of the observables the mass, radius, and temperature of NSs.

As a näıve example, we consider the remnant of merger. The transcendental information
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associating the tidal deformability of the progenitors of mergers to the compactness of the

long-lived remnant (cf. Eq. (4) and Fig. 9 of [67]) says that we can learn the compactness

of the remnant Crem from the measurement of Λ̃. In addition, the f -mode frequency of

the remnant, ff,rem, may be measured from its influence on SGRB photon counts following

the merger since the jet opening angle may widen and shorten as the star oscillates [197].

Envisaging we have ff,rem and Crem, the five stellar parameters fg1,rem, ff,rem, Mrem, Rrem,

and Λrem of the remnant can be calculated by mutually solving Eqs. (3.21)-(3.23). This

information suffices to pin the system down in g-space within some tolerance.

To make further use of g-mode asteroseismology via the universal relations, we point

out two possible avenues for detecting g-modes via electromagnetic sector, viz. the pre-

emissions of SGRBs (Sec. 3.4.1) and (more speculatively) the QPOs in the X-ray light curve

of AMXPs (Sec. 3.4.2). If the temperature in these systems can be measured somehow

with future observatories (e.g., phase-resolved hot spot tracking for the latter), including

the merger remnants, the g-mode ansatz introduced in this work, as well as the universal

relations provided here, can be readily applied to place constraints on the EOS by identifying

observations on g-space, as demonstrated in Fig. 3.3.
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Chapter 4
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Coalescing Binary Neutron Stars

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Magnetised Stellar Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Binary Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Mode frequency modulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Crustal strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Precursor Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Exploring the parameter space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Breakdown of Contributions

The code for solving stellar quasi-normal modes for (slow) rotating and/or magnetising,

relativistic neutron stars is extended by me from the previous code of Kostas D. Kokkotas,

which was designed for non-rotating and non-magnetising relativistic stars. The perturbing

forces and the associated frequency shifts they caused are derived by me, while the dipolar

magnetic field configuration is derived by Arthur G. Suvorov. All the plots are produced by

me. I have penned the manuscript, upon which Arthur G. Suvorov helps polish and performs

final edition. Kostas D. Kokkotas offers meticulous comments throughout every stages of

this work.

Overview

During the final stages of a NS binary coalescence, stellar QNMs can become resonantly

excited by tidal fields. If the strain exerted by the excited modes exceeds the extent to
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which the crust can respond linearly, localised crustal failures may occur. In this Chapter,

we re-examine resonant mode excitations of relativistic NSs in the last ∼ 10 seconds of an

inspiral with an emphasise placed on g-modes. We adopt realistic EOS that pass constraints

from GW170817, include 3rd order post-Newtonian (PN) terms for the conservation orbital

motion, and employ a 2.5 PN scheme for gravitational back-reaction. Frequency modulations

of the modes due to tidal fields, Lorentz forces, and (slow) rotation are also considered to

investigate the maximal strain achievable by resonantly-excited g-modes. Depending on

the EOS, degree of stratification, and stellar magnetic field, we find that certain g-modes

excitations may be able to break the crust some seconds prior to coalescence. The crust

yielding releases the energy used to be stored in the cracking area, which may constitute

flares in the inspiralling stage if the NS is highly magnetised, i.e., magnetar.

For few SGRBs, precursor flares occurring ∼ seconds prior to the main episode have been

observed. These flares may then be associated with the last few cycles of the inspiral when

the orbital frequency is a few hundred Hz. During these final cycles, tidally-driven QNM

resonances in the inspiralling stars, leading to a rapid increase in their amplitude. It has been

shown that these modes can exert sufficiently strong strains onto the NS crust to instigate

yieldings. Due to the typical frequencies of g-modes being ∼ 100 Hz, their resonances with

the orbital frequency match the precursor timings and warrant further investigation. Solving

the general-relativistic pulsation equations and the evolutionary equations for binaries, we

study g-mode resonances in coalescing quasi-circular binaries. We show that the resonantly

excited g1- and g2-modes may lead to crustal failure and trigger precursor flares for some

combination of stellar parameters, viz. certain particulars of stellar rotation rates, degrees

of stratification, and magnetic field structures. One indication on the stellar spin can be

maneuvered out from systems exhibiting double precursors if we attribute these pre-emissions

to g-mode excitations; this aspect will be elucidated in Chap. 5.

4.1 Introduction

Tidal effects in compact binary systems containing at least one NS may be studied by both

electromagnetic and GW measurements [12,23,24]. Such studies allow one to probe the fun-

damental properties of the progenitor NSs, such as the EOS [22,198]. In the final stages of a

merger, orbital energy and stellar internal energy are redistributed efficiently by tidal force(s)

and dissipation. The former excites stellar QNMs, leading to the transfer of orbital energy

into excited modes, thus leaving certain imprints into the orbit evolution (e.g., accelerating

coalescence and causing shifts in the GW phase by f−mode excitations [199, 200]). The

latter, resulting from viscosity, damps the excited modes, turning kinetic energy into thermal

energy, which can heat up the star to ∼ 108 K before merger [124]. In particular, when the

tidal-perturbing frequency matches the eigenfrequency of a particular QNM at some point
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prior to merging, the mode becomes resonantly excited. The amplitudes of resonantly-excited

modes increase rapidly as a consequence of their ability to efficiently absorb orbital energy

over a resonance timescale. If a certain mode is driven so strongly that the resultant strain

exceeds a critical value such that the crystalline structure of the crust can no longer respond

linearly, a crustal failure may occur [45, 46, 49]. On the other hand, the external tidal field

contributed by the companion star deforms the shape of the primary, inducing a quadrupole

moment and certain crustal stress (see, e.g., Equations (64) and (65) of [201]). In the final

stage of inspiralling, the tidal field becomes tremendous and distorts the star to an extent

that may lead to crustal failure (e.g., [202]), though the yielding resulting from this process

can occur only within ≲ 102 ms prior to the merger [39,203,204].

Generally speaking, if the stress exerted on the stellar surface exceeds the maximum that

the elastic crust can support, a yielding may be expected. The crust failure then liberates

charged particles that are accelerated to form ejecta by induction-generated electric fields.

The outflow interacts with the surrounding medium, eventually leading to the conversion of

magnetic energy flux into radiation [205–207]. It has been suggested that localised failure

events offer a possible mechanism [39, 41, 147] to trigger ‘precursor’ events of SGRBs [34],

which are commonly defined as bursts having 90% of their photon count detected with T90 ≲

2 s [208], and are thought to result from compact object mergers involving at least one

NS [209–212]. Since precursors are observed to have a non-thermal spectrum [34, 37] , (at

least one of) the inspiralling stars should be highly magnetised (B ≫ 1013) so that the

energy can be efficiently transported via Alfvén waves [39,206]. Further credence is given to

this scenario because magnetar birth rates [213] coincide with the recent estimates on the

proportion of SGRBs preceded by at least one precursor flare [34, 36, 125]. Additionally, in

light of the relative time difference of precursors to the main episodes, which ranges from a

few hundred milliseconds to a few tens of seconds prior to the main episode (see Tab. 4.2),

the aforementioned equilibrium tidal effects are seemingly not capable of accommodating

the observed precursors. In view of these points, mode excitations in magnetars are worth

exploring as they may be the central engine for these precursors [34,39,41].

At the non-rotating level1, the QNMs of NSs can be generally resolved into p-, f -, w-,

and g-modes. Since the (rotating-frame) frequencies of the stellar g-modes, which are QNMs

restored by buoyancy, are typically in the hundreds of Hz [50, 53, 54, 140], these modes are

generally thought to lie in the sweet spot of the precursor scenario (that is, they match well

with the expected driving frequency at the time when precursors are observed relative to

the main burst). Shifts in the spectra due to magnetic fields (Section 4.4.1), tidal fields

(Section 4.4.2), and rotation (Section 4.4.3), are also considered. We note that interface

1Because mature NSs as part of binary systems are expected to be slowly rotating [203,214], the inertial-frame and rotating-
frame frequencies of the modes roughly coincide. For rapidly rotating stars however, r- and even f -mode frequencies can be
comparable with the frequency of tidal driving ∼ seconds before merger [41, 215]; see Sec. 4.4.3 for a discussion on rotational
corrections.



48 4.2. Magnetised Stellar Models

modes [51,52,216] and shear modes [217–220] could potentially be responsible for precursors

as well [147]. However, the stars considered here have neither phase transitions that result

in density jumps inside the star, nor a solid crust separated from the fluid core, hence those

modes are absent.

In general, identifying the precise conditions under which crustal failure can occur is

complicated. In addition to the actual physics of fracturing not being perfectly understood

(see Sec. (2.2) of [221] for a discussion), many factors participate in the straining mechanism,

such as: the mass ratio of the binary [78, 79], the structure and strength of the stellar

magnetic field [41,222], the degree of stellar stratification, which affects the g-mode spectrum

in particular [140,147], the rotation rate [121,223,224], and the stellar EOS that characterises

the internal structure [225, 226]. Moreover, NSs are compact enough that relativistic effects

are not negligible in these last stage. For instance, QNM eigenfrequencies can differ from

their Newtonian counterparts by ≳ 10% [120], which, if unaccounted for, results in errors in

the estimation of parameters that allow for resonances to happen at certain times. Seeing

that a search for realistic circumstances that connect with the observed precursors may thus

shed light on the magnetic field structure, the rotation rate, and the EOS of progenitors

(see, e.g., [227]), it is important therefore that realistic models of crust yielding due to

mode resonance be constructed with the hope that they can eventually lead to predictions

so that astrophysical information concerning NS structure can be extracted from precursor

phenomenology.

Building on previous studies [39, 41, 147], we introduce a general-relativistic framework

in this Chapter, and aims to (at least phenomenonologically) incorporate each of the above

elements to better understand the connection between resonantly excited modes and crust

yielding. Specifically, stellar QNMs are solved relativistically and the orbit evolution in-

volves up to 3rd order PN order effects including a 2.5PN flux scheme for gravitational

back-reaction. Furthermore, mixed poloidal-toroidal magnetic fields together with rotational

and stratification effects are also included numerically in our evolutions.

4.2 Magnetised Stellar Models

We consider piecewise-polytropic approximations [68] to three different realistic EOS, namely

the APR4, SLy, and WFF families. We choose these models because they are sufficiently

soft to be compatible with the tidal deformability measured in GW170817 [22]. The afore-

mentioned EOS are all barotropic [i.e., p = p(ρ)], which is a reasonable approximation for

mature systems older than the relevant electroweak and diffusion timescales [228] where ther-

mal fluxes are likely to be negligible, and the buoyancy comes primarily from composition

gradients inside the star. Note, however, that tidal heating is expected to be able to raise the

temperature of the (still relatively cold) NS crust to ∼ 108 K prior to merger [124]. Thermal
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Figure 4.1: Mass of non-rotating equilibrium models constructed with various EOSs surviving the constraints
of GW170817 (APR4, SLy, WFF1-3) as functions of central density (left panel) and stellar radius (right
panel). We choose several models for each EOS to be studied. These models include those represented by the
intersection of each EOS curve with the gray dashed lines, and those having masses of 1.4M⊙ (the intersection
of each EOS curve with the green dashed line).

gradients may therefore become important at late times [229].

While each EOS considered here assumes that the stars consist of npeµ nuclear matter,

the many-body problem is handled differently:

1. WFF families are obtained using variational methods applied to nucleon Hamiltonians,

that contain pieces of two-body and three-body interactions. More precisely, different

two- and three-nucleon potentials are used to model the bulk matter [see [158] for details].

2. SLy is derived from the Skyrme effective nucleon-nucleon interaction [160], consistent

with WFF2 in the regime where the baryon density exceeds the nuclear value n0 = 0.16

fm−3.

3. APR4 is derived by variational chain summation methods [155] adopting a two-nucleon

interaction [230] that accounts for Lorentz boost corrections not used in WFF1.

MassesM⋆ of the stars constructed with these EOS, as functions of central density, are shown

in the upper panel of Figure 4.1. The intersections of each curves with the dashed lines (both

green and gray) mark the models that we choose for later analysis. The mass-density relations

[bottom panel of Fig. 4.1] tells us that the SLy EOS is the stiffest one and the WFF1 is the

softest one.

4.2.1 Magnetic field structure

In this thesis, we treat stars as perfect conductors over which relativistic magnetic fields are

constructed. Perturbed magnetic fields generate Lorentz forces according to the Faraday
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induction equation (Sec. 4.2.2), which tunes the eigenfrequencies of QNMs through back-

reaction (Sec. 4.4.1). In the event that a crustal yielding occurs on a magnetised star, the

release of fracture energy may generate flares, such as precursors of short gamma-ray bursts.

In general, perturbed magnetic fields would induce electric fields, accelerating charged particle

and thermalising the electromagnetic emission; however, if the magnetic field is strong enough

(≫ 1013 G, i.e., magnetar-level [231]), the energy propagates along field lines as Alfvén

waves [39]. The non-thermal properties of precursors thus support the possibility that at

least one NS is a highly magnetised star in those events [41]. Timing of precursor will be

examined in Sec. 4.6 as an application of the formalism that will be developed later.

The Viral theorem [232] sets an upper limit to the magnetic field strength for NSs of

the order ∼ 1018 G [233–235]. Even for most magnetars, the (surface dipole) magnetic field

strength is much smaller than this extreme, implying that the gravitational binding energy

exceeds the magnetic energy by several orders of magnitude [218, 236]. One may therefore

treat the magnetic field as a perturbation over a spherically symmetric background profile

(2.1), in the style of [228,237,238].

We introduce the electromagnetic 4-potential Aµ, which defines the Faraday tensor

Fµν = ∇νAµ −∇µAν , (4.1)

where each Aµ is a function of r and θ only. Maxwell’s equations for the electromagnetic

field are

F µν
;ν = 4πJµ, ∇[αFβγ] = 0, (4.2)

for 4-current Jµ [effectively defined by the first of Eqs. (4.2)]. The Lorentz force is then given

by F µ
L = F µνJν . The ideal MHD condition of vanishing electric field, defined by

Eµ = Fµνu
ν , (4.3)

for a static and non-rotating star (i.e. uµ = e−Φ∂t), returns the condition At = 0. We have

residual gauge freedom, which allows us to pick Aθ = 0 [239]. Setting Ar = B⋆e
λ−ΦΣ and

Aϕ = B⋆ψ, it can be shown that Maxwell’s equations are solved exactly for [237]

Σ(r, θ) =

∫
dθζ(ψ)

ψ(r, θ)

sin θ
, (4.4)

for some ζ, which is an arbitrary function of the stream function ψ and effectively defines

the azimuthal (toroidal) component Bϕ and generalises the Chandrasekhar (Helmholtz) de-

composition in flat space [238,240]. Here B⋆ sets the characteristic field strength.

The magnetic 4-field has covariant components

Bµ =
1

2
ϵµνσηu

νF ση, (4.5)
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where ϵ denotes the Levi-Civita symbol. Using the above expression for Aµ, the contravariant

components Bµ can be readily evaluated, and we find

Bµ = B⋆

(
0,

e−λ

r2 sin θ

∂ψ

∂θ
,− e−λ

r2 sin θ

∂ψ

∂r
,−ζ(ψ)ψe

−Φ

r2 sin2 θ

)
. (4.6)

The function ψ can now be expanded as a sum of multipoles. For simplicity, we take a

dipole field with polynomial radial component (which generalises the Newtonian description

in [238]), i.e.,

ψ(r, θ) = f(r) sin2 θ, (4.7)

with f(r) = a1r
2 + a2r

4 + a3r
6, where the ai are to be constrained by appropriate boundary

conditions. In particular, we impose that

• the field matches to a force-free dipole outside of the star (r > R⋆);

• there are no surface-currents (Jµ|r=R⋆ = 0).

This leads to four constraints, which are that the 3-components (4.6) are continuous at the

boundary ∂V of the star, and that the 4-current vanishes there (which only has one non-trivial

component, Jϕ, for an axisymmetric field). One of these is trivially satisfied by demanding

that ζ vanishes on the surface, which we achieve, as in [238], by setting

ζ(ψ)ψ = −
[
Ep (1− Λ)

EtΛ

]1/2
(ψ − ψc)2

R3
⋆

, (4.8)

when ψ ≥ ψc, and ζ is zero otherwise. Here ψc is the critical value of the streamfunction,

defined as the value of the last poloidal field line that closes within the star, thus the toroidal

component is confined to the region of closed poloidal field lines. The quantity Λ measures

the ratio of poloidal and toroidal magnetic energies; typically Λ≪ 1 for a stable configuration

[236,241]. For the above choices, we find

ψc = −
3R3

⋆ sin
2 θ

8M3
⋆

[
2M⋆ (M⋆ +R⋆) +R2

⋆ log

(
1− 2M⋆

R⋆

)]
. (4.9)

The energy stored in the internal magnetic field of the static equilibrium is (see, e.g., Eq. (41)

in [237])

E = 2

∫
primary

√
−gd3xuµuνT µν =

1

4π

∫
primary

√
−gd3xB2, (4.10)

where T µν is the magnetic stress-energy tensor

T µν =
B2

4π

(
uµuν +

1

2
gµν
)
− BµBν

4π
, (4.11)
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with B2 = BµBµ. For the dipolar field (4.6) considered here, the poloidal and toroidal

energies are

Ep =
B2
⋆

4π

∫
primary

√
−gd3x

[(
∂θψ

r2 sin θ

)2

+

(
e−λ∂rψ

r sin θ

)2]
, (4.12)

and

Et =
B2
⋆

8π

∫
ψ≥ψc

√
−gd3x

(
ζ(ψ)ψe−Φ

r sin θ

)2

, (4.13)

respectively.

The force-free dipole outside of the star is found by setting F µ
L = 0 for r > R⋆. This leads

to [242]

ψext = −
3R3

⋆ sin
2 θ

8M3
⋆

[
2M⋆(r +M⋆) + r2 log

(
1− 2M⋆

r

)]
, (4.14)

where we note that, outside of the star, the geometry is Schwarzschild, i.e.

Φ(r > R⋆) =
1

2
log

(
1− 2M

r

)
and λ(r > R⋆) = −Φ. (4.15)

It is not hard to prove (use L‘Hopital’s rule) that, in the limit M⋆ → 0, ψext reduces to the

standard force-free dipole of Newtonian theory, ψ ∼ sin2 θ/r. Finally, imposing the conditions

(i) and (ii) discussed above leads to

a1 = −
3R3

⋆

8M3
⋆

[
log

(
1− 2M⋆

R⋆

)
+
M⋆(24M

3
⋆ − 9M2

⋆R⋆ − 6M⋆R
2
⋆ + 2R3

⋆)

R2
⋆(R⋆ − 2M⋆)2

]
, (4.16a)

a2 =
3(12M⋆ − 7R⋆)

4R⋆(R⋆ − 2M⋆)2
, (4.16b)

and lastly

a3 =
3(5R⋆ − 8M⋆)

8R3
⋆(R⋆ − 2M⋆)2

. (4.16c)

The above therefore completely defines the general-relativistic generalisation of the [238]

mixed poloidal-toroidal field.

The magnetic field introduces a frequency shift in the spectrum of the star depending on

the values B⋆ and Λ, defining the characteristic poloidal and toroidal strengths. To better

understand the magnetic field, we transform the contravariant components of 4-field Bµ into

the Newtonian-like components, denoted by a overhead tilde, through (cf. Eq. (4.8.5) in [243])

B̃a =
√
gaaB

a, (4.17)
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Figure 4.2: Field lines for the background magnetic field B with Λ = 1. The red rigid line marks the
surface of the equilibrium star; the scale is given in unit of B⋆ for which brighter shades indicate stronger
field strength.

and we show the cross section in Fig. 4.2, which is the whole picture of the magnetic field if

the field is purely poloidal.

4.2.2 Perturbed Lorentz force and Faraday equations

We now study the backreaction onto the magnetic fields induced by the modes, which results

in the frequency modulation 4.4.1. In this section, we ignore the spacetime variation of

QNMs from magnetic fields in the perturbation equations (i.e., δgmag
µν = 0). Nonetheless

we note that the difference between our approximation and the Cowling one is that we

take the first order spacetime perturbations into account, viz. spacetime perturbations are

involved in determining the mode frequency of the stars, and only the higher-order ‘magnetic-

backreaction’ effects are disposed of. In this sense, our results are expected to be more

accurate than those which adopt the Cowling approximation.

Following the derivation in [218] (see also [244]), the projection of the equation of motion

onto the hypersurface orthogonal to uµ,

hµη∇νT
ην = 0, (4.18)

gives

(ρ+ p+
B2

4π
)uν∇νu

µ = −hµν∇ν

(
p+

B2

8π

)
+ hµη∇ν

(
BηBν

4π

)
, (4.19)

where the projection operator hµν = gµν+uµuν . The Lagrangian 4-displacement ξµ is related
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to the perturbed velocity through the Lie derivative (see, e.g., Eq. (34) of [245])

δuµ = hµνLuξ
ν . (4.20)

In the simple case of a static fluid (uµ = e−Φ∂t), we find δui = iωαe
−Φξi for a certain QNM.

After linearizing the equation of motion (4.19) and utilizing relation (4.20), the perturbing

Lorentz force reads

δF µ
B =

iωαe
−Φ

4π

[
B2

(
∇t(ξ

µe−Φ) + ξν∇νu
µ

)
+
uµξν + uνξµ

2
∇ν(B

2)

− (uµξηe
2Φ + ξµuη)∇ν(B

ηBν)

]
− 1

4π
hµη∇ν(B

ηδBν + δBηBν)

+
1

4π
hµν∇ν(BηδB

η) +
1

2π
BηδB

ηuν∇νu
µ, (4.21)

while the perturbed magnetic field δBµ can be determined by solving the linearized induction

equation [218]

∇tδB
µ =iωα

[
− ξν∂νBµ − ξνΓµνηBη − uµξνBη∇ηu

ν + eΦBν∇ν(e
−Φξµ)

− eΦBµ∂ν(e
−Φξν)−BµΓννηξ

η + uµBνiωαe
−Φξν + uµBνξη(∂ηuν + Γtνηe

Φ)

− uµBνΓηνtξη + ξµBrΦ′
]
+ δBruµΦ′eΦ. (4.22)

For the magnetic field given by Eq. (4.6), the induction equation gives

∂

∂t
δBµ =iωα

[
− ξr∂rBµ − ξθ∂θBµ +Bν∂νξ

µ +BµΦ′ξr −Bµ∂νξ
ν

−BµΓννηξ
η + uµBνiωαe

−Φξν

]
+ δBruµeΦΦ′ − ΓµtνδB

ν . (4.23)

Since some terms only appear in the temporal component of the first-derivative of δBµ, one

can make the equations more concise by separating the temporal component from the spatial,

viz.

∂

∂t
δBt =− ω2

αe
−2ΦBνξν , (4.24a)

and

∂

∂t
δBi =− iωα

[(
ξr∂r + ξθ∂θ − Φ′ξr + ∂νξ

ν + ξν∂ν ln
√
|g|
)
Bi −Bj∂jξ

i

]
. (4.24b)

Accordingly, one can integrate the above equations to find

δBt =iωαe
−2ΦBaξa, (4.25a)
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and

δBi =−
[(
ξr∂r + ξθ∂θ − Φ′ξr + ∂aξ

a + ξr
(
Φ′ + λ′ +

2

r

)
+

ξθ

tan θ

)
Bi −Bj∂jξ

i

]
. (4.25b)

Expressions (4.25) will be used to define the perturbing Lorentz force in Sec. 4.2.2.

Though it is not considered in this work, we would like to point out the possibility that

NSs as a member of a binary may be cold enough that they contain superconducting matters,

which influences the magnetic properties of the star [246] and any resulting GWs [247]. For

example, the force induced from the field perturbation has different influences to the Lorentz

force, and the induction equation is also altered due to the altered nature of Ohmic and

ambipolar dissipation [248]. On top of that, superfluidity increases the frequencies of g-

modes, e.g., [57] found that the frequency of the n = 1, g1-mode is of the order of a few

hundred Hz (even up to 700 Hz) for a particular EOS with M = 1.4M⊙ (see their Fig. 4).

Adding that the overlap integral is found to be of the same order as the case where the

superfluid is absent (see their Fig. 5), we expect a smaller amplitude for the g1-mode due to

its shorter resonance timescale. Although the inclusion of superfluidity brings higher-order

modes into play, those overtones typically have a much weaker overlap integral (with respect

to the normal fluid case). It may thus not be very plausible that these overtones can account

for tidally-driven crustal failure.

4.3 Binary Evolution

We consider a close NSNS binary system with constituent masses M⋆ and Mcomp for the

primary and companion, respectively. The orbit is assumed to lie on the equatorial plane2.

Each star perceives the other as a point mass to leading order, and thus we treat the com-

panion as a point mass in the evolutionary code3. The relevant Hamiltonian consists of four

parts [199,253]:

1. The conservative orbital dynamics, for which we include up to 3rd order post-Newtonian

(PN) corrections via the effective one-body formalism (since the equations are lengthy,

we refer the reader to Eq. (4.28) of [254]; see also [255]).

2. Leading order GW dissipation of respective equatorial motions, which first appear at

2.5 PN order, is encapsulated by [256]

Hreact =
2

5

(
pipj −

M2
⋆M

2
comp

M⋆ +Mcomp

xixj
a3

)
d3

dt3

[
xixj −

a2

3
δij

]
, (4.26)

2In close binaries, tidal interaction aligns the stellar spins with the orbital angular momentum rapidly [249,250]. Therefore,
it is most likely that stellar spins are almost aligned with the orbital one in the late stage of inspiralling.

3Higher-order and finite-size effects have been looked at through the second-order gravitational self-force method [251] and,
independently, by PN theory [252], where the leading correction comes beyond 5 PN.
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where xi = (a cosϕ, a sinϕ) for i = 1, 2 denote the spatial coordinates of the companion

(note the lack of dependence on θ because we consider equatorial motion), pi are the

associated momenta, and a is the distance between the companion and the center of the

primary (r = 0).

3. The gravitational energy that the primary absorbs via the tidal field,

Htid =

∫
primary

ϕT δρ(x, t)
√
−gd3x, (4.27)

where ΦT denotes the tidal potential as experienced by the primary, δρ is the physical

variation in density, and the integral is taken over the volume of the primary. We note

that the tidal potential ϕT is not to be confused with the metric function Φ(r). In

true general relativity, the tidal potential ϕT (which is promoted to a tensor) has both

electric and magnetic components [257–259] (see also [79, 260, 261] for the formalism

of 1 PN interaction). However, the PN tidal response of NSs and the influence on

the orbit evolution are insignificant except only the last few second of the insprial (≫
100 Hz). Therefore, we will neglect the PN tidal interaction and consider a Newtonian

approximation here. As such, ΦT admits a multipole expansion of the form [262] [see

also [263] for the case of eccentric binaries]

ϕT = −Mcomp

a

[
1 +

∑
l=2

(r
a

)l
P l
0

(
cos ϕ̃ sin θ

)]
, (4.28)

which depends on the difference ϕ̃ = ϕ − ϕc between ϕ and the angular position of the

secondary star, ϕc, as measured from the perihelion of the orbit. In general one needs to

sum over the multipolar components of ϕT to complete the tidal Hamiltonian, though

we specialize our attention to the l = m = 2 component of ϕT , which is the leading order

term of the potential most relevant for tidally-forced oscillations [263, 264]. The tidal

force associated with this component perturbs the primary with frequency two times the

orbital frequency, 2Ωorb. In addition, δρ(x, t) is induced by the small-amplitude motion

ξ on the star,

ξ(x, t) =
∑
α

qα(t)ξα(x, t), (4.29)

which we have decomposed into modes ξα with amplitude qα. Each ξα, having time

dependence eiωαt, is a solution to the eigenproblem

Vξα = ω2
αT ξα, (4.30)

where V and T are appropriate potential and kinetic operators [265]. The detailed form
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of these potentials is crucial as one attempts to identify the impact of any perturbing

forces in the problem, but is not important in building up the Hamiltonian itself, so we

postpone their explicit definition until Sec. 4.4.

4. Pulsations on the primary, which are described by a harmonic-oscillators-type Hamilto-

nian

Hosc =
1

2

∑
α

(
pαp̄α
M⋆R2

⋆

+M⋆R
2
⋆ω

2
αqαq̄α

)
+H.c., (4.31)

which is normalized according to∫
primary

√
−gd3xe−2Φ(ρ+ p)(ξα)

µ(ξ̄α′)µ =M⋆R
2
⋆δαα′ (4.32)

for each QNM eigenfunction4. Here pα are the canonical momenta associated with qα,

and the overhead bar denotes complex conjugation. Note that the momenta with Latin

index are spatial ones, while those labeled by α are for pulsations. The Hermitian

conjugate in Eq. (4.31) comes from the dual appearance of modes with eigenfrequency

−ω̄ (see Sec. 4.3.1 for details). However, these are not the classic oscillators in the sense

that dissipation rate of QNMs is not determined solely by the imaginary part of the

eigenfrequencies, since the eigenfunctions are not real.

In summary, we work with the Hamiltonian

H(t) =
(
Horb +Hreac +Hosc +Htid

)
(t). (4.33)

The orbital dynamics are then determined by numerically solving Hamilton’s equations,

dpα
dt

= −∂H(t)

∂qα
,
dqα
dt

=
∂H(t)

∂pα
, (4.34a)

dp̄α
dt

= −∂H(t)

∂q̄α
,
dq̄α
dt

=
∂H(t)

∂p̄α
, (4.34b)

and

dpi
dt

= −∂H(t)

∂xi
,
dxi
dt

=
∂H(t)

∂pi
, (4.34c)

where we recall that xi and pi are defined in the sentence below Eq. (4.26).

The evolution is carried out up to the point that the orbital instability kicks in, which

4Eigenfunctions of QNMs, ξµα, in GR are not strictly orthogonal to each other for the coupling between the material motion
to the gravitational radiation field, which extends to infinity, destroys the self-adjointness of the eigenvalue problem by a
non-vanishing surface integral term from the perturbations in the spacetime (see, e.g., Eq. (2.4) in [266]; for the Cowling
approximation case, see the last two terms of Eq. (16) in [267]). Nonetheless, that term is small for g−modes, whose dissipation
timescales are extremely long. The omission of the surface integral term hence justifies the implementation of the normalization
(4.32), which looks similar to the Newtonian case used in, e.g., [39].
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happens at a ≲ 3q1/3R⋆ [268], where q is the mass ratio Mcomp/M of the binary. Although

this point need not coincide with the separation where NSs merge, the difference is small [269]

and we effectively assume that mergers occur at a ≲ 3q1/3R⋆ [41, 153,270].

4.3.1 Tidal resonances

For a spherically-symmetric (equilibrium) star, the components of the eigenfunction ξα can

be expressed in terms of radial (Wnl) and tangential (Vnl) components, viz.

ξrα = rl−1e−λWnl(r)Ylme
iωαt,

ξθα = −rl−2Vnl(r)∂θYlme
iωαt,

ξϕα = −rl(r sin θ)−2Vnl(r)∂ϕYlme
iωαt, (4.35)

and ξtα = 0 [110, 111, 271]. In addition, the metric perturbed by (even parity) QNMs can be

expressed in the Regge-Wheeler gauge5 as

ds2 =ds2eq − e2ΦrlH0
nlYlme

iωαtdt2 − 2iωαr
l+1H1

nlYlme
iωαtdtdr

− e2λrlH0
nlYlme

iωαtdr2 − rl+2KnlYlme
iωαtdΩ2, (4.36)

where ds2eq is the line element of the equilibrium (2.1), and H0
nl, H

1
nl, and Knl characterize

the metric perturbations.

Two modes whose eigenfrequencies have real parts with opposite sign but share the same

imaginary parts appear in pairs [135], and their eigenfunctions are complex conjugate to

each other. The normalization (4.32) is satisfied for these dual modes, thus the Hermitian

conjugate part in Eq. (4.31) attributes to them. The change in the (Eulerian) density induced

by pulsations is therefore

δρ(x, t) =
∑
α

δρ(x, ωα)e
iωαt +H.c., (4.37)

where the contribution of a particular mode, accompanying a Hermitian conjugate term due

to the dual mode, is

δρ(x, ωα) =qα

[
−e−Φ∇i

(
(ρ+ p)eΦξiαe

−iωαt
)
+

(
H0
nl

2
+Knl

)
(ρ+ p)Ylm

]
(4.38)

to first order in the perturbation terms (cf. Eq. (8a) in [267]). The boldface symbol denotes

the spatial part of a 4-vector and the divergence is taken with respect to the 3-geometry of

the metric (4.36) at a constant time t. The physical perturbation in density induced by a

5Strictly speaking, this gauge assumes a fixed (l,m) and mode parity (cf. Eq. (A9) and (A11) in [271]), and so performing a
summation, as we do in (4.29), is actually mixing gauges in a formally incorrect way. Fortunately, [134] have shown that one
can simply superpose the QNMs using whatever gauge for each one.
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pair of modes reads

δρ(x, t) = 2Re
[
δρ(x, ω)

]
. (4.39)

We use the complex conjugate δρ in the bracket to maintain coherence with later use. The

factor 2 comes from the fact that the modes appear in pairs with frequency of ω and −ω̄.

Substituting δρ and integrating by parts, the tidal Hamiltonian can be expressed as

Htid =2

∫
primary

√
−gd3x(ρ+ p)Re

[
δρ(x, ω)ϕT

]
=

∫
primary

√
−gd3x(ρ+ p)Re

[
(H̄0

nl + 2K̄nl)Ȳlmϕ
T
]
− 2M⋆Mcomp

aR⋆

∑
α

Wlm

(
R⋆

a

)l
Re[q̄αQαe

−imϕc ],

(4.40)

containing a term resulting from the spacetime distortion, which does not have a Newtonian

analogy. In Eq. (4.40), Wlm is given by

Wlm = (−)(l+m)/2

[
4π

2l + 1
(l +m)!(l −m)!

]1/2
×
[
2l
(
l +m

2

)
!

(
l −m
2

)
!

]−1

, (4.41)

where (−)k = (−1)k if k is an integer, but equals zero otherwise. The relativistic “overlap

integral”, defined as [262]

Qnl =
1

M⋆Rl
⋆

∫
primary

√
−gd3x(ρ+ p)ξ̄µnll∇µ(r

lYll), (4.42)

is a complex, dimensionless number which measures the tidal coupling strength of the mode.

The tidal overlap integral for the predominant effects (l = m = 2 component of ϕT ) reads6

Qn2 =
1

M⋆R2
⋆

∫
primary

eΦ+λ(ρ+ p)ξ̄µn22∇µ(r
2Y22)r

2d3x. (4.43)

For a binary system, the tidal force has the frequency of 2Ωorb [263], thus pulsation

modes, with (free mode) eigenfrequencies ωα, would be brought into resonance when Ωorb

satisfies [124]

|1− 2Ωorb/ωtot| ≃ ϵ, (4.44)

where ωtot = ωα+δω
B
α +δωTα +δω

R
α denotes the shifted frequency (Sec. 4.4). In our numerical

6Note that this expression differs from that used by [223]. These latter authors ignored the pressure contribution in addition
to the inertial mass in their expression.
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results, we find that the definition

ϵ = 10

√
2π

Ωorb

|ȧ|
a

(4.45)

is adequate for determining the onset and the end of resonance (see Fig. 4.4), which in turn

yields the resonance duration tres ≈ ϵRe(ωα). Owing to the time-varying tidal strength, the

tidal modification in the eigenfrequencies (cf. Sec. 4.4),

δωTα =
Qn2

2ωαa3
Mcomp, (4.46)

depends on time as well. This indicates that the true eigenfrequencies — which include a

shift due to the tidal field — must be solved for simultaneously with the orbital evolution

equations, since Eq. (4.46) depends on the (time-dependent) orbital separation a.

The numerical scheme for evolving the modes of the primary is summarised in Fig. 4.3.

We begin by evolving the binary with an initial separation of

a(0) = 2 3

√
M⋆ +Mcomp(
Re[ωα]

)2 . (4.47)

The initial (non-resonant) mode amplitude is assumed to be zero. In Fig. 4.4 we show the

mode amplitude for the l = m = 2, g1−mode for a star with SLy EOS as a member of an

equal-mass (q = 1) binary as a function of time. The resonance starts at orbital frequency

νorb = Ωorb/2π = 43.89 Hz (green point) and ends at 45.69 Hz (light green point) with

duration of 0.29 s. The mode oscillates with amplitude q ≈ 2.4 × 10−4 after resonance,

though these oscillations decay exponentially as merger is reached.

We performed simulations for equal-mass binaries assuming the EOS APR4, SLy, and

WFF1-3. We find that the maximal amplitudes of g1−modes of the primary obey the fol-

lowing approximate relations

qα,max(ωαM⋆)
5/6 ≃ (0.1092± 0.0208)Q12, (4.48)

where the error is given by 1σ confidence level of least squares fitting. The analytic equation of

the maximum mode amplitude under the stationary phase approximation suggests a slope of

π/32 ≃ 0.0982 (cf. Eq. (6.3) in [124]), which agrees our result to within the stated confidence

level.

Tidal effects accelerate the merger because orbital energy leaks into the QNMs [199,200],

especially the f -modes, whose coupling strengths are typically a few tenths. For modes with

coupling strengths Q ≲ 0.01, the effects on the orbital evolution are negligible. In Fig. 4.5,

we present the separation of an equal-mass binary with M⋆ = 1.4M⊙ = Mcomp and R⋆ = 10



Chapter 4. Tidally-driven Shattering Flares in Coalescing BNS 61

Qα

δωT qα

a ȧ

(4.46)

(4.40)

(4.31)

(4.34c)(4.46)
(4.40)

∆t

Figure 4.3: The numerical scheme used in this paper to evolve the modes of the primary. The only time-
independent quantities are the tidal overlap integrals Qα on the upper right, while the rest are iteratively
solved for. Starting from the separation a(t), the strength of tidal field by the companion of a specific
binary is decided and gives rise to certain shift in eigenfrequencies of QNMs [Eq. (4.46)], which depends also
on the tidal coupling strength of each QNM Qα. Consequently, total eigenfrequencies ωα + δωT

α fixes the
Hamiltonian of QNMs [Eq. (4.31)], which is solved to update mode amplitudes. Next, the change rate of the
separation ȧ is influenced by the amplitude of excited pulsations and the tidal coupling strength Qα, and
infers the separation at the next moment a(t + ∆t) for the time step ∆t. Then the cycle runs again until
a ≲ 3R⋆ [41, 153]. Each arrow stands for a deduction via the relation labeled beside it.
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Figure 4.4: The amplitude q(e) (blue; left y-axis) of the l = m = 2, g1−mode, whose unperturbed frequency
is 89.25 Hz, and the orbital frequency (red; right y-axis) as functions of time. The horizontal axis records
the time prior to an equal mass NS-NS coalescence, which is achieved once the separation decays to a ≲ 3R⋆

[41,153]. The yellow and the purple lines mark the beginning and the end of the resonance respectively; the
corresponding orbital frequencies are 43.89 Hz and 45.69 Hz, marked by solid green points. We have taken
an equal-mass binary with the SLy EOS with M⋆ = 1.27M⊙ = Mcomp and R⋆ = 11.78 km. The radial
displacement ξr of the first five g-modes are shown in Fig. 3.1.
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Figure 4.5: Binary separation with various tidal overlaps as a function of time. The maximal disagreement
between Q = 0.01 and the case without tidal effect is ≲ 0.01 s and is smaller for smaller tidal overlaps. Shaded
area, where a ≲ 3R⋆ [41, 153], marks the stage after the merger, which thus is not the virtual evolution. We
have taken M⋆ = 1.4M⊙ = Mcomp and R⋆ = 10 km, hence the collapse happens when the separation is
around 30 km. The frequency of the resonant mode is 100 Hz. This Figure does not use any particular EOS.

km for four different strengths of tidal overlap Q as functions of time, together with an

evolution on which the tidal effects are absent. As such, one can observe that for Q ≲ 0.01

the tidal effect on the evolution is quite small. Given that the typical coupling strengths of

a g-mode are both much smaller than 0.01, the effect in this case of the g-mode resonances

on the orbital evolution are insignificant relative to measurement uncertainties in the timing

of GWs and gamma ray-bursts.

