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Abstract

Advances in molecular-biological and omics tools have revolutionized microbiology,
providing information about the vast abundance and diversity of previously difficult-
to-study microorganisms in the environment. However, the obtained information
is often qualitative in nature and it remains an open question whether and how
molecular-biological data can be quantitatively linked to biogeochemical reaction
rates. Mathematical models of biogeochemical processes enable quantitatively pre-
dicting reaction rates, but they require data to constrain model predictions. While
molecular-biological data have the potential to provide information on microbial
dynamics in biogeochemical models, this requires that models simulate the respective
biological quantities, such as concentrations of functional genes, transcripts or en-
zymes. Such modeling approaches have been developed in recent years, introducing
additional complexity and thus requiring a critical evaluation of their benefits and
associated challenges. In this thesis, I advance the integration of molecular-biological
data with biogeochemical modeling, focusing on the nitrogen cycle. Understanding
the processes that transform and remove reactive nitrogen species in the environment
is important because these compounds cause a number of environmental problems, in-
cluding drinking water contamination, greenhouse gas emissions, and eutrophication
of surface waters.

I address the question whether transcript and enzyme concentrations can directly
serve as proxy variables for reaction rates. Further, I inquire whether accounting for
the regulation of reaction rates by enzyme concentrations improves the prediction of
denitrification rates. To this end, I developed an enzyme-based denitrification model
that simulates concentrations of transcription factors, functional-gene transcripts, en-
zymes, and solutes. I calibrated it using experimental data from awell-controlled batch
experiment. The model accurately predicts denitrification rates and the measured
transcript dynamics. The relationship between simulated transcript concentrations
and reaction rates exhibits strong non-linearity and hysteresis in time. The hysteresis
is caused by the faster dynamics of gene transcription and substrate consumption,
relative to enzyme production and decay. Hence, assuming a unique relationship
between transcript-to-gene ratios and reaction rates, as frequently suggested, may be
an erroneous simplification. Comparing model results of the enzyme-based model
to those of a classical Monod-type model reveals that both formulations perform
equally well with respect to nitrogen species, indicating only a low benefit of integrat-
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ing molecular-biological data for estimating denitrification rates. Nonetheless, the
enzyme-based model is a valuable tool to improve our mechanistic understanding of
the relationship between biomolecular quantities and reaction rates. Furthermore, the
results highlight that both enzyme kinetics (i. e., substrate limitation and inhibition)
and gene expression or enzyme dynamics are important controls on denitrification
rates.

In the second part of my thesis, I extend my analysis of the relationship between
transcripts, enzymes and reaction rates to an environmental system by coupling the
enzyme-based model to reactive transport at the river–groundwater interface. I evalu-
ate the response of transcripts and enzymes to stable and dynamic hydrogeochemical
regimes. While functional-gene transcripts respond to short-term (diurnal) fluctu-
ations of substrate availability and oxygen concentrations, enzyme concentrations
are stable over such time scales. The presence of functional-gene transcripts and
enzymes globally coincides with the zones of active denitrification. However, tran-
script and enzyme concentrations do not directly translate into denitrification rates
in a quantitative way because of non-linear effects and hysteresis caused by variable
substrate availability and oxygen inhibition. I suggest that molecular-biological data
should be combined with aqueous chemical data, which can typically be obtained
at higher spatial and temporal resolution, in order to parameterize and calibrate
reactive-transport models.

The third part of this thesis focuses on integrating functional gene data of several
nitrogen cycling processes into a biogeochemical model. Adopting a gene-centric
model approach, I simulated nitrogen cycling in hyporheic zone sediments during a
flow-through column experiment. In order to quantify the uncertainty of reaction
rates and parameters I calibrated the model with a Bayesian approach, using solute
data and relative-quantitative data of functional genes from the literature. My results
highlight that the functional-gene data reduce the uncertainty of reaction parameters,
but not of reaction rates. The overall low uncertainty of reaction rates suggests
that solute data alone can strongly constrain nitrogen cycling rates, but it could also
be a sign of overconfident estimates due to model structural errors. To overcome
convergence problems of the Bayesian sampler that are caused by highly correlated
parameters, I introduced a reparametrization for the Monod reaction parameters that
facilitates effective sampling from the posterior distribution.

Further research should aim to improve both measurement techniques that quan-
tify microorganisms, and modeling approaches. Models that integrate molecular-
biological data call for rigorous uncertainty quantification, and eventually need to be
scaled to field applications.
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Zusammenfassung

Fortschritte in der Molekularbiologie und die Entwicklung von »omics«-Methoden
haben die Mikrobiologie revolutioniert und liefern Informationen über die enorme
Fülle und Vielfalt von Mikroorganismen in der Umwelt, die zuvor nur schwer zu
untersuchen waren. Die gewonnenen Informationen sind jedoch häufig qualitati-
ver Natur, und es bleibt eine offene Frage, ob und wie molekularbiologische Daten
quantitativ mit biogeochemischen Reaktionsraten verknüpft werden können. Mathe-
matische Modelle biogeochemischer Prozesse ermöglichen quantitative Vorhersagen
von Reaktionsraten, aber sie benötigen Daten, um die Modellvorhersagen einzuschrän-
ken. Zwar können molekularbiologische Daten potentiell Informationen über die
mikrobielle Dynamik in biogeochemischen Modellen liefern, doch setzt dies voraus,
dass die Modelle die entsprechenden biologischen Größen, wie die Konzentrationen
funktioneller Gene, Transkripte oder Enzyme, auch simulieren. In den letzten Jahren
wurden entsprechende Modellierungsansätze entwickelt, die jedoch zusätzliche Kom-
plexität mit sich bringen. Daher ist es wichtig, sowohl ihren Nutzen als auch die damit
verbundenen Herausforderungen kritisch auszuwerten. In dieser Arbeit entwickle
ich die Einbindung molekularbiologischer Daten in biogeochemische Modelle weiter,
wobei ich mich auf den Stickstoffkreislauf als Beispiel konzentriere. Reaktive Stick-
stoffspezies verursachen verschiedene Umweltprobleme, darunter die Verunreinigung
von Trinkwasser, Treibhausgasemissionen und die Eutrophierung von Oberflächen-
gewässern. Deshalb ist es wichtig, die mikrobiellen Prozesse, die diese Verbindungen
umwandeln und aus der Umwelt entfernen, besser zu verstehen.

Im ersten Teil dieser Arbeit gehe ich der Frage nach, ob Transkript- und Enzymkon-
zentrationen direkt als Proxy-Variablen für Reaktionsraten dienen können. Außerdem
untersuche ich, ob es die Vorhersage von Denitrifikationsraten verbessert, wenn die
Regulierung von Reaktionsraten durch Enzymkonzentrationen berücksichtigt wird.
Zu diesem Zweck habe ich ein enzymbasiertes Denitrifikationsmodell entwickelt, das
die Konzentrationen von Transkriptionsfaktoren, Transkripten funktioneller Gene,
Enzymen und gelösten Stoffen simuliert. Anhand von experimentellen Daten aus ei-
nem kontrollierten Batch-Experiment habe ich das Modell kalibriert. Das Modell kann
die Denitrifikationsraten und die gemessene Transkriptdynamik gut abbilden. Die
Beziehung zwischen den simulierten Transkriptkonzentrationen und den Reaktions-
geschwindigkeiten weist eine starke Nichtlinearität und zeitliche Hysterese auf. Die
Hysterese ist auf die schnellere Dynamik der Gentranskription und des Substratver-

v



brauchs im Vergleich zur Produktion und dem Abbau von Enzymen zurückzuführen.
Die Annahme einer eindeutigen Beziehung zwischen Transkriptkonzentrationen und
Reaktionsraten, wie sie häufig vorgeschlagen wird, kann daher eine falsche Vereinfa-
chung sein. Vergleicht man die Modellergebnisse des enzymbasierten Modells mit
denen eines klassischen Monod-Modells, so zeigt sich, dass beide Formulierungen die
Dynamik der Stickstoffspezies gleich gut vorhersagen können. Die Integrationmoleku-
larbiologischer Daten in das Modell bringt für die Schätzung der Denitrifikationsraten
also nur einen geringen Nutzen. Nichtsdestotrotz ist das enzymbasierte Modell ein
wertvolles Instrument, um das mechanistische Verständnis der Beziehung zwischen
molekularbiologischen Größen und Reaktionsraten zu verbessern. Darüber hinaus
zeigen die Ergebnisse, dass sowohl die Enzymkinetik (also Substratlimitierung und
Inhibierung) als auch Genexpression oder die Dynamik von Enzymkonzentrationen
wichtige Einflussfaktoren auf die Denitrifikationsraten sind.

Im zweiten Teil meiner Arbeit erweitere ich meine Analyse der Beziehung zwischen
Transkripten, Enzymen und Reaktionsraten auf ein Umweltsystem, indem ich das
enzymbasierte Modell mit reaktivem Stofftransport an der Schnittstelle zwischen
Grundwasser und Oberflächenwasser verknüpfe. Anhand verschiedener Szenarien
untersuche ich, wie Transkript- und Enzymkonzentration auf stabile und dynamische
hydrogeochemische Bedingungen reagieren. Während funktionelle Gentranskripte
auf kurzfristige (tageszeitliche) Schwankungen der Substratverfügbarkeit und der
Sauerstoffkonzentration reagieren, bleiben die Enzymkonzentrationen über diese
Zeitskalen stabil. Qualitativ stimmen die Bereiche, in denen Transkripte funktio-
neller Gene und Enzyme vorhanden sind, mit den Zonen aktiver Denitrifikation
überein. Die Transkript- und Enzymkonzentrationen lassen sich jedoch aufgrund
nichtlinearer Effekte und Hysterese, die durch variable Substratverfügbarkeit und Sau-
erstoffhemmung verursacht werden, nicht direkt in quantitative Denitrifikationsraten
umrechnen. Ich schlage vor, dass molekularbiologische Daten mit chemischen Daten
gelöster Stoffe kombiniert werden sollten, die in der Regel mit höherer räumlicher
und zeitlicher Auflösung gewonnen werden können, um reaktive Transportmodelle
zu parametrisieren und zu kalibrieren.

Der dritte Teil dieser Arbeit konzentriert sich auf die Integration funktioneller
Gendaten verschiedener Stickstoffkreislaufprozesse in ein biogeochemisches Mo-
dell. Unter Verwendung eines gen-zentrierten Modellansatzes habe ich den Stick-
stoffkreislaufreaktionen in Sedimenten aus der hyporheischen Zone während eines
Durchfluss-Säulenexperiments simuliert. Um die Unsicherheit von Reaktionsraten
und Parametern zu quantifizieren, habe ich das Modell mit einem bayesschen Ansatz
mit Daten gelöster Stoffe und relativ-quantitativen Daten funktioneller Gene aus der
Literatur kalibriert. Meine Ergebnisse zeigen, dass die funktionellen Gendaten die
Unsicherheit der Reaktionsparameter verringern, nicht aber die der Reaktionsraten.
Die insgesamt geringe Unsicherheit der Reaktionsraten deutet darauf hin, dass die
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Daten gelöster Stoffen ausreichen, um die Stickstoffkreislaufraten stark einzuschrän-
ken. Das könnte jedoch auch ein Zeichen für eine Unterschätzung der Unsicherheit
sein, die durch strukturelle Modellfehler verursacht wird. Starke Korrelationen zwi-
schen Modellparametern verursachen Konvergenzprobleme des bayesschen Samplers.
Eine Reparametrisierung der Monod-Reaktionsparameter hat es jedoch ermöglicht,
dennoch effektiv eine Stichprobe aus der A-posteriori-Verteilung zu ziehen.

Weitere Forschung sollte anstreben, sowohl die Messverfahren zur Quantifizierung
von Mikroorganismen als auch Modellierungsansätze zu verbessern. Modelle, die
molekularbiologische Daten integrieren, erfordern eine rigorose Quantifizierung der
Unsicherheit und müssen schlussendlich für Anwendungen im Feld skaliert werden.

vii





Acknowledgements

Writing this dissertation was a great challenge for me. Fortunately, I was accompanied
and supported by many people, to whom I would like to express my sincere gratitude.

First of all, I would like to thank my supervisor Olaf Cirpka who was a great mentor
and teacher throughout my studies and PhD. You have sparked my enthusiasm for
environmental modeling during the first year of my studies in your System’s Analysis
lecture. Looking back, my first modeling project in this course on analyzing the
growth dynamics of bacteria in lab reactors seems to have pointed the way ahead for
me.

I would like to extend my sincere thanks to my supervisor Holger Pagel, who has
always taken the time to discuss my work and who motivated me to go on when I
was frustrated.

I am also grateful to my supervisor Philippe Van Cappellen for inspiring discussions
of my work, and for hosting me at the University of Waterloo for half a year.

Special thanks go to Adrian Mellage for being an unofficial forth member of my
PhD committee. You are a great role model for me. I particularly appreciate your
positive attitude and excellent way of providing feedback.

I am extremely grateful to my fellow PhD students in the research training group
Integrated Hydrosystems Modeling. Your support and the feeling of being in this
together have carried me through the difficult times of my PhD.

I would also like to thank the Ecohydrology group at the University of Waterloo,
especially Christina Smeaton, Bingjie Shi, Stephanie Slowinski, Stephane Ngueleu,
and Marianne Vandergriendt, who helped me to conduct my first real lab experiment.
Even though the experimental results have not made it into this thesis, I have learned
a lot from you.

I thank Linda Bergaust and Jianqiu Zheng for providing experimental data for the
models in chapters 3 and 5, respectively. Thanks to the Deutsche Forschungsgemein-
schaft for providing the funding of my PhD project.

I’d also like to acknowledge the many, many developers of all the great open source
software that I have used for my work. The list of tools is long, and I can only name
a few examples here that have been especially helpful for me: the Python packages
xarray, PyMC, and Matplotlib; the Zotero reference manager; LATEX in general, and
the koma-script bundle and the biblatex package in particular.

ix



Several people have provided feedback on parts of my thesis: thank you Luciana,
Jonas, Cora, Theresa, and Lisa.

Last but not least I would like to thank my family and friends, whose support
was essential for completing this project. I am deeply grateful to Adrian Seyboldt
– for discussing my science over lunch or dinner and reading my early drafts, for
teaching me a lot about Python and Bayesian statistics, for tolerating a long-distance
relationship during my research stay in Waterloo as well as my frustration and long
working hours in the past months, and for all your love and support.

x



Contents

1 Introduction 1
1.1 Microbial nitrogen cycling 1
1.2 Integration of molecular-biological data into biogeochemical models 2
1.3 Biogeochemical modeling and uncertainty quantification 5
1.4 Aim and objectives 7
1.5 Thesis structure 7

2 Theory & Methods 9
2.1 Biogeochemical modeling of microbial reactions 9
2.2 Numerical methods 14
2.3 Parameter estimation and uncertainty quantification 15

3 Does it pay off to link functional-gene expression to denitrification rates in
reaction models? 19

3.1 Introduction 19
3.2 Theory and methods 20
3.3 Results and discussion 28

4 Denitrification-driven transcription and enzyme production at the
river–groundwater interface 39

4.1 Introduction 39
4.2 Methods 41
4.3 Results and discussion 48
4.4 Conclusions 63

5 Quantifying uncertainty of hyporheic nitrogen-cycling rates with
gene-based modeling 65

5.1 Introduction 65
5.2 Material and methods 67
5.3 Results 78
5.4 Discussion 91
5.5 Conclusions 94

xi



Contents

6 Conclusions & Outlook 97
6.1 Synthesis of major findings 97
6.2 Research perspectives 100

a Supporting information for chapter 2 107
a.1 Solving the enzyme production equation 107

b Supporting information for chapter 3 109
b.1 Initial values 109
b.2 Prior and posterior parameter distributions 109
b.3 Transcription factor concentrations 118
b.4 Reparametrization of Monod parameters 118
b.5 Mass transfer to the gas phase and gas sampling 119
b.6 Simplified model of transcriptional regulation 121

c Supporting information for chapter 4 131
c.1 Additional figures 131

d Supporting information for chapter 5 134
d.1 Calculation of the reaction stoichiometry 134
d.2 Description of the custom smc kernel 135
d.3 Reference parameter values 136
d.4 Additional figures 139

List of Abbreviations 149

xii



List of Figures

1.1 Nitrogen cycling reactions and their functional genes 2

2.1 The production of enzymes from functional genes 12

3.1 Schematic representation of processes considered in the models 22
3.2 Simulated dynamics of the Monod-type and enzyme-based model, and mea-

surements from three experimental replicates 28
3.3 Selected marginal parameter distributions 31
3.4 Cell-specific substrate turnover rates plotted against concentrations of the

corresponding transcripts or enzymes 33
3.5 Quasi-steady enzyme state concentrations plotted against the concentrations

simulated by the fully transient model 35

4.1 Schematic of the three simulation scenarios and the corresponding boundary
conditions 42

4.2 Spatial distributions of nitrogen compounds, transcript and enzyme concentra-
tions, biomass, oxygen, and doc 49

4.3 Relationships between the concentrations of functional-gene transcripts narG
and nirS with the denitrification rates in the different scenarios 52

4.4 Relationships of transcript and enzyme concentrations with denitrification rates
for scenario bfp 55

4.5 Relationship between the concentrations of functional-gene transcripts narG
and nirS with potential denitrification rates 57

4.6 Simulated measurements of the nirS transcript concentrations 60

5.1 Set-up of the flow-through column experiment 67
5.2 Illustration of the Dirichlet distribution for defining the likelihood of gene

fractions 76
5.3 Simulated and measured aqueous concentrations at the column effluent and at

two ports as a function of dimensionless time 79
5.4 Spatial profiles of extractable ammonium, and soluble nitrate and nitrite at the

end of the experiment 81

xiii



List of Figures

5.5 Simulated andmeasured profiles of relative abundances of functional genes 82
5.6 Simulated nitrogen-cycling rates 83
5.7 Kernel density estimates of the marginal posterior and prior distributions of

selected parameters 85
5.8 Heatmap showing the pairwise correlation coefficients of parameters in the

posterior 86
5.9 Eigenvalues of the posterior covariance matrix and selected eigenvectors 87
5.10 Reparametrization of the Monod parameters illustrated for the case of a single

substrate 91

b.1 Kernel density estimates of the marginal posterior and prior distributions for
all model parameters 110

b.2 Hierarchically-clustered heatmap showing the correlation coefficients of the es-
timated parameters in the posterior distribution of the Monod-type model 116

b.3 Hierarchically-clustered heatmap showing the correlation coefficients of the es-
timated parameters in the posterior distribution of the enzyme-basedmodel 117

b.4 Simulated fraction of active transcription factors over time 118
b.5 Determination of the time-dependent gas sampling rate coefficient 𝑘sample 120
b.6 Measurement data and posterior of the enzyme-based model with a simplified

description of transcriptional regulation 123

c.1 Spatial distributions of transcript and enzyme concentrations normalized by
biomass 131

c.2 Relationships between transcript and enzyme concentrations 132
c.3 Relationships between transcript respectively enzyme concentrations and deni-

trification rates for the bank storage scenario 132
c.4 Relationships between the concentrations of enzymes nitrate reductase (nar)

and nitrite reductase (nir) with the denitrification rates in the different scenar-
ios 133

d.1 Simulated content of bioavailable particulate organic carbon (poc) in the sedi-
ment 139

d.2 Simulated and measured aqueous concentrations at the ports as a function of
dimensionless time 140

d.3 Simulated and measured aqueous concentrations at the column effluent and at
two ports as a function of dimensionless time 141

d.4 Kernel density estimates of the marginal posterior and prior distributions for
all parameters 142

xiv



List of Figures

d.5 Eigenvectors of the posterior covariance matrix corresponding to the smallest 7
eigenvalues 143

d.6 Eigenvectors of the posterior covariance matrix corresponding to the 7th to 14th
eigenvalues 144

d.7 Eigenvectors of the posterior covariance matrix corresponding to the largest 7
eigenvalues 145

d.8 Comparison of a model variant with fixed growth yield parameters to the model
where growth yields are estimated from the data 146

d.9 Comparison of the model variants with and without a production term for
bioavailable poc 147

xv



List of Tables

4.1 Boundary condition parameters used in the simulation 46
4.2 Reaction and transport parameters used in the simulation 47

5.1 Stoichiometry of the catabolic and anabolic reactions considered in themodel 69
5.2 Initial and inflow concentrations used in the simulations 72
5.3 Prior distributions of the model parameters 74
5.4 Model parameters set to fixed values 76

b.1 Initial concentration values used for the simulation 109
b.2 Simulation parameters, their prior distributions or fixed values, and their poste-

rior medians and percentiles. 111
b.3 Parameters related to mass transfer and gas sampling 120
b.4 Simulation parameters of the enzyme-based model with a simplified formulation

for transcription, their prior distributions, and their posterior medians and
percentiles 124

d.1 Nitrate half-saturation constants for denitrification 136
d.2 Nitrite half-saturation constants for denitrification and dnra 136
d.3 Doc half-saturation constants 137
d.4 Microbial decay constants 137
d.5 NH +

4 equilibrium sorption constants 138
d.6 Doc release rate constants 138
d.7 Maximum cell-specific substrate consumption rates 𝜈max 139

xvi



Statement of Contributions

This thesis is based on a set of (published or yet unpublished) co-authoredmanuscripts.
I was primarily responsible for the model design and analysis, and I am the first
author on each of the papers.

Chapters 1 and 2 reproduce shorter sections from papers A and B. Chapter 3 is
based on paper A, with a shortened introduction. Chapter 4 is adapted from paper B.
A revised version of the paper has been published after the submission of this thesis.
The contributions of all co-authors to the papers are outlined in the tables below.

Co-author contributions in % for paper A: “Does It Pay off to Explicitly Link Functional Gene
Expression to Denitrification Rates in Reaction Models?”.

Author Scientific
ideas

Data gen-
eration

Analysis &
interpretation

Paper
writing

1 Anna Störiko 65 100 70 70
2 Holger Pagel 10 0 10 10
3 Adrian Mellage 10 0 10 10
4 Olaf A. Cirpka 15 0 10 10

status in publication process Published (Störiko et al., 2021a).

Co-author contributions in % for paper B: “Denitrification-Driven Transcription and Enzyme
Production at the River-Groundwater Interface: Insights from Reactive-Transport Modeling”.

Author Scientific
ideas

Data gen-
eration

Analysis &
interpretation

Paper
writing

1 Anna Störiko 60 100 70 70
2 Holger Pagel 10 0 9 9
3 Adrian Mellage 10 0 8 8
4 Philippe Van Cappellen 10 0 5 5
5 Olaf A. Cirpka 10 0 8 8

status in publication process Published (Störiko et al., 2022).

xvii





1 Introduction

1 . 1 microbial nitrogen cycling

The increase of diffuse nitrogen inputs, mainly by agriculture, has led to elevated This chapter
contains
sections from
co-authored
manuscripts as
indicated in the
Statement of
Contributions
on page xvii.

concentrations of reactive nitrogen species in groundwater and surface-water bodies,
threatening drinking-water production, and causing eutrophication of rivers and
lakes (Erisman et al., 2013). Microorganisms use reactive nitrogen compounds as
substrates for redox reactions that fuel their energy metabolism, constituting the main
attenuation process for nitrogen contamination in environmental systems (Kuypers
et al., 2018). Understanding the factors that enhance microbial removal of reactive
nitrogen species from the environment is therefore critical for contamination control
and mitigation.

The most important reaction processes for nitrogen in the environment are (1) fix-
ation of dinitrogen gas, (2) conversion of organic nitrogen into ammonium (am-
monification), (3) oxidation of ammonium to nitrate (nitrification), (4) oxidation of
ammonium with nitrite to N2 (anaerobic ammonium oxidation, anammox), (5) dis-
similatory nitrate reduction to ammonium (dnra), and (6) the reduction of nitrate
to dinitrogen gas (denitrification). Many of these processes consist of several reac-
tion steps which can be linked to specific enzymes and their functional genes, that
is, the genes responsible for coding an enzyme’s production (see figure 1.1). Some
microorganisms feature all the functional genes related to a certain pathway. Other
organisms can only mediate a part of the full pathway and rely on the co-existence
with other microorganisms that are capable of the complementary reactions.

Denitrification is the key reaction for the permanent removal of nitrogen species
from the environment because it converts the reactive nitrogen species nitrate into
inert N2 gas rather than into another reactive nitrogen species. Even though microor-
ganismswith the potential to readily reduce nitrate are widespread in the environment,
nitrate persists in numerous aquifers around the world (Burri et al., 2019; Gutiérrez
et al., 2018; Spalding and Exner, 1993). Investigating the factors that stimulate or
inhibit the transformation of reactive nitrogen species therefore remains a relevant
field of research.

Biogeochemical models have been developed as a tool to quantitatively describe
and predict nitrogen cycling processes. As nitrogen cycling reactions are predomi-
nantly driven by microorganisms, it is important to capture the microbial dynamics
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f igure 1 . 1 : Nitrogen cycling reactions and the corresponding functional genes. The number
line below the reaction scheme indicates the oxidation state of nitrogen compounds. Reaction
steps and genes assigned to the same process have the same color. However, reaction steps
of one process can be split up to several organisms. Figure adapted from Hallin et al. (2018)
and Kuypers et al. (2018).

that regulate reaction rates. However, quantifying microbial biomass in samples is
notoriously difficult with “traditional” methods such as adenosine triphosphate (atp)
analyses, chloroform fumigation extraction or plate counts (Gonzalez-Quiñones et al.,
2011). Measurements are imprecise and cannot differentiate between microorganisms
with different functions. Additionally, only a fraction of microbes can be cultured
in the lab such that our knowledge is incomplete and biased towards a few model
organisms (Stewart, 2012). Molecular-biological data that can now be readily applied
to environmental samples have the potential of overcoming these limitations because
they allow for targeting specific functional genes or organisms. This trend also calls
for further development of biogeochemical modeling approaches as they need to catch
up with the increasing availability of detailed information on microbial dynamics.

1 .2 integration of molecular-biological data into
biogeochemical models

Modern high-throughput molecular-biological techniques and omics methods provide
insights into the abundance, activity, and metabolic function of microorganisms in
environmental systems (Bouchez et al., 2016; Starke et al., 2019). Numerous laboratory
and field studies (Anantharaman et al., 2016; Bælum et al., 2008; Bowen et al., 2014;
Wegner et al., 2019) indicate that quantifying the abundance of genes and gene
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1 Introduction

transcripts has the potential to improve the description of microbially mediated
reactions implemented in reactive-transport models. Many different approaches exist
that we can distinguish based on the type of information that they provide:

1 Methods that target the dna of microorganisms provide information about their
genetic potential. However, the presence of dna in the environment does not yet
indicate that the related metabolic functions are active; for some environments
it has been shown that large fractions of the dna belong to inactive or dead
microorganisms (Carini et al., 2016; Lennon et al., 2018). In contrast, methods
that target the RNA or proteins present in the environment, provide insight
about active microorganisms.

2 While some methods interrogate the taxonomy of microorganisms (“What
species are present?”) other methods can identify the metabolic function of
microorganisms (“What reactions can they carry out?”).

3 Methods such as quantitative pcr (qpcr) provide information about the abun-
dance of microorganisms (“How many are there?”) whereas other methods
(e. g., amplicon sequencing) can be used to investigate their diversity.

4 Finally, we can distinguish methods that target specific marker genes (e. g.,
taxonomic or functional markers) from global sequencing, used to identify all
the genes of all microbes present in a sample.

Transcript-to-gene ratios and relative gene expression levels have been suggested
as a direct measure of microbial activity (Brow et al., 2013; Freitag and Prosser,
2009; Monard et al., 2013; Nicolaisen et al., 2008; Rohe et al., 2020). However,
assuming a unique (e. g., linear) relationship neglects important factors that modulate
reaction rates such as post-transcriptional and post-translational regulation, different
time-scales of transcript and enzyme dynamics, and substrate limitation (Moran
et al., 2013). In a meta-analysis of experimental studies, Rocca et al. (2015) found
that transcript abundances were not significantly correlated with biogeochemical
processes. They conclude that it is essential to investigate the factors controlling
gene abundance, transcription, translation and enzyme activity to better interpret
the patterns of gene and transcript abundances in the environment with respect
to ecosystem processes. Therefore, integrating a mechanistic description of the
production and decay of transcripts and enzymes into models could help to better
establish a mechanistic link between transcript concentrations and reaction rates.
Most reactive-transport models do not explicitly account for genes or transcription
and thus cannot integrate molecular-biological data sets into quantitative validation
frameworks. Addressing this challenge and integrating omics data into reactive-
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1 Introduction

transport modeling has been proposed as a way to improve our understanding of the
dynamic behavior of biogeochemical systems (L. Li et al., 2017).

In a first approach to integrate genetic information, genome-scale metabolic models
have been coupled to reactive transport, successfully predicting reaction rates under
variable environmental conditions without the need for calibration (Scheibe et al.,
2009). Though computationally intensive, genome-scale metabolic networks provide
a powerful approach for cases in which reactions are dominated by a single, well-
known organism or a small group of organisms, as in the case of uranium reduction.
Other studies have focused on a single metabolic pathway of an organism, simulating
the regulatory chain, including transcription factors, messenger rna (mrna), enzymes,
substrate consumption, and growth kinetics (Bælum et al., 2013; Koutinas et al., 2011).

Natural biogeochemical cycles, such as the nitrogen cycle, are mediated by a diverse
group of organisms, of which only a small percentage can be cultivated. Under these
circumstances, genome-scale models and models focusing on the functionality of a
single microbial strain become impractical. Instead, approaches that target metabolic
pathways rather than processes at the scale of single cells may capture the explicit
contribution of the non-cultivatable majority within a natural microbial community.

Thus, the alternative gene-centric approach focuses on the functionality represented
by certain genes instead of specific organisms. By using functional-gene abundances
as a proxy for biomass with a certain function, gene-centric approaches can easily be
integrated into existing biogeochemical and reactive-transport models (Reed et al.,
2014, 2015). Genomic data provide information on metabolic potential, but not on
actual microbial activity. To account for activity, the gene-centric approach has been
further developed to predict concentrations of functional transcripts and enzymes
(M. Li et al., 2017b; Louca et al., 2016; Song et al., 2017). In one of the studies, the
model was validated using metatranscriptomic and metaproteomic data (Louca et
al., 2016). However, because the approach of these authors computes transcript and
enzyme concentrations by postprocessing of reactions rates, it only provides a partially
mechanistic link between rates, transcription, and enzyme production. Hence, this
approach lacks the explicit integration of transcript and enzyme regulatory feedbacks
into the biogeochemical model.

The enzyme-based approach, by contrast, simulates concentrations of specific
enzymes that directly regulate reaction rates. Regulation of enzyme production can
be based on energetic considerations (M. Li et al., 2017b) or a cybernetic approach
(Song and C. Liu, 2015). In the latter, reaction networks are optimized with respect
to a metabolic goal such as maximizing the microbial growth rate (Ramkrishna and
Song, 2019). None of these modeling approaches represent the actual mechanisms
of transcriptional regulation with transcription factors, having the advantage that
they do not require special knowledge about the regulatory system. However, the
validation of the enzyme-based modeling approach relies on quantitative enzyme
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data which remains challenging to obtain, particularly for environmental samples.
Conversely, the quantification of mrna via reverse-transcription quantitative pcr (rt-
qpcr) is well-established for both laboratory and field setups. Therefore, integrating
transcript data into biogeochemical models is an approach that should be explored
further.

1 .3 biogeochemical modeling and uncertainty
quantification

Process-based reactive transport models simulate the transport and transformation
of chemicals in the environment (Meile and Scheibe, 2019; Siade et al., 2021; Steefel
et al., 2005). These models solve partial differential equations (pdes) that describe the
evolution of concentration distributions through reactions and transport by water
flow (advection, dispersion) and diffusion. The level of system understanding encoded
in model formulations varies between mechanistic models that represent physical,
chemical and biological knowledge, and more empirical or data-driven approaches. In
the past, many biogeochemical reactive transport models have employed simple rate
laws such as first order or Monod kinetics that do not explicitly represent microor-
ganisms (e. g., Y. Wang and Van Cappellen, 1996). More recent modeling approaches
account for the dynamics of microbial populations and the regulation of the microbial
metabolism (Meile and Scheibe, 2019). Biogeochemical models can be used to calculate
spatially and temporally resolved reaction rates, analyze the effect of parameters and
boundary conditions on the outcome, and test our conceptual understanding of how
a system functions. This makes them a valuable tool both for addressing scientific
problems as well as for guiding management decisions.

However, the uncertainty of model predictions needs to be taken into account.
Several sources of uncertainty contribute to the overall uncertainty of model predic-
tions. Many model parameters cannot be observed directly, and their exact values are
unknown (parameter uncertainty). This holds particularly true for effective parame-
ters that cannot be easily linked to an actual environmental process. The initial and
boundary conditions are also often poorly determined. Data is subject to errors and
noise (measurement uncertainty). Moreover, models of environmental processes are
always a simplified representation of the reality and it is usually not clear which out
of several competing model formulations is the “best” one to use (conceptual or model
uncertainty). Forward uncertainty analysis methods such as Monte Carlo simulation
can be used to evaluate how uncertainty in the model inputs propagates to model
outputs (Linde et al., 2017). More formal sensitivity analysis methods (e. g., parameter
screening, variance based sensitivity analysis) allow to identify influential parameters,
and to apportion output uncertainty to different sources of uncertainty in the input
(Saltelli et al., 2007).
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However, the input parameter space is usually large if it is based on prior knowledge
only, leading to high output uncertainty. For reliable and useful predictions, the
parameter space needs to be restricted based on observations, that is, the model needs
to be calibrated. In many modeling studies of microbial nitrogen cycling, a single set of
hand-tuned parameter values is chosen, or deterministic least-squares optimization is
applied to this end (e. g., Knights et al., 2017; M. Li et al., 2017b; Mellage et al., 2018; Reed
et al., 2014). However, these methods can provide a linearized estimate of posterior
uncertainty at best, which is often unsuitable for the highly non-linear rate laws of
biogeochemical models (Siade et al., 2021). Bayesian inference, in contrast, allows to
coherently quantify uncertainty while at the same time constraining the spaces of
parameters and simulation outcomes with observations. Improved algorithms, more
user-friendly software and the increase of computational resources have lead to the
widespread use of Bayesian techniques inmany disciplines of science (Rode et al., 2010;
van de Schoot et al., 2021). Nevertheless, its application to real world environmental
models remains challenging, and particularly biogeochemical models often do not
exploit the potential of rigorous Bayesian parameter estimation and uncertainty
quantification (Siade et al., 2021; G. Wang and Chen, 2012). Some examples of studies
adopting a Bayesian approach for models of nitrogen cycling include simulations of
nutrient cycling in lakes (Dietzel and Reichert, 2014; Wu et al., 2017), soil greenhouse
gas emission (G. Wang and Chen, 2012, 2013; Ying et al., 2017) or nitrification in
groundwater (Brunetti et al., 2020).

In the past years, innovations in microbiological and molecular-biological tech-
niques have greatly expanded our knowledge about microorganisms and how they
regulate environmental processes. Based on these insights, more detailed models have
been developed that can more realistically describe the actual biological functioning
of systems (Meile and Scheibe, 2019). However, more complex models are not neces-
sarily better and a balance between model complexity and goodness of fit needs to be
found in order to optimize the predictive power of a model (Höge et al., 2018). When
multiple models can be formulated to explain the same set of data, science has long
employed the principle of Occam’s Razor, implied in Bayesian theory (MacKay, 2003).
This principle advises choosing the simplest hypothesis or model that can explain
the data. An important question, therefore, is if new data types can justify a higher
level of detail and complexity for biogeochemical modeling. While more complex
models allow to employ more mechanistic process descriptions, these formulations
also introduce new parameters that are potentially difficult to identify. We thus need
to test whether molecular-biological data can indeed improve predictions and reduce
parametric uncertainty.
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1 .4 aim and objectives

The increasing availability of molecular-biological and omics data from the environ-
ment calls for the development of reactive transport models that can make appropriate
use of these data. In parallel, we need to critically assess the benefits and challenges
that go along with more complex modeling approaches. The aim of my thesis is to
develop and evaluate reactive transport models of microbial nitrogen cycling that
integrate functional gene and transcript data. Nitrogen cycling is a suitable test
application for such models because (1) genes and enzymes of nitrogen cycling reac-
tions are well known (Simon and Klotz, 2013), (2) transcription of genes involved in
nitrogen cycling reactions are known to be regulated by environmental conditions
(Gaimster et al., 2018), so explicitly including enzymes into models might improve
the process description, and (3) quantitatively understanding nitrogen cycling is
relevant to a range of environmental problems such as drinking water contamination,
eutrophication, and greenhouse gas emissions.

