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Abstract
The research on 2D lines in images has increased strongly in the last decade; on the
one hand, due to more computing power available, on the other hand, due to an in-
creased interest in odometry methods and autonomous systems. Line features have some
advantages over the more thoroughly researched point features. Lines are detected on
gradients, they do not need texture to be found. Thus, as long as there are gradients
between homogeneous regions, they can cope with difficult situations in which mostly
homogeneous areas are present. By being detected on gradients, they are also well suited
to represent structure. Furthermore, lines have a very high accuracy orthogonal to their
direction, as they consist of numerous points which all lie on the gradient contributing to
this locational accuracy.

First, we introduce a visual odometry approach which achieves real-time performance
and runs solely using lines features, it does not require point features. We developed a
heuristic filter algorithm which takes neighbouring line features into account and thereby
improves tracking of lines and matching of lines in images taken from arbitrary camera
locations. This increases the number of tracked lines and is especially beneficial in diffi-
cult scenes where it is hard to match lines by tracking them. Additionally, we employed
the Cayley representation for 3D lines to avoid overparameterization in the optimization.
To show the advancement of the method, it is benchmarked on commonly used datasets
and compared to other state of the art approaches.

Second, we developed a machine learning based line feature descriptor for line match-
ing. This descriptor can be used to match lines from arbitrary camera locations. The
training data was created synthetically using the Unreal Engine 4. We trained a model
based on the ResNet architecture using a triplet loss. We evaluated the descriptor on real
world scenes and show its improvement over the famous Line Band Descriptor.

Third, we build upon our previous descriptor to create an improved version. Therefor,
we added an image pyramid, gabor wavelets and increased the descriptor size. The
evaluation of the new descriptor additionally contains competing new approaches which
are also machine learning based. It shows that our improved approach outperforms them.

Finally, we provide an extended evaluation of our descriptor which shows the influ-
ences of different settings and processing steps. And we present an analysis of settings
for practical usage scenarios. The influence of a maximum descriptor distance threshold,
of a Left-Right consistency check and of a descriptor distance ratio threshold between
the first and second best match were investigated. It turns out that, for the ratio of true to
false matches, it is almost always better to use a descriptor distance ratio threshold than
a maximum descriptor distance threshold.
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Kurzfassung
Die Erforschung von 2D-Linien in Bildern hat im letzten Jahrzehnt stark zugenom-
men; zum einen aufgrund der gestiegenen verfügbaren Rechenleistung und zum ande-
ren durch ein gesteigertes Interesse an Odometriemethoden und autonomen Systemen.
Linienmerkmale haben einige Vorteile gegenüber den besser erforschten Punktmerkma-
len. Linien werden an Gradienten erkannt - sie brauchen keine Textur, um detektiert zu
werden. Dadurch eignen sie sich auch gut in Situationen mit überwiegend homogenen
Bereichen, solange es Gradienten zwischen den homogenen Regionen gibt. Darüber hin-
aus sind sie gut geeignet, um Strukturen darzustellen und sie bieten orthogonal zu ihrer
Richtung eine hohe Genauigkeit, da sie aus zahlreichen Punkten bestehen, die alle auf
dem Gradienten liegen und zu dieser Ortungsgenauigkeit beitragen.

Zunächst stellen wir einen visuellen Odometrie-Ansatz vor, der Echtzeit-Performance
erreicht und allein mit Linienmerkmalen auskommt. Wir haben einen heuristischen Fil-
teralgorithmus entwickelt, der benachbarte Linienmerkmale berücksichtigt und dadurch
die Verfolgung von Linien und das Matching von Linien aus beliebigen Positionen ver-
bessert. Zusätzlich verwendeten wir die Cayley-Repräsentation für 3D-Linien, um ei-
ne Überparametrisierung bei der Optimierung zu vermeiden. Die Methode wurde auf
bekannten Datensätzen getestet und mit anderen State-of-the-Art Ansätzen verglichen;
dabei zeigt sich ihr Fortschritt.

Zweitens entwickelten wir einen auf maschinellem Lernen basierenden Linienmerk-
malsdeskriptor für das Linien-Matching. Dieser Deskriptor kann verwendet werden, um
detektierte Linien aus unterschiedlichen Kamerapositionen einander zuzuordnen. Die
Trainingsdaten werden synthetisch mit der Unreal Engine 4 erzeugt. Wir haben ein Mo-
dell basierend auf der ResNet-Architektur unter Verwendung eines Triplett-Loss trainiert
und den Deskriptor an realen Szenen evaluiert. Dabei zeigt sich seine Verbesserung ge-
genüber dem bekannten Line-Band-Deskriptor.

Drittens bauten wir auf unserem vorherigen Deskriptor auf, um eine verbesserte Ver-
sion zu erstellen. Dazu haben wir eine Bildpyramide und Gabor-Wavelets implemen-
tiert und die Deskriptorgröße erhöht. Die Auswertung des neuen Deskriptors enthält
zusätzlich neue Ansätze, die ebenfalls auf maschinellem Lernen basieren. Es zeigt sich,
dass unser verbesserter Ansatz diese übertrifft.

Schließlich folgt eine Darstellung der erweiterten Evaluierung unseres Deskriptors, die
die Einflüsse verschiedener Einstellungen und Verarbeitungsschritte zeigt. Abschließend
untersuchen wir den Einfluss von Distanzschwellen und einer Konsistenzbedingung auf
das Verhältnis von wahren zu falschen Korrespondenzen.
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Chapter 1

Introduction

1.1 Lines

The perception of the world and ones surroundings is important to living beings as well
as, with the rising use of assistive technologies, to information processing systems. We
humans perceive vast amounts of our environment using our eyes. Cameras are compar-
atively cheap sensors which can perceive the surroundings in a similar way. But, unlike
more expensive sensors, such as laser scanners, cameras do not directly yield structural
information like distance measurements. Therefore, more processing is required to ac-
quire such knowledge of the environment. Techniques that use landmarks are widely
utilized. A common type for a landmark is a 2D point feature. Points are detected in
the images by specific algorithms on salient locations like corners. Another interesting
feature type is a 2D line. In contrast to points, lines have a direction and an elongation
in 2D, as well as in 3D space. Furthermore, a line is straight, which yields additional
structural information. This can be an advantage, especially when reconstructing man
made environments like houses, where the roof ridge and many edges are straight. But
lines are also advantageous in other cases, for example, in scenarios where there is barely
texture available, but only structure. Point features are hard to detect in those scenarios,
but lines can be found as they lie on gradients. Lines can be utilized in all kinds of tasks
in which point features are common: in robotic applications like visual odometry or si-
multaneous localization and mapping, in augmented reality scenarios, for reconstruction
tasks, to perform measuring and so forth.

The focus of this work is on lines, more specifically, on 2D lines which are detected in
camera images. They have not been researched as thoroughly as point features and with
the ever-increasing calculation power, their detection and processing have become more
and more real-time feasible.
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Chapter 1 Introduction

1.1.1 Application scenarios

(a) (b)

(c) (d)

Figure 1.1: The images display examples of problems which can benefit from using line
features. Top left (a) shows a large junction with many lines on the streets which can be
used by self driving cars to improve localization, ©Photo by Deva Darshan on Unsplash.
The top right illustration (b) depicts an example of a 3D reconstruction, by ©Roland
Meinecke © Free Art License 1.3[Myl22]. One can see that buildings often have straight
lines. This can be utilized in 3D reconstruction pipelines to improve the quality of the 3D
models. In the bottom left image (c) we see an augmented reality example showing how
a certain armchair would look at a specific location in the room. (The app used on the
smartphone is the IKEA Place app, a promotional video is found here: [IKE21].). The
image at the bottom right (d) displays the use of a smartphone app to measure distances
in a room. The shown app is called CamToPlan - Maßband messen / Lineal / Zollstock
[Tas21].

Figure 1.1 depicts tasks where lines can be the basis of, or contribute to a reliable so-
lution. Image 1.1(a) depicts a difficult scene for autonomous driving. Utilizing lines
can provide multiple benefits for the underlying simultaneous localization and mapping
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1.2 Main Contributions

module. Tracking the lines on the road lanes and on many other structures like pillars
and street lights supports the accuracy. Many lines can still be detected in a night drive,
as a gradient is sufficient for a line to be detected. Figure 1.1(b) depicts 3D models of
buildings. Straight lines are very common on buildings. A 3D reconstruction pipeline
can use lines to improve the quality of reconstructions. The detection of a line on a gra-
dient, which is formed not only by one or two, but by numerous points lying on an edge,
leads to a high accuracy of its location orthogonal to its direction. Pierre-Alain Langlois
et al. [LBM19] utilize this property of lines to create a 3D model with accurate straight
edges out of a few camera pictures. Image 1.1(c) shows the augmented reality application
IKEA Place [IKE21] which augments a piece of furniture at a certain location into ones
room, to see if it would suit. To be able to move around and see the augmented object in
3D, visual odometry has to be performed. The scene visible on the smartphone shows a
parquet floor which is somewhat textured, and two walls which are mostly homogeneous
areas besides the pictures on them. The pictures and floor will be able to provide some
point features, but if the smartphone is rotated upwards in such a way that most of the
floor and the pictures are outside the field of view, the tracking is likely to fail if it solely
relies on point features since homogeneous areas usually lack point features. Whereas
lines could still be found on the edge between the walls and on the edge towards the floor
or ceiling, which would stabilize the visual odometry task. Figure 1.1(d) displays the use
of a smartphone measuring application. Distances are mostly measured along straight
lines and often on edges. Lines can accurately lock in on edges and while one moves
around, the app simultaneously performs odometry. These are just a few examples of
application scenarios which benefit from utilizing lines.

In the following, we will state our contributions to the research on lines.

1.2 Main Contributions
In this thesis we add to the research on lines by multiple contributions. First, we establish
a line feature only real-time visual odometry system. After that, we tackle the problem
of matching line features from arbitrary camera positions through developing a machine
learning featured line descriptor. Then, we refine this descriptor to improve its reliability
and robustness. And, finally, we provide an extensive evaluation of its performance. In
more detail, the contributions are as follows:

• We present a line-only visual odometry approach. It achieves real-time perfor-
mance and runs stable in textureless environments. Our approach can compete
well with existing point- and line-based methods and outperforms existing line-
only methods. We developed a tracking method for line-segments that works well
without descriptors. Additionally, we propose a heuristic filter that improves the
tracking and arbitrary matching results with lines. Furthermore, an optimization
using the Cayley representation for 3D lines is used to reduce the line parame-
ters from usually six to four. We demonstrate our performance on the EuRoC
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Chapter 1 Introduction

benchmark and on a synthetic scene, which we built to test the algorithms under
particularly difficult conditions. [LRS19].

• Additionally, we present an appearance based line descriptor which was developed
with the help of machine learning. Our descriptor uses a ResNet which we mod-
ified in its size to improve the performance. We utilized the Unreal Engine 4 and
multiple scenes provided for it to create training data. The training was performed
using a triplet loss, where the loss of the network is calculated with triplets, each
consisting of three lines including a matching pair and another non-matching line.
During learning, the goal of the minimization function is to calculate descriptors
with minimal descriptor distance to matching lines’ descriptors and maximal de-
scriptor distance to other lines’ descriptors. We evaluated the performance of our
descriptor on our synthetic datasets, on real-world stereo images from the Middle-
bury Stereo Dataset and on a benchmark for line segment matching. The results
show that in comparison to state-of-the-art line descriptors our method achieves a
greatly improved line matching accuracy. [LSS19].

• Furthermore, we present a wavelet enhanced version of our feature descriptor for
line feature matching. This time, we trained a neural network to compute a de-
scriptor for a line, providing the network with preprocessed information from the
image area around the line. In the preprocessing step we utilize wavelets to extract
meaningful information from the image for the descriptor. This process is inspired
by the human vision system. We, again, used the Unreal Engine 4 and multiple
different freely available scenes to create our training data. We conducted the eval-
uation on ground truth labelled images of our own and from the Middlebury Stereo
Dataset. To show the advancement of our method in terms of matching quality, we
compare it to the Line Band Descriptor (LBD), to our original Deep Learning
Based Line Descriptor (DLD), and to the Learnable Line Segment Descriptor for
Visual SLAM (LLD). [LRS20].

• We analyse the influence of processing steps and settings on our descriptors match-
ing performance. Then, we provide an evaluation of certain settings for practical
usage scenarios. We examine the benefit of using a Left-Right consistency check,
a maximum descriptor distance threshold and a descriptor distance ratio threshold
between the first and second best match. The results show that in most cases it is
better to filter matches using a descriptor distance ratio threshold than by setting a
maximum descriptor distance threshold.

The following publications were written during the work on this thesis. The bold faced
ones are covered in this thesis. Major parts of them were transferred to this thesis without
further modification.
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1.3 Structure of this thesis

©2017 IEEE. Radouane Ait Jellal, Manuel Lange, Benjamin Wassermann,
Andreas Schilling and Andreas Zell: LS-ELAS: Line Segment based
Efficient Large Scale Stereo Matching, IEEE International Conference on
Robotics and Automation (ICRA), 2017.[JLW∗17]

©2019 IEEE. Reprinted, with permission, from Manuel Lange, Claudio
Raisch and Andreas Schilling, LVO: Line only stereo Visual Odometry,
2019 International Conference on Indoor Positioning and Indoor Naviga-
tion (IPIN), 10/2019. [LRS19]

©2019 IEEE. Reprinted, with permission, from Manuel Lange, Fabian
Schweinfurth and Andreas Schilling, DLD: A Deep Learning Based
Line Descriptor for Line Feature Matching, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 11/2019. [LSS19]

WLD: A Wavelet and Learning based Line Descriptor for Line
Feature Matching, Vision, Modeling, and Visualization 2020,
10.2312/vmv.20201186
©2020 Manuel Lange, Claudio Raisch and Andreas Schilling
Eurographics Proceedings ©2020 The Eurographics Association. [LRS20]

1.3 Structure of this thesis
The structure of this thesis is as follows: next, we will explain some fundamentals in
chapter 2 which provides background knowledge about lines, their representation and
error functions that are used to evaluate the similarity between two lines. Then, in chapter
3, we present our line based visual odometry approach in detail and compare it to other
methods. Chapter 4 introduces our machine learning based line descriptor for line feature
matching. And in chapter 5 we improve this descriptor by building a new version which
features gabor wavelets and other enhancements leading to a significant advancement in
terms of matching accuracy. We provide an extended evaluation of our descriptors in
chapter 6 which compares the different models we trained and evaluates the practical
usage performance for varying configurations. Finally, chapter 7 draws a conclusion of
this work.

5
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Chapter 2

Fundamentals

2.1 2D line representations
2D lines, like 2D points, are usually considered as primitives in geometry [Fab83]. 2D
points are located at one specific location in 2D space. They are commonly represented
by two coordinates x,y ∈R. For 2D lines and 2D line-segments, on the other hand, there
is not only one commonly used representation. For this reason, we will give an overview
of the established representations for lines and line-segments in this chapter. We want to
note that whenever mentioning lines we refer to straight lines.

2.1.1 Infinite 2D line representations

Slope-intercept form

The slope-intercept form represents a line by a slope m and the intersect location with
the y-axis b, given the independent variable x:

y = mx+b. (2.1)

A drawback of this form is that it cannot represent vertical lines.

Standard form

The standard form (sometimes also called general form) is a linear equation capable of
representing any line:

ax+by = c (2.2)

with a, b and c being constants for which it holds that a and b must not both be zero.
If a line is expressed in any other representation, it can also be transformed into this
representation. There are many other representations for infinite 2D lines and we will
not present all of them. But the normal form is used in chapter 3 and therefore it is
important to be mentioned here.

7



Chapter 2 Fundamentals

Normal form

The normal form, or Hesse normal form (after Ludwig Otto Hesse), represents a line by
a slope θ of its normal, originating from the coordinate origin, and by the length d where
the line crosses the normal:

y sinθ + x cosθ −d = 0. (2.3)

Written in vector notation, the equation is as follows:

−→r ·−→n 0−d = 0. (2.4)

It is satisfied for all −→r where −→r points to a point that lies on the line. −→n 0 is the unit
normal vector pointing to the line, and d is the distance of the line to the origin.

Parametric form representation

The Parametric form has the advantage that it can represent a line in any dimension. At
the same time it has the disadvantage that the number of parameters is not necessarily
optimal. Also this representation, unlike the previously described ones, does not formu-
late a condition which has to be fulfilled by the coordinates in order to lie on the line, but
the line’s points are represented in dependence on a parameter:

−→x =−→p + t−→v . (2.5)

Here −→p is the position vector and −→v the direction vector. Every value of the parameter
t ∈R corresponds to a point−→x on the line. Representing a 2D line this way requires four
parameters and thereby two more than minimal representations use.

2.1.2 2D line-segment representations

The previous representations all represented infinite 2D lines using two parameters only.
For equations capable of representing any line-segment in R2, four parameters are nec-
essary.

Two Point representation

An obvious representation for 2D line-segments is the two point representation. Here,
a line-segment is defined by two distinct points A,B ∈ R. This representation helps to
picture the line-segment before the inner eye. But calculating an intersection with another
line is not straightforward. For this purpose, a representation based on the normal form
is more suitable.

8



2.2 3D line representations

Normal form based line-segment representation

A line-segment can also be represented based on the normal form of a line. For this we
also use a distance d and the unit normal vector−→n 0, as in equation 2.4. In order to define
the endpoints, the unit normal vector is used. s,e ∈ R define the distance of the start and
end point, from the point where the normal crosses the infinite line, by multiples of the
length of the unit normal vector. The start point A ∈ R2, for example, can be calculated
as follows:

Ax = d ·nx + s ·ny

Ay = d ·ny− s ·nx (2.6)

With nx,ny ∈ R representing the x- and y-component of −→n 0.

2.2 3D line representations

2.2.1 Two point representation

Two apparent 3D line representations are the same as for 2D lines, but with additional
parameters for the third dimension. The two point representation for a 3D line and a
3D line-segment is analogous to the one for 2D lines (see paragraph 2.1.2). It uses six
parameters and, therefore, is a minimal form of representation for a 3D line-segment.

2.2.2 Parametric form

The parametric form is also similar to its corresponding 2D version (see equation 2.5),
but of course the vectors consist of three components each. Unlike the two point repre-
sentation it is not able to represent a 3D line-segment with the minimal number of six
parameters. Two additional parameters are required to define the endpoints’ location on
the 3D line, similarly to the way it is done in 2D (see equation 2.6).

2.2.3 Plücker line representation

A Plücker line is defined by a moment m and a displacement d. The moment is a vector
which is orthogonal to the plane containing the line and the origin. The moment can be
computed by calculating the crossproduct of two distinct points on the 3D line: m = x×y
where x,y ∈ R3. This calculation also results in the magnitude of m being equal to twice
the area that is contained in the triangle formed by x,y and the origin of the coordinate
system. The displacement is the vector from x to y. This is visualized in figure 2.1.

9
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Figure 2.1: Visualization of the Plücker line representation, source: [KSm20]. © KSmrq
© Creative Commons Attribution-Share Alike 2.5 Generic

The Plücker coordinates have more properties, but that would go beyond our scope
here; detailed information can be found in [HZ03]. We use the Plücker coordinates as an
intermediate step towards the Cayley line representation.

2.2.4 Cayley representation

The advantage of representing a 3D line using the Cayley representation is its require-
ment of only four parameters. The previously described representations required six
parameters to define an infinite 3D line. If we picture a 3D line segment before the inner
eye, imagine removing the endpoints and figure not having a rotation around the line’s
own axis (as this does not change the line itself) then we can imagine an infinite 3D line
with only four degrees of freedom.
The Cayley representation uses its own object frame for the 3D line denoted as Γ in fig-
ure 2.2. The object frame is given by l, which is the direction vector of the line, by the
moment m and by their crossproduct l×m. The origin of the object frame is located at P0
of which the distance to the origin of the reference frame Or is given by ω . The Cayley
line is defined by v = (ω,s) where s defines the rotation angle θ as well as the rotation
axis s between the object frame OXY Z and the reference frame OrXrYrZr:

θ = 2 arctan(||s||),

s =
s
||s||

. (2.7)

Transferring to and from the Plücker representation is explained in paragraph 3.3.6 and
details about the derivation of the formulas are elaborated in [ZK14].
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2.3 Error measures for 2D line-segment similarity

Figure 2.2: Visualization of the Cayley line representation.

The Cayley representation is advantageous when 3D lines are part of an optimization
like a bundle adjustment. It avoids over-parametrization and internal gauge freedoms
and thereby improves the efficiency of the optimization process.

