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Abstract

As products of billions of years of evolution, secondary metabolites perform a
wide range of activities ensuring the survival of organisms in competitive envi-
ronments. These natural products synthesized by diverse living beings through-
out the tree of life have been a valuable resource for many industrial applica-
tions. Specifically, in pharmaceutical ventures, natural products are used pro-
foundly against cancer, pests and microorganisms. Peaked in the golden era
of antibiotics, drug discovery against infectious diseases was mainly centered
around natural products from fungi and bacteria. Consequently however, mi-
crobes have made impressive and frightening progress in gaining resistance
against antimicrobials fueled by their improper usage. Coupled with the stag-
nation in discovery rates of novel natural products, antimicrobial resistance has
become a destructive phenomenon damaging humanity financially and health-
wise. To fight off such resistant microbes, it is of paramount importance that we
find and produce novel secondary metabolites with antimicrobial features. With
the vast improvements in sequencing technologies and analysis algorithms, we
possess repositories swarming with “multiomics”-based data, ready to be mined.
Now, a crucial thing to do is to enable the prioritization of such data for the sub-
sequent processes in wet-lab applications.

In this thesis, I have built command line tools as well as web-based databases
and pipelines to 1) detect genes conferring antibiotic resistance in order to find
promising biosynthetic gene clusters that might encode for novel antibiotics and
IT) prioritize target genes for genetic manipulation that could be used to increase

the production of secondary metabolites.
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Kurzfassung

Als Ergebnis eines Milliarden Jahre langen Evolutionsprozesses, iiben Sekundér-
metabolite eine Vielzahl von Aktivititen aus, die ihr Uberleben in einer konkur-
renzfihigen Umgebung sichern. Diese Naturstoffe, die von verschiedenen Orga-
nismen im gesamten evolutiondren Stammbaum synthetisiert werden, sind eine
wertvolle Ressource fiir viele industrielle Anwendungen. Insbesondere in der
pharmazeutischen Industrie werden Naturstoffe in groBem Umfang zur als An-
tibiotika, Antiparasitika, Immunsuppresiva oder zur Krebsbekdmpfung einge-
setzt. Die Entdeckung von Medikamenten gegen Infektionskrankheiten hat im
goldenen Zeitalter der Antibiotika ihren Hohepunkt erreicht. Diese umfassten
hauptsichlich aus Naturstoffe, die aus Pilzen und Bakterien gewonnen wurden.
Infolgedessen haben Mikroben, angetrieben durch die falsche Verwendung von
antimikrobiellen Wirkstoffen zunehmend, auf beeindruckende und beingstigende
Art und Weise, Resistenzen gegen antimikrobielle Wirkstoffe entwickelt. Ver-
bunden mit einem Riickgang bei der Entdeckung neuer Naturstoffe, hat sich die
antimikrobielle Resistenz zu einem zerstorerischen Phianomen entwickelt, das
die Menschheit in finanzieller und gesundheitlicher Hinsicht beschidigt. Um
solche resistenten Mikroben zu bekdmpfen, ist die Entdeckung und Produktion
neuer Sekundédrmetabolite mit antimikrobiellen Eigenschaften von grof3ter Be-
deutung. Durch die enorme Verbesserung der Sequenziertechnologien und Ana-
lysealgorithmen verfiigen wir iiber eine Vielzahl von “MultiomicsDaten, die nur
noch ausgewertet werden miissen. Nun kommt es darauf an, die Priorisierung

dieser Daten fiir die nachfolgenden Prozesse im Labor zu ermoglichen.

In dieser/meiner Doktorarbeit habe ich command-line Tools sowie webba-
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Kurztassung

sierte Datenbanken und Pipelines entwickelt um I) Antibiotika-Resistenzgene
zu detektieren und somit vielversprechende Biosynthese-Gencluster zu finden
die fiir neue Antibiotika kodieren konnten, und II) Zielgene fiir genetische Ma-
nipulationen zu identifizieren, die fiir eine Erhohung der Sekundédrmetabolit-

Produktion optimiert werden konnen.



Acknowledgments

I would like to thank my advisors Prof. Dr. Nadine Ziemert and Prof. Dr. Kay
Nieselt for their support, patience and guidance. It was a didactic and joyous
ride for the past few years in Tiibingen, most likely the nicest place I've ever
been in Germany. I'm very grateful to all of my colleagues especially in the
Ziemertlab and my co-authors as they have taught so much and helped me all
along. Also, I would like to thank my committee members for taking the time
and in their efforts evaluating this work. For their financial and computational
support I would like to thank DZIF, BinAC and de.NBI.

My undying gratitude to my family both in Turkey and Germany. They have
been enduring me for quite some time now. As dedication, this thesis is for

anyone who somehow feels the need to read it.

vi



Contents

[1__Introduction 1
1.1 ral Pr nd Antibioticsl . . . .. ..o 2
[I.1.1 Houston, we have aproblem| . . . . .. ... ... ... 3

[1.1.2  Sources and traditional discovery of natural products| . . 6

(.2 Enter Informatics| . . . . . . ... ... . oL 8
[1.2.1  Genetics of natural products - to find them all -| . . . . . 9

[1.2.2  The age of “-omics” - to rule themall -| . . . . . .. .. 11

[1.2.3  Data sources - fo bring themall -{. . . . . . . . . . ... 15

1 Aim of the thesis - ] O 19

2 Publications 20

2.1 ARTS 2.0: feature updates and expansion of the Antibiotic Re- |

| sistant Target Seeker for comparative genome mining| . . . . . . 20
2.2  SYN-View: A Phylogeny-Based Synteny Exploration Tool for |
L the Identification of Gene Clusters Linked to Antibiotic Resistancel 33
2.3 ARTS-DB: a database for antibiotic resistant targets| . . . . . . . 46
2.4 Secondary Metabolite Transcriptomic Pipeline (SeMa-Trap), an |

| expression-based exploration tool for increased secondary metabo- |

| lite production in bacteria . . . . . ... ..o 52
I3 Conclusions| 68
|Abbreviations| 75

vii



Contents

IBibliography|

viii

76



Chapter 1

Introduction

What does a newborn baby covered in the hot ashes of a plant, a man smoking
the root of a tree and a woman applying milk-stewed fungi on her wound all
have in common? A rather baffling question, asked by scientists for quite a long
time. The path to illumination lay in the valley of the shadow of death since
these seemingly unrelated acts were all done for the purpose of increasing the
longevity of humankind and fighting against the deadly infections [, 2, 3]. Even
though it was known in the 17th century that microorganisms do exist [4], it was
not proven until the late 19th century that they can cause such infectious dis-
eases [Jl]. In the earlier days of scientific research, various organic compounds
were synthesized such as Salvarsan [6] in order to fight the microorganisms and
their infections however, the high amount of detrimental side effects they caused
rendered their usage rather counterproductive [7]. In 1928 came the discovery
of penicillin, an antibacterial compound naturally produced by the fungus Peni-
cillium chrysogenum [8]]. It was one of the biggest breakthroughs in antibiotic
research however, penicillin could not be produced in high quantities until the
"40s [9]. Afterward, with the successful application of penicillin, most phar-
maceutical companies launched their own microorganism-based natural product
discovery ventures [10]. This brings us to our initial question. In this so-called
the “golden era” of antibiotics, researchers began to fully understand that the

natural products were indeed responsible for a wide range of functionalities,



Chapter 1 Introduction

most useful to humankind [11].

Throughout this chapter, I highlight the importance of natural products, re-
view the challenges of the novel antibiotic discovery efforts and give an outline

of my Ph.D. work for the improvement of the current state of the field.

1.1 Natural Products and Antibiotics

Produced as secondary (or specialized) metabolites, natural products are respon-
sible for a wide range of biological activities, profoundly affecting organisms
throughout the tree of life [12]. The various feelings we get, e.g. enjoyment,
from a variety of products that humans use every day such as coffee, tobacco or
cocaine is a direct cause of natural products and their derivatives [13} |14, [15]].
Crucially, such bioactive compounds are also used as drugs functioning as an-
timicrobials, anticancers, statins, painkillers, etc. As estimated by Newman and
Cragg, at least 3 out of 4 approved drugs for the past 40 years were derived
from natural products. Concordantly, the best-selling drug for the past 25 years
used to treat cardiovascular diseases was developed from a direct descendant of
a fungal natural product [16, [1'7]. Since the mentioned “golden era”, antibacte-
rial drugs have saved millions of lives however, pharmaceutical companies have
gradually lost interest in the development pipelines [18]. One of the reasons is
that developing antibiotics, much like any other medicine, is difficult, expensive
and expected to become a failed attempt around 95% of the time [19, 20]. How-
ever, specifically for antibacterials, another reason is that the potential profits
in terms of money rarely outweigh the risks. Thus creating the current stag-
nation period in the antibacterial drug research. This low profitability issue is
mainly caused by the fact that the current antibiotics, some of which originated
from natural products discovered more than half a century ago, are still usable

to quite some extent [21]. The question is, for how long?



1.1 Natural Products and Antibiotics

1.1.1 Houston, we have a problem

Even though antibacterial agents have had a revolutionary effect on medicine,
they are also doomed to become ineffective given enough time [22]]. This phe-
nomenon, also known as antibiotic resistance, is simply the microorganism’s
ability to continue its activities in an environment treated with lethal doses of
antibiotics [23]]. Driven by various evolutionary processes such as mutation,
organisms can naturally gain resistance and adapt to the environment through
selective pressure [24]]. However, inappropriate, inadequate or overuse of an-
tibiotics whilst fighting infections as well as extensive antibiotic usage in agri-
cultural applications, hasten the selective pressure process, in turn, stimulating
antibiotic resistance [235].

As every action has a reaction, antibiotic resistance can be viewed as or-
ganisms’ gene-specific way of response to the assassination attempts made on
them. Since humans are not the only ones trying to kill microorganisms, the
evolution of the resistance genes can be a reaction to the antibiotics made by
other organisms or to the products made by the organism itself, creating a self-
resistance mechanism [26]. Concordantly, resistance conferred by groups of
beta-lactamases has been shown to originate way before the golden age of an-
tibiotics, dating up to 2 billion years ago [27]. In order to effectively solve the
problem at hand, we must first understand the modes of action of antibiotics and

the resistance mechanisms as bacterial countermeasures.

The good

Antibiotics are mostly originated from natural products produced by bacteria
and fungi and work through various modes of action (Table [I.1)). Mainly, they
block the essential processes, in turn inhibiting microbial growth or killing the
microorganism, without killing the host [28]]. This issue of specificity is one of
the core challenges when it comes to developing an antibiotic. For example, one

of the differences between the human cells and bacteria is that cells belonging to
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the latter are surrounded by a wall [29]. Beta-lactams such as penicillins disrupt
the cell wall formation by interfering with the biosynthesis of its main content
peptidoglycan [30]. Even though certain side effects can be seen through the
usage of beta-lactams (e.g. allergy to penicillin exposure), the cell wall remains
an antibacterial target with a low risk of impacting the mammalian host tissue
[31]].

The bad

“The bear knows ways to flee as many as the traps of the hunter.” This, thou-
sands of years old Turkish proverb can be used the describe the fact that so
far, the clinically used antibiotics were matched with the resistance mechanisms
developed or acquired by the targeted bacteria [32]. When streptomycin was
introduced in 1944 in order to fight “The Great White Plague”, tuberculosis, it
took only a few years for scientists to discover the mutant strains of Mycobac-
terium tuberculosis showing resistance to the therapeutic concentrations of the
drug [33]]. In the case of many antibiotics, the emergence of a resistant strain was
discovered most of the time within the next decade [34]. Among many others
shown in Table 1.1, a common tactic for negating the effect of an antibiotic on
the host is pumping out the toxic compounds. For example, RND (Resistance-
Nodulation-Division) family efflux pumps are known for their broad-spectrum
substrate profiles, in turn, contributing to the multidrug resistance capabilities of

Gram-negative bacteria [33]].

The ugly

When awarded his Nobel prize in 1945, Alexander Fleming cautioned: “There
is the danger that the ignorant man may easily underdose himself and by ex-
posing his microbes to non-lethal quantities of the drug make them resistant.”
Unfortunately, this presage has soon come to pass after years of worldwide use

as Staphylococci strains resistant to penicillin emerged. To fight off these re-



1.1 Natural Products and Antibiotics

Table 1.1: Commonly used antibiotic classes, producers and targets

Class Antibiotic Producer Target Resistance Mechanism(s)
B-Lactams Amoxicillin Penicillium Peptidoglycan hydrolysis, efflux, target
chrysogenum* biosynthesis modification
Sulfonamides Mafenide Synthetic Folate synthesis efflux, target modification
Aminoglycosides Kanamycin A Streptomyces Protein synthesis: 30S acetylation, efflux, target
kanamyceticus ribosomal subunit modification
Tetracyclines Tetracycline Streptomyces Protein synthesis: 30S efflux, target
aureofaciens ribosomal subunit modification, oxygenation

Glycopeptides

Macrolides

Lincosamides

Streptogramins

Oxazolidinones

(Fluoro)quinolones

Pyrimidines

Ansamycins

Lipopeptides

* Semi-synthetic antibiotic derived from the natural product of the producer strain.

sistant bacteria, the semi-synthetic antibiotic methicillin was

Vancomycin

Erythromycin

Clindamycin

Pristinamycin

Linezolid

Ciprofloxacin

Trimethoprim

Rifamycin SV

Daptomycin

Amycolatopsis orientalis

Saccharopolyspora

erythraea

Streptomyces lincolnensis

Streptomyces

pristinaespiralis

Synthetic

Synthetic

Synthetic

Amycolatopsis

rifamycinica*

Streptomyces roseosporus

Peptidoglycan
biosynthesis

Protein synthesis: 50S

ribosomal subunit

Protein synthesis: 50S
ribosomal subunit

Protein synthesis: 50S
ribosomal subunit

Protein synthesis: 50S
ribosomal subunit

DNA synthesis:
inhibition of DNA gyrase,
and topoisomerase IV

Folate synthesis:
inhibition of

dihydrofolate reductase

Nucleic acid synthesis:
RNA polymerase

Cell membrane disruption

Reprogramming
peptidoglycan

biosynthesis

Hydrolysis,
glycosylation,
phosphorylation, efflux,
altered target

Nucleotidylation, efflux,
altered target

C-O lyase (type B strep-
togramins),acetylation
(type A streptogramins),
efflux, altered target

Efflux, altered target

Acetylation, efflux,
altered target

Efflux, altered target

ADP-ribosylation, efflux,

altered target

Altered target

introduced how-

ever, it took around 3 years for the methicillin-resistant Staphylococcus aureus
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(MRSA) to emerge, renowned as the first superbug in history [36]. The fight
between antibiotics and bacterial resistance went back and forth for decades,
eventually resulting in the emergence of the ESKAPE pathogens. Comprised of
the bacteria Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumo-
niae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.,
these pathogens are equipped with extensive antimicrobial resistance (AMR)
capabilities and are regarded as a fundamental threat by the United Nations
(37, 138]]. Furthermore, the World Health Organization recently recognized the
urgent need for new antibiotics for the treatment of the infections caused by 12
bacterial species including ESKAPE pathogens [39]. In light of the information
and the estimations we have on AMR so far, it 1s evident that we are in dire and

urgent need of novel antibiotics.

1.1.2 Sources and traditional discovery of natural products

As mentioned earlier, various types of drugs were originated from natural prod-
ucts, and produced by organisms from different branches of the tree of life such
as fungi, bacteria and plants [40]. Such small molecules, especially with an-
tibacterial functions are mainly produced by bacteria [41]. In order to survive in
complex ecosystems, microorganisms have evolved to compete with their neigh-
bours. For example, the production of iron-chelating agents like siderophores al-
lows microbes to scavenge valued metals for themselves from the environment
[42]. Another type of competition involves killing or the impairment of other
neighbouring organisms leading to the further growth and survival of the domi-
nant bacterium [43]. Consequently, soil-dwelling terrestrial organisms were ex-
tensively studied by researchers in order to find natural products that can be used
against bacteria. These efforts showed that members of the phylum Actinobac-
teria had a huge potential to produce antibiotics [44]. Specifically, the genus
Streptomyces has been regarded as the richest source so far, inspiring more than

70% of the clinically used antibacterial drugs [45]. Furthermore, as recently
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shown by Gavriilidou and colleagues, organisms belonging to other taxa such
as Bacteroidota or Myxococcota can also be considered as sources of diverse

biosynthetic potential [46]].

