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Summary
Over the last several years, Deep Learning algorithms have become more and more
powerful. As such, they are being deployed in increasingly many areas including ones
that can directly affect human lives. At the same time, regulations like the GDPR
or the AI Act are putting the request and need to better understand these artificial
algorithms on legal grounds. How do these algorithms come to their decisions? What
limits do they have? And what assumptions do they make?

This thesis presents three publications that deepen our understanding of deep
convolutional neural networks (DNNs) for visual perception of static images. While
all of them leverage human psychophysics, they do so in two different ways: either via
direct comparison between human and DNN behavioral data or via an evaluation of
the helpfulness of an explainability method. Besides insights on DNNs, these works
emphasize good practices: For comparison studies, we propose a checklist on how
to design, conduct and interpret experiments between different systems. And for
explainability methods, our evaluations exemplify that quantitatively testing widely
spread intuitions can help put their benefits in a realistic perspective.

In the first publication, we test how similar DNNs are to the human visual system,
and more specifically its capabilities and information processing. Our experiments
reveal that DNNs (1) can detect closed contours, (2) perform well on an abstract visual
reasoning task and (3) correctly classify small image crops. On a methodological level,
these experiments illustrate that (1) human bias can influence our interpretation of
findings, (2) distinguishing necessary and sufficient mechanisms can be challenging,
and (3) the degree of aligning experimental conditions between systems can alter the
outcome.

In the second and third publications, we evaluate how helpful humans find the
explainability method feature visualization. The purpose of this tool is to grant in-
sights into the features of a DNN. To measure the general informativeness and causal
understanding supported via feature visualizations, we test participants on two dif-
ferent psychophysical tasks. Our data unveil that humans can indeed understand the
inner DNN semantics based on this explainability tool. However, other visualizations
such as natural data set samples also provide useful, and sometimes even more useful,
information. On a methodological level, our work illustrates that human evaluations
can adjust our expectations toward explainability methods and that different claims
have to match the experiment.
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Zusammenfassung
In den letzten Jahren sind Deep Learning Algorithmen immer leistungsfähiger gewor-
den. Daher werden sie in immer mehr Bereichen eingesetzt, und zwar auch in solchen,
die das Leben der Menschen direkt beeinflussen können. Gleichzeitig fordern die EU
Datenschutz-Grundverordnung oder der AI Act und formulieren es als notwendig,
diese künstlichen Algorithmen besser verstehen zu können. Wie kommen diese Al-
gorithmen zu ihren Entscheidungen? Wo erreichen sie ihre Grenzen? Und welche
Annahmen treffen sie?

In dieser Doktorarbeit werden drei Veröffentlichungen vorgestellt, die unser Ver-
ständnis von deep convolutional neural networks (DNNs, auf Deutsch etwa tiefe fal-
tende neuronale Netze) für visuelle Wahrnehmung statischer Bilder vertiefen. In allen
dreien wird menschliche Psychophysik genutzt, allerdings auf zwei unterschiedliche
Arten: entweder durch den direkten Vergleich zwischen menschlichen und DNN-
Verhaltensdaten oder durch die Bewertung der Nützlichkeit einer Erklärungsmeth-
ode. Neben den Erkenntnissen über DNNs betonen unsere Arbeiten bewährte Vorge-
hensweisen: Für Vergleichsstudien schlagen wir eine Checkliste für die Planung,
Durchführung und Interpretation von Experimenten zwischen verschiedenen Syste-
men vor. Und für Erklärungsmethoden zeigen unsere Evaluierungen, dass die quan-
titative Prüfung weit verbreiteter Intuitionen dazu beitragen kann, deren Nutzen in
eine realistische Perspektive zu rücken.

In der ersten Veröffentlichung testen wir, inwieweit DNNs dem menschlichen vi-
suellen System ähneln, genauer gesagt dessen Fähigkeiten und Informationsverar-
beitung. Unsere Experimente zeigen, dass DNNs (1) geschlossene Konturen erkennen
können, (2) bei einer abstrakten visuellen Logikaufgabe gut abschneiden und (3) kleine
Bildausschnitte korrekt klassifizieren. Auf methodischer Ebene zeigen diese Exper-
imente, dass (1) menschliche Voreingenommenheit unsere Interpretation der Ergeb-
nisse beeinflussen kann, (2) die Unterscheidung zwischen notwendigen und hinre-
ichenden Mechanismen schwierig sein kann und (3) das Ausmaß der Angleichung der
experimentellen Bedingungen zwischen den Systemen das Ergebnis verändern kann.

In der zweiten und dritten Veröffentlichung messen wir, wie hilfreich Menschen die
Erklärungsmethode feature visualization (auf Deutsch etwa Merkmalsvisualisierung)
finden. Das Ziel dieses Werkzeugs ist es, Einblicke in die Eigenschaften eines DNN
zu gewähren. Um den allgemeinen Informationsgrad und das kausale Verständnis zu
messen, das durch feature visualizations unterstützt wird, testen wir Teilnehmende
in zwei verschiedenen Psychophysik-Aufgaben. Unsere Daten zeigen, dass Menschen
tatsächlich die innere Semantik von DNNs anhand dieser Erklärungsinstrumentes ver-
stehen können. Allerdings liefern auch andere Visualisierungen, wie z.B. natürliche
Bilder des Datensatzes, nützliche und manchmal sogar noch nützlichere Informatio-
nen. Auf methodischer Ebene zeigt unsere Arbeit, dass menschliche Evaluierungen
unsere Erwartungen an Erklärungsmethoden anpassen können und dass verschiedene
Folgerungen dem Experiment entsprechen müssen.
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1 Introduction

Machine algorithms are becoming more and more powerful and they are being de-
ployed in more and more areas. An Artificial Intelligence (AI) system supporting
self-driving cars (Grigorescu et al., 2020), healthcare applications (Miotto et al., 2018)
or facial recognition (Schroff et al., 2015) is no novelty anymore. Many of these are
high-stake situations, and decisions can have consequential effects on people’s lives.

Given the broad deployment of AI algorithms under often critical circumstances,
we want to understand these algorithms. How do they come to their decisions? What
limits do they have? And what assumptions do they make? The need for transparency
is becoming ever more pressing and is even strengthened by law: Since 2018, the
European Union’s (EU) General Data Protection Regulation (GDPR) grants users a
“right to explanation” under certain conditions (Goodman and Flaxman, 2017). And
since 2021, the EU has been discussing the AI Act (Parliament, 2021), the first major
regulation on AI in the world, which requires transparency for e.g. technologies that
interact with humans.

While there are many different ways to understand machine algorithms, this the-
sis presents two such approaches in three publications for modern machine learning
systems of visual perception. To guide the reader, they are organized along decreas-
ing granularity: First, comparison studies with humans on a behavioral level reveal
both abilities and limits as well as insights into potential features and mechanisms
of artificial visual systems (see Section 2.1). Then, humans’ understanding of their
internal information processing is tested based on an explainability method in two
ways (see Sections 2.2 and 2.3).

Overall, this thesis is structured as follows: The current chapter provides back-
ground on vision research, modern machine learning algorithms and explains open
questions that we address in our publications. Next, Chapter 2 summarizes our
specific contributions and Chapter 3 discusses them in a bigger context. Finally,
Chapter 4 gives an outlook on future research directions.

1.1 Human visual perception is a feat

Human visual perception is a feat: Our brain transforms physical visual information,
which hits the retina, to a meaningful representation. Thereby, we not only under-
stand color, depth, and distance, but we also recognize patterns as well as detect,
identify and classify objects. The latter are then in turn further processed to e.g.
take actions. All of this happens effortlessly and situations like sidestepping someone
on a crowded sidewalk, even when it’s raining or snowing, or finding one’s keys in
the middle of a plurality of items on a table require little thinking. Another great
example of the numerous processes and factors at play in visual perception is the
photograph below.

Most likely, the picture is perceived as funny — after all, the former American
President Barack Obama is playing a trick on another official man. To recognize
this, the viewer’s brain processes a lot of information, e.g. it identified several people
in a room as well as their facial expressions and gaze directions, while discerning
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Figure 1: A funny picture?! Our brain processes a lot of information to comprehend
the scene shown in the picture. (The photograph, which is in the public domain, is
taken from (Souza, 2010) with “Courtesy Barack Obama Presidential Library”. The
analysis is inspired by (Karpathy, 2012).)

their reflections in mirrors. Crucially, a viewer comprehends that the person on the
scale has different information than the other people: While most people in the scene
know that Obama is pressing the scale down with his foot, the man on the scale is
unaware of what is happening behind him. Finally, general knowledge of, for example,
weight being a delicate topic or Obama being a high-profile man help to assess the
situation. Altogether, this information allows a viewer to understand the situation
in the photograph, and the number of different pieces of information as well as their
nature exemplify what a great feat human visual perception is.

Even though it is debated whether vision is really the most important and most
complex sensory modality (Kandel et al., 2000; Goldstein, 2010; Gerrig et al., 2015;
Hutmacher, 2019), the body of literature about it is huge (Katz, 1989; Gallace and
Spence, 2009; Hutmacher, 2019). As a matter of fact, many more studies investigate
how we visually perceive the world as opposed to how we experience it via e.g. auditory
or gustatory inputs (Katz, 1989; Gallace and Spence, 2009; Hutmacher, 2019).

In this thesis, human visual perception serves as a reference point or evaluation
means. The main goal, however, is to better understand visual perception in ma-
chines.

1.2 Visual perception in machines: a brief history

Implementing vision in artificial systems has been attempted for many decades. While
one goal, which is typically attributed to the Computer Vision community, is to
engineer algorithms as powerful as possible, other efforts of artificially implementing
vision try to more closely mirror biological systems. Below, a brief history of machine
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algorithms for vision is given, interspersed with important milestones from biological
vision science.

One of the earliest precursors of today’s modern neural network machine learning
algorithms was invented in 1943: With the goal of understanding how the brain could
produce highly complex patterns, McCulloch and Pitts (1943) created a basic model
of a brain cell. The authors showed that combinations of this unit realized as a
thresholded sum of excitatory and inhibitory inputs could produce logical functions
such as AND, OR, or NOT . However, this early version of a neural network did not
yet learn. This changed in 1958, when Rosenblatt (1958) introduced the “Perceptron”,
a single-layer neural network which could classify images into two classes. However,
the realization of Minsky and Papert (1969) that a Perceptron could only successfully
solve linearly separable problems caused an “AI winter” and the community shifted
its focus toward rule-based algorithms.

In consecutive years, a huge break-through was achieved in biological vision. In
contrast, the Computer Vision community realized that the problem of artificially
implementing vision was harder than expected. Hubel and Wiesel (1962) discovered
two major cell types in primary visual cortex of cats in 1962: Simple cells respond to
bars at specific locations, whereas complex cells respond to bars in several different,
nearby locations. In contrast, the cognition and computer scientist Marvin Minsky
had completely unrealistic expectations from a summer project in 1966: He asked his
undergraduate student Gerald Jay Sussman to “spend the summer linking a camera
to a computer and getting the computer to describe what it saw” (Szeliski, 2010)1.
Poggio (1981) summarized that “Until the early 1970s the field of Computer Science
and Artificial Intelligence failed to realize that problems in vision are difficult.”

During the second wave of “Deep Learning” around 1980/90, algorithmic founda-
tions were laid out for later success. The “Neocognitron” (Fukushima, 1980) included
the idea of location-invariant feature extractors, which permitted a certain invariance
to translation. At the same time, the Neocognitron was the first functioning model
that incorporated the neurophysiological findings of Hubel and Wiesel (1962) and
consisted of several layers of simple and complex cells. According to Schmidhuber
(2015), it may be the “first artificial [neural net] that deserved the attribute deep”.
While the weights of the Neocognitron were set in an unsupervised way, the introduc-
tion of the backpropagation algorithm in 1986 by Rumelhart et al. (1986) meant that
neural networks consisting of multiple stacked layers could be trained. A few years
later, LeCun et al. (1989) demonstrated the success of combining backpropagation
and the previously introduced idea of translation invariance, which was now imple-
mented by convolutions, i.e. sliding windows of weights applied to all image patches:
Handwritten digits could be classified.

In the field oriented toward modeling biological vision, many hierarchical models
followed the Neocognitron Riesenhuber and Poggio (2000). One of the most famous
ones is the “HMAX”-model. It added the max -operation, achieved robustness to
image variations such as position, scale and translation, and was consistent with

1Tracing down this quote is not straight-forward. According to Szeliski (2010), the original vision
memo “was authored by Papert (1966) and involved a whole cohort of students”.
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physiological data (Riesenhuber and Poggio, 1999; Tarr, 1999). As hierarchical models
could be applied to the same inputs as in biological experiments, direct comparisons
were performed (Lindsay, 2021): Experiments suggested that these models would
correspond to the first 100 − 150msec of primate visual processing (Serre et al.,
2007a) and that artificial responses would match neural ones (Cadieu et al., 2007).

In the 21st century, more computational power (particularly via graphics process-
ing units) (Krizhevsky et al., 2012), larger data sets available from the web (Deng
et al., 2009; Russakovsky et al., 2015; Geiger et al., 2013; Everingham et al., 2010), as
well as the milestones achieved during the second AI wave allowed neural networks to
become more and more powerful. The focus shifted away from hand-crafted features
and toward end-to-end learning in deeper networks, or as LeCun et al. (1998) put
it: “better pattern recognition systems can be built by relying more on automatic
learning and less on hand-designed heuristics.” Deep neural networks (DNNs2) are
what powers the major AI advances of the last decade (LeCun et al., 2015; Mitchell,
2021b).

DNNs revolutionized Computer Vision and vision modeling. Today, modern DNNs
cannot only, for example, detect cancer in ultrasound data (Jush et al., 2020), classify
fauna (Seeland and Mäder, 2021) and other images (He et al., 2015, 2016), or drive
a car (Ren et al., 2021; Janai et al., 2020), but also — though these tend to be
based on other architectures than convolutions — recognize speech (Hinton et al.,
2012a) or translate between languages (Sutskever et al., 2014). Competitions like
the ImageNet Large Scale Visual Recognition Challenge were key drivers for even
better DNNs (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; He et al.,
2015, 2016; Szegedy et al., 2015) and many innovations in e.g. training methods (He
et al., 2016; Duchi et al., 2011; Srivastava et al., 2014; Hinton et al., 2012b; Kingma
and Ba, 2014) made DNNs even more powerful. In fact, they were found to surpass
human performance on very special tasks such as image classification (He et al., 2015;
Kheradpisheh et al., 2016).

With Deep Learning, scientists have successful models for the first time that can
actually do a task. Only years ago, this situation seemed decades away (Wichmann
et al., 2017). And what is more, the feat of object recognition emerges from training
end-to-end, i.e. without modeling the visual system step by step (Lonnqvist et al.,
2020).

Similar to the biological sensory modality, Computer Vision is the most or among
the most researched areas in Computer Science / Machine Learning according to
conference rankings (research.com, 2022; Tang, 2022), the impact of publications
(scholar.google.com, 2022) and the number of publications uploaded to a popular
pre-print server (arXiv, 2020).

Having sketched a brief history of visual perception in artificial systems, the focus
is now turned toward understanding them.

2In this thesis, DNN always refers to deep convolutional neural network, unless otherwise stated.
In the original publications 2 and 3, the term “CNN” is used.
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1.3 Why do we not understand DNNs?

Seemingly paradoxically, we — i.e. Deep Learning scientists or practitioners — claim
we would not understand DNNs. This often surprises the general public. After all, we
are the experts who ourselves program these algorithms. Should it not consequently
be absolutely logical that we know what is going on? The answer is yes and no.

What we do completely understand are the mathematical operations that the
DNN components execute and that we train it with. Further, we have a reasonably
good understanding of helpful engineering practices and we can even inspect all the
resulting parameters and the learned representations that DNNs form. However,
what is not so clear is how the “processing in these networks truly works” (Lillicrap
and Kording, 2019), i.e. why the image of a cat is classified as a cat and not a dog.
In other words, why those sometimes even human-like performing properties emerge
remains hard to grasp.

While this may still sound abstract, the following parallel to biology can clarify
that even understanding all constituents does not automatically mean understand-
ing how behavior emerges. For example, since 1998, the nervous system as well as
the genes of the nematode C. elegans have been completely decoded and sequenced.
Nonetheless, what has not yet been understood is how this biological hardware con-
nects to the worm’s behavior (Mausfeld, 2003; Geirhos et al., 2020b). Another, even
though slightly less analogous, example can be found in our human body: Despite
having understood a fair bit of how chemical and physical processes work, scientists
are still exploring different hypotheses regarding how anesthesia drugs are successful
(Wang et al., 2020a; Jiang-Xie et al., 2019).

Shifting the focus back to DNNs, their reputation as “black boxes” (Guidotti et al.,
2018; FEL et al., 2021; Adadi and Berrada, 2018; Rudin, 2019) becomes intuitive in
the context of the described obscurity around how these algorithms produce their
behavior. Clearly, it is important to better understand how their successes and failures
come about.

1.4 What are the benefits of understanding machines?

While counteracting the lack of transparency is a big motivator for working toward
better understanding machines, so are the opportunities that arise with a better
understanding: For example, debugging (Koh and Liang, 2017; Elton, 2022) and
improving models (Koh and Liang, 2017) would become easier. Also, steps toward
increasing fairness (Taylor and Taylor, 2021), toward meeting legal requirements like
in the GDPR (Goodman and Flaxman, 2017) and toward engendering trust (Kim,
2015; Swartout, 1983; Elton, 2022) would be accomplished. Furthermore, we would
be able to guarantee that DNNs work as expected and that they can be reliably and
responsibly deployed (Lakkaraju et al., 2020).

Put another way, these opportunities correspond to meeting the needs of the many
different stakeholders involved in machine decisions. When broadening the horizon
beyond vision applications, this can include and is not limited to end users (e.g. loan
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applicants), decision makers (e.g. doctors, judges), researchers and engineers, as well
as people from regulatory agencies (e.g. European Union) (Lakkaraju et al., 2020).

1.5 How can we understand DNNs?

The next question is: How can we understand DNNs? Luckily, there are myriad dif-
ferent ways. Here, two approaches that are relevant for the publications in Chapter 2
are highlighted. I present them along decreasing granularity from a coarse to a more
fine-grained level of understanding.

1.5.1 Comparisons with humans

An obvious reference point for DNNs are humans. After all, vision is a feat that we
are really good at. As explained in Section 1.1, we can not only robustly recognize
the world around us but also reason about these inputs.

Comparing machines to humans reveals how well they mirror our visual system.
As such, many parallels, but also differences exist. For example, both systems contain
many hierarchically structured neurons. In contrast, e.g. the number of tasks that the
machine or human visual system perform is different: Humans process information in
many different ways and can utilize this knowledge for various purposes (see Figure 1).
On the contrary, DNNs are typically trained to perform only one specific task.

In the following, we focus on similarities and differences on both a “functional”
and an “algorithmic” level3. The former means that correspondences between inputs
and outputs are compared — or in other words, behavioral reactions of DNNs and
humans are evaluated. The latter, i.e. the algorithmic level, refers to the decision-
making strategy. To this end, the processes and representations employed to solve the
problem are investigated. Interesting questions for these two levels include but are not
limited to e.g. what human abilities are replicable in DNNs? And are machines really
starting to match human capabilities? Do they come to their decisions in similar
ways as humans?

Functional and algorithmic machine-to-human comparisons leverage and build
on extensive knowledge in psychophysics. The establishment of this discipline is
attributed to the experimental physicist Gustav Theodor Fechner in 1860 (Fechner,
1860). Rigorously studying the mind and quantifying human behavior has granted
innumerous valuable insights into complex visual systems and represents a foundation
against which machines can be compared. For example, principles like exploring the
entire psychometric function, i.e. measuring reactions to various levels of the stimulus,
were introduced (Green, 1960) — and also transferred to DNNs (Wichmann et al.,
2017; Geirhos et al., 2018b; Webster et al., 2018).

A growing number of studies is asking how similar DNNs are becoming to hu-
mans. One of the hallmarks is performance on object classification. In 2015/6,
DNNs surpassed humans (Kheradpisheh et al., 2016; He et al., 2015). Other works
test, for example, classical psychophysical principles such as closure from Gestalt

3David Marr introduced similar levels of descriptions and explanations (Poggio, 1981) and they
are further discussed in Section 3.3.
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theory (Kim et al., 2019, 2021a) or phenomena such as illusions (Gomez-Villa et al.,
2019; Watanabe et al., 2018; Ward, 2019; Mély et al., 2018; Benjamin et al., 2019;
Sun and Dekel, 2021; Baker et al., 2018a) and crowding (Volokitin et al., 2017; Doerig
et al., 2020; Lonnqvist et al., 2020). Moreover, DNN capabilities on e.g. abstract vi-
sual reasoning (Barrett et al., 2018; Yan and Zhou, 2017; Zhang et al., 2019; Villalobos
et al., 2020), intuitive physics understanding (Zhang et al., 2016), and gaze behavior
(Kümmerer et al., 2014; Linardos et al., 2021; Kummerer et al., 2017) are investi-
gated. While this list is far from complete, such studies improve our understanding
of DNNs.

However, comparison findings between machines and humans are not always in
agreement. For example, on the one hand, DNNs are claimed to “have potential to
explain many aspects of human cognition” (Jozwik et al., 2017). On the other hand,
though, Mitchell (2021a) states that “no current AI system is anywhere close to a
capability of forming humanlike abstractions or analogies.” In terms of specific phe-
nomena, findings vary regarding how differently or similarly the two systems process
e.g. illusions (Gomez-Villa et al., 2019; Watanabe et al., 2018; Ward, 2019; Mély et al.,
2018; Benjamin et al., 2019; Sun and Dekel, 2021; Baker et al., 2018a) or adversarial
examples (Zhou and Firestone, 2019; Dujmović et al., 2020). The latter are subtly
altered images that are misclassified by DNNs but whose changes are typically not
perceived by humans (Szegedy et al., 2013). Another example of varying results con-
cerns what role texture- and shape-features play for DNNs (Geirhos et al., 2018a;
Baker et al., 2018b; Kubilius et al., 2016; Hermann et al., 2020; Feinman and Lake,
2018; Ritter et al., 2017).

Comparing humans and machines can be difficult. This is not only illustrated by
the previously mentioned diverging results but also other fundamental differences be-
tween the systems. For example, humans learn throughout their entire lives, whereas
supervised algorithms are trained on one single data set. In comparison studies, such
differences have to be addressed and how to best do so is not always straight-forward.

To adequately perform comparison studies between humans and machines, good
practices have been developing. For example, to facilitate evaluating forward process-
ing such as in a simple categorization task, fast stimulus presentation is recommended
for humans4 (Tang et al., 2018). The reason is that the biological process is believed
to happen in under 150msec (Thorpe et al., 1996; Serre et al., 2007b; DiCarlo et al.,
2012). And hence, a presentation time in this order most adequately mirrors the
forward pass in a feedforward DNN. Another aspect is that the increasing similarities
between DNN and human psychophysical behavior demand more and more challeng-
ing experiments (Wichmann et al., 2017). After all, DNNs already surpassed human
on simple tasks such as object categorization in 2015/6 (Kheradpisheh et al., 2016;
He et al., 2015). As such, stimulus manipulations to increase the difficulty of stan-
dard input — as e.g. noise augmentations (Wichmann et al., 2017; Geirhos et al.,
2018a) — have become a popular choice. On a more high-level note, Buckner (2019)
warns of our human bias in comparison studies. Especially, the tendency of attribut-

4Tang et al. (2018) also recommend backward masking, however opinions about this practice
diverge.
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ing human-like characteristics to machines can be misleading. While the list of good
practices is much longer, making good experimental choices is not always easy.

In summary, various differences between humans and machines can complicate
comparison studies and open up challenges in experiments. While they are certainly
a promising approach, how to adequately compare machines and humans is a tricky
endeavor (see Section 2.1 which corresponds to publication one (Funke et al., 2021)).

1.5.2 Explainability method: feature visualization

Having looked at how modern artificial visual systems can be understood when com-
paring them to the human visual systems, the focus is now shifted toward an ex-
plainability method. They typically grant insight at a more fine-grained level of
understanding: Loosely speaking, their goal is to make a machine’s decision-making
process more transparent and interpretable for humans. Referring back to the previ-
ously mentioned levels of understanding, explainability methods usually correspond
to the algorithmic level, i.e. the one of processes and representations.

The beginnings of explanations for expert systems are associated with rule-based
systems (Biran and Cotton, 2017) and the need for this was discussed as early as in
the 1970′s (Shortliffe and Buchanan, 1975). Today, explainable AI — often also called
“XAI”, “interpretability”, or, though less frequently, “intelligibility” (Weld and Bansal,
2019) or “transparency” (Weller, 2019) — is a whole subfield in Machine Learning,
and the community has been rapidly growing. For extensive information on XAI, the
reader is referred to e.g. Gilpin et al. (2018) for an overview, Minh et al. (2021) for
a comprehensive review, Guidotti et al. (2018) for a rather method-oriented survey,
Carvalho et al. (2019) for a survey with a focus on methods and metrics, Molnar
(2020) for a book and Lakkaraju et al. (2020) for a tutorial.

In this section, the explainability method “feature visualizations” is presented
in detail as it is the technique of study in Sections 2.2 and 2.3 (corresponding to
publications two (Borowski et al., 2021) and three (Zimmermann et al., 2021)).

Feature visualizations are synthetic images of the features which a deep convo-
lutional neural network learns5. This means that they are intended to grant insight
into the semantic properties of DNN units. In the literature, the method is sometimes
also called “activation maximization” (Erhan et al., 2009; Nguyen et al., 2016a), and
the images are also referred to as “most exciting inputs” (Walker et al., 2019).

First introduced by Erhan et al. (2009), the main idea is to iteratively update
the pixels of a synthetic image via gradient ascent such that the activation of the
network’s unit in question becomes maximal. The resulting images often show inter-
pretable (parts of) objects or geometrical structure (see Figure 2 left column). Given
their generation procedure, synthetic feature visualizations are believed to isolate and
highlight exactly what “causes” a unit’s response (Olah et al., 2017; Schubert et al.,
2021). This is in contrast to strongly activating natural data set samples, where any
feature is unavoidably accompanied by many other image parts, and therefore under-

5Note that the method and the result of its generation process have the same name.
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standing the truly underlying network feature can be challenging (see Figure 2 right
column).

In the larger landscape of explainability methods, feature visualizations for DNNs
belong to post-hoc, model-specific techniques and they reveal both local and global
insights. Feature visualization’s post-hoc explanation nature stands in contrast to
intrinsically interpretable models, which are simpler though inherently interpretable
models. The model-specific aspect means that they can be applied to the class of
DNNs. In other words, feature visualizations are not model-agnostic and could not
be applied to any model class. Moreover, feature visualizations are considered to grant
local insight (Lakkaraju et al., 2020) as they use single data points. Because these
data points simultaneously grant a wider impression of the whole decision-making
process and the goal is not to obtain detailed insight for one single data point, the
method can also be attributed a global notion.

Feature visualizations Data set samples

Figure 2: Feature visual-
izations: This explainability
method shows what features
a DNN learned. Strongly
activating data set samples
can also reveal insights. Fea-
ture visualizations are pro-
duced with code from Olah
et al. (2017) and data set
samples are taken from Ima-
geNet (Deng et al., 2009; Rus-
sakovsky et al., 2015).

Coming back to the generation procedure, the de-
scribed vanilla optimization process for feature visu-
alizations is usually augmented with a regularization
mechanism. This is necessary because pure gradi-
ent ascent unfortunately yields images with high fre-
quency artifacts. In the literature, three main ap-
proaches have evolved (Olah et al., 2017): For one,
they directly target high frequency noise (Nguyen
et al., 2015; Øygard, 2016; Tyka, 2016), e.g. by
constraining the variance between neighboring pixels
(Mahendran and Vedaldi, 2015). Alternatively, they
introduce stochastic transformations such as jitter, ro-
tation or scaling before updating the image (Mordv-
intsev et al., 2015; Tyka, 2016; Øygard, 2016). And
as a third option, a (learned) prior can be integrated
such that the final synthetic images look more pho-
torealistic (Mordvintsev et al., 2015; Nguyen et al.,
2016a, 2017; Wei et al., 2015). While no regulariza-
tion mechanism has become a clear favorite, ways to
improve the appearance of feature visualizations con-
tinue being explored.

A great advantage of feature visualizations is their
flexibility — though as often, this also entails chal-
lenging decisions. As such, not only the final out-
put units, but units from any layer can be visual-
ized. In fact, that “unit” can be determined flexibly,
too: Like in DeepDream (Mordvintsev et al., 2015), a
whole layer can be subject to optimization, or just a
channel or even only a single neuron. What is more,
these units can be combined and jointly visualized.
While this flexibility is an immense opportunity, finding suitable units or combina-
tions thereof can be quite challenging (Olah et al., 2018), especially considering the
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fact that different combinations of units can have strong responses to similar im-
ages (Szegedy et al., 2013). When further taking into account that even a single
unit can respond to different features (Olah et al., 2017; Nguyen et al., 2016b; Olah
et al., 2020b; Fong and Vedaldi, 2018), the complexity of selecting appropriate units
becomes clear. To specifically account for the different features of these so-called
“polysemantic” (Olah et al., 2020b) units, different strategies have been explored:
Wei et al. (2015); Nguyen et al. (2016b, 2017) use diverse starting images for the
generation process, and Olah et al. (2017) add a diversity term to the optimization
objective such that the visualizations will differ from each other.

The advantages of feature visualizations and their potential for better understand-
ing DNNs are reflected in the extensive use of the method: A large amount of research
has gone into understanding the representations of the DNN InceptionV1 (Szegedy
et al., 2015), which is also known as GoogLeNet, (Olah et al., 2017, 2020a,b,c; Cam-
marata et al., 2020, 2021; Schubert et al., 2021; Voss et al., 2021a,b; Petrov et al.,
2021; Mordvintsev et al., 2015; Nguyen et al., 2016a). Researchers around Chris Olah
focused on this model because they found it to be “unusually semantically meaning-
ful” (Olah et al., 2018), though this finding is not consistent in the literature (e.g.
Bau et al., 2017). Other studies investigated other networks (Nguyen et al., 2016a,
2017; Cadena et al., 2018; Tsipras et al., 2019; Engstrom et al., 2019a; Gonthier et al.,
2020; Goh et al., 2021; Mahendran and Vedaldi, 2015; OpenAI, 2020), combined fea-
ture visualizations with different explainability methods (Olah et al., 2018; Carter
et al., 2019; Addepalli et al., 2020; Hohman et al., 2019a) or built interactive tools
with it (Wong et al., 2021; OpenAI, 2020; Sietzen et al., 2021). What is more, feature
visualizations were successfully deployed in biological systems: After producing them
in silico, these synthetic images elicited strong activations in mouse (Walker et al.,
2019) and macaque visual cortex (Bashivan et al., 2019; Ponce et al., 2019).

Despite its popularity, feature visualization also has some downsides. For exam-
ple, many synthetic images are difficult to interpret and do not convey a human-
understandable concept. While this detachedness from human concepts reflects the
DNN’s features, an observer’s interpretation is likely to be biased toward looking for
familiar features. Considering the existence of adversarial examples, though, there is
no guarantee that humans could recognize all features. Further, taking into account
the finding of Fong and Vedaldi (2018) that in order to find semantically meaningful
features, multiple units may be required, the challenge of combining DNN units sen-
sibly comes back into the game. Simply considering the sheer number of DNN units
and possible combinations thereof push obtaining a global understanding of a DNN
out of reach. When shifting the focus to the often well-interpretable, “hand-picked”
(Olah et al., 2017) synthetic images shown in publications, an open question is how
representative and important they are for the network as a whole (Kriegeskorte, 2015).

Given these pros and cons of feature visualizations, one way to advance this debate
is to evaluate how helpful the method is for humans. No matter how appealing an
explainability method may seem, it is of practically no value, if it does not succeed in
conveying an understandable explanation of the DNN to the target person. Measuring
how well an explainability method fulfills its purpose is therefore crucial. Further,
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it can help assess whether development progress is going in a good direction and
whether the drawn conclusions from it are correct (Leavitt and Morcos, 2020).

“[H]uman-subject evaluation is not an easy task” (Doshi-Velez and Kim, 2017)
and requires critical design choices. For example, “[t]he claim of the research should
match the type of the evaluation” (Doshi-Velez and Kim, 2017). By now, various
tasks have been conceived to target different questions regarding the helpfulness of
an explainability method: They range from e.g. verifying a suggested response (Lage
et al., 2019), declaring a preferred explanation out of two (Doshi-Velez and Kim,
2017), simulating a model’s response for a new input given an explanation (Doshi-
Velez and Kim, 2017; Lage et al., 2019) to creating a counterfactual given an input,
an output and an explanation (Doshi-Velez and Kim, 2017). Other design choices
concern but are not limited to the following aspects: Should experts or laypeople be
inquired? Does the experiments take place in a well-controlled psychophysical lab
or can the trials be posted on an online crowd-sourcing platform? How general or
specific is the experiment to an explainability method, an algorithm and the data
set?

For the method feature visualization, one human study has been performed —
however, it does not address evaluating the helpfulness of feature visualizations. In-
stead, it tests the hypothesis whether one specific unit is really a curve detector. To
this end, the first author Nick Cammarata decides whether more than 800 images
correspond to the curve depicted in the feature visualization, or rather to an imper-
fect curve, an unrelated feature, or an opposing curve. Analyzing these labels reveals
that the four concepts are roughly in line with the expected activation magnitude.
This means that the unit usually fires most strongly for curves, less so for imperfect
curves or unrelated features and least for opposing curves. As the authors further
evaluate that most strong activations indeed occur for curves or imperfect curves,
they conclude that their hypothesis is confirmed: The investigated unit is a curve
detector. In the bigger picture, this human study is part of a deep-dive article on
curve detectors (Cammarata et al., 2020) with the method by Olah et al. (2017).
While it represents the first human study on feature visualizations and complements
a suit of pure computational analyses, it is unrelated to evaluating the helpfulness of
this method.

Despite the large body of work around feature visualizations, the informativeness
of this explainability method has never been evaluated by humans. As such, it is
unclear how well humans understand DNNs based on feature visualizations. Quanti-
tatively measuring this would represent a big step forward.

1.5.3 Schematic overview of publications

Following a decreasing granularity level, approaches toward understanding visual per-
ception in machines as well as their insights are presented. Specifically, comparison
studies between humans and machines shed light from a coarse perspective, and an ex-
plainability method reveals more fine-grained information about DNNs. As such, the
first publication addresses the problem described in Section 1.5.1 of how to adequately
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compare humans and machines, and the second and third ones advance the dialogue
around the informativeness of feature visualizations described in Section 1.5.2.

Figure 3: Schematic overview of publications presented in this thesis: Along
decreasing granularity, comparison studies between human and machine behavioral
data as well as human evaluations of the explainability method feature visualization
are presented.
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2 Papers
This chapter summarizes the main scientific contributions published as journal or
conference papers that resulted from joint research during my PhD. In each of the
following sections, I present one paper. Specifically, I explain what motivates the
study as well as what main experiments we conduct, and what results we find. Finally,
I discuss our work. This means that I not only set it into context of this thesis’s
story line, but I also highlight closely related literature and outline interesting future
directions. Importantly, the discussions in this section go beyond the content of our
publications.

On the content-level, each publication serves the overall goal of improving our un-
derstanding of visual perception in machine algorithms. In this thesis, I arrange the
three papers by decreasing granularity: The first one addresses comparisons between
machine and human visual perception on a behavioral level. By comparing perfor-
mances of the two systems and varying a number of factors, we learn about DNNs’
generalization abilities and limits as well as their inner workings. With the goal of un-
derstanding modern machine learning algorithms at an even more fine-grained level,
the focus is next shifted toward an explainability method in the second and third pa-
per. More specifically, this method is intended to grant insights into the features that
a DNN learns. In our publications, we quantitatively evaluate it. Altogether, these
experiments unveil how our understanding of DNNs’ internal information processing
improves based on an explainability tool.

In this chapter, all figures are taken from our original publications, and some,
namely Figures 4-7, are slightly adapted. The complete papers themselves as well as
the contributions from each author can be found in the appendix.
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2.1 Five points to check when comparing visual perception in
humans and machines

Christina Maria Funke*, Judy Borowski*, Karolina Stosio, Wieland Brendel‡, Thomas
S.A. Wallis‡, Matthias Bethge‡. Journal of Vision, 2021.

2.1.1 Motivation

Comparing apples and oranges?!6 This idiom is commonly used to call out funda-
mental differences in comparisons. While it is generally good advice to avoid such
scenarios, using them can sometimes be fruitful. In fact, comparison studies are fre-
quently done in science. For example, when a system resembles a black box — like
a modern machine learning algorithm —, it can be useful to look at model systems
that we can interrogate — such as humans. And conversely, these artificial systems
can be useful to model the human brain. Here, probing, taking apart and stitching
back together is much easier. Taken together, the motivation for comparison studies
is that new findings in one system can advance the understanding of the other system.

As for apples and oranges, comparison studies are not straightforward. Fields like
comparative psychology have a long history of investigating animals to learn more
about humans. Along the way, many tools and good practices were developed. They
permit adequately comparing different systems as well as drawing robust conclusions.
Unfortunately, these tools and good practices are not always applied in comparisons of
modern machine learning algorithms. As a consequence, studies may come to rather
fragile conclusions.

In this paper, we present both a checklist for comparison studies between two
different systems as well as case studies in which we apply the checklist’s points.
In the latter, we often choose different assumptions and experimental designs than
previous publications. As a result, we come to different conclusions regarding how
DNNs work. These results influence our understanding of DNNs. On a meta-level,
our experiments underline how tricky comparison studies are and that following good
practices such as summarized in our checklist can be helpful. Taken together, this
publication’s contributions are two-fold: On the one hand, we present a checklist and
investigate case studies with it. On the other hand, we discuss the impact of our new
results and how they alter our understanding of DNNs.

2.1.2 Checklist for comparison studies

At first, we propose a checklist for comparison studies. It consists of five points on
how to design, conduct, and interpret experiments that compare DNNs and humans.
Below, a short explanation is given for each point. For the sake of brevity, the reader
is referred to the original publication for examples. In terms of terminology, we often
use “mechanism” as an umbrella term. By it, we refer to e.g. DNN architecture (e.g.
feedback or lateral connections), learning schemes or the nature of representations.

6The first two paragraphs of this subsection are heavily inspired by earlier drafts that the authors
wrote for the digital magazine on AI The Gradient .
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i. Isolate functional or implementational properties: In order to understand
the mechanism under investigation, experimental circumstances should be set such
that the mechanism’s effect will show as clearly as possible.

ii. Align experimental conditions for both systems: Despite unavoidable dif-
ferences between different systems, experimental conditions should be aligned as
much and as fairly as possible. Any remaining differences should be made explicit.

iii. Differentiate between necessary and sufficient mechanisms: Many mech-
anisms can lead to the same behavior. Therefore, stating clearly whether an ex-
periment revealed if the investigated mechanism is necessary or just sufficient can
help to create realistic expectations with respect to said mechanism.

iv. Test generalization of mechanism: To report adequately in which scenarios a
certain mechanism can be deployed, testing its performance on various generaliza-
tion data sets is essential.

v. Resist human bias: While we cannot remove our human bias, we should be
aware of this potential influence. When designing and interpreting experiments,
we should attempt to take on an objective perspective as much as possible.

2.1.3 Comparison case studies: experiments, results and discussions

Having suggested a five-point checklist for comparisons between different systems, we
next apply these ideas in three case studies. The latter all aim to improve our under-
standing of visual perception in machines. Case study I is a thorough investigation of
a certain stimulus type and illustrates how four of the five checklist points are put into
action. Case studies II and III apply checklist points to experiments of previous pub-
lications. To this end, we run our own experiments, and come to different conclusions
than the previous papers. On a meta-level, our case studies illustrate the following:
(1) Human bias can influence the interpretation of experiments, (2) isolating and
differentiating between necessary and sufficient mechanisms can be challenging, and
(3) aligning experimental conditions is important to draw meaningful conclusions.

2.1.3.1 Comparison case study I: “Closed contour detection”

Motivation

In this first comparison case study, we want to test how well DNNs are able to
distinguish open and closed contours. This task is known to be easy for humans.
In fact, closed contours are believed to play an important role for the human visual
system (Koffka, 1935; Elder and Zucker, 1993; Kovacs and Julesz, 1993; Tversky
et al., 2004; Ringach and Shapley, 1996; Wertheimer, 1923). Their recognition is
assumed to rely on a process called “global integration” which makes use of global
information (Levi et al., 2007; Loffler et al., 2003; Mathes and Fahle, 2007). For
DNNs, we hypothesize closed contour detection to be challenging. The reason is that
their information processing was shown to heavily rely on local information (Geirhos
et al., 2018a; Brendel and Bethge, 2018).
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Experiments and results
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Figure 4: Comparison case study I “Closed contour detection” : As humans can
easily detect closed contours, we test a DNN on this task. We find that our ResNet-50
separates closed and open contours surprisingly well (A, i.i.id to training). However,
interpreting this result as if DNNs understood the human concept of closedness would
be overhasty (point v): In generalization tests to stimulus variations (point iv), our
DNN achieves high performance in only about half of them (A vs. B). This indicates
limits of the investigated mechanism and differences to humans — their performance
is expected to be consistently high. Finally, examining the heatmaps of a locally
constrained DNN reveals insights into an alternative decision-making strategy (C).

Our experiments reveal that a DNN can successfully detect closed contours. Specif-
ically, we train and test a ResNet-50 (He et al., 2016) on our custom data set. Its
stimuli contain one main, i.e. open or closed, contour as well as multiple flankers (see
Figure 4A i.i.d. to training). The network’s performance is surprising: It achieves
almost perfect accuracy. Relating this result to human psychophysical data, the two
systems show similar behavior. As an interpretation, it would be enticing to conclude
that DNNs would behave human-like. However, this would be overhasty (point v).
To better understand the degree of similarity, we examine our model’s performance
in different generalization scenarios.

Generalization tests show that performance of our ResNet-50 without fine-tuning
remains high only for about half of the additionally tested stimulus variations (see
Figure 4A+B). This result contrasts our expectation of high human performance
throughout stimulus modifications. Therefore, these generalization tests (point iv)
indicate limits of our specific network and training procedure. Taking a step back,
this helps moderate potential human bias in interpreting the previous result (point v).

In an additional experiment, we find that a purely local decision-making strategy
suffices for a DNN to detect closed contours well. The motivation for this experi-
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ment is to test an alternative mechanism to the human global integration process.
Specifically, we evaluate a constrained model that has access to local features only:
BagNet-33 (Brendel and Bethge, 2018) (point i). Our data reveals that this DNN also
achieves good performance. Consequently, we derive that simple local information is
sufficient for closed contour detection (point iii). Connecting this finding back to the
human visual system, we reason that that biological global process is not necessary.

Via an in-depth analysis, we identify which local features BagNet-33 relies on
most. To this end, we analyze the model’s heatmaps (see Figure 4C). They indicate
that a lot of evidence for open contours is attributed to image patches containing a
short line connected to an open line.

Finally, it can of course not be assumed that our BagNet-33 model and our ResNet-
50 model would utilize the same decision-making strategy. Generalization tests of
our artificially locally constrained BagNet-33 reveal different performances than of
ResNet-50. Thus, the two models seem to rely on different information processing
strategies.

Discussion

In this first case study, our experiments unveil that modern machine learning algo-
rithms can detect closed contours. However, they achieve high performance only on
some and not all tested data set variations (point iv). Further, we discover that a
DNN can base its decisions solely on local — as opposed to global — features (point i).
Setting these results into context with humans, we infer that both the human visual
system’s global integration process as well as this DNN’s local processing strategy
are only sufficient mechanisms (point iii). The application of these checklist points
illustrates how thorough experiments can help resist human bias when interpreting
results (point v).