The specific objectives of this thesis are as follows:

1 Develop model formulations for microbial nitrogen cycling that can use mole-
cular-biological data, specifically quantitative and semi-quantitative data of
functional genes and functional-gene transcripts.

2 Evaluate the performance of more complex transcript- and enzyme-based model
formulations compared to simpler biomass-based model formulations.

3 Evaluate the suitability of functional-gene transcript and enzyme concentrations
as a proxy to predict nitrogen cycling rates.

4 Quantify the uncertainty of reactions rates of microbial N-cycling and the
associated parameter uncertainty, and assess whether transcript or functional-
gene data can reduce this uncertainty.

5 Identify sampling strategies for transcript and gene measurements that lead to
a better quantification of reaction rates.

1 .5 thesis structure

Chapter 2 summarizes the theory and methods applied in the following research
chapters 3 to 5.

In chapter 3, I develop a model formulation that explicitly accounts for the dy-
namics of transcripts and enzymes related to denitrification, and their interaction
with reaction kinetics. I apply the model to a well controlled batch experiment and
compare it to a simpler biomass-based model formulation. The uncertainty of reaction
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parameters and model outputs is assessed with Bayesian inference. Based on the
simulations, I explore the relationship between transcript and enzyme concentrations,
and denitrification rates.

Building on the results of chapter 3, I couple the previously developed model to
solute transport at the river–groundwater interface in chapter 4, and evaluate the
response of transcripts and enzymes for denitrification to stable and dynamic hydro-
geochemical regimes. Based on the simulations, I further explore the relationship
between enzyme concentrations and denitrification rates over space and time, and
provide guidance on sampling strategies for transcript and enzyme concentrations at
the river–groundwater interface.

In chapter 5, I combine gene-centric modeling of several nitrogen cycling pathways
with Bayesian uncertainty quantification to evaluate the uncertainty of nitrogen
cycling processes in hyporheic zone sediments.

The concluding chapter 6 summarizes the major findings of this thesis, highlighting
how they advance research on biogeochemical modeling, and outlines future research
directions.
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2.1 biogeochemical modeling of microbial reactions

2.1.1 Biomass-explicit models

Microorganisms catalyze a variety of redox reactions in the environment, transferring
electrons from electron donors to substrates that serve as terminal electron acceptors,
thus, generating energy for their growth and maintenance. The rates of biogeochem-
ical reactions depend on the abundance and activity of microorganisms. In turn,
microbial growth rates depend on the reactions taking place. Biomass-explicit reac-
tion models account for this interplay between microbial growth and biogeochemical
reactions by explicitly simulating microbial biomass and its influence on reaction
rates.

The growth rate of microbial biomass is described by a rate law of first order with
respect to the biomass concentration 𝐵 [cells L⁻¹]:

𝑟growth = 𝜇𝐵 . (2.1)

The specific growth rate 𝜇 [s⁻¹] is usually not constant because microbial growth
depends on the concentration of limiting substrate 𝑐 [mol dm⁻³]. Monod (1949) intro-
duced an empirical rate law to describe this dependency with a hyperbolic equation:

𝜇 = 𝜇max
𝑐

𝑐 + 𝐾
, (2.2)

where the parameter 𝐾 [mol dm⁻³] is called the half-saturation constant, and 𝜇max
[s⁻¹] is a maximum specific growth rate. The model has been extended to include
multiple limiting substrates and inhibitors by considering the product of several terms.
The specific growth rate is then given by

𝜇 = 𝜇max ∏
𝑠 ∈ substrates

𝑐𝑠
𝑐𝑠 + 𝐾𝑠

∏
𝑘 ∈ inhibitors

𝐼𝑘
𝐼𝑘 + 𝑐𝑘

(2.3)

= 𝜇max 𝑓substrate 𝑓inhibition .

Here, 𝐾𝑠 [mol dm⁻³] and 𝐼𝑘 [mol dm⁻³] are the half-saturation constant of substrate 𝑠
and the inhibition constant of inhibitor 𝑘, respectively.
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To fuel their growth, microorganisms need energy that they obtain from the catabol-
ic reactions, for example the oxidation of a carbon substrate with oxygen. Additionally,
building up biomass also requires chemical building blocks such as a carbon substrate
and electron donors that are transformed into more complex organic molecules in
the anabolic reaction. Microbial growth therefore changes the concentrations of
substrates according to the stoichiometry of the overall metabolic reaction. This is
expressed by relating the substrate consumption rate proportionally to the growth
rate with the growth yield 𝑌 [cell mol⁻¹] as proportionality factor. The rate of substrate
consumption through the catabolic and anabolic reaction is

𝑟𝑠 = −
𝑟growth

𝑌
= −

𝜇
𝑌
𝐵

= −
𝜇max

𝑌
𝑓substrate 𝑓inhibition 𝐵 . (2.4)

Instead of using a maximum specific growth rate 𝜇max as parameter, we can also
express the substrate consumption rate in terms of a maximum cell-specific consump-
tion rate 𝜈max [mol cell⁻¹ s⁻¹] where 𝜇max = 𝜈max𝑌. The growth yield depends on the
energy gained through the microbial reaction, which may vary over time because it is,
in principal, influenced by environmental conditions. Theoretical growth yields can
be derived with different bioenergetic approaches (e. g., Roden and Jin, 2011; Smeaton
and Van Cappellen, 2018), but often the growth yield is determined experimentally. If
we assume 𝑌 to be constant, both parameterizations for the growth rate are equivalent.
Otherwise, we can either treat 𝜈max as a constant or 𝜇max. The former is referred
to as Michaelis-Menten formulation because the rate law then takes the form of the
equation introduced by Michaelis and Menten (2011) for enzyme kinetics; the latter
corresponds to the Monod formulation (Thullner and Regnier, 2019).

When a compound is produced or consumed in 𝑀 reactions, the net reaction rate
for compound 𝑖 is given by

𝑟net𝑖 =
𝑀
∑
𝑗=1

𝛾𝑖
𝛾𝑠
𝑟 𝑗𝑠 , (2.5)

where 𝑟 𝑗𝑠 is the substrate consumption rate in reaction 𝑗, and 𝛾𝑖, 𝛾𝑠 are the stoichiometric
coefficients of compound 𝑖 and substrate 𝑠. In this notation, educts have a negative
stoichiometric coefficient and reaction products have a positive coefficient.

2.1.2 Gene-explicit models

Functional genes are widely used as a proxy variable for functional biomass (e. g.,
Bouchez et al., 2016; Philippot, 2006). Reed et al. (2014) introduced a modeling
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concept in which the concentrations of functional genes serve as the state variables.
In comparison to looking at different organisms with potentially redundant function
it has the advantage that it limits the number of variables to the number of reactions
or functional genes associated to them. In this framework, the rate of gene production
for gene 𝑗 due to the reaction associated with it is analogous to equations (2.1) and (2.3):

𝑟𝛤𝑗 = 𝜇𝑗max𝛤𝑗𝐹𝑇 ∏
𝑠 ∈ substrates

𝑐𝑠
𝑐𝑠 + 𝐾𝑠

∏
𝑘 ∈ inhibitors

𝐼𝑘
𝐼𝑘 + 𝑐𝑘

, (2.6)

where 𝛤𝑗 is the concentration of gene 𝑗. Reed et al. (2014) also extend the rate law by
the factor 𝐹𝑇 to account for thermodynamic limitation (Jin and Bethke, 2005) in the
studied energy-limited submarine environment.

Many microorganisms carry functional genes for several reaction steps. Since
microbial growth always duplicates the entire genome, the growth of one gene always
leads to an increase in all the genes that co-occur with it, even if the associated
reactions are not active. Reed et al. (2014) account for this metabolic plasticity with
a matrix of co-occurence probabilities 𝝈. The total production rate of gene 𝑖 is then
given by

𝑟 tot𝛤𝑗 =
𝑀
∑
𝑘=1

(
𝑔𝑗
𝑔𝑘

𝜎𝑗𝑘 𝑟𝛤𝑘) , (2.7)

in which 𝑔𝑗 and 𝑔𝑘 are the average copy numbers of gene 𝑗 and 𝑘 within a genome.
Note that 𝝈 is not a symmetric matrix, i. e. the probability that an organism has gene
𝑗 given that gene 𝑘 is present (𝜎𝑗𝑘) is not necessarily the same as the probability that
an organism has gene 𝑘 when it possesses gene 𝑗 (𝜎𝑘𝑗). For example, the rpoB gene
coding for a subunit of bacterial rna polymerase is so essential for the microbial
survival that it is present in nearly all bacteria and, hence, also in denitrifiers carrying
the nirS gene. That is, 𝜎rpoB,nirS ≈ 1. Conversely, denitrifiers usually represent only a
fraction of all bacteria and therefore the probability that nirS is present given that an
organism carries the rpoB gene (𝜎nirS,rpoB) is much smaller than 1.

Even though the gene-centric modeling approach introduced a concept to model
metabolic plasticity, it has not been applied in practice – neither in the original study
(Reed et al., 2014), nor in the follow-up studies that adopted a gene-centric modeling
approach (Chavez Rodriguez et al., 2020; Guo et al., 2020; Hui et al., 2021). A drawback
of the representation of metabolic plasticity introduced by Reed et al. (2014) is that it
does not emerge naturally from the model. Rather, the co-occurrence probabilities
need to be assigned a fixed value based on previous knowledge (e. g. metagenomic
studies), or estimated from data. Gene-abundance and solute data alone may not
provide enough information about the co-occurrence probabilities such that a simpler
model not considering metabolic plasticity is preferable.
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figure 2. 1 : The production of enzymes from functional genes: Genes are transcribed into
transcripts upon regulation by transcription factors. Transcripts are then translated into
proteins. Proteins can serve as enzymes that catalyze reactions of the microbial metabolism.

2.1.3 Transcript- and enzyme-explicit models

Biomass- or gene-explicit models implicitly assume that the microbial capacity to
transform substrates is constant over time. However, the microbial metabolism is in
fact regulated by environmental conditions. Microorganisms use specific proteins,
enzymes, to catalyze metabolic reactions. The information how to build these en-
zymes is encoded in the genome of microbes. When the environmental conditions
are favorable for a certain process, regulatory proteins, so called transcription factors,
initiate the transcription of the corresponding genes (figure 2.1). The produced tran-
scripts consist of mrna and serve as the “construction plan” of enzymes to ribosomes,
specialized cell organelles that translate transcripts into enzymes by assembling them
from smaller building blocks. Biogeochemical models can account for this regulation
by explicitly simulating enzyme concentrations.

In an enzyme-based model formulation, the transformation rate of substrate 𝑠 is
based on the enzyme concentration 𝐸 [mol L⁻¹] instead of functional biomass or gene
abundance:

𝑟𝑠 = −𝑘max 𝐸 𝑓substrate 𝑓inhibition , (2.8)

where the turnover number 𝑘max [s⁻¹] is the maximum amount of substrate that a
single enzyme molecule can transform per unit of time. An enzyme-based model also
needs to incorporate a description of the production and decay of enzymes in order
to simulate their response to environmental conditions. The regulatory processes can
be described with different levels of detail.

For example, the model can include a mechanistic description for the production
of transcription factors and their regulatory effects (chapter 3; Bælum et al., 2013;
Koutinas et al., 2011). In contrast, M. Li et al. (2017b) do not consider transcription
factors or transcripts, and base the enzyme production term on the energy available
from the corresponding catabolic reaction. Song et al. (2017) describe the production
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of transcripts with a cybernetic approach, where a reaction network is regulated such
that a metabolic goal (e. g., microbial growth) is maximized.

The production and decay of enzymes can be described by

d𝐸
d𝑡

= 𝑘trnsl𝑇 − 𝑘𝐸dec𝐸 , (2.9)

where 𝑘trnsl [mol transcript⁻¹ s⁻¹] is the per-mrna translation rate, 𝑇 [transcripts L⁻¹]
is the concentration of transcripts, and 𝑘𝐸dec [s⁻¹] is the enzyme decay rate constant
(Ingalls, 2013). Note that when enzyme production and decay is described with
equation (2.9), enzyme concentrations can be written as the convolution of tran-
script concentrations with an exponential function, plus a term accounting for initial
conditions. This solution can be obtained by applying the Laplace transform to
equation (2.9), solving for 𝐸, and back-transforming (see appendix a.1).

𝐸(𝑡) = 𝑘trnsl∫
𝑡

0
𝑇 (𝑡) exp(−𝑘𝐸dec(𝑡 − 𝜏)) d𝜏 + 𝐸0 exp(−𝑘𝐸dec𝑡) . (2.10)

That is, enzyme concentrations can be thought of as a weighted time-average of
transcript concentrations where the weights decrease exponentially with the time
scale of enzyme decay. We would therefore expect that enzyme concentrations at
a given time point are mostly determined by the transcript concentrations of the
preceding minutes to hours, depending on the enzyme half-life.

2.1.4 Reactive transport

Laboratory batch systems are usually well mixed and we can assume that concentra-
tions are uniform in space. We can then treat the system as zero-dimensional in space
and describe it with ordinary differential equations (odes), considering its evolution
over time only. In subsurface environments, on the contrary, transport of solutes
through water flow (advection, dispersion) and diffusion need to be considered. While
these systems are in fact three-dimensional, there is often a dominant direction of
flow and transport. If lateral exchange can be neglected, it is appropriate to adopt a
lower-dimensional description of the system, assuming uniform concentrations in
the directions perpendicular to the transport direction. For the applications in this
thesis, transport and reactions of dissolved compounds (e. g., nitrate, nitrite, oxygen)
are therefore described by means of the one-dimensional (1-d) advection-dispersion-
reaction equation. The evolution of compound 𝑖’s concentration 𝑐𝑖 in space (𝑥) and
time (𝑡) is given by

𝜕𝑐𝑖
𝜕𝑡

+ 𝑣
𝜕𝑐𝑖
𝜕𝑥

− 𝐷
𝜕2𝑐𝑖
𝜕𝑥2

= 𝑟 𝑖net , (2.11)
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where 𝑣 [m s⁻¹] is the average linear flow velocity, 𝐷 [m² s⁻¹] is the dispersion coef-
ficient, and 𝑟 𝑖net is the net reaction rate of compound 𝑖. Dispersion is parameterized
according to Scheidegger (1974), where

𝐷 = |𝑣 |𝛼𝐿 + 𝐷𝑒 . (2.12)

Here, 𝛼𝐿 [m] is the longitudinal dispersivity and 𝐷𝑒 [m² s⁻¹] denotes the pore-diffusion
coefficient.

In all simulations I neglect transport of bacterial cells because the majority (more
than 99% according to Griebler et al., 2002) of activemicroorganisms in the subsurface
are attached to sediments (H. J. Smith et al., 2018). Transcripts and enzymes are
assumed to be confined to the interior of bacterial cells and, thus, to be immobile.

2.2 numerical methods

2.2.1 Solution of ordinary differential equations

The non-linear systems of odes that results from the rate laws of biogeochemical
models cannot be solved analytically. Instead, numerical integration schemes can
be applied to obtain an approximate solution. Several software libraries implement
ode solvers that only require the user to define the right-hand-side function. For
the simulations in the following chapters a backwards differentiation formula (bdf)
with variable order (Byrne and Hindmarsh, 1975; Jackson and Sacks-Davis, 1980) as
implemented in the cvodes library (Hindmarsh et al., 2005) was used. cvodes also
provides methods to compute gradients of the ode solution with respect to parameters
by solving the adjoint sensitivity equations. The models were written in Python using
the package sunode (Seyboldt, 2020) that wraps cvodes and produces compiled code
for the right-hand-side function using Numba (Lam et al., 2015).

2.2.2 Spatial discretization with the finite volume method

Equation (2.11) is a pde that cannot be solved analytically, except for simple reaction
rate laws such as first order decay. Instead, it needs to be solved numerically, applying
discretization methods in time and space. For the applications in this thesis I used
a semi-discretization approach: First, the equation is discretized in space using the
cell-centered finite volume method (fvm), followed by integration of the resulting
ode system in time with an ode solver. In the finite volume method, the governing
pde is integrated over a control volume, and the average of the concentration over
the control volume ̃𝑐𝑖 becomes the state variable. The integrated transport equation
for control volume 𝑖 can be written as

𝑉𝑖𝜙𝑖
d ̃𝑐𝑖
d𝑡

+∫
𝛤𝑖
𝒏 ⋅ 𝑱 d𝛤 = 𝑉𝑖𝜙𝑖 ̃𝑟𝑖 , (2.13)
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where 𝑉𝑖 is the volume and 𝜙𝑖 is the porosity of the control volume. ̃𝑟𝑖 is the net
reaction term for control volume 𝑖 based on the discretized concentrations. The
second term represents the mass flux across the boundary 𝑖 of the control volume,
where 𝑱 is the flux density and 𝒏 the normal vector. For the models in chapters 4 and 5,
I implemented the finite volume method for advective-dispersive-reactive transport
as a Python package that is publicly available (adrpy; Störiko, 2021).

2.3 parameter estimation and uncertainty quantification

2.3.1 Bayesian inference

Bayesian inference is a powerful statistical framework for estimating parameters
and their uncertainty from data. In this framework, probabilities express a degree
of knowledge. By specifying prior distributions, the researchers must first lay open
their assumptions about parameters to be inferred. Bayesian inference then allows to
update the prior beliefs with information contained in the data (van de Schoot et al.,
2021).

Previous knowledge about parameters 𝜽 before seeing data is expressed in a proba-
bility distribution that is called the prior distribution 𝑝(𝜽), or simply prior. The choice
of the prior distribution is usually based on physical constraints and parameter values
found in the literature. The likelihood 𝑝( 𝒚 ∣ 𝜽 ) is the probability distribution of the
observed data 𝒚 conditional to the parameters. As the observed data are fixed, it is a
function of the parameters. The likelihood function represents the statistical model
of the entire data generating process. This data generating model is often assumed to
be composed of a deterministic model ℳ, containing the chemical or physical rate
laws, and an additive error term 𝜀 to account for measurement and model structural
errors (Linde et al., 2017; T. Smith et al., 2015):

𝒚 = ℳ(𝜽) + 𝜀 . (2.14)

The posterior distribution expresses one’s knowledge about parameters based on
both previous assumptions and observed data. Bayes’ theorem relates it to the prior
distribution and likelihood by

𝑝( 𝜽 ∣ 𝒚 ) =
𝑝( 𝒚 ∣ 𝜽 ) 𝑝(𝜽)

𝑝(𝒚)
. (2.15)

The marginal likelihood of the data 𝑝(𝒚) in the denominator is a normalizing constant
that is also called the Bayesian model evidence (bme). It is given by the integral of
the likelihood over the whole parameter space which is, in most cases, analytically
intractable. However, as 𝑝(𝒚) is a constant, it does not alter the shape of the posterior
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distribution, and for many applications it is not necessary to determine its value.
Equation (2.15) can then be simplified to

𝑝( 𝜽 ∣ 𝒚 ) ∝ 𝑝( 𝒚 ∣ 𝜽 ) 𝑝(𝜽) . (2.16)

2.3.2 Posterior sampling

The equations describing the posterior distribution are often high-dimensional and
complicated. A closed form expression of the posterior distribution is therefore usually
not available, prohibiting direct inference (van de Schoot et al., 2021). However,
numerical techniques such as Markov chain Monte Carlo (mcmc) methods allow to
draw samples from the posterior distribution even if the distribution can only be
specified indirectly as in equation (2.16). For this thesis, two different algorithms
for sampling from the posterior were used: sequential Monte Carlo (smc) and the
No-U-Turn sampler (nuts), both as implemented in the software package PyMC
(Salvatier et al., 2016). PyMC allows to easily define custom stochastic models, and
automatically generates fast C-code for the likelihood function.

smc, or particle filtering, is based on several mcmc chains that are resampled
based on importance weights. smc sampling can easily be parallelized because the
Metropolis chains can run independently between the resampling steps. This makes
it a suitable algorithm for Bayesian inference on reactive transport problems that
involve evaluating a computationally expensive likelihood function.

When the number of parameters increases, traditional Metropolis-Hastings mcmc
rapidly becomes inefficient owing to the geometry of high-dimensional spaces (Be-
tancourt, 2018). In any high-dimensional space there is much more volume outside
a given neighborhood than inside of it. When considering probability distributions
this means that there is only little probability mass in the neighborhood of the dis-
tribution’s mode because of its small volume, even though the probability density
is highest there. In order to generate posterior samples, a sampler must efficiently
explore the typical set, that is, the region of the parameter space where volume and
density balance, and that contains the majority of the probability mass. The random
proposal distribution used in traditional Metropolis sampling is biased towards the
outside of the typical set because the outside volume is much larger. Therefore,
most proposed points will lie outside the typical set and will be rejected, making the
algorithm inefficient.

In contrast, Hamiltonian Monte Carlo (hmc) methods use gradient information
of the probability density to exploit the geometry of the typical set and explore
it particularly efficiently (Betancourt, 2018). Hmc has been shown to outperform
“traditional” mcmc methods (random walk Metropolis, Gibbs sampling, differential
evolution Metropolis) in ecological (Monnahan et al., 2017) and hydrological (Krapu
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et al., 2019) modeling, particularly for complex, high-dimensional models. Nuts (M. D.
Hoffman and Gelman, 2014) is a variant of hmc that eliminates the need to hand-tune
hyper-parameters of the sampling algorithm, improving the applicability of hmc in
practice.
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3 Does it pay off to link functional-gene
expression to denitrification rates in
reaction models?

3.1 introduction

Quantitative measurements of functional-gene transcripts have been proposed as a This chapter is
based on a
co-authored
manuscript as
indicated in the
Statement of
Contributions
on page xvii.

proxy variable for microbial reaction rates. However, several biological factors com-
plicate the relationship between transcripts and reaction rate, and it remains an open
question whether molecular-biological data can be quantitatively linked to reaction
rates. To better establish this link, it could help to integrate a mechanistic description
of the production and decay of transcripts and enzymes into biogeochemical models.

Enzyme-based biogeochemical models describe the regulation of microbial reaction
rates by the concentrations of corresponding functional enzymes (M. Li et al., 2017b;
Song et al., 2017). Compared to other biogeochemical models that use (functional)
biomass or genes as a substitute for enzymes, they thus provide a more mechanistic
description of microbial reaction processes. However, reactive-transport models that
integrate molecular-biological data are unavoidably more complex than traditional
Monod-type formulations. Whether the added complexity actually improves model
predictability remains understudied.

In this study we integrate transcript data into a denitrification reaction model by
linking the expression of functional genes to process rates. We explicitly account
for transcriptional regulation of denitrification via transcription factors, translating
the current conceptual understanding of the regulatory system in Paracoccus deni-
trificans into a quantitative model. The main pathways of nitrogen transformations
– denitrification, nitrification, N-fixation, annamox and dnra – have been exten-
sively studied due to the relevance of reactive nitrogen compounds for ecosystem
functioning (Steffen et al., 2015), groundwater contamination (Gutiérrez et al., 2018),
eutrophication (Howarth, 2008), and greenhouse gas emissions (L. Liu and Greaver,
2009). The nitrogen cycle is thus an ideal test case for developing and testing new,
enzyme-based models informed by measurements of functional genes and transcripts.

Previous gene-centric and enzyme-based modelling studies focused on systems
with slow dynamics (Chavez Rodriguez et al., 2020; M. Li et al., 2017b; Song et al., 2017)
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or at steady state (Louca et al., 2016; Reed et al., 2014). Here, we apply our model to a
dynamic reactive system, that is, one with rapid shifts in the predominant electron
accepting species, and inform it with a highly temporally-resolved dataset of tran-
script abundances. Previous studies highlighted a potentially hysteretic relationship
between transcript concentrations and reaction rates (Bælum et al., 2008; Chavez Ro-
driguez et al., 2020). Our model allows us to further explore the relationship between
transcripts, enzymes, and reaction rates and develop mechanistic interpretations of
the observations. Via a comparison with a classical Monod-type model formulation
that does not integrate transcriptional regulation we shed light on the potential added
benefits of integrating transcript data into (denitrification) reaction models.

3.2 theory and methods

3.2.1 Conceptual model description

We set up a model to simulate the experiments of Qu et al. (2015) performed in well-
mixed batch reactors. Qu et al. (2015) monitored aerobic respiration and denitrification
coupled to succinate oxidation by the denitrifying organism P. denitrificans.

Briefly, a series of batch reactors, inoculated with P. denitrificans, prepared in an
aerobic medium, were amended with 5mm succinate and 2mm of NO –

3 . Automated
headspace gas measurements (nitrogen gases, O2) as well as aqueous-phase mea-
surements of nitrite and optical density (od) facilitated monitoring time series of
concentrations driven by reaction and growth kinetics. In addition, and partly driven
by headspace gas concentrations, cells were periodically harvested to measure the
concentrations of the functional genes narG, nirS, norB and nosZ. Following mrna
extraction, transcript numbers were determined via rt-qpcr using the standard curve
method. For further details regarding the experimental procedures, we refer to the
original publication (Qu et al., 2015).

In the experiment, the contribution of the intermediates NO and N2O to the mass
balance was always less than 1‰. From this experimental observation we conclude
that nitrite reduction was the rate-limiting step. Therefore, we set up a simplified
model of denitrification simulating the specific experiments by assuming a two-step
process (figure 3.1). Therein, the reduction of nitrite via NO and N2O to N2 was treated
as a single reaction step. Denitrification was coupled to the oxidation of succinate as
the sole carbon source and electron donor:

7 NO –
3 + C4H6O4

narG
7NO –

2 + 4CO2 + 3H2O , (3.1)

14NO –
2 + 14H+ + 3C4H6O4

nirS
7N2 + 12CO2 + 16H2O · (3.2)
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In the reaction equations above, the names of the functional genes linked to the reduc-
tion of the nitrogen compounds by P. denitrificans are given above the arrows. In the
presence of oxygen, aerobic respiration is energetically favored over denitrification:

2 C4H6O4 + 7O2 8CO2 + 6H2O . (3.3)

As shown in figure 3.1, the presence of oxygen is assumed to inhibit denitrification.
The electron donor, succinate, was assumed to be primarily assimilated for energy
conservation by P. denitrificans, and thus we do not consider the incorporation of
carbon into biomass during growth. Furthermore, the model considers mass transfer
between the liquid and the gas phases via a linear-driving-force approximation, and
the dilution of the gas-phase concentrations by sampling (see appendix b.5 in the
appendix).

We set up two models for comparison: (1) an enzyme-based and a (2) standard
Monod-type model. The enzyme-based model considers transcripts and enzymes
involved in denitrification reactions as state variables. Reaction rates are directly
proportional to enzyme concentrations. The Monod-type model is much simpler and
describes denitrification rates using the Monod equation. Therein, the regulation
mechanisms and dynamics of catalyzing enzymes are not explicitly reflected, instead
the reaction rates are assumed to be directly proportional to the biomass of the
denitrifying bacteria.

3.2.2 Governing equations

Our model represents the transcriptional regulation of denitrification genes by simu-
lating transcription factor concentrations in response to oxygen and nitrogen sub-
strates and their effect on transcript concentrations. For comparison, we also set
up a simplified model that omits the explicit representation of transcription factors
so that transcription directly depends on the concentrations of signaling molecules
(see appendix b.6). This simplified model can also be interpreted mechanistically (as
discussed in appendix b.6.3), but the assumptions regarding transcriptional regulation
differ slightly from the ones presented in the following section.

Several transcription factors regulate the transcription of denitrification genes in
P. denitrificans, sensing oxygen and nitrogen oxides. The narG gene is activated by
FnrP and NarR whereas transcription of nirS requires NNR (Gaimster et al., 2018).
The FnrP protein directly reacts with oxygen which leads to its inactivation (Crack
et al., 2016). NarR responds to nitrate and nitrite although the underlying mechanism
is currently unknown and the sensing might be indirect (Spiro, 2017; Wood et al.,
2001). NNR is activated by NO and deactivated by O2 (Gaimster et al., 2018; Lee et al.,
2006).
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figure 3.1 : Schematic representation of processes considered in the models. A Model
system and processes implemented common to both the Monod-type and enzyme-based
models. B Simplified representation of gene expression and its link to reaction rates in the
enzyme-based model. Narrow arrows represent inducing effects whereas lines ending in a
square denote inhibition. In the model, NO –

2 instead of NO is used as activating compound
for NNR since we do not simulate NO concentrations.

We assume that the sum of active and inactive transcription factors remains con-
stant throughout the experiment and simulate all active transcription factors relative
to the total concentration. Genes that encode the transcriptional regulators (fnrP,
narR and nnrR) have been shown to be expressed at similar levels under aerobic and
anaerobic conditions in P. denitrificans (Giannopoulos et al., 2017), supporting our
assumption. We model the fraction of active NarR, 𝑋NarR [–], as

d𝑋NarR

d𝑡
= (𝑎no₃⁻NarR𝑐no₃⁻ + 𝑎no₂⁻NarR𝑐no₂⁻) (1 − 𝑋NarR) − 𝑘NarR

dec 𝑋NarR , (3.4)

where 𝑎no₃⁻NarR and 𝑎no₂⁻NarR [m⁻¹ s⁻¹] are the rate coefficients for activation of NarR by
nitrate and nitrite, respectively, and 𝑘NarR

dec [s⁻¹] is the dissociation constant of active
NarR. The term (1 − 𝑋NarR) represents the inactive fraction of the transcription factor.
Binding of oxygen to the transcription factors is described at equilibrium using a Hill
function (Gesztelyi et al., 2012). The active fraction of FnrP is

𝑋FnrP =
𝐼FnrP𝑝

𝐼FnrP𝑝 + 𝑐o₂𝑝
, (3.5)

with inhibition constant 𝐼FnrP [m] and Hill coefficient 𝑝 [–]. Experiments have shown
that NNR quickly reacts with oxygen, but that its reaction to NO is slower (Lee et al.,

22



3 Linking gene expression and denitrification rates via modeling

2006). We therefore model the inactivation process at equilibrium while accounting
for temporal evolution in the activation process. Although NNR actually senses NO,
we simulate its activation by nitrite as we do not explicitly model NO concentrations
in our two-step representation of denitrification (see conceptual model description
above and figure 3.1). The activation of NNR is described as follows:

d�̂�NNR

d𝑡
= 𝑎NNR𝑐no₂⁻ (1 − �̂�NNR) − 𝑘NNR

dec �̂�NNR , (3.6)

where �̂�NNR [–] is the fraction of NNR activated by nitrite (without accounting for
inactivation by oxygen), 𝑎NNR [m⁻¹ s⁻¹] is the activation rate constant and 𝑘NNR

dec [s⁻¹]
is the dissociation constant of activated NNR. Taking oxygen inhibition into account,
the active fraction of NNR 𝑋NNR [–] is given by

𝑋NNR =
𝐼NNR

𝑞

𝐼NNR
𝑞 + 𝑐o₂𝑞

�̂�NNR , (3.7)

with oxygen inhibition constant 𝐼NNR [m] and Hill coefficient 𝑞.
We assume that the transcription rate for gene 𝑖 scales with the fraction of operator

sites where all activating transcription factors are bound 𝑓 𝑖act (Ingalls, 2013):

𝑟 𝑖trnscr = 𝛼𝑖𝑓 𝑖act𝐵 , (3.8)

where 𝛼𝑖 [transcripts cell⁻¹ s⁻¹] is the maximum transcription rate for gene 𝑖 and 𝐵 is
the cell density [cells L⁻¹]. For narG and nirS, the fractions of active operator sites are
given by

𝑓 naract =

𝑋FnrP𝑋NarR
𝐾FnrP𝐾NarR

1 + 𝑋FnrP
𝐾FnrP

+ 𝑋NarR
𝐾NarR

+ 𝑋FnrP𝑋NarR
𝐾FnrP𝐾NarR

, (3.9)

and

𝑓 niract =
𝑋NNR

𝑋NNR + 𝐾NNR
, (3.10)

where 𝐾FnrP, 𝐾NarR and 𝐾NNR (all dimensionless) are the half-saturation constants
for transcription factor binding to the operator site relative to the total transcription
factor concentration.

Translation of mrna into enzymes is described by first-order kinetics:

𝑟 𝑖trnsl = 𝑘trnsl𝑇𝑖 , (3.11)
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in which 𝑘trnsl [enzymes transcript⁻¹ s⁻¹] is the first-order translation coefficient and
𝑇𝑖 [transcripts L⁻¹] is the transcript concentration of gene 𝑖. Enzymes (𝐸) and tran-
scripts (𝑇) undergo first-order decay with decay coefficients 𝑘𝑇dec [s⁻¹] and 𝑘𝐸dec [s⁻¹],
respectively:

𝑟 𝑖decay,𝑇 = 𝑘𝑇dec𝑇𝑖 , (3.12)

𝑟 𝑖decay,𝐸 = 𝑘𝐸dec𝐸𝑖 . (3.13)

Dynamics of transcripts are usually fast, with transcript half-lives of only a few
minutes (Bernstein et al., 2002; Härtig and Zumft, 1999), compared to enzyme half-
lives and cell doubling times of several hours (Blaszczyk, 1993; Maier et al., 2011).
Therefore, for transcript concentrations, we assumed a quasi-steady state (qss) (Ingalls,
2013):

d𝑇𝑖
d𝑡

= 𝑟 𝑖trnscr − 𝑟 𝑖decay,𝑇 = 0 , (3.14)

which yields the quasi-steady state transcript concentrations 𝑇 qss𝑖 [transcripts L⁻¹]:

𝑇 qss𝑖 = 𝛽 𝑖𝑇𝑓
𝑖
act𝐵 , (3.15)

where 𝛽 𝑖𝑇 = 𝛼𝑖/𝑘𝑇dec is the number of transcripts per cell at maximum transcription,
that is when 𝑓 𝑖act equals 1. Enzyme concentrations are assumed to be governed by
mrna-translation as well as first-order decay:

d𝐸𝑖
d𝑡

= 𝑟 𝑖trnsl − 𝑟 𝑖decay,𝐸 . (3.16)

The translation rate constant is difficult to measure and the prior range of this param-
eter is therefore essentially unconstrained. However, we can express it in terms of
parameters that are easier to estimate by computing the quasi-steady state (qss) of
enzyme concentrations, 𝐸qss𝑖 [enzymes L⁻¹], given by

𝐸qss𝑖 =
𝑘𝑖trnsl𝛽

𝑖
𝑇

𝑘𝐸dec
𝑓 𝑖act𝐵 . (3.17)

We defined 𝛽𝐸 = 𝑘 𝑖trnsl 𝛽
𝑖
𝑇/𝑘𝐸dec as the maximum quasi-steady state enzyme concentration

per cell, a parameter that is easier to constrain based on literature data. We can then
express the translation rate constant as

𝑘trnsl = 𝑘𝐸dec
𝛽𝐸
𝛽 𝑖𝑇

. (3.18)
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The transformation rate of nitrogen substrate 𝑗 (NO –
3 or NO –

2 ) with corresponding
enzyme 𝑖 (nar or nir) is described by Michaelis-Menten kinetics considering kinetic
inhibition of the reaction by O2:

𝑟𝑗 = 𝑟 𝑖max
𝑐𝑗

𝑐𝑗 + 𝐾𝑗

𝐼 𝑖reac
𝐼 𝑖reac + 𝑐o₂

, (3.19)

in which the maximum rate constant 𝑟 𝑖max [mol L−1 s−1] is the theoretical rate at full
substrate saturation without inhibition. The second and third term of equation (3.19)
describe substrate limitation and oxygen inhibition of the enzyme, in which 𝑐𝑗 [m] is
the concentration of substrate 𝑗, 𝐾𝑗 is the half-saturation constant [m] of substrate 𝑗
and 𝐼 𝑖reac [m] is the oxygen-inhibition constant for the corresponding enzyme (𝑖).

In a Monod-type model, the enzyme concentration inside a cell is assumed to be
constant and 𝑟max is proportional to the cell density:

𝑟 𝑖max = 𝜈 𝑖max𝐵 , (3.20)

in which 𝜈 𝑖max [mol cell⁻¹ s⁻¹] represents a constant, cell-specific maximum substrate-
consumption rate. In the enzyme-based model, the transformation rate of substrate 𝑖
is given by

𝑟 𝑖max = 𝑘𝑖max𝐸𝑖 , (3.21)

in which the turnover number 𝑘𝑖max [s⁻¹] is the maximum amount of substrate that a
single enzyme molecule can transform per unit time.