4.4 Mode frequency modulations

The introduction of a perturbing force δF µ into the Euler equations (2.5) leads to a mod-

ulation δω in mode frequencies, while eigenfunctions are left unchanged to leading order

[41, 272, 273]. The restriction of the Euler equation (2.5) of the unperturbed equilibrium to

the hypersurface orthogonal to uµ, i.e. hµν∇ηT
ην = 0, gives

(ρ+ p)uν∇νu
µ = −hµν∇νp, (4.49)

from which and Eq. (4.20), one can derive the linearized equation

(ρ+ p)e−2Φω2ξµ =(δρ+ δp)uν∇νu
µ + hµν∇νδp+ iωe−Φξµuν∇νp

+ iωe−Φ [(ρ+ p)∇νu
µ + uµ∇νp] ξ

ν . (4.50)
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The left hand side and the right hand side give, respectively, the kinetic operator T and

the potential operator V that are defined in Eq. (4.30). This equation, with appropriate

boundary conditions, forms an eigenvalue problem for ω2
α.

For an mode with unperturbed frequency ωα, the inclusion of a perturbing force δF µ on the

right hand side of (4.50), its eigenvalues would be amended accordingly by δωα. Substituting

ω = ωα + δωα and focusing on the leading order perturbation terms, (4.50) gives

2(ρ+ p)e−2Φωαξ
µδωα = δF µ, (4.51)

from which the frequency shift,

δωα =
1

2ωα

∫
primary

δFµξ̄µ
√
−gd3x∫

primary

(ρ+ p)e−2Φξµξ̄µ
√
−gd3x

, (4.52)

can be obtained. A similar derivation in the Newtonian case can be found in [272]. Equation

(4.52) is numerically evaluated for some particular choices of δF µ.

4.4.1 Magnetic field

As δF is given by the Lorentz force, (4.21) and (4.52) yield the expression of the correction

in the frequency for a general magnetic field, which, after substituting the magnetic field as

defined in Eq. (4.6) and adopting the normalization (4.32), becomes

δωBα =
(M⋆R

2
⋆)

−1

8πωα

∫
primary

√
−gd3x

[
− ω2

αB
2ξµξ̄µe

−2Φ

+ 2BµδB
µξ̄rΦ′ − ξ̄µ∇ν

(
BµδBν +BνδBµ

)
+ ξ̄ν∇ν(BµδB

µ)

]
. (4.53)

In Fig. 4.6, we plot the mode frequency shifts for the l = 2, g1− and g2−modes (n = 2)

with some fixed stellar parameters and EOS as functions of the poloidal-to-toroidal strength

Λ (top panel). The range of Λ is chosen broadly compared to the ratio for a stable magnetic

field configuration (shaded area), which is 10−3 ≲ Λ ≲ 0.3 [236,274]. The stability examined

by the energy variation method gives the constraint

B̃ϕ ≲ 1017
√
B15

(
δ

0.01

)
G, (4.54)

on the toroidal strength, which implies Λ ≳ 0.033 (black line) for a magnetar-level surface

field strength B⋆ ∼ 1015 G. This constraint on the strength of toroidal component becomes

loose for larger δ [236, 274]. On the other hand, we find that the Virial limit on the field

strength of ∼ 1018 G inside the star [233–235] corresponds to Λ ≳ 5×10−4, which is a weaker
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Figure 4.6: Eigenfrequency shifts δωB for the l = 2, g1− (top) and g2−modes (bottom) due to the magnetic
field as functions of the poloidal-to-toroidal field-strength ratio Λ. The shaded areas represent the range of
Λ for which the magnetic field is stable [236]. The black solid lines mark the ratio Λ = 0.033, which gives
the maximal toroidal field strength for B⋆ = 1015 G inside the star [Eq. (4.54)]. We have used δ = 0.005 and
ρc = 9×1014 g/cm3 for EOS APR, SLy, and WFF1-3, whose masses are 1.21M⊙, 1.27M⊙, 0.86M⊙, 1.14M⊙,
and 1.04M⊙, respectively.

constraint than that coming from stability considerations. Unless Λ ≪ 1, magnetic fields

of the order ≳ 1015 G are needed to noticeably shift the g1-mode frequencies for any EOS,

though marginally weaker (though still strong) fields of order ≳ 1014 G can significantly

adjust the g2-mode frequencies. Given that the g1-mode typically oscillates at ∼ 100 Hz, the

(rotating frame) frequency becomes negative when the ratio Λ is less than the value (black

line) that implies the maximal toroidal strength for B⋆ = 1015 G, indicating the onset of

instability. Moreover, the frequency shifts for overtones (n > 1) are less sensitive to Λ than

g1-modes, resulting from nodes of displacements in the region where the toroidal component

of magnetic field is non-trivial. The coupling between these modes and the structure of

magnetic field is thus more tenuous. For g2-modes, a toroidal-to-poloidal ratio Λ of ≲ 0.01

is needed in order that δωB becomes negative; and the shifts are always positive (for stable

values of Λ) for g3-modes, though not shown here. Fig. 4.7 shows modified mode frequencies

of g1-modes of a specific star for the cases Λ = 1.0 (top panel), Λ = 0.3 (middle panel), and

Λ = 10−3 (bottom panels), for various values of B⋆, as functions of δ. There ω0 denotes the

unperturbed frequency. As δ ≲ 0.01, the absolute values of frequency corrections increase as

the stratification weakens, i.e. δ is lower, in that unperturbed frequencies in the denominator

of the right hand side of (4.53) converges to zero faster than the numerator.

It is noticeable that the corrections are more severe for less compact stars when a purely

poloidal (Λ = 1) field is considered, as shown in Fig. 4.8. For instance, defining the compact-

ness as C =M⋆/R⋆, we see that for B⋆ = 1015 G, δ = 0.005, and EOS SLy, the correction for

the g1-mode is δωB = 42.40 Hz for the model with C = 0.461, while it is δωB = 20.32 Hz for

the model with C = 0.729. Additionally, we find fitting relations for the effect of magnetic
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Figure 4.7: g1−mode frequencies: the purple continuous line is for unperturbed star, while the rest for
magnetized ones with different strengths of the magnetic field B⋆ as a function of δ. We set Λ = 1.0 (top),
Λ = 0.3 (middle), and Λ = 10−3 (bottom). The background star is constructed by EOS APR4 and has the
central density of 8× 1014 g/cm3.

Table 4.1: Coefficients of the fitting functions (4.55a) for the magnetic-driven frequency modifications.
APR4 SLy WFF1 WFF2 WFF3

c1 -0.493 -0.492 -0.498 -0.494 -0.495
c0 0.279 -0.289 1.112 0.547 0.624
d1 -3.489 -3.848 -3.707 -3.480 -5.150
d0 5.126 4.811 5.645 5.213 5.937

field on the g1-modes as

δωB ≈ B2
15e

(c1 ln δ+c0)(d1C+d0) Hz. (4.55a)

The fitting coefficients for different EOS are summarised in Tab. 4.1.

4.4.2 Tidal forces

The tidal force generated by the companion, as exerted on the primary, reads

δF T
µ =

Mcomp

a3
(ρ+ p)∇µ(r

2Y22). (4.56)

The equation for the frequency shift driven by this force is found to be

δωTα =
Mcomp

2ωαa3

∫
primary

(ρ+ p)∇µϕ
T ξ̄µ
√
−gd3x∫

primary

(ρ+ p)e−2Φξµξ̄µ
√
−gd3x

. (4.57)
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Figure 4.8: Magnetic-driven modifications in eigenfrequencies of l = 2, g1−mode as functions of stratification
δ (top), and the compactness C (bottom), respectively. The markers in the upper panel are the numerical
results for the star of each EOS that has central denisty of 8× 1014 g/cm3, while the markers in the bottom
panel represent the stars described in Fig. 4.1 with fixed δ = 0.005. We have taken B⋆ = 1015 G and EOSs
APR4, SLy, and WFF1-3 are included. In both plots, the rigid lines are the fitting results of corrections in
magnetic frequencies for each EOSs.

This form is used in Eq. (4.46). The tidal force modifies the eigenfrequencies of QNMs via

the interaction mediated by the pressure (hence density) variation. Consequently, it leads to

minute frequency corrections (∼ 0.01%) for g-modes since g-modes only perturb the pressure

profile slightly.

4.4.3 Rotation

We treat the rotation of the star as a perturbation over the non-spinning equilibrium, since

the Coriolis force is proportional to the square of the angular velocity, and thus a slow

perturbation, to linear order, does not induce any hydromagnetic changes to the background

structure [275]. We also omit the spin-orbit interaction. A (uniform) rotation Ω introduces

a gtϕ component to the metric, causing frame dragging. When a slow rotation is considered,

this effect is small and we therefore ignore it in this work. On top of the metric corrections,

rotation also introduces the axial component

uµrot = Ωe−Φ∂ϕ, (4.58)
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to the 4-velocity, when we are working in the inertial frame. The axial velocity uµrot adds an

extra term to Eq. (4.20), resulting in

δuµ = i(ωα +mΩ)e−Φξµ, (4.59)

and thus leads to a perturbing force

δF r
R = 2(ρ+ p)e−2ΦωαΩ(mξ

r − ire−2λ sin2 θξϕ), (4.60a)

δF θ
R = 2(ρ+ p)e−2ΦωαΩ(mξ

θ + i sin θ cos θξϕ), (4.60b)

δF ϕ
R = 2(ρ+ p)e−2ΦωαΩ

(
mξϕ − iξ

r

r
− 2i cot θξθ

)
. (4.60c)

Therefore, the relativistic leading order rotational corrections in the mode frequencies having

the expression

δωRα = −mΩ(1− Cnl), (4.61)

with

Cnl =
1

M⋆R2
⋆

∫
primary

(ρ+ p)eΦ+λr2l
[
− e−λ(V̄nlWnl + W̄nlVnl) + VnlV̄nl

]
dr. (4.62)

In the Newtonian limit, this agrees with that of [272] and [126].

Fixing δ = 0.005, we plot Cnl of g1−modes (C12; top panel) and of g2−modes (C22; bottom

panel) as functions of compactness the mean density of the star in Fig. 4.9. The values for

C12 and C22 differ only slightly [276–278], e.g. C12 = 0.11 and C22 = 0.112 for the star of

WFF1 EOS that has 1.4M⊙. On the other hand, we find that Cn2 depends only slightly on

stratification δ for n ≲ 5, e.g., the difference between the values of C12 for δ = 0.001 and

δ = 0.01 is ∼ 0.001 (percent level at most). The insignificant dependence on δ of C12 has

also been shown in [224].

4.5 Crustal strain

Having considered modulations in mode eigenfrequencies by tidal and magnetic fields, and

the (slow) rotation of the equilibrium in Sec. 3.5, we now turn to investigate the maximal

strain exerted on the stellar crust as a result of resonant g−mode displacements.

Time-varying displacements ξ between the material elements of the neutron star generates

a stress. However, in GR, the total strain is not only due to the displacement, and there is a

contribution from the perturbation of the metric to the strain tensor [279–281], whose total
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Figure 4.9: Coefficients C12 for g1−modes (top) C22 for g2−modes (bottom) as functions of compactness
C assuming EOS APR4 (red curves), SLy (yellow curves), and WFF1-3 (purple solid, dashed, and dotted
curves, respectively). We fix δ = 0.005. Markers on each curve are models pointed out in Fig. 4.1.

form reads

σµν =
1

2
(∇µξν +∇νξµ) +

1

2
hηµh

κ
νδgηκ

=
1

2
(∂µξν + ∂νξµ + δgµν)− Γσµνξσ, (4.63)

where we retain just the first order terms in the second line of the equation. Oscillations

may lead to a crust failure for large enough stresses, which can be probed by the commonly

used “von Mises stress” criterion, coming from classical elasticity theory [282]. Defining the

strain as [283,284]

σ ≡
√

1
2
σµνσ̄µν , (4.64)

then the von Mises criterion implies that the crust breaks if σ exceeds some critical threshold,

σvM. In a recent semianalytic lattice stability models of [49], they calculate the threshold

as σvM ≈ 0.04 while [45] follow molecular dynamics simulations to find σvM ≈ 0.1 for low

temperature stars. We adopt the former in this article with a remark that if the latter had

been adopted, the amplitudes of resonantly-excited modes would need to be much higher to

instigate failure.

Equation (4.63) and definition (4.64) indicate that the stress generated by the displacement

ξα is proportional to its amplitude qα, which evolves according to equation (4.34a). Therefore

we have

σ(t) =
√
2
∑
α

√
qα(t)q̄α(t)σα, (4.65)

where σα is the unit strain caused by ξα (i.e., for qα = 1) and the pre-factor
√
2 is attributed
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Figure 4.10: Maximal crustal strain σmax due to g1−modes for APR4, SLy, and WFF1-3 EOS as functions
of C. The gray dashed line represents the von Mises criterions by [49] and [45]. We have taken δ = 0.005.

to the duality of modes with ω and −ω.
Taking crust as the part of star with 0.9R⋆ < r < R⋆, in Fig. 4.10 we plot the maximal

values of strain strain σmax in the crust due to the (l = m = 2) g1-modes for several EOS,

where the stratification is taken to be δ = 0.005. This latter value in particular is typical in

the literature for mature NSs [140,235]. As such, relation (4.48) implies that g1-modes with

tidal coupling strength ≳ 8×10−5 may be capable of generating a crustal strain that exceeds

the von Mises criterion provided ωM ∼ 0.003 for g1-modes. We therefore conclude that

tidal resonances in NSNS binaries can excite g-modes to the point that the crust may yield,

which can have important implications for observations of precursors of short gamma-ray

bursts [39, 41]. This latter aspect will be covered in detail in paper II.

In addition to low order g-modes, it has been shown by [147] that the excitation of f -

modes before the merger, though not resonantly instigated, can generate a strain that meets

the von Mises criterion. For instance, we find the strain σmax = 0.107 for the f -mode of a

particular primary with the SLy EOS and M = 1.27M⊙. However, only within less than 10

ms prior to the merger can σmax hit the critical value of 0.04. Though the excited f -modes

are irrelevant to the precursors, their influences on the (phase of) GW waveforms may be

measured with future GW detectors (see, e.g., [80, 181]).

4.6 Precursor Observations

GRBs show a bi-modal distribution in their durations, T90, and are therefore often classified

into two classes – long (T90 > 2) and short (T90 < 2) [208]. Classifying a given event

however is not trivial, because one should take the duration, redshift, other observations
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(e.g., precursors, afterglows [285]) and/or the possible limits of instruments (e.g. duration

of measurement in different energy bands [286]) into account (see the discussion in [287]).

Nonetheless, a simple but broadly used method to distinguish the short from the long is

T90 ≲ 2 s [208,288,289].

Although rare, precursor flares are sometimes seen before SGRB. The identification of

these precursors from the main episode depends sensitively on the definition of preemissions.

Therefore, the proportion of SGRBs hosting precursor activities varies within literature. For

instance, some authors require that a genuine precursor flare has to precede the main episode

by more than T90 [34, 35], whereas some allow for arbitrarily short periods of time prior

to the main burst for preemissions to be classified as precursor status [37, 38, 125, 290]. In

Table 4.2 we present relevant properties for the most statistically significant SGRB precursor

candidates discussed in the above references. In the first column we show the associated

SGRBs, and the second toward the penultimate ones are, respectively, the duration of the

main bursts, the timing of precursor emissions prior to the main episodes (waiting time,

Twt), and the statistical significance. The final column lists the inferred orbital frequency

Ωorb by matching the time of the events with the binary evolution (Sec. 4.3), which indicates

the frequency of the corresponding resonantly-excited mode (Sec. 4.3.1). We see that GRBs

071030, 090510b, 100717 and 130310 are temporally-separated, relative to the main burst, by

at least couple of seconds (Twt ≳ 2.5 s), while others are prior to the main burst only within

≲ 1.85 s.

There are three events in [38] having rather small or large Twt, viz. GRBs 100223110,

150922234 and 191221802. The first two precede the main episode by, respectively, ≳ 80 ms

and 30 ms, and the waiting time for the latest is Twt ≳ 20 s. The closeness to the merger

blurs the identification of the former two, i.e., these pre-emissions may not proceed the merger

since the formation timescale of the main emission is likely comparable or longer than 80 ms

(see Sec. 4.6.1 for the discussion). On the other hand, the latter happens at a very early stage

(a ≳ 200 km), where the interaction between two stars in a binary, which is proportional to

a−3, is so weak that the mechanism behind this pre-emission may not be relevant to mutual

interaction (unless the main burst was significantly delayed).

4.6.1 Precursor Timing

In reality, the main burst, occurring at tB, will not be coincident with the coalescence at tC ,

since the jet constituting the main burst has a finite formation timescale. Rather, the physical

picture after the merger is complicated with several timescales participating in the SGRB

mechanism, e.g., jet formation, jet break out, and GRB formation. In addition, each timescale

varies with jet mechanism, making it almost impossible to make a conclusive statement about

the separation between tB and tC (see Tab. 1 in [291] for more details). Though tB−tC ranges

from 0.01 to ≲ 10 s, we assume that the burst occurs simultaneously with the merger, i.e.,
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tB ≈ tC , with a caveat that the timing of precursor prior to the coalescence obtained under

this assumption is actually the upper limit.

We consider a close NSNS binary system with constituent masses M⋆ and Mcomp for the

primary and companion, respectively. The coalescence is defined to occur when the separation

of binaries a ≲ 3q1/3R⋆ [41, 153,268,270], where R⋆ is the radius of the primary and q is the

mass ratio Mcomp/M of the binary. The binary is evolved numerically until the point of

coalesence defined above by including 3rd order PN effects and GW back-reaction induced

from the orbit in the 2.5 PN order and from excited modes7 (Sec. 4.3.1; see also [294]). The

impacts of p- and g-modes on the binary evolution are, however, expected to be negligible

as there is no resonance for the former and tidal couplings of the later is too small to affect

binary evolution [295]. In principle the p- and g-mode can couple to each other strongly

due to their similar radial wavelength, resulting in so-called p-g instability that may affect

the binary evolution in a measurable way, e.g., heating up the star to ≳ 1010 K and causing

significant orbital phase errors [296,297]. However, in the recent analysis of the gravitational

wave event GW170817, the p-g instability seems to either be suppressed to induce only slight

phase shifts to the gravitational waveform or to be difficult to distinguish the effects from

other intrinsic parameters of GW170817 [298,299]. Therefore, we do not consider these effects

on the evolution, and ignore the nonlinear tidal effects in the evolution equations.

For a particular equal-mass binary (q = 1) inspiralling on the equatorial plane8 (i.e.,

the companion sits in the plane Θ = π/2 with respect to the inertial frame of the primary

throughout the evolution) with both stars obeying the SLy EOS, we determine the orbital

frequencies at the moment precursors occur. In [41], a Newtonian scheme was used, i.e., by

the Kepler formula,

ΩKep =

√
(M⋆ +Mcomp)

a3
. (4.66)

Here, however, we use a PN scheme for orbital evolution and take the relativistic tidal effects

into account. First, the coalescence is expedited, thus the orbital frequency at a certain time

prior to merger is less; secondly, the mode eigenfrequencies, which are relevant for precursor

timing, are shifted. As a consequence, the inferred (PN) orbital frequencies (the last column

of Tab. 4.2) are found to be less than the inferred Keplerian orbital frequency in [41] by

≲ 10% of the PN orbital frequencies.

In addition, the frequencies of f -modes are ≳ 2 kHz and the typical frequencies of g1-

modes are ≳ 100 Hz. Since the tidal force perturbs stars at a frequency which is twice the

value of the orbital one, the final column of Tab. 4.2 suggests, therefore, that the precursors

7While f -modes are likely to get resonant before merging for rapidly rotating primaries [41], in this work we only slow
rotation, thus f -mode resonances are absent. However, it has been shown that tidal effects of f -modes are important in binaries
evolution [181,199,292,293] mainly due to their strong couplings with the tidal field.

8In close binaries, tidal interaction rapidly aligns the stellar spins with the orbital angular momentum [249,250]. Therefore,
the inclination angle is expected to be approximately zero.
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Figure 4.11: Time prior to the main burst, which is assumed to coincide with the coalescence, t (green
and yellow solid lines) and maximal strain σmax (dashed lines) as functions of B⋆. The black stars mark
the minimal and the maximal value of B⋆, such that the von Mises criterion is met for g1- and g2-modes,
respectively. We consider a binary with q = 1 and the non-rotating primary having EOS SLy and M =
1.27M⊙. Here Twt,5 = Twt/(5 s).

are observed at the stage of inspiral prone to resonances of g-modes.

4.6.2 Resonant Shattering

As a practical application of the resonant shattering scenario to observations, we consider a

particular primary, within an equal-mass binary, with9 δ = 0.01. The considered primary has

a free g1-mode resonance prior to the coalescence by ∼ 1 s, while the resonance of its free g2-

mode occurs at ∼ 3.2 s before the merger. For the stable range of Λ, the magnetic frequency

modification is negative for the g1-mode and is positive for the g2-mode. Setting Λ = 0.01, we

show Twt and σmax for g1- and g2-modes as functions of B⋆ in Fig. 4.11. We see that, when B⋆

approaches some certain values, both Twt and σmax become dramatically larger for g1-modes,

as a consequence of the neutral frequency (ωtot → 0) that triggers instability (cf. Fig. 7

in [41]). Additionally, to account for those precursors occur within 1 s prior to the merger,

we vary B⋆ to match the resonant time of g2-modes temporally with the aforementioned

precursors.

In Tab. 4.3, we show in the second column the characteristic strength of the magnetic field

B⋆ such that the orbital frequency starts sweeping through the resonance interval defined by

modified mode frequency, i.e., |1−2Ωorb/ωtot| ≲ ϵ, at the moment the corresponding precursor

9The stratification δ = 0.01 we used to match the data of precursors in Tab. 4.3 is higher than the typical value taken for NSs,
which is δ = 0.005 [140,235]. This degree of stratification may still be sensible for the resonances of high order modes along the
inspiral rapidly absorb tidal energy. Besides, the dissipation of mode energy via GW is extremely inefficient for g-mode [50,53],
which ranges from tens to thousands of years for g-modes in this work. Therefore, the energy absorbed by high order g-modes
will retain in the star until final merger with negligible dissipation.
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occurs. The third towards the final columns are, respectively, the resonance duration tres,

the waiting time Twt, the energy restored in the (crustal) region where crust yields (see

Sec. 4.6.3.2), and the orbital frequency inferred by the resonant time (We note that here

g2-mode resonances has been included, which was ignored in Tab. 4.2). With the same B⋆ as

GRB 090510a, we find that for GRB 090510b one requires a stellar spin of ν = 68.62 Hz so

that the inertial frame frequency is reduced, else it is impossible to match the mode frequency

with its waiting time of Twt = 13 s. However, this implies an unphysically steep spin-down

between GRBs 090510b and 090510a, i.e., ∆ν = 68.62 Hz in less than 13 s. The tension can

likely be alleviated if we also consider a rotation for GRB 090510a, then we find a B⋆ such

that the rotation rates responsible for GRBs 090510a and 090510b are not so different. In

any case, we analysis GRB 090510b by using the same B⋆ as GRB 090510a in Tab. 4.3.

In Fig. 4.12, we plot the precursors in Tab. 4.3 labeled by B⋆ in the second column, and the

overplotted curve represents the orbital evolution with only tidal effects of the f -mode. The

label of GRB 090510b includes the rotation rate mentioned above. We see that the inferred

orbital frequencies involving the resonances of g2-modes (coloured symbols) are almost the

same as the values predicted when only f -mode effects are considered (blue curve, the final

column of Tab. 4.2), reflecting the fact that the g2-mode resonances barely affect the orbital

evolution.

In addition, the resonances of the g1-mode may precede the merger by more than 10 s for

the toroidal-to-poloidal ratio in the range for a stable magnetic field, i.e. 10−3 ≲ Λ ≲ 0.3

[236,274]. The same stands even when stellar rotation is considered since rotation decreases

the frequencies of l = 2 = m g-modes. Therefore, instead of appealing to stellar rotation

to account for GRB 090510b, one may use the resonance of g1-mode to account for GRB

090510, viz. the two events could be accommodated by a g1 and a g2 excitations, respectively

(see Sec. 4.6.2 for details).

Although not considered in the present article, we note that the situation will be adjusted

to some extent if a solid crust is involved. In general, the (elastic) crust renders two damping

mechanism in stars by the bulk and the shear viscosities. In a cold neutron stars, the dissi-

pation by the shear viscosity dominates over the bulk viscosity for g-modes [300], which has

the typical timescale of ∼ 1000 years [301] thus may not suppress significantly the amplitude

of the resonantly-excited g-modes in binaries. Accordingly, the proxies of the influence of the

presence of the crust are the corrections in the tidal overlap, the mode frequencies, and the

mode’s eigen-functions.

As demonstrated in, e.g., [52], crust will expel the eigen-function of the core (surface)

g-modes out of the surface (core), leading to higher mode frequencies for both classes. The

crustal strain caused by the core g-modes is thus negligible, and the relevant g-modes for

precursors are the surface g-modes. These latter modes have frequencies marginally larger

than the frequencies of the g-mode of single component fluid stars, which is ∼100 Hz. As a
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Figure 4.12: Time prior to the main burst, which is assumed to coincide with the coalescence, as a function
of gravitational wave frequency fgw = Ωorb/π. The solid line represents the evolution with tidal effect of
f -mode but not g1-mode for the non-rotating and non-magnetized star with EOS SLy and M = 1.27M⊙.
The time of precursors reported in Tab. 4.2 are plotted as horizontal dashed lines. Markers are labeled by
the characteristic magnetic field strengths B⋆ given in the unit of B15 for which the resonance frequencies of
g2-modes ωg = 2πfgw match the precursor events. The number in the parenthesis is rotation rate for GRB
090510b.
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consequence, the corresponding resonance will occur at a later time comparing to those of the

former. Additionally, the tidal overlap for surface g-modes are expected to be smaller than

fluid g-modes due to their nearly vanishing eigen-functions over most of the interior. The

delay in the g-mode resonances and the reduction of the associated tidal overlap due to the

existence of the crust suppress the mode amplitude available during the resonance timescale.

However, a detailed computation is needed to evaluate the applicability of this scenario if the

crust is included.

4.6.3 Energetics

During the resonance, the mode amplitude increases rapidly, stretching the crust more

strongly over time. We remain that here the crust is defined to be the region ranging

from 0.9R⋆ to the stellar surface (≳ 1 km). Denoting the maximal value of the crustal

strain induced by a QNM when its amplitude reaches the peak during resonance as σmax, the

crust fails when σmax exceeds some maximal breaking strain σvM that the crust can sustain

(Sec. 4.6.3.1).

4.6.3.1 Breaking Strain

The critical value σvM is hard to determine, and, in principle, it may depend on the duration

of stress (or the timescale of the mechanism that generates the stress), density, temperature,

and composition of the crust, and so on [46]. In recent molecular dynamics simulations, by

adopting Zhurkov’s model for breaking mechanism, [46] found a universal expression for σvM

[see their Eq. (6)]. There are several combinations of density and temperature having been

studied in literature, e.g., the crust with the density of 1013 g/cm3 and T = 0.1MeV≈ 109K

corresponds to σvM ≈ 0.1 [45], while σvM ≳ 0.11 for a density of 1014 g/cm3 and T ≳ 108

K [47].

In addition, [49] follow a semi-analytical approach to calculate σvM for low temperature

stars (see also [48]). They found that, assuming the absence of the pasta phases, σvM ∼ 0.04

which is density independent. In this work, we adopt σvM ∼ 0.04 as in [41], while we note

that if σvM ∼ 0.1 had been adopted, crustal failure would entail a larger mode amplitude.

In Fig. 4.13 we show the distribution of crustal strain generated by the g1- and g2-modes of

the primary as a member of an equal-mass binary at the peak of resonance with some fixed

stellar parameters. Both show that the region under the relatively strong strain is narrow.

Regions that fracture are restricted to the equatorial regions (0.25π ≲ θ ≲ 0.75π), indicating

the crack is more likely to happen at these areas.
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Figure 4.13: Configuration of crustal strain σ by the g1-mode (left panel) and the g2-mode (right panel) of the
non-magnetized star with EOS SLy having M⋆ = 1.27M⊙ (the one used in simulating the orbital evolution
in the final column of Tab. 4.2) at the offset of resonance. We fix δ = 0.005 and adopt a log-linear grid to
shrink the core region for illustration purposes.

4.6.3.2 Energy Release

To see if the precursor flares could fit in the context of SGRB precursors, it necessitates an

estimation of the amount of energy potentially released due to crustal fracturing.

Assuming that the onset of the resonance is at t = 0 (this assumption is introduced

for convenience and is valid only in this section), the liberated energy during the resonant

shattering [221,302], ∫
dtEquake =

∫ tres

0

dt

∫
Vcrack(t)

√
−gd3xU(t,x), (4.67)

is obtained by temporally integrating the energy stored in the cracking area over the resonant

duration [0, tres], where U(t,x) is the energy density (see below). In reality the cracking region,

defined by

Vcrack(t) = {p | σ(p) ≥ σvM, p is a point in the crust}, (4.68)

and the energy density, U(t,x), are time-dependent. However, we approximate the energy re-

leased during a resonant timescale by integrating the energy density at the onset of resonance

over the cracking area at the offset of resonance [41], namely∫
dtEquake ≈ tres ×

∫
Vcrack(tres)

√
−gd3xU(0,x). (4.69)

The available energy density includes the kinetic energy denisty of oscillation modes,

Ukin [303], the rotational energy density, Urot [304, 305], the magnetic energy density, Umag

[237], and the tidal energy density, Utid. The expressions for each of the contributions are,
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respectively, given by

Ukin =
1

2
(ρ+ p)e−2Φ∂ξi

∂t

∂ξ
i

∂t
, (4.70a)

Urot =
1

2
Ω2r2 sin2 θ(ρ+ p)e−2Φ, (4.70b)

Umag =
1

8π
e−ΦBµBµ, (4.70c)

and

Utid = ϕT δρ, (4.70d)

where we reduce Urot to the uniform rotation case and the frame-dragging is not taken into

consideration [306].

For those resonances explored in Tab. 4.3, the expected fracture energies are listed in the

final column. We find that the kinetic energies of resonantly excited modes and the tidal

energy contribute insignificantly (≲ 10%) to the energy released as described by Eq. (4.69)

unless the resonance onsets in the final stages of inspiral, a ≲ 6R⋆, in agreement with the

findings of [41].

4.7 Exploring the parameter space

The duration and timing of mode resonances are influenced by various parameters, including

the mass of the primary M⋆ and the companion Mcomp (or the mass ratio q between them),

stratification δ, rotation frequency ν, characteristic magnetic strength B⋆, the poloidal-to-

toroidal strength Λ and EOS. This section is devoted to a detailed investigation of mode res-

onances over a multidemensional parameter space spanned by these parameters. In Sec. 4.7.1

we investigate the impact of the mass ratio q on the maximal strain σmax under fixed stratifi-

cation strength δ and magnetic field. In Sec. 4.7.2 we assume equal-mass binaries to explore

how other parameters affect σmax.

4.7.1 Unequal-Mass Binaries

We assume the same EOS for both of them, as that is the assumption adopted by [22]. The

magnetic field is considered to be purely poloidal (Λ = 1), for which a field strength of a

few 1015 G is needed to shift the frequencies of g1-modes by a noticeable amount while a few

1014 G can already shift the frequencies of g2-modes considerably (cf. Fig. (7) of Paper I).

Consequently, we set B⋆ = 1015 G in this section. In addition, we fix δ = 0.005 to evaluate

the maximal crustal strains of the primary by g1- and g2-modes. Restricting the masses
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of both components within the range10 (0.4, 2.2)M⊙, we find for aforementioned EOS that

despite increasing with q, σmax depends only slightly on q even in extreme cases. For g1-

modes, the difference in σmax among binaries with a fixed M⋆ is ≲ 0.005, while the difference

is ≲ 0.01 for g2-modes. For the pure poloidal magnetic field considered here, only those

extreme cases of binaries, whose primaries have either M⋆ ≳ 2M⊙ (for SLy, WFF1, and

WFF3) or M⋆ ≲ 0.9M⊙ (for WFF2-3 and APR4), σmax by g1- or g2-modes can achieve the

von Mises threshold.

While for a particular primary, σmax depends only slightly on the companion (i.e., in-

sensitive to q), the hosting-binary tends to have relatively small symmetric mass ratio qsym

[defined in Eq. (3.18) while we denote it as qsym in the present Chapter], since the von Mises

criterion is met for the primary with either large or small mass. Assuming a skewed normal

distribution of the mass of NS in a NSNS binary, [309] estimates the proportion of NSNS

binaries having a component with mass out of the range (∼ 1.1,∼ 1.55)M⊙ is less than

5%, while [307] assumes a normal distribution instead, the result is almost the same. In

addition, the authors of the former reference find that less than 0.64% for the mass lying

out of (∼ 1,∼ 1.7)M⊙. The rareness of precursor-hosting SGRBs, e.g. ∼ 0.5% in Swift

data [125] or ∼ 3% in BATSE data [310], is compatible with the above estimation. Although

the above point is certainly not conclusive, it does hint that a NSNS binary with relatively

small symmetric mass ratio may be tied to precursor activity.

In Fig. 4.14 we plot the maximal strain σmax available during the resonances of g1- (left

panels) and g2-modes (right panels) for EOS WFF1, respectively, with a variety of chirp

masses (3.17), and mass ratios q. We see that for a fixedM , the von Mises criterion is met

(σmax ≳ σvM) by g1 and g2 excitations for small or large q. For instance, if a binary with

the WFF1 EOS has a chirp mass at the similar level of GW 170817 (M = 1.186M⊙), the

resonances of g1- and g2-modes can generate σmax ≳ σvM with a mass ratio q ≳ 1.14 and

q ≲ 0.45, respectively. In addition, the points with almost the same colour represent binaries

with the same primary, which indicates that, for a given primary, σmax depends mildly on q.

The region in the parameter space over which crustal failure may occur will be expanded,

viz. more systems (M⋆,Mcomp) are likely to host a crack, if stars rotate moderately or the

magnetic field has strong enough toroidal component in that mode frequencies are shifted

downward resulting in longer resonances. In Fig. 4.15 we show σmax as a function of ν. We

can see that these systems are capable of producing σmax ≳ σvM at some certain range of ν,

e.g., when 31.33 Hz ≲ ν ≲ 46.54 Hz for the binary with the APR4 EOS, M⋆ = 2.19M⊙, and

Mcomp = 1.39M⊙. The influences of Λ and ν on σmax will be postponed until Sec. 4.7.

The leading-order (5PN) tidal effects in GW waveforms, measured by the advanced Laser

Interferometer Gravitational-wave Observatory (aLIGO) and other ground-based GW detec-

10The considered range for (M⋆,Mcomp) covers a wide part of the parameter space compared to the NSs that have been
observed (mostly from pulsar observation, cf. Fig. 2 of [307], see also Fig. 28 of [308]), which ranges from ∼ 1M⊙ to ∼ 2M⊙
with a few outliers. However, we also consider stars with M < 1M⊙ for completeness.
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Figure 4.14: Maximal strain σmax by g1-modes (left panel) and g2-modes (right panel) available during a
resonant timescale for systems of EOS WFF1 with several chirps masses M and mass ratios q. The blue
vertical line shows the chirp mass of the progenitor of GW 170817, while the red similarly corresponds to
GW 190425.

tors, are encoded in the phase variation [76,77,311]

∆φ = −65

4

∫
M−10/3qsymΛΩ

2/3
orbdΩorb, (4.71)

where the tidal deformability Λ is given by

Λ ∝ 1 + 12q

(1 + q)5
Λ1 +

1 + 12/q

(1 + 1/q)5
Λ2, (4.72)

with Λ1 and Λ2 being the (dimensional) tidal Love numbers of the primary and the companion,

respectively [75, 312]. It has been shown that forM ≲ 1.5M⊙ and under the common EOS

assumption, Λ1 and Λ2 relate to each other via (see Eq. 8 of [116])

Λ1 ≃ q6Λ2, (4.73)

translating Eq. (4.72) to

Λ(q,Λ1) ∝
12 + q + q2 + 12q3

q2(1 + q)5
Λ1. (4.74)

As a result, Λ decreases quite fast for large q, e.g., fixing Λ1 and comparing a binary with

q = 1.3 (or qsym = 0.246) to an equal mass binary (qsym = 0.25), we find Λ(1.3,Λ1)/Λ(1,Λ1) =

0.47. On that account, any GW-related constraints that might arise from the system are

weaker. Further, the total emitted GW energy is a decreasing function of q during both

the inspiral and the post-merger phase [313]. In the ideal situation in the future where

one observes a precursor and GWs from the same inspiral, unequal mass binaries provide

marginally worse information from GWs even if they are more likely to cause crustal fractures.
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Figure 4.15: Maximal crustal strain σmax induced by g1-modes as functions of rotating rate ν. Labels of
systems comprise the EOS that is obeyed by the primary and the companion, and the masses of these two
components (in units of M⊙).

There is a trade off of sorts therefore.

4.7.2 Dependence on Magnetic Field and Stratification

According to the previous discussion, although crust failure tends to occur in a primary

that is a member of a binary with small symmetric mass ratio, σvM is insensitive to q for a

fixed M⋆ (see the discussion of Fig. 4.14). In addition, studying the whole multidimensional

parameter space is laborious so that we concentrate on equal-mass binaries (q = 1) in this

subsection and emphasise the impact of magnetic field, which is parameterised by B⋆ and Λ,

and stratification δ on σmax.

In Fig 4.16 we show σmax of g1-modes for some models with the EOS introduced above

as functions of δ, where we set Λ = 1 (purely poloidal) and B⋆ = 2.5 × 1015 G. Two

kinds of tendencies are observed: (i) σmax increases with δ for stars with either high or low

compactness; (ii) σmax decreases with increasing δ for stars having moderate compactness.

We see that σmax for stars of the first tendency are larger, suggesting again the tidally-driven

shattering favours stars with strong or weak gravity. In addition, the frequency of g-modes,

as well as the tidal overlap, decreases with δ; stipulating a small δ, resonances happen at low

orbital frequency thus have longer resonant duration (NSs shrink slowly at large separation),

while the weaker coupling strengths limit the growth of mode amplitudes. One thus weights

these two effects in to determine σmax, which can be roughly estimated by the product of

resonant duration and tidal overlap. Inflection points exist on some curves for moderate-

compact stars, where the resonant duration and the tidal overlap strength offset each other

most. Right to these points, the large overlap compensates the short resonant duration, while
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the long resonance makes up the small tidal coupling for the other part. Additionally, we

note that if we adopt σvM ∼ 0.1, then all the cases presented in Fig. 4.16 is not able to meet

the von Mises criterion.

In line with recent suggestions by [147], our calculations show that crustal failure can

happen for a wider range of stellar models when δ is larger (cf. Fig. 4.16), while the inclusion

of magnetic fields and stellar rotation enriches the picture further. For both g1- and g2-

modes, a pure poloidal magnetic field (Λ = 1) shifts mode frequencies upward, leading to

shorter resonant time. On the opposite, either the toroidal component of magnetic field or

the rotation of the equilibrium configuration can give rise to a larger σmax due to the negative

shifts in mode frequencies. GRBs 090510 a and b have been accounted for by the rotation of

the primary (Tab. 4.3). In certain range of Λ, the mode modifications for g1- and g2-modes

have different signs (see Fig. 4.6). The negative shifts for g1-modes make them resonant with

the earlier orbital frequency, while the positive shifts for g2-modes delay their resonances.

Therefore, g1-modes will be resonantly excited prior to g2-modes if strong magnetic field is

present. For instance, setting Λ = 0.18 and B⋆ = 2.85×1015 G, we find that the resonances of

g1- and g2-modes for the primary with EOS WFF1 and M⋆ = 0.86M⊙ occur at, respectively,

t = 12.95 s and t = 0.42 s. Therefore, a magnetic field with toroidal component may present

another scenario that may account for the two GRBs 090510a and 090510b.