By the time of the golden era of antibiotics, more than half a century ago,
searching for natural products was mainly centered around bioactivity-screening
efforts (Figure [I.I). These so-called “top-down” approaches, begin with acquir-
ing biological samples in order to isolate and cultivate a microorganism that
can generate valuable natural products. However, it can prove extremely diffi-
cult to effectively cultivate a microbe in laboratory conditions, let alone force it
to produce the metabolites it instinctively produces guided by various environ-
mental effects [47, 48]. In order to isolate compounds using such a roadmap,
researchers often try to mimic the settings of the natural environment for the
microorganisms such as introducing external stresses or co-culturing with other
species [49]. Uncommon methods are also applied. As seen from a research
conducted by Cichewicz et al., using a commercial breakfast cereal “Cheerios”
in media formulations, promoted the production of two novel compounds (a di-
arylcyclopentendione and a biphenyl metabolite) from Preussia typharum iso-
late [50]. Alternatively, another common effort is to collect the extracts di-
rectly from the sample, without any prior cultivation of a specific strain. Subse-
quently, numerous collected extracts are then subjected to a screening process,
where the compounds are tested for their functionality (e.g. antibacterial ac-
tivities) guided by bioassays. Provided that interesting bioactivity is observed
through screening, present compounds are then isolated for their structural char-
acterization. A number of advancements in sampling and cultivation efforts,
High-Throughput Screening (HTS) methodologies and the characterization of
metabolites have been described for the increased efficiency [S1]. However, the
traditional bioactivity-guided approach commonly suffers from the facts that the
total workflow is laborious, time-consuming and quite susceptible to rediscover-
ies of the already described compounds. Since it is evident that resources can’t

be thrown away for high-risk, low-reward initiatives, drug discovery efforts are
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often guided or complemented by the computational methods which are contin-

uously improved each day [52].

PETE s
Structure Elucidation Chemical Profiling Bioassay

Figure 1.1: Illustration of the traditional natural product discovery process. Af-
ter the acquisition of samples, one can try to cultivate the microbes or directly
extract the contents. The extracts are then subjected to bioassays to investigate
bioactivity. Afterward, if an interesting activity is observed, the final steps are
obtaining a high amount of the compound and elucidating its structure (e.g. by
using the liquid chromatography—mass spectrometry technique).

1.2 Enter Informatics

Much like any other industry, biotechnology-based industries have been mobi-
lizing toward digitalized environments, since the beginning of the Information
Age. With Frederick Sanger’s work on discovering amino acid sequences of
insulin from different hosts in the 1950s [53]], it soon became evident that se-

quence databases were needed to store valuable information. In the mid-1960s
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Margaret Oakley Dayhoff enabled the usage of computerized systems in order to
store and analyze amino acid sequences, pioneering the field of bioinformatics
(54,155, 156]. Later on, making use of the DNA-sequencing methods, scientists
began to generate large nucleotide sequences, even a full genome of a bacte-
riophage in 1977 [57]. A year later, computational algorithms were used on
such nucleotide sequences in order to search for patterns through the usage of
Markov chains [S8]. By 1979, several tools were developed in order to deter-
mine the molecular structures of natural products [S9]. Now, after decades full
of technological advancements, computer-guided “bottom-up” approaches are

crucial to the discovery of natural products and the design of novel drugs [60].

1.2.1 Genetics of natural products - fo find them all -

As mentioned, Streptomyces species serve as a treasure trove for useful natural
products. Unsurprisingly, belonging organisms such as Streptomyces coelicolor,
also served as important bacteria paving the way for understanding the mech-
anisms of the biosynthesis of bioactive compounds [61]. In particular, David
A. Hopwood and his colleagues extensively investigated the bacterium, and
showed that the S. coelicolor strain A3(2) is potentially a rich source of antibi-
otics, producing methylenomycin A and actinorhodin [62,63]]. Further decoding
the genetics of the biosynthesis, he reported that the enzymes necessary for the
production of these compounds were encoded by the genes closely positioned
together, forming a cluster [64]. Eventually, these genes in close proximate to
each other were termed Biosynthetic Gene Clusters (BGCs) (Figure|1.2)). Apart
from the main biosynthetic enzymes, it soon became evident that BGCs incorpo-
rate genes with other functionalities. For example in the novobiocin production
mechanism, it was shown that tailoring enzymes such as glycosyltransferases
were responsible for the introduction of deoxysugars to the compound, shap-
ing its biological activity [65]. Certain regulators are also commonly observed

within the BGC, controlling when or if the compound should be produced, de-
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pending on various factors such as environmental stress [66]. Furthermore, these
clusters are often accompanied by transporter encoding genes to pump the prod-
uct out of the cell and resistance genes for the protection of the organism against

its own medicine [67, 68]].

EG@OaE dDH @D @O

core
[l biosynthetic
genes

D additional Dtransport» . regulatory .other

. . resistance
biosynthetic genes related genes genes genes

Figure 1.2: An example PKS type BGC predicted by antiSMASH. Once the
core domains for a type (herein KS and AT domains) are detected, genes with
such domains are labeled as “core biosynthetic genes”. Afterward comes the
“extension” step, where the algorithm looks for “additional biosynthetic genes”
e.g., tailoring enzymes. Additional gene types are also searched, such as genes
regulating the proposed cluster or transporting the final compound, leading to
the final formation of the predicted BGC boundaries.

Understanding the organization of BGCs, coupled with their highly conserved
machinery, greatly improved our ability to detect various classes of secondary
metabolites. Many BGC classes exist such as terpenes, bacteriocins, ribosoma-
lly and post-translationally modified peptides (RiPPs) however, non-ribosomally
synthesized peptides (NRPs) and polyketides (PKs) are the popular types since
they are known for their diverse structures and uses in pharmaceutical appli-
cations. The variety of such structures is explained through their architectural
design of so-called “assembly lines” [69]]. For example, in the case of PK pro-
duction, the organism needs certain primary metabolite monomers activated by
thioesters such as malonyl-CoA for the initiation phase. After that, the elon-
gation of the assembly chain commences by the linkage of the substrates and
intermediates. Throughout the elongation of the assembly line, further post-
translational modifications take place which creates a specialized functionality
of the secondary metabolite. In the end, the assembly line is finalized by termi-

nating enzymes, playing an important part in the tailoring of the final product

10
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and its release to make use of its bioactivity [[70].

As in the above example, these structural transformations and final termina-
tion are catalyzed by polyketide synthase (PKS) modules with specific func-
tional domains for each enzymatic reaction. Domains like acyltransferase (AT)
and the acyl carrier protein (ACP) are involved in the starting point of the pro-
cess, while domains such as ketoreductase (KR) and ketosynthase (KS) are in-
volved in tailoring the structure at each step [71]. Obviously, this is overly-
summarized information about one BGC class, but it provides an important
point. With each solved part of the puzzle in the biosynthesis of these com-
pounds, we are one step closer to finding and (re)engineering BGCs, increasing
their production, finding useful homologue sequences of key enzymes, explor-
ing the diversity of BGCs leading to novel discoveries and devise many more
potential avenues in order to make use of new natural products. As our un-
derstanding of the biosynthesis of various BGC classes evolved, increasingly
accurate bioinformatic tools to detect, characterize and (over)produce their cor-

responding products soon followed.

1.2.2 The age of “-omics” - to rule them all -

Even before the completely sequenced genomes of two bacteria in 1995, se-
quencing and manipulation of biosynthetic genes have played crucial roles in
the discovery and production of natural products. Cloning a whole BGC in
1984, Malpartida and Hopwood were able to produce actinorhodin in the het-
erologous host of Streptomyces parvulus [64]. With the increased amount of
generated DNA sequences coupled with the improvements in genetic engineer-
ing techniques, researchers were able to further determine the diversity of core
genes required for the synthesis of natural products from a variety of microor-
ganisms, paving the way for the creation of bioinformatics tools capable of min-
ing genomes [72].

Like many fields, natural product research was also revolutionized by the ad-

11
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vent of Next Generation Sequencing (NGS). With the rapid increase of bacterial
(meta)genomes in public repositories and the amount of identified BGCs not
correlated to known natural products, genome mining-based discovery gained
profound popularity [73]]. Such genomics-based workflow starts with the detec-
tion (and prioritization, as discussed in the later sections) of BGCs accompanied
by a de-replication process in order to avoid nonnovel products [74]. Initially,
even before the full impact of NGS-based technologies, detection workflows
were highly dependent on applying the Basic Local Alignment Searching Tool
(BLAST) [75] on DNA and amino acid sequences in order to find locations of
core biosynthetic genes such as non-ribosomal peptide synthetase (NRPS) in
genomes of interest. This method of BGC detection worked relatively well for
several years, aided by a number of automated analysis tools like DECIPHER
or NRPS-PKS [76, [77]. However, especially with the updated algorithms be-
longing to the HMMER3 package and the generation of Hidden Markov Model
(HMM) profiles of conserved domains of core biosynthetic enzymes, BGC de-
tection workflows shifted towards pHMM-based searching methods [78]. A
number of prediction tools using pHMMs were made available to researchers for
the analysis of fungal and bacterial organisms [79]. First published by Medema
et al. in 2011 [80] and continuously improved, antiSMASH enabled the predic-
tion of several classes of BGCs in one web server. Now in its sixth iteration [81],
antiSMASH is widely considered the gold standard as it has analyzed more than
1.2 million input sequences online, achieving /7500 citations in total as of June
2022.

As pointed out, understanding the mechanisms of various aspects of natu-
ral products (synthesis, modes of action, structure, etc.), greatly enhances our
ability to develop and further improve the discovery pipelines. In that regard,
another powerful method in the genomics toolbox is the phylogenetic analysis
of sequences of interest. With the growing genetic data on BGCs and their host-
ing genomes, phylogeny-based approaches have become crucial since they can

be used to infer the diversity and prediction of BGCs, as well as the evolution-

12
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ary processes driving BGC development in microorganisms such as horizontal
gene transfer (HGT) or duplication [82]. Driven by these principles, EvoMining
was created to search for enzymes functioning in primary metabolic pathways
which have gone through “gene expansion” phases and conduct subsequent phy-
logenetic analysis to detect clusters that might have diverged from primary me-
tabolism [83]]. Another widely used method, with metagenomic data which is
comprised of DNA harboured from environmental samples, is to screen input
sequences for domains of interest to detect phylogenetic markers which can be
used to track down a cluster’s evolutionary path [84]. Using such a roadmap,
Brady and his colleagues were able to discover structurally diverse novel sec-
ondary metabolites; antibiotics such as Fasamycin A [85] and anticancers such
as Arimetamycin A shown to be more potent than natural Anthracyclines used
in clinics [86]. A variety of pipelines have been created in order to aid re-
searchers in phylogeny-guided (meta)genome mining. Tools such as NapDos
[87], FunOrder [88] and eSNaPD [89] can be used for the detection of biosyn-
thetic genes and assessing their diversity, while CORASON and BiG-SCAPE
can be used to investigate evolutionary links between a large scale of BGCs and

their sequence similarity networks [90].

Once an interesting BGC is detected based on its novelty and potential func-
tion, an important step is to promote its expression. As organisms do not want to
spend the time, energy, or any precious precursor compound on an unnecessary
metabolite, many BGCs stay in a “silent” mode, waiting to be activated when
need be [91]. One efficient way to identify the product of a corresponding BGC
is its heterologous expression in a genetically tractable host [92]. Since it is es-
timated that at least 90% of bacterial organisms can’t be cultured in laboratory
conditions, moving specific biosynthetic genes or a complete BGC to another
host (e.g. Escherichia coli for bacteria or Saccharomyces cerevisiae for fungi)
for metabolite production is shown to be a fruitful approach [93]]. A variety
of novel antibacterial compounds are described using this method including a

sulfo-glycopeptide by Owen et al. [94], scleric acid by Fabrizio et al. [95] and
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several more by the Brady group, guided by metagenomic approaches, such as

malacidin and borregomycin (which also shows anticancer bioactivity) [96, 97].

Another strategy for the activation of a silent cluster involves focusing on
the expression of the BGC in its natural strain termed native host expression.
Initially, upon the discovery of an interesting BGC which is naturally evolved
at some point of the bacterium’s evolutionary timeline for a specific purpose
such as increasing its survivability when facing specific environmental stress,
this method mostly relies on genetically engineering the host or applying differ-
ent culturing conditions to induce expression [98]. In a study by Hertweck and
his colleagues, various nutrients, chemicals and stress triggers were applied to
the culturing conditions of an anaerobic bacterium Clostridium cellulolyticum
in order to induce secondary metabolite production, but to no avail. However,
when they added an aqueous soil extract, in an effort to mimic its natural habitat,
they discovered closthioamide, exhibiting antibacterial activity [99]. By induc-
ing mutations on genes RPSL and RPOB (encoding ribosomal protein s12 and
RNA polymerase f-subunit, respectively), Takeshi et al. were able to discover

a novel antibiotic piperidamycin from its native producer Streptomyces mauve-
color [100].

An invaluable approach to studying silent clusters, which is often used to
complement genomics-based strategies, is mining the transcriptome of a po-
tential BGC producer organism. Increasing our knowledge about the regulatory
mechanisms of BGCs continuously improves our ability to discover and produce
new compounds. Using microarrays, early examples of transcriptome mining
led to the improvement of genetic engineering strategies [101]] and the detection
of specific genes for the overproduction of natural products [102]. Developed
more than a decade ago, RNA-Sequencing (RNA-Seq) was hailed as a method
that revolutionized the field of transcriptomics. This method is widely used to
take a “snapshot” of the available mRNA sequences of the current state of a sam-
ple, which is then reversely transcribed to cDNA fragments, afterward subjected

to High-Throughput Sequencing (HTS) to generate DNA sequences (reads) that
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1.2 Enter Informatics

can be used to infer expression level of corresponding genes [103]. Especially
with the continuous improvements of the algorithms used in the subsequent data
analysis workflows, RNA-Seq has also become a crucial part of the discovery
and (over)production of secondary metabolites. An extensive comparative tran-
scriptomic study by Amos et al. on four strains of marine Salinispora linked
predicted BGCs to their (novel) products, also describing their putative func-
tionalities [[104]. In one of the newest examples using the RNA-Seq approach,
improvement of erythromycin yield by 71% is achieved by simultaneous over-
expression of the genes sucB and sucA which encode enzymes for the provision
of precursor compounds [[103]].

Starting from a mere DNA sequence of a genome to the final characterization
of a new compound, each step of the entire multi-omics analysis yields a piece
of information most valuable for further research. Consequently, an important

component of natural product research is finding data of interest.

1.2.3 Data sources - fo bring them all -

With the technological advancements in sequencing methods coupled with the
developments of data mining algorithms, databases have become a crucial part
of natural product discovery and production efforts. There are dozens of databases
that may prove useful to natural product research [106] however, several of
them are mentioned for the purposes of this thesis. Being one of the oldest
and most comprehensive data sources, The National Center for Biotechnology
Information (NCBI) hosts a variety of databases holding a large amount of se-
quence data representing organisms from all around the tree of life. With a
non-stop increase over the years (approximately gets bigger twice in size every
18 months), NCBI’s GenBank database [107] contains more than 1.1 million
bacterial genomes of which ~32500 are tagged as complete as of June 2022.
However, with the great number of sequences, comes great redundancy. First
introduced in 2000, NCBI’s RefSeq database was designed to address this prob-
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lem by offering manually curated non-redundant sequences from GenBank, that
would only keep the-up-to date version of each entry. Covering 68260 bacte-
rial species, RefSeq contains ~27000 bacterial complete genomes [108]. Addi-
tionally, repositories such as European Nucleotide Archive and Sequence Read
Archive (maintained by the European Bioinformatics Institute and NCBI, re-
spectively) provide HTS data from a wide range of organisms and sequencing
platforms [109, [110]. Operable through multiple programming access tools,
such databases enable the exchange of a large amount of HTS-generated reads.
Acquisition of reads of interest makes a number of research objectives possi-
ble such as the reassembly of the (meta)genomes for specific purposes [111],
generating RNA-Seq based transcriptomic profiles from multiple samples of an

organism and even the reconstruction of BGCs[112].

With the logarithmic increase of genomic data and the illumination of BGC
biosynthesis and formation, it became evident that BGC-centered databases were
needed. Mainly focusing on NRPS and PKS types, early databases include do-
BISCUIT [113]], ClusterMine360 [114] and StreptomeDB [[115] with the latter
focusing specifically on Streptomyces strains. Taking advantage of the second
version of antiSMASH [116] and another BGC prediction tool, ClusterFinder
[117], which in contrast to antiSMASH was built to include the prediction of the
BGCs belonging to unknown classes as well, Hadjithomas and his colleagues
developed the Atlas of Biosynthetic Clusters within the Integrated Microbial
Genomes system (IMG-ABC) [118]]. Initially, the database held over a mil-
lion predicted BGCs however, with the updated version [119], the authors aban-
doned the “unknown territory” and used only the fifth version of antiSMASH
resulting in more than half a million drop in total predicted BGC count but with
higher confidence. Additionally, now in its third iteration, the antiSMASH-
DB provided researchers with an easy-to-use database allowing the construction
of comprehensive queries to search BGCs by their types, including domains,
most similar MIBiG clusters, etc. Also, they dereplicated the genomes by fil-

tering them based on their average nucleotide identity (%99.6 similarity cut-
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off), resulting in 165084 predicted BGCs from bacteria [81]. Given the high
amount of BGCs only labelled as “predicted”, standardization and evaluation
of BGCs have essentially become an important task. In 2015, a collaborative
effort of scientists addressed this issue by creating the Minimum Information
about a Biosynthetic Gene Cluster (MIBiG), offering the community a repos-
itory of manually curated, experimentally characterized set of BGCs, linking
them to their produced compounds [120]. Since most of the mentioned (and
many more) databases and prediction tools concerning natural products are con-
sistently improved, Secondary Metabolite Bioinformatics Portal was introduced
as a community-updated web server offering a “catalog” of major tools used in

natural product research [121]].