In both models (enzyme-based and Monod-type), aerobic respiration is described
by a Monod rate law:

𝑟o₂ = 𝜈o₂max𝐵
𝑐o₂

𝑐o₂ + 𝐾o₂
, (3.22)

with the maximum cell-specific rate 𝜈o₂max [mol cell⁻¹ s⁻¹] and half-saturation constant
𝐾o₂ [m]. P. denitrificans can utilize both aerobic respiration and denitrification for
growth. However, typically reported growth yields for aerobic respiration are higher
than those reported for denitrification (Boogerd et al., 1984) and, under the reported
experimental conditions (Qu et al., 2015), growth using oxygen as the electron acceptor
was the dominant process. Therefore, we assume that P. denitrificans only grows on
aerobic respiration and that denitrification steps do not result in growth:

d𝐵
d𝑡

= 𝑌o₂
𝑛c₄h₆o₄
𝑛o₂

𝑟o₂ , (3.23)

in which 𝑌o₂ [cellsmol⁻¹ of succinate] is the growth yield and 𝑛C4H6O4
= 2 and 𝑛o₂ = 7

are the stoichiometric coefficients of succinate and oxygen in the energy reaction,
respectively.

25



3 Linking gene expression and denitrification rates via modeling

The flasks used in the experiment had a headspace. We accounted for the mass Details on the
description of
gas dynamics
can be found in
appendix b.5.

transfer rates 𝑟 𝑖tr of gaseous compounds (N2 and oxygen) between the water and the
gas phase. Furthermore, we also considered dilution of the gas phase by sampling.
The dynamics of solute concentrations of oxygen and nitrogen species are given by

d𝑐o₂
d𝑡

= −𝑟o₂ + 𝑟o₂tr , (3.24)

d𝑐no₃⁻
d𝑡

= −𝑟no₃⁻ , (3.25)

d𝑐no₂⁻
d𝑡

= 𝑟no₃⁻ − 𝑟no₂⁻ , (3.26)

d𝑐n₂
d𝑡

= 1
2
𝑟no₂⁻ + 𝑟N2

tr . (3.27)

3.2.3 Parameter identification

A subset of the model parameters was fixed, either because these parameters were
known from the experimental setup, or they could be well constrained by literature
values. In total, we estimated 14 parameters of the Monod-type model and 32 param-
eters of the enzyme-based model with a Bayesian approach. Given the evidence of
observed data and prior knowledge, we obtain the posterior probability distribution
of parameter values. Following Bayes’ law (equation (2.16)), the conditional proba-
bility density of parameters 𝜽 given the data 𝒚, 𝑝( 𝜽 ∣ 𝒚 ), is proportional to the prior
probability density 𝑝(𝜽) of the parameters and the likelihood of the measured data
𝑝( 𝒚 ∣ 𝜽 ).

The prior distribution constrains the parameters on knowledge uninformed by
the data, such as literature values or physical constraints. The likelihood describes
the probability density of the measured data if the model parameters were correct.
For a perfect model, the likelihood only describes measurement errors, but in most
applications it also include the effects of conceptual errors on meeting the data. We
used the likelihood function

𝑝(𝒚 ∣ 𝜽) = ∏
𝑖,𝑗

𝑇 (𝑦𝑖𝑗 ∣ 𝜇𝑖𝑗, 𝜎𝑖𝑗, 𝜈) , (3.28)

in which 𝑇 is the Student’s 𝑡-distribution with scale 𝜎𝑖𝑗, degrees of freedom 𝜈 and
location

𝜇𝑖𝑗 = boxcox(𝑐𝑖𝑗 + 𝑏𝑖, 𝜆𝑖) . (3.29)

The index 𝑖 refers to the measured variable, 𝑗 indicates the measurement number
and boxcox is the Box-Cox transform (Box and Cox, 1964). All measured data from the
experiment were Box-Cox transformed to ensure homoscedasticity of the residuals.
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We added a constant background value 𝑏𝑖 to the simulated concentration 𝑐𝑖𝑗 of oxygen
and nitrite because measured concentrations never reached zero in the experiment,
but stayed at a very low background value (<0.1 µm for NO –

2 and <0.2 µm for O2).
The errors 𝜎𝑖𝑗 are the sum of data errors computed from the standard deviations of

triplicate measurements and a constant error that accounts for model structural errors
which we choose to be an estimation parameter. We chose a Student’s 𝑡-distribution
with 𝜈 = 10 instead of a normal distribution so that outliers do not get too much
weight.

The model was implemented in the programming language Python and the code
is freely available (Störiko et al., 2021b). We solved the system of odes using the
Python package Sunode (Seyboldt, 2020), a Python wrapper to the cvodes library
(Hindmarsh et al., 2005). Obtaining numerically stable results over a broad range of
parameter values was difficult. Therefore, the ode was log-transformed and solved
using a backward differentiation formula of variable order (Byrne and Hindmarsh,
1975; Jackson and Sacks-Davis, 1980) with small tolerances (10⁻¹² for the absolute and
relative tolerance in the forward problem, 10⁻⁸ in the adjoint problem). Samples from
the posterior distribution were drawn using the Python package PyMC3 (Salvatier
et al., 2016) and analyzed with ArviZ (Kumar et al., 2019).

We sampled all models with nuts (No-U-Turn sampler; M. D. Hoffman and Gelman,
2014), a Hamiltonian Monte Carlo algorithm implemented in PyMC3, with adjusted
settings for the tuning phase (Foreman-Mackey, 2020). It uses gradient information
which we obtained by solving the adjoint sensitivity equations. We used the 𝑅-
criterion (Vehtari et al., 2021) that compares the variance between different chains to
the in-chain-variance to assess convergence. The largest 𝑅 is 1.005 for the Monod-
type model and 1.021 for the enzyme-based model – the values close to one indicate
convergence.

Table b.2 in the appendix lists fixed parameter values, prior distributions, and
statistics about the posterior distributions. Table b.1 provides initial values of the
simulations.

Enzyme concentrations were not measured in the experiment and were only in-
directly constrained through reaction rates. As all rate laws contain the product of
enzyme concentrations and the maximum enzyme-specific turnover rate 𝑘max, it is
impossible to estimate both 𝑘max and 𝛽𝐸 without direct measurements of enzyme con-
centrations. Therefore we fixed 𝛽𝐸 to an arbitrary value of 1125 enzymes cell⁻¹ based
on measured intracellular enzyme concentrations in the literature (Maier et al., 2011).
This implies that the fitted values of 𝑘max and the simulated enzyme concentrations
within bacterial cells have to be interpreted with care, as they are conditioned on the
arbitrary choice of 𝛽𝐸.
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figure 3 .2 : Simulated dynamics, 100 draws from the posterior of the enzyme-based model
(solid lines) and posterior median of theMonod-type model (dashed lines), and measurements
from three experimental replicates (open symbols). a Nitrogen compounds, b oxygen and
cell densities, c transcripts, d enzymes and maximum rates.

3.3 results and discussion

3.3.1 Modeled concentration time series

Figure 3.2 shows a comparison of the simulated concentrations of the enzyme-based
and the Monod-type models with the experimental data (Qu et al., 2015). Figure 3.2a
shows the concentrations of nitrogen species (nitrate, nitrite, N2) of the models and the
experiments, figure 3.2b the oxygen concentrations and cell densities, and figure 3.2c
the transcripts of narG and nirS, respectively, whereas figure 3.2d contains simulated
enzyme concentrations for which no measurements were available. Fitted parameter
values and their uncertainties are outlined in table b.2, and simulated transcription
factor concentrations are shown in figure b.4.

Concentration times series results in figure 3.2a and b are present as several draws
of the posterior distribution for the enzyme based model and the median output for the
Monod-type model. Results for the Monod-type model exhibited a similarly narrow
spread of simulated concentrations, and thus multiple draws were omitted. Both
model formulations fit the concentration data equally well. The excellent fit supports
the validity of our conceptual model and the underlying assumptions outlined above.
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Oxygen is consumed before nitrate and nitrite are reduced to molecular nitrogen,
which confirms the inhibition of denitrification by oxygen. The simulations predict
that nitrate is fully converted to nitrite before the onset of the second denitrification
step. Both models capture the sharp increase in nitrite concentrations, peaking
after 25 h at 2mm, followed by a gradual decrease over the ensuing 20 h, and the
subsequent production of N2 gas, which is the final product of denitrification. The
posterior distributions of solute and gas concentrations in both models were narrow,
reflecting the small measurement variance. Even though nitrate concentrations were
not measured by Qu et al. (2015), the nitrate simulation results are indirectly well
constrained by nitrite data and the mass conservation assumption encoded in the
model equations.

At the time of highest nitrite concentrations, the measured cell densities reached
peak values and gradually decreased (figure 3.2b). Neither of the models was able to
capture the slightly non-monotonic behavior in cell densities with a peak at 25 h and a
subsequent modest decline. The slight discrepancy between simulated and measured
cell densities could be due to several assumptions of our model. We assumed that
P. denitrificans only grows on oxygen, even though the organism is known to grow
on both oxygen and nitrate (Boogerd et al., 1984), which may explain growth beyond
the time of oxygen availability.

The subsequent slight decrease in cell densities, if not a measurement artifact, may
be a toxicity effect of nitrite or one of the non-modeled intermediates. Nitrite is known
to be toxic to P. denitrificans and other microorganisms at millimolar concentrations
(Stouthamer, 1980; van Verseveld et al., 1977; H. Zhang et al., 2013). Accounting for
nitrite toxicity has been postulated as an explanation for delayed growth and increased
cell lysis of Shewanella oneidensis while reducing nitrite to ammonium (Mellage et al.,
2019). Altogether, we deemed the miss-fit in cell densities not significant enough to
justify making the model more complex by introducing additional processes with
difficult-to-constrain parameters.

3.3.2 Transcript and enzyme dynamics

Overall, the enzyme-based model formulation captured the dynamics of measured
narG and nirS concentrations (figure 3.2c). Both simulated and measured narG
transcript concentrations fluctuated around a baseline value of 0.01 transcripts per
cell, and nirS levels were very low during the oxic phase. Following a drop in
oxygen levels, simulated narG transcripts rose, followed by those of nirS. The model
satisfactorily captured the peak of narG transcripts at 23 h and the following gradual
decrease to low, but detectable transcript levels at the last measurement time point,
at about 50 h. The model also predicted the very abrupt increase of nirS transcripts
at 24 h. While peak levels of measured nirS transcripts at 25 h could not be matched,
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3 Linking gene expression and denitrification rates via modeling

the measurement uncertainty of the transcript data at that time point was very large
(0.024 transcripts cell⁻¹ to 0.054 transcripts cell⁻¹), and thus we considered these peak
values as outliers. Our assumption is supported by additional data of a parallel
experiment with the same setup, but using butyrate instead of succinate as the carbon
source, where a peak in nirS transcripts was not detected (Qu et al., 2015). Analogous
to measured data, both of the simulated transcripts remained at concentrations above
the limit of detection for a few hours after complete denitrification.

As seen in figure 3.2d, enzyme concentrations were subject to considerable uncer-
tainty – an expected result, as there are no data to constrain them. However, the
maximum cell-specific turnover rate of nir 𝑟nirmax, given by the product of enzyme
concentrations and the maximum enzyme specific turnover rate, was well constrained,
provided that substrate was being consumed. The solute data that we used for con-
ditioning could apparently provide sufficient information about reaction rates to
estimate the maximum rate.

We also setup a model version with a more simplified description of transcriptional
regulation, for comparison. The model, described in appendix b.6.1, yielded similar
results (figure b.6) to those outlined in figure 3.2. However, the simplified model
formulation was unable to capture the sudden increase in nirS transcripts (at 𝑡 = 24 h).
Therefore, we opted for the more complex transcription-factor based formulation.

3.3.3 Posterior parameter uncertainty

Figure 3.3 shows prior and posterior distributions of selected parameters. In our
application, most posterior parameter distributions were much narrower than the
prior ranges (figure 3.3a), indicating that they were strongly constrained by the
available data (e. g., 𝑌o₂). Where applicable, the Monod-type and enzyme-based
models mostly resulted in similar parameter distributions. However, the estimated Marginal

distributions of
all parameters
can be found in
figure b.1 in the
appendix.

enzyme inhibition constants 𝐼narreac and 𝐼nirreac were smaller in the Monod-type model
compared to the enzyme basedmodel because theMonod-typemodel compensates the
lacking regulation of enzyme levels with a stronger inhibition of enzymes by oxygen.
Some parameters exhibit considerable spread even after conditioning to the data,
partly ranging over several orders of magnitude. This holds mainly for parameters
that are related to transcription factor, transcript and enzyme concentrations such as
transcription factor activation rate constants (e. g. 𝑎no₃⁻NarR) or the enzyme half-life 𝑡𝐸1/2.

In some cases, part of the spread can be attributed to the correlation among the
conditional parameters, as illustrated in figure 3.3b for selected examples. For exam-
ple, the enzyme half-life 𝑡𝐸1/2 strongly correlates with the “efficiency” of nir enzymes

expressed by 𝑘no₂⁻max . The enzyme half-life influences the concentration of the enzymes.
Because the total reaction rate depends on the product of the enzyme concentration
with the efficiency of a single enzyme, changing the enzyme half-life can be compen-
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3 Linking gene expression and denitrification rates via modeling

figure 3.3 : Selected
marginal parameter distri-
butions. a Kernel density
estimates of the marginal
distributions of selected
parameters. Densities are
cut off at the 94% highest
density intervals, circular
markers indicate the mean.
Parameters 𝑘no₂⁻max , 𝑡𝐸1/2, 𝐼NNR and
𝑎no₃⁻NarR are not present in the
Monod-type model such that
the posterior is only shown for
the enzyme-based formula-
tion. Posterior distributions of
𝑌o₂ are similar in both model
formulations and cannot
be distinguished in the plot.
b Pairwise joint posterior
distributions of parameters
with strong correlation.
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sated by also changing the enzyme efficiency. Thus, if we had enzyme data, we could
significantly decrease the uncertainty in enzyme half-lives and the enzyme-specific
maximum turnover rate 𝑘no₂⁻max of nitrite.

A strong correlation can also be observed between the Monod parameters related Correlation
coefficients of
all posterior
distributions
are plotted in
figures b.2
and b.3 in the
appendix.

to aerobic respiration, which has been previously reported (C. Liu and Zachara,
2001) (figure 3.3b). Reparameterization alleviated the correlation between 𝜈o₂max and
𝐾o₂. The parameter 𝜈o₂max is the cell-specific respiration rate at limit of the substrate
concentration approaching infinity. Instead, we used the cell-specific respiration
rate at a fixed concentration 𝜈o₂fix as a parameter (see appendix b.4). 𝜈o₂fix and 𝐾o₂ were
less correlated than before the reparametrization, but the correlation of 𝜈o₂fix with the
growth yield was larger.

3.3.4 Relationship between reaction rates and transcript concentrations

It has been previously suggested to use transcript concentrations as a proxy for
reaction rates (Achermann et al., 2020; Brow et al., 2013; Freitag and Prosser, 2009;
Nicolaisen et al., 2008; Rohe et al., 2020). To test if such a relationship would be a
valid assumption, we plot the simulated transcript concentrations and corresponding
reaction rates against each other in figure 3.4a and d. Cell-specific rateswere calculated
by applying the rate laws to the simulated concentrations and normalizing the result
by the cell densities. Measured transcript concentrations plotted against the reaction
rates based on the Monod-type model are shown for comparison.

Transcript concentrations of narG and nirS are upregulated before rates increase
(figure 3.4a and d). Between 10 h to 25 h, narG transcript show a positive, but non-
linear correlation with reaction rates, before the rates drop to zero once nitrate is
depleted. Nitrite reduction rates, in contrast, only start increasingwhen nirS transcript
levels have nearly reached their maximum (figure 3.4d). Rates continue to increase
when nirS transcript levels start to drop such that rates and transcript levels are
anti-correlated around 40 h, just before reaction rates drop abruptly upon substrate
depletion. After the rapid drop in reaction rates, both transcripts remain present for
several hours.

We also looked at the relationship of enzyme concentrations with denitrification
rates (figure 3.4b and e). Enzyme concentrations are not well constrained by the data
and their posterior uncertainty propagates to the relationship with reaction rates.
We therefore plotted the product of enzyme concentrations and their “efficiency”
𝑘no₂⁻max , corresponding to the maximum potential reaction rate, without accounting for
enzyme inhibition or substrate limitation (figure 3.4c and f).

The maximum rate of nir is well constrained and shows an almost linear relation-
ship with actual reaction rates up to the point where nitrite depletion cuts the rate
(figure 3.4f) The rate of nitrite reduction is essentially not limited by oxygen inhibition
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figure 3.4 : Cell-specific substrate turnover rates plotted against concentrations of the
corresponding transcripts (panel a and d) or enzymes (panel b and e) and the maximum
specific rate (panel c and f) linked to the reaction. The plot shows several draws from the
posterior (colored lines). Measured transcript data are plotted against rates based on the
Monod model (dark gray lines and rectangles).
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or substrate limitation. The maximum rate is thus the determining factor such that an
increase in enzyme concentrations directly increases the rate. The relationship of nar
maximum rates and actual nitrate reduction rates (figure 3.4c) is more complicated.
The initial increase is strongly non-linear and the remaining posterior spread of the
maximum rate leads to uncertainty in the scaling factor.

Both findings can be explained by the initial inhibition of nar enzymes by oxygen:
nar enzymes are produced while oxygen is still present so that 𝑟max increases, but the
actual rate does not, driven by the weaker inhibition of enzyme production relative
to that of the enzymatic catalysis. The posterior uncertainty of the relationship is
due to correlation between the oxygen inhibition parameter and the maximum rate.
Different combinations of the parameters can yield the same reaction rate and an
unambiguous assignment is not possible for a case when the data only constrain the
effective rate.

Our results show that under the dynamic conditions of the experiment, transcript
concentrations are not a good predictor of reaction rates. The complicated relation-
ships are mainly caused by the asynchronism and different time scales of substrate
dynamics, transcript and enzyme production, and decay. Under environmental condi-
tions, changes in concentrations of redox-active species may be much slower than in
the laboratory experiment simulated in this study. In groundwater, for example, the
typical time scales are on the order of several months (Arora et al., 2016, 2013).

If changes in redox-active species are slower than the enzyme dynamics (acting on
the order of days), wewould expect a better correlation between transcript and enzyme
concentrations and reaction rates, potentially allowing for further simplifications of
model formulations. However, many environments in which nitrogen cycling plays a
crucial role are very dynamic. For example, rapid water-content driven changes in the
redox state of soils (Pronk et al., 2020) or diurnal fluctuations in river biogeochemistry
(Kunz et al., 2017) can control nitrogen turnover. The lack of obvious correlations
between transcripts of functional genes and reaction rates observed in our modeling
results are likely representative for such dynamic environments.

A non-linear, hysteretic relationship between transcript concentrations and reaction
rates has also been found in a gene-centric model of pesticide degradation (Chavez
Rodriguez et al., 2020). Interestingly, this is the case although pesticide degradation
acts on much longer time scales than denitrification in this study and the observed
relationship between rates and transcripts shows different patterns than the ones
presented in figure 3.4 (e. g., direction of the hysteresis). This highlights the need to
assess the relationship between gene expression and rates for each reaction system
individually. Nevertheless, models that explicitly simulate transcript concentrations,
as presented in this study, can help to understand the relationship between gene
expression and rates and extrapolate it.

If enzyme concentrations were at quasi-steady state, the enzyme-based model could
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figure 3.5 : Quasi-steady enzyme
state concentrations [enzymes L⁻¹]
plotted against the concentrations
simulated by the fully transient
model. Although the exact relation-
ship varies between different draws
from the posterior (indicated by sev-
eral lines), all of them are character-
ized by hysteresis in time (colors in-
dicate the time point).

be simplified, reducing the number of state variables and parameters. To test if this
assumption is valid, we ran the fully transient model version (as shown in figure 3.2)
and computed the quasi-steady state concentrations based on the fully transient
results. If the quasi-steady state assumption were valid, the two concentrations
should cluster along the 1:1-line. As evident from figure 3.5, this is not the case –
enzyme concentrations exhibit a strongly hysteretic relationship and remain much
lower than the corresponding quasi-steady state concentrations. Enzyme dynamics,
as measured by estimated enzyme half-lives, are considerably slower than substrate
dynamics such that the substrate stimulus is too short for enzyme concentrations to
reach their quasi-steady state value.

3.3.5 Overall model performance

Our parsimonious enzyme-based model describes expressional patterns well and
simulates denitrification rates very accurately. The model quantitatively links con-
centrations of functional transcripts to turnover rates. In reproducing the solute-
concentration data of Qu et al. (2015), however, the Monod-type model is as good as
the enzyme-based model. Small data errors lead to narrow posterior distributions of
the solute concentrations in both models, whereas the much more uncertain transcript
data do not help to further constrain them. While the enzyme-based model can be
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calibrated using more types of data than the Monod-type model, it also requires
estimating more parameters, which appear to be weakly constrained.

The strength of the enzyme-based model lies in improving our mechanistic under-
standing in a quantitative way. For example, it helps to decompose the contributions
of transcriptional regulation and enzyme inhibition to the down-regulation of deni-
trification rates by oxygen. It confirms that the conceptual model of transcriptional
regulation of narG and nirS through FnrP, NarR and NNR can also explain expres-
sional patterns quantitatively. Finally, the quantitative model helps to understand the
non-linear relationship between rates and transcript or enzyme concentrations. It
can be used to generate hypotheses about the behavior in other systems and develop
sampling strategies for these quantities.

Transcription-factor regulation and enzyme dynamics need to be explicitly de-
scribed as these processes take place at similar or even larger time scales than the
actual enzymatic reactions and the corresponding substrate dynamics. The relation
between transcript concentrations and reaction rates exhibits a strong hysteresis.
Enzyme concentrations show a better correlation with reaction rates at early times
but are uncorrelated at later times due to substrate limitations. Thus, enzyme kinetics
and the abundance of enzymes present likewise have an impact on reaction rates and
need to be taken into account.

3.3.6 Transferabilty to environmental systems

While the experimental conditions during the experiment we simulated are not repre-
sentative for many environments (high succinate concentrations, single organism),
the controlled conditions allowed us to set up a detailed and mechanistic model of the
denitrification reactions. The presented model equations hereafter can be integrated
in a model that better represents natural environments, for example by accounting
for transport or carbon limitation. Representing all denitrifiers by a single organism
in the model certainly does not account for all interactions that occur in natural mi-
crobial communities. Considering a single pool of denitrifiers in quantitative reaction
models, however, is a common practice to keep the simulations computationally and
conceptually tractable (Kinzelbach et al., 1991; Sanz-Prat et al., 2015; Yan et al., 2016).

In addition, P. denitrificans is a denitrifying organism that is actually present in
natural environments like soils (Nokhal and Schlegel, 1983). The exact mechanism of
transcriptional regulation is not the same in all denitrifiers, but some basic principles
are similar in various studied organisms (Gaimster et al., 2018). Further, the exact
pattern of gene expressional dynamics does not matter for reaction rates because they
are smoothed out by the much slower enzyme dynamics. A simplified representation
of the transcriptional regulation as we present in appendix b.6 might describe the
behavior of a diverse microbial community sufficiently well, where the effective
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expressional patterns would be some smoothed average of the individual patterns
produced by different regulation mechanisms.

An alternative approach tomodeling transcriptional regulation that does not require
exact knowledge of the underlying mechanism has been presented previously by Song
et al. (2017). The latter authors applied a cybernetic approach (Song and C. Liu, 2015)
that relies on the principle of return-on-investment: Microorganisms will transcribe
those genes that maximize their metabolic “profits” (though it is often unclear how to
express that in quantitative terms).

Compared to the simulation results of the enzyme-based denitrification model
presented earlier (Song et al., 2017), we can observe some key differences. While
transcript concentrations respond relatively quickly to changes in substrate concen-
trations, Song et al. (2017) predict a long delay in the response of transcripts. At
the same time, enzyme concentrations respond to transcripts quickly in their model.
While this is one possibility to explain the metabolic lag they observed, it is not
necessary to ascribe the delay to slow transcription dynamics. Transcript dynamics in
their model are not constrained by data so the actual lag could also be due to delayed
translation.

Differences between the model outcomes might be attributed to the different envi-
ronmental systems. The laboratory system that we simulated exhibited faster kinetics
and was more dynamic than the sediment that Song et al. (2017) analyzed (complete
denitrification within two days with the pronounced accumulation of reactive in-
termediates, compared to a week). In contrast to the aforementioned study (Song
et al., 2017), our simulations and transcript data support an immediate transcriptional
response to denitrifying conditions, justifying the omission of a resource pool which
first builds up before transcription starts in the model formulation.

The authors of the experimental data used here measured biomass in cell densities,
which we also chose as state variable. In the natural environment, functional biomass
is difficult to measure and a different approach is needed. A gene-centric approach
which uses gene concentrations as proxies for functional biomass (Pagel et al., 2016;
Reed et al., 2014) could be readily integrated into our model. Gene-centric approaches
have been mostly applied to marine environments and their application to soils or
groundwater might need extensions to account for relic dna which has been shown
to represent as much as 40% (Carini et al., 2016).

3.3.7 Implications for biogeochemical modeling

We informed our model with highly resolved time series of all solute concentrations in
a controlled experiment. Under these conditions, the quantitative prediction of reac-
tion rates was not improved by integrating transcript data. Since substrate and product
concentrations are easier to obtain than transcript concentrations, quantitative rate
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predictions can be more effectively improved by additional chemical measurements
than by integrating transcript concentrations. By contrast, transcript data can support
the identification of key reactions, particularly if intermediate products have low
concentrations and cannot be detected. In addition, transcript based models can fill a
key gap in our predictive capabilities within natural systems where the difficulty in
acquiring cell density information impedes the validation of biomass-explicit models.

The advancement of enzyme-based models requires appropriate data for evaluating
models and testing hypotheses. Data sets with quantitative information about func-
tional genes, transcripts and enzymes could help to find accurate and parsimonious
descriptions of transcript and enzyme dynamics. Measuring enzyme concentrations
(e. g., by targeted quantification of functional enzymes, see M. Li et al., 2017a) seems
more promising than transcript concentrations as they more closely relate to actual
turnover rates. However, measuring specific proteins in environmental samples may
be restricted by major challenges, such as the efficient extraction of proteins from
environmental samples, hindering accurate quantification and limiting the wider
application of functional enzyme measurements (Starke et al., 2019).

We are convinced that further improvements of enzyme-based models in environ-
mental systems can be achieved by integrating data from experiments carried out
under different environmental conditions, expanding the sensitivity range of simu-
lated processes and parameters. While batch experiments with high cell densities and
nutrient concentrations usually exhibit fast dynamics there is a need to condition
models to data from less dynamic systems such as chemostats and flow-through
columns, which may more closely relate to natural environmental conditions.
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4 Denitrification-driven transcription and
enzyme production at the
river–groundwater interface

4.1 introduction

The increase of diffuse nitrogen inputs, mainly by agriculture, has led to elevated This chapter is
based on a
co-authored
manuscript as
indicated in the
Statement of
Contributions
on page xvii.

concentrations of reactive-nitrogen species in groundwater and surface-water bodies,
threatening drinking-water production, and causing eutrophication of rivers and
lakes (Erisman et al., 2013). Microorganisms use reactive nitrogen compounds as
substrates for redox reactions that fuel their energy metabolism, constituting the main
attenuation process for nitrogen contamination in environmental systems (Kuypers et
al., 2018). Understanding the factors that foster microbial removal of reactive nitrogen
species from the environment is therefore critical for contamination control and
mitigation. Denitrification is the key reaction for the permanent removal of nitrogen
species from the environment because it converts the reactive-nitrogen species nitrate
into inert N2 gas rather than into another reactive-nitrogen species. The interface
between surface waters and groundwater plays a key role for the turnover of nitrogen
compounds because steep redox gradients (from oxic rivers to anoxic groundwater)
and the availability of labile organic carbon as an electron donor, either in the river
water or in the hyporheic and riparian zones, enhance microbial reactions (Krause
et al., 2011, 2017).

Molecular-biological tools and so-called omics techniques, i. e., (meta)genomics,
(meta)transcriptomics, (meta)proteomics analyses, have been used to characterize
microbial nitrogen cycling in riparian zones (S. Wang et al., 2019), lake and river
sediments (Reid et al., 2018; Stoliker et al., 2016), and the hyporheic zone (Danczak
et al., 2016) by providing information about the microbial community composition, its
functional and metabolic potential, and activity. Typically, genomic data are thought
to provide information on metabolic potential, whereas transcript data are seen as an
indicator of microbial activity.

While these methods can help to identify the relevant processes at a particular site
and outline reactive zones, it remains a challenge to quantitatively relate molecular-
biological measurements to turnover rates of nitrogen. Many sequencing studies
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target taxonomy and diversity of organisms, without providing direct information
about reactions rates. Meta-omics data primarily target the relative (qualitative)
abundance of genes, transcripts, and proteins and are particularly difficult to convert
into rate expressions. In contrast, measurements of functional genes, their transcripts,
and the corresponding enzymes directly relate to the abundance of organisms capable
of specific metabolic pathways and their activity. Several studies have suggested using
transcript levels or transcript-to-gene ratios to estimate reaction rates of contaminant
(Brow et al., 2013; Rahm and Richardson, 2008), pesticide (Monard et al., 2013) or
nitrogen-species turnover (Rohe et al., 2020).

However, several factors may complicate the relationship between transcript con-
centrations and reaction rates: For example, enzyme levels can be disconnected from
transcript levels due to their different half-lives, and concentrations of substrates
in addition to enzyme levels regulate the catalysis rate (Moran et al., 2013; Störiko
et al., 2021a). It therefore remains unclear, if concentrations of transcripts or enzymes
in the environment can be used as a proxy for reaction rates. In a meta-analysis of
experimental studies, Rocca et al. (2015) found that transcript abundances were not
significantly correlated with biogeochemical processes. They conclude that it is essen-
tial to investigate the factors controlling gene abundance, transcription, translation
and enzyme activity to better interpret the patterns of gene and transcript abundances
in the environment with respect to ecosystem processes.

Due to the high analytical costs of molecular-biological analyses, spatially and
temporally highly resolved measurements of gene, transcript, or enzyme concentra-
tions to date hardly exist. Process-based modeling may help to bridge between a
limited number of molecular-biological measurements, continuously logged phys-
ical and chemical parameters (e. g., using probes), and the need to understand the
system’s biological, chemical, and physical functioning at scales relevant for man-
agement. Modeling may also be used as a tool to investigate how transcript and
enzyme concentration relate to reaction rates, and how different factors influence the
relationship.

A few modeling approaches have been developed that explicitly simulate the levels
of transcripts or enzymes, and how they regulate denitrification rates. For example,
M. Li et al. (2017b) modeled production of enzymes for denitrification during the
incubation of hyporheic zone sediments based on an energetic approach. Song et al.
(2017) described the regulation of denitrification enzymes with a cybernetic approach.
In the latter, reaction networks are optimized with respect to a metabolic goal such
as maximizing the microbial growth rate (Ramkrishna and Song, 2019). Other models
feature a mechanistic description of the regulatory chain, including the production
of transcription factors triggered by signaling molecules, production of messenger
rna (mrna), and translation into enzymes (Bælum et al., 2013; Koutinas et al., 2011;
Störiko et al., 2021a).
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Such enzyme-based modeling approaches provide a mechanistic link between
transcript and enzyme concentrations, and reaction rates. We use an enzyme-based
reactive transport model to assess whether measurements of functional-gene tran-
scripts or enzymes can be used as a proxy for biogeochemical reaction rates. While
our approach is generally applicable to other critical processes, we focus on denitrifi-
cation at the river–groundwater interface. On the basis of this example, we analyze
how biogeochemical and hydrological conditions influence the relationship between
transcript concentrations and reaction rates.

4.2 methods

4.2.1 Model scenarios

We set up three model scenarios that represent different hydrological conditions at
the river–groundwater interface (figure 4.1), ranging from steady-state hydrology
and biogeochemistry to pronounced diurnal cycles. Biogeochemical and hydrological
conditions that differ between the scenarios enable us to evaluate their impact on
simulated transcript and enzyme concentrations and reaction rates. In all scenarios,
we considered microbial aerobic respiration and denitrification. Both pathways were
coupled to the oxidation of dissolved organic carbon (doc) which was provided via
hydrolysis of particulate organic carbon (poc) in the aquifer matrix and via inflow
from the river water.

The first scenario simulated constant groundwater discharge (gd), where nitrate-
rich water from the aquifer recharged into the river (figure 4.1a), a common situation in
agricultural landscapes. In addition, we assumed that the reactive poc concentration
was highest near the river and decreased with increasing distance away from the
streambed. That is, we imposed a gradient in the electron donor availability that
focused the denitrification activity near the river-aquifer interface. The formulation
of the gradient is presented in the next section (see equations 4.9 and 4.10).

In the second scenario, we simulated oxic river water continuously entering the
aquifer (figure 4.1b), mimicking a bank-filtration (bf) scenario that could be either
induced by pumping or by the natural hydraulic gradient of the system. Oxygen
concentrations in river water can be subject to strong daily fluctuations, reflecting the
interplay between radiation-dependent photosynthesis, aerobic respiration, and gas
exchange in the river (Hayashi et al., 2012; Kunz et al., 2017). We considered two sub-
scenarios: In the first, the oxygen concentration in the river remained at a constant
level of 8mg L⁻¹ (bfc, constant oxygen), whereas in the second the concentration
sinusoidally fluctuated about the mean value, yielding dynamic redox conditions
close to the river–groundwater interface (bfp, periodic oxygen).

In a third scenario, denoted bank storage (bs), we considered a flow-reversal,
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figure 4.1 : Schematic of the three simulation scenarios and the corresponding boundary
conditions. The thick arrow at the river boundary indicates the groundwater flow direction.
The inset plots in panel b schematically show the oxygen concentration in the river water
used for the fixed concentration boundary condition over time. The inset plot in panel c
illustrates the advective velocity 𝑣 over time.

induced by dynamic river-stage fluctuations, reflecting, for instance, hydropeaking
(Sawyer et al., 2009) or tidal influences (figure 4.1c). Close to the river–groundwater
interface, the flow reversal caused alternating oxic and anoxic conditions.

4.2.2 Governing equations

Advective-dispersive-reactive transport We described transport and reaction of dis-
solved compounds (nitrate, nitrite, oxygen, doc) via the one-dimensional (1-d) advec-
tion-dispersion-reaction equation. The evolution of compound 𝑖’s concentration 𝑐𝑖 in
space (𝑥) and time (𝑡) is thus given by equations (2.11) and (2.12). We further assumed
that flow is at quasi-steady state, in which 𝑣 is uniform in space and reacts instanta-
neously to changes in boundary conditions. In scenarios gd and bf, the velocity is
constant in time, whereas in scenario bs, we approximated 𝑣 as a sinusoidal function
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of time with mean velocity ̄𝑣 [m s⁻¹], amplitude ̂𝑣 [m s⁻¹] and frequency 𝑓𝑣 [s⁻¹]:

𝑣(𝑡) = ̄𝑣 + ̂𝑣 sin (2𝜋𝑓𝑣 𝑡) (4.1)

In all simulations we neglected transport of bacterial cells because the majority (more
than 99% according to Griebler et al., 2002) of active microorganisms in the subsurface
are attached to sediments (H. J. Smith et al., 2018). Transcripts and enzymes were
assumed to be confined to the interior of bacterial cells and thus to be immobile.

Microbial reactions We used an enzyme-based model formulation of microbial deni-
trification (Störiko et al., 2021a) that reflects the biological regulation of reaction rates
by simulating concentrations of transcription factors, functional-gene transcripts,
and enzymes explicitly. The reaction model describes both aerobic respiration and re-
duction of nitrate to N2 via NO –

2 as a reactive intermediate. Denitrification is coupled
to the oxidation of organic carbon, formally expressed as succinate, serving as an
electron donor and carbon source for the facultative anaerobe Paracoccus denitrificans.
Herein, we applied the parameters in Störiko et al. (2021a) specific to P. denitrificans
to simulate denitrification coupled to doc oxidation (assuming that succinate acts as
a generalized form of doc) to the flow scenarios outlined in figure 4.1. Despite the
parameters being specific to a pure-culture batch experiment (Qu et al., 2015), they
provide an opportunity with which to probe the thus far poorly-characterized behav-
ior of transcription and enzyme regulation in natural subsurface-transport settings,
relevant for biogeochemical laboratory and field investigations. In the following we
briefly summarize key model processes and refer the reader to the original publication
for more detail.