In Fig. 4.17, we show σmax by g1- and g2- modes for some fixed stellar parameters over

the parameter space spanned by Λ and ν. It can be observed that σmax for the g2-mode

reach values above 0.04 for a certain region of the two dimensional parameter space, while

the von Mises criterion is not met for the non-spinning model with pure poloidal magnetic

field (bottom left and right cells in Fig. 4.17). For both g1- and g2-modes, the optimal σmax is

two times higher than the non-rotating models with Λ = 1. Our results can be summerised

as follows:

1. When other parameters are fixed, the maximal crust strain σmax is an increasing function

of stratification δ. Defining the optimal region as the set of combination of Λ and ν for

which σmax is at the greatest level of the colorbar beside the figures, a lower Λ (stronger

toroidal field) or higher spin is necessary for the optimal case. In addition, the optimized

σmax does not depend on B⋆.

2. Although B⋆ changes the pattern of σmax as a function of Λ and Ω, the value of σmax

remains unchanged. In addition, the optimal situation for g1- and g2-modes with stronger

B⋆ requires faster spins.

3. Over the optimal region of each mode, g2-modes cause stronger strains σmax than g1-

modes. Yet, optimal cases of g2-modes require the magnetic field to have a dominant

toroidal field (Λ ≈ 10−2), which thus constrains the maximum alowed values of B⋆ [235].

Although the effects of rotation and magnetic field create some room for potential crust
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Figure 4.16: Maximal crustal strain σmax due to g1-modes of some chosen models of each EOS as functions
of δ. The charateristic magnetic strength is fixed as B⋆ = 2.5 × 1015 G. The horizontal dashed lines mark
the von Mises criterion.
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Figure 4.17: Maximal crustal strain by g1- (top row) and g2-modes (bottom row) as functions of δ and Λ
for the star with EOS SLy and 1.27M⊙. Brighter shades indicate a greater value for σmax. The parameters
(B⋆, δ) are, from left to right panel, taken as (2, 0.005), (1, 0.005), and (1, 0.01) for the datum of g1-mode,
while they are (0.8, 0.005), (0.5, 0.005), and (0.5, 0.01) for the datum of g2-mode. Here B⋆ is given in the unit
of B15.

failure in the parameter space, the parameters should still be fine-tuned to generate a strain

σmax > σvM. In other words, a given precursor event may set stringent constraints on the

properties of the individual stars in a binary.

4.8 Discussion

With multi-staged SGRBs, namely those including precursors, main events, and afterglows,

we can garner better knowledge about the properties of the progenitors and fundamental

physics governing NSs, such as their EOS. For instance, strongly magnetized remnants from

binary mergers, as inferred from X-ray plateaus observed in some SGRB afterglow light

curves [314, 315] or early X-ray flares observed in SGRB light curves [316], may hint that

the progenitors consist of at least one highly magnetized NS from a flux conservation argu-

ment [317]. Detailed studies of SGRBs may also unveil the nature of their central engines.

Analysing precursors may therefore shed light on the qualitative properties of the progenitors,

and could tightly constrain the stellar parameters of the merging stars [39–41,147,227].

To explore the connection between crustal fractures and precursors, we adopt the theo-

retical framework detailed above: we consider the tidal resonance between QNMs and the

orbit, where we treat general-relativistic QNM spectra, and the orbital dynamics involves up

to the 3 PN effects including the 2.5 PN scheme for gravitational back-reaction. The modifi-

cation of mode frequencies by perturbing forces from magnetic fields [Eq. (4.53)], tidal field
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[Eq. (4.46)], and stellar rotation [Eq. (4.61)] are also taken into account. When a particular

mode is brought into resonance – as defined by the time interval when the orbital frequency

and the (modified) mode frequency are matched to some extent [Eq. (4.45)] – the mode am-

plitude increases rapidly. If the maximal amplitude available during a resonant timescale,

the crustal fracture may be caused. Over the yielding area, stored energy will be released

in some form [Eq. (4.69)]. Taking a particular binary and some fixed stellar parameters, we

match the data of precursors by varying B⋆ to make the onset of resonances coincide with

the moment (relative to the main event) precursors are detected (Tab. 4.3). Assuming all

released energy is transformed into electromagnetic radiation (estimated in the 6th column

of Tab. 4.3), SGRB precursor events may be accommodated, energetically speaking, by crust

failure. On the other hand, we present two scenarios for SGRBs hosting two precursors,

e.g. for GRB 090510 either the spin down of the primary leads to the same mode gets reso-

nant twice at different moments [Tab. 4.3] or the resonances of g1- and g2-modes when the

magnetic field has toroidal component.

We find that for a given primary, a relatively large mass ratio is more favourable for crustal

fracture (Fig. 4.14). However, the price to pay is the detectability of the tidal imprints in

GW [Eq. (4.74)]. In addition, we find that for certain combination of stellar parameters

the von Mises criterion can be met. For instance, when ν and Λ are tuned to particular

values (the brightest region in Fig. 4.17) the strain exceeds σvM. In other words, as long as

precursors prove to set constraints on the properties of progenitors, the constraints are going

to be stringent because several parameters are limited simultaneously.

Tidal effects have been studied in various aspects, such as from the GW energy spectrum

[318, 319], the NS tidal disruption signal for binaries having a least one NS [320, 321], and

numerical simulations of NSNS mergers (see [322] for a detailed review). The aforementioned

investigations are devoted to the prospect of extracting information about the EOS from

the very final stage of inspiral (fGW ∼ 1000 Hz [323]). Precursors, however, offer an extra

probe into the details of EOS when fGW ∼ 100 Hz (cf. Fig. 4.12), which is also the most

sensitive band of (ground-based) interferometers such as aLIGO, Virgo, and KAGRA [324,

325]. Therefore, an application of this framework to future precursor data together with

prospective GW detections may result in strong tests of the neutron star EOS [326].
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Breakdown of Contributions

The code for evolving binaries is extended to the accuracy of 3rd post-Newtonian order

by me from the previous code, which tackles at 2nd order motion, of Kostas D. Kokkotas.

My contributions are producing all the plots and collaboratively writing the manuscript

with Arthur G. Suvorov. Kostas D. Kokkotas assists with discussion and provides critical

comments on the manuscript.

Overview

Short gamma ray bursts resulting from binary neutron-star mergers are sometimes preceded

by precursor flares. These harbingers may be ignited by quasi-normal modes, excited by

orbital resonances, shattering the stellar crust of one of the inspiralling stars up to ≳ 10 sec-

onds before coalescence. In the rare case that a system displays two precursors, successive

overtones of either interface- or g-modes may be responsible for the overstrainings. Since the
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frequencies of these overtones have an almost constant ratio, and free-mode frequencies for

rotating stars are shifted relative to static ones, we suggest that precursor timing in systems

showing double events may be used to deduce the spin frequency of the flaring component.

As a demonstration of the method, we find that the precursors of GRB090510 hint at a spin

frequency of ∼ 60 Hz for the star if g-modes account for the events.

5.1 Introduction

Some short gamma-ray bursts (SGRBs), which are thought to originate from binary neutron-

star (NS) mergers, are preceded by precursor flares with time advance ranging from ∼ 1 to

≳ 10 s [34, 36–38]. These early flashes may be caused by crust yielding in magnetised NS

members, resulting from resonantly excited quasi-normal modes (QNMs) [39–41] (see also

Chap. 4). In this context, the timing of a precursor relative to the SGRB, which depends

on a jet formation timescale, estimates the frequency of the mode that leads to the crustal

fracture. On rare occasions, more than one precursor precedes the SGRB, for which the

frequencies of the two responsible modes may be acquired (see Sec. 4.6). Certain details

of the fabric of the NS can thus be accessed since the QNM spectrum is sensitive to the

particulars of the stellar interior; for instance, frequencies of pressure modes (f - and p-modes)

strongly correlate to the interior mean density [118,121], and g-modes encode microphysical

temperature or composition gradients.

Here we discuss a novel way to learn the spin of a NS if a double precursor event is

observed. In particular, mode frequencies in a rotating-NS attributable to the pre-emissions

provide two relations between the free mode frequencies of these two modes and the stellar

spin. In scenarios where the free mode frequencies have a constant ratio, such as for g- and

i-modes as explained below, this additional relation then admits an inference of spin. In the

current phase of gravitational-wave (GW) astrophysics, estimating the spins of binary NSs

is crucial in shrinking down the error in other measurements [144, 327, 328]. For instance,

the tidal deformabilites of GW170817 and GW190425 are only determinable under certain

spin priors of the progenitors [12, 329]. In addition, simultaneous knowledge of the spin,

and the mode frequencies may set strong constraints on EOS (e.g., [330]). A particular

example to manoeuvre out stellar spin is implemented for SGRB 090510, an event preceded

by two precursors occurring ∼ 13 and ≲ 1 s prior to the main burst, respectively [34]. Some

discussion on blue/red kilonovae and GWs from the remnant is also offered.

5.2 GRB precursors via g-mode resonances

Although the definition of pre-emission in SGRBs is not uniquely given, e.g., some authors

require the waiting time to be longer than the main burst duration [36] while others do
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not [37], precursor flares have been confidently identified in rare (≲ 10%) cases [38]. These

early flares may be triggered by certain, resonantly-excited QNMs [39,41] (see also Chap. 4).

The orbital (linear) frequencies of precursors, which are uncertain because there is a delay

between the main episode and the merger through a jet formation timescale, suggest that

modes with frequencies∼ 100 Hz are promising to account for the pre-emissions; in particular,

shear-, interface-, and g-modes have attracted some attention [39,40]. We focus on the g-mode

scenario in this Chapter, though a discussion about other modes is given in Sec. 5.4.3.

5.2.1 Resonant shattering via g-modes

Composition and/or the temperature gradients in NSs support g-modes, whose frequency

is determined by the Brunt-Väisälä frequency. Adopting polytropic EOS, we introduced

in Chap. 3 a simple parameterisation for the thermally-induced stratification by assuming

a constant ratio δ between the adiabatic indices of the equilibrium and the perturbations

to encapsulate the Brunt-Väisälä frequency. The parameter scales quadratically with the

surface temperature, i.e., δ ∝ T 2
surf; a typical value for mature NSs is δ ≳ 0.005 [154].

This parameterisation is shown to capture well he feature of thermally-restored g-modes for

internal temperatures T ≲ 1010 K, as relevant for mature stars in coalescing binaries. The

mode frequencies then read

f = αδ
(
M⋆R

−3
⋆

)(1−ς)/2
Hz (5.1)

for EOS- and quantum-number-dependent parameters α and ς (see Chap. 3 for more detail).

Here M⋆ and R⋆ are, respectively, the mass and radius of the NS. Given the coldness and

extreme density of old NSs, there may exist superfluidity and even a hadron-quark transition

in the core, both leading to larger g-mode frequencies (see, e.g., [57,59]). However, we ignore

these effects in this Chapter.

As the NSs inspiral, tidal fields induce perturbing forces that act mainly at frequencies

that are twice the orbital frequency [39, 263]. The forced system for QNMs suggests that a

particular mode will be brought into resonance when its frequency matches the forcing rate.

The amplitude of that mode increases rapidly during the resonance timescale, hitting a ceiling

value that depends on the so-called overlap integral. After the mode leaves the resonance

window, its amplitude decays according to the associated damping rate, which is generally

much longer than the rest of the life of the coalescing binary. We recall that the crustal

strain exerted by the mode is determined via Eqs. (4.63) and (4.64). The modes of interest

in this context are those with quantum number l = 2 = m since the dominant component of

the tidal field is induced by the l = 2 = m piece of the gravitational potential built by the

companion [263]. Therefore, we specify ourselves to modes with l = 2 = m hereafter.

In addition, QNM frequencies of forced systems deviate from those of free systems (see
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Figure 5.1: Correlation between the frequencies of g1- and g2-modes for EOS and two representative values
of δ (see plot legends). To the modes of each δ, the relation between g1- and g2-modes [Eq. (5.4)] are shown
as bright blue lines with the solid one for δ = 0.005 while the dash-dot one for δ = 0.01.

Sec. 4.4). Here we focus on the frequency shift due to rotation, and recall the equation for

that: [cf. Eq. (4.61)]

f = f0 −m(1− C)ν⋆, (5.2)

where ν⋆ is the stellar spin. The constant C is determined by Eq. (4.62), and depends on

EOS and the mode quantum numbers, the azimuthal one of which, m, leads to a Zeeman-like

splitting of the modes (e.g., [121]). The free-mode frequency of l = 2 = m gn-mode (fgn,0),

whose radial eigenfunction has n nodes, thus relates to the inertial-frame one (fgn) through

fgn = fgn,0 −m(1− Cn)ν⋆, (5.3)

where Cn, defined in equation (5.2), quantifies the spin-correction. As shown in Sec. 4.4.3,

rotation affects the frequencies of g1- and g2-modes to a similar extent. For a broad set of

EOS detailed in Tab. 5.1, we find two facts about C1 and C2 valid for 10−3 ≤ δ ≤ 0.05: (i)

both depend only weakly on M⋆ and EOS; (ii) for a given model and the described range of

δ, they differ by only small amount, with the most extreme case having |1− C1/C2| ≲ 0.13.

As such, the free mode frequency of the g2-mode can be EOS-independently associated with

that of g1-mode, as plotted in Fig. 5.1, via

fg2,0 = 0.62fg1,0 + 4.32 Hz (5.4)

for NSs with δ ≤ 0.05, or temperature less than 1010 K (see Chap. 3).
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Table 5.1: Properties of the EOS used to analyse the precursors of GRB 090510. The second and the third
columns show, respectively, the radius and the tidal deformability of a star with M⋆ = 1.4M⊙, while the final
column presents the maximum mass of a static configuration supportable by each EOS.

EOS R1.4 (km) Λ1.4 Mmax (M⊙) EOS R1.4 (km) Λ1.4 Mmax (M⊙)
WFF1 10.412 250.104 2.127 SLy 11.706 420.892 2.048
WFF2 11.124 341.859 2.194 ENG 11.969 519.308 2.238
APR4 11.446 386.820 2.168 MPA1 12.361 648.070 2.456

5.3 Spin frequency determination from precursor doubles

In this Chapter, we assume that both precursors are set off from the primary, defined as the

heavier NS, and further that they are attributable to g1 and g2 resonances. There are other

theoretical possibilities, however, notably that non-g modes are responsible or that each star

releases a flare at different times rather than one star releasing both. These are discussed in

detail in Sec. 5.4.3.

The orbital frequencies at which two precursors A and B are observed, denoted by νA and

νB with νA > νB, should be determined by the their preceding time relative to the merger,

while the measured quantity is the waiting time, i.e., the preceding time relative to the main

burst. Therefore, νA and νB depend on the unknown jet formation timescale τjet for the

associated SGRB when the waiting time are given. Matching the tidal-driving frequency to

the inertial-frame frequencies of g1- and g2-modes relates the mode frequencies, the NS spin,

and the orbital frequencies via

ν⋆(νA, νB, τjet) =
0.62νA(τjet)− νB(τjet) + 2.16

0.38 + C2 − 0.62C1

Hz. (5.5)

Denoting the maximal, supportable mass for a particular EOS as Mmax, we surprisingly find

that the denominator is roughly a constant 0.4268 with a standard variance of 0.0036 for

stars having 1M⊙ ≤ M⋆ ≤ Mmax, for the considered EOS, and for the studied range of δ.

This fact simplifies the above relation as

ν⋆(νA, νB, τjet) =2.343(1± 0.0084)[0.62νA(τjet)− νB(τjet) + 0.34] Hz. (5.6)

That δ is irrelevant in the above expression indicates the spin can be informed even without

knowing the temperature of the star. It is conceivable somehow since here NSs are taken

to be cold enough ad hoc, i.e., T ≤ 1010 K (δ < 0.05), as appropriate for NSs in coalescing

binaries (though see [331]).

5.3.1 Orbital dynamics and equations of state

The orbital frequencies associated with two precursors are determined by the numerical

scheme detailed in Sec. 4.3 with the tidal effects of the l = 2 = m f -modes involved. The
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uncertainty of τjet, covering about 10-100 ms [291], gives rise to some errors in the inference

of νA and νB [cf. Eq. (5.6)], while the error is narrower for the latter frequency since the

changing rate of the orbital frequency is smaller at earlier stage.

Although the relation (5.6) holds for the EOS in Fig. 5.1, we, hereafter, will specify

ourselves to those EOS able to support stars with mass ≳ 2M⊙ or more – so as to be

consistent with Shapiro delay measurements of PSR J0740+6620 [332] – the properties of

which are listed in Tab. 5.1. The chosen EOS span a wide range of stiffness as evidenced by

the radius of the star with canonical mass 1.4M⊙ (second column), where we see R1.4 ranges

from 10.4 − 12.4 with 2 km wide uncertainty. The stiffness is also indicated by the tidal

deformability of stars with 1.4M⊙ (third column) as Λ1.4 ranges from ∼ 250 to ∼ 650 for

this specific mass. These values of Λ1.4 are consistent with those coming from GW170817,

namely 120 ≲ Λ1.4 ≲ 800 [12,329].

5.3.2 Case study: GRB 090510

GRB 090510 displayed two precursors at 13 s and 0.45 s prior to the main event [34]. Using

the orbital dyanmics procedure described in Sec. 5.3.1, and neglecting the jet formation

timescale for now, i.e., taking τjet = 0 ms, we find νA = 72− 83 Hz and νB = 23− 26 Hz by

considering a wide range of binaries for each of the EOS in Tab. 5.1: those with total mass

Mtot = 2.5 − 3.1M⊙ and the mass ratio as long as the secondary having mass > 1M⊙ (see

below).

The spin of the primary is obtained via Eq. (5.6) for the chosen EOS, and is found to be

well expressed as a function of the chirp mass via

ν⋆ = 57.2 (M/1.19M⊙)
−0.65 Hz. (5.7)

The above is a consequence of the fact that the orbital frequency can be well represented

as a function of the chirp mass, even though tidal deformabilities and the stellar f -modes

influence the orbital dynamics. Taking two specific series of binaries, each characterised by

a fixed total mass, we plot ν⋆ in the left panel of Fig. 5.2 as a function of the mass ratio,

q, for some particular EOS, where the solid lines represent the respective fittings (5.7). For

Mtot = 2.5M⊙, one may expect the remnant to be supra-massive or even stable for the MPA1

EOS (see Tab. 5.1), surviving collapse long enough to produce an X-ray afterglow (see Sec.

5.4.2), as appropriate for GRB 090510. For this total mass, we do not consider values q < 0.75

since q ∼ 0.75 implies a very light companion with ∼ 1.07M⊙; this would be in tension with

the lightest known NS, viz. the secondary of J0453+1559 (1.18M⊙; [333]). We see that ν⋆

depends only mildly on both q (differs by less than 1 Hz between q = 1 and q = 0.75) and

the EOS.

By contrast, a hypermassive remnant may be expected for Mtot ≳ 2.8M⊙. In this case,
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Figure 5.2: Derived spin of the primary [Eq. (5.6)] for double-precursor events with various EOS in binaries
with fixed total masses 2.5M⊙ and 2.8M⊙ as functions of mass ratio q (left) and for symmetric binaries, as
functions of the chirp massM (right). Solid lines represent equation (5.7).

the primary (companion) has mass 1.4-1.75M⊙ (1.05-1.4M⊙) for q in the range 0.6− 1. The

inferred spin rate again depends only slightly on q, while it is totally insensitive to the EOS.

Noting that the mass ratio is rather irrelevant to the inferred spin rate from two precursors,

we henceforth consider symmetric binaries to emphasise the dependence of ν⋆ on the total

massMtot of the system. In the right panel of Fig. 5.2, we plot ν⋆ as a function of the system’s

chirp mass, where the EOS-independent relation (5.7) is drawn as solid line.

Allowing for a non-zero jet formation and breakout timescale, τjet, gives rise a to shift δν⋆

in the spin inference from equation (5.7). For τjet ≲ 0.3 s [291], we find the quadratic fitting

relation

δν⋆
ν⋆

=

[
7.99

( τjet
100 ms

)
+ 6.64

( τjet
100 ms

)2]
%. (5.8)

If the SGRB takes less than 100 ms to launch, for instance, the correction is ≲ 15%. We

note that this relation is independent ofM.

5.4 Connections to other observational channels

In this section, we explore some connections that the double precursor scenario has to GWs

(Sec. 5.4.1) and X-rays afterglow (Sec. 5.4.2), and also provide some discussion about how

non-g-mode scenarios can still be used to constrain the stellar properties (Sec. 5.4.3).

5.4.1 Gravitational waves

There are two phases for which GW measurements may augment our knowledge about sys-

tems with precursors: during the merger and from the remnant. During merger, tidal reso-

nances, and forces more generally, accelerate the inspiral. These influences on the waveform

may be connected back to the properties of the pre-merging stars to infer not onlyM and q

but also the stellar compactness via the mutual deformability, Λ̃. Generally speaking how-



94 5.4. Connections to other observational channels

ever, Λ̃ can only be tightly constrained by using priors for ν⋆ [12,329]. Gravitational radiation

from the remnant, which may be observed either directly or via the fall-off slope of electro-

magnetic emissions (see Sec. 5.4.2; [334]), allow us to infer properties of the final star. It

was shown by [67] that many stellar parameters, such as the compactness, of a long-lived

remnant NS (i.e., when Mtot ≲ 2.5M⊙; see Fig. 5.2) can also be inferred from the mutual

tidal deformability. Furthermore, the mass of the remnant may be reliably estimated from

the chirp mass to within an error of at most ≲ 0.1M⊙ [65]. The frequency of the f -mode,

from which independent constraints on the EOS can be placed, in the remnant can also be

predicted if the spin frequency is known [121]. Additionally, large pre-merging spins may re-

sult in high degrees of mass asymmetry in the remnant [328], possibly revealing itself through

the so-called “one-arm” instability in the GW spectrum or shifting the bar-mode peak [327].

Under favourable orientations, QNMs from the remnant may be observable with the Einstein

Telescope out to ≳ 200 Mpc [335].

5.4.2 Afterglow light-curves

GRB 090510 (and many other SGRBs) displayed an afterglow ‘plateau’, which suggests that a

NS was born from the merger [336]. Depending on the compactness and spin-down radiation

efficiency of the remnant, analyses of the light curve indicate that the newborn star had a

period in the range 1.8 − 8 ms, surface magnetic field strength of (5 − 17) × 1015 G, and

quadrupolar ellipticity between 10−4 − 10−2 [337–339]. These features impact the potential

GW signal, e.g., the characteristic strain h0 ∝ ϵν2⋆ . From a purely electromagnetic standpoint,

an eventual falloff slope of −2 in the X-ray emissions would be expected for dipolar spindown,

while GW-dominated energy losses would be characterised by a slope of −1 instead, the

crossover time and luminosity of which can be used to infer the ellipticity and magnetic field

strength [334]. As the spin of the pre-merging stars has an impact on the properties of the

remnant [144,327,328], information gleaned from double precursors may reduce the error bars

from afterglow analysis. It is worth pointing out that a merger that leaves behind a stable

NS, rather than a BH or hypermassive remnant (cf. Fig. 5.2), must be composed of relatively

light stars, likely having formed through “bare collapse” or electron capture supernovae [340].

5.4.3 Other scenarios leading to double precursors

Although we focus on g-mode scenarios in this work, it is worth briefly commenting on other

possibilities, and what one may infer under those circumstances. Indeed, precursors may

arise from:

⋆ Resonances from other modes, such as i- or s-modes [39, 40], or even f - or r-modes in

rapidly rotating or ultra-magnetised systems [41]
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⋆ Each star undergoing a separate fracture, rather than one star undergoing two. Different

atomic impurities in the crust, for example, could imply that the von Mises criterion is

met at different strains and frequencies in each star. Such a scenario would be favoured

if, for example, the stellar crust cannot “heal” in between fractures.

⋆ Scenarios unrelated to modes, such as the unipolar inductor model, where electromotive

forces, generated across a weakly-magnetised star as it moves through the magnetosphere

of a magnetar companion, spark precursor emissions [341,342].

It is beyond the scope of this work to go into detail about each of these possibilities, though

we explore the first point here. In an agnostic analysis, the two precursors of GRB 090510

corresponds to two l = 2 = m modes (see Sec. 5.2.1) with inertial-frame frequencies of,

respectively, ∼ 160 Hz and ∼ 50 Hz. Given the large difference in the frequencies of i- and s-

modes (e.g., Fig. 3 in [343]), it seems difficult to connect each of these crust-induced modes to

the two precursors of GRB090510. Among these two modes, the interface-mode is considered

more promising to explain flares occurring at few seconds before the merger [39,147].

In a three layers NS, there are two interface-modes originating from, respectively, the

ocean-crust (Rayleigh-like mode) and the crust-core (Stoneley-like mode) transitions. The

ratio between the frequencies of these two modes is roughly 2 with the Stoneley-like one

being larger [51, 147, 344]. Those reported in [219] correspond to the crust/core transition

thus belonging to the Stoneley-like mode, which oscillate at ≲ 50 Hz (see Tab. 3 therein).

The earlier flare may be accommodated by this i-mode for very low spins. On the other

hand, as mentioned by [39], it is difficult to accommodate the later flare with i-modes. We

note that a mix of i- and s-modes could also account for these two pre-emissions: the latter

associated with the later precursors, while this calls for a s-mode with free mode frequency

∼ 160 Hz since, for an i-mode to cause first precursor, we must have ν⋆ ≪ 10Hz. This

mixed-mode scenario will be investigated thoroughly elsewhere.

Some stars in coalescing binaries may spin fast, e.g., the secondary of GW190814 [330]. In

such cases, modes with high free frequencies (e.g., f -modes) come into interest [41]. Nonethe-

less, if such high spins align with the orbit, we should see a rotation-induced modulations

in the light-curves during the subsecond timescale of the observed precursors [345]. Unless

the spin is misaligned with the orbit, the absence of substructure hints that ν⋆ ≲ 100 Hz for

precursor hosts1.

1In principle, if the effective spinning rate of the signal, resulted from a large, aligned spin and the orbital frequency, is higher
than the sampling rate for the data stream, the absence of the modulation is predicted as well. However, it will not be the case
for the observed precursors since the observations are made with a sampling rate of 105 Hz (see, e.g., [34]).
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5.5 Discussion

In this Chapter, we have shown how double precursor events, via a g-mode resonance inter-

pretation (Chap. 4), can be used to measure the spin frequency of at least one component of

a NS binary prior to coalescence. Our key results are relations (5.6) and (5.7), which connect

the spin frequency to the orbital frequencies associated to precursor timings and the system’s

chirp mass, respectively.

A system that displays a double precursor, is bright/near enough (≲ 100 Mpc with aLIGO)

to be detected in GWs at merger and late inspiral, and shows an X-ray plateau might be

something of a holy grail for high-energy astrophysics. As shown here, the first two of

these observation bundles may allow for the mass, radius, and spin of (at least one of)

the pre-mergering stars to be determined with high accuracy. In principle, this can then

be connected to the properties of the post-merger remnant by combining numerical, merger

simulations [144,327,328] with the spin-down luminosity inferred from the jet energetics [336]

and X-ray plateau [337]. One may thus be able to establish a magnetic field strength,

compactness, and spin for the remnant [67, 338, 339], which imply constraints on the EOS

(e.g., [330]). If the QNM spectrum of the remnant is also observable (out to ≳ 200 Mpc with

the Einstein Telescope; [335]), the error bars may greatly shrink.

NSs in binaries tend to spin slowly; the fastest known pulsar in a binary is J0737-3039A

with a spin of 44 Hz [346]. For GRB 090510 we predict that the primary has ν⋆ ∼ 60 Hz,

which is marginally faster than this value. Although only one double precursor event has

thus far been observed, in the future one may be able to – assuming a resonance scenario –

put statistical constraints on the spin dynamics of NS binaries that do not exhibit pulsations.

This allows for an investigation of the evolutionary pathways of NSs that reside within the so-

called pulsar ‘graveyard’. It is conceivable also that even millisecond objects may enter into

compact binaries in dense astrophysical environments through dynamical exchanges. What

might the timing data of double precursors look like in such a case? For spin frequencies

ν⋆ ≫ 10Hz, equation (5.6) implies that the two events should be separated by at least 15

seconds, a prediction which is robust for different EOS. Depending on the spin alignment of

the binary constituents, large values of ν⋆ may excite the so-called “one-arm” instability in

the GW spectrum of the remnant and enhance blue/red kilonovae [327,328].

We close by noting that magnetic fields have not been considered at all in this work. It is

likely that magnetic fields play a significant role in extracting the elastic energy from the crust

that eventually fuels the precursor [40, 41]. However, unless the fields are of magnetar-level

strength (B⋆ ≳ 1015 G), the Lorentz force will not be strong enough to significantly distort

the QNM spectrum (Sec. 4.4.1), implying that the spin-fitting formula (5.6) would remain

unchanged; see equation (4.52). Even so, it was argued by [41] that precursors with non-

thermal spectra may be indicative of intense magnetic fields, so as to avoid thermalisations
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from pair-photon cascades created via mode-induced backreactions (see also [37,39]; Chap. 4).

These considerations imply that the error bars presented on the spin-frequency measurements

may be slightly underestimated therefore, at least when applied to double precursors showing

predominantly non-thermal spectra (as indeed was the case for GRB090510; [34]).
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Breakdown of Contributions

The code for evolving binaries is extended to the accuracy of 3rd post-Newtonian order

by me from the previous code, which tackles at 2nd order motion, of Kostas D. Kokko-

tas. My contributions are all the gravitational waveform analysis related computations, the

preparation of figures, and the edition of manuscript. Kostas D. Kokkotas provides cardi-

nal comments/suggestions while I was drafting the paper, and assists in implementing final

edition on the manuscript.

Overview

The excitation of f -mode in a neutron star member of coalescing binaries accelerates the

merger course, and thereby introduces a phase shift in the gravitational waveform. Empha-

sising on the tidal phase shift by rotating stars, we provide an accurate, yet economical,

method to generate f -mode-involved, pre-merger waveforms using realistic spin-modulated
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f -mode frequencies for some viable equations of state. We find for slow-rotating stars that

the dephasing effects of the dynamical tides can be uniquely, EOS-independently determined

by the direct observables (chirp massM, symmetric ratio η and the mutual tidal deforma-

bility Λ̃), while this universality is gradually lost for increasing spin. Although a high cutoff

waveform frequency combined with large signal-to-noise ratio (SNR) is needed to trace the

tidal dephasing if binary members rotate slowly, for binaries with fast rotating members

(≲ 800 Hz) the phase shift due to f -mode will exceed the uncertainty in the waveform phase

at reasonable SNR (ρ = 25) and cutoff frequency of ≳ 400 Hz. In addition, a significant phase

shift of ≳ 100 rads can be found for a high cutoff frequency of 103 Hz. For systems involving

a rapidly-spinning star (potentially the secondary of GW190814), neglecting f -mode effect

in the waveform templates can therefore lead to considerable systemic errors in the relevant

analysis.

6.1 Introduction

6.1.1 The Context

The macroscopic and microscopic properties of neutron stars (NSs) in coalescing binaries are

imprinted in the emitted gravitational waveforms. The precise knowledge of the waveform

morphology is of fundamental importance in the signal analysis and the extraction of the

NS parameters therefore. Adopting the point-particle approximation for the gravitational

wave (GW) analysis, the chirp mass and the symmetric mass of binaries can be estimated

from the 1st order post-Newtonian (PN) phase evolution of GWs, though with different

degree of accuracy [20,21,77,300,347,348]. Beyond the point-particle baseline approximants,

the internal structure of the NS members can also be probed: the quadrupole deformations

induced by the tidal forces in the constituents will affect the binary evolution and thus

the associated waveform. Two sorts of (gravito-electric) tidal effects are involved in the

signal, viz. the equilibrium tides due to the induced tidal deformations, and dynamical tides

due to the resonant excitation of the various neutron star quasi-normal modes (QNMs).

Equilibrium tidal effects from Newtonian [76, 77], 1 PN [260, 349], up to 2.5 PN level [21],

are encapsulated in the tidal deformability, and their traces in the signal have already been

observed with the current detectors (see [12] and [350] for a recent review). Dynamical tides,

while being subdominant in the low frequency regime, can affect the waveform to a similar

extent as the equilibrium ones at the final stage of inspiraling, predominantly due to the

f -mode excitation [78–80,199].

For rotating NS progenitors, the spin-effects also contribute to phase shift thus introducing

some degeneracy with the tidal contributions (cf. Eq. (3) of [351]). For instance, the spin-

orbit (comes at 1.5 PN order), and the secondary spin-spin (comes at 2 PN order) terms

appear in the PN expression of GW phase [184, 352, 353]. In addition, rotation will induce
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a quadrupole deformation on the star, and its gravitational potential would be deformed

accordingly. The deformation is larger for stiffer EOS [354] since NSs tend to have larger

radius [355]. The change in the gravitational potential modifies the relation between the

angular velocity and the separation of stars. The binary motion is affected by this self-spin

effect at the same level as spin-spin effect (i.e., 2 PN) [356, 357], whose contribution to GW

dephasing is however much smalelrthan the tidal one (see, e.g., Fig. 4 of [358]).

Rotation introduces shifting and splitting of the QNM spectrum of NSs, and thereby al-

ters the tidal effects and as a consequence the waveform [182]. The effect of stellar rotation

in the tidal dephasing is more profound for increasing spin rate since the downward-tuned

QNM frequencies (counter rotating) lead to stronger tidal excitations. Although there are

higher order couplings between tides and rotation, e.g., tide-spin terms, these are considerably

weaker than the aforementioned effects, and even the accuracy of the state-of-the-art numer-

ical relativity (NR) is incapable of sizing these effects [351]. Owing to the interplay between

spin and tides, the ambiguity in the spins of inspiralling NSs would consequently obscure the

determination of tidal dephasing especially if one of the NSs spins rapidly (e.g., [359, 360]).

For the precise extraction of the source properties, it is thus important to discriminate tidal

dephasing from the phase shift generated due to spin-contributions.

In addition to the degeneracy of spin and tidal dephasing, the uncertainty in equation of

state (EOS) further messes up the attribution of the phase shifts to individual effects without

knowing the “correct” EOS a prior (e.g., [361]); currently, several candidates survive the

observations of pulsars [174,362], and GW170817 as well as its electromagnetic counterparts

[22,198,363]. Nonetheless, the f -mode effects in dephasing may overcome the uncertainty in

phase originating from the EOS in some circumstances [73], where a neat clue of dynamical

tidal effects can be observed. In a pursue of reliable analysis, it is necessary to take f -

mode effect into account when constructing gravitational waveform templates for those cases

[73,74,181].

The tidal effects of rotating NSs in binaries have been investigated in [182] by adopting an

approximation for the frequency modulations [see Eq. (5.7) therein], which engulf a variance

of ≲ 15% among the realistic values (cf. Fig. 4.9). In the present article, we re-examine

the measurability of dynamical tidal dephasing by using the realistic spin-modulation in the

QNM spectrum, and a PN evolution for the inspiral part.

6.1.2 This Work

On top of a great body of existing literature, we collate in the following the original contri-

bution of this article to address f -mode effect in GW:

• EOS-independent Hamiltonian — For slow-rotating binary NSs, the Hamiltonian of

the binary evolution, including the tidal effects, is shown to be EOS-independently recon-

structable from GW observable M, η, and Λ̃ [Eq. (6.24)] since f -mode effects can be pre-
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scribed universally by Λ⋆ [Eqs. (6.21)-(6.23)]. Assuming we have a well-measured chirp

mass [20, 348, 364], say M = 1.146 (the value for GW170817 [12]), the accumulated GW

phase Ψtot is shown to be a universal function of the mass of the primary M⋆ (Fig. 6.4).

• “Observability” of the spin effects in tidal dephasing — Adopting five EOS with

some representative spin rates, we find that the tidal dephasing piles up rapidly at the high

frequency regime of GW (top panel of Fig. 6.5), hinting at that the information of dynamical

tides concentrates in this part of waveform. On the other hand, the accumulated tidal

dephasing from 20-1000 Hz of fgw is larger for higher stellar spins for stiffer EOS (bottom

panel of Fig. 6.5). For the highest stiffness EOS considered, viz. MPA1, we find a few tens

rad of dephasing if two stars rotate moderately, while a few hundreds rad can be achieved

when stars rotates rapidly. Although we consider symmetric binaries (masses and spins of

both stars are the same) for Fig. 6.5, the conclusion is expected to be general since (i) faster

rotation leads to further frequency reduction which will enhance the tidal dephasing, and (ii)

NSs with stiffer EOS tend to have larger radii thus more notable tidal deformations. Despite

of its dependence on EOS, the tidal dephasing can be expressed as a universal relation with

respect to a dimensionless spin [Fig. 6.6; Eq. (6.25)].

• Fast-spinning NS — In general, the SNR needed to measure the tidal dephasing ∆ΨT

depends on the cutoff frequency of the data stream fmax, as well as the spin of the primary

ν⋆,⋆ = 2πνs,⋆. As an example, we assume a specific binary and trace that the error in GW

phase decreases for increasing fmax, while the tidal dephasing increases for larger fmax (top

panel of Fig. 6.7). In this case, a data stream continuing beyond 600 Hz suffices to make the

accumulated tidal dephasing exceed the uncertainty in the GW phase. Additionally, we see

that a considerable improvement, in the measurability of tidal dephasing, can be made even

by extending the cutoff frequency from 400 Hz to 500 Hz if the primary has a moderate spin

(≲ 400 Hz). Although the improvement for rapidly-spinning primary by extending fmax is

weaker (bottom panel of Fig. 6.7), the required SNR for such system is much lower anyway;

a mild SNR of ρ ≲ 20 is sufficient to discriminate the tidal dephasing even for a cutoff

fmax = 400 Hz if the secondary of GW190814 is a fast-rotating NS with νs,⋆ > 800 Hz. The

sizable f -mode effects quantified in the present article indicate that templates including f -

mode effects are imperative for inferring EOS from more accurate GW observation in the

near future. That said, if a rapidly-rotating NS is involved in a coalescing binary, as it is

claimed for the secondary of GW190814 [330, 365, 366], the f -mode effects enhanced by the

fast rotation will be unambiguously measurable in the signal. Neglecting f -mode effects in

such events will therefore result in biased inferences of stellar parameters.

The article is organised as following: We summarise the present status of the analytical

waveform derived from the effective-one-body approach in Sec. 6.2. Tidal dephasing is nu-

merically studied in Sec. 6.3, where the dependence on EOS, and the tidal effects of spinning

NS are detailed. In addition, we illustrate how to discriminate tidal effects from spin-orbit
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effects. A particular investigation on the influence in the GW phase produced by the spin-

modified f -mode excitation is applied to GW190814 in Sec. 6.4. Finally, a discussion of the

results is included in Sec. 6.5.

Unless stated otherwise, all quantities are given in the unit of c = 1 = G.

6.2 Tidal dephasing: Analytic Models

Under the stationary phase approximation (SPA) and by ignoring the PN modifications

in the GW amplitude A1, the frequency-domain gravitational waveform can be expressed

by: [300,348]

h(fgw) = Af−7/6
gw eiΨ(fgw) . (6.1)

This form is generic for all kinds of compact binaries. Here, fgw = Ωorb/π is the GW

frequency, and Ωorb is the orbital frequency. The phase Ψ(fgw) is related to the time domain

phase ϕ(t) via

Ψ(fgw) = 2πfgwto − ϕ(to)−
π

4
, (6.2)

and obeys the equation [21,80,368]

d2Ψ

dΩ2
orb

=
2Qω

Ω2
orb

, (6.3)

where to is a reference time with ϕo = ϕ(to) being the corresponding phase, and Qω is a

dimensionless measure of the phase acceleration defined as

Qω = Ω2
orb

(
dΩorb

dt

)−1

. (6.4)

Constructing precise waveforms demands an accurate evolution of coalescing binaries. The

PN equations of motion describe with adequate accuracy the largest part of the observed in-

spiralling evolution [369]. Still the PN approximation gradually fails as the binary approaches

the plunge, merger, and finally the ringdown phases. This lack of applicability for high or-

bital frequencies and the post-merger dynamics motivated the so-called effective-one-body

(EOB) formalism, which re-sums the PN expansions to account properly for the higher-order

effects [255, 370]. In addition, the EOB analytic dephasing can be “calibirated” with the

late-time NR results [371] even when tidal effects are taken into account [372,373]. However,

the latter hybrid EOB and NR model is much more time-consuming than the PN formalism.