2.3 Error measures for 2D line-segment similarity
When working with line-segments, one often wants to know how similar two line-seg-
ments are, to obtain correspondences between them. Matches between line-segments
are, for example, necessary when performing visual odometry, reconstruction or measur-
ing based on lines. Matching lines is usually either performed based on a geometrical
distance, or based on a descriptor distance. Using a descriptor yields the advantage to en-
able matching from arbitrary camera positions without prior knowledge. But it is gener-
ally more computationally expensive than simple line-segment to line-segment distance
functions. The same holds for matching based on more complex geometrical matching
approaches like using ’line signatures’ [WNY09], coplanar line intersections [KL10], or
’Line-Junction-Line’ structures [LYL∗16], just to name a few.
If prior knowledge about the expected location of a line-segment is available, for exam-
ple from tracking lines, then simpler and quicker calculable functions, which compute a
measure of similarity between two line-segments, can be used. In this section we provide
an overview of 2D line-segment distance functions which can be used to determine the
geometric similarity of two 2D line-segments.
We start with a short note about the geometrical distance of 2D points. A simple 2D
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point is characterized by its location. It does not change in size and has no degree of
freedom for rotation. Thus, if a point is projected into an image and compared to a point
in this image, usually the euclidean distance, or the squared euclidean distance is used:

d =
√

(xpro j− xobs)2 +(ypro j− yobs)2 (2.8)

A 2D line, on the other hand, is characterized by its location and rotation. In the case
of a 2D line-segment, it also has a certain extent. Thus, a comparison of the similarity
of two line-segments is not as simple as in the case of points. Therefore, multiple line-
segment similarity measures have been developed, each with different properties.

2.3.1 Overview and definition of line-segment distance criteria
In the following we will elaborate multiple line-segment distance functions in more de-
tail.

The Hausdorff metric or Pompeiu-Hausdorff distance [BT05] measures the distance
between two point sets. There are many variants of it [DJ94].
There is a variant of the Hausdorff metric to determine line-segment similarity from
Helmut Alt, Bernd Behrends and Johannes Blömer [ABB95], which is depicted in figure
2.3 and defined by the equation 2.11.

Figure 2.3: Visualization of the Hausdorff Distance variant by [ABB95].

δ̃ls1,ls2(ls1, ls2) = max
p∈ls1

min
q∈ls2

||p−q||, (2.9)

δ̃ls2,ls1(ls2, ls1) = max
p∈ls2

min
q∈ls1

||p−q||, (2.10)

δH(ls1, ls2) = max (δ̃ls1,ls2, δ̃ls2,ls1). (2.11)

Emanuele Trucco and Alessandro Verri introduced a grouping algorithm for line-segments
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in their book Introductory Techniques for 3-D Computer Vision [TV98]. Their main error
metric for proximity is depicted in figure 2.4 and defined by equation 2.14.

Figure 2.4: Proximity error metric by [TV98].

lsmin = min(||ls1||, ||ls2||), (2.12)

min(dep(ls1),ep(ls2)) = min(||p1,ls1− p1,ls2||, ||p1,ls1− p2,ls2||,
||p2,ls1− p1,ls2||, ||p2,ls1− p2,ls2 ||), (2.13)

δT (ls1, ls2) = (
lsmin

min(dep(ls1),ep(ls2))
)2. (2.14)

A variant of the Hausdorff distance for line-segments, named modified line-segment
Hausdorff distance, which includes angle information, was proposed by Jingying Chen,
Maylor K. Leung and Yongsheng Gao [CLG03]. They demonstrated that it can be uti-
lized to detect noisy logos. The modified line-segment Hausdorff distance is depicted in
figure 2.5 and defined by equation 2.15.

Figure 2.5: Modified line-segment Hausdorff distance by [CLG03].
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δMH(ls1, ls2) = min(||ls1||, ||ls2||) sin(θ(ls1, ls2)). (2.15)

Also, with a contribution of Maylor K. Leung and Yongsheng Gao, Yu Xiaozhou pro-
posed a modified perpendicular line-segment Hausdorff distance [YLG04]. It is depicted
in figure 2.6 and defined by equation 2.18.

Figure 2.6: Modified perpendicular line-segment Hausdorff distance by [YLG04].

An endpoint of a line-segment is defined by lsx py where x ∈ {1,2} defines which of
the two line-segments is selected and y ∈ {1,2} defines which of the two endpoints of
the line-segment is selected.

d⊥1 = min(min(d⊥(ls1, ls2p1),(ls1, ls2p2)),

min(d⊥(ls2, ls1p1),(ls2, ls1p2)))

d⊥2 = min(max(d⊥(ls1, ls2p1),(ls1, ls2p2)),

max(d⊥(ls2, ls1p1),(ls2, ls1p2))) (2.16)

wi =
d⊥i

d⊥1 +d⊥2
, with i = {1, 2} (2.17)

δPMH(ls1, ls2) =
1
2
(w1 d⊥1 +w2 d⊥2) (2.18)

A simple error metric is the mid- and endpoint line-segment distance. The distances
of the endpoints are added to the distance of the midpoints while the distances may be
weighted. The midpoint of a line-segment is given by mlsi = (lsi p1− lsi p2)/2. The metric
is depicted in figure 2.7 and defined by equation 2.19.
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2.3 Error measures for 2D line-segment similarity

Figure 2.7: Mid- and endpoint line-segment distance.

δME(ls1, ls2) = ||ls1 p1− ls2 p1||+ ||ls1 p2− ls2 p2||+3 ||mls1−mls2|| (2.19)

Another error measure between line-segments is the closest point line-segment distance.
As the name says, it is simply the shortest distance between two line-segments as de-
picted in figure 2.8 and defined by equation 2.20.

Figure 2.8: Closest point line-segment distance.

δC(ls1, ls2) = dmin(ls1, ls2) (2.20)

Stefan Wirtz and Dietrich Paulus proposed the straight line distance in [WP16]. They
combined multiple measures to include angular, translational and scale differences in
their error measure. This is defined by equation 2.24.

15



Chapter 2 Fundamentals

d1 = ||ls1 p1− ls2 p1||, d2 = ||ls1 p1− ls2 p2||,
d3 = ||ls1 p2− ls2 p1 ||, d4 = ||ls1 p2− ls2 p2 || (2.21)

dtranslation(ls1, ls2) =
d1 +d2 +d3 +d4

4
− ||ls1||+ ||ls2||

4
(2.22)

dST (ls1, ls2) = δC +
1
4

δMH(ls1, ls2)+dtranslation (2.23)

δstraightLine(ls1, ls2) = min(dST (ls1, ls2), dST (ls2, ls1)) (2.24)

Aleš Jelı́nek and Luděk Žalud propose a line-segment similarity criterion [JŽ17] which
is based on the area between two line-segments. The first part of the formula calculates
the area of the parallelogram which is formed by the two line segments. This is depicted
in figure 2.9 and defined by equation 2.25.

Figure 2.9: Line-segment similarity criterion by [JŽ17].

d2
ABCD(ls1, ls2) = ||(B−A)× (D−C)||2 = ||x× y||2 (2.25)

The second part of the similarity measure calculates the area of a triangle which is formed
by one of the lines and the center point S which is in the middle of the four line-segment
endpoints:

d2
ABS(ls1, ls2) =

1
4
||x× (S−A)||2 (2.26)

The final equation 2.27 adds those two measures and weights the triangular area 2.26 by
a factor of 64 to balance the two parts of the equation. The choice of the prefactor of 64
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is reasoned in their paper [JŽ17].

δarea(ls1, ls2) = d2
ABCD +64 d2

ABS (2.27)

An efficient way to compute the squared endpoint segment to line distance was presented
by Lilian Zhang and Reinhard Koch. They used it in a line-segment based bundle ad-
justment [ZK14] in which they utilized the Cayley representation of spatial lines (see
2.2.4) to reduce the degrees of freedom of an infinite 3D line to four. This line-segment
distance criterion uses the endpoints of a line-segment and projects them onto an infinite
line given by the bundle adjustment, or by extension of another line-segment. The pro-
jections of the line-segments’ endpoints are calculated perpendicularly from the infinite
line to obtain the shortest distance. These distances are then squared and summed up.
The squaring has the effect that two line segments, that are rotated relative to each other,
yield a smaller error when they cross at the center of the line-segment whose endpoints
are projected, than when they cross at any other point (given that the angle is held con-
stant). Thus, using the squares in equation 2.28 still pulls the line-segments closer above
each other. That is already the case when they touch, since these two line-segments are
considered closer when they cross in their centers than if they just touch. This distance
criterion is used in chapter 3 to perform the pose optimization described in paragraph
3.3.5 and the local bundle adjustment described in paragraph 3.3.6. It is depicted in fig-
ure 3.5 and defined by the following equation 2.28. Let lsi be the infinite line and ls j the
line-segment, then the equation is as follows:

δSQline = d⊥(lsi, ls jp1)
2 +d⊥(lsi, ls jp2)

2 (2.28)

The endpoint and overlap closeness distance criterion is similar to the previous squared
endpoint segment to line distance criterion, but it adds a closeness term. Therefore, the
endpoints of both line-segments have to be available. This closeness term is the squared
minimum distance between the two line-segments. The term is only added, when there is
no lateral overlap between the line-segments. A lateral overlap is examined by projecting
rectangular rays from the endpoints of one line-segment and checking if at least one of
the endpoints of the other line-segment lies between the rays, or touches one of them.
This has to be tested for all four line-segment endpoints using the respective other line-
segment. If an overlap is given, then the error is calculated in the same way as for the
squared endpoint segment to line distance criterion. Otherwise the squared minimum
distance is added and causes the error to rise rapidly with an increase of the distance. We
have to note here, that this overlap dependency causes the error value to jump, when it is
just barely fulfilled in one situation and not fulfilled anymore when the scenario changes
slightly. This could be avoided by constantly adding the closeness term without using the
overlap dependency. It depends on the task which variant is more suitable. This distance
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criterion is used to measure the line-segment similarity in chapter 3 to accomplish the
motion tracking task described in paragraph 3.3.3. It is depicted in figure 3.4 and defined
by equation 2.29.

δEPoC(li, l j) :=

{
d⊥(lsi, ls jp1)

2 +d⊥(lsi, ls jp2)
2 if li and l j overlap

d⊥(lsi, ls jp1)
2 +d⊥(lsi, ls jp2)

2 +dmin(li, l j)
2 else.

(2.29)

In the following, we will evaluate the presented line-segment distance criteria.

2.3.2 Evaluation of line-segment distance criteria

Wirtz and Paulus show a comparison of multiple methods in their paper [WP16]. They
provide an analytical evaluation in which they created two line-segments and transformed
one of them to change the geometrical relation between those two. The transformations
they used include rotation, translation and scaling; figure 2.10 visualizes this. The rota-
tion is performed on ls2 with the point p1 being the center of the rotation. The translation
is performed along the direction of ls2 and the scaling is performed on ls2, also along the
line-segment direction. It is executed in such a way that the point p1 stays at the same
position.

Figure 2.10: This figure depicts two line-segments and the transformations applied on
ls2, which are used in the evaluation scenarios.

The evaluation shows the behaviour of the error metrics in relation to different trans-
formations such as translation, rotation and scaling (change of the line-segment length).
The plots in the following figures show the error space in 3D to better visualize the error.
Not all error spaces are plotted for every distance criteria, as for some of the measures
the error space was zero in certain scenarios.
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2.3 Error measures for 2D line-segment similarity

Figure 2.11: Top left: The plot shows the error space of the Hausdorff line-segment dis-
tance criterion in relation to translational and angular changes. Top right: Here we see
the error space of the same criterion when the length and the angle of a line-segment are
changed. Bottom: The error space is shown for the scenario in which the line-segments
lie on the same infinite line, and translational and length changes are applied.

The Hausdorff line-segment distance is affected by translation and by rotation, which
can be seen in the top left plot of figure 2.11. The error of the rotation is exceeded by the
error induced from the translation in the areas in which the rotation is small. And due to
the δH’s max function the influence of the rotational component is zero in those areas.
Thereby, the function is not monotonically increasing. The translation, on the other hand,
always affects the error measure because it influences the distance between the line-
segments, also when they are rotated. The plots at the top right and at the bottom show
that the error increases up to a certain degree, when the line-segments are of different
lengths. While changing the angle additionally adds up to the error (see top right plot
of figure 2.11), a translation can reduce the error, which is induced from different line-
segment lengths (bottom plot). If the translation is larger than the difference in length,
then it outweighs the length difference and only the translational error determines the
overall error. The error space plots of the Hausdorff line-segment distance metric shown
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in the paper [WP16] can be reconstructed by regarding the four distances between the
endpoints only, instead of searching for the maximum orthogonal distances. We do not
know why they have deviated from the formulas when creating their plots.

Figure 2.12: The plot shows the error space of the inverted Trucco distance metric crite-
rion in relation to translational and angular changes.

The Trucco distance takes into account the size of the smaller line-segment and the
minimum of the four possible endpoint distances. The magnitude of the error is by far
the smallest in comparison to the other error measures. The angle only has an influence
while the rotation is small and the translation is at least half of the line-segment’s length.
The function is not monotonically increasing, as most of the error space is only affected
by the translation. Thus, the function is not suitable to calculate a dissimilarity score if
the rotation between the line-segments is important. The plot in figure 2.12 shows the
inverse of the Trucco distance. This better visualizes the error measure. The authors
wanted a significance measure of proximity, that yields high values if line-segments are
similar. For this reason, they placed the minimum endpoint distance in the denominator
of the fraction. The error space plot of the Trucco distance metric shown in the paper
[WP16] can be reconstructed by removing the squaring operation from the equation 2.14
and by also inverting it. We mention this here to avoid any confusion, as Wirtz and
Paulus do not mention it in their paper.
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Figure 2.13: Top left: Here we see the error space of the modified line-segment Hausdorff
distance criterion when the length and the angle of a line-segment are changed. Top
right: The plot shows the error space of the same criterion in relation to translational and
angular changes. Bottom: The error space is shown for the scenario in which the line-
segments lie on the same infinite line and translational and length changes are applied.

The modified line-segment Hausdorff distance does not take the translation of the line-
segment into account. This is clearly visible in the plots of figure 2.13. Also, if two line
segments are parallel, then the error is zero. Otherwise, the function weights the size of
the smaller line-segment by the sinus of the angle between the elongated line-segments.
This error measure is quite simple and not a good choice for tasks such as tracking or
optimization. It can be a good choice in specific applications in which rotations account
for a major part of the dissimilarity between line-segments.
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Figure 2.14: Top left: The plot shows the error space of the mid- and endpoint line-
segment distance criterion in relation to translational and angular changes. Top right:
Here we see the error space of the same criterion when the length and the angle of a
line-segment are changed. Bottom: The error space is shown for the scenario where
the line-segments lie on the same infinite line and translational and length changes are
applied.

The mid- and endpoint line-segment distance has a clearly vaulted error space when
the angle between line-segments is changed, which can be seen in the top plots of figure
2.14. It increases linearly with an increased translation and is proportional to the rotation
angle. The maximum angular error is induced in the case of a 180◦ rotation. This is
different from other error measures in which the angular error is the highest at 90◦ and
lower again at 180◦, where the line-segments lie on the same infinite 2D line. But one has
to keep in mind, that the error measure does not implicitly penalize an angle difference. If
two line-segments were next to each other, a rotation, which brought the line-segments
closer together on one end and farther apart on the other end, would hardly affect the
error.
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Figure 2.15: Top left: The plot shows the error space of the modified perpendicular line-
segment Hausdorff distance criterion in relation to translational and angular changes. Top
right: Here we see the error space of the same criterion when the length and the angle of
a line-segment are changed.

The modified perpendicular line-segment Hausdorff distance criterion yields the high-
est angular error when the line-segments are perpendicular to each other. This can be
observed in both plots of figure 2.15. The angular error reduces again to zero when
the line-segments lie on the same infinite 2D line. The translation does not have an ef-
fect in this case. However, the translation does contribute to a greater error, when the
line-segments are rotated relative to each other. The modified line-segment Hausdorff-
distance only takes the angle between the line-segments and their length into account.
Opposing to that, this version uses the perpendicular endpoint distances as seen in equa-
tion 2.16. The angular distance is not involved in the formula, but it implicitly contributes
to the error by influencing the perpendicular distances. The error space is not monoton-
ically increasing. The plots shown in the paper [WP16] can be reconstructed using the
following equation, instead of equation 2.16:

d⊥1 = min(min(d⊥(ls1, ls2p1),(ls1, ls2p2)),

min(d⊥(ls2, ls1p1),(ls2, ls1p2)))

d⊥2 = max(max(d⊥(ls1, ls2p1),(ls1, ls2p2)),

max(d⊥(ls2, ls1p1),(ls2, ls1p2)))

Note that this equation is different from the modified perpendicular line-segment Haus-
dorff distance by Maylor K. Leung and Yongsheng Gao, Yu Xiaozhou [YLG04].
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Figure 2.16: Top left: The plot shows the error space of the closest point line-segment
distance criterion in relation to translational and angular changes. Top right: The error
space of the same criterion is shown for the scenario, in which the line-segments lie on
the same infinite line and translational and length changes are applied. Bottom: Here we
see the error space when the length and the angle of a line-segment are changed.

Independent from the rotation angle, the closest point line-segment distance yields
zero error, as long as the line-segments touch each other. If there is a translation, then
a smaller angle reduces the error, as long as the rotation is below 90◦. This can be seen
in the top left plot of figure 2.16. At a rotation below 90◦ the closest distance between
the two line-segments is perpendicular from one line-segment to the closer endpoint of
the other line-segment. In the case that the rotation is above 90◦, the closest connection
between the line-segments is simply between the two closest endpoints. In that case, the
error only depends on the translation, which is clearly visible in the error space. The
error space is not monotonically increasing, as can be seen in all three plots. This line-
segment error criterion is very basic and cannot distinguish two identical line-segments
from two line-segments that touch or cross, but are perpendicular to one another.
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Figure 2.17: Top left: The plot shows the error space of the straight line-segment distance
criterion in relation to translational and angular changes. Top right: Here we see the error
space of the same criterion when the length and the angle of a line-segment are changed.
Bottom: The error space is shown for the scenario in which the line-segments lie on the
same infinite line and translational and length changes are applied.

The straight line distance combines the closest point line-segment distance with the
modified line-segment Hausdorff distance and with a measure for translation which is
based on the endpoint distances and the length of the line-segments. The plots in fig-
ure 2.17 show that an angular difference between the line-segments always leads to an
error above zero. The maximum angular error is induced when the line-segments are
perpendicular. The error reduces when the rotation proceeds to that extent, that the line-
segments lie on the same infinite 2D line. A larger translation continuously leads to an
increased error. By using the formulas provided by the authors, we were not able to
reconstruct the exact same plots as shown in [WP16] for this error measure.
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Figure 2.18: Top left: The plot shows the error space of the area based line-segment
distance criterion in relation to translational and angular changes. Top right: Here we see
the error space of the same criterion when the length and the angle of a line-segment are
changed. Bottom: The error space is shown for the scenario in which the line-segments
lie on the same infinite line and translational and length changes are applied.

The area based line-segment similarity criterion from Aleš Jelı́nek and Luděk Žalud
[JŽ17] yields higher errors when the angle, length or translation of one line-segment
is increased. This can be seen in the plots of figure 2.18. The angular error is at its
maximum when the angle is 90◦ or 270◦. There is no error at a 180◦ rotation of the line-
segments, as they lie on the same infinite line. The bottom plot of figure 2.18 also shows
that there is no error, as long as the line-segments lie on the same infinite line. Of course
there would be an error if the line-segments were parallel, but displaced to each other as
this would span an area between them. The error space is monotonically increasing. In
comparison to other methods the magnitude of the error value is quite high.
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Figure 2.19: Top left: The plot shows the error space of the squared endpoint line-
segment to infinite line distance criterion in relation to translational and angular changes.
Top right: Here we see the error space of the same criterion when the length and the an-
gle of a line-segment are changed. Bottom left: The error space is shown for the scenario
in which the endpoints of both line-segments are projected respectively to the infinite
line of the other line-segment, here for the relation to translational and angular changes.
Bottom right: The plot shows the same scenario as the left plot, but in terms of the angle
and length changes.

The error space of the squared endpoint line-segment to infinite line distance criterion
is shown in the top plots of figure 2.19. The line which is not transformed is assumed to
be the infinite line here. We can see that the error space is monotonically increasing when
the angle, length or translation is changed. The criterion does not take into account, in
which direction the line-segments are facing. Thus, the angle dependent error is low at
0◦ as well as at 180◦ rotation. The criterion is a good choice if only the endpoints of one
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of the line-segments are known. If the endpoints of both line-segments are known, the
criterion can easily be changed in such a way that the endpoints of both line-segments
are projected to the corresponding infinite line of the respective other line-segment. This
makes the error independent of the choice of the end points of the line-segment. The
error spaces for this version are shown in the bottom plots of figure 2.19. If the lines lie
on the same infinite line, then the error is zero. This is not plotted here, as the plot looks
identical to the corresponding one in previous scenarios such as the area line-segment
distance (see the bottom plot in figure 2.18).