Prioritization

As 1s the major point of this thesis so far, each day comes with another scientific
work that improves our knowledge of natural products, brings another techno-
logical development, and one more batch of data to be mined. Even though
there are millions of public or private predicted BGCs, the majority of them re-
mains orphan with a small fraction being experimentally verified and linked to
its compound. With the immense wealth of information generated by “omics”
approaches, prioritization of such data has become crucial to reducing the costs
of time, money and resources for further wet-lab applications [[122]. To date,
several methods were designed to prioritize BGCs and strains for the discovery
of novel compounds. For example, some tools use chemical structure informa-
tion to infer the enzymatic mechanism of natural product biosynthesis [123],
some combine metabolomic and genomic data [[124, [125, [126], and some use
genome mining methods to find promising strains which can possess a rich and
diverse source of natural products [127, [128]]. Another prioritization method
relies on the fact that any bacterium that creates an antibiotic, has to encode a
form of self-defense mechanism to avoid suicide [[129]]. In one of the mecha-

nisms providing self-resistance, the BGC may include a duplicated or modified
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version of a housekeeping gene that acts as a resistant target to the encoded
product. Key evolutionary mechanisms to this process are discussed in detail
in publications 1-3 [130, 131} [132]]. Screening such genes and BGCs, this so-
called target-directed genome mining (TDGM) or self-resistance based genome
mining approach allowed the prioritization and in turn, the discovery of many
natural products from both bacterial and fungal organisms in the past decade
[133]. However, none of the mentioned methods are focusing on increasing the
yield of a compound encoded by the predicted BGC. To that aim, an invaluable
method is to alter the expression of genes playing a pivotal role in the produc-
tion of natural products (discussed in detail in publication 4). A high number
of genes might play such a role however, with the use of comparative transcrip-
tomic approaches, researchers were able to prioritize genes for manipulation
purposes which led to the overproduction of known compounds as well as the

discovery of novel metabolites [134].
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1.3 Aim of the thesis - to bind them all -

The main objectives of this work can be summarized in two parts: designing
tools for the discovery of novel BGCs and the (over)production of their corre-

sponding compounds.

For the discovery part:

* With ARTS 2.0, we have extended the target-directed based prioritization
methodologies to encapsulate the entire bacterial kingdom, introduced

functionalities for the comparative mining of input genomes

* With SYN-View, we proposed a phylogeny-based method to increase the
efficiency of TDGM approaches by investigating the synteny of clusters

of interest amongst the closest relatives of the input genomes

* ARTS-DB was created to enable easy exploration of TDGM mechanisms
throughout the bacterial kingdom

For the (over)production part:

* We have created SeMa-Trap to allow for promising experimental design
and RNA-Seq based transcriptome mining in order to find promising tar-

get genes for the (over)expression experiments of BGCs of interest
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Chapter 2

Publications

2.1 ARTS 2.0: feature updates and expansion of
the Antibiotic Resistant Target Seeker for

comparative genome mining

Contributions

With valued discussions and guidance from Prof. Dr. Nadine Ziemert, I did
everything concerning the new reference sets making ARTS available for the
whole bacterial kingdom, updating the incorporated algorithms and the base
code, testing and validating the updated pipeline, writing the original paper draft
and carrying the server to de.NBI cloud services. Dr. Mohammad Alanjary was
responsible for all of the visualization of the results and adapting the “front-
end” to the updated pipeline. All the authors spent time reviewing and editing

the final manuscript.

20



W546-W552  Nucleic Acids Research, 2020, Vol. 48, Web Server issue

doi: 10.1093narlgkaa3 74

Published online 19 May 2020

ARTS 2.0: feature updates and expansion of the
Antibiotic Resistant Target Seeker for comparative

genome mining

Mehmet Diren¢ Mungan'-%f, Mohammad Alanjary®, Kai Blin?, Tilmann Weber “4,

Marnix H. Medema “® and Nadine Ziemert “1:2"

'Interfaculty Institute of Microbiology and Infection Medicine, University of Tiibingen, Auf der Morgenstelle 28, 72076
Tlbingen, Germany, 2German Centre for Infection Research (DZIF), Partner Site Tilbingen, Germany,
3Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands and
4The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning

220, 2800 Kgs. Lyngby, Denmark

Received February 28, 2020; Revised April 19, 2020; Editorial Decision April 29, 2020; Accepted April 29, 2020

ABSTRACT

Multi-drug resistant pathogens have become a ma-
jor threat to human health and new antibiotics are
urgently needed. Most antibiotics are derived from
secondary metabolites produced by bacteria. In or-
der to avoid suicide, these bacteria usually encode
resistance genes, in some cases within the biosyn-
thetic gene cluster (BGC) of the respective antibi-
otic compound. Modern genome mining tools en-
able researchers to computationally detect and pre-
dict BGCs that encode the biosynthesis of secondary
metabolites. The major challenge now is the priori-
tization of the most promising BGCs encoding an-
tibiotics with novel modes of action. A recently de-
veloped target-directed genome mining approach al-
lows researchers to predict the mode of action of
the encoded compound of an uncharacterized BGC
based on the presence of resistant target genes. In
2017, we introduced the ‘Antibiotic Resistant Tar-
get Seeker’ (ARTS). ARTS allows for specific and
efficient genome mining for antibiotics with inter-
esting and novel targets by rapidly linking house-
keeping and known resistance genes to BGC prox-
imity, duplication and horizontal gene transfer (HGT)
events. Here, we present ARTS 2.0 available at http:
/larts.ziemertlab.com. ARTS 2.0 now includes op-
tions for automated target directed genome mining
in all bacterial taxa as well as metagenomic data.
Furthermore, it enables comparison of similar BGCs
from different genomes and their putative resistance
genes.

INTRODUCTION

Due to the continuous increase of drug-resistant bacteria,
antibiotic resistance is regarded as a global public health
threat (1). The lack of new antibiotics with novel modes
of action in the current drug development pipeline, makes
finding new compounds to fight off resistant pathogens a
critical task (2). Since the discovery of penicillin, secondary
metabolites (SMs) produced by various living organisms
have been foundational to the development of antimicro-
bial drugs (3). The majority of antibiotic compounds are
isolated as natural products, from fungi and bacteria (4).
For many decades, screening biological samples for desired
bioactivity has been the traditional methodology for natu-
ral product discovery (5). Due to the high rediscovery rates
and labor-intensive nature of the process, in silico methods
have become a promising way to guide modern drug discov-
ery efforts (6,7). Gene-centered methods, such as genome
mining, enable researchers nowadays to computationally
detect the biosynthetic gene clusters (BGCs) encoding en-
zymes necessary for the biosynthesis of antibiotics and pre-
dict encoded compounds (8). Over the last decade, greatly
improved genome mining tools such as antiSMASH (9),
EvoMining (10), PRISM (11) or DeepBGC (12) use meth-
ods like Hidden Markov Models, phylogeny or deep learn-
ing to highlight a variety of natural product classes. Com-
bined with databases such as MIBiG (13), Natural Product
Atlas (14) and the antiSMASH database (15), these tools al-
low for fast and efficient mining and dereplication of thou-
sands of bacterial genomes and BGCs. According to the
latest version of the Atlas of Biosynthetic Gene Clusters
(IMG-ABC) (16) there currently are ~400 000 predicted
BGCs sequenced. Moreover, <1% of total clusters are ex-
perimentally verified, which leads to an important question:
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Which of these clusters should be further examined with wet
lab experiments?

Recently, researchers adopted a prioritization approach
for antibiotic discovery that is based on the observation that
antibiotic producers have to be resistant against their own
products to avoid suicide (17). This so called target-directed
or self resistance based genome mining approach allows the
prediction of the mode of action of the encoded compound
of an uncharacterized BGC based on resistance genes, in
some cases co-located within the antibiotic BGC (18). Mul-
tiple resistance mechanisms exist, such as inactivation and
export of antibiotics as well as target modification. In the
latter case, a duplicated and antibiotic-resistant homologue
of an essential housekeeping gene is detectable within the
antibiotic BGC and allows the prediction of the mode of
action of the encoded compound even without knowing a
chemical structure (19-21). Moore et al., for example, were
able to identify a fatty acid synthase inhibiting antibiotic
by screening for duplicated fatty acid synthase genes within
orphan BGCs (22).

In 2017, we introduced the first version of the ‘Antibi-
otic Resistant Target Seeker’ (ARTS) (23), a user-friendly
web server that automates target-directed genome mining
to prioritize promising strains that produce antibiotics with
new mode of actions. Since a resistant copy of the antibi-
otic target gene is typically detectable in the genome, can
be observed within the BGC of the antibiotic and horizon-
tally acquired with the BGC (23), ARTS automatically de-
tects possible resistant housekeeping genes based on three
criteria: duplication, localization within a biosynthetic gene
cluster, and evidence of Horizontal Gene Transfer (HGT).
One previous limitation of the ARTS pipeline was its fo-
cus on actinobacterial genomes. Although natural product
discovery historically was highly focusing on the phylum
Actinobacteria, prominent families from other phyla such
as Proteobacteria or Firmicutes are known to have high nat-
ural product biosynthetic potential (24-26). Here, we intro-
duce a greatly improved version 2 of the ARTS webserver,
now allowing the analysis of the entire kingdom of bac-
teria, metagenomic data, and the comparison of multiple
genomes. This update therefore will facilitate natural prod-
uct prioritization and antibiotic discovery efforts beyond
actinomycetes.

NEW FEATURES AND UPDATES

The workflow of the ARTS pipeline involves a few key
steps: First, query genomes are screened for BGCs using
antiSMASH (9). At the same time essential housekeeping
(core) genes within the genome are determined using TIGR-
FAM models that have been identified by comparing a ref-
erence set of similar genomes (27) (Figure 1B). During the
next steps the identified core and known resistance genes
are screened for their location within BGCs. Duplication
thresholds are determined for each core gene model, based
on their respective frequencies among the reference set. Fi-
nally, possible HGT events are detected via phylogenetic
screening with the help of constructed species trees and gene
trees. All the results are summarized into interactive output
tables.
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Reference sets of organisms and core genes

Since the determination of core gene content and the con-
struction of phylogenetic trees is more specific and accurate
when query genomes are compared with genomes from sim-
ilar organisms, we aimed to generate phylum specific refer-
ence sets. However, since the number of genomes in the dif-
ferent phyla varied significantly, reference sets were some-
times also created by class or a group of closely related phyla
(Supplementary Table S1).

In a first step, sequences of all classified bacteria were
downloaded through NCBI’s RefSeq database (28) for fur-
ther evaluation (Figure 1A). Redundant sequences were
filtered with MASH (29) with a +95% similarity cut off.
Where applicable, only complete genomes were used in
a reference set. If the number and diversity of complete
genomes within a phylum was not sufficient (distributed
among a genus or two with <100 sequences), contig-level
assemblies were also taken into consideration to expand the
particular reference. Around 330 genome sequences were
used for the creation of each individual reference set, which
sum up to 4936 genomes in total.

Based on the number of genomes for each reference set,
different boundaries were then selected for phyla with dif-
ferent levels of diversity. Given the diversity and large num-
ber of proteobacterial genomes deposited in Refseq (30),
four different reference sets were created for proteobacterial
genomes (Alpha, Beta, Gamma, Delta-Epsilon). In cases
where a phylum does not comprise sufficient sequenced
genome sequences (less than 100 genomes), multiple phyla
were grouped into one reference set. In that way, 22 phyla
were grouped into three reference sets. Groupings were
based on phylogenetic distances in the tree of life (31) and
the NCBI Lifemap (32). Another feature of the grouped
sets is the high coverage of bacteria from harsh environ-
ments, allowing the analysis of extremophiles. For example,
group 2, which was created from 214 organisms, is mainly
comprised of the phyla Thermotogae and Chloroflexi (Sup-
plementary Table S1), which are known to be mostly ther-
mophilic (33,34).

Reference set and core gene analysis

Determination of core genes. Core genes were determined
for each reference set using the method developed for the
previous version of ARTS (23). Subsequently, the core genes
from each set were compared with sequences from the
Database of Essential Genes (DEG)v 1.5 (46). On average,
85% of genes had a match to one or more records (Sup-
plementary Table S2). The majority of the genes that are
not found in DEG belong to the gene categories "unclassi-
fied’, 'unknown function’ or ’energy metabolism’. Further-
more, functional classification of each reference set revealed
that, on average, genes with functions such as protein and
amino acid synthesis, energy and metabolism were the most
abundant as would be expected from essential genes (Sup-
plementary Figure S1). The importance of individual refer-
ence sets is highlighted by the fact that one set only accounts
for ~40% of the total unique core genes from all sets (Sup-
plementary Table S4).

Additionally, the reliability of the generated gene trees for
each reference set were estimated by branch support (Sup-
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Figure 1. Outline representation of the ARTS pipeline. (A) Basic machinery of creating reference sets. Housekeeping core genes and duplication thresholds
are detected per clade of organisms and gene alignments and trees are created for fast HGT detection. (B) Workflow with multi-genome comparative
analysis. Input data is screened for ARTS selection criteria. All found BGCs are then subjected to BiG-SCAPE clustering algorithm. Finally, interactive

output tables are presented for comparative analysis.

plementary Figure S2) and comparison to taxonomically
correct species trees generated by the Accurate Species TRee
ALgorithm (ASTRAL) (47) (Supplementary data).

Positive controls and detection frequencies. In order to
test ARTS’ ability to detect resistant targets in non-
actinobacterial genomes using the new reference sets, we
analyzed known examples of self-resistance mechanisms.
We identified several known non-actinobacterial examples
as positive controls (Table 1). Out of 11 antibiotic natural
products with identified resistance mechanisms, five of them
had available genome sequences regarding specific isolates
that contained respective BGCs. All of these cases showed
at least two ARTS hits when run in normal mode with de-
fault cutoffs. To detect the accA gene, a known transferase,
exploration mode had to be used. Otherwise, ARTS 2.0 pre-
dicted resistance genes in almost all control BGCs except
one. The CoA reductase resistant gene was not detected be-
cause specific CoA reductase models were missing in both
the core and known resistance set. We also analyzed ~5000
genomes belonging to all reference sets for statistical evalu-
ation (Supplementary Table S3). On average, only one gene
model shows positive hits for three or more ARTS criteria.
Also, most of the core genes from the respective sets are
found in each analyzed genome. Around 2-5% of core genes
are highlighted for each criterion. The percent of core genes

that went through HGT is in conformity with the HGT es-
timate levels in the literature (48,49).

Reference sets for metagenomic data

Since metagenomic approaches are becoming increasingly
popular in natural product research (50,51), submissions
of whole metagenomes to the ARTS webserver are also
showing a significant increase. Therefore, we have built an
additional reference set available for metagenome analysis,
which does not include phylogeny and duplications. Given
that metagenomes are usually quite diverse and comprise
more than one single phylum, core genes are defined as
genes belonging to the Database of Essential Genes (DEG)
(Supplementary Table S3).

Comparative analysis

ARTS 2.0 now makes it easier for users to analyze mul-
tiple genomes and applies a comparative analysis of pro-
vided organisms (Figure 2). Throughout the analysis, in-
dividual ARTS results are accessible upon completion of
each run. Once all the sequences of interest are analyzed,
an interactive summary table representing all genomes with
each resulting criterion is provided. In addition, shared core
genes with their respective hits and their observed frequen-
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Table 1. Default ARTS analysis for positive examples of genomes and BGCs with known self-resistance mechanisms

Criteria hits (>2, Genes
Product Resistance gene Organism ARTS hits >3) (core, total)
Thiocillin ribosomal protein L11(35) Bacillus cereus ATCC 14579 D,B.P 9,1 472, 5231
Myxovirescin Ispa: signal peptidase 11(36) Myxococcus xanthus DK 1622 D,B,P 15,2 372, 7267
accA: acetyl-CoA Burkholderia thailandensis D,B,PR* 42,5 838, 6347
Thailandamide carboxylase(37) E264
Indolmycin trypS: tryptophan-tRNA Pseudoalteromonas D.B 13,2 540, 4963
synthetase(38) luteoviolacea
Agrocin 84 leu tRNA synthase(39) Agrobacterium radiobacter D.P 41,2 470, 6876
K84
Bengamide methionine Mpyxococcus virescens DSM Core N/A 1,18
aminopeptidase(40) 15898
Mupirocin Ile-tRNA synthetase(41) Pseudomonas fluorescens Core N/A 1, 36
NCIMB 10586
Andrimid aceD: acetyl-CoA Pantoea agglomerans Eh335 Core N/A 1,18
carboxylase(42)
Pentapeptide repeat Cystobacter sp. Cbv34 R* N/A 0,24
Cystobactamid protein(43)
Phaseolotoxin ornithine Pseudomonas savastanoi pv. Core, R* N/A 3,26
carbamoyltransferase(44) phaseolicola
Kalimantacin fabl: enoyl reductase(45) Pseudomonas fluorescens No hits N/A 3,29
BCCM 1D9359

Hits to ARTS criteria are shown as; D: duplication, B: BGC proximity, P: phylogeny, R: resistance model. Rows in gray indicate only complete gene cluster
as input rather than whole genome. Stars indicate exploration mode.