1In general, the amplitude A(fgw) depends on the internal structure (or finite size effects) of the binary members, the
omission of these higher PN corrections does not affect the accuracy of SPA. In practice, SPA will be quite accurate up to the
merger [21,367], and thus this approximation will not affect significantly our results.
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In the present article, we are not to study the tidal influence on high frequency waveform,

but aim to offer an economical waveform variant capable to probe the internal physics of NSs

from the low-frequency part of the waveform (before the actual “merger” begins; ≲ 103 Hz).

To this end, the PN framework proves sufficiently accurate [374–376] (see also below).

Tidal interaction among the binary members (i) accelerate the shrinking rate due to orbital

energy transfer to QNMs [124,199], or, in another perspective, effectively amplify the strength

of the gravitational potential in the EOB framework [376–378], (ii) enhance the energy flux

carried by GW due to tidal deformations (see, e.g., Eq. (3.6) of [349]), and (iii) increase the

angular momentum loss. As a result, certain tidally-driven modifications in A and Ψ will be

encoded, while the change in A in minor.

The effect of equilibrium tides in the phase shift is mainly governed by the quadrupolar

tidal deformability of the NSs in the binary [76,77],

Λ =
2k2
3C5

(6.5)

where k2 is the (dimensionless, quadrupolar) tidal Love number, and C = M/R is the

stellar compactness. The contribution of the higher-order Love numbers in the phase-shift

is significantly smaller [351]. On the other hand, the dynamical tides are resulted from

the excitation of oscillations in the individual NSs, which are predominantly excited by the

quadrupolar (l = 2) component of the tidal potential built by the companion (see, e.g.,

the discussion in the Appendix A.2 of [21]). Among the various low or high frequency

modes (p-, g-, i-, w-, etc.), the contribution of the f -mode is more significant to the tidal

response, strictly the l = 2 = m f -mode [21, 199, 351, 379]. Therefore, we restrict ourselves

to the physics (f -mode, tidal potential and deformability) at the quadrupolar level to study

the leading order tidal phenomena. Although we focus on the quadrupolar f -mode, our

methodology is applicable to higher-order (l > 2) f -modes and to other types of modes.

On top of the tidal interaction, the spins of the constituents also influence the binary

evolution via spin-orbit, self-spin couplings [184, 352, 380, 381], and some higher order terms

such as spin-tidal coupling. Incorporating the aforementioned physics, and by denoting a

certain parameter X of the primary (companion) as X⋆ (Xcomp), the GW phase can be

expressed as

Ψ = Ψ(fgw; T ,S,Z), (6.6)

where T = (Λ⋆,Λcomp), S = (νs,⋆, νs,comp), and Z = (M⋆,Mcomp, R⋆, Rcomp). Here we will

not investigate further the dephasing caused by spin coupling effects (spin-orbit, spin-spin,

self-spin, etc.), while we note that S are not dummy as the spins affect the dynamical tides.
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6.2.1 Analytic Tidal Dephasing

Equilibrium tides are usually addressed by extending the effective gravitational potential

in EOB to include an enhancement due to higher-order PN contributions [376, 377], while

dynamical tides can be investigated either by introducing associated kinetic terms to the

Hamiltonian [79,253] or by generalising the Love number k2 to a running parameter (effective

tidal responses) [78, 79, 382]. We adopt the PN evolution of binaries together with a kinetic

term for dynamical tides to investigate the accumulated tidally-induced dephasing during

the pre-merger stage (fgw ≲ 103 Hz). This approach is numerically cheaper while agrees

very well with the more sophisticated EOB method (cf. Fig. 1 in [80]; see also Fig. 6.2). To

demonstrate the faithfulness of our code, we will compare our results with several analytical

waveforms in this section.

To the leading order of the tidal deformability, the 1 PN order phase shift due to effects

of the equilibrium tides in the primary, based on the TaylorF2 model, reads as [349]

∆Ψeq
⋆ = −3Λ⋆

128
(πMfgw)

−5/3x5[a0 + a1x] ≈ Ψ(fgw; T ,S,Z)−Ψ(fgw;O,S,Z), (6.7)

where x = [π(M⋆ + Mcomp)fgw]
2/3, O = (0, 0) denotes a null pair, M is the chirp mass

[Eq. (3.17)], and η is the symmetric mass ratio [Eq. (3.18)]. The coefficient

a0 =12[1 + 7η − 31η2 −
√

1− 4η(1 + 9η − 11η2)], (6.8a)

is the Newtonian contribution, and

a1 =
585

28

[
1 +

3775

234
η − 389

6
η2 +

1376

117
η3 −

√
1− 4η

(
1 +

4243

234
η − 6217

234
η2 − 10

9
η3
)]
, (6.8b)

is the 1 PN one. Although Eq. (6.7) encodes solely the tide in the primary, the effects from the

companion can be linearly added to the gross influence, which can be simplified as [311,383]

∆Ψeq
⋆ +∆Ψeq

comp = − 3Λ̃

128
(πMfgw)

−5/3x5

[
39

2
+

(
3115

64
− 6595

364

√
1− 4η

δΛ̃

Λ̃

)
x

]
, (6.9)

where

Λ̃ =
8

13

[
(1 + 7η − 31η2)(Λ⋆ + Λcomp) +

√
1− 4η(1 + 9η − 11η2)(Λ⋆ − Λcomp)

]
=

16

13(M⋆ +Mcomp)5
[
(M⋆ + 12Mcomp)M

4
⋆Λ⋆ + (Mcomp + 12M⋆)M

4
compΛcomp

]
(6.10)
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is the mutual tidal deformability, and

δΛ̃ =
1

2

[√
1− 4η

(
1− 13272

1319
η +

8944

1319
η2
)
(Λ⋆ + Λcomp) +

(
1− 15910

1319
η +

32850

1319
η2 +

3380

1319
η3
)
(Λ⋆ − Λcomp)

]
.

(6.11)

We note that δΛ̃ is typically much smaller than Λ̃, and will vanish for symmetric binaries.

The above 1 PN form can be extrapolated to 2.5 PN with the aid of EOB treatment as

shown in [21]; for symmetric binaries, the equilibrium tidal effect of the primary leads to the

dephasing

∆Ψeq
⋆ =− 117Λ⋆

128
x5/2

[
1 +

3115

1248
x− πx3/2 + 28024205

3302208
x2 − 4283

1092
πx5/2

]
, (6.12)

and can be doubled to include the influence of the companion.

The 2.5 PN correction to the phase acceleration (6.4) due to tidal contribution, on the

other hand, reads as

Q̃T
ω = −65

32
x5/3

[
1 +

4361

624
x2/3 − 4πx+

5593193

122304
x4/3 − 4283

156
πx5/3

]
, (6.13)

and is given along side the formula for GW phase in [21].

This 2.5 PN TaylorF2 model was later phenomenologically calibrated by numerical rela-

tivity simulations in [372] to capture dynamical tidal effects by replacing Λ̃ in Eq. (6.12) with

Λ̃(1 + 12.55Λ̃2/3x4.240). The authors further show that one can directly generalise the above

phase expression, which is for symmetric binaries, to asymmetric systems by substituting the

denominator of the pre-factor with 256η, i.e.,

∆Ψeq
⋆ +∆Ψeq

comp = − 117

256η
x5/2Λ̃(1 + 12.55Λ̃2/3x4.240)

[
1 +

3115

1248
x− πx3/2 + 28024205

3302208
x2 − 4283

1092
πx5/2

]
.

(6.14)

Although there is a mutation of 2.5 PN tidal phase approximant derived by Henry et al. [17],

which is slightly different from the one in [371] (they match up to 1 PN tidal phasing, i.e.,

6 PN effects in general), we will use the above NR-reshaped form for statistical estimation

in Sec. 6.3.3. In addition to TaylorF2, the NR-calibrated form for TaylorT2 has also been

derived in [351], which gives rise to the dephasing

∆Ψeq
⋆ +∆Ψeq

comp = −117Λ̃

64
x5/2

1− 17.428x+ 31.867x3/2 − 26.414x2 + 62.362x5/2

1 + (−17.428− 3115/1248)x+ 36.089x3/2
. (6.15)

Although several models for equilibrium tides have been developed, dynamical tidal de-

phasing due to the quadrupolar f -mode in the primary is just provided in [80] recently, given
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by

∆Ψdyn
⋆ = −10

√
3π − 27− 30 log 2

96η
(πM⋆fgw)

11/3
M4

⋆ω
−2
f

(M⋆ +Mcomp)6

(
155− 147

M⋆

M⋆ +Mcomp

)
,

(6.16)

where ωf is the frequency of the f -mode. This analytical phase shift agrees with the tidal

EOB model for fgw ≲ 103 Hz [80].

6.3 Tidal Dephasing: Numerical results

The Hamiltonian describing the binary evolution is (Chap. 4; see also, e.g., [199,253])

H(t) =
(
Horb +Hreac +Hosc +Htid

)
(t), (6.17)

where Htid and Hosc are the Hamiltonians describing the equilibrium and dynamical tidal

effects, respectively. We consider the conservative motion, Horb, up to 3 PN level, and

include the gravitational back-reaction, Hreac, at 2.5 PN order. The explicit forms for the

point-particle part of H(t), viz. Horb and Hreac, are rather long and are not the subject of the

present article, which are thus omitted here but we refer the interested reader to [254, 384].

Nonetheless, we will give the form of the tidal parts Hosc +Htid in due course, for which the

coupling strength of modes to the external tidal field is a crucial parameter (Sec. 6.3.1).

The determination of Λ via the phase shift due to equilibrium tides can set constraints on

the EOS as demonstrated by the analysis of GW 170817 [22]. However, we need to take also

dynamical tides into account since more accurate observations will be available in the next

years. This entails a good handle on the QNM effects on the waveforms especially in the high

frequency window, where the influence of tidal effects in the GW signal is encoded (cf. Fig. 2

of [385]). Ignoring the dynamical tide contribution in the phase shift will therefore deteriorate

the accuracy in constraining the EOS. Furthermore, for binaries involving rapidly-rotating

NSs the effect will be more pronounced since the f -mode frequency will be lowered, leading

into larger tidal dephasing. In this article, we consider the GW phase accumulated when fgw

ranges between fmin = 20 Hz and fmax = 1000 Hz, given by

Ψtot =

∫ fmax

fmin

dfgw

(
∂Ψ

∂fgw

)
Λ⋆,Λcomp,νs,⋆,νs,comp = Ψpp +∆ΨT . (6.18)

Here Ψpp is the part of point-particle contribution, and ∆ΨT is the tidal dephasing due to

both equilibrium and dynamical tides.

In Fig. 6.1, we compare our result of phase acceleration Q0
ω, for a particular symmetric

binary with a non-spinning primary, with Q̃T
ω given by Eq. (6.13). We see that our result,

which includes the f -mode effect, has a deviation ≤ 20% from the analytic result for fgw <
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Figure 6.1: Ratio between the numerically estimated phase acceleration QT
ω = {Q0

ω, Q
100
ω } [Eq. (6.4)] and the

analytic 2.5 PN form Q̃T
ω [Eq. (6.13)].

Figure 6.2: Tidal dephasing, including equilibrium and dynamical tides, from our code (blue) and several
analytic models (see the main text) as functions of fgw. For this plot, we consider a symmetric binary with
Mcomp = 1.3M⊙ = Mcomp and MPA1 EOS [156] The results shown here account only for the tides in the
primary, thus the total effect is twice as big.
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500 Hz, while larger deviation is observed for high frequencies. The growing deviation can

be attributed to f -mode excitation, which is absent in the analytic expression (6.13). To

demonstrate that the deviation originates from the presence of f -mode, we add in the plot

the phase acceleration Q100
ω , for the same binary but with the primary spinning at 100 Hz.

The enhanced f -mode effect in the latter spinning case manifests as the larger deviation from

Eq. (6.13). In addition, the inclusion of f -mode effect gives rise to a more negative phase

acceleration, suggesting a faster merging (the so-called“tidally induced plunge” [199]).

On the other hand, in Fig. 6.2, the GW phase of our simulation (blue curve) is compared to

the following approaches: (i) 1 PN TaylorF2 + f -mode [Eq. (6.9) and Eq. (6.16)], (ii) 2.5 PN

TaylorF2 + f -mode [Eq. (6.12) and Eq. (6.16)], (iii) NR-calibrated TaylorF2 [Eq. (6.14)], and

(iv) NR-calibrated TaylorT2 [Eq. (6.15)]. Denoting the difference between our tidal phase

shift to a certain model as ∆(∆eq+dyn) = ∆ours
eq+dyn −∆model

eq+dyn, we see that the deviation from

the aforementioned models is less than 1 rad overall, and most of the deviation piles up after

fgw ≳ 400 Hz. Our numerical scheme produces smaller dephasing compared to the two non-

NR-corrected models, meaning the tidal effect in our scheme is a bit weaker. However, the

shifts are greater than those of NR-calibrated models when fgw is less than a certain value.

This “sign-changing” behaviour is often seen when it comes to comparing different waveform

models (e.g., [80, 373, 386]). Among the considered models, the model using TaylorF2 with

NR waveforms fits to our result the best with difference only between ±0.1 rads.

As the QNM spectrum depends on EOS and spin, we will address how these affect the

tidally-induced phase shift, notably the dependence on EOS (Sec. 6.3.1) and the tidal effects

of spinning stars (Sec. 6.3.2). In general the spin itself will lead to certain dephasing due

to, e.g., spin-orbit, spin-spin, and self-spin couplings. The total dephasing thus consists of

the tidal and spin-included contributions. Identifying of tidal part accurately is crucial in

acquiring source parameters; some discussion on this issue will be provided at the end. Before

we investigate the aforementioned aspects, we first attain confidence on the results of our

code by comparing with the analytic forms obtained via PN expansions, the EOB scheme,

and the phenomenological models fitting to NR simulations.

6.3.1 An EOS-independent Tidal Hamiltonian

In general, stellar oscillations in GR will cause perturbations in metric fields, thus damping in

a certain timescale set by the imaginary part of mode frequencies. However, we are studying

the very last moment of coalescence, where the few minutes is not enough for modes to decay.

Therefore, we ignore the small contributions from the mode-induced metric perturbation and

from the imaginary part of the mode in the tidal parts of Hamiltonian, which then has the
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form [cf. Eqs. (4.31) and (4.40)]

Htid = −2M⋆Mcomp

aR⋆

∑
α

Wlm

(
R⋆

a

)l
ℜ
[
q̄αQαe

−imϕc
]
, (6.19)

Hosc =
1

2

∑
α

(
pαp̄α
M⋆R2

⋆

+M⋆R
2
⋆σ

2
αqαq̄α

)
+H.c., (6.20)

where we focus on the tidal activity in the primary. Here α labels different QNMs, ϕc

is the phase coordinate of the companion, qα are the mode amplitudes, and pα are the

canonical momenta associated to qα. The (inertial-frame) eigenfrequency of the excited mode

is σα = ωα + i/τα, where ωα is the frequency, and τα the damping timescale. The overhead

bar denotes complex conjugation. As stated above, we will limit our study to the l = 2 = m

f -mode hence we will drop the subscript α hereafter, and denote its coupling strength as Qf ,

which should not be confused with the phase acceleration Qω defined in Eq. (6.4).

We introduce the primary-based, dimensionless quantities

A(Λ⋆) = QfR⋆/M⋆, (6.21a)

B(Λ⋆) = R⋆ωf , (6.21b)

which, if the primary is non-spinning (i.e., ωf is the mode frequency), can be expressed as

functions of Λ. In particular, we find the universal relations for these two quantities, given

by

logA = −0.250 + 0.306 log Λ⋆ − 0.008(log Λ⋆)
2, (6.22)

and

logB = −0.270 + 0.013 log Λ⋆ − 0.013(log Λ⋆)
2. (6.23)

The relations are plotted in Fig. 6.3, where the considered set of EOS is labeled in the legend.

This set of EOS is the same as those adopted in Chap. 3, and we note that the latter formula

(6.23) has been introduced there. The former universal relation connects the tidal overlap

of f -mode to the tidal deformability, which is newly pointed out here, while that for r-mode

has been developed in [387] (see the right panel of Fig. 7 therein).

Substituting the previous quantities into the tidal Hamiltonian, we get

HT = Htid +Hosc = −
2M2

⋆Mcomp

a3
Aq cos(mφc) +

pp̄

M⋆R2
⋆

+M⋆qq̄B2. (6.24)

which is a functional depending on the individual masses M⋆ and Mcomp, the tidal deforma-

bility of the primary Λ⋆, and M⋆R
2
⋆. The latter quantity is related to moment of inertia [388]



Chapter 6. f-mode Imprints in GWs from Coalescing Binaries involving Spinning NSs 111

10 100 1000 10000

1

2

3

4

5

6

7

10 100 1000 10000

0.4

0.45

0.5

0.55

Figure 6.3: Universal relations connecting QfR⋆/M⋆ [Eq. (6.23); left panel] and R2
⋆ω

2
f [Eq. (6.22); right panel]

to the tidal deformability of the primary Λ⋆.

[see Eq. (12) therein]. The dependencies are all detectable in GW analysis either directly or

indirectly; the measurement of the chirp massM and the symmetric mass ratio η determine

the individual masses, while the measurement of Λ̃ returns R⋆ in a manner independent of

the Mcomp if the chirp mass is known [115, 389]. In addition, the mass ratio together with

Λ̃ estimate the individual tidal deformabilities since Λ⋆ and Λcomp relate to each other via

Eq. (4.73) [116]. The tidal Hamiltonian can therefore be EOS-independently reconstructed

from M, η, and Λ̃. The “hierarchy” of the three arguments in GW phasing goes from the

chirp mass to the tidal deformability.

In Fig. 6.4, we plot the accumulated GW phase from fgw = 20 Hz to fgw = 1000 Hz for

binaries with fixed chirp massM = 1.186M⊙ as functions ofM⋆ for some EOS. We note that

the chosen EOS span a wide range of stiffness going from the stiffest MPA1 down to the softest

KDE0V. The binaries considered in Fig. 6.4 undergo ∼ 2260 orbits in the last ∼ 150 s of the

coalescence, during which fgw climbs from 20 Hz to 103 Hz. This corresponds to ∼ 4560 cycles

of time-domain gravitational waveform, while the frequency-domain gravitational waveform

(6.1) is found to oscillate ∼ 4775 cycles, i.e., Ψtot ≲ 3× 104 rads. The phase varies ≲ 1% for

different η, while the variance of the finite size effects encoded in Λ̃ is even smaller. Following

the EOS-independent nature of the Hamiltonian, the accumulated phase is thus, to a large

degree, uncorrelated to the EOS. To our knowledge, the universality of the GW phase shift

when fixing the chirp mass has not yet been recognised in the literature. In addition, the

phase peaks atM⋆ =Mcomp ≃ 1.37M⊙, indicating that symmetric binaries will undergo more

cycles before merger regardless the stellar constitution.

Although this Hamiltonian is EOS-independent, it is not indicating that we cannot place

any constraints on EOS from the GW phasing detection. On the contrary, from the analysis

of GW phase, we may determine the properties of the binary members to place certain

constraints on EOS, e.g., the predicted Λ̃ of GW170817 favours soft candidates.
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Figure 6.4: Ψtot [Eq. (6.18)] for binaries with a fixed chirp mass M = 1.186M⊙ as functions of M⋆ for the
chosen EOS. Each curve terminates at the maximal mass of the associated EOS.
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Figure 6.5: Top panel : Evolution of GW phase for various spin rates of the primary, νs,⋆, as functions of fgw
for a particular binary (we assumed the MPA1 EOS). Bottom panel : Accumulated phase shift ∆ΨT due to
tidal effects in both NSs as a function of νs,⋆, here we used the same EOS as in Fig. 6.4. For both panels, we
consider the tidal effect of the primary in symmetric binaries.

6.3.2 Spin modification in Tidal Dephasing

In spinning neutron stars the oscillation frequency splits into co- and counter-rotational

components. In the inertial frame, the f -mode frequency in the primary shifts according to

Eq. (4.61). For a fast-rotating primary, the frequency shift formulae involving extra terms

quadratic in νs,⋆ has been proposed in [121,390,391]. This quadratic term is however negligible

up to high spin νs,⋆ ≳ 800 Hz, and the linear modification shown in Eq. (4.61) is adequate

for our purpose. The counter-rotating shift in the frequency of the l = 2 = −m f -mode is

always negative since the coefficient of the linear correction Cf ≈ 0.3. A reduced frequency

indicates an earlier resonant coupling between the mode and the orbital frequency, thus the

accumulation of tidal effects in the waveform will be more significant.

For particular symmetric binaries with two NSs spinning at the same rate and having the

same mass, we plot in the top panel of Fig. 6.5 the tidal dephasing induced by the primary
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for various spins, as functions of fgw. We see that the phase shift increases monotonically

with νs,⋆, while a noticeable, rapid growth is observed in the high GW frequency regime.

For instance, the dephasing piles up to about 20 rads for the case with νs,⋆ = 800 Hz during

fgw < 500 Hz, while the accumulated dephasing is≲ 150 rad from fgw = 500 to 103 Hz. In the

bottom panel of Fig. 6.5, we show the tidal dephasing ∆ΨT defined in Eq. (6.18) as function

of νs,⋆ for the five EOS used in Fig. 6.4. We observe that the waveform dephasing depends on

the EOS, and is smaller for softer EOS due to the smaller radius of the star. Again, we witness

a rapid increase of |∆ΨT | for higher spin due to a different reason. For cases with fixed spin,

the dephasing grows faster for a cutoff fmax > 500 Hz since the information of dynamical

tides lies in the high frequency part of waveforms; on the other hand, for cases assuming a

fixed fmax, the dephasing enlarges due to early excitation of f -mode. In particular, a tidal

correction of for fmax = 103 Hz and νs,⋆ = 850 Hz, the dephasing of ∆ΨT ≲ 100 rad [right

end of the green curve in the bottom panel of Fig. 6.5] is mainly caused by f -mode excitation

since the contribution of the equilibrium tide is only ≲ 10 rad.

In addition, we find that there exists a universal relation between ∆ΨT and the dimen-

sionless spin νs,⋆M
2
⋆/R⋆, given by

∆ΨT =− 4.850− 2.539× 10−2ν̃ + 2.449× 10−4ν̃2 − 1.429× 10−6ν̃3

+ 3.026× 10−9ν̃4 − 2.482× 10−12ν̃5 rad (6.25)

for a normalised spin

ν̃ = νs,⋆

(
M⋆

1.2M⊙

)2(
R⋆

12 km

)
. (6.26)

The relation (6.25) is plotted in Fig. 6.6.
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Figure 6.6: Tidal dephasing as a universal function of the dimensionless, normalised spin defined in Eq. (6.26).

Although the EOS-independent Hamiltonian (6.24) is allowed by a non-spinning primary,

its universality survives for spins νs,⋆ ≲ 100 Hz. For example, we see that the phase shift ∆ΨT

is EOS-independent for νs,⋆ ≲ 100 Hz (bottom panel of Fig. 6.5). In reality, mode frequency



114 6.3. Tidal Dephasing: Numerical results

will be modified differently depending on the EOS. Although this difference is minor for small

spins, the dependence of the phase shift on the EOS is becoming observable as the stellar

spin increases.

The Hamiltonian is EOS-independent for most of the coalescing NS binaries since its

members are typically old and tend to rotate slowly. Nevertheless, there may still be a

number of NSs in binaries with moderate and higher spin rates. A potential case is the

secondary of GW190814 [392], we will discuss the specific case in we will Sec. 6.4.

Apart from the rotation-induced modifications to the f -mode frequency ωf , rotation will

induce a correction δQf to the tidal overlap integral Qf . This term, however, is of quadratic

order to νs,⋆ [257, 393], and is typically δQf ≲ 10−3Qf even for the fastest rotating NS in a

binary observed to-date, viz. PSR J0737-3039A, whose dimensionless spin is χ ≲ 0.05 (∼ 44

Hz; [346]). However, the secondary of GW190814 has a finite chance to set a new record with

χ ∼ 0.47 (∼ 1170 Hz [330]; see also below). In the latter system, a correction of δQf ≳ 0.2Qf

is expected. However, we will not explore this interesting case in the present article, and we

will base our estimations on the tidal overlap integral for non-rotating stars.

6.3.3 Statistical Error

The phase of the (frequency-domain) GW waveform is particularly crucial in estimating pa-

rameters in the matching filter algorithm [300,364,394], which we summarise in the following.

Defining a sensitivity-curve-weighted inner product in the waveform-space as

(g|h) = 2

∫ ∞

0

g∗(f)h(f) + h(f)∗g(f)

Sn(f)
df, (6.27)

for two frequency-domain waveforms f and g, the SNR can then be express as

ρ2[h] = (h|h) = 4

∫ ∞

0

|h(f)|2

Sn(f)
df = 4A2

∫ ∞

0

f−7/3

Sn(f)
df, (6.28)

where h is the input waveform template, and the latter equality holds if SPA (6.1) has been

adopted. Here Sn(f) is the sensitivity curve set by the detector, and the superscript asterisk

denotes complex conjugate.

As any measurement comes along with errors, we have to handle the posterior possibility

of getting a somewhat different set of parameters θ, which deviates from the true parameters

θo, by a minute inaccuracy ∆θo for a given signal s, i.e., p(θ|s) must be under controlled. For

a large S/N, the approximation for the posterior possibility,

p(θ|s) ∝ exp
[
− 1

2
Γab∆θ

a∆θb
]
, (6.29)

exhibits a Gaussian distribution around θo [300, 348], which is characterised by the Fisher
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information matrix

Γab =

(
∂h

∂θa

∣∣∣∣ ∂h∂θb
)
. (6.30)

The measurement error of θa is then defined as

σa =
√

(Γ−1)aa, (6.31)

where Γ−1 is the inverse of the Fisher matrix.

Neglecting explicitly spin-related terms, which is appropriate when the spin is well-constrained

or rather small2 [21], we have the symbolic expression

h = h(fgw;A, f0to, ϕo,M, η, Λ̃, ωf ) (6.32)

focusing on the explicit dependencies. Here f0 is the frequency at the minimum of the

sensitivity curve, and we recall that to and ϕo are the reference time and phase often set as

the values of as of merger [defined in Eq. (6.2)]. Although the Fisher matrix is 7 dimensional,

we can suppress one of its dimensions by factoring out the elements related to A since the

amplitude is uncorrelated with the other quantities involved in the inner product Eq. (6.27)

in SPA.

For the measurement ofM and η, it has been demonstrated in [21] that 2 PN order approx-

imants for point-mass waveform suffice the purpose of estimating errors in tidal parameters.

For later convenience, we provide the derivatives (cf. Eq. (3.10) of [348])

∂ lnhpp
∂(f0t)

=2πi(fgw/f0), (6.33a)

∂ lnhpp
∂ϕo

=− i, (6.33b)

∂ lnhpp
∂ lnM

=− 5i

128
(πMfgw)

−5/3

[
1 +

(
743

252
+

11

3
η

)
x− 32π

5
x3/2 +

(
3058673

508032
+

5429

504
η +

617

72
η2
)
x2
]
,

(6.33c)

and

∂ lnhpp
∂ ln η

=− i

96
(πMfgw)

−5/3

[(
743

168
− 33

4
η

)
x− 108

5
πx3/2 +

(
3058673

56448
− 5429

224
η − 5553

48
η2
)
x2
]

(6.33d)

for the point-mass approximants. We will approximate the variance of the strain (6.32) with

2As of the time this article is prepared, the known, fastest spinning NS in binaries is PSR J0737-3039A, whose dimensionless
spin, though depending on the EOS, is estimated to be ≲ 0.03 [21].
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infinitesimal changes of non-tidal parameters by the point-mass formulas (6.33), i.e.,

∂h

∂X
≃ ∂hpp

∂X
(6.34)

for X = {f0t, ϕo, lnM, ln η}. On the other hand, we numerically evaluate ∂h
∂Λ̃

by first

constructing two waveforms with slightly different tidal deformabilities Λ̃ ± ϵ, while fixing

other parameters, then dividing the difference of the two waveforms by the difference in Λ̃,

viz.

∂h

∂Λ̃
=
h(Λ̃ + ϵ)− h(Λ̃− ϵ)

2ϵ
. (6.35)

The scheme admits that the variation of h(Λ) does not feel the variance of the others (even

though via the inversion of the Fisher matrix there is some mixing). The same procedure is

performed for the parameter ωf to obtain ∂h/∂ωf . Measurement errors, (6.31), can then be

calculated by inverting the Fisher matrix (6.30).

Adopting the sensitivity curve of aLIGO and assuming that the data streams are measured

across the frequency band 20 ≤ fgw ≤ 103 Hz with a SNR ρ = 25, we estimate the errors

∆M/M, ∆η/η, ∆Λ̃/Λ̃ and ∆ωf/ωf in Table 6.1. We see that the magnitude of tidal phase

shift ∆ΨT increases with stellar spin due to earlier excitation of f -mode, allowing for a more

accurate extraction of tidal parameters. In particular, the error in Λ̃ and ωf reduce rapidly

for increasing spin, where the error can be < 1% for the former and < 15% for the latter if

the NS spins at 800 Hz. The improvement in the measurability of both Λ̃ and ωf is due to

the earlier excitation of the f -mode whose frequency was shifted by the rotation. An earlier

mode excitation increases significantly the transfer of orbital energy to stellar oscillations

affecting significantly the dephasing. As a result, f -mode frequency will be estimated with

significantly smaller error. Actually, even thought the dephasing due to the equilibrium

tide is not directly affected, the increasing influence of the dynamical tides encodes certain

information of the equilibrium tides since the latter is the adiabatic limit of the former –

notice that Λ factors out in ∆Ψdyn
⋆ in Eq. (6.16). Therefore, by including the dynamical tides

in the Fisher analysis for Λ̃ we effectively place extra emphasis on the high-frequency part of

waveform.

For the considered data stream, the tidal dephasing |∆ΨT | is larger than the uncertainty of

phase ∆ϕo even for a non-spinning star. However, the tidal dephasing may be hidden in the

uncertainty in phase ∆ϕo for a lower cutoff. In general, tidal dephasing is a function of νs,⋆

and fmax [i.e., ∆ΨT = ∆ΨT (νs,⋆, fmax)], while the uncertainty in phase is a function of SNR

and fmax [i.e., ∆ϕo = ∆ϕo(ρ, fmax)]. For a particular binary with the spin of the primary

being νs,⋆ = 45 Hz and the SNR of the associated waveform being ρ = 25, we integrate

Eq. (6.18) and Eq. (6.27) from fgw = 20 Hz to a varying cutoff fmax. We plot ∆ϕo and ∆ΨT
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Table 6.1: Statistical estimation of the measurement error for the accumulated tidal dephasing ∆ΨT

[Eq. (6.18)] (3rd column), the GW phase ∆ϕo (4th column), the chirp mass ∆M/M (5th column), the
symmetric mass ratio ∆η/η (6th column), the mutual tidal deformability ∆Λ̃/Λ̃ (7th column), and the fre-
quency of the f -mode in the primary ∆ωf/ωf (8th column) assuming the cutoff as fmax = 103 Hz. We

additionally considered the uncertainty of Λ̃ for fmax = 450 Hz in the final column so as to be compared to
the results in [21], which are shown in the final column of their Tab. 2 though there the authors adopted
ρ = 1 and did not present by percentage. We assumed symmetric binaries with Λ̃ = 920 while the EOS
used are listed in the 1st column. We used four representative spin rates (given in Hz): 0 (non-spinning),
45 (fastest known NS in binaries), 500 (moderate fast), and 800 (rather fast) of the primary. In general, the
errors scale as 1/ρ, while the results derived assuming an SNR value of ρ = 25. The table are prepared by
considering only the tidal effects of the primary.

EOS νs,⋆ (Hz) ∆ΨT (rad) ∆ϕo (rad) ∆M/M ∆η/η ∆Λ̃/Λ̃ ∆ωf/ωf [∆Λ̃/Λ̃]450
KDE0V 0 -4.4982 1.5231 0.0037% 1.1383% 5.0868% 664.5% 83.67%

45 -4.8299 1.5150 0.0037% 1.1335% 4.4050% 568.3% 73.23%
500 -12.4849 1.6379 0.0038% 1.2128% 0.6339% 74.08% 5.940%
800 -37.3150 1.4969 0.0037% 1.1274% 0.2266% 14.92% 2.080%

APR4 0 -4.5928 1.5220 0.0038% 1.1496% 4.8817% 634.9% 79.62%
45 -4.9372 1.5138 0.0038% 1.1447% 4.2180% 541.5% 69.74%
500 -13.0437 1.4196 0.0037% 1.0886% 0.7189% 70.23% 11.99%
800 -40.4013 1.5165 0.0038% 1.1514% 0.2151% 13.79% 1.777%

SLy 0 -5.0406 1.5218 0.0039% 1.1630% 4.3130% 557.2% 69.71%
45 -5.4287 1.5137 0.0039% 1.1581% 3.7168% 473.6% 60.76%
500 -14.8164 1.4367 0.0038% 1.1124% 0.6322% 60.40% 9.857%
800 -48.2919 1.5813 0.0040% 1.2057% 0.1956% 12.18% 1.300%

ENG 0 -5.0167 1.5184 0.0042% 1.1828% 4.1548% 531.8% 66.64%
45 -5.4175 1.5110 0.0042% 1.1782% 3.5738% 450.8% 57.58%
500 -15.4857 1.4449 0.0041% 1.1388% 0.5933% 54.78% 8.660%
800 -54.8652 1.6344 0.0044% 1.2623% 0.1858% 10.93% 0.9655%

MPA1 0 -5.3222 1.5179 0.0045% 1.2083% 3.7394% 473.2% 58.69%
45 -5.7651 1.5102 0.0045% 1.2034% 3.2010% 398.6% 49.91%
500 -17.4710 1.2997 0.0042% 1.0679% 0.6222% 17.48% 14.19%
800 -68.6082 1.7409 0.0049% 1.3587% 0.1700% 9.410% 0.6029 %
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Figure 6.7: Top panel : Uncertainty in the GW phase ∆ϕo (blue) and tidally-induced phase shift ∆ΨT

(red) [Eq. (6.18)] as functions of the cutoff frequency fmax. The spin of the primary and the SNR are set as,
respectively, νs,⋆ = 45 Hz and ρ = 25. Bottom panel : SNR ρthr for the uncertainty in phase ∆ϕo to equate
the tidal dephasing |∆ΨT | [Eq. (6.36)] for four cutoff frequencies as functions of νs,⋆. In both panels, the

symmetric binary with Λ̃ = 920 and EOS MPA1 is considered.

as functions of fmax in the top panel of Fig. 6.7. In this example, the tidal dephasing becomes

noticeable if the cutoff is ≳ 600 Hz. In general setting, there is a minimal SNR ρthr for a

specific spin νo and cutoff fmax,o, defined by the equality

∆ΨT (νo, fmax,o) = ∆ϕo(ρthr, fmax,o). (6.36)

To grasp how the increasing spin improves the detectability of tidal effects, we find ρthr as

function of the NS spin assuming some cutoff frequencies for a particular binary in the bottom

panel of Fig. 6.7. Improvement of measurability is observed when fmax is extended.

6.4 Case Study: GW190814

The event GW190814, reported by the LIGO-Virgo-Kagra collaboration at a SNR of ρ =

25 [395], consists of one black hole, weighting 22.2 − 24.3M⊙, and a compact object with

2.50 − 2.67M⊙. The mass of the latter intriguingly falls in the so-called “lower mass gap”

(2.5− 5M⊙), and may be either the lightest black hole or the heaviest NS known to-date. A

possibility that the secondary is a mass-gap, fast-rotating NS has been raised in [330,365,366],

with the highest suggested spin being νs,⋆ ∼ 1170 Hz [330]. Although the spin parameter

for this presumably, rapidly-rotating NS has not been well constrained, an estimation of the

dimensionless spin χ via the relation (cf. Eq. (3) of [392]),

χ ≈ 0.4 (νs,⋆/10
3 Hz), (6.37)

gives χ ≈ 0.47 for the rate νs,⋆ ∼ 1170 Hz, which is about 65% of maximum spin (χ ∼ 0.7)

attainable by an isolated NS [396]. This peculiar system may originate from a dynamical

process, such as dynamical encounters in a star cluster [81,82], hierarchical triple system [83],

and tidal capture [84] of a natal NS kicked off from its born site by a BH.
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Figure 6.8: Same plot as the top panel of Fig. 6.7, while the spin of the primary is νs,⋆ = 800 Hz here. The
vertical line marks the merger frequency 360 Hz.

Table 6.2: Parameters relevant to Eq. (6.38) for the chosen EOS. The inertial-frame, spin-modified f -mode
frequency is listed in the second column, and the fitting parameters defined in Eq. (6.38) are presented from
the third to the final column. Here we assume νs,⋆ = 800 Hz.

EOS ωf/2π (Hz) a1 a2 b1 b2
KDE0V 817.57 509.55 -2.46 9.05 -2.34
APR4 789.65 436.70 -2.49 7.86 -2.36
SLy 748.47 321.41 -2.53 5.91 -2.38
ENG 697.92 241.25 -2.60 4.59 -2.42
MPA1 637.01 151.46 -2.70 3.04 -2.47

Compared to the other tidal contributions, dephasing due to spin effects is secondary. Still,

it seems that the estimation of spin parameter via its impact on the tidal dephasing may be

promising. In this section, we discuss the tidally-induced phase shift for a fast-spinning NS,

and estimate how can we probe both the f -mode frequency and the stellar spin rate from the

waveform of GW190817 if the secondary turns out to be a fast-rotating NS. We will focus on

the tidal dephasing caused by the fast spinning secondary, which is taken as the primary.

6.4.1 Estimation of Source Parameters

Adopting the definition of the onset of the merger as [397], i.e., when π(M⋆+Mcomp)fgw = 0.2,

the total mass of ∼ 27M⊙ of GW190814 suggests that the merger occurred at fgw ≲ 360 Hz.

In our simulation of the binary having two constituents with the masses and radii of those for

GW190814, we find the separation between the two bodies is ∼ 95 km when fgw = 360 Hz,

which is larger than the sum of the two radii, viz. ∼ 75 km. We therefore set the cutoff

at fmax = 360 Hz and the “competition” between ∆ΨT and ∆ϕo is plotted in Fig. 6.8.

We see that the tidal dephasing in the waveform is exceeding the error of phase even with

this low cutoff since the spin is rather fast. Ignorance of the tidal effect in this case will

therefore deteriorate the extraction of source parameters to an extent worse than ignoring

the uncertainty in the reference phase ϕo.

Although we show that the inclusion of tidal dephasing is necessary since the primary spins

rapidly, the uncertainties for Λ̃ and ωf are however large for this low fmax. We investigate
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the uncertainties of these two parameters as functions of fmax in a neighbourhood of 360 Hz.

In particular, we find the following relations

∆ωf
ωf

= a1

(
fmax

360 Hz

)a2
%, and

∆Λ̃

Λ̃
= b1

(
fmax

360 Hz

)b2
%, (6.38)

for the chosen EOS and fmax ∈ [200, 400] Hz, where the fitting parameters ai and bi are listed

in Tab. 6.2. The b2 parameter is consistent with the trend showed in the Fig. 10 of [372].

Although we have assume the knowledge of the spin in the above analysis, we note that

we may estimate the spin by exploiting the universality of the tidal dephasing as a function

of the dimensionless spin [Fig. 6.6; Eq. (6.25)], together with the mass measurement and the

radius inferred by Λ̃ in the fashion of [115].