The catabolic reactions were described by the following stoichiometric equations:

7 NO –
3 + C4H6O4

narG
7NO –

2 + 4CO2 + 3H2O (4.2)

14NO –
2 + 14H+ + 3C4H6O4

nirS
7N2 + 12CO2 + 16H2O (4.3)

7 O2 + 2C4H6O4 8CO2 + 6H2O (4.4)

Gene expression is controlled by the transcription factors FnrP, sensitive to oxygen
levels, NarR, regulated by nitrate and nitrite, and NNR, stimulated in the presence
of nitrite and absence of oxygen. Transcription of the narG gene, coding for nitrate
reductase (nar), is initiated in the presence of FnrP and NarR, whereas the transcrip-
tion of nirS, coding for nitrite reductase (nir), requires NNR. The concentrations of
transcripts were assumed to be at quasi-steady state with the transcription factor
concentrations. The nar and nir enzymes are produced in response to narG and nirS
levels and decay following a first-order rate law (Störiko et al., 2021a).
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4 Transcription and enzyme production at the river–groundwater interface

Denitrification rates are a function of the enzyme concentrations, a doubleMichaelis-
Menten term for the limitation of electron donor (doc) and electron acceptor (nitrate,
nitrite) concentrations and an oxygen inhibition term:

𝑟n = 𝑘𝑗max𝐸𝑗
𝑐n

𝐾n + 𝑐n

𝑐doc
𝐾doc + 𝑐doc

𝐼 𝑗o₂
𝑐o₂ + 𝐼 𝑗o₂

(4.5)

Here, 𝑘𝑗max [s⁻¹] is the amount of substrate that the enzyme 𝑗 (nar or nir) can maxi-
mally turn over per time (also called turnover number), 𝐸𝑗 [m] is the concentration
of enzyme 𝑗 that catalyzes the reaction of substrate 𝑁 (nitrate or nitrite). 𝐾n [m] and
𝐾doc [m] are the half-saturation concentrations for nitrate/nitrite and doc, respec-
tively, and 𝐼 𝑗o₂ [m] is the oxygen inhibition constant for enzyme 𝑗. Aerobic respiration
was described by a standard double Michaelis-Menten formulation with the maxi-
mum cell-specific respiration rate 𝜈o₂max [mol cell⁻¹ s⁻¹] and biomass concentration 𝐵
[cells L⁻¹]:

𝑟o₂ = 𝜈o₂max𝐵
𝑐o₂

𝐾o₂ + 𝑐o₂

𝑐doc
𝐾doc + 𝑐doc

(4.6)

To predict the dynamics of transcripts and enzymes under conditions similar to
those found in natural environments, we modified and complemented the parts
of the model that relate to doc and biomass. Here, the model was expanded to
include the release of doc from poc in the aquifer matrix, and its consumption by
both denitrification and aerobic respiration. The latter yielded a doc consumption
dependent on the electron-acceptor consumption rates (defined in equations 4.5 and
4.6) and their stoichiometric coefficients in the metabolic reaction:

𝑟 𝑗doc =
𝛾 𝑖doc
𝛾 𝑗𝐴

𝑟 𝑗𝐴 (4.7)

and

𝑟doc = ∑
𝑗
𝑟 𝑗doc , (4.8)

where 𝛾 𝑗𝐴 and 𝛾 𝑗doc are the stoichiometric coefficients of the electron acceptor and
doc in reaction (𝑗) and 𝑟 𝑗𝐴 is the corresponding electron-acceptor reaction rate. We
modeled the release of doc from the poc-containing aquifer matrix as a first-order
mass transfer process (Gu et al., 2007; Kinzelbach et al., 1991; Knights et al., 2017),
with the first-order coefficient 𝑘docrelease [1/s]:

𝑟release = 𝑘docrelease (𝑐
sat
doc − 𝑐doc) (4.9)
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4 Transcription and enzyme production at the river–groundwater interface

The doc saturation concentration 𝑐satdoc [m] depends on the poc content of the sediment,
which tends to decrease with distance from the river (Marmonier et al., 1995; Stelzer
et al., 2011). Following Knights et al. (2017), we therefore assumed an exponential
profile of 𝑐satdoc:

𝑐satdoc = 𝑐sat,0doc exp (−𝑥
𝑙
) , (4.10)

where 𝑙 [m] is the length scale for the concentration decrease.
In contrast to the original formulation, bacterial growth was parameterized as a

function of the oxidation of organic carbon coupled to both oxygen and nitrogen
oxide reduction. The synthesis of biomass, represented with the molecular formula
C10H18O5N2, can formally be described by the reaction:

3 C4H6O4 + 2NH +
4 C10H18O5N2 + 2CO2 + 3H2O + 2H+ (4.11)

NH +
4 is assumed to be non-limiting for microbial growth, and is not explicitly sim-

ulated. Equation 4.11 was then coupled to the energy-gaining reactions 4.2–4.4 to
obtain the overall metabolic reaction. The stoichiometric coefficients in the metabolic
reaction depend on the number of catabolic formula reactions that must be completed
to generate the energy required for one anabolic formula reaction (and thus produce
one mol of biomass). In turn, this number is directly related to the growth yield 𝑌𝑖
[cellsmol−1c ], which corresponds to the amount of biomass that is produced per mole
of organic carbon consumed. The growth yield relates the growth rate associated to
the electron acceptor 𝑖 to the corresponding doc-consumption rate:

𝑟 𝑖growth = 𝑌𝑖𝑟 𝑖doc (4.12)

Furthermore, we applied a logistic term to the biomass-growth expression (not to
the substrate consumption rates) to limit biomass growth to a set maximum density
(e. g., Grösbacher et al., 2018). This is in line with observations that biomass densities in
porous media reach a “carrying capacity”, even under non-growth-limiting conditions
(Ding, 2010; Mellage et al., 2015).

The logistic growth term can be interpreted as a reduction in the maximum growth
yield by the occupancy level:

𝑌𝑖 = 𝑌 𝑖max (1 −
𝐵

𝐵max
) , (4.13)

where 𝑌 𝑖max is the maximum growth yield and 𝐵max is the carrying capacity. This
implies that the growth yield and therefore the stoichiometric coefficients of the
metabolic reactions depend on the biomass concentration.

The model also accounts for biomass decay via a first-order term with the decay
coefficient 𝑘dec [s⁻¹]:

𝑟decay = 𝑘dec𝐵 (4.14)
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table 4.1 : Boundary condition parameters used in the simulation.

Symbol Parameter description Scenarios Value Unit Note

𝑐ino₂ O2 concentration in the river bfc, bs 250 µm a
𝑐o₂ mean O2 concentration in the river bfp 250 µm a
𝑐o₂ amplitude of oxygen fluctuations bfp 94 µm b
𝑐riverno₃⁻ NO –

3 concentration in the river bfc, bfp, bs 161 µm c
𝑐gwno₃⁻ NO –

3 concentration in groundwater gd, bs 484 µm c
𝑐riverdoc doc concentration in the river bfc, bfp, bs 167 µm d

ᵃ Y. Liu et al. (2017) ᵇ Kunz et al. (2017) ᶜ Gu et al. (2007) and Y. Liu et al. (2017) ᵈ Bol et al.
(2015) and Hayashi et al. (2012)

This leads to the build-up of dead biomass, which, in turn, decays in a first-order
process with constant 𝑘min, releasing doc via mineralization.

Boundary conditions Fixed concentration (Dirichlet) boundary conditions were ap-
plied at the river and groundwater inflow boundaries. The river water was assumed
to be saturated with respect to oxygen, and contained 10mg L⁻¹ of nitrate and 2mg L⁻¹
of doc. These concentrations correspond to anthropogenically influenced but not
excessively nutrient-enriched rivers. The inflowing groundwater was assumed to be
anoxic but rich in nitrate (30mg L⁻¹) and depleted in doc. In scenario bfp, oxygen
concentrations in the river were described by a sinusoidal function with amplitude
𝑐o₂ [m], frequency 𝑓o₂ = 1 d−1 and mean value 𝑐o₂ [m]:

𝑐ino₂(𝑡) = 𝑐o₂ sin (2𝜋𝑓o₂𝑡) + 𝑐o₂ (4.15)

All other concentrations at the inflow boundary were constant over time, with values
given in table 4.1. At the outflow boundary, we assumed zero dispersive flux.

4.2.3 Simulation parameters

Parameters related to transcript and enzyme concentrations, denitrification and aero-
bic respiration were obtained from our previous study (Störiko et al., 2021a) in which
we calibrated the enzyme-based model with the laboratory data of Qu et al. (2015). In
the simulations presented here, the median values of the parameter distributions in
Störiko et al. (2021a) were imposed (table 4.2). Values of new parameters, that is, those
that were not included in the previous model (transport and doc-related parameters)
were chosen based on literature values.
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table 4.2 : Reaction and transport parameters used in the simulation.

Symbol Parameter description Value Unit Note

𝑣 linear velocity (gd, bf) 10−5 ms⁻¹ a
̄𝑣 mean velocity (bs) −10−6 ms⁻¹ b
̂𝑣 velocity amplitude (bs) 10−5 ms⁻¹ b
𝑓𝑣 velocity frequency (bs) 1 d⁻¹ c
𝛼𝐿 longitudinal dispersivity 0.1 m d
𝐷𝑒 effective diffusion coefficient 3 × 108 m² s⁻¹ e

𝑘no₃⁻max nar turnover number 4.4 × 104 s⁻¹ f
𝑘no₂⁻max nir turnover number 2.9 × 102 s⁻¹ f
𝐾no₃⁻ NO –

3 half-saturation constant 5 µm g
𝐾no₂⁻ NO –

2 half-saturation constant 5 µm g
𝐾doc doc half-saturation constant 40 µmolc L⁻¹ h
𝐼 naro₂ O2 inhibition constant for nar 1 µm f
𝐼 niro₂ O2 inhibition constant for nir 340 nm f
𝜈o₂max max. cell-specific O2 oxidation rate 6.4 × 10−19 mol cell⁻¹ s⁻¹ f
𝐾o₂ O2 half-saturation constant 31 µm f
𝑘docrelease doc release rate constant 0.2 d⁻¹ i
𝑐sat,0doc max. doc saturation concentration 20.8 mmolc L⁻¹ j
𝑙 length scale for the decrease of the sedi-

ment poc content
0.2 m k

𝑌 no₃⁻
max maximum growth yield with NO –

3 2.6 × 1013 cellsmol−1c l
𝑌 no₂⁻
max maximum growth yield with NO –

2 1.6 × 1013 cellsmol−1c l
𝑌O2
max maximum growth yield with O2 7.7 × 1013 cellsmol−1c f, m
𝐵max carrying capacity 3.3 × 1011 cells L⁻¹ n
𝑘dec biomass decay constant 10−7 s⁻¹ o

ᵃ See Bertin and Bourg (1994) for bank filtration and C. D. Kennedy et al. (2009) for groundwater
exfiltration. ᵇ Gerecht et al. (2011) and Y. Liu et al. (2017) ᶜ Diurnal cycles. ᵈ Gelhar et al. (1992)
ᵉ Based on the approximation 𝐷𝑒 = 𝐷𝜙 where 𝐷 = 10−9 m2 s−1 is the molecular diffusion coeffi-
cient and 𝜙 = 0.3 is porosity. ᶠMedian of the parameters in Störiko et al. (2021a). ᵍ Hassan et
al. (2016) ʰ Fixed to a value within reported ranges (Kinzelbach et al., 1991; Sanz-Prat et al., 2016).
ⁱ Fixed to a value within reported ranges (Gu et al., 2007; Kinzelbach et al., 1991; Sanz-Prat et al.,
2016; Sawyer, 2015). ʲ Fixed to a value within reported ranges (Gu et al., 2007; Kinzelbach et al.,
1991; Sawyer, 2015). ᵏ Knights et al. (2017) ˡ Fixed to a value within reported ranges (Hassan
et al., 2014, 2016). ᵐ Value corrected for the incorporation of organic carbon into biomass, which
was not considered in Störiko et al. (2021a). ⁿ Fixed to a value within reported ranges (Ding,
2010). ᵒ Fixed to a value within reported ranges (Ding, 2010; Kinzelbach et al., 1991).
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4.2.4 Numerical methods

We used the cell-centered finite volume method to discretize the reactive-transport
equation 2.11 in space, applying a first-order upwind scheme for advection. The
domain had a total length of 4m and was divided into 200 cells with a uniform
spacing of 2 cm. The resulting system of ordinary differential equations (odes) was
solved with the backwards differentiation formula (bdf) as implemented in the cvodes
solver in the sundials library (Hindmarsh et al., 2005). All code was written in Python
3.8, and the package Sunode (Seyboldt, 2021) that wraps cvodes was used for solving
the odes. The simulations were run until reaching steady state (in the scenarios with
constant boundary conditions) or dynamic steady state, that is, self repeating time
cycles in the scenarios with periodic boundary conditions.

4.3 results and discussion

4.3.1 Zonation of redox species and denitrifying bacteria

The three model scenarios result in distinct spatial distributions of N species, tran-
scripts, enzymes, biomass, oxygen and doc (figure 4.2, rows a–f). In the following
we present and discuss the predicted steady-state concentrations scenario-wise in
detail: gd (figure 4.2, left column), bf (figure 4.2, center column) and bs (figure 4.2,
right column).

Scenario gd: groundwater discharge Nitrate enters the domainwith in-flowing ground-
water, and remains at high concentrations (i. e., close to the inflow value) over the
first 2m of the domain, where the aquifer matrix contains only little poc (electron
donor limitation). At about 1.5m from the river, nitrate begins to drop and is com-
pletely depleted at a distance of 0.25m from the sediment-river interface. Nitrite
concentrations increase, mirroring the drop in nitrate, until reaching a peak value of
340 µmol L⁻¹ at 0.3m and then decrease towards the river.

Our model-predicted nitrite concentrations are higher than typically observed
in natural sediments. Profiles of pore-water nitrite in several studies indicate that
the concentrations are usually below 30 µm (Akbarzadeh et al., 2018; Harvey et al.,
2013; Stief et al., 2002). The parameter set used here is based on laboratory batch
experiments with a single strain where strong nitrite accumulation was observed
(Störiko et al., 2021a). Thus, while the high model-derived nitrite concentrations may
be specific to the strain used in the experiments, we assume that the spatial trends in
nitrogen species consumption and production are likely generalizable.

The concentration of doc drops from 280 µmolc L⁻¹ at the sediment-river interface
to below 40 nmolc L⁻¹ within 30 cm, driven by the prescribed exponentially decreasing
content of poc in the sediment (the only source of doc) away from the river boundary.
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figure 4.2 : Spatial distributions of nitrogen compounds (a), transcript (b) and enzyme (c)
concentrations, biomass (d), oxygen (e), and doc (f) in the different scenarios. The steady-
state solution in scenario bfc is indicated by a dashed line. For the periodic solution in
scenarios bfp and bs, the minimum and maximum values over time are indicated by the
shaded area, the mean value is plotted as a solid line. Concentrations between 2.5m and the
groundwater-side domain boundary at 4m are omitted because they are almost constant.
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The zones of nitrate and nitrite consumption coincide with elevated absolute
concentrations of narG and nirS transcripts (that is, in units of transcripts L⁻¹) and
nar/nir enzymes (figure 4.2c, left column). In contrast, cell-specific narG transcript
and nar enzyme concentrations are high in the doc-limited section of the domain,
despite the absence of denitrification (figure c.1). Nitrate triggers transcription but
the low availability of the electron donor (doc) results in low biomass concentrations
strongly limiting denitrification. High biomass concentrations are only reached close
to the river, where denitrification activity is the highest.

Scenario bf: bank filtration The center column in figure 4.2 shows the dynamics
of the two bank-filtration scenarios with periodic (bfp) and constant (bfc) oxygen
concentrations in the inflow. In the bfp scenario, concentrations do not reach a steady
state but concentration time series converge to repeating diurnal cycles.

The model predicts a zonation of the redox processes starting with aerobic respira-
tion at the inflow boundary, where oxygen-rich river water infiltrates. Nitrate, present
in the incoming water, is subsequently reduced to nitrite and N2. The fluctuating oxy-
gen concentrations in the river (inflow) in scenario bfp leads to a periodic shift in the
location of the denitrification zone, which oscillates back and forth over 0.1m about
0.2m. At a given location, nitrate and nitrite concentrations fluctuate considerably
over the course of the day. For example, nitrate concentrations at 0.2m vary between
60 µmol L⁻¹ and total depletion. Nitrite is reduced to low, but non-zero “residual”
concentrations (20 µm). The low concentration front subsequently penetrates deep
into the aquifer.

Biomass concentrations are very stable over time in the scenario with a fluctuating
inflow oxygen concentration and hardly differ from the steady-state scenario. Cell
doubling times in the simulations range from a few hours to several days, which is
in accordance with literature values (Mailloux and Fuller, 2003). Similarly, biomass
decay is slow (with a half-life of about 80 d, see table 4.2), such that the biomass
does not respond to daily cycles of substrate availability. Biomass concentrations
are highest at the river inflow boundary where neither oxygen nor doc are limiting
and cell densities reach the maximum capacity 𝐵max. At locations where oxygen and
nitrate are consumed, the remaining low nitrite concentrations can only sustain the
survival of a small biomass pool (starting at 1.3m from the river boundary), which in
turn reduces the denitrification rate to values close to zero.

Transcripts of the narG gene are abundant in the region where nitrate is available
and nirS transcripts co-occur with nitrite. In the scenario with dynamic boundary
conditions, the transcript concentrations of denitrification genes exhibit a distinct
diurnal cycle with an amplitude of up to 70% (narG) and 100% (nirS) of the mean
value, in some parts of the domain. Concentrations of nar and nir enzymes follow the
patterns of narG and nirS transcripts, but are much more dampened, with amplitudes
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that are one order of magnitude smaller than those of the corresponding transcripts.
This difference stems from the different time scales of production and decay of tran-
script and enzymes. While transcripts usually decay within a few minutes (Bernstein
et al., 2002; Härtig and Zumft, 1999) and are therefore assumed to be at quasi-steady
state in our simulations, enzyme half-lives range on the order of several hours to days
(Maier et al., 2011).

Because of the high doc concentration (0.1mm) imposed at the river boundary, the
river water serves as a doc source. The doc concentration, however, drops sharply in
the aquifer due to the high microbial electron-donor demand, driven by the presence
of oxygen and nitrate. Outside of the zone of denitrification, the doc concentration
rises towards the groundwater boundary, driven by the hydrolysis of poc, reaching
a maximum at about 1m. The decreasing poc content away from the river yields a
final gradual decline in doc approaching the groundwater boundary.

Scenario bs: bank storage In the bank storage scenario, the alternating inflow of
nitrate from the aquifer and from the river leads to the formation of two distinct zones
of denitrification (figure 4.2, right column). The first one is located directly at the
the river-aquifer interface. It is active only at the times when flow is from the river
into the aquifer, hence supplying nitrate. We estimated the maximum penetration
depth of the river water by integrating the positive part of the velocity function over
one period. Via advection only, the water penetrates 0.23m into the aquifer. Oxygen
and nitrate reach that point only at very low concentrations because they are rapidly
depleted after entering the aquifer.

The second zone of denitrification at about 1.1 m is fed by nitrate from the incoming
groundwater. At the aquifer boundary, denitrification is mainly limited by carbon
availability, such that nitrate concentrations remain at high values until the distance
to the river is apprximately 1.5m, after which they sharply decrease. Due to the
flow reversal, this denitrification zone shifts between 1m and 1.35m over time. The
response of concentrations to the dynamic flow is generally similar to scenario bfp
where the dynamics are caused by fluctuating oxygen concentrations. Both solute
concentrations and mrna strongly fluctuate over time while enzyme concentrations
and biomass are stable because of their longer time scales of production and decay.

Compared to the other two scenarios, the doc concentration in the bank storage
scenario is high in the 1.2m adjacent to the river. On average, the magnitude of the
advective velocity and therefore the influx of electron acceptors (nitrate and oxygen)
is smaller in this scenario. This limits the consumption of doc and leads to its overall
high concentration.

51



4 Transcription and enzyme production at the river–groundwater interface

0 4 8

0

15

30

re
ac

ti
on

 r
at

e 
[n

M
/s

] a

x = 0.39 m

x = 0.27 m

groundwater
discharge

0 2 4

0

6

12

18
c

bank filtration
(periodic O )

0 2 4

0

6

12

18
e

bank filtration
(constant O )

0 2 4

0

6

12

18

narG

NO3 NO2

g

bank storage

0 1 2

0

8

16

re
ac

ti
on

 r
at

e 
[n

M
/s

] b

0.0 0.5 1.0

0

2

4

6
d

0.0 0.5 1.0

0

2

4

6
f

0.0 0.5 1.0

0

2

4

6

nirS

NO2 N2

h

0.25

0.50

0.75

1.00

1.25

1.50

1.75

x 
[m

]

transcript concentration [109 transcripts/L]

figure 4.3 : Relationships between the concentrations of functional-gene transcripts narG
(upper row) and nirS (lower row) with the denitrification rates in the different scenarios. In
the scenarios where concentrations do not reach constant steady state values but exhibit
repeating diurnal cycles, daily averages of rates and concentrations are shown. The color
indicates the spatial coordinate with dark blue corresponding to the groundwater inflow
boundary and light green corresponding to the river boundary. Note that the axis scales are
different for the groundwater discharge scenario.

4.3.2 Relationship between transcripts/enzymes and reaction rates

Based on our simulation results, we computed denitrification rates to explore how
transcript and enzyme concentrations relate to the denitrification activity in the
different scenarios (see figure 4.3 for transcripts and figure c.4 for enzymes).

Scenario gd: groundwater discharge In the groundwater-discharge scenario, the
system reaches a steady state where the enzyme concentrations are proportional
to transcript concentrations. Therefore, it is sufficient to analyze the relationship
between reaction rates and transcripts or enzymes. For simplicity we compare rates
to transcripts in figure 4.3a and 4.3b.

The relationships between rates and transcripts are non-linear and the correlation
is positive in some parts of the domain, but negative or zero in other parts. At the
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groundwater-inflow boundary (dark blue colors), both narG transcript concentrations
and NO –

3 reduction rates are close to zero and increase towards the river (lighter col-
ors). However, when the rates reach 10 nmol L⁻¹ s⁻¹ at 0.39m, the trend reverses, that
is, where transcript levels decrease reaction rates increase and reach their maximum
at 0.27m. At the points closest to the river boundary, both the nitrate reduction rate
and narG transcript levels return to zero, closing the hysteresis loop.

The concentrations of nirS transcripts rise between 1m and 0.3m (figure 4.3b).
However, their increase does not correspond to an increase in reaction rates, sug-
gesting that under certain conditions, transcript concentrations and reaction rates
may be completely decoupled. One may intuitively expect that increasing reaction
rates would be accompanied by increasing transcript concentrations. However, the
rise of reaction rates between 0.3m and 0.17m is concomitant with the opposite, a
decrease in transcript concentrations. A positive correlation between nirS transcript
concentrations and reaction rates is only observed in the 15 cm closest to the river.
The strong non-linearity of the transcript-rate relationships (and partly negative
correlations) can be explained by the limited availability of doc over most of the
domain (which in this scenario originates from the river and hydrolysis of poc). The
latter limits denitrification, whereas transcript production is still triggered by the
presence of nitrate and nitrite, irrespective of electron-donor availability.

Scenario bf: bank filtration Figure 4.4a and 4.4c show the relationship between tran-
script concentrations and denitrification rates for scenario bfp (bank filtration with a
fluctuating oxygen inflow concentration). Reaction rates and transcript concentra-
tions (and, to a lesser extent, also enzyme concentrations) both fluctuate over the
course of the day, but the signals have a phase shift. This leads to a hysteresis in the
relationship between transcript concentrations and reaction rates, with a different
hysteretic pattern at different locations. Overall, transcript concentrations and deni-
trification rates do not show a clear (linear) relationship. These results suggest that it
may not be possible to infer the denitrification activity at a given time and location
from a single determination of the transcript concentration.

The relationship between enzyme concentrations and denitrification rates (fig-
ure 4.4b, 4.4d) is also highly non-linear and location-specific. However, it exhibits
less pronounced hysteresis loops because, in contrast to transcripts, the characteristic
times for enzyme production and decay are longer than the time scale of the fluctu-
ations. As a consequence, in dynamic steady state with diurnal cycles, the enzyme
concentrations remain almost constant throughout the day, whereas the reaction rates
fluctuate in response to the periodic concentration changes of aqueous substrates.
Thus enzyme distributions could, under the right conditions, be used as proxies for
delineating the average denitrification activity.

For the mitigation of nitrate contamination in groundwater daily averages of reac-
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tion rates are of greater interest than their diurnal fluctuations. To investigate whether
repeated transcript measurements could be used as indicators of denitrification ac-
tivity, we compare the daily averages of the denitrification rates and the transcript
concentrations in Figures 4.3c and 4.3d. As can be seen, upon averaging more distinct
positive correlations emerge, although they are still non-unique, particularly in the
case of nirS transcripts, where the same transcript concentration can be associated
with rates that differ by more than one order of magnitude. Different combinations
of nitrite, oxygen and doc concentrations can lead to the same transcript concentra-
tion, while the factors describing substrate limitation and oxygen inhibition affecting
denitrification rates differ. The relationship looks very similar for transcripts and
enzymes because daily averages of transcript concentrations are almost proportional
to enzyme concentrations (see figure c.2).

The relationship between steady-state transcript concentrations and denitrification
rates for bfc (bank filtration with constant oxygen input; figure 4.3e, 4.3f) slightly
differs from the bfp scenario (figure 4.3c, 4.3d) but essentially mirrors the bfp char-
acteristic features. For example, both bank filtration scenarios yield a positive, but
non-unique, relationship of narG transcripts with the rates, whereas nirS transcripts
exhibit a strong hysteretic behavior. It is to be expected that the relationships are gen-
erally similar for the steady-state solution and daily averages of the periodic solution
as the simulated concentration profiles are nearly the same in both cases (figure 4.2,
center), but non-linearity in the rate laws can lead to the observed differences.

Scenario bs: bank storage Similar to the bfp scenario, the periodic reversal of flow in
the bs scenario results in complex relationships between the transcript or enzyme
concentrations and the denitrification rates (figure c.3). However, in contrast to
bfp, daily averages of transcript concentrations and reaction rates (figure 4.3g and
4.3h) show two clearly distinct patterns, corresponding to the two denitrification
zones, and resembling to some extent the patterns of the pure groundwater-discharge
and pure bank-filtration scenarios. In both zones, the relationships are non-linear
and non-unique, analogous to all other scenarios. This is most evident for the narG
transcripts (shown in figure 4.3d).

Comparison of the transcript-rate relationship between scenarios We compared the
relationship between transcript concentrations and reaction rates between the differ-
ent scenarios to evaluate how biogeochemical and hydrological conditions affect the
relationship according to the three scenarios. Transcript concentrations and reactions
rates differed between the scenarios. For example, we can observe that narG tran-
script concentrations are highest in the groundwater discharge scenario. This can be
explained by the higher nitrate concentrations in the groundwater in comparison to
the river water in the bank filtration scenario. In the bank storage scenario, transcript
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4 Transcription and enzyme production at the river–groundwater interface

figure 4.4 : Relationships of transcript (left column) and enzyme (right column) concen-
trations with denitrification rates for scenario bfp (river water with fluctuating oxygen
concentrations infiltrating groundwater). Colors indicate the time point within the diurnal
cycle. Every point 𝑥 in space shows a distinct pattern (with one “loop” corresponding to one
point), and many of them are non-linear and hysteretic in time.
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concentrations are lower because microorganisms receive nitrate input only half of
the time. However, such absolute differences (e. g., in the slope or exact shape of the
curve, or in magnitudes of reaction rates and transcript concentrations) depend on
the choice of parameter values. Thus, model calibration with field data is required as
a next step to generalize model-based conclusions in line whit empirical evidence.

Two patterns are, though, common to all scenarios, and arise rather from the model
structure than from individual parameter values. First, we observe that in both of
the dynamic scenarios, time-shifts between the dynamics of transcripts and reactions
result in a complex relationship between transcript concentrations and reaction rates.
Averaging transcript concentrations over one day significantly simplifies the relation-
ship in both cases (compare figures 4.3 and 4.4). Even though the temporal uncoupling
also depends on the values of reaction parameters that dictate the response times of
transcripts and enzymes, the uncertainty of these parameters is relatively small in
comparison to other parameters such as the half-saturation constants, where litera-
ture values range over several orders of magnitude (García-Ruiz et al., 1998). Typical
time scales for the response time of transcripts and enzymes are minutes and hours,
respectively (Bernstein et al., 2002; Maier et al., 2011). The second common pattern
is that the relationship between (average) transcript concentrations and reaction
rates is strongly non-linear and non-unique. This is the case because transcription
also occurs under non-ideal conditions, that is, when reaction rates are limited by
substrate availability or oxygen inhibition. Different combinations of limiting and
inhibiting conditions at different locations produce the spatial hysteresis patterns.

4.3.3 Unraveling the relationship between transcript concentrations and reaction rates

The relationships between transcript concentrations and denitrification reaction rates,
presented in the previous section, clearly show that transcript concentrations are not a
reliable predictor of denitrification rates, even in cases where these are proportional to
enzyme concentrations. Deviations from an expected linear relationship arise because
denitrification rates are not only limited by enzyme concentrations (which, in turn,
are ultimately determined by the nitrogen species triggering transcription), but also
by substrate availability (in our study doc and nitrogen species) and oxygen inhibition.
In the following, we refer to the denitrification rates under in-situ conditions that
are limited by substrate availability and oxygen inhibition as effective rates. In the
model, we can eliminate these limitations by dividing the rate by the corresponding
Michaelis-Menten or inhibition term. This then yields the potential denitrification
rates. When these potential rates are compared to the transcript concentrations, clear
positive relationships emerge (figure 4.5).

In the groundwater-discharge scenario (figure 4.5a, 4.5c), removing the doc limita-
tion yields a nearly linear relationship, showing that carbon limitation is the most
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figure 4.5 : Relationship between the concentrations of functional-gene transcripts narG
(upper row) and nirS (lower row) with potential denitrification rates after removing the effects
of O2 inhibition, doc limitation, nitrogen substrate limitation, or combinations thereof. (Note:
Scenarios where concentrations do not reach a steady state are omitted because correcting
for the rate limitations based on time-averaged concentrations is not a valid approach).
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4 Transcription and enzyme production at the river–groundwater interface

important rate-limiting factor in this scenario. The remaining non-linearity of narG-
transcripts at low reaction rates can be explained by the presence of nitrite near the
river boundary, triggering narG-transcription even though nitrate levels and thus
nitrate-removal rates are low.

The current model assumes that transcription of the denitrification genes is in-
dependent of doc availability. While this approach is consistent with the current
understanding of the targeted regulation of denitrification genes by nitrogen species
and oxygen (Gaimster et al., 2018), our model formulation neglects unspecific mecha-
nisms of gene regulation that act to shut down microbial metabolism at low carbon
availability, thereby affecting denitrification genes. Accounting for transcription
down-regulation of the denitrification genes under carbon limitation in our model
formulation would likely yield relationships between transcripts and reaction rates
closer to the potential rates without doc limitation (figure 4.5). Non-linear effects of
doc limitation on the reaction rates would persist. However, the absolute deviation
from a linear relationship would be negligible when transcript concentrations and,
therefore, potential rates are close to zero. Under extreme electron-donor limita-
tion, our model predicts very low absolute transcript concentrations even without
explicitly accounting for doc-controlled down-regulation of transcription because
doc-limitation restricts microbial growth, leading to low biomass and, thereby, low
transcript concentrations. However, if there is evidence for a large abundance of
inactive denitrifiers, the model might need to distinguish between the active and an
inactive microbial pool, in which transcription is shut off (see, e. g., Chavez Rodriguez
et al., 2020).

In the case of bank filtration with a constant oxygen concentration (figure 4.5b,
4.5d), accounting for the doc limitation term alone does not remove the non-linearity
because oxygen inhibition also exerts an important control on denitrification. Elimi-
nating both doc limitation and oxygen inhibition leads to an approximately linear
relationship between transcripts and potential rates. However, the potential rates
are orders of magnitude larger than the effective (substrate-limited and inhibited)
reaction rates.

In the scenarios in which concentrations undergo periodic fluctuations in time (bfp
and bs), applying the correction terms would only be permissible for the time-variable
rates and concentrations, but not for the averages. This is so because the correction
terms are nonlinear and the concentrations involved are strongly correlated in time.
Under such conditions, the product of their time-averaged values is not the same as the
time-average of their product. Hence, applying corrections to the time-averaged rates
to obtain a more unique relationship of the time-averaged transcript concentrations is
not permissible. Similar effects have been described for spatial correlations of degrader
communities and substrate concentrations in carbon cycling models. Chakrawal et al.
(2020) used scale-transition theory to analyze how spatial correlations among state

58



4 Transcription and enzyme production at the river–groundwater interface

variables or between state variables and kinetic parameters affect upscaled reaction
rates. In theory, the same method could be applied to obtain time-averaged rates
based on average concentrations. However, it requires knowing the covariance terms
of substrate and enzyme concentrations in time, which is not possible in practice
because highly time-resolved measurements of transcript or substrate (doc, nitrogen
species) concentrations in groundwater are not available in the first place.

4.3.4 Implications for the design of field sampling and measurements

Our simulations show that transcripts of denitrification genes respond to short-term
(diurnal) fluctuations of electron-acceptor concentrations, yielding highly temporally
variable transcript concentrations at the river–groundwater interface. In such a
dynamic system, analyses based on transcripts of functional genes would strongly
depend on the time point of sampling. Transcripts exhibiting a low, even undetectable,
abundance at a given time, may be present at much higher concentrations at other
times of the day, and vice versa. Hence, interpretations on overall system behavior
based on transcript concentrations obtained from sporadic sampling events, could be
misleading in highly dynamic biogeochemical environments such as those found at
the river–groundwater interface.

Based on our modeling results we simulated transcript measurements over time
and space to illustrate, how different sampling frequencies and times can affect
the outcome captured by measurement campaigns. Figure 4.6a shows time series
of nirS transcript concentrations in the bank filtration scenario with fluctuating
oxygen concentrations (bfp) at a distance of 0.17m from the river, sampled at different
frequencies (weekly samples, daily samples, three and ten samples per day). We
added a small random time perturbation to the sampling times to represent a realistic
situation.

The high sampling frequency of ten samples per day captures the diurnal signal
quite well. Taking three samples per day also captures the dynamic behavior of the
system, albeit with less accuracy, with many of the peaks cut off and a more irregular
signal than it actually is. Daily and weekly sampling creates apparent patterns in the
data that are not linked to any real process but that are due to sampling the diurnal
signal at slightly different times each day or week.

Figure 4.6b shows a spatial profile of simulated transcript measurements, taken at
two different times of the day. While the general shape of the two profiles is similar,
the location of the peak is shifted by about 10 cm, and between 5 cm and 20 cm the
concentrations between the two time points differ by up to two orders of magnitude.
This example emphasizes the need to consider the relevant time scale of variation
for transcripts when planning measurement campaigns. Simple tools like redox- or
oxygen-sensitive probes could provide a first approximation of what the relevant
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figure 4.6 : Simulated measurements of the nirS transcript concentrations. a Effect of
different sampling frequencies on a time series measured at a fixed location (𝑥 = 0.17m). b
Dependence of a spatial profile on the time of the measurement.

time scale for transcript dynamics is.
In contrast to transcripts, the concentrations of functional enzymes and functional

biomass (which can be estimated by functional-gene concentrations) are much more
dampened and hardly respond to diurnal fluctuations of electron-acceptor availability
because of their larger time scales of production and decay. As a consequence, dna-
based methods such as the quantification of functional genes or metagenomics can
provide information less dependent on short-term fluctuations of electron acceptor
or electron-donor concentrations.

However, a dna-based approach, analogous to an enzyme-based approach, is
subject to other uncertainties related to dna’s persistence and presence outside of
active organisms (relic dna) that can distort the characterization of the microbial
community (Carini et al., 2016; Lennon et al., 2018; Nielsen et al., 2007), an effect not
considered in this study. Different approaches to filter out the signals from relic dna
(viability pcr, e. g., Carini et al., 2016; Fittipaldi et al., 2012) and inactive microbes
(boncat-facs, selecting for translationally active cells, e. g., Couradeau et al., 2019)
have been developed in the past years but are not yet applied routinely.

The unresponsiveness of enzyme concentrations and biomass in a system with
short-term dynamics also implies that incorporating their time-variability into a
biogeochemical model is not necessary and they can be assumed to be constant
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in time (i. e., via a biomass-implicit rate formulation). However, spatial variations
should be considered, for example by using spatially variable rate coefficients. In
systems in which the concentrations of electron acceptors vary over larger time scales
(seasonal dynamics, flood events with effects of several days), the temporal variability
of functional biomass and particularly enzyme concentrations might also play a role.
Measurements of functional enzymes would also provide a more robust picture of
microbial activity compared to functional-gene transcripts, because they are less
affected by short-term fluctuations. Unfortunately, the quantification of functional
enzymes (as opposed to transcripts) is not yet an established measurement technique
for environmental samples, even though some pioneering studies have been done
(e. g., M. Li et al., 2017a).