Figure 2.20: Top left: The plot shows the error space of the endpoint and overlap close-
ness distance criterion in relation to translational and angular changes. Top right: Here
we see the error space of the same criterion when the length and the angle of a line-
segment are changed. Bottom left: The error space is shown for the same scenario as in
the top left plot, but with a logarithmic scale on the z-axis. Bottom right: The plot shows
the error space for the scenario in which the line-segments lie on the same infinite line
and translational as well as length changes are applied.
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The plots in figure 2.20 visualize the error space for the endpoint and overlap closeness
distance criterion. The plot in the top right shows the characteristics for length and angle
changes. In that scenario, the two line-segments always touch each other at the origin of
the coordinate system. Thus, the closeness distance term is never applied. This stands
in contrast to the scenario shown in the top left plot, in which translational and angular
changes are applied. There, the line-segments do not constantly overlap each other and
the closeness term gets applied. This becomes quite apparent at discontinuous jumps
of the error value which occur, for example, when the angle is 90◦ or 270◦. There, the
error jumps when the line-segments stop to have an overlap. The larger the translation,
the higher the jump of the error value. This also happens when the transformed line-
segment is translated so far that the line-segments do not touch, but the rotation causes
them to overlap again. These jumps of the error value form edge contours in the error
space that look quite large. They get less significant if we look at them in the logarithmic
scale, which is visualized at the bottom left plot of figure 2.20. Due to the squared error
terms, the error itself quickly rises when the distance of the line-segments increases. It
depends on the application which areas of the error space are more relevant and if one
wants to strongly penalize certain conditions such as a missing overlap. If one wants to
avoid the edge contours, one could simply constantly apply the closeness distance term
instead of applying it depending on an overlap criterion. Another important difference to
the previous squared endpoint line-segment to infinite line distance criterion is the error
space for the translation to length scenario, in which both line-segments lie on the same
line. In this scenario, the error space is not zero everywhere, as it is the case with the
previous distance criterion. As soon as the line-segments stop touching each other, the
error rises. This is advantageous when the distance criterion is utilized in a line-segment
tracking scenario, as it is done in chapter 3.

2.3.3 Summary
The answer to the question which line-segment distance criterion should be used, de-
pends on the task it will be used for. If the usage scenario is an optimization used in
a SLAM or SfM system, for example, then one would want a distance function that is
monotonically increasing. In other words one that has no jumps or planar areas in the
relevant error space. For these scenarios, the mid- and endpoint distance, the modified
perpendicular line-segment Hausdorff distance, the straight line-segment distance, the
area line-segment distance and the squared endpoint segment to line distance are appro-
priate choices. If the endpoints are not available for both lines, but only for one of them,
then the squared endpoint segment to line distance is a good choice. Should the error
be non-zero when the line-segments are rotated but lie on the same infinite line, then
the mid- and endpoint distance and the straight line-segment distance are good options.
Except for the magnitude of the error value, the error spaces of the squared endpoint
segment to line distance and the area line-segment distance are similarly shaped. If
one wants to use the similarity measure to perform line-segment tracking, then jumps
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or planar regions in the error space may not be a problem and one can give priority to
certain conditions like a perpendicular overlap between the line-segments. In this case,
the endpoint and overlap closeness distance criterion would be the favoured selection.
The closest point line-segment distance can be used if it is mainly important whether two
line-segments touch. To summarize, the choice of the line-segment error function mainly
depends on the problem which is to be solved.

In the next chapter, we will elaborate our Line only stereo Visual Odometry system
which utilizes some of the presented line representations and line distance measure cri-
teria to track, optimize and finally perform visual odometry using lines.
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Chapter 3

Line only stereo Visual Odometry
This chapter presents our Line only stereo Visual Odometry system. The chapter is mostly
cited from the paper:

©2019 IEEE. Reprinted, with permission, from Manuel Lange, Claudio
Raisch and Andreas Schilling, LVO: Line only stereo Visual Odometry,
2019 International Conference on Indoor Positioning and Indoor Naviga-
tion (IPIN), 10/2019. [LRS19]

3.1 Chapter Overview
The research on visual odometry (VO) [NNB04] as well as on visual simultaneous lo-
calization and mapping (V-SLAM) started many years ago, but both are still actively
researched. They are required in upcoming applications such as autonomously driving
cars, unmanned aerial vehicles (UAVs) and augmented reality.

The classical approach to VO starts with searching for correspondences between con-
secutive images. Most times, a certain type of feature detector is used to find points in
areas that are rich in information. These areas are often found in textured regions of the
image. In a following step, those points are extracted and matched to points found in
the other image, using a certain type of descriptor [RRKB11][BTVG06]. Reprojecting
the points and minimizing the errors between reprojected and observed points leads to
the camera transformation. These point features lie on spots of the image that are as
distinctive as possible. Such spots often are corners or blobs. A point feature contains
little structural information compared to a line which can represent numerous points at
once, laying on a structure such as an edge. As a consequence, in an image which is
mostly structured and barely textured, point feature matching as well as the VO based on
it deteriorate, whereas line features are a good way to represent the structure (see figure
3.1).

Line features in general are not researched as long and thoroughly as point features.
Reasons therefore are the higher computational cost to extract them from an image
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Figure 3.1: On the left we see a scene in a corridor that is rarely textured. Point features
can hardly be found, whereas enough lines are available to do visual odometry. Also the
structure is well recognizable with just a few lines as we see in the right image. [LRS19]
©2019 IEEE

[VGJMR12] and partial occlusions that complicate the matching process. There are
multiple methods that use line features to sample points along the line and then use
the sampled points in existing methods made for point features. Gomez-Ojeda et al.
[GOBGJ16] detect lines and sample points along them to pass them to [FPS14] which is
designed for point features. Pumarola et al. [PVA∗17] detect lines and use their endpoints
to treat them as if they were points and re-use the ORB-SLAM architecture [MAMT15].
This, too, results in a non-minimal line parametrization in the bundle adjustment (BA).
Falling back to representing lines through points or overparameterising lines does not
utilize their full potential, thus, we avoid doing so where possible.

The main contributions of our work are as follows:

• A visual odometry approach is proposed that yields accurate and stable results
solely using lines. We show the improvement by comparing it to other state of the
art methods.

• We propose a novel heuristic filter for line-segment matching that improves line-
matching results for tracking and for arbitrary image to image matching of lines.

• A line tracking method is described that is faster than descriptor-based methods
as it does not require descriptors. In sequences without high accelerations, it is
capable to do all necessary line-segment tracking solely.

• We present the first VO approach using the Cayley representation for 3D lines,
avoiding overparameterization in the optimization.

To demonstrate the performance of this algorithm, it is evaluated on the EuRoC dataset
[BNG∗16]. A comparison against state of the art methods shows that we can keep up
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with, and also do better than these methods in terms of accuracy and stability. We want
to emphasize that we solve all EuRoC sequences more accurately than the other existing
line only methods. Additionally the methods are evaluated on a difficult synthetic scene
to test their stability. There we push the algorithms to their limits and can demonstrate
a higher stability of our version even when StVO-PL [GOGJ16] uses points and lines
while we only use lines. The next Section gives a view onto related works. In Section
3.3 we describe our system and in 3.4 the results are presented. In Section 3.5 we draw
a conclusion of our proposed method.

3.2 Related Work
In this section we discuss related work on VO as well as that on V-SLAM since V-SLAM
systems usually build upon VO systems. It is common to group VO approaches in direct,
and feature-based methods.

Direct methods: These methods use the photometric error of the images working
directly on the pixel intensity values [IA99]. On one side, they save computational time
on feature extraction and matching. But on the other side, they have to optimize the
six degrees of freedom motion by image-to-model alignment which can be computation-
ally costly, depending on their model and alignment process. When the whole image is
taken into account, the model becomes very detailed. Yet, it needs a powerful GPU to
be processed in realtime [NLD11]. Thus, many direct methods are sparse [EKC18] or
semi-dense [ESC14] [FPS14] [ESC13] to save processing time. They reduce the focus
to regions which they choose as being informative, which are mostly regions with an
intensity gradient. This, again, brings them closer to feature-based methods on which we
will lay our focus from here on.

Point feature based methods: These methods extract point features from an image
and match them to the next image. They do some outlier handling and compute the
camera motion between the images. An early VO approach was [NNB06] where the
authors implemented an iterative procedure to estimate their stereo camera motion. They
used some form of the Harris corner detector to detect features and matched them com-
paring their normalized correlation. Geiger et al. [GZS11] proposed a method which
uses a sparse feature matcher to achieve an accurate and fast VO estimation besides a
scene reconstruction. The first SLAM systems that showed real-time performance were
MonoSLAM [DRMS07], which still had to use quite sparse landmarks due to computa-
tional limitations, and Parallel Tracking and Mapping [KM07] that took advantage of the
increased processing power, using parallel threads for tracking and for mapping. ORB-
SLAM [MAMT15] further combined multiple existing techniques and fine-tuned them
which set a new standard concerning the robustness, the accuracy of the pose estima-
tion and the runtime of the algorithm. Still, these algorithms rely on point features and,
thus, they depend on textural information in the image. To overcome this problem, line
features came into focus.
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Line feature based Methods: Unlike point features, line features do not rely on tex-
ture, structure is sufficient. One of the first approaches working with lines were [SRD06]
where the authors built an Extended Kalman Filter V-SLAM system that uses lines which
connect several close keypoints. Eade and Drummond [ED06] proposed the use of parts
of lines and called them edgelets. Some methods ([LRL∗18][PVA∗17]) build upon ex-
isting point feature methods and extend them by placing points on extracted lines and
making more use of that information by giving them a higher weight in their optimiza-
tion.

Only few methods have been proposed which showed that they can work reliably
on line features only and do not need points (and consequently no texture). Yang and
Scherer [YS17] extend a direct method and refit each line in every iteration by using
RANSAC and a maximum likelihood estimation. The method StVO-PL [GOGJ16]
uses a probabilistic approach for VO with points and line-segments. With PL-SLAM
[GOZNM∗17] they later on extended their method to a V-SLAM system. PL-SVO
[GOBGJ16] extends the well known SVO [FPS14] by supporting line features in ad-
dition to points.

To show our contribution in improving stability and robustness when relying on lines
only we chose StVO-PL [GOGJ16], PL-SLAM [GOZNM∗17], PL-SVO [GOBGJ16] for
comparison since they are the most advanced approaches incorporating lines. We also
benchmark against ORB-SLAM 2 [MAT17] as it is a well known state of the art method.

3.3 LVO: Line only stereo Visual Odometry

Figure 3.2 gives a compact visualization of the proposed framework that we denote as
Line only Visual Odometry (LVO). Basically, we track line-segments over consecutive
stereo frames in order to determine pairs of 3D and 2D features. Therefore, we rectify
the images, detect line-segments, extract descriptors and compute stereo matches in the
frame preparation step (see figure 3.2). 3D line-segments are triangulated at the end of
each frame processing step. General information about the line-segment triangulation,
detection and feature description is given in section 3.3.2.

The main difficulty when tracking line-segments is to become robust to outliers dur-
ing the matching procedure. In section 3.3.1 we propose a heuristic filter for reliable
matching of line-segments. This heuristic is applied after the tracking and it noticeably
increases the number of matches.

For line-segment tracking we propose two methods:

1) A geometrical tracking approach in which uniform camera motion is assumed.
Since we are tracking line-segments instead of points, we achieved the matching
of the features based on geometry only, without using feature-descriptors. We
denote this method as Motion Tracking; it is treated in section 3.3.3.
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2) For the rare cases in which the motion assumption is violated, we provide a track-
ing procedure based on feature-descriptor matching, additionally using the heuris-
tic filter to increase the reliability of the matches. We refer to this method as
Descriptor Tracking and it is explained in section 3.3.4.
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Figure 3.2: Basic framework of LVO. Line-segments and stereo matches are determined
in frame preparation. After Tracking the segments over consecutive frames via motion-
or descriptor Tracking, further line-matches are gathered applying the heuristic descrip-
tor matching. The motion assumption is based on the previous relative motion and will be
violated if the current relative motion deviates clearly from the latter mentioned. Given
the line correspondences the exact relative motion is optimized in the pose estimation.
Finally, new 3D line-segments are triangulated. In the local bundle adjustment thread
adjacent poses are further refined to compensate for drift. [LRS19] ©2019 IEEE
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The gathered feature correspondences are then used to estimate the motion by optimizing
an incremental pose. More detail on the pose optimization is given in section 3.3.5. When
the camera is moving fast it becomes hard to track the features using a motion model.
Therefore we gather further correspondences by matching the line descriptors, applying
the heuristic from 3.3.1 and again refine the pose. The correspondences and poses of
the last N frames are stored and then used to further optimize the local trajectory by a
threaded windowed bundle adjustment. More details on that are given in section 3.3.6.

Figure 3.3: This figure describes our heuristic matching approach. Two images with
detected line-segments are shown. The numbers on the segments show the descriptor
matching results. Here our heuristic checks if the blue segment is a match. The red seg-
ments are its ten closest neighbours. Our heuristic would correctly declare a match as
eight out of the ten neighbours are in both neighbour groups. (We used a ratio of atleast
six out of ten.) [LRS19] ©2019 IEEE

3.3.1 Heuristic on reliable Line-Segment Matching
At sudden movements of the camera, we can not rely on motion predictions. To still
be able to track features we have to use descriptor methods. For our purposes ordinary
feature matching yields too many outliers. Therefore we developed a heuristic to im-
prove matching quality on line-segments, by considering not only the single features,
but additionally taking into account the surrounding features at the matching procedure.
Consider two candidate line segment matches l1, l2 ∈R4 parametrised by their endpoints
and Ω(l1), Ω(l2) contain the n∈N line-segments located closest to l1 and l2, respectively.

Then we can simply determine Ω(l1)∩Ω(l2) containing all corresponding line-segments
which are in both neighbourhoods, given a similarity metric on line-segments e.g. de-
scriptor distances. In fact, regional properties on line-segments like relative locations,
distances and angles are not invariant to perspective projection. But on non-rigid objects
we can assume that for small local neighbourhoods the features in the neighbourhood
still remain there. Besides, we need to care about effects like view-dependent occlusion
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and the fact that features have different disparities and, therefore, can move out of, or into
the neighbouring region at different views. Consequently, we are forced to formulate the
heuristic not too strict and simply count the number of surrounding features that match
validly according to their feature descriptors, such that |Ω(l1)∩Ω(l2)| = kth ∈ N. With
kth defining the minimum number of line-segments that must be in both neighbourhoods
to declare l1, l2 as a match (see figure 3.3 as illustration).

By applying this heuristic we were able to reduce the number of outliers and notice-
ably increased the number of matches by 30% on average (over all EuRoC [BNG∗16]
sequences, see figure 3.6).

3.3.2 Line-Segment Features
For detecting line-segments on the input images the Line Segment Detector (LSD) from
von Gioi et al. [VGJMR12] is used. For the heuristic filter proposed in 3.3.1 and at
motion tracking in 3.3.3, we need to find line-segments lying in a certain region as effi-
ciently as possible. Therefore, we additionally build a multi-dimensional grid structure
on each frame, assigning every line-segment to the grid-cells which it runs into/through.
Furthermore, the line-segments are grouped according to their polar angle allowing a
more precise matching.

In order to match features based on their local appearance the line band descriptor
(LBD) [ZK13] is applied. The LBD is used for detecting stereo features (see 3.3.2), and
in the heuristic filter in 3.3.1.

Line-Segment Stereo-Matching

We first compute a regular descriptor matching on the line-segments, which are detected
in both images, to find suitable stereo pairs using the LBD [ZK13] descriptor and the
heuristic filter from 3.3.1. Since the images are rectified right after the new frames have
been fetched, according to the epipolar-constraint, a point in one image must lie on the
same vertical offset in the other stereo image [HZ03]. Therefore, we exploit the epipolar-
constraint by checking if the candidate pair of line-segments overlaps sufficiently in the
vertical image direction. Due to disparate occlusion among the stereo views we cannot
simply check for the alignment of both lines.

Line-Segment Triangulation

We associate both corresponding line-segments to a line of infinite extent while keeping
the endpoints. The 3D line is then triangulated from the line correspondences by inter-
secting both of their back projected planes, as it is proposed in [HZ03]. For a precise
tracking of line segments it is necessary to determine the 3D endpoints of the triangu-
lated line. To obtain these, we triangulate the endpoints from the kept 2D endpoints and
determine the closest intersections of them with the triangulated line. The drawback of
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Figure 3.4: Left: Visualization of metric m(·) in equation 3.1. The perpendicular dis-
tances ds,i, j and de,i, j from the endpoints of the line-segment li = (pi,s,pi,e)

T to the infi-
nite expansion of line segment l∞j are squared and summed up for the error metric m(·).
Top right: The red line visualizes the line-segment Pi(l j) obtained by orthogonally pro-
jecting the endpoints of l j to l∞i . In the case that li and Pi(l j) overlap, the sum of the
endpoint distances is a sufficient metric. Bottom right: If li and Pi(l j) do not overlap,
we additionally need to consider the minimum distance dmin(li, l j) between both line-
segments (gold, dashed line). Without considering the minimum distance, two segments
which are almost collinear but not overlapping would yield a too small distance error,
thus the metric would not be sufficient. [LRS19] ©2019 IEEE

this method is that 3D lines which are close to intersecting the camera baseline cannot be
triangulated with high certainty and lines which intersect the baseline cannot be recon-
structed at all [HZ03]. But we argue that those lines are likely to be reconstructed from
later views and, therefore, we will not lose most of the interesting lines in the long term.

3.3.3 Motion Tracking

Since matching by relying solely on feature-descriptors would yield too many false cor-
respondences, we need to increase the reliability by considering an additional prior on
the camera motion. We observed that vehicles are often situated in steady motion, even
holonomic moving robots, like quadrotors, are most of the time moving with a smooth
trajectory. Thus, a simple prior that incorporates smooth motion is to assume constant
velocity as it is proposed in [MAMT15]. During the matching the 3D line-segments are
projected into the image plane using the pose, which is at this point roughly predicted.
For each projected segment we then collect all detected line-segments which are located
nearby and select the closest one as 2D correspondent if the distance measure is below
an empirically selected threshold. The following metric m(·) is used as distance measure
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for the two line segments:

m(li, l j) :=

{
dpro j(li, l j) if li and Pi(l j) overlap
dpro j(li, l j)+dmin(li, l j)

2 else.
(3.1)

Here li, l j ∈ R4, i, j ∈ N are the two line-segments parameterized by their endpoints,
Pi(l j) is the line-segment given by perpendicularly projecting the endpoints of l j onto li
and dpro j(·) is defined as:

dpro j(li, l j) := d2
s,i, j +d2

e,i, j, (3.2)

where d{e,s},i, j denotes the perpendicular distance from the start and endpoint of line seg-
ment li to the infinite expansion of l j. Those distances are computed the same way as
in section 3.3.5 and in [ZK14], whereas for the usage in metric m(·) line segment l j is
treated as infinite line l∞j . In figure 3.4 we provide a visualization of the metric. Note,
when both line-segments are almost collinear but do not overlap, we additionally have to
take into account the shortest distance dmin(·) between both segments. It turns out that
using m(·) alone is sufficient to obtain robust tracking results in a way that no additional
descriptor distance needs to be taken into account. With the motion assumption we im-
plicitly reduce the number of possible matches for each line-segment which results in
an overall decreased matching time, compared to standard descriptor matching. More-
over, the matches become more robust to outliers due to the limited number of candidate
matches. If the number of matches exceeds a threshold, we treat the motion model as
valid and further refine the guessed pose at the pose optimization step in section 3.3.5.

3.3.4 Descriptor Tracking
In our tests the motion tracking approach in section 3.3.3 most of the time yielded valid
motion models. But on sudden movements the motion remained unpredictable for our
method. Thus, if no motion on the camera movement exists we attempt to track the line-
segments using a descriptor-matching method. Therefore, each line-segment is described
based on its local appearance, which makes feature-descriptors less prone to camera mo-
tion and imaging effects. As descriptor we use the LBD [ZK13] which is explained in
section 3.3.2. To become more robust to outliers we apply our heuristic filter introduced
in section 3.3.1. The pose optimization in section 3.3.5 further uses the Huber loss func-
tion [H∗64] to reduce the impact of the remaining outliers.

3.3.5 Pose optimization
In this section we describe the optimization of the pose θ ∈ SE(3) (where SE(3) denotes
the special Euclidean group of R3) given the tracked 2D-3D correspondences. The 3D
line-segments Γ ∈R6, as well as the appropriate 2D correspondences ld ∈R4 are param-
eterized by their endpoints. We project each 3D line model with the projection function
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Figure 3.5: Error calculation in the pose optimization. The dashed blue line lp is the
infinite line projected from the Cayley 3D line model. The black line segment ld is the
detected line segment corresponding to the 3D line model. ps and pe are ld’s endpoints
which are projected onto lp with the projected distances d1 and d2 that are used for the
error calculation. [LRS19] ©2019 IEEE

π : SE(3)×R6→R2 into the image plane of the current frame using the estimated pose,
where the projected line now is represented as infinite 2D line. This is depicted in figure
3.5 where lp denotes the projected infinite 2D line and ld denotes the observed line seg-
ment. We calculate endpoint distances between each segment ld and the corresponding
line lp by projecting the start point ps and the end point pe of ld onto lp giving us the
distances ds and de respectively. We want to minimize these distances to optimize the
pose. Therefore, we formulate a cost function to minimize:

θ
∗ = argmin

θ
∑
i∈M

ρh(es,i + ee,i) (3.3)

where M is the set of our 2D to 3D matches, ρh is the Huber loss function [H∗64] and
es,i and ee,i are our errors from projection as proposed in [ZK14]:

es = d2
s = (π(θ ,Γ)⊥ · ps)

2

ee = d2
e = (π(θ ,Γ)⊥ · pe)

2,
(3.4)

with (·)⊥ denoting the normal of the implicitly parameterized projected line. We use the
Ceres Solver optimization library [AMO20] for the minimization.