Zooming out, the results from this case study add to the bigger picture of which
human psychological phenomena DNNs can or cannot mirror. As such, there is a
big body of literature exploring DNN behavior on e.g. illusions (Gomez-Villa et al.,
2019; Watanabe et al., 2018; Ward, 2019; Mély et al., 2018; Benjamin et al., 2019;
Sun and Dekel, 2021; Baker et al., 2018a), crowding (Volokitin et al., 2017; Doerig
et al., 2020; Lonnqvist et al., 2020) and other phenomena (see Section 3.3.1). Our
presented results complement that DNNs — similar to humans — can solve tasks
on closed vs. open contour stimuli. However, the extent of this ability is different
to humans. Also, DNNs perceive these stimuli differently and other decision-making
strategies than the human global integration procedure seem to be at play.

Related work
The importance of closed contours for the human visual system is mirrored by the
Gestalt principle “closure”. It describes that the human brain can fill in missing parts
to create a whole. As such, stimuli can create the illusion of containing a closed shape,
even though they physically do not.

Concurrent work investigates this closure phenomenon in DNNs (Kim et al., 2019,
2021a; Pang et al., 2021). To this end, they specifically employ illusory Kanizsa
triangles (Kim et al., 2019, 2021a) and squares (Pang et al., 2021). These are stimuli
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where the corners are either solid or implied with Pacman-shapes, and the connecting
edges are removed. The authors find that at least some of the investigated DNNs can
indeed detect closure on at least some of the tested stimuli. Overall, this result is
similar to ours. Further, and again similar to our experiments, these works pre-train
their DNNs on natural images before fine-tuning. While all authors report this to
be important, they present opposing evidence regarding what kind of architecture
permits the best performance: Kim et al. (2019, 2021a) state that convolutions are
essential, whereas Pang et al. (2021) state that recurrency is the decisive factor.
Finally, Kim et al. (2019, 2021a) go one step further and suggest that “Gestalt laws
need not be considered as primitive assumptions underlying perception, but rather,
that the laws themselves may arise from a more fundamental principle: adaptation
to statistics of the environment.”

In a different vein of work, Khan et al. (2020) investigate the advantages that
mimicking biological properties provide for DNNs on contour integration. Specifi-
cally, they demonstrate that a “neuroanatomically grounded” model does not only
successfully identify disconnected contours, but that it also exhibits realistic neuro-
physiological and behavioral properties. This latter aspect is in contrast to a pure
feedforward DNN: While such a model achieves reasonable performance, too, it is
“largely inconsistent with neurophysiological data” (Khan et al., 2020). In the bigger
picture, this work adds to successful examples of taking inspiration from biology to
improve DNNs.

Future directions
In order to further deepen our understanding of how artificial algorithms process
closed contours, our work can be extended in several ways.

For example, the local processing mechanism of BagNet-33 can be subject to fur-
ther investigation. Specifically, the statistical subtleties that this algorithm exploits
can reveal new insights. To this end, a first step is sorting image patches according to
their contributing evidence and analyzing repeating patterns. Going further, the data
set can be manipulated and the stimuli’s most important features can be removed.
In the current version of the data set, this would entail changing the images to not
contain a short line with an open ending anymore (see Figure 4C). With new edge
lengths, answering questions like the following would be interesting: What “next-best”
kind of features will BagNet-33 base its decisions on? Will they reveal new statistical
biases in the data set? Zooming out, can an iterative process of improving the stimuli
be started? And where would this lead given that a neural net with at least one
hidden layer is already a universal approximator (Cybenko, 1989)?

A second direction toward better understanding the processing of closed contours
in DNNs is to investigate why our two algorithms perform much more poorly on
certain stimulus variations. As such, accuracy drops to (almost) chance level for dif-
ferent color and line-widths. A similar effect for these kinds of pixel-level factors is
found for other kinds of stimuli in the literature (e.g. Puebla and Bowers, 2021). As
this aspect seems unrelated to the opposing global vs. local decision-making strate-
gies, investigating it may reveal other useful mechanisms helpful in detecting closed
contours.

32



Summary
In the bigger picture of understanding DNNs, the experiments of this first case study
provide evidence that DNNs can detect closed contours. However, the extent of this
ability and the way information is processed are different to humans.

Zooming out, the techniques utilized in this comparison study represent com-
plementary ways to investigate DNNs. They include but are by far not limited to
measuring performance in generalization scenarios (point iv) and scrutinizing the
decision-making process with a specifically designed network (point i). Findings from
such investigations can point to the machine learning model’s limits as well as its
learned strategies. In general, such thorough examination can help us better under-
stand differences between DNNs and humans. On the whole, this mitigates our human
bias (point v) and improves our understanding of visual perception in machines.

2.1.3.2 Comparison case study II “Synthetic Visual Reasoning Test”

Motivation

Understanding how well machine systems can reason about abstract visual relations
is of broad interest (Barrett et al., 2018; Yan and Zhou, 2017; Zhang et al., 2019;
Villalobos et al., 2020). For humans, this ability is a hallmark of their intelligence
(Barrett et al., 2018).

Previous research demonstrates that pure feedforward DNNs fall short in one of
two task categories from a popular data set (Stabinger et al., 2016; Kim et al., 2018b).
This “Synthetic Visual Reasoning Test” (SVRT) consists of 23 tasks and was developed
precisely for comparing humans and machines (Fleuret et al., 2011). The tasks require
either a decision based on whether shapes in two stimuli are identical (same-different
tasks) or a decision based on whether spatial relations between shapes in two stimuli
are similar (spatial tasks; for examples see Figure 5A). Fleuret et al. (2011) found
that humans understand the underlying rules quickly, usually after a few examples.
In contrast, two other studies (Stabinger et al., 2016; Kim et al., 2018b) tested DNNs
(GoogLeNet (Szegedy et al., 2015) and 2 − 6 layer nets, respectively), and detected
high performance only on spatial but not same-different tasks (see Figure 5B, left
side). Furthermore, Kim et al. (2018b) observed that learning same-different tasks
is more difficult. The latter authors interpreted their results as “feedforward neural
networks’ fundamental inability to efficiently and robustly learn visual relations”.
Other works (Serre, 2019; Schofield et al., 2018) more broadly hypothesize that DNNs
might need feedback mechanisms to be able to learn same-different tasks.

Experiments and results

In our own experiment, we find evidence that the task category, that was previously
thought to be difficult, represents no inherent limitation for modern, pure feedforward
DNNs. Specifically, our ResNet-50 achieves > 90% accuracy on all tasks (see Fig-
ure 5B). Besides showing that pure feedforward DNNs can succeed on same-different
tasks, this result can further be interpreted as follows: Feedback mechanisms are
not necessary for same-different tasks (point iii). Nonetheless, when considering that
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shallow DNNs (Kim et al.)

Figure 5: Comparison case study II “Synthetic Visual Reasoning Test” :
Knowing humans can easily comprehend abstract visual relations, the data set “Syn-
thetic Visual Reasoning Test” was developed (Fleuret et al., 2011) to evaluate both
human and artificial machine perception. It consists of tasks targeting the evaluation
of whether shapes are identical (same-different tasks), and tasks requiring a decision
regarding the spatial relation of shapes (spatial tasks; for examples tasks see A).
Previous studies (Kim et al., 2018b; Stabinger et al., 2016) showed poor performance
for shallow, pure feedforward DNNs on same-different tasks (B, left red dots). This
led researchers to hypothesize that feedback mechanisms would be necessary. How-
ever, as our deeper, pure feedforward ResNet-50 model achieves high performance on
same-different tasks (B, right red dots), this result can be interpreted as if feedback
mechanisms are not strictly necessary (point iii).

finite-time recurrent neural networks can be rolled out into pure feedforward neu-
ral networks (Liao and Poggio, 2016; van Bergen and Kriegeskorte, 2020), this point
remains debatable. Finally, regarding different learning efficiencies, we claim that
they are a tricky argument to support the hypothesis of feedback connections being
necessary. After all, it is possible that humans would find same-different tasks more
difficult to learn, too. However, due to their lifelong exposure to visual input and
learning, this is impossible to assess.

Discussion

In this second case study, our experiments unveil that modern, pure feedforward
DNNs can correctly categorize both task types of a popular abstract visual reason-
ing test. This result contrasts previous works and claims: Other researchers believe
feedback mechanisms would be necessary for a DNN to solve the task type of distin-
guishing whether shapes are identical or not (Kim et al., 2018b; Serre, 2019; Schofield
et al., 2018). Our findings indicate that feedforward connections are sufficient for
this (point iii).

Zooming out, our results add to the bigger picture of where DNNs stand with
respect to abstract visual reasoning. Moreover, they illustrate what mechanisms are
necessary and sufficient for such tasks. Multiple works in the literature (e.g. Barrett
et al., 2018; Yan and Zhou, 2017; Zhang et al., 2019; Villalobos et al., 2020) measure
DNN performance on custom data sets targeted at e.g. symmetry recognition (Yan
and Zhou, 2017). Often, DNNs are discovered to not be able to succeed at all tasks.
Yet, specific architectures designed to support reasoning are demonstrated to help
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overcome these limitations (Barrett et al., 2018; Zhang et al., 2019; Villalobos et al.,
2020). Compared to humans, for whom abstract reasoning is an essential element of
intelligence, these abilities and mechanisms are different.

Related work

The body of literature specifically investigating DNNs on SVRT’s same-different tasks
is growing quickly: On the one hand, a lot of focus is put on exploring and devel-
oping new architectures based on different mechanisms. On the other hand, better
understanding and augmenting the data set is becoming a new subject of study. This
is possible because previous data set versions are coming within reach.

To start out, an overview of the investigated architectures and their performances
is given. Similar to the experiments of Stabinger et al. (2016); Kim et al. (2018b)
and ours, a couple of works replicate the finding that shallow feedforward DNNs
cannot perform well on same-different tasks (Messina et al., 2019; Messina et al.,
2021b), but that a ResNet-inspired DNN can (Messina et al., 2019). Further, a
few works test the Relation Network (Santoro et al., 2017) or a DNN inspired by
it (Kim et al., 2018b; Puebla and Bowers, 2021; Messina et al., 2021a). This is an
architecture specifically designed for relational reasoning. While Kim et al. (2018b)
and Puebla and Bowers (2021) demonstrate that this model performs similarly to
pure feedforward DNNs, Messina et al. (2021a) show that it is outperformed by
their newly designed DNN. They call this latter successful model “Recurrent Vision
Transformer” (Messina et al., 2021a). It is inspired by different transformer models
and contains recurrent connections, an attention mechanism as well as a convolutional
feature extractor. On same-different tasks, its performance is high, often almost
perfect. In total, this is the third study on the SVRT data set from this group. In
it, Messina et al. (2021a) also highlight that a pure Vision Transformer cannot learn
same-different tasks. Earlier work of theirs lays out that evidence for the importance
of residual, recurrent and more generally skip connections varies, and that network
depth would not play an important role (Messina et al., 2019; Messina et al., 2021b).
Focusing on attention, the group around Thomas Serre finds that DNNs with attention
mechanisms, be they spatial or feature-based, permit higher performance in 22 out
of the 23 SVRT tasks (Vaishnav et al., 2021).

Zooming out from the debate of what specific architectural mechanisms enable
DNNs to perform same-different tasks, researchers inspect the data set itself: As a
first observation, Stabinger et al. (2016) suspect that the generation procedure of the
SVRT images allows their DNN to pick up other than the intended cues (“shortcut-
learning” (Geirhos et al., 2020a)). In later work, Stabinger et al. (2021) argue that the
data set should be made more difficult. Concretely, they suggest the shape generation
procedure should be adjusted to prevent trivial clues giving the correct answer away.
While the early study of Kim et al. (2018b) already introduces a parameterized version
of the SVRT data set with varying task complexity, Puebla and Bowers (2021) go
even further: In their new generalization test set, stimuli differ on the pixel-level.
Here, for example, line widths may vary — a modification that we also investigated
in our closed contour comparison case study.
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Taking the research on architectural mechanisms and data sets together, it seems
that modern, pure feedforward DNNs can solve same-different tasks, as long as they
are tested on i.i.d. data (Messina et al., 2019). When moving to the out of distribution
(o.o.d.) regime (Puebla and Bowers, 2021), not only DNNs like a ResNet-50 but also
specifically augmented architectures like a Relation Network fail. Overall, a number
of studies (Messina et al., 2019; Messina et al., 2021a,b; Vaishnav et al., 2021) suggests
that feedback mechanisms and especially attention can help with same-different tasks.
This view is endorsed in both a couple of review articles (Lindsay and Serre, 2021;
Stabinger et al., 2021) as well as in studies on other abstract visual reasoning tests,
such as in e.g. Barrett et al., 2018 and Villalobos et al., 2020.

To summarize, progress is being made toward DNNs performing well on abstract
visual reasoning tasks. Based on the current data, categorizing feedback mechanisms
as necessary or sufficient depends on the experimental conditions and therefore re-
mains an open question.

Future directions
To further improve our understanding of DNN behavior on abstract visual reasoning,
different directions can be explored.

As a first step, the portfolio of DNN capabilities on new SVRT data set versions
can be augmented. To this end, the most promising model by Messina et al. (2021a),
the Recurrent Vision Transformer, can be evaluated on the most challenging o.o.d.
data set by Puebla and Bowers (2021). This experiment would reveal whether one of
the most modern kind of DNN models may have an edge in o.o.d. regimes, which are
currently unreachable for less recent DNN versions.

Other interesting directions are investigating what data set augmentations during
training as well as how meta-learning can improve generalization. Finally, developing
a deeper understanding of the decision-making strategies can reveal insights into the
aspects that give certain mechanisms an advantage. In the bigger picture, this can
add to the understanding of which mechanism is necessary and which one is sufficient.

Summary
Within the goal of understanding machine visual perceptions, the experiments of this
case study suggest that modern, pure feedforward DNNs can solve the abstract visual
reasoning task of categorizing images into containing same or different shapes.

Taking a step back, this comparison study and its discussion illustrate that train-
ing DNNs is a complex endeavor and involves many choices including but not limited
to architecture, network depth and width, regularization schemes and the optimizer.
Moreover, generalizing results beyond the tested setup is tricky and it is essential to
differentiate between necessary and sufficient mechanisms (point iii).

2.1.3.3 Comparison case study III “Recognition gap”

Motivation

This third comparison case study investigates the minimally necessary visual infor-
mation required for object recognition. Expressed as small image crops, the question
is how the human and machine visual systems behave on them. In the bigger picture,
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this performance as well as the nature of these minimal features grant insights into
how DNNs as well as humans achieve object recognition.

A previous study claims that humans and machine algorithms would utilize dif-
ferent features and processes for object recognition (Ullman et al., 2016). In their
experiment, Ullman et al. (2016) successively cropped or reduced the resolution of im-
ages until humans could not recognize them anymore. Interestingly, they discovered
that human recognition performance drops sharply if a smallest recognizable crop
is reduced any further. The authors termed this sudden transition the “recognition
gap”. Specifically, it is evaluated as the difference between the fraction of people who
correctly identify the minimal recognizable crop (e.g. 0.9) and the fraction of people
who correctly identify the next smaller, i.e. maximal unrecognizable, crop (e.g. 0.2).
In the given example, the recognition gap would evaluate to 0.9 − 0.2 = 0.7. For
humans, the authors found a large recognition gap: 0.71 ± 0.05 (see Figure 6B). In
contrast, for a number of machine algorithms, they found a small recognition gap:
0.14 ± 0.24. Notably, these latter models were evaluated on human-selected stimuli.
Ullman et al. (2016) interpreted their results as “that the human visual system uses
features and processes that are not used by current models and that are critical for
recognition”.

B

Stimuli selected by: humansBagNet-33 humans
BagNet-33* humans‡ different algorithms‡Vision system:

A
* 
‡  

our data
data from Ullman et al.

Figure 6: Comparison case study III “Recognition gap” : With the goal of iden-
tifying the minimal information necessary to recognize an object, Ullman et al. (2016)
discovered that humans’ ability to recognize small image crops drops precipitously.
They call this phenomenon the “recognition gap”. It is measured as the fraction of
humans that correctly classify the recognizable crop minus the fraction of humans
that correctly classify the unrecognizable crop. While Ullman et al. (2016) found
this recognition gap to be large for humans (B, middle bar), they identified it to be
small for machine visual systems evaluated on the same human-selected stimuli (B,
right bar). In our experiment (A), we implement a search algorithm with BagNet-33
that closely mimics the human procedure of Ullman et al. (2016) (point ii). It reveals
this machine algorithm’s recognition gap to be large (B, left bar). As a consequence,
we conclude that both the human and a machine visual system can recognize small
image crops.
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Experiments and results

In our experiment, we align experimental conditions (point ii) and find that object
recognition between humans and a DNN is more similar than previously thought. In
particular, our goal is to investigate if at least part of the differences shown by Ullman
et al. (2016) might be explainable by different experimental conditions. Therefore,
we implement the search procedure for the smallest recognizable and the largest
unrecognizable image crop such that it mimics the original human psychophysical
experiment (see Figure 6A). As shown in Figure 6B, we find a large recognition
gap of 0.99 ± 0.01 for our machine algorithm, a BagNet-33 (Brendel and Bethge,
2018). Crucially, we evaluate it on image crops it selected. Compared to the human
recognition gap evaluated on human-selected crops by Ullman et al. (2016), this gap
is similar.

Discussion

In this third case study, our experiment unveils that a modern DNN can recognize
small image crops and that this capability drops sharply when reducing a crop just
a little further. Compared to a previous study (Ullman et al., 2016), this finding
is similar to the one for humans and contrasts the one for machines: Ullman et al.
(2016) claimed that humans would exhibit a large recognition gap, but not machine
algorithms. The crucial change for our new result is aligning experimental conditions
(point ii): We evaluate our DNN on crops it selected — just like Ullman et al. (2016)
evaluated humans on crops they selected. These two recognition gaps turn out to be
similar in size. Tying this comparison case study back to our checklist, it illustrates
that aligning experimental conditions can influence the results (point ii).

Zooming out, our findings add to the bigger picture of what kind of information the
human and machine visual system can successfully process. Specifically, we conclude
that both the human and the machine visual systems can recognize small image
crops. Also, a sudden drop in recognizability occurs in both systems. This means
that reducing the amount of information just a little too much has a large effect on
both human and machine recognition capabilities. This interpretation is different to
the statement from Ullman et al. (2016) (see the quote above) and clarifies that our
human perspective can bias our interpretation (point v).

Related work
In the literature, different parallels to this third case study can be drawn. Here, I
first highlight previous works that also pursue the goal of simplifying input images
while maintaining correct classification. Then, I outline how the work of Ullman et al.
(2016) is directly being extended.

The idea of identifying the minimally necessary information for successful object
recognition has been studied in both biological and artificial systems for quite a
long time. At the core, information from the original image is removed and the
remaining crop is tested for recognizability. In 1995, Biederman (1995) reviews such
ideas for the behavioral level in humans. Even earlier, namely in 1993, Tanaka (1993)
summarizes and presents a similar procedure for the cellular level in primates. Its goal
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is to understand receptive fields in inferior temporal cortex (IT). Regarding machine
visual systems, Zhou et al. (2015) perform a study fairly recently, in 2015: Specifically,
they investigate scene-classifying DNNs. To arrive at the minimal necessary image
area for successful recognition, the researchers iteratively remove unimportant image
segments. They uncover that in e.g. a bedroom-scene, the bed itself remains visible
while other furniture or decoration does not. As a consequence, Zhou et al. (2015)
infer that scene-classifying DNNs learn recognizing objects as a by-product.

The body of literature immediately extending the work by Ullman et al. (2016)
is growing. For example, in 2019, Srivastava et al. (2019) again investigate minimal
image crops for humans and machines. Similar to us, they implement a machine-based
search algorithm. However, their procedure differs greatly from the original human
psychophysical experiment and only a subset of their identified crops corresponds
to the definition introduced by Ullman et al. (2016). On a subset of this subset,
Srivastava et al. (2019) measure a moderate recognition gap of 56% for their DNN.
Despite the differences in their search procedure, these results again highlight that
humans and DNNs are susceptible to small image changes. Going further, Srivastava
et al. (2019) additionally test humans on their machine-selected stimuli. Here, they
detect a small recognition gap of only 14.5%. This suggests that the content of small
crops differs between the human and the machine visual system.

In a series of works, Shimon Ullman and his colleagues themselves add to their
findings from 2016. For example, they apply their idea of identifying the minimally
necessary information to videos (Ben-Yosef et al., 2020, 2021). As for static images,
they find a large drop in recognizability for humans, but only a small recognition gap
for DNNs. However, just like in their previous work, they evaluate machine algorithms
on human-selected data. This means that they do not align experimental conditions
(point ii). As a consequence, it is an open question if their results can be replicated
when letting machine algorithms determine their own minimal videos. Regarding
the work on static minimal recognizable images, different directions are pursued: For
example, Benoni et al. (2020) examine the time trajectory of the recognition process,
and Holzinger et al. (2019) investigate the brain activations of category-selective areas
in an fMRI study. Furthermore, Ben-Yosef et al. (2018, 2017) create a model that
automatically provides a “full interpretation” of the minimal recognizable images.
Finally, a review-like article summarizes image interpretation above and below the
object level (Ben-Yosef and Ullman, 2018).

To summarize, the body of work around the minimal information necessary for
successful recognition is growing. However, as experimental designs differ a lot, the
robustness of the identified similarities and differences between humans and machines
remains an open question.

Future directions
In pursuance of deepening our understanding of how humans and DNNs process small
pieces of information, different follow-up directions can be examined.

Specific to our implementation of the machine-based search for minimal crops,
there is potential to align experimental conditions even more. As such, programming
an exhaustive search instead of always following the best-performing crop would mir-
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ror the psychophysics from Ullman et al. (2016) more closely. Whether such additional
effort would change the result is questionable. The undeniable advantage of such a
more complicated procedure would be identifying several minimal recognizable im-
age crops for each original image. Going further, the diversity of these crops can be
analyzed and compared to the human ones. Similar to Srivastava et al. (2019), this
may reveal additional similarities and differences between humans and machines.

Zooming out, different experiments can be performed to deepen our understanding
of what the phenomenon “recognition gap” really means. Within the visual domain,
more modern DNNs such as transformers can be tested. This would reinforce or
diversify our understanding of how machine algorithms process small image crops.
In a different direction, exploring different data modalities may turn out insightful.
For example, is a sharp drop in recognizability present for text or speech data? And,
more specifically, do both humans and machine algorithms exhibit a recognition gap
for these types of input? Either way, this may reveal interesting observations about
different data modalities and the processing of small pieces of information.

Summary
Within the overall goal of improving our understanding of visual perception, the
experiment of this case study indicates that a DNN - similar to humans - can correctly
recognize small image crops. Further, it underlines that both systems behave similarly
on crops at the edge of recognizability.

In the bigger picture, this third case study illustrates that unequal testing proce-
dures can confound conclusions. Therefore, aligning experimental conditions between
systems as much as possible is of utmost importance (point ii).

2.1.4 Discussion

Comparison studies are notoriously difficult. Designing, conducting and interpreting
experiments for two different systems can be challenging. Nonetheless, such investiga-
tions can reveal great insights into their similarities and differences. In our checklist,
we presented good practices that can help prevent pitfalls of comparison studies. In
three comparison case studies, we illustrated the application of its points and thereby
deepened our understanding of visual processing in DNNs.

Going further, the presented case studies not only reflect our checklist suggestions
but also other good practices. As mentioned in Section 1.5.1, recommendations in-
clude for example (1) short presentation times for forward processing comparisons
(Tang et al., 2018; Thorpe et al., 1996; Serre et al., 2007b; DiCarlo et al., 2012),
(2) creating challenging stimuli (Wichmann et al., 2017), and (3) limiting human bias
(Buckner, 2019). In our closed contour detection case study, (1) was realized with a
stimulus presentation time of 100msec, and (2) and (3) were addressed by variations
of the closed and open contour data set. In our recognition gap study, (3) was accom-
plished by designing a new experiment for a machine algorithm and thereby aligning
experimental conditions fairly to both humans and DNNs (point ii of our checklist).
Regarding the related work on the SVRT data set of the second case study, the stim-
ulus variations of Kim et al. (2018b) and Puebla and Bowers (2021) can further be
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seen as realizations of (2), i.e. making similarities and differences visible via creating
more challenging experiments.

Overall, many good practices exist. Some have even become so much second
nature that mentioning them explicitly is forgotten. While our checklist complements
the mentioned existing good practices, concurrent work has been developing even
more. For a discussion of a few of those, the reader is referred to Section 3.1.2.

To summarize, comparison studies are powerful, yet they require care. When
thoroughly designed, conducted and interpreted, they can reveal great insights into
the two investigated systems. As such, this publication deepened our understanding of
DNN’s visual information processing with respect to closed contour detection, same-
different classification and behavior on minimally necessary information. Using the
language from above (Section 2.1.1), comparing the fundamentally different systems
of humans and machines — such as apples and oranges — turned out fruitful.
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2.2 Exemplary natural images explain CNN activations better
than state-of-the-art feature visualization

Judy Borowski*, Roland Simon Zimmermann*, Judith Schepers, Robert Geirhos,
Thomas S.A. Wallis‡, Matthias Bethge‡, Wieland Brendel‡. ICLR, 2021.

This and the next paper belong together and they shift gears from better un-
derstanding machine visual perception on the basis of comparison studies to the
explainability method feature visualization. This latter tool is specifically designed
to grant insights into the inner workings of a DNN. Within the overall story line, this
means that the next two papers reflect a finer level of granularity than the previous
publication. In essence, the goal of the feature visualizations is to make the features
that a deep convolutional neural network learns understandable.

Similar to the previous paper, we here also collect human behavioral data —
however, the use is different. In the previous paper, we compared human behav-
ioral performances directly to DNN performances. In the next steps, we then drew
conclusions about their abilities, limits, features and mechanisms. In these works,
we interpret human accuracy as an indicator of the explainability method’s helpful-
ness. In short: we evaluate feature visualizations. More precisely, human participants
perform specific tasks with the explainability tool as clues. The logic is that high per-
formance indicates that the explainability method indeed helps humans in the task,
whereas chance performance indicates that it does not.

An evaluation study of an explainability method is different in nature from a
comparison study. Despite differences, and as alluded to in the previous paragraph,
there are parallels between the two. As such, most of our points from the checklist for
comparison studies are reflected in the evaluation experiments. The only point that
does not apply is point ii of aligning experimental conditions between humans and
machines. As a matter of fact, this point is irrelevant for evaluating an explainability
method with humans. For a detailed discussion of the checklist points with respect
to our evaluations of an explainability method, please see Section 3.1.1. Without
doubt, comparison studies and explainability tools are generally two complementary
approaches to deepen our understanding of DNNs.

In this and the following publications, the focus is on the popular feature visu-
alization method by Olah et al. (2017). It counteracts high frequency artifacts by
performing gradient steps in Fourier space as well as applying jittering, rotating,
scaling, padding and cropping transformations to the image before updating it. In
order to visualize different facets of a feature, Olah et al. (2017) use a diversity term.
Please note that I refer to only this one method of feature visualizations throughout
this thesis when using the term “feature visualization” — unless I explicitly remark
otherwise.
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2.2.1 Motivation

The artificial images of the explainability method “feature visualization” show what
maximally activates a certain unit in a DNN (see Section 1.5.2). As such, they are
intended as a lens into the features that a DNN learns.

Despite their promising insights, there is a great controversy around them and
opinions in the research community diverge: On the one hand, feature visualizations
are extensively used (Olah et al., 2020b,a; Cammarata et al., 2020; Cadena et al.,
2018; Mahendran and Vedaldi, 2015; Nguyen et al., 2015; Mordvintsev et al., 2015;
Nguyen et al., 2016a, 2017; Tsipras et al., 2019; Engstrom et al., 2019a; Olah et al.,
2017; Nguyen et al., 2019) and even combined with other techniques (Olah et al.,
2018; Carter et al., 2019; Addepalli et al., 2020; Hohman et al., 2019b) to better
understand the learned representations and decision-making processes of DNNs. In
fact, many scientists believe that “features can be rigorously studied and understood”
(Olah et al., 2020b) and that features are meaningful (Zhou et al., 2014; Bau et al.,
2017, 2020).

On the other hand, though, several aspects around feature visualizations raise
doubts: As an example, pure vanilla methods produce noisy and “nonsensical high-
frequency” images (Olah et al., 2017), which is why introducing regularization mech-
anisms has become the norm (Mahendran and Vedaldi, 2015; Offert and Bell, 2020;
Nguyen et al., 2017, 2015; Mordvintsev et al., 2015). While this makes the artificial
visualizations more human-understandable, their faithfulness gets impaired and it is
a difficult question how to choose the best regularization mechanism. Other open
challenges concern the following aspects: What is the appropriate “unit” that rep-
resents a single feature in a network? A single neuron, several neurons or a whole
channel? And how much can we learn from a single feature, given that Morcos et al.
(2018) suggested that units of an easily understandable feature play a less important
role compared to units that respond to several inputs? Or how can we guarantee
to generate diverse enough feature visualizations to account for e.g. “polysemantic”
neurons, i.e. neurons that fire for different, unrelated inputs? Can we know that max-
imizing the activation is the right choice or should we also look for ways to visualize
features that elicit e.g. only 70% of the maximal activation? So far, the development
of explainability methods often relies on intuition, a criticism raised by Leavitt and
Morcos (2020). They further lament that falsifiable hypotheses are missing. Last
but not least, as e.g. Kriegeskorte (2015) writes, it is unclear how representative the
appealing, most likely “hand-picked” (Olah et al., 2017) images in articles are of the
entirety of a whole network.

In this project, our idea is to further advance the discussion around feature visu-
alizations by quantitatively evaluating the informativeness of one such method. To
the best of our knowledge, this study is the first to evaluate feature visualizations
with humans and to test intermediate representations7.

7Post-publication, I realized that Bau et al. (2017) evaluated an interpretability method on all
five convolutional layers of AlexNet.
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2.2.2 Experiments and results

To measure how helpful feature visualizations are for humans, we conduct two well-
controlled human psychophysical experiments in our lab. Specifically, we test the
method developed by Olah et al. (2017) and ask participants to simulate a DNN’s
behavior. The task (see Figure 7A) is to choose one out of two natural query images
(two-alternative forced choice (2AFC) paradigm (Fechner, 1860)) that the partici-
pants expect to elicit a strong unit activation given synthetic reference images. To
set participant performance into context besides the chance level of 50%, we addi-
tionally test baseline conditions such as natural data set samples.

Our main result is that even though synthetic images do provide humans with
helpful information about feature map activations (82 ± 4%), natural images are
even more helpful (92 ± 2%, see Figure 7). Further, we discover that this superi-
ority of natural images mostly holds across various conditions. These span different
network parts (layers and inception module branches), participant expertise levels,
hand- and randomly-picked feature visualizations as well as different presentation
schemes of reference images. As to the comparisons between expert and lay partic-
ipants as well as between hand- and randomly-picked feature visualizations, we do
not find the corresponding differences to be statistically significant. As to the pre-
sentation schemes, our experiments unveil that providing several reference images as
well as presenting both minimally and maximally activating images improve human
performance. Finally, our data demonstrates that subjective impressions of feature
visualizations’ interpretability vary greatly between participants.
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Figure 7: Informativeness of feature visualizations in feedforward prediction
task: In our psychophysical experiments, humans are presented either synthetic fea-
ture visualizations or extremely activating natural data set samples. Based on these
references, their task is to decide which of two natural query images elicits a stronger
activation in the given DNN unit (A). Our main result is that while humans achieve
more than chance performance with synthetic images, natural images are even more
helpful (B).
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2.2.3 Discussion

Feature visualizations via activation maximization are a popular explainability method
to better understand the behavior of DNNs. At the same time, they are criticized for
being intuition-driven (Leavitt and Morcos, 2020). Here, we quantitatively evaluate
the helpfulness of these synthetic visualizations with humans for the first time: How
useful are synthetic feature visualizations for humans in predicting which image elicits
stronger DNN activation?

Our experiments reveal that even though feature visualizations by Olah et al.
(2017) do provide useful information, natural images are even more helpful. On
the most basic level, the above chance performance for both conditions indicates
that humans can simulate the preference of a DNN unit with the help of extremely
activating images. In other words, we can gain an understanding about the inner
workings of a machine algorithm. Going further, the fact that natural data set samples
represent the more helpful source of information implies that this understanding is
deeper with natural and not synthetic feature visualizations.

Beyond our main result, our findings shed light on a number of other aspects.
These concern the expert level, the representativeness of hand-picked visualizations,
the presentation scheme as well as subjective impressions of the helpfulness of feature
visualizations.

To the best of our knowledge, our study is the first one to compare expert and
lay people in an evaluation study of an explainability method. In existing work,
publications focus either on experts (Hase and Bansal, 2020; Kumarakulasinghe et al.,
2020) or on laypeople (Schmidt and Biessmann, 2019; Alufaisan et al., 2021). Our data
shows no significant difference between the two groups. Consequently, we suggest that
future experiments may not have to rely on expensive expert participants. Instead,
leveraging lay participant pools may be sufficient.

Further, we test whether hand-picking particularly appealing feature visualiza-
tions allows participants to achieve higher performance. The motivation for this is to
evaluate whether the visualizations shown in publications represent the general level
of understandability conveyed via the explainability method. Our data indicates
no significant difference between hand-picked and randomly-picked feature visualiza-
tions. Therefore, the selection manner seems to be a minor aspect. Nonetheless, I
note that the gap is fairly large (see publication, Figure 5B) and particularly larger
than for the natural condition. Consequently, investigating this hypothesis with more
data can bring more certainty.

Regarding the best presentation scheme of reference images, our experiments in-
dicate that providing several reference images as well as presenting both minimally
and maximally activating images improves human performance. This finding is in
line with previous publications. For example, Offert (2017) and Kim et al. (2016)
respectively suggest that more than one example and particularly negative examples
help humans develop an understanding of data. Finally, how to best choose data set
samples is an active area of research (Crabbé et al., 2021).
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With respect to how intuitive participants perceive synthetic feature visualiza-
tions, we discover that opinions vary greatly. Some participants find certain syn-
thetic images straight-forward, others find them difficult to interpret. This result is
similar to the one of Hase and Bansal (2020) and suggests that each explainability
method has to be tested individually. Overall, these intuitiveness impressions add
to the picture of other often evaluated aspects. As such, researchers often measure
e.g. trust, satisfaction or confidence (Alqaraawi et al., 2020; Schmidt and Biessmann,
2019; Kumarakulasinghe et al., 2020). After all, a machine algorithm should only be
deployed if people trust it and its explanations.

Future directions
To extend the evaluation of feature visualizations, future work can explore different
directions. For example, the specific statement from our concrete setup can be ex-
tended to a more general one. To this end, the very first and very last layers of the
InceptionV1 network, combinations of units, the neuron objective, as well as different
networks and other feature visualization methods can be investigated. Moreover, the
amount of information provided to participants can be varied. For instance, the signal
from the query images can be decreased by sampling them from less extreme activa-
tions. Alternatively, additional information can be provided by sharing which layer a
unit is taken from. With the described undertakings, a more general statement about
the helpfulness of the investigated explainability method would come into reach.

Summary
In the broad view of understanding DNNs, the experiments of this study demonstrate
that human participants can comprehend the inner workings of a DNN well enough
such that they can simulate its feedforward behavior. Specifically, they develop this
understanding with extremely activating images. As such, we evaluate synthetic im-
ages from the popular explainability method feature visualizations as well as natural
data set samples. Most of our evidence hints toward natural images being more help-
ful. Overall, this study illustrates that humans can extract helpful information from
the two visualization types of natural and synthetic images and gain some under-
standing of visual perception in machines.
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2.3 How well do feature visualizations support causal under-
standing of CNN activations?

Roland Simon Zimmermann*, Judy Borowski*, Robert Geirhos, Matthias Bethge‡,
Thomas S.A. Wallis‡, Wieland Brendel‡. NeurIPS, 2021.

In this third publication, the explainability method feature visualization is again
subject to investigation. Such tools are specifically designed to convey insights into
DNNs in human-understandable terms. Evidently, they are a great means for the big
goal of improving our understanding of machine visual perception.

Compared to the second paper, this one has many parallels with it: Here, we
evaluate the same explainability technique and we do so with the same approach;
by leveraging human responses from psychophysical experiments. What is different,
though, is the kind of task we test and the kind of helpfulness we deduce from it: In
the previous paper, humans performed a so-called feedforward prediction task. Thus,
we inferred the general informativeness of the tested explainability method. In this
paper, we aim to explicitly examine a specific quality of the tool. It is referred to
as “causal understanding”. To quantitatively evaluate this aspect, we design a new
task in a counterfactual-inspired setup. Taken together, this third paper extends and
complements the second one.

2.3.1 Motivation

The explainability method “feature visualization” is intended to grant insights into
the features that a deep convolutional neural network learns. This is achieved via its
synthetic images. They are the result of an optimization procedure whose objective
is to create an input that elicits maximal activation for a certain DNN unit. In
essence, these “favorite” inputs are how feature visualizations impart a unit’s semantic
meaning.

Many researchers think feature visualizations establish a “causal link” (Schubert
et al., 2021; Olah et al., 2017). In fact, they consider this the method’s core motivation
(Olah, 2021a). Hereby, they mean that a synthetic image reveals what feature “causes”
a unit to fire. This relation is inherent to the generation procedure: A pixel only
changes because it will then elicit higher unit activation. Put differently, feature
visualizations are believed to isolate and highlight exactly those features that “cause”
a strong unit response. A popular example of this is the two commonly used images in
Figure 8A. Here, one feature visualization displays a whole dog’s face. And the other
one displays just an eye. With such pure features, an observer is able to distinguish
whether a unit responds to the whole object or just a part of it. To summarize, this
reasoning is why feature visualizations are believed to support causal understanding.

The purported advantage of feature visualization becomes even clearer when con-
trasting its synthetic images to natural ones: The latter often contain more features
than the one(s) in question (Olah et al., 2017). Sticking to the example above, finding
a picture of only a dog’s eye is rare. Instead, a dog’s eye is almost always captured
along with its whole head, if not (parts of the) whole body. Such correlations may
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mislead an observer and convey an incorrect impression of a DNN’s activations. Re-
searchers like Olah et al. (2017) consider the detachedness of feature visualizations
from the potentially confusing natural image manifold the method’s advantage.

Despite the arguments for feature visualizations supporting causal understanding,
a few other aspects cast a more critical light on this matter: For example, regu-
larization mechanisms, intended to make the synthetic images look more human-
interpretable, influence their faithfulness. As such, a pixel’s value does not purely
emerge anymore only because it “causes” high unit activation, but partly also be-
cause it then contributes to a more human-understandable appearance. Further, a
complete understanding of a function is unlikely to be gained just based on the ar-
gument of said function’s maxima. In other words, it is unclear how much about
the entire role of a DNN unit strongly activating images can reveal. And finally, it
is an open question whether humans actually gain causal understanding via feature
visualizations.

Given these points, we want to test the widely spread intuition around feature
visualization’s causality in this study. In particular, our goal is to quantitatively
measure how well feature visualizations support causal understanding of DNN acti-
vations.

2.3.2 Experiments and results

To test causal understanding of feature visualizations, we design a human psychophys-
ical experiment. Our assumption is that if synthetic visualizations indeed grant causal
insight, then they should allow humans to predict the effect of an intervention better.
For our crowd-sourced experiment (see Figure 8B), we translate this as follows: To
start, we provide reference images such as feature visualizations. Their role is to grant
potential causal insight into what features elicit high unit activation. Next, and as
the intervention whose effect our participants predict, we present image manipula-
tions that change a unit’s activation. Such an image manipulation is realized as a
square occlusion superimposed on a query image. Specifically, we place it such that it
either maximizes or minimizes the activation of the unperturbed image. Ultimately,
our human participants are asked to choose which of two partly occluded images
activates a given unit more strongly (2AFC paradigm (Fechner, 1860)). In essence,
this requires two steps: At first and on the basis of the reference images, participants
identify the important feature that elicit high activation. Then and with respect to
the manipulated query images, they select the one where as much as possible of that
important feature is visible. Overall, and just like in our previous publication, we
compare different reference conditions in this experiment. For example, we test how
well natural, the combination of synthetic and natural, or no reference images support
causal understanding. This helps us set the performance of feature visualizations into
context besides the chance level of 50% from the 2AFC-task.

The main result from our experiment is that feature visualizations do provide
humans with helpful information about the most important patch in an image —
but not much more than other or no visualizations at all. As Figure 8C depicts, we
specifically find that performance for synthetic images is at 67±4%. Even though this
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Figure 8: Causal understanding of feature visualizations in counterfactual-
inspired task: Synthetic feature visualizations are believed to isolate and highlight
exactly those features that “cause” a strong unit response (A). In our psychophysical
experiments, humans are given reference images such as synthetic feature visualiza-
tions and decide which of two partly occluded images elicits stronger activation in
the given network unit (B). Our main result is that while humans achieve more than
chance performance with synthetic images, natural images are similarly helpful and
the gap to no reference images (“None”) is small (C).

result is clearly above chance, comparing it to other conditions makes it appear less
powerful: In the none condition, where no reference images are given and participants
make their choices purely based on query images, performance is already at 60± 3%.
This suggests that feature visualizations provide a small advantage only. The same
observation holds true when looking at other conditions: Strongly activating natural
data set samples, as an example, also reveal similar performance levels as feature
visualizations.

Since performances between reference conditions are so similar, we thoroughly in-
vestigate a number of aspects to verify their plausibility. For example, we compare
accuracies of the first two authors of this paper to the crowd-sourced data. As these
measurements yield similar scores, we are confident to claim that our lay participants
make their choices carefully. Further, simple baselines set our human data into con-
text: For example, a straight-forward strategy is to always choose the query image
with an unoccluded primary object. Results from such baselines reveal that they can
reach above chance performance regimes between the no reference and visualizations
conditions. Thus, our human data seems plausible. From a different perspective,
though still in light of these simple decision-strategies, the advantage of feature vi-
sualizations is again not large. Finally, extensive analyses show that how easily the
most important image patch is identifiable depends on various factors. For instance,
the DNN unit, image choice, and activation difference between the manipulated query
images, but not the reference condition show a dependence with performance.

2.3.3 Discussion

In this project, we put the intuition of feature visualizations supporting causal under-
standing to a quantitative test. As a matter of fact, this is the first time this widely
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spread assumption is being evaluated. Specifically, we ask human participants in
an online crowd-sourced experiment about the causal relation between manipulated
images and a unit’s activation. Our data show that feature visualizations do not sup-
port causal understanding particularly well: While they do provide useful information
as indicated by above chance level accuracy, performance is only marginally higher
than the one for a baseline where no reference images are provided and similar to the
one where other visualizations such as natural data set samples are displayed. This
suggests that the anticipated advantage of feature visualizations is not as large as
expected. More precisely, the benefit of the method’s detachedness from the natural
image manifold and potentially misleading, spurious correlations is not clear. From
a different perspective, another interpretation is that spurious correlations in natural
images seem to not impair human performance as much as previously anticipated.

While our experiments reveal no particular advantage for feature visualizations,
there is also no asset detectable for natural reference images or even the joint display
of synthetic and natural images. The former aspect contrasts results from the previous
publication: Here, natural data set samples repeatedly and almost consistently yield
the highest task performance. In this second publication on feature visualizations,
we do not find evidence in this direction on the performance level. However, a trial-
by-trial analysis does reveal that humans are indeed most consistent with each other
in the natural condition (see Figure 4 in publication) — and they happen to be least
consistent in the synthetic condition. Regarding the mixed condition, the combination
of synthetic and natural images is intended to leverage the best from two worlds: Pure
features from synthetic images should give hints at what “causes” the unit to fire, and
familiar contexts from natural images should help locate them. Since performance
for this condition is similarly high as for other conditions, no benefit is detected.
Taken together, this second experiment reveals no favorite visualization method as
particularly helpful in causal understanding.

Future directions
Similar to the previous publication, there are many possible future directions.

To start off, and again similar to the other evaluation study of feature visual-
izations, the generality of our statement beyond our specific setup can be explored.
As such, all the mentioned aspects from the previous publication can be examined.
For example, more units of InceptionV1, combinations of units, the neuron objec-
tive, varying levels of information, as well as other networks and feature visualization
methods can be tested. As of now, it is an open question whether, e.g. the presenta-
tion of feature visualizations for a single unit, a whole channel, or a combination of
them would elicit different human performance levels. Similarly, another interesting
direction is investigating what effect units that fire for multiple features have on how
easily humans understand visualizations, if any.