Summary of genomes Achromobacter_insolitus
 Status: Done
Total Total Known Core Gene BGC Phylogeny
Organism IL Genes || BGCs || Resistance | Genes ' Duplication || Proximity || /HGT 2+ 11 3 7 S
Achromobacter_insolitus_strain_FDAARGOS_88.gbff 6372 7 63 825 56 34 173 30 I
Show/Hide log
Advenella_mimigardefordensis_DPN7.gbff 4364 10 29 762 35 38 235 0 5
Summary of hits
Bordetella_petrii_strain_DSM_12804.gbff 5036 8 47 814 38 33 209 3 |2
Core Genes: Essential gene table Total genes: 6372
Core/Essential genes: 825
Gene Description Function Dup | BGC HGT || Res If Total BGC hits: 7
TIGRO0GS8  ori_carb_tr: ormithine carbamoyltransferase Amino acid biosynthesis 00 -- Known resistance model hits: 63
TIGRO0670  asp_carb_tr: aspartate carbamoyltransferase Purines, pyrimidines, 0.0 ARTS Criteria Hit Counts
nucleosides, and nucleotides Gene Duplication: 56
BGC Proximity: 34
Phylogeny / HGT: 173
2 or more: 30
3 or more: d,
BGC networking
Networks: -
lTom‘ BGCs: 84 (48 singleton/s), links: 23, families: 64
BGC BGC
Search I Family BGC(s) 1¥  Product(s) class(es) Sources
68 lassopeptide, RiPPs, Burkholderia singularis strain LMG 28154, whole genome shotgun sequence,
lassopeptide RiPPs Burkholderia singularis strain TSV85 TSV85_26, whole genome shotgun sequence
59 terpene, terpene Terpene, Burkholderia singularis strain LMG 28154, whole genome shotgun sequence,
Terpene Burkholderia singularis strain TSV85 TSV85_17, whole genome shotgun sequence
58 NRPS, NRPS NRPS, Burkholderia singularis strain LMG 28154, whole genome shotgun sequence,
NRPS Burkholderia singularis strain TSV85 TSV85_32, whole genome shotgun sequence
L]
56 NZ_FXAN01000093.region001 terpene Terpene Burkholderia singularis strain LMG 28154, whole genome shotgun sequence
\ L GCF abs catr
» Input Data [Commasremamesmes ) F
tal Numoer f Genomes 5 (ramyAsanss
BGC per Class AvsencerPresence table (%)

S
e,

Figure 2. Example output of multi-genome ARTS analysis. Top part of the page represents the summaries of individual arts runs and shared core genes
throughout the whole analysis with respective ARTS hits. At the bottom, shared BGCs and resistance models can easily be navigated and an interactive
BiG-SCAPE graph output can also be found via ‘Open BiG-SCAPE overview” option.
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cies among all genomes can be inspected via dynamic out-
put tables. This aids in further prioritizing ARTS hits for
those that are detected in multiple contexts or related BGCs
and therefore are more likely to be involved in resistance.
For example, users can now narrow HGT hits by inspecting
those that are shared across multiple organisms. In addi-
tion to these data, the BiG-SCAPE algorithm (52) is ap-
plied on all detected BGCs, allowing users to investigate
similar BGCs from multiple sources by constructing gene
cluster sequence similarity networks and identifying gene
cluster families inside these networks. Furthermore, each of
the BGCs in a gene cluster family can be examined in or-
der to assess whether they have core or resistance models
as shared hits, as well as whether a cluster stands out with
unique hits compared to its relatives from other species.

Server-side updates and speed up

In order to keep the ARTS pipeline at high standards, third
party tools used in the workflow were updated. ARTS 2.0
now uses antiSMASH v5 and is able to analyze antiSMASH
results from their newest JSON format. The most time con-
suming part of the ARTS pipeline is the creation of species
and gene trees for phylogenetic analysis via ASTRAL. By
updating antiSMASH and ASTRAL, the average runtime
of the whole pipeline could now be cut down to half. Also,
in order to satisfy the increasing demand, ARTS 2.0 is now
hosted at the highly scalable de.NBI cloud system with
seven times the computational power. With these hardware
and software updates, the ARTS 2.0 webserver is now capa-
ble of analyzing multiple inputs up to 100MB and depend-
ing on the genomes and selected parameters, 3-8 times faster
than the previous version.

CONCLUSIONS AND FUTURE PERSPECTIVES

Currently, ARTS is the only platform to automate resis-
tance and putative drug-target based genome mining in bac-
teria via a user-friendly webserver. By design, ARTS aims to
survey a wide scope of potential genes as drug targets while
minimizing manual inspection by using the dynamic out-
put and multiple screening criteria for more confident tar-
get predictions. Thus it is incumbent on the user to examine
potential hits with provided metadata and contextual fram-
ing. Some of the ARTS hits might be more likely involved in
biosynthesis and not associated with resistance. Although
we removed common biosynthesis genes from the core gene
sets to avoid false positives (23), it is currently not possi-
ble to automatically distinguish if genes are more likely in-
volved in biosynthesis or resistance, for example fatty acid
synthases are involved in both (22). The occasional high
counts of positive hits in exploration mode, largely due to
undefined cluster boundaries, can be easily and rapidly fil-
tered in the interactive output page. As shown previously,
this inspection can even serve to help define the true bound-
aries of clusters, which remains a largely unresolved chal-
lenge when dealing with bacterial BGCs (23). Newly intro-
duced features now make ARTS 2.0 a fast and comprehen-
sive pipeline allowing users to: analyze sequences from all
bacterial genomes as well as metagenomic samples, apply
comparative analysis on multiple genomes, and interrogate

similar BGCs for shared resistant genes. For future appli-
cations, we are working on increasing ARTS’ availability
by making it directly accessible through other webservers
such as antiSMASH. This will enable researchers to eas-
ily apply target-directed genome mining approaches on se-
quences from different databases as a plugin. Furthermore,
we are currently in process of creating the ARTS database,
which will contain preanalyzed ARTS results for all bac-
terial genomes within the Refseq database, and will allow
global analysis and comparisons of resistant targets within
BGC. We hope that with this update, ARTS 2.0 will now
provide an even broader access to resistance based genome
mining methods and facilitate the discovery of competitive
antibiotics.
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Supplementary Table 1
Distribution of sequence counts for each created reference set and their assembly qualities

contents of the assembled groups are also noted at the bottom

. Phylum

Reference Set

Sequence Count

Sequence Type

Gammaproteobacteria 987 | Complete Genomes
Firmicutes 738 | Complete Genomes
Alphaproteobacteria 516 | Complete Genomes
Bacteroidetes 404 | Complete Genomes
Chlamydiae 391 | Complete Genomes + Contig Assemblies
Betaproteobacteria 359 | Complete Genomes
Group3 229 | Complete Genomes + Contig Assemblies
Fusobacteria 227 | Complete Genomes + Contig Assemblies
Group2 220 | Complete Genomes + Contig Assemblies
Actinobacteria 190 | Complete Genomes
Spirochaetes 165 | Complete Genomes + Contig Assemblies
Delta_Epsilon-proteobacteria 158 | Complete Genomes
Deinococcus-thermus 155 | Complete Genomes + Contig Assemblies
Verrucomicrobia 129 | Complete Genomes + Contig Assemblies
Cyanobacteria 118 | Complete Genomes
Tenericutes 94 | Complete Genomes
Groupl 46 | Complete Genomes + Contig Assemblies

Group1: Calditrichaeota, Aquificae, Coprothermobacterota, Deferribactes, Chrysiogenetes
Group2: Thermotogae, Synergistetes, Dictyoglomi, Chloroflexi, Armatimonadetes

Group3: Ignavibacteriae, Chlorobi, Gemmatimonadetes, Lentisphaerae, Nitrospirae, Thermodesulfobacteria, Planctomycetes,
Acidobacteria, Elusimicrobia, Fibrobacteres, Balneolaeota, Rhodothermaeota

28




Supplementary Figure 1
Average distribution of detected core genes from all reference sets
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Supplementary Figure 2
Median and mode distributions of all bootstrap support values from all reference sets
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Supplementary Table 2

Amount of core genes that are also found in the Database of Essential Genes (DEG) v1.5

Reference Set Default Mode Exploratory Mode
Deg Core Deg Core

Chlamydiae 254 274 412 445
Groupl 227 234 383 398
Group?2 402 504 753 968
Tenericutes 209 219 308 321
Fusobacteria 331 358 587 650
Verrucomicrobia 349 405 660 776
Deinococcus-thermus 298 320 537 599
Alphaproteobacteria 448 547 878 1098
Betaproteobacteria 438 496 805 923
Spirochaetes 364 415 659 765
Firmicutes 427 560 788 1019
Bacteroidetes 394 450 726 860
Actinobacteria 367 432 540 664
Delta_Epsilon-proteobacteria 398 464 739 866
Group3 412 478 770 921
Cyanobacteria 366 447 720 882
Gammaproteobacteria 562 740 1101 1478
Metagenome 1568 1568 1568 4507
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Supplementary Table 3

Detection frequency statistics of reference organisms totaling 4919 sequences, used to create all

reference sets

Percentage of hits found

Reference Set HGT BGC Duplication | Known Core Genes |2+ Hits |3+ Hits | #Total Core Genes
Proximity Resistance

Verrucomicrobia 13.8 4.09 1.97 7.39 321.45 1.26 0.11 405
Tenericutes 5.63 0.09 0.83 6.11 92.4 0.44 0 219
Spirochaetes 4.9 0.61 3.14 6.67 305.2 0.67 0.01 415
Group3 24.37 3.22 4.69 7.43 324.19 2.61 0.12 478
Group2 14.44 0.64 4.06 5.92 322.5 2.13 0.07 504
Groupl 16.58 1.8 2.16 7.71 227.67 1.68 0.05 234
Gammaproteobacteria 10.25 2.28 5.47 7.06 527.79 2.25 0.1 740
Fusobacteria 3.17 2.42 1.93 5.09 314.76 0.57 0.03 358
Firmicutes 11.39 241 4.7 7.41 406.75 2.14 0.12 560
Delta_Epsilon- 14.43 2.16 4.52 6.89 343.9 2.62 0.19 464
proteobacteria

Deinococcus-thermus 2.3 1.39 1.78 7.14 292.49 0.24 0.004 320
Cyanobacteria 22.74 4.6 3.57 11.75 394.97 3.27 0.28 447
Chlamydiae 14.32 0.15 0.68 5.77 248.62 0.22 0.004 274
Betaproteobacteria 15.54 3.25 4.05 9.26 438.09 2.69 0.17 496
Bacteroidetes 28.92 2.52 2.64 7.97 318.13 2.19 0.1 450
Alphaproteobacteria 17.4 2.68 4.64 8.67 411.25 3.38 0.18 547
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Supplementary Table 4

Amount of core genes that are unique for a respective reference set or shared by multiple sets.

Number of Shared core Shared core Percentage of shared core genes
reference sets genes in normal genes in
mode exploratory
mode
1 528 778 39.55 32.07
2 167 322 12.51 13.27
3 88 210 6.59 8.66
4 45 131 3.37 5.4
5 48 114 3.6 4.7
6 30 74 2.25 3.05
7 36 75 2.7 3.09
8 33 57 2.47 2.35
9 20 46 1.5 1.9
10 24 55 1.8 2.27
11 36 83 2.7 3.42
12 32 61 24 2.51
13 24 55 1.8 2.27
14 28 76 2.1 3.13
15 40 74 3 3.05
16 55 91 4.12 3.75
17 101 124 7.57 5.11
Total Core Genes 1335 2426
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Abstract: The development of new antibacterial drugs has become one of the most important tasks
of the century in order to overcome the posing threat of drug resistance in pathogenic bacteria.
Many antibiotics originate from natural products produced by various microorganisms. Over the last
decades, bioinformatical approaches have facilitated the discovery and characterization of these small
compounds using genome mining methodologies. A key part of this process is the identification
of the most promising biosynthetic gene clusters (BGCs), which encode novel natural products.
In 2017, the Antibiotic Resistant Target Seeker (ARTS) was developed in order to enable an automated
target-directed genome mining approach. ARTS identifies possible resistant target genes within
antibiotic gene clusters, in order to detect promising BGCs encoding antibiotics with novel modes of
action. Although ARTS can predict promising targets based on multiple criteria, it provides little
information about the cluster structures of possible resistant genes. Here, we present SYN-view.
Based on a phylogenetic approach, SYN-view allows for easy comparison of gene clusters of interest
and distinguishing genes with regular housekeeping functions from genes functioning as antibiotic
resistant targets. Our aim is to implement our proposed method into the ARTS web-server, further
improving the target-directed genome mining strategy of the ARTS pipeline.

Keywords: biosynthetic gene clusters; natural products; genome mining; antibiotic resistance

1. Introduction

With the increasing number of drug-resistant bacteria, antimicrobial resistance has
become a global health threat [1]. As the number of approved drugs have been decreas-
ing over the past few decades, finding new compounds to feed the antibiotic discovery
pipeline has become a crucial task [2]. Most of the antibiotics are derived from secondary
metabolites (SMs) produced by fungal and bacterial organisms [3]. Many of these so-called
natural products were found by labor-intensive methods such as screening biological sam-
ples for desired bioactivities. However, these traditional methods have been losing their
efficiency, due to their high rediscovery rates [4]. Ever since the cost of DNA sequencing
technologies has decreased substantially, in silico methods such as genome mining have
gained an increased amount of popularity among researchers [5,6]. As a result, a number of
computational tools such as antiSMASH [7] and PRISM [8] have been developed, in order
to detect gene clusters encoding for natural products. The main approach of these tools
is the identification of locally clustered groups of genes called biosynthetic gene clusters
(BGCs), which are in conjunction responsible for the synthesis of secondary metabolites [9].
Using those BGC prediction tools, a large number of BGCs have been deposited in public
databases. The newest version of Atlas of Biosynthetic Gene Clusters (IMG-ABC) [10],
the largest database containing predicted BGCs, contains roughly 400,000 clusters, from
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which less than 1% have been experimentally verified. This large discrepancy emphasizes
the need for new and updated tools as well as the importance of prioritization of predicted
BGCs for downstream processes. In order to address this issue, in 2017, Alanjary et al.
developed the Antibiotic Resistant Target Seeker (ARTS) [11] to detect most promising
BGCs with potential new modes of action by automating the resistance based genome
mining technique also called target directed genome mining. This approach is based on the
notion that the antibiotic-producing bacteria have to be resistant to their own products [12].
Resistance genes can be encoded within the BGC of the respective compound. Addition-
ally, in case of a resistance mechanism that is provided by a resistant target, this kind of
genome mining method not only provides insights into the mode of action of the encoded
antibiotics, but in turn also allows screening BGCs for natural products with promising
and putatively novel targets [13]. ARTS links essential housekeeping genes to evolution
driven events such as duplication, horizontal gene transfer (HGT), or co-localization within
the BGC, which have been extensively shown to be the key processes in target-based
strategies [14-16]. Although ARTS rapidly screens essential genes of an entire genome,
the number of potential resistant targets can become quite large, especially when the BGC
boundaries are set too far. In such cases, the distinction of a resistance gene and a regular
housekeeping gene is hard to make. As stated by O’Neill and his colleagues, inferring
such distinctions may be possible, by comparing gene ortholog neighbors of the putative
resistance genes and the context of the clusters they lie within in related organisms. Regular
housekeeping genes often show synteny in their cluster structure, whereas the resistant
target genes within antibiotic gene clusters are often only randomly present in closely
related taxa [17]. Following up on this hypothesis, we analyzed the novobiocin producer
Streptomyces niveus NCIMB 11891, with duplicated gyrB gene as known self-resistance
mechanism, yielding a large number of false positives by an initial ARTS search shown in
the first ARTS paper [11]. Visualized in Figure 1, the comparison of the neighborhoods of
gene of interest (NGIs) to the NGIs from closely related organisms, clearly shows that the
neighborhood of the housekeeping gene is almost identical, whereas the resistant target
gene shows no orthologous genes in the neighborhood.