3.3.6 Well Parameterized Local Bundle Adjustment on Lines
We perform a local bundle adjustment over the recent frames to improve the accuracy.
However, unlike most other VO/VSLAM approaches, we do not use 3D line endpoints
in our bundle adjustment. Endpoints are often unstable in their exact position along the
line due to noise and partial occlusions. Furthermore using them in the optimization is
not a good idea because they add unnecessary degrees of freedom to it which leads to an
over-parametrization resulting in an inefficient optimization. As we need line-segments
for motion tracking, we recreate them after the bundle adjustment. Outside the bundle
adjustment, we represent our 3D lines Γ∈R6 with a normalized direction l ∈R3 through
a point p ∈ R3 and the endpoints are given by scalar values.
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Inside the bundle adjustment, we follow the procedure supposed in [ZK14] and start
by representing our lines in Plücker coordinates:

Γ = (m, l) with m = p× l, (3.5)

now m is called the line momentum and represents the normal to the plane through the
line and the coordinate origin. The magnitude is equal to the distance from the line to the
origin. There are two constraints that have to be enforced when working with Plücker
lines:

||l||= 1 and lT m = 0. (3.6)

Fortunately, these constraints are guaranteed at initialization time. Unfortunately, it is
inconvenient to enforce these constraints during the bundle adjustment optimization.
Therefore, [ZK14] developed a Cayley representation of spatial lines which automati-
cally guarantees that the constraints are satisfied during optimization: v = (ω,s) where

ω = ||m||, [s]x = (Q− I)(Q+ I)−1, with

Q =

{
[l,e1,e2] if ||m|| ≤ τ;
[l, m
||m|| ,

l×m
||l×m|| ] else.

(3.7)

τ is a small number close to zero (e.g.10−7). It is used to overcome a singularity when
||m|| = 0 as Q would then degenerate to [l,0,0]. To avoid that, Q can be set to [l,e1,e2]
with e1 and e2 being one pair of the orthogonal base of the nullspace formed by the linear
system lT x = 0. To get Plücker coordinates from the Cayley representation one simply
calculates l = q1 and m = ωq2 with:

Q = [q1,q2,q3] = (l− [s]x)−1(l+[s]x)

=
(1−||s||2)l+2[s]x +2ssT

1+ ||s||2
(3.8)

To calculate the error during the optimization, the Cayley line is converted to Plücker
coordinates and then projected using the cofactor matrix of the camera calibration matrix
co f (K) and the camera pose represented by R and t:

`∼ co f (K)R[m− t× l], with

co f (K) =

 fy 0 0
0 fx 0
− fyx0 − fxy0 fx fy

 (3.9)

This concludes the formulas, necessary to perform an efficient optimization with 3D
lines, avoiding over-parametrization and internal gauge freedoms. More details and their
derivation can be found in [ZK14].

42



3.4 Results

The optimization is similar as in the previous section, but additionally the Cayley lines
and the poses from the previous frames, denoted in the set K, are refined X = {θk,vi}:

X ∗ = argmin
X ∑

k∈K
∑

i∈Mk

ρh(es,i + ee,i) (3.10)

The error function is similar to equation 3.4 except that here the Cayley line v has to be
projected. Therefore it is transformed into Plücker coordinates via equation 3.8 and then
projected using equation 3.9.

Now to retrieve endpoints for the infinite 3D lines, we project each of their 2D obser-
vations’ endpoints onto them and determine the closest intersection point on the infinite
3D line. Then, we choose the median of all projected start point positions and of all
projected end point positions as position for the new start and for the new end point re-
spectively. These endpoints from the 3D lines are only used in our motion tracking, they
are not required in the bundle adjustment.
A note on the choice of the error function: We tested multiple different error functions of
which some directly included the angle between the lines or the cosine of it, the closest
distance between the lines and or the length of the lines. The chosen function yielded
the best accuracy while the results did not vary greatly. Also it is a simple but powerful
function as it incorporates the angle indirectly, the distance between the lines and also the
length of the line observation all by itself. Due to its nonlinearity, it automatically pulls
the lines closer to each other even when the lines already overlap. Additionally, when
increasing the length of the line and keeping the angular distance constant, and greater
than zero, the error increases. This is good as longer lines contain more information
(more pixels are involved) and are therefore more precise. It is an advantage to avoid the
usage of endpoints of 3D line models in the optimization because the location informa-
tion of lines is very precise orthogonal to the line direction. This is because lines can
accurately be fitted on an edge. But the beginning and ending of a line are more prone
to vary depending on the chosen line detector and on occlusions. Thus the locational
precision along the line direction, and therefore the usage of endpoints, is not beneficial
in the optimization. In contrast to bundle adjustment, where correspondences already
exist, endpoints are beneficial in the tracking phase to find the correct correspondences,
even when the endpoint location is not very precise along the line direction. Therefore
we use a different error function in our tracking as described in section 3.3.3.

3.4 Results
All our experiments were carried out on a Notebook Computer equipped with 16 GB
RAM and an i7 4700MQ, 2.4 GHz (3.4 GHz turbo), 6 MB cache fourth generation Intel-
Core-i-Series Mobile Processor. We saved our trajectories in the TUM format1 and used

1https://vision.in.tum.de/data/datasets/rgbd-dataset/file formats
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the evo2 tool to evaluate them.

3.4.1 EuRoC Dataset

Figure 3.7: This figure shows the synthetic scene that we used to evaluate the state-of-
the-art line based visual odometry systems. The scene is difficult because it is barely
textured and only shows a few simple objects. But it provides enough structure on the
objects for tracking. [LRS19] ©2019 IEEE

The EuRoC datasets [BNG∗16] were originally recorded for the European Robotics
Challenges3. They contain sequences which were recorded in a Machine Hall and in
a Vicon Room. The images in the datasets were recorded with a stereo camera setup
having a baseline of 11cm and at 752×480 resolution. Ground truth data is available for
all of them. We neglected the sequence V2-03-dif as it has very fast motions with blurred
images which were not manageable by any of the algorithms without a relocalization on
an existing map which is not done in VO.

Table 3.1 compares our trajectories obtained on the EuRoC Dataset with the ones
of current state-of-the-art approaches ([GOBGJ16],[GOGJ16],[GOZNM∗17],[MAT17]).
We compare the root mean squared errors (RMSE) of the relative poses, which reveals
the drift since it compares locally. The relative pose error E over the aligned trajectories
is defined as: Ei := (A−1

i Ai+1)
−1(B−1

i Bi+1), where A,B ∈ SE(3) are the corresponding
poses from the two compared trajectories. It’s split in two parts: the left side shows
the algorithms which are able to work on lines only whereas the right side shows point
and line algorithms. Our LVO is shown in both parts for comparison. StVO-L / StVO-PL
denote the method in [GOGJ16] with lines only and with points and lines combined. The
method [GOZNM∗17] is similarly denoted with L-SLAM (lines only) and PL-SLAM
(points and lines). PL-SVO only works with points and lines which is [GOBGJ16]. And
ORB-SLAM2 [MAT17] only uses points. We see that our LVO leads to better results in

2https://github.com/MichaelGrupp/evo
3http://www.euroc-project.eu/
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3.4 Results

Table 3.2: Average runtimes of particular parts of LVO.

Machine Hall Vicon Room
Total Time 78.76916 ms 51.52926 ms
Motion Tracking 0.976468 ms 0.740836 ms
Pose Estimation 5.696434 ms 4.491312 ms
Heuristic Filter 24.85896 ms 12.83857 ms
Frame Preparation 40.27929 ms 27.43780 ms
Triangulation 0.799423 ms 0.712026 ms
Local BA 196.1276 ms 169.189 ms

[LRS19] ©2019 IEEE

all sequences when compared to the other line only methods which demonstrates that its
a great advancement in line only VO. In V2-01-easy for example it produces less than
half the error than StVO-L does. We argue that this is because we keep and use more lines
than StVO (see figure 3.6) due to our motion tracking (section 3.3.3) plus our heuristic
filter matching (section 3.3.1). Even when compared to other methods using both, points
and lines, it performs better in most sequences while only using lines.

Table 3.2 shows average runtimes of particular parts of LVO. We see that it runs faster
in the Vicon Room. This is because that room provides a less complex scenery in which
fewer line-segments are detected than in the Machine Hall. Motion tracking, which cre-
ates most of the matches, takes less than a millisecond for computation. The local bundle
adjustment runs in a parallel thread.

3.4.2 Low Textured (Simulated) Dataset
We built an OpenGL5 based simulation environment to create a synthetic scene with
corresponding ground truth data. The scene just contains a few quad and pyramid objects
that are coloured but not textured. This can be seen in figure 3.7. We designed it to test
the algorithms under particularly difficult conditions. The lack of texture makes it hard
for point feature based algorithms to find features. Structure is available but it is rare as
the scene does not contain many objects. We again tested the methods from the previous
section on the two sequences.

In table 3.3 we can see that LVO manages both sequences, while all others fail in at
least one sequence. An experiment is marked as failed if the method does not manage to

4We changed the standard configuration of the system to maximize the accuracy to achieve these results.
Thereby the runtime increased tenfold.

5https://www.opengl.org/

47



Chapter 3 Line only stereo Visual Odometry

Table 3.3: Synthetic dataset results. A Dash indicates that the experiment failed.

Sequence LVO StVO-PL PL-SVO PL-SLAM ORB-SLAM2
Scene1-short X X - X -
Scene2-long X - X - -

[LRS19] ©2019 IEEE

keep track of the features smoothly or if it does not manage to initialize at all.
One particular reason why the other tested methods are less reliable on these scenes

is that their feature tracking mainly relies on visual descriptor techniques. Visual feature
descriptors are computed from the variation in pixel intensities within image patches.
But the low amount of texture in the artificial scenes do generally not allow the com-
putation of distinctive descriptors. Tracking line segments instead of points enables us
to match features relying solely on the scenes geometry, without the need of descriptors
(see section 3.3.3). Additionaly we apply our heuristic matching filter on the remaining
untracked lines to gather further line matches, where the LBD is only utilized as a prior
(see section 3.3.1).

3.5 Summary
In this chapter we have proposed LVO, a visual odometry algorithm that uses lines only.
We have shown that by using line features over points, visual odometry becomes more
reliable in situations where texture is rare but structure is still available. This is often the
case in man-made, indoor environments. Using line segments over points furthermore
empowers feature matching without the need of feature descriptors. Instead it can be
based solely on geometric constraints.

We proposed a matching filter that improves our matching results by taking into ac-
count the local neighborhood of the features. This is a novel approach to increase the
robustness of matches and an alternative to the often used practice of mutually best
matches. It is also easily applicable in other situations since it does not require a distance
measure, but just a general matching estimation as prior. We have also implemented an
optimization which uses a minimal four parameter representation for 3D lines avoiding
overparametrization, which has not been used for line based VO/VSLAM methods yet
and showed good results. We evaluated our system on the EuRoC [BNG∗16] benchmark
which showed that our algorithm is an improvement in indoor environments w.r.t. com-
peting state of the art methods and especially that it is a good advancement in terms of
approaches which use lines only.

In this approach almost all lines were matched by tracking and our heuristic filter. It
is still a difficult task to calculate an accurate and distinctive descriptor for lines. There-
fore, we chose to address this problem in the next chapter. Instead of approaching this
challenge with an analytical solution, as others have done before [WLW09] [WWH09]
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3.5 Summary

[LWD10] [ZK13], we chose to address it using machine learning techniques. This way,
we do not have to try many different ways on how to compose the descriptor, because the
network itself figures out which areas around the line are important and how it should
weight them for the best result.
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Chapter 4

A Deep Learning Based Line
Descriptor for Line Feature Matching
This chapter presents our Deep Learning Based Line Descriptor for Line Feature Match-
ing. The chapter is mostly cited from the paper:

©2019 IEEE. Reprinted, with permission, from Manuel Lange, Fabian
Schweinfurth and Andreas Schilling, DLD: A Deep Learning Based
Line Descriptor for Line Feature Matching, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 11/2019. [LSS19]

4.1 Related Work
Many computer vision related problems are based on, or at least supported by visual fea-
tures. For example: Object recognition [Low99], Multi-View Stereo [GSC∗07], 3D re-
construction [MVGV09] [FLG14], Structure from Motion (SfM) [SSS06], Visual Odom-
etry (VO) [NNB04], Visual Simultaneous Localization and Mapping [DRMS07], place
recognition [Mil13] and terrain classification [FB12]. All of the afore mentioned works
deal with point features to address their problem. There are various detectors and descrip-
tors for point features [Low04] [BTVG06] [RRKB11]. Learning based point descriptors
have shown an improved performance compared to the established analytic descriptors
[FDB14][SSTF∗15][SVZ14]. But points are not always available in sufficient quantities.
They can be hard to find in blurred or noisy images, or in images with many homoge-
neous areas like in man made environments. Buildings, for example, are hardly textured.
But their edged and features, such as doors and windows, yield structural information.

Line features came into focus just a couple of years ago. They require more pro-
cessing power to be extracted than most point features do. But they made it possible
to improve the robustness and accuracy of solutions to computer vision challenges men-
tioned earlier. Line features are well suited to represent structure [HMB14]. They helped
to improve Structure from Motion [ZK14], Visual Odometry [LRS19], Visual Simulta-
neous Localization and Mapping [GOZNM∗17], and place recognition using a bag of
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words technique [DWLK19].
There are multiple line detection algorithms by now. A method for line detection

that was published in the early seventies is based on the Hough transform [DH72]. A
disadvantage is its relatively high computational cost. Faster algorithms were released
in the last decade. Famous ones are the EDLine detector from Cuneyt Akinlar and Ci-
han Topal [AT11], the LSD Line Segment Detector by Rafael Grompone von Gioi et al.
[VGJMR12], and a work of Jin Han Lee et al. [LLZ∗14], which was coined Fast Line
Detector.
The matching of features is fundamental when using them to accomplish computer vision
tasks. Geometric, and descriptor based methods are most common. If features shall be
tracked in a video stream with small displacements between frames, matching based on
predictions and simple geometry is often used as it is fast [NPVCL08][GOGJ18][LRS19].
However, if there are no predictions, and the distance between images is larger, tracking
typically fails, and more complex geometric approaches are required.
A recent approach of Wang et al. forms groups of lines to create ’line signatures’ in
order to match them over wide baselines [WNY09]. Kim and Lee focused on matching
images based on coplanar line intersections while they designed their work ”for dealing
with poorly textured and/or non-planar structured scenes” [KL10]. Li et al. [LYL∗16]
developed a hierarchical method, which is based on ’Line-Junction-Line’ structures that
are each formed of two adjacent lines incorporating their intersection. A mix using geo-
metric ideas and the computation of a descriptor is presented by Kwon et al. [KKKM16].
They constructed a descriptor out of multiple line segments. Their intention was to tackle
the difficulty that the endpoints of lines may change between different images, e.g. on
curved objects, or due to occlusions. But their descriptor is computationally expensive.
The calculation of their descriptors takes seven seconds and matching another six sec-
onds (at 700×500 image resolution).

We will focus on appearance based line descriptors from here on. Early line descrip-
tors placed point descriptors along the line [LWD10], or used descriptors which are sim-
ilar to histogram based point descriptors along and around the line [WLW09] [HS12].
Clearly, this does not adapt well to the characteristics of lines. The mean standard-
deviation line descriptor (MSLD) proposed by Wang et al. [WWH09] is one of the most
compared to, and cited appearance based line descriptors. Lilian Zhang evaluated the
MSLD and his Line Band Descriptor (LBD)[ZK13] in his dissertation [Zha13] show-
ing that the LBD performs faster with more correct and less false matches. Inspired
by the ORB point descriptor Zhuang et al. developed A Binary Robust Line Descrip-
tor[ZZPL16]. They achieved to be faster than the LBD. Yet, they were not as accurate.
The LBD is the only line descriptor that made it into OpenCV [Bra00]. For these reasons,
we chose the LBD as one of the works to compare to. We will go more into detail about it
in our results in sections 4.4 and 5.3. A drawback of descriptor computing methods like
the MSLD and the LBD is that they lose much of the structural information around the
line by taking (weighted) means along the line. Due to recent years findings, we argue
that this is a task for which deep neural networks are well suited. We also give an insight
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Figure 4.1: Basic line segment matching procedure. First, line segments are detected
on the input images. Then, descriptors are computed by our DLD network. Finally,
these descriptors can be matched by calculating the squared euclidean distance. [LSS19]
©2019 IEEE
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into details of the Learnable Line Segment Descriptor for Visual SLAM by Vakhitov
and Lempitsky [VL19], which is a recent learning based method that we included in the
benchmarks in the next chapter 5.3.

Patch matching can also be noted here; it has been researched thoroughly [ZK15]
[TFW17] [ZL16] [HLJ∗15] [ZK17]. A survey of image matching is given in [LZL∗19].
One might think that appearance based line matching is similar to patch matching. But
in fact, lines are a certain type of feature with special characteristics. A line can lay on
the edge of an object with the object itself being on one side of the line and something
else being on the other side of the line. In this specific case it’s important that the latter
lies in the background. Since this line, depending on the perspective, separates the object
and the background, we will call it an edge line. Such an edge line stays the same line
even if the side showing the background changes. Additionally, areas closer to the line
can be more important than those further away. One should also keep in mind that a line
extends in one direction which differs for regular patches. Those special characteristics
distinguish lines from patches. Furthermore, most patch matching methods use the whole
image patch, whereas we reduce the line to a small 256-Bit descriptor, similarly as it is
done for the LBD.

The Unreal Engine was utilized to create training data. We chose to use four differ-
ent scenes to obtain data from different environments: Scifi Hallway, Epic Zen Garden,
Infinity Blade: Grass Lands and a living room of the unreal engine showcase realistic ren-
dering example. From these scenes we took 18842 stereo images including the 3D-Map
for each image. Based on the 3D coordinate information, we matched the line segments
from the left and right images. To deal with the uncertainty of the line detection, we
employed a RANSAC process to improve the quality of our ground truth matching data.

We chose to train a ResNet [HZRS16], a well trainable standard architecture, on our
matching problem. Regular ResNet comes in different depths, starting with size 18 upto
size 152. After some tests, we found that the smallest ResNet with size 18 works best. As
this is the smallest size, we wanted to know if an even smaller net would also work. Thus,
we created a ResNet with size 10. We achieved a result which is as accurate as the size
18 ResNet, but faster due to the reduced size. We also tried a DenseNet [HLVDMW17],
but did not achieve a similarly good performance using it.

Our error function uses a triplet loss which was originally developed by Weinberg and
Saul [WS09] and got popular through Schroff et al. [SKP15]. Each triplet consists of
three lines, the first line is the one which the other two lines are compared to by descriptor
distance. The net trains to calculate the descriptor in a way that minimizes the distance
between the matching pair and maximises the distance of the first line’s descriptor to the
false line’s descriptor. Our main contributions are as follows:

• We present a new learning based line descriptor which we compare to the state-of-
the-art, showing an advancement especially in terms of the matching accuracy.

• We elaborate how to generate huge amounts of learning data for line segment
matching and how to use it for training a network with triplet loss.
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4.2 Data Generation

An overview of the matching procedure is drawn in figure 4.1. Section 4.2 gives a
detailed explanation of our data generation process. In Section 4.3 we describe how the
learning was conducted and in 4.4 the results are presented. In Section 4.5 we draw a
conclusion of our proposed method.

4.2 Data Generation

Machine Learning in general requires a lot of data to learn from. A difficulty when
training a network for line matching is the lack of suitable datasets. Established machine
learning datasets for computer vision as the Cityscapes Dataset [COR∗16] and the KITTI
Vision Benchmark Suite[GLSU13] do not come with the necessary information. Regular
images are not enough, as the correspondences between lines have to be known. Thus,
we chose to create our own data with the necessary information utilizing the Unreal
Engine.

4.2.1 Unreal Engine 4 - Ground truth data generation

The Unreal Engine 4 (UE) comes with a realistic rendering engine and many freely avail-
able sceneries. From those scenes, we chose four quite different ones:
- The Epic Zen Garden (EZG) shows an outdoor modern garden area including some
trees, a pool and multiple structured things like outdoor furniture, tiles and the house.
- The Infinity Blade: Grass Lands (IB:GL) is a very rocky wide open scenery including
a path mostly made of stone with the see beneath it.
- The Scifi Hallway (ScHw) shows a science fiction hallway with many details like pipes
and other tech things on the walls and standing around.
- The living room (LvR) from the unreal engine showcase realistic rendering example
shows a basic living room with a table, a couch, vases, a plant and pictures as well as a
TV on the wall.
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Figure 4.2: The top left image shows the camera view from which it is not possible to
see if the lines’ depth is correct. The top right and bottom left images show the 3D
scene from the side. One can see that the 3D line segments are quite skewed in the top
right image. The bottom left image shows the same scene but with the 3D line segments
corrected by the RANSAC scheme. The bottom right image shows a visual illustration
of a line segment which is split in three parts (cutouts). [LSS19] ©2019 IEEE
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We chose those diverse scenes to provide the learning process with a wide variety of
different examples. To extract the images and the corresponding 3D-Coordinate-Maps,
we defined long splines through the scenes as a path for the camera. Following this path
we stepped slowly through the scenes recording data at each step. In total 37689 steps
were recorded (12068 (EZG), 17875 (IB:GL), 5328 (ScHw), 2418 (LvR)) with about 11.9
Million lines overall.