Specific to the task presented in this second publication on feature visualization,
variations of our intervention can be tested. So far, our square occlusions limit the
kinds of features that can be sensibly covered. Chris Olah relates to exactly this
shortcoming when claiming that our experiment would not test causality: “Both data
set examples and feature visualizations give examples of *where* a feature fired. The
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challenge is *what about that portion* caused it to fire, especially given that things
like eyes and head are extremely correlated (in this case, part-whole relationship)?”
(Olah, 2021b). To adequately address this, occlusions must become adjustable in size
and shape. For example, a dog’s eyes or its head can be covered by variably sized,
round-ish patches. As another example, low-level line orientations can be occluded by
multiple narrow, elongated areas. Even though realizing such adjustable occlusions
at scale is not straight-forward with state-of-the-art algorithms, they would allow
testing causal understanding more precisely.

Changing the psychophysical task even further to letting humans themselves de-
scribe variably sized regions could open up insights beyond causality. For instance,
participants themselves can shade image region(s) that they believe to correspond to
the feature(s) in question given references8. In order to evaluate human agreement
and infer how humans interpret DNN features, these shaded regions then have to be
compared to each other. To this end, measures like the intersection over union may
be useful (see Bau et al. (2017)). An alternative approach can be transferring the
task to a natural language setup: Based on references, participants describe in words
what they interpret as the relevant feature(s)9. Again, and just like in the previous
option, these natural language descriptions have to be analyzed for similarities and
differences in a following step. Altogether, the suggested approaches permit identify-
ing and illustrating a DNN’s features more precisely. Notably, they do not test the
quality of causal understanding but rather whether humans gain the same feature
understanding. Going even further, experiments could investigate where humans’ un-
certainties lie and what kind of additional information they would need to improve
their feature understanding.

Regarding the data from both our publications, the patterns of how our partici-
pants come to their decisions can be analyzed. Specifically, the predictive power of
certain image aspects can be tested. For example, how much of the human decisions
can be explained by a predictor that models, say color? Other interesting candidates
would be for example orientation, object class, and spatial frequency. Going further,
linear mixed models can reveal plausible combinations of predictors. Overall, such
results could reveal what image aspects play an important role in how humans make
their decisions. From a different perspective, this can grant insight into what the
most helpful explanation would look like for humans.

Summary of feature visualization evaluations
Within the goal of deepening our understanding of visual perception in machines, the
experiments of this study reveal that human participants can comprehend the causal
relation between input images and DNN activations to a certain extent, namely such
that they can moderately well predict the effect of an intervention. Similar to the

8Ultimately, the described approach of identifying certain image regions is similar to searching
for the minimally necessary information in an image discussed by Biederman (1995); Tanaka (1993);
Zhou et al. (2015) and Ullman et al. (2016). I presented all of the latter in Section 2.1.3.3. The
main difference between the approaches is that the proposed method here aims at specific features
and intermediate network units whereas the latter works aim at general classification.

9Caplette and Turk-Browne (2022) already did this in a recent study, though for the purpose of
understanding mental representations and for one late layer only.
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previous publication, they develop this understanding with extremely activating im-
ages. As such, we compare the popular feature visualization method to natural data
set samples and other reference image variations. Our data illustrates that all vi-
sualization methods provide similarly helpful information. Therefore, the purported
advantage of feature visualizations supporting causal understanding particularly well
is not endorsed. Nonetheless, this study illustrates that humans can extract helpful
information from different visualization variations and gain a limited causal under-
standing of information processing in DNNs.

To summarize the last two publications, we put the feature visualization method
by Olah et al. (2017) to quantitative tests in order to evaluate their informativeness
for humans. In fact, these are the first human evaluations of this explainability
method. So far, only one other human study was done with feature visualizations
(see Section 1.5.2). With our evaluation experiments, insights are gained regarding
how well we understand the internal information processing of machine algorithms for
object classification. Specifically, we test variants of two of the tasks that Doshi-Velez
and Kim (2017) suggested, namely a “counterfactual”-inspired and a feed-“forward
prediction” paradigm. These different evaluations allow us to draw conclusions on the
general informativeness as well as a specific quality of it: causal understanding. We
are convinced that such psychophysical tests are a great way to transfer intuitions via
falsifiable hypotheses (Leavitt and Morcos, 2020) into quantitative results. As such,
they reveal realistic estimates regarding what information explainability methods can
and cannot convey. Finally, we hope that our objective psychophysical tasks serve
and inspire further development of challenging evaluations and that they help steer
future advancement of feature visualizations.
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3 Discussion

The papers summarized in this thesis aim to deepen our understanding of visual per-
ception in machine algorithms. In all of them, we utilize human psychophysics —
however, in two different ways: In the first publication (see Section 2.1 and Funke
et al. (2021)), we conduct comparison studies between DNNs and humans. By directly
assessing similarities and difference in behavioral performances, we draw conclusions
on the investigated DNNs’ abilities, limits, and mechanisms. In the latter two publi-
cations (see Section 2.2 and Borowski et al. (2021) as well as Section 2.3 and Zimmer-
mann et al. (2021)), we perform human evaluations of an explainability method. This
means we infer how well humans understand the inner workings of a DNN based on
feature visualizations by testing how well they can simulate the machine algorithm.

Here, I discuss the results from our publications in a broader perspective. Follow-
ing the story line of understanding from a coarse to a fine-grained level, I first discuss
the comparison and then the explanation works. Specifically, I illustrate the relevance
of our checklist by depicting its applicability not only in other comparison studies of
the literature but also beyond comparison studies, namely in our evaluation experi-
ments. Then, I outline other good practices for comparison studies that are suggested
in concurrent work. Shifting toward feature visualizations, I first delineate potential
reasons for why feature visualizations are only moderately helpful, and why natural
data set samples are surprisingly informative in our tasks. Next, I emphasize that
we only test one feature visualization technique in our publications and present an
additional experiment with another technique. As many of our findings point toward
the helpfulness of naturalness, I discuss how important this kind of appearance may
be. And finally, I relate our findings to other explainability methods’ evaluations. In
a last and third section of the Discussion, I zoom out from the presented approaches
toward understanding visual perception in machines with human psychophysics and
briefly outline alternatives as well as what important insights they grant.

3.1 Comparisons between DNN and human behavior

Comparison studies are notoriously difficult. Designing, conducting and interpreting
experiments for two different systems can disguise pitfalls. Nonetheless, such stud-
ies between DNNs and humans have revealed great insights. In our publication (see
Section 2.1 and Funke et al. (2021)), we present a checklist to support adequate com-
parisons. Besides suggesting general good practices regarding designing, conducting
and interpreting comparison studies, we illustrate the application of these points in
case studies.

3.1.1 Where else is our checklist reflected?

The relevance of our checklist extends beyond the three presented case studies. In
fact, several studies from the literature reflect our suggested points. What is more,
our checklist can prove useful beyond comparison studies. For example, many of the
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suggested checklist points can be identified in our feature visualization evaluation
studies.

Reflections of our checklist in other comparison studies of the literature

Zooming out from our own case studies, I here highlight three sets of publications
that reflect our checklist. Specifically, they demonstrate how (aligning) experimen-
tal design choices can influence results (point ii) and that resisting human bias is
important (point v).

The publications of Zhou and Firestone (2019) and Dujmović et al. (2020) realize
certain experimental factors differently and therefore unveil diverging evidence of how
humans perceive adversarial examples. Specifically, Zhou and Firestone (2019) sug-
gest that human perception of adversarial examples would be more similar to machine
perception than previously assumed. In contrast, Dujmović et al. (2020) indicate the
opposite, namely “much weaker and more variable” agreement than reported by Zhou
and Firestone (2019). Key differences lie in e.g. how the stimuli are generated and
selected or which of the 1000 ImageNet label options are provided to human partic-
ipants. As an example and with respect to this latter aspect, Zhou and Firestone
(2019) demonstrate that when label options are chosen randomly, agreement between
human and machine perception of adversarial images is high. In contrast, Dujmović
et al. (2020) report that when label options are adopted to represent realistic, “com-
petitive response alternatives,” agreement is close to chance. This example illustrates
that the design choice of e.g. label options influences the resulting human susceptibil-
ity to DNN adversarials. In connection to our checklist, these varying findings can be
directly linked to both point ii and v: Adequately aligning experimental conditions
as well as resisting human bias are crucial to be able to draw robust conclusions.

Similar to the previous pair of publications, the experiments of Geirhos et al.
(2018a) and Tartaglini et al. (2022) differ and consequently reveal opposing findings
regarding the texture vs. shape bias in DNNs: Geirhos et al. (2018a) reveal that DNNs
are biased toward texture. In their experiments, the researchers introduce cue-conflict
images, i.e. images where the shape and texture information point toward different
classes. They discover that a DNN classifies an image with the shape of e.g. a cat but
the texture of an elephant as an elephant. This is in contrast to grown-up humans
who are known to exhibit a shape bias (Smith et al., 2002; Diesendruck and Bloom,
2003; Gershkoff-Stowe and Smith, 2004; Biederman, 1995; Colunga and Smith, 2005).
In fact, Geirhos et al. (2018a) observe that human participants classify the elephant-
y cat as a cat. Contrary to the findings of Geirhos et al. (2018a), Tartaglini et al.
(2022) unveil evidence that DNNs — similar to humans — are biased toward shape.
The different approach of their experiments is rooted in practices of developmental
psychology. For example, Tartaglini et al. (2022) adapt the cue-conflict stimuli from
Geirhos et al. (2018a) such that the texture only covers the inside of a shape, but not
the background. Also, they evaluate relative similarities between texture- and shape-
consistent stimuli, not absolute, single output decisions like Geirhos et al. (2018a).
Overall, the procedures of both studies have their justifications. The diverging evi-
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dence, though, illustrates how differently aligning experimental conditions (point ii)
can have a large effect on the results.

In a third set of publications, distinct choices in a psychophysical task paradigm
lead to different labels for the widely-used data set ImageNet. More specifically,
Tsipras et al. (2020) and Beyer et al. (2020) re-evaluate the original labels generated
by Deng et al. (2009); Russakovsky et al. (2015), and analyze whether training models
on ImageNet still corresponds to progress on the real-world task of object recognition.
In the original data collection pipeline, human annotators only confirm that an image
contains one or more instances of a presented object Deng et al. (2009); Russakovsky
et al. (2015). The logic is simple: If this is indeed the case, the image receives that
object’s class label. However, shortcomings of this paradigm with its leading question
are that annotators do not know about alternative class candidates or the granularity
of classes. Also, multiple objects in one image create ambiguity: For example, how
should a participant know whether “paddle” or “canoe” is more appropriate, if an
image contains both? Finally, many classes such as the more than 120 dog breeds can
be challenging for laymen. Altogether, this task paradigm can be seen as expressing
human bias (point v) and not providing humans suitable label options (point ii). To
counteract these aspects, Tsipras et al. (2020) and Beyer et al. (2020) concurrently
design a new task: Here, participants select all present objects in an image. Potential
candidates are of course not all 1000 ImageNet classes, but a subset generated by
top predictions of DNNs. With these new labels, the two groups reveal that DNNs
are still making progress on object recognition, but also partly overfit to ImageNet.
Overall, this set of publication illustrates that repeated direct comparisons of human
and machine data can deepen our understanding of visual perception in machines.

Taken together, the varying results of our three case studies as well as of these three
sets of publications demonstrate how challenging comparison studies are. We hope
that applying our checklist helps designing, conducting and interpreting experiments
in a sound, robust and reliable manner.

Reflections of our checklist beyond comparison studies: in our feature
visualization studies

Even though we presented our checklist for comparison studies, it can also be useful
for other types of studies. To exemplify this, I here outline how it relates to our
human evaluations of feature visualizations. As already alluded to in Section 2.2,
all points but point ii are reflected in our evaluation studies — sometimes even in
multiple ways.

To start, point i suggests to isolate functional or implementational properties. In
our evaluation studies, we aim to clearly bring out the different qualities of informa-
tiveness by designing two different tasks: The feedforward prediction task assesses
how helpful this explainability method is to anticipate an input’s activation, whereas
the counterfactual-inspired task estimates causal understanding. Ultimately, this is
closely related to the already quoted statement of Doshi-Velez and Kim (2017): “The
claim of the research should match the type of the evaluation.”
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Point ii is about aligning experimental conditions between the two systems subject
to comparison. In a human evaluation study of an explainability method, this point
does not apply: By definition, humans are tested on machine-selected stimuli and
machine-based explanations. Judging this crisscross of humans and machines with
the mindset of a comparison study, experimental conditions would clearly count as
misaligned. However, in this scenario, the very assessment of human responses on
the basis of machine ground-truth allows us to infer how well humans can simulate
machine behavior. It is exactly what provides the estimate of the explainability
method’s usefulness. This means that the setup of testing one system on the other is
absolutely intended.

In point iii, the proposal is to differentiate between necessary and sufficient mech-
anisms. If we consider feature visualizations a “mechanism” that conveys an un-
derstanding of DNNs, our evaluation studies implicitly unveil that this method is
only sufficient: By testing various reference conditions such as natural data set sam-
ples, we demonstrate that humans can extract useful information from such other
“mechanisms” as well. In fact, even the purely machine-based baselines in our sec-
ond publication illustrate that straight-forward decision-making strategies suffice for
above chance performance in our task. In the bigger picture, most evaluation studies
of explainability methods do not assess them as candidates for necessary explanations
but just sufficient ones.

Next, point iv concerns testing generalization scenarios of the investigated mech-
anisms. In our evaluation studies, we make an effort regarding this by measuring
many different units across the investigated network. For example, in our first publi-
cation, we evaluate all layers (except for the first and last one) of InceptionV1 and all
branches in the Inception Modules. As discussed in the “Future directions” sections,
there is still room to explore other generalization scenarios in order to make more
general statements about feature visualizations.

Finally, point v centers around resisting human bias. In our evaluation studies,
reflections of this can be seen in several aspects. Here, I describe two: To begin,
the whole endeavor of evaluating feature visualizations is an action of verifying hu-
man intuition. As our results show, feature visualizations turn out less helpful in
our psychophysical tasks than previously anticipated. Therefore, our studies proved
useful to objectify human impressions. On another level, providing more context of
performance levels with other baselines can also be seen as a way to resist overhasty
conclusions. At first sight, the above chance performance levels of feature visual-
izations can be interpreted as a big success. However, additional data points from
alternative references allow us to more objectively draw conclusions. Altogether, our
human bias cannot be removed. As exemplified, though, various efforts can help
counteract it.

In summary, our checklist for comparing human and machine visual perception
can be applied to not only comparison studies but also human evaluations of an ex-
plainability method. This means it is useful for designing, conducting and interpreting
various studies. Further, the reflections illustrate that even though comparison stud-
ies and explainability methods are different in nature, parallels do exist. Above all

56



and without any doubt, they are both great approaches to further strengthen our
understanding of machine visual perception.

3.1.2 What are other good practices in comparison studies?

Besides our publication, concurrent work develops myriad suggestions regarding how
to best perform comparison studies.

As already presented in the Introduction (see Section 1.5.1), good practices re-
garding how to compare human and machine visual perception have been developing
for quite some time. For feedforward DNNs, choosing a short presentation time of
stimuli in human psychophysics has been established to adequately mirror the ma-
chine processing (Tang et al., 2018; Thorpe et al., 1996; Serre et al., 2007b; DiCarlo
et al., 2012). Further, designing challenging experiments (Wichmann et al., 2017)
has become common in order to discover where the ever improving DNNs fall short.
And finally, awareness around limiting our human bias in comparison studies has
increased (Buckner, 2019). While our case studies reflected the five points proposed
in our checklist, they also put the three, just mentioned suggestions into practice.

Going further, the perspective article by Firestone (2020) enriches the endeavor
of comparison studies between humans and DNNs with ideas from other comparative
research fields. Specifically, he discusses that it can make sense to (1) “limit machines
like humans”, to (2) “limit humans like machines” and to (3) perform “species-specific
task alignment”. The underlying motivation comes from cognitive science: Here, it is
common insight that what a system knows and what a system does may not always
correspond. In other words, competence and performance may differ.

A straight-forward example for the discrepancy between competence and per-
formance and how to work around it via species-specific task alignment or limiting
humans like machines can be found in human-machine comparisons of object recogni-
tion: For machine algorithms, this problem is commonly translated into a many-class
classification task. As such, DNNs can trivially select a label from e.g. 1000 options.
In contrast, such a plethora of options would be inappropriate for humans. Our
working memory is not able to cope with so many items. In other words, we are
limited in our performance. Nonetheless, it is out of doubt that we are capable of
comprehending and correctly attributing all those classes. This means we do have
the competence. To adapt the machine task setting for humans, the workaround is
selecting a reasonable subset of labels. As illustrated in two of the publication sets
presented in Section 3.1.1, these choices are not trivial in practice, and they can in-
fluence a study’s results. Nonetheless, the idea of species-specific task alignment does
theoretically permit a fair comparison between human and DNNs.

Comparing the perspective article by Firestone (2020) and our work, the two
publications have different strengths and weaknesses. For example, Firestone (2020)
provides plenty of background and examples from cognitive science and even devel-
opmental psychology — whereas we only briefly touch on the broad history of com-
parison studies. Further, Firestone (2020) explicitly formulates three fairly specific
recommendations — out of which the third advice on species-specific task alignment
can be seen as summarizing the former two, namely limiting machines (humans) like
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humans (machines). In contrast, our checklist addresses a rather general level. The
most similar point compared to the ones by Firestone (2020) is point ii of aligning
experimental conditions. Nonetheless, certain design choices in our case studies do
address Firestone’s specific recommendations. For instance, we limit humans like ma-
chines by presenting the closed contour stimuli for 100msec only. This presentation
time is believed to mirror the pure feedforward pass in a DNN (Tang et al., 2018;
Thorpe et al., 1996; Serre et al., 2007b; DiCarlo et al., 2012). Finally, a difference is
that Firestone (2020) mentions many different studies, whereas we thoroughly inves-
tigate three case studies and contribute new experiments. Altogether, the perspective
article by Firestone (2020) and our work complement each other well.

Yet another suggestion for comparing DNNs and biological vision is motivated by
comparative biology and implies to “focus on differences, not similarities” (Lonnqvist
et al., 2021). Specifically, the authors advocate considering DNNs and human vision
as distinct “species” (Lonnqvist et al., 2021). Then, investigating differences between
their information processing can reveal what is really needed for a task. Connecting
this to our own checklist, point iii regarding differentiating between necessary and
sufficient mechanisms is most similar. Here, we also allude to the fact that there is
often more than one way to approach a task, and that its pure existence does not
yet translate to its certain deployment. In the word of Lonnqvist et al. (2020), such
a mechanism would not be “crucial”. As an example, the authors point out that
machine large-scale object recognition does not require “attention, segmentation or
recurrence”, even though these functions play an important role in the human visual
system. All in all, focusing on differences instead of similarities can be a fruitful way
forward, and particularly to generally deepen our understanding of vision, not only
vision in machines (Lonnqvist et al., 2020).

A third suggestion for a good practice regarding comparing DNNs and biological
vision is to use language carefully, and more generally to avoid anthropomorphization
(Mitchell, 2021b; Shevlin and Halina, 2019). Even though using human-associated
terms like “understand” or “winning” may be easier to convey high-level ideas around
algorithms, this can not only mislead the general public in science communication but
also unconsciously bias experts (Mitchell, 2021b). Specifically, Shevlin and Halina
(2019) points out that “rich psychological concepts” such as “awareness, perception,
agency and theory of mind” “require greater caution when employed to describe the
capabilities of machine intelligence”. As illustrated in the first and third publication
sets of Section 3.1.1, language as well as more generally our human reference point
can influence experimental design choices. With respect to our own checklist, point v
of resisting human bias, which was also already mentioned by Buckner (2019), is
most closely connected. More generally, the phenomenon of anthropomorphization
has been well known in the literature from comparative psychology (e.g. Romanes,
1883; Haun et al., 2011; Koehler, 1943; Köhler, 1925; Boesch, 2007; Tomasello and
Call, 2008). In all, thoughtful and accurate language choice not only support realistic
expectation management but also adequate design, and interpretation of experiments.

Besides the developments with respect to rather high-level recommendations from
e.g. us, Firestone (2020), Lonnqvist et al. (2021) or Mitchell (2021b) and Shevlin and
Halina (2019), comparison metrics as well as analysis techniques and experimental
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setups are being further developed in the literature. The necessity for these advance-
ments is growing for two reasons: One, the machine visual systems are becoming
more and more similar to the human one. And two, high performance regimes make
it difficult to identify differences. As often mentioned in this thesis, these two aspects
are exactly the case for DNNs and humans on specific tasks like object recognition
(He et al., 2015; Kheradpisheh et al., 2016). In such a situation, the similarities and
differences between two systems can be obfuscated when only evaluating aggregate
measures like class-average performance. To address this situation, more fine-grained
measures than accuracy (Ma and Peters, 2020; Geirhos et al., 2020b; Chollet, 2019;
Lonnqvist et al., 2021) as well as more advanced analysis techniques and experimental
designs are needed.

As a matter of fact, more sophisticated ideas are explicitly described in publica-
tions and are starting to be deployed. For example, Ma and Peters (2020) suggest
analyzing error patterns using a confusion matrix. With this approach, Wichmann
et al. (2017) indeed identify DNNs’ biases toward a few classes when stimulus ma-
nipulation is high. Ma and Peters (2020) further recommend investigating different
aggregation statistics of a confusion matrix. A popular choice of this is the trial-
by-trial metric called Cohen’s kappa (Cohen, 1960). It takes into account both the
observed error overlap as well as the error overlap expected by chance. As an example,
Geirhos et al. (2020b) use it to compare humans and DNNs on object recognition,
finding that they are not much more similar than expected by chance, while different
DNNs, on the other hand, are “remarkably consistent”. Tuli et al. (2021) further
extend this error analyses by varying the levels of aggregation granularity: Applying
the Jensen-Shannon distance in different ways to the confusion matrix, they evaluate
which classes are misclassified and what classes are misclassified as what.10 Moreover,
Ma and Peters (2020) suggest enriching the human-machine comparison by not only
measuring the distance between single accuracy-values but between the distributions
reflecting by-trial variability. For humans, this variability is natural, and machine
answers can be generated by using Bayesian neural networks. Other porpositions by
Ma and Peters (2020) include measuring the receiver operating characteristic, reac-
tion times, or the learning trajectory (Ratcliff, 1990). This latter aspect of measuring
“skill-acquisition efficiency” is what Chollet (2019) advocates for as well — in fact
in the form of a general Artificial Intelligence benchmark. Overall, there are lots of
metrics to analyze similarities and differences on a deeper level.

Going beyond measures, Ma and Peters (2020) propose advanced techniques to
compare humans and machines. For example, fitting cognitive process models to both
the DNN and human data could be one approach (Wang et al., 2016). In a second
step, these models’ parameter estimates would then be compared against each other
(Wang et al., 2016). As another idea, Ma and Peters (2020) describe the Turing
test: Here, humans guess the generation origin of stimuli, which are either produced
by humans or generative algorithms. Similarly, many other experimental setups can

10In our third publication, we also use the measure of Cohen’s kappa to compare decision patterns
between humans in different reference conditions as well as between humans and baseline decision
strategies.
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be designed and there are (almost) no limitations. To summarize, the portfolio of
analysis metrics and experimental setups is large.

While the big advantage of the mentioned methods is that they can reveal deeper
insights, they also come with disadvantage. For example, they are both more complex
to understand and explain as well as more expensive to compute. Whether they are
worth the effort depends on many factors. In principle, though, certain experimental
designs might still be sufficiently analyzed by simple metrics. As an example, class-
average accuracy was an appropriate measure in case study II (see Section 2.1.3)
to show that our pure feedforward DNN can perform well on a challenging abstract
visual reasoning task. One the whole, each method has its own justification and it is
a case-by-base decision which one is most suitable.

Altogether, a multitude of not only good high-level practices but also specific
approaches and metrics exist for comparison studies. As illustrated, it can be helpful
to take inspiration from adjacent fields and apply the lessons learned to benefit from
this head start. The checklist presented in our first publication and the suggestions
listed here complement each other well. What recommendations to follow and what
metrics to use is ultimately always a case-by-case decision. Altogether, the various
mentioned aspects can help with comparing fundamentally different systems to gain
more nuanced and robust insights.

This concludes the broader discussion of the first publication, where I illustrated
applications of our checklist and outlined other good practices for comparison studies.
In the bigger picture of this thesis, our behavioral experiments with humans and
DNNs added to a better understanding of machine vision on a rather coarse level.
This means that our case studies revealed insights on a functional and algorithmic
level. Next, the focus remains on the latter level and publications two and three are
put into a broader perspective.

3.2 Explainability method: feature visualization

With the goal of understanding machine visual processing at a more fine-grained
level, we investigated the explainability method feature visualization. Specifically,
our human evaluations reveal that feature visualizations are helpful in our two psy-
chophysical tasks. However, participants do not achieve perfect performance and
hence there is still room for improvement. Moreover, other visualization options such
as natural data set images can also convey helpful information — depending on the
task paradigm, similarly much as feature visualizations or even more than them.

3.2.1 Why are feature visualizations by Olah et al. (2017) only moder-
ately informative?

In the bigger picture, a first interesting question is why the explainability method of
feature visualizations by Olah et al. (2017) is only moderately helpful. As already
discussed, various factors from the tool — such as the challenge of choosing the
appropriate unit — or the human evaluation setup — such as difficulty of providing
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the appropriate amount of information — may contribute to suboptimal results (see
Sections 2.2.1, 2.2.3 and 2.3.3). In the following, I discuss other potential, and more
high-level reasons.

First off, we humans are not familiar with feature visualizations. This means we
may have more difficulties recognizing understandable structure and extracting useful
information from these synthetic images. Even though we steered against this by
letting participants perform practice trials and granting them unlimited or plenty of
time in the experiments in the two publications respectively, the artificial appearance
may have impaired performance.

Another reason for imperfect performance in our task is that some DNN features
do not represent human-understandable concepts. In other words, we humans are
simply unlikely to understand them. Given the different numbers of units in a DNN
that represent the input throughout its processing stages (order of millions in Incep-
tionV1) and the number of dimensions that humans mentally represent natural objects
with (49 according to Hebart et al. (2020)), it is not surprising that not all machine
representations are intuitive to us. In fact, these non-recognizable features represent
a challenge irrespective of the reference condition. As a consequence, answering trials
for such units is reduced to a guessing game.

Figure 9: High-
low frequency fea-
tures: Long hours
of investigations re-
veal that they de-
tect object bound-
aries (Schubert et al.,
2021). Image credit:
OpenAI Microscope
(OpenAI, 2020).

Yet another aspect is the poor representative power and
diverse visualizations of feature visualizations for certain low-
level features. As such, the latter seem surprisingly poorly
identifiable in the synthetic reference condition. Figure 11 of
the Supplementary Material in Borowski et al. (2021) exempli-
fies that diverse synthetic reference visualizations for low-level
units do not allow to infer a common feature: Not only do
they differ in color, but also in global appearance as well as
local texture. In addition, and even more confusingly, weakly
and strongly activating inputs sometimes look similar. This
anecdotal evidence suggests that low-level units can be diffi-
cult to understand with synthetic images. Further research is
of course needed to further test this hypothesis’s representa-
tiveness.

Finally, some feature visualizations require enormous ef-
forts to understand their meaning. Evidently, such synthetic
images are unrealistic aids in our experiments. One example of
them is the family of high-low frequency detectors (Olah et al.,
2020b; Schubert et al., 2021) (see Figure 9). At first glance,
they do not seem intuitive. They probe for high frequency in one part of the receptive
field and low frequency in the other one. What can this kind of feature correspond
to? After investing a lot of time — the group’s overall efforts are in the “thousands
of hours” (Olah et al., 2020b) —, Schubert et al. (2021) suggest that they are bound-
ary detectors of objects. This means that they fire strongly for “a highly-textured,
in-focus foreground object against a blurry background” (Schubert et al., 2021). In
a natural image, such a feature might detect, for example, a “microphone’s lattice-
work” against a blurry face (Schubert et al., 2021). This insight is a big achievement
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for better understanding DNNs and — from an optimistic perspective — exemplifies
that feature visualizations can even “teach” humans new DNN features. However, this
boundary detector represents just one example out of an unknown number of unclear
DNN features. As such, it is unknown how many more such theoretically identifiable
units exist. Taken together, ad-hoc non-intuitive features represent challenges and do
not reveal straight-forward insights into DNNs to humans.

Overall, the unfamiliarity, (putative) detachedness from human concepts as well as
the limited representative power explain why feature visualizations — as well as partly
other reference visualizations — turn out only moderately helpful in our experiments.

3.2.2 Why are natural data set samples surprisingly helpful?

A related question to why the tested feature visualizations provide only moderately
helpful information in our tasks is why natural data set samples are so useful. Orig-
inally, we had intended them as a baseline. However, our data show that they can
be even more helpful than (see Section 4.3) or similarly helpful as the explainability
method’ explanations (see Section 2.3).

To start, humans are simply more familiar with natural images, and hence they can
extract helpful information from this source. Even though co-occurrences of (parts
of) objects can potentially mislead an observer, they are natural. Therefore, the
total composition of objects may actually help our participants in better orientation.
In fact, they seem to interpret natural reference images most similarly across all
conditions, as indicated by their highest by-trial decision consistency (see Figure 4
in Zimmermann et al. (2021)). Furthermore, an unusual parallel regarding merely
correlated image features is the decision-making of DNNs: The latter are known to
take advantage of such features, even though they are not necessarily causally related
with the target class (e.g. feature “fingers” for class “band aid”) (Singla and Feizi,
2021; Ilyas et al., 2019). Albeit this behavior is unwanted and considered as learning
unintended shortcuts (Geirhos et al., 2020a), artificial models do make use of them.
Altogether, expressing an explanation in a familiar way — such as with natural images
— may represent an advantage.

Another aspect in favor of natural images — and as mentioned earlier, not for syn-
thetic ones — is their representative power of certain low-level features. As such, the
latter seem surprisingly easily identifiable in the natural reference condition. Figure 11
of the Supplementary Material in Borowski et al. (2021) exemplifies that the unrelated
objects in natural reference images presumably encourage observers to shift attention
away from the object level. Instead, the common low-level information stands out.
As already mentioned, this anecdotal evidence suggests that low-level units may be
more easily understood via natural than synthetic images. However, further research
is needed to test the generality of this hypothesis.

In summary, the higher familiarity and the surprisingly powerful representation of
low-level features represent potential clarifications why natural data set samples are
so helpful for our participants.

62



3.2.3 How useful are other feature visualization methods?

Moving away from why different reference images grant different degrees of infor-
mation, another open question is how helpful other tools of the same explainability
family are. More specifically, in our two publications, we test exactly one feature vi-
sualization method, namely the popular tool from Olah et al. (2017). Of course, one
implementation is not representative of the whole family. Therefore, an open question
is whether humans can extract useful information from other feature visualizations
and how they compare to the ones from Olah et al. (2017).

Additional study with feature visualizations from Nguyen et al. (2017) in
feedforward prediction task

To extend our main studies beyond testing the feature visualization method by Olah
et al. (2017), we conduct a small experiment with another technique11: Feature visu-
alizations by Nguyen et al. (2017) are created with a generative adversarial network
(GAN) and they look remarkably “photo-realistic” (see Figure 10A for example im-
ages, as well as Appx. Sec. 4.3). Here, we evaluate them with five expert participants.
Specifically, the task is the same as in our first feature visualization evaluation publi-
cation Borowski et al. (2021): In a feedforward prediction task, the question is which
of two query images elicits higher activation given extremely activation references. As
before, we compare synthetic images to natural data set samples (see Appx. Sec. 4.3
for screenshots of the tasks).
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Figure 10: Informativeness
of feature visualizations by
Nguyen et al. (2017): In a
small study, we discover that syn-
thetic images (example images
displayed in A) are more helpful
than natural ones (B).

The data from this new experiment suggests
that feature visualizations are more helpful than
natural images: 87 ± 3% vs. 79 ± 2% (see Fig-
ure 10). However, a Wilcoxon signed-rank test in-
dicates that the difference in reference conditions
is just not statistically significant (p = 0.058,
JASP (JASP Team, 2021, version 0.16)).

This new result partly contrasts the findings
from our earlier experiments. The aspect that re-
mains consistent is the above chance performance
for both conditions. It reinforces that, in gen-
eral, extremely activating images are a helpful
source for our feedforward prediction task. The
difference, though, is in the ordering of helpful
visualization options: In our first feature visu-
alization evaluation publication Borowski et al.
(2021), we repeatedly and almost consistently dis-
covered that natural images provide more infor-
mation than synthetic images. On the contrary, the data in this additional experiment
suggests that synthetic images are more helpful than natural images.

11This small study was again joint work with the same authors and similar contributions as in the
publication (Borowski et al., 2021). Until the publication of this thesis, it remained unpublished.
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The partly diverging evidence regarding the most helpful visualization option may
be due to several differences between the experiments. For example, the selection of
natural reference and query images is made by different networks. The reason is that
the two feature visualization methods build on different networks in their original
implementations. As we want to guarantee comparability within the experiments pre-
sented in the publication and the additional one here, we adjust the network choice for
each of them: In the publication’s experiments with the method of Olah et al. (2017),
we use the classification network InceptionV1 (Szegedy et al., 2015). In contrast, in
this small additional study with the method of Nguyen et al. (2017), we use the clas-
sification network AlexNet (Krizhevsky et al., 2012). Notably, the top-5 accuracies of
these two DNNs differ on ImageNet: They are ≈ 93% and ≈ 80%12, respectively. As
a consequence, it is possible that the natural images in this additional study simply
cannot have been as informative due to this method choice in feature visualization.
Further, there is no layer- or unit-correspondence between the networks. This makes
the comparison between the networks and methods difficult. Moreover, we test vary-
ing numbers of units in the experiments: 45 and 80 in the first publication, and 72
in this additional experiment. Yet another difference is that we use the channel-
objective with the method of Olah et al. (2017), and the neuron-objective with the
method of Nguyen et al. (2015). Finally, the sheer numbers as well as the expertise
level of participants varies: In the first two experiments, 10 expert and 23 expert/lay
participants take part, whereas in this third experiment, only 5 expert participants
take part.

In summary, the additional study with synthetic images from Nguyen et al. (2017)
adds to the picture of how helpful the explainability method feature visualization is
for humans. As such, this new experiment supports the stance that feature visual-
izations indeed provide useful information. Further it diversifies the results of what
visualization option is best.

From a larger perspective, the partly diverging findings in our various experiments
suggest that each experiment only has limited representativeness for the whole family
of feature visualization methods. In other words, generalization beyond the specific
tested tool and task is not possible. The latter is corroborated by yet another ordering
of the visualization options in the counterfactual-inspired task compared to the ones
discussed above: Here, all tested visualizations are equally helpful. In conclusion, as
generalizing is not possible, each specific scenario has to be evaluated individually.

3.2.4 How important is “naturalness” in explanations?

While the helpfulness of feature visualizations seems to depend on the specific method,
another interpretation of our partly diverging findings in the publications and the
additional study is possible: Maybe the best visualization options suggest that “nat-
uralness” of an image plays an important role? Below, I discuss arguments around
this aspect.

12in the Caffe-implementation
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To start, a few elements suggest that “naturalness” of an image matters. For
one, natural images provide more helpful information in the experiments of our first
evaluation publication. This result is largely consistent across various conditions.
Second, the more useful reference type in our small study is the photo-realistic fea-
ture visualization. The outstanding natural appearance of these synthetic images can
be interpreted as evidence for our hypothesis. Finally, the common practice of aug-
menting the vanilla generation procedure of feature visualizations with regularization
mechanisms points toward the importance of references images’ naturalness. As such,
these instruments are sometimes even called “natural image prior” (Mahendran and
Vedaldi, 2015). Taken together, these three elements can be interpreted as that the
naturalness of extremely activating reference images plays a crucial role for humans
to predict a DNN’s feedforward behavior.

On the other hand, an argument against the proposed advantage of natural-looking
images may be raised on the ground of our experimental setup. As such, the query
images for which the activation has to be predicted are also natural — and not
synthetic. Therefore, it can be argued that high performance for natural(-looking)
reference images may be expected. Although this is indeed plausible, we nevertheless
consider our choice of natural query images reasonable: Ultimately, explainability
methods are designed to explain behavior on real-world data. As that corresponds to
natural images, natural images are exactly what we should test.

On a speculative note, it can be conjectured that a photo-realistic feature visual-
ization method like the one from Nguyen et al. (2017) may combine the best aspects
of two worlds. On the one hand, people are familiar with natural-looking images
(see Section 3.2.2). As a consequence, they are good at extracting useful information
from them. On the other hand, feature visualizations isolate the pure feature(s) that
cause(s) strong network activation (see Section 2.3). This means that merely correlat-
ing features are not displayed and therefore cannot confuse an observer. Altogether,
the purity of feature visualizations and the rendering in a photo-realistic way may
constitute a powerful explanation and therefore explain why the method from Nguyen
et al. (2017) was so informative for humans.

Taken together, our data provides evidence that naturalness of explanation images
is important. Whether purely natural images or feature visualizations presented in
a natural look grant humans better insights into DNNs under various experimental
conditions remains to be investigated in future research.

3.2.5 How do our findings relate to other explainability methods’ evalu-
ations?

While we find feature visualizations to be helpful, albeit in a limited manner, an
interesting question is how these findings relate to other explainability method’s eval-
uations. Unfortunately, several aspects complicate this comparison: For example,
evaluation results depend on various factors such as participant pool, data type,
and experimental setup (including e.g. physical environment, psychophysical task,
and instructions). What is more, the lack of common quantitative measures makes
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contrasting studies challenging. Below, I consequently concentrate on qualitative
comparisons.

In terms of the general, moderate informativeness of feature visualizations, the lit-
erature contains findings in all directions: Some evaluations of explainability methods
also reveal a positive effect of an explanation (e.g. Kumarakulasinghe et al., 2020),
others report inconclusive results (e.g. Alufaisan et al., 2021; Chu et al., 2020), and
yet others even find negative effects on human performance (e.g. Shen and Huang,
2020). In a new meta-analysis of evaluation papers, Schemmer et al. (2022) observe
a general “statistically positive impact of XAI on user’s performance”. Even though
the latter reflects our finding, future work will have to show whether this remains the
overall trend.

Regarding our strong results for the natural reference images, other publications
also describe similar findings. In fact, several researchers also observe that data set
samples provide (more) helpful information to humans than the tested explainability
tool (e.g. Nguyen et al., 2021; Jeyakumar et al., 2020; Hase and Bansal, 2020). For
example, Nguyen et al. (2021) measure attribution (or saliency) maps, i.e. visualiza-
tions of the contributions of each pixel toward the DNN’s classification. Regarding a
feedforward prediction task based on ImageNet, they discover that these explanations
are not more helpful than nearest training examples. Further, regarding a more diffi-
cult and more fine-grained dog classification task, they reveal that attribution maps
even deter human performance. Combining this finding with our own results, there is
quite some evidence that data set samples can already grant good insights into visual
processing of DNNs.

In summary, not only our main finding of moderate usefulness but also the one
about natural data set samples being helpful is indeed reflected in the literature.

This concludes the broader discussion of the second and third publication, where I
debated potential reasons for our findings and set them in a wider context. In the big-
ger picture of this thesis, these works deepened our understanding of machine vision
on a fine-grained, or algorithmic level. Altogether, the presented three publications
cover a range of granularity levels from coarse to fine-grained understanding (see Fig-
ure 3). Zooming out from behavioral human-DNN comparisons and explainability
methods, other approaches exist and they can further extend our knowledge around
visual perception in machines.

3.3 Other approaches toward understanding machine visual
perception

In general, there are myriad approaches to understand vision in machines. This
section complements the two presented approaches of behavioral comparison studies
and explainability methods with comparisons between DNNs and neural data and
investigations of DNN performance in isolation.

Figure 11 shows an overview of the four mentioned approaches and how they
relate to each other. Specifically, I span the space of approaches by two orthogonal
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Figure 11: Approaches toward understanding visual perception in DNNs:
Zooming out from the two approaches presented in our publications, there are other
ways to deepen our understanding of DNNs. Specifically, this figure extends the axis
of granularity (here: horizontal, see also Figure 3) by the axis of mode (here: vertical).
The latter differentiates between approaches of comparing DNNs with biology and
studying them in isolation. While our publications move to the top left and bottom
right quadrants, the top right and bottom left quadrant appear as new approaches
in the picture: DNNs can also be understood via comparisons to neural data and via
studying their performance in isolation. Importantly, approaches positioned in the
quadrants may also reach beyond their quadrant, e.g. an explainability method may
address a more coarse level of understanding.
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axes, namely the granularity level and the approach’s mode. The former dimension
varies from coarse fine-grained, and the latter dimension varies from investigations in
isolation to comparisons with biology. Compared to Figure 3, the mode-axis is newly
added and allows for a more accurate distinction of approaches. As a consequence of
extending the space by this second dimension, the approaches presented in our three
publications are moved to the upper left and lower right quadrant. Importantly, the
human aspect of our explainability work does not correspond to the upper part of
the mode-axis. The reason is that the explainability method itself is generated in
isolation and our human evaluations are a means to infer the explainability method’s
informativeness (see Section 2.2). In contrast, the upper part of the mode axis refers
to direct comparisons between the two systems.

Often, the four approaches are not clearly mappable to the dimension grid and
can extend beyond one quadrant. What is more, studies not seldomly combine dif-
ferent approaches to obtain a more holistic understanding of a single phenomenon.
Accordingly, the sections below outline a few examples for the four approaches as well
as their combination, and also highlight new insights gained by them regarding visual
perception in DNNs.

Tangent: Marr’s levels of descriptions for computational vision
As a tangent, there is a close connection between the axis “granularity level” of Fig-
ure 11 and Marr’s famous levels of descriptions for computational vision. In fact, the
latter would be a suitable alternative name for the figure’s vertical dimension.

Splitting up the “complex [visual] information processing task” into three levels of
descriptions and explanations was a big advancement at the end of the 1970’s (Poggio,
1981): Specifically, David Marr suggested to treat (1) the computational level, (2) the
algorithmic — or sometimes representational — level, and (3) the implementational
level. More specifically, the first level defines the problem and what the system does
to solve it, the second level determines the processes of how the problem is solved,
and the third level concerns the realization on the physical hardware. Importantly,
the researcher claimed that explanations would only be complete if they cover this
whole range (Poggio, 1981). Today, 40 years later, these three levels are still relevant
and researchers like (Kay, 2018) advocate that all of them should be pursued13.

Relating Marr’s levels to the segments shown in Figure 11, the computational
level largely covers the left half, and the algorithmic and implementational levels
cover the right half. As explained throughout this thesis, the presented publications
relate to Marr’s first two levels. However, I referred to them as the “functional”
and “algorithmic” levels in Sections 1.5.1 and 1.5.2. Please also note that the “im-
plementational properties” we refer to in point i of the checklist are not meant in
Marr’s sense, but rather refer to the algorithmic level. For examples of machine

13For a balanced description, it is important to mention that opinions regarding the degree to
which DNNs are appropriate models for all three levels and particularly the third one diverge. For a
range of approaches as well as findings on similarities and differences, see e.g. Ma and Peters (2020);
Kriegeskorte (2015); Yamins and DiCarlo (2016); Cichy and Kaiser (2019); Lonnqvist et al. (2021);
Markram et al. (2011); Albrecht et al. (2002); Horwitz and Hass (2012); Lennie and Movshon (2005);
Crick (1989); Lindsay (2021); Whittington and Bogacz (2019); Bartunov et al. (2018); Sacramento
et al. (2018); Richards and Lillicrap (2019); Chollet (2021).
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systems describing the implementational level (i.e. in Marr’s sense), the reader is
referred to e.g. literature on spiking neural networks and neuromorphic engineering
(e.g. Cao et al., 2015; Pfeiffer and Pfeil, 2018; Liao et al., 2021), or examples in Sec-
tions 3.3.3 and 3.3.5.