3 | Ry

,

s o 1 AU

Figure 1. Exemplary result of SYN-view. The figure shows two alignments of NGIs throughout the closest relatives of

Streptomyces nivues NCIMB 11891 (Table 1). Note that for a clear comparison, only two NGI alignments are shown, while

three were found (Supplementary Data). (A) NGI of DNA topoisomerase which is regularly observed in close relatives

with the structure of the NGI is well conserved. (B) The NGI of the duplicated, resistant gyrB is unique to the antibiotic

producing strain and can easily be distinguished.
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While the housekeeping genes play an important role in target-directed genome
mining approaches and BGC prioritization, the context of the gene neighborhood has not
yet been focused on. In order to address this issue, here we introduce SYN-view, for further
improvement of prioritization of the BGCs, based on a self-resistance approach. With the aid
of phylogenetic methods such as autoMLST [18], which provides a high-resolution species
tree of a strain of interest, SYN-view compares NGlIs, based on user-provided target genes
to homologous NGlIs from closest relatives. Unlike other tools such as MultiGeneBlast [19],
which blasts a complete cluster to a specific database to find similar clusters, our pipeline
aims to distinguish a potential target resistance gene from regular housekeeping genes,
by rapidly comparing NGIs from closely related taxa.

2. Results and Discussion

Here, we present SYN-view, an easy-to-use pipeline in order to make rapid comparison
of NGIs and provide an additional way to detect putative novel antibiotic resistant targets.
SYN-view allows for easy to interpret visualizations of NGIs in order to distinguish
genes of interest with different functions. Using an external tool such as autoMSLT [18],
SYN-view uses homology search tools to find the input protein and its surrounding genes
from closest taxa, in order to perform a synteny search for easy detection of unique gene
cluster structures. SYN-view can be easily installed using conda packages [20] and is
publicly available at https:/ /bitbucket.org/jstahlecker/syn-view/. An overview of the
workflow is illustrated in Figure 2.

2.1. Positive Controls

For the proof of concept of our proposed method, first we examined bacterial strains
reported for antibiotic production with known resistance mechanisms shown in Table 1,
to test if there is a significant difference between NGI structures of regular housekeeping
genes and genes responsible for self-resistance. Results suggested that when the resistance
mechanism includes a duplication event, difference in respective NGIs can be easily recog-
nized. In certain cases where resistance genes have been mutated instead of duplicated
(Table 1, A. mediteranei S699, rpoB), differences in NGIs could not be observed. Nevertheless,
it would be possible to detect a difference in NGIs even if there is no duplication of self re-
sistance genes but if they are unique to a certain bacterial genome. All of the corresponding
results are visualized in detail in the Supplementary Results.

Table 1. SYN-view analysis of example antibiotic producing strains with identified self-resistance genes. For comparison,
respective ARTS hits are also provided from previous papers [11,21] (D: Duplication, B: BGC proximity, R: Resistance, P:

Phylogeny). “Search Type”

column indicates how the search was performed: H stands for HMM mode while B stands for

blastp and the following indicates the corresponding TIGRFAM model and gene accession number, respectively. Easily
identifiable differences are denoted as “Yes”, if no difference is visible marked as “No”.

Organism Resistance Gene Search Type ARTS Hits Identifiable
Streptomyces niveus NCIMB 11891 gyrB H: TIGR01059 D,B,R,P Yes
Streptomyces roseochromogenes DS 12.976  gyrB H: TIGR01059 D,B,R,P Yes
Burkholderia thailandensis E264 accA H: TIGR00513 D,B,R,P Yes @
Salinospora tropica CNB-440 beta-proteasome subunit H: TIGR03690 D,B,R,P Yes @
Myxococcus xanthus DK 1622 Ispa: signal peptidase II H: TIGR00077  D,B,P Yes
Bacillus cereus ATCC 14579 duplicated RL11 H: TIGR01632 D,P Yes
Nordica farnica IFM 10152 rpoB H: TIGR02013 D Yes
Agrobacterium radiobacter K84 Leu-tRNA synthase H: TIGR00396 D,P Yes

Streptomyces viridochromogenes Tue57 235 rRNA methyltransferase B: AAG32066.1 No Hits Yes
Amycolatopsis mediterranei S699 rpoB H: TIGR02013 R No

2 A difference was better observed after using 50 rather than the default 10 closest genomes.
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Figure 2. Schematic workflow. A phylogeny file needs to be created using autoMLST or an appropriate folder must be

specified. Based on that, the 10 closest relatives are downloaded from the NCBI refseq database. Using an appropirate hmm

or protein fasta file, NGIs are created, scored, and sorted. Finally, the results are saved as an svg file.

2.2. SYN-View as a Complementary Method

In order to prove that SYN-view can further improve the current ARTS pipeline as
a complementary method, we employed a final test case where ARTS could not find hits
for a known self resistance mechanism. As stated in the first ARTS paper, 23S rRNA
methyltransferase, which confers resistance for Avilamycin, was undetected by hmmsearch
due to its short sequence length and low homology score. As HMMs are dependent on
profiles built from multiple sequence alignment [22], it may fail to represent sequences
which are not fully reflecting specific domains characterized from respective proteins. For
such cases, SYN-view supports homology search using blastp algorithm, which makes
it possible for users to analyze shorter sequences or proteins without an accurate HMM
model. As shown in Supplementary Figure S1, the synteny among closest relatives of the
NGI of 235 rRNA methyltransferase, conferring self-resistance, is significantly different
than the NGI with regular housekeeping function.

3. Materials and Methods
Input Options and Workflow

An overview of the workflow is illustrated in Figure 2. First, SYN-view needs an
annotated genome file in GenBank format (gbff, gbk). Additionally, an HMM or protein
fasta file for a gene/protein is required, which is used to either run hmmsearch [23] or
blastp [23], against the input genome to find similar proteins. SYN-view uses default cut-off
values for hmmsearch and blastp algorithms, which can be redefined by the user. Using
Biopython [24], the input genome is parsed and per hit, a query NGI is created based on
the proximity of the respective hit. By default, this proximity setting is three surrounding
genes in both sides of the gene of interest; however, it can be changed to decrease/increase
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the size of the NGI. Finally, close relatives of the input genome must be set, for the synteny
search. For this purpose, the user can either provide the result file of an autoMLST job
(mash_distances.txt, recommended) or provide a custom folder with specified genomes
in GenBank format. If an autoMLST result is provided, the 10 closest organisms are, by
default, downloaded from NCBIs RefSeq database [25]. As stated earlier, increasing the
number of closest organisms would also increase the quality of the result. For the purposes
of speed, it was set as 10 for default but can be changed via command line arguments.
After downloading genomes, the next part of the SYN-view pipeline is detecting the input
protein sequences from given genome, creating query NGIs. Afterwards, a database is
created, containing only the NGIs from the closest relatives based on the input protein.
The NGIs of the input are then blasted against the database and the NGI hits are scored
by cumulative blast bit score. Higher bit scores suggest higher sequence similarity, while
being independent of the database size. Therefore, summing over all individual bit scores
of a NGI gives an indication of the sequence similarity of the whole NGI with respect to the
query. In the results folder, all NGI hits per query can be analyzed using the corresponding
visualization as an svg file as explained in Supplementary Results and can be compared to
other hits using a standard web browser (Figure 1). The color coding makes it easier to
identify similar hits to unique gene cluster structures. Same color indicates similarity to the
query protein, while white suggests no hits, with the exception of being white colored in
the query NGI, which indicates that the protein does not have a defined translated sequence.

4. Conclusions

With SYN-view, we developed a program that allows a rapid and easy to interpret
overview about the gene neighborhoods of genes of interest. This can be used as an
additional criterium to detect putative antibiotic resistant targets. However, SYN-view can
also be used for the exploration of cluster formations of specific genes in phylogenetically
similar bacteria. A preceding prioritization of genes of interest such as an ARTS run is
recommended, as both tools utilize self-resistance. As it is impossible to identify resistance
genes based on a single criterion, SYN-view is meant to be used as a complementary tool
to help researchers in their efforts for the prioritization of their targets. As the genomic
content of a NGl is specific for different cases, it is incumbent on the user to further analyze
results. In order to further automate this workflow and increase efficiency our aim is to
implement this functionality in ARTS web-server.

Supplementary Materials: The following are available online: Figure S1: SYN-view result of Strep-
tomyces viridochromogenes Tue57, Figure S2: SYN-view result of Streptomyces roseochromogenes DS
12976, Figure S3: SYN-view result of Burkholderia thailandensis E264, Figure S4: SYN-view result of
Salinospora tropica CNB-440, Figure S5: SYN-view result of Myxococcus xanthus DK 1622, Figure Sé6:
SYN-view result of Bacillus cereus ATCC 14579, Figure S7: SYN-view result of Nordica farnica IFM
10152, Figure S8: SYN-view result of Agrobacterium radiobacter K84, Figure S9: SYN-view result of
Amycolatopsis mediterranei S699.
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1. Contents of the Result Folder

In the results directory (default is the current directory) the “*.faa” file of the corresponding
“*.gbk/gbff” file is created. Additionally, a folder named “SYN-view_results” is created in which all
other files are saved. Most importantly the subfolder “RESULTS” contains all results as svg and fxt
files. The folder “protein_faa” contains all ".faa" files of either the genome_gbff folder (default) or the
specified genomes. For each hit in the input.gbk a query folder is created. In hmm mode all hmm runs

are saved in the folder “SYN-view_results”, while in protein mode the blast databases of the genomes
of the relatives are saved in the folder “blast_databases” and of the query in “SYN-view_results”.
Moreover, temporary files, needed for transfer of information are saved in “SYN-view_results”. The
query folders contain the blast results and all svg files. The supplementary folder only contains the

input parameters and the "RESULTS" subfolder.

2. Figures of the Results of Table 1
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Figure S1. SYN-view result of Streptomyces viridochromogenes Tue57. The figure shows two alignments
of NGIs throughout the closest relatives of Streptomyces viridochromogenes Tue57 (Table 1). Note that
for a clear comparison, only two NGI alignments are shown, while three were found (Supplementary
data). A: NGI of rRNA methyltransferase which is regularly observed in close relatives. B: The NGI
of the resistant rRNA methyltransferase is unique to the antibiotic producing strain and can easily be
distinguished. The first resulted NGI is identical since its the NGI from the same organism, found in

autoMLST search.
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Figure S2. SYN-view result of Streptomyces roseochromogenes DS 12.976. Only two of four NGIs are

IstréptomycesldurHamensis GCF_000728875.1 WP_031164316.1/7260.

displayed (supplementary data). A: NGI of gyrB which is regularly observed in close relatives. B: The
NGI is unique to the strain and can easily be distinguished.
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Figure S3. SYN-view result of Burkholderia thailandensis E264. Please note that the first displayed NGI
of the close relatives is the eleventh NGI in total. All NGIs before are from different B. thailandensis
strains and show no difference to the query. A: NGI of accA which is regularly observed in close
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relatives. B: The NGl is less frequent and differences are observed after evaluation of the results.
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Figure S4. SYN-view result of Salinospora tropica CNB-440. Please note that the first displayed NGI of
the close relatives is the tenth NGI in total. All NGIs before are from different S. tropica strains and
show no difference to the query. A: NGI of the beta-proteasome subunit which is regularly observed in
close relatives. B: The NGl is less frequent and differences are observed after evaluation of the results.

L : ‘\\\ ///,7 . | "
Figure S5. SYN-view result of Myxococcus xanthus DK 1622. Only two of three NGIs are displayed
(supplementary data). A: NGI of the signal peptidase II which is regularly observed in close relatives.

B: Few M. xanthus strains contain the query NGI, but starting at the fouth NGI no similar NGIs can be
observed.
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Figure S6. SYN-view result of Bacillus cereus ATCC 14579. A: NGI of RL11 which is regularly observed
in close relatives. B: The NGI is unique to the strain and can easily be distinguished.
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Figure S7. SYN-view result of Nordica farnica IFM 10152. A: NGI of rpoB which is regularly observed
in close relatives. B: One N. farnica strain contains the same NGI. The NGI is unique to all other close

relatives.
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(supplementary data). A: NGI of the Leu-tRNA synthase which is regularly observed in close relatives.
B: The NGl is unique to the strain and can easily be distinguished.
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2.3 ARTS-DB: a database for antibiotic resistant

targets
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ABSTRACT

As a result of the continuous evolution of drug resis-
tant bacteria, new antibiotics are urgently needed.
Encoded by biosynthetic gene clusters (BGCs), an-
tibiotic compounds are mostly produced by bac-
teria. With the exponential increase in the num-
ber of publicly available, sequenced genomes and
the advancements of BGC prediction tools, genome
mining algorithms have uncovered millions of un-
characterized BGCs for further evaluation. Since
compound identification and characterization re-
main bottlenecks, a major challenge is prioritizing
promising BGCs. Recently, researchers adopted self-
resistance based strategies allowing them to pre-
dict the biological activities of natural products en-
coded by uncharacterized BGCs. Since 2017, the
Antibiotic Resistant Target Seeker (ARTS) facili-
tated this so-called target-directed genome mining
(TDGM) approach for the prioritization of BGCs en-
coding potentially novel antibiotics. Here, we present
the ARTS database, available at https://arts-db.
ziemertlab.com/. The ARTS database provides pre-
computed ARTS results for >70,000 genomes and
metagenome assembled genomes in total. Advanced
search queries allow users to rapidly explore the
fundamental criteria of TDGM such as BGC proxim-
ity, duplication and horizontal gene transfers of es-
sential housekeeping genes. Furthermore, the ARTS
database provides results interconnected through-
out the bacterial kingdom as well as links to known
databases in natural product research.

INTRODUCTION

Throughout history, humanity has been in a constant bat-
tle with bacteria causing infectious diseases (1). Especially
in the last decades, due to the escalation of multi-drug
resistant bacteria, these continuously evolving pathogens
have become a serious threat to human health. Conse-

quently, there is an urgent need for novel antibiotics with
new modes of action (2,3). Secondary metabolites (SMs)
are the key molecules feeding antimicrobial drug develop-
ment pipelines (4). These so-called natural products, are
profusely found and isolated from fungal and bacterial or-
ganisms (5). The discovery of natural products has tradi-
tionally been centered on bioactivity screening. With the ad-
vent of genome sequencing in the last decade or two, in silico
methods can now be used to complement these approaches.
Presently, genome mining offers a wide range of computa-
tional applications that predict the biosynthetic gene clus-
ters (BGCs) encoding enzymes necessary for the formation
of natural products (6,7). Adopting algorithmic architec-
tures like deep learning and hidden markov models, BGC
prediction tools such as antiSMASH (8), PRISM (9) or
DeepBGC (10), have been used in natural product research
for over a decade. As a result of the genome mining efforts,
hundreds of thousands of BGCs are continuously deposited
in publicly available databases such as antiSMASH-DB (8)
and Atlas of Biosynthetic Gene Clusters (IMG-ABC). The
total of experimentally verified genome-mined BGCs how-
ever, falls even below 1% (11). Since experimental validation
of a BGC and its compound is a labour-intensive process
(12), a crucial task now is the prioritization of BGCs for
further downstream analysis.

A recently established technique adopts a BGC prioriti-
zation approach leveraging the idea that in order to avoid
suicide, bacteria need to be evolved in such a way that they
are resistant to the compounds they produce (13). One of
the resistance mechanisms bacteria use to protect them-
selves from their own bioactive compounds is the modifi-
cation of the antibiotics target (14). In such processes, the
duplicated and modified antibiotic target gene can be found
within the BGC, providing self resistance (15,16). This so-
called target-directed genome mining (TDGM) approach
allowed researchers to predict the mode of action of the
compounds encoded by uncharacterized BGCs and led to
the identification of new natural products (17-19). Since
2017, the Antibiotic Resistant Target Seeker (ARTS) facil-
itated TDGM approaches in order to prioritize promising
strains producing antibiotics with putative novel modes of
action by rapidly linking housekeeping and known resis-
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tance genes to BGC proximity, duplication and horizontal
gene transfer (HGT) events (20,21). By design, the ARTS
pipeline functions as a web-server, analyzing user supplied
genomes individually with a ‘one job at a time’ mentality
which takes a certain processing time. In order to further im-
prove our work on self resistance genome mining, we have
developed the ARTS database, a user-friendly web-server
for the extensive exploration of the bacterial kingdom using
TDGM approaches. The ARTS database provides a global
picture of ARTS results interconnected with the whole king-
dom of bacteria and provides connections between poten-
tial targets and relevant databases containing additional in-
formation about respective BGCs or existing drugs. Cur-
rently, the ARTS database contains pre-computed ARTS
results for a total of 27,096 high quality bacterial genomes
obtained from NCBI'’s RefSeq database (22), also present in
the antiSMASH-DB. Given that there is an ever-increasing
usage of metagenomic applications on natural product re-
search, we have also included 43,130 metagenome assem-
bled genomes (MAGSs) in the ARTS database described by
Nayfach et al. (23).