Our problem is to acquire large quantities of data with ground truth information for
our training on line segment matching. To solve this, we extract image pairs from the
UE that contain a lot of matching lines, visible in both images. However it is difficult to
identify the ground truth matches. We therefore use the Z-Buffer information from the
UE for this identification.

First, we start by detecting 2D line segments with the EDLine detector. Then, we use
the extracted 3D-Map to unproject the detected 2D line segments to 3D line segments
in the observed scene. Having this 3D information, we project the 3D line segments to
2D line segments into the second stereo image in which they are matched. There, the
matching is done in 2D. To be a valid match, two lines have to have a similar angle, have
to overlap in their length sideways (in respect to their direction) and have to be close to
each other.

Unfortunately, when unprojecting a 2D line segment the resulting 3D line segment is
occasionally inaccurate. The problem here is that the 2D segments from the line detection
are not always exact. When the segment is an edge line (see Section 4.1), it happens that
part of it reaches over the edge. In this case the underlying 3D coordinates are wrong
as they come from the background. This results in an inaccurate 3D segment sometimes
pointing deep into the scene. To deal with such problems, we employed a RANSAC
[FB81] scheme: We sample ten points evenly distributed on the 2D line segment. Of
those points, we get the 3D coordinates from the map to obtain 3D points. Then pairs
of two are selected to calculate an infinite 3D line model and the other points are used
to validate the line model. If enough of the other points are close, then the model is
accepted. The distance of the other points is also used as a measure of quality of the
model. Using this scheme improves the 3D lines and, thereby, the quality of the line
matches. The improvement is depicted in figure 4.2.

4.3 Learning
ResNet has demonstrated a great performance on various benchmarks [HZRS16]. It also
solved the problem of deeper networks performing worse than their smaller counterparts
by introducing so called identity shortcut connections. For these reasons, we chose this
architecture for our line matching problem.

During our first experiments with ResNets in different sizes, we quickly discovered
that the network does not have to be as deep as 18-layers to solve our problem. The
smallest ResNet described by Kaiming He et al. is an 18-layer version. We created a

57



Chapter 4 A Deep Learning Based Line Descriptor for Line Feature Matching

10-layer version by halving the number of the 3× 3 convolutions in the middle of the
network which still performed similarly well.

To enable the network to train a solution on our line matching problem, we had to
adjust the data to make it suitable to be provided to the network. As lines are defined by
gradients and gradients have a fixed direction going from dark to bright, the line detectors
use this gradient direction to assign lines with a fixed direction. We use this direction to
rotate the lines facing upwards and as the direction of a line is consistent from one image
to another, the lines always face the same direction. While training the network we found
out, that the training error reduces to a considerably lower value and the results improve,
when we use line segments of a fixed length. In the experiments, we show that it still
performs the matching well on line segments with variable length; even when trained on
fixed length line segments. To obtain fixed length segments, one option is to scale the
line segments. But that usually means interpolation, which implies a loss in information
when scaling down. Thus, we chose a different approach which splits the line segment
in up to three parts, depending on its length.

We call the parts cutouts and determine their number according to the following
scheme:

#cutouts =


1 if l

t ≤ 1.2
3 if l

t ≥ 1.4
2 else

(4.1)

where l is the length of the line segment and t is the desired fixed length (in most
of our experiments, we set t to 120 px). One has to keep in mind that the matching is
appearance based. Thus we made sure, that even with three cutouts the two which are
furthest apart from each other still have a slight overlap, as it can be seen in the bottom
right image of figure 4.2. The cutouts have labels which assign them to the line segment
which they originate from. This information is used to recover which lines are matched
to each other.

One more thing to note is the setup of the line extraction. Line extractors usually
have multiple parameters which influence the line length directly, e.g. the minimum line
length, or indirectly, e.g. the curvature setting which determines at which curvature a
segment is split in two segments. At first glance, it might seem that when the same image
is used at a higher resolution, the same lines would be detected and reach over more
pixels, but this is often not the case. The additional pixels lead to different detections;
as for example curvatures now include more pixels than before and some lines may be
detected in the surrounding, which also have an influence on the detection (due to the
often used near field analysis which suppresses too many lines being detected in noisy
or gradient rich areas, e.g. on a tree). Therefore, the resolution does not influence the
line segment length and matching very much; the main factor is the choice of the line
segment detector and its parameter setup.

To avoid that the network specializes on one scene, it is important that the examples
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Figure 4.3: Visual illustration of a triplet matching sample. [LSS19] ©2019 IEEE

are provided randomly during the training phase.

4.3.1 Triplet loss

We chose to use the triplet loss for our descriptor learning, as this technique yielded good
results for Nearest-Neighbour-Classification [WS09][SKP15]. The idea using the triplet
loss on line segments is as follows: For a given line segment sa

i ∈ S two line segments s+i
(positive) and s−i (negative) are selected. For their labels l ∈ L, that hold the information
which lines match, applies la

i = l+i and la
i 6= l−i , which means that one segment is a

match and the other is not (see figure 4.3). When calculating the descriptors (here called
embedding) for each segment, using the function e(s), their descriptor distance is given
by the squared euclidean distance. Additionally we enforce a margin δ in the descriptor
distance between matching segments and non-matching ones which leads us to:

dist
(
e(sa

i ), e(s+i )
)
+δ < dist

(
e(sa

i ), e(s−i )
)

(4.2)

This triplet loss function has the advantage of not only trying to bring close embed-
dings together, but it pushes non-matching embeddings far apart from each other at the
same time.

Many triplets will fulfil equation 4.2 and not encourage a fast convergence. Therefore
it is beneficial to select triplets that are difficult, i.e. those which violate equation 4.2.
Thus, we use the margin δ to make sure that we get difficult triplets, which are still
representative. Therefore the loss function L to be minimized can be written as:

L = max([dist
(
e(sa

i ), e(s+i )
)

− dist
(
e(sa

i ), e(s−i )
)
+δ ], 0) (4.3)

Triplets can be generated online or offline. Generating them offline, e.g. based on
the most recent network checkpoint would have the advantage to select from a greater
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Figure 4.4: This plot shows the receiver operating characteristic curves (ROC-Curve) of
our method vs the LBD over all of our eight labelled Middlebury Images [SHK∗14].
The legend shows the False Positive Rate (FPR) at the True Positive Rate (TPR) of 95%
(dashed line). An advancement of our method is clearly visible. [LSS19] ©2019 IEEE

amount of segments. But it also has the disadvantage that the triplets are not always
based on the most recent weights in the network. Also Schroff et al. [SKP15] found it
inconclusive whether doing it offline is beneficial. We chose the online generation which
yields triplets based on the current mini-batch using the most recent weights.

4.4 Experimental Results

In this section, we evaluate the performance of our descriptor by comparison to the state-
of-the-art LBD [ZK13] descriptor. To validate that our descriptor yields good results
with real world data, even while trained on synthetic data, we included some real world
images from the Middlebury Stereo Dataset [SHK∗14] and some self shot images. Our
results on the Middlebury images are discussed in the next paragraph and are shown in
figure 4.4 and in table 4.1. Furthermore we wanted to evaluate our method with arbitrary
camera poses and under difficult conditions. Therefore we took more images, for which
the results are shown in figure 4.5.

The EDLine detector [AT11] was used for the line detection with its standard parame-
ter settings. For a fair comparison, the size of the segments was the same for our method
as for the LBD. During training we used stochastic gradient descent as optimizer and a
δ margin value of five in the triplet loss. The training took approximately one day on a
GeForce GTX 1080. During testing, the calculation of one descriptor on the CPU (Core
i7 3.4 GHz) takes about one millisecond.
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Chapter 4 A Deep Learning Based Line Descriptor for Line Feature Matching

(a) (b)

(c) (d)

(e) (f)

Figure 4.5: The plots (a) to (f) show the ROC-Curves for the following difficult condi-
tions: (a) strong blurring (351 Ground Truth (GT) matches), (b) high jpeg compression
(351 GT matches), (c) intense noise (351 GT matches), (d) about 45◦ rotation (106 GT
matches), (e) scale change (35 GT matches) and (f) viewpoint change (122 GT matches).
TPR is the true positive rate and FPR is the false positive rate. The greater the area under
the curve, the better. [LSS19] ©2019 IEEE
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4.4 Experimental Results

Middlebury evaluation

We took the stereo image pairs from eight scenes of the Middlebury Dataset, ran the line
segment detection and labelled the line segments to obtain ground truth matches. The re-
ceiver operating characteristic curves (ROC-Curves) including all matches from all eight
images are plotted in figure 4.4. We can see that our method is a great advancement in
comparison to the LBD. We did not plot the ROC curves to all eight labelled scenes, as
they are all similar to the overall ROC curves. But the percentage of false matches at
95% of true matches is listed in table 4.1. This table also lists the number of matches per
scene. We can also see here, that our method does better in all scenes.

Difficult conditions scenes

We hand labelled some real world images showing difficult situations for further eval-
uation of our method compared to the LBD. The results are depicted in multiple ROC
curves in figure 4.5. All of the subplots contain a legend which shows the methods false
positive rate (FPR) at the true positive rate (TPR) of 95% (less is better). The first plot,
figure 4.5(a), demonstrates the performance when strong blur is on one of the two im-
ages. We can see that it is difficult for both methods, but ours can handle it better. In
figure 4.5(b) a high jpeg compression rate is chosen for one image which is not very
difficult for our method, but affects the LBD to a considerable amount. Intense noise is
added to the image related to in figure 4.5(c) which impacts both methods negatively, but
our method is affected only about half as much as the LBD. We rotated one image about
45◦ which barely has an effect on both methods, see figure 4.5(d). That was expected,
as both methods use a region along the line, making them independent to global rota-
tions. Figure 4.5(e) shows the ROC curves when a strong scale change took place. Both
methods are quite affected. We did not augment our training data especially for scale
change, still our method is somewhat less affected. The results to a viewpoint change
of over a couple of meters and simultaneously more than a 45◦ change in the viewing
direction are plotted in figure 4.5(f). We can see that our approach performs more than
twice as well as the LBD. This is an important finding, as wide baseline matching is a
difficult yet important task for applications like 3D reconstruction from arbitrary poses
or relocalization for a lost robot.
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Figure 4.6: This figure shows the error curve of the training error. The x-axis shows the
number of training steps and the y-axis shows the training error.

4.5 Summary
This chapter presents a new deep learning based line segment matching approach. We
elaborated our ground truth data generation using the Unreal Engine 4 and multiple dif-
ferent scenarios thereof to obtain a wide variety of samples. Using these samples, we
trained a ResNet and explained how to use the triplet loss to train line segment descrip-
tors for descriptor matching.

We were able to show our method is an advancement compared to the state-of-the-art
LBD descriptor. This was shown on our artificial datasets as well as on images from the
Middlebury Dataset and on additional scenes with difficult conditions showing blurring,
jpeg compression, noise, rotation, scale change and viewpoint change.

In the next chapter we build upon this descriptor to create an improved version which
utilizes image pyramids to take more of the surrounding into account and which uses
wavelets as a preprocessing step.
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Chapter 5

A Wavelet and Learning based Line
Descriptor for Line Feature Matching
This chapter presents our Wavelet and Learning based Line Descriptor for Line Feature
Matching. The chapter is mostly cited from the paper:

WLD: A Wavelet and Learning based Line Descriptor for Line
Feature Matching, Vision, Modeling, and Visualization 2020,
10.2312/vmv.20201186
©2020 Manuel Lange, Claudio Raisch and Andreas Schilling
Eurographics Proceedings ©2020 The Eurographics Association. [LRS20]

We gave an overview about line related work earlier in section 4.1, for this reason we
will put an emphasis on wavelets here.

5.1 Wavelet related work
In the eighties the term wavelets was coined by Alex Grossman and Jean Morlet [GM84].
While researching square integrable real-valued functions, they found that these can
be represented by creating a family of functions using shifts and dilations on a single
function, which they called wavelet. There are different types of wavelets, and some
have already been found before the eighties. Famous ones are the Haar wavelet, the
Cohen-Daubechies-Feauveau-Wavelet and the Gabor wavelet. The Haar wavelet has
been named after Alfréd Haar, who proposed the Haar sequence in 1909, long before
wavelets became a field of research on their own. It is widely used in image processing
and pattern recognition due to its low computing requirements and its simplicity [PL04].
The Cohen-Daubechies-Feauveau-Wavelet (CDF-Wavelet) is used for image compres-
sion in the JPEG 2000 format. There are different variants of it: the CDF-5/3-Wavelet
(developed by D. Le Gall and Ali J. Tabatabai) is for lossless compression, and the CDF-
9/7-Wavelet (by Ingrid Daubechies) is used in the lossy compression algorithm. Gabor
wavelets, which are similar to Morlet wavelets, have been named after Dennis Gabor,
who researched communication theory [Gab46]. They minimize the uncertainty of the
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Figure 5.1: Top left shows the original image and top right shows the multi-scale pyramid
of it, both with some line segments highlighted for visualization. Middle right depicts
the wavelet convolution. The results of all layers are stacked together with the original
rgb cutout, as shown in the middle left image. The cutout stack is the input to the ResNet
which calculates a descriptor (bottom left). This descriptor can be compared to other
descriptors for matching (bottom right).
.................. ©[LRS20] Eurographics Proceedings ©2020 The Eurographics Association
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information that they carry by optimizing the trade off between spatial and frequency
resolution [Dau85]. Gabor wavelets are used in all kinds of perception and vision re-
lated tasks as, for example, in motion estimation [BP02], object representation [KS01],
visual attention analysis [BSV05], and texture classification [GPK02]. They are even
represented in the mammalian visual cortex as they support efficient processing of visual
information [Dau85] [Mal89] [Lee96]. Therefore, we chose the Gabor wavelet to extract
important information from our images as a preprocessing step in our method.
As a starting point of this work we used the Deep Learning based Line Descriptor (DLD)
from our group [LSS19]. We extended this approach by incorporating larger surround-
ings of the lines for the computation of each line descriptor. However, this would overly
increase the size of the used neural network and, thereby, slow down processing. To
avoid this, we use a multiscale image pyramid. Additionally, we introduce wavelets to
preprocess the image parts of the pyramid. In this preprocessing we use Gabor wavelets
to extract the important information from the image area, which is biologically moti-
vated, as mentioned before. An overview of the descriptor creation is given in figure 5.1.
The rest of this chapter is structured as follows: The next Section 5.2 explains our ap-
proach in detail. After that, we present the results including comparisons to other meth-
ods in Section 5.3. Finally, Section 5.4 concludes this chapter.

5.2 Our Method
In this section we give a detailed explanation of our method, including the data generation
for the learning process, the preprocessing using Gabor wavelets, and the training itself
with details about the network and the loss function.

5.2.1 Data Generation
In order to generate large amounts of learning data with ground truth information, we
needed a suitable simulation environment. It should also yield quite realistic image data
so that it worked well with real world data. Therefore, we chose the Unreal Engine 4
[Epi20], which is able to visualize very realistic scenes, as a simulation environment for
our data creation. There are various sceneries which are freely available. We chose four
different ones with varying environments: Epic Zen Garden, which shows an outdoor
garden area including a pond, and an angular concrete house with big glass windows,
Infinity Blade: Grass Lands is an earthy and rocky area including an old citadel reaching
out of the surrounding water, Scifi Hallway, showing a futuristic hallway which could
be part of a space station, and Living Room, which was used as tech demo for the En-
gine. We created splines in each of these scenes to move the camera along them. The
camera is moved stepwise, and images are taken at every step. In total the scenes con-
tain 37689 labelled stereo images, one for each step (12068 in Epic Zen Garden, 17875
in Infinity Blade: Grass Lands, 5328 in Scifi Hallway and 2418 steps in Living Room).
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The image-data includes the colour information, the depth, and, additionally, 3D coordi-
nates for each pixel in the image. It is used to detect the lines visible from the current
camera position and also to calculate the ground truth matching information of the lines.
Altogether we collected about 11.9 million line segment matches for our training.

5.2.2 Preprocessing

We call the image area around a line segment a cutout. The cutout of a line segment is
rotated by the same angle as the line segment, and contains the line segment itself in its
center. Depending on its size it includes more or less of the area surrounding the line
segment. A line segment’s neighborhood is very helpful when matching lines, but there
are cases where the broader neighborhood is especially important. For example, the line
segments on a bigger building with many similar windows are likely to look alike. This
makes matching difficult when only the closer surrounding is in focus. But if more of
the neighboring area is regarded, matching gets more reliable. For example, if the infor-
mation is included that the line segment on the window frame is close to a downspout,
or that it is on the third window counted from the right edge of the building. Therefore,
this should be part of the information when creating a descriptor for a line segment.

Wavelet Integration: We wanted to include a broader area around the line without
using large input layers in the network. For that reason we chose to shrink the cutout
area and, additionally, precompute it using Gabor wavelets. These wavelets are espe-
cially well suited for image processing as they optimize the trade off between spatial
and frequency resolution [Dau85], and they have been found in the human vision system
[Dau85] [Mal89] [Lee96] (see also 5.1). In order to increase the receptive field to include
a wider area around the line, we use an image pyramid. The pyramid has five levels and
the width and height are reduced by a factor of two from level to level. The lowest level
is the original image with three channels for red, green, and blue. From this level, we
copy a rectangular region around the line segment including all three colour channels for
the cutout. We will not consider the colour for the remaining levels. Thus, for the next
octave, we convert the image to grey values and scale it down by a factor of two. Then
we convolve it with the Gabor wavelet kernels. The 2D Gabor wavelet is given as:

ψ(x,y;σ ,θ ,λ ,φ ,γ) = e−
x′2+γ2y′2

2σ2 · ei(2π
x′
λ
+φ), (5.1)

where x,y are the coordinates of the center location, σ is the standard deviation of the
Gaussian window function, θ is the wavelet orientation angle, λ is the wavelength of the
sinusoidal factor, φ is the phase shift and γ is a factor defining the spatial aspect ratio. x′

and y′ are given as:
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x′ = xcosθ + ysinθ ,

y′ =−xsinθ + ycosθ .
(5.2)

We get an image for each kernel from which we copy another rectangular region
around the line segment with the line segment in its center. These rectangular regions are
of the same size as the ones from the previous level. But they contain more of the sur-
rounding of the line segment as the image is scaled down, compared to the previous level.
Also we did not extract the colour information here but the result of the convolution with
the Gabor wavelet kernels. We get one rectangular region for each kernel we convolved
with and stack them on top of the already extracted regions. We continue the process of
scaling, convolving and extracting the region for the next three levels. But for them, we
only keep scaling the width of the region (perpendicular to the line segment’s direction)
as the length of the region mostly is already far beyond the extent of the line segment
after scaling it once by a factor of 2. An overview is given in table 5.1, to efficiently
compute this in our implementation, we start by extracting the largest region around the
line segment. This is determined by the top most level in the pyramid. After the extrac-
tion, we rotate it to the same angle as the line segment. This rotated image patch is the
source for all the other levels. This way we only have to rotate once per line segment.
An alternative option would be to precalculate different levels and wavelet convolution
directions of the whole image, and extract the patches from them. We want the Gabor
wavelet kernel direction to be adjusted to the line segment direction. Thus precomput-
ing the convolutions on the whole image would mean to precompute the convolutions
in many different angles, so that there would be a pre-convolved image ready for every
line segment angle. If we accepted an angle difference tolerance of up to one degree, we
would need 360 precomputed convolution directions of the whole image for every level.
This would result in more calculations than the firstly described process which we chose.
This is because a usual Full HD image only contains a couple hundred lines.

Here we want to note that at first a fixed size for the rectangular region around a
line segment does not seem to be a good choice. One could think that lines will grow
drastically if the image size is increased. But while this can be the case for a few lines,
the majority of lines will be around a similar length in pixels. Lines are more likely to
get split in multiple parts if the resolution increases. This is because small curvatures
reach over more pixels in higher resolution images; also other influences can get more
prominent. Both may cause the detector to finish a line segment earlier. Usually with
higher resolutions more lines are found. One reason is that additional lines are split in
multiple parts, while another reason is that some lines will be detected which would not
have been detected in lower resolutions as they are too small or the gradient is not sharp
enough. The size of the line mostly depends on the line detector and its settings. The
region size we chose works very well with the EDLine detector [AT11] and with the LSD
[VGJMR12] using standard settings. While training works better with fixed region sizes,
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variable line lengths can also be used in normal operation due to the pooling layers in the
network.