3.3.1 Comparisons between DNNs and biological behavioral data

As already explained at various locations throughout this thesis, many different hu-
man behavioral aspects are investigated in DNNs in order to deepen our understand-
ing of them. Typically, such studies reveal insights on a rather coarse, i.e. Marr’s
computational or our the functional level. Consequently, these approaches are posi-
tioned in the upper left quadrant (see Figure 11). Nonetheless, certain experiment
designs can also reveal more detailed observations. These ones, in contrast, would be
more adequately mapped to a more central area in the upper half corresponding to
Marr’s algorithmic level (as examples see case study II and III in Section 2.1.3).

Besides the numerous examples mentioned throughout this thesis, I here provide
a few more. To start, a prominent finding regarding human-machine comparisons
concerns stimulus augmentations with noise: Geirhos et al. (2018b) and Wichmann
et al. (2017) found that DNN performance drops more sharply than that of humans
on increasingly manipulated stimuli. Another interesting finding relates to similarity
and typicality judgments of images. Here, Lake et al. (2015) found that DNNs can
predict how typical humans find an image for a category, though evidence varied re-
garding whether DNNs can account for human similarity judgments between images
(Jozwik et al., 2017; Rosenfeld et al., 2018). Finally, an example of a benchmark
for comparisons between DNNs and humans is the “MIT/Tuebingen Saliency Bench-
mark” (Kümmerer et al.). It evaluates how well models can explain “what drives
human eye movements” (Kümmerer et al.). Strictly speaking, it is debatable whether
eye movements should be considered behavior or more fine-grained biological data.
Therefore, this benchmark is another example that could be mapped further to the
right in Figure 11.

3.3.2 Comparisons between DNNs and neural data

Another approach to deepen our understanding of visual perception in DNNs is com-
parisons between DNNs and neural activations. Because these types of studies usually
unveil findings on a more fine-grained, i.e. algorithmic level, they are placed in the
upper right quadrant in Figure 11.

In fact, comparisons on the neural level uncovered surprising similarities between
biological and artificial systems and added to the excitement around DNNs. In nu-
merous studies, this modern type of algorithm was shown to account well for neural
activation in visual cortex, and in fact better than other models (Cadieu et al., 2014;
Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014; Kubilius et al., 2018;
Cadena et al., 2019a). What is more, these studies revealed astounding hierarchical
correspondence between DNN layers and areas of the ventral stream (Yamins et al.,
2014; Güçlü and van Gerven, 2015; Seeliger et al., 2018; Eickenberg et al., 2017). As
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a specific example, in one such early study, Yamins et al. (2014) recorded extracel-
lular activity in macaque monkeys while they were viewing complex object images.
The authors then found that DNNs of better classification performance also predict
V4 and IT activity better, and more specifically, that the penultimate (last) layer
best predicts activity in V4 (IT). These kinds of findings were made with data from
different measuring modalities (fMRI (Han et al., 2019; Cichy et al., 2016; Güçlü
and van Gerven, 2015; Eickenberg et al., 2017; Khaligh-Razavi and Kriegeskorte,
2014), magnetoencephalography (Cichy et al., 2016; Tacchetti et al., 2017; Seeliger
et al., 2018), and electrophysiological cell recordings (Yamins et al., 2014; Cadena
et al., 2019a,b; de Vries et al., 2020; Kuzovkin et al., 2018; Cadieu et al., 2014; Tripp,
2017; Khaligh-Razavi and Kriegeskorte, 2014)), in both primates (Yamins et al., 2014;
Khaligh-Razavi and Kriegeskorte, 2014; Cadena et al., 2019a) and rodents (Cadena
et al., 2019b,a; de Vries et al., 2020), and for static image (Yamins et al., 2014;
Khaligh-Razavi and Kriegeskorte, 2014; Cadena et al., 2019b) as well as for tempo-
rally dynamic video data (Tacchetti et al., 2017; Eickenberg et al., 2017). Finally,
an example of a benchmark for comparisons between DNNs and neural data is the
“brain hierarchy” score, which quantifies hierarchical correspondence between DNN
and human brain activity measured via fMRI (Nonaka et al., 2021).

3.3.3 DNN performance in isolation

Yet another way to increase our understanding of DNNs is to focus on scrutinizing
their behavior under many different circumstances. Given most of these studies ex-
pose their abilities and limitations on a behavioral, i.e. coarse level, this approach
is mapped to the lower left quadrant in Figure 11. However, as with the behavioral
comparisons (see Section 3.3.1), some experiments can also show insights on a more
fine-grained level or have connections to other approaches. Therefore, such studies
can also be mapped to a more central area in the lower half.

Regarding investigations based on just DNNs, there are innumerous publications.
To start, benchmarks have played a crucial role in accelerating advances in DNNs’
visual perception. For example, object classification improved on the “ImageNet Large
Scale Visual Recognition Challenge” (Deng et al., 2009; Russakovsky et al., 2015)
from 74.2% to 96.42% within only four years (Krizhevsky et al., 2012; Simonyan and
Zisserman, 2014; Szegedy et al., 2015; He et al., 2016). Despite these big successes,
there are still limitations for DNNs. As such, DNNs have been reported to fail
in both the independent and identically distributed (i.i.d.) as well as the out of
distribution (o.o.d.) cases. For instance, rare objects (Buolamwini and Gebru, 2018)
as well as objects in unusual contexts (de Vries et al., 2019; Beery et al., 2018),
poses (Alcorn et al., 2019), viewpoints (Alcorn et al., 2019) or geometrical formations
(Engstrom et al., 2019b; Webster et al., 2018) represent challenges. These findings can
mirror biases and fit the bigger picture of DNN’s risks to overfit (Srivastava et al.,
2014; Zhang et al., 2017; Morcos et al., 2018) and learn shortcuts (Geirhos et al.,
2020a). As a way forward, more and more data sets with challenging conditions (e.g.
corruptions) are being developed (e.g. Hendrycks and Dietterich, 2019; Wang et al.,
2019; Geirhos et al., 2018a) and evaluating models on them is becoming common
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practice (e.g. Michaelis et al., 2019). Finally, other interesting directions to obtain a
deeper understanding of DNNs within investigations of pure DNN behavior are testing
different training scenarios, including different objective functions, training schemes
and architectures (e.g. Ulyanov et al., 2018; Gaier and Ha, 2019; Geirhos et al., 2021).
Not seldomly, inspiration for such new hypotheses is taken from biology. For instance,
Choksi et al. (2021) explore recurrent connections, and Pogodin et al. (2021) test
biologically plausible training procedures. As before, these approaches can be seen as
not exclusively belonging to the lower left quadrant but as also having a connection to
the upper (very) right area due to the experiment’s neural (implementational) nature.

3.3.4 Explainability methods

As already explained a few times in this thesis, explainability methods are a great way
to deepen our understanding of machine visual perception. Depending on their nature,
they can grant insights in various ways. While there are a few typical dimensions to
differentiate these methods (see Section 1.5.2), the one that corresponds best to the
axis of granularity levels is local vs. global methods. As most tools rather aim at a
more fine-grained level, they are mapped to the lower right quadrant in Figure 11.
Nonetheless, their insights can also extend beyond fine-grained levels and concern
rather coarse levels.

Aside from feature visualizations, there are many other explainability methods,
from which I here describe a few local and global ones. Prominent examples of local
methods, which produce explanations for only one individual prediction of a data
point, include SHAP (Lundberg and Lee, 2017), LIME (Ribeiro et al., 2016) and
saliency maps (Simonyan et al., 2014; Zeiler and Fergus, 2014; Zhou et al., 2016;
Sundararajan et al., 2017; Smilkov et al., 2017; Samek et al., 2021; Baehrens et al.,
2010; Smilkov et al., 2017; Shrikumar et al., 2017; Ancona et al., 2018; Springen-
berg et al., 2015; Bach et al., 2015; Lewis et al., 2021; Shitole et al., 2021). More
specifically, SHAP is a game-theory-based approach that estimates the contribution
of each feature toward the model’s prediction. LIME stands for “local interpretable
model-agnostic explanations” and finds a surrogate model to explain the relative im-
portance of different features. And saliency maps, which are also called “heatmaps”,
“sensitivity” or “pixel attribution maps”, visualize the contribution of each pixel to-
ward the DNN’s classification. Regarding global methods, whose explanations stand
for a whole model, a popular example is partial dependence plots (Friedman, 2001).
They show the expected prediction when all but e.g. one feature are marginalized out.
Finally, local explainability methods can be combined to grant more general insight
into models.

3.3.5 Investigations beyond one quadrant

To deepen our understanding of visual perception in DNNs, investigations can inte-
grate various aspects, such that a mapping to more than one quadrant is sensible.
As an example, the benchmark “BrainScore” (Schrimpf et al., 2018) combines several
neural predictivity scores as well as behavioral measures. Hence, it covers the whole
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upper half of Figure 11 corresponding to comparisons between DNNs and biology.
Another example is the study by Langlois et al. (2021). Here, the authors compare
the importances of image regions derived with an explainability method (lower right
quadrant) and from human psychophysical tasks (upper left quadrant). Finally, a
prominent phenomenon studied from various angles is adversarial examples. As such,
publications purely focusing on DNNs (lower left quadrant) revealed that adversarial
examples not only transfer between model architectures and training sets (Goodfel-
low et al., 2015; Szegedy et al., 2013; Papernot et al., 2016; Charles et al., 2019; Ilyas
et al., 2019; Liu et al., 2016) but also exist in 3D (Athalye et al., 2018). What is more,
several potential explanations for the phenomenon of adversarials were explored. Two
of them, which also fall into the lower left quadrant, identify certain image features
as being responsible for misleading DNNs (Wang et al., 2020b) or granting humans
robustness (Harrington and Deza, 2022). In contrast, other studies (Kim et al., 2020;
Dapello et al., 2020) augment DNNs with biologically inspired features or building
blocks, which grants the algorithms better robustness. Hence, Kim et al. (2020) hy-
pothesize that “humans do not even see most adversarial perturbations.” Relating
these latter two studies to Figure 11, they not only relate to the lower left quadrant,
but also to the upper (very) right area due to the studies’ neural (implementational)
motivation. Again corresponding to the upper right quadrant, Han et al. (2019) find
that responses of human fMRI and DNNs to adversarial examples do not show strong
correlations. Finally, regarding comparisons between DNNs and humans (upper left
quadrant), researchers investigated how susceptible humans are to adversarials (Zhou
and Firestone, 2019; Dujmović et al., 2020) and constructed adversarials to deceive
humans (Elsayed et al., 2018). Taken together, these examples illustrate that leverag-
ing ideas from more than one quadrant can be advantageous to understand machine
vision more holistically.

In summary, there are numerous approaches toward understanding visual per-
ception in machines. Certainly, each of them comes with its own strengths and
weaknesses, and no single one is per se better than the other ones. Instead, which
approach and experimental setup to choose always depends on both the objective as
well as resource constraints.

3.4 Summary

All in all, I not only broadly discussed the two approaches from the presented publi-
cations but also zoomed out to outline other approaches. As explained, comparison
studies and explainability methods do not only grant application opportunities and
advantages but also come with challenges and limits. In the next chapter, I therefore
propose future directions.
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4 Outlook: Future directions
Over the last decade, deep convolutional neural networks dominated the field of visual
perception. To a limited degree, we understand these algorithms. Specifically, they
provide solutions for not only image classification (Krizhevsky et al., 2012) but also
object detection (Ren et al., 2015), segmentation (Girshick et al., 2014) or facial
recognition (Schroff et al., 2015). In the future, we hope that we can both build more
powerful models suitable for more than one specific task as well as bring more light
into our understanding of these rather black boxes.

4.1 Comparisons between DNN and human behavior

With respect to comparisons between DNNs and humans on a behavioral level, dif-
ferent future directions can be pursued.

To start off, research can be continued regarding how comparison studies are
conducted. For example, the toolbox of experimental setups and metrics can be
further widened. What is more, common good practices can be re-evaluated as well
as further expanded. On the whole, better methods and procedures will permit greater
insights.

Regarding the subject of future comparison studies, there are countless options.
Besides further gestalt phenomena or single tasks, various more abstract abilities can
be investigated14. As a matter of fact, the latter are where today’s DNNs fall short
by a large margin. For example, they do not possess a genuine understanding of e.g.
physics or psychology (Lake et al., 2017), or a “common sense” (Zhu et al., 2020).
Further, they fall short regarding meta-cognition, i.e. the ability to “notice when a
task is hard or when they are likely to fail” (Wichmann et al., 2017). Also, current
DNNs typically master just one task, whereas we humans are capable of combining
our knowledge and abilities not only to solve different types of tasks but also to process
input from different sensory modalities (Lake et al., 2017). Lastly, DNNs typically
require lots of labeled data points and are not flexible in their learning strategy. From
an optimistic point of view, fields like continual learning (Delange et al., 2021), meta-
learning (Vanschoren, 2018), multi-task learning (Ruder, 2017), multi-modal learning
(Wang, 2021) as well as semi-, self- and unsupervised learning (Schmarje et al., 2021)
are contributing to progress with respect to the previously mentioned fields. Without
any doubt, there is a lot of room for improvement and it is still a long journey until
machines will be able to mirror more human abilities. Systematically and regularly
evaluating how well they compare on these various phenomena will be an important
pillar on this path.

Given the fast developments in Deep Learning, future comparisons should always
be performed on state-of-the-art models. Great examples for this are evaluations of
self-supervised (e.g. He et al., 2020) as well as vision transformer models (e.g. Doso-
vitskiy et al., 2020). These algorithms are the results of remarkable advancements

14Certainly, not all human functions should be transferred to machines, as is discussed for e.g.
illusions by Lonnqvist et al. (2021). In fact, it is an entire discussion by itself whether machine
systems should become completely human-like or to what extent these similarities are desirable.
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Figure 12: An understanding machine? The multi-modal algorithm Flamingo
(Alayrac et al., 2022) seems to comprehend various details of the complex scene in
the photograph, and converses about them in a (heavily engineered) dialogue (Ring,
2022b). 10 years ago, when Karpathy (2012) outlined numerous challenges in Com-
puter Vision illustrated by this very picture, such advancements seemed out of reach.
In the future, continuously and systematically evaluating how similar machine sys-
tems become to humans will continue to be important. (The figure is taken from
(Ring, 2022a).)

74



based on the training styles and network architecture. In fact, the former reveal
higher similarities with human perception (Geirhos et al., 2021; Storrs et al., 2021),
human brain representations (Konkle and Alvarez, 2020) and neural data (Zhuang
et al., 2021), and the latter exhibit a higher shape bias (Naseer et al., 2021; Tuli et al.,
2021; Geirhos et al., 2018b). Finally, a third great example comes from the multi-
modal model Flamingo (Alayrac et al., 2022). As shown in Figure 12, this DNN
can demonstrate significant visual and language understanding, as well as maybe
even some common sense (Ring, 2022a). Indubitably, this dialogue is heavily en-
gineered (Ring, 2022b) and the model does fail badly in numerous other situations
(e.g. Alayrac, 2022). Nonetheless, it is a great example of where comparisons of ma-
chine and human behavior are essential. Altogether, future work should always focus
on state-of-the-art models and reveal these best models’ new abilities and remaining
limitations.

In summary, it is of utmost importance to continue comparisons between humans
and DNNs. Specifically, method improvements, evaluations of more human phenom-
ena and novel models will contribute to advancing our understanding of DNNs. The
hope is that we will then in turn be able to build even more powerful models.

4.2 Explainability methods

Besides comparison studies, explainability methods are another way to deepen our
understanding of machine systems. However — and as exemplified by the presented
second and third publication —, they do not always meet the expectations regarding
their informativeness, increased transparency and human interpretability. Below, I
outline implications of the investigated method’s limited helpfulness as future direc-
tions for both feature visualizations as well as the bigger field of XAI.

4.2.1 Feature visualizations

An exciting future direction is to further develop a new feature visualization method.
Ideally, these visualizations would be both easily interpretable by humans and faith-
fully highlight the relevant feature of the network. As alluded to above (see Sec-
tion 3.2.4), improving the method by Nguyen et al. (2016a) may be a promising
candidate: Photo-realistic feature visualizations combine the advantages of familiar
appearances and focus on the structure in question. Specifically, updating the gener-
ation procedure of Nguyen et al. (2017) with a more modern GAN and classification
network may be a low-hanging fruit.

Zooming out from the specific feature visualization method, future work can ex-
plore ways in which non-intuitive features can augment human feature understanding.
Previous work on high-low frequency detectors (Schubert et al., 2021; Olah et al.,
2020b) demonstrates that this is possible (see Figure 9 for an example). However, as
this achievement was very labor-intensive, creating faster, systematic approaches of
translating features to human-understandable terms would open up new opportuni-
ties. Questions like whether the appealing, “hand-picked” (Olah et al., 2017) feature
visualizations in publications represent the generality of DNN units (Kriegeskorte,
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2015) would then become obsolete. Realistically speaking, though, it is still a long
way to understand the meaning of all DNN features.

Zooming out even further from machine visual systems and connecting this work
to biological networks, an interesting direction is investigating the transferability of
the presented psychophysical paradigms to biological networks. It is out of question
that feature visualizations generated for mice or macaque monkeys elicit strong ac-
tivations (Walker et al., 2019; Bashivan et al., 2019; Ponce et al., 2019). Does this
transferability also hold for our psychophysical paradigms? I.e. are humans able to
predict a biological neuron’s activations based on references such as feature visual-
izations? If so, this would not only strengthen the parallels between artificial and
biological visual systems but also increase the generality of our statements on the
method of feature visualization.

Altogether, there are many exciting future directions for the method feature vi-
sualization.

4.2.2 Field of XAI

Widening the perspective to the field of XAI, our evaluation studies of the explain-
ability method feature visualization and especially its limited helpfulness mirror more
general challenges. Several of these are discussed below and represent ideas for direc-
tions of future work.

Evaluate the methods

To start off, explainability methods need to be evaluated. Just relying on intuition
and judging what looks appropriate, intuitive and meaningful is not enough (Leavitt
and Morcos, 2020; Poursabzi-Sangdeh et al., 2021). As such, the “seductive allure of
visualization” (Leavitt and Morcos, 2020) can be misleading. Not only did our two
publications show this for feature visualizations, but similar findings were made for
other methods like saliency maps and brain images for cognitive sciences (McCabe and
Castel, 2008). Specifically, and as explained in our third project, feature visualizations
are believed to grant causal insight — though our data did not confirm this. Similarly,
saliency maps often look convincing and reasonable. Nonetheless, various evaluations
revealed that these explanations are misleading (Adebayo et al., 2018; Nie et al.,
2018; Ghorbani et al., 2019; Sundararajan et al., 2017; Zhou et al., 2021; Hooker
et al., 2019; Lin et al., 2020) and not as helpful as expected for humans (Jin et al.,
2022; Nguyen et al., 2021; Fel et al., 2021; Alqaraawi et al., 2020; Chu et al., 2020;
Shen and Huang, 2020). Finally, McCabe and Castel (2008) demonstrate that brain
images where colorful blobs represent brain activity that is associated with cognitive
processes increase scientific credibility compared to mere bar graphs or topographical
maps.

Overall, the number of evaluations of explainability methods in the literature is
growing, however, there is still a long way to go. As such, the fact that the evaluation
overview article by Nauta et al. (2022) reviews more than 300 conference papers
from the last 7 years illustrates that this topic is gaining importance. In fact, some
explainability methods like attribution methods have been evaluated fairly extensively
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(Fel and Vigouroux, 2020; Feng and Boyd-Graber, 2019; Schmidt and Biessmann,
2019; Adebayo et al., 2018; Lin et al., 2020; Tjoa and Guan, 2020; Zhou et al., 2021;
Arras et al., 2021; Hooker et al., 2019; Nie et al., 2018; Sundararajan et al., 2017;
Ghorbani et al., 2019; Prasad et al., 2021; Alqaraawi et al., 2020; Shitole et al., 2021;
Bansal et al., 2021; Lai and Tan, 2019; Lai et al., 2020; Dinu et al., 2020; Folke
et al., 2021; Shen and Huang, 2020; Chu et al., 2020; Chandrasekaran et al., 2018;
Nguyen et al., 2021; Zhang et al., 2020). However, that only “1 in 3 papers evaluate
exclusively with anecdotal evidence, and 1 in 5 papers evaluate with users” (Nauta
et al., 2022) reflects that measuring the informativeness of explainability methods is
by far no common practice yet. As such, feature visualizations had also not been
evaluated before our works.

The core challenge of evaluating explainability methods is that there is no ground
truth. As we do not fully understand how DNNs process information, we simply
cannot generate the “perfect” explanation. And in turn, this means that it is tricky to
decide when an explanation grants useful insights into DNNs. The lack of a ground
truth moreover entails that it is unclear in what directions existing explainability
methods should be further developed. Lord Kelvin described such a situation with
the words: “If you cannot measure it, you cannot improve it.”

To counteract the core challenge of evaluating explainability methods, several
suggestions have been made and practices developed. For example, multiple explain-
ability methods can be compared against each other and reveal which one grants the
most useful insight (e.g. Hase and Bansal, 2020). Often, such comparisons also include
simple baselines (e.g. Nguyen et al., 2021). Another, though less frequent, approach
is to generate a custom data set. Here, ground truth is typically straight-forward
(e.g. Zhou et al., 2021).

Besides workarounds for the lack of ground truth, many other suggestions regard-
ing how to evaluate explainability methods have been put forward. For example,
Lipton (2018) advocates evidence-based approaches, and Adadi and Berrada (2018)
call for “developing formalized rigorous evaluation metrics and methods”. This need
for quantification is echoed by many other researchers, e.g. Amparore et al. (2021);
Nguyen and Martínez (2020) and Leavitt and Morcos (2020). The authors of the lat-
ter paper further emphasize that “falsifiable hypotheses” have to be tested and that
“merely proving the existence of something rarely tells us much about whether that
phenomenon is relevant to the network.” Following a different approach, Nauta et al.
(2022) captured the many requirements of a good explanation in twelve properties
concerning the content, presentation and user of explainability methods. And finally,
on a different level, Doshi-Velez and Kim (2017) emphasize that the evaluation of an
explainability method should “only [depend] on the quality of the explanation, [...]
regardless of the correctness of the associated prediction”.

The nature of evaluation studies can be categorized into either human psychophys-
ical experiments or mathematical experiments and theoretical analysis. In this sec-
tion, the focus is put on the latter, as the former was already a topic in our publications
(see Sections 2.2 and 2.3) as well as Section 1.5.2. Furthermore, it is discussed again
in Section 4.2.2.
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The advantage of mathematical evaluations is their scalability and reproducibility.
Typically, aspects such as consistency, robustness, and sensitivity of an explainability
method are measured (e.g. Adebayo et al., 2018). Regarding theoretical analyses,
their clarity is the biggest asset: A hypothesis is either supported or rejected.

The existence of human and mathematical evaluation studies raises the question
whether these two types qualitatively yield the same findings. A few studies indeed
conducted both types of measurements, i.e. mathematical and human evaluations,
and measured their consistency. The result is discouraging: Mathematical and human
evaluations are poorly correlated (Biessmann and Refiano, 2019; Nguyen et al., 2021;
Fel et al., 2021) or even anti-correlated (Fel et al., 2021). In the bigger picture,
this suggests that future work should focus on human evaluations — ultimately also
because these are the agents affected in the real-world scenarios.

Taken together, the field of XAI has an enormous need for evaluation studies.
Luckily, more and more researchers have been responding to this and are finding
workarounds for the challenges around this endeavor. The biggest problem, i.e. the
lack of ground truth, is closely related to the following topic.

Define explainability

Until today, there is no generally agreed upon definition for explainability. This also
holds true for the term interpretability, that is often used interchangeably. While
not uncommon for a new and rapidly developing field, the danger is that different
researchers fill this gap differently. And as a consequence, unspoken expectations can
arise or misunderstandings can emerge.

On the bright side, several scientists made suggestions how to define explainability.
For example, Doshi-Velez and Kim (2017) see it as “the ability to explain or present
in understandable terms to a human”. Similarly, Biran and Cotton (2017) state
that “systems are interpretable if their operations can be understood by a human,
either through introspection or through a produced explanation.” While Adadi and
Berrada (2018); Miller (2019) and Diakopoulos et al. (2021) largely agree with the
above, Pion-Tonachini et al. (2021) make an explicit distinction between the two
terms. They claim that explainability “concerns how well the internal mechanics of a
specific AI model can be explained in human terms, i.e. how a model works”, whereas
interpretability concerns “how well properties of the world, e.g. cause and effect, can
be observed and discovered and understood, when using that AI model as a lens on
the natural or artificial system that generated that data, i.e. why an AI model works,
in terms of properties of the world”. Finally, Murdoch et al. (2019) define a framework
of three desiderata for interpretability: Besides predictive accuracy, i.e. a measure of
how good the model is, they suggest reporting descriptive accuracy, i.e. a value of
how faithful an explainability method is, as well as relevancy, i.e. a judgment of how
relevant the information is to the target audience.

Similar to the lack of a definition in words, there is also no mathematical term for
explainability. As such, a general interpretability-term that could simply be added to
the optimization function does not exist (Lipton, 2018). Nonetheless, approaches like
including a lasso-sparsity term go in the direction of “developing richer loss functions”
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(Lipton, 2018) and have indeed been shown to grant more interpretability (Kim,
2020).

In the bigger picture, the lack of an interpretability-term is an example of mis-
aligned objectives. Specifically, Lipton (2018) states that “While the machine learning
objective might be to reduce error, the real-world purpose is to provide useful infor-
mation.” Clearly, capturing this latter goal mathematically is (currently) out of reach.
Instead, our workaround is designing simple and small proxy tasks — such as object
recognition. In turn, (Doshi-Velez and Kim, 2017) argue that an “incompleteness in
the problem formalization” of these substitute problems is the reason for the need of
interpretability.

Widening the perspective even more, the history of other fields may permit a
more optimistic outlook. For example, formalizing the criteria in fairness (Hardt
et al., 2016) and privacy (Toubiana et al., 2010; Dwork et al., 2012) “allowed for a
blossoming of rigorous research in these fields” (Doshi-Velez and Kim, 2017). Seeing
the big difference that steps toward clear definitions can make is encouraging for the
future of XAI.

In summary, the current lack of a definition for explainability or interpretability
represents a challenge for the young field. Evidently, there is also no mathematical
term. The next section depicts a minimal workaround for these difficulties.

Communicate clearly

The kind of explainability that a tool grants — or is believed to grant — should be
clearly communicated. Lipton (2018) laments that “few authors articulate precisely
what interpretability means or precisely how their proposed solution is useful.” In-
stead, he suggests that researchers should “fix a specific definition” of what they mean
by their model being interpretable. In a similar direction, Doshi-Velez and Kim (2017)
propose a taxonomy to describe dimensions of interpretability such as what the basic
unit of an explanation is and how different units of explanations are related. What is
more, they advocate researchers can “do each other a service” by explaining aspects in
their papers like how the problem formulation, that a specific explainability method
aims to solve, is incomplete. Finally — and as already mentioned —, Doshi-Velez
and Kim (2017) emphasize that “the claim of the research should match the type of
the evaluation” (Doshi-Velez and Kim, 2017).

Regarding the explainability method feature visualizations, we gained a clearer
impression of the kind of advantages that Chris Olah attributes to them in a video-
call with him15 as well as what he wishes we/I had communicated more clearly in
personal communication. For example, Chris Olah considers feature visualizations
only helpful for experts, not for laypeople. Further, they are valuable when deciding
between competing theories of what a unit fires for. In the bigger picture, these ex-
amples are narrower than what we took away from the blog posts around this popular
implementation by Olah et al. (2017). Finally, Chris Olah notes that modern works
would use feature visualizations as “part of a set of tools for understanding neurons”

15The video call took place on October 15th, 2021, following interaction on twitter (Olah, 2021b).
The two first authors as well as the two last authors of the third publication participated.
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as well as that “many neurons are difficult to understand due to polysemanticity”
(personal communication).

While clear communication of the envisioned — and potentially evaluated —
advantages of an explainability tool is indispensable, the next section proposes another
way to advance the field of XAI.

Develop better methods

To deepen our understanding of DNNs, better explainability methods have to be
designed. On the one hand, many evaluation studies show that humans do not yet
gain a satisfying level of understanding (Shen and Huang, 2020; Nguyen et al., 2021;
Jeyakumar et al., 2020; Chandrasekaran et al., 2017; Hase and Bansal, 2020; Alu-
faisan et al., 2021; Dieber and Kirrane, 2020; Dinu et al., 2020). And on the other
hand, studies reveal that humans can tend to place too much trust in algorithms and
their explanations (Kaur et al., 2020; Kim et al., 2021b; Parliament, 2021; Poursabzi-
Sangdeh et al., 2021) and that “there is no effect of explanations on users’ performance
compared to sole AI predictions“ (Schemmer et al., 2022).

It is out of question that a myriad of different explainability methods already
exists and that more and more techniques are being developed and improved. As
such, each method yields a different “notion[s] of transparency” (Weller, 2019), and
is therefore useful in a “different setting[s]” (Weller, 2019) as well as for a different
target group. For example, counterfactual explanations (Wachter et al., 2017; Goyal
et al., 2019; Wu et al., 2021; Sharma et al., 2019; Ustun et al., 2019; Mahajan et al.,
2020; Karimi et al., 2020) answer the question what change in the input would alter
the model’s prediction and can be intuitive for laypeople. In contrast, feature visu-
alizations (Olah et al., 2017; Erhan et al., 2009; Nguyen et al., 2017) reveal insights
into DNN features and are more suitable for experts according to e.g. Chris Olah (see
above) or Huang et al. (2020). And yet another explanation approach called “TCAV”,
which stands for “testing with concept activation vectors”, is to take human concepts
as the starting point, let them define the aspect they are interested in with pictures
(e.g. stripes) and test a network’s sensitivity to it (Kim et al., 2018a). Clearly, the
diversity of methods and their use cases illustrate that “there is no universally appro-
priate approach” (Weller, 2019). Nonetheless, evaluation studies rarely reveal that
explanations do exactly what they are expected to do. Therefore, further tuning
explainability methods and developing new ones will remain an elementary pillar of
XAI.

When developing an explainability method we should keep in mind that its in-
formativeness is limited both by the model it depicts as well as by our human per-
ception. The former assumes that the explainability tool illustrates the model in
question faithfully. If that is the case, explanations reveal aspects of the algorithm’s
decision-making, regardless of whether those decisions are correct or not. While this
is a limit of an AI system imposed by the performance of a model, another limit can
be our human perception. As such, some aspects of DNNs are simply not recognizable
to us. For example, adversarial examples, i.e. certain minuscule pixel changes in an
input image, can have a large effects on DNN predictions. However, we humans do
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not detect them. Consequently, when an explainability method faithfully depicts such
aspects, they may not be meaningful to humans (Ilyas et al., 2019). Taken together,
this trade-off between faithfulness and meaningfulness to humans, as well as limits of
models can complicate the endeavor of developing effective explainability tools.

Finally, it is of utmost importance to critically evaluate whether the deployment
of an explainability method is a good step in the first place. For low-stake decisions, it
is agreed that explainability is not necessary (Bunt et al., 2012; Doshi-Velez and Kim,
2017). In contrast, for high-stake decisions, opinions are more diverse. For example,
the AI Act requires transparency for technologies that interact with humans (Parlia-
ment, 2021). Also, the AI-healthcare start-up Pacmed emphasizes that explainability
adds value to their product (Cina, 2021) and Jin et al. (2022) even consider “[b]eing
able to explain the prediction [of an AI model] to clinical end-users [...] a necessity”.
Nonetheless, assessing when to invest in interpretability efforts and when to focus
on improving the system itself can be tricky (Lipton, 2018; Weller, 2019). After all,
the latter could potentially save more lives by e.g. better autonomous cars or can-
cer detection algorithms (Weller, 2019). Already Albert Einstein described such a
situation as the “perfection of means and confusion of goals” (Einstein, 1941). In
the more recent XAI literature, the trade-off between interpretability and accuracy
is often discussed (Breiman, 2001). Zooming out further, transparency can open up
even more harms when considering IP rights and efficiency in economy as well as
privacy aspects (Weller, 2019). In the most extreme case against transparency, some
voices advocate against explaining black-box decisions. For example, Cynthia Rudin
defends the idea to only construct inherently interpretable models for high-stake deci-
sions (Rudin, 2019). Further, and with respect to AI systems in healthcare, Ghassemi
et al. (2021) favor “rigorous internal and external validation of AI models” instead of
explainability. Altogether, these different opinions illustrate that deciding whether to
deploy an explainability method is not trivial and ultimately depends on the specific
case.

To summarize, there is still room for improvement of explainability tools, and
development choices depend on many factors. The following and final section specifies
aspects to consider beyond the field of XAI when creating explainability tools.

Collaborate with other fields

Many voices call for more interdisciplinary collaborations in XAI as the streams of re-
search are currently fairly isolated (Abdul et al., 2018; Miller et al., 2017). As a result
of the latter, the development of explainability methods and intelligible systems does
not leverage its full potential. For example, explainability methods may seem rather
designed for researchers than for end-users (Miller et al., 2017; Bhatt et al., 2020).
Miller et al. (2017) believes that this is because programmers and not “interaction
designers” make design decisions. As a way forward, researchers working together
with both practitioners (Kaur et al., 2020) and designers (Zhu et al., 2018) could
turn out fruitful. Similarly, more collaboration between XAI and Human-Computer-
Interaction (HCI) (Abdul et al., 2018) as well as social sciences (Miller, 2019) such
as experimental psychology (Taylor and Taylor, 2021) could be beneficial.
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Concretely, evaluations of explainability methods can benefit from the “strong
ethos” in the HCI-community that a system should “deliver on its intended task”
(Doshi-Velez and Kim, 2017; Antunes et al., 2008; Lazar et al., 2017). As a matter of
fact, many aspects beyond the usefulness of explainability tools are being evaluated.
For example, how much do humans trust explainability methods and artificial decision
making systems (e.g. Lim et al., 2009; Yin et al., 2019; Kaur et al., 2020; Kim et al.,
2021b)? Or what is an appropriate cognitive load for parsing explanations (e.g. Abdul
et al., 2020; Lage et al., 2019)? And how likely are humans to follow a machine’s
decision (e.g. Diprose et al., 2020; Poursabzi-Sangdeh et al., 2021)? Such findings
grant useful insight and could even be a start for design principles of new explainability
methods or their presentation (Lage et al., 2019)16.

More generally, i.e. beyond just evaluations, Miller (2019) suggests that XAI
should build on existing work in philosophy, cognitive science and social psychology.
As such, he summarizes four main findings from mainly “everyday”, human explana-
tions that “explanatory agents” could be improved with (Miller, 2019): (1) “Explana-
tions are contrastive”, i.e. humans are usually not interested in why a certain event
happened, but rather why that event happened instead of another one. (2) “Expla-
nations are selected”, i.e. no comprehensive list of causes is expected, but one or two
reasons usually suffice. (3) Explanations are a social conversation, i.e. in most cases,
they are interactive and relative to the questioner’s beliefs. (4) Probabilities are not
as important as causal links. Clearly, not every point is “feasible for all applications”
(Miller, 2019), and some researchers have also found opposing results (Kulesza et al.,
2013). Nonetheless, the above points may be useful inspiration for AI researchers.

Other insights from psychology may also serve as useful background information
for the development of future explainability methods. For example, the subjective
flavors mentioned earlier are reflected in a definition for explanations given in the field
of psychology: Here, explanations are considered the “currency in which we exchanged
beliefs” (Lombrozo, 2006). Further, humans are known to come up with very good
explanations, but they are often wrong (Nisbett and Wilson, 1977). This means that
our explanations are not based on any “true introspection”, but “on a priori, implicit
causal theories” (Nisbett and Wilson, 1977). Taking a step back, it is funny to realize
that we accept our explanations even though we do not comprehend the biochemical
processes of the human brain (Lipton, 2018). This contrasts the criticism that post-
hoc explanations sometimes receive (Lipton, 2018; Rudin, 2019). Finally, (Weller,
2019) describes that humans “are not good at estimating how transparent we are
ourselves when communicating with others”. As such, the “illusion of transparency”
depicts that we believe others would be able to discern our internal state better than
they actually can (Gilovich et al., 1998).

The so-called “Copy machine study” (Langer et al., 1978; Weller, 2019) from the
field of psychology highlights the potentially dangerous effect of a meaningless expla-

16Despite these different evaluation angles, critical voices raise the concern that “subjective views
[...] and asking people what they prefer” (e.g. Jeyakumar et al., 2020) is no reasonable evaluation of
the “correctness [of explainability methods]” Lipton (2018). In fact, Lipton (2018) claims that “the
literature has dodged the issue of correctness [of explainability methods].” For a discussion on the
latter, see Section 4.2.2.
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nation. The setting is that participants request not to wait in line to make copies at
a busy copy machine, but to be allowed to jump the line. Their questions differ in
that they provide no explanation (“May I use the machine?”), an empty explanation
(“May I use the machine because I have to make copies?”) or a real explanation (“May
I use the machine because I’m in a rush?”). The success rates of respectively 60%,
93%, and 94% reveal that humans can be influenced by a meaningless explanation.
In the bigger picture, this illustrates how complex the topic of explanations is.

Zooming out even further, views from e.g. philosophers and spiritual leaders com-
plement the picture of explanations. For example, the Dalai Lama is reported to have
said “A lack of transparency results in distrust and a deep sense of insecurity” (Weller,
2019). While this is generally accepted, the previous study shows that care has to
be taken regarding whether that transparency is real. Going further than the Copy
machine study, work in psychology (e.g. Levine and Schweitzer, 2015) shows that
even incorrect explanations can increase trust: Prosocial lies have “benevolent mo-
tives or socially useful effects” (Dietz, 2018). The utilitarian perspective supports this
view: Lying may be justified under certain circumstances (e.g. conflicting obligations,
rights, interests) if an overall betterment is achieved (Dietz, 2018). In contrast, Kant’s
view is that lying is unacceptable under any circumstances (Kant, 1797). Altogether,
explanations are complicated and often a case-to-case decision.

Relating these various views back to XAI, they mirror a few questions and trade-
offs already discussed in other places of this thesis. For example, the Copy machine
study can be seen as raising the question whether a reasonable amount of trust is
placed in explanations for machine systems and whether acting in accordance with
the provided explanations is reasonable behavior. As research in XAI has shown, this
is not always the case (e.g. Kaur et al., 2020; Kim et al., 2021b; Schemmer et al., 2022).
However, on a brighter note, the EU’s AI Act Proposal (Parliament, 2021) already
includes a section to counteract this pitfall: Humans shall be enabled to “remain
aware of the possible tendency of automatically relying or over-relying on the output
produced by a high-risk AI system (‘automation bias’)”. As another example, the
aspect of pure transparency and well-intended augmentations of explanations can be
related to the discussion around faithfulness to the machine system vs. meaningfulness
to humans within XAI (see Section 4.2.2). Overall, these parallels are encouraging
and suggest that the field of XAI is moving in a promising direction.

Narrowing the focus again on Machine Learning, XAI is closely related to fields
such as fairness, privacy, reliability, robustness and causality (Doshi-Velez and Kim,
2017). In fact, explainable methods can be utilized to investigate and “confirm”
”desiderata” related to these topics (Doshi-Velez and Kim, 2017). As such, insights
from explainability methods may help evaluate fairness, i.e. whether an algorithm is
biased or even discriminates against certain groups (e.g. Mothilal et al., 2020). With
respect to privacy, where the general goal is to “protect[s] sensitive information in the
data” (Doshi-Velez and Kim, 2017), there are two sides in relation to XAI: On the
one hand, explainability and privacy can go hand in hand (e.g. Nori et al., 2021), and
on the other hand, solutions must be found to avoid the risk of interpretable models
revealing “characteristics of individual data points” (Harder et al., 2020). While the
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list of examples can be extended, the general gist is that an active dialogue between
the different communities is essential.

In summary, both insights from fields such as Human-Computer-Interaction, psy-
chology and philosophy as well as desiderata from sub-fields specific to Machine
Learning such as fairness or privacy are useful for XAI. Fortunately, parallels be-
tween findings in the previously mentioned research areas and XAI already exist.
In the future, even stronger, interdisciplinary collaboration and active exchanges are
likely to continue being beneficial to steer XAI in promising directions.

As illustrated, there are plenty of directions for future work in XAI and the method
feature visualization. Given the increasing applications of DNNs as well as the grow-
ing legal demands for explanations, this young field is likely to become even more
important. Presumably, establishing not only a definition but also common practices
regarding evaluations and communication will unlock, again, even faster progress.
Without any doubt, XAI will keep playing a major role in facilitating to deepen our
understanding of visual perception in machines.

4.3 Summary

Understanding visual perception in machines is important. This is not only the case
because of the increasingly many areas of DNN applications that directly affect hu-
man lives but also because of the growing legal demands. As illustrated in this thesis,
our approaches leveraging human psychophysics, namely comparisons and evalua-
tions of an explainability method, represent a step toward a deeper understanding of
DNNs. In the future, further studies that both follow various approaches as well as
foster interdisciplinary connections are necessary to expand insights at various levels.
Ultimately, this better understanding will facilitate and guide developing even more
powerful, more robust, and fairer machine systems of visual perception.
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Appendix A: Additional results on Section 2.2 “Exem-
plary natural images explain CNN activations better
than state-of-the-art feature visualization”
The following four figures display example trials from the additional experiment with
the feature visualizations from Nguyen et al. (2017) and CaffeNet.
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Figure 13: Example trials of the synthetic condition that seem fairly easy.
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Figure 14: Example trials of the synthetic condition that seem more difficult.
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Figure 15: Example trials of the natural condition that seem fairly easy.
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Figure 16: Example trials of the natural condition that seem more difficult.
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Appendix B: Publications
* indicates joint first authorship, and ‡ indicates joint senior authorship.

The contribution statements are copied verbatim from the original publications.
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later with WB. The code for the stimuli generation was developed by CMF. The neural
networks were trained by CMF and JB. The psychophysical experiments were per-
formed and analysed by CMF, TSAW and JB. The SVRT case study was conducted
by CMF under supervision of TSAW, WB and MB. KS designed and implemented
the recognition gap case study under the supervision of WB and MB, JB extended
and refined it under the supervision of WB and MB. The initial idea to unite the
three projects was conceived by WB, MB, TSAW and CMF, and further developed
including JB. The first draft was jointly written by JB and CMF with input from
TSAW and WB. All authors contributed to the final version and provided critical
revisions.”

Earlier versions of this work were presented at the following venues:

• as a poster at the Vision Sciences Society Conference (2018) under the title
“Comparing the ability of humans and DNNs to recognise closed contours in
cluttered images”,

• as a poster at Conference on Cognitive Computational Neuroscience (2019)
under the title “The Notorious Difficulty of Comparing Human and Machine
Perception”, and

• as a poster, which won the best paper award, at the NeurIPS Workshop Shared
Visual Representations in Human and Machine Intelligence (2019) under the
title “The Notorious Difficulty of Comparing Human and Machine Perception”.

What is more, this work was featured in the following online articles:

• Challenges of Comparing Human and Machine Perception on The Gradient,
• Same or Different? The Question Flummoxes Neural Networks. on Quantam-

agazine,
• Why It’s Notoriously Difficult to Compare AI and Human Perception on The

New Stack,
• Computer vision: Why it’s hard to compare AI and human perception on

TechTalks, and
• AI vs. Human: A Comparison of Human Perception with Artificial Intelligence

(AI) on ThinkML.
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With the rise of machines to human-level performance
in complex recognition tasks, a growing amount of work
is directed toward comparing information processing in
humans and machines. These studies are an exciting
chance to learn about one system by studying the other.
Here, we propose ideas on how to design, conduct, and
interpret experiments such that they adequately support
the investigation of mechanisms when comparing
human and machine perception. We demonstrate and
apply these ideas through three case studies. The first
case study shows how human bias can affect the
interpretation of results and that several analytic tools
can help to overcome this human reference point. In the
second case study, we highlight the difference between
necessary and sufficient mechanisms in visual reasoning
tasks. Thereby, we show that contrary to previous
suggestions, feedback mechanisms might not be
necessary for the tasks in question. The third case study
highlights the importance of aligning experimental
conditions. We find that a previously observed

difference in object recognition does not hold when
adapting the experiment to make conditions more
equitable between humans and machines. In presenting
a checklist for comparative studies of visual reasoning in
humans and machines, we hope to highlight how to
overcome potential pitfalls in design and inference.