The ARTS database allows researchers to facilitate
TDGM based exploration through two main search func-
tions. One of them is the exploration of fundamental ARTS
hits such as BGC proximity, duplication and HGT evi-
dence by using a query builder. All of the returned se-
quences are linked to individual ARTS and antiSMASH
results for closer inspection. Second, a target-oriented ex-
ploration can be made. Here, the user can search a gene of
interest throughout the database, in order to find phyloge-
netical and statistical information about a potential resis-
tant target with respect to bacterial kingdom.

DATABASE DESIGN

Using a multi-layered setup, the ARTS database
provides rapid execution of provided queries using
SQLAIchemy toolkit (https://www.sqlalchemy.org/)
for relational mapping on a Flask-based framework
(https://flask.palletsprojects.com/). The whole database
is originally stored wusing SQLite database engine
(https://www.sqlite.org/). The front end is comprised
of jquery, bootstrap and ajax for high compatibility be-
tween different devices and browsers. The web service layer
allows for easy execution of SQL logic packed in a single
page. All ARTS results can be linked via web application
and are stored on a disk hosted by de.NBI cloud (24).

Genomic sequence content

The ARTS database includes genomic sequences, fueled by
two different repositories. One of them is NCBI'’s publicly
available RefSeq database (22) whose bacterial genomes are
also used by the antiSMASH-DB. Selection and filtering of
the genomes are explained in detail in the latest version of
the antiSMASH-DB described by Blin ez al. (8). In sum-
mary, the ARTS database contains 27,096 high quality bac-
terial genomes (Figure 1A) which were selected according
to their completeness level. To discard fragmented and low
quality assemblies, genomes labeled as complete assembly
or with contig count <100 were included in the database.
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Using MASH (25), redundant sequences were also filtered
out with a similarity cutoft of 99.6%.

Additionally, the ARTS database covers sequences from
metagenomes. In a recent study published in 2021, Nay-
fach and his colleagues explored microbiomes from a wide
range of habitats all around the Earth as well as mam-
malian hosts, forming the Genomes from the Earth’s Micro-
biomes (GEM) catalogue. GEM has supplied the commu-
nity with >52,000 MAGs and their genome mining data re-
garding BGCs deposited in IMG/M (26), greatly increasing
the existing knowledge about secondary metabolite biosyn-
thetic potential of microorganisms. However, for an accu-
rate housekeeping gene search, ARTS pipeline is depen-
dent on reference sets which were built using closely related
taxa. Therefore, it doesn’t guarantee high accuracy for bac-
teria that are assigned to a candidate phylum. For ARTS
database, we have selected >43,000 MAGs based on their
taxonomic annotation via GTDB (27) (Figure 1B) that fit
the ARTS reference sets.

MAIN APPLICATIONS

As mentioned earlier, the ARTS database offers two search
options: ‘Query Building” and ‘Target-Oriented Search’.
Using a query builder, users can explore available data
sources in the ARTS database through four main routes
(Figure 2A). These routes allow for: generating statisti-
cal summaries of ARTS results for the initial filtering of
genomes of interest, finding essential housekeeping genes
that have hits for fundamental ARTS criteria, exploring
duplication rates of a gene of interest based on its occur-
rence frequency in different phyla as well as an essential
genes function and frequency in different BGCs. Complex
queries can be easily built by using the ‘Add Term’ button
and adding the conditions indicating advanced properties
of the search. The resulting tables can also be filtered, sorted
or searched dynamically, allowing easy navigation through
the resulting potential targets.

In addition, the ‘“Target-Oriented Search’ option gives a
broader view about the characteristics of the selected gene
such as its proximity to different BGC types or in which
phyla it is considered as an essential housekeeping gene.
In order to maintain a high level of inter-operability, the
ARTS database offers cross-links to available repositories
such as MIBiG (28) and BiGFAM (29) for exterior informa-
tion about a predicted BGC and its cluster families, respec-
tively. Furthermore, DrugBank (30) entries are provided
where applicable, for additional information about a genes
affiliation with existing drugs and their known modes of ac-
tion.

Building queries

Case study. In arecent study, Hoskisson ef al. investigated
how the expansion of primary metabolism plays a role in the
biosynthesis of antibiotics (31). In order to find gene ex-
pansion events in primary metabolism pathways, they an-
alyzed 612 actinobacterial genomes to generate gene fre-
quencies for 60 genera. Of note, they were exclusively in-
terested to gene expansions through duplication but not via
HGT. After going through extensive bioinformatic pipeline
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Figure 1. Included genome counts by reference set. Panels (A) and (B) show the phylogenetic distribution of genomes acquired from data sources NCBI
RefSeq and GEM, respectively. Genome contents of the reference sets termed as ‘Group’ comprise underexplored phyla of the bacterial kingdom and

described in detail in latest ARTS publication (21).

Select Main Categories

Genomes from Earth's Microbiomes
Search Option Enter Search Term
v streptomyces

Genus
And v
Organism v coelicolor

And v
Description v pyruvate kinase
And v
Duplicated v True v
And v
HGT Evidence v False -

c 3

Show 10 v entries Search:

Assembly id + Tigrfam Description Function Dup BGC HGT Known Res. Phylum Genus Organism
TIGR0O1064 pyruv_kin: pyruvate kinase  Energy metabolism V X X x Actinob ia Streptomy Streptomyces_coelicolor_A3_2_
Previous 1 J Next

GCF_008931305.1

Showing 1 to 1 of 1 entries

Figure 2. Query example in the ARTS database. (A) One of the available data sources ‘RefSeq’ and ‘Genomes from Earth’s Microbiomes’ and one of the
four main routes below to explore selected data source must be selected. (B) After selecting main categories, search options and terms must be specified by
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using the ‘Add Term’ button. (C) The example output.



sessions to satisfy such requisites, their analysis pointed
them towards a duplicated pyruvate kinase in Streptomyces
coelicolor A3(2), for further evaluation. Using the ARTS
database, such enquiries can be made in seconds.

Duplication search. In order to execute such a query, af-
ter selecting data source as ‘RefSeq” and search category as
‘Dup Hits’, the user can click on the ‘Add Term’ button to
start shaping the search. For example, after adding ‘Genus’
search option with the term ‘streptomyces’ and pressing
‘Search’, the user will have access to duplication rates of all
essential genes from the genus streptomyces, including the
gene counts in specific organisms, average gene counts for
the reference set and its standard deviation. Afterward, dy-
namic filtering of the results for specific organisms or genes
can easily be done by simply typing ‘coelicolor pyruvate ki-
nase’ in the ‘Search’ box. However, it is advised to shape the
initial search with parameters of interest since it will ease the
browser’s memory usage down and increase the execution
speed of the query.

Core hit attributes.  After detecting the gene of interest that
shows statistical evidence for the duplication event, the user
can easily check whether the gene fits in with other aspects
of TDGM, here, an HGT event (Figure 2B). In our case,
such query can be made using ‘Core Hits’ tab this time
with the ‘Genus’ option with the term ‘streptomyces’ and
adding the ‘Description’ option with the term ‘pyruvate ki-
nase’ and simply adding the search option ‘HGT Evidence’
set to ‘False’. Resulting table will only contain the gene of
interest with direct links to individual ARTS result of the
genome and HMM model of the gene for closer inspection
(Figure 2C).

Further examination. The ARTS database provides op-
portunities for closer inspection of the resulting queries. For
example, if the user is interested in BGCs that contain the
gene of interest, the ‘BGC Hits’ tab can be used with the
same search options to retrieve BGC specific results. There-
after, the user can check the antiSMASH results of specific
clusters, their gene cluster families in BIGFAM database
consisting of closely related BGCs or the complete ARTS
result, using the provided links. Items in the column ‘Model
Name’ will lead to the target-oriented result page. Here, the
user can explore the characteristics of a specific target gene
and its fundamental ARTS criteria hits, with respect to the
phyla where it is considered as an essential housekeeping
gene. Moreover, commercially available drugs targeting the
genes of interest are also shown through the links connected
to the DrugBank database as well as the known BGCs that
contain the gene via links to the MIBiG database. All of the
resulting tables and individual ARTS results can be down-
loaded in order to feed in-house analysis pipelines.

CONCLUSIONS AND FUTURE PERSPECTIVES

With the continuous advancements in genome sequencing
techniques and BGC prediction algorithms, genome min-
ing applications have become a vital factor in natural prod-
uct research. A recently developed self resistance based ap-
proach, is progressively used by researchers for the dis-
covery of natural products with novel modes of action.
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Since its first release in 2017, ARTS has been allowing re-
searchers to rapidly mine their sequences with self resistance
based genome mining approaches. Currently, to the best of
our knowledge, ARTS is the only webserver enabling such
method in all bacteria. Here, we present the ARTS database,
a comprehensive repository containing a high quality bac-
terial genome set from NCBI'’s RefSeq and GEM catalogue
processed with TDGM strategies. The ARTS database now
allows researchers to quickly access pre-computed ARTS
results and explore the bacterial kingdom via a broader
view.

For future work, in order to further improve ARTS and
the ARTS database, we are in the process of making ARTS
analysis available for fungal genomes as well. We are also
developing complementary tools such as SYN-view (32) for
the enhancement of the ARTS pipeline and increasing its
accuracy using additional criteria. Since the need for new
antibiotics and the usage of genome mining methodologies
increase on a daily base, we are confident that the ARTS
database will be a resource of significant importance in the
search for novel natural products.

DATA AVAILABILITY

The ARTS database is publicly available online at https:
/larts-db.ziemertlab.com/ with no access restrictions. All
of the source code involving Python and JS scripts as
well as HTML content is available on Bitbucket at https:
/Ibitbucket.org/mehmetdirenc/arts_database/. All the acces-
sions and queries are safely executed via HTTPS protocol.
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2.4 Secondary Metabolite Transcriptomic Pipeline
(SeMa-Trap), an expression-based exploration
tool for increased secondary metabolite

production in bacteria
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ABSTRACT

For decades, natural products have been used as a
primary resource in drug discovery pipelines to find
new antibiotics, which are mainly produced as sec-
ondary metabolites by bacteria. The biosynthesis of
these compounds is encoded in co-localized genes
termed biosynthetic gene clusters (BGCs). However,
BGCs are often not expressed under laboratory con-
ditions. Several genetic manipulation strategies have
been developed in order to activate or overexpress
silent BGCs. Significant increases in production lev-
els of secondary metabolites were indeed achieved
by modifying the expression of genes encoding
regulators and transporters, as well as genes in-
volved in resistance or precursor biosynthesis. How-
ever, the abundance of genes encoding such func-
tions within bacterial genomes requires prioritization
of the most promising ones for genetic manipula-
tion strategies. Here, we introduce the ‘Secondary
Metabolite Transcriptomic Pipeline’ (SeMa-Trap), a
user-friendly web-server, available at https://sema-
trap.ziemertlab.com. SeMa-Trap facilitates RNA-Seq
based transcriptome analyses, finds co-expression
patterns between certain genes and BGCs of inter-
est, and helps optimize the design of comparative
transcriptomic analyses. Finally, SeMa-Trap provides
interactive result pages for each BGC, allowing the
easy exploration and comparison of expression pat-
terns. In summary, SeMa-Trap allows a straightfor-
ward prioritization of genes that could be targeted

via genetic engineering approaches to (over)express
BGCs of interest.
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INTRODUCTION

By providing a wide range of biological functions, natural
products have been foundational to the survival and evolu-
tionary fitness of various organisms in the tree of life (1).
Also known as secondary metabolites (SMs), these com-
pounds are abundantly produced by plants and microor-
ganisms (2). For decades, these molecules have been fueling
various industries such as pharmaceutics as antimicrobial
agents (3,4). However, the decrease in the discovery rates of
novel antibiotics and the parallel increase in resistance to-
wards the existing antibiotics make the identification of new
bioactive compounds a task of paramount importance (5).
By encoding the enzymes necessary for compound produc-
tion, biosynthetic gene clusters (BGCs) represent the orga-
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nized groups of genes involved in the production of SMs (6).
During the last decade an enormous number of genomic se-
quences have been made available, revolutionizing genome
mining efforts in natural product research (7). Based on al-
gorithmic concepts like hidden Markov models (HMMs),
highly improved computational tools for BGC prediction
such as antiSMASH (8) enable rapid mining of sequenced
genomes. By using such tools, thousands of BGCs have been
made available to researchers stored in public databases
such as MIBIG (9), antiSMASH-DB (10) or The Natu-
ral Products Atlas (11). However, from the entire bacterial
kingdom, it was recently shown that only 3% of its genomic
potential for SMs has been experimentally verified (12). One
of the main reasons for this phenomenon is that the expres-
sion of the BGCs is often tightly regulated and not observed
under laboratory conditions. This non-expressed nature of
the BGCs creates a major bottleneck in the identification of
bioactive compounds with novel modes of action (13).

To activate silent BGCs and increase the production titers
of SMs, several strategies have been devised such as al-
tering the culturing conditions or heterologous expression
of the BGCs (14,15). Additionally, genetically modifying
global and local regulatory genes can enhance transcription
levels of biosynthetic genes (16). Activation or disruption
of positive and negative regulators, respectively, has led to
the expression of many silent BGCs (17,18). Furthermore,
it has been shown that increasing the expression of genes
encoding transporters (19), conferring resistance (20), or
involved in precursor supply (21) also increases SM pro-
duction. However, major antibiotic producers like the or-
ganisms belonging to the genus Streptomyces (22) encode
around 7000 genes on average (23). This raises the ques-
tion: Which ones to genetically modify? Comparative tran-
scriptomic analyses based on RNA-sequencing (RNA-seq)
can help decipher the complex pathways that regulate the
BGCs of interest and thereby, select the genes to prioritize
(hereinafter referred to as target genes) (24,25). This strat-
egy is mostly conducted by comparing the expression levels
of BGCs from organisms with genetic variance or from the
same strain cultured under different physiological condi-
tions (26,27). The overwhelming number of possible experi-
mental designs make the prioritization of promising culture
conditions and target genes crucial for genetic manipula-
tion approaches. To achieve this aim, we developed the ‘Sec-
ondary Metabolite Transcriptomic Pipeline’ (SeMa-Trap).
Available at https://sema-trap.ziemertlab.com, SeMa-Trap
allows for efficient transcriptome mining of BGCs in bac-
teria through a user-friendly web interface. The pipeline
performs RNA-Seq based transcriptome analysis of BGCs
predicted by antiSMASH, compares their fold-changes in
various experiments, and allows for promising experimen-
tal design and prioritization of the target genes for BGC
overexpression. Finally, SeMa-Trap provides interactive re-
sult pages for each BGC. This allows easy exploration of
BGC expression under certain culturing conditions and the
identification of co-regulated genes, which may be located
elsewhere in the genome and display potentially interesting
functions as defined by the KEGG database (28). Here we
provide an overview of the pipeline, highlight the visualiza-
tion of the interface and demonstrate the efficacy of SeMa-
Trap through a case study.
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MATERIALS AND METHODS
Workflow

The SeMa-Trap pipeline consists of 4 key steps (Figure 1).
The first step is the acquisition of user provided genome
and RNA-Seq data. Afterwards, genes involved in BGC ex-
pression regulation in the genome (e.g. transporters or reg-
ulators, referred to as genes of interest) are annotated, and
BGC:s are predicted by antiSMASH. BGC annotations in
addition to those identified by antiSMASH can also be pro-
vided by the user by using the ‘Defined clusters’ option. To
generate reference expression levels, essential housekeeping
genes are also identified. In the third step, RNA-Seq analy-
sis is performed to obtain expression levels and fold changes
of the genes and BGCs of interest. Finally, results are pre-
sented by interactive visualizations and summarizing tables
for easy exploration of the expression level changes. All re-
sults are kept in the server for 2 months. In addition, they
can also be downloaded by saving the results page to the lo-
cal machine. In case of larger data analysis, local installation
and combining SeMa-Trap with in-house analysis pipelines
is also possible using Anaconda.

Input options and data acquisition

Input form. SeMa-Trap accepts user provided genomes in
GenBank and FASTA format, however, the ideal input is
the assembly accession number of the annotated GenBank
file since that, in turn, will result in the automatic down-
load of all annotation files from the NCBI FTP server. For
efficient housekeeping gene identification, the correspond-
ing taxonomic clade of the organism (e.g. Actinobacteria)
should be selected through the ‘Reference set’ option. If the
input genome is not represented by any available reference
set, the “‘Unknown’ option offers HMM models acquired
from the Database of Essential Genes (Supplementary Ta-
ble S1) (29).

RNA-Seq data. For RNA-Seq based data options, allowed
input types are run accession numbers from NCBI-SRA or
EBI-ENA. Since it is imperative that the reads are down-
loaded in a fast and reliable fashion, SeMa-Trap utilizes
multiple downloading options. IBM Aspera (https://www.
ibm.com/products/aspera), a high-speed file transfer sys-
tem, is the preferred and recommended way of data trans-
fer (https://www.ncbi.nlm.nih.gov/books/NBK242621/). In
case of any complications, SeMa-Trap will directly down-
load from FTP servers or using fastq-dump (http://ncbi.
github.io/sra-tools/). In case of pre-analyzed RNA-Seq data
with other specific tools or parameters, the corresponding
‘BAM’ formatted files can also be uploaded. Limitations
due to the current computational power and the imple-
mentation of the server are provided in the Supplementary
Methods.