Daily averaged transcript concentrations, however, are proportional to enzyme
concentrations (for the scenarios investigated here), thus implying that several tran-
script measurements in time could replace the more difficult to measure enzymes
in groundwater systems. Because only averages are required, mixing samples from
several time points prior to RNA extraction could also help to reduce transcript
measurement efforts.

The main challenge, however, lies in obtaining samples from the same location
at several time points, as sampling for gene quantification is destructive. When
reactions are much slower than advective transport (low Damköhler number), several
samples along a flowpath at a single time point (representing water parcels infiltrated
at different times) could replace samples from the same location at several time points.
In our simulations, however, reactions deplete substrates within a few centimeters.
Water parcels with a time difference of 12 h are separated by a distance of 0.43m, such
that averaging over the locations does not provide a replacement for the temporal
average at a single location. Therefore, samples should be taken at adjacent locations,
corresponding to the same distance along a flow path (heterogeneity would make
that more difficult). The latter illustrates the difficulty of acquiring time-resolved
field measurements of transcripts. However, column experiments in the laboratory
that simulate conditions in the field (see, e. g., Y. Liu et al., 2017) provide a potential
alternative, and would be a useful addition to capture higher-resolution dynamics.

Even after time-averaging, transcript or enzyme concentrations are not reliable
predictors of reactions rates. The relationships in the simulated scenarios are non-
unique and non-linear. Our analysis reveals that enzyme concentrations can be
interpreted as a proxy for potential rates, which are hypothetical rates in the absence
of specific limitations, such as substrate limitation and oxygen inhibition. These
limitations reduce the potential rates towards the effective (in-situ) reaction rates.

Based on these findings we argue that an approach to predict denitrification rates
directly from transcript or enzyme data would need to account for this, necessitating
the following steps. As a first step, the relationship between transcript concentrations

61



4 Transcription and enzyme production at the river–groundwater interface

and potential reaction rates needs to be determined. This could be achieved with lab
incubations under non-limiting conditions. A caveat here is that under non-limiting
conditions, a different part of the microbial community with a different physiology
might be more active than under in-situ conditions (Hazard et al., 2021), modifying
the relationship. In a system at steady state the relationship between transcript con-
centrations and potential reaction rates should ideally be linear. Measured transcript
concentrations can subsequently serve as a predictor of potential rates which then
need to be amended by rate limiting factors like substrate limitation to obtain the
effective reaction rates. This correction step does not only require measurements
of the involved solute concentrations, but also estimates of parameters describing
rate-limiting factors of reaction kinetics (half-saturation and inhibition constants).
Such parameter values are often not well known and reported values typically range
over several orders of magnitude (see, e. g., García-Ruiz et al., 1998). Therefore, addi-
tional experiments to determine specific parameters of the studied system would be
necessary.

A powerful integrative approach would be to use a process-based reactive-transport
model to predict reaction rates, making use of molecular-biological data to determine
model parameters. One advantage is that once a process-based model is calibrated it
can deliver reaction rates at time-points and locations where no data are available.
We therefore suggest the following strategy combining molecular-biological data,
biogeochemical measurements and modeling to determine denitrification rates.

1 Measure functional enzymes, genes or transcripts to determine temporally stable,
spatial profiles of the active functional biomass. Our simulations show that
profiles of daily averaged transcript concentrations, enzymes, and functional
biomass are very similar and may generally be linked to the denitrification
activity. Given the challenges of measuring time-averages of transcript con-
centrations and excluding inactive biomass in dna-based methods, enzyme
measurements seem to be the most accurate proxy variable for active functional
biomass. These data will provide a relative measure of the spatially variable
maximum rate coefficient in a biomass-implicit rate formulation. Compared
to an enzyme-explicit formulation (as used in this study), a biomass-implicit
formulation has the advantage that it requires fewer parameters. The hypothe-
sis that the active functional biomass maintains a constant spatial distribution
should be verified with repeated measurements at different time points, and
seasonal trends could potentially be accounted for using several coefficients.
If a considerable time-variability of active functional biomass is observed, a
biomass- or enzyme-explicit model formulation that provides a process-based
explanation for the variability should replace the biomass-implicit formulation.

2 Measure oxygen, nitrogen substrates and doc at several locations with a high
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temporal resolution. These data are required to appropriately account for sub-
strate limitations and oxygen inhibition. The required resolution depends on
the typical length and time scales of the system and might need to be deter-
mined iteratively. Spatial gradients and dominant temporal dynamics should
be resolved. In order to capture the short-term variability inherent to these
variables, continuous logging with probes, if possible, is a good approach (e. g.,
for oxygen). Otherwise, manual measurements should also cover several tem-
poral scales. For example, hourly measurements that capture diurnal dynamics
on individual days could be combined with daily or weekly samples to provide
information about longer terms dynamics.

3 Use a process-based model to obtain temporally and spatially resolved predictions
of concentrations and reaction rates. The model integrates the different data
types through the calibration of model parameters, yielding estimates of total
in-situ denitrification rates, that are otherwise impossible to obtain with direct
measurements.

The predictions of a reactive-transport model strongly depend on transport related
parameters, such as flow velocities or solute fluxes at boundaries, governed by subsur-
face hydraulic conductivity. Therefore, at field sites, complementary hydrogeological
data should accompany biogeochemical investigations. For example, tracer tests
could provide information on the average flow velocity. If flow cannot reasonably be
assumed to be uniform and one-dimensional, hydraulic head data at several locations
and hydraulic conductivity tests are required to set up a groundwater flow model.

4.4 conclusions

Ourmodel exercise highlights some of the prospects and limitations of using functional-
gene transcripts and enzymes to characterize biogeochemical reactions at the river–
groundwater interface. Concentrations of functional-gene transcripts quickly respond
to changes in substrate concentrations and oxygen levels, implying that dynamic
systems need to be sampled at the appropriate temporal resolution. High transcript
and enzyme concentrations spatially coincide with active denitrification and are
therefore qualitative indicators of reactive zones. Substrate limitation and oxygen
inhibition of the enzymes, however, lead to complex, non-unique relationships be-
tween transcript or enzyme concentrations and reaction rates. We based our study
on a relatively simple model that describes only a part of the system (gene regulation
of denitrification) in detail, with the advantage that it enables a straight-forward
analysis of predicted patterns. However, even with our simplistic model formulation,
the relationships between transcript or enzyme concentrations and denitrification
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rates are not straightforward. We conclude that concentrations of functional-gene
transcripts and enzymes should not be used as a proxy for reaction rates.

Our results highlight that a rigorous quantitative interpretation of transcript or
enzyme data requires a process-based mathematical model that is able to reflect
non-linear interactions between biogeochemical processes and the regulation of gene
and enzyme abundances. While our purely numerical study provides predictions of
expected transcript and enzyme behavior in dynamic natural systems, it does not
replace laboratory and field investigations. In fact, we emphasize that further im-
provements in enzyme-explicit model development will depend on highly-temporally
resolved measurement campaigns.

The qualitative conclusions from our analysis are in general transferable to other
environmental systems. Soils, for instance, are a very dynamic environment where
redox conditions can change abruptly through changes in the hydrologic conditions
like drainage or flooding (Pronk et al., 2020; Z. Zhang and Furman, 2021). Such
short-term fluctuations will lead to a disconnect of quickly-reacting transcript concen-
trations from enzyme concentrations and, consequently, reaction rates. Additionally,
oxygen availability in soils can vary spatially over very short distances because the
slow diffusion of oxygen into the matrix produces anoxic microsites (Z. Zhang and
Furman, 2021). The spatial hysteresis patterns that our model predicts for larger
spatial gradients of oxygen and nitrogen species (centimeter to meters) might then
occur on very small spatial scales (millimeters).

In natural systems, other nitrogen-cycling processes (nitrification, anammox, dis-
similatory nitrate reduction to ammonium (dnra)), alternative electron donors (e. g.,
reduced sulfur and iron species/minerals), and the temperature dependence of the
reaction kinetics may affect denitrification rates. Nitrification acts as an additional
source of nitrate for denitrification whereas dnra competes with denitrification for
nitrite. Adding these processes to the model will potentially modify the observed
concentration profiles and reaction rates, and also affect the exact shape of the
transcript-rate relationships. However, we expect that the general features that we
observed – time-variable non-linear and non-unique relationships – will stay valid.
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5 Quantifying uncertainty of hyporheic
nitrogen-cycling rates with gene-based
modeling

5 . 1 introduction

The zone where rivers interact with groundwater (hyporheic zone) is a biogeochem-
ically highly reactive environment where strong redox gradients and mixing of
chemicals originating from groundwater and surface water promote microbial ac-
tivity (Fischer et al., 2005; Krause et al., 2011). The microbial turnover of nitrogen
compounds in the hyporheic zone can vitally affect the water quality in the connected
river (Lewandowski et al., 2019).

Microbial nitrogen cycling comprises a complex network of reactions (Kuypers
et al., 2018), where some reactions provide the substrates for the next reaction, and
several reactions compete for the same substrates. For example, nitrification produces
nitrate which can be either reduced to N2 gas through denitrification or to ammonium
via dissimilatory nitrate reduction to ammonium (dnra). Nitrogen-cycling processes
do not occur in an orderly fashion but different thermodynamically favorable reactions
can happen simultaneously through a diverse community of versatile microorganism
(Kuypers et al., 2018). Additionally, small-scale variations of chemical concentrations
can lead to an apparent concomitance of reactions that require contrasting conditions,
like nitrification and denitrification. This can lead to either a net release or consump-
tion of nitrate and nitrite in the hyporheic zone, depending on the residence time
of the water, nutrient availability, and water oxygenation (Akbarzadeh et al., 2018;
Zarnetske et al., 2012). Because nitrogen species are both produced and consumed
through microbial nitrogen cycling, it is difficult, or even impossible, to infer the
reaction rate of a specific nitrogen-cycling process from solute concentrations only.

Biogeochemical models enable representing one’s conceptual understanding of the
processes occurring in a particular environment such as the hyporheic zone in a quan-
titative manner. A quantitative model that is not consistent with observations falsifies
the underlying conceptual model. Process-based mathematical models can hence
be used to test hypotheses. However, biogeochemical models are subject to several
sources of uncertainty (Arhonditsis et al., 2018). Different parameter combinations
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may lead to a comparably acceptable fit of the data, and measured concentrations are
noisy. Further, the limited information contained in chemical concentrations may not
be enough to disentangle the contributions of different nitrogen-cycling processes
and reliably determine reaction rates. It is therefore essential to quantify uncertainty
of the simulations, given concentration measurements.

Functional gene data of nitrogen-cycling genes provide information about the
reactions that a microbial community can potentially carry out and, thus, may help
to resolve the prevailing nitrogen-cycling pathways. Abundances of functional genes
can be interpreted as a proxy for the biomass of functional groups of microorganisms
that are capable of the reactions corresponding to the respective gene. Incorporating
functional gene data into biogeochemical models therefore has the potential to im-
prove predictions of microbial nitrogen-cycling rates. Gene-centric modeling (Reed et
al., 2014) has been proposed as a straight-forward approach to incorporate functional
gene data into biogeochemical models. Even though several review articles have
found the approach promising (Dick, 2016; Grossart et al., 2020; Zhu et al., 2017), only
few studies have applied it to date. These studies simulated biogeochemical cycling in
a marine oxygen minimum zone (Louca et al., 2016), a deep-sea hydrothermal plume
(Reed et al., 2015), and a river channel (Hui et al., 2021).

Parameters in these studies were fixed based on literature values and the simulation
results were qualitatively compared to the measured gene data. Automatic calibration
based on maximum likelihood estimates and Bayesian uncertainty quantification,
however, require to encode a quantitative comparison of model predictions and data in
the likelihood function. Data as obtained from metagenomics or relative-quantitative
polymerase chain reaction (pcr) can only provide relative measures of gene abundance
and, hence, Reed et al. (2014) suggested to compute shares of functional genes that can
be compared between model outputs and data. A traditional least-squares approach
(corresponding to the assumption of independent normally distributed data) does
not adequately reflect the likelihood of gene shares because they have to sum up to
unity and, thus, are not independent from each other. Using relative gene data for
quantitative data-model integration therefore requires developing new measures of
the goodness of fit for these data.

Applying a gene-centric approach, we assessed the uncertainty ofmicrobial reaction
rates of nitrogen in a system where several reaction pathways (and thus, microorgan-
isms) compete for the same substrates. Our aim was to quantify the contributions of
different nitrogen-cycling processes to the overall turnover. Further we wanted to
assess the benefit that the functional gene data provide for identifying the relevant
nitrogen-cycling processes and quantifying their rates. Finally, we investigated the
most influential factors for nitrogen removal in the hyporheic zone.

To this end we set up a gene-centric biogeochemical model and calibrated it with
data from an experimental study by Y. Liu et al. (2017). These authors conducted
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flow-through column experiments with riverbed sediments that provide a rich data
set of chemical concentrations and functional gene data for nitrogen-cycling genes.
To see if and how the gene data reduce the uncertainty of parameter values and
reaction rates, we calibrated the model both with and without the functional gene
data. Based on the findings of Y. Liu et al. (2017) we hypothesize that residence time
and organic carbon dynamics mainly determine the reaction rates.

5 .2 material and methods

5.2.1 Simulated experiments

We set up a model that simulates the flow-through column experiments conducted
by Y. Liu et al. (2017). In these experiments, Y. Liu et al. (2017) investigated nitrogen
transformation processes in riverbed sediments of the Columbia River. The columns
were packed with the homogenized sediments and flushed either with anoxic artificial
groundwater rich in nitrate, or with oxic artificial surface water with lower nitrate
contents. Before the start of the flow-through phase, the columns were presaturated
with nitrate-free artificial groundwater or surface water. Concentrations of nitrogen
species (NO –

3 , NO –
2 , N2O, NH +

4 ), dissolved organic carbon (doc) and dissolved inor-
ganic carbon (dic) were monitored in the effluent, and in porewater taken from four
ports along the column (figure 5.1).

At the end of the experiment, the columns were sacrificed to determine profiles of
soluble NO –

3 and NO –
2 , extractable NH +

4 and relative concentrations of functional
genes. Functional genes of nitrogen cycling (narG, napA, nirS, nosZ, nrfA, archaeal
and bacterial amoA, nxrA, and hzo) were quantified with quantitative pcr (qpcr). The
groundwater columns were operated at a flow velocity of 2.2m d⁻¹ for 4 days and the
surface water column was run at 2.0md⁻¹ for 5 days. Afterwards, the velocity was
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reduced to 1.2m d⁻¹ (groundwater column) and 1.1m d⁻¹ (surface water column) until
the end of the experiment on day 11 and 16, respectively.

The model is currently limited to the anoxic groundwater column because initial
analyses showed that even with a limited set of anoxic reactions the system is quite
complex and the uncertainty estimation is challenging. It would be interesting, though,
to extend the analysis to the oxic system that features more potential nitrogen-cycling
reactions but requires substantially higher model complexity.

5.2.2 Microbial reactions

Reaction stoichiometry In the anaerobic system, we consider three denitrification
steps (with corresponding genes narG, nirS, and nosZ ), and reduction of nitrite to
ammonium in dnra, corresponding to the gene nrfA. Anammox is also a potential
nitrogen-cycling reaction that can take place under anoxic conditions. However,
anammox genes (hzo) were the least abundant ones in the sediment. We set up a
model variant that includes the anammox reaction and genes, and the results indicated
that anammox reaction rates are negligible. Therefore, we excluded anammox from
the further analysis.

doc serves both as the carbon source for heterotrophic organisms and as the
electron donor for denitrification and dnra. We use the molecular formula CH2O
to describe a single pool of generic organic carbon. Biomass is described generically
as a compound with the molecular formula C5H9O2.5N based on data from seven
microorganism (Roels, 1983). The catabolic and anabolic reactions considered in the
model are given in table 5.1.

The overall metabolic reaction is obtained by coupling a catabolic reaction 𝑗with the
corresponding anabolic reaction. The factor coupling the two reactions, and therefore
the stoichiometric coefficients 𝛾𝑗𝑖 of reactant 𝑖 in the metabolic reaction, depend on the
growth yield. Appendix d.1 provides details on how to calculate the stoichiometric
coefficients from the stoichiometry of the catabolic and anabolic reaction, and the
growth yield.

Reaction kinetics The reaction kinetics are described by multiple Monod terms mul-
tiplied by the concentrations of the functional gene linked to reaction 𝑗 (Reed et al.,
2014). The rate of the substrate in reaction 𝑗 is

𝑟 𝑗𝑠 = 𝜈 𝑗max
𝛤𝑗
𝑔𝑗

∏
𝑖∈substrates

𝑐𝑖
𝑐𝑖 + 𝐾 𝑗

𝑖
. (5.1)

Here, 𝜈 𝑗max [mol cell⁻¹ d⁻¹] is the maximum cell specific reaction rate of substrate 𝑠, and
𝐾 𝑗
𝑖 [mol L⁻¹] is the half-saturation constant of substrate 𝑖 in reaction 𝑗. 𝛤𝑗 [genes L⁻¹]
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table 5 . 1 : Stoichiometry of the catabolic and anabolic reactions considered in the model.

Reaction Reaction stoichiometry Gene

Catabolic reactions

Nitrate reduction 2 NO –
3 + CH2O 2NO –

2 + H2O + CO2 narGᵃ
Nitrite reduction to N2O 2NO –

2 + 2H+ + CH2O N2O + 2H2O + CO2 nirSᵇ
N2O reduction 2 N2O + CH2O 2N2 + H2O + CO2 nosZ
Nitrite reduction to
NH +

4

2 NO –
2 + 4H+ + 3 CH2O 2NH +

4 + H2O + 3 CO2 nrfA

Anabolic reactions

Heterotrophic growth 21 CH2O + 4NH +
4 4 C5H9O2.5N + 9H2O + CO2 + 4H+

ᵃWe use narG as the functional gene for nitrate reduction, and sum the measured napA and narG
genes. ᵇWe use nirS as the functional gene for nitrite reduction to N2O, and sum the measured
nirK and nirS genes.

denotes the concentration of functional gene 𝑗, and 𝑔𝑗 is the average number of genes
𝑗 per cell. We assumed that there is a single gene copy per cell for all genes, as only
a minority of microorganisms is known to have multiple copies of genes related to
denitrification or dnra per genome (Jones et al., 2008; Welsh et al., 2014). In contrast
to Reed et al. (2014), we neglect inhibition by oxygen because the system is anoxic.

The net reaction rates for the microbial transformations are given by

𝒓mic
net = 𝑨T𝒓 , (5.2)

where 𝒓 ∈ ℝ𝑀 is a vector containing the reaction rates 𝑟 𝑗𝑠 (with 𝑀 being the number
of reactions). Given a system with 𝑁 reactants, 𝑨 is a 𝑀 × 𝑁 matrix containing the
normalized stoichiometric coefficients. The coefficient for reactant 𝑖 in reaction 𝑗 is

𝐴𝑗,𝑖 =
𝛾𝑗𝑖
|𝛾𝑗,𝑠|

, (5.3)

where 𝛾𝑗,𝑠 is the stoichiometric coefficient of the substrate 𝑠 in reaction 𝑗.
Instead of simulating CO2 concentrations we use dic as state variable because, dic

rather than CO2 concentrations were measured, and because this eliminates the need
to account for pH-dependent speciation of inorganic carbon.

Gene production and decay The growth rate of microbial cells due to reaction 𝑗,
𝑟 𝑗growth [cells L⁻¹ s⁻¹], is linked to the reaction rate 𝑟 𝑗𝑠 by the stoichiometric coefficients
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of biomass in the metabolic reaction:

𝑟 𝑗growth =
𝑀bio

𝑤bio

𝛾𝑗,bio
|𝛾𝑗,𝑠|

𝑟 𝑗𝑠 , (5.4)

where 𝑀bio [gmol⁻¹] is the molar weight of biomass and 𝑤bio [g cell⁻¹] is the cell
weight. The production rate of gene 𝑗 is then given by

𝑟 𝑗gene = 𝑔𝑗 𝑟
𝑗
growth . (5.5)

Here, we do not account for metabolic plasticity as Reed et al. (2014) suggested, that
is, we assume that each microorganism can carry out only one metabolic reaction
rather than several. Decay of genes is described with a first-order rate law with the
same decay coefficient 𝑘dec [d⁻¹]:

𝑟 𝑗dec = 𝑘dec 𝛤𝑗 . (5.6)

5.2.3 Release of organic carbon and nitrogen

The hydrolysis of organic compounds in the sediment was the only source of doc in
the column. We describe release of doc from the sediment with a linear driving-force
approach (Gu et al., 2007):

𝑟docrelease = 𝑘release (
𝑐poc
𝐾poc
𝑑

− 𝑐doc) , (5.7)

where 𝑘release [d⁻¹] is the release rate constant, 𝑐poc [g g⁻¹] is the content of bioavailable
particulate organic carbon (poc) in the sediment, 𝐾poc

𝑑 [L g⁻¹] is the distribution
coefficient and 𝑐doc is the aqueous concentration of doc. The change in bioavailable
poc content is given by

𝑟poc = −
𝜙
𝜌𝑏

𝑟docrelease + 𝑟hydroysis , (5.8)

where 𝜙 is the porosity and 𝜌𝑏 [g L⁻¹] is the bulk density of the sediment. We considered
a constant production rate for bioavailable poc, 𝑟hydroysis, that conceptually represents
the breakdown of complex organic material into smaller, bioavailable compounds. We
tested model variants both with and without this production term and rejected the
model with a single pool of poc (i. e., without 𝑟hydroysis) because it yielded a poorer fit
for the nitrate data (figure d.9).

Organic material in the sediment also contains organic nitrogen that is converted
to ammonium during the hydrolysis. We assume that the production of ammonium
linearly relates to the release of doc by the inverse of the c:n-ratio 𝜅c:n of the organic
material:

𝑟nh₄⁺release =
1

𝜅c:n
𝑟docrelease (5.9)
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5.2.4 Advective-dispersive transport

Transport of solutes is described by the advection-dispersion-reaction equation as
given in equation (2.11) in chapter 2. We describe the decrease of the flow velocity
during the experiment by a logistic function that has the shape of a smoothed step:

𝑣(𝑡) = 𝑣0 + (𝑣1 − 𝑣0)
1

1 + exp (−𝑏(𝑡 − 𝑡step))
, (5.10)

where 𝑣0 and 𝑣1 [m d⁻¹] are the constant flow velocities before and after the time of
switching the flow rate, 𝑡step[d], and 𝑏 [d⁻¹] defines the steepness of the step.

We assume that microbial cells are attached to the sediment, and that, as a conse-
quence, the transport of functional genes can be neglected.

5.2.5 Ammonium sorption

Ammonium transport can be substantially retarded by cation exchange (Böhlke et al.,
2006; Ceazan et al., 1989; Triska et al., 1994). The levels of ammonium extracted
from the sediment with KCl at the end of the experiment were nearly two orders
of magnitude higher than the measured aqueous ammonium concentrations. This
suggests that ammonium sorption is an important process for the fate of ammonium.
We describe kinetic ammonium sorption with a rate law similar to equation (5.7):

𝑟sorption = 𝑘sorption (𝐾nh₄⁺
𝑑 𝑐nh₄⁺ − 𝑠nh₄⁺) , (5.11)

where 𝑘sorption [d⁻¹] is the kinetic rate constant, 𝐾nh₄⁺
𝑑 [L g⁻¹] is the equilibrium sorp-

tion coefficient, and 𝑠nh₄⁺ [mol g⁻¹] is the concentration of ammonium sorbed to the
solid phase. The related change of concentration of ammonium in the liquid phase is

𝜕𝑐nh₄⁺
𝜕𝑡

|
sorption

=
𝜌𝑏
𝜙
𝑟sorption . (5.12)

5.2.6 Initial and boundary conditions

At the inflow boundary we set a constant concentration condition based on the com-
position of the inflow solution (table 5.2). At the outflow boundary, the dispersive flux
was assumed to be zero. The advective flux at the outflow boundary was given by the
chosen upwind differentiation scheme. Before the start of the flow-through period,
the columns were presaturated with nitrate-free artificial surface water or groundwa-
ter. We assumed that solute concentrations at the end of this incubation phase were
uniform throughout the column. We then used the concentrations measured at the
effluent during the first 0.2 pore volumes as the initial conditions (table 5.2).
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table 5 .2 : Initial and inflow concentrations used in the simulations. Inflow concentrations
of species that are not listed are zero.

Parameter Value Units

Inflow NO –
3 concentration 4.48 × 10−4 m

Inflow dic concentration 1.6 × 10−3 m
Initial NO –

3 concentration 0 m
Initial NO –

2 concentration 0 m
Initial N2O concentration 0 m
Initial NH +

4 concentration 1.4 × 10−5 m
Initial doc concentration 4.4 × 10−4 m
Initial dic concentration 3.1 × 10−3 m
Initial narG concentration 4.4 × 1011 genes L⁻¹
Initial nirS concentration 2.0 × 1011 genes L⁻¹
Initial nosZ concentration 2.1 × 109 genes L⁻¹
Initial nrfA concentration 1.0 × 109 genes L⁻¹

Because of the presaturation phase it was assumed that the sorbed ammonium and
poc were in equilibrium with their respective liquid concentrations. We therefore set
their initial values based on the initial aqueous concentrations and the equilibrium
constants:

𝑠0nh₄⁺ = 𝑐0nh₄⁺ 𝐾
nh₄⁺
𝑑 , (5.13)

𝑠0poc = 𝑐0doc𝑀𝑐 𝐾poc
𝑑 . (5.14)

Functional genes were assumed to be homogeneously distributed in the column
at the start of the experiment because the columns were packed with homogenized
sediments. The qpcr data did not provide absolute concentrations of the functional
genes but only data relative to the abundance of 16S ribosomal rna (rrna) genes. To
obtain absolute gene concentrations in genes L⁻¹ we scaled the relative concentrations
with a parameter indicating the total concentration of all considered functional genes.
This parameter is not identifiable from the data because the data do not contain
information about the absolutemagnitudes of gene concentrations. Therefore we fixed
the parameter at a value of 1.5 × 10¹² genes L⁻¹, yielding the gene concentrations listed
in table 5.2. Note that, as a consequence, estimated parameter values, in particular
the maximum specific consumption rates 𝜈 𝑗max, will be conditional on this value,
and caution is advised when comparing them to estimates obtained with different
methods.
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5.2.7 Parameter estimation and uncertainty quantification

We used Bayesian inference to fit simulated values to measurements and quantify
parametric uncertainty. A Bayesian workflow comprises three basic steps (van de
Schoot et al., 2021): (1) defining prior parameter distributions that express expert
knowledge about the parameter values in ignorance of the data, (2) quantifying
the goodness of fit between model outputs and measurements with a likelihood
function, and (3) combining the knowledge about the parameters from the prior and
the likelihood in the posterior distribution.

Prior distributions The choice of prior distributions is always subjective which has
frequently been used as argument against Bayesian methods. Conversely, defining
prior distributions forces scientist to state their assumptions explicitly, and helps
ensuring physically meaningful results that are consistent with current expert knowl-
edge. Because the choice of priors can substantially influence the results of a Bayesian
analysis, the prior distributions should be chosen carefully, especially when the data
do not contain enough information to constrain a parameter. We therefore started More than 40

parameter
values from the
literature are
tabulated in
appendix d.3
(tables d.3
to d.7 on
page 136).

the process of selecting priors by creating a database of reference parameter values
from the literature.

Nearly all reaction parameters are positive, real-valued variables. These parameters
were log-transformed, and a normal distribution was chosen as the prior. The log-
transformation ensures that parameter values are positive. Furthermore it allows
to express uncertainty about the order of magnitude of a parameter, given the large
variability of literature values. The mean values and standard deviations of the normal
distributions were chosen such that the distributions cover the full range of literature
values. Many of the standard deviations for the log parameters (using a natural
logarithm) are larger than 1.5, corresponding to a factor of about half an order of
magnitude for the non-logarithmic values. The prior distributions, thus, range over
several orders of magnitude and are only weakly informative. The growth yields
were expressed in relative terms (see appendix d.1) such that they range between 0
and 1. We therefore chose a Beta distribution for the prior of relative growth yields.
Prior distributions of all parameters are listed in table 5.3.

Likelihood Solute data 𝒚 𝑖𝑗𝑐 of the measured chemical species 𝑖 at measurement number
𝑗 (accounting for several measurements in time and space) were used to define the
likelihood. We chose a Student’s 𝑡 distribution with location 𝜇𝑖𝑗, standard deviation 𝜎𝑖
and degrees of freedom 𝑑 to not overly weight outliers in the data:

𝒚 𝑖𝑗𝑐 ∼ 𝑇(𝜇𝑖𝑗, 𝜎𝑖, 𝑑) (5.15)

73



5 Quantifying uncertainty of hyporheic nitrogen-cycling rates

table 5 .3 : Prior distributions of the model parameters.

Description Symbol Prior distributionᵃ
type 𝜃1 𝜃2

Log half-saturation constant for…
doc in NO –

3 -reduction to NO –
2 log (𝐾narG

doc /m) 𝑁 log (5 × 10−5) 1
doc in NO –

2 -reduction to N2O log (𝐾nirS
doc/m) 𝑁 log (5 × 10−5) 1

doc in N2O-reduction to N2 log (𝐾nosZ
doc /m) 𝑁 log (5 × 10−5) 1

doc in NO –
2 -reduction to NH +

4 log (𝐾nrfA
doc /m) 𝑁 log (5 × 10−5) 1

NO –
3 in NO –

3 -reduction to NO –
2 log (𝐾nirS

no₃⁻/m) 𝑁 log (3 × 10−5) 1
NO –

2 in NO –
2 -reduction to N2O log (𝐾nirS

no₂⁻/m) 𝑁 log (4 × 10−6) 1
N2O in N2O-reduction to N2 log (𝐾nosZ

n₂o /m) 𝑁 log (10−6) 1
NO –

2 in NO –
2 -reduction to NH +

4 log (𝐾nrfA
no₂⁻/m) 𝑁 log (10−5) 1

Maximum cell-specific reaction rate for…
NO –

3 -reduction to NO –
2 log (𝜈narGmax /(mol cell−1 d−1)) 𝑁 log (10−14) 1.5

NO –
2 -reduction to N2O log (𝜈nirSmax/(mol cell−1 d−1)) 𝑁 log (10−14) 1.5

N2O-reduction to N2 log (𝜈nosZmax/(mol cell−1 d−1)) 𝑁 log (10−14) 1.5
NO –

2 -reduction to NH +
4 log (𝜈nrfAmax/(mol cell−1 d−1)) 𝑁 log (10−14) 1.5

doc release rate constant log(𝑘release/d−1) 𝑁 log(0.1) 2.5
poc distribution coefficient log(𝐾 poc

𝑑 /(L g−1)) 𝑁 log(0.042) 1
poc production rate log(𝑟hydroysis/(g g−1 d−1)) 𝑁 log(10−6) 1
NH +

4 equilibrium sorption constant log (𝐾nh₄⁺
𝑑 /(L g−1)) 𝑁 log(0.01) 2.5

NH +
4 kinetic sorption coefficient log (𝑘sorption/d−1) 𝑁 log(1.0) 1.0

Relative growth yield for…
NO –

3 -reduction to NO –
2 𝑌 rel

narG Beta 1.5 20
NO –

2 -reduction to N2O 𝑌 rel
nirS Beta 1.5 20

N2O-reduction to N2 𝑌 rel
nosZ Beta 1.5 20

NO –
2 -reduction to NH +

4 𝑌 rel
nrfA Beta 1.5 20

Scale parameter for the gene likelihood log(𝑠𝜒) 𝑁 log(80) 0.5

ᵃ𝑁 indicates a normal distribution where the first parameter 𝜃1 is the mean value 𝜇, and 𝜃2 is the standard
deviation 𝜎. Beta indicates a Beta distribution with shape parameters 𝜃1 = 𝛼 and 𝜃2 = 𝛽.
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The 𝜇𝑖𝑗 are given by the Box-Cox transformed simulated concentrations. We applied
the Box-Cox transformation (Box and Cox, 1964) to account for heteroscedasticity
of the residuals. The parameters 𝜆𝑖 of the Box-Cox transformation and the standard
deviations 𝜎𝑖 were adjusted manually.

Y. Liu et al. (2017) quantified functional genes of nitrogen cycling only relative
to gene counts of the 16S rrna gene. In contrast, the simulation yields absolute
concentrations of functional genes. In order to compare the simulation results to the
data, we computed the fraction of each functional gene 𝑖 at time point 𝑗 with respect
to the sum of all genes for which data are available. It is defined as

𝜒𝑖𝑗 =
𝛤𝑖𝑗

∑𝑘 𝛤𝑘𝑗
. (5.16)

Since 𝜒𝑖𝑗 ∈ (0, 1) and ∑𝑖 𝜒𝑖𝑗 = 1 we chose a Dirichlet distribution to define the

likelihood of the measured gene fractions. Let 𝒚𝑗𝜒 be the vector of all measured gene
fractions for measurement 𝑗. We assume that

𝒚𝑗𝜒 ∼ Dir(𝒂𝑗) , (5.17)

where the vector of concentration parameters 𝒂𝑗 of the Dirichlet distribution is defined
by 𝑎𝑖𝑗 = 𝜒𝑖𝑗𝑠𝜒. This means that the simulated gene fractions 𝜒𝑖𝑗 define the expected
value of the distribution. The spread of the distribution is given by the scaling
parameter 𝑠𝜒. The larger 𝑠𝜒 is, the narrower is the distribution. This is illustrated for
a hypothetical example of three genes in figure 5.2. We estimated 𝑠𝜒 from the data,
using a lognormal distribution as the prior (see table 5.3).

Fixed parameters Transport parameters were set to fixed values because we expected
their uncertainty to be small compared to the uncertainty of reaction parameters.
The dispersion coefficient was chosen by manually fitting the breakthrough curve of
a conservative tracer (bromide). For the parameters of the velocity function, we fitted
equation (5.10) to velocity data from flow-rate measurements. The bulk density was
calculated as 𝜌𝑏 = (1 − 𝜙)𝜌𝑠 where we used the density of quartz (2.65 g cm⁻³) for the
solid density 𝜌𝑠.

Some of the reaction parameters were fixed because they were poorly identifiable
given the available chemical and microbial data. This applies to the absolute value of
initial gene concentrations, the weight of a microbial cell, and the microbial decay
constant because the qpcr data provided relative measures of functional gene abun-
dance only. We also fixed the c:n-ratio of organic material 𝜅c:n based on measured
ratios from Y. Liu et al. (2017). The fixed parameters and their values are listed in
table 5.4.
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figure 5.2 : Illustration of the Dirichlet distribution for defining the likelihood of gene
fractions. The example is simplified to a measurement of three genes for illustration purposes.
The simulated fractions of the three genes represent the mean of the distribution and are
marked by a cross. Note that the mean of the distribution does not equal its mode. Colors
indicate the likelihood of measured gene fractions. The two subplots show the effect of the
scaling parameter 𝑠𝜒. The ternary plots are created with python-ternary (Harper, 2021).

table 5 .4 : Model parameters set to fixed values.

Description Symbol Value Units Reference

Grid spacing 𝛥𝑥 0.299 cm
Length of the column 𝐿 29.9 cm 1
Porosity 𝜙 0.39 1
Bulk density 𝜌𝑏 1612 g L⁻¹ quartz density
Time of velocity reduction 𝑡step 3.9 d flow rate data
Velocity before 𝑡step 𝑣0 2.2 md⁻¹ flow rate data
Velocity after 𝑡step 𝑣1 1.2 md⁻¹ flow rate data
Steepness parameter for 𝑣 𝑏 20 d⁻¹ flow rate data
Dispersivity 𝛼𝐿 1.2 cm tracer data
Molecular diffusion coefficient 𝐷𝑚 8.64 × 10−5 m² d⁻¹ 2
c:n-ratio 𝜅c:n 8.5 molmol⁻¹ 1
Microbial decay coefficient 𝑘dec 0.01 d⁻¹ see table d.4
Cell weight 𝑤bio 0.1 pg cell⁻¹ 3
NO –

3 inflow concentration 𝑐inno₃⁻ 0.448 mm 1
dic inflow concentration 𝑐indic 1.6 mm 1

¹ Y. Liu et al. (2017) ² Picioreanu et al. (1997) ³ Loferer-Krößbacher et al. (1998)
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Calibration without functional gene data To investigate the influence of functional
gene data on parameter inference we set up two model variants. In the variant with
gene data, initial gene concentrations were based on measured gene fractions at the
beginning of the experiment, and profiles of gene fractions at the end of the experiment
informed the likelihood. In the alternative model variant without gene data, the initial
gene concentrations become parameters that are estimated by calibration. As the
prior we chose a log-normal distribution with the same mean value for all genes, that
is, with equal gene fractions. For the likelihood, only solute-concentration data were
used such that gene concentrations were not directly constrained.