6.5 Discussion

The phase of gravitational waveform is sensitive to several stellar parameters, which elevates

it into an invaluable position in the GW physics era. Among other factors, the tidal contri-

bution to the GW phasing encodes the details of internal motions of NSs, consisting of the

equilibrium tide, described by the tidal deformability (Sec. 6.2.1), and the dynamical, f -mode

oscillation, captured by the mode frequency ωf and its coupling strength to the external tidal

field Qf [Eq. (6.19)].

As we mention earlier, both spin and tidal effects will influence the GW phasing though

the spin contribution is smaller [313]. Therefore, it is crucial to estimate the phase shift

caused by each one of them for the precise estimation of the tidal parameters (e.g., [358]).

If we can determine independently the stellar spin through, e.g., the range of dynamical

ejecta [398, 399], a shift in the main pulsating mode in hypermassive NS remnant [327, 400],

or a system showing double precursors (Chap. 5), we can construct a point-particle waveform

for that spin. Subtracting the point-particle waveform from the data then returns the tidal

dephasing. In addition, the tidal effects are encoded in the high frequency part of GW data

stream, while the spin affects mainly the low frequency part [361, 385]. We may acquire the

individual spins in the early waveform by firstly measuring the mutual, effective spin via spin-

orbit contribution in GW phase shift, then solving for the individual ones via dephasing due

to spin-spin effect. Although the latter spin-spin contribution is degenerate with the self-spin

effect as discussed in Introduction, the I-Love-Q relation can help break the degeneracy since

the spin-induced quadrupole moment can be estimated from the adiabatic tidal parameter

[183, 401]. The tidal dephasing can then be obtained by subtracting the template including

the spin effects but no tidal effects, as stated above. On the other hand, GW luminosity

during the inspiralling is more sensitive to the tidal effects rather than spin-orbit terms [402].
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In particular, the tidal contribution of the primary to the luminosity reads [77]

LTGW =
192η2x10(M⋆ + 3Mcomp)M

4
⋆Λ⋆

5(M⋆ +Mcomp)5
, (6.39)

while the spin-orbit effects give only negligible amount to it. Therefore, by correlating the

tidal imprints in the phasing and the luminosity, we may be able to determine better the

tidal parameters. Nonetheless, we note that the above equation applies to non-spinning NSs.

In reality, the effect of tides in the tidal evolution and dephasing is 3-fold: gravito-electric,

gravito-magnetic tides, and the change in the waveform shape induced from the gravito-

electric tidal field [259, 403, 404]. We focus in the present article the gravito-electric tides,

while we note that some excitations ignited by the gravito-magnetic tidal field [387, 405]

may become comparable to the gravito-electric excitations under certain conditions [406].

In addition, although we consider the spin-influenced tidal effects in GW phase, we do not

include the spin-corrected orbital motion, and the rotation-induced deformation of NSs in

the present article. Despite the minor spin contribution in the GW dephasing compared

to the tidally-induced phase shift (e.g., [400]), the uncertainty in the spin contribution will

deteriorate the estimation of the tidal parameters. Detailed analysis accounting for the other

types of tides, and including the spin-induced dephasing would be useful in this direction. In

addition, during the preparation of this article, there is an investigation [407] pointing out

the importance of tidal-spin interaction in the waveform modeling if the NS spins rapidly

with χ ≳ 0.1.
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Overview

It was recently shown, that in a class of tensor-multi-scalar theories of gravity with a nontrivial

target space metric, there exist scalarized neutron star solutions. An important property of

these compact objects is that the scalar charge is zero and therefore, the binary pulsar

experiments can not impose constraints based on the absence of scalar dipole radiation.

Moreover, the structure of the solutions is very complicated. For a fixed central energy density

up to three neutron star solutions can exist — one general relativistic and two scalarized,

that is quite different from the scalarization in other alternative theories of gravity. In the

present Chapter we address the stability of these solutions using two independent approaches

— solving the linearised radial perturbation equations and performing nonlinear simulations

in spherical symmetry. The results show that the change of stability occurs at the maximum

mass models and all solutions before that point are stable. This leads to the interesting

consequence that there exists a stable part of the scalarized branch close to the bifurcation

point where the mass of the star increases with the decrease of the central energy density.

7.1 Introduction

Perhaps the most widely studied models of compact stars in alternative theories of gravity

are the scalarized neutron stars in the Damour-Esposito-Farese (DEF) scalar-tensor theory of

gravity [89,408]. The reason is that these were the first models that offered the possibility to

have a theory perturbatively equivalent to General Relativity (GR), and thus no constraints

from the weak field observations can be imposed, while still allowing for large deviations in the

strong gravitation regime due to a nonlinear development of the scalar field. This mechanism

for development of a nontrivial scalar field is possible for other compact objects, such as

black holes [91,105,106,409–411], but it requires either some not very realistic astrophysical

conditions, or further modifications of the Hilbert-Einstein action such as the inclusion of

curvature invariants. For neutron stars, the matter itself can act as a source of the scalar

field due to the nonzero trace of the energy momentum tensor, and thus scalarized neutron

stars became naturally the primary target for investigating the possible effects of nontrivial

scalar hair and its observational implications.

Scalarization indeed can produce very large deviations from GR, but in the standard

DEF model it leads to the emission of scalar dipole radiation that is severely limited by the

binary pulsar observations [408, 412–415]. An elegant way to evade these constraints is to

consider a nonzero scalar field mass, that suppresses the scalar dipole radiation [416–419].

Another more sophisticated and also viable approach is to allow for the presence of multiple

scalar fields. This is possible in the tensor-multi-scalar theories (TMST) of gravity that

are the generalization of the standard scalar-tensor theories to multiple scalar field. These

theories are mathematically self-consistent and well posed, and can pass through all known
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experimental and observational tests [420–424]. Moreover, (quantum motivated) higher-order

generalizations of GR often predict the existence of multiple scalar fields [420,425].

In TMST different kinds of interesting compact objects can be constructed including

solitons [422, 426], mixed soliton-fermion stars [423], topological and scalarized neutron

stars [424, 427, 428]. The variety of solutions is controlled mainly by the choice of tar-

get space for the scalar fields φ and the metric defined on it, and the choice of the map

φ : spacetime→ target space. In particular, for a nontrivial map φ : spacetime→ target space

where the target space is a maximally symmetric 3-dimensional space (S3, H3 or R3), there

exists non-topological, spontaneously scalarized neutron stars in this theory [428]. These are

mathematically similar to topological neutron stars [424], but with an important difference:

the value of the scalar field at the center of the star is zero and thus the topological charge

vanishes. A very important property of these solutions is that they have a zero scalar charge

and thus no emission of scalar dipole radiation is possible. Therefore, the strong observa-

tional constraints on the standard scalar-tensor theories obtained on the basis of the binary

pulsar observations simply do not apply for the TMST under consideration that allows for

strong possibly observable deviations from GR.

As discovered in [428], the scalarized TMST neutron stars show a very interesting property

related to the uniqueness of the solutions. This constitutes in the fact that for a fixed central

energy density up to three neutron star solutions can exist – one GR solution with zero scalar

field and up to two scalarized solutions. This is in sharp contradiction with the standard

scalar-tensor theories [89] where only one scalarized neutron star solution can exist for a

given central energy density. The preliminary stability analysis performed in [428] based on

the turning point method, suggested that all three of the solutions are stable (where exist).

In the present Chapter we go further by performing a stability analysis (both a linear and

nonlinear one) in order to determine the (in)stability of the scalarized neutron stars. Radial

perturbations of neutron stars in scalar-tensor theories have already been studied in [429,430]

while the linear stability of TMST for topological neutron stars was examined in [427].

In section 7.2, we give a brief overview of the theory of scalarized neutron stars and in

section 7.3 we present the background neutron star solutions. The stability of these solutions

is examined in sections 7.4 and 7.5 in the linear and nonlinear regimes respectively. Finally,

the conclusions are presented in section 7.6.

7.2 Neutron stars in tensor-multi-scalar theories of gravity

In this section, we will briefly describe the basics of TMST and especially the subclass

of these theories that allows for the construction of scalarized neutron stars. For a more

extensive discussion, we refer the reader to the original paper where these solutions where

constructed [424].
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The most general action of TMST in the Einstein frame can be written in the form

[420,421]:

S =
1

16πG∗

∫
d4
√
−g
[
R− 2gµνγab(φ)∇µφ

a∇νφ
b − 4V (φ)

]
+ Sm(A

2(φ)gµν ,Ψm), (7.1)

where G∗ is the bare gravitational constant, ∇µ and R are the covariant derivative and Ricci

scalar respectively, both associated with gµν . V (φ) ≥ 0 denotes the potential of the scalar

fields and Ψm represents collectively the matter fields. The theory is equipped with N scalar

fields φa that define a map φ : spacetime → target space, where the target space is a N -

dimensional Riemannian manifold EN with γab(φ) as a positively definite metric defined on

it. The function A(φ) is the conformal factor connecting the metrics in the Einstein frame

(gµν) and the physical Jordan frame (g̃µν) via the relation

g̃µν = A2(φ)gµν . (7.2)

In our calculations we will adopt the Einstein frame for mathematical simplicity while all

final quantities will be transformed to the physical frame. Unless otherwise specifies, tilde

will denote the quantities in the Jordan frame.

By varying the action (7.1) with respect to the metric and the scalar fields, metric equa-

tions and the equations of motion for scalar fields in the Einstein frame,

Rµν = 2γab(φ)∇µφ
a∇νφ

b + 2V (φ)gµν + 8πG∗

(
Tµν −

1

2
Tgµν

)
,

and

∇µ∇µφa = −γabc(φ)gµν∇µφ
b∇νφ

c + γab(φ)
∂V (φ)

∂φb
− 4πG∗γ

ab(φ)
∂ lnA(φ)

∂φb
T, (7.3)

can be obtained, where γabc(φ) denotes the Christoffel symbols of the target space metric

γab(φ). The Einstein frame energy-momentum tensor Tµν satisfies the following conservation

relation:

∇µT
µ
ν =

∂ lnA(φ)

∂φa
T∇νφ

a. (7.4)

The energy-momentum tensor in the Jordan frame is given by T̃µν = A−2(φ)Tµν . We only

consider perfect fluid stars in our analysis and thus the energy density, the pressure and the

4-velocity are connected in the two frames by ε = A4(φ)ε̃, p = A4(φ)p̃ and uµ = A−1(φ)ũµ

respectively.

We are interested in static, spherically symmetric and asymptotically flat solutions. As in
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Chap. 2, the metric takes the following general form

ds2 = −e2Φ(r)dt2 + e2Λ(r)dr2 + r2(dθ2 + sin2 θdϕ2). (7.5)

where we change the notation for the {rr}-component of the metric (2.1) from λ(r) to Λ(r).

We note that Λ(r) denotes, in this second part of the present thesis, the exponent of the lapse

function, and should not be confused with the adiabatic index for the perturbation defined

in Part I of this thesis. Accordingly, Eq. (2.4) has a new expression:

e−2Φ = 1− 2m(r)

r
. (7.6)

The 4-velocity of a generic fluid moving radially is

ũµ =
1√

1− v2
(e−Φ∂t + ve−Λ∂r), (7.7)

with the characteristic strength v.

The simplest setup that can lead to the existence of the desired scalarized solutions is

the following [428]. We consider three scalar fields φa = {χ,Θ,Ξ}, with the target space

manifold being S3, H3 or R3. Thus the 3-dimensional target space metric takes the following

form:

γabdφ
adφb = a2

[
dχ2 +H2(χ)(dΘ2 + sin2ΘdΞ2)

]
, (7.8)

where Θ and Φ are the standard angular coordinates on the 2-dimensional sphere S2 and

the parameter a is related to the curvature of S3 and H3. The function H(χ) represents the

target space geometry: for spherical geometry S3, H(χ) = sinχ; for hyperbolic geometry H3,

H(χ) = sinhχ; and finally for flat geometry R3, H(χ) = χ. We will only consider theories

where the coupling function A(φ) and the potential V (φ) depend only on χ, which in turn

allows the equations for Θ and Ξ to separate. This guarantees that the spacetime will be

spherically symmetric in both the Einstein and the Jordan frames for the ansatz defined

below.

In this Chapter we choose a nontrivial map φ such that the field χ is assumed to depend

on the radial coordinate r while Θ and Ξ are independent from r and are given by Θ = θ and

Ξ = ϕ [424, 428]. This ansatz is compatible with the spherical symmetry and in addition,

ensures that the equations for Θ and Ξ are satisfied.

Using the ansatz stated above and the general form of the field equations (7.3), the di-

mensionally reduced field equations governing the neutron star equilibrium solutions can be

derived. Since they are somewhat lengthy and also not the main focus of the present Chapter,

we will not present them here and refer the reader to [428]. They have to be supplemented

with boundary conditions and we consider the standard ones – regularity at the center of the
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star and asymptotic flatness.Thus we impose Φ(∞) = 0, Λ(∞) = 0 and χ(∞) = 0, while at

the stellar center Λ(0) = 0 and χ(0) = 0. As a matter of fact for a target space being S3,

the scalar field χ can have a more general boundary condition at the center χ(0) = nπ with

n ∈ Z being the stellar topological charge [424,427]. In the present Chapter, though, we will

be focusing only on non-topological scalarized neutron stars and thus consider n = 0.

At infinity the scalar field χ behaves as

χ ≈ const

r2
+O(1/r3). (7.9)

In this expansion, the 1/r term is missing and thus the scalar charge is zero. This implies

that these starts do not emit any scalar dipole radiation and therefore they comply with the

binary pulsar observations by construction. Furthermore, since the leading order term in the

expansion is proportional to 1/r2, the ADM masses in both frames are the same.

7.3 The background solutions

Here, we will briefly present the behavior of the background solutions that will be later

evolved. More details can be found in [428]. To construct scalarized neutron stars, the

conformal factor function A(χ) has to be chosen to satisfy the following conditions

∂A

∂χ
(0) = 0,

∂2A

∂χ2
(0) ̸= 0. (7.10)

Taking these conditions into account, we employ the following standard form of the conformal

factor

A(χ) = eβα(χ), (7.11)

where α(χ) is a function of the scalar field and can be, e.g., a periodic function such as sin2 χ,

or simply χ2. It is straightforward to show that these coupling functions satisfy the condi-

tions (7.10). The dimensionally reduced field equations together with the above mentioned

boundary conditions are solved numerically using a shooting method. The shooting param-

eters are the central values of the scalar field derivative (dχ/dr)(0) and the metric function

Φ(0), which are determined so that χ and Φ tend to zero at (numerical) infinity.

Fig. 7.1 shows the neutron star mass M as a function of the central energy density ε̃c

for a conformal factor A(χ) = exp(β sin2 χ) and the three possible choices of H(φ). In this

figure, we used a hybrid equation of state (EOS) to account for the stiffening of the matter

at nuclear density ρ̃nucl = 2 × 1014 g/cm−3, where the pressure and the internal energy are



Chapter 7. Equilibrium and Stability of Scalarized NSs 131

1 2 3 4 5 6 7 8 9 10

10
15

0.5

1

1.5

2

2.5

Figure 7.1: The mass as a function of the central energy density for the fundamental branch of scalarized
neutron stars possessing nodeless scalar field. Solutions for the cases with A(χ) = exp(β sin2 χ) and H(χ) =
{sinχ, χ, sinh(χ)} are shown. The values of the parameters are fixed to a2 = 0.1 and β = {−1,−1.5}. The
neutron stars with zero scalar field are plotted with a black line.

given by

p̃ = K1ρ̃
Γ1 , ε̃i =

K1

Γ1 − 1
ρ̃Γ1−1, for ρ̃ ≤ ρ̃nucl, (7.12)

p̃ = K2ρ̃
Γ2 , ε̃i =

K2

Γ2 − 1
ρ̃Γ2−1, for ρ̃ > ρ̃nucl. (7.13)

The energy density and the internal energy are related to each other via ε̃ = ρ̃(1 + ε̃i). This

equation of state clearly does not reach the two solar mass barrier, but it was widely used for

example in the nonlinear simulations of stellar evolution in scalar-tensor theories [431–435].

Since our nonlinear code for examining the stability is based on [434,435] we decided to keep

this EOS for consistency with the canonical values Γ1 = 1.3, Γ2 = 2.5. We have performed

calculations for other piecewise polytropic EOS [436] and the results remain qualitatively the

same.

As one can easily check, the GR neutron star solutions with zero scalar field are always

solutions of the field equations (7.3) if it obeys the conditions (7.10). At a certain energy den-

sity ε̃critc a nontrivial scalar field develops and the solutions bifurcate from GR. As discussed

in [428], ε̃critc is controlled only by the values of β/a2 and it is independent on the partic-

ular form of the coupling function (as long as it allows for scalarization of course). These

scalarized solutions coexist with the GR solutions indicating non-uniqueness and they are

energetically favorable. However, at a particular higher value of the central energy density,

the scalarized branch of solutions merges again with the GR one and the neutron stars with

nonzero scalar field cease to exist. With the decrease of β/a2 the range of central energy
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densities, where scalarized solutions exist, gets larger and the deviations from GR increase. It

is interesting to note a well known fact in scalar-tensor theories – the scalarization increases

the maximum mass and thus an EOS that in GR leads to neutron star masses lower than

the two solar mass barrier, can reach above this threshold in the presence of nontrivial scalar

field. What is different from all the other examples of scalarized neutron stars in standard

(massless) scalar-tensor theories, though, is that for the TMST solutions the scalar charge

is zero. Thus, they can not be constrained by the binary pulsar observations and allow for

large deviations from GR.

For larger values of β (e.g. β = −1), the mass of the scalarized neutron stars increases

monotonically as the central energy density increases till the maximum of mass is reached

and after that the mass keeps on decreasing until the branch merges with the GR solutions.

On the other hand, for lower values of β, after the first bifurcation point the mass of the

scalarized neutron stars increases whereas ε̃c decreases. This happens until a minimum value

of ε̃c is reached and after that the behavior of the branch is similar to the larger β case. This

different behavior of the smaller β branch implies that at certain lower values of ε̃c, there

exist simultaneously three solutions – two scalarized ones and one solution with zero scalar

field, which indicates non-uniqueness. This is a new results that has not been observed in

standard scalar-tensor theories.

We should note that the particular choice of the coupling function only deforms the scalar-

ized branch, while keeping the position of the bifurcation points unaltered [428]. That is why,

even though we have presented here the M(ε̃c) dependence only for A(χ) = exp(β sin2 χ),

the results are qualitatively the same for other couplings such as A(χ) = exp(βχ2).

Below we will study the stability of the scalarized solutions with two independent ap-

proaches – by examining the linearized field equations and by considering the full system of

nonlinear field equations in spherical symmetry. Even though the former approach should in

principle constitute a subclass of the latter one, we have decided to apply both of them in

order to have an independent verification of (in)stability especially taking into account the

observed very interesting non-uniqueness of solutions.

7.4 Linear Scheme

7.4.1 Perturbation Equations

To derive the perturbation equations for the radial stability analysis, in the field equations

we impose perturbations of the form

f(t, r) = f0(r) + δf(t, r), (7.14)
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where f represents a perturbed variable which in our case is the metric functions, the Jordan

frame pressure p̃ and energy density ε̃, and the scalar field χ. The static background func-

tions are denoted by a subscript ”0” in f0 and the time dependent radial perturbations are

represented by δf . As a matter of fact, the fluid perturbations can be expressed in terms of

the Lagrangian displacement ζ = ζ(t, r) as we will see below.

In a perturbed state, the star pulsates around the spherically symmetric equilibrium con-

figuration, with the line element as

ds2 = −e2Φ0+2δΦdt2 + e2Λ0+2δΛdr2 + r2(dθ2 + sin2θdφ2). (7.15)

The equations governing the fluid perturbation ζ and the scalar field perturbation δχ are

given as

0 =(ε̃0 + p̃0)e
2Λ0−2Φ0 ζ̈ + (ε̃0 + p̃0)δΦ

′ + [Φ′
0 + α(χ0)χ

′
0](δε̃+ δp̃) + δp̃′

+ α(χ0)(ε̃0 + p̃0)δχ
′ + β̃(χ0)(ε̃0 + p̃0)χ

′
0δχ, (7.16)

and

0 =− e−2Φ0 δ̈χ+ e−2Λ0δχ′′ + e−2Λ0

[
Φ′

0 − Λ′
0 +

2

r

]
δχ′ + e−2Λ0χ′

0[δΦ
′ − δΛ′]

+

[
− 2

r2

(
d

dχ
H2(χ)

)
χ0

+
2

a2
∂χV (χ0)− 8πG∗

α(χ0)

a2
A4(χ0)(ε̃0 − 3p̃0)

]
δΛ

−
[
1

r2

(
d2

dχ2
H2(χ)

)
χ0

+
1

a2
∂2χV (χ0) + 4πG∗

β(χ0)

a2
A4(χ0)(ε̃0 − 3p̃0)

+ 16πG∗
α2(χ0)

a2
A4(χ0)(ε̃0 − 3p̃0)

]
δχ− 4πG∗

α(χ0)

a2
A4(χ0)(δε̃− 3δp̃), (7.17)

where dot and prime represent derivatives with respect to time and radial coordinates, re-

spectively, and α(χ) = d lnA(χ)
dχ

and β̃(χ) = d2lnA(χ)
dχ2 . These equations represent a system of

coupled, second order wave equations for the perturbations ζ and δχ and in theH(χ) = sin(χ)

case they reduce to the ones in [427]. The perturbations of the metric functions, the energy

density and the pressure in terms of ζ and δχ are as follows:

δΛ = a2rχ′
0δχ− 4πG∗A

4(χ0)(ε̃0 + p̃0)e
2Λ0rζ, (7.18)

δε̃ = −(ε̃0 + p̃0)
[
r−2e−Λ0

(
eΛ0r2ζ

)′
+ δΛ

]
− [ε̃′0 + 3α(χ0)(ε̃0 + p̃0)χ

′
0]ζ − 3α(χ0)(ε̃0 + p̃0)δχ,

(7.19)

δp̃ = c̃2sδε̃, (7.20)
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and

δΦ′ =
1

r

[
1− 2a2H(χ)2 + r2

(
8πG∗A

4(χ0)p̃0 − 2V (χ0)
)]
e2Λ0δΛ + 4πG∗e

2Λ0rA4(χ0)δp̃

+ re2Λ0

[
−∂χV (χ0)− 2

a2

r2
H(χ)

d

dχ
H + 16πG∗α(χ0)A

4(χ0)p̃0

]
δχ+ a2rχ′

0δχ
′, (7.21)

where c̃2s is the sound speed in the Jordan frame and is defined by c̃2s =
dp̃0
dε̃0

.

The boundary conditions at the center of the star are derived from the requirement for

regularity of the perturbations and we have ζ(t, r = 0) = 0 and δχ(t, r = 0) = 0. Similar to

pure GR case, the Lagrangian perturbation of the pressure ∆p̃ has to vanish at the surface

of the star. Only the perturbation of the scalar field δχ can propagate outside the star while

ζ vanishes there. For large distances δχ has to satisfy the radiative (outgoing) asymptotic

condition, expressed as

∂t(rδχ) + ∂r(rδχ) = 0. (7.22)

7.4.2 Results Linear Stability

To perform the stability analysis in the linear regime, we convert the linearized wave equations

(7.16) and (7.17) into a form more suitable for numerical analysis by adapting a standard

approach from pure GR [427,437]. Namely, we introduce a new dimensionless function

Z(t, r) = (ε̃0 + p̃0)rζe
2Λ0 . (7.23)

Since this function is zero at the stellar surface where ε̃0 and p̃0 vanish, applying the boundary

conditions is easier in terms of Z.

To evolve the perturbation equations (7.16) and (7.17) in time, we use the Leapfrog

method. As initial data for δχ we use a Gaussian pulse which is located several neutron star

radii away from the stellar surface, with zero initial velocity at t = 0. Z is set to be zero

initially and is always zero outside the star by construction. It will remain zero until the δχ

pulse reaches the star and will get excited only then through the coupling of the fluid and

scalar field perturbations.

Using the method described above, we solved the system of equations for different forms

of H(χ) and A(χ) for different values of β. We found that for all of the considered scalarized

neutron star branches, the perturbation δχ decays in time for the scalarized models before

the maximum of the mass, which implies the branch is stable up to this point 1. Whereas, for

neutron star models located after the maximum of the mass δχ grows exponentially which

clearly indicates instability. For smaller values of β (for example the β = −1.5 branch in

Fig. 7.1) an interesting observation has been made. In the region where two scalarized

1Let us point out that contrary to the GR case, the radial oscillations in TMST will have an amplitude decaying in time
because the scalar field carries away energy to infinity.
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solutions exist for the same central energy densities, it was found that both solutions are

stable. This implies that at these central energy densities, three radially stable solutions

exist simultaneously: one general relativistic and two scalarized solutions. In addition, in

the part of the scalarized branch just after the bifurcation point, the mass increases with

decreasing central energy density while the neutron stars is still stable.

Fig. 7.2 shows the waveforms of the central scalar perturbation δχc for three representative

scalarized neutrons stars belonging to the β = −1.5 branch in Fig. 7.1. The top figure

depicts δχc of a star from the initial part of the branch where the mass increases with

decrease of the central energy density. The middle figure refers to a star from the part of the

branch where the mass increases as central energy density increases, but having an energy

density smaller than the solution with maximum mass. Finally, the bottom figure represents

the perturbations of an unstable star with central energy density slightly higher than the

maximum mass solution. As one can see, after a few milliseconds the perturbation function

δχ shooting off exponentially. The time at which instability sets in reduces for stars with

higher central energy density. Here we will not comment in detail on the frequencies of the

radial oscillations since the focus of the Chapter is on the stability, but our analysis shows

that, as expected, these frequencies decrease monotonically with the increase of the stellar

mass and they cross zero exactly for the maximum mass models.

7.5 Nonlinear Scheme

Having done the linear analysis of the stability of scalarized models, we now turn to address

the issue within fully non-linear framework. Among the advantages of the non-linear analysis

is that one can access more information about how the instabilities grow and saturate. As a

whole, the evolutionary equations in TMST (Sec. 7.5.1) resemble those in DEF theories with

some additional terms owing to the non-trivial geometry of target spaces. It thus justifies

the appliance of the numerical approach (reconstruction method and high-performance-shock-

capture algorithm) that has been implemented in DEF theories in [434, 435] to TMST. We

construct a grid adequate for our purpose in this work (Sec. 7.5.2) for solving the evolutionary

equations. It has been checked, that the results summarized in Sec. 7.5.3 show only slight

deviations by doubling the resolution.

7.5.1 Evolution Equations

The Euler equation,

∇µT̃
µν = 0, (7.24)
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Figure 7.2: The evolution of the scalar field perturbations δχc extracted at a point located several neutron
star radii away from the surface, with A(χ) = eβ sin2 χ, H(χ) = sinχ, a2 = 0.1 and β = −1.5. Three models
are considered, including two stable (top and middle panel) and one unstable (bottom panel). These are
models A1, A2 and A4 listed in Table 7.1 and discussed in detail in the next section.



Chapter 7. Equilibrium and Stability of Scalarized NSs 137

can be presented as a first-order flux conservative system [438,439],

∂tU+
1

r2
∂r

[
r2
α

X
f(U)

]
= s(U), (7.25)

constituting the conserved quantities U = {D, τ, Sr)} and the corresponding fluxes f(U) and

sources s(U). The Jacobian of this (differential equation) system, ∂f(U)
∂U

, offers information

about the characteristic speeds of the conserved quantities. Defining the conserved quantities

and the fluxes via

D =
A4eΛ√
1− v2

ρ̃, Sr =
A4v

1− v2
(ε̃+ p̃), τ =

A4ε̃

(1− v2)
− A4p̃−D, (7.26a)

and

fD = Dv, fSr = Srv + A4p̃, fτ = Sr −Dv, (7.27a)

we find the source terms

sD = DeΦ(ψ + ηv)A
d lnA

dχ
, (7.28a)

sSr = (Srv − τ −D)eΦ+Λ

(
8πrA4p̃+

m

r2
+ e−ΛA

d lnA

dχ
η − rVeff

)
+ eΦ+ΛA

4p̃m

r2
− 2reΦ+ΛSrηψA2a2

+ 2eΦ−ΛA
4p̃

r
+ 3eΦA5p̃

d lnA

dχ
η − eΦ+ΛA4p̃rVeff −

r

2
eΦ+Λ(η2 + ψ2)

(
τ + A4p̃+D

)
(1 + v2)A2a2,

(7.28b)

sτ = −
(
τ + A4p̃+D

)
reΦ+Λ

(
(1 + v2)ηψ + v(η2 + ψ2)

)
A2a2 − eΦAd lnA

dχ

[
Dvη +

(
Srv − τ + 3A4p̃

)
ψ
]
.

(7.28c)

In addition, it has been illustrated in [435] that the characteristic speeds, determined by f(U)

and U, for the conservative system in DEF theories are exactly the same as those in GR due

to their independence on the coupling function A. In our formulation for TMST, we stick

with the same definition of f(U) and U as [435], indicating that the characteristic properties

for the system (7.25) are identical to GR.

Having assumed Θ = θ and Φ = ϕ, the nonlinear evolution equation for the scalar fields

reads

□χ− 2H

r2
∂H

∂χ
− 1

a2
∂V

∂χ
= −4π

a2
∂ lnA

∂χ
T, (7.29)
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which can be reduced to two first order, decoupled equations having the form

η̇ =
e−Λ

A
(AeΦψ)′ − reΦ+Λη

(
a2A2ψη − 4πsr

)
− ψηeΦAd lnA

dχ
, (7.30a)

ψ̇ =
e−Λ

Ar2
(AeΦr2η)′ − reΦ+Λψ

(
a2A2ψη − 4πsr

)
− ψ2eΦA

d lnA

dχ

− 4πeΦ

Aa2
d lnA

dχ

(
τ − srv +D − 3A4p̃

)
− eΦ

Ar2a2
d

dχ

(
r2Veff

)
, (7.30b)

with ψ = e−Φχ̇ and η = e−Λχ′. The effective potential is defined as

Veff = V +
a2H2(χ)

r2
, (7.31)

where the second term on the right hand side attributes to the geometry of the target space

manifold. The Einstein equations reduce to two linearly independent equations,

Φ′ = e2Λ
[
m

r2
+ 4πr

(
srv + A4p̃

)
+
a2r

2
A2(ψ2 + η2)− rVeff

]
, (7.32a)

m′ = 4πr2(τ +D) +
a2r2

2
A2(ψ2 + η2) + r2Veff, (7.32b)

relating the spatial derivative of the metric functions to the fluid quantities and the scalar

field. We note that the theory will be reduced to DEF theory if a = 1 and the effective

potential is replaced with the bare potential V .

7.5.2 Numerical setup

The code used in this work to solve the above system of nonlinear evolution equations is a

modification of the GR1D code [434, 440] (for the DEF theory version of GR1D, readers can

refer to, e.g., [90, 435, 441, 442]). In this spherical symmetric simulation, the computational

domain ranges from the stellar center to r = 10000 km (∼ 1000 times the radius of the star),

securing that the radial boundary is sufficiently far away from the strong-field region where

the spacetime is well approximated by Minkowski metirc. The grid used has uniform size of

30 m from center to r = 40 km and the grid size increases exponentially from r = 40 km

toward the outer boundary in the rate that the number of grid points amounts to 10000.

There are, therefore, ∼ 330 grids point inside stars.

At the center and the outer boundary, the boundary conditions are applied to every metric

functions and fluid variables. The radial velocity v is antisymmetric across the origin since

the radial fluxes vanish there, while the remaining variables are symmetric. All variables are

symmetric about the outer edge. In addition, we do not perturb artificially any quantities

(Φ, Λ, χ, ...), but only the error due to numerical truncation serves as perturbation to the

equilibrium.
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Table 7.1: Properties of symbolic models with the target space geometry H(χ) = sinχ and the coupling
function A(χ) = exp(β sin2 χ/2). There are two classes of the chosen models, where models in the “A” class
are solutions for β = −1.5 and models in the “B” class are solutions for β = −1. The second toward the final
columns are, respectively, the central energy density, the radius, and the (baryon) mass of stars.

Model ε̃c (g/cm3) Radius (km) Mass (M⊙) Model ε̃c (g/cm3) Radius (km) Mass (M⊙)
A1 5.6536×1014 10.0876 1.0002 B1 1.5828×1015 10.4074 1.3923
A2 5.6933×1014 10.9379 1.6872 B2 2.7857×1015 9.5503 1.6380
A3 1.5298×1015 11.0621 2.0426 B3 2.8708×1015 9.4966 1.6380
A4 1.6000×1015 11.0094 2.2644 B4 3.6997×1015 9.0108 1.6077
A5 2.5181×1015 10.2366 2.2643
A6 3.1163×1015 9.7595 2.1507
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Figure 7.3: The non-GR part of the sequence of solutions with H(χ) = sinχ and a2 = 0.1 for β = −1.5 (left
panel) and β = −1 (right panel), along which the chosen models in Tab. 7.1 are marked by different colors.
The magnified window in the left panel shows the A3 and A4 models, while the one in the right panel shows
the B2 and B3 models. Each pair of these models have, respectively, slightly smaller and larger mass than
the maximal mass in each case, where the instability kinks in. Evolutions of central energy density of the
chosen models are presented at the bottom row of the two panels.

7.5.3 Results

We examine the stability of scalarized neutron stars along the sequences of equilibrium models

depicted in Fig. 7.1. To balance the completeness of our results and the compactness of this

Chapter, we choose without loss of generality some symbolic models with H = sinχ to

illustrate our results, whose properties are listed in Table. 7.1.

In the left panel of Fig. 7.3, we summarize the evolution of ε̃c of models A1-A6, where each

history is arranged in the order of the initial values of ε̃c. The models A1 and A2 oscillate

about the equilibrium slightly, whereas the model A3 shifts a bit toward left and oscillates

around a non-zero residual with respect to its initial value, which converges to zero as second

order with increasing resolution. The results for A1-3 reflect that the segment, which is

non-GR and yet reaches the maximal mass, is stable. The stability is lost when the maximal

mass is reached; particularly, model A4 exhibits instability and deforms into a stable model.
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Figure 7.4: left : Distributions of the baryon mass density ρ̃ and the scalar field χ at several moments,
whereby one can see that the material part of star settles to the final state at ∼ 34 ms, while χ has already
reached to the final profile at ∼ 23 ms. right : For model A5 the central energy density ε̃c is plotted as a
function of time. In the magnified window, the onset of instability is shown. Model A5 has been considered
for both panels.

The point representing A4 on upper row of the left panel in Fig. 7.3 drifts toward left then

oscillates around another point on the curve with the same baryon mass, as expected. The

unstable models A5 and A6 also show the deformation into a stable model with same baryon

mass.

In particular, the translation of model A5 from the initial unstable star to the stable one

is shown by the evolution of the radial profiles of the baryon density ρ̃ and the scalar field

χ (top panel of Fig. 7.4). One can observe that the material part of the star settles to the

final state at ∼ 34 ms, while χ has already reached to the final profile at ∼ 23 ms. The

development of the instability is depicted by the evolution of ε̃c and the central value of

scalar field χc (bottom panel of Fig. 7.4), where the magnified windows show the onset of the

instability and the following saturation is apparent in the main figure. On the other hand,

the evolution of models B1-B4 are given in the right panel of Fig. 7.3, which confirms as well

that the non-GR segment left to the maximal mass, is stable and the segment right to the

maximal mass is unstable. We note that in general an unstable neutron star could migrate

to a stable star with same baryon mass but less compact, or collapse to a black hole, i.e.

there should be a third channel that an unstable star collapses into a BH. However, our tests

show that this channel probably requires additional perturbation.

Since the solutions to H(χ) = sinχ, χ, and sinhχ differ only quantitatively while remain-

ing qualitatively the same, it is expected that the stability properties for each branches do

not change among these three choices of H(χ). In practice, we confirm this hypothesis by

analyzing the stability of some representative models of each branches, and conclude the

same – a model lighter than the maximal mass is stable, otherwise is unstable.

Having evolved and checked stability for a large number of models, we find that each
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sequence contains exactly one stable segment and one unstable, converging towards the max-

imum mass models. The non-GR parts of the stable segments for β = −1.5 can be further

divided into two classes: one before the central energy density reaches the minimal value,

and one after. It is of particular interest that the scalarized models belonging to the part of

the branch before the minimal ε̃c are stable even though they have larger masses for smaller

ε̃c. It indicates roughly that these models are “glued together” more by the non-trivial scalar

field rather than by the self-gravitating fluid. In some sense, this is also the reason why the

maximal mass of the solutions in TSMT (also in DEF theories) is larger than the predicted

one by GR.

7.6 Conclusions

In the present Chapter we have investigated the (in)stability of scalarized neutron stars in

tensor-multi-scalar theories. These models posses two very intriguing properties. First, their

scalar charge is vanishing leading to zero scalar dipole radiation. Therefore, no constraints can

be imposed by the binary pulsar observations, contrary to the DEF model in standard scalar

tensor theories. Second, there exists a region of non-uniqueness of the scalarized solutions

themselves, i.e. for a certain range of central energy densities two scalarized solutions can

co-exist with the GR (zero scalar field) one. Clearly, this interesting structure calls for

an investigation of the stability. We used two approaches in order to be able to confirm

independently the results – solving the linearized perturbation equation and addressing the

full nonlinear evolution in spherical symmetry. The equations governing the evolution of the

scalar field and the metric were derived independently in the considered class of tensor-multi-

scalar theories and they were solved numerically.

The linear stability analysis showed, that for all combinations of parameters we have

studied, the critical point for stability occurs at the maximum of the mass. Thus the scalarized

branches before this point are stable, independent on whether they posses a region of non-

uniqueness in terms of the central energy density or not. This is a very interesting conclusion

leading to the fact that there is a part of the branch where the total mass of the neutron

stars increases with the decrease of the central energy density that is in sharp difference with

GR and even with most of the known alternative theories of gravity. As expected, the GR

solutions with trivial scalar field loose stability at the point of the first bifurcation. Their

stability is restored once the scalarized branch merges again with the GR one (only in case

the second bifurcation point is before the maximum mass of the GR sequence of course).

In the fully non-linear investigation, we again identified the parts on the sequence of

scalarized models that are unstable and the results agree perfectly with the ones from the

linear perturbation analysis. A particular merit of the non-linear treatment is that apart from

demonstrating the development of the instability we can follow the evolution towards a final
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stable state. The transition from an unstable model to a stable one with the same baryon

mass is numerically revealed in our simulations. However, the dynamics (damping timescale

of instabilities, the emission via the scalar channel during the drift from an unstable model

to a stable one, etc.) behind the phenomenon is not addressed in the present work. The

knowledge of the detailed dynamics is crucial in connecting the instabilities of the objects

discussed here to observations, thus research towards this direction will be helpful providing

possible constraints on TMST.
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Overview

Many classes of extended scalar-tensor theories predict that dynamical instabilities can take

place at high energies, leading to the formation of scalarized neutron stars. Depending on

the theory parameters, stars in a scalarized state can form a solution-space branch that

shares a lot of similarities with the so-called mass twins in general relativity appearing for

equations of state containing first-order phase transitions. Members of this scalarized branch

have a lower maximum mass and central energy density compared to Einstein ones. In such

cases, a scalarized star could potentially over-accrete beyond the critical mass limit, thus

triggering a gravitational phase transition where the star sheds its scalar hair and migrates

over to its non-scalarized counterpart. Such an event resembles, though is distinct from, a

nuclear or thermodynamic phase transition. We dynamically track a gravitational transition

by first constructing hydrostatic, scalarized equilibria for realistic equations of state, and

then allowing additional material to fall onto the stellar surface. The resulting bursts of

monopolar radiation are dispersively-stretched to form a quasi-continuous signal that persists

for decades, carrying strains of order ≳ 10−22(kpc/L)3/2 Hz−1/2 at frequencies of ≲ 300 Hz,

detectable with the existing interferometer network out to distances of L ≲ 10 kpc, and out

to a few hundred kpc with the inclusion of the Einstein Telescope. Electromagnetic signatures

of such events, involving gamma-ray and neutrino bursts, are also considered.