RNA-Seq analysis

Once data acquisition is complete, SeMa-Trap utilizes sev-
eral tools for analyzing the RNA-Seq data. Firstly, the fastp
algorithm (30) is used to filter reads with low quality and for
adapter trimming. Afterwards, filtered reads are mapped to
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Figure 1. Overall workflow of the SeMa-Trap pipeline. First, the genomic and transcriptomic data provided by the user are acquired from relevant databases
(A). Next step is the genome-wide annotation of the BGCs, essential housekeeping genes, secondary metabolite specific pathways and genes shown to have
an impact on SM production (B). Final steps include a complete RNA-Seq analysis (C) and the generation of the interactive results (D).

the reference genome by Hisat2 (31) and sorted to gener-
ate corresponding BAM formatted files via samtools (32).
Read count per gene is summarized by featureCounts (33).
Finally, gene expression normalization takes place for each
gene using the transcript per million (TPM) method de-
scribed by Wagner et al. (34), and differential expression
analysis is performed using DESeq?2 (395), as detailed in Sup-
plementary Methods. For the calculation of expression level
or fold change of a BGC of interest, average expression of
the ‘core biosynthetic genes’ (annotated by antiSMASH) is
taken into account.

Scoring. In order to prioritize target genes, SeMa-Trap
uses a scoring function dependent on the gene expression
levels throughout the comparative transcriptomic experi-
ments. To calculate such scores, fold changes of the se-
lected BGC and the gene of interest are multiplied and then
the calculated numbers from each selected experiment are
added together (exemplified in Supplementary Table S2).
However, it must be noted that a high score does not nec-
essarily prove an association between a BGC and a gene.
It rather points to high expression changes in the different
conditions relative to a BGC of interest. Only when using
large amounts of expression data, credible associations can
be effectively detected (36).

Reference expression level. In order to set meaningful
thresholds to label a BGC as ‘expressed’, SeMa-Trap uses
three different average expression levels of specific genes.

One of them is the mean expression of housekeeping
genes throughout the genome. These genes are annotated
by hmmsearch (37) with specific TIGRFAM models (38)
unique for each reference set (39,40). The idea here is that
on average, a gene defined as ‘essential housekeeping gene’
should be expressed significantly to be used as a reference
for expression (41). However, BGCs can be expressed at
lower levels and still produce compounds (42). Since no ex-
act threshold exists to define BGC expression, SeMa-Trap
offers separate reference levels such as the mean of non-
housekeeping genes or all of the existing genes.

Annotation

Apart from antiSMASH’s BGC prediction, the Known-
ClusterBlast algorithm is also applied to identify the com-
pounds potentially produced by the BGC. If the provided
genome is in FASTA format, an initial gene prediction step
will take place using Prodigal (43). Since it is shown that
certain types of genes actively control BGC expression, an
extensive annotation of the genome is essential for priori-
tizing target genes to manipulate for BGC overexpression.
For this purpose, the eggNOG-mapper (44) is used, par-
ticularly for the annotation of genes encoding transporters
and genes residing in secondary metabolite specific KEGG
pathways termed as ‘biosynthesis of secondary metabo-
lites” and ‘biosynthesis of antibiotics’. Using hmmsearch,
genes conferring antibiotic resistance or genes with regula-
tory functions are further defined via specific HMM models
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(D) Average fold change of the entire BGC, per experiment. (E) Expression (TPM) of a BGC relative to the selected, normalized reference expression level.

procured from PFAM (45), Resfams (46) and CARD (47)
databases.

RESULTS
Overview

Once the analysis is complete, SeMa-Trap presents the
overview of the overall fold changes of predicted BGCs and
their expression levels relative to either of the mentioned
reference expression levels (Figure 2). Various useful anno-
tations of the genes in the BGCs are presented as well as
the corresponding compound of the BGC if it is defined by
KnownClusterBlast. Furthermore, a heatmap of the BGC
content can be viewed in order to inspect fold changes of
genes per experiment. BGCs can be further explored by
clicking on the ‘Analyze in detail’ button.

Case study

A recent study by Lee et al. demonstrated the various effects
of microbial co-culturing on natural products biosynthesis
at the transcriptome level (48). Using six different compara-
tive experimental designs, the authors revealed that compe-
tition for iron increases the expression of specific genes lead-
ing to actinorhodin overproduction in Streptomyces coeli-
color A3(2) when co-cultured with Myxococcus xanthus. In
the following, by analyzing their publicly available RNA-
Seq data, we illustrate how SeMa-Trap simplifies the entire
analysis.

Visualization options and pathway analysis. The first part
of the result page (Figure 3A) offers a range of options
such as various displaying options for the presented genes,
the selection of specific experiments, and visualization of
RNA-Seq results by fold change or TPM based expression
level. Furthermore, it is possible to analyze specific path-
ways more in detail and explore the amount of differentially
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expressed genes within. In the presented case study, genes
involved in the leucine and isoleucine degradation pathways
were shown to be overexpressed, which potentially provide
precursors for the actinorhodin biosynthesis. Using Sema-
Trap this can easily be highlighted (Figure 3B).

Genome browser. For the investigation of specific genes
within the BGC or throughout the rest of the genome, a
dynamic genome browser is available. Apart from efficient
exploration of gene expression and annotation, the genome
browser offers multiple options. Provided that the BGC of
interest is significantly expressed, it is possible to set more
accurate boundaries for the predicted BGC. Within the an-
tiSMASH defined boundaries of a BGC (Figure 3C), a
smaller, continuous succession of genes appears to be co-
expressed, suggesting that those are regulated in an operon
and represent the actual BGC boundaries.

Target gene prioritization.  After thorough investigation,
Lee and colleagues identified the SCO6666 gene encoding a
transport system alternative to the one in the actinorhodin
BGC, which is encoded by the genes SCO5083-5084. Fur-
thermore, they found that the SCO6666 gene highly affected
the production of actinorhodin in iron restricted conditions.
Such prioritization can be easily made using the SeMa-Trap
tables sorted by concordantly and discordantly co-regulated
genes including scores (Figure 3D). Selection of the func-
tional category ‘Same KEGG annotations as BGC’ fur-
ther simplifies the investigation of the systems alternative to
those encoded within the BGC of interest. The ‘Combina-
tion’ column denotes the selected experiments, thus provid-
ing information on which genes are co-regulated with the
BGC of interest under which conditions.

Proof of principle

As a proof of concept, we used SeMa-Trap to examine
the transcriptome data of the actinomycete Amycolatopsis
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Jjaponicum. A. japonicum is the producer of the complexing
agent [S,S]-EDDS (49), a structural isomer of EDTA, which
in contrast to EDTA is biodegradable and can replace
EDTA in many industrial applications. However, [S,S]-
EDDS production is inhibited by zinc at concentrations of
2 .M (50). Responsible for this regulation is the zinc uptake
regulator Zur. To produce [S, S]-EDDS even in the presence
of zinc the mutant A. japonicum Azur (referred to as zurko)
was generated (51). To determine which genes to overex-
press to increase [S,S]-EDDS production in A. japonicum,
we performed transcriptomic analysis. For this purpose,
RNA-Seq analyses of A. japonicum wild type (WT) and 4.
Japonicum Azur cultured in the presence and absence of zinc
for 24 h were performed. Thereby, a direct correlation be-
tween zur gene expression and the [S,S]-EDDS biosynthetic
genes (BGs) could be observed. In particular, using SeMa-
Trap we identified genes that exhibited high co-expression
with the [S,S]-EDDS BG (concordantly regulated genes)
and genes regulated in opposite manner (discordantly reg-
ulated genes). Since gene deletion is a multi-step, time-
consuming process, we opted for a straightforward ap-
proach and overexpressed the targeted genes as a proof
of concept. Thereby, we focused on genes with a regula-

tory function and those connected to secondary metabolism
pathways. The target gene bldC (‘AJAP_RS36645’), with
the second highest score in the category ‘regulation’, en-
codes a transcriptional regulator of differentiation which
controls entry into development and the onset of an-
tibiotic production in Streptomyces (52). The lacl gene,
(‘AJAP_RS11995°), encodes a pleiotropic regulator (fifth
highest score in the category ‘regulation’) which enhanced
the production of antibiotics in S. coelicolor (53). From the
pathways connected to secondary metabolism, we selected
the glutamate synthase-encoding glts (‘AJAP_RS11230%)
gene (with second best score) involved in glutamate biosyn-
thesis. Since glutamate can be converted into L-aspartic
acid, one of the precursors for EDDS biosynthesis, this
gene was also taken into consideration. None of the se-
lected genes have been experimentally shown to be linked
to the [S,S]-EDDS production. Simultaneous overexpres-
sion of these genes resulted in an increased EDDS produc-
tion by 3-fold compared to A. japonicum WT (Figure 4).
Along with the experimental design, detailed methods (Sup-
plementary Tables S3 and S4) and analysis (Supplementary
Figures S1 and S2) can be further seen in the Supplementary
Data.
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Figure 4. [S,S]-EDDS production in 4. japonicumm WT and recombinant
strains. Strains were grown for 96 h in zinc depleted synthetic medium
(SM). A. japonicum wild-type (WT); A. japonicum containing an additional
copy of the genes bldC, lacl or glutamate synthase (g/ts), respectively and
A. japonicum containing an additional copy of the three genes (bldC + lacl
+ glts).

CONCLUSIONS AND FUTURE PERSPECTIVES

Leveraging on state-of-the-art sequencing techniques, com-
parative transcriptomic analyses have been continuously
used to identify genes that are co-regulated with BGCs of
interest and can be manipulated to activate silent BGCs. A
variety of tools exists in order to annotate and effectively
visualize biological functions of co-regulated genes such as
KOBAS (54), conduct RNA-Seq analysis such as ProkSeq
(55) or identify BGCs with co-expression data such as CAS-
SIS (56). However, to the best of our knowledge, SeMa-
Trap is the only public web server that combines genome
mining and transcriptomic approaches for the identification
of potential target genes for SM overproduction. The user-
friendly graphical interface of the web server allows efficient
and easy mining of RNA-Seq data, and was conceived for
natural product researchers who are not acquainted with
command line tools. Notably, SeMa-Trap also visualizes es-
sential information about the cell response to the produc-
tion of SMs on a transcriptomic level.

We showed herein that SeMa-Trap greatly facilitates the
identification of co-regulated genes as illustrated on the
actinorhodin-encoding BGC. However the limitations of
the pipeline must be noted. The current scoring system is
only designed to sort genes based on their similarity in tran-
scription levels to a BGC of interest. It can not be used as an
exclusive method for the selection of target genes. Thus, it
is incumbent upon the users to further evaluate the hits re-
turned by SeMa-Trap. For example, in the presented [S,S]-
EDDS overproduction experiment, our literature search
showed that the genes having the best co-expression score
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were unlikely to play a role in [S, S]-EDDS production. Con-
sequently, three of the promising target genes were success-
fully overexpressed, leading to increased [S,S]-EDDS pro-
duction. Especially when based on a few number of tran-
scriptomic experiments, it becomes more likely that the
SeMa-Trap analysis will include false positive target genes
in the resulting tables. For future applications, by analyzing
large amounts of publicly available RNA-Seq data, we are
working on generating associations with certain gene types
and classes of BGCs. Through co-expression networks, us-
ing statistical methods such as Pearson correlation coeffi-
cient, our aim is to reduce the number of false positives
(57,58).

In summary, considering the ever-growing need for novel
bioactive compounds, we believe that SeMa-Trap will serve
as a helpful tool for the natural product community by fa-
cilitating the identification of specific co-expression patterns
between different types of BGCs and genes with potential
regulatory functions. Additionally, such analysis will also
improve our ability to define expression thresholds above
which the actual production of the encoded compound is
observed. Last but not least, knowledge about the global
cellular response to SM production may be the starting
point to devise alternative strategies to optimize compound
production and identify potential resistance mechanisms.

DATA AVAILABILITY

SeMa-Trap is publicly available online at https:
/I[sema-trap.ziemertlab.com/ with no access restric-
tions. All of the source code is available on Bitbucket
at https://bitbucket.org/mehmetdirenc/sematrap/. Source
code for generating only the interactive HTML out-
put is also available at https://github.com/Integrative-
Transcriptomics/bgc-expression-viewer.  Transcriptomic
data files for EDDS overproduction and presented case
study are available in the NCBI Bioproject database un-
der the accession IDs PRJNAS809550 and PRJEB25075,
respectively.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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SUPPLEMENTARY METHODS:

Table S1. Reference set specific HMM models used in housekeeping gene annotation

Reference Set HMM Count

Chlamydiae 445
Groupl 398
Group2 968
Tenericutes 321
Fusobacteria 650
Verrucomicrobia 776
Deinococcus-thermus 599
Alphaproteobacteria 1098
Betaproteobacteria 923
Spirochaetes 765
Firmicutes 1019
Bacteroidetes 860
Actinobacteria 664
Delta_Epsilon-proteobacteria 866
Group3 921
Cyanobacteria 882
Gammaproteobacteria 1478
Unknown 1568

Methods

Server Implementation

Hosted on highly scalable de.NBI cloud system, the SeMa-Trap web server runs on Ubuntu Linux
(18.04.5 LTS) utilizing 2 TBs of hard drive space (1.5 in total available for a single run), 36 CPUs
with approximately 1 to 1.4TB of RAM depending on the workload of cloud resources. Server-side
application is based on Python3 Flask framework (https://flask.palletsprojects.com/) and Jinja2
templating language (https://jinja.palletsprojects.com) with JavaScript for user friendly input
options. In combination, Redis (https://redis.io/), Nginx (https://www.nginx.com/), Gunicorn
(https://gunicorn.org/) and Supervisor (http://supervisord.org/) tools are used for request handling
and process control.

RNA-Seq Analysis

Initially, a gene expression value is taken into account if it has the assigned padj value < 0.05, and

the gene is considered as a differentially expressed gene (DEG) if its absolute fold change is > 2. A
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defined threshold (0.05) is set because of its wide acceptance as being “statistical significance”
however, as such thresholds can be invalid for different experiments (1), the cut-offs can be

redefined by the user depending on the given data and how strict cut-offs are set in the experiment.

Target gene prioritization

In order to calculate the given scores, fold changes of the selected BGC and the gene of interest are
multiplied and then the calculated numbers from each selected experiment are added together. A
visualized example of the scoring of SCO6666 gene (with score 50.53, shown in Figure 3 D),
encoding the alternate transport system for actinorhodin BGC, can be seen in Table S2.
SeMa-Trap result can also be seen for the whole analysis at

https://sema-trap.ziemertlab.com/results/51e8fb5d-99e3-489b-aa57-2aa5cd2cclcd.

Table S2. Example for scoring method.

Experiment Actinorhodin Fold Change | SCO666 Fold Change |Multiplied
T3_co_cult_vs_T3_pure|1.37320261041672 7.6 10.436339839
T4 _co_cult_vs_T4_pure|2.682977920151415 6.41060810700008 17.199520006
r5_solid_vs_ctt 7.824020991896 2.92558252110573 22.889819059
Cumulative Final Score ~50.53

Strains, plasmids and oligonucleotides

The strains and plasmids are listed in Table S3. The oligonucleotides are listed in Table S4.

Media and culture conditions

Escherichia coli strains were grown in Luria broth medium (2) at 37°C and were supplemented with
100 pg ml™* apramycin when necessary to maintain plasmids. Liquid cultures of A. japonicum were
cultivated in 100 ml of R5 medium (3) in an orbital shaker (220 rpm) in 500-ml baffled Erlenmeyer
flasks at 29°C. Liquid/solid media were supplemented with 100 pg ml" apramycin to select for

strains carrying integrated antibiotic resistance genes.

Construction of the plasmids pRM4-bldC, pRM4-lacl, pRM4-glts and pRM4-bldC-lacI-glts

To construct the overexpression plasmids, bldC (AJAP_RS36645), lacl (AJAP_RS11995) and
glutamate synthase (glts)( AJAP_RS11230) genes of A. japonicum were amplified via PCR with the
primers listed in Table S4 and purified using QIAquick gel extraction kit . The pRM4 vector (4),
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containing the constitutive promoter ermEp*, was linearized with the restriction enzyme Ndel and
purified. Using NEBuilder HiFi DNA Assembly cloning kit (NEB, catalog no.E2621S) the
linearized pRM4 was ligated with each of the amplified genes. In addition the pRM4-bldC-lacl-glts
was constructed containing all the three genes. The plasmids were confirmed by enzymatic
digestion and sequencing, and integrated into the genome of in A. japonicum WT. These steps
allowed the generation of the overexpression strains A. japonicum::pRM4-bldC, A.

japonicum::pRM4-lacl, A. japonicum::pRM4-glts and A. japonicum::pRM4-bldC-lacI-glts.