Table 5.1: Network input - Layers of the cutout stack

Layer Description Level Size Receptive field
C

ol
ou

r Red Channel 0 100 x 27 100 x 27

Green Channel 0 100 x 27 100 x 27

Blue Channel 0 100 x 27 100 x 27

G
ab

or
w

av
el

et
D

ir
ec

tio
n Vertical 1 100 x 27 200 x 54

Horizontal 1 100 x 27 200 x 54

Vertical 2 100 x 27 200 x 108

Horizontal 2 100 x 27 200 x 108

Vertical 3 100 x 27 200 x 216

Horizontal 3 100 x 27 200 x 216

Vertical 4 100 x 27 200 x 432

Horizontal 4 100 x 27 200 x 432

©[LRS20] Eurographics Proceedings ©2020 The Eurographics Association

5.2.3 Training
The ResNet architecture set a new state of the art when it was released [HZRS16]. In
general, one would think that a more complex neural network will at least perform as
well as a less complex version of it, which has fewer layers, but, besides that, is the
same network. This is not guaranteed and until there was the ResNet architecture so
called exploding and vanishing gradients posed a difficult problem. The reason is that
in a larger network the gradients, which are propagated back through the network, pass
through more matrix multiplications, and are, thereby, more likely to shrink until they
vanish, or increase till they are overly huge. To address this problem, Kaiming He et
al. introduced shortcut connections. Those connections forward the input of a layer to
its output. When the weights are initialized at zero and no training has adjusted them,
the values before and after a layer are the same. This means that the layers start with
identity mapping and their weights are only changed if it is beneficial to the networks
performance. If there are unnecessarily many layers, a lot of them do not change weights
which results in identity mapping. Theoretically a network could also learn an identity
mapping for several layers. But in practice this does not work as well, likely due to
the interplay between layers. Due to this advancement, we chose a ResNet architecture
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Table 5.2: Layers of the neural network.

layer name output size layers

conv1 50×14 RGB [3×3, 64]
∣∣ [3×3, 64] GW

pool1 50×14 3×3 max pool, stride 2

conv2 25×7
[

3×3, 64
3×3, 64

]
conv3 13×4

[
3×3, 128
3×3, 128

]
conv4 7×2

[
3×3, 256
3×3, 256

]
conv5 7×2

[
3×3, 256
3×3, 256

]
16 Byte average pool, 1000-d fc, linear

©[LRS20] Eurographics Proceedings ©2020 The Eurographics Association

for our problem. An overview of our architecture is given in 5.2. It starts with a 3× 3
convolution on the input consisting of the RGB and Gabor wavelet patches. This layer
reduces the output size of the tensor. A 3×3 max pooling layer with stride two follows.
Then, in the middle of the network, multiple 3×3 convolution layers reduce the output
size further, but increase the depth of the tensor. The shortcut connections skipping those
convolutional layers while performing an identity mapping are not shown in the table.
At the end of the network is an average pooling layer followed by a fully connected layer
which computes the 16 Byte descriptor.

The triplet loss: is well suited [WS09] [SKP15] as error function for our problem as it
has been shown that it is applicable for Nearest-Neighbour-Classification and computer
vision tasks [HBL17]. Our goal is the computation of a line segment descriptor which
is very different to other line segments’ descriptors, but similar to descriptors computed
of the same line segment from other images. The triplet loss is ideal for our problem
as it rewards similarity of descriptors of the same line segment and penalizes similarity
of other line segments’ descriptors at the same time. In the terminology of the triplet
loss, our line segment descriptors are called embeddings. The triplet loss L is defined as
follows:

L= max
[(

dist(ea
i ,e

+
i )−dist(ea

i ,e
−
i )+δ

)
,0
]
, (5.3)

where ea
i is the anchor embedding, e+i is the positive match and e+i the negative match
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Table 5.3: Kernel of the Gabor wavelet with θ = 0.

0.0183 0.0821 0.1353 0.0821 0.0183

-0.0821 -0.3679 -0.6065 -0.3679 -0.0821

0.1353 0.6065 1 0.6065 0.1353

-0.0821 -0.3679 -0.6065 -0.3679 -0.0821

0.0183 0.0821 0.1353 0.0821 0.0183

©[LRS20] Eurographics Proceedings ©2020 The Eurographics Association

respectively. The positive embedding is computed from the same origin as the anchor,
but of another sample of it (which would be a descriptor computed from the same line
segment, but of another image in our case). The negative embedding is from another
origin (from another line segment in our case). The anchor is compared to the other
two embeddings using a distance measure dist(·), which, in our case, is the squared
euclidean distance between the descriptors. During training, the triplet loss function aims
to achieve a small distance between anchors and the corresponding positive embeddings,
and a larger distance between anchors and negative embeddings. For a faster convergence
of the training, negative embeddings, that are closer in distance to the anchor, are favored
(hard negatives) in the triplet selection process, over those which already have a larger
distance. But to make sure that not only the most difficult ones are selected, which
are possibly outliers, a margin δ is used. This margin promotes a certain minimum
distance difference between the distance of the anchor and the negative embedding, and
the distance of the anchor and the positive embedding, and, therefore, defines which
triplets are difficult and which are not.

5.3 Results
Parameters: We created the wavelets using the following parameters: σ = 1, θ =
{0, π

2}, λ = 2 · σ , φ = π

2 , γ = 1. The kernel is set to a size of only 5× 5 resulting
in a faster convolution compared to larger sizes. The results show that this choice is
not too coarse. We use two wavelet kernels, one with θ = 0 and the other with θ = π

2 .
They are oriented 90◦ to each other and thereby respond differently to vertical/horizontal
information in the image. This is also depicted in figure 5.1. For each line segment the
layers from the multi-scale pyramid are convolved with each of the two kernels, as listed
in table 5.1 and stacked on the cutout stack. Table 5.3 shows the values of the Gabor
wavelet kernel with θ = 0. The kernel with θ = π

2 is the same, just transposed. In our
implementation we scale the kernel down by factor 2π to ensure staying in data type
range.

Setup: We conducted our experiments on a Core i7-4700MQ mobile CPU. The pre-
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processing during testing took about 1ms, and the descriptor calculation by the network
also took about 1ms per line, both on the CPU. The calculation time could be decreased
by integrating the preprocessing directly into the framework of the network, and running
it on a GPU. The training was conducted on a cluster using one GeForce GTX 1080
where we trained for about a week. The bottleneck during training was not the graph-
ics card’s performance, but the loading of the data, which could be accelerated by more
prefetching if training time was a concern. The ResNet we used is similar to the one in
[LSS19], it is like a 10-layer ResNet variant. We achieved the best training results with
batch normalization deactivated. But this also contributed to a slower convergence. The
network with the best results was set to a descriptor size of 512 Bit. A fixed line length
of 100 pixels worked well during training. In normal usage, the line size does not have
to be fixed, but it is beneficial during training to help the network converge. Additional
explanation is given at the end of Section 5.2.2. The EDLine detector’s [AT11] OpenCV
[Bra00] implementation was used for the line detection. To examine our line descriptors
matching performance, we compare it against the results of three other methods which
we will elaborate in more detail now.
GLM: In Robust Line Segments Matching via Graph Convolution Networks [MJL20]
QuanMeng Ma, Guang Jiang and DianZhi Lai used an end-to-end training approach for
line segment matching. This approach does not compute descriptors. Instead it requires
both images at once, of which the line segments shall be matched, and returns corre-
spondences. The authors trained a network which consists of three main modules. The
first module learns to detect and extract line features and to directly exclude lines of both
images, which it expects to be without a match. In the second module discriminative
node embedding features are generated using a graph convolution network which fea-
tures intra- and cross-graph convolution and graph architecture learning. The third mod-
ule consists of an optimal transport layer which computes an affinity matrix between two
line sets followed by an assignment matrix to find matches and reject line segments with-
out a match. They did not compare their method to recent descriptor based approaches.
To evaluate this method, we inserted the lines of our ground truth scenes in the input of
the second module, skipping their detection module. In our evaluation, their approach
is able to outperform the analytical LBD in some of the scenes, but it performs inferior
when compared to the learning based methods.
LBD: The Line Band Descriptor from Lilian Zhang and Reinhard Koch [ZK13] is an an-
alytical approach in which they first crop out a rectangular area which is centered around
the line. Then they use differently parametrized, one dimensional Gaussian filters and
convolve along the line, with each of them defining a so called Band. The values of these
filtered Bands are then averaged and used to construct a descriptor. A disadvantage of
this method is that structural information is lost as the values are averaged along the line.
Nevertheless, it outperformed all other methods when it was released, and, up to today,
it is still among the best line descriptors, and the only one implemented in the OpenCV
library [Bra00].
DLD: The DLD, which we published in 2019 [LSS19], crops out a rectangular area
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which is centered around the line, like the LBD. The size of the area was set to the same
size as for the LBD. One goal was to find out if one could do better than the LBD having
the same input and the same (output) descriptor size. It turned out that a better matching
performance can be achieved by using the DLD.
LLD: The Learnable Line Segment Descriptor for Visual SLAM from Alexander Vakhi-
tov and Victor Lempitsky [VL19] is also a machine learning based approach. In contrast
to the previously described methods their first processing step directly runs the whole
image through the network. They receive a matrix of the same width and height as the
input image, but with a depth of 64 channels from originally one (gray) image channel.
This means that the network calculates some kind of region, or image descriptor. On that
basis, they build line descriptors by splitting each line segment into multiple segments,
calculating a feature vector for each subsegment using bilinear interpolation, and obtain-
ing the final descriptor by averaging over the feature vectors. To calculate descriptors
for all image pixels at once (while sharing required calculations) can be faster than pro-
cessing one descriptor for each line segment successively, depending on the number of
lines in the image and also depending on the used hardware. Another advantage of this
approach is the possibly large receptive field it provides for each line feature, with the
actual size depending on the choice of layers. However, when calculating a descriptor
for the entire image at once, the directional information of the lines is likely to be lost by
this approach. Lines have a distinct direction and also a left and a right side. Especially
lines that lie on the edge of an object have one side on the object itself and the other side
from the background. It is unclear if the network will be able to make use of this infor-
mation when it receives the lines all at once in one image and oriented in many different
directions. Most of the network’s layers are convolutional layers which have proven to
work well on images [LB∗95] [LBBH98] [SSP∗03] and can cope with translations. But
rotations are usually more difficult. Also, averaging over multiple sub feature vectors
incorporates the danger of loosing previously contained structural information.

5.3.1 Performance on the Middlebury Stereo Dataset
We selected eight images of the Middlebury Stereo Dataset (2014) [SHK∗14] that we
found to be interesting and challenging to benchmark our and other line descriptors’
matching performance on them. They show different indoor scenes such as a classroom,
or a computer lab, and also rooms with objects like a couch, a piano or a bicycle. To
obtain the ground truth line matches of the stereo images, we first used the provided depth
images and our automatic matching procedure, which we also used in the training, to get
a set of initial line matches. Then we checked all these matches and added additional
ones by hand. Overall the eight stereo images contain 4287 line matches.

Figure 5.2 shows the receiver operating characteristic curves of our WLD compared to
our DLD and to the LBD. These resulting curves show the characteristic of the methods
benchmarked on the eight labelled Middlebury Images [SHK∗14]. The closer a curve is
to the left and to the top, the better the performance of the method. An advancement of
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Figure 5.2: This plot shows the receiver operating characteristic curves of our WLD,
vs our DLD, vs the LBD over all of the eight labelled Middlebury Scenes [SHK∗14].
The legend shows the False Positive Rate (FPR) at the True Positive Rate (TPR) of
95% (dashed line). ©[LRS20] Eurographics Proceedings ©2020 The Eurographics
Association

our WLD is clearly visible.
For methods such as SfM, VO, etc. the number of correct first best matches is especially
relevant. For this reason we list the first best matches of the compared methods for each
scene in table 5.4. The numbers indicate the amount of correct first best matches for
all the lines of the left image matched with the lines of the right image. The bottom
row lists the total number of labelled ground truth matches for each scene. The highest
number of correct matches for each scene is shown in bold numbers. We can see that
the LBD is outperformed in every scene by the WLD, the LLD and the DLD while it
can do better than the GLM in all except the Flowers scene. The Flowers scene is the
only scene where the GLM does not score the least number of matches, but it is able
to do second best after the WLD. Our DLD approach scores second best in three of the
scenes. The descriptor of Vakhitov and Lempitsky (LLD) yields the second best number
of matches on five of the scenes. Our WLD outperforms all the other methods with the
highest number of correct first matches in all of the eight scenes. While scoring only
about 5% better than the second best method on the Adirondack and the Couch scenes,
we achieve to match over 10% more of the possible matches on each of the other six
scenes, relative to the total number of labelled matches. The WLD even matches more
than twice as many lines than the LBD on the Backpack and the Flowers scenes.
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5.3 Results

5.3.2 Performance under difficult conditions

In order to test the methods under difficult, but not unrealistic conditions, we took sev-
eral photos of different scenarios and additionally augmented some of them to bench-
mark the methods on them. The results are shown in table 5.5. The Blurring, Noise and
Jpeg Compression scenarios show the same corridor scene which was augmented using
Gimp [The20] to test how well each of the methods can cope with blurring, noise and
Jpeg compression artifacts respectively. We can see that the LBD is far behind the WLD,
LLD and DLD on all three scenes while being ahead of the GLM in one scene. The
LLD and DLD perform similarly well with the LLD doing somewhat better on all three
augmented images. Our WLD achieves the highest number of matches on all three aug-
mented images. This is probably due to the wavelets which are used in multiple scales.
The higher scales will be altered by fewer extent from the augmentation effects as they
are less sharp. The DLD performs best in the Scale Change scenario. It weights the
near surrounding more than the WLD which seems to be slightly beneficial here, but the
distance is not as large as it is to the other methods. Our WLD matches all lines correctly
in the Rotation scenario with our DLD being close. The LBD gets approximately four
out of five lines correct. These three approaches make use of the directional information
of lines, while at the same time they cope well with rotations. For the LLD they appear
to be problematic. It is not supplied with images showing large rotations during training
as they focused on ”nearby frames in an input video-sequence” [VL19]. However, we
think that the main reason for the lack of ability to deal with rotations comes from the
point feature alike composition of the descriptor that does not make use of the directional
information a line provides. The GLM does also not make use of the directional informa-
tion of lines and is only able to match a few lines correctly. The Tiles scene mostly shows
a floor that is fully tiled. The intention here was to challenge the approaches with a scene
that contains many similar lines. In order to perform well in such scenes, it is necessary
to make use of the structural information of the farther surrounding. Here we can see
that our WLD approach matches all lines correctly. But the other approaches, besides
the LBD and the GLM, also manage to match most lines correctly. Since this scene did
not turn out to be as challenging as intended, we went outside to take some images of an
Institute Building for a Repeating Patterns scenery. This scene is full of similarities such
as similar windows, rainwater pipes and roof endings. It is more challenging than the
Tiles scene as we can see in the matching results. Our WLD approach was able to match
110 lines correctly, followed with some distance by the LLD successfully matching 77
lines. The DLD and the LBD only manage to score a bit more than a quarter of the
labelled matches. This indicates that it is especially beneficial in scenes with repeating
patterns, like the Repeating Patterns scene, to incorporate the farther surroundings as it
is done by the LLD and by our WLD. The GLM performs worst of all approaches in
scenes containing repeating patterns. We would have expected it to perform better in
these scenes as such similar structures should lead to similar graphs. Besides being close
to the LBD in the Scale Change scenario, we can see that overall our WLD can handle
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difficult scenes better than the other methods.

5.4 Summary
In this chapter we presented a new line feature descriptor which uses wavelets and ma-
chine learning for robust line descriptor matching. By using a multi-scale scheme, the re-
ceptive field around the line which contributes to the descriptor calculation is quite large.
Inspired by the mammalian visual cortex, we used Gabor wavelets to preprocess this in-
formation in a meaningful way. A ResNet type neural network is trained to compute the
line descriptor using a triplet loss function. In the results, we compared our method to
other recent line descriptors on varying scenes and under difficult conditions. It showed
that we were not able to improve the results for the scale change scenario compared to
our DLD, on which this method is build upon. However, we were able to do better than
the DLD and the other methods in all other scenarios, showing a great improvement on
images with blurring, noise, viewpoint changes and repeating patterns which are typical
difficult scenarios for feature matching. The improvement was also apparent on all of
the Middlebury scenes. This proves that using a larger receptive field combined with
Gabor wavelets is quite beneficial for descriptor based line feature matching. We already
know that Gabor wavelets, as they appear in the mammalian visual cortex, extract impor-
tant information for detecting and describing structure and texture. While convolutional
layers theoretically could learn this on their own, they did not achieve similarly good
results in our tests. In this work Gabor wavelets act like pre-trained filters, which favour
convergence and generalization. The next chapter presents an extended evaluation of our
training procedure and a practical usage analysis.
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Chapter 6

Extended evaluation

6.1 Training evaluation
In this chapter we provide an overview of the most significant trainings that we con-
ducted. We experimented with different settings for the learning rate, the batch normal-
ization, the descriptor size, the pyramid usage and the Gabor wavelets. For each config-
uration we show the plot of the learning error and of the validation error. But while the
learning error is the cost from the triplet loss, the shown validation error is actually the
false positive rate at a true positive rate of 95% as shown in ROC curves. Using these
values quickly gave us an impression of the current performance. Our validation set con-
sists of the eight scenes of the Middlebury Stereo Dataset (see paragraph 5.3.1) and of
the eight scenes of our difficult conditions dataset (see table 5.3.2). Using these scenes
from real world scenarios directly yields realistic values. This is preferable to obtaining
results calculated on simulated data such as, for example, the training data.
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Figure 6.1: These plots visualize the training error curve (top plot) and the validation
error curve (bottom plot) with the batch normalization turned on, an eight byte descrip-
tor output and a constant learning rate of 1 · 10−5. The image pyramid and the Gabor
wavelets are utilized. The vertical axis represents the error value and the horizontal axis
represents the training step.
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6.1.1 Training using an eight byte descriptor, batch normalization,
an image pyramid and Gabor wavelets

While it was our goal to beat the LBD descriptor using the same patch size and descriptor
size in chapter 3, in this chapter we wanted to find out what is possible when we do not
limit our descriptor using the same boundaries as the LBD. We cropped out larger patches
and then we combined them with an image pyramid and Gabor wavelets to deal with the
increased amount of data. Figure 6.1 shows the training error curve in the top plot and the
validation error curve in the bottom plot. The training error curve performs a classical
descent that is initially very steep and then flattens out and goes into saturation. The
validation curve, on the other hand, starts with a steep descend. But then it ascends again
and forms a saddle shape when it descends again. This shape is not noticeable in the
training curve. The smoothed validation error saturates in the range between eight and
nine percent with spikes of the raw error down to seven and a half percent.

6.1.2 Training using a 16 byte descriptor, batch normalization, an
image pyramid and Gabor wavelets

We also wanted to enable a larger descriptor space and therefore doubled the descriptor
size to 16 bytes. This barely affected the computational cost of the training process as it
only doubled the outgoing connections of the last (fully connected) layer. The increased
cost for comparing 16 byte descriptors instead of eight byte descriptors can be neglected.
Figure 6.2 shows the training error curve in the top plot and the validation error curve in
the bottom plot. The training curve performs a typical descent which is first very steep
and then flattens out and goes into saturation. The validation curve, on the other hand,
starts with a steep descend up to step 580k, but it then ascends again for over one million
steps, forming a long saddle shape as it descends again. This behaviour is not reflected
in the training curve. Thus, when the ascent took place for a long time over many steps,
we thought the training started to over fit. But we let the training continue as we hoped
that the validation error was just executing a saddle shape that we had seen before in our
trainings. After the saddle, the validation error went down to about six and a half percent.
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Figure 6.2: These plots visualize the training error curve (top plot) and the validation
error curve (bottom plot) with the batch normalization turned on, a 16 byte descrip-
tor output and a constant learning rate of 1 · 10−5. The image pyramid and the Gabor
wavelets are utilized. The vertical axis represents the error value and the horizontal axis
represents the training step.
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Figure 6.3: These plots visualize the training error curve (top plot) and the validation
error curve (bottom plot) with the batch normalization turned off, a 16 byte descrip-
tor output and a constant learning rate of 1 · 10−5. The image pyramid and the Gabor
wavelets are utilized. The vertical axis represents the error value and the horizontal axis
represents the training step.
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6.1.3 Deactivated batch normalization

Figure 6.3 shows the error curves of our best model. We deactivated the batch normal-
ization to observe its influence on the training process. The variance of the training error,
but especially that of the validation error, decreased significantly. We also did not find
that convergence deteriorated after deactivating the batch normalisation. The validation
error shows a small saddle at about 150k to 300k steps. This is not clearly reflected in
the training error. Furthermore, the first approx. 800k steps consist of a steep decline in
the training error and the validation error. After that, the training error and the validation
error still decline, but much more slowly until about step 3.35M. From then on, there is
still a very small decrease in the error, but the saturation sets in. This is also reflected in
the training error. There is a strong peak in both error values at about 4.5M steps. Here
we were curious to test what happens if, instead of the Gabor-filtered image patches, we
insert grey-valued image patches into the pyramid while keeping the colour patches the
same. As one can see it resulted in a strong increase of the training error and of the
validation error. When switching back to using the Gabor wavelets, the error quickly
returned to the previous magnitude. The fact that this short change in the training data
did not make the trained weights obsolete is probably due to the small learning rate.