8.1 Introduction

General relativity (GR) has historically provided an excellent description for both local (e.g.,

solar system) and global (e.g., cosmology) gravitational phenomena. It is well known how-

ever that the theory cannot by itself be fully complete, and the non-renormalizability of

the action implies that additional ingredients, possibly in the form of non-minimally cou-

pled fields [443, 444], should activate at extreme scales. Nevertheless, any theoretical ex-

tension must be virtually invisible at low energies, and also somehow suppressed in certain

strong-field environments. For example, binary pulsar experiments restrict the possibility for

significant sub-quadrupolar radiation over super-Compton length scales [414, 415, 445–447],

and gravitational-wave (GW) experiments suggest that (at least some) black holes should be

approximately, if not exactly, Kerr [448]. An observationally-viable class of extensions that

can survive these issues is massive scalar-tensor theory (STT): the mass of the scalar field

suppresses the scalar dipole radiation [417,418], and the classical no-hair theorems tend to be

respected [449], implying that astrophysically stable black holes would be indistinguishable

from their GR counterparts.

Material degrees of freedom in these theories however allow for the possibility of scalarized

stars [89]. This phenomenon can be generally thought of as a consequence of the effective

curvature-coupled mass term, which appears in the relevant Klein-Gordon equation, changing
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sign once some critical threshold is breached, thereby inducing a tachyonic instability (though

see also Ref. [450]). Thus for neutron stars a critical compactness exists at which a branch

of strongly scalarized solutions emerges. In some cases, the heaviest scalarized neutron star

has lower baryon mass and lower central energy density compared to the maximum mass

(stable) non-scalarized neutron star [451] and there is a gap between the two branches where

no stable neutron star solutions exist. This picture resembles very closely the so-called mass

twins in pure GR that are manifestations of the presence of first order phase transition in

the equation of state [452–455] This implies that if a near-critical scalarized star were to

acquire additional mass through accretion, the system may promptly discharge its scalar

hair. Importantly, the neutron star needs not to collapse to a black hole in this scenario,

as considered in, e.g., [456–459], but rather may undergo a gravitational phase transition,

distinct from a material (e.g., hadron-quark) phase transition [460], and migrate to the GR

branch pertaining to the same equation of state (EOS). This novel scenario is considered in

this Chapter. We begin by constructing hydrostatic equilibria in a massive STT, and then

allow additional material to fall onto the stellar surface until the point of descalarization, so

as to dynamically track the migration process.

A migration to a new branch is likely to carry a variety of observational signatures. As a

scalar shedding necessarily compactifies the star over a short, dynamical timescale (≳ ms),

abrupt changes in the electromagnetic output of the source, most notably those associated

with gamma-ray burst (GRB) afterglows and neutrino bursts [461–463], would point towards

such a transition. These signatures could, however, be imitated by a nuclear phase transi-

tion [464–469], thus highlighting the well-known degeneracy between effects coming from a

modification of gravity and the uncertainties in the nuclear EOS (e.g., Sec. 4 of [96]). One

key difference is that a gravitational transition will unleash a burst of scalar radiation which,

for a massive theory, will be dispersively stretched into a quasi-continuous signal, as higher

frequency components are first to arrive at the detector(s) [458]. GW afterglows lasting up

to a ∼kyr may therefore be expected following a gravitational phase transition. We quantify

the distances, as a function of the theory’s coupling parameters, out to which such events

may be observable with existing and upcoming GW interferometers.

8.2 Formalism and equations of motion

The action of a STT of whichever flavor [e.g., Brans-Dicke, Bergmann-Wagoner, and even

f(R) theories] can be transformed into the Einstein frame (cf. the action (7.1) for the TMST)

S =

∫ √
−g

16π
d4x (R− 2∂µφ∂

µφ− 4V ) + SM [Ψ, A2gµν ], (8.1)
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for matter portion SM , metric tensor g, scalar field φ, Ricci scalar R and scalar field potential

for which we take the following form1

V (φ) =
1

2
m2
φφ

2. (8.2)

The saddle point of V poses the boundary condition φ0 := φ(r → ∞) = 0 for φ. The

transition to the physical Jordan frame metric g̃µν is done via a Weyl scaling (7.2), where we

choose the conformal factor

A(φ) = exp(α0φ+ β0φ
2/2). (8.3)

We adopt the spherically-symmetric Jordan frame metric ansatz:

g̃µν = diag[−α2, X2, A(φ)2r2, A(φ)2r2 sin2 θ], (8.4)

for which the metric functions in the Einstein frame, i.e., Φand Λ [Eq. (7.5)], can be expressed

as eΓ = A−1α and eΛ = A−1X, respectively. The time-independent field equations of the

above metric can be obtained from Eq. (7.32) by setting a = 1 and replacing Veff [Eq. (7.31)]

with V , notably (see also Eqs. (2.21) and (2.23) in [435] together with Eq. (6) in [90])

m′ = 4πr2A(φ)4
(

ρh

1− v2
− P

)
+ r2

[
A(φ)2

2
(ψ2 + η2) + V

]
, (8.5a)

and

Φ′ = X2

[(m
r2
− rV

)
A(φ)−2 + 4πr2A(φ)2

(
ρhv2

1− v2
+ P

)
+
r

2
(ψ2 + η2)

]
, (8.5b)

where we recall that the local mass m(r) relates to the lapse function via Eq. (7.6), and the

gravitational mass of the star is defined as the the value of m(r) at infinity. In addition, we

have, in a dynamical process, the following time-depend equation

ṁ = r2
α

X

[
A(φ)2ψη − 4πA(φ)4

(
ρhv

1− v2

)]
. (8.5c)

For cold EOS, ϵ and P are functions of ρ, i.e., barotropic. In contrast to Chap. 7, we adopt in

this Chapter the APR4 EOS approximated by piecewise polytropic EOS ( [69]; see below).

In addition, the equation for φ for the considered coupling function reads [cf. Eq. (7.29)]

□φ = −4πd lnA
dφ

T +
dV

dφ
= −4π(α0 + β0φ)T +m2

φφ := m2
effφ, (8.6)

which can be rephrased as a set of first-order hyperbolic differential equations in a conservative-

1The massless theory is also investigated in Appendix C, where the totally distinct picture appears, and the accretion-induced
descalarization will instead launch a burst-like GW.
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flux form for the variables {φ, η, ψ} [cf. Eq. (7.30)]. On the other hand, the hydrodynamic

equations,

0 = ∇µT
µν − d lnA

dφ
T∇νφ, (8.7)

can also be written as a system of hyperbolic conservation laws (Sec. 7.5.1; refer also to

Eqs. (21)-(29) in [458]). From the field equations we can derive the energy Eφ and luminosity

Lφ of the scalar field as

Eφ =

∫
r2A(φ)2

2
(ψ2 + η2) + V dr, Lφ = r2Xαψη, (8.8)

which defines the corresponding energy leakage as

E
(scalar)
GW =

∫
Lφdt. (8.9)

We note that no conservation law applies to the quantity Eφ − E
(scalar)
GW , since the scalar

field couples to the material energy. Instead, the conserved energy is M − E(scalar)
GW for the

(gravitational) mass M of the star; this conservation law is satisfied in our code within an

error of ≲ 10−6M⊙.

8.2.1 Scalar-induced Gravitational Waves

Two additional GW modes are raised by φ, viz. the breathing (‘B’) and longitude (‘ℓ’) modes,

which carry the same response functions up to a sign flip (see Eq. (134) of [470]). The strain

of the latter mode is reduced by a factor of (λφf)
−2 relative to the former, which reads

hφ = 2α0φ. The strain felt by a LIGO-VIRGO-like array (two orthogonal antennas) is thus

h(L, t) =
hφ
2
(L, t)

{
1− [λφf(L, t)]

−2
}
, (8.10)

when the source orients optimally, where

λφ = 2πℏ/mφ (8.11)

is the Compton length-scale for the massive scalar field, t is the retarded time post-emission,

and f(L, t) is the characteristic frequency of the signal. Low frequency modes are screened

at r > λφ, while the near-zone (r ≪ λφ) dynamics of φ are to a large measure unaffected

by the dispersion and reduce to the results of the massless case. On the other hand, high

frequency components propagate at subluminal velocities. As a result, the dispersively-

stretched waveform becomes quasi-monochromatic over a L- andmφ-dependent timescale [90,

458]. In contrast to the burst-like data stream, the full spectrum of the power-spectral density



148 8.3. Scalarized neutron stars

(PSD) 2
√
f |h̃(f)| will not reach the observatory simultaneously, but will arrive sequentially;

therefore, there is an implicit time-dependence, encoded in the characteristic frequency, for

the witness. The quasi-monochromatic feature implies that a phase-coherent search can

be implemented, to which the signal-to-noise ratio (SNR), 4
∫
df
[
|h̃(f)|2/Sn(f)

]
, can be

obtained by integrating over a narrow frequency interval around f(t). In the limit Tf ≫ 1,

i.e., when many cycles are observed, Parseval’s theorem states that the frequency-domain

integral equates to the time-domain integral for the strain over the observation timescale,

thus the SNR depends on the observation duration T (e.g., [247]) as well as the retarded time

that is relevant to the characteristic frequency f(t) of the signal. Specifically, [458] shows that

the SNR can be obtained by dividing the effective PSD resulting from the aforementioned

time-domain integration,

√
Sf =

√
Tα0A(L, t)

2
{1− [λφf(L, t)]

−2}, (8.12)

by the noise spectral curve
√
Sn(f), where we assume an optimally-oriented detector. Here

the amplitude is

A(L, t) ≃ 2A(f)L−3/2λφ
[
f 2 − (λφ)

−2
]3/4

, (8.13)

with A(f) the Fourier component of the scalar-GW extracted at some distance λφ < r ≪ L

so that it contains the content of the wave that will later propagate to a detector at L

(cf. Eq. (57) in [458], while noting that our definition for A differs from theirs by a factor of

L−1).

8.3 Scalarized neutron stars

In the present Chapter, we adopt the APR4 EOS, and more precisely its piecewise poly-

tropic approximation [69], which withstands constraints coming from GW 170817 [22], and

supports masses which accommodate the heaviest neutron star observed to-date, viz. PSR

J0740+6620 (M = 2.14+0.10
−0.09M⊙) [109]. In the considered STT and for large enough stellar

compactness, the neutron star scalarizes, meaning it develops a strong, localized scalar field.

This is demonstrated in Fig. 8.1 where we plot stellar equilibria for α0 = 10−2, β0 = −5, and
mφ = 10−14 eV (yellow and red curves; see below) as well the GR branch (α = 0) for compar-

ison. This value of mφ mitigates the tension with binary-pulsar constraints since radiation is

suppressed over super-Compton length-scales r ≫ λφ [417,418,445]. The parameters are cho-

sen such that a picture close to the so-called mass twins in pure GR [452–455], connected to

first order phase transitions in the high density matter equation of state, is observed. Thus, a

phase transition (descalarization) starting from the yellow to the red branch can be realized.
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Figure 8.1: Hydrostatic equilibria for α0 = 10−2, β0 = −5 and mφ = 10−14 eV, for the APR4 EOS. The
scalarized branch is divided in two parts, with the yellow one being strongly-scalarized and the red one
possessing a very weak scalar field, which virtually coincides with the GR case (α = 0; blue curve). The
maximum mass of the blue and red sequences is 2.168M⊙, while the strongly-scalarized configuration (yellow
line) can only support masses up to 2.118M⊙. The black star represents the initial state for the simulations.

This is possible due to the fact that the maximal mass for the scalarized branch (2.118M⊙)

is less than that for the GR branch (2.168M⊙). We should note that strictly speaking, in

the STT we consider, the red branch will always have some small nonzero value of the scalar

field due to the nonzero α, i.e., it will be very weakly scalarized. A phase transition from the

yellow to the red branch will shed off most of scalar energy but a tiny residual scalar field

will always be left. For practical purposes, however, the blue (GR) and the red branch are

virtually indistinguishable at high densities and thus with a slight abuse of language, we call

the red branch of neutron star solutions descalarized ones.

8.4 Accretion dynamics

A neutron star that over-accretes beyond the peak of the scalarized curve displayed in Fig. 8.1

will undergo a phase transition to the GR branch. This scenario may occur either for a

newborn star after a merger or collapse through fallback accretion, or a mature star in a

binary undergoing Roche-lobe overflow. In the former case, debris disks containing ≲ 0.2M⊙

worth of material [462], though potentially much more in a core-collapse [471], will form

around the birth site. A sizeable fraction of it may eventually fall back onto the stellar

surface [472]. Accreted masses may total ≲ 0.8M⊙ in some X-ray binaries [473], though

such amounts can accumulate only over long (potentially ∼ Gyr) timescales. The details of

the accretion process itself are complicated however, since the neutron star may be spinning

rapidly enough that material is repelled by a centrifugal barrier (‘propeller’ effect [471]),

pressure gradients from nucleosynthetic heating can accelerate ejecta before it has a chance

to return [474], and material will not fall isotropically onto the surface but rather may be

guided onto the magnetic poles by the Lorentz force [475].

Here, however, our main goal is not to simulate a realistic accretion process in a STT, but
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rather to illustrate qualitatively how the dynamical acquisition of additional mass can trigger

a descalarization. To this end, accretion is artificially simulated by considering two sorts of

mass excess in order to verify that our results are not overly sensitive to the particulars of

the chosen accretion profile, which we call

• Type I — Superposing a Gaussian bulk centred at 0.9R⋆, for stellar radius R⋆, with a

width (“standard deviation”) of 1 km, every 4 ms. The process is then halted when a

total (baryon) mass of 0.015M⊙ has been added (after 16.01 ms). The average accretion

rate is Ṁa ≃ 0.94M⊙s
−1.

• Type II — Superposing a Gaussian bulk out of but close to the surface of the neutron

star every 4 ms, which is centred at 1.2R⋆ with standard deviation width of 1 km, and

terminates when a total (baryon) mass of 0.014M⊙ has been added (after 16.1 ms). We

find again Ṁa ≃ 0.87M⊙s
−1.

The average accretion rates of both types are marginally slower than the numerical result

of ≲ 1M⊙s
−1 over the first few ms of merger simulations (cf. Fig. 7 of [177]). The (post-

)descalarization dynamics described here remains the same if the bulk is accreted with longer

waiting time; in particular, we see just negligible changes in the emitted energy, the duration

of scalar-peeling process, and the scalar GW waveform for the double interval, viz. 8 ms,

between consecutive bulks. Nevertheless, we stress that neither profile is representative of

a realistic astrophysical process, though they allow us to capture the salient features of a

gravitational phase transition.

8.5 Results

The left-hand plot in Fig. 8.2 shows the evolutionary track of a particular scalarized model,

initially with gravitational mass of ∼ 2.106M⊙. The strongly scalarized star undergoes a

phase transition after the accretion completes, and heads to the non-scalarized branch. The

descalarization lasts ∼ 4.4 ms. We have numerically verified that the final state indeed co-

incides with the descalarized, equilibrium one within an error of less than 2% that decreases

monotonically with increasing simulation resolution. The onset and offset of the phase transi-

tion to the scalar-free state are chosen as the moments when the last bulk has been accreted

and the final state is formed, respectively. After the descalarization, the model oscillates

about a certain, stable state as shown in the inset in the bottom-left panel.

The left panel of Fig. 8.2 shows the scalar energy (top row), the flux of the scalar radi-

ation at some radii (middle row), and the associated energy loss (bottom row) as functions

of retarded time. The scalar energy (8.8) drops very close to zero after descalarization (top

panel). The near zone (r ≪ λφ) extraction of the luminosity at a point where its value has

already saturated suggests an energy loss (blue curve in the bottom panel) ≳ 40 times less



Chapter 8. GWs from Accretion-Induced Descalarization in Massive ST Theory 151

2.08

2.1

2.12

2.14

2.16

1.5 2 2.5 3 3.5 4

10
15

0

5

10

15

20

25

30

1.6 1.8 2

10
15

14

16

18

20

22

24

0

20

40

0

0.2

0.4

0.6

10 20 30 40 50 60 70 80

0

0.5

1

Figure 8.2: Left : Evolutionary track of a near-critical scalarized star under accretion: gravitational massM as
a function of central energy density ϵc (top panel), and the temporal dependence of the central energy density
(bottom panel). The green and blue stars mark the onset and the termination of descalarization, respectively.
Right : Evolution of scalar energy: scalar energy integrated from the centre to the outer boundary of the grid
rout/c = 3 s (top panel), scalar luminosity extracted at some different distances (middle panel) [Eq. (8.8)], and
energy emitted via scalar sector associated with the luminosity coded with same colour [Eq. (8.9)] (bottom

panel), all as functions of retarded time. Here Eφ,−3 and E
(scalar)
φ,−3 are given in units of 10−3M⊙.
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Figure 8.3: Square root of the PSD
√
Sf at L = 10 kpc of the strain of the scalar-induced GW mode

[Eq. (8.10)] for the Type-I (left) and Type-II accretion as functions of retarded time from 1 to 103 years (black
curve; the k-th dot from the right along the curve represents 10(k−1) years of retarded time). Overlapped are
the sensitivity curves of current and considered GW interferometers.
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than the decrease of Eφ, indicating that most of the scalar energy transforms into gravita-

tional binding energy since the stellar radius shrinks from 11.56 km to 10.36 km between the

initial and the final states, while the (gravitational) mass increases by ≈ 0.013M⊙. After the

emission propagates to those distances comparable to λφ, the dispersion suppresses the low

frequency component and leads to a stretching on the waveform. In the bottom panel, we

see that the energy leakage to infinity in the scalar sector is ∼ 6× 10−4M⊙ (green and light

blue curves), which is less than the energy carried by the scalar radiation in the near zone

(blue curve) by a factor of ∼ 2 due to the dispersion.

Assuming an observation duration of T ∼ 2 months for the GW, over which the signal

is slowly evolving for mφ = 10−14 eV [458], we present the numerical result of the signal

amplitude (8.12) for scalar GW with the retarded time spanning from 1 to 103 years in the

left panel of Fig. 8.3. The k-th notch, starting from the right, plotted over the signal (black)

curve stands for t = 10(k−1) years. Together with the results for models with smaller α,

though not shown here, we find a fitting to the effective PSD, in units of Hz−1/2, as√
Sf

10−23
≈ 3

( α0

10−2

)( T

5× 106 s

) 1
2
(
10kpc

L

) 3
2
(

f

300Hz

)0.34

, (8.14)

with the frequency of the signal approximated as (cf. Eq. (53) in [458])

f(L, t) ≈ 2.42
t+ L√
t(t+ 2L)

Hz. (8.15)

We note that larger T may be used for greater retarded times since the timescale for the

frequency evolution, f/ḟ , scales as t, thus opening the possibility for much larger effective

PSD. In particular, since the signal (8.14) is quasi-continuous, an extended narrow-band

search could be carried out if one knew when the system descalarized, as the dispersion

relation directly equates the relative delay with a frequency. Furthermore, multiple sensors

can act to ‘fuse’ data together in a way that improves the overall signal-to-noise ratio beyond

that inferred from equation (8.14) (see Sec. IV. E. of [476] for a detailed comparison of

achievable sensitivities with different networks). It is natural also to ask whether the change

of some theory parameters, namely α0 and mφ, will influence significantly our results. The

equilibrium with a fixed mass would not change much for sufficiently small α0 (cf. Fig. 2

of [419]) and mφ (cf. Fig. 1 of [417]); therefore, the scalar-shedding processes for a range of

α0 and mφ would be different but similar to each other. Of course, what scales with α0 is

the effective (PSD) of the resulting scalar radiation.

On the other hand, in Fig. 8.4, we plot the evolution track of the star undergoing Type-II

accretion (left panel), and the scalar emission during the descalarization (right panel), while

the GW strain caused by the emanating scalar field is presented in the right panel of Fig. 8.3.

We see that the process is both qualitatively and quantitatively similar to that of the Type-I
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Figure 8.4: Same as Fig. 8.2 but for Type-II accretion (see main text for the definition).

accretion while with the descalarization lasting ∼ 8.54 ms, indicating that for the two distinct

types of accretion we get practically the same results thus strengthening the confidence that

the process is more or less independent of the initial setup.

8.6 Connection to matter phase transitions

The phase transitions from scalarized to non-scalarized states considered here bear striking

similarities to the material phase transitions from confined hadronic to deconfined quark

matter. In both cases, there can be stars of equal mass but different radii, that are separated

by a range of central energy densities where the stable solution space is empty (i.e., twin

stars [452–455]). The astrophysical implications of matter phase transitions, and especially

the GW signatures, have attracted considerable attention recently (see, e.g., [464–469]). In

each case there will be a descalarization analogue, with the main difference being an additional

channel for energy loss – the scalar radiation. Thus the degeneracy between effects coming

from a modification of gravity and from EOS uncertainty goes far beyond the standard

paradigm, demonstrating once again the importance of searching for strategies to break this

degeneracy.

Although we concentrate on accretion in this Chapter, some interesting examples of such

analogues can be found also in cases without accretion. For a hot, newborn neutron star with

an EOS that permits negatively charged, non-leptonic particles (e.g., hyperons or quarks),

the hydrostatic support available to the star will reduce when neutrinos diffuse out of the

core as the system cools [477]. This can lead to a delayed phase transition with a number

of interesting observational signatures [466]. Naturally, a descalarization analogue of this

delayed transition will exist: depending on the chemical composition and theory parameters,

the scalarized star may migrate to a non- or weakly-scalarized branch when the temperature
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drops below a critical threshold (cf. superfluid phase transitions also [478]). A similar picture

exists for the case of differential rotation, which is likely to be damped out (or at least

reduced to a Ferraro profile) in a few tens of ms post-formation due to the magnetically-

driven, turbulent viscosity [176]. Studying these processes in detail lies beyond the scope of

the present paper since it requires a nonlinear evolution of a hot and differentially-rotating,

scalarized neutron star. It is clear, though, that complementing the scalar-flavour phase

transition to the studies of neutron star mergers in STT will offer rich phenomenology as

concerns the evolutionary track of neutron stars (see also below). This will be on one hand

due to the additional channel of energy loss that, even if not detectable, will alter the merger

remnant evolution. On the other hand, some properties of the post-merger remnant, such as

its oscillations frequencies, can be very different compared to GR, due to the change in the

stellar structure for scalarized neutron stars [479].

8.7 Discussion and observational prospects

While a detection of scalar GWs of the form shown in Fig. 8.2 could be used to unambiguously

identify that a descalarization took place, (massive) STTs may already leave traces in the

events that lead up to the transition. In particular, a promising avenue for the formation

of scalarized stars, which are then particulary prone to over-accretion and descalarization,

comes from binary mergers. The scalar field associated with the binary constituents may

become excited during the late stages of inspiral, leaving a clear imprint on the GW signal

by accelerating the coalescence and reducing the number of orbital cycles [479] (see also [480–

482]). Despite progress though, certain key effects, such as rotation, are still missing from

numerical simulations of mergers in STTs. This means that direct waveform comparisons

with observed inspirals cannot be achieved yet. On the electromagnetic side, however, binary

neutron-star merger events are also the progenitors for short GRBs, which offer avenues for

indirectly observing a descalarization.

Many GRBs exhibit extended emissions at short-wavelengths following the main burst.

Emission profiles that display a prominent and long-lived X-ray ‘plateau’ are especially sug-

gestive of persistent energy injections from a massive, newborn neutron star [461,462]. Sup-

pose that tensorial GWs were coincidentally observed with a short GRB (as occurred for

GW170817 [12]), followed by a plateau-like X-ray afterglow. The detection of a scalar GW

afterglow some time after the main event, which may persist for ∼ centuries, would clearly

indicate that the remnant peeled its scalar hair. Note in particular that the time at which

the descalarization occurred can be determined from the radiation frequency given a field

mass mφ; see Fig. 8.2. Even without such a detection, the nature of the afterglow will be

affected by a scalar shedding as the star compactifies. The spindown power associated with

magnetic dipole braking scales as Ldip ∝ R6
⋆ (e.g., [462]), for example, and so a decrease in
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R⋆ by ∼ 5% may then lead to a drop in the X-ray flux by ≲ 30% over the descalarization

timescale (∼ 5 ms). Afterglow light-curves in this case may appear as ‘broken plateaus’,

such as observed in GRB 170714A [483]. Conservation of angular momentum however im-

plies that the star should spin-up as a result of descalarization, and thus the drop may be

less pronounced because Ldip ∝ Ω4. Likewise, the temperature of the star should increase

from the compactification. Magnetohydrodynamic processes involving magnetic field reorga-

nization may also take place, extending the dip timescale and enriching the phenomenology.

Modelling magnetized, rotating stars with hot EOS is much more challenging than for static,

cold ones, and studying such cases lies beyond our current computational tools. This would

be worth investigating in future though, as a number of possibilities arise. For example,

the star’s centrifugal barrier may activate, halting further accretion after descalarization,

which may carry its own brand of signatures [471]. Furthermore, a descalarization-induced

compactification may itself instigate a nuclear phase transition (e.g., quark deconfinement)

due to the sudden increase in the core density [466, 477]. If consecutive transitions like this

occurred in a massive STT, the tensorial GWs from the nuclear transition would be expected

to arrive at the detectors before the scalar mode(s) because of dispersion.

It is also worth pointing out that a descalarization event could also occur in the collapse of

a scalarized neutron star to a hairless black hole. From a scalar-GW perspective, these events

would be indistinguishable [459], though they can be told apart via the nature of the X-ray

afterglow. If the plateau persisted after the scalar radiation was emitted, a gravitational

phase-transition would be the favoured scenario since black hole formation, which would

effectively terminate the stellar wind that is providing the radiation energy, should instead

manifest as a sharp drop in the flux (as is often observed [463]).

The closest GRBs that have thus far been observed are GRBs 980425 and 170817A at

distances of ∼ 40 Mpc [12, 484]. This distance is a factor ∼ 4000 times larger than that

plotted in Fig. 8.2. As such, unless α0 takes a value larger than that which we have used

by a factor ≳ 10 and year-long (T ≳ yr) searches are carried out, we are unlikely to observe

this scenario in its full capacity even with Cosmic Explorer (CE) [485] or Einstein Telescope

(ET) [486,487] – ET-D in particular [488]. given the L−3/2 dependence in the effective PSD

(8.14), should such stars exist. Other multi-messenger possibilities for identifying a neutron

star post-descalarization come from neutrino bursts (from Urca cooling or shocks triggered by

compactification; cf. [489]) or indeed a burst of GWs (if the now descalarized star collapses)

at some later time, either of which again would be hard to explain with a black hole remnant.

It is also not necessarily the case that a neutron star must descalarize shortly after birth.

Mature stars residing in the disks of active galactic nuclei or in high-mass X-ray binaries [490]

are particularly disposed to over-accretion, with accretion-induced collapse rates reaching

anything up to ≲ 20 Gpc−3 yr−1 from the former channel [491]. Overall, however, in the

absence of a detection of scalar GWs, one may not be able to tell whether a phase transition
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was of a nuclear or gravitational nature. This exemplifies further the degeneracy between

modifications of gravity and EOS uncertainty.
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Breakdown of Contributions

I contribute to producing the plots and implement the numerical simulation for massive

theories by utilising the code modified by me from the previous code of P. C. K. Cheong

which is a code based on GR1D but is tailored into scalar-tensor theory. The plots and

numerical results for self-interacting theories are provided by D. Huang by extending my code

aforementioned. The manuscript is mainly written by me, while the part of self-interaction

theories is drafted by D. Huang. At certain stages of this Chapter, L. W. Luo and C. Q. Geng

assist in discussions and suggestions. In addition, L. W. Luo has contributed to partially

polishing the manuscript, and C. Q. Geng helps the final edition of the whole manuscript.

Overview

The spontaneous scalarization during the stellar core collapse in the massive scalar-tensor

theories of gravity introduces extra polarizations (on top of the plus and cross modes) in

gravitational waves, whose amplitudes are determined by several model parameters. Obser-

vations of such scalarization-induced gravitational waveforms therefore offer valuable probes
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into these theories of gravity. Considering a triple-scalar interactions in such theories, we find

that the self-coupling effects suppress the magnitude of the scalarization and thus reduce the

amplitude of the associated gravitational wave signals. In addition, the self-interacting effects

in the gravitational waveform are shown to be negligible due to the dispersion throughout

the astrophysically distant propagation. As a consequence, the gravitational waves observed

on the Earth feature the characteristic inverse-chirp pattern. Although not with the on-going

ground-based detectors, we illustrate that the scalarization-induced gravitational waves may

be detectable at a signal-noise-ratio level of O(100) with future detectors, such as Einstein

Telescope and Cosmic Explorer.

9.1 Introduction

Even though general relativity (GR) has so far withstood all experimental tests [96, 448,

470, 492], many theoretical considerations signal the need of alternative theories of gravity

beyond the GR, e.g., the non-renormalizability of GR [493], and numerous astrophysical and

cosmological observations [494] (see Ref. [96] for a recent review). An abundance of modified

theories of gravity have been constructed to extend GR to overcome the aforementioned

obstacles. Among them, the most widely explored one may be the scalar-tensor (ST) theories

of gravity [495–497] in which the gravitational interaction is mediated not only by the metric

tensor but also by an additional scalar field.

Due to its simplicity and well-posedness [498, 499], ST theories have been subjected to a

wide range of experimental tests [420, 500–503], while most are performed in the weak-field

regime (mainly in the solar system) [504–507]. Nonetheless, with appropriate ST param-

eters and strong enough spacetime curvature (see, e.g., [508]), strongly-scalarized neutron

star (NS) solutions are energetically favoured over the ordinary weakly-scalarized ones [509].

The ST gravity therefore allows a nonperturbative strong-field phenomenon known as the

spontaneous scalarization [89,408] in NSs. Such phenomenon induces a non-vanishing dipole

charge of the scalar field, which is (strigently) constrained by observations such as the Cassini

spacecraft [507] and binary pulsar timings [413, 414, 510]. However, in massive ST theories,

the introduction of the scalar mass µ ≳ 10−15 eV effectively weakens these experimental

constraints on the parameters [417,511] so that the theory leaves more room for parameters

that can lead to strongly-scalarized NS solutions. In addition, the recent detections of gravi-

tational waves (GWs) have opened a novel window to limit the ST gravity, which has already

set severe constraints on the possible models [64, 448, 512, 513]. A further constraint on the

ST gravity arises from the equivalence between the Jordan and Einstein frames (see below).

As the evolutionary endpoint of a star, the core collapse to form a NS or a black hole (BH)

constitutes another testbed for the strong-field dynamics of the ST gravities [96, 417, 514].

In particular, if a scalarized proto-NS forms during the collapse, the sharp transition from
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the weakly-scalarized star configuration into the strongly-scalarized state generates scalar- or

monopole-polarized GWs, which is a critical feature of the ST gravity that is absent in GR.

Early studies on the spontaneous scalarization and scalar GW production were concentrated

on the massless ST gravity [435, 456, 457, 515]. In order to evade the strong experimental

constraints listed above, Refs. [90, 458] initiated a line of studies on the core collapse in the

massive ST theories. In Refs. [441, 442], the theory was further extended to the case with

scalar self-interactions which generically suppressed the degree of the scalarization and the

amplitude of the scalar GW radiation.

However, previous studies only focused on the effects of the even-power scalar self-interactions [441,

442] defined in the Einstein frame. Odd-power scalar self-interactions have not been explored

yet. Given the importance of the stellar collapse in testing ST gravity by, e.g., scalarization-

induced GW signals that are potentially measurable with the ground-based GW detectors,

any ST model warrants further investigations. In the present paper, we study the core col-

lapse and the monopole GW radiations in the massive ST theories, including the simplest

odd-power scalar self-interaction in the Einstein frame, viz. the triple-scalar coupling effects.

In order to ensure the stability of the theory, we take the absolute value of the triple-scalar

interaction in the scalar potential. The influence of this scalar interaction on the sponta-

neous scalarization and the scalar GW production during the core collapse is explored by

considering two particular collapse progenitors, which have been treated in the massless [435]

and massive [90] ST theories. One of them leads to a NS remnant and the other settles

to a BH. We also consider the impact of the triple-scalar coupling on the astrophysically

long-distance dispersive propagation of the scalar GWs in our galaxy, which generically leads

to the inverse-chirp feature of the GW signals detected on the Earth. Finally, we assess the

detectability of the possible scalar GW signals in the on-going and up-coming ground-based

GW detectors by computing the corresponding signal-to-noise ratios (SNRs).

Unless stated otherwise, we adopt the geometric unit, viz. G = 1 = c, in the present

Chapter.

9.2 Formalism

In the previous two Chapters, we only look at the Einstein-frame action of the (multi-)scalar-

tensor theories. Although we are solving the matter and metric fields in the Einstein frame

[see Eqs. (7.32), (8.5b), and (8.5c)], these quantities can always be transformed back to the

Jordan frame to connect to the physics (see the statement below Eq. (7.4) for the transfor-

mation). The results of the scalar field φ in the Einstein frame may, on the other hand,

nonconvertible to the Jordan frame, suggestive of a “frame-choosing” problem: the solutions

in the Einstein can be irrelevant to the physical fields. We note however this does not indicate

the Einstein frame formalism losses its applicability in these theory. Rather, it hints at that
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we should be carefully about our results if the scalar field fails to fulfill certain condition (see

below).

In this Chapter, we are interested in the ST gravity first proposed by Bergmann [516]

and Wagoner [517], in which (i) the single scalar field non-minimally couples to the metric

tensor; (ii) the theory is diffeomorphism invariant; (iii) the variation of the action gives rise

to second order field equations; and (iv) the weak equivalence principle is satisfied in the

Jordan (physical) frame. In the literature, the most general action of this class of theories

can be written as [96]

SJ =

∫
d4x

√
−g̃

16π

(
F (ϕ)R̃− ω(ϕ)

ϕ
g̃µν∂µϕ∂νϕ− U(ϕ)

)
+ Sm[ψm, g̃µν ] , (9.1)

where F (ϕ), ω(ϕ) and U(ϕ) are C2 functions of the Jordan-frame scalar field ϕ, and Sm

represents the action of matter fields that are collectively denoted by ψm. We note that matter

fields couple to the gravity sector only through the (physical) metric tensor gµν without any

dependence on ϕ, so that the weak equivalence principle holds.

One can also formulate the same theory in the so-called Einstein’s frame, which relates

to the Jordan frame via a Weyl transformation (7.2) for F = A−2, and a redefinition of the

scalar field:

dφ

dϕ
:= ±

√
3(F,ϕ)2

4F 2
+

ω

2ϕF
. (9.2)

The action Eq. (9.1) can then be rewritten as Eq. (7.1) in the Einstein frame, where the

scalar potential V (φ) is related to the one in the Jordan frame through

V (φ) := U(ϕ)/(4F 2). (9.3)

We see that the ST theory in the Einstein frame is specified by the scalar potential V (φ) and

the conformal factor F (φ). The latter controls the coupling between the scalar field φ and

ordinary matters. We adopt the coupling function (8.3) same as that has been considered

in, e.g., [408, 420, 500], while the free parameters α0 and β0 will be chosen to allow strong

scalarization in proto-NSs so as to generate significant scalar GW signals for each of our

simulations (see below).

9.2.1 Scalar Field in The Two Frames

Although formulating the theory in the Einstein frame makes numerical implement more

convenient since the equations are slightly dressed by some extra terms to the GR coun-

terparts, the issues on the physical interpretation and equivalence of these two frames have

been debated for a long time (e.g. [102,104]). In spite of many efforts to show that these two
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conformal frames are equivalent, there are two general problems regarding the redefinition of

the scalar field, notably

• For the scalar field ϕ to be describable in terms of the new field φ, the two inequalities,

dϕ

dφ
̸= 0 (Jordam to Einstein frame), (9.4a)

dφ

dϕ
̸= 0 (Einstein to Jordam frame), (9.4b)

should hold, i.e., a bijection s : ϕ→ φ exists between the scalar fields in the two frame.

In addition to being non-zero, we also require the derivatives to be finite. We call (9.4)

as the derivative constraints. For the studies of the ST theories in the Einstein frame, it

is important that the aforementioned conditions are regarded, or the results may not be

able to be transformed back into the Jordan frame, which is assumed to be the physical

frame.

• The Einstein-frame scalar field φ is defined via a differential relation dφ/dϕ, whose sign

can be either “+” or “−” as mentioned in [518] but without further discussions therein.

Although many just consider the positive sign (e.g., [90,501,519]), the negative version

is equally reasonable. Therefore, starting from a given ST model in the Einstein frame,

it usually corresponds to two different models in the Jordan (physical) frame, arising

a uniqueness problem of a model in the Jordan frame. In addition, the condition that

the relation dφ/dϕ is regular indicates that there is a critical value of φ dividing the

solution space of φ into two branches. Conversely, the value of φ can restrict the choice

of the sign of the relation dφ/dϕ in some cases. (see below)

On top of the above two issues, for theories with non-trivial potential for the scalar field,

the existence of the latter one-to-one mapping between φ and ϕ is essential for the model in

the Jordan frame being uniquely determined by the one in the Einstein frame. In particular,

a potential V (φ) in the Einstein frame should admit that U(ϕ) = 4A−4(ϕ)V (φ(ϕ)) exists

and is a unique function of ϕ since U(ϕ) is a physical potential as it is defined in the Jordan

frame, whereas V (φ) is an auxiliary one. It is apparent that V can be a function of ϕ if and

only if the derivative constraints hold.

For a specific coupling function A that allows for GR solutions, i.e., dA/dφ(0) ̸= 0, the

mapping s : ϕ→ φ is reversible if and only if

d lnA

dφ
= −Fϕ

2F

dϕ

dφ
̸= 0. (9.5)
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The above relation thus returns the condition,

φ ̸= −α0

β0
, (9.6)

for the coupling function (8.3) adopted here, defining a critical value φcrit = −α0/β0 for

φ. Although we have focused on the specific coupling function (8.3) to achieve (9.6), the

restriction (9.5) applies to general choices of the coupling function; see Appendix B for some

other cases. The existence of a critical value for φ can set certain constraints on the coupling-

function parameters α0 and β0, which will be explained in Sec. 9.3.1.

9.3 Spherical Collapse

The stellar core collapse into a compact object such as NS and BH marks the endpoint of a

massive star with the zero-age main sequence (ZAMS) mass in the range of 10M⊙ ≲MZAMS ≲

130M⊙ [520–522] with M⊙ denoting the solar mass. At the end of the nuclear burning phase

of a star, the nuclear matter thermal pressure and the electrons’ degenerate pressure can

no longer balance the huge gravitational attracting force [523], leading to a sudden radial

compression of the matter. The collapse increases the central (baryon) mass density up to

the nuclear density ρnuc ≃ 2× 1014 g/cm3 [433] beyond which the compression is halted and

the inner core bounces due to the repulsive force stemmed from the stiffening of the nuclear

matter. The core bounce launches a hydrodynamic shockwave outwards and a core-collapse

supernova explostion (CCSNe) may then be generated1.

We assume a spherically symmetric core-collapse in this Chapter with a hybrid EOS (7.12),

together with a mixture of thermal component regulated by

pth = (Γth − 1)ρϵth. (9.7)

for the thermal contributions to pressure pth and special internal energy ϵth. Our simulations

are based on the open-source code GR1D [434], which was originally developed to model

the spherically symmetric hydrodynamics in GR by employing the high-resolution shock

capturing scheme [529,530]. The code was extended to include massless scalar fields in [435],

massive ones in [90, 458], and an even-power scalar potential in [441, 442]. Here we adopt

all dynamical equations, grid types and boundary conditions in our simulations identical to

those in [90].