5.2.8 Numerical methods

The reaction model was implemented in Python (Störiko, 2022). We applied a semi-
discretization approach to discretize the reactive-transport equation in space using the
Python package adrpy (Störiko, 2021). The resulting system of ordinary differential
equations (odes) was solved numerically with the backwards differentiation formula
(bdf) using the Python package sunode (Seyboldt, 2021). It automatically generates
compiled code for the right-hand-side function and wraps the C-library sundials
(Hindmarsh et al., 2005) for solving the odes.

We set up the statistical model with the help of the Python package PyMC (Salvatier
et al., 2016). Samples from the posterior distribution were generated with PyMC’s
sequential Monte Carlo (smc) algorithm, using a custom smc kernel. We ran two Details on the

sampling
algorithm can
be found in
appendix d.2
(page 135).

independent chains to assess convergence of the sampler based on a visual comparison
of posterior distributions, and on the rank-normalized split �̂� convergence criterion
(Vehtari et al., 2021). It compares between-chain and in-chain variance, and values of
�̂� greater than 1 indicate non-convergence. In the final simulations, deviations of �̂�
from 1 were smaller than 0.04 for all parameters.

5.2.9 Integrated reaction rates

Based on simulated concentrations and equation (5.1) we computed reaction rates
for the different nitrogen-cycling processes. This allows us to see how reaction rates
evolve in space and time, and compare the reaction rates of different processes. To
estimate the contributions of different processes to overall nitrogen cycling in the
column, we integrated the reaction rates along the advective flow path of a water
parcel.

The position 𝑥(𝑡) of a water parcel that enters the column at time point 𝑡0 can be
described by the following ode:

d𝑥𝑝(𝑡)
d𝑡

= 𝑣 (𝑥𝑝(𝑡), 𝑡) = 𝑣(𝑡) , (5.18)
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where the second equality holds because the advective velocity 𝑣 is constant in space
in our application. The initial condition is given by 𝑥𝑝(𝑡0) = 𝑥0, where 𝑥0 is the
coordinate of the inflow boundary. We integrated equation (5.18) with an ode solver
(SciPy’s solve_ivp, Virtanen et al., 2020) until the particle reaches the outflow
boundary at 𝑥out. This results in pairs of particle positions 𝑥𝑝(𝑡0, 𝑡) and time points
𝑡𝑝(𝑡0, 𝑥) at which the particle reaches the corresponding location. The total removal
rate 𝑅𝑖𝑗 in the water parcel that enters the column at 𝑡0 is then given by

𝑅𝑖𝑗(𝑡0) = ∫
𝑥out

𝑥0
𝑟𝑖𝑗 (𝑥, 𝑡𝑝(𝑡0, 𝑥)) d𝑥 , (5.19)

where 𝑟𝑖𝑗(𝑥, 𝑡) is the reaction rate of compound 𝑖 by reaction 𝑗 at a given point in space
and time. We computed the integral in equation (5.19) numerically with a trapezoidal
rule and a constant temporal resolution of ¹⁄₁₀₀ of the total travel time.

5 .3 results

5.3.1 Solute concentrations and gene profiles

Nitrate time series Figure 5.3 shows the simulated and measured response of solute
concentrations over time at the outflow of the column, and at the ports at 4 cm and
11 cm from the inlet. Overall, the model captures spatial and temporal trends of the
data very well. Nitrate breaks through first at the ports and then also at the outflow,
reaching concentrations that range between 60% and 90% of the inflow concentration
(figure 5.3a). After the initial breakthrough, nitrate concentrations slowly increase.
The reduction of the flow velocity leads to a sudden drop of the nitrate level, before
concentrations slowly rise over time again.

Nitrate profiles Although themodel slightly overestimates the nitrate concentration at
the first two ports, it captures the decrease of the nitrate concentration in space, with
the lowest concentrations being measured at the outflow. The decrease of the nitrate
concentration in space is also evident from the nitrate profile (figure 5.4a). Measured
soluble nitrate at the inflow of the column is higher than the nitrate concentration in
the inflowing solution. We interpreted this finding as an indication of defective data
because in the anoxic system there is no mechanism that could produce additional
nitrate, and hence excluded the nitrate profile data from the calibration.

poc content Y. Liu et al. (2017) explain the observed increase of the nitrate concen-
tration over time by decreasing denitrification rates due to a depletion of organic
carbon. This explanation is consistent with our modeling results: The estimated initial
bioavailable poc content is low (0.025‰), and the release of organic carbon into the
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f igure 5 .3 : Simulated (lines) and measured (markers) aqueous concentrations at the column
effluent and at two ports close to the inflow (b1) and in the middle of the column (b3) as
a function of dimensionless time. Individual lines represent 40 draws from the posterior
distribution of the model using gene data. Simulated concentrations for the model without
gene data can be found in the appendix (figure d.3).
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aqueous phase considerably depletes the poc content (figure d.1 in appendix d.4). In
the second half of the experiment the decrease of the poc content slows down and
reaches a steady state. This is when the production rate of bioavailable poc balances
the release of carbon into the aqueous phase. Without this poc production term, the
content of bioavailable poc in the sediment would constantly decrease, leading to an
overestimation of the increase in nitrate towards the end of the simulation.

Nitrite time series Nitrite data are reproduced accurately in the effluent and at the two
rear ports (17 cm and 24 cm). At the first two ports (figure 5.3c and figure d.2b), the
model underestimates the overall nitrite level while reproducing some of the patterns
present in the observations: After reducing the flow rate the nitrite concentration
continuously decreases. The underestimation of nitrite concentrations in combination
with overestimated nitrate concentrations at the first two ports suggests that the
model underestimates the nitrate reduction rate in this part of the column. The
reduction of nitrate requires an electron donor which is not supplied in the inflow
solution. Nitrate reduction is therefore limited by the release kinetics of doc (the only
electron donor available). We hypothesize that the actual release of organic carbon
near the inlet of the column is faster than what the model predicts. However, this is
difficult to confirm because doc concentrations have not been measured at the ports.

Nitrite profiles The soluble nitrite concentration measured in the spatial profiles at
the end of the experiment is systematically higher than simulated concentrations
throughout the profile (figure 5.4b). However, assuming that nitrite does not sorb onto
the sediment, the soluble nitrite data is also inconsistent with pore water nitrite con-
centrations from the ports. Therefore, we considered the soluble nitrite measurements
to be untrustworthy, and excluded the profile data from the calibration.

Ammonium profiles Extractable ammonium concentrations at the end of the exper-
iment are two orders of magnitude higher than solute concentrations measured at
the ports (figure 5.4c and figure 5.3b). The model can reproduce this behavior by
explaining it with considerable sorption of ammonium. The equilibrium retardation
factor obtained with the model ranges between 72.7 and 80.2 (based on the 5th and
95th percentile of the posterior distribution). Assuming equilibrium sorption, it would
take 72.7 to 80.2 pore volumes for the ammonium-free artificial groundwater to break
through at the end of the column – this is longer than the duration of the experiment.

Ammonium time series Only at the first port we see a drop in the ammonium concen-
trations corresponding to the flushing with ammonium-free water. Because sorption
is not at equilibrium but kinetic, the front is smooth. Ammonium concentrations at
the ports further away from the column inlet and in the effluent rise over time. At
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figure 5 .4 : Spatial profiles of extractable ammonium, and soluble nitrate and nitrite at the
end of the experiment. Only ammonium profile data were used for the parameter estimation.

the end of the experiment, there is a clear increasing spatial trend of the ammonium
levels, both in the pore water (as measured in the ports, figure 5.3b and figure d.2d)
and in the extractable ammonium measured in the profiles (figure 5.4c).

N2O time series Measured N2O concentrations at the effluent and at ports b2, b3 and
b4 initially show elevated levels that gradually drop until 30 pore volumes, whereas
N2O at port b1 are low (<1 µm) all the time (figure 5.3e). The model qualitatively
reproduces this behavior but exaggerates the height of the N2O peak.

dic and doc time series Both dic and doc are present at relatively high levels after
the pre-saturation phase but drop abruptly within the first pore volume as the water
from the pre-incubation phase is flushed out (figure 5.3d and f). The dic afterwards
reaches a constant concentration. In contrast, doc levels gradually decrease over time
at a progressively slower rate. The model is able to capture this decrease, relating it
to the decreasing poc content of the sediment that approaches a steady state towards
the end of the simulation.

Spatial profiles of functional genes Figure 5.5 shows the simulated and measured
fractions of nitrogen-cycling genes in the column at the end of the simulation. Overall,
the gene fractions hardly change in comparison to the initial gene fractions (indicated
in figure 5.5 by a gray line). This could either mean that there is little microbial
growth or that all genes grow by the same factor. Only the shares of narG and nirS
decrease and increase slightly, respectively, in the back two-thirds of the column. The
model explains this with a growth of the nirS genes whereas the concentration of
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figure 5.5 : Simulated and measured profiles of relative abundances of functional genes.
Dark blue lines show the model results when measured relative gene concentrations inform
the initial conditions and the likelihood; yellow lines show the calibration results when only
chemical data are used. In each case, 40 samples from the posterior distribution are drawn.

narG genes remains constant. While the data cannot distinguish whether narG genes
increase or nirS genes decrease, the simulated absolute gene concentrations contain
this information.

5.3.2 Nitrogen-cycling rates

Reaction rates of nitrogen-cycling processes were computed as outlined in section 5.2.9
to assess their importance for nitrogen turnover and uncertainty. Figure 5.6 shows
how reaction rates are spatially distributed in the column (figure 5.6a), and how
integrated reaction rates change over time (figure 5.6b).

Removal rates by denitrification processes become smaller over time. This decrease
is caused by the depletion of bioavailable organic carbon. The relatively slow release
of organic carbon from the sediment results in low, decreasing doc concentrations
that are in the range of the half-saturation constants, indicating that reaction rates
are limited by the carbon substrate. The removal rate by dnra (linked to the nrfA
gene) is much lower than the denitrification rates, however, it slightly increases over
time. Even though organic carbon availability limits the dnra rates as well, the
growth of the nrfA-carrying community leads to the increase of the reaction rate.
Both denitrification and dnra rates are low near the inflow of the column (figure 5.6a).
Both reactions rely on the supply of organic carbon from the matrix as an electron
donor, which requires a certain residence time within the column.
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The reduction in the flow velocity has only a small effect on the removal rates.
However, the lower velocity also leads to a smaller mass flux of nitrate into the domain.
We therefore calculated the nitrate removal efficiency, which we define as the ratio of
the nitrate removal and the nitrate mass flux into the domain. The nitrate removal
efficiency increases when the flow velocity is reduced (figure 5.6c). However, on the
long term, it also declines by the decreasing organic carbon availability.

Figure 5.6 shows that the randomly chosen posterior samples yield almost identical
predictions, indicating that the estimated uncertainty of reaction rates in the anoxic
column is rather small. We expected that the interaction of several nitrogen-cycling
processes would make it difficult to estimate reaction rates with confidence. However,
the available data apparently provide enough information to constrain the reaction
rates. It should be considered, though, that the small uncertainty of reaction rates
could also arise from the fact that we neglect model structural uncertainty, and could
be overconfident. We further discuss this issue in section 5.4.2.

5.3.3 Posterior parameter uncertainty and identifiability

The marginal parameter distributions (figure 5.7) show that, for some parameters, the
posterior uncertainty is much smaller than the prior uncertainty, indicating that the
data is informative about these parameters. For example, the maximum specific rate
constants 𝜈narGmax and 𝜈nosZmax have a very narrow posterior distribution (figure 5.7a and b).
But also the equilibrium sorption coefficient of ammonium, 𝐾nh₄⁺

𝑑 , is well determined,
whereas the kinetic sorption coefficient 𝑘sorption is less certain. Other parameters
have broader posterior distributions that range over up to one order of magnitude, for
example the maximum specific rate and the doc half-saturation constant for dnra,
𝜈nrfAmax and 𝐾nrfA

doc (figure 5.7c and i). While the posterior distribution of 𝜈nrfAmax is still
much narrower than the prior distribution, the uncertainty of 𝐾nrfA

doc is hardly reduced
in the posterior.

The marginal distribution of 𝜈nosZmax (figure 5.7b) is considerably shifted to larger
values in comparison to the prior. This can be explained by the low abundance
of nosZ genes. Even though nosZ genes are much less abundant than narG and
nirS genes (corresponding to the first two steps of denitrification) we do not see
N2O accumulation. This indicates that the N2O consumption is nearly as fast as its
production. This can only be achieved if a highmaximum specific rate compensates for
the low abundance of nosZ. The half-saturation constant for nitrate 𝐾narG

NO –
3

(figure 5.7g)
is shifted to values that are much smaller than measured concentrations, effectively
eliminating the Monod term from equation (5.1) as it becomes unity. That is, the rate
law for nitrate reduction is effectively of zeroth order with respect to nitrate.

Some parameters are strongly correlated (figure 5.8), meaning that they are not
uniquely identifiable. Particularly strong correlations can be observed between the
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figure 5.7 : Kernel density estimates of the marginal posterior and prior distributions of
selected parameters. Plots are cut at the 94% highest density interval. Marginal distributions
of all simulation parameters are plotted in figure d.4 in the appendix.

maximum specific rates 𝜈 𝑗max of the narG, nirS and nrfA gene, and the corresponding
doc half-saturation constants 𝐾 𝑗

doc. Additionally, the maximum specific rates of narG
and nirS are correlated with each other. This correlation can be explained based on
the observed data. The concentrations of NO –

2 are low, which is directly related to
the ratio of the reaction rates to each other. If the second step was much slower than
the first one, the intermediate product NO –

2 would accumulate. Since this is not the
case, either both rate parameters must be large, or both must be small.

Pair-wise correlation coefficients and scatter plots can only show correlations
between two parameters. However, combinations of more than two parameters can
be correlated in the posterior. To explore the high-dimensional posterior parameter
space, we computed the eigenvalues and eigenvectors of the covariance matrix. That
is, we conducted a principal component analysis of the posterior parameter samples.
Before computing the covariance matrix, all parameters were transformed to log-
space (for positive parameters) or to logit-space (for parameters between 0 and 1).
Each eigenvector is a linear combination of the original parameters representing a
principal direction in the transformed parameter space. The set of eigenvectors span
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figure 5.8 : Heatmap showing the pairwise correlation coefficients of parameters in the
posterior.
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f igure 5 .9 : Eigenvalues of the posterior covariance matrix (a) and selected eigenvectors (b).
The shown eigenvectors on the left and right correspond to smallest and the largest eigenvalue,
respectively. The eigenvector in the middle corresponds to a relatively small eigenvalue but
features contributions from parameters with large marginal variance (highlighted in red).
Eigenvectors for all eigenvalues are shown in figures d.5 to d.7 in the supporting information.

a new orthogonal system of coordinates system and can be thought of as alternative
parameters that are linearly uncorrelated. The eigenvalues 𝜆 indicate the posterior
variance of these new parameters.

The eigenvalues cover a wide range of values from 6.3 × 10⁻⁶ to 0.54 (figure 5.9a).
We computed the eigenvalue decomposition with log-transformed parameters, but it
is more intuitive to look at the uncertainty of non-log parameters: An increase of the
parameter value on the log scale by one standard deviation corresponds to an increase
by a factor of exp(√𝜆) on the non-log scale. Thus, 𝜆 = 6.3 × 10−6 corresponds to a
factor of 1.003, and 𝜆 = 0.54 corresponds to a factor of 2.1. Eigenvectors of the small
eigenvalues are a combination of the 𝜈max of narG and nirS as well as the related half-
saturation constants for doc (figure 5.9b), indicating multiple dependencies between
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the half-saturation constants and the 𝜈max, and between the Monod parameters of
the two consecutive denitrification steps.

Although these parameters already have a relatively narrow marginal posterior
distributions, a linear combination of these parameters can be inferred with even
lower uncertainty. When the eigenvector of a small eigenvalue is not aligned with
the original parameter axes, one can easily leave the typical set of parameters that
significantly contribute to the posterior density by changing the original parameter
by a small increment. That is, even though the marginal distributions cover a small
parameter range, independent samples from the marginal distributions would likely
produce simulation results that do not fit the data well.

The eigenvector for 𝜆 = 0.0054 is particularly interesting. It has large contributions
from the Monod and growth parameters of the nrfA gene (𝐾nrfA

doc , 𝜈nrfAmax , 𝑌 relnrfA). The
marginal posterior distributions of these parameters are broad, but the eigenvalue is
still small, indicating that the individual parameters are poorly identifiable, whereas
a linear combination of them can be well constrained by the data.

Non-identifiable parameters are a major challenge for model calibration, inter-
pretation and predictions. When deterministic calibration methods (e. g., maximum
likelihood estimation) are applied, non-identifiable parameters lead to an ill-posed op-
timization problem because the solution is not unique. Bayesian calibration methods
can deal with non-uniqueness because they allow for joint distributions of parameter
combinations (rather than a single optimum). Nonetheless, non-identifiability can
still limit the usefulness of a model for system understanding and predictions. For
example, the model parameters themselves may be of interest for interpreting the
system behavior. Furthermore, non-identifiable parameters can cause ambiguous
predictions for variables that have not been previously measured (unobservability),
although this is not a necessary consequence (Villaverde, 2019).

One way of addressing non-identifiability is to find a reduced model that can still
describe the system behavior by effective rate laws that eliminate the non-identifiable
parameter combinations. For example, Marschmann et al. (2019) applied the manifold
boundary approximation method (mbam; Transtrum and Qiu, 2014) to soil carbon
cycling models, and showed that the number of parameters can be dramatically
reduced, replacing most of the non-linear Monod rate laws by linear equations. As
discussed, the Monod parameters of our gene-based nitrogen-cycling model were not
uniquely identifiable either. It would, thus, be interesting to apply mbam in order to
identify a reduced set of model equations that describe the effective model behavior.
One draw-back of this data-driven model reduction method is that the reduced model
obtained with it is specific to the used data set. When environmental conditions differ
from the ones during the experiment (e. g., by a higher or lower substrate availability)
the effective rate laws may change.
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5.3.4 Information gain from functional gene data

When we do not use the gene data as the initial conditions and in the likelihood,
the simulated concentrations of the solute look very similar to the case with gene
data. However, the profiles of model-predicted gene fractions differ considerably
between the two models (figure 5.5). Without the gene data, there is much more
uncertainty about the share of each gene. For example, nrfA can be as abundant
as nirS in some realizations whereas this is not possible when gene data are used.
Without informing the model about the gene data, the posterior distribution fo the
relative gene abundance remains close to the initial uniform distribution.

Adding the gene data does not affect some of the posterior parameter distributions
at all, e. g., for sorption related parameters (figure 5.7). However, the maximum
specific reaction rates and the growth yields have broader posterior distributions
without the gene data. This indicates that the additional functional gene data help to
better constrain the parameters, even though they only provide relative-quantitative
information.

For the parameters 𝜈nosZmax and 𝑌 relnosZ the additional gene data leads to a clear shift of
the posterior distribution compared to the model without gene data instead of just
narrowing it. This is related to the different predictions of the two models for the
abundance of the nosZ gene. When the gene data are used, it forces the nosZ gene to
be very low-abundant. As discussed above, this requires a compensation effect for
the corresponding maximum specific rate parameter. Without the gene data, nosZ
genes are much more abundant based on the prior information of equal shares of the
genes. In this case, no compensation effect is necessary, and the posterior distribution
of 𝜈nosZmax stays closer to its prior.

Although the gene data helps to determine the reaction parameters, it does not seem
to be necessary in order to quantify reaction rates in the given set-up. Surprisingly,
nitrogen-cycling rates are well constrained both with and without the gene data. This
potentially indicates that the solute data is highly informative for inferring reaction
rates. The set of possible nitrogen-cycling reactions in the anoxic system is still
limited (denitrification, dnra, and ammonification). The mass balance of nitrogen
compounds needs to be closed, which sets an additional constraint on possible reaction
rates. Together with the ample solute concentration data (including nitrate, nitrite,
ammonium and N2O concentrations), this leaves only little ambiguity with respect
to the relevant nitrogen-cycling processes. For example, nitrate is only consumed,
not produced, in an anoxic system. This means that the total removal of nitrate in
the column can be easily calculated through a mass balance when the effluent nitrate
concentration is known.

In a system where both oxic and anoxic nitrogen-cycling processes can act at the
same time, however, the uncertainty about the magnitude of nitrogen-cycling process
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rates might be considerably larger. In such a system, all nitrogen species can be either
produced or consumed, such that solute data might not be sufficient to close the mass
balance. We thus hypothesize that gene data become informative for constraining
reaction rates when both oxic and anoxic nitrogen-cycling processes take place.

5.3.5 Reparametrization of the Monod rate law

Even though in theory the Bayesian sampler used in this study (sequential Monte
Carlo) should converge towards the posterior distribution, the efficiency can be very
low. That is, the sampler fails to reach the posterior distribution in a reasonable
computational time – a common problem with many Markov chain Monte Carlo
(mcmc) sampling algorithms. Correlations among parameters, particularly in multiple
dimensions, can pose a major problem for the sampler. Even though the proposal
distribution of the smc sampler already takes into account the covariance structure
of the parameters, strong parameter correlations lead to a poor performance of the
sampler. Furthermore, relationships between parameters can also be non-linear, so
that linear transformations of the parameters do not always improve the convergence
behavior. How well sampling works strongly depends on the parametrization of the
model.

As discussed, the half-saturation constants and the maximum specific rates appear-
ing in the Monod law are strongly correlated, a problem well known from previous
studies (C. Liu and Zachara, 2001; Robinson and Tiedje, 1983; Sierra et al., 2015). In our
case, these multi-dimensional parameter correlations prevented effective sampling,
so the sampler did not converge.

To solve this issue we introduced a reparametrization of the Monod parameters
𝜈 𝑗max and 𝐾 𝑗

𝑖 similar to the one in Störiko et al. (2021a). 𝜈 𝑗max represents the rate at the
limit of 𝑐𝑖 → ∞ for all substrates 𝑖, and 𝐾 𝑗

𝑖 is the concentration of substrate 𝑖 where
𝜈𝑗 = 𝜈 𝑗max/2. However, data will mainly provide information about the rate at the
concentration levels found during the experiment. The same rates can be obtained
with several Monod curves that can have very different limiting values. Therefore,
instead of trying to determine the rate at the limit of infinite concentrations, we
picked a point in the concentration space 𝒄∗ that roughly corresponds to the observed
concentrations. (Of course there is no unique or best choice because concentrations
are not uniform in space and time.) We then chose the value and the slope of the
Monod curve at this point as the parameters of the reparameterized kinetic function
(figure 5.10).

More specifically, the first parameter 𝜈∗𝑗 is the specific rate at fixed concentrations,
that is

𝜈∗𝑗 = 𝜈𝑗(𝒄∗) = 𝜈 𝑗max ⋅ ∏
𝑖∈substrates

𝑐∗𝑖
𝑐∗𝑖 + 𝐾 𝑗

𝑖
. (5.20)
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𝐾 𝑐∗

𝜈max
2

𝜈(𝑐∗)

𝜈max 𝜕𝜈
𝜕𝑐 |𝑐∗

𝑐

𝜈(𝑐) figure 5.10 : Reparametrization of the
Monod parameters illustrated for the case
of a single substrate. Instead of 𝐾 and 𝜈max,
the value of the Monod curve at a fixed con-
centration, 𝜈(𝑐∗) (indicated in red), and the
relative slope at that point (slope of the dark
blue line divided by the slope of the light blue
line) rescaled to ℝ are used as parameters.

We denote the remaining parameters by 𝑧𝑖𝑗. They represent the partial derivatives of

the Monod curve with respect to concentration 𝑐𝑖 evaluated at 𝒄∗, 𝜕𝜈
𝜕𝑐𝑖
|
𝒄∗
, normalized

by the maximum slope possible for a Monod curve running through the point 𝒄∗𝑖 .
This slope is given by 𝜈𝑗(𝒄∗)/𝑐∗𝑖 because the steepest possible Monod curve is a linear
one, with all half-saturation constants approaching infinity. We rescaled this ratio to
all of ℝ by applying the sigmoid logit function which is given by logit(𝑥) = log ( 𝑥

1−𝑥)
for 𝑥 ∈ (0, 1). This yields

𝑧𝑖𝑗 = logit ( 𝜕𝜈
𝜕𝑐𝑖

|
𝒄∗

𝑐∗𝑖
𝜈𝑗(𝒄∗)

) = logit (
𝐾 𝑗
𝑖

𝑐∗𝑖 + 𝐾 𝑗
𝑖
) = log (

𝐾 𝑗
𝑖

𝑐∗𝑖
) . (5.21)

It turns out that this parameter equals the logarithm of the ratio of the half-saturation
constant 𝐾 𝑗

𝑖 and the fixed concentration 𝑐∗𝑖 .
Instead of log(𝜈 𝑗max) and log(𝐾

𝑗
𝑖 ), the parameters that we estimate are log(𝜈∗𝑗 ) and 𝑧𝑖𝑗.

PyMC can transform between the two parametrizations internally when the determi-
nant of the transformation’s Jacobian with respect to the parameters is provided. This
allowed us to define prior distributions in terms of the original parameters where it is
easier to find reference values in the literature. The new parameters were substantially
less correlated, improving the sampler performance and enabling convergence.

5 .4 discussion

5.4.1 Improving sampler efficiency through reparametrization

The fact that a reparametrization of the Monod parameters was necessary to achieve
convergence illustrates one of the practical problems of Bayesian inference: that the
sampler performance depends on the parametrization. While reparametrization can
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alleviate the sampler problems, a good reparametrization may not always be evident.
Analyzing the eigenvectors of the parameter covariance matrix can help identifying
parameters that are strongly related, although it only provides a measure of linear
dependence.

However, manual reparametrization becomes challenging and tedious for models
with many parameters. Sampling algorithms that do not depend on parametrizations
or that can automatically identify and apply the necessary transformations would,
thus, be highly desirable, but their development is currently still an active field of
research.

Transformations that convert a simple base distribution (e. g., a standard normal
distribution) into a complex (e. g., asymmetric or multimodal) target distribution by a
sequence of invertible and differentiable mappings are known as normalizing flows in
the field of machine learning (Kobyzev et al., 2021). The individual transformations
can be simple (e. g., linear) or more complex; common families of transformations
are neural network and autoregressive models (Kobyzev et al., 2021). Normalizing
flows can be combined with mcmc sampling to transform a posterior distribution with
complex geometry into a simpler distribution that is easy to sample (Papamakarios
et al., 2021). For example, M. Hoffman et al. (2019) used variational inference to fit
a normalizing flow based on neural networks, and then sampled the well-behaving
posterior density of the transformed parameter space with Hamiltonian Monte Carlo
(hmc). Their study is a pioneering example showing how normalizing flows can be
used to automate reparametrization and improve sampler performance.

5.4.2 Impact of model structure on uncertainty and parameter estimates

Parameter and uncertainty estimates obtained with Bayesian inference depend on the
assumption that the underlying model is correct. Structural model errors can lead
to biased parameter estimates and overconfident predictions (Sargsyan et al., 2019).
When structural uncertainty or model error is neglected, a rich data set can lead to
low predictive uncertainty, even if the predictions are wrong. These problems can be
illustrated with our model.

1 As we have discussed above (section 5.3.3) the posterior distribution of 𝜈𝑛𝑜𝑠𝑍max
is strongly shifted towards larger values compared to both the prior and the
posterior distributions of other genes. This would indicate that N2O reduction
by organisms carrying the nosZ gene is one to two orders of magnitude more
efficient than other nitrogen-cycling processes. It is doubtful that this is really
the case. Another explanation could be that nosZ genes are underrepresented
in the data, for example if the chosen pcr-primers cover only a fraction of the
diverse nosZ genes (Sanford et al., 2012; B. Zhang et al., 2021).
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This would mean that the assumption of our model that the relative abundance
of functional genes can be compared between different functional genes is
violated. In theory, we could try to correct different measurement efficiencies
by introducing a new parameter for each gene that accounts for the gene-specific
extraction or primer efficiency. However, in practice, it would be impossible
to uniquely identify this parameter because it would always only appear as
a product with the respective functional gene concentration. The additional
parameter would thus lead to a more complex model without conferring a
benefit. Instead, we should interpret the estimated maximum specific rates as
a lumped parameter of the actual maximum specific rates and the efficiency
with which a gene can be quantified. As long as the same analytical procedure
(extraction method, choice of primers, etc.) is performed in another experiment,
the determined parameters have predictive skills.

2 The second example shows how structural model error leads to overconfident
estimates. In an earlier model variant of the model we had fixed the growth
yield parameter in order to reduce the number of parameters, and because we
had considered it to have a low impact on calibration results if only relative
gene data is available. In the model with fixed growth yields, removing the
gene data from the likelihood did not increase the uncertainty of gene fractions
(figure d.8). On the contrary, the predicted distribution of gene fractions was
narrow but wrong. Without the gene data, it would have been difficult to notice
this erroneous result from a misbehaving model, because the predictions for
the solute data hardly differed among the models. Along the same lines, the
surprisingly low uncertainties of reaction rates estimated with the final model
formulation could also indicate overconfidence as a result of model structural
error.

These examples show the importance of evaluating the effects ofmodel assumptions,
and testing different model variants. More rigorous approaches exist for dealing with
structural model errors. Some of them focus on diagnosing structural errors (e. g.,
Hsueh et al., 2022) in order to find better model formulations. Alternatively, structural
model errors can be parameterized explicitly based on statistical modeling approaches
(e. g., O’Hagan, 2013; Sargsyan et al., 2019; Xu et al., 2017).

5.4.3 Linking organic carbon dynamics and nitrogen cycling

Our results have shown that nitrate removal in the anoxic hyporheic-zone sediments
is mainly limited by organic-carbon availability. This outcome is in line with previous
findings from field experiments (Zarnetske et al., 2011) and sediment incubations
(Lansdown et al., 2012). An appropriate description of organic-carbon dynamics is
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therefore essential to capture reaction rates of nitrogen-cycling processes. While
“organic carbon” in reality is a complex mixture of very different chemical compounds
with highly variable properties, accounting for this in detail in a model is usually not
feasible. Instead, one or several pools of generic organic carbon are used to describe
the sum of many compounds.

For the system that we modeled, a single pool of poc in the sediment was not
sufficient to describe the nitrate concentrations well at all time points. Adding a
second, constant pool of organic carbon improved the description of the observed
solute dynamics on the time scale of the experiment. However, over longer time
scales, the assumption of a constant production of bioavailable organic carbon might
be too simple when no additional organic carbon is supplied to the system. Over
time, more difficult-to-access carbon pools would also get depleted, reducing the
production rate. Our model might therefore not be appropriate for predictions on
time scales of several months.

For the simulation of carbon dynamics on large time scales (e. g., in marine sedi-
ments), models have employed multiple carbon pools of different reactivity (multi-G
model; e. g., Westrich and Berner, 1984). However, it is difficult to constrain the
dynamics of these carbon pools because they do not correspond to actual chemical
constituents. In the past years, metabolomics methods such as Fourier transform ion
cyclotron resonance mass spectrometry (fticr-ms) have enabled better resolving the
organic-matter composition of environmental samples (Bahureksa et al., 2021). The
modeling approach presented by Song et al. (2020) allows to incorporate this kind of
information into biogeochemical modeling. However, so far the data do not provide
quantitative information, limiting their use for calibrating models with more complex
representations of organic matter.

5 .5 conclusions

We have established a Bayesian workflow for gene-based modeling of nitrogen cycling.
The developed likelihood function in this work is based on a Dirichlet distribution
and represents a generally applicable approach to account for the dependence be-
tween measurements of different functional genes in model calibration when gene
measurements are expressed as proportions of all considered genes. Sampling the pos-
terior distribution of the non-linear biogeochemical model is challenging but model
reparametrization simplifies the posterior geometry and enables efficient sampling.

Estimated uncertainties of nitrogen-cycling rates are low because tightly monitored
solute concentrations contain sufficiently unique information on rates, at least in the
relatively simple anoxic system under consideration. Specifically, modeling revealed
that denitrification, not dnra, is the dominant nitrate removal process.

The comparison of a model variant that uses functional-gene information against a
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variant without these data shows that the additional gene data reduces the uncertainty
of microbial kinetic parameters, particularly of maximum specific rate constants and
growth yields. Even though the models with and without using gene data hardly differ
in their estimates of solute concentrations and reaction rates for the given set-up,
neither in terms of magnitude nor in terms of uncertainty, differences in parameter
estimates and parametric uncertainties become important when the calibrated model
is used for predictions under different conditions. For example, at lower flow rates
than used for calibration, microbial growth becomes more important, and then it is
essential to know the growth parameters.

The limiting factor for nitrogen cycling in the analyzed system is the availability
of organic carbon because it serves as the electron donor in both denitrification and
dnra. An accurate description of the processes that supply organic carbon is, thus,
important for the estimation of nitrogen-cycling rates. Reducing the flow rate and
thereby increasing the residence time in the column has only a minor influence on the
absolute reaction rates but it significantly increases the efficiency of nitrate removal
from the water.
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6.1 synthesis of major findings

The goal of my thesis was to advance the integration of biogeochemical models of
microbial nitrogen cycling with molecular-biological data. To this end, I (1) developed
model formulations the results of which can be compared to quantitative data of
functional genes and transcripts, (2) explored the relationship between reaction rates
and molecular-biological variables based on the models, and (3) quantified model-
related uncertainties. In the following, I outline the major findings of my work,
connecting them to the objectives presented in section 1.4.

6.1.1 Do enzyme-based models outperform Monod-type models?

In chapter 3, I have developed an enzyme-based model for denitrification that features
a mechanistic process description for transcriptional regulation with transcription
factors based on current knowledge from the model organism Paracoccus denitrificans.
This offers an alternative approach to the enzyme-based model formulations of M. Li
et al. (2017b) and Song et al. (2017) that do not depict the actual regulating mechanisms
but describe the regulation based on energetic and cybernetic principles, respectively.

Including the regulation of reaction rates by enzyme levels into rate laws of bio-
geochemical models only improves the model if enzyme levels are actually a limiting
factor for the reaction rates. For the test case in chapter 3, I showed that a Monod-
type model that assumes constant enzyme levels describes the system behavior well
enough, even though transcription was upregulated during the experiment. Explicitly
simulating enzyme concentrations increased model complexity without improving
model performance, that is the fit of the model output to the measured data. Thus,
the enzyme-based model contradicts the principle of parsimony when only reaction
rates are of interest. Nonetheless, it offers a description of transcript and enzyme
concentrations that is useful to analyze the relationship between these quantities
and reaction rates. The conclusion that an accurate representation of reaction rate
regulation does not require enzyme levels cannot be generalized to all environmental
conditions, or does not apply to other reactions. Considering the additional costs of
enzyme-based modeling, the necessity of incorporating the regulation of reaction
rates by enzymes into the model should be carefully evaluated. The additional com-

97



6 Conclusions & Outlook

plexity makes is more difficult to analyze and calibrate the model, and leads to a
higher computational effort.

Formal Bayesian model selection or cross validation help identifying the “best”
model for a given purpose (e. g., predictions or system understanding) and data set
(Höge et al., 2018). Formal model selection has been rarely applied to biogeochemical
models, though. A notable examples is the study of Brunetti et al. (2020) who found
that a Monod-type model with microbial growth can be justified over a first-order
model for their nitrification experiment. Applying such model selection methods to
assess the benefit of enzyme-based models over Monod-type models, or to compare
different approaches for enzyme-based modeling can further advance the integration
of biogeochemical modeling with molecular-biological data.

6.1.2 Can transcript measurements be used as a proxy for reaction rates?

The model-based analyses in chapters 3 and 4 highlight that transcript and enzyme
concentrations are a poor proxy for reaction rates for at least two reasons:

1 Transcript concentrations react quickly to changes in the environmental condi-
tions, but the response times of enzymes are slower. Therefore, the dynamics
of transcript concentrations are decoupled from potential rates in systems with
temporally changing substrate availability.

2 Reaction rates are not solely regulated by enzyme levels, but also controlled
by substrate availability and inhibition effects. This implies that enzyme con-
centrations are not a good proxy for reaction rates either, even in a system at
steady state.

While these issues have been raised before based on qualitative arguments (Moran
et al., 2013), the model-based analysis in this work provides quantitative evidence and
points out implications for experiments and measurement strategies.