[S,S]-EDDS production test

Liquid culture of A. japonicum WT and recombinant strains was performed in 100 ml volume to
determine [S,S]-EDDS production according to (5), (6). The optimized synthetic medium (SM)
consisted of glycerol (25 g 1" ), MgSO, x 7 H,O (1.2 g 1), Ferric (III) citrate (60 mg 1), KH2PO4
(8 g 1), Na,HPO, x 2 H,O (12 g 1"") and sodium glutamate monohydrate (11.3 g 1), which was
used as the nitrogen source. Pre-cultures were grown on a rotary shaker (120 rpm) at 29°C in
complex culture medium (glycerol (20 g 1); soybean meal (20 g 1) at pH 7.5) in 50 ml volume for
48 h. A total of 5 ml of this pre-culture was used to inoculate 95 ml of SM. The cultures were grown

for further 96 h before the [S,S]-EDDS production was analysed.

Detection of [S,S]-EDDS biosynthesis using HPL.C-DAD

[S,S]-EDDS measurement was performed as described by (6). The analysis was carried out on a
HP1090M liquid chromatograph equipped with a thermostated autosampler, a diodearray detector
and an HP Kayak XM 600 ChemStation (Agilent). A total of 10 pl of samples were injected onto a
Hypersil ODS column (125 %X 4 mm, 3 pm) fitted with a guard column (10 x 4 mm, 3 pm;
Stagroma) and analysed by isocratic elution with solvent A — acetonitrile (96:4, v/v) at a flow rate of
1 ml min™. Solvent A consisted of 20 mM Sorensen’s phosphate buffer (pH 7.2) with 5 mM
tetrabutylammoniumhydrogensulfate. UV detection was performed at 253 nm. For data analysis,
Chemstation LC3D software Rev. A.08.03 was used. Commercial [S,S]-EDDS in solution (Sigma

Aldrich) was used as standard.

Quantification

The HPLC analysis was performed from 1 ml supernatant. In order to determine the production of
[S,S]-EDDS of cells, the [S,S]-EDDS concentration was divided by the dry cell weight (DCW). The
[S,S]-EDDS production was expressed by (g/l/mg DCW).
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Table S3: Bacterial strains and plasmids used in this study

Jjaponicum WT

Strain or plasmid Description Source of
reference

A.japonicum MG17- | [S,S]-EDDS producing wild-type (7)

CF17

pRM4 PSET152ermEp* with artificial RBS, Apra’ (4)

pRM4-pldC pRM4 carrying b/dC gene from A. japonicum WT This study

pRM4-/acl pRM4 carrying /ac/ gene from A. japonicum WT This study

pPRM4-glts pRM4 carrying glutamate synthase (g/ts) gene This study

from A. japonicum WT
pPRM4-bldC-lacl-glts | pRM4 carrying bldC, lacl and glts gene from A. This study

Table S4. Oligonucleotides used in this study

Primer

Sequence (5°-37)

Primers used for amplification of the A. japonicum bldC (AJAP_RS36645) coding region
overlapping with pRM4 vector

bldC_pRM4_F

bldC_pRM4 R

CGACGGTATCGATAAGCTAGCCAGGGGAGGACCCAATGACCGCGACCATG

GGCGGA

GGGCTGCAGGAATTCGATATCAAGCTTAGATCTCATCAGACCTTGCGAGCG

GGCTCG

Primers used for amplification of the A. japonicum lacl (AJAP_RS11995) coding region
overlapping with pRM4 vector

lacl_pRM4_F

lacl_pRM4-R

GGGCTGCAGGAATTCGATATCAAGCTTAGATCTCATCATGCGGGGTACTCC

TGGGTCGATTCG

CGACGGTATCGATAAGCTAGCCAGGGGAGGACCCAATGTCGCTGGCGAAG

GTGGCCC

Primers used for amplification of the A. japonicum glutamate synthase (g/ts) (AJAP_RS11230)
coding region overlapping with pRM4 vector

GS_pRM4 F

GS_pRM4 R

CGACGGTATCGATAAGCTAGCCAGGGGAGGACCCAGTGGCTGATCCGACG

GGTTTCCTGA AGTACG

GGGCTGCAGGAATTCGATATCAAGCTTAGATCTCATCAGACCACCGCGAGC

GGCA

Primers used for amplification of the A. japonicum bldC, lacl, glts coding region overlapping

with pRM4 vector
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bldC_F_assem_ pRM4

bldC_R_assem_pRM4

lacl_F_assem_pRM4
lacl_R_assem_pRM4

GSsmall_F_assem_pR

M4
GSsmall_R_assem _p

RM4

CGACGGTATCGATAAGCTAGCCAGGGGAGGACCCAATGACCGCGACCATG

G GCGGAAGG
ACCTTCGCCAGCGACATTCAGACCTTGCGAGCGGGCTCGCT

CCCGCTCGCAAGGTCTGAATGTCGCTGGCGAAGGTGGCCCG

CCCGTCGGATCAGCCACTCATGCGGGGTACTCCTGGGTCGATTCGCG

CAGGAGTACCCCGCATGAGTGGCTGATCCGACGGGTTTCCTGAAGTACGA

C
GGGCTGCAGGAATTCGATATCAAGCTTAGATCTCATCAGACCACCGCGAGC

G GCAACG
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Figure S1

Target genes with regulation attributes for [S,S]-EDDS overproduction. Note that, after a literature
search, second and fifth most co-regulated genes were selected for overproduction experiments.
Genes with putative regulatory domains were left out from our selection because their annotations
were not strong enough to deduce an actual regulatory mechanism for a BGC. Entire analysis can
be seen at https://sema-trap.ziemertlab.com/results/4985a8de-4c61-426f-8011-51b6aaa51350.
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Chapter 3

Conclusions

In this chapter, I would like to further discuss the “resistance crisis” at hand,
how the methods herein can aid the proposed solutions, what more can be added
in the future, but also the misconceptions a researcher might have when using
the pipelines described and finally conclude my Ph.D. work.

Highlighted throughout the thesis, humanity is facing a grave danger of re-
turning to the dark ages where bacterial infections roam unchallenged. Before
jumping to the conclusion of “we need new antibiotics” there are additional is-
sues we must factor into a plan of action against the infectious bacteria. As a
wise man once said: “Bacteria... Can’t live with them, can’t live without them.”
This 1s especially right considering all the microbes we live with, forming mutu-
alistic arrangements [135]]. Although it is not possible (for now) to live without
microbes and there is the fact that resistance will emerge as per adaptation of
the target bacterium, we can still slow the whole process down and gain more
time to fight back. There are multiple implementations, which also helped long
before the golden age of antibiotics, such as improved sanitation measures in
everyday life settings, increased availability of clean food and water [136] and
the prevention of unnecessary use of antibiotics [137]. Another important part
of the solution rests with the legislative and political decisions in order to spark
more investments for the steady stream of new compounds [138, [139]. Ap-

proved by the FDA in 2018, Achaogen created the aminoglycoside antibiotic
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“plazomicin” that demonstrated potent bioactivity against carbapenem-resistant
Enterobacteriaceae. However, just under a year after, they filed for bankruptcy
in April 2019. This whole ordeal made it even clearer that investments in antibi-
otics require more support from governments and better technological pipelines
to save money and decrease the risk of hitting a “dead-end” [140]. As mentioned
in the introduction, a large portion of drugs is inspired by natural products. Pla-
zomicin as well is a semi-synthetic drug derivative of “sisomicin” which is nat-
urally produced by Micromonospora inyoensis. The BGC responsible for si-
somicin production is extensively analyzed in terms of functional annotations of
the included genes (e.g. conferring resistance, regulators, etc.), its biosynthetic
pathway and other structurally similar products (such as gentamicin) [141]. All
of these were done in order to help the future biosynthesis studies of sisomicin,
e.g. finding more potent producer strains, guiding genetic engineering attempts
or finding other metabolites with similar bioactivity. Now that is just one work,
describing one natural product from one genome which is used to create a po-
tent antibiotic that eventually led to the bankruptcy of a company. Considering
all the work that has been done to generate hundreds of thousands of BGCs and
describe how they work, a crucial thing to do now in natural product research is
the effective prioritization of our primary objectives leading to a minimized risk.
Concordantly, the main aim of the thesis is to create automated bioinformatics
tools in order to guide researchers in their efforts of finding novel BGCs and

producing them.

To aid the discovery efforts, the first three published works herein have been
built to utilize TDGM methodologies. Since its first iteration in 2017, the ulti-
mate goal of ARTS has been the prioritization of a BGC which in turn would
lead to a discovery of a novel antibacterial natural product, ideally with a novel
mode of action. Unfortunately (and understandably), this has not yet been ac-
complished since it can take quite some time and effort to find such a com-
pound. However, ARTS has been widely used by the community (academic

and private), analyzing more than a hundred thousand genomes both locally
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Chapter 3 Conclusions

and through the web server. Several example publications since the past year
show that the updated version of ARTS has been used to analyze genomes’
potency to produce antibiotics by looking at putative self-resistance mecha-
nisms within BGCs [142, [143] 144, 145,146, 147], as well as comparative gen-
ome mining for the said potential of multiple strains and their BGC diversity
(148, 149, 150, [151], larger pan-genome analyses to look for promising antibi-
otic encoding BGCs [152], and sometimes only to check known AMR genes
[153]. So far, researchers who used and cited ARTS were mainly interested in
the co-localization of their genes of interest with the predicted BGCs. A logi-
cal predicament, since co-localization of the resistance gene is the backbone of
TDGM approaches [154], also used to locate the BGC itself [155, [156]. Other
than its easy-to-use design and visualization, and a solid biological rationale,
ARTS owes its current popularity to its speed. Especially for the “Duplica-
tion” and “HGT” criteria, leveraging pre-computed reference sets dramatically
reduces the processing time, saving several to tens of hours depending on the
genome size [157]. Consequently, ARTS makes it possible to analyze large
amounts of genomes at once. At this time, except for the metagenomic se-
quences, multi-genome analysis is restricted to sequences from the same taxo-
nomic clade (e.g., Actinobacteria). However, a metagenome analysis is bereft
of duplication and phylogeny criteria, since they are specific to each reference
set. One way to enable these criteria is to infer the taxonomy of the input
metagenome sequences by using classification tools such as GTDB-Tk [158].
Additionally, such taxonomical placement can be applied as an optional first
step in the ARTS pipeline, since this information can be untrustworthy and
highly inconsistent amongst currently used databases [159]. Considering that
many studies are on a set of genera such as Streptomyces, it could also prove
useful to create reference sets describing core genes for specific and smaller
clades of bacteria. Since identifying core genes are very much dependent on
the phylum [130], creating more specific reference sets would also reduce the

number of genes with multiple ARTS hits, which might also be considered false
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positive results. This low specificity issue of the ARTS pipeline is mostly due to
the large BGC region boundaries defined by antiSMASH. Also pointed out by
multiple publications, the issues with BGC boundary definitions are quite prob-
lematic to genome mining based applications [152, [160]. So far cited by one
analysis (non-review) publication [161], we have shown that SYN-View can aid
in dealing with this problem. The workflow of SYN-View is based on the fact
that microorganisms can employ neighboured set of genes to work together as
clusters (or operons) which can co-evolve together [[162]]. This co-evolution can
give hints to the actual function since it is quite difficult to differentiate if the
gene is conferring a resistance mechanism or it is playing a part in the biosyn-
thesis of the metabolite or only there as a housekeeping gene just minding its
own business. SYN-View leverages the fact that the comparison of gene ortho-
logue neighbours can be used to illuminate this ambiguity [133], and would be
a perfect addition to TDGM methodologies specifically as an optional analysis
included in the ARTS pipeline. The ARTS database can also help track down
the functionality of a gene through the “Target-Oriented Search” section since
in ARTS-DB the user can easily investigate a gene’s affinity to be proximate to
certain BGC type(s). However, the main reason for creating ARTS-DB was to
offer researchers a comprehensive and easy-to-use resource to aid their TDGM-
based discovery efforts. As shown many times, studying the genomic expansion
events by duplication or HGT can lead to the discovery of novel natural products
[163, 164], or can be used to decipher the adaptation mechanisms of microor-
ganisms [1635, 1166, [167]. The complete database is also available in SQLite’s
“db” format, which allows further mining possibilities for future applications,

which is already in use by a few of our collaborators with their TDGM efforts.

Once we have an interesting BGC in mind, it’s time to facilitate the production
of its corresponding compound. With SeMa-Trap, we aimed to find promising
target genes for genetic manipulation applications in order to increase the ex-
pression of a BGC, in turn increasing its production. Although the correlation

of a genes and a BGCs expression from a relatively small amount of samples are
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not conclusive, it is clearly an advantageous start for an overexpression experi-
ment. Especially with the rise of the number of experiments fed to the pipeline,
comes better confidence in the target genes. There are many researchers working
on the pipelines that conduct the analysis of RNA-Seq data [168, 169] or predict
BGCs [170, 171]]. However, there is no web server that can be used to combine
these pipelines in order to mine the genome and transcriptome of an organism
to prioritize genes which can be targeted in wet-lab for secondary metabolite
overproduction. That is precisely why the aim of SeMa-Trap is not to improve
the existing workflows or methods but to create an easy-to-use server to locate
promising genes. Another important part of the analysis pipelines is the visual-
ization of results [172, [173]. T myself can’t take the credit for it apart from its
constituent data however, one of the best things (in ARTS as well) about SeMa-
Trap is its nice and informative way of visualization of results. As the output
of SeMa-Trap can become quite extensive, data visualization is of utmost im-
portance for converting results into insights. As shown in the example results,
such visualization can also help with the identification of BGC boundaries based
on the expression levels, which are shown to be much closer to the boundaries
defined by MiBIG, rather than the large region predicted by antiSMASH.

Although the usefulness of the tools described in this work has been proven
multiple times, there might be some misconceptions about their usage. The
biggest of them is that sometimes users might consider the given results in their
wet-lab experiments without further and closer inspection. As is the case in
screening methodologies, pipelines described in this thesis were merely created
to find promising targets based on the information we have from all the genetic
research made in the past decades. For example, HGT detection is a highly
complex issue with multiple proposed solutions [[174, (175, [176]. Incorporated
to ARTS, a way of detecting HGT events is based on the evidence provided
by the incongruences between species and gene trees [177]. However, it must
be noted that ARTS does not find an HGT event with 100% confidence. Fur-
thermore, finding HGT events are highly dependent on the quality of branch
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placements in the generated trees, and the strength of the phylogenetic signal
suggesting the occurrence of an HGT. Similarly, detection of the “duplication”
event is based on the occurrence frequencies of a gene of interest amongst a set
of genomes available from a database (e.g., NCBI’s RefSeq). This means that
such numbers can change with each update on ARTS with the increased amount
of available genomes representing a reference set. For SeMa-Trap as well, an
apparent correlation between the expression of genetic elements does not defini-
tively constitute a direct relationship of causality. Such deductions can only be
made after analyzing a much larger amount of data [178]].

In concluding remarks, investing in genome and transcriptome mining of mi-
croorganisms is a very fruitful venture for natural product discovery as it is
proven many times that they can effectively help wet-lab applications. Also,
as we need every organism on our side to strengthen our arsenal against infec-
tious diseases, our main aim for future work is to enable the tools described
for the analysis of fungal sequences. Obviously, the fungal kingdom has its
characteristic differences from bacteria however, both the TDGM and RNA-Seq
based prioritization techniques have been shown many times to be applicable for
fungi [179, 133, 180, [181]]. With the technological advancements, especially in
the sequencing methodologies, the amount of available “omics” data has been
skyrocketing. This increase also brings challenges in the creation of efficient
algorithms. Indeed, if not the most, it is a very exciting time for computational
biologists filled with endless possibilities. As for the natural product discovery
and production efforts, this work is set to serve as a small piece in the puzzle,
playing its role in the early stages of the “Renaissance” we are currently experi-

encing.
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Abbreviations

ARTS
ABC
AMR
ANI
antiSMASH
BGC
HGT
HMM
IMG

KS
MDR
MRSA
MiBIG
NaPDoS
NCBI
NP

PKS
PRISM
SeMa-Trap
SM
TDGM

Antibiotic Resistant Target Seeker

Atlas of Biosynthetic gene Clusters

Antimicrobial Resistance

Average Nucleotide Identity

The antibiotics & Secondary Metabolite Analysis Shell
Biosynthetic Gene Cluster

Horizontal Gene Transfer

Hidden Markov Model

Integrated Microbial Genomes

ketosynthase

Multi-Drug Resistant

Methicillin-resistant Staphylococcus aureus

Minimum Information about a Biosynthetic Gene Cluster
Natural Product Domain Seeker

National Center for Biotechnology Information
Natural product

Polyketide Synthase

Prediction Informatics for Secondary Metabolomes
Secondary Metabolite Transcriptomic Pipeline
Secondary metabolite

Target-Directed Genome Mining
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