6.1.4 Deactivated Gabor wavelets

We also conducted a training where the Gabor wavelets were deactivated the whole time
and the image pyramid was filled with the unfiltered grey-valued patches. The purpose
was to evaluate how well the network would perform without the pre-filtered patches
and whether it would learn some filter-like convolutions that would lead to a similarly
good, or even a better overall performance. The convolutional layers are theoretically
capable of learning Gabor filter alike convolutions on their own. It is also possible that
they find a filter capable of extracting more useful information from the grey-valued
patches than the Gabor wavelets are capable of extracting. We also switched off the
batch normalisation based on our previous positive experience without the BN. Figure
6.4 shows the training error curve in the top plot and the validation error curve in the
bottom plot. There is a steep decrease in the training and validation error in the first 750k
steps. After that, the curve flattens out slowly, until about step four million. From then
on, the validation error is saturated at about ten percent error. The smoothed training
error is still decreasing, while the validation error is already saturated. This indicates an
over-fitting to the training data, but not to the extent that it would lead to an increasing
validation error. The minimum unsmoothed values of the training error did not reach
new minima even in the phase of a continuous decrease of the smoothed error. With
the validation error saturating at about ten percent, the result is clearly worse than the
validation error of about six percent when using the Gabor filtered patches. Thus, the
ResNet based architecture that we used did not manage to learn a filter which leads to a
similarly good performance as the Gabor wavelet filter.
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Figure 6.4: These plots visualize the training error curve (top plot) and the validation
error curve (bottom plot) with the batch normalization turned off, a 16 byte descriptor
output and a constant learning rate of 1 ·10−5. The image pyramid is used, but the Gabor
wavelets are deactivated. Thus, the pyramid is filled with unfiltered greyscale image
patches. The vertical axis shows the error value and the horizontal axis the training step.
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Figure 6.5: These plots visualize the training error curve (top plot) and the validation
error curve (bottom plot) with the batch normalization turned off, a 16 byte descrip-
tor output and a constant learning rate of 1 · 10−5. The image pyramid and the Gabor
wavelets are utilized. The colour patches are deactivated. The vertical axis represents
the error value and the horizontal axis represents the training step.
86



6.1 Training evaluation

6.1.5 Deactivated colour patches
We conducted another training for which we deactivated the colour patches. Here we
wanted to find out how the network performs when only the Gabor wavelet filtered
patches of the image pyramid are available. We also had the batch normalization turned
off due to our previous positive experiences without the BN. Figure 6.5 shows the train-
ing error curve in the top plot and the validation error curve in the bottom plot. One can
see that the validation error steeply declines during the first 300k steps. Interestingly, the
training error hardly decreases until step 300k. It stays near the error value of five, which
is the margin we use in the triplet loss. Shortly thereafter, the training error decreases
rapidly while, interestingly, the validation error begins to increase forming a small saddle
point at about step 360k. If the training was stopped there, one would interpret the in-
creasing validation error in combination with the decreasing training error as overfitting.
But, as the validation error joins the training error in a continued decline after the saddle
point, the improvements in the training also lead to an improved generalisation. The best
performance is achieved at about step 800k with a validation error of about nine per-
cent. Thereafter, the validation error slowly increases while the training error continues
to gradually decrease. This indicates a slight overfitting behaviour.

6.1.6 Summary of the training evaluation
When one compares the previous trainings, one can see that we achieved better results
when the batch normalization was turned off. We achieved the lowest validation error
of less than six percent when we used the image pyramid and the Gabor wavelets (see
paragraph 6.1.3). Disabling the Gabor wavelets, but still using the image pyramid with
greyscale patches, resulted in a model with a validation error of slightly less than ten
percent (see paragraph 6.1.4). When we deactivated the colour patches, but kept the
image pyramid and the Gabor wavelets in use, we achieved a validation error of about
nine percent (see paragraph 6.1.5). Compared to the other trainings, it reached its satu-
ration quite quickly at step 800k, while the model which was trained without the Gabor
wavelets needed 4M training steps to reach its saturation at about ten percent validation
error (see figure 6.4). Note that our best model already produced a validation error of
less than nine percent after about 750k steps (see figure 6.3). And it outperformed the
other models which did not use the colour patches and the image pyramid with Gabor
filtered patches at the same time, or which had the batch normalization turned on.
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6.2 Practical usage evaluation

In this section we will analyse the applicability of different line segment descriptors.
The following evaluations, and especially the analysis in 6.2.5, is of interest for match-
ing problems in general (e.g. matching in medical imaging, point feature matching in
robotics for feature graphs, etc.) and is not limited to line matching. When descrip-
tors are used in practical scenarios to solve structure from motion, visual odometry or
simultaneous localization and mapping problems, it is usually very important that the
matches are correct. This means that the closest match, the one with the smallest de-
scriptor distance, has to be the correct match. It is often not sufficient if the correct
match is among the closest three or the closest five matches, but not the first match be-
cause in many cases only the closest match is considered. Visualizations such as RoC
curves and metrics, that check whether the correct match is among the best n matches,
are still useful to compare different descriptor methods as they provide a measure of the
quality of a descriptor method. Nevertheless, a descriptor method that performs well on
the aforementioned metrics usually computes the first best matches similarly well. There
are also global matching optimisation methods, such as the pairwise matcher by Lilian
Zhang and Reinhard Koch [ZK13], for which the closest matching distance is not that
important. However, these methods are not used as often because they are more compu-
tationally expensive.
In the following, we show plots visualizing the first best matches performance of the
WLD, the DLD and the LBD. The plots are beneficial to compare the usefulness of the
descriptor methods in practical scenarios. They are created by increasing the descriptor
distance threshold from zero to the maximum value. During this increase, the lines from
the first image are each matched with the first best matching line from the second image.
For each additional match added while increasing the descriptor distance threshold, it
is checked if the match is a correct match or an incorrect match. A curve is plotted by
moving one step in the direction of the y-axis for each correct match and one step in the
direction of the x-axis for each incorrect match. As this curve is plotted in steps and the
matches are added from the smallest to the largest distance, one would expect the curve
to initially rise in the direction of the y-axis and later slope more towards the x-axis when
the matches have a larger descriptor distance and are more likely to be false matches. So
one can read not only how many true and false matches occur in a practical scenario, but
also when they occur. And if, for example, the first half of the matches are predominantly
true matches and the false matches occur mainly in the second half of the matches, then
one could decide to only regard the better first half of the matches. However, not only
can one see how well the method performs compared to other methods and how many of
the first best matches are safe to be used, but we can also visualize how different criteria
affect the results. Two commonly used criteria are the left-right consistency check and
a margin ε that defines how close the second best match is allowed to be. Matches that
do not meet the criteria can be rejected. Rejecting matches results in a shorter curve, but
the expectation is that more false matches than true matches are removed, resulting in a
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steeper curve with a higher proportion of true matches.

Left-right consistency check

The left-right consistency check is a commonly used criterion that originates from stereo
matching. However, it is not limited to the stereo matching problem, the principle can be
used in various matching tasks. In our case, for each line segment from the first image,
we choose the best matching line segment from the second image. Then, for this line
segment from the second image, we check whether its first best matching line segment
from the first image is the line segment for which we started the check. In short, we check
whether they are mutually first best matches. It is not guaranteed that a potential match
that passes this check is a correct match. But it is more likely since the case in which the
two matching procedures result in the same matching pair is less likely to be incorrect
than the case in which one of them alone is incorrect. If the Left-Right consistency check
fails, the potential match is rejected.

ε distance margin between the first best and the second best match

Another matching criterion is based on the unambiguity of a match. This can be checked
for a line segment of the first image by calculating its descriptor distances to the line
segments of the second image. Then the descriptor distances to the best matching line
segment and to the second best matching line segment are calculated. The requirement
for a potential match to pass the check is the following:

dist f irst <= distsecond · ε, (6.1)

where dist f irst is the distance to the first best match, distsecond is the distance to the second
best match, and ε ∈ [0, 1] is the distance ratio factor. If ε = 1, then the check is always
passed and the criterion is disabled. In all other cases, the check is only passed if the
distance between the best and the second best descriptor distance is large enough. If this
distance is small, then it is not very certain that the match is correct. A large distance to
the second best match ensures a definiteness of the match. This criterion also does not
guarantee that a match is correct, but it increases the chance for a match to be correct.

How to read the following evaluation plots

In the following, we will evaluate the first best matches performance and the influence of
the previously mentioned criteria on the descriptor methods. The curves in the plots show
the occurrence of true and false matches. The occurrence of the matches is ordered by
ascending descriptor distance, which means that the matches with the smallest descriptor
distance are the closest to the origin, and the higher the distance, the farther away from
the origin on the curve the match is found. Correct matches draw the curve one step
upwards in y-axis direction, while false matches result in a step to the right in x-axis
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direction. The plot shows several curves, while the difference between the red and the
blue curves is that the left-right consistency check is turned off for the red curves and
turned on for the blue curves. The difference between the curves of one colour is the ε

used. Here, the most rightward sloping curves are those with the highest distance ratio
of ε = 1. Each decrement of ε leads to a curve that leans less to the right. Thus, the
curves in the plot can be assigned to the labels by counting the legend from the top to the
bottom, while counting the curves from the right to the left, for each colour respectively.

How to read the following evaluation tables

The evaluation tables presented in the following paragraphs display numbers about the
matches for the descriptor methods. The labels of the columns denote the following:

ε: distance margin between the first best and the second best match.
L-R CC: Left-Right Consistency Check.
# matches: total number of matches.
# true: number of true matches.
# false: number of false matches.
% false: relative number of false matches.
∆ true: decrease in absolute true matches to the previous row.
∆ false: decrease in absolute false matches to the previous row.
∆ % true: decrease in relative true matches to the previous row.
∆ % false: decrease in relative false matches to the previous row.

6.2.1 First best matches evaluation of the WLD on the Middlebury
and the difficult conditions scenes

Figure 6.6 shows the occurrence of true and false matches of the WLD on the Middlebury
and the difficult conditions scenes. The number of matches at the endpoints of the curves
are compared in table 6.2. We can see that when every line is matched, which is the case
when the Left-Right consistency check is off and the distance ratio threshold is inactive
at ε = 1.0, there are a total of 6002 matches, of which 5012 are correct and 990, which
is about 16.5%, are false. Whilst with the Left-Right consistency check turned on, over
one thousand matches are rejected, leaving 4807 matches. Of these, however, only 245
are false, which is 5.1% false matches compared to 16.5% false matches without the
check. Also, if we have a look at a result with a similar number of matches, where the
Left-Right consistency check is turned off, but the matches are filtered by the distance
ratio threshold, for example, the result at ε = 0.90, we have a total of 4919 matches. Of
these 4919 matches, 4528 are correct and 391 are false matches. Thus, even though we
have more matches here, fewer of them are correct. Even at ε = 0.85 we have fewer
matches and fewer true matches than with the Left-Right consistency check turned on
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and the distance margin threshold turned off, but we still have more false matches. This
behaviour is also reflected in figure 6.6. If one does not require the maximum number of
true matches, there is almost always a blue curve (Left-Right consistency check turned
on) with a similar number of true matches and a lower number of false matches than on
a red curve. This is better visualized in the left plot of figure 6.9, which zooms in on the
range of 2572 to 3430 true matches of figure 6.6. Only when the numbers get close to
zero false matches, at a distance ratio threshold of ε = 0.30, the Left-Right consistency
check is slightly disadvantageous, as two fewer true matches remain while the number
of five false matches remains the same. At an ε of 0.19, there are zero false matches
and there is no difference whether the Left-Right consistency check is turned on or not.
Thus, the more matches are rejected by the distance ratio threshold, the smaller is the
remaining influence of the Left-Right consistency check. This is also visible in the plots,
where the spacing of the blue and red curves is much smaller at lower ε’s than at higher
ε’s.
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Table 6.2: Evaluation table for the WLD applied to the Middlebury and the difficult con-
ditions scenes. (See the explanation of how to read the table in section 6.2.)

ε L-R CC # matches # true # false % false ∆ true ∆ false ∆ % true ∆ % false

1.00 ON 4807 4562 245 5.1 - - - -
0.99 ON 4775 4543 232 4.9 19 13 0.4 5.3
0.95 ON 4608 4419 189 4.1 124 43 2.7 18.5
0.90 ON 4442 4295 147 3.3 124 42 2.8 22.2
0.85 ON 4298 4176 122 2.8 119 25 2.8 17.0
0.80 ON 4165 4065 100 2.4 111 22 2.7 18.0
0.70 ON 3897 3833 64 1.6 232 36 5.7 36.0
0.60 ON 3602 3564 38 1.1 269 26 7.0 40.6
0.50 ON 3243 3220 23 0.7 344 15 9.7 39.5
0.30 ON 2434 2429 5 0.2 791 18 24.6 78.3
0.19 ON 1775 1775 0 0.0 654 5 26.9 100.0

1.00 OFF 6002 5012 990 16.5 - - - -
0.99 OFF 5830 4961 869 14.9 51 121 1.0 12.2
0.95 OFF 5311 4726 585 11.0 235 284 4.7 32.7
0.90 OFF 4919 4528 391 7.9 198 194 4.2 33.2
0.85 OFF 4637 4363 274 5.9 165 117 3.6 29.9
0.80 OFF 4412 4214 198 4.5 149 76 3.4 27.7
0.70 OFF 4008 3905 103 2.6 309 95 7.3 48.0
0.60 OFF 3647 3599 48 1.3 306 55 7.8 53.4
0.50 OFF 3259 3233 26 0.8 366 22 10.2 45.8
0.30 OFF 2434 2429 5 0.2 804 21 24.9 80.8
0.19 OFF 1775 1775 0 0.0 654 5 26.9 100.0
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Figure 6.6: This plot shows the occurrence of correct (true) and incorrect (false) matches
when for each line from the first image only the first best match from the second image
is considered, while the threshold is increased from zero to the maximum. The results
were calculated on the Middlebury Stereo Dataset images and on the difficult conditions
scenes using our WLD descriptor. The red curves were calculated with the Left-Right
check turned off while it was turned on for the blue curves. Each curve corresponds to a
distance ratio threshold ε while the rightmost curves (containing the most false matches)
correspond to the highest ε .

In the zoomed plots of figure 6.9 one can see that the curves of one colour run side
by side and do not cross each other. They would only cross if a decreased ε led to a
worsened ratio of rejected true matches to false matches. We can also see that the longer
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a curve is, the more it leans to the right, which is what we expected. Each step means a
larger descriptor distance and matches with a higher distance are usually more likely to
be false matches.

6.2.2 Separated first best matches evaluation of the WLD on the
Middlebury and on the difficult conditions scenes

Table 6.3: Evaluation table for the WLD applied to the Middlebury scenes. (See the
explanation how to read the table in section 6.2.)

ε L-R CC # matches # true # false % false ∆ true ∆ false ∆ % true ∆ % false

1.00 ON 3508 3342 166 4.7 - - - -
0.99 ON 3493 3333 160 4.6 9 6 0.3 3.6
0.95 ON 3387 3252 135 4.0 81 25 2.4 15.6
0.90 ON 3284 3172 112 3.4 80 23 2.5 17.0
0.85 ON 3193 3099 94 2.9 73 18 2.3 16.1
0.80 ON 3099 3019 80 2.6 80 14 2.6 14.9
0.70 ON 2907 2854 53 1.8 165 27 5.5 33.8
0.60 ON 2674 2641 33 1.2 213 20 7.5 37.7
0.50 ON 2370 2351 19 0.8 290 14 11.0 42.4
0.30 ON 1700 1695 5 0.3 656 14 27.9 73.7
0.16 ON 1011 1011 0 0.0 684 5 40.4 100.0

1.00 OFF 4287 3601 686 16.0 - - - -
0.99 OFF 4206 3583 623 14.8 18 63 0.5 9.2
0.95 OFF 3912 3457 455 11.6 126 168 3.5 27.0
0.90 OFF 3652 3332 320 8.8 125 135 3.6 29.7
0.85 OFF 3463 3236 227 6.6 96 93 2.9 29.1
0.80 OFF 3299 3135 164 5.0 101 63 3.1 27.8
0.70 OFF 3001 2912 89 3.0 223 75 7.1 45.7
0.60 OFF 2713 2670 43 1.6 242 46 8.3 51.7
0.50 OFF 2383 2361 22 0.9 309 21 11.6 48.8
0.30 OFF 1700 1695 5 0.3 666 17 28.2 77.3
0.16 OFF 1011 1011 0 0.0 684 5 40.4 100.0
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In this paragraph, we want to examine the dependence of the WLD in combination
with the Left-Right consistency check and with the distance margin threshold ε on the
type of data.
Therefor, we ran the descriptor separately on the Middlebury and on the difficult con-
ditions scenes. Figure 6.7 and figure 6.8 show the occurrence of true and false matches
of the WLD on the Middlebury and on the difficult conditions scenes. The correspond-
ing numbers of the matches at the endpoints of the curves are shown in table 6.3 and
in table 6.4 respectively. We can see: with the Left-Right consistency check turned on,
we get fewer matches, but also fewer false matches in both datasets. The difference is
much larger for the Middlebury scenes: with the Left-Right consistency check turned on,
and an ε of 0.99, we get 3333 true matches and only 160 false matches (see table 6.3).
Whereas with the Left-Right consistency check turned off and an ε of 0.90, we get 3332
true matches, but, with 320 false matches, we have twice as many false matches. This
advantage of having fewer false matches at a similar number of true matches by using
the Left-Right consistency check continues until its influence diminishes at an ε of 0.30.
There, the distance margin threshold already settles all the rejections that the Left-Right
consistency check would have done.

For the difficult conditions scenes, the advantage is still there, but it is smaller. For
example: with the Left-Right consistency check turned on and an ε of 0.99 we get 1210
true matches and 72 false matches, which is about the same ratio as with the check turned
off and an ε of 0.90, resulting in 1196 true matches and 71 false matches (see table 6.4).
But the Left-Right consistency check is slightly advantageous at smaller ε’s of 0.90 and
0.70. There, we have a similar number of false matches as for ε’s of 0.80 and 0.70 when
the check is turned off, but a better ratio of true to false matches. Additionally, when
comparing the curves of figure 6.7 and figure 6.8, one can also see that the advantage of
utilizing the Left-Right consistency check is higher for the Middlebury scenes. Thus, the
degree of the advantage of the Left-Right consistency check depends on the data. The
same also holds for the question which value of ε is a good choice. For the Middlebury
scenes an ε of 0.16 is necessary to achieve zero false matches with fewer than a third
of the true matches remaining. On the difficult conditions scenes the ε only has to be
set to 0.30 to achieve zero false matches and over half of the true matches remain. The
behaviour, that it is dependent on the dataset, which values of ε achieve what ratio of
false matches to true matches, is similar for the whole range of values of ε .
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Table 6.4: Evaluation table for the WLD applied to the difficult conditions scenes. (See
the explanation how to read the table in section 6.2.)

ε L-R CC # matches # true # false % false ∆ true ∆ false ∆ % true ∆ % false

1.00 ON 1299 1220 79 6.1 - - - -
0.99 ON 1282 1210 72 5.6 10 7 0.8 8.9
0.95 ON 1221 1167 54 4.4 43 18 3.6 25.0
0.90 ON 1158 1123 35 3.0 44 19 3.8 35.2
0.85 ON 1105 1077 28 2.5 46 7 4.1 20.0
0.80 ON 1066 1046 20 1.9 31 8 2.9 28.6
0.70 ON 990 979 11 1.1 67 9 6.4 45.0
0.60 ON 928 923 5 0.5 56 6 5.7 54.5
0.50 ON 873 869 4 0.5 54 1 5.9 20.0
0.30 ON 734 734 0 0.0 135 4 15.5 100.0

1.00 OFF 1715 1411 304 17.7 - - - -
0.99 OFF 1624 1378 246 15.1 33 58 2.3 19.1
0.95 OFF 1399 1269 130 9.3 109 116 7.9 47.2
0.90 OFF 1267 1196 71 5.6 73 59 5.8 45.4
0.85 OFF 1174 1127 47 4.0 69 24 5.8 33.8
0.80 OFF 1113 1079 34 3.1 48 13 4.3 27.7
0.70 OFF 1007 993 14 1.4 86 20 8.0 58.8
0.60 OFF 934 929 5 0.5 64 9 6.4 64.3
0.50 OFF 876 872 4 0.5 57 1 6.1 20.0
0.30 OFF 734 734 0 0.0 138 4 15.8 100.0
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Figure 6.7: This plot shows the occurrence of correct (true) and incorrect (false) matches
when for each line from the first image only the first best match from the second image
is considered, while the threshold is increased from zero to the maximum. The results
were calculated on the Middlebury Stereo Dataset images using our WLD descriptor.
The red curves were calculated with the Left-Right check turned off while it was turned
on for the blue curves. Each curve corresponds to a distance ratio threshold ε while the
rightmost curves (containing the most false matches) correspond to the highest ε .
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Figure 6.8: This plot shows the occurrence of correct (true) and incorrect (false) matches
when for each line from the first image only the first best match from the second image is
considered, while the threshold is increased from zero to the maximum. The results were
calculated on the difficult conditions scenes using our WLD descriptor. The red curves
were calculated with the Left-Right check turned off while it was turned on for the blue
curves. Each curve corresponds to a distance ratio threshold ε while the rightmost curves
(containing the most false matches) correspond to the highest ε .
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Figure 6.9: The plots show the occurrence of correct and incorrect matches when only
the first best match is considered. The left plot is a zoomed in version of figure 6.6.
This better visualizes the range of 2572 to 3430 true matches. The plot on the right is
a zoomed in version of figure 6.7. This better visualizes the range of 2450 to 3675 true
matches.