The first point implies that a single transcript measurement can be completely
unrelated to reaction rates in systems with high temporal variability. A potential
strategy to deal with the short-lived nature of transcripts is to average over several
transcript measurements in time. In a system with diurnal fluctuations, for example,
calculating daily means is a promising strategy; more generally a weighted moving
average could be used.

In chapter 4, I demonstrated that the issue of substrate limitation cannot be easily
circumvented, particularly when several limiting or inhibiting compounds play a role.
It requires defining a model that describes how substrate limitation and inhibiting
compounds affect reaction rates, as well as knowing model parameters and concen-
trations of substrates and inhibitors. In that case we can no longer speak of a direct
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prediction of reaction rates from transcript data, and it would be a more consistent
approach to directly define a full biogeochemical model that can also predict chemical
concentrations and reaction rates.

6.1.3 What kind of data do we need to better quantify reaction rates?

Molecular-biological and omics data comprise a variety of different data types, and
not all of them are equally suitable for the integration with biogeochemical models
and the quantification of reaction rates. Quantitative transcript and enzyme data are
not only difficult to obtain but also difficult to integrate with biogeochemical models,
because they require making models more complex, accounting for the production
and decay processes of transcripts and enzymes. In addition, they can usually not
provide a direct measure of reaction rates. In contrast, dna-based measurements
provide measures of functional biomass, which are easier to ingrate into conventional
biogeochemical models without adding many parameters.

Based on my findings in chapter 4, I suggest that functional-gene data are more
useful than transcript or enzyme data to constrain biogeochemical models, unless
transcriptional regulation is known to be an influential factor for reaction rates, and
extensive data is available. However, transcript and enzyme data can be useful to
indicate qualitatively which reaction pathways are potentially active and should
be integrated in the model. In any case, chemical data of substrates, intermediates,
reaction products and inhibiting compounds are essential to constrain reaction rates
and should be monitored with the appropriate spatial and temporal resolution.

6.1.4 Do functional-gene and transcript data reduce parameter uncertainty?

One potential benefit of using microbiological data for biogeochemical models is to
better constrain parameter values. However, modeling studies that use functional
gene and transcript data have not addressed this question so far. In chapter 3 I
have shown that the posterior uncertainty of reaction parameters (more specifically,
maximum-rate and inhibition constants for denitrification) is not reduced in the
enzyme-based model that uses transcript data compared to the Monod-type model.

In contrast, including relative-quantitative measurements of functional genes for
nitrogen cycling reduced the uncertainty of several parameters in the gene-based
model in chapter 5. In particular, the gene data helped to constrain the posterior
distributions of maximum specific reaction rates, half-saturation constants and growth
yields.

Both transcript and functional-gene data have had little effect on the uncertainty
of reaction rates. This can be explained by the strong constraints that solute data
put on the reaction rates in the considered systems. As a result, the uncertainty of
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reaction rates is already low without using the transcript and gene data. However, the
small uncertainty estimates of reaction rates are likely overconfident due to structural
model errors. The “true” uncertainty (accounting for structural model uncertainty)
might be much higher. In that case the benefit of functional-gene data for reducing
the uncertainty of reaction rates might be higher than it seems from my analysis that
neglects structural model errors. More work is therefore required to obtain reliable
uncertainty estimates for biogeochemical models in view of structural model errors.

6.1.5 Addressing the challenges of calibrating gene- and enzyme-based models

My simulations have shown that the multi-dimensional posterior distributions of
gene- and enzyme-based models can be very complex, with strong correlations or
non-linear dependencies between reaction parameters. This is a phenomenon known
for biogeochemical models in general (Sierra et al., 2015) and can be related to the
“sloppy” characteristics of the models (Marschmann et al., 2019). Complicated poste-
rior geometries can pose a practical problem for effectively sampling the distribution.
While mcmc algorithms theoretically converge to the posterior distribution with
an infinite number of samples, the approximation of “infinite” can be prohibitively
expensive when the sampler struggles to explore the posterior. One step towards
addressing this problem for me was to use a state-of-the-art Hamiltonian Monte Carlo
sampler for the reaction model in chapter 3 that can explore the posterior distribution
more efficiently, and provides better diagnostics for pathological behavior (Betancourt,
2018; Monnahan et al., 2017). But even advanced sampling algorithms have difficulties
sampling the complicated posterior landscape. Fortunately, reparametrization can
help achieving convergence, as the simulations in chapters 3 and 5 have shown. In
particular, I have introduced a reparameterization for the commonly used Monod
or Michaelis-Menten rate law that can remove or reduce correlations between the
maximum rate parameter and half-saturation constants.

6.2 research perspectives

Given the amount of molecular-biological and omics data retrieved from the environ-
ment in the past decade, biogeochemical models (including the ones in this thesis)
still can use merely a fraction of the information that these data contain. In my view,
the main reasons for this are (1) the complex nature of microbial reaction processes,
(2) the challenges that are inherent to models describing these processes (e. g., non-
identifiability, computational cost), and (3) the fact that molecular-biological and
omics data are often not (yet) quantitative. In the following, I briefly discuss some
fields of research and potential challenges that need to be addressed in order to close
the gap. It requires further development of both models and omics methods.
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6.2.1 Better quantification of microbes through advances in omics techniques

The fast development of omics methods in the past decades has revolutionized our
understanding of the diversity of microorganisms, their metabolism and microbial
ecology. Still, an accurate quantification of genes, transcripts, enzymes and metabo-
lites remains a challenge. To date, most omics methods provide only qualitative or
semi-quantitative information about the microorganisms in the sample. However,
further advances in omics techniques promise to provide quantitative data that are
more suitable for the integration with biogeochemical models. For example, recent
studies have shown that spiking samples with an internal dna standard enables the
absolute quantification of microbial taxa, functional genes and transcripts via 16S
rrna sequencing (Jiang et al., 2019; Zemb et al., 2020), metagenomics (Crossette et al.,
2021) and metatranscriptomics (Delogu et al., 2020; Gifford et al., 2011). The advantage
of these new methods is that they allow quantifying many genes at the same time – in
contrast to qpcr, which is currently a standard method for the absolute quantification
of genes or transcripts but which is limited to a few selected genes.

Another recently developed method, bioorthogonal non-canonical amino acid
tagging combined with fluorescence-activated cell sorting (boncat-facs), allows to
distinguish translationally active cells from inactive cells (Couradeau et al., 2019;
Hatzenpichler et al., 2016) prior to genomic analyses such as metagenomics or 16S
rrna gene sequencing. This allows to exclude dna from dormant microorganisms and
relic dna, enhancing the usability of genomic data as an estimate of active microbial
biomass. The method has so far been tested on a range of environmental samples
including soils (Couradeau et al., 2019; Marlow et al., 2021), deep-sea sediments
(Hatzenpichler et al., 2016) and a coal seam (Schweitzer et al., 2022).

Overall, these developments will help to make functional-gene measurements a
more reliable estimate for functional biomass that can be compared with the outputs
from biogeochemical models.

6.2.2 Trait-based and genome-scale metabolic models

Most biogeochemical models describe the microbial community as a single entity that
represents some kind of average behavior of all organisms. Even if gene-centricmodels
account for dynamics of biomass with different metabolic capabilities they do not
resolve ecophysiological differences between organisms that share the same function.
Therefore, they cannot describe the evolution of a microbial community through, for
example, competition or symbiotic relationships. The bulk description of microbial
processes also has the consequence that the parameters are effective parameters and
do not necessarily correspond to measurable biological properties. As such they
must be calibrated with experimental data of the respective site. Several modeling
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approaches try to better resolve microbial processes and, thus, eliminate the need for
calibration of reaction parameters. Here, I want to briefly discuss the potential of
trait-based modeling using genomic information and genome-scale metabolic models
for microbial communities.

Trait-based models explicitly represent multiple groups of organisms with different
ecophysiological traits and, as a consequence, different reaction parameters such as
maximum growth rates or substrate affinities (see, for example, Bouskill et al., 2012).
The community composition and, hence, the average reaction parameters are an
emergent property of trait-based models. A major challenge of trait-based modeling
is to determine the reaction parameters for each guild, particularly considering that
most environmental microorganisms cannot be cultivated. However, recent modeling
approaches try to directly translate genomic information like the frequency of certain
amino acids in the genome into physiological parameters such as the optimum growth
temperature or maximum growth rates (Cheng et al., 2018; Sokol et al., 2022). The
obtained parameter values can then be used in trait-based biogeochemical models
(Cheng et al., 2018).

Genome-scale metabolic models have mostly been developed for single organisms
so far. This is not suitable to simulate nitrogen cycling which relies on a commu-
nity of organisms with different functions. However, modern bioinformatics tools
allow assembling genomes from metagenomic data, providing information about the
potential metabolisms of the organisms in an environmental sample. In addition,
the construction of genome-scale metabolic models can now be partly automated,
even though manual curation is currently still necessary, presenting one of the major
bottlenecks. Together, these developments allow to construct genome-scale metabolic
models for whole communities from metagenomic data (Frioux et al., 2020). For
example, Rubinstein et al. (2022) have used a genome-scale metabolic model derived
from metagenome data to obtain fixed reaction stoichiometries of nitrification and
denitrification that they subsequently used in a conventional reactive transport model.
However, a tighter coupling between community-scale metabolic models and reactive
transport is also thinkable: reaction rates could be directly derived from dynamic
predictions of the genome-scale metabolic model as in the early work by Scheibe et al.
(2009). Even though genome-scale metabolic models for whole communities are still
in their infancy, they promise to be a valuable tool for quantitatively studying the
interactions of nitrogen cycling organisms.

Trait-based and genome-scale metabolic models allow for a more fine-grained
representation of the microbial metabolisms and communities that is directly based on
genomic information. They might have the potential to eliminate or reduce the need
of calibrating reaction parameters. However, they are still simplified representations
of the actual processes, and it needs to be tested whether they can indeed reproduce
observations without tuning reaction parameters. Model results from the studies
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applying these new modeling concepts have not been validated against data (Cheng
et al., 2018; Rubinstein et al., 2022). Validation requires developing approaches for the
comparison of a model-predicted community composition with (semi-)quantitative
data, for instance from 16S rrna sequencing. This is not a trivial task, because the
selected group of organisms represented in the model comprises only a fraction of
the actual microbial community, and it is not evident how simulated and measured
abundances should be matched.

6.2.3 Improving uncertainty quantification of biogeochemical models

Mechanistic biogeochemical models of microbial reactions are simplistic, compared
to natural biogeochemical complexity, and “sloppy” (Marschmann et al., 2019). This
means that the effective variability of outputs is much lower than could be expected
from the number of parameters, because there are only few parameter combinations
that produce a change in the model behavior whereas other parameter combinations
are essentially unconstrained (Gutenkunst et al., 2007). As a result, it is often both
difficult to uniquely identify parameters (due to the sloppiness), and difficult to match
all patterns present in the data because the model is missing yet unidentified processes.

Quantifying the uncertainty of a model is particularly important when parameters
cannot be uniquely identified and when there is uncertainty about the model structure.
However, Bayesian uncertainty quantification relies on the assumption that the data
were actually generated by the model used. Structural model errors lead to biased
parameter estimates and an underestimation of uncertainty (O’Hagan, 2013; Sargsyan
et al., 2019). Reliably estimating uncertainty therefore requires adopting modeling
concepts that explicitly account for model errors.

A common approach is to add a bias term to model outputs that is described
with a Gaussian process (M. C. Kennedy and O’Hagan, 2001; Xu et al., 2017). While
this can improve predictions and uncertainty estimates for observed variables, it
does not correct the uncertainty estimates of unobserved variables, nor does it help
identifying the causes for model structural error (Reichert and Mieleitner, 2009).
Other approaches try to integrate the representation of structural error more tightly
with the model, for example by treating model parameters as time-variable, stochastic
processes (Reichert and Mieleitner, 2009) or by defining model parameters as random
variables and estimating their density instead of parameter values (Sargsyan et al.,
2019, 2015).

Few examples (Pan et al., 2020; Sun et al., 2021) for explicit error modeling exist
in the reactive transport modeling literature. Adopting the existing statistical ap-
proaches to biogeochemical modeling promises to improve parameter and uncertainty
estimates. One of the major questions that need to be investigated is how the “black
box” statistical error models can still be useful to enhance system understanding
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and improve process-based models. In this regard, the second approach for model
structural errors that places the model error representation inside the process-based
model seems promising for biogeochemical models because it would allow to obtain
consistent uncertainty estimates of the unobserved reaction rates, and to relate model
structural error to specific reaction parameters.

6.2.4 Field-scale models integrating molecular-biological data

So far, models that integrate functional-gene, transcript or enzyme data have often
been tested on a lab scale, for example with batch or column experiments (Chavez
Rodriguez et al., 2020; M. Li et al., 2017b; Murray et al., 2019; Pagel et al., 2016;
Song et al., 2017). The studies by Hui et al. (2021) addressing nitrogen cycling in a
river channel and Louca et al. (2016) and Reed et al. (2014) in oceanic systems are an
exception.

There is a need to extend combinedmodeling and field studies integratingmolecular-
biological data to subsurface environments such as groundwater and soils. These
environments are linked to a number of additional challenges compared to lab-scale
studies. For example, reactivity and microbial abundance can be highly heterogeneous
in space (“hot spots”, Kuzyakov and Blagodatskaya, 2015; Sawyer, 2015). Limited
access to the subsurface also makes sampling difficult. Additionally, relic dna may dis-
tort estimates of functional biomass (Carini et al., 2016), multi-dimensional transport
processes interact with reactions, initial and boundary conditions are often poorly
known, and the reactive system is much more complex than in a controlled laboratory
experiment, because substrates are less well defined.

Even though molecular-biological tools have also been applied at the field scale, the
collected data sets are often not optimal for the integration with reactive transport
models considering these challenges. They cover only few points in space and time,
often do not provide quantitative information about functional genes or transcripts,
or lack complementary chemical or hydrological data that is necessary to set-up and
calibrate a reactive transport model.

To address the challenges of understanding microbial reactions at the field scale, it
takes an iterative approach of collecting data in the field, in the lab and modeling (Lui
et al., 2021). Characterizing the microbial community and potentially active reaction
pathways with qualitative omics methods and sparse chemical data would only be a
first step. Subsequent lab-scale experiments combined with process-based models
could then be used to better understand the reactive system and identify variables
that need close monitoring in the field. Next, the hydrological functioning of the
system needs to be studied in order to parameterize flow and boundary conditions.
A preliminary model of the field system could then be used to determine optimal
measurement locations and the required temporal resolution. Finally, spatially and
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temporally resolved, quantitative measurements of functional genes and chemical
data need to be collected in order to calibrate a field-scale reactive transport model
integrating molecular-biological data.

Multi-dimensional field-scale reactive transport models are computationally much
more intensive than spatially zero- or one-dimensional models for the lab scale. More-
over, they comprise transport parameters that need to be calibrated in addition to
reaction parameters, increasing the dimensionality of the inverse problem further.
This can make rigorous parameter estimation and uncertainty quantification imprac-
tical or even impossible. Surrogate or proxy models provide a fast approximation
for the outputs of the complex (mechanistic) model, given a set of input parameters.
They can be based on (1) data-driven approaches such as polynomial chaos expansion
(pce), artificial neural networks (anns) or Gaussian processes (gps), to name a few,
(2) projections of the model onto a lower-dimensional space, or (3) lower-fidelity
approximations, for instance, by reducing the numerical resolution (Asher et al., 2015).
Relatively few studies have used surrogates for reactive transport modeling so far (e. g.,
Dietzel and Reichert, 2014; Y. Li et al., 2021; Scheurer et al., 2021; Zhou et al., 2018).
Developing surrogate modeling strategies for gene-based reactive transport models is
necessary in order to more easily simulate the full microbial nitrogen-cycling network
and assess the related uncertainties on a field scale.
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A Supporting information for chapter 2

a.1 solving the enzyme production equation

The equation describing the production and decay of enzymes (equation (2.9)) is a
linear, inhomogeneous ode. We can rearrange it as follows:

d𝐸
d𝑡

+ 𝑘𝐸dec𝐸 = 𝑘trnsl𝑇 = 𝑞(𝑡) , (a.1)

with the initial condition
𝐸(0) = 𝐸0 . (a.2)

Linear odes can be solved applying the Laplace transformation as outlined in Dyke
(2001). We make use of the property that the Laplace transform ℒ of the derivative
of a function 𝑓 is

ℒ{
d𝑓
d𝑡
} = 𝑠 ̃𝑓 (𝑠) − 𝑓 (0) , (a.3)

where ̃𝑓 is the Laplace transform of 𝑓, and 𝑠 is the complex frequency parameter of
the Laplace transform.

We start by applying the Laplace transform to equation (a.1):

ℒ{d𝐸
d𝑡
} + ℒ {𝑘𝐸dec𝐸} = ℒ {𝑞(𝑡)} , (a.4)

which can be rewritten to

𝑠�̃�(𝑠) − 𝐸(0) + 𝑘𝐸dec�̃�(𝑠) = �̃�(𝑠) (a.5)

using equation (a.3). Equation (a.5) is an algebraic equation that can be solved for �̃�,
yielding

�̃� =
�̃�(𝑠) + 𝐸0
𝑠 + 𝑘𝐸dec

. (a.6)

Next, we apply the back-transform and obtain

𝐸 = ℒ−1 {
�̃�(𝑠) + 𝐸0
𝑠 + 𝑘𝐸dec

} (a.7)

= ℒ−1 {
�̃�(𝑠)

𝑠 + 𝑘𝐸dec
} + ℒ−1 {

𝐸0
𝑠 + 𝑘𝐸dec

} , (a.8)
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where the second equality holds due to linearity of ℒ−1.
The convolution of two functions 𝑓 (𝑡) and 𝑔(𝑡) in time domain corresponds to a

multiplication in Laplace domain:

𝑓 (𝑡) ∗ 𝑔(𝑡) = ℒ−1 { ̃𝑓 �̃�} , (a.9)

where

𝑓 ∗ 𝑔 = ∫
𝑡

0
𝑓 (𝜏 )𝑔(𝑡 − 𝜏) d𝜏 (a.10)

Furthermore, it is known that

ℒ−1 { 1
𝑠 + 𝑘

} = exp(−𝑘𝑡) . (a.11)

Applying equations (a.9) and (a.11), we can write equation (a.8) as follows:

𝐸(𝑡) = 𝑞(𝑡) ∗ exp(−𝑘𝐸dec𝑡) + 𝐸0 exp(−𝑘𝐸dec𝑡) . (a.12)

Inserting the definition of the convolution integral (equation (a.10)), this becomes

𝐸(𝑡) = ∫
𝑡

0
𝑞(𝜏) exp (−𝑘𝐸dec(𝑡 − 𝜏)) d𝜏 + 𝐸0 exp(−𝑘𝐸dec𝑡) . (a.13)

Substituting the definition of 𝑞(𝑡) yields

𝐸(𝑡) = 𝑘trnsl∫
𝑡

0
𝑇 (𝜏) exp (−𝑘𝐸dec(𝑡 − 𝜏)) d𝜏 + 𝐸0 exp(−𝑘𝐸dec𝑡) , (a.14)

which is the same as equation (2.10).
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b.1 initial values

Table b.1 lists the initial values of all solute and gas concentrations. Transcription
factor concentrations are initialized based on their quasi-steady state concentrations
and, thus, depend on the values of the regulation parameters.

table b.1 : Initial concentration values used for the simulation.

Substance Value Units Reference

Nitrate 2 × 10−3 m known from experimen-
tal set-up

Nitrite 0 m known from experimen-
tal set-up

N2 in the gas phase 5.2 × 10−5 m measurement data
N2 in water 8.7 × 10−7 m equilibrium with the gas

phase
O2 in the gas phase 2.9 × 10−3 m known from experimen-

tal set-up
O2 in water 9.3 × 10−5 m equilibrium with the gas

phase
Cells variable cells L⁻¹ estimation parameter

(see table b.2)
active fraction of
FnrP/NarR/NNR

variable dimensionless quasi-steady state con-
centration

nar/nir enzymes 0 m assumption

b.2 prior and posterior parameter distributions

Figure b.1 shows the prior and posterior distributions of all parameters related to
the odes used in the Monod-type and enzyme based model. Table b.2 lists the
values of fixed parameters and the prior distributions of the fitted parameters. All
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parameters related to transcript and enzyme concentrations were estimated with
the exception of the maximum enzyme concentration 𝛽𝐸. Figures b.2 and b.3 show
pairwise correlation coefficients of all parameters in the Monod-type and enzyme-
based models, respectively.

figure b.1 : Kernel density estimates of the marginal posterior and prior distributions for
all model parameters. Densities are cut off at the 94% highest density intervals, circular
markers indicate the mean.
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table b.2 : Simulation parameters, their prior distributions or fixed values, and their posterior medians and percentiles.

Symbol Description Units Priorᵃ/Value Note Posterior Percentiles Modelᵇ
10% Median 90%

𝑡𝐸1/2 enzyme half life h 𝑁(3, 0.8) f, g 1.3 × 101 2.8 × 101 6.4 × 101 E

𝛽nar
𝑇 maximum narG concentra-

tion
transcripts cell⁻¹ 𝑇 (−2, 0.7, 10) f, h 6.3 × 10−2 8.5 × 10−2 1.2 × 10−1 E

𝛽nir
𝑇 maximum nirS concentra-

tion
transcripts cell⁻¹ 𝑇 (−2, 0.7, 10) f, h 2.3 × 10−2 3.5 × 10−2 6.7 × 10−2 E

𝐼 FnrPtrs O2 inhibition constant of
FnrP

m 𝑇 (−11, 2, 10) c 2.3 × 10−6 8.6 × 10−6 2.2 × 10−5 E

𝐼NNR
trs O2 inhibition constant of

NNR
m 𝑇 (−11, 2, 10) c 4.4 × 10−6 8.9 × 10−6 1.8 × 10−5 E

𝑝 Hill coefficient for FnrP – 𝑁(0, 0.5) 5.7 × 10−1 8.2 × 10−1 1.2 E

𝑞 Hill coefficient for NNR – 𝑁(0, 0.5) 1.0 1.8 2.9 E

𝑎no₃⁻NarR NarR activation constant
for NO –

3

s⁻¹ m⁻¹ 𝑁(0, 2) c 1.6 × 10−1 1.4 1.5 × 101 E

𝑎no₂⁻NarR NarR activation constant
for NO –

2

s⁻¹ m⁻¹ 𝑁(0, 2) c 5.6 × 10−4 1.6 × 10−3 3.4 × 10−3 E

𝑎NNR NNR activation constant
for NO –

2

s⁻¹ m⁻¹ 𝑁(0, 2) c 1.4 × 10−2 7.7 × 10−2 3.8 × 10−1 E

𝑘NarR
dec dissociation constant of

NarR
s⁻¹ 𝑁(−9, 0.5) 4.4 × 10−5 5.0 × 10−5 5.8 × 10−5 E

𝑘NNR
dec dissociation constant of

NNR
s⁻¹ 𝑁(−9, 0.5) k 6.7 × 10−5 8.6 × 10−5 1.1 × 10−4 E

Continued on the next page.

ᵃ Prior distributions are defined for the log of all parameters except for 𝜎𝑖. 𝑁(𝜇, 𝜎) is a normal distribution, 𝐻(𝜇, 𝜎) is a half-normal distribution and
𝑇 (𝜇, 𝜎 , 𝜈) a Student’s 𝑡-distribution with location 𝜇, scale 𝜎 and degrees of freedom 𝜈. ᵇ E means enzyme-based model and M means Monod-type
model ᶜ Parameters for transcriptional regulation are not well known. We chose very broad distributions spanning several orders of magnitude.
ᵈ Reparametrization of 𝜈 𝑖max, see appendix b.4 for details. ᵉ Based on experimental data. ᶠMaier et al. (2011) ᵍ Roberts et al. (2011)
ʰ Qu et al. (2015) ⁱ Suenaga et al. (2018) ʲ Hassan et al. (2016) ᵏ Lee et al. (2006)

111



a
ppen

d
ix

b:
Supporting

inform
ation

for
chapter

3

table b.2 : (continued) Simulation parameters, their prior distributions or fixed values, and their posterior medians and
percentiles.

Symbol Description Units Priorᵃ/Value Note Posterior Percentiles Modelᵇ
10% Median 90%

𝐾FnrP half-saturation constant
for binding of FnrP

– 𝑁(−0.8, 0.5) 2.5 × 10−1 4.8 × 10−1 8.7 × 10−1 E

𝐾NarR half-saturation constant
for binding of NarR

– 𝑁(−0.8, 0.5) 3.3 × 10−1 5.5 × 10−1 9.0 × 10−1 E

𝐾NNR half-saturation constant
for binding of NNR

– 𝑁(−0.8, 0.5) 3.4 × 10−1 6.6 × 10−1 1.3 E

𝐼 narreac O2 inhibition parameter
for reaction of NO –

3

m 𝑁(−15, 3) 3.0 × 10−9 5.9 × 10−8 6.1 × 10−7 M
1.6 × 10−7 1.0 × 10−6 4.3 × 10−6 E

𝐼 nirreac O2 inhibition parameter
for reaction of NO –

2

m 𝑁(−15, 3) 4.6 × 10−9 1.1 × 10−8 2.6 × 10−8 M
6.1 × 10−8 3.4 × 10−7 4.4 × 10−6 E

𝐾o₂ O2 half-saturation
constant

m 𝑇 (−13, 2, 10) i 2.9 × 10−5 3.2 × 10−5 3.5 × 10−5 M
2.9 × 10−5 3.1 × 10−5 3.4 × 10−5 E

𝐾no₃⁻ NO –
3 half-saturation con-

stant
m 5 × 10−6 j fixed value E, M

𝐾no₂⁻ NO –
2 half-saturation con-

stant
m 5 × 10−6 j fixed value E, M

𝑌o₂ O2 growth yield per
amount e–-donor

cellsmol⁻¹ 𝑇 (32.2, 0.5, 10) j 4.8 × 1014 4.9 × 1014 5.0 × 1014 M
4.8 × 1014 4.9 × 1014 5.0 × 1014 E

Continued on the next page.

ᵃ Prior distributions are defined for the log of all parameters except for 𝜎𝑖. 𝑁(𝜇, 𝜎) is a normal distribution, 𝐻(𝜇, 𝜎) is a half-normal distribution and
𝑇 (𝜇, 𝜎 , 𝜈) a Student’s 𝑡-distribution with location 𝜇, scale 𝜎 and degrees of freedom 𝜈. ᵇ E means enzyme-based model and M means Monod-type
model ᶜ Parameters for transcriptional regulation are not well known. We chose very broad distributions spanning several orders of magnitude.
ᵈ Reparametrization of 𝜈 𝑖max, see appendix b.4 for details. ᵉ Based on experimental data. ᶠMaier et al. (2011) ᵍ Roberts et al. (2011)
ʰ Qu et al. (2015) ⁱ Suenaga et al. (2018) ʲ Hassan et al. (2016) ᵏ Lee et al. (2006)
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table b.2 : (continued) Simulation parameters, their prior distributions or fixed values, and their posterior medians and
percentiles.

Symbol Description Units Priorᵃ/Value Note Posterior Percentiles Modelᵇ
10% Median 90%

𝜈o₂fix O2 reaction rate at fixed
O2 concentration

mol cell⁻¹ s⁻¹ 𝑇 (−44.2, 1.6, 10) d 4.1 × 10−19 4.2 × 10−19 4.3 × 10−19 M
4.1 × 10−19 4.2 × 10−19 4.3 × 10−19 E

𝜈no₂⁻fix NO –
2 reaction rate at fixed

O2 concentration
mol cell⁻¹ s⁻¹ 𝑇 (−44.2, 1.7, 10) d 2.3 × 10−22 4.8 × 10−22 1.1 × 10−21 M

𝜈no₃⁻fix NO –
3 reaction rate at fixed

O2 concentration
mol cell⁻¹ s⁻¹ 𝑇 (−49.4, 3.3, 10) d 1.7 × 10−20 7.1 × 10−20 5.0 × 10−19 M

𝑘no₃⁻max nar turnover number s⁻¹ 𝑇 (7, 2, 10) 7.5 × 104 2.5 × 105 1.4 × 106 E

𝑘no₂⁻max nir turnover number s⁻¹ 𝑇 (7, 2, 10) 1.3 × 102 2.0 × 102 3.8 × 102 E

𝛽𝐸 maximum enzyme concen-
tration

enzymes cell⁻¹ 1125 f fixed value E

𝐵0 initial cell concentration cells L⁻¹ 𝑇 (21, 0.5, 10) e 3.0 × 109 3.3 × 109 3.5 × 109 M
3.0 × 109 3.3 × 109 3.5 × 109 E

𝑏o₂ background value of O2 m 𝑁(−18, 3) 8.1 × 10−8 9.5 × 10−8 1.1 × 10−7 M
8.2 × 10−8 9.5 × 10−8 1.1 × 10−7 E

𝑏no₂⁻ background value of NO –
2 m 𝑁(−18, 3) 3.6 × 10−10 1.0 × 10−8 1.3 × 10−7 M

3.0 × 10−10 1.2 × 10−8 1.2 × 10−7 E

𝜎𝐵 constant error of Box-Cox
transformed cell densities

Half-Normal(0.1) 2.2 × 10−1 2.6 × 10−1 3.1 × 10−1 M
2.2 × 10−1 2.6 × 10−1 3.2 × 10−1 E

Continued on the next page.

ᵃ Prior distributions are defined for the log of all parameters except for 𝜎𝑖. 𝑁(𝜇, 𝜎) is a normal distribution, 𝐻(𝜇, 𝜎) is a half-normal distribution and
𝑇 (𝜇, 𝜎 , 𝜈) a Student’s 𝑡-distribution with location 𝜇, scale 𝜎 and degrees of freedom 𝜈. ᵇ E means enzyme-based model and M means Monod-type
model ᶜ Parameters for transcriptional regulation are not well known. We chose very broad distributions spanning several orders of magnitude.
ᵈ Reparametrization of 𝜈 𝑖max, see appendix b.4 for details. ᵉ Based on experimental data. ᶠMaier et al. (2011) ᵍ Roberts et al. (2011)
ʰ Qu et al. (2015) ⁱ Suenaga et al. (2018) ʲ Hassan et al. (2016) ᵏ Lee et al. (2006)
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table b.2 : (continued) Simulation parameters, their prior distributions or fixed values, and their posterior medians and
percentiles.

Symbol Description Units Priorᵃ/Value Note Posterior Percentiles Modelᵇ
10% Median 90%

𝜎o₂ constant error of Box-Cox
transformed O2 gas data

𝐻(0, 0.1) 2.5 × 10−2 2.9 × 10−2 3.3 × 10−2 M
2.6 × 10−2 2.9 × 10−2 3.4 × 10−2 E

𝜎no₂⁻ constant error of Box-Cox
transformed NO –

2 data
𝐻(0.025, 0.1) 2.5 × 10−2 2.5 × 10−2 2.6 × 10−2 M

2.5 × 10−2 2.5 × 10−2 2.6 × 10−2 E

𝜎N2
constant error of Box-Cox
transformed N2 gas data

𝐻(0.1, 0.1) 1.0 × 10−1 1.0 × 10−1 1.0 × 10−1 M
1.0 × 10−1 1.0 × 10−1 1.0 × 10−1 E

𝜎nar
constant error of Box-Cox trans-
formed nar mrna data

𝐻(0, 0.1) 8.7 × 10−3 4.0 × 10−2 9.9 × 10−2 E

𝜎nir
constant error of Box-Cox trans-
formed nir mrna data

𝐻(0, 0.1) 3.1 × 10−2 4.2 × 10−2 5.7 × 10−2 E

𝜆𝐵
Box-Cox transformation param-
eter of the cell densities

5 × 10−2 fixed value E, M

𝜆no₂⁻
Box-Cox transformation param-
eter of the NO –

2 data 4 × 10−1 fixed value E, M

𝜆N2

Box-Cox transformation param-
eter of the N2 data

1.8 × 10−1 fixed value E, M

𝜆o₂
Box-Cox transformation param-
eter of the O2 data

1.8 × 10−1 fixed value E, M

Continued on the next page.

ᵃ Prior distributions are defined for the log of all parameters except for 𝜎𝑖. 𝑁(𝜇, 𝜎) is a normal distribution, 𝐻(𝜇, 𝜎) is a half-normal distribution and
𝑇 (𝜇, 𝜎 , 𝜈) a Student’s 𝑡-distribution with location 𝜇, scale 𝜎 and degrees of freedom 𝜈. ᵇ E means enzyme-based model and M means Monod-type
model ᶜ Parameters for transcriptional regulation are not well known. We chose very broad distributions spanning several orders of magnitude.
ᵈ Reparametrization of 𝜈 𝑖max, see appendix b.4 for details. ᵉ Based on experimental data. ᶠMaier et al. (2011) ᵍ Roberts et al. (2011)
ʰ Qu et al. (2015) ⁱ Suenaga et al. (2018) ʲ Hassan et al. (2016) ᵏ Lee et al. (2006)
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table b.2 : (continued) Simulation parameters, their prior distributions or fixed values, and their posterior medians and
percentiles.

Symbol Description Units Priorᵃ/Value Note Posterior Percentiles Modelᵇ
10% Median 90%

𝜆nar
Box-Cox transformation param-
eter of the nar mrna data

10−1 fixed value E

𝜆nir
Box-Cox transformation param-
eter of the nir mrna data

4 × 10−1 fixed value E

ᵃ Prior distributions are defined for the log of all parameters except for 𝜎𝑖. 𝑁(𝜇, 𝜎) is a normal distribution, 𝐻(𝜇, 𝜎) is a half-normal distribution and
𝑇 (𝜇, 𝜎 , 𝜈) a Student’s 𝑡-distribution with location 𝜇, scale 𝜎 and degrees of freedom 𝜈. ᵇ E means enzyme-based model and M means Monod-type
model ᶜ Parameters for transcriptional regulation are not well known. We chose very broad distributions spanning several orders of magnitude.
ᵈ Reparametrization of 𝜈 𝑖max, see appendix b.4 for details. ᵉ Based on experimental data. ᶠMaier et al. (2011) ᵍ Roberts et al. (2011)
ʰ Qu et al. (2015) ⁱ Suenaga et al. (2018) ʲ Hassan et al. (2016) ᵏ Lee et al. (2006)
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figure b.2 : Hierarchically-clustered heatmap showing the correlation coefficients of the
estimated parameters in the posterior distribution of the Monod-type model.
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figure b.3 : Hierarchically-clustered heatmap showing the correlation coefficients of the
estimated parameters in the posterior distribution of the enzyme-based model.
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b.3 transcription factor concentrations
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f igure b.4 : Simulated fraction of active transcription factors over time. Several draws from
the posterior are indicated by color.

b.4 reparametrization of monod parameters

The Monod parameters of aerobic respiration, 𝐾o₂ and 𝜈o₂max, showed a strong corre-
lation in the posterior. Heavy parameter correlations can hinder effective sampling
from the posterior. We therefore decided to apply a reparametrization that describes
the same rate law in terms of different parameters. 𝜈o₂max can be interpreted as the cell-
specific reaction rate at the limit of the oxygen concentration going to infinity. Instead
of using the rate at the limit, we use the rate at a fixed finite oxygen concentration,
𝑐fixo₂ :

𝜈o₂fix = 𝜈o₂max
𝑐fixo₂

𝑐fixo₂ + 𝐾o₂
. (b.1)

We can solve equation (b.1) for the maximum cell specific rate 𝜈o₂max, expressing it in
terms of 𝐾o₂, 𝑐fixo₂ and 𝜈o₂fix. We chose 𝑐fixo₂ manually such that the correlation between
𝜈o₂fix and 𝐾o₂ is low.