For the initial data, we focus on two specific progenitors of supernovae (pre-SN) with

primordial metallicities ofMZAMS = 12M⊙ (denoted by WH12) andMZAMS = 40M⊙ (denoted

1After emanating from the inner core, the out-going shock will then be stalled by the inflowing material. If the shockwave
successfully revives by some mechanisms, such as the standing accretion shock instability [524, 525], and the neutrino heating
[526,527], the explosion will be instigated and lead to a CCSNe. The mechanism that accounts for the revival is still an on-going
problem (see, e.g., [528] for a recent review and the references therein).
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Figure 9.1: Waveforms of the scalar GW, extracted at rex = 5 × 109 cm away from the supernovae core for
two specific critical values φc = k = 0.05 (left) and φc = k = 1 × 10−5 (right). The scalar field labeled by
β0 = −40 in the left panel is ruled out by the argument made clear in the main context.

by WH40) from the catalog of realistic non-rotating pre-SN models of Woosley and Heger

(WH) [531], respectively. In massive ST gravity [435], as well as in GR (see Fig. 10.3), it

has been shown that WH12 will collapse to form a NS remnant, while WH40 will eventually

result in a BH after a stage of proto-NS (though see later). We note that the initial value of

the scalar field at every grid point is taken to be zero.

We will first study the massive scalar-tensor theories with the mass term same as that used

for Chap. 8 in Sec. 9.3.1. In Sec. 9.3.2, we then turn to consider additionally a self-interaction

at the triple-scalar level, where the scalar potential reads

V (φ) =
m2
φ

2ℏ2
(φ2 + λ|φ|3). (9.8)

Here λ is assumed to be positive, and the absolute value is taken in the scalar self-interaction

term so as to guarantee the semi-positivity and stability of the potential. For these investi-

gations, we use the coupling function (8.3) introduced in Chap. 8. For the later convenience,

we also define the characteristic frequency associated with the scalar mass, which is the

reciprocal of the Compton length (8.11), viz.

fφ = 1/λφ = mφ/(2πℏ). (9.9)

9.3.1 Collapse in Massive Theory

Following Chap. 8, the scalar field mass is set a mφ = 10−14 eV, which not only alleviates

the strong constraints from binary pulsars and weak field tests of GR [417, 511], but also

allows the propagating monopole GW signals to be detectable [90, 458] in the LIGO/Virgo

sensitivity window. To illustrate our results, we consider the set of parameters (α0, β0) for
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the coupling function with a constant ratio of −k, namely

Sk =
{
(α0, β0)

∣∣α0/β0 = −k
}
. (9.10)

Sk effectively defined a hypersurface of constant φcrit = k, and the solutions of φ for (α0, β0)

within Sk can be viewed as an one-parameter family curve, where one of α0 and β0 is re-

dundant for specifying the coupling function. We choose β0 as the parameter – thus α0 is

redundant – for the later analysis.

In the left panel of Fig. 9.1, we show that the amplitudes of the GW signals at the distance

of r = 5×109 are too small by comparing with the critical value k = 0.05, which corresponds

to a horizontal line far above the signals. We see that φ for different parameters have similar

waveform morphology, while the two associated with β0 = −2 and −4 are different from

the others since they do not or barely possess the second twist before reaching the peak

around 0.3s. As introduced in [458], the amplitudes of the signals at the wave zone of

their propagations with different Compton lengths [Eq. (8.11)] of the scalar field have an

approximate universal relation. If we ignore the φ-independent source term of −4πGα0T

in (8.6), the Compton length will be a function of β0. The signals belong to a particular

hyperspace Sk have a homologous form, while this universality will be broken if −4πGα0T
⋆ is

present. We quantify the deviation by the absolute value of the ratio between the coefficients

of the zeroth and first order terms on the right hand side of (8.6), given by

δ :=
−4πGα0T

⋆

−4πGβ0T ⋆ +m2
=

−k
1− (4πGβ0)−1γ

, (9.11)

for γ = m2/T ⋆. Consequently, we have that δ ≈ −k = −0.05 for S0.05 as the linear term

dominates, and δ → 0− otherwise. The behaviors of δ as a function of β0 with several values

of γ are plotted on the left panel of Fig. 9.2, while the right panel depicts the case with

γ = 1. For the signals in Fig. 9.1, our simulation on the right panel of Fig. 9.2 illustrates that

the deviation is ≲ 1.31% from the leading order limitation for β0 ≤ −6, whereas deviations
with twice and three times magnitude are resulted for, respectively, β0 = −2 and −4. From
Fig. 9.1, we see that the homologous form has been distorted for the later two cases.

For S1×10−5 in the right panel of Fig. 9.1, the amplitudes of the GW signals at the same

extraction distance are comparable to those at the critical value φ = k = 1 × 10−5, and

hence the constraint is more stringent in this case. Any solution crossing the dashed line

φ = k will be ruled out. For the cases here, δ is minor compared to −k = −1 × 10−5

(−δ/k = 0.20− 0.26%), thus the shapes of the signals do not deviate much. In addition, we

see that the peaks of the curves increase for decreasing β0 until they touch the non-crossing

line. We can define the corresponding parameter as the critical value of β0, denoted by βc.

As a result, there exists a value of βc such that the peak of φ reaches the value of φcrit.

Consequently, any case with |β0| > |βc| will be forbidden due to its crossing with the line of
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model WH12 with the self-interaction couplings of λ =0, 102, 103, 104 and 106, respectively, where the
vertical dashed line denotes the time of the stellar core bounce.

φcrit.

In Fig. 9.3, we consider some particular values of k, and find the constraints on β0 for

each k. The parameter space is split into two pieces bounded by the solid curve, in which the

parameters in the yellow region are ruled out as far as the reversibility between two frames is

considered. We note that the shade area will change for the different initial data/progenitors

as well as EOS.

9.3.2 Collapse in Self-Interacting Theory

9.3.2.1 Core Collapse to Neutron Stars

For the particular progenitor WH12, the ST parameters are fixed to be α0 = 10−2 and

β0 = −20, which trigger the strong scalarization in the remnant NS as shown in Refs. [90,441].

Our main interest here is to investigate how the triple-scalar interaction in Eq. (9.8) affects

the scalar field dynamics during the core collapse and its subsequently produced GW signals.

In Fig. 9.4, we show the scalar field value at the stellar center as a function of time, i.e.,

φc(t) ≡ φ(t, r = 0). We can see that the strong spontaneous scalarization occurs at the

time of the core bounce, t ≃ 0.038 s, for all triple-scalar coupling strength λ considered.

The departure of the scalar dynamics around the star center from the non-interacting ST

gravity (λ = 0) is found to be inconsiderable for a moderate coupling strength λ ≲ 104.

However, when λ approaches or exceeds ∼ 106, we can observe the significant suppression in

the magnitude of the scalarization (the green dashed line in Fig. 9.4).

The suppression of the spontaneous scalarization is more evident in the rescaled field

σ ≡ rφ. (9.12)

Extracting σ at a fixed distance of rex = 5× 104 km, in Fig. 9.5 we plot σex ≡ σ(rex) in the
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Figure 9.5: Scalar GW signals for WH12 extracted at the radius rex = 5 × 104 km for the self-interaction
couplings of λ =0, 102, 103, 104 and 106, respectively, where the vertical line on the right plot denotes the
characteristic frequency fφ = 2.42 Hz [Eq. (9.9)].
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Figure 9.6: Scalar GW waveforms for WH12 extracted at different radii rex = (5, 10, 15)× 104 km.

time domain (left panel), and the associated Fourier transformed signals σ̃ex(f) [532] in the

frequency domain (right panel). For the self-coupling up to λ ∼ 102, the difference in σex

from the non-self-interacting ST gravity is negligible. However, when λ approaches ∼ 103,

we begin to see a mild suppression and a small phase shift. The suppression and the phase

shift are enlarged with increasing λ as a consequence of the frequency-related quenching due

to the scalar self-interaction, similar to that found in [441]. In particular, the scalarizaion is

reduced from the case without the self-interaction by more than two orders for λ ≳ 106.

In addition, the right panel of Fig. 9.5 plots the frequency-domain, where we see that the

suppression is more significant for f ≲ fφ = 2.42 Hz. Due to their smaller group velocities,

the low-frequency modes spend more time propagating out of the (strong) interaction regime

near the star so that they experience more suppressions by self-interactions. To illustrate

this effect, we plot σ at three radii rex = (5, 10, 15)× 104 km with λ = 103 in Fig. 9.6. These

distances lie in the wave zone [458] and are much larger than both the reduced Compton

wavelength (8.11) of the massive scalar and the gravitational radius rG = GMNS/c
2 with
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part, while ones on the right panel correspond to the region near the core bounce and the BH formation,
respectively.

MNS denoting the NS mass. In the left panel of Fig. 9.6, we see that the time-domain

signal becomes much more oscillatory since the dispersion during the propagation screens

out the low frequency modes for a distant observer, as expected. When transformed into the

frequency domain (the right panel of Fig. 9.6), the modes with frequencies higher than fφ

remain unchanged, while the spectra below this critical frequency decay exponentially. This

implies that only the high-frequency scalar signals can travel astrophysically long distance

to be detectable on the Earth. Focusing on the high frequency signals, the choice of the

extraction radius is irrelevant therefore.

9.3.2.2 Core Collapse to Black Holes

Now we turn to simulation results for the progenitor model WH40. In order for the strong

scalarization to occur in the proto-NS prior to the BH formation, we set the ST parameters

as α0 = 3×10−3 and β0 = −5. We shall repeat the above analysis to see the effects of the self-

interaction term in Eq. (9.8) on the dynamics of the stellar evolution and the scalar-polarized

GW radiations.

Fig. 9.7 presents the evolutions of the scalar field at the center of the compact objects for

the WH40 progenitor. Obviously, the dynamics is much more complicated than the WH12

model. We begin our discussion with the non-self-interacting case, i.e., λ = 0. The stellar

core bounce firstly produces a weakly scalarized NS with φc ∼ −5 × 10−4 at tw ≃ 0.085 s,

which then transits to a strongly scalarized NS at ts ≃ 0.35 s due to the accretion of ambient

materials. In this particular model, the continuous infalling material makes the stellar core

massive enough to cause the gravitational instability, i.e., the mass of the remnant exceeds

the maximal mass that can be supported by the EOS considered. Eventually, a BH forms at

some point tBH, which depends on λ (see below).
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Figure 9.8: Scalar GW signals in the time domain (left panel) and frequency domain (right panel) for the
progenitor model WH40 extracted at the radius rex = 5 × 104 km for different values of the self-interaction
coupling λ =0, 102, 103 and 104, respectively. The inset in the left panel illustrates the scalar GWs around
the core bounce which generates a weakly-scalarized NS.

The extent to which the scalarization is triggered and the lifetime of the strongly-scalarized

state (tBH − ts) depend on λ. The left panel of Fig. 9.7 shows the cases with a moderate

level of λ, where we see that φc goes down to ∼ −0.25 at ts, and then the scalarizaion is

progressively strengthened to φc ∼ −0.35 at the moment right before the BH formation.

The strong scalarization lasts for ∼ 1.24 s, and is followed by a transient decrease of the

scalarization at tBH in accordance with the BH no-hair theorem. In addition, when λ ≲ 103,

we do not see any visible deviation from the case without self-interactions. As λ increases

to ≳ 104, the degree of the scalarization during the strong-scalarization stage is weakened a

little, but the duration tBH − ts becomes a bit longer owing to a delay in the BH formation.

Such trend continues and becomes more evident with increasing λ until λ ∼ 106. In the

right panel of Fig. 9.7, we plot the case with strong coupling strengths λ = 106 and 108. For

λ = 106, the degree of the scalarization is a bit slighter than the aforementioned case with

the moderate λ and the lifetime of the proto-NS becomes very short with tBH − ts ≲ 0.01 s.

When λ = 108, we find that the strongly-scalarized proto-NS stage completely disappears,

leading to a scenario that a weakly-scalarized NS directly collapses to a BH.

Having shown the influence of λ on φc, we now turn to investigate how λ affects σ,

especially σex. In Figs. 9.8 and 9.9, we present σex in both the time and the frequency

domains. As illustrated in the left panel of Fig. 9.8, we can find clear time-domain signatures

corresponding to the transitions between different stages of the multi-stage BH formation

scenario. In the inset figure, we see a small variation in the amplitude at the retarded time

tr ≡ t − rex/c = 0.085 s, which matches the timing of the core bounce. The sudden drop

at tr ≃ 0.35 s and the sharp peak around tr ≃ 1.59 s reflect the transition from weakly-

to strongly-scalarized configurations and the descalarization caused by the BH formation.

Moreover, compared with the non-self-interacting case, the evolution of σex keeps intact for

λ ≲ 103. When λ increases to 104, the suppression of the amplitude for GW signals can
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Figure 9.9: Label is the same as Fig. 9.9, except for λ = 106 and 108. The two insets in the left panel
correspond to the scalar GW signals at the core bounce and the BH formation, where we have artificially
enlarged the field values by a factor of 10 for the case with λ = 108 in order to make its dynamical evolution
clearer.

be seen in both the time and frequency domains. On the other hand, as shown in the left

panel of Fig. 9.9, besides the small structure at the core bounce, we only see some rapid

oscillations around the BH formation for λ ≳ 106, which indicates the disappearance of the

strongly-scalarized NS stage. Furthermore, the right panel of Fig. 9.9 illustrates that the

scalarization is diminished greatly by several orders for λ = 106 and 108 in comparison with

the case of λ = 0.

9.4 Scalar Detectability

For the scalar GW signals in the ST gravity, there exist several search strategies [90], such

as monochromatic continuous-wave searches, stochastic searches, and burst searches. For

instance, for a CCSNe that is detected by optical observations or all-sky GW searches, the

best strategy is through the continuous quasi-monochromatic GW search [90, 442, 458, 533]

pointed to the location of that source. In this subsection, we present our prediction of the

detectabilities of such source-targeted continuous searches of the scalar GW signals for the

progenitor models WH12 and WH40.

By implementing a fourier transformation to the scalar GW waveforms extracted at rex =

5 × 104 km, we can obtain the spectral power densities for both progenitor models. In

Fig. 9.10, we plot
√
So(f) at several time points after the GW emission with various triple-

scalar coupling strengths. Here, the distance between the Earth and the source is assumed to

be of the galactic scale, i.e., D = 10 kpc. Since the signal would keep nearly monochromatic

for the period of O(month), the observational duration is taken to be T= 2 months. For

both WH12 and WH40, we see that

• the quasi-monochromatic signal slowly moves to low frequencies in accord with the

inverse-chirp formula (8.15) [cf. also Eq. (53) in [458]],
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Figure 9.10: Power spectrum densities of the core collapse into a NS for the progenitor models WH12 (upper
panel) and into a BH for WH40 (lower panel) with the self-interaction couplings λ =0, 102, 103, 104 and 106,
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plot. In comparison, we also plot the noise power spectral density of LIGO, ET, and CE.

•
√
So(f) varies within two orders over time for a given coupling strength,

• the triple-scalar self-interaction suppresses the magnitude of the scalar gravitational

radiation generated by the stellar core collapses.

The predicted scalar GW signals are similar to the non-interacting case for up to λ ∼ 103,

whereas we observe a small reduction in the signal amplitude when λ increases to ∼ 104.

When λ ≳ 106, the scalar-polarized GW is suppressed by two orders for the WH12 model,

while for the WH40 progenitor the suppression is frequency-dependent, viz. the low-frequency

modes decrease in amplitude more than the high-frequency part of the spectrum.

On top of the scalar GW strain of our models, Fig. 9.10 also shows the noise curves of

the current LIGO detectors, and the near-future ET and CE experiments, whereby we can

estimate the SNRs of signals. It turns out that, even though the scalar GW signal amplitude

of the WH12 model with λ ≲ 104 observed for 2 months in the first 3 years after the core

collapse can be higher than the LIGO noise curve, the SNR in this optimal case can only reach

ρ ≃ 2 at most, which is unlikely to be detected. For other choices of the coupling constant

values, progenitor models and observation duration would result in power spectral densities
√
So lower than the LIGO sensitivity curve, implying that it is impossible to measure them

with LIGO. In contrast, with the future ET and CE detectors, some signals may reach SNRs

of ρ ∼ O(100) and remains visible for several centuries.

9.5 Conclusions and Discussions

The stellar core collapse provides us with valuable tests of ST theories due to the possible

formation of the NS in the intermediate stage or as the final state of the process. The sponta-

neous scalarization may be induced in those NS and produces strong scalar or monopole GW
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signals. In the present Chapter, we have studied the effects of the triple-scalar self-interaction

[Eq. (9.8] on the scalar field dynamics and the subsequent scalar GW generation. In order to

achieve this goal, we have performed simulations based on the open-source code GR1D which

is extended to the massive ST gravity with the triple-scalar self-interaction. We have focused

on two specific pre-SN models with the primordial metallicity in the WH list, viz. WH12 and

WH40, corresponding to stars with ZAMS mass of 12M⊙ and 40M⊙, respectively. These two

progenitors are representative of two typical collapse processes: WH12 collapses into a NS,

while WH40 ends up to a BH. The ST parameters α0 and β0 are chosen specifically for each

model so that the strong scalarization can take place in simulations.

As a result, we find that the triple-scalar self-interaction generically suppresses scalariza-

tion during collapse, consistent with the conclusions of [441, 442]. Such suppressions can be

shown either from the scalar dynamics at the center, or from the produced scalar GW signals.

However, the suppression is considerable only for sufficiently large self-interaction coupling

λ; in particular, it should be λ ≳ 103 for WH12 and λ ≳ 104 for WH40. In addition, the

self-interaction can alter the scalar evolution of the collapse of WH40, where the strongly

scalarized stage during the BH formation can be completely eliminated if λ reaches ≳ 106.

For the massive scalar GWs propagate over astrophysically long distances, the self-interaction

effects have been shown to be negligible, and the dispersion of GWs is solely determined by

the scalar mass. It turns out that scalar GW signals detected on the Earth have the inverse-

chirp feature as in massive ST theories [90]. We have accessed the detectability of the scalar

GW signals produced by the galactic WH12 and WH40 pre-SN sources by estimating their

SNRs. Although it is unlikely to observe the inverse-chirp signals for both progenitors with

the current LIGO detectors, signals of these two models can reach SNRs of O(100) with the

future ET and CE detectors and remain visible for several centuries.

In this study, our simulations have been performed with fixed nuclear matter EOS pa-

rameters and specific values of the ST gravity parameters (α0, β0). However, it is well known

that the nuclear matter property would significantly affect the hydrodynamic evolution of

matter fields during the core collapse [534, 535], which would in turn dramatically modify

the dynamics of the scalar field and the generated GW waveforms. Additionally, it has been

pointed out in Ref. [458] that the stellar collapse scenarios changes with the different choices

of the ST parameters (α0, β0). Especially, as the value of β0 becomes more and more neg-

ative, the degree of scalarization tends to be intensified and the corresponding GW signals

are expected to be stronger. Moreover, there have been several studies on the spectrum of

radial quasinormal modes (QNMs) of NSs in the ST gravity theory [430, 536, 537]. It is well

expected that the radial QNMs would show themselves in the scalar GW spectrum at the

late stage of the stellar collapse. According to the discussion in Ref. [430] which has also

addressed the spontaneously scalarized NSs with a negative β0, there are two classes of radial

QNMs: the pressure-led fluid modes and the scalar ϕ-modes. It is seen from the plots of
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Fig. 2 in this reference that typical frequencies of the fluid modes are of O(kHz) and that of

the fundamental ϕ-mode is around or below 1 kHz, while the damping times of these modes

are of O(0.1− 1) ms. However, in our simulation, the minimal sampling time interval is only

1 ms, which means that we do not have enough precision to resolve the QNM signals for both

modes. In order to see these modes clearly, one needs to improve the simulation precision

in time interval at least by one to two orders. Nevertheless, the full exploration of all these

aspects is well beyond the scope of the present article, and will be deferred to the future

work.
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Breakdown of Contributions

I contribute to producing almost all the plots (one is generated by D. D. Doneva), and car-

rying out the numerical simulations with a code modified by me from the previous code

of P. C. K. Cheong which is based on GR1D but has been tailored into scalar-tensor the-

ory. The manuscript is jointly completed by me (illustration of the numerical results), and

D. D. Doneva (motivation and general discussion). S. S. Yazadjiev assists in discussion and

complements a theoretical capture of the conception of “lost hyperbolicity” to account for

the termination of the numerical simulations.

Overview

In a certain class of scalar-Gauss-Bonnet gravity, the black holes and the neutron stars can

undergo spontaneous scalarization – a strong gravity phase transition triggered by a tachy-

onic instability due to the nonminimal coupling between the scalar field and the spacetime

curvature. Studies of this phenomenon have, so far, been restricted mainly to the study of

the tachyonic instability and stationary scalarized black holes and neutron stars. To date, no
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realistic physical mechanism for the formation of isolated scalarized black holes and neutron

stars has been proposed. We study, for the first time, the spherically symmetric fully nonlin-

ear stellar core collapse to a black hole and a neutron star in scalar-Gauss-Bonnet theories

allowing for a spontaneous scalarization. We show that the core collapse can produce scalar-

ized black holes and scalarized neutron stars starting with a nonscalarized progenitor star.

The possible paths to reach the end (non)scalarized state are quite rich leading to interesting

possibilities for observational manifestations.

10.1 Introduction

Among the modified gravity theories, the scalar-Gauss-Bonnet (SGB) gravity takes a special

place. This theory is an extension of general relativity (GR) and contains a dynamical

scalar field coupled to the Gauss-Bonnet (GB) invariant. The roots of SGB gravity lay in

the low-energy limit of quantum gravity and unification theories [86, 87] as well as in the

effective field theories. As in GR, the field equations of SGB gravity are of second order

and the theory is free from ghosts. There exists a particular class of SGB theories which

gives rise to spontaneously scalarized black holes (BHs) and neutron stars (NSs) [91,105,106,

538]. More precisely, the spacetime curvature itself can induce a tachyonic instability that

spontaneously scalarizes the black holes or the neutron stars. This class of SGB theories is

indistinguishable from GR in the weak field limit and is yet unconstrained by gravitational

wave (GW) observations. Since this interesting phenomenon is the only known dynamical

mechanism for endowing black holes and neutron stars with scalar hair, it has attracted a lot

of interest in recent years (though a novel nonlinear mechanism that can lead to dynamical

formation of scalar hair beyond the standard spontaneous scalarization was recently proposed

by [450]).

Thanks to the efforts of many researchers, the spontaneous curvature induced scalarization

in SGB gravity has been extensively studied, and now, we have a pretty good understanding

of this phenomenon. In particular, the tachyonic instability that triggers the spontaneous

scalarization is, to a large extent, well understood [91,92,105,106,538–540]. The same applies

to the static or stationary BH and NS solutions that are the end states of the tachyonic

instability [91,106,538,541–544]. Even the highly nonlinear dynamics of the curvature induced

spontaneous scalarization is, to some extent, well understood from a mathematical point of

view [93, 545] including the dynamical descalarization during black hole merger [95, 546]

(see, also, [547]). However, there is a very important link missing in our understanding of

the curvature induced spontaneous scalarization. Up to now, no realistic physical scenario

for the formation of isolated, scalarized BHs and NSs has been investigated. The purpose

of the present Chapter is to show that the scalarized compact objects can be formed under

gravitational core collapse (CC) of a nonscalarized progenitor star and to explore the different
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scenarios depending on the theory parameters and the progenitors.

Numerical simulations that demonstrate the core-collapse process with a scalarized com-

pact object as the remnant have been limited in scalar-tensor theories [90, 435,441,442,456,

458] until now. In this case, though, scalarization of BHs is typically not possible (for inter-

esting, though not so astrophysically relevant exceptions, we refer the reader to [409–411]).

Since SGB theories allow for nonlinear development of BH scalar hair, they provide a richer

phenomenology of the core collapse. However, the complexity of the field equations is signif-

icantly increased. In the present Chapter, we go beyond the commonly employed decoupling

limit approximation [93,546,547] and consider the coupled evolution of the spacetime, matter

and the scalar field.

10.2 Gauss-Bonnet theory

The action of the sGB gravity in the presence of matter is the following:

S =
1

16π

∫
d4x
√
−g
[
R− 2∇µφ∇µφ+ λ2f(φ)R2

GB

]
+ Smatter(gµν ,Ψm). (10.1)

where f(φ) is the coupling function of the scalar field φ to the GB invariant R2
GB = R2 −

4RµνR
µν+RµναβR

µναβ. The GB coupling constant λ has dimension of length, and the matter

fields are collectively denoted by Ψm.

The field equations derived from the action are

Rµν −
1

2
Rgµν + Γµν = 2∇µφ∇νφ− gµν∇αφ∇αφ+ 8πTµν ,

(10.2)

∇α∇αφ = −λ
2

4

df(φ)

dφ
R2

GB, (10.3)

where Tµν is the matter energy-momentum tensor that can be proven to satisfy ∇µTµν = 0

and

Γµν =−R(∇µΨν +∇νΨµ)− 4∇αΨα

(
Rµν −

1

2
Rgµν

)
+ 4Rµα∇αΨν + 4Rνα∇αΨµ − 4gµνR

αβ∇αΨβ + 4Rβ
µαν∇αΨβ (10.4)

with Ψµ = λ2[df(φ)/dφ]∇µφ .

We consider asymptotically flat spacetimes with zero cosmological value of the scalar field

φ∞ = 0. The GB coupling function f(φ) allowing for spontaneous scalarization has to obey

the condition (df/dφ)(0) = 0. In addition we can impose f(0) = 0 and (d2f/dφ2)(0) = ϵ

with ϵ = ±1.
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10.2.1 Evolution equations

In the present Chapter, we will study the coupled evolution of the scalar field, the matter,

and the spacetime in spherical symmetry [cf. the metric Eq. (2.1), while we change the

notation from λ(r) to Λ(r) to leave the symbol λ for the coupling strength of Gauss-Bonnet

term], which is a simplification also adopted in previous studies on core collapse in alternative

theories of gravity [90, 435, 441, 442, 456, 458]. We will model the matter as a perfect fluid

with energy-momentum tensor Tµν = ρhuµuν + pgµν and particle density current Jµ = ρuµ.

Here ρ is the rest-mass (baryonic) density, p is the fluid pressure, h = 1+ e+ p
ρ
is the specific

enthalpy with e being the specific internal fluid energy, and uµ is the fluid 4-velocity. Due to

the spherical symmetry, the 4-velocity of the fluid can be written as

uµ =
1√

1− v2
(e−Φ, ve−Λ, 0, 0) (10.5)

with v = v(t, r) being the fluid velocity.

A well established approach to handle the shock discontinuities appearing in the fluid is

the use of the high-resolution shock-capturing schemes. This approach requires the equations

of motion to be written in flux conservative form using conserved variables. In our case the

conserved variables are D, Sr and τ , and they are related to the standard primitive variables

ρ, v and p by

D =
ρeΛ√
1− v2

, Sr =
ρhv

1− v2
, τ =

ρh

1− v2
− p−D. (10.6)

The flux conservative equations of the relativistic hydrodynamics take then the form

∂tU+
1

r2
∂r
(
r2eΦ−Λf(U)

)
= s(U). (10.7)

where U is the state vector of the conserved variables, namely U = [D,Sr, τ ]. The flux

vector f(U) and the source vector s(U) are defined by

f(U) =[Dv, Srv + p, Sr −Dv], (10.8)

s(U) =[0, (Srv − τ −D)eΦ+Λ(8πrp+
m

r2
) + eΦ+Λp

m

r2
+ 2eΦ−Λp

r
, 0]. (10.9)

The dimensionally reduced field equations, in terms of the conserved variables, for the
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metric functions Φ and m and the evolutionary equations for the scalar field are

(1 +A)Φ′ + BX
2

r
ṁ = X2

(
4πr(srv + p) +

m

r2

)
+

(P 2 +Q2)r

2
+

4mλ2

r2

(
d2f

dφ2
P 2 +

df

dφ
eΛ−ΦṖ

)
,

(10.10a)

(1 +A)m′ + Bṁ = 4πr2(τ +D) +Am
r
+

r2

2X2
(P 2 +Q2) +

4mλ2

rX2

(
d2f

dφ2
Q2 +

df

dφ
Q′
)
,

(10.10b)

Cm′ + (1 +A)ṁ = −4πr2αX−1sr + Cm
r
+ eΦ−3Λr2PQ+

4mλ2

r
eΦ−3Λ

(
d2f

dφ2
PQ+

df

dφ
P ′
)
,

(10.10c)

∂tP = eΦ−ΛQ′ + eΦ−Λ(Φ′ − Λ′ +
2

r
)Q− 1

4

dV (φ)

dφ
eΦ+Λ + 2

df(φ)

dφ

λ2

r2
eΦ+Λ

×
{
(1− e−2Λ)

[
1

r
(Φ′ − Λ′)e−2Λ − 8πp+ (Q2 − P 2)e−2Λ +

Γθθ
r2

]
− 2Φ′Λ′e−4Λ + 2Λ̇2e−2Φ−2Λ

}
,

(10.10d)

and

∂tQ =eΦ−Λ[P ′ + (Φ′ − Λ′)P ]. (10.10e)

where Q = ∂rφ and P = eΛ−Φ∂tφ. We see that the scalar field couples to the metric functions

via

A = λ2Q
df

dφ

2

r
(1− 3e−2Λ), B =

4mλ2

r2
eΛ−ΦP

df

dφ
, and C = 4mλ2

r2
eΦ−ΛP

df

dφ
. (10.11)

The aforementioned equations are solved numerically with the scheme of [548]. Equations

(10.10b) and (10.10c) form a system of equations(
1 +A B
C 1 +A

)(
m′

ṁ

)
=

(
LHS of (10.10b)

LHS of (10.10c)

)
; (10.12)

however, equation (10.10a) should be solved for simultaneously with the θθ component of the

equation for Γµν (can be found in the main text of the paper) and (10.10d), symbolized by

T

 Φ′

Ṗ

Γθθr
−2

 = V (10.13)

where T and V can be obtained after a lengthy manipulation of relevant equations. We solve

the mass function [Eq. (10.12)] and the redshift Φ [Eq. (10.13)] iteratively until the com-

putational error drops below a predefined threshold. In solving Eq. (10.13), Ṗ is obtained
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simultaneously, which then is used to evolve the scalar field. In order to close the hydro-

dynamical system of equations we have to specify the EOS giving the pressure and other

thermodynamical quantities as a function of the mass density, internal energy and possibly

the chemical composition. We adopt the hybrid EOS (7.12) introduced in Chap. 7 together

with the termal treatment introduced in Chap. 9.

As the final piece to be specified about the numerical setup, let us briefly comment on the

grid we employ. Due to the fact that the functions we compute exhibit much stronger spatial

variation in the central region of the star compare to the outer wave zone, the computational

domain in the GR1D code [434, 435] is divided in two parts – an inner grid with a constant

spacing and an outer grid where the spacing increases exponentially. This provides us with the

opportunity to follow the dynamics in the inner core with a good resolution while allowing

to extend the computational domain to large distances at acceptable computational cost.

For an extensive discussion on the grid construction in the GR1D code we refer the reader

to [434, 435]. Unless otherwise specified, in our simulations the two pieces of the grid are

matched at 40 km and the outer boundary is located at 9× 105 km. The inner grid bin (cell

width) is equal to 15m. For the numerical calculations, we employ the GR1D code [434, 435]

with a significant modification implemented in order to deal with the SGB field equations in

the fashion of [545,548].

Although different coupling functions satisfying the scalarization criteria can be intro-

duced, the difference between the stable scalarized solutions (if exists; such solution is absent

for, e.g., the simplest choice f(φ) = φ2) and their dynamics is mainly quantitative [93, 549].

From a numerical point of view, one of the least problematic, generic, and widely used cou-

pling functions for which stable scalarized BHs can exist is the following [95,106,538,541,543]

f(φ) =
ϵ

2β

[
1− exp(−βφ2)

]
, ϵ = ±1, (10.14)

where β > 0 is a parameter that has not been constrained by the observations yet. Based

on [93,549], we expect that the main results in this Chapter will remain qualitatively similar

for a broad class of couplings that lead to scalarization.

10.2.2 Hyperbolicity

If strong enough scalar field is realised, the evolutionary differential equations will lose locally

their hyperbolicity, i.e., the discriminant of the characteristic equation D becomes negative

at some places [545, 550]. As a consequence, the set of equations is no longer well-posed in

the sense that the solution is not unique for the mix-type differential equations, and thus

the predictability of the theory is polluted. However, for certain range of the parameters the

influence of scalar field on the matter sector will maintain small enough that the hyperbolicity

holds everywhere throughout the evolution [95, 545, 548]. In particular, for the framework
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Figure 10.1: The discriminant of the characteristic equation as a function of r at several moments. We
consider z12 progenitor, and set λ = 80 and β = 5000. The chosen parameters and the progenitor model
correspond to the channel “ϵ = −1: CC−φNS”.

adopted in this Chapter, the scalar hair of an equilibrium is weaker with increasing β when

λ is fixed [538]. The hyperbolicity will be preserved throughout the dynamical formation of

the equilibrium for small enough β therefore.

Although the simulation results will be detailed below, here we make an early advantage

of the result of the channel “ϵ = −1: CC−φNS” (defined in Fig. 10.3, and the simulation

result is plotted in Fig. 10.4 below), we show in Fig. 10.1 the discriminant of the characteristic

equation as a function of r for λ = 80 and β = 5000 at several moments. The numerical

evolution of the model crashes at ∼38.06 ms due to the violation of hyperbolicity at ∼1.51
km, which indicates the onset of the ill-posedness of the evolutionary equations.

10.3 Possible core-collapse scenarios

As initial data for the scalar field, we consider a Gaussian pulse with a mean of 200 km,

minute amplitude of 10−10, and standard deviation of 100 km, while we note that the results

are independent of the explicit form of the initial data.

Depending on the progenitors, the coupling constants β and λ, and the sign of ϵ, the

final outcome of the core collapse and the path to reach it can vary significantly. Fig. 10.3

represents all possible outcomes, which are divided into two major classes: ϵ = 1 and ϵ = −1.
While in the former case (ϵ = 1), both NSs and BHs can scalarize, in the latter case (ϵ =

−1) scalarization is not possible for static BHs and only NSs can develop nontrivial scalar

field [91, 106, 538]. In addition, scalar field can develop during the formation of either the

protoneutron star (PNS) or the BH. For ϵ = −1, scalarization can appear only temporarily

at the PNS stage. Let us note that if a relatively fast rotating BH is formed after the core
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Figure 10.2: Possible outcomes of stellar core collapse in SGB gravity.

collapse, it might be possible to have another scenarios for ϵ = −1 because of the spin-induced
scalarization [92, 539, 540, 543, 544]; however, production of a rapidly rotating protoneutron

star after a core collapse seems to be a rare event [551,552].

We set λ and β to appropriate values for the aforementioned scenarios to be realized. The

critical central energy density ρbifurc, above which scalarization is possible, is controlled by

λ, while β is responsible for the “degree” of scalarization [538]. In general, larger β leads to

weaker scalar fields (for a fixed λ).

10.3.1 Progenitors

For the progenitors of stellar core collapse, we use some models provided in Woosley & Heger’s

catalog [531]. The simulated results are qualitatively the same. In particular, for the remnant

with the central density larger than the λ-dependent ρbifurc, scalarization is observed, whose

degree then depends on β. Without loss of generality, here, we present the simulations with

two progenitors z12 and z40, having primordial metallicity, that have also been investigated

in scalar-tensor theory [90,435,441] and are good for comparison.

The model z12 has the zero-age-main-sequence (ZAMS) mass ofM = 12M⊙ and collapses

to a stable PNS. The steep density gradient outside its iron core results in a low accretion rate

after bounce. On the other hand, the model z40, more massive withM = 40M⊙, evolves into

a short-lived PNS which then collapses to a BH as its shallow density leads to high accretion

rate after bounce. Simulations adopting an approximation of deleptonization show the index

for the softer, cold piece of EOS to be Γ1 ∼ 1.3 [534], while Γ2 = 2.5 − 3 is found to be

approximants for some realisitc finite-temperature EOS [535], e.g., Shen [553] and Lattimer

and Swesty [554] EOS, for the stiffer, cold component. The thermal description of a mixture

of relativistic and non-relativistic gas can be translated to 4/3 < Γth < 5/3. As in Chap. 9,
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Figure 10.3: Central densities (top panel) and central values of redshift (bottom panel) of supernova progen-
itors z12 (blue line) and z40 (yellow line) [531] as functions of time in GR. The formation of a black hole is
numerically defined to form as central redshift eΦ < 0.01.

the values of Γ1 = 1.3, Γ2 = 2.5, and Γth = 1.35 have been taken as canonical following,

e.g., [90,435,441,442,458]. We note that our simulations show that different combinations of

parameters, each falling in the aforementioned range, does not phenomenologically alter the

scalar field dynamics. The evolution of the progenitors’ central density and redshift in GR

is shown in Fig. 10.3. The evolution will remain qualitatively and quantitatively similar for

weak to moderate scalar fields. A significant change is expected for strong scalar fields, but

they might lead to loss of hyperbolicity and deserve special attention (see below).

10.3.2 Core collapse to a scalarized neutron star

For the model z12, the remnant of the collapse is PNS, which may be imbued with scalar field

for both ϵ = 1 and ϵ = −1. However, the profiles of the scalar hair differ considerably from

each other. We first show the case with ϵ = −1 in fig. 10.4, where a spontaneous scalarization

occurs upon the formation of the PNS remnant. We see that the PNS forms at ∼ 38 ms

resulting in a rapid development of a scalar field. Afterward, the hot mantle ranging from

∼ 10 − 20 km still accretes matter onto the remnant as illustrated by the velocity profile;

the extent to which the scalar field is excited is enhanced with increasing compactness [the

third from top panel of Fig. 10.4]. Clearly, the scalarization first develops in the immediate

vicinity of the remnant, and then, it propagates to infinity as the profile of φ settles to a

quasiequilibrium one. The spontaneous appearance of rφ at the associated retarded time

indicates that the scalar wave propagates at the speed of light in SGB. We have checked rφ

at three different places, viz. 500 km, 5000 km, and 50 000 km, to confirm it does saturate.

As it is well known, in certain regions of the parameter space, the SGB field equations lose
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Figure 10.4: (scenario “ϵ = −1: CC-φNS”) Temporal snapshots of scalar field φ and fluid velocity v as
functions of the distance from the core r = 0 for the z12 progenitor are plotted in the upper panel. In the
lower panel, the evolution of the central value of the scalar field φc and the scalar charge rφ taken at a very
large distance, 50 000 km, are displayed. Markers in the bottom panels indicate the time of snapshots having
the same colors in the corresponding upper panels. We have taken ϵ = −1, λ = 80, and β = 7000.

their hyperbolic character [95, 545, 550]. How to deal with this problem in SGB theories is

still an open question and is beyond the scope of the present Chapter. In our simulation, we

observed that, if we fixed λ, there is a threshold β below which the system loses its hyperbolic

character (see Sec. 10.2.2). In practice, this effectively limits the strength of the scalar field

since larger β leads to weaker scalar field (for fixed λ). The parameter β for the simulations

presented in this Chapter is chosen to be close to this threshold β, and the results remain

qualitatively similar for larger β. For the presented model, the change of the metric function

with respect to GR is relatively small, of the order of 1%, and the total energy of the scalar

field reach ≲ 1% of the compact object mass. The threshold for loss of hyperbolicity will also

depend on the progenitor properties, the employed EOS, and the parameters of the theory.

A thorough investigation of this threshold as different parameters of the system are varied

will be considered somewhere else.