Introduction

Until recently, only biological systems could abstract
the visual information in our world and transform
it into a representation that supports understanding
and action. Researchers have been studying how to
implement such transformations in artificial systems
since at least the 1950s. One advantage of artificial
systems for understanding these computations is
that many analyses can be performed that would not
be possible in biological systems. For example, key
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Figure 1. i: The human system and a candidate machine system differ in a range of properties. Isolating a specific mechanism (for
example, feedback) can be challenging. ii: When designing an experiment, equivalent settings are important. iii: Even if a specific
mechanism was important for a task, it would not be clear if this mechanism is necessary, as there could be other mechanisms (that
might or might not be part of the human or machine system) that can allow a system to perform well. iv: Furthermore, the identified
mechanisms might depend on the specific experimental setting and not generalize to, for example, another task. v: Overall, our
human bias influences how we conduct and interpret our experiments. 1Brendel and Bethge (2019); 2DiCarlo et al. (2012); 3Geirhos,
Rubisch, et al. (2018); 4Kubilius et al. (2016); 5Golan et al. (2019); 6Dujmović et al. (2020).

components of visual processing, such as the role of
feedback connections, can be investigated, and methods
such as ablation studies gain new precision.

Traditional models of visual processing sought to
explicitly replicate the hypothesized computations
performed in biological visual systems. One famous
example is the hierarchical HMAX-model (Fukushima,
1980; Riesenhuber & Poggio, 1999). It instantiates
mechanisms hypothesized to occur in primate visual
systems, such as template matching and max operations,
whose goal is to achieve invariance to position, scale,
and translation. Crucially, though, these models never
got close to human performance in real-world tasks.

With the success of learned approaches in the past
decade, and particularly that of convolutional deep
neural networks (DNNs), we now have much more
powerful models. In fact, these models are able to
perform a range of constrained image understanding
tasks with human-like performance (Krizhevsky et al.,
2012; Eigen & Fergus, 2015; Long et al., 2015).

While matching machine performance with that of
the human visual system is a crucial step, the inner
workings of the two systems can still be very different.
We hence need to move beyond comparing accuracies
to understand how the systems’ mechanisms differ
(Geirhos et al., 2020; Chollet, 2019; Ma & Peters, 2020;
Firestone, 2020).

The range of frequently considered mechanisms
is broad. They not only concern the architectural

level (such as feedback vs. feed-forward connections,
lateral connections, foveated architectures or eye
movements, …), but also involve different learning
schemes (back-propagation vs. spike-timing-dependent
plasticity/Hebbian learning, …) as well as the
nature of the representations themselves (such as
reliance on texture rather than shape, global vs. local
processing, …). For an overview of comparison studies,
please see Appendix A.

Checklist for psychophysical
comparison studies

We present a checklist on how to design, conduct,
and interpret experiments of comparison studies that
investigate relevant mechanisms for visual perception.
The diagram in Figure 1 illustrates the core ideas that
we elaborate on below.

i. Isolating implementational or functional properties.
Naturally, the systems that are being compared
often differ in more than just one aspect, and hence
pinpointing one single reason for an observed
difference can be challenging. One approach is to
design an artificial network constrained such that
the mechanism of interest will show its effect as
clearly as possible. An example of such an attempt
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is Brendel and Bethge (2019), which constrained
models to process purely local information by
reducing their receptive field sizes. Unfortunately,
in many cases, it is almost impossible to exclude
potential side effects from other experimental
factors such as architecture or training procedure.
Therefore, making explicit if, how, and where
results depend on other experimental factors is
important.

ii. Aligning experimental conditions for both systems.
In comparative studies (whether humans and
machines, or different organisms in nature), it can
be exceedingly challenging to make experimental
conditions equivalent. When comparing the two
systems, any differences should be made as explicit
as possible and taken into account in the design
and analysis of the study. For example, the human
brain profits from lifelong experience, whereas a
machine algorithm is usually limited to learning
from specific stimuli of a particular task and
setting. Another example is the stimulus timing
used in psychophysical experiments, for which
there is no direct equivalent in stateless algorithms.
Comparisons of human and machine accuracies
must therefore be considered with the temporal
presentation characteristics of the experiment.
These characteristics could be chosen based on, for
example, a definition of the behavior of interest as
that occurring within a certain time after stimulus
onset (as for, e.g., “core object recognition”; DiCarlo
et al., 2012). Firestone (2020) highlights that as
aligning systems perfectly may not be possible due
to different “hardware” constraints such as memory
capacity, unequal performance of two systems might
still arise despite similar competencies.

iii. Differentiating between necessary and sufficient
mechanisms. It is possible that multiple mechanisms
allow good task performance — for example, DNNs
can use either shape or texture features to reach high
performance on ImageNet (Geirhos, Rubisch, et al.,
2018; Kubilius et al., 2016). Thus, observing good
performance for one mechanism does not imply
that this mechanism is strictly necessary or that it is
employed by the human visual system. As another
example, Watanabe et al. (2018) investigated whether
the rotating snakes illusion (Kitaoka & Ashida,
2003; Conway et al., 2005) could be replicated in
artificial neural networks. While they found that this
was indeed the case, we argue that the mechanisms
must be different from the ones used by humans, as
the illusion requires small eye movements or blinks
(Hisakata & Murakami, 2008; Kuriki et al., 2008),
while the artificial model does not emulate such
biological processes.

iv. Testing generalization of mechanisms. Having
identified an important mechanism, one needs to
make explicit for which particular conditions (class

of tasks, data sets, …) the conclusion is intended to
hold. A mechanism that is important for one setup
may or may not be important for another one. In
other words, whether a mechanism works under
generalized settings has to be explicitly tested. An
example of outstanding generalization for humans
is their visual robustness against various variations
in the input. In DNNs, a mechanism to improve
robustness is to “stylize” (Gatys et al., 2016) training
data. First presented as raising performance on
parametrically distorted images (Geirhos, Rubisch,
et al., 2018), this mechanism was later shown to
also improve performance on images suffering
from common corruptions (Michaelis et al., 2019)
but would be unlikely to help with adversarial
robustness. From a different perspective, the work
of Golan et al. (2019) on controversial stimuli is
an example where using stimuli outside of the
training distribution can be insightful. Controversial
stimuli are synthetic images that are designed to
trigger distinct responses for two machine models.
In their experimental setup, the use of these
out-of-distribution data allows the authors to reveal
whether the inductive bias of humans is similar to
one of the candidate models.

v. Resisting human bias. Human bias can affect not
only the design but also the conclusions we draw
from comparison experiments. In other words, our
human reference point can influence, for example,
how we interpret the behavior of other systems,
be they biological or artificial. An example is the
well-known Braitenberg vehicles (Braitenberg,
1986), which are defined by very simple rules. To
a human observer, however, the vehicles’ behavior
appears as arising from complex internal states such
as fear, aggression, or love. This phenomenon of
anthropomorphizing is well known in the field of
comparative psychology (Romanes, 1883; Köhler,
1925; Koehler, 1943; Haun et al., 2010; Boesch,
2007; Tomasello & Call, 2008). Buckner (2019)
specifically warns of human-centered interpretations
and recommends to apply the lessons learned in
comparative psychology to comparing DNNs
and humans. In addition, our human reference
point can influence how we design an experiment.
As an example, Dujmović et al. (2020) illustrate
that the selection of stimuli and labels can have
a big effect on finding similarities or differences
between humans and machines to adversarial
examples.

In the remainder of this article, we provide concrete
examples of the aspects discussed above using three
case studies1:

(1) Closed contour detection: The first case study
illustrates how tricky overcoming our human bias
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can be and that shedding light on an alternative
decision-making mechanism may require multiple
additional experiments.

(2) Synthetic Visual Reasoning Test: The second
case study highlights the challenge of isolating
mechanisms and of differentiating between
necessary and sufficient mechanisms. Thereby, we
discuss how human and machine model learning
differ and how changes in the model architecture
can affect the performance.

(3) Recognition gap: The third case study illustrates
the importance of aligning experimental
conditions.

Case study 1: Closed contour
detection

Closed contours play a special role in human visual
perception. According to the Gestalt principles of
prägnanz and good continuation, humans can group
distinct visual elements together so that they appear
as a “form” or “whole.” As such, closed contours
are thought to be prioritized by the human visual
system and to be important in perceptual organization
(Koffka, 2013; Elder & Zucker, 1993; Kovacs & Julesz,
1993; Tversky et al., 2004; Ringach & Shapley, 1996).
Specifically, to tell if a line closes up to form a closed
contour, humans are believed to implement a process
called “contour integration” that relies at least partially
on global information (Levi et al., 2007; Loffler et al.,
2003; Mathes & Fahle, 2007). Even many flanking, open
contours would hardly influence humans’ robust closed
contour detection abilities.

Our experiments

We hypothesize that, in contrast to humans, closed
contour detection is difficult for DNNs. The reason
is that this task would presumably require long-range
contour integration, but DNNs are believed to process
mainly local information (Geirhos, Rubisch, et al.,
2018; Brendel & Bethge, 2019). Here, we test how well
humans and neural networks can separate closed from
open contours. To this end, we create a custom data
set, test humans and DNNs on it, and investigate the
decision-making process of the DNNs.

DNNs and humans reach high performance

We created a data set with two classes of images:
The first class contained a closed contour; the second
one did not. In order to make sure that the statistical
properties of the two classes were similar, we included
a main contour for both classes. While this contour

line closed up for the first class, it remained open for
the second class. This main contour consisted of 3–9
straight-line segments. In order to make the task more
difficult, we added several flankers with either one or
two line segments that each had a length of at least 32
pixels (Figure 2A). The size of the images was 256 × 256
pixels. All lines were black and the background was
uniformly gray. Details on the stimulus generation can
be found in Appendix B.

Humans identified the closed contour stimulus
very reliably in a two-interval forced-choice task.
Their performance was 88.39% (SEM = 2.96%) on
stimuli whose generation procedure was identical to
the training set. For stimuli with white instead of
black lines, human participants reached a performance
of 90.52% (SEM = 1.58%). The psychophysical
experiment is described in Appendix B.

We fine-tuned a ResNet-50 (He et al., 2016)
pretrained on ImageNet (Deng et al., 2009) on the
closed contour data set. Similar to humans, it performed
very well and reached an accuracy of 99.95% (see
Figure 2A [i.i.d. to training]).

We found that both humans and our DNN reach
high accuracy on the closed contour detection task.
From a human-centered perspective, it is enticing to
infer that the model had learned the concept of open
and closed contours and possibly that it performs a
similar contour integration-like process as humans.
However, this would have been overhasty. To better
understand the degree of similarity, we investigated
how our model performs on variations of the data sets
that were not used during the training procedure.

Generalization tests reveal differences

Humans are expected to have no difficulties if the
number of flankers, the color, or the shape of lines
would differ. We here test our model’s robustness on
such variants of the data set. If our model used similar
decision-making processes as humans, it should be able
to generalize well without any further training on the
new images. This procedure is another perspective to
shed light on whether our model really understood the
concept of closedness or just picked up some statistical
cues in the training data set.

We tested our model on 15 variants of the data set
(out of distribution test sets) without fine-tuning on
these variations. As shown in Figure 2A, B, our trained
model generalized well to many but not all modified
stimulus sets.

On the following variations, our model achieved
high accuracy: Curvy contours (1, 3) were easily
distinguishable for our model, as long as the diameter
remained below 100 pixels. Also, adding a dashed,
closed flanker (2) did not lower its performance. The
classification ability of the model remained similarly
high for the no-flankers (4) and the asymmetric
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Figure 2. (A) Our ResNet-50-model generalized well to many data sets without further retraining, suggesting it would be able to
distinguish closed and open contours. (B) However, the poor performance on many other data sets showed that our model did not
learn the concept of closedness. (C) The heatmaps of our BagNet-33-based model show which parts of the image provided evidence
for closedness (blue, negative values) or openness (red, positive values). The patches on the sides show the most extremely,
nonoverlapping patches and their logit values. The logit distribution shows that most patches had logit values close to zero (y-axis
truncated) and that many more patches in the open stimulus contributed positive logit values. (D) Our BagNet- and ResNet-models
showed different performances on generalization sets, such as the asymmetric flankers. This indicates that the local decision-making
process of the substitute model BagNet is not used by the original model ResNet. Figure best viewed electronically.

flankers condition (6). When testing our model on main
contours that consisted of more edges than the ones
presented during training (5), the performance was also
hardly impaired. It remained high as well when multiple
curvy open contours were added as flankers (7).

The following variations were more difficult for
our model: If the size of the contour got too large, a
moderate drop in accuracy was found (8). For binarized
images, our model’s performance was also reduced (9).
And finally, (almost) chance performance was observed
when varying the line width (14, 10, 13), changing the
line color (11, 12), or using dashed curvy lines (15).

While humans would perform well on all variants of
the closed contour data set, the failure of our model
on some generalization tests suggests that it solves the
task differently from humans. On the other hand, it
is equally difficult to prove that the model does not
understand the concept. As described by Firestone
(2020), models can “perform differently despite similar
underlying competences.” In either way, we argue
that it is important to openly consider alternative
mechanisms to the human approach of global contour
integration.

Our closed contour detection task is partly
solvable with local features

In order to investigate an alternative mechanism
to global contour integration, we here design an
experiment to understand how well a decision-making
process based on purely local features can work. For this
purpose, we trained and tested BagNet-33 (Brendel &
Bethge, 2019), a model that has access to local features
only. It is a variation of ResNet-50 (He et al., 2016),
where most 3 × 3 kernels are replaced by 1 × 1 kernels
and therefore the receptive field size at the top-most
convolutional layer is restricted to 33 × 33 pixels.

We found that our restricted model still reached
close to 90% performance. In other words, contour
integration was not necessary to perform well on the
task.

To understand which local features the model relied
on mostly, we analyzed the contribution of each
patch to the final classification decision. To this end,
we used the log-likelihood values for each 33 × 33
pixels patch from BagNet-33 and visualized them as a
heatmap. Such a straightforward interpretation of the
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Figure 3. (A) For three of the 23 SVRT problems, two example images representing the two opposing classes are shown. In each
problem, the task was to find the rule that separated the images and to sort them accordingly. (B) Kim et al. (2018) trained a DNN on
each of the problems. They found that same-different tasks (red points), in contrast to spatial tasks (blue points), could not be solved
with their models. Our ResNet-50-based models reached high accuracies for all problems when using 28,000 training examples and
weights from pretraining on ImageNet.

contributions of single image patches is not possible
with standard DNNs like ResNet (He et al., 2016) due
to their large receptive field sizes in top layers.

The heatmaps of BagNet-33 (see Figure 2C) revealed
which local patches played an important role in the
decision-making process: An open contour was often
detected by the presence of an endpoint at a short
edge. Since all flankers in the training set had edges
larger than 33 pixels, the presence of this feature was an
indicator of an open contour. In turn, the absence of
this feature was an indicator of a closed contour.

Whether the ResNet-50-based model used the same
local feature as the substitute model was unclear.
To answer this question, we tested BagNet on the
previously mentioned generalization tests. We found
that the data sets on which it showed high performance
were sometimes different from the ones of ResNet (see
Figure 7 in the Appendix B). A striking example was
the failure of BagNet on the ”asymmetric flankers”
condition (see Figure 2D). For these images, the
flankers often consisted of shorter line segments and
thus obscured the local feature we assumed BagNet
to use. In contrast, ResNet performed well on this
variation. This suggests that the decision-making
strategy of ResNet did not heavily depend on the local
feature found with the substitute BagNet model.

In summary, the generalization tests, the high
performance of BagNet as well as the existence of
a distinctive local feature provide evidence that our
human-biased assumption was misleading. We saw that

other mechanisms for closed contour detection besides
global contour integration do exist (see Introduction,
“Differentiating between necessary and sufficient
mechanisms”). As humans, we can easily miss the many
statistical subtleties by which a task can be solved. In
this respect, BagNets proved to be a useful tool to test
a purportedly “global” visual task for the presence
of local artifacts. Overall, various experiments and
analyses can be beneficial to understand mechanisms
and to overcome our human reference point.

Case study 2: Synthetic Visual
Reasoning Test

In order to compare human and machine
performance at learning abstract relationships between
shapes, Fleuret et al. (2011) created the Synthetic Visual
Reasoning Test (SVRT) consisting of 23 problems
(see Figure 3A). They showed that humans need only
few examples to understand the underlying concepts.
Stabinger et al. (2016) as well as Kim et al. (2018)
assessed the performance of deep convolutional
neural networks on these problems. Both studies
found a dichotomy between two task categories:
While high accuracy was reached on spatial problems,
the performance on same-different problems was
poor. In order to compare the two types of tasks
more systematically, Kim et al. (2018) developed a
parameterized version of the SVRT data set called
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PSVRT. Using this data set, they found that for same-
different problems, an increase in the complexity of the
data set could quickly strain their models. In addition,
they showed that an attentive version of the model
did not exhibit the same deficits. From these results,
the authors concluded that feedback mechanisms as
present in the human visual system such as attention,
working memory, or perceptual grouping are probably
important components for abstract visual reasoning.
More generally, these studies have been perceived and
cited with the broader claim of feed-forward DNNs not
being able to learn same-different relationships between
visual objects (Serre, 2019; Schofield et al., 2018) – at
least not “efficiently” (Firestone, 2020).

We argue that the results of Kim et al. (2018) cannot
be taken as evidence for the importance of feedback
components for abstract visual reasoning:

(1) While their experiments showed that same-different
tasks are harder to learn for their models, this might
also be true for the human visual system. Normally
sighted humans have experienced lifelong visual
input; only looking at human performance with
this extensive learning experience cannot reveal
differences in learning difficulty.

(2) Even if there is a difference in learning complexity,
this difference is not necessarily due to differences
in the inference mechanism (e.g., feed-forward vs.
feedback)—the large variety of other differences
between biological and artificial vision systems
could be critical causal factors as well.

(3) In the same line, small modifications in the learning
algorithm or architecture can significantly change
learning complexity. For example, changing the
network depth or width can greatly improve learning
performance (Tan & Le, 2019).

(4) Just because an attentive version of the model
can learn both types of tasks does not prove that
feedback mechanisms are necessary for these tasks
(see Introduction, “Differentiating between necessary
and sufficient mechanisms”).

Determining the necessity of feedback mechanisms
is especially difficult because feedback mechanisms
are not clearly distinct from purely feed-forward
mechanisms. In fact, any finite-time recurrent network
can be unrolled into a feed-forward network (Liao &
Poggio, 2016; van Bergen & Kriegeskorte, 2020).

For these reasons, we argue that the importance of
feedback mechanisms for abstract visual reasoning
remains unclear.

In the following paragraph we present our own
experiments on the SVRT data set and show that
standard feed-forward DNNs can indeed perform well
on same-different tasks. This confirms that feedback
mechanisms are not strictly necessary for same-different
tasks, although they helped in the specific experimental

setting of Kim et al. (2018). Furthermore, this
experiment highlights that changes of the network
architecture and training procedure can have large
effects on the performance of artificial systems.

Our experiments

The findings of Kim et al. (2018) were based on
rather small neural networks, which consisted of up
to six layers. However, typical network architectures
used for object recognition consist of more layers and
have larger receptive fields. For this reason, we tested a
representative of such networks, namely, ResNet-50.
The experimental setup can be found in Appendix C.

We found that our feed-forward model can in fact
perform well on the same-different tasks of SVRT (see
Figure 3B; see also concurrent work of Messina et al.,
2019). This result was not due to an increase in the
number of training samples. In fact, we used fewer
images (28,000 images) than Kim et al. (2018) (1 million
images) and Messina et al. (2019) (400,000 images).
Of course, the results were obtained on the SVRT
data set and might not hold for other visual reasoning
data sets (see Introduction, “Testing generalization of
mechanisms”).

In the very low-data regime (1,000 samples), we
found a difference between the two types of tasks. In
particular, the overall performance on same-different
tasks was lower than on spatial reasoning tasks. As
for the previously mentioned studies, this cannot be
taken as evidence for systematic differences between
feed-forward neural networks and the human visual
system. In contrast to the neural networks used in
this experiment, the human visual system is naturally
pretrained on large amounts of visual reasoning tasks,
thus making the low-data regime an unfair testing
scenario from which it is almost impossible to draw
solid conclusions about differences in the internal
information processing. In other words, it might very
well be that the human visual system trained from
scratch on the two types of tasks would exhibit a
similar difference in sample efficiency as a ResNet-50.
Furthermore, the performance of a network in the
low-data regime is heavily influenced by many factors
other than architecture, including regularization
schemes or the optimizer, making it even more difficult
to reach conclusions about systematic differences in the
network structure between humans and machines.

Case study 3: Recognition gap
Ullman et al. (2016) investigated the minimally

necessary visual information required for object
recognition. To this end, they successively cropped
or reduced the resolution of a natural image until
more than 50% of all human participants failed to
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identify the object. The study revealed that recognition
performance drops sharply if the minimal recognizable
image crops are reduced any further. They referred
to this drop in performance as the “recognition gap.”
The gap is computed by subtracting the proportion of
people who correctly classify the largest unrecognizable
crop (e.g., 0.2) from that of the people who correctly
classify the smallest recognizable crop (e.g., 0.9). In
this example, the recognition gap would evaluate to
0.9 − 0.2 = 0.7. On the same human-selected image
crops, Ullman et al. (2016) found that the recognition
gap is much smaller for machine vision algorithms (0.14
± 0.24) than for humans (0.71 ± 0.05). The researchers
concluded that machine vision algorithms would not
be able to “explain [humans’] sensitivity to precise
feature configurations” and “that the human visual
system uses features and processes that are not used by
current models and that are critical for recognition.”
In a follow-up study, Srivastava et al. (2019) identified
“fragile recognition images” (FRIs) with an exhaustive
machine-based procedure whose results include a
subset of patches that adhere to the definition of
minimal recognizable configurations (MIRCs) by
Ullman et al. (2016). On these machine-selected FRIs, a
DNN experienced a moderately high recognition gap,
whereas humans experienced a low one. Because of the
differences between the selection procedures used in
Ullman et al. (2016) and Srivastava et al. (2019), the
question remained open whether machines would show
a high recognition gap on machine-selected minimal
images, if the selection procedure was similar to the one
used in Ullman et al. (2016).

Our experiment

Our goal was to investigate if the differences in
recognition gaps identified by Ullman et al. (2016)
would at least in part be explainable by differences in
the experimental procedures for humans and machines.
Crucially, we wanted to assess machine performance
on machine-selected, and not human-selected, image
crops. We therefore implemented the psychophysics
experiment in a machine setting to search the
smallest recognizable images (or MIRCs) and the
largest unrecognizable images (sub-MIRCs). In
the final step, we evaluated our machine model’s
recognition gap using the machine-selected MIRCs and
sub-MIRCs.

Methods
Our machine-based search algorithm used the deep

convolutional neural network BagNet-33 (Brendel &
Bethge, 2019), which allows us to straightforwardly
analyze images as small as 33 × 33 pixels. In the first
step, the classification accuracy was evaluated for
the whole image. If it was above 0.5, the image was

successively cropped and reduced in resolution. In
each step, the best-performing crop was taken as the
new parent. When the classification probability of all
children fell below 0.5, the parent was identified as the
MIRC, and all its children were considered sub-MIRCs.
In order to evaluate the recognition gap, we calculate
the difference in accuracy between the MIRC and the
best-performing sub-MIRC. This definition is more
conservative than the one from Ullman et al. (2016),
who evaluated the difference in accuracy between the
MIRC and the worst-performing sub-MIRC. For more
details on the search procedure, please see Appendix D.

Results
We evaluated the recognition gap on two data sets:

the original images from Ullman et al. (2016) and a
subset of the ImageNet validation images (Deng et al.,
2009). As shown in Figure 4A, our model has an average
recognition gap of 0.99 ± 0.01 on the machine-selected
crops of the data set from Ullman et al. (2016). On
the machine-selected crops of the ImageNet validation
subset, a large recognition gap occurs as well. Our
values are similar to the recognition gap in humans and
differ from the machines’ recognition gap (0.14 ± 0.24)
between human-selected MIRCs and sub-MIRCs as
identified by Ullman et al. (2016).

Discussion
Our findings contrast claims made by Ullman et

al. (2016). The latter study concluded that machine
algorithms are not as sensitive as humans to precise
feature configurations and that they are missing features
and processes that are “critical for recognition.” First,
our study shows that a machine algorithm is sensitive
to small image crops. It is only the precise minimal
features that differ between humans and machines.
Second, by the word “critical,” Ullman et al. (2016)
imply that object recognition would not be possible
without these human features and processes. Applying
the same reasoning to Srivastava et al. (2019), the
low human performance on machine-selected patches
should suggest that humans would miss “features and
processes critical for recognition.” This would be an
obviously overreaching conclusion. Furthermore, the
success of modern artificial object recognition speaks
against the conclusion that the purported processes are
“critical” for recognition, at least within this discretely
defined recognition task. Finally, what we can conclude
from the experiments of Ullman et al. (2016) and from
our own is that both the human and a machine visual
system can recognize small image crops and that there
is a sudden drop in recognizability when reducing the
amount of information.

In summary, these results highlight the importance
of testing humans and machines in as similar settings
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Figure 4. (A) BagNet-33’s probability of correct class for decreasing crops: The sharp drop when the image becomes too small or the
resolution too low is called the “recognition gap” (Ullman et al., 2016). It was computed by subtracting the model’s predicted
probability of the correct class for the sub-MIRC from the model’s predicted probability of the correct class for the MIRC. As an
example, the glasses stimulus was evaluated as 0.9999 − 0.0002 = 0.9997. The crop size on the x-axis corresponds to the size of the
original image in pixels. Steps of reduced resolution are not displayed such that the three sample stimuli can be displayed coherently.
(B) Recognition gaps for machine algorithms (vertical bars) and humans (gray horizontal bar). A recognition gap is identifiable for the
DNN BagNet-33 when testing machine-selected stimuli of the original images from Ullman et al. (2016) and a subset of the ImageNet
validation images (Deng et al., 2009). Error bars denote standard deviation.

as possible, and of avoiding a human bias in the
experiment design. All conditions, instructions, and
procedures should be as close as possible between
humans and machines in order to ensure that observed
differences are due to inherently different decision
strategies rather than differences in the testing
procedure.

Conclusion

Comparing human and machine visual perception
can be challenging. In this work, we presented a
checklist on how to perform such comparison studies in
a meaningful and robust way. For one, isolating a single
mechanism requires us to minimize or exclude the effect
of other differences between biological and artificial
and to align experimental conditions for both systems.
We further have to differentiate between necessary and
sufficient mechanisms and to circumscribe in which
tasks they are actually deployed. Finally, an overarching
challenge in comparison studies between humans and
machines is our strong internal human interpretation
bias.

Using three case studies, we illustrated the application
of the checklist. The first case study on closed contour
detection showed that human bias can impede the
objective interpretation of results and that investigating
which mechanisms could or could not be at work may
require several analytic tools. The second case study
highlighted the difficulty of drawing robust conclusions
about mechanisms from experiments. While previous
studies suggested that feedback mechanisms might be

important for visual reasoning tasks, our experiments
showed that they are not necessarily required. The
third case study clarified that aligning experimental
conditions for both systems is essential. When adapting
the experimental settings, we found that, unlike the
differences reported in a previous study, DNNs and
humans indeed show similar behavior on an object
recognition task.

Our checklist complements other recent proposals
about how to compare visual inference strategies
between humans and machines (Buckner, 2019; Chollet,
2019; Ma & Peters, 2020; Geirhos et al., 2020) and helps
to create more nuanced and robust insights into both
systems.
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Appendix A: Literature overview of
comparison studies

A growing body of work discusses comparisons of
humans and machines on a higher level. Majaj and Pelli
(2018) provide a broad overview how machine learning
can help vision scientists to study biological vision, while
Barrett et al. (2019) review methods on how to analyze
representations of biological and artificial networks.
From the perspective of cognitive science, Cichy and
Kaiser (2019) stress that deep learning models can serve
as scientific models that not only provide both helpful
predictions and explanations but that can also be used
for exploration. Furthermore, from the perspective of
psychology and philosophy, Buckner (2019) emphasizes
often-neglected caveats when comparing humans and
DNNs such as human-centered interpretations and calls
for discussions regarding how to properly align machine
and human performance. Chollet (2019) proposes a
general artificial intelligence benchmark and suggests
to rather evaluate intelligence as “skill-acquisition
efficiency” than to focus on skills at specific tasks.

In the following, we give a brief overview of studies
that compare human and machine perception. In order
to test if DNNs have similar cognitive abilities as
humans, a number of studies test DNNs on abstract
(visual) reasoning tasks (Barrett et al., 2018; Yan &
Zhou, 2017; Wu et al., 2019; Santoro et al., 2017;
Villalobos et al., 2020). Other comparison studies focus
on whether human visual phenomena such as illusions
(Gomez-Villa et al., 2019; Watanabe et al., 2018; Kim et
al., 2019) or crowding (Volokitin et al., 2017; Doerig et
al., 2019) can be reproduced in computational models.
In the attempt to probe intuition in machine models,
DNNs are compared to intuitive physics engines, that
is, probabilistic models that simulate physical events
(Zhang et al., 2016).

Other works investigate whether DNNs are sensible
models of human perceptual processing. To this
end, their prediction or internal representations are
compared to those of biological systems, for example,
to human and/or monkey behavioral representations
(Peterson et al., 2016; Schrimpf et al., 2018; Yamins
et al., 2014; Eberhardt et al., 2016; Golan et al.,
2019), human fMRI representations (Han et al., 2019;

Khaligh-Razavi & Kriegeskorte, 2014) or monkey cell
recordings (Schrimpf et al., 2018; Khaligh-Razavi &
Kriegeskorte, 2014; Yamins et al., 2014; Cadena et al.,
2019).

A great number of studies focus on manipulating
tasks and/or models. Researchers often use
generalization tests on data dissimilar to the training
set (Zhang et al., 2018; Wu et al., 2019) to test whether
machines understood the underlying concepts. In
other studies, the degradation of object classification
accuracy is measured with respect to image degradations
(Geirhos et al., 2018) or with respect to the type of
features that play an important role for human or
machine decision-making (Geirhos, Rubisch, et al.,
2018; Brendel & Bethge, 2019; Kubilius et al., 2016;
Ullman et al., 2016; Ritter et al., 2017). A lot of effort
is being put into investigating whether humans are
vulnerable to small, adversarial perturbations in images
(Elsayed et al., 2018; Zhou & Firestone, 2019; Han et
al., 2019; Dujmović et al., 2020), as DNNs are shown
to be (Szegedy et al., 2013). Similarly, in the field of
natural language processing, a trend is to manipulate
the data set itself by, for example, negating statements
to test whether a trained model gains an understanding
of natural language or whether it only picks up on
statistical regularities (Niven & Kao, 2019; McCoy et
al., 2019).

Further work takes inspiration from biology or uses
human knowledge explicitly in order to improve DNNs.
Spoerer et al. (2017) found that recurrent connections,
which are abundant in biological systems, allow for
higher object recognition performance, especially
in challenging situations such as in the presence of
occlusions—in contrast to pure feed-forward networks.
Furthermore, several researchers suggest (Zhang
et al., 2018; Kim et al., 2018) or show (Wu et al.,
2019; Barrett et al., 2018; Santoro et al., 2017) that
designing networks’ architecture or features with
human knowledge is key for machine algorithms to
successfully solve abstract (reasoning) tasks.

Appendix B: Closed contour
detection

Data set

Each image in the training set contained a main
contour, multiple flankers, and a background image.
The main contour and flankers were drawn into an
image of size 1, 028 × 1, 028 pixels. The main contour
and flankers could be straight or curvy lines, for which
the generation processes are respectively described
in the next two subsections. The lines had a default
thickness of 10 pixels. We then resized the image to
256 × 256 pixels using anti-aliasing to transform the
black and white pixels into smoother lines that had
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Figure 5. Closed contour data set. (A) Left: The main contour
was generated by connecting points from a random sampling
process of angles and radii. Right: Resulting line-drawing with
flankers. (B) Left: Generation process of curvy contours. Right:
Resulting line-drawing.

gray pixels at the borders. Thus, the lines in the resized
image had a thickness of 2.5 pixels. In the following, all
specifications of sizes refer to the resized image (i.e., a
line described of final length 10 pixels extended over 40
pixels when drawn into the 1, 028 × 1, 028-pixel image).
For the psychophysical experiments (see Appendix B,
Psychophysical experiment), we added a white margin
of 16 pixels on each side of the image to avoid illusory
contours at the borders of the image.

Varying contrast of background. An image from the
ImageNet data set was added as background to the
line drawing. We converted the image into LAB color
space and linearly rescaled the pixel intensities of the
image to produce a normalized contrast value between
0 (gray image with the RGB values [118, 118, 118]) and
1 (original image) (see Figure 8A). When adding the
image to the line drawing, we replaced all pixels of the
line drawing by the values of the background image for
which the background image had a higher grayscale
value than the line drawing. For the experiments in the
main body, the contrast of the background image was
always 0. The other contrast levels were used only for
the additional experiment described in Appendix B,
Additional experiment: Increasing the task difficulty by
adding a background image.

Generation of image pairs.. We aimed to reduce the
statistical properties that could be exploited to solve
the task without judging the closedness of the contour.
Therefore, we generated image pairs consisting of an
“open” and a “closed” version of the same image. The
two versions were designed to be almost identical and
had the same flankers. They differed only in the main
contour, which was either open or closed. Examples
of such image pairs are shown in Figure 5. During
training, either the closed or the open image of a pair
was used. However, for the validation and testing, both
versions were used. This allowed us to compare the
predictions and heatmaps for images that differed only
slightly but belonged to different classes.

Line-drawing with polygons as main contour
The data set used for training as well as some of

the generalization sets consisted of straight lines. The
main contour consisted of n ∈ {3, 4, 5, 6, 7, 8, 9}
line segments that formed either an open or a closed
contour. The generation process of the main contour is
depicted on the left side of Figure 5A. To get a contour
with n edges, we generated n points, which were defined
by a randomly sampled angle αn and a randomly
sampled radius rn (between 0 and 128 pixels). By
connecting the resulting points, we obtained the closed
contour. We used the python PIL library (PIL 5.4.1,
python3) to draw the lines that connect the endpoints.
For the corresponding open contour, we sampled two
radii for one of the angles such that they had a distance
of 20 to 50 pixels from each other. When connecting the
points, a gap was created between the points that share
the same angle. This generation procedure could allow
for very short lines with edges being very close to each
other. To avoid this, we excluded all shapes with corner
points closer to 10 pixels from nonadjacent lines.

The position of the main contour was random, but
we ensured that the contour did not extend over the
border of the image.

Besides the main contour, several flankers consisting
of either one or two line segments were added to each
stimulus. The exact number of flankers was uniformly
sampled from the range [10,25]. The length of each
line segment varied between 32 and 64 pixels. For
the flankers consisting of two line segments, both
lines had the same length, and the angle between the
line segments was at least 45◦. We added the flankers
successively to the image and thereby ensured a minimal
distance of 10 pixels between the line centers. To ensure
that the corresponding image pairs would have the
same flankers, the distances to both the closed and
open version of the main contour were accounted for
when re-sampling flankers. If a flanker did not fulfill
this criterion, a new flanker was sampled of the same
size and the same number of line segments, but it was
placed somewhere else. If a flanker extended over the
border of the image, the flanker was cropped.

Line-drawing with curvy lines as main contour
For some of the generalization sets, the contours

consisted of curvy instead of straight lines. These were
generated by modulating a circle of a given radius rc
with a radial frequency function that was defined by
two sinusoidal functions. The radius of the contour was
thus given by

r(φ) = A1 sin( f1(φ + θ1))
+A2 sin( f2(φ + θ2)) + rc, (1)

with the frequencies f1 and f2 (integers between 1 and
6), amplitudes A1 and A2 (random values between 15
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and 45), and phases θ1 and θ2 (between 0 and 2π ).
Unless stated otherwise, the diameter (diameter =
2 × rc) was a random value between 50 and 100 pixels,
and the contour was positioned in the center of the
image. The open contours were obtained by removing a
circular segment of size φo = π

3 at a random phase (see
Figure 5B).

For two of the generalization data sets, we used
dashed contours that were obtained by masking out
20 equally distributed circular segments each of size
φd = π

20 .

Details on generalization data sets
We constructed 15 variants of the data set to test

generalization performance. Nine variants consisted
of contours with straight lines. Six of these featured
varying line styles like changes in line width (10, 13,
14) and/or line color (11, 12). For one variant (5), we
increased the number of edges in the main contour.
Another variant (4) had no flankers, and yet another
variant (6) featured asymmetric flankers. For variant
9, the lines were binarized (only black or gray pixels
instead of different gray tones).

In another six variants, the contours as well as the
flankers were curved, meaning that we modulated a
circle with a radial frequency function. The first four
variants did not contain any flankers and the main
contour had a fixed size of 50 pixels (3), 100 pixels
(1), and 150 pixels (8). For another variant (15), the
contour was a dashed line. Finally, we tested the effect
of different flankers by adding one additional closed,
yet dashed contour (2) or one to four open contours (7).

Below, we provide more details on some of these data
sets:

Black-white-black lines (12). For all contours, black
lines enclosed a white one in the middle. Each of these
three lines had a thickness of 1.5 pixels, which resulted
in a total thickness of 4.5 pixels.

Asymmetric flankers (6). The two-line flankers
consisted of one long and one short line instead of two
equally long lines.

W/ dashed flanker (2). This data set with curvy
contours contained an additional dashed, yet closed
contour as a flanker. It was produced like the main
contour in the dashed main contour set. To avoid
overlap of the contours, the main contour and the
flanker could only appear at four determined positions
in the image, namely, the corners.

W/ multiple flankers (7). In addition to the curvy
main contour, between one and four open curvy
contours were added as flankers. The flankers were
generated by the same process as the main contour. The
circles that were modulated had a diameter of 50 pixels
and could appear at either one of the four corners of
the image or in the center.

Psychophysical experiment

To estimate how well humans would be able to
distinguish closed and open stimuli, we performed a
psychophysical experiment in which observers reported
which of two sequentially presented images contained
a closed contour (two-interval forced choice [2-IFC]
task).

Stimuli
The images of the closed contour data set were

used as stimuli for the psychophysical experiments.
Specifically, we used the images from the test sets that
were used to evaluate the performance of the models.
For our psychophysical experiments, we used two
different conditions: The images contained either black
(i.i.d. to the training set) or white contour lines. The
latter was one one of the generalization test sets.

Apparatus
Stimuli were displayed on a VIEWPixx 3D LCD

(VPIXX Technologies; spatial resolution 1, 920 ×
1, 080 pixels, temporal resolution 120 Hz, operating
with the scanning backlight turned off). Outside the
stimulus image, the monitor was set to mean gray.
Observers viewed the display from 60 cm (maintained
via a chinrest) in a darkened chamber. At this distance,
pixels subtended approximately 0.024◦ on average
(41 pixels per degree of visual angle). The monitor
was linearized (maximum luminance 260 cd/m2 using
a Konica-Minolta LS-100 photometer. Stimulus
presentation and data collection were controlled
via a desktop computer (Intel Core i5-4460 CPU,
AMD Radeon R9 380 GPU) running Ubuntu Linux
(16.04 LTS), using the Psychtoolbox Library (Pelli
& Vision, 1997; Kleiner et al., 2007; Brainard &
Vision, 1997, version 3.0.12) and the iShow library
(http://dx.doi.org/10.5281/zenodo.34217) under
MATLAB (The Mathworks, Inc., R2015b).

Participants
In total, 19 naïve observers (4 male, 15 female,

age: 25.05 years, SD = 3.52) participated in the
experiment. Observers were paid 10€ per hour for
participation. Before the experiment, all subjects had
given written informed consent for participating. All
subjects had normal or corrected-to-normal vision. All
procedures conformed to Standard 8 of the American
Psychological 405 Association’s “Ethical Principles of
Psychologists and Code of Conduct” (2010).

Procedure
On each trial, one closed and one open contour

stimulus were presented to the observer (see Figure 6A).
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Figure 6. (A) In a 2-IFC task, human observers had to tell which of two images contained a closed contour. (B) Accuracy of the 20 naïve
observers for the different conditions.

The images used for each trial were randomly picked,
but we ensured that the open and closed images shown
in the same trial were not the ones that were almost
identical to each other (see Appendix B, Generation
of image pairs). Thus, the number of edges of the
main contour could differ between the two images
shown in the same trial. Each image was shown for
100 ms, separated by a 300-ms interstimulus interval
(blank gray screen). We instructed the observer to
look at the fixation spot in the center of the screen.
The observer was asked to identify whether the image
containing a closed contour appeared first or second.
The observer had 1,200 ms to respond and was given
feedback after each trial. The intertrial interval was
1,000 ms. Each block consisted of 100 trials and
observers performed five blocks. Trials with different
line colors and varying background images (contrasts
including 0, 0.4, and 1) were blocked. Here, we only
report the results for black and white lines of contrast
0. Upon the first time that a block with a new line color
was shown, observers performed a practice session with
48 trials of the corresponding line color.

Training of ResNet-50 model

We fine-tuned a ResNet-50 (He et al., 2016)
pretrained on ImageNet (Deng et al., 2009) on
the closed contour task. We replaced the last fully
connected, 1,000-way classification layer by layer with
only one output neuron to perform binary classification
with a decision threshold of 0. The weights of all layers
were fine-tuned using the optimizer Adam (Kingma
& Ba, 2014) with a batch size of 64. All images were
preprocessed to have the same mean and standard
deviation and were randomly mirrored horizontally
and vertically for data augmentation. The model was
trained on 14,000 images for 10 epochs with a learning
rate of 0.0003. We used a validation set of 5,600 images.

Generalization tests. To determine the generalization
performance, we evaluated the model on the test sets

without any further training. Each of the test sets
contained 5,600 images. Poor accuracy could simply
result from a suboptimal decision criterion rather than
because the network would not be able to tell the stimuli
apart. To account for the distribution shift between the
original training images and the generalization tasks,
we optimized the decision threshold (a single scalar) for
each data set. To find the optimal threshold for each
data set, we subdivided the interval, in which 95% of all
logits lie, into 100 sub points and picked the threshold
that would lead to the highest performance.

Training of BagNet-33 model

To test an alternative decision-making mechanism
to global contour integration, we trained and tested
a BagNet-33 (Brendel & Bethge, 2019) on the closed
contour task. Like the ResNet-50 model, it was
pretrained on ImageNet (Deng et al., 2009) and
we replaced the last fully connected, 1,000-way
classification layer by layer with only one output
neuron. We fine-tuned the weights using the optimizer
AdaBound (Luo et al., 2019) with an initial and final
learning rate of 0.0001 and 0.1, respectively. The
training images were generated on-the-fly, which meant
that new images were produced for each epoch. In total,
the fine-tuning lasted 100 epochs, and we picked the
weights from the epoch with the highest performance.

Generalization tests. The generalization tests were
conducted equivalently to the ones with ResNet-50.
The results are shown in Figure 7.

Additional experiment: Increasing the task
difficulty by adding a background image

We performed an additional experiment, where we
tested if the model would become more robust and
thus generalized better if we trained on a more difficult
task. This was achieved by adding an image to the
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Figure 7. Generalization performances of BagNet-33.

Figure 8. (A) An image of varying contrast was added as background. (B) Generalization performances of our models trained on
random contrast levels and tested on single contrast levels.

background, such that the model had to learn how to
separate the lines from the task-irrelevant background.

In our experiment, we fine-tuned our ResNet-50-
based model on images with a background image of
a uniformly sampled contrast. For each data set, we
evaluated the model separately on six discrete contrast
levels {0, 0.2, 0.4, 0.6, 0.8, 1} (see Figure 8A). We found
that the generalization performance varied for some
data sets compared to the experiment in the main body
(see Figure 8B).

Appendix C: SVRT

Methods

Data set. We used the original C-code provided by
Fleuret et al. (2011) to generate the images of the SVRT
data set. The images had a size of 128 × 128 pixels. For
each problem, we used up to 28,000 images for training,
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Figure 9. Accuracy of the models for the individual problems. Problem 8 is a mixture of same-different task and spatial task. In
Figure 3, this problem was assigned to the spatial tasks. Bars replotted from Kim et al. (2018).