6.2.3 First best matches evaluation of the DLD on the Middlebury
and the difficult conditions scenes

Figure 6.10 shows the occurrence of true and false matches of the DLD on the Middle-
bury and the difficult conditions scenes. The number of matches at the endpoints of the
curves are compared in table 6.5. We get 6002 matches of which 3542 are correct when
no filter is enabled. With the Left-Right consistency check turned on, we get a total of
3692 matches of which 3043 are correct. Compared to the WLD (see table 6.2), we have
about 1500 fewer true matches in both cases. Additionally, we have a higher rate of false
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matches in both cases. Even when the Left-Right consistency check is turned on for the
DLD and off for the WLD, the rate of false matches is higher for the DLD at similar
numbers of matches. This improvement is also clearly visible when one compares the
curves of figure 6.10 to the curves of figure 6.6. The curves of the DLD bend far more
to the right than the curves of the WLD, which means that there are more false matches.
All this shows the great advancement of the WLD, which also applies in practical usage
scenarios.

Table 6.5: Evaluation table for the DLD applied to the Middlebury and the difficult con-
ditions scenes. (See the explanation how to read the table in section 6.2.)

ε L-R CC # matches # true # false % false ∆ true ∆ false ∆ % true ∆ % false

1.00 ON 3692 3043 649 17.6 - - - -
0.99 ON 3644 3018 626 17.2 25 23 0.8 3.5
0.95 ON 3465 2924 541 15.6 94 85 3.1 13.6
0.90 ON 3270 2832 441 13.5 92 100 3.1 18.5
0.85 ON 3110 2734 376 12.1 98 65 3.5 14.7
0.80 ON 2954 2641 313 10.6 93 63 3.4 16.8
0.70 ON 2644 2430 214 8.1 211 99 8.0 31.6
0.60 ON 2304 2168 136 5.9 262 78 10.8 36.4
0.50 ON 1958 1891 67 3.4 277 69 12.8 50.7
0.30 ON 1289 1275 14 1.1 616 53 32.6 79.1
0.16 ON 705 705 0 0.0 570 14 44.7 100.0

1.00 OFF 6002 3542 2460 41.0 - - - -
0.99 OFF 5738 3497 2241 39.1 45 219 1.3 8.9
0.95 OFF 4915 3340 1575 32.0 157 666 4.5 29.7
0.90 OFF 4219 3142 1077 25.5 198 498 5.9 31.6
0.85 OFF 3787 2978 809 21.4 164 268 5.2 24.9
0.80 OFF 3417 2822 595 17.4 156 214 5.2 26.5
0.70 OFF 2861 2530 331 11.6 292 264 10.3 44.4
0.60 OFF 2397 2223 174 7.3 307 157 12.1 47.4
0.50 OFF 2004 1922 82 4.1 301 92 13.5 52.9
0.30 OFF 1293 1279 14 1.1 643 68 33.5 82.9
0.16 OFF 705 705 0 0.0 574 14 44.9 100.0
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Figure 6.10: This plot shows the occurrence of correct (true) and incorrect (false)
matches when for each line from the first image only the first best match from the sec-
ond image is considered, while the threshold is increased from zero to the maximum.
The results were calculated on the Middlebury Stereo Dataset images and on the diffi-
cult conditions scenes using our DLD descriptor. The red curves were calculated with
the Left-Right check turned off while it was turned on for the blue curves. Each curve
corresponds to a distance ratio threshold ε while the rightmost curves (containing most
false matches) correspond to the highest ε .
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6.2.4 First best matches evaluation of the LBD on the Middlebury
and the difficult conditions scenes

Figure 6.11 shows the occurrence of true and false matches of the LBD on the Middle-
bury and the difficult conditions scenes. The numbers of the matches at the endpoints of
the curves are compared in table 6.6. When no filters are active, there are 6002 matches
out of which the WLD matches 5012 correctly. The DLD is only able to score 3542
true matches. And the LBD is even farther behind with only 2940 true matches. This
means that more than half of the matches of the LBD are false. The high number of
false matches of the LBD compared to the DLD and to the WLD continues throughout
the value range of ε . When the Left-Right consistency check is utilized, the LBD still
yields the highest number of false matches of the three methods. This also becomes clear
when the curves of figure 6.11 are compared to the corresponding ones of the DLD or
the WLD.

Table 6.6: Evaluation table for the LBD applied to the Middlebury and the difficult con-
ditions scenes. (See the explanation how to read the table in section 6.2.)

ε L-R CC # matches # true # false % false ∆ true ∆ false ∆ % true ∆ % false

1.00 ON 3173 2466 707 22.3 - - - -
0.99 ON 3020 2411 609 20.2 55 98 2.2 13.9
0.95 ON 2822 2315 507 18.0 96 102 4.0 16.7
0.90 ON 2505 2165 340 13.6 150 167 6.5 32.9
0.85 ON 2227 2004 223 10.0 161 117 7.4 34.4
0.80 ON 1987 1836 151 7.6 168 72 8.4 32.3
0.70 ON 1562 1497 65 4.2 339 86 18.5 57.0
0.60 ON 1173 1144 29 2.5 353 36 23.6 55.4
0.50 ON 764 757 7 0.9 387 22 33.8 75.9
0.35 ON 317 317 0 0.0 440 7 58.1 100.0

1.00 OFF 6002 2940 3062 51.0 - - - -
0.99 OFF 5138 2825 2313 45.0 115 749 3.9 24.5
0.95 OFF 4052 2605 1447 35.7 220 866 7.8 37.4
0.90 OFF 3065 2335 730 23.8 270 717 10.4 49.6
0.85 OFF 2522 2107 415 16.5 228 315 9.8 43.2
0.80 OFF 2121 1897 224 10.6 210 191 10.0 46.0
0.70 OFF 1589 1512 77 4.8 385 147 20.3 65.6
0.60 OFF 1175 1144 31 2.6 368 46 24.3 59.7
0.50 OFF 765 757 8 1.0 387 23 33.8 74.2
0.35 OFF 317 317 0 0.0 440 8 58.1 100.0

102



6.2 Practical usage evaluation

Figure 6.11: This plot shows the occurrence of correct (true) and incorrect (false)
matches when for each line from the first image only the first best match from the sec-
ond image is considered, while the threshold is increased from zero to the maximum.
The results were calculated on the Middlebury Stereo Dataset images and on the difficult
conditions scenes using the LBD descriptor. The red curves were calculated with the
Left-Right check turned off while it was turned on for the blue curves. Each curve cor-
responds to a distance ratio threshold ε while the rightmost curves (containing the most
false matches) correspond to the highest ε .
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6.2.5 Best achievable matchings

Figure 6.12: The curves of this plot show the highest achievable number of true matches
and the corresponding number of false matches for all ε from 0 to 1. The two upper
curves represent the WLD, the two curves in the middle represent the DLD and the two
lower curves represent the LBD. The Left-Right consistency check is turned on for the
blue curves and off for the red curves.

The previous plots showed the match curves when the maximum allowed descriptor dis-
tance of the first best match is increased from zero to the maximum, where each curve
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had a fixed ε . Comparing the curves showed that in most cases it would be a better choice
to improve the ratio of true to false matches by varying the ε and by using the Left-Right
consistency check instead of a limit for the maximum descriptor distance. Figure 6.12
shows the highest achievable number of true matches and the corresponding number of
false matches for each method when there is no threshold for the descriptor distance but
the ε , is used to control the number of true and false matches. There are two curves
for each method, one with the Left-Right consistency check turned on and another one
with the check turned off. One can see that the curves move along the top peaks of the
corresponding previous curves. This shows that it is beneficial to use the distance margin
threshold ε to control the number of matches. The curves also provide a comparison be-
tween the WLD, the DLD and the LBD. We can see that the WLD yields a much better
ratio of true to false matches over the entire matching space. And while the DLD cannot
keep up with the WLD, it is still significantly better than the LBD.

6.2.6 Descriptor Distances

Table 6.7: This table shows the ratio and the numbers of true and false matches for the
descriptor range of the first best distances for the WLD, the DLD and the LBD (as visu-
alized in figure 6.13).

Method Type 0%-
10%

10%-
20%

20%-
30%

30%-
40%

40%-
50%

50%-
60%

60%-
70%

70%-
80%

80%-
90%

90%-
100%

WLD true 4266 532 137 40 17 13 4 2 0 1
WLD false 472 261 143 44 33 19 14 1 2 1
WLD ratio 9.04 2.04 0.96 0.91 0.52 0.68 0.29 2.00 0.00 1.00
DLD true 3086 312 96 28 10 4 2 0 1 3
DLD false 1702 510 154 53 25 8 3 3 1 1
DLD ratio 1.81 0.61 0.62 0.53 0.40 0.50 0.67 0.00 1.00 3.00
LBD true 271 898 934 469 208 98 44 12 4 2
LBD false 76 407 890 816 499 233 99 22 12 8
LBD ratio 3.57 2.21 1.05 0.57 0.42 0.42 0.44 0.55 0.33 0.25
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Figure 6.13: The bars of this histogram show how many matches were found, grouped
by the descriptor distance. The distance range is normed and true and false matches are
represented by individual bars for each of the three methods.

If the matches are filtered by using a maximum descriptor distance, the question arises,
which distance is suitable. This depends on the application, the amount of tolerable false
matches and on the characteristics of the descriptor. Figure 6.13 shows the occurrence
of true and false matches for each descriptor in dependence on the descriptor distance
for each ten percent of the range. The range is normalized for each descriptor from zero
to the maximum distance among the first best distances of the respective descriptor on
the Middlebury and the difficult conditions scenes. Table 6.7 shows the numbers and the
ratio of true matches to false matches. One can see that the first ten percent of the WLD
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yield the best ratio of over nine true matches to one false match. With 4738 matches
almost 80% of the matches occur in the first ten percent. Interestingly, the first percent
of the descriptor distance range contains only 12 false matches, but 1105 true matches.
This leads to a ratio of 92 true matches to one false match, or roughly one percent false
matches, to obtain the first fifth of the true matches.

The higher the descriptor distance, the worse the ratio of true to false matches. This
holds for all three descriptors with minor exceptions especially in the second half of
the distance, where the number of matches is relatively low compared to the number
of matches in the first half. The DLD also has the best ratio at the beginning with the
number of true matches and of false matches continuously decreasing thereafter. Among
the first percent of the descriptor distance, there are 621 true matches and 101 false
matches, resulting in a ratio of 6.15 true matches for each false match.

For the LBD, the number of true and of false matches first increases and then decreases
again, forming a hill-shaped curve. The higher peaks of the false matches are shifted
towards higher descriptor distances (to the right in the diagram), compared to the higher
peaks of the true matches. This is a good thing as it is advantageous when false matches
have a higher descriptor distance than true matches. Nevertheless, the LBD has 76 false
matches among the 347 matches of the first ten percent, resulting in a ratio of 3.57 true
to false matches, which is worse than the ratios of the other descriptors for the first few
hundred matches. This is also reflected in figure 6.12.

6.2.7 Summary of the Practical usage evaluation
In this section we evaluated the practical usability of the WLD compared to the DLD
and to the LBD. Therefor, we placed an emphasis on the first best matches, as their use
is common practice. We filtered the matches using a Left-Right consistency check and a
distance margin threshold to see how far one could reduce the amount of false matches
by these simple and fast filters. We found that the Left-Right consistency check is al-
most always beneficial and additionally superior to using a distance margin threshold
alone. But when evaluated separately on the Middlebury scenes and the difficult condi-
tions scenes, we also found that the extent of the advantage gained from its use depends
on the data it is used on and that its influence diminishes with a stricter distance margin
threshold. Similarly, the influence of the distance margin threshold also depends on the
data. Therefore, there is not a particular ε for a specific desired rate of true matches
or a desired true matches to false matches ratio. We created figure 6.12 which shows
curves obtained by calculating the numbers of true and false matches for ε ranging from
zero to one. These show the best possible numbers of true matches to false matches for
each method with the three checks we evaluated: the Left-Right consistency check, the
distance margin threshold ε and the maximum descriptor distance threshold. In addition,
we evaluated the distribution of true and false matches of the first best matches in depen-
dence of the descriptor distance. One can see that for all three methods, the rate of true to
false matches worsens the higher the descriptor distance of the matches is. The various
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evaluations of the different methods also included comparisons which showed that the
analytical LBD approach is not nearly as good as the machine learning based WLD or
DLD. And we found that the WLD represents a major advancement over to the DLD,
both in terms of true matches and for practical usage scenarios.
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Conclusions

7.1 Summary

In this work we presented our contributions to the research on lines. We first explained
special properties of lines and gave an overview of common representations for 2D lines
as well as for 3D lines in chapter 2. Important details are the number of degrees of free-
dom a type of line has and the number of parameters a particular representation requires
to represent that line type. This varies between the representations and differs depending
on whether the line is infinite or a segment and whether the line is a 2D line or a 3D line.
We also elaborated various error functions that evaluate the similarity of two lines and
created error space plots that visualize the results of each metric. These error metrics and
the aforementioned representations are important for the line feature based visual odom-
etry system that we developed, called Line only stereo Visual Odometry (LVO), which
followed in chapter 3. This method is able to perform visual odometry relying solely
on lines. Most of the lines are tracked using a prediction, that is derived from a motion
model, and using an error function from chapter 2. We introduced a heuristic match-
ing algorithm that filters matches depending on a prior and on the line features in their
neighbourhood. Additionally, we implemented a bundle adjustment for lines that utilizes
the Cayley representation for infinite 3D lines to perform the optimization efficiently us-
ing only four parameters for the 3D lines. For the evaluation, we applied the proposed
method on the scenes of the EuRoC MAV datasets and compared it with other algorithms
that use lines, points or both. We were able to show that our method performs best on
most scenes of the dataset. The comparison visualizing the number of lines tracked by
StVO-L and our own method revealed a reason for our superior performance, as one
can see that we were able to track many more lines than the StVO-L approach. This, of
course, resulted in a more accurate performance.

One of the things we showed in chapter 3 is how one can efficiently track lines from
frame to frame, but matching lines from arbitrary camera positions without prior knowl-
edge was still a difficult task. There was only one well established line descriptor, namely
the Line Band Descriptor from Lilian Zhang and Reinhard Koch, which used an analyt-
ical approach to create the descriptor. A disadvantage of the LBD is its use of bands
along the line direction which are averaged. This averaging smoothes and thereby de-
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stroys structural information along the line, resulting in a loss of potentially valuable
information. We saw the potential for improving line descriptors using machine learn-
ing. Chapter 4 elaborates our approach, called A Deep Learning Based Line Descriptor
for Line Feature Matching (DLD), in detail. First, we had to find a way to generate large
amounts of training data. Therefor, we used the Unreal Engine 4 and several freely avail-
able scenes. Our C++ based framework computed the ground truth matching information
using the depth maps, which we extracted in addition to the RBG images of the virtual
camera, and prepared the data. We used the python based tensorflow framework to train
a ResNet. Our goal was to evaluate how much better than the LBD our machine learning
based approach could perform, when working on the same input data as the LBD. There-
fore, we prepared the image patches, from which the descriptor is calculated, so that they
were similar to those used by the LBD. To compare the performance of both methods, we
needed ground truth labelled real world data. The Middlebury Stereo Datasets provide
high resolution images with ground truth depth information. This depth information en-
abled the automatic labelling which we implemented to generate the training data. The
labels still had to be checked and we added additional ones by hand. We also created
a dataset with images for eight scenes representing difficult scenarios for matching like
blur, noise, different scales, repeating patterns and more. Comparing both methods on
these real world scenarios showed that our learning based approach was able to out-
perform the analytical LBD in all Middlebury scenes as well as in all of our difficult
conditions scenes.

Following these great results, we were curious how much further we could improve
the line matching accuracy by not restraining the input data in a similar way as we did
with the input data for the LBD. In chapter 5 we improved the aforementioned approach
to build a new version, called A Wavelet and Learning based Line Descriptor for Line
Feature Matching (WLD), which uses an image pyramid and gabor wavelets. We used
the image pyramid to provide the network with a wider surrounding of the line. The in-
put has the same height and width as the input for the DLD, but more layers are stacked
on top of each other, with each additional level containing more of the surrounding, but
at a lower resolution. Additionally, we included gabor wavelets to pre-filter the patches
for meaningful information. This approach is inspired by the human visual system, as
similar filters are found in the mammalian visual cortex. The basis for the training data
is the same as for the DLD, but, of course, it had to be recreated applying the new pre-
processing steps. Again, we used our GT labelled Middlebury Data and the difficult
conditions scenes for the evaluation. Here, we performed a broader comparison than
in chapter 4 as we included two more competing methods, namely The Learnable Line
Segment Descriptor for Visual SLAM (LLD) from Alexander Vakhitov and Victor Lem-
pitsky and the Robust Line Segments Matching via Graph Convolution Networks (GLM)
from QuanMeng Ma, Guang Jiang and DianZhi Lai. The results showed that the GLM
did not perform very well on most scenes, while the DLD and the LLD competed for
the second place in most scenes. Our new WLD achieved the first place with the highest
number of correct matches in all except one of the scenes in which our previous DLD
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performed better. These results confirmed the usefulness of utilizing an image pyramid
in combination with Gabor wavelets.

In chapter 6 we performed an extended evaluation. In the first part, we trained several
models with different settings to assess the influence of the descriptor output size, the
use of batch normalization during training, the usefulness of the image pyramid and
the influence of the Gabor filters. The influence of the Gabor filters was particularly
interesting, as the convolutional layers of the ResNet could theoretically learn similar
or even better filters on their own. However, we did not know if they would do this
automatically. It turned out that we obtained better results when we used the Gabor
wavelets than when they were disabled. This means that the convolutional layers did not
learn similarly well performing filters on their own and that utilizing the Gabor wavelets
is beneficial. The second part of our extended evaluation compared the practical usage of
the WLD, the DLD and the LBD and addressed the question what can be done to achieve
a low number of false matches. There are three common ways to influence this: setting a
maximum descriptor distance threshold, setting a distance margin threshold that defines
how much larger the distance of the second best match has to be in comparison to the
first best match and activating a left-right consistency check. It turned out that the left-
right consistency check is almost always a good measure to reduce the number of false
matches. We have also found that in most cases it is more effective to reduce the number
of false matches by setting a distance margin threshold for the distance between the first
and the second best match than to enforce a maximum descriptor distance threshold for
the first best match. The plots created for this part of the evaluation also provided a
further comparison between the WLD, the DLD and the LBD. This again showed the
superior matching performance of the DLD compared to the LBD. It also showed that
the WLD even was a further advancement in terms of matching performance over the
DLD; also in the case of practical use where the number of first best matches is quite
important.

7.2 Future Work
One difficulty with lines is the problem that they may be split into several parts during
the line detection step due to occlusions and properties of the line detector. Using a 3D
map when performing visual odometry or SLAM can help, as multiple observations can
be assigned to the very same 3D model. Allowing multiple assignments during matching
is also possible. A promising approach could be to include more information in a broader
understanding. Ya Wang and Andreas Zell, for example, have proposed a method called
Improving Feature-based Visual SLAM by Semantics [WZ18], that includes semantic
information. Higher order knowledge, such as that a line is on a car or even on top of a
number plate, could further alleviate the problem of split lines and greatly aid matching.
In a more complex system, the lines can be an important part contributing to, and also
benefiting from synergy with broader knowledge about the scene.
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Another point that could be investigated is the architecture of the line matching net-
work. So far, we achieved the best results using a ResNet architecture. However, recent
advancements in the field of machine learning showed that networks which were not
designed by hand, but found automatically by a neural architecture search, were often
capable to outperform the hand-designed architectures. Thus, this is a promising direc-
tion for another improvement of the line matching accuracy.

Finally, one can say, although lines are being researched for a while, there is still a
great deal to be investigated.
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[NNB06] NISTÉR D., NARODITSKY O., BERGEN J.: Visual Odometry for
Ground Vehicle Applications. Journal of Field Robotics 23, 1 (2006),
3–20.

[NPVCL08] NEUBERT P., PROTZEL P., VIDAL-CALLEJA T., LACROIX S.: A fast
Visual Line Segment Tracker. In IEEE International Conference on
Emerging Technologies and Factory Automation (2008), IEEE, pp. 353–
360.

[PL04] PORWIK P., LISOWSKA A.: The Haar-Wavelet Transform in Digital
Image Processing: Its Status and Achievements. Machine Graphics and
Vision 13, 1/2 (2004), 79–98.

[PVA∗17] PUMAROLA A., VAKHITOV A. T., AGUDO A., SANFELIU A.,
MORENO-NOGUER F.: PL-SLAM: Real-Time Monocular Visual
SLAM with Points and Lines. IEEE International Conference on
Robotics and Automation (ICRA) (2017), 4503–4508.

[RRKB11] RUBLEE E., RABAUD V., KONOLIGE K., BRADSKI G.: ORB: an
efficient alternative to SIFT or SURF. In IEEE International Conference
on Computer Vision (ICCV) (2011), pp. 2564–2571.

[SHK∗14] SCHARSTEIN D., HIRSCHMÜLLER H., KITAJIMA Y., KRATHWOHL
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