We then turn to consider the case with ϵ = 1 that leads to the formation of a scalarized

protoneutron star for the z12 progenitor in Fig. 10.5. As observed in [538], for the same mass

neutron star, the case with ϵ = 1 requires larger λ to scalarized compared to ϵ = −1 and that

is why we have chosen to work with λ = 120. Qualitatively the scalar field evolution has the

same characteristic as for the “ϵ = 1: CC-φNS” case. The only major difference is the scalar

field profile that is drastically different for positive and negative ϵ. The reason lies in the

fact that R2
GB of the protoneutron star remnant is positive(negative) for r ≳ (≲) 7.77 km,

implying the source term in the scalar field equation has the minimal value at some point

r < (>)7.77 km for ϵ = −1(+1). Naturally, the scalar field will have a maximum where the
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Figure 10.5: (collapse to a scalarized neutron star “ϵ = 1: CC-φNS”) Temporal snapshots of scalar field φ
and fluid velocity v as functions of the distance from the core r = 0 for the z12 progenitor are plotted in
the upper panel. In the lower panel the evolution of the central value of the scalar field φc and the scalar
charge rφ taken at a very large distance, 50000 km, are displayed. The time delay between the formation of
protoneutron star and the excitation of scalar charge is consistent with the fact that scalar fields propagate
with the light speed in scalar-Gauss-Bonnet gravity. Markers in the bottom panels indicate the time of
snapshots having the same colors in the corresponding upper panels. We have chosen ϵ = 1, λ = 100, and
β = 14000.

source term has a negative minimum that explains the differences in the scalar field profile.

10.3.3 Collapse to a black hole

Now, we turn to study collapses with a middle PNS stage followed by a BH formation due

to continuous accretion by exhibiting the evolution of z40. As plotted in Fig. 10.3, the PNS

forms at ∼ 85 ms and lives for ∼ 300 ms. Afterward, the BH remnant appears at ∼ 360 ms,

and matter and scalar field cease evolving inside the event horizon once it has formed. The

parameter β is chosen to be close to the threshold where loss of hyperbolicity is observed (for

the corresponding λ).

Two channels are possible in collapses leading to a BH for ϵ = 1, namely, scalarization is

absent or present during the middle PNS stage of the collapse (see Fig. 10.3). In Figs. 10.6

the channel “ϵ = 1: CC-NS-φBH” is presented. Temporal snapshots of scalar field φ as a

function of the distance from the center r = 0 are plotted in the upper panel. In the lower

panel, the evolution of the central value of the scalar field φc and the scalar charge rφ are

displayed. The evolution of φc is just symbolic since it is uncertain how the fields (ρ, p, φ,

. . . ) evolve inside the event horizon, and we plot φc as constant since we freeze the fields

interior to the event horizon similar to [435,456].

Scalarization is only possible for NSs for ϵ = −1. Thus, a scalarized PNS will undergo a
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Figure 10.6: (scenario “ϵ = 1: CC-NS-φBH” ) Temporal snapshots of scalar field φ as a function of the
distance from the core r = 0 is potted for the z40 progenitor in the upper panel. In the lower group of panels,
central value of scalar field φc and the scalar charge rφ are displayed as functions of time. The notations are
the same as in Fig. 10.4. We have taken ϵ = 1, λ = 30, β = 20 000.

descalarizaion before it collapses into a BH. This scenario, “ϵ = −1: CC-φNS-BH”, is depicted
in Fig. 10.7. We see that, upon the formation of the final state BH, the excited scalar field is

eliminated (blue curve in the bottom panel of Fig. 10.7). During the descalarization, most of

the energy stored in the scalar field is swallowed by the BH (≳ 90%), while a small portion

of the energy is radiated away (curves in the top panel of Fig. 10.7). The dynamical result

proves that static BHs can not scalarize for ϵ < 0 [93, 106], illustrating how the scalar field

fades away in SGB.

The emitted scalar radiation Es as a function of time is presented in Fig. 10.8. We see

that, at late times, Es varies in the range 1048 − 1051ergs depending on the core collapse

model. Given that the typical energy emitted through tensorial GWs during core collapse

is 1046 − 1047ergs [555, 556], the scalar waves produced during the (de)scalarization of a

compact object offer a much more efficient channel of energy loss. In the considered SGB

gravity, though, the so-called breathing modes, that are potentially detectable, do not exist.

If a more general form of sGB gravity is considered such breathing modes can be easily present

that would allow us to set constraints on the corresponding SGB theory. Moreover, if one

considers the problem beyond the spherical symmetry approximation, other observational

manifestations of the scalarization can be expected. This is a very complicated task, though,

that has not yet been solved in any alternative theory of gravity.

The second core-collapse scenario we will consider here is “ϵ = 1: CC-φNS-φBH”, where a

collapse to a scalarized black hole, through a scalarized protoneutron stars, is observed. This

case is depicted in Fig. 10.9. We find that, in accordance with [538], the channel for which



Chapter 10. Scalarization and Descalarization in Scalar Gauss-Bonnet Theory 187

4 6 10 20 30 40 50

0

5

10

15

10
-3

B
H

 h
o
ri
z
o

n

0

5

10

100 150 200 250 300 350 400 450 500

0

0.01

0.02

Figure 10.7: (scenario “ϵ = −1: CC-φNS-BH”) The same as Fig. 10.6 but for ϵ = −1, λ = 40, β = 25 000.
Scalarization of protoneutron star reveals (light red and yellow curves in the upper panel); nonetheless, once
the black hole is formed, the scalar field condensates into the event horizon. Descalarization is apparent as
shown by the disappearance of the scalar charge after a period of scalarized protoneutron star stage (blue
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Figure 10.8: The scalar radiation emitted during core collapse for the cases presented in Figs. 10.4, 10.6,
and 10.7. Es(t) is practically independent of r for large distances, and in the figure, it is extracted at the
same point as the scalar charge, i.e., at 50 000 km. The insets represent a magnification around the most
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Figure 10.9: (collapse to a scalarized black hole through a scalarized protoneuton star “ϵ = 1: CC-φNS-φBH”
) Temporal snapshots of scalar field φ as a function of the distance from the core r = 0 is potted for the z40
progenitor in the upper panel. In the lower group of panels central value of scalar field φc and the scalar
charge rφ taken at a very large distance, 50000 km, are displayed as functions of time. We have taken ϵ = 1,
λ = 120, β = 900000

scalarization is present in the middle state of protoneutron star (“ϵ = 1: CC-φNS-φBH”)

needs larger λ compared to “ϵ = 1: CC-NS-φBH”. The scalarization is clearly visible e.g. in

the evolution of the scalar charge where the collapse to an intermediate protoneutron stars

produces a nonzero scalar charge. The charge is further enhanced during the black hole

formation and remains practically constant afterwards.

10.4 Consistency and convergence tests

In this section we detail the reliance of our numerical results with two-fold reasoning. The

equations we utilised to evolve the metric functions Φ and Λ are three of the four extended

Einstein’s field equation; the solved functions must then obey the remaining one, viz. the

{θθ}-component of the extended Einstein’s field equation. Denoting the difference between

the right and the left hand sides of the extended Einstein’s field equation as Eθθ(r), which in

the perfect simulation should vanish everywhere, we measure the self-consistency of our code

via the L2 norm of Eθθ defined by

E =

∫
(Eθθ)

2dr

grid number
, (10.15)

where we divide the usual L2-norm by the grid number or else the parasitical truncate error

at each grid will pile up.

In Fig. 10.10, we plot E as a function of time for the case “ϵ = −1: CC-φNS” discussed in
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Figure 10.10: The L2 norm of Eθθ [Eq. (10.15)] as a function of time for the case “ϵ = −1: CC-φNS” discussed
in the main test of the Chapter with three resolutions.

the main test of the Chapter with three resolutions; in particular, the grid sizes are chosen

to have the ratio of 2 : 1.5 : 1 with the coarsest grid chosen to be the same as the one used in

our simulations. We see that the residuals of the {θθ}-component of the extended Einstein

equations are ≲ 10−5 and have a sharp peak around the time when scalarization happens.

In addition, the heights of this peak and the overall value of E decreases with increasing grid

resolution.

The convergence of the code can be quantified by comparing a certain quantity q yet com-

puted with different resolutions; stipulating we solve q with three resolutions characterised

by the bin sizes of the grid points ∆rlow, ∆rmedi, and ∆rhigh, the convergence order n for q is

defined through

qlow − qmedi

qmedi − qhigh
=

(∆rlow)
n − (∆rmedi)

n

(∆rmedi)n − (∆rhigh)n
, (10.16)

where qlow, qmedi, and qhigh are the particular quantity q solved with low, medium, and high

resolutions. We note that Eq. (10.16) is designed for uniform grid simulation.

The convergence order of the GR1D code is mainly influenced by the fluid dynamics. The

reason is that as shock forms and propagates outwards the convergence deteriorates from

second to first order that is characteristic feature of high-resolution shock-capturing schemes.

This ultimately influences the scalar field as well since its evolution is coupled to the fluid.

Thus, the convergence order will vary in time as well as location within the computational

domain. For an extensive discussion and quantification of these effects we refer the reader

to [435]. In order to test convergence of our modification of the GR1D code we followed [435]

and we collapsed a polytropic star with a low central density, thus large radius, instead of
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z12 and z14. The reason falls in that Eq. (10.16) is designed for uniform grid simulation,

while we adopt for the latter progenitors a grid whose bin size is uniform inside r = 40 km

but then starts exponentially increasing until reaching to the outer boundary (r = 9 × 105

km). Within this setup we managed to confirm that the convergence is of the same order as

for the original GR1D code [435]. Generally speaking, we see that the convergence order of

our code is of second order prior to the formation of sharp wave due to the bounce, which

also triggers the scalarization, while it becomes first order afterwards.

10.5 Discussion

In this Chapter, we presented the first numerical fully nonlinear simulations of the spherically

symmetric stellar core collapse to a BH or a NS in SGB theories allowing for a spontaneous

scalarization. We showed that, in this process, scalarized BHs and NSs can be produced

starting with a nonscalarized progenitor star. In this way, we also demonstrated that the

stellar gravitational collapse is the natural physical mechanism for the formation of isolated

scalarized compact objects in SGB gravity. There is a variety of collapse scenarios that can

be realized with different progenitors, and the SGB parameters that will have different astro-

physical manifestations. Thus, with the improvement of the sensitivities of the observations,

it might be possible to put strong constraints on the SGB theory. In order to quantify the

observational manifestations, though, one has to examine, in much greater detail, the param-

eters space consisting of the theory parameters, the possible progenitors, and realistic EOS.

This is a study underway.

Considering the full system of coupled fluid, metric, and scalar field evolution also allows us

to observe the loss of hyperbolicity of the system that occurs for certain ranges of parameters.

The system of differential equations turns to a mixed type in the vicinity of the region where

shocks appear as the core collapse proceeds. The interpretation of such loss of hyperbolicity

is a very involved, open problem in SGB gravity that has not received a proper treatment

or interpretation until now. Still, the region where the system behaves well and the Cauchy

problem is well defined is large enough, while the scalar field is bounded to relatively low

values.

For the considered SGB theories, in contrast to some standard scalar-tensor theories, for

example, the spherically symmetric scalar field dynamics does not lead to the emission of

gravitational waves (the so-called breathing modes are absent). Scalar waves will be present,

though, and they constitute an additional channel for dissipation of energy and angular

momentum that can leave an imprint on the emitted gravitational waves. The collapsing

scenarios we considered lead to relatively weak scalar fields, but on the other hand, the scalar

radiation is a quite efficient channel of energy dissipation. For the models we considered in the

present Chapter, the energy dissipation of the scalar waves can be much stronger compared
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with the expected gravitational wave signal in case of nonspherical core collapse [555, 556]

that can potentially lead to constraints on Gauss-Bonnet theories.





Appendix A. Tidally-neutral g-modes 193

Appendix A

Tidally-neutral g-modes

In binaries, QNMs will be driven by the exertion of tidal forces from the companion. The

resulting motions generate excess in gravitational energy by absorbing and localising the

orbital energy into the star. The “efficiency” of the energy-soaking process for a specific

mode is appraised by the overlap between the associated motion ξlnm and the gravitational

potential ΦT of the companion [262], where {nlm} are conventional quantum numbers for

harmonic oscillators. Considering solely the quadrupolar component (l = 2) of the potential

due to its predominant contribution to tidal effects (see, e.g., the discussion in the Appendix

A.2 of [21]), tidal coupling strength Qnl of QNMs to the (leading-order) external tidal field is

given by Eq. (4.43), which is independent of the winding numberm. We recall that only l = 2

QNMs are relevant to the leading-order tidal phenomena due to the orthogonality between

spherical harmonic functions Ylm (see Chap. 4 for details).

Although only the absolute value of the tidal coupling Qnl matters in the context of

energy absorption, we find that the n = 1, l = 2 g-mode (quadrupolar g1-mode) may have

positive and negative values of Q12, implying that there are some g1-modes with Q12 = 0
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Figure A.1: Qnl [Eq. (4.43)] as a function of g1-mode frequency for several models of EOS MPA1 (left) and
PCL2 (right). The mass of the star is held fixed for each curve shown here, which is drawn by increasing the
stratification index δ.
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from continuity (Rolle’s theorem). For instance, we plot the tidal coupling of g1-modes for

several masses with EOS MPA1 in the left panel of Fig. A.1, where each curve shows the

g1-modes with different stratification. We see that g1-modes in the star with 1.59M⊙ have

nearly vanishing Q12, and may thus be fitting called ‘tidally-neutral’. By contrast, we find

that Q12 is always positive for the EOS belonging to Group III (see, e.g., EOS PCL2 in the

right panel of Fig. A.1) except for EOS H7 and GNH3, whose models with mass close to the

maximum have Q12 ≃ 0.
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Appendix B

Reversibility of the Einstein frame in

the Scalar-Tensor Theories

In a specific model, the condition (9.5) would manifest itself as a critical value φc. We will

show that the scalar field can be nowhere equal to φc as it cannot be a solution to the scalar

equation in the Jordan frame. Hence, the solution space of the scalar field in the Einstein

frame is separated by φc into two pieces. Here we consider the potential

V (φ) = m2φ2, (B.1)

in the Einstein frame .

B.0.1 General Jordan Frame Action

In the action (9.1), we have to specify the coupling function F = A−2, which is chosen so

that

lnF = −2α0φ− β0φ2 (B.2)

in this Appendix. The parabola of (B.2) is shown as Fig. B.1. From the above relation, we

obtain

φ = ±
√
α2
0 − β0 lnF
β0

(B.3)

with one relation φ(ϕ) for each sign. Therefore, a given model in the Einstein frame may

correspond to two potentials U(ϕ), thus two models in the Jordan frame.

We consider two situations: (a) φ is not always positive and (b) φ is always positive. For

(a), like all the solutions in [90], oscillating across φ = 0, we should choose the “+” sign in

(B.3), which indicates φ < φc.
1 Therefore, once the sign in (B.3) is determined, the other

1If we choose the “−” sign in (B.3), φ must be positive and greater than φc due to β0 < 0.
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Figure B.1: The parabola reveals the relation between lnF and φ, where the dashed line represents the
forbidden value φc for φ.

branch of the solution space represented by φ > φc should not realise. In this sense, φc can be

viewed as a ceiling of φ, which is independent of the potential. Any φ exceeding this ceiling

in certain region is not viable as, strictly speaking, it is not a solution to the Jordan-frame

scalar equation. With the restriction φ < φc, we can see from Fig. B.1 that the inequality

Fϕ
dϕ

dφ
< 0 (B.4)

holds, while no more can be said about the sign of dϕ/dφ due to the ambiguity in the sign

of Fϕ. In particular, the positivity of Fϕ implies that the sign of (9.2) should be minus and

vice versa. Therefore, two Jordan-frame models depending on the “±” signs of Fϕ remain

possible even if the condition φ < φc is imposed. The sign of Fϕ can only be acquired once

the specific form of the F (ϕ) is given however.

For (b), there are two cases. The first one corresponds to the “−” sign in (B.3) with

φ > φc. Similar to the argument above, there exists two models in the Jordan frame related

to the sign of Fϕ. In this case with the equivalence of α < 0, we have the relation

Fϕ
dϕ

dφ
> 0. (B.5)

By contrast, the case for the “+” sign requires 0 < φ < φc. The solution space is bounded,

which is the most restrictive one among the cases.

By differentiating both sides of (B.3) with respect to ϕ, one gets an additional equation

dφ

dϕ
=

∓Fϕ
2F
√
α2
0 − β0 lnF

, (B.6)

which suggests that Fϕ determines the sign of dφ/dϕ since F > 0. We note that the sign in
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(B.6) is opposite to the one chosen in (B.3). The requirement of lnF > α2
0/β0 to prevent φ

from being imaginary is fulfilled because (B.2) has minimum α2
0/β0 at the forbidden point φc,

which can easily be checked from Fig. B.1. We see that the discussions of the sign problem

of Fϕ above are consistent with the sign in (B.6) .

B.0.2 Brans-Dicke-Bergmann-Wagoner theory

Another example is the Brans-Dicke-Bergmann-Wagoner (BDBW) theory with F = ϕ in the

action (9.1), given by

S =

∫
d4x

√
−g

16πG

(
ϕR− ω(ϕ)

ϕ
gµν∂µϕ∂νϕ− U(ϕ)

)
+ Sm[ψm, g

µν ]. (B.7)

It can be found that the sign of dφ/dϕ can be completely determined through since the sign

of Fϕ = 1 is unique. In this specific case, we have

ϕ = A−2 > 0, (B.8)

since F (ϕ) = A−2 is simply ϕ, leading to

lnϕ = −2α0φ− β0φ2, (B.9)

and

d lnA

dφ
= − 1

2ϕ

dϕ

dφ
. (B.10)

From the inequality (B.8), we have

d lnA

dφ

dφ

dϕ
= − 1

2ϕ
< 0, (B.11)

where dφ/dϕ can be either positive or negative as stated above. The valid value of φ can

determine the sign in (9.5) in contrast to the case in Sec. B.0.1. In particular, for φ > φc,

the sign of the redefinition (9.2) is positive (cf. Fig. B.1), namely

dφ

dϕ
=

√
3 + 2ω

2ϕ
, (B.12)

thus requiring d lnA/dφ to be negative. Similarly, the redefinition of the scalar fields leads

to

dφ

dϕ
= −
√
3 + 2ω

2ϕ
(B.13)

for φ < φc.
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In the limit of the BD theory, ω in (B.7) is constant, denoted as ω(ϕ) = ωBD. Consequently,

equation (B.10) reads

d lnA

dφ
= α0 + β0φ = ∓ 1√

3 + 2ωBD

(B.14)

where the minus (plus) case corresponds to the branch of φ > φc (φ < φc). Since the right-

hand side of (B.14) is constant, we have two possibilities: (i) β0 = 0, or (ii) φ is almost

constant. Due to the negativity of considered β0, we specify ourselves to the second scenario.

It is interesting to note that ωBD →∞ leads to the critical value φ = φc since d lnA/dφ =

0. Even though this case is consistent with those in the literature and in turn reproduces the

results in GR in the sense that all its predictions become indistinguishable from GR in the

Jordan frame [470], it cannot be transformed to the Einstein frame due to the violation of the

derivative constraints and α-constraint. Therefore, the case of the infinite ωBD is improper to

be discussed in the Einstein frame, which shows the inequivalence between the two frames.

We again note that the critical value of φc is so generic that the results of all the simulations

should obey the criterion φ ̸= φc. For instance, it has been concentrated on the BDBW theory

to investigate the dynamical scalarization of the neutron star binaries in ST in [557]. The

critical value for the scalar field in their setting is φc = 0, and the results therein do all satisfy

this criterion, i.e., no crossing the line of φ = 0.

The potential V in the Einstein frame is connected to the Jordan-frame one U through

U = 4V A−4 = 4m2φ2ϕ2, which thus can be expressed as

U(ϕ) = 4m2β−2
0

(
2α2

0 − β0 lnϕ∓ 2α0

√
α2
0 − β0 lnϕ

)
ϕ2, (B.15)

or

U(φ) = 4m2φ2 exp
(
− 4α0φ− 2β0φ

2
)
, (B.16)

by substituting in Eq. (B.9)

φ = φc ±
√
α2
0 − β0 lnϕ
β0

. (B.17)

The Jordan-frame potential should however be unique, and either ‘+’ or ‘-’ can represent

the theory. Determination on the sign depends on the branches of the scalar field in the

Einstein frame, i.e., the sign chosen in (B.17). For the case of the action (9.1) in Sec. B.0.1,

we cannot consider only the positive dφ/dϕ (cf. Eq. (9.2)) therefore, which effectively chooses

one from the two candidates without a clear reason.

In addition, the undetermined signs in (B.17) can be eliminated by considering the function

of (φ − φc)2. Hence, the solution space has an Z2 symmetry with respect to φc. In other
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words, the model in the Jordan frame, which is responsible for the given model in the Einstein

frame, remains the same under the transformation φ−φc ←→ −(φ−φc). We can shift φ to

φ̄ = φ − φc, resulting in that the existence of the Z2 symmetry is characterized by an even

potential U(φ̄) of φ̄. The potential (B.16), which can be rewritten as

U(φ̄) = 4m2(φ̄+ φc)
2 exp

[
− 2β0

(
φ̄2 − φ2

c

)]
, (B.18)

is not a even function of φ̄ apparently. As a result, the one to one correspondence between

models in both frames holds strictly. In general, it is hard to have the same symmetry of Z2

at φc for U(φ). Particularly, the direct effect of the Z2 symmetry at φc for the potential is

that the model in the Einstein frame is associated with a unique model in the Jordan frame.
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Appendix C

Gravitational-wave bursts from

accretion-induced descalarization in

massless scalar-tensor theory

C.1 Numerical setup

Adopting the spherically-symmetric spacetime, perfect fluid, and the piecewise polytropic

approximation of EOS APR4 as done in Chap. 8 only with the scalar mass now vanishing,

i.e., mφ = 0 eV. In Fig. C.1, we plot equilibria with (blue curve) and without (red curve)

scalar hair for α0 = 10−3, β0 = −5, and mφ = 10−14 eV. The parameters are chosen in a way

so that that the phase transition to a non-scalarize neutron star is possible, i.e., the maximal

mass for the scalarized branch (2.086M⊙) is less than that for the GR branch (2.168M⊙).

Here we apply slightly different accretions from those utilised in Chap. 8, and are defined

as:
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Figure C.1: Scalarized (blue) and unscalarized (red; also present in GR) hydrostatic equilibria for α0 = 10−3,
and β0 = −5 for the APR4 EOS. The maximum mass of the GR star is 2.168M⊙, while the scalarized
configuration can only support masses up to 2.086M⊙. The black star represents the initial state for the
simulation.
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Figure C.2: Evolutionary track of a near-critical scalarized star under Type I accretion: gravitational mass
M as a function of central energy density ϵ (top panel), and the temporal dependence of the central energy
density (bottom panel). The green and blue stars mark the onset and the termination of descalarization,
respectively.

• Type I — Superposing a Gaussian bulk at the outermost layer of the star every 4 ms,

which is centred at 0.9R⋆ with width of 1 km, and halts when a total (baryon) mass of

0.01M⊙ has been added (after 12.03 ms). Here R⋆ is the radius of the star. In this case,

the averaged accretion rate is Ṁa ≃ 0.83M⊙s
−1, and the descalarization lasts ∼ 2.75

ms.

• Type II — Introducing a Gaussian bulk out of but close to the surface of the neutron

star every 4 ms, which is centred at 1.2R⋆ with width of 1 km, and terminates when

a total (baryon) mass of 0.01M⊙ has been added (after 12.01 ms). We find again

Ṁa ≃ 0.83M⊙s
−1, but the descalarization lasts ∼ 3.72 ms.

The accretion rates of both types are marginally slower than the numerical result of≲ 1M⊙s
−1

over the first few ms of merger simulations (cf. Fig. 7 of [177]).

In the massless theory, where the dispersion driven by mφ is turned off, 2α0D/L actually

represents the strain of the scalar-induced GW, which can be estimated by the relation

∆h ≈ 4.8× 10−22

(
α0

10−3

)(
E

(scalar)
GW

10−3M⊙

)1/2(
τ

5 ms

)1/2(
100 kpc

Y

)
(C.1)

for the distance between the source and the detector Y , the emitted energy E(scalar), and the

descalarization timescale τ .
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Figure C.3: Evolution of scalar energy under Type I accretion: scalar luminosity [Eq. (8.8)] (top panel),
energy emitted via scalar sector [Eq. (8.9)] extracted at r = 104 km (middle panel), and scalar energy
[Eq. (8.8)] integrated from the centre to the outer boundary of the grid, rout/c = 166.78 ms (bottom panel),
all as functions of retarded time.

Figure C.4: Strain of the scalar-induced GW mode [Eq. (6.32)] for Type I accretion, extracted at r = 100
kpc in the time (left panel) and frequency (right panel) domains. The x-axis of left panel shows the time
relative to the onset of descalarization, td.
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C.2 Results

In Fig. C.2, we plot the evolutionary track of a particular scalarized model with gravitational

mass of∼ 2.082M⊙ undergoing accretion in the Type I manner. The scalarized star undergoes

a phase transition, and heads to the GR branch, on the timescales described above. Due to

numerical truncation errors, the code cannot make a complete riddance of the scalar field,

thus the final state will not exactly lie on the GR branch. Nonetheless, the amplitude of

φ for the debris is ≲ 10−2 times the profile right before the descalarization, and have been

checked to be monotonically decreasing with increasing resolution. The onset and offset of

the phase transition to the scalar-free state are chosen as the moments when the last bulk

has been accreted and when the final state is formed, respectively. After the descalarization,

the model oscillates about a certain, stable state as shown in the inset in the bottom panels.

The timescale of the scalar-peeling process is found to be ≲ 5 ms.

Fig. C.3 shows the flux of the scalar radiation at r = 104 km (top panel) and the associated

energy loss (middle panel) as functions of time. At this distance, the asymptotic behaviour of

the scalar field has already saturated. The difference in the former two quantities from those

at r = 1.5 × 104 km, for example, is ∼ 10−3 times the peak values. A drop of the kinetic,

scalar energy to zero is observed after the descalarization (bottom panel). The difference

between the decrease of Eφ and the emitted energy E
(scalar)
GW indicates that most of the scalar

kinetic energy transforms into gravitational binding energy since the stellar radius shrinks

from 11.75 km to 10.65 km between the initial and the final states, while the (gravitational)

mass increases by ≈ 0.015M⊙.

The scalar GW strain is plotted in Fig. C.4 in the time (left panel) and frequency (right

panel) domains. The rapid increase in the amplitude of the strain results from the descalar-

ization over timescales of ∼ 5 ms (shaded area), as described above. In order to avoid spectral

leakage and spurious oscillations when processing the time domain strain to get the frequency

domain expression, we windowed the temporal signal in Tukey’s fashion before fast Fourier

transforming (see Sec. 4 of [558] for a discussion). We use the signal of the first 120 ms for the

left panel of Fig. C.4, where we see that the scalar-led GW sourced by the accretion-driven

descalarization at a distance of 100 kpc may be detectable with several future ground-based

apparatus for the particular parameters of the coupling function, though we note that the

strain plotted here is for the optimally oriented signal (6.32). With the inclusion of the next

generation Einstein Telescope, the signal may be observed even out to several Mpc.

The ratio of the coupling strength of matter to scalar field and metric fields is[
d lnA

dφ
(φ0)

]2
= α2

0 (C.2)

when φ0 = 0, which regulates the efficiency of the transformation from the energy leakage
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Figure C.5: left panel : Evolutionary track of a near-critical scalarized star under Type II accretion. right
panel : Evolution of scalar energy under Type II accretion.

via the scalar sector to the energy mediated via scalar-GW strain (cf. Sec. 6.2 of [420]). From

the definition of scalar energy Eq. (8.8), we can therefore estimate the generated scalar strain

by implementing the flux formula (see, e.g., Eq. (17) in [559] for the GR version),

α2
0Lφ =

(ḣL)2

4
, (C.3)

along with the assumption that Lφ ≈ Eφ/τ and ḣ ≈ ∆h/τ , where τ denotes the timescale of

descalarization. Matching these formulae we find

∆h ≈ 4.8× 10−22
( α0

10−3

)( E
(scalar)
GW

10−3M⊙

)1/2 ( τ

5 ms

)1/2(100 kpc

L

)
, (C.4)

which gives the same order of magnitude as the numerical results (left panels in Fig. C.4).

We note the above two equations do not depend on β0 since the contribution of β0 is linear

to φ0, which we assume vanishes.

In Fig. C.5, we plot the evolution track of the star undergoing Type II accretion (top

panel), and the scalar emission during the descalarization (bottom panel); the GW strain

caused by the emanating scalar field is presented in Fig. C.6. We see that the process is both

qualitatively and quantitatively similar to that of Type I accretion, which indicates that for

the two distinct types of accretion we get practically the same results thus strengthening the

confidence that the process is physical.

In addition, we plot in Fig. C.7 the evolution of the quantity

D = rφ (C.5)

during the accretion-induced descalarization of the star withM = 2.082M⊙ for two mutations
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Figure C.6: Strain of the scalar-induced GW mode [Eq. (6.32)] for Type II accretion, extracted at r = 100
kpc in the time (left panel) and frequency (right panel) domains.

in the β0 = −5 class of STT other than the case considered in Chap. 8, which are defined

by α0 = 10−3,mφ = 0 eV, and α0 = 0,mφ = 10−14 eV. We note that the equilibria with the

chosen mass 2.086M⊙ for these sets of parameters are similar to that for α0 = 10−3,mφ =

10−14 eV. In particular, the central density ϵc and the central value of φ for models with

α0 less than 10−3 and mφ less than 10−14 eV have only a variance of ≲ 0.3% and ≲ 0.9%,

respectively, when compared to the case of α0 = 10−3,mφ = 10−14 eV. The influences of α0

and mφ on the results are also minor in the considered range of parameters, viz. α0 ≤ 10−3

and mφ ≤ 10−14 eV; only the onset of the phase transition is accelerated or delaed slightly.

The tail decline in the scalar charge for the massive cases is due to dispersion (blue and

yellow lines), which is absent in the massless theory (red line). We also observe that the time

of the onset of the descalarizaion is more sensitive to α0, as can be seen in the inset.
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Figure C.7: Evolution of the scalar charge under Type II accretion for three STTs: α0 = 10−3,mφ = 10−14

eV (blue line), α0 = 10−3,mφ = 0 eV (red line), and α0 = 0,mφ = 10−14 eV (yellow line). We have taken
β0 = −5 for all cases. The inset shows the magnification of the signal around the offset of the descalarization.
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[391] Christian J. Krüger, Kostas D. Kokkotas, Praveen Manoharan, and Sebastian H. Völkel. Fast Rotating Neutron

Stars: Oscillations and Instabilities. Frontiers in Astronomy and Space Sciences, 8:166, September 2021.

[392] Mark Hannam, Duncan A. Brown, Stephen Fairhurst, Chris L. Fryer, and Ian W. Harry. When can gravitational-

wave observations distinguish between black holes and neutron stars? Astrophys. J. Lett., 766:L14, 2013.

[393] Paolo Pani, Leonardo Gualtieri, Andrea Maselli, and Valeria Ferrari. Tidal deformations of a spinning compact

object. Phys. Rev. D, 92(2):024010, 2015.

[394] Lee Samuel Finn and David F. Chernoff. Observing binary inspiral in gravitational radiation: One interferom-

eter. Phys. Rev. D, 47:2198–2219, 1993.

[395] R. Abbott et al. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a

2.6 Solar Mass Compact Object. Astrophys. J. Lett., 896(2):L44, 2020.

[396] Ka-Wai Lo and Lap-Ming Lin. The spin parameter of uniformly rotating compact stars. Astrophys. J., 728:12,

2011.

[397] Tetsuro Yamamoto, Masaru Shibata, and Keisuke Taniguchi. Simulating coalescing compact binaries by a new

code (SACRA). Phys. Rev. D, 78(6):064054, September 2008.

[398] Elias R. Most, L. Jens Papenfort, Antonios Tsokaros, and Luciano Rezzolla. Impact of high spins on the ejection

of mass in GW170817. Astrophys. J., 884:40, 2019.

[399] Milton Ruiz, Antonios Tsokaros, Vasileios Paschalidis, and Stuart L. Shapiro. Effects of spin on magnetized

binary neutron star mergers and jet launching. Phys. Rev. D, 99(8):084032, 2019.

[400] Tim Dietrich and Maximiliano Ujevic. Modeling dynamical ejecta from binary neutron star mergers and impli-

cations for electromagnetic counterparts. Class. Quant. Grav., 34(10):105014, 2017.

[401] Kent Yagi and Nicolas Yunes. I-Love-Q. Science, 341:365–368, 2013.

[402] Francesco Zappa, Sebastiano Bernuzzi, David Radice, Albino Perego, and Tim Dietrich. Gravitational-wave

luminosity of binary neutron stars mergers. Phys. Rev. Lett., 120(11):111101, 2018.



Bibliography 229

[403] Thibault Damour and Alessandro Nagar. Relativistic tidal properties of neutron stars. Phys. Rev. D, 80:084035,

2009.

[404] Eric Poisson. Gravitomagnetic Love tensor of a slowly rotating body: post-Newtonian theory. Phys. Rev. D,

102(6):064059, 2020.

[405] Pawan Kumar Gupta, Jan Steinhoff, and Tanja Hinderer. Relativistic effective action of dynamical gravitomag-

netic tides for slowly rotating neutron stars. Phys. Rev. Res., 3(1):013147, 2021.

[406] Eric Poisson and Cyann Buisson. Tidal driving of inertial modes of Maclaurin spheroids. Phys. Rev. D,

102(10):104005, 2020.
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[417] Fethi M. Ramazanoğlu and Frans Pretorius. Spontaneous Scalarization with Massive Fields. Phys. Rev. D,

93(6):064005, 2016.

[418] Stoytcho S. Yazadjiev, Daniela D. Doneva, and Dimitar Popchev. Slowly rotating neutron stars in scalar-tensor

theories with a massive scalar field. Phys. Rev. D, 93(8):084038, 2016.

[419] Roxana Rosca-Mead, Christopher J. Moore, Ulrich Sperhake, Michalis Agathos, and Davide Gerosa. Structure

of neutron stars in massive scalar-tensor gravity. Symmetry, 12(9):1384, 2020.

[420] Thibault Damour and Gilles Esposito-Farese. Tensor multiscalar theories of gravitation. Class. Quant. Grav.,

9:2093–2176, 1992.

[421] Michael Horbatsch, Hector O. Silva, Davide Gerosa, Paolo Pani, Emanuele Berti, Leonardo Gualtieri, and

Ulrich Sperhake. Tensor-multi-scalar theories: relativistic stars and 3 + 1 decomposition. Class. Quant. Grav.,

32(20):204001, 2015.

[422] Stoytcho S. Yazadjiev and Daniela D. Doneva. Dark compact objects in massive tensor-multi-scalar theories of

gravity. Phys. Rev. D, 99(8):084011, 2019.



230 Bibliography

[423] Daniela D. Doneva and Stoytcho S. Yazadjiev. Mixed configurations of tensor-multiscalar solitons and neutron

stars. Phys. Rev. D, 101(2):024009, 2020.

[424] Daniela D. Doneva and Stoytcho S. Yazadjiev. Topological neutron stars in tensor-multi-scalar theories of

gravity. Phys. Rev. D, 101(6):064072, 2020.

[425] S. Gottlober, H. J. Schmidt, and Alexei A. Starobinsky. Sixth Order Gravity and Conformal Transformations.

Class. Quant. Grav., 7:893, 1990.

[426] Lucas G. Collodel, Daniela D. Doneva, and Stoytcho S. Yazadjiev. Rotating tensor-multiscalar solitons. Phys.

Rev. D, 101(4):044021, 2020.

[427] Daniela D. Doneva, Stoytcho S. Yazadjiev, and Kostas D. Kokkotas. Stability of topological neutron stars.

Phys. Rev. D, 102(4):044043, 2020.

[428] Daniela D. Doneva and Stoytcho S. Yazadjiev. Nontopological spontaneously scalarized neutron stars in tensor-

multiscalar theories of gravity. Phys. Rev. D, 101(10):104010, 2020.

[429] Hajime Sotani. Scalar gravitational waves from relativistic stars in scalar-tensor gravity. Phys. Rev. D,

89(6):064031, 2014.
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[438] Francesc Banyuls, José A. Font, José M. Ibáñez, José M. Mart́ı, and Juan A. Miralles. Numerical {3 + 1} General

Relativistic Hydrodynamics: A Local Characteristic Approach. Astrophys. J., 476(1):221–231, February 1997.

[439] Jose A. Font. Numerical hydrodynamics in general relativity. Living Rev. Rel., 3:2, 2000.

[440] Evan O’Connor. An Open-Source Neutrino Radiation Hydrodynamics Code for Core-Collapse Supernovae.

Astrophys. J. Suppl., 219(2):24, 2015.

[441] Patrick Chi-Kit Cheong and Tjonnie Guang Feng Li. Numerical studies on core collapse supernova in self-

interacting massive scalar-tensor gravity. Phys. Rev. D, 100(2):024027, 2019.

[442] Roxana Rosca-Mead, Christopher J. Moore, Michalis Agathos, and Ulrich Sperhake. Inverse-chirp signals and

spontaneous scalarisation with self-interacting potentials in stellar collapse. Class. Quant. Grav., 36(13):134003,

2019.

[443] A. O. Barvinsky and G. A. Vilkovisky. The Generalized Schwinger-Dewitt Technique in Gauge Theories and

Quantum Gravity. Phys. Rept., 119:1–74, 1985.

[444] Michael S. Ruf and Christian F. Steinwachs. One-loop divergences for f(R) gravity. Phys. Rev. D, 97(4):044049,

2018.



Bibliography 231

[445] Justin Alsing, Emanuele Berti, Clifford M. Will, and Helmut Zaglauer. Gravitational radiation from compact

binary systems in the massive Brans-Dicke theory of gravity. Phys. Rev. D, 85:064041, 2012.

[446] M. Kramer et al. Strong-Field Gravity Tests with the Double Pulsar. Phys. Rev. X, 11(4):041050, 2021.

[447] Junjie Zhao, Paulo C. C. Freire, Michael Kramer, Lijing Shao, and Norbert Wex. Closing a spontaneous-

scalarization window with binary pulsars. arXiv e-prints, page arXiv:2201.03771, January 2022.

[448] B. P. Abbott et al. Tests of general relativity with GW150914. Phys. Rev. Lett., 116(22):221101, 2016. [Erratum:

Phys.Rev.Lett. 121, 129902 (2018)].

[449] Carlos A. R. Herdeiro and Eugen Radu. Asymptotically flat black holes with scalar hair: a review. Int. J. Mod.

Phys. D, 24(09):1542014, 2015.

[450] Daniela D. Doneva and Stoytcho S. Yazadjiev. Beyond the spontaneous scalarization: New fully nonlinear mech-

anism for the formation of scalarized black holes and its dynamical development. Phys. Rev. D, 105(4):L041502,

2022.

[451] Hajime Sotani and Kostas D. Kokkotas. Maximum mass limit of neutron stars in scalar-tensor gravity. Phys.

Rev. D, 95(4):044032, 2017.

[452] Burkhard Kampfer. On the Possibility of Stable Quark and Pion Condensed Stars. J. Phys. A, 14:L471–L475,

1981.

[453] Norman K. Glendenning and Christiane Kettner. Nonidentical neutron star twins. Astron. Astrophys., 353:L9,

2000.

[454] K. Schertler, C. Greiner, J. Schaffner-Bielich, and M. H. Thoma. Quark phases in neutron stars and a ’third

family’ of compact stars as a signature for phase transitions. Nucl. Phys. A, 677:463–490, 2000.

[455] Jurgen Schaffner-Bielich, Matthias Hanauske, Horst Stoecker, and Walter Greiner. Phase transition to hyperon

matter in neutron stars. Phys. Rev. Lett., 89:171101, 2002.

[456] Jerome Novak and Jose M. Ibanez. Gravitational waves from the collapse and bounce of a stellar core in tensor

scalar gravity. Astrophys. J., 533:392–405, 2000.

[457] Jerome Novak. Spherical neutron star collapse in tensor - scalar theory of gravity. Phys. Rev. D, 57:4789–4801,

1998.

[458] Roxana Rosca-Mead, Ulrich Sperhake, Christopher J. Moore, Michalis Agathos, Davide Gerosa, and Christian D.

Ott. Core collapse in massive scalar-tensor gravity. Phys. Rev. D, 102(4):044010, 2020.
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