5,600 images for validation, and 11,200 images for
testing.

Experimental procedures. For each of the SVRT
problems, we fine-tuned a ResNet-50 that was
pretrained on ImageNet (Deng et al., 2009) (as
described in Appendix B, Training of ResNet-50
model). The same preprocessing, data augmentation,
optimizer, and batch size as for the closed contour task
were used.

For the different experiments, we varied the number
of training images. We used subsets containing 28,000,
1,000, or 100 images. The number of epochs depended
on the size of the training set: The model was fine-tuned
for respectively 10, 280, or 2800 epochs. For each
training set size and SVRT problem, we used the
best learning rate after a hyper-parameter search on
the validation set, where we tested the learning rates
[6 × 10−5, 1 × 10−4, 3 × 10−4].

As a control experiment, we also initialized the
model with random weights, and we again performed
a hyper-parameter search over the learning rates
[3 × 10−4, 6 × 10−4, 1 × 10−3].

Results

In Figure 9, we show the results for the individual
problems. When using 28,000 training images, we
reached above 90% accuracy for all SVRT problems,
including the ones that required same-different
judgments (see also Figure 3B). When using less
training images, the performance on the test set was
reduced. In particular, we found that the performance
on same-different tasks dropped more rapidly than on
spatial reasoning tasks. If the ResNet-50 was trained
from scratch (i.e., weights were randomly initialized
instead of loaded from pretraining on ImageNet),
the performance dropped only slightly on all but one
spatial reasoning task. Larger drops were found on
same-different tasks.

Appendix D: Recognition gap

Details on methods

Data set. We used two data sets for this experiment.
One consisted of 10 natural, color images whose
grayscale versions were also used in the original study
by Ullman et al. (2016). We discarded one image from
the original data set as it does not correspond to any
ImageNet class. For our ground truth class selection,
please see Table 1. The second data set consisted of
1,000 images from the ImageNet (Deng et al., 2009)
validation set. All images were preprocessed like in
standard training of ResNet (i.e., resizing to 256 ×
256 pixels, cropping centrally to 224 × 224 pixels and
normalizing).

Model. In order to evaluate the recognition gap, the
model had to be able to handle small input images.
Standard networks like ResNet (He et al., 2016) are
not equipped to handle small images. In contrast,
BagNet-33 (Brendel & Bethge, 2019) allows us to
straightforwardly analyze images as small as 33 ×
33 pixels and hence was our model of choice for this
experiment. It is a variation of ResNet-50 (He et al.,
2016), where most 3 × 3 kernels are replaced by 1 ×
1 kernels such that the receptive field size at the
top-most convolutional layer is restricted to 33 ×
33 pixels.

Machine-based search procedure for minimal
recognizable images. Similar to Ullman et al. (2016), we
defined minimal recognizable images or configurations
(MIRCs) as those patches of an image for which an
observer—by which we mean an ensemble of humans
or one or several machine algorithms—reaches ≥ 50%
accuracy, but any additional 20% cropping of the
corners or 20% reduction in resolution would lead
to an accuracy < 50%. MIRCs are thus inherently
observer-dependent. The original study only searched
for MIRCs in humans. We implemented the following
procedure to find MIRCs in our DNN: We passed
each preprocessed image through BagNet-33 and
selected the most predictive crop according to its
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Image WordNet Hierarchy ID WordNet Hierarchy description
Neuron number in ResNet-50

(indexing starts at 0)

fly n02190166 fly 308
ship n02687172 aircraft carrier, carrier, flattop, attack

aircraft carrier
403

n03095699 container ship, containership, container
vessel

510

n03344393 fireboat 554
n03662601 lifeboat 625
n03673027 liner, ocean liner 628

eagle n01608432 kite 21
n01614925 bald eagle, American eagle, Haliaeetus

leucocephalus
22

glasses n04355933 sunglass 836
n04356056 sunglasses, dark glasses, shades 837

bike n02835271 bicycle-built-for-two, tandem bicycle,
tandem

444

n03599486 jinrikisha, ricksha, rickshaw 612
n03785016 moped 665
n03792782 mountain bike, all-terrain bike, off-roader 671
n04482393 tricycle, trike, velocipede 870

suit n04350905 suit, suit of clothes 834
n04591157 windsor tie 906

plane n02690373 airliner 404
horse n02389026 sorrel 339

n03538406 horse cart, horse-cart 603
car n02701002 ambulance 407

n02814533 beach wagon, station wagon, wagon
estate car, beach waggon, station
waggon, waggon

436

n02930766 cab, hack, taxi, taxicab 468
n03100240 convertible 511
n03594945 jeep, landrover 609
n03670208 limousine, limo 627
n03769881 minibus 654
n03770679 minivan 656
n04037443 racer, race car, racing car 751
n04285008 sports car, sport car 817

Table 1. Selection of ImageNet classes for stimuli of Ullman et al. (2016).

probability. See Appendix D, Selecting best crop when
probabilities saturate on how to handle cases where
the probability saturates at 100% and Appendix D,
Analysis of different class selections and different
number of descendants for different treatments of
ground truth class selections. If this probability of the
full-size image for the ground-truth class was ≥ 50%,
we again searched for the 80% subpatch with the
highest probability. We repeated the search procedure
until the class probability for all subpatches fell below
50%. If the 80% subpatches would be smaller than
33 × 33 pixels, which is BagNet-33’s smallest natural
patch size, the crop was increased to 33 × 33 pixels

using bilinear sampling. We evaluated the recognition
gap as the difference in accuracy between the MIRC
and the best-performing sub-MIRC. This definition
was more conservative than the one from Ullman et
al. (2016), who considered the maximum difference
between a MIRC and its sub-MIRCs, that is, the
difference between the MIRC and the worst-performing
sub-MIRC. Please note that one difference between our
machine procedure and the psychophysics experiment
by Ullman et al. (2016) remained: The former was
greedy, whereas the latter corresponded to an exhaustive
search under certain assumptions.
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Figure 10. (A) Recognition gaps. The legend holds for all subplots. (B) Size of MIRCs. (C) Fraction of images that have MIRCS.

Analysis of different class selections and
different number of descendants

Treating the 10 stimuli from Ullman et al. (2016)
in our machine algorithm setting required two design
choices: We needed to both pick suitable ground truth
classes from ImageNet for each stimulus as well as
choose if and how to combine them. The former is
subjective, and using relationships from WordNet
Hierarchy (Miller, 1995) (as Ullman et al. [2016] did in
their psychophysics experiment) only provides limited
guidance. We picked classes to our best judgment (for
our final ground truth class choices, please see Table 1).
Regarding the aspect of handling several ground
truth classes, we extended our experiments: We tested
whether considering all classes as one (“joint classes,”

i.e., summing the probabilities) or separately (“separate
classes,” i.e., rerunning the stimuli for each ground
truth class) would have an effect on the recognition gap.
As another check, we investigated whether the number
of descendant options would alter the recognition
gap: Instead of only considering the four corner crops
as in the psychophysics experiment by Ullman et al.
(2016) (“Ullman4”), we looked at every crop shifted
by 1 pixel as a potential new parent (“stride-1”). The
results reported in the main body correspond to joint
classes and corner crops. Finally, besides analyzing the
recognition gap, we also analyzed the sizes of MIRCs
and the fractions of images that possess MIRCs for the
mentioned conditions.

Figure 10A shows that all options result in similar
values for the recognition gap. The trend of smaller
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MIRC sizes for stride-1 compared to four corner crops
shows that the search algorithm can find even smaller
MIRCs when all crops are possible descendants (see.
Figure 10B). The final analysis of how many images
possess MIRCs (see Figure 10C) shows that recognition
gaps only exist for fractions of the tested images: In
the case of the stimuli from Ullman et al. (2016), three
out of nine images, and in the case of ImageNet,
about 60% of the images have MIRCs. This means
that the recognition performance of the initial full-size
configurations was ≥ 50% for those fractions only.
Please note that we did not evaluate the recognition
gap over images that did not meet this criterion. In
contrast, Ullman et al. (2016) average only across
MIRCs that have a recognition rate above 65% and
sub-MIRCs that have a recognition rate below 20%
(personal communication, 2019). The reason why our
model could only reliably classify three out of the nine
stimuli from Ullman et al. (2016) can partly be traced
back to the oversimplification of single-class attribution
in ImageNet as well as to the overconfidence of deep
learning classification algorithms (Guo et al., 2017):
They often attribute a lot of evidence to one class, and
the remaining ones only share very little evidence.

Selecting best crop when probabilities saturate

We observed that several crops had very high
probabilities and therefore used the “logit” measure
logit(p), where p is the probability. It is defined as the
following: logit(p) = log( p

1−p ). Note that this measure
is different from what the deep learning community
usually refers to as “logits,” which are the values before
the softmax layer. In the following, we denote the latter
values as z. The logit logit(p) is monotonic w.r.t. to the
probability p, meaning that the higher the probability p,
the higher the logit logit(p). However, while p saturates
at 100%, logit(p) is unbounded. Therefore, it yields a
more sensitive discrimination measure between image
patches j that all have p(z j ) = 1, where the superscript
j denotes different patches.
In the following, we will provide a short derivation

for the logit logit(p). Consider a single patch with the
correct class c. We start with the probability pc of class
c, which can be obtained by plugging the logits zi into
the softmax formula, where i corresponds to the classes
[0, …, 1,000].

pc(z) = exp(zc)
exp(zc) + ∑

i �=c
exp(zi )

(2)

Since we are interested in the probability of the
correct class, it holds that pc(z) �= 0. Thus, in the regime

of interest, we can invert both sides of the equation.
After simplifying, we get

1
pc(z)

− 1 =

∑
i �=c

exp(zi )

exp(zc)
. (3)

When taking the negative logarithm on both sides,
we obtain

⇔ −log
(

1
pc(z)

− 1
)

= −log

⎛
⎜⎝

∑
i �=c

exp(zi)

exp(zc)

⎞
⎟⎠ (4)

⇔− log
(
1 − pc(z)
pc(z)

)
= −log

⎛
⎝∑

i �=c

exp(zi )

⎞
⎠

− (−log(exp(zc))) (5)

⇔ log
(

pc(z)
1 − pc(z)

)
= zc − log

⎛
⎝∑

i �=c

exp(zi)

⎞
⎠ (6)

The left-hand side of the equation is exactly the
definition of the logit logit(p). Intuitively, it measures
in log-space how much the network’s belief in the
correct class outweighs the belief in all other classes
taken together. The following reassembling operations
illustrate this:

logit(pc) = log
(

pc(z)
1 − pc(z)

)
= log(pc(z))︸ ︷︷ ︸

log probability of correct class

− log(1 − pc(z))︸ ︷︷ ︸
log probability of all incorrect classes

(7)

The above formulations regarding one correct class
hold when adjusting the experimental design to accept
several classes k as correct predictions. In brief, the logit
logit(pC (z)), where C stands for several classes, then
states

logit(pC (z)) = −log
(

1
pc1 (z) + pc2 (z) + ... + pck (z)

− 1
)

= −log

⎛
⎜⎝ 1∑

k
pk(z)

− 1

⎞
⎟⎠

= log

(∑
k

pk(z)

)
︸ ︷︷ ︸

log probability of all correct classes
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− log

(
1 −

∑
k

pk(z)

)
︸ ︷︷ ︸

log probability of all incorrect classes

= log

(∑
k

exp(zk)

)
− log

⎛
⎝∑

i �=k

exp(zi )

⎞
⎠ (8)

Selection of ImageNet classes for stimuli of
Ullman et al. (2016)

Note that our selection of classes is different from
the one used by Ullman et al. (2016). We went through
all classes for each image and selected the ones that we
considered sensible. The 10th image of the eye does not
have a sensible ImageNet class; hence, only nine stimuli
from Ullman et al. (2016) are listed in Table 1.
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EXEMPLARY NATURAL IMAGES EXPLAIN CNN ACTI-
VATIONS BETTER THAN STATE-OF-THE-ART FEATURE
VISUALIZATION

Judy Borowski∗, Roland S. Zimmermann∗, Judith Schepers, Robert Geirhos, Thomas
S. A. Wallis†‡, Matthias Bethge‡, Wieland Brendel‡
University of Tübingen, Germany

ABSTRACT

Feature visualizations such as synthetic maximally activating images are a widely
used explanation method to better understand the information processing of con-
volutional neural networks (CNNs). At the same time, there are concerns that
these visualizations might not accurately represent CNNs’ inner workings. Here,
we measure how much extremely activating images help humans to predict CNN
activations. Using a well-controlled psychophysical paradigm, we compare the
informativeness of synthetic images by Olah et al. (2017) with a simple base-
line visualization, namely exemplary natural images that also strongly activate a
specific feature map. Given either synthetic or natural reference images, human
participants choose which of two query images leads to strong positive activa-
tion. The experiment is designed to maximize participants’ performance, and is
the first to probe intermediate instead of final layer representations. We find that
synthetic images indeed provide helpful information about feature map activations
(82 ± 4% accuracy; chance would be 50%). However, natural images — origi-
nally intended to be a baseline — outperform these synthetic images by a wide
margin (92 ± 2%). Additionally, participants are faster and more confident for
natural images, whereas subjective impressions about the interpretability of the
feature visualizations by Olah et al. (2017) are mixed. The higher informativeness
of natural images holds across most layers, for both expert and lay participants
as well as for hand- and randomly-picked feature visualizations. Even if only a
single reference image is given, synthetic images provide less information than
natural images (65±5% vs. 73±4%). In summary, synthetic images from a pop-
ular feature visualization method are significantly less informative for assessing
CNN activations than natural images. We argue that visualization methods should
improve over this simple baseline.

1 INTRODUCTION

As Deep Learning methods are being deployed across society, academia and industry, the need
to understand their decisions becomes ever more pressing. Under certain conditions, a “right to
explanation” is even required by law in the European Union (GDPR, 2016; Goodman & Flaxman,
2017). Fortunately, the field of interpretability or explainable artificial intelligence (XAI) is also
growing: Not only are discussions on goals and definitions of interpretability advancing (Doshi-
Velez & Kim, 2017; Lipton, 2018; Gilpin et al., 2018; Murdoch et al., 2019; Miller, 2019; Samek
et al., 2020) but the number of explanation methods is rising, their maturity is evolving (Zeiler &
Fergus, 2014; Ribeiro et al., 2016; Selvaraju et al., 2017; Kim et al., 2018) and they are tested and

∗Joint first and corresponding authors: firstname.lastname@uni-tuebingen.de
†Current affiliation: Institute of Psychology and Center for Cognitive Science, Technische Universität

Darmstadt
‡Joint senior authors
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Figure 1: How useful are synthetic compared to natural images for interpreting neural network
activations? A: Human experiment. Given extremely activating reference images (either synthetic
or natural), a human participant chooses which out of two query images is also a strongly activating
image. Synthetic images were generated via feature visualization (Olah et al., 2017). B: Core
result. Participants are well above chance for synthetic images — but even better when seeing
natural reference images.

used in real-world scenarios like medicine (Cai et al., 2019; Kröll et al., 2020) and meteorology
(Ebert-Uphoff & Hilburn, 2020).

We here focus on the popular post-hoc explanation method (or interpretability method) of feature
visualizations via activation maximization1. First introduced by Erhan et al. (2009) and subsequently
improved by many others (Mahendran & Vedaldi, 2015; Nguyen et al., 2015; Mordvintsev et al.,
2015; Nguyen et al., 2016a; 2017), these synthetic, maximally activating images seek to visualize
features that a specific network unit, feature map or a combination thereof is selective for. However,
feature visualizations are surrounded by a great controversy: How accurately do they represent a
CNN’s inner workings—or in short, how useful are they? This is the guiding question of our study.

On the one hand, many researchers are convinced that feature visualizations are interpretable
(Graetz, 2019) and that “features can be rigorously studied and understood” (Olah et al., 2020b).
Also other applications from Computer Vision and Natural Language Processing support the view
that features are meaningful (Mikolov et al., 2013; Karpathy et al., 2015; Radford et al., 2017; Zhou
et al., 2014; Bau et al., 2017; 2020) and might be formed in a hierarchical fashion (LeCun et al.,
2015; Güçlü & van Gerven, 2015; Goodfellow et al., 2016). Over the past few years, extensive
investigations to better understand CNNs are based on feature visualizations (Olah et al., 2020b;a;
Cammarata et al., 2020; Cadena et al., 2018), and the technique is being combined with other ex-
planation methods (Olah et al., 2018; Carter et al., 2019; Addepalli et al., 2020; Hohman et al.,
2019).

On the other hand, feature visualizations can be equal parts art and engineering as they are science:
vanilla methods look noisy, thus human-defined regularization mechanisms are introduced. But do
the resulting beautiful visualizations accurately show what a CNN is selective for? How represen-
tative are the seemingly well-interpretable, “hand-picked” (Olah et al., 2017) synthetic images in
publications for the entirety of all units in a network, a concern raised by e.g. Kriegeskorte (2015)?
What if the features that a CNN is truly sensitive to are imperceptible instead, as might be sug-
gested by the existence of adversarial examples (Szegedy et al., 2013; Ilyas et al., 2019)? Morcos
et al. (2018) even suggest that units of easily understandable features play a less important role in
a network. Another criticism of synthetic maximally activating images is that they only visualize
extreme features, while potentially leaving other features undetected that only elicit e.g. 70% of the
maximal activation. Also, polysemantic units (Olah et al., 2020b), i.e. units that are highly activated
by different semantic concepts, as well as the importance of combinations of units (Olah et al., 2017;
2018; Fong & Vedaldi, 2018) already hint at the complexity of how concepts are encoded in CNNs.

One way to advance this debate is to measure the utility of feature visualizations in terms of their
helpfulness for humans. In this study, we therefore design well-controlled psychophysical experi-
ments that aim to quantify the informativeness of the popular visualization method by Olah et al.
(2017). Specifically, participants choose which of two natural images would elicit a higher activa-

1Also known as input maximization or maximally exciting images (MEIs).
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tion in a CNN given a set of reference images that visualize the network selectivities. We use natural
query images because real-world applications of XAI require understanding model decisions to nat-
ural inputs. To the best of our knowledge, our study is the first to probe how well humans can predict
intermediate CNN activations. Our data shows that:

• Synthetic images provide humans with helpful information about feature map activations.

• Exemplary natural images are even more helpful.

• The superiority of natural images mostly holds across the network and various conditions.

• Subjective impressions of the interpretability of the synthetic visualizations vary greatly
between participants.

2 RELATED WORK

Significant progress has been made in recent years towards understanding CNNs for image data.
Here, we mention a few selected methods as examples of the plethora of approaches for under-
standing CNN decision-making: Saliency maps show the importance of each pixel to the classifi-
cation decision (Springenberg et al., 2014; Bach et al., 2015; Smilkov et al., 2017; Zintgraf et al.,
2017), concept activation vectors show a model’s sensitivity to human-defined concepts (Kim et al.,
2018), and other methods - amongst feature visualizations - focus on explaining individual units
(Bau et al., 2020). Some tools integrate interactive, software-like aspects (Hohman et al., 2019;
Wang et al., 2020; Carter et al., 2019; Collaris & van Wijk, 2020; OpenAI, 2020), combine more
than one explanation method (Shi et al., 2020; Addepalli et al., 2020) or make progress towards
automated explanation methods (Lapuschkin et al., 2019; Ghorbani et al., 2019). As overviews, we
recommend Gilpin et al. (2018); Zhang & Zhu (2018); Montavon et al. (2018) and Carvalho et al.
(2019).

Despite their great insights, challenges for explanation methods remain. Oftentimes, these tech-
niques are criticized as being over-engineered; regarding feature visualizations, this concerns the
loss function and techniques to make the synthetic images look interpretable (Nguyen et al., 2017).
Another critique is that interpretability research is not sufficiently tested against falsifiable hypothe-
ses and rather relies too much on intuition (Leavitt & Morcos, 2020).

In order to further advance XAI, scientists advocate different directions. Besides the focus on devel-
oping additional methods, some researchers (e.g. Olah et al. (2020b)) promote the “natural science”
approach, i.e. studying a neural network extensively and making empirical claims until falsification.
Yet another direction is to quantitatively evaluate explanation methods. So far, only decision-level
explanation methods have been studied in this regard. Quantitative evaluations can either be real-
ized with humans directly or with mathematically-grounded models as an approximation for human
perception. Many of the latter approaches show great insights (e.g. Hooker et al. (2019); Nguyen &
Martı́nez (2020); Fel & Vigouroux (2020); Lin et al. (2020); Tritscher et al. (2020); Tjoa & Guan
(2020)). However, a recent study demonstrates that metrics of the explanation quality computed
without human judgment are inconclusive and do not correspond to the human rankings (Biess-
mann & Refiano, 2019). Additionally, Miller (2019) emphasizes that XAI should build on existing
research in philosophy, cognitive science and social psychology.

The body of literature on human evaluations of explanation methods is growing: Various combi-
nations of data types (tabular, text, static images), task set-ups and participant pools (experts vs.
laypeople, on-site vs. crowd-sourcing) are being explored. However, these studies all aim to inves-
tigate final model decisions and do not probe intermediate activations like our experiments do. For
a detailed table of related studies, see Appendix Sec. A.3. A commonly employed task paradigm is
the “forward simulation / prediction” task, first introduced by Doshi-Velez & Kim (2017): Partici-
pants guess the model’s computation based on an input and an explanation. As there is no absolute
metric for the goodness of explanation methods (yet), comparisons are always performed within
studies, typically against baselines. The same holds for additional data collected for confidence or
trust ratings. According to the current literature, studies reporting positive effects of explanations
(e.g. Kumarakulasinghe et al. (2020)) slightly outweigh those reporting inconclusive (e.g. Alufaisan
et al. (2020); Chu et al. (2020)) or even negative effects (e.g. Shen & Huang (2020)).
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Figure 2: Example trial in psychophysical experiments. A participant is shown minimally and
maximally activating reference images for a certain feature map on the sides and is asked to select
the image from the center that also strongly activates that feature map. The answer is given by
clicking on the number according to the participant’s confidence level (1: not confident, 2: somewhat
confident, 3: very confident). After each trial, the participant receives feedback which image was
indeed the maximally activating one. For screenshots of each step in the task, see Appendix Fig. 7.

To our knowledge, no study has yet evaluated the popular explanation method of feature visualiza-
tions and how it improves human understanding of intermediate network activations. This study
therefore closes an important gap: By presenting data for a forward prediction task of a CNN, we
provide a quantitative estimate of the informativeness of maximally activating images generated
with the method of Olah et al. (2017). Furthermore, our experiments are unique as they probe for
the first time how well humans can predict intermediate model activations.

3 METHODS

We perform two human psychophysical studies2 with different foci (Experiment I (N = 10) and
Experiment II (N = 23)). In both studies, the task is to choose the one image out of two natural
query images (two-alternative forced choice paradigm) that the participant considers to also elicit
a strong activation given some reference images (see Fig. 2). Apart from the image choice, we
record the participant’s confidence level and reaction time. Specifically, responses are given by
clicking on the confidence levels belonging to either query image. In order to gain insights into
how intuitive participants find feature visualizations, their subjective judgments are collected in a
separate task and a dynamic conversation after the experiment (for details, see Appendix Sec. A.1.1
and Appendix Sec. A.2.6).

All design choices are made with two main goals: (1) allowing participants to achieve the best
performance possible to approximate an upper bound on the helpfulness of the explanation method,
and (2) gaining a general impression of the helpfulness of the examined method. As an example,
we choose the natural query images from among those of lowest and highest activations (→ best
possible performance) and test many different feature maps across the network (→ generality). For
more details on the human experiment besides the ones below, see Appendix Sec. A.1.

In Experiment I, we focus on comparing the performance of synthetic images to two baseline con-
ditions: natural reference images and no reference images. In Experiment II, we compare lay vs.
expert participants as well as different presentation schemes of reference images. Expert participants
qualify by being familiar or having practical experience with feature visualization techniques or at
least CNNs. Regarding presentation schemes, we vary whether only maximally or both maximally
and minimally activating images are shown; as well as how many example images of each of these
are presented (1 or 9).

Following the existing work on feature visualization (Olah et al., 2017; 2018; 2020b;a), we use an
Inception V1 network3 (Szegedy et al., 2015) trained on ImageNet (Deng et al., 2009; Russakovsky

2Code and data is available at https://bethgelab.github.io/testing visualizations/
3also known as GoogLeNet
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Figure 3: Participants are better, more confident and faster at judging which of two query images
causes higher feature map activation with natural than with synthetic reference images. A: Perfor-
mance. Given synthetic reference images, participants are well above chance (proportion correct:
82± 4%), but even better for natural reference images (92± 2%). Without reference images (base-
line comparison “None”), participants are close to chance. B: Confidence. Participants are much
more confident (higher rating = more confident) for natural than for synthetic images on correctly
answered trials (χ2, p < .001). C: Reaction time. For correctly answered trials, participants are
on average faster when presented with natural than with synthetic reference images. We show addi-
tional plots on confidence and reaction time for incorrectly answered trials and all trials in the Ap-
pendix (Fig. 16); for Experiment II, see Fig. 17.). The p-values in A and C correspond to Wilcoxon
signed-rank tests.

et al., 2015). The synthetic images throughout this study are the optimization results of the feature
visualization method by Olah et al. (2017) with the spatial average of a whole feature map (“channel
objective”). The natural stimuli are selected from the validation set of the ImageNet ILSVRC 2012
dataset (Russakovsky et al., 2015) according to their activations for the feature map of interest.
Specifically, the images of the most extreme activations are sampled, while ensuring that each lay
or expert participant sees different query and reference images. A more detailed description of the
specific sampling process for natural stimuli and the generation process of synthetic stimuli is given
in Sec. A.1.2.

4 RESULTS

In this section, all figures show data from Experiment I except for Fig. 5A+C, which show data
from Experiment II. All figures for Experiment II, which replicate the findings of Experiment I, as
well as additional figures for Experiment I (such as a by-feature-map analysis), can be found in the
Appendix Sec. A.2. Note that (unless explicitly noted otherwise), error bars denote two standard
errors of the mean of the participant average metric.

4.1 PARTICIPANTS ARE BETTER, MORE CONFIDENT AND FASTER WITH NATURAL IMAGES

Synthetic images can be helpful: Given synthetic reference images generated via feature visualiza-
tion (Olah et al., 2017), participants are able to predict whether a certain network feature map prefers
one over the other query image with an accuracy of 82±4%, which is well above chance level (50%)
(see Fig. 3A). However, performance is even higher in what we intended to be the baseline condi-
tion: natural reference images (92±2%). Additionally, for correct answers, participants much more
frequently report being highly certain on natural relative to synthetic trials (see Fig. 3B), and their
average reaction time is approximately 3.7 seconds faster when seeing natural than synthetic refer-
ence images (see Fig. 3C). Taken together, these findings indicate that in our setup, participants are
not just better overall, but also more confident and substantially faster on natural images.

4.2 NATURAL IMAGES ARE MORE HELPFUL ACROSS A BROAD RANGE OF LAYERS

Next, we take a more fine-grained look at performance across different layers and branches of the
Inception modules (see Fig. 4). Generally, feature map visualizations from lower layers show low-
level features such as striped patterns, color or texture, whereas feature map visualizations from
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Figure 4: Performance is high across (A) a broad range of layers and (B) all branches of the Inception
modules. The latter differ in their kernel sizes (1 × 1, 3 × 3, 5 × 5, pool). Again, natural images
are (mostly) more helpful than synthetic images. Additional plots for the none condition as well as
Experiment II can be found in the Appendix in respectively Fig. 18 and Fig. 19.

higher layers tend to show more high-level concepts like (parts of) objects (LeCun et al., 2015;
Güçlü & van Gerven, 2015; Goodfellow et al., 2016). We find performance to be reasonably high
across most layers and branches: participants are able to match both low-level and high-level patterns
(despite not being explicitly instructed what layer a feature map belonged to). Again, natural images
are mostly more helpful than synthetic images.

4.3 FOR EXPERT AND LAY PARTICIPANTS ALIKE: NATURAL IMAGES ARE MORE HELPFUL

Explanation methods seek to explain aspects of algorithmic decision-making. Importantly, an expla-
nation should not just be amenable to experts but to anyone affected by an algorithm’s decision. We
here test whether the explanation method of feature visualization is equally applicable to expert and
lay participants (see Fig. 5A). Contrary to our prior expectation, we find no significant differences
in expert vs. lay performance (RM ANOVA, p = .44, for details see Appendix Sec. A.2.2). Hence,
extensive experience with CNNs is not necessary to perform well in this forward simulation task. In
line with the previous main finding, both experts and lay participants are both better in the natural
than in the synthetic condition.

4.4 EVEN FOR HAND-PICKED FEATURE VISUALIZATIONS, PERFORMANCE IS HIGHER ON
NATURAL IMAGES

Often, explanation methods are presented using carefully selected network units, raising the ques-
tion whether author-chosen units are representative for the interpretability method as a whole. Olah
et al. (2017) identify a number of particularly interpretable feature maps in Inception V1 in their
appendix overview. When presenting either these hand-picked visualizations4 or randomly selected
ones, performance for hand-picked feature maps improves slightly (Fig. 5B); however this perfor-
mance difference is small and not significant for both natural (Wilcoxon test, p = .59) and synthetic
(Wilcoxon test, p = .18) reference images (see Appendix Sec. A.2.4 for further analysis). Consis-
tent with the findings reported above, performance is higher for natural than for synthetic reference
images even on carefully selected hand-picked feature maps.

4.5 ADDITIONAL INFORMATION BOOSTS PERFORMANCE, ESPECIALLY FOR NATURAL
IMAGES

Publications on feature visualizations vary in terms of how optimized images are presented: Often, a
single maximally activating image is shown (e.g. Erhan et al. (2009); Carter et al. (2019); Olah et al.
(2018)); sometimes a few images are shown simultaneously (e.g. Yosinski et al. (2015); Nguyen
et al. (2016b)), and on occasion both maximally and minimally activating images are shown in
unison (Olah et al. (2017)). Naturally, the question arises as to what influence (if any) these choices
have, and whether there is an optimal way of presenting extremely activating images. For this reason,
we systematically compare approaches along two dimensions: the number of reference images (1
vs. 9) and the availability of minimally activating images (only Max vs. Min+Max). The results can

4All our hand-picked feature maps are taken from the pooling branch of the Inception module. As the ap-
pendix overview in Olah et al. (2017) does not contain one feature map for each of these, we select interpretable
feature maps for the missing layers mixed5a and mixed5b ourselves.

6



Published as a conference paper at ICLR 2021

Expert Level

A

Synthetic Natural
Selection Mode

B

Synthetic

C

Presentation Scheme
Synthetic

Pr
op

or
tio

n 
Co

rr
ec

t

Natural

Random
Hand-

Picked

Chance

0.6

0.7

0.8

0.9

1
ns

Random
Hand-

Picked

ns

Max 1
Max 9

Min+Max 1

Min+Max 9
Max 1

Max 9

Min+Max 1

Min+Max 9

Natural

Pr
op

or
tio

n 
Co

rr
ec

t

0.6

0.7

0.8

0.9

1

Pr
op

or
tio

n 
Co

rr
ec

t

Expert Lay

ns

Expert Lay

ns

0.6

0.7

0.8

0.9

1

Chance Chance

Figure 5: We found no evidence for large effects of expert level or feature map selection. However,
performance does improve with additional information. A: Expert level. Both experts and lay
participants perform equally well (RM ANOVA, p = .44), and consistently better on natural than on
synthetic images. B: Selection mode. There is no significant performance difference between hand-
picked feature maps selected for interpretability and randomly selected ones (Wilcoxon test, p = .18
for synthetic and p = .59 for natural reference images). C: Presentation scheme. Presenting both
maximally and minimally activating images simultaneously (Min+Max) and presenting nine instead
of one single reference image tend to improve performance, especially for natural reference images.
“ns” highlights non-significant differences.

be found in Fig. 5C. When just a single maximally activating image is presented (condition Max 1),
natural images already outperform synthetic images (73 ± 4% vs. 64 ± 5%). With additional
information along either dimension, performance improves both for natural as well as for synthetic
images. The stronger boost in performance, however, is observed for natural reference images. In
fact, performance is higher for natural than for synthetic reference images in all four conditions. In
the Min+Max 9 condition, a replication of the result from Experiment I shown in Fig. 3A, natural
images now outperform synthetic images by an even larger margin (91± 3 vs. 72± 4%).

4.6 SUBJECTIVELY, INTERPRETABILITY OF FEATURE VISUALIZATIONS VARIES GREATLY

While our data suggests that feature visualizations are indeed helpful for humans to predict CNN
activations, we want to emphasize again that our design choices aim at an upper bound on their
informativeness. Another important aspect of evaluating an explanation method is the subjective
impression. Besides recording confidence ratings and reaction times, we collect judgments on intu-
itiveness trials (see Appendix Fig. 14) and oral impressions after the experiments. The former ask
for ratings of how intuitive feature visualizations appear for natural images. As Fig. 6A+B show,
participants perceive the intuitiveness of synthetic feature visualizations for strongly activating nat-
ural dataset images very differently. Further, the comparison of intuitiveness judgments before and
after the main experiments reveals only a small significant average improvement for one out of three
feature maps (see Fig. 6B+C, Wilcoxon test, p < .001 for mixed4b). The interactive conversations
paint a similar picture: Some synthetic feature visualizations are perceived as intuitive while others
do not correspond to understandable concepts. Nonetheless, four participants report that their first
“gut feeling” for interpreting these reference images (as one participant phrased it) is more reliable.
Further, a few participants point out that the synthetic visualizations are exhausting to understand.
Finally, three participants additionally emphasize that the minimally activating reference images
played an important role in their decision-making.

In a by-feature-map analysis (see Appendix A.2.7 for details and images, as well as Supplementary
Material 1 for more images), we compare differences and commonalities for feature maps of dif-
ferent performance levels. According to our observations, easy feature maps seem to contain clear
object parts or shapes. In contrast, difficult feature maps seem to have diverse reference images,
features that do not correspond to human concepts, or contain conflicting information as to which
commonalities between query and reference images matter more. Bluntly speaking, we are also
often surprised that participants identified the correct image — the reasons for this are unclear to us.

5 DISCUSSION & CONCLUSION

Feature visualizations such as synthetic maximally activating images are a widely used explana-
tion method, but it is unclear whether they indeed help humans to understand CNNs. Using well-
controlled psychophysical experiments with both expert and lay participants, we here conduct the
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Figure 6: The subjective intuitiveness of feature visualizations varies greatly (see A for the ratings
from the beginning of Experiment I and B for the ratings at the beginning and end of Experiment II).
The means over all participants yield a neutral result, i.e. the visualizations are neither un- nor
intuitive, and the improvement of subjective intuitiveness before and after the experiment is only
significant for one feature map (mixed4b). C: On average, participants found feature visualizations
slightly more intuitive after doing the experiment as the differences larger than zero show. In all
three subfigures, gray dots and lines show data per participant.

very first investigation of intermediate synthetic feature visualizations by Olah et al. (2017): Can
participants predict which of two query images leads to a strong activation in a feature map, given
extremely activating visualizations? Specifically, we shed light on the following questions:

(1.) How informative are synthetic feature visualizations — and how do they compare to a natural
image baseline? We find above-chance performance given synthetic feature visualizations, but to
our own surprise, synthetic feature visualizations are systematically less informative than the simple
baseline of strongly activating natural images. Interestingly, many synthetic feature visualizations
contain regularization mechanisms to introduce more “natural structure” (Olah et al., 2017), some-
times even called a “natural image prior” (Mahendran & Vedaldi, 2015; Offert & Bell, 2020). This
raises the question: Are natural images maybe all you need? One might posit that extremely acti-
vating natural (reference) images would have an unfair advantage because we also test on extremely
activating natural (query) images. However, our task design ultimately reflects that XAI is mainly
concerned with explaining how units behave on natural inputs. Furthermore, the fact that feature
visualization are not bound to the natural image manifold is often claimed as an advantage because
it supposedly allows them to capture more precisely which features a unit is sensitive to (Olah et al.,
2017). Our results, though, demonstrate that this is not the case if we want to understand the behav-
ior of units on natural inputs.

(2.) Do you need to be a CNN expert in order to understand feature visualizations? To the best of our
knowledge, our study is the first to compare the performances of expert and lay people when eval-
uating explanation methods. Previously, publications either focused on only expert groups (Hase &
Bansal, 2020; Kumarakulasinghe et al., 2020) or only laypeople (Schmidt & Biessmann, 2019; Al-
ufaisan et al., 2020). Our experiment shows no significant difference between expert and lay partic-
ipants in our task — both perform similarly well, and even better on natural images: a replication of
our main finding. While a few caveats remain when moving an experiment from the well-controlled
lab to a crowdsourcing platform (Haghiri et al., 2019), this suggests that future studies may not have
to rely on selected expert participants, but may leverage larger lay participant pools.

(3.) Are hand-picked synthetic feature visualizations representative? An open question was whether
the visualizations shown in publications represent the general interpretability of feature visualiza-
tions (a concern voiced by e.g. Kriegeskorte, 2015), even though they are hand-picked (Olah et al.,
2017). Our finding that there is no large difference in performance between hand- and randomly-
picked feature visualizations suggests that this aspect is minor.

(4.) What is the best way of presenting images? Existing work suggests that more than one example
(Offert, 2017) and particularly negative examples (Kim et al., 2016) enhance human understanding
of data distributions. Our systematic exploration of presentation schemes provides evidence that
increasing the number of reference images as well as presenting both minimally and maximally
activating reference images (as opposed to only maximally activating ones) improve human per-
formance. This finding might be of interest to future studies aiming at peak performance or for
developing software for understanding CNNs.
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(5.) How do humans subjectively perceive feature visualizations? Apart from the high informa-
tiveness of explanations, another relevant question is how much trust humans have in them. In our
experiment, we find that subjective impressions of how reasonable synthetic feature visualizations
are for explaining responses to natural images vary greatly. This finding is in line with Hase &
Bansal (2020) who evaluated explanation methods on text and tabular data.

Caveats. Despite our best intentions, a few caveats remain: The forward simulation paradigm is
only one specific way to measure the informativeness of explanation methods, but does not allow us
to make judgments about their helpfulness in other applications such as comparing different CNNs.
Further, we emphasize that all experimental design choices were made with the goal to measure
the best possible performance. As a consequence, our finding that synthetic reference images help
humans predict a network’s strongly activating image may not necessarily be representative of a
less optimal experimental set-up with e.g. query images corresponding to less extreme feature map
activations. Knobs to further de- or increase participant performance remain (e.g. hyper-parameter
choices could be tuned to layers). Finally, while we explored one particular method in depth (Olah
et al., 2017); it remains an open question whether the results can be replicated for other feature
visualizations methods.

Future directions. We see many promising future directions. For one, the current study uses query
images from extreme opposite ends of a feature map’s activation spectrum. For a more fine-grained
measure of informativeness, we will study query images that elicit more similar activations. Addi-
tionally, future participants could be provided with even more information—such as, for example,
where a feature map is located in the network. Furthermore, it has been suggested that the combina-
tion of synthetic and natural reference images might provide synergistic information to participants
(Olah et al., 2017), which could again be studied in our experimental paradigm. Finally, further
studies could explore single neuron-centered feature visualizations, combinations of units as well as
different network architectures.

Taken together, our results highlight the need for thorough human quantitative evaluations of feature
visualizations and suggest that example natural images provide a surprisingly challenging baseline
for understanding CNN activations.
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Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Sravanti Addepalli, Dipesh Tamboli, R Venkatesh Babu, and Biplab Banerjee. Saliency-driven class
impressions for feature visualization of deep neural networks. arXiv preprint arXiv:2007.15861,
2020.

Ahmed Alqaraawi, Martin Schuessler, Philipp Weiß, Enrico Costanza, and Nadia Berthouze. Eval-
uating saliency map explanations for convolutional neural networks: a user study. In Proceedings
of the 25th International Conference on Intelligent User Interfaces, pp. 275–285, 2020.

Yasmeen Alufaisan, Laura R Marusich, Jonathan Z Bakdash, Yan Zhou, and Murat Kantar-
cioglu. Does explainable artificial intelligence improve human decision-making? arXiv preprint
arXiv:2006.11194, 2020.
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A APPENDIX

A.1 DETAILS ON METHODS

A.1.1 HUMAN EXPERIMENTS

In our two human psychophysical studies, we ask humans to predict a feature map’s strongly acti-
vating image (“forward simulation task”, Doshi-Velez & Kim 2017). Answers to the two-alternative
forced choice paradigm are recorded together with the participants’ confidence level (1: not con-
fident, 2: somewhat confident, 3: very confident, see Fig. 7). Time per trial is unlimited and we
record reaction time. After each trial, feedback is given (see Fig. 7). A progress bar at the bottom of
the screen indicates how many trials of a block are already completed. As reference images, either
synthetic, natural or no reference images are given. The synthetic images are the feature visual-
izations from the method of Olah et al. (2017). Trials of different reference images are arranged
in blocks. Synthetic and natural reference images are alternated, and, in the case of Experiment I,
framed by trials without reference images (see Fig. 8A, B). The order of the reference image types
is counter-balanced across subjects.

The main trials in the experiments are complemented by practice, catch and intuitiveness trials. To
avoid learning effects, we use different feature maps for each trial type per participant. Specifically,
practice trials give participants the opportunity to familiarize themselves with the task. In order to
monitor the attention of participants, catch trials appear randomly throughout blocks of main trials.
Here, the query images are a copy of one of the reference images, i.e., there is an obvious correct
answer (see Fig. 15). This control mechanism allows us to decide whether trial blocks should be
excluded from the analysis due to e.g. fatigue. To obtain the participant’s subjective impression of
the helpfulness of maximally activating images, the experiments are preceded (and also succeeded
in the case of Experiment II) by three intuitiveness trials (see Fig. 14). Here, participants judge in a
slightly different task design how intuitive they consider the synthetic stimuli for the natural stimuli.
For more details on the intuitiveness trials, see below.

At the end of the experiment, all expert participants in Experiment I and all lay (but not expert)
participants in Experiment II are asked about their strategy and whether it changed over time. The
information gained through the first group allows us to understand the variety of cues used and paves
the way to identify interesting directions for follow-up experiments. The information gained through
the second group allowed comparisons to experts’ impressions reported in Experiment I.

Experiment I The first experiment focuses on comparing performance of synthetic images to two
baselines: natural reference images and no reference images (see Fig. 8A). Screenshots of trials
are shown in Fig. 12. In total, 45 feature maps are tested: 36 of these are uniformly sampled
from the feature maps of each of the four branches for each of the nine Inception modules. The
other nine feature maps are uniformly hand-picked for interpretability from the Inception modules’
pooling branch based on the appendix overview selection provided by Olah et al. (2017) or based
on our own choices. In the spirit of a general statement about the explainability method, different
participants see different natural reference and query images, and each participant sees different
natural query images for the same feature maps in different reference conditions. To check the
consistency of participants’ responses, we repeat six randomly chosen main trials for each of the
three tested reference image types at the end of the experiment.

Experiment II The second experiment (see Fig. 8B) is about testing expert vs. lay participants
as well as comparing different presentation schemes5 (Max 1, Min+Max 1, Max 9 and Min+Max 9,
see Fig. 8E). Screenshots of trials are shown in Fig. 13. In total, 80 feature maps are tested: They
are uniformly sampled from every second layer with an Inception module of the network (hence
a total of 5 instead of 9 layers), and from all four branches of the Inception modules. Given the
focus on four different presentation schemes in this experiment, we repeat the sampling method four
times without overlap. In terms of reference image types, only synthetic and natural images are
tested. Like in Experiment I, different participants see different natural reference and query images.

5In pilot experiments, we learned that participants preferred 9 over 4 reference images, hence this “default”
choice in Experiment I.
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(a) Screen at the beginning of a trial. The question is which of the two natural images at
the center of the screen also strongly activates the CNN feature map given the reference
images on the sides.