We apply a similar reparametrization for the maximum cell-specific denitrification
rates and oxygen inhibition constants in the Monod-type model. The maximum
cell-specific rate 𝜈 𝑖max of nitrogen substrate 𝑖 is the rate at the limit of the substrate
concentration reaching infinity and an oxygen concentration of zero. Instead, we
use the cell-specific rate at a fixed, non-zero oxygen concentration 𝑐fix,𝑖o₂ and without
substrate limitation (i. e. 𝑐𝑖 → ∞) as parameter:

𝜈 𝑖fix = 𝜈 𝑖max
𝐼 𝑖reac

𝐼 𝑖reac + 𝑐fix,𝑖o₂
. (b.2)
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b.5 mass transfer to the gas phase and gas sampling

N2 and O2 are gases that partition into the headspace. The flasks used in the experi-
ment had a headspace. Therefore, the model needs to account for the partitioning
of molecular nitrogen and oxygen between the water and gas phases. Henry’s law
describes the relation between aqueous and gas phase concentrations of compound 𝑖
(𝑐𝑖w and 𝑐𝑖g) at equilibrium:

𝑐𝑖g = 𝐻𝑖𝑐𝑖w , (b.3)

with the Henry’s-law coefficient 𝐻𝑖[mol L−1gas mol⁻¹ Lliq]. Kinetic mass transfer of com-
pound 𝑖 between the two phases is described by a linear driving force model with rate
coefficient 𝑘𝑖tr [s−1]. The transfer rate 𝑟 𝑖tr [mol L−1liq s⁻¹], expressed as the mass-transfer
related concentration change in the liquid phase, is then given by

𝑟 𝑖tr = 𝑘𝑖tr (
𝑐𝑖g
𝐻𝑖

− 𝑐𝑖w) . (b.4)

In the experiment, the head space was sampled in regular intervals. Helium was
subsequently injected to compensate the pressure decrease resulting from the removal
of gas. This led to a dilution of the gas-phase concentrations, which we describe by a
first order rate law:

𝑟 𝑖sample = 𝑓dil𝑘sample(𝑡) 𝑐𝑖g , (b.5)

in which 𝑓dil is the fraction of gas exchanged at each sampling event. The function
𝑘sample(𝑡)[s−1] is a scaled rate constant. It would most appropriately be described by
several pulses, each integrating to one. To avoid discontinuities we replaced it by a
linear function with approximately the same integral (figure b.5).

Following Qu et al. (2015) we also account for small leakage rates 𝑟 𝑖leak of N2 and O2
into the system, with a constant diffusion rate 𝑟diff [mol L−1gas s⁻¹] and a time-dependent
rate that accounts for higher leakage during sampling:

𝑟 𝑖leak = 𝑟 𝑖diff + 𝑘sample(𝑡)𝑐𝑖leak , (b.6)

in which 𝑐𝑖leak [mol L−1gas] is the concentration increase of compound 𝑖 during a single
sampling event. The rate of change of gas-phase concentrations is then given by

d𝑐𝑖g
d𝑡

= 𝑟 𝑖leak − 𝑟 𝑖sample −
𝑉w
𝑉g

𝑟 𝑖tr , (b.7)

with 𝑉g and 𝑉w being the volume of the headspace and the liquid phase, respectively.
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figure b.5 : Determination of the time-dependent gas sampling rate coefficient 𝑘sample.
a Quadratic fit to the number of sampling events in the experiment. b The derivative of the
function gives the time-dependent coefficient for sampling related rates 𝑘sample.

table b.3 : Parameters related to mass transfer and gas sampling with their values and
units.

Symbol Description Value Units Note

𝑘tr mass transfer coefficient 0.08 s⁻¹ a

𝐻o₂ Henry’s coefficient of O2 at 20 °C 31.2 mm⁻¹ b

𝐻N2
Henry’s coefficient of N2 at 20 °C 59.5 mm⁻¹ b

𝑉g volume of the gas phase 0.07 L c

𝑉w volume of the liquid phase 0.05 L c

𝑓dil volume fraction replaced per sampling 0.013 – a

𝑟o₂diff diffusion rate of O2 into the system 2.7 × 10−12 m s⁻¹ a

𝑟N2
diff diffusion rate of N2 into the system 3.5 × 10−12 m s⁻¹ a

𝑐o₂leak O2 concentration increase per sampling 4.2 × 10−8 m a

𝑐N2
leak N2 concentration increase per sampling 3.5 × 10−7 m a

ᵃ Linda Bergaust (personal communication, 2018-11-05) ᵇ Sander (2015) ᶜ Qu et al. (2015)
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b.6 simplified model of transcriptional regulation

b.6.1 Model equations

In addition to the model that represents the transcription factors FnrP, NarR and
NNR explicitly we set up a simplified model variant where transcriptional regulation
directly depends on nitrogen oxide and oxygen concentrations. As we will show, how-
ever, this formulation can also be interpreted mechanistically in terms of regulation
by transcription factors if some simplifying assumptions are made. The necessary
assumptions partly differ from those made in the model that explicitly simulates
transcription factor concentrations and are discussed in appendix b.6.3.

We assume that the transcription rate scales with the fraction of operator sites
where an activating, but no repressing transcription factor is bound. Transcription
factors can only bind to the operator when they are activated by a signaling molecule:
N-substrates in the case of activators and oxygen for inhibitors. In our formulation
of transcription kinetics, we assume that concentrations of activated transcription
factors are proportional to the concentrations of the respective signaling compounds.
The transcription rate for gene 𝑖 is

𝑟 𝑖trnscr = 𝛼𝑓 𝑖act𝑓 𝑖inh𝐵 , (b.8)

in which 𝛼 [transcripts cell⁻¹ s⁻¹] is the maximum transcription rate, and 𝐵 is the cell
density [cells L⁻¹].

The dimensionless factors 𝑓act and 𝑓inh (ranging between 0 and 1) regulate the
transcription rate as influenced by external factors. The subscript “act” denotes an
activator compound. For the case of nirG transcription, NO acts as the single activator
compound (Bergaust et al., 2012; Spiro, 2012). Analogously to our description of NNR
activation, however, we used nitrite as a proxy activator compound because we
describe denitrification as a two-step reaction and do not explicitly simulate NO.

Thus, the regulation factor for nir transcription is

𝑓 niract =
𝑐no₂⁻

𝐴no₂⁻
nir + 𝑐no₂⁻

, (b.9)

in which 𝑐no₂⁻ is the concentration of nitrite [m] and𝐴no₂⁻
nir is the half-velocity constant

of transcription, that is, the concentration of the activator compound nitrite at which
the transcription reaches half of its maximum rate (in absence of repressors). In
contrast, transcription of narG in P. denitrificans can be activated by either nitrate or
nitrite (Wood et al., 2001):

𝑓 naract =

𝑐no₃⁻
𝐴no₃⁻
nar

+ 𝑐no₂⁻
𝐴no₂⁻
nar

1 + 𝑐no₃⁻
𝐴no₃⁻
nar

+ 𝑐no₂⁻
𝐴no₂⁻
nar

, (b.10)
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in which 𝑐no₃⁻ is the concentration of nitrate [m] whereas 𝐴no₃⁻
nar and 𝐴no₂⁻

nar are the
half-velocity constants of the activator compounds nitrate and nitrite, respectively.

Transcription of the nirS and narG genes is inhibited by the presence of oxygen,
described by the oxygen transcriptional inhibition factor, 𝑓 𝑖inh:

𝑓 𝑖inh =
𝐼 𝑖trs

𝑐o₂ + 𝐼 𝑖trs
, (b.11)

in which 𝑐o₂ is the concentration of oxygen [m] and 𝐼 𝑖trs is the transcript inhibition
constant of oxygen for gene i. In contrast to the model that represents transcription
factors explicitly, we described transcript concentrations by the transient equation
instead of a quasi-steady state.

b.6.2 Simulation results

Figure b.6 shows the simulation results obtainedwith the simplifiedmodel formulation.
Table b.4 lists the prior distributions and statistics of posterior distributions for all
estimated parameters used in the simplified model simulation. Fixed parameters have
the same values as in table b.2 and are therefore omitted.
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figure b.6 : Measurement data, 50 draws from the posterior of the enzyme-based model
with a simplified description of transcriptional regulation as presented in appendix b.6.1:
a Nitrogen compounds, b oxygen and cell densities, c transcripts, d enzymes and maximum
rates.
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table b.4 : Simulation parameters of the enzyme-based model with a simplified formulation for transcription, their prior
distributions, and their posterior medians and percentiles. Fixed parameters have the same values as in table b.2 and are
omitted.

Symbol Description Units Priorᵃ/Value Note Posterior Percentiles
10% Median 90%

𝑡𝑇1/2 transcript half life min 𝑁(1.8, 0.4) c, d 1.3 × 102 1.6 × 102 1.9 × 102

𝐴no₃⁻
nar NO –

3 concentration inducing tran-
scription of nar

m 𝑁(−12, 2) b 4.3 × 10−7 5.9 × 10−6 7.1 × 10−5

𝐴no₂⁻
nar NO –

2 concentration inducing tran-
scription of nar

m 𝑁(−8, 2) b 4.8 × 10−3 8.5 × 10−3 1.6 × 10−2

𝐴no₂⁻
nir NO –

2 concentration inducing tran-
scription of nir

m 𝑁(−11, 3) b 2.6 × 10−3 7.8 × 10−3 2.0 × 10−2

𝐼 nartrs O2 inhibition parameter for nar-
transcription

m 𝑇 (−11, 2, 10) b 1.4 × 10−5 4.2 × 10−5 8.6 × 10−5

𝐼 nirtrs O2 inhibition parameter for nir-
transcription

m 𝑇 (−11, 2, 10) b 1.9 × 10−5 4.8 × 10−5 3.5 × 10−4

𝑡𝐸1/2 enzyme half life h 𝑁(3, 0.8) g, h 1.1 × 101 2.2 × 101 4.9 × 101

𝛽nar
𝑇 maximum narG concentration transcripts cell⁻¹ 𝑇 (−2, 0.7, 10) g, i 4.8 × 10−2 6.7 × 10−2 1.1 × 10−1

𝛽nir
𝑇 maximum nirS concentration transcripts cell⁻¹ 𝑇 (−2, 0.7, 10) g, i 4.4 × 10−2 1.0 × 10−1 2.2 × 10−1

𝐼 narreac O2 inhibition parameter for nar m 𝑁(−15, 3) 1.3 × 10−7 8.7 × 10−7 3.6 × 10−6

𝐼 nirreac O2 inhibition parameter for nir m 𝑁(−15, 3) 1.8 × 10−7 1.5 × 10−6 3.4 × 10−5

𝐾o₂ O2 half-saturation constant m 𝑇 (−13, 2, 10) j 2.9 × 10−5 3.2 × 10−5 3.5 × 10−5

Continued on the next page.

ᵃ Prior distributions are defined for the log of all parameters but 𝜎𝑖 . 𝑁(𝜇, 𝜎) is a normal distribution, 𝐻(𝜇, 𝜎) is a half-normal distribution and
𝑇 (𝜇, 𝜎 , 𝜈) a Student’s 𝑡-distribution with location 𝜇, scale 𝜎 and degrees of freedom 𝜈. ᵇ Parameters for transcriptional regulation are not well
known. We chose very broad distributions spanning several orders of magnitude. ᶜ Bernstein et al. (2002)
ᵈ Härtig and Zumft (1999) ᵉ Reparametrization of 𝜈 𝑖max, see appendix b.4 for details. ᶠ Based on experimental data. ᵍMaier et al. (2011)
ʰ Roberts et al. (2011) ⁱ Qu et al. (2015) ʲ Suenaga et al. (2018) ᵏ Hassan et al. (2016)
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table b.4 : (continued) Simulation parameters of the enzyme-based model with a simplified formulation for transcription,
their prior distributions, and their posterior medians and percentiles. Fixed parameters have te same values as in table b.2
and are omitted.

Symbol Description Units Priorᵃ/Value Note Posterior Percentiles
10% Median 90%

𝑌o₂ O2 growth yield per amount e–-donor cellsmol⁻¹ 𝑇 (32.2, 0.5, 10) k 4.8 × 1014 4.9 × 1014 5.0 × 1014

𝜈o₂fix O2 reaction rate at fixed O2 concen-
tration

mol cell⁻¹ s⁻¹ 𝑇 (−44.2, 1.6, 10) e 4.1 × 10−19 4.2 × 10−19 4.3 × 10−19

𝑘no₃⁻max nar turnover number s⁻¹ 𝑇 (7, 2, 10) 7.8 × 103 3.8 × 104 2.7 × 105

𝑘no₂⁻max nir turnover number s⁻¹ 𝑇 (7, 2, 10) 2.9 × 102 7.2 × 102 1.9 × 103

𝐵0 initial cell concentration cells L⁻¹ 𝑇 (21, 0.5, 10) f 3.0 × 109 3.3 × 109 3.5 × 109

𝑏o₂ background value of O2 m 𝑁(−18, 3) 8.1 × 10−8 9.5 × 10−8 1.1 × 10−7

𝑏no₂⁻ background value of NO –
2 m 𝑁(−18, 3) 3.4 × 10−10 1.1 × 10−8 1.3 × 10−7

𝜎𝐵 constant error of Box-Cox trans-
formed cell density data

Half-Normal(0.1) 2.1 × 10−1 2.6 × 10−1 3.1 × 10−1

𝜎o₂ constant error of Box-Cox trans-
formed O2 gas data

𝐻(0, 0.1) 2.5 × 10−2 2.9 × 10−2 3.3 × 10−2

𝜎no₂⁻ constant error of Box-Cox trans-
formed NO –

2 data
𝐻(0.025, 0.1) 2.5 × 10−2 2.5 × 10−2 2.6 × 10−2

𝜎N2
constant error of Box-Cox trans-
formed N2 gas data

𝐻(0.1, 0.1) 1.0 × 10−1 1.0 × 10−1 1.0 × 10−1

𝜎nar constant error of Box-Cox trans-
formed nar mrna data

𝐻(0, 0.1) 1.1 × 10−1 1.6 × 10−1 2.2 × 10−1

Continued on the next page.

ᵃ Prior distributions are defined for the log of all parameters but 𝜎𝑖 . 𝑁(𝜇, 𝜎) is a normal distribution, 𝐻(𝜇, 𝜎) is a half-normal distribution and
𝑇 (𝜇, 𝜎 , 𝜈) a Student’s 𝑡-distribution with location 𝜇, scale 𝜎 and degrees of freedom 𝜈. ᵇ Parameters for transcriptional regulation are not well
known. We chose very broad distributions spanning several orders of magnitude. ᶜ Bernstein et al. (2002)
ᵈ Härtig and Zumft (1999) ᵉ Reparametrization of 𝜈 𝑖max, see appendix b.4 for details. ᶠ Based on experimental data. ᵍMaier et al. (2011)
ʰ Roberts et al. (2011) ⁱ Qu et al. (2015) ʲ Suenaga et al. (2018) ᵏ Hassan et al. (2016)
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table b.4 : (continued) Simulation parameters of the enzyme-based model with a simplified formulation for transcription,
their prior distributions, and their posterior medians and percentiles. Fixed parameters have te same values as in table b.2
and are omitted.

Symbol Description Units Priorᵃ/Value Note Posterior Percentiles
10% Median 90%

𝜎nir constant error of Box-Cox trans-
formed nir mrna data

𝐻(0, 0.1) 2.9 × 10−2 4.1 × 10−2 5.7 × 10−2

ᵃ Prior distributions are defined for the log of all parameters but 𝜎𝑖 . 𝑁(𝜇, 𝜎) is a normal distribution, 𝐻(𝜇, 𝜎) is a half-normal distribution and
𝑇 (𝜇, 𝜎 , 𝜈) a Student’s 𝑡-distribution with location 𝜇, scale 𝜎 and degrees of freedom 𝜈. ᵇ Parameters for transcriptional regulation are not well
known. We chose very broad distributions spanning several orders of magnitude. ᶜ Bernstein et al. (2002)
ᵈ Härtig and Zumft (1999) ᵉ Reparametrization of 𝜈 𝑖max, see appendix b.4 for details. ᶠ Based on experimental data. ᵍMaier et al. (2011)
ʰ Roberts et al. (2011) ⁱ Qu et al. (2015) ʲ Suenaga et al. (2018) ᵏ Hassan et al. (2016)
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b.6.3 Deriving the transcriptional regulation from mechanistic principles

The formulation of transcriptional regulation presented in appendix b.6.1, even though
simplified compared to the actual underlying mechanisms, can be interpreted in terms
of mechanistic principles. The derivations follow the analysis of Ingalls (2013, chapter
7.1.2).

One activator and one repressor We consider a gene that is regulated by two transcrip-
tion factors, an activator A and a repressor R. They can bind at two distinct operator
sites of the regulated gene’s promoter region. Transcription will only occur if the
activator is bound but the repressor is not bound to the operator O. We can describe
the binding of the transcription factors at the operator by the following reactions:

O + A
𝑎1
𝑑1

OA , {1}

O + R
𝑎2
𝑑2

OR , {2}

OR + A
𝑎1
𝑑1

OAR , {3}

OA + R
𝑎2
𝑑2

OAR , {4}

in which 𝑎1 and 𝑎2 [m⁻¹ s⁻¹] are reaction constants for the forward reaction and 𝑑1,
𝑑2 [s⁻¹] are the backwards reaction constants. Note that the binding of the two
transcriptions factors is assumed to be independent. That is, the binding kinetics of
R to O and to OA are the same. Likewise A binds to O and OR with the same rate
constants.

The transcription rate can be considered to be proportional to the fraction of
operator sites where only the activator is bound, 𝑓OA:

𝑟trnscr = 𝛼 ⋅ 𝑓OA , (b.12)

𝑓OA =
𝑐OA

𝑐O + 𝑐OA + 𝑐OR + 𝑐OAR
. (b.13)

Assuming that the binding reactions are at steady state and setting

𝐾𝐴 =
𝑑1
𝑎1
, 𝐾𝑅 =

𝑑2
𝑎2

, (b.14)

we can write:
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𝑓OA =
𝑐A

𝐾𝐴 + 𝑐A + 𝑐R𝐾𝐴
𝐾𝑅

+ 𝑐A𝑐R
𝐾𝑅

=
𝑐A

𝑐A + 𝐾𝐴

𝐾𝑅
𝐾𝑅 + 𝑐R

. (b.15)

The transcription factor concentrations react to changes in environmental condi-
tions. In a simplified model, this interaction could be described as the reaction of
an inactive form of the transcription factor with an activating molecule. In the case
of the denitrification genes, we assume that a nitrogen substrate N reacts with the
activator and oxygen with the repressor:

N + A* 𝐾1
A {5}

O2 + R* 𝐾2
R · {6}

Here, the inactive form of the transcription factors are indicated by an asterisk. We
now assume: (i) The activation and deactivation reactions follow first order kinetics
with respect to N or O2 and A or R, respectively. (ii) Activation and deactivation
of transcription factors are fast compared to gene transcription, i. e. A and R are in
quasi-steady state. The concentrations of active transcription factors, 𝑐A and 𝑐R [m],
then are proportional to the nitrogen substrate and oxygen concentrations:

𝑐A = 𝑚A ⋅ 𝑐N , (b.16)

𝑐R = 𝑚R ⋅ 𝑐o₂ , (b.17)

with the proportionality factors 𝑚A and 𝑚R [molmol⁻¹]. Substituting these expres-
sions into equation (b.15) we obtain

𝑓OA =
𝑐N

𝑐N + 𝐾𝐴
𝑚A

⋅

𝐾𝑅
𝑚R

𝐾𝑅
𝑚R

+ 𝑐o₂
=

𝑐N
𝑐N + 𝐴N

⋅
𝐼o₂trs

𝐼o₂trs + 𝑐o₂
, (b.18)

with the transcription half-saturation constant 𝐴N for substrate N and the oxygen
inhibition constant for transcription 𝐼o₂trs. Combining equations (b.12) and (b.18) leads
to our formulation of the nir transcription rate given in equation (b.9).

Two activators and one repressor The transcription of some genes might be activated
by several different compounds. We can describe this with two different mechanisms
which eventually lead to the same rate law for the transcription rate: (i) There is a
single activating transcription factor A binding to the operator site. The concentration
of the activator is determined by the concentrations of both activating compounds.
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(ii) There are two different activating transcription factors A1 and A2 that can both
bind to the same operating site, i. e. either A1 or A2 can be bound. The concentration
of each transcription factor is determined by the concentration of one of the activating
compounds. In the latter case the transcription rate is proportional to the fraction of
operator sites in the states OA1 and OA2. This fraction is given by

𝑓OA1,OA2
=

𝑐OA1
+ 𝑐OA2

𝑐O + 𝑐OA1
+ 𝑐OA2

+ 𝑐OA1R + 𝑐OA2R + 𝑐OR
. (b.19)

Assuming equilibrium conditions like in equation (b.14) with 𝐾a₁, 𝐾a₂ and 𝐾R being
the equilibrium constants for the binding of a₁, a₂, and R we obtain

𝑓OA1,OA2
=

𝐾R

𝐾R + 𝑐R
⋅

𝑐a₁
𝐾a₁

+ 𝑐a₂
𝐾a₂

1 + 𝑐a₁
𝐾a₁

+ 𝑐a₂
𝐾a₂

. (b.20)

Assuming that the transcription factor concentrations follow

𝑐a₁ = 𝑚a₁ ⋅ 𝑐N1
, (b.21)

𝑐a₂ = 𝑚a₂ ⋅ 𝑐N2
, (b.22)

𝑐R = 𝑚R ⋅ 𝑐o₂ , (b.23)

where N1 and N2 denote the two inducing nitrogen substrates, and setting

𝐴N1
=

𝐾a₁

𝑚a₁
, 𝐴N2

=
𝐾a₂

𝑚a₂
, 𝐼o₂trs =

𝐾R

𝑚R
, (b.24)

we can write:

𝑓OA1,OA2
=

𝐼o₂trs
𝐼o₂trs + 𝑐o₂

⋅

𝑐N1

𝐴N1

+ 𝑐N2

𝐴N2

1 + 𝑐N1

𝐴N1

+ 𝑐N2

𝐴N2

. (b.25)

This is the formulation that we used for the transcription of nar, which is triggered
by nitrate or nitrite given in equation (b.10).

Discussion of the underlying assumptions We argue that a linear relation between
signalling compounds and transcription factor concentrations is a reasonable sim-
plifying assumption. It enables the description of the regulation mechanism with a
single parameter per transcription factor. However, when interpreting results based
on this assumption one should keep its implications in mind:
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1 First-order kinetics for the activation reaction of the transcription factor as
given in equations (b.21) to (b.23) require that the concentration of inactive
transcription factors is not limiting for the binding reaction, that is, 𝑐N and 𝑐o₂
must be small compared to the equilibrium constant of the activation reaction
𝐾. Otherwise, assuming a constant total amount of transcription factors (active
and inactive) 𝑐totA , the relationship would be of the form

𝑐A = 𝑐totA
𝑐N

𝑐N + 𝐾
(b.26)

instead of a linear relationship.

2 Assuming a quasi-steady state of the active transcription factors is only valid
if the activation or deactivation are much faster than substrate dynamics and
transcription itself. Crack et al. (2016) showed that the deactivation of the
oxygen-sensitive transcription factor FnrP by exposure to oxygen takes sev-
eral minutes in P. denitrificans (mean lifetime of 3.5min), which is similar to
literature mrna half-lives. Our simulation results reproduce the continued
presence of transcripts after all substrate is used up. However, it does not re-
solve the dynamics of transcription factors and transcripts separately due to the
quasi-steady state assumption. As a consequence, the mrna half-life acts as a
lumped parameter that accounts for both effects (non-immediate inactivation of
transcription factors and decay of transcripts) and is much longer than expected
from the literature.
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c.1 additional figures
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figure c.1 : Spatial distributions of transcript and enzyme concentrations normalized by
biomass. The steady-state solution in scenario bsc is indicated by a dashed line. For the
periodic solution in scenarios bfp and bs, the minimum and maximum value over time are
indicated by the shaded area, the mean value is plotted as a solid line. Concentrations
between 2.5m and the groundwater-side domain boundary at 4m are omitted because they
are almost constant.
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figure c.2 : Relationships between transcript concentrations and enzyme concentrations.
In scenarios gd and bsc, concentrations are at steady state. In scenarios bfp and bs, transcript
concentrations, but not enzyme concentrations, are averaged over time.

f igure c.3 : Relationships between transcript (left column) respectively enzyme (right
column) concentrations and denitrification rates for the bank storage (bs) scenario. Colors
indicate the time point within the diurnal cycle. Every location shows a distinct pattern (with
one “loop” corresponding to one location), and many of them are non-linear and hysteretic
in time.
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figure c.4 : Relationships between the concentrations of enzymes nar (upper row) and nir
(lower row) with the denitrification rates in the different scenarios. In the scenarios where
concentrations do not reach a steady state but stable diurnal cycles, daily averages of rates
and concentrations are shown. The color indicates the spatial coordinate with dark blue
corresponding to the groundwater inflow boundary and light green corresponding to the
river boundary.
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d.1 calculation of the reaction stoichiometry

The stoichiometry of the overall metabolic reaction depends on the stoichiometry
of the anabolic and the catabolic reaction, and on the growth yield. Let 𝛼𝑗𝑖 ∈ ℝ
be the stoichiometric coefficients of the catabolic reaction 𝑗 (with 𝑖 running from
1 to the number of reactants 𝑁) and 𝛽𝑗𝑖 ∈ ℝ the coefficients for the corresponding
anabolic reaction. Stoichiometric coefficients of educts are negative and coefficients
for products are positive. The coefficients 𝛾𝑗𝑖 for the overall metabolic reaction are
then given by

𝛾𝑗𝑖 = 𝜆𝑗𝛼𝑗𝑖 + 𝛽𝑗𝑖 , (d.1)

where the factor 𝜆𝑗 ∈ ℝ+ describes the number of times the catabolic reaction needs
to run to complete the stoichiometric reaction of the anabolic reaction once. The
factor 𝜆𝑗 depends on the molar growth yield 𝑌 ∗𝑗 [molbiₒ mol−1ed] that is defined as

𝑌 ∗𝑗 =
|𝛾𝑗,bio|
|𝛾𝑗,ed|

=
𝛽𝑗,bio

𝜆𝑗(−𝛼𝑗,ed) + (−𝛽𝑗,ed)
, (d.2)

where 𝛽𝑗,bio is the stoichiometric coefficient of biomass in the anabolic reaction,
and 𝛼𝑗,ed, 𝛽𝑗,ed, and 𝛾𝑗,ed are the stoichiometric coefficients of the electron donor
in the catabolic, anabolic and overall metabolic reactions, respectively. The sec-
ond equality holds because we know that (1) 𝛼𝑗,bio = 0, and (2) in the overall
metabolic reaction electron donor must be consumed, that is, 𝛾𝑗,ed < 0, implying that
|𝜆𝑗𝛼𝑗,ed + 𝛽𝑗,ed| = 𝜆𝑗(−𝛼𝑗,ed) + (−𝛽𝑗,ed). It follows that

𝜆𝑗 =

𝛽𝑗,bio
𝑌 ∗𝑗

− (−𝛽𝑗,ed)

(−𝛼𝑗,ed)
. (d.3)

The molar growth yield 𝑌 ∗𝑗 relates to the more commonly used cellular growth
yield 𝑌𝑗 by the molar weight of the biomass 𝑀bio and the average cell weight 𝑤bio by

𝑌 ∗𝑗 = 𝑌𝑗
𝑀bio

𝑤bio
. (d.4)
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When both the catabolic and the anabolic reaction consume the electron donor
(𝛼𝑗,ed, 𝛽𝑗,ed < 0) as is the case for denitrification and dnra, there is a theoretical
maximum for the molar growth yield. The theoretical maximum is reached for 𝜆𝑗 = 0,
that is, if the anabolic reaction could take place without requiring energy from the
catabolic reaction. The maximum value is therefore given by

𝑌max
𝑗 =

𝛽𝑗,bio
𝛽𝑗,ed

. (d.5)

In order to prevent nonphysical values for 𝑌 ∗𝑗 we defined the prior distribution in
terms of a relative growth yield 𝑌 rel

𝑗 ∈ [0, 1] and obtained the absolute growth yields
by

𝑌 ∗𝑗 = 𝑌 rel
𝑗 𝑌max

𝑗 . (d.6)

d.2 description of the custom smc kernel

Sequential Monte Carlo (smc) combines the ideas of importance sampling and tem-
pering. That is, the algorithm starts sampling from the prior distribution and then
moves towards the posterior distribution in several stages. The tempered posterior
can be written as

𝑝( 𝜽 ∣ 𝒚 )𝛽 ∝ 𝑝( 𝒚 ∣ 𝜽 )𝛽 𝑝(𝜽) . (d.7)

When temperature parameter 𝛽 is zero the tempered posterior distribution corre-
sponds to the prior distribution, whereas a 𝛽 of one corresponds to the true posterior
distribution. Initially, 𝛽 equals zero. It is then incrementally increased until it becomes
unity.

In each stage an ensemble of independent mcmc chains is run for several steps. At
the end of each stage, samples from the several chains are reweighted by importance
weights to determine the starting points for the next stage.

By default, PyMC’s smc sampler uses an independent Metropolis Hastings kernel
with a normal distribution as a kernel. In order to successfully sample the reactive Thanks to

Adrian Seyboldt
for help with
the modified
mcmc kernel.

transport model, the kernel was modified in two ways.

1 Instead of a normal distribution, we used a multivariate Gaussian mixture model
with up to two components for the proposal distribution. The parameters of
the Gaussian mixture model were fitted to the samples resulting from the
reweighting step with the GaussianMixture class from the Scikit-learn library
(Pedregosa et al., 2011). Using a Gaussian mixture model instead of a normal
distribution allows for longer tails in the proposal distribution by superimposing
normal distributions with different standard deviations.
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2 We adapted the tempering schedule such that stages are repeated with the same
𝛽 if too many mcmc chains failed to move from their starting position (that
happens when all proposed points in a given chain are rejected).

d.3 reference parameter values

table d.1 : Nitrate half-saturation constants for denitrification. To convert betweenmass con-
centrations and molar concentrations, the molecular weight of nitrate𝑀NO –

3
= 62.004 gmol−1

was used.

Reference Note Value Units Value [m]

Gu et al. (2007) 2 mgL⁻¹ 3.2 × 10−5
Hassan et al. (2016) 5 × 10−6 mol L⁻¹ 5 × 10−6
Yan et al. (2016) oxidized sediment 0.0018 mm 1.8 × 10−6
Yan et al. (2016) reduced sediment 0.1 mm 0.0001
Knights et al. (2017) 1.6 mgL⁻¹ 2.7 × 10−5

table d.2 : Nitrite half-saturation constants for denitrification and dnra.

Reference Note Value Units Value [m]

Hassan et al. (2016) Paracoccus denitrificans 4.1 × 10−6 mol L⁻¹ 4.1 × 10−6
Yan et al. (2016) oxidized and reduced sed-

iment
0.0041 mm 4.1 × 10−6

Zumft (1997) Pseudomonas aeruginosa 53 µm 5.3 × 10−5
Zumft (1997) Paracoccus denitrificans 6 µm 6 × 10−6
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table d.3 : Doc half-saturation constants. To convert between mass concentrations and
molar concentrations, the molecular weight of carbon 𝑀c = 12 gmol−1 was used.

Reference Note Value Units Value [m]

Loschko et al. (2018) 20 µmol L⁻¹ 2 × 10−5
M. Li et al. (2017b) 0.000 25 mol L⁻¹ 0.000 25
Song et al. (2017) 0.25 mm 0.000 25
Kinzelbach et al. (1991) 6 mgL⁻¹ 0.0005
Sanz-Prat et al. (2016) 10 µm 10−5
Knights et al. (2017) 8.7 mgL⁻¹ 0.000 72
Gu et al. (2007) 1 mgL⁻¹ 8.3 × 10−5
Yan et al. (2016) 0.1 mm 0.0001
Yan et al. (2016) 0.001 mm 10−6

table d.4 : Microbial decay constants.

Reference Note Value Units Value [d⁻¹]

Ding (2010) reactive-tranpsort model
for Desulfovibrio vulgaris

10−9 s⁻¹ 8.6 × 10−5

Bælum et al. (2013) Dehalococcoides spp. 0.1 d⁻¹ 0.1
Song et al. (2017) 0.11 d⁻¹ 0.11
M. Li et al. (2017b) 0.01 h⁻¹ 0.24
Loschko et al. (2018) modelling study 0.05 d⁻¹ 0.05
Reed et al. (2014) reactive-transport model in

a marine system
0.001 d⁻¹ 0.001

Kinzelbach et al. (1991) reactive-transport model
for a sandy aquifer

0.15 d⁻¹ 0.15

Pagel et al. (2016) carbon cycling model for
soil

0.11 d⁻¹ 0.11

Yan et al. (2016) denitrification model for
low permeable sediments

0.04 d⁻¹ 0.04

Mellage et al. (2018) 0.0022 h⁻¹ 0.053
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table d.5 : NH +
4 equilibrium sorption constants.

Reference Note Value Units Value [L g⁻¹]

Triska et al. (1994) lower limit, river channel and
riparian sediments

10 gw g−1
s 0.01

Triska et al. (1994) upper limit, river channel and
riparian sediments

2.8 × 103 gw g−1
s 2.8

Böhlke et al. (2006) extraction experiments,
aquifer sediments

0.46 gw g−1
s 0.000 46

Ceazan et al. (1989) extraction, Cape Cod, near-
bed site

0.87 mLg−1
s 0.000 87

Ceazan et al. (1989) extraction, Cape Cod, down-
gradient site

0.59 mLg−1
s 0.000 59

Ceazan et al. (1989) linear isotherm, Cape Cod 0.34 mLg−1
s 0.000 34

table d.6 : Doc release rate constants.

Reference Note Value Units Value [d⁻¹]

Sawyer (2015) groundwater simulation
study

48 d⁻¹ 48

Gu et al. (2007) streambed sediments 0.41 d⁻¹ 0.41
Vavilin et al. (2008) hydrolysis in forest soil 0.2 d⁻¹ 0.2
Catalán et al. (2016) mean value in freshwaters 0.28 y⁻¹ 0.000 77
Catalán et al. (2016) largest value in freshwaters 54 y⁻¹ 0.15
Catalán et al. (2016) smallest value in freshwaters 0.01 y⁻¹ 2.7 × 10−5
Sanz-Prat et al. (2016) modelling study 2 d⁻¹ 2
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table d.7 : Maximum cell-specific substrate consumption rates 𝜈max.

Reference Reaction Note 𝜈max [fmol cell⁻¹ d⁻¹]

Hassan et al. (2016) NO –
3 NO –

2 for P. denitrificans with
butyrate as electron
donor

120

Mellage et al. (2018)ᵃ NO –
3 NO –

2 for S. oneidensis 21
Zarnetske et al. (2012) NO –

3 N2 modeling study in the
hyporheic zone

76

Hassan et al. (2016) NO –
2 NO for P. denitrificans with

butyrate as electron
donor

64

Mellage et al. (2018) NO –
2 NH +

4 for S. oneidensis 6
Hassan et al. (2016) N2O N2 for P. denitrificans with

butyrate as electron
donor

66

ᵃ Values were converted from maximum growth rate constants 𝜇max and growth yields.

d.4 additional figures
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figure d.1 : Simulated content of bioavailable poc in the sediment, plotted over dimension-
less time. Individual lines represent 40 random samples from the posterior distribution.
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figure d.2 : Simulated (lines) and measured (markers) aqueous concentrations at the ports
as a function of dimensionless time. Individual lines represent 40 draws from the posterior
distribution of the model that uses functional gene data.
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f igure d.3 : Simulated (lines) andmeasured (markers) aqueous concentrations at the column
effluent and at two ports close to the inflow (b1) and in the middle of the column (b3) as
a function of dimensionless time. Individual lines represent 50 draws from the posterior
distribution of the model that does not use functional gene data.
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figure d.4 : Kernel density estimates of the marginal posterior and prior distributions for
all parameters. Plots are cut at the 94% highest density interval.
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figure d.5 : Eigenvectors of the posterior covariance matrix corresponding to the smallest 7 eigenvalues.
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figure d.6 : Eigenvectors of the posterior covariance matrix corresponding to the 7th to 14th eigenvalues.
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figure d.7 : Eigenvectors of the posterior covariance matrix corresponding to the largest 7 eigenvalues.
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figure d.8 : Comparison of a model variant with fixed growth yield parameters 𝑌 rel
𝑗 to

the model where growth yields are estimated from the data. The plot shows the simulated
and measured profiles of relative abundances of functional genes. In each case, 40 samples
from the posterior distribution are drawn. For the simulation with fixed growth yields, the
following parameters were used: 𝑌 rel

narG = 𝑌 rel
nirS = 𝑌 rel

nosZ = 𝑌 rel
nrfA = 0.08.
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figure d.9 : Comparison of the model variants with and without a production term for
bioavailable poc. The plot shows simulated nitrate concentrations from four model runs.
We initially conducted the comparison of the model variants with a model where several
reaction parameters (all growth yields and 𝐾narG

no₃⁻ ) were set to fixed values (green and yellow
lines). Model variants without a poc production term overestimate the increase of the nitrate
concentration in the last three days of the experiment. In contrast, model variants with a
poc production term capture the leveling-off well. The difference between the model variants
with and without poc production was larger when a subset of the reaction parameters was
fixed, indicating that other model parameters could partially compensate for the missing
poc production term. Note that the sampler did not fully converge with the model variants
without the poc production term.
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