(b) Screen including a participant’s answer visualized by black boxes around the image
and the confidence level. A participant indicates which natural image at the center would
also be a strongly activating image by clicking on the number corresponding to his/her
confidence level (1: not confident, 2: somewhat confident, 3: confident). The time until
a participant selects an answer is recorded (“reaction time”).

(c) Screen including a participant’s answer (black boxes) and feedback on which image
is indeed also a strongly activating image (green box).

Figure 7: Forward Simulation Task. The progress bar at the bottom of the screen indicates the
progress within one block of trials.
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Figure 8: Detailed structure of the two experiments with different foci. A: Experiment I. Here,
the focus is on comparing performance of synthetic and natural reference images to the most simple
baseline: no reference images (“None”). To counter-balance conditions, the order of natural and
synthetic blocks is alternated across participants. For each of the three reference image types (syn-
thetic, natural and none), 45 relevant trials are used plus additional catch, practice and repeated trials.
B: Experiment II. Here, the focus is on testing expert and lay participants as well as comparing dif-
ferent presentation schemes (Max 1, Min+Max 1, Max 9 and Min+Max 9, see E for illustrations).
Both the order of natural and synthetic blocks as well as the four presentation conditions are counter-
balanced across participants. To maintain a reasonable experiment length for each participant, only
20 relevant trials are used per reference image type and presentation scheme, plus additional catch
and practice trials. C: Legend. D: Number of trials per block type (i.e. reference image type and
main vs. practice trial) and experiment. Catch trials are not shown in the figure; there was a total
of 3 (2) catch trials per each synthetic and natural main block in Experiment I (II). E: Illustration of
presentation schemes. In Experiment II, all four schemes are tested, in Experiment I only Min+Max
9 is tested.

However, expert and lay participants see the same images. For details on the counter-balancing of
all conditions, please refer to Tab. 1.

Intuitiveness Trials In order to obtain the participants’ subjective impression of the helpfulness of
maximally activating images, we add trials at the beginning of the experiments, and also at the end
of Experiment II. The task set-up is slightly different (see Fig. 14): Only maximally activating (i.e.
no minimally activating) images are shown. We ask participants to rate how intuitive they find the
explanation of the entirety of the synthetic images for the entirety of the natural images. Again, all
images presented in one trial are specific to one feature map. By moving a slider to the right (left),
participants judge the explanation method as intuitive (not intuitive). The ratings are recorded on a
continuous scale from −100 (not intuitive) to +100 (intuitive). All participants see the same three
trials in a randomized order. The trials are again taken from the hand-picked (i.e. interpretable)
feature maps of the appendix overview in Olah et al. (2017). In theory, this again allows for the
highest intuitiveness ratings possible. The specific feature maps are from a low, intermediate and
high layer: feature map 43 of mixed3a, feature map 504 of mixed4b and feature map 17 of mixed
5b.

Participants Our two experiments are within-subject studies, meaning that every participant an-
swers trials for all conditions. This design choice allows us to test fewer participants. In Experi-
ment I, 10 expert participants take part (7 male, 3 female, age: 27.2 years, SD = 1.75). In Experi-
ment II, 23 participants take part (of which 10 are experts; 14 male, 9 female, age: 28.1 years, SD
= 6.76). Expert participants qualify by being familiar or having worked with convolutional neural
networks and most of them even with feature visualization techniques. All participants are naive
with respect to the aim of the study. Expert (lay) participants are paid 15e (10 e), per hour for
participation. Before the experiment, all participants give written informed consent for participat-
ing. All participants have normal or corrected to normal vision. All procedures conform to Standard
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8 of the American Psychological 405 Association’s “Ethical Principles of Psychologists and Code
of Conduct” (2016). Before the experiment, the first author explains the task to each participant
and ensures complete understanding. For lay participants, the explanation is simplified: Maximally
(minimally) activating images are called “favorite images” (“non-favorite images”) of a “computer
program” and the question is explained as which of the two query images would also be a “favorite”
image to the computer program.

Apparatus Stimuli are displayed on a VIEWPixx 3D LCD (VPIXX Technologies; spatial resolu-
tion 1920 × 1080 px, temporal resolution 120 Hz). Outside the stimulus image, the monitor is set
to mean gray. Participants view the display from 60 cm (maintained via a chinrest) in a darkened
chamber. At this distance, pixels subtend approximately 0.024° degrees on average (41 ps per de-
gree of visual angle). Stimulus presentation and data collection is controlled via a desktop computer
(Intel Core i5-4460 CPU, AMD Radeon R9 380 GPU) running Ubuntu Linux (16.04 LTS), using
PsychoPy (Peirce et al., 2019, version 3.0) under Python 3.6.

A.1.2 STIMULI SELECTION

Model Following the existing work on feature visualization by Olah et al. (2017; 2018; 2020b;a),
we use an Inception V1 network6 (Szegedy et al., 2015) trained on ImageNet (Deng et al., 2009;
Russakovsky et al., 2015). Note that the Inception V1 network used in previously mentioned work
slightly deviates from the original network architecture: The 3 × 3 branch of Inception module
mixed4a only holds 204 instead of 208 feature maps. To stay as close as possible to the aforemen-
tioned work, we also use their implementation and trained weights of the network7. We investigate
feature visualizations for all branches (i.e. kernel sizes) of the Inception modules and sample from
layers mixed3a to mixed5b before the ReLU non-linearity.

Synthethic Images from Feature Visualization The synthetic images throughout this study are
the optimization results of the feature visualization method from Olah et al. (2017). We use the
channel objective to find synthetic stimuli that maximally (minimally) activate the spatial mean of a
given feature map of the network. We perform the optimization using lucid 0.3.8 and TensorFlow
1.15.0 (Abadi et al., 2015) and use the hyperparameter as specified in Olah et al. (2017). For the
experimental conditions with more than one minimally/maximally activating reference image, we
add a diversity regulariztion across the samples. In hindsight, we realized that we generated 10
synthetic images in Experiment I, even though we only needed and used 9 per feature map.

Selection of Natural Images The natural stimuli are selected from the validation set of the Im-
ageNet ILSVRC 2012 (Russakovsky et al., 2015) dataset. To choose the maximally (minimally)
activating natural stimuli for a given feature map, we perform three steps, which are illustrated in
Fig. 9 and explained in the following: First, we calculate the activation of said feature map for all
pre-processed images (resizing to 256× 256 pixels, cropping centrally to 224× 224 pixels and nor-
malizing) and take the spatial average to get a scalar representing the excitability of the given feature
map caused by the image. Second, we order the images according to the collected activation values
and select the (Nstimuli+1) ·Nbatches maximally (respectively minimally) activating images. Here,
Nstimuli corresponds to the number of reference images used (either 1 or 9, see Fig. 8, E), the +1
comes from the query image, and Nbatches = 20 determines the maximum number of participants
we can test with our setup. Third, we distribute the selected images intoNstimuli+1 blocks. Within
each block, we randomly shuffle the order of the images. Lastly, we create Nbatches batches of data
by selecting one image from each of the blocks for every batch.8

6This network is considered very interpretable (Olah et al., 2018), yet other work also finds deeper networks
more interpretable (Bau et al., 2017). More recent work, again, suggests that “analogous features [...] form
across models [...],” i.e. that interpretable feature visualizations appear “universally” for different CNNs (Olah
et al., 2020b; OpenAI, 2020).

7github.com/tensorflow/lucid/tree/v0.3.8/lucid
8After having performed Experiment I and II, we realized a minor bug in our code: Instead of moving

every 20th image into the same batch for one participant, we moved every 10th image into the same batch for
one participant. This means that we only use a total of 110 different images, instead of 200. The minimal query
image is still always selected from the 20 least activating images; the maximal query image is selected from the
91st to 110th maximally activating images - and we do not use the 111th to 200th maximally activating images.

19



Published as a conference paper at ICLR 2021

-40 -20 0 20 40 60 80
Activation

0.000

0.010

0.020

0.030

0.040

Pr
ob

ab
ili

ty
 D

en
sit

y

10 bins w/ 20 images eachBA C 10 images

batch 2

batch 20

batch 1

1 2 3 4 5 6 7 8 9 10

...

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

zoo
m in

distribute 20 images
from each bin
randomly to 20 batches 50 55 60 65 70 75 80 85 90

Activation
0

2

4

6

x10-4

Pr
ob

ab
ili

ty
 D

en
sit

y

20
 b

at
ch

es

Figure 9: Sampling of natural images. A: Distribution of activations. For an example channel
(mixed3a, kernel size 1× 1, feature map 25), the smoothed distribution of activations for all 50, 000
ImageNet validation images is plotted. The natural stimuli for the experiment are taken from the
tails of the distribution (shaded background). B: Zoomed-in tail of activations distribution. In the
presentation schemes with 9 images, 10 bins with 20 images each are created (10 because of 9
reference plus 1 query image). C: In order to obtain 20 batches with 10 images each, the 20 images
from one bin are randomly distributed to the 20 batches. This guarantees that each batch contains a
fair selection of extremely activating images. The query images are always sampled from the most
extreme bins in order to give the best signal possible. In the case of the presentation schemes with 1
reference image, the number of bins in B is reduced to 2 and the number of images per batch in C is
also reduced to 2.

Subject Order of presentation schemes
(0-3) and batch-blocks (A-D)

Batches Order of synthetic
and naturalPractice Main

1 0 (A) 1 (B) 2 (C) 3 (D)

0

natural: 1
synthetic: 2 natural - synthetic2 0 (B) 2 (D) 1 (C) 3 (A)

3 3 (B) 1 (D) 2 (A) 0 (C)
4 3 (C) 2 (B) 1 (A) 0 (D)

5

see subject 1-4 natural: 3
synthetic: 4 synthetic - natural6

7
8

9

see subject 1-4 natural: 5
synthetic: 6 natural - synthetic10

11
12

see subject 1-4 natural: 7
synthetic: 8 synthetic - natural13

Table 1: Counter-balancing of conditions in Experiment II. In total, 13 naive and 10 lay partic-
ipants are tested. Each “batch block” contains 20 feature maps (sampled from five layers and all
Inception module branches). Batches indicate which batch number the natural query (and reference
images) are taken from.

The reasons for creating several batches of extremely activating natural images are two-fold: (1) We
want to get a general impression of the interpretability method and would like to reduce the depen-
dence on single images, and (2) in Experiment I, a participant has to see different query images in the
three different reference conditions. A downside of this design choice is an increase in variability.
The precise allocation was done as follows: In Experiment I, the natural query images of the none
condition were always allocated the batch with batch nr = subject id, the query and reference im-
ages of the natural condition were allocated the batch with batch nr = subject id+1, and the natu-
ral query images of the synthetic condition were allocated the batch with batch nr = subject id+2.
The allocation scheme in Experiment II can be found in Table 1.
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Selection of Feature Maps The selection of feature maps used in Experiment I is shown in Ta-
ble 2; the selection of feature maps used in Experiment II is shown in Table 3.

Layer Branch Feature Map

mixed3a

1× 1 25
3× 3 189
5× 5 197
Pool 227
Pool∗ 230

mixed3b

1× 1 64
3× 3 178
5× 5 390
Pool 430
Pool∗ 462

mixed4a

1× 1 68
3× 3 257
5× 5 427
Pool 486
Pool∗ 501

mixed4b

1× 1 45
3× 3 339
5× 5 438
Pool 491
Pool∗ 465

mixed4c

1× 1 94
3× 3 247
5× 5 432
Pool 496
Pool∗ 449

Layer Branch Feature Map

mixed4d

1× 1 95
3× 3 342
5× 5 451
Pool 483
Pool∗ 516

mixed4e

1× 1 231
3× 3 524
5× 5 656
Pool 816
Pool∗ 809

mixed5a

1× 1 229
3× 3 278
5× 5 636
Pool 743
Pool∗ 720

mixed5b

1× 1 119
3× 3 684
5× 5 844
Pool 1007
Pool∗ 946

Table 2: Feature maps analyzed in Experiment I. For each of the 9 layers with an Inception module,
one randomly chosen feature map per branch (1 × 1, 3 × 3, 5 × 5 and pool) and one additional
hand-picked feature map (highlighted with ∗) are used.

A.1.3 DIFFERENT ACTIVATION MAGNITUDES

We note that the elicited activations of synthetic images are almost always about one magnitude
larger than the activations of natural images (see Fig. 10a). This constitutes an inherent difference in
the synthetic and natural reference image condition. A simple approach to make the two conditions
more comparable is to limit the optimization process such that the resulting feature visualizations
elicit activations similar to that of natural images. This can be achieved by halting the optimization
process once the activations approximately match. By following that procedure one finds limited
synthetic images which are indistinguishable from natural images in terms of their activations (see
Fig. 10b). Importantly though, these images are visually not more similar to natural images, have a
much lower color contrast than normal feature visualizations, and above all hardly resemble mean-
ingful features (see Fig. 11).

A.1.4 DATA ANALYSIS

Significance Tests All significance tests are performed with JASP (JASP Team, 2020, version
0.13.1). For the analysis of the distribution of confidence ratings (see Fig. 3B), we use contingency
tables with χ2-tests. For testing pairwise effects in accuracy, confidence, reaction time and intuitive-
ness data, we report Wilcoxon signed-rank tests with uncorrected p-values (Bonferroni-corrected
critical alpha values with family-wise alpha level of 0.05 reported in all figures where relevant).
These non-parametric tests are preferred for these data because they do not make distributional as-
sumptions like normally-distributed errors, as in e.g. paired t-tests. For testing marginal effects
(main effects of one factor marginalizing over another) we report results from repeated measures
ANOVA (RM ANOVA), which does assume normality.
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(b) Activations of natural and limited synthetic images.

Figure 10: Mean activations and standard deviations (not two standard errors of the mean!) of
the minimally (below 0) and maximally (above 0) activating synthetic and natural images used in
Experiment I. Note that there are 10 (i.e. accidentally not 9) synthetic images and 20 · 10 = 200
natural images (because of 20 batches) in Experiment I for both minimally and maximally activating
images. Please also note that the standard deviations for the selected natural images are invisible
because they are so small. Limited synthetic images refer to feature visualizations which are the
result of stopping the optimization process early with the goal of matching the activation level of
natural stimuli.

BA

Figure 11: Limited feature visualizations, which are the result of stopping the optimization process
early with the goal of matching the activation level of the chosen extreme natural stimuli. A: Feature
visualizations for mixed 4a pool∗ feature map of Experiment I. B: Feature visualizations for all nine
pool∗ feature maps of Experiment I.
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Figure 12: Experiment I: Example trials of the three reference images conditions: synthetic refer-
ence images (first row), natural reference images (second row) or no reference images (third row).
The query images in the center are always natural images.
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Figure 13: Experiment II: Example trials of the four presentation schemes: Max 1, Min+max 1,
Max 9, Min+Max 9. The left column contains synthetic reference images, the right column contains
natural reference images.
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Figure 14: Trials for intuitiveness judgment. The tested feature maps are from layer mixed3a (chan-
nel 43), mixed4b (channel 504) and mixed 5b (channel 17). They are the same in Experiment I and
in Experiment II.
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Layer Branch Feature Map for
Batch Block (A-D)

A B C D

mixed3a

1× 1 25 14 12 53
3× 3 189 97 171 106
5× 5 197 203 212 204
Pool 227 238 232 247

mixed4a

1× 1 68 33 45 17
3× 3 257 355 321 200
5× 5 427 425 429 423
Pool 486 497 478 506

mixed4c

1× 1 94 53 59 95
3× 3 247 237 357 209
5× 5 432 402 400 416
Pool 496 498 473 497

mixed4e

1× 1 231 83 6 89
3× 3 524 323 401 373
5× 5 656 624 642 620
Pool 816 755 724 783

mixed5b

1× 1 119 14 266 300
3× 3 684 592 657 481
5× 5 844 829 839 875
Pool 1007 913 927 903

Table 3: Feature maps analyzed in Experiment II. Four sets of feature maps (batch blocks A to D)
are sampled: For every second layer with an Inception module (5 layers in total), one feature map
is randomly selected per branch of the Inception module (1 × 1, 3 × 3, 5 × 5 and pool). For the
practice, catch and intuitiveness trials additional randomly chosen feature maps are used.

Figure 15: Catch trials. An image from the reference images is copied as a query image, which
makes the answer obvious. The purpose of these trials is to integrate a mechanism into the experi-
ment which allows us to check post-hoc whether a participant was still paying attention.

A.2 DETAILS ON RESULTS

A.2.1 COMPLEMENTING FIGURES FOR MAIN RESULTS

Figures 16 - 21 complement the results and figures presented in Section 4. Here, all experimental
conditions are shown.

A.2.2 DETAILS ON PERFORMANCE OF EXPERT AND LAY PARTICIPANTS

As reported in the main body of the paper, a mixed-effects ANOVA revealed no significant main
effect of expert level (F (1, 21) = 0.6, p = 0.44, between-subjects effect). Further, there is no
significant interaction with the reference image type (F (1, 21) = 0.4, p = 0.53), and both expert and
lay participants show a significant main effect of the reference image type (F (1, 21) = 230.2, p <
0.001).
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(g) Reaction time on all trials.

Figure 16: Task performance (a), distribution of confidence ratings (b-d) and reaction times (e-g)
of Experiment I. The p-values are calculated with Wilcoxon sign-rank tests. Note that unlike in the
main paper, these figures consistently include the “None” condition. For explanations, see Sec. 4.1.
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Figure 17: Task performance (a), distribution of confidence ratings (b-d) and reaction times (e-g)
of Experiment II, averaged over expert level and presentation schemes. The p-values are calculated
with Wilcoxon sign-rank tests. The results replicate our findings of Experiment I. For explanations
on the latter, see Sec. 4.1.
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(a) Performance across layers.
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Figure 18: High performance across (a) layers and (b) branches of the Inception modules in Exper-
iment I. Note that unlike in the main paper these figures consistently include the “None” condition.
For explanations, see Sec. 4.2.
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(a) Performance across layers.

1x1 3x3 5x5 pool
Synthetic

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
Co

rr
ec

t

1x1 3x3 5x5 pool
Natural

Branch in Inception Module

(b) Performance across branches in Inception
module.

Figure 19: High performance across (a) layers and (b) branches of the Inception modules in Ex-
periment II. Note that only every second layer is tested here (unlike in Experiment I). The results
replicate our findings of Experiment I. For explanations, see Sec. 4.2
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A.2.3 DETAILS ON PERFORMANCE OF EXPERTS SPLIT BY DIFFERENT LEVELS OF EXPERTISE

Even though Experiment II does not show a significant performance difference for lay and expert
participants, it is an open question whether the level of expertise or the background of experts mat-
ters. For the data from experts, we hence further divide participants into subgroups according to their
expertise (see Fig. 20a-f) and background level (see Fig. 20g-h). Expertise level 1 means that partici-
pants are familiar with CNNs, but not feature visualizations; expertise level 2 means that participants
have heard of or read about feature visualizations; and expertise level 3 means that participants have
used feature visualizations themselves. We note that we also accepted feature visualizations meth-
ods other than the one by Olah et al. (2017), e.g. DeepDream (Mordvintsev et al., 2015) for level
2 and 3. Regarding background, we distinguished computational neuroscientists from researchers
working on computer vision and / or machine learning. We note that some subgroups only hold one
participant and hence may not be representative.

Our data shows varying trends for the three expert levels (see Fig. 20a-f): For synthetic images,
performance decreases with increasing expertise in Experiment I, but increases for Experiment II.
For natural images, performance first increases for participants of expertise level 2, and then slightly
decreases for participants with expertise level 3 - a trend that holds for both Experiment I and II. In
the none condition of Experiment I, performance is highest for the participant of expertise level 1,
but decreases for participants of expertise level 2, and again slightly increases for expertise level 3.

Regarding expert’s different backgrounds, our hypothesis is that many of the computational neuro-
scientists are very familiar with maximally exciting images for monkeys or rodents, and hence might
perform better than pure computer vision / machine learning experts. Fig. 20g-h suggest that this is
not the case: The bars for all three reference image types are very similar.

Not finding clear trends in our data between different expertise levels or experts is not surprising
as there is even no significant difference between participants whose professional backgrounds are
much further apart: lay people vs. people familiar with CNNs.

A.2.4 DETAILS ON PERFORMANCE OF HAND- AND RANDOMLY-PICKED FEATURE MAPS

As described in the main body of the paper, pairwise Wilcoxon sign-rank tests reveal no significant
differences between hand-picked and randomly-selected feature maps within each reference image
type (Z(9) = 27.5, p = 0.59 for natural reference images and Z(9) = 41 p = 0.18 for synthetic
references). However, marginalizing over reference image type using a repeated measures ANOVA
reveals a significant main effect of the feature map selection mode: F (1, 9) = 6.14, p = 0.035.
Therefore, while there may be a small effect of hand-picking feature maps, our data indicates that
this effect, if present, is small.

A.2.5 REPEATED TRIALS

To check the consistency of participants’ responses, we repeat six main trials for each of the three
tested reference image types at the end of the experiment. Specifically, the six trials correspond to the
three highest and three lowest absolute confidence ratings. Results are shown in Fig. 21. We observe
consistency to be high for both the synthetic and natural reference image types, and moderate for
no reference images (see Fig. 21A). In absolute terms, the largest increase in performance occurs
for the none condition; for natural reference images there was also a small increase; for synthetic
reference images, there was a slight decrease (see Fig. 21B and C). In the question session after the
experiments, many participants reported remembering the repeated trials from the first time.

A.2.6 QUALITATIVE FINDINGS

In a qualitative interview conducted after completion of the experiment, participants reported to use
a large variety of strategies. Colors, edges, repeated patterns, orientations, small local structures and
(small) objects were commonly mentioned. Most but not all participants reported to have adapted
their decision strategy throughout the experiment. Especially lay participants from Experiment II
emphasized that the trial-by-trial feedback was helpful and that it helped to learn new strategies. As
already described in the main text, participants reported that the task difficulty varied greatly; while
some trials were simple, others were challenging. A few participants highlighted that the comparison
between minimally and maximally activating images was a crucial clue and allowed employing the
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(h) Computer Vision /
Machine Learning back-
ground: four participants.

Figure 20: Performance of experts split by different levels of expertise: The first (second) row
shows the data of Experiment I (II) split up by different levels of familiarity with CNNs and feature
visualizations. The third row shows the data of Experiment I split up by different backgrounds.
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(a) Proportion of trials that were an-
swered the same upon repetition.

(b) Performance for repeated trials
upon repetition.

(c) Performance for repeated trials
when first shown.

Figure 21: Repeated trials in Experiment I.

exclusion criterion: If the minimally activating query image was easily identifiable, the choice of
the maximally activating query image was trivial. This aspect motivated us to conduct an additional
experiment where the presentation scheme was varied (Experiment II).

A.2.7 BY-FEATURE-MAP ANALYSIS

For Experiment I, we look at each feature map separately and analyze which feature maps partici-
pants find easy and which they find difficult. Further, we investigate commonalities and differences
between feature maps. We note that the data for this analysis relies on only 10 responses for each
feature map and hence may be noisy.

In Fig. 22, we show the number of correct answers split up by reference image type. The patterns
look similar to the trend in Fig. 4: Across most layers, there is no clearly identifiable trend that
feature maps of a certain network depth would be easier or more difficult; only the lowest (3a) and
the highest layer (5b) seem slightly more difficult for both the synthetic and the natural reference
images.

Easy Feature Maps When feature maps are easy (synthetic: 10/10, natural: 10/10 correct re-
sponses), their features seem to correspond to clear object parts (e.g. dogs vs. humans, food vs.
cats), or shapes (e.g. round vs. edgy (see Supplementary Material Fig. 2- 5)). In Fig. 23, we show
the query as well as natural and synthetic reference images for one such easy feature map for one
participant. For the images shown to two more participants, see Supplementary Material Fig. 1.
Other relatively easy feature maps (where eight to ten participants choose the correct query image
for both reference image types) additionally contained other low level cues such as color or texture
(see Supplementary Material Fig. 4-5).

Difficult Feature Maps The most difficult feature maps for synthetic and natural reference images
are displayed in Fig. 24. Only four participants predicted the correct query image. Interestingly, the
other reference image type was much more easily predictable for both feature maps: Nine out of ten
participants correctly simulated the network’s decision. Our impression is that the reason for these
feature maps being so difficult in one reference condition is the diversity in the images. In the case
of synthetic reference images, we also consider identifying a concept difficult and consequently are
unsure what to compare.

From studying several feature maps, our impression is that one or more of the following aspects
make feature maps difficult to interpret:

• Reference images are diverse (see Fig. 24a for synthetic reference images and d for natural
reference images)
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Figure 22: Data for Experiment I split up by feature maps: For each reference image type, the
number of correct answers (out of ten) is shown. There is no clear trend that certain feature maps
would be easier or more difficult.
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(a) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(b) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

Figure 23: An easy feature map (here: 5a, pool*) from Experiment I where all participants an-
swered correctly for both synthetic and natural reference images. The shown stimuli were shown to
participant 1, for stimuli shown to participant 2 and 3, see Supplementary Material Fig 1.

• The common feature(s) seem to not correspond to common human concepts (see Fig. 24a
and c)

• Conflicting information, i.e. commonalities can be found between one query image and
both the minimal and maximal reference images (see Fig. 25a: eyes and extremity-like
structure in synthetic min reference images vs. eyes and earth-colors in synthetic max
reference images - both could be considered similar to the max query image of a frog)

• Very small object parts such as eyes or round, earth-colored shapes seem to be the decisive
features (see Fig. 25a and b)

• Low level cues such as the orientation of lines appear random in the synthetic reference
images9 (see Fig. 26a)

Finally, when we speak bluntly, we are often surprised that participants identified the correct image
— the reasons for this are unclear to us (see for example Supplementary Material Fig. 6-7).

A.2.8 HIGH QUALITY DATA AS SHOWN BY HIGH PERFORMANCE ON CATCH TRIALS

We integrate a mechanism to probe the quality of our data: In catch trials, the correct answer is
trivial and hence incorrect answers might suggest the exclusion of specific trial blocks (for details,
see Sec. A.1.1). Fortunately, very few trials are missed: In Experiment I, only two (out of ten)
participants miss one trial each (i.e. a total of 2 out of 180 catch trials were missed); in Experiment II,
five participants miss one trial and four participants miss two trials (i.e. a total of 13 out of 736 catch

9We expected lower layers to be easier than higher layers for synthetic reference images, but our data
showed that this was not the case (see Fig. 22. We can imagine that the diversity term as well as the non-custom
hyper-parameters contribute to these sub-optimal images.
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(a) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(b) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(c) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(d) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

Figure 24: Two difficult feature maps (4d, 5x5 in a and b; 5b, 5x5 in c and d) from Experiment I
where only four participants answered correctly for synthetic (a and b) and natural (c and d) reference
images. The displayed stimuli were shown to participant 1, for stimuli shown to participant 2 (3),
see Supplementary Material Fig. 8 (9).
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(a) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(b) Natural reference im-
ages.

Min Max
Query Images

Min Reference Images Max Reference Images

Figure 25: A feature map (here: 4a, Pool) from Experiment I where the feature is small (eyes)
and a participant might perceive conflicting information (eyes and extremity-like structure in min
reference images vs. eyes and earth-colors in max reference images). In this specific example, eight
(nine) out of ten participants gave the correct answer for this feature map given synthetic (natural)
reference images. The displayed stimuli were shown to participant 1, for stimuli shown to participant
2 and 3, see Supplementary Material Fig. 10.
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(a) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(b) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

Figure 26: A feature map from a low layer (here: 3a, 3x3) from Experiment I where the feature
seems to be a low level cue (horizontal vs. vertical striped) that is surprisingly clear in the natural,
but surprisingly unclear in the synthetic reference images. In this specific example, seven (eight)
out of ten subjects gave the correct answer for this feature map given synthetic (natural) reference
images. The displayed stimuli were shown to participant 1, for stimuli shown to participant 2 and 3,
see Supplementary Material Fig. 11.
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trials were missed). As this indicates that our data is of high quality, we do not perform the analysis
with excluded trials as we expect to find the same results.

8Baseline condition.
9Metrics of explanation quality computed without human judgment are inconclusive and do not correspond

to human rankings.
10Task has an additional “I don’t know”-option for confidence rating.
11Comparison is only performed between methods but no absolute measure of interpretability for a method

is obtained.
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A.3 DETAILS ON RELATED WORK

Paper
Analyzes

Intermediate
Features?

Explanation Methods
Analyzed

Results
Explanation Confidence/Trust

helpful?

Ours yes
• Feature Visualization
• natural images8

• no explanation8
yes

• high variance in
confidence ratings

• natural images are
more helpful

Biessmann
& Refiano
(2019)

no
• LRP
• Guided Backprop
• simple gradient8

yes
• highest confidence

for guided backprop9

Chu et al.
(2020) no

• prediction + gradients
• prediction8

• no information8
no

• faulty explanations
do not decrease
trust

Shen &
Huan
(2020)

no

• Extremal Perturb
• GradCAM
• SmoothGrad
• no explanation8

no • -

Jeyakumar
et al.
(2020)

no

• LIME
• Anchor
• SHAP
• Saliency Maps
• Grad-CAM++
• Ex-Matchina

unclear11 • -

Alqaraawi
et al.
(2020)

no
• LRP
• classification scores
• no explanation8

yes • confidence similar
across conditions

Chandra-
sekaran
et al.
(2017)

no

• prediction confidence
• attention maps
• Grad-CAM
• no explanation8

no • -

Schmidt &
Biessmann
(2019)

no
• LIME
• custom method
• random/no explanation8

yes

• humans trust own
judgement regardless
explanations, except
in one condition

Hase &
Bansal
(2020)

no

• LIME
• Prototype
• Anchor
• Decision Boundary
• combination of all 4

partly

• high variance in
helpfulness

• helpfulness cannot
predict user per-
formance

Kumaraku-
lasinghe
et al.
(2020)

no • LIME yes • fairly high trust
and reliance

Ribeiro
et al.
(2018)

no
• LIME
• Anchor
• no explanation8

yes

• high confidence
for Anchor

• low for LIME &
no explanation

Alufaisan
et al.
(2020)

no
• prediction + Anchor
• prediction8

• no information8
partly • explanations do not

increase confidence

Ramamurthy
et al.
(2020)

no
• MAME
• SP-LIME
• Two Step

• unclear11 • users can adjust MAME
which increased trust

Dieber &
Kirrane
(2020)

no • LIME partly • -

Dinu
et al.
(2020)

no

• SHAP
• ridge
• lasso
• random explanation8

partly • no statement on
confidence ratings
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Paper Experimental Setup
Dataset Task Participants Collected Data

Ours • natural images
(ImageNet)

• CNN activation
classification

• experts
• laypeople

• decision • confidence
• reaction time
• post-hoc evaluation

Biessmann
& Refiano
(2019)

• face images
(Cohn-Kanade)

• 2-way
classification10 • laypeople • decision • confidence

• reaction time

Chu et al.
(2020)

• face images
(APPA-REAL)

• age
regression • laypeople

• decision • trust
• reaction time
• post-hoc evaluation

Shen &
Huan
(2020)

• natural images
(ImageNet)

• model error
identification • laypeople • decision

Jeyakumar
et al.
(2020)

• natural images
(CIFAR-10)

• text (Sentiment140)
• audio (Speech

Commands)
• sensory data (MIT-

BIH Arrhythmia)

• preference for
one out of two
explanation
methods

• laypeople • decision

Alqaraawi
et al.
(2020)

• natural images
(Pascal VOC) • classification

• technical
background
(neither lay
nor expert)

• decision
• confidence
• free answer

on features

Chandra-
sekaran
et al.
(2017)

• VQA
(visualqa.org)

• model error
identification

• regression
• laypeople • decision

Schmidt &
Biessmann
(2019)

• book categories
• Movie reviews

(IMDb)

• 9-/2-way
classification • laypeople

• decision
• reaction time
• trust

Hase &
Bansal
(2020)

• movie reviews
(Movie Review)

• tabular
(Adult)

• 2-way
classification • experts

• decision
• helpfulness rating
• explanation helpfulness

Kumaraku-
lasinghe
et al.
(2020)

• tabular
(Patient data)

• 2-way
classification • experts

• decision
• feature ranking
• satisfaction
• questionnaire

Ribeiro
et al.
(2018)

• tabular
(Adult, rcdv)

• 2-way
classification10

• VQA
• experts • decision

• reaction time
• confidence

Alufaisan
et al.
(2020)

• tabular
(COMPAS,
Census Income)

• 2-way
classification • laypeople

• decision
• confidence
• reaction time

Ramamurthy
et al.
(2020)

• tabular
(HELOC, pump
failure)

• 2-way
classification

• experts
• laypeople • decision

Dieber &
Kirrane
(2020)

• tabular
(Rain in
Australia)

• interview • laypeople
• experts

• how interpretable
LIME output is

Dinu
et al.
(2020)

• tabular
(Airbnb price
listings)

• interview • laypeople
• decision: which model would

perform better in practice
• confidence

Table 4: Overview of publications that evaluate explanation methods in human experiments. Note
that the table already starts on the previous page and that the footnotes are displayed on page 39.
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SUPPLEMENTARY MATERIAL FOR
Exemplary Natural Images Explain CNN Activations Bet-
ter than State-of-the-Art Feature Visualization

1 EXTENDED: BY-FEATURE-MAP ANALYSIS

On the following pages, we provide more images of trials that participant two and three saw during
Experiment I.

1
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(a) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(b) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(c) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(d) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

Figure 1: An easy feature map (here: 5a, pool*) from Experiment I where all subjects answered
correctly for both synthetic and natural reference images. Our impression is that the decisive feature
(dog vs. bird) is well understandable. The shown stimuli were shown to participants two (a and b)
and three (c and d); for stimuli shown to participant one, see Appendix Fig. 23.
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(a) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(b) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(c) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(d) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

Figure 2: Another easy feature map (here: 4c, 1x1) from Experiment I where all subjects answered
correctly for both synthetic and natural reference images. The decisive feature seems to be round
(minimal) vs. edgy (max). The shown stimuli were shown to participants one (a and b) and two (c
and d).
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(a) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(b) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

Figure 3: Another easy feature map (here: 4c, 1x1) from Experiment I where all subjects answered
correctly for both synthetic and natural reference images. The decisive feature seems to be round
(minimal) vs. edgy (max). The shown stimuli were shown to participant three.

4



Published as a conference paper at ICLR 2021

(a) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(b) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(c) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(d) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

Figure 4: Another easy feature map (here: 4d, 3x3) from Experiment I where all subjects answered
correctly for both synthetic and natural reference images. The decisive maximal feature seems to
have to do with green color and round shapes. The shown stimuli were shown to participants one (a
and b) and two (c and d).
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(a) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(b) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

Figure 5: Another easy feature map (here: 4d, 3x3) from Experiment I where all subjects answered
correctly for both synthetic and natural reference images. The decisive maximal feature seems to
have to do with green color and round shapes. The shown stimuli were shown to participant three.
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(a) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(b) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(c) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(d) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

Figure 6: Another easy feature map (here: 3b, 1x1) from Experiment I where all subjects answered
correctly for both synthetic and natural reference images. We are surprised that all the trials for syn-
thetic reference images were answered correctly; to us, the decisive feature is not easily identifiable.
The shown stimuli were shown to participants one (a and b) and two (c and d).
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(a) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(b) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

Figure 7: Another easy feature map (here: 3b, 1x1) from Experiment I where all subjects answered
correctly for both synthetic and natural reference images. We are surprised that all the trials for syn-
thetic reference images were answered correctly; to us, the decisive feature is not easily identifiable.
The shown stimuli were shown to participant three.
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(a) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(b) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(c) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(d) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

Figure 8: Example of a difficult feature map (4d, 5x5) from Experiment I where only four subjects
answered correctly for synthetic reference images. The displayed stimuli were shown to participant
two (a, b) and three (c, d), for stimuli shown to participant one, see Appendix Fig. 24.
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(a) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(b) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(c) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(d) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

Figure 9: Example of a difficult feature map (5b, 5x5) from Experiment I where only four sub-
jects answered correctly for natural (e-h) reference images. The displayed stimuli were shown to
participant two (a, b) and three (c, d), for stimuli shown to participant one, see Appendix Fig. 24.
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(a) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(b) Natural reference im-
ages.

Min Max
Query Images

Min Reference Images Max Reference Images

(c) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(d) Natural reference im-
ages.

Min Max
Query Images

Min Reference Images Max Reference Images

Figure 10: A feature map (here: 4a, Pool) from Experiment I where the feature is small (eyes)
and a participant might perceive conflicting information (eyes and extremity-like structure in min
reference images vs. eyes and earth-colors in max reference images). In this specific example,
eight (nine) out of ten subjects gave the correct answer for this feature map given synthetic (natural)
reference images. The displayed stimuli were shown to participants two (a and b) and three (c and
d), for stimuli shown to participant one, see Appendix Fig. 25.
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(a) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(b) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(c) Synthetic reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

(d) Natural reference
images

Min Max
Query Images

Min Reference Images Max Reference Images

Figure 11: A feature map from a low layer (here: 3a, 3x3) from Experiment I where the feature
seems to be a low level cue (horizontal vs. vertical striped) that is surprisingly clear in the natural,
but surprisingly unclear in the synthetic reference images. In this specific example, seven (eight)
out of ten subjects gave the correct answer for this feature map given synthetic (natural) reference
images. The displayed stimuli were shown to participants two (a and b) and three (c and d), for
stimuli shown to participant one, see Appendix Fig. 26.
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Publication 3: How well do feature visualizations support causal
understanding of CNN activations?

Roland Simon Zimmermann*, Judy Borowski*, Robert Geirhos, Matthias Bethge‡,
Thomas S.A. Wallis‡, Wieland Brendel‡. NeurIPS, 2021.

Contributions:
“The idea to test how well feature visualizations support causal understanding

of CNN activations was born out of several reviewer and audience comments on
our previous paper (Borowski et al., 2021). The first idea of how to test this in a
psychophysical experiment came from TSAW. JB led the project. JB, RSZ, WB and
TSAW jointly improved the experimental set-up with input from MB and RG. RSZ led
and JB helped with the implementation and execution of the experiment; JB led and
RSZ contributed to the generation of stimuli. RSZ and JB both coded the baselines,
and TSAW guided the replication experiment with statistical power simulations. The
data analysis was performed by RSZ and JB with advice and feedback from RG,
TSAW, WB and MB. TSAW and WB provided day-to-day supervision. While JB
and RSZ created the first draft of the manuscript, RG and TSAW heavily edited the
manuscript and all authors contributed to the final version.”

An earlier version of this work was presented as a poster at the ICML Workshop
Theoretic Foundation, Criticism, and Application Trend of Explainable AI (2021)
under the same title.
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How Well do Feature Visualizations Support Causal
Understanding of CNN Activations?

Roland S. Zimmermann* 1 Judy Borowski* 1

Robert Geirhos1 Matthias Bethge† 1 Thomas S. A. Wallis† 2 Wieland Brendel† 1

1 Tübingen AI Center, University of Tübingen, Germany.
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† Joint supervision.

Abstract

A precise understanding of why units in an artificial network respond to certain
stimuli would constitute a big step towards explainable artificial intelligence. One
widely used approach towards this goal is to visualize unit responses via activation
maximization. These synthetic feature visualizations are purported to provide
humans with precise information about the image features that cause a unit to be
activated — an advantage over other alternatives like strongly activating natural
dataset samples. If humans indeed gain causal insight from visualizations, this
should enable them to predict the effect of an intervention, such as how occluding
a certain patch of the image (say, a dog’s head) changes a unit’s activation. Here,
we test this hypothesis by asking humans to decide which of two square occlusions
causes a larger change to a unit’s activation. Both a large-scale crowdsourced
experiment and measurements with experts show that on average the extremely
activating feature visualizations by Olah et al. [40] indeed help humans on this task
(68 ± 4 % accuracy; baseline performance without any visualizations is 60 ± 3 %).
However, they do not provide any substantial advantage over other visualizations
(such as e.g. dataset samples), which yield similar performance (66±3 % to 67±3 %
accuracy). Taken together, we propose an objective psychophysical task to quantify
the benefit of unit-level interpretability methods for humans, and find no evidence
that a widely-used feature visualization method provides humans with better “causal
understanding” of unit activations than simple alternative visualizations.

1 Introduction

It is hard to trust a black-box algorithm, and it is hard to deploy an algorithm if one does not trust
its output. Many of today’s best-performing machine learning models, deep convolutional neural
networks (CNNs), are also among the most mysterious ones with regards to their internal information
processing. CNNs typically consist of dozens of layers with hundreds or thousands of units that
distributively process and aggregate information until they reach their final decision at the topmost
layer. Shedding light onto the inner workings of deep convolutional neural networks has been a
long-standing quest that has so far produced more questions than answers.

One of the most popular tools for explaining the behavior of individual network units is to visualize
unit responses via activation maximization [16, 33, 38, 35, 39, 36, 54, 15]. The idea is to start with
an image (typically random noise) and iteratively change pixel values to maximize the activation
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Human psychophysical experiment:
Given references which query image activates a unit more?B
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Figure 1: How useful are feature visualizations to interpret the effects of interventions? A: “Causal”
synthetic feature visualizations. B: Human experiment. Given strongly activating reference
images (e.g. synthetic or natural), a human participant chooses which out of two manipulated images
activates a unit more. Note that this trial is made up — real trials are often more difficult. C: Core
result. While participants are above chance for all visualization types, synthetic images only provide
a substantial advantage over no references and not over other alternatives such as natural references.

of a particular network unit via gradient ascent. The resulting synthetic images, called feature
visualizations, often show interpretable structures, and are believed to isolate and highlight exactly
those features that “cause” a unit’s response [40, 50]. Some of the synthetic feature visualizations
appear quite intuitive and precise. As shown in Fig. 1A, they might facilitate distinguishing whether,
for example, a unit responds to just an eye or a whole dog’s face.

However, other aspects cast a more critical light on feature visualization’s “causality”: Generating
these synthetic images typically involves regularization mechanisms [36, 33, 38, 35], which may
influence how faithfully they visualize what “causes” a network unit’s activation. Furthermore, to
obtain a complete description of a mathematical function, one generally needs more information than
just knowing its extrema. In view of this, it is an open question how well a unit can be characterized by
simply visualizing the arguments of its maxima. Finally, a crucial unknown factor is whether humans
are able to obtain a causal understanding of CNN activations from these synthetic visualizations.

Given these points, we develop a psychophysical experiment to test whether feature visualizations
by Olah et al. [40] indeed allow humans to gain a causal understanding of a unit’s behavior. Our
task is based on the reasoning that being able to predict the effect of an intervention is at the heart of
causal understanding. Understanding the causal relation between variables implies an understanding
of how changes in one variable affect another one [45]. In our proposed experiment, this means
that participants can predict the effect of an intervention — in form of an image manipulation —
if they know the causal relation between image features and a unit’s activations. Our experiment
tests whether synthetic feature visualizations indeed provide information about such causal relations.
Specifically, we ask humans which of two manipulated images activates a CNN unit more strongly.
The interventions we test are obtained by placing an occlusion patch at two different locations in
an image. Taken together, this experiment probes the purported explanation method’s advantage of
causality in a counterfactual-inspired prediction set-up [14].

Besides feature visualizations, other visualization methods have been used to gain an understanding
of the inner workings of CNNs. In this experiment, we additionally test alternatives based on natural
dataset examples and compare them with feature visualizations. This is particularly interesting
because dataset examples are often assumed to provide less “causal” information about a unit’s
response as they might contain misleading correlations [40]. To continue the example above, dog
eyes usually co-occur with dog faces; thus, separating the influence of one image feature from the
other one using natural exemplars might be challenging.

Our data shows that:

• Synthetic feature visualizations provide humans with some helpful information about the most
important patch in an image — but not much more information than no visualizations at all.

• Dataset samples as well as other combinations and types of visualizations are similarly helpful.
• How easily the most important patch is identifiable depends on the unit, the images as well as the

relative activation strength attributed to the patch.
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2 Related Work

Feature visualizations are a widely used method to understand the learned representations and
decision-making mechanisms of CNNs [33, 38, 35, 39, 36, 54, 15, 40, 37]. As such, several works
leverage this method to study InceptionV1 [42, 41, 8, 43, 50, 9, 58, 59, 46] and other networks
[6, 21, 20]; others create interactive tools [61, 44, 52] or introduce analysis frameworks [65]. In
contrast, some researchers question whether this synthetic visualization technique, first introduced
by Erhan et al. [16], is too intuition-driven [27], and how representative the appealing visualizations
in publications are [26]. Further, as already mentioned above, the engineering of the loss function
may influence their faithfulness [36, 33, 38, 35]. Another challenge is generating diverse feature
visualizations to represent the different aspects that one single unit may respond to [42, 36]. Finally,
our recent human evaluation study [5] found that while these synthetic images do provide humans
with helpful information in a forward simulation-inspired task, simple natural dataset examples are
even more helpful.

Human evaluation studies are extensively used to quantify various aspects of interpretability. As
an alternative to pure mathematical approximations [2, 66, 57, 63], researchers not only evaluate
the understandability of explanation methods in psychophysical studies [7, 34, 5], but also trust
in these methods [28, 64]) as well as the human cognitive load necessary for parsing explanations
[1] or whether humans would follow an explained model decision [47, 13, 48]. A recent study
even demonstrates that metrics of the explanation quality computed with human judgment are more
insightful than those without [4].

Which image elicits higher activation?

Strongly Activating Images
Strongly Activating Image

1 2 31 2 3
more confidentmore confident

Figure 2: Schematic visualization of an example trial in our psy-
chophysical experiment. For a certain network unit, participants are
shown several maximally activating images. While the ones on the left
serve as reference images, the ones on the right serve as query images:
The top one is a natural maximally activating image and the bottom
ones are copies of said image with square occlusions at different loca-
tions. The task is to select the image that activates the given network
unit more strongly. Participants answer by clicking on the number
below the corresponding image according to their confidence level
(1: not confident, 2: somewhat confident, 3: very confident). Correct
answer: right image.

Counterfactuals are a pop-
ular paradigm for both
creating as well as eval-
uating explanation meth-
ods. Intuitively, they pro-
vide answers to the ques-
tion “what should I change
to achieve a different out-
come?” — in the context
of machine learning expla-
nation methods, usually the
smallest, realistic change
to a data point is of inter-
est. As examples, coun-
terfactual explanation meth-
ods have been developed for
vision- [22] and language-
based [62] models as well
as for model-agnostic sce-
narios [51]. Further, they
are set into context of the
EU General Data Protec-
tion Regulation [60]. Us-
tun et al. [56] investigate
feasible and least-cost coun-
terfactuals, while Mahajan
et al. [32] and Karimi et al.
[25] take feature interactions into account. To evaluate — rather than create — explanation methods,
researchers often follow the “counterfactual simulation” task introduced by Doshi-Velez and Kim
[14]: Humans are given an input, an output, and an explanation and are then asked “what must be
changed to change the method’s [model’s] prediction to a desired output?” Doshi-Velez and Kim
[14]. Based on this task, Lucic et al. [30] test their new explanation method and Hase and Bansal
[24] compare different explanation methods to each other.

In this project, we design a counterfactual-inspired task to evaluate how well feature visualizations
support causal understanding of CNN activations. This is the first study to apply such a paradigm
to understanding the causes of individual units’ activations. In order to scale the experiments, we
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simplify our task by having participants choose between two intervention options, rather than having
them freely determine interventions themselves.

3 Methods

We run an extensive psychophysical experiment with more than 12, 000 trials distributed over 323
crowdsourced participants on Amazon Mechanical Turk (MTurk) and two experts (the two first
authors).1 For more details than provided below, please see Appx. Sec. A.1.

Design Principles Overall, our experimental design choices aim at (1) the best performance
possible, meaning that we select images that make the signal as clear as possible; (2) generality over
the network, meaning that we randomly sample units of different layers and branches (testing all
units would be too costly); and (3) easy extendability, meaning that we choose a between-participant
design (each participant sees only one reference image condition) so that other visualizations methods
can be added to the comparisons in the future.

3.1 Psychophysical Task

If feature visualizations indeed support causal understanding of CNN activations, this should enable
humans to predict the effect of an intervention, such as how occluding an image region changes
a unit’s activation. Based on this idea, we employ a two-alternative forced choice task (chance
performance: 50%) where human observers are presented with two different occlusions in an image,
and asked to estimate which of them causes a smaller change to the given unit’s activation (see Fig. 2
for an example trial). More specifically, participants choose the query image that they believe to also
elicit a strong activation given a set of 9 reference images. Such references could for instance consist
of synthetic feature visualizations of a certain unit (purportedly “causal”), or alternative visualizations.
To summarize, the task requires humans to first identify the shared aspect in the reference images
and to then choose the query image in which that aspect is more visible. Since we do not make
any assumptions about whether participants are familiar with machine learning, we avoid asking
participants about activations of a unit in the CNN. Instead, we explain that an image would be
“favored” by a machine, and the task is to select the image which is “more favored”. The complete
set of instructions shown to participants can be found in Appx. Fig. 9 and 10. In addition to each
participant’s image choice, the subjective confidence level and reaction time are also recorded.

3.2 Stimulus Generation

To generate stimuli, we follow Olah et al. [40] and use an InceptionV1 network [53] trained on
ImageNet [12, 49]. Throughout this paper, we refer to a CNN’s channel as a “unit” and imply taking
the spatial average of all neurons in one channel.2 We test units sampled from 9 layers and 2 Inception
module branches (namely 3 × 3 and POOL). For more details on the generation procedures of the
respective stimuli, see Appx. A.1.2.

We use five different types of reference images:

• Synthetic references: The synthetic images are the optimization results of the feature visualization
method by Olah et al. [40] with the channel objective for 9 diverse images.

• Natural references: The reference images are the most strongly activating3 dataset samples from
ImageNet [12, 49].

• Mixed references: This is a combination of the previous two conditions: the 5 most strongly
activating natural and 4 synthetic reference images are used. The motivation is that this condition
combines the advantages of both worlds — namely precise information from feature visualizations
and easily understandable natural images — and, thus, has the potential to give rise to higher
performance in the task. Jointly looking at these two visualization types is common in practice
[40].

1Code and data are available at github.com/brendel-group/causal-understanding-via-visualizations.
2Other papers might refer to a channel as a “feature map”, e.g. [5].
3To reduce compute requirements, we use a random subset of the training set (≈ 50%).
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• Blurred references: To increase the informativeness of natural images for this task, we modify
them by blurring everything but a single patch. This patch is chosen in the same way as in the
maximally activating query image (see below). Consequently, this method cues participants to the
most important image feature. In a way, these images can be seen as an approximate inverse of the
maximally activating query image and might improve performance on our task.

• No references: This is a control condition in which participants do not see any reference images
and have to solve the task purely based on query images.

To generate query images, we place a square patch of 90 × 90 pixels of the average RGB color of
the occluded pixels into a most strongly activating image chosen from ImageNet. The location of
the occlusion patch is chosen such that the activation of the manipulated image is either minimal or
maximal among all possible occlusion locations. These images then yield the distractor and target
query images respectively.

3.3 Structure of the Psychophysical Experiment

We test the five different reference image types as separate experimental conditions. In each condition,
we collect data from a total of 50 different MTurk participants, each assigned to a single Human
Intelligence Task (HIT) consisting of an instruction block, a variable number of practice blocks
and a main block. The instructions extensively explain a hand-crafted example trial (see Appx.
Fig. 9 and 10). The blocks of 4 practice trials each - which are randomly sampled from a pool of 10
trials - have to be repeated until reaching 100% performance; except in the none condition, as there is
no obvious ground truth due to the absence of reference images. Finally, 18 main trials follow that
are randomly interleaved with a total of 3 obvious catch trials. While feedback is provided during
practice trials, no feedback is provided in the other trials. At the end, participants can share comments
via an optional free-text field. Across all conditions, all participants see the same query images for
the instruction, practice and catch trials. In contrast, the query images differ across participants in
the main trials: In each reference image condition, we test 10 different sets of query images, each
responded to by 5 different MTurk participants, hence 50 HITs per condition. The order of the
main and catch trials per participant is randomly arranged, and identical across conditions. Each
MTurk participant takes part in only one reference image condition (i.e. reference images are a
between-participants factor). For more details, see Appx. Sec. A.1.4.

3.4 Ensuring High-Quality Data in an Online Experiment

To ensure that the data we collect in our online experiment is of high quality, we take two measures:
(1) We integrate hidden checks which were set before data collection. Only if a participant passes
all five of them do we include his/her data in our analysis. First, these exclusion criteria comprise a
performance threshold on the practice trials as well as a maximum number of blocks a participant
may attempt. Further, they include a performance threshold for catch trials, a minimum image choice
variability as well as a minimum time spent on both the instructions and the whole experiment. For
more details, see Appx. Sec. A.1.1. (2) Our previous human evaluation study in a well-controlled
lab environment found that natural reference images are more informative than synthetic feature
visualizations when choosing which of two different images is more highly activating for a given unit
[5]. We replicate this main finding on MTurk based on a subset of the originally tested units (see
Appx. A.3) which indicates that the experiment’s environment does not influence this task’s outcome.
Our decision to leverage a crowdsourcing platform is further corroborated by our result in Borowski
et al. [5], that there is no significant difference between expert and lay performance.

3.5 Baselines

In order to both set MTurk participants’ performance into context as well as evaluate different
strategies participants could use to perform our task, we further evaluate a few baselines.

• Expert Baseline: The two first authors answer all 18 trials in all 5 reference conditions on all 10
image sets. As they are familiar with the task design and are certainly engaged, this data serves as
an upper human bound.

• Center Baseline: In natural images from ImageNet, important objects are likely to be closer to the
center of the image. If participants were biased to assume that units respond to objects, a potential
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strategy to decide which occluding patch produces a smaller effect on the unit’s activation would
therefore be to choose the image with the most eccentric occlusion. The Center Baseline model
performs this strategy for all images.

• Primary Object Baseline: The Center Baseline is not a perfect measurement of an object-biased
strategy because primary objects can appear away from the center. To account for this, the two first
authors and the last author manually label all trials, choosing the image for which the occlusion
hides as little information as possible from the most prominent object in the scene. In approximately
one third of the trials (58/180), the authors’ confidence ratings are very low (reflecting e.g. the
absence of a primary object); in these cases we repeatedly replace the decisions by random binomial
choices. Thus, in the results, we report the estimated expected values, but cannot perform a by-trial
analysis. For more details, see Appx. Sec. A.1.3.

• Variance Baseline: Another assumption participants might make is that a patch in a low-contrast
region, e.g. a blue sky, is unlikely to have a large effect on the unit’s activation. This baseline
selects the query image whose content is less affected by the introduction of the occlusion patch.
To simulate this, we calculate the standard deviation over the occluded pixels and choose the one
of the lower standard deviation.

• Saliency Baseline: As a complement to the baselines above, this baseline selects the query image
whose original pixels hidden by the occlusion patch have a lower probability of being looked at by
the participants. This simulates that participants select the image with a patch that occludes less
prominent information and is estimated with the saliency prediction model DeepGaze IIE [29]. For
more details, see Appx. Sec. A.1.3.

4 Results

The results shown in this section are based on 7350 4 trials from MTurk participants, who passed all
exclusion criteria, and experts distributed over five conditions. In all figures, Synthetic refers to the
purportedly “causal”, activation-maximizing feature visualizations, Natural to ImageNet samples,
Mixed to the combined presentation of synthetic and natural images, Blur to the blurred images, and
None to the condition with no reference images at all. Further, error bars indicate two standard errors
above and below the participant-mean over network units and image sets, unless stated otherwise.

4.1 No Significant Advantage of Synthetic Feature Visualizations
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Figure 3: A: Task accuracy. On average, humans reach the same per-
formance regime with any visualization method. This holds for both lay
participants on MTurk (darker colors) as well as experts (brighter colors).
B: Reaction times. MTurk participants need several seconds to answer a
trial, indicating that they carefully make their decision. For more details
see Appx. Fig. 13.

If feature visualizations
provide humans with use-
ful information about the
image features causing
high unit activations and
other visualizations do
not, participants’ accu-
racy in our task should
be higher given feature vi-
sualizations than for all
other visualization types
or no reference images.
This is only partly what
we find: On average, ac-
curacy for feature visual-
izations is slightly higher
than when no reference
images are given (67±4%
vs. 60 ± 3%). However,
the accuracy for feature visualizations is not significantly higher than for other visualization methods
(see Fig. 3A, dark bars). For the latter, MTurk participants reach between 66 ± 3 % and 67 ± 5 %
depending on the visualization type. Statistically, only the condition without reference images is

4(18 main + 3 catch trials)×50 MTurk participants ×5 conditions + (18 main + 3 catch trials)×20 expert
measurements ×5 conditions.
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different from all other conditions (p < 0.05, Mann-Whitney U test). Taken together, these findings
suggest that all visualization methods are similarly helpful for humans in our counterfactual-inspired
task, and that they only seem to offer a small improvement over no visualizations at all.

4.1.1 MTurk Participants Carefully Make Their Choices

Similar performances for various conditions such as those found in Fig. 3A might suggest that
participants would not give their best when doing our experiment. However, several aspects speak
against this: (1) Measurement of the two first authors, i.e. experts who designed and thus clearly
understand the task, and certainly engage during the experiment, again show very similar performance
(see Fig. 3A, bright bars): This estimated upper bound is just 1 − 6% better than MTurk participant
performance. (2) With our strict exclusion criteria, we check for doubtful participant behavior
and only include data from participants who pass all five criteria. (3) Reaction times per trial (see
Fig. 3B) lie between ≈ 4 s and ≈ 9 s. This, as well as the fact that participants take longer for
the conditions with references than for the None condition, suggest that they carefully make their
decisions. (4) Several MTurk participants’ comments in an optional free-text field indicate that
they engage in the task: “[...] I did my best”, “It was engaging”, “interesting task”. (5) Trial-by-
trial responses between MTurk participants are more similar than expected by chance (see Fig. 4B
discussed below), which suggests that humans use the available information.

4.1.2 Simple Baselines Can Reach the Same Above-Chance Performance Regime
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Figure 4: A: Baseline performances. Simple baselines can reach
above chance level.5 B, C: Decision consistency. The mean and two
standard errors of the mean of Cohen’s kappa averaged over partici-
pants and image sets quantifies the pairwise consistency of decision
patterns.6 While they vary across participants, they are higher between
conditions with natural references and highest between the Saliency
Baseline and other conditions. For more details, see Appx. Fig 15.

Decision-making strategies
can be diverse. To set hu-
man performance into con-
text, we evaluate several
simple strategies as base-
lines: How high is per-
formance if one always
chooses the query image
with an unoccluded center
(Center Baseline) or pri-
mary object (Object Base-
line)? Or such that the more
varying or salient image re-
gion is unoccluded (Vari-
ance and Saliency Base-
line)? Fig. 4A shows that
these strategies have vary-
ing performances with the
best ones — namely the Ob-
ject and Variance baselines
— reaching 63 ± 1 % and
63 %, respectively. Since al-
ready these simple heuris-
tics, which do not require
reference visualizations, can reach the same performance regime as participants, the additional
advantage of visualizations (reaching just up to 4 % better performance) appears limited.

4.2 By-trial Decisions Show Systematic but Fairly Low Agreement

While accuracy is the most common metric to evaluate task performance, it does not suffice to
compare two systems’ decision-making processes [31, 19, 18]. Instead, a quantitative trial-by-trial
error analysis is necessary to ascertain or distinguish strategies. Here, we use Cohen’s kappa [10] to

5Only the Object Baseline has an error bar because in trials with, e.g. no clear primary object, we replace
decisions by random binomial choices. The reported values are the estimated expectation value and standard
deviation.

6There is no data for the Object Baseline because about one third of the trials do not have a clear answer
from the three author responses. For more details, see Appx. A.1.3.

7



calculate the degree of agreement in classification while taking the expected chance agreement into
account. A value of 1 corresponds to perfect agreement, while a value of 0 corresponds to as much
agreement as would be expected by chance. Negative values indicate systematic disagreement.

In Fig. 4B and C, we plot consistency between MTurk participants of the same and different reference
conditions as well as between MTurk participants and baselines. Since Cohen’s kappa only allows for
comparisons of two decision makers, we compute this statistic for all possible pairs across image sets,
and report the mean over participants and image sets and two standard errors of the mean. All values
between participants as well as between participants and baselines are in an intermediate regime (up
to 0.40). This suggests that there is systematic agreement, but also quite some room for subjective
decisions. Among participant-baseline comparisons, highest agreement is found for the saliency
baseline7 , while lowest agreement is found for the Center Baseline. Within participant to participant
comparisons, decision strategies for conditions involving unmodified natural images (Natural, Mixed)
are more similar to each other as well as slightly more similar to other strategies than the Synthetic,
Blur or None condition to other strategies. Within the Synthetic condition, participants are relatively
inconsistent. We hypothesize that due to the fact that humans are more familiar with natural images,
they use more consistent information from these types of reference images and, thus, their decisions
are more similar.

4.3 Performance Varies across Units, Image Sets and Activation Differences, but Less So for
Reference Conditions

Having found that feature visualizations do not offer an overall advantage over other techniques, we
now ask: Is performance similar across units, query images and their activation differences?

Units and Image Sets As evident from Fig. 5, performance varies by unit, but usually not much by
reference condition: While only one unit (layer 2, POOL) is clearly below chance level, many units
reach around average performance and a few units stand out with high performances (e.g. layer 8,
POOL). Further, the five reference conditions are relatively close to each other for most units. Finally,
on the image set level, we observe fairly high variance - probably partly due to the limited number of
participants per image set (see Appx. Fig. 14).

Fig. 6 further illustrates the different difficulty levels as well as the strong unit- and image-dependency:
For the shown easy unit (Fig. 6A), the (presumably yellow-black) feature is fairly clearly identifiable
and visible in the diverse reference and query images. In contrast, for the shown difficult unit
(Fig. 6B), the unit’s feature selectivity is unclear not only in the reference but also in the query
images.

Activation Differences We hypothesize that our task might be easier if the difference in activations
between the two interventions of the query images is larger. In Fig. 7A and B, we plot by-image-set
performance against the relative activation differences, i.e. the difference between activations elicited
by the two manipulated images normalized by the unperturbed query image’s activation. The figure
shows that even though we select query images as the most strongly activating images for a unit, the
relative activation differences vary widely. Furthermore, human performance indeed tends to increase
with higher relative activation difference, confirming our hypothesis. This trend is stronger in the
POOL than in the 3 × 3 branch as quantified by the Spearman’s rank correlations in Fig. 7C.

5 Discussion & Conclusions

Explanation methods such as feature visualizations have been criticized as intuition-driven [27], and
it is unclear whether they allow humans to gain a precise understanding of which image features
“cause” high activation in a unit. Here, we propose an objective psychophysical task to quantify how
well these synthetic images support causal understanding of CNN units. Through a time- and cost-
intensive evaluation (based on 24, 439 trials taking more than 81 participant hours including all pilot
and reported experiments), we put this widespread intuition to a quantitative test. Our data provides
no evidence that humans can predict the effect of an image intervention (occlusion) particularly well
when supported with feature visualizations. Instead, human performance is only moderately above a

7From a different perspective, this result can be seen as a confirmation that the CNN learned to look at the
“important” part of the image for downstream classification.
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baseline condition where humans are not shown any visualization at all, and similar to that of other
visualization methods such as simple dataset samples. Further, by-trial decisions show systematic
but fairly low agreement between participants. Finally, task performance depends on the unit choice,
image selections and activation differences between query images. These results add quantitative
evidence against the generally-assumed usefulness of feature visualizations for understanding the
causes of CNN unit activations.

Our counterfactual-inspired task is the first quantitative evaluation of whether feature visualizations
support causal understanding of unit activations, but it is certainly not the only possible way to
evaluate causal understanding. For example, our interventions are constrained to occlusions of a fixed
size and shape, imposing an upper limit on the precision with which the occlusions can cover the part
of the image that is most responsible for driving a unit’s activation. Future work could explore more
complex intervention techniques, extend our study to more units of InceptionV1 as well as to different
networks, and investigate additional visualization methods. Thanks to the between-participant design,
new conditions can be added to the data without the requirement to re-run already collected trials.

Taken together, the empirical results of our quantitative evaluation method indicate that the widely
used visualization method by Olah et al. [40] does not provide causal understanding of CNN
activations beyond what can be obtained from much simpler baselines. This finding is contrary
to wide-spread community intuition and reinforces the importance of testing falsifiable hypotheses in
the field of interpretable artificial intelligence [27]. With increasing societal applications of machine
learning, the importance of feature visualizations and interpretable machine learning methods is
likely to continue to increase. Therefore, it is important to develop an understanding of what we
can — and cannot — expect from explainability methods. We think that human benchmarks, like the
one presented in this study, help to expose a precise notion of interpretability that is quantitatively
measurable and comparable to competing methods or baselines. The paradigm we developed in
this work can be easily adapted to account for other notions of causality and, more generally,
interpretability as well. For the future, we hope that our task will serve as a challenging test case to
steer further development of feature visualizations.
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A Appendix

A.1 Details on Methods of Counterfactual-Inspired Experiment

We closely follow our previous work [5] and hence often refer to specific sections of it in this
Appendix.

A.1.1 Data Collection

Exclusion Criteria In order to acquire data of high quality from MTurk, we integrate five exclusion
criteria. If one or more of these criteria is not met, we post the same HIT again:

• Maximal number of attempts to reach 100% performance in practice trials: 5
• Performance threshold for catch trials: two out of three trials have to be correctly answered
• Answer variability: at least one trial must be chosen from the less frequently selected side (to

discard participants who only responded with “left” or “right”)
• Time to read the instructions: at least 20 s (15 s in the none condition)
• Time for the whole experiment: at least 90 s and at most 900 s (at least 40 s, and at most 900 s in

the none condition)

Minimize Biases To minimize a bias to either query image, the location of the truly maximally
activating query image is randomized and participants have to center their mouse cursor by pressing
a centered button “Continue” after each trial.

Expert Measurements The two first authors complete all 10 image sets in multiple conditions:
At first, they label the query images for the Primary Object Baseline. Then they answer the none,
synthetic or natural (counterbalanced between the two authors), mixed, and blur condition. Clicking
through the trials several times means that they see identical images repeatedly.

A.1.2 Stimulus Generation

Model In line with previous work (e.g. Borowski et al. [5], Olah et al. [40]), we use an Inception
V1 network [53] trained on ImageNet [12, 49]. For more details, see Sec. A.1.2 “Stimuli Selection -
Model” in Borowski et al. [5].

Natural Images as Query and Reference Images The natural reference and query images are
selected from a random subset of 599, 552 training images of the ImageNet ILSVRC 2012 dataset
[49]. For each unit, we select those images that elicit a maximal activation. More specifically, we
choose the very most activating images as the query images and the next most activating images as
reference images and ensure no overlap between query and references images as well as between
image sets. As we follow our work published in Borowski et al. [5], please see A.1.2 for more details
on the sampling procedure. In total, we generate 20 different image sets per unit. In the presented
data, we only use half of these sets.

Query Images For the query images, we use the 20 maximally activating images for a given
unit. To produce the manipulated query images, a square patch of 90 × 90 pixels is placed on the
unperturbed query image. The side length of a patch corresponds to 40% of a preprocessed image’s
side length. The position of the occlusion patch is chosen such that the manipulated image’s activation
for a given unit is minimal (maximal) among all possible manipulated images’ activations. This
maximizes the signal in the query images and means that patches of the two query images can overlap.

In a control experiment, we test whether the partial occlusions of the natural ImageNet images cause
the manipulated images to lie outside the natural image distribution. If this was the case, the query
images would fail to be representative of the network’s activity for natural images. Here, we test how
similar the response to the unperturbed and partially occluded images is. Specifically, we count how
often there is an overlap of the top-5 predictions. If network activations were drastically different for
the occluded than for the unperturbed images, we should find low agreement. However, we do find
an agreement for 97.8, % of all tested images. Therefore, the square occlusions only have a marginal
effect on the network’s overall activity/predictions.
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Figure 8: Distribution of the number of natural reference images that have the same label as the query
image over the main trials used in the counterfactual-inspired experiment.

Reference Images: Natural Images In a control experiment, we test how often the label of the
reference images coincide with the query image’s label. If there was a high correspondence of these
ImageNet labels, this could suggest that our experiment would rather reveal insights on how well
humans would be able to classify images according to labels rather than to answer a counterfactual-
inspired task based on the unit activations. Fig. 8 shows that the overlap of labels between query and
reference images is low.

Reference Images: Blurred Images The blurred reference images are created by blurring all but
one patch with a Gaussian kernel of size (21, 21). This parameter choice allows participants to still
get a general impression of an image, but not recognize details. Further, it is in line with work by
Fong et al. [17]. The image choices are identical to the natural condition. Further — and just like for
the query images — the position of the unblurred patch is chosen such that the manipulated image’s
activation for a given unit is maximal among all possible manipulated images’ activations. Finally,
the size of the unblurred patch is identical to the occlusion patch size: 40% of a preprocessed image’s
side length.

Reference Images: Synthetic Images from Feature Visualization Depending on the condition,
we adjust the number of feature visualizations we generate: For the purely synthetic condition, we
generate 9 visualizations, for the mixed condition, we generate 4 visualizations. As we follow our
work published in Borowski et al. [5], please see A.1.2 for further details.

A.1.3 Baselines

Primary Object Baseline The Primary Object Baseline simulates that the more strongly activating
manipulated image would be the one where the occlusion hides as little as possible from the most
prominent object of the query image. To this end, the first two authors and the last author label
all images. When doing so, they use a slightly modified logic: They select the image whose most
prominent object is most occluded. If they cannot clearly identify a primary object in the image, they
flag these trials, which are then treated differently in the analysis. For the analysis, the image choice
is inverted again to counteract the inverted task that the authors responded to.

The performance reported in Fig. 4 is calculated by averaging over the three individual performances.
Each individual performance itself is in turn estimated as the expectation value over random sampling
for query images with no clear primary object. This analysis is in line with how the performance
of MTurk participants is analyzed. An alternative option would be to take the majority vote of the
three answers. When randomly sampling the choice for query images with no clear primary object,
taking the majority votes and evaluating the expected accuracy, the performance would evaluate
to 0.70 ± 0.02. Notably, 58 of all 180 trials are affected by the sampling as two or more authors
responded with a confidence of 1 in 36 trials, and one author responded with a confidence of 1 while
the other two gave opposing answers in 22 trials. This represents a fairly large fraction and reflects
that many images on ImageNet have more than one prominent object [55, 3]. Consequently, there
may not be a ground-truth for each trial in the Primary Object Baseline.
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Saliency Baseline The Saliency Baseline simulates that participants select the image with a patch
occluding the less prominent image region. To this end, we pass the unoccluded query image through
the saliency prediction model DeepGaze IIE [29] which yields a probability density over the entire
image. Next, we integrate said density over each of the two square patches. We then select the image
with a lower value indicating that less important information is hidden by the occlusion patch.

A.1.4 Trials

Main trials For both the 3 × 3 and the POOL branch of each of the 9 layers with an Inception
module, one randomly chosen unit is tested (see Table 1). These are the same units as in Experiment I
of Borowski et al. [5].

Table 1: Units used as main trials in the 3×3 as well as the POOL branch in the counterfactual-inspired
experiment. The numbers in brackets after each layer’s name correspond to the numbering used in all
our plots.

Unit

Layer 3 × 3 POOL

mixed3a (1) 189 227
mixed3b (2) 178 430
mixed4a (3) 257 486
mixed4b (4) 339 491
mixed4c (5) 247 496
mixed4d (6) 342 483
mixed4e (7) 524 816
mixed5a (8) 278 743
mixed5b (9) 684 1007

Instruction, Practice and Catch Trials The instruction, practice and catch trials are hand-picked
by the two first authors. As a pool of units, the appendix overview of Olah et al. [40] as well as the
“interpretable” POOL units used in Experiment I and all units used in Experiment II of Borowski et al.
[5] are used. After generating all 20 reference and query image sets for these units, the authors select
those units and image sets that they consider easiest (see Table 2).

Instruction Trial To explain the task as intuitively as possible, we construct an easy, artificial
instruction trial (see Fig. 9 and 10): At first, we select a unit with easily understandable feature
visualizations: The synthetic images of unit 720 of the POOL branch in layer 8 show relatively clear
bird-like structures. From a popular image search engine, we then select an image8 which not only
clearly shows a bird but also other objects, namely a dog and water. To construct the minimally and
maximally activating query images, we place the occlusion patches manually on the bird and dog.

Practice Trials In each attempt to pass the practice block, the trials are randomly sampled from
a pool of 10 trials (see Table 2). Please note that unlike in any other trial type, participants receive
feedback in the practice block: After each trial, they learn whether their chosen image truly is the
query image of higher activation.

Catch Trials While all conditions with reference images use hand-picked easy trials (see Table 2),
the none condition cannot rely on straight-forward clues from references. Therefore, we exchange
the minimal query image with a minimal query image of a different, otherwise unused unit. This
ensures that the catch trials in the none condition are also obvious.

A.1.5 Infrastructure

The online experiment is hosted on an Ubuntu 18.04 server running on an Intel(R) Xeon(R) Gold
5220 CPU. The experiment is implemented in JavaScript using jspsych 6.3.1 [11] and flask via

8https://pixnio.com/fauna-animals/dogs/dog-water-bird-swan-lake-waterfowl-animal-swimming
released into public domain under CC0 license by Bicanski.
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Table 2: Hand-picked unit choices for instruction, catch and practice trials in the counterfactual-
inspired experiment.

Trial Type Layer Branch Unit Difficulty Level

instruction mixed5a pool 720 very easy

catch
mixed4e pool 783 very easy
mixed4c pool 484 very easy
mixed5a 3 × 3 557 very easy

practice

mixed4e 1 × 1 6 very easy
mixed4a pool 505 very easy
mixed4e pool 809 very easy
mixed4c pool 449 easy
mixed4b pool 465 easy
mixed4c 1 × 1 59 easy
mixed4e 1 × 1 83 easy
mixed3a 1 × 1 43 easy
mixed3b pool 472 easy
mixed4b 1 × 1 5 easy

Python 3.6. The generation of the stimuli shown in the experiment was completed in approximately
35 hours on a single GeForce GTX 1080 GPU. The calculation of all baselines required 8 additional
GPU hours.

A.1.6 Amazon Mechanical Turk

MTurk participants To increase the chance that all MTurk participants understand the English
instructions at the beginning of the experiment, we restrict access to workers from the following
English-speaking countries: USA, Canada, Great Britain, Australia, New Zealand and Ireland.

Financial Compensation Based on an estimated duration and pilot experiments as well as a
targeted hourly rate of US$ 15, we calculate the pay to be US$ 0.70 for the none condition and
US$ 1.95 for all other conditions. MTurk participants whose data we include need a mean time of
209.64 ± 79.53 s and 396.87 ± 145.78 s for the whole experiment for the none condition and for all
other conditions, respectively, which results in an hourly compensation of ≈ 12.02 US$/hour and
17.69 US$/hour, respectively. All MTurk participants who fully complete a HIT are paid, regardless
of whether their responses meet the exclusion criteria. A total of US$ 1989.06 is spent on all pilot
and real replication and counterfactual-inspired experiments.

Rights to Data We do not gather personal identifiable data from any MTurk participant. According
to the MTurk Participation Agreement 3a 9, workers agree to vest all ownership and intellectual
property rights to the requester (i.e., the authors of this study). Besides informing MTurk participants
in the HIT preview about the academic and image classification nature of the experiment, we restate
that “By completing this HIT, you consent to your anonymized data being shared with us for a
scientific study.” Further, we provide an email address, which some MTurk participants used to share
feedback.

9https://www.mturk.com/participation-agreement, accessed on May 22nd, 2021
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Figure 9: First eight instructions at the beginning of the counterfactual-inspired experiment.
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Figure 10: Second eight instructions at the beginning of the counterfactual-inspired experiment.
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A.2 Details on Results of Counterfactual-Inspired Experiment

A.2.1 Different Query images

m
in

m
ax

A

m
in

m
ax

B

Figure 11: For each unit, we test 10 different image sets in the counterfactual-inspired experiment.
The diversity of query images for layer 3 of the 3 × 3 branch (A), and layer 7 of the POOL branch (B)
gives an intuitive explanation for varying performances.

A.2.2 Confidence Ratings and Reaction Times
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Figure 12: Confidence ratings of MTurk participants in the different reference conditions for (a) all,
(b) only correct or (c) only incorrect trials of the counterfactual-inspired experiment.
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Figure 13: Reaction times of MTurk participants in the different reference conditions for (a) all, (b)
only correct or (c) only incorrect trials of the counterfactual-inspired experiment.
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A.2.3 Performance per Image Set
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(a) Difficult unit.
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(b) Intermediate unit.
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Figure 14: Performance in the counterfactual-inspired experiment split up by image sets and con-
ditions for a difficult (layer 3, POOL), intermediate (layer 7, POOL) and easy unit (layer 8, POOL).
Each bar shows the average over 5 MTurk participants.
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A.2.4 Strategy Comparisons
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Figure 15: Cohen’s kappa per image set in the counterfactual-inspired experiment (averages over
participant-participant-, participant-baseline- or baseline-baseline-pairs). Error bars denote two
standard errors of the mean.
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A.2.5 Relative Activation Differences
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Figure 16: Accuracy in the counterfactual-inspired experiment as a function of the relative activation
difference between the two query images for the (a) 3 × 3 branch and the (b) POOL branch. Here, the
data points shown in Fig. 7 are summarized in 5 bins of equal counts; the plot shows the mean and
standard deviation for each of the bins.
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A.2.6 Exclusion Criteria
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(b) All exclusion criteria.
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(c) Exclusion criterion: catch trials.
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(d) Exclusion criterion: row variability.
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(e) Exclusion criterion: instruction time.
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(f) Exclusion criterion: total response time.
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(g) Exclusion criterion: practice block.

Figure 17: (a) Number of times a HIT is posted. To limit the financial risk, we limit the maximal
number of times that a HIT can be posted at 3. (b-g) Distributions of MTurk participants that
passed/failed the exclusion criteria in the counterfactual-inspired experiment on MTurk. Note that the
sum of the counts of responses for the individual exclusion criteria in c-f is higher than the summary
in b because a participant may have failed more than one exclusion criterion.
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(d) Catch trials from excluded data.
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(i) Practice Block Attempts: We include data from people who needed 5
or fewer attempts.

Figure 18: Distributions of the individual values controlled by the exclusion criteria in the
counterfactual-inspired experiment on MTurk. For the first four criteria, a - c and g (d - f and
h) show the data for the included (excluded) data. The final criterion in i shows a joint distribution.
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A.3 Replication of the Main Result of Borowski et al. [5]

To check whether collecting data on a crowdsourcing platform yields sensible data in our case, we
first test whether we can replicate the main finding of our previous human psychophysical experiment
on feature visualizations [5]. In the latter, we found in a well-controlled lab environment that natural
reference images are more informative than synthetic ones when choosing which of two different
images are more highly activating for a given unit. Below, we report how we alter the experimental
set-up to turn the lab experiment into an online experiment on MTurk and what results we find.

A.3.1 Experimental Set-up

While keeping as many aspects as possible consistent with our original study [5], we make a few
changes: (1) We run an online crowdsourced experiment on MTurk, instead of in a lab. (2) Instead
of testing the 45 units used in the original Experiment I, we only test one single branch of each
Inception module, namely the 3 × 3 kernel size. This is a reasonable decision given that the main
finding of the superiority of natural over synthetic images was present in all branches and that
there was no significant difference per condition between different branches. (3) We exchange the
within-participant design for a between-participant design, i.e. one MTurk participant does one
condition only, namely either the natural or synthetic reference condition. This version is more
suitable for short online experiments. (4) Instead of testing 10 participants in the lab, we test 130
MTurk participants per condition, i.e. 260 in total. This number of participants is estimated with
an a priori power analysis using the SIMR package [23] to allow us to detect an effect half as large
as the one observed in Borowski et al. [5] 80% of the time. Assumptions about variance, average
performance, and effect size are chosen to be conservative relative to the original study because we
expect MTurk participants’ responses to be noisier.

One HIT on MTurk consists of 1 extensively explained instruction trial, 2 practice trials, and then
9 main trials that are randomly interleaved with a total of 3 catch trials. Each trial type is sampled
from a disjoint pool of units: All participants see the same unit for the instruction trial; the catch
trials are sampled from the same pool as in the original experiment, and the practice trials are the
units that were used as interpretability judgment trials in [5], namely mixed3a, kernel size 1 × 1, unit
43; mixed4b, POOL, unit 504; mixed5b, 1 × 1, unit 17. A total of 13 participants see the same main
trials that one lab participant saw. The order of the main and catch trials per participants is randomly
arranged.

Exclusion Criteria If a participant’s response does not meet one or more of the following criteria,
which were determined before data collection, we discard it and post the same HIT again:

• Performance threshold for catch trials: two out of three trials have to be correctly answered

• Answer variability: at least one trial must be chosen from the less frequently selected side (to
discard participants who only responded with “up” or “down”)

• Time to read the instructions: at least 15 s

• Time for the whole experiment: at least 90 s and at most 600 s

MTurk compensation Based on an estimated and pilot experiment duration as well as an hourly
rate of US$ 15, we calculate the pay to be US$ 1.25. We pay all MTurk participants who fully
complete the experiment regardless of whether they succeed or fail in the exclusion criteria. The
experiment without pilot experiments costs US$ 447. MTurk participants whose data we include need
a mean time of 220.70 ± 71.58 s for the whole experiment, which results in an hourly compensation
of ≈ 20.39 US$/hour.

A.3.2 Results

MTurk participants achieve a higher performance when given natural than synthetic reference images:
84 ± 3 % vs. 65 ± 3 % (see Fig. 19a). Qualitatively, this result is the same as in the original
Experiment I, see Figure 16 in Borowski et al. [5]. More precisely, the data shows a 1.35 (2.1) times
larger odds (accuracy) difference for the replication. Compared to the lab data, MTurk participants
seem more confident on the synthetic condition (see Fig. 19b-d), are faster in the synthetic condition
(see Fig. 19e-g), and are about as fast in the natural condition (see Fig. 19e-g).
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Fig. 20 shows that most participants passed the exclusion criteria. For more details on the number
of postings per HIT and for more details on the MTurk participants’ performance on the exclusion
criteria, see 21.
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(e) Reaction time on correctly
answered trials.

Synthetic Natural
Reference Images

0

1000

2000

3000

4000

5000

6000

7000

8000

Re
ac

tio
n 

Ti
m

e 
[m

se
c]

 o
f I

nc
or

re
ct

 T
ria

ls

71
18

.0
6±

65
0.

53

68
33

.6
9±

92
5.

13

(f) Reaction time on incor-
rectly answered trials.
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Figure 19: Results of the replication experiment of Borowski et al. [5] on MTurk for kernel size 3× 3:
task performance (a), distribution of confidence ratings (b-d) and reaction times (e-g).
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(e) Exclusion criterion: instruction time.
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(f) Exclusion criterion: total response time.

Figure 20: (a) Number of times a HIT is posted. (b-f) Distributions of MTurk participants that
passed/failed the exclusion criteria in the replication experiment on MTurk. Note that the sum of
the counts of responses for the individual exclusion criteria in c-f is higher than the summary in b
because a participant may have failed more than one exclusion criterion.
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(d) Catch trials from excluded data.
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Figure 21: Distributions of the individual values controlled by the exclusion criteria in the replication
experiment on MTurk. Figures a - c and g (d - f and h) show the data for the included (excluded) data.
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Figure 1: Rapid interactive comparison of two models’ network responses through activations of two selected “dog-relevant” neurons
(middle) and predicted target classes (right) to input scene perturbations of a dog (left): Removing the texture leaves the 3D model with a
smooth surface and causes a standard model to identify a piggy bank instead of a dog, while an adversarially trained model identifies a white
dog breed (Siberian Husky). Activations of dog-relevant neurons in the standard model decrease due to missing texture information.

Abstract
While convolutional neural networks (CNNs) have found wide adoption as state-of-the-art models for image-related tasks,
their predictions are often highly sensitive to small input perturbations, which the human vision is robust against. This paper
presents Perturber, a web-based application that allows users to instantaneously explore how CNN activations and predictions
evolve when a 3D input scene is interactively perturbed. Perturber offers a large variety of scene modifications, such as camera
controls, lighting and shading effects, background modifications, object morphing, as well as adversarial attacks, to facilitate
the discovery of potential vulnerabilities. Fine-tuned model versions can be directly compared for qualitative evaluation of their
robustness. Case studies with machine learning experts have shown that Perturber helps users to quickly generate hypotheses
about model vulnerabilities and to qualitatively compare model behavior. Using quantitative analyses, we could generalize
users’ insights to other CNN architectures and input images, yielding new insights about the vulnerability of adversarially
trained models.

CCS Concepts
• Human-centered computing → Visualization systems and tools; • Computing methodologies → Machine learning;

1. Introduction

Convolutional neural networks (CNNs) achieve impressive results
in a variety of applications, such as image classification [KSH17]
or object detection [RHGS17]. The performance of a CNN trained

on a given training data set is typically assessed in terms of predic-
tion accuracy on a held-out validation dataset. If the statistical dis-
tributions of the training and validation set differ, the high perfor-
mance can drop precipitously. In that case, the model is not robust

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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against the variability within the validation data. CNN robustness
has been shown to be affected by image perturbations such as crop-
ping [ZSLG16], blur [DK16], high-frequency noise [YLS∗19], or
texture variations [GRM∗19]. Prominent examples of noise pertur-
bation are adversarial attacks: Single pixels of an input image are
changed slightly such that a CNN misclassifies it [SZS∗14]. To hu-
mans, these changes are typically imperceptible, and they would
still assign the correct labels.

Robustness is a highly safety-critical aspect of CNNs in vari-
ous applications, such as self-driving cars [LHA∗20]. For exam-
ple, researchers have demonstrated how targeted yet unsuspicious
changes of traffic signs can cause CNNs to consistently miss stop
signs [EEF∗18]. Understanding which factors influence the robust-
ness of CNNs and, consequently, designing and evaluating more
robust models are therefore research topics of central importance
in the machine learning community [GSS14, SZS∗14, MMS∗19,
LHG∗21].

To create a basis for tackling robustness, researchers aim to gain
a better general understanding of which image features CNNs are
most sensitive to and how this sensitivity differs from human vi-
sual perception [BHL∗21]. For example, Geirhos et al. [GRM∗19]
investigated the influence of shape versus texture on humans and
CNNs in image classification and found a strong bias for tex-
ture in CNNs. This texture bias was also confirmed by Zhang and
Zhu [ZZ19] by evaluating the effect of image saturation or random
shuffling of image patches. Through systematic analysis of image
perturbation in the Fourier domain, Yin et al. [YLS∗19] could show
that CNNs are highly sensitive to high-frequency perturbations.

A common way to improve robustness is to train models on more
variable input images, using data augmentation methods [PW17],
image stylization [GRM∗19], or adversarial examples [MMS∗19].
To evaluate the performance of these improved models, they are
then compared to standard CNN models. To perform these analy-
ses, researchers automatically perturb images offline, log the pre-
dictions for each perturbed input image, and compare the results
between models. According to our collaborating domain experts,
such experiments take several hours to set up and include time-
consuming parameter searches. For some experiments, it is not
even possible to determine network performance fully automati-
cally as the ground truth of the input images also becomes unclear
for humans because of the performed image perturbations. Clearly,
these factors severely limit machine learning experts to quickly ex-
plore factors of image perturbation that may impact CNN perfor-
mance.

We hypothesize that being able to interactively manipulate a
synthetic input scene with a large and diverse set of visual per-
turbation parameters and observing the changing activations and
predictions instantly will allow researchers to quickly generate hy-
potheses and build a stronger intuition for potential vulnerabili-
ties of CNNs. In this work, we therefore introduce Perturber – a
novel real-time experimentation interface for exploratory analysis
of model robustness (see Figure 1). Our work provides the follow-
ing contributions:

1. Interactive input perturbations of 3D scenes in combination with
feature visualizations, activation maps, and model predictions as
a novel approach to interactively explore model robustness.

2. A direct comparison interface for qualitative visual validation of
more robust, fine-tuned model variants.

3. Implementation of a publicly accessible web-based VA tool†

that supports a large variety of perturbation methods of 3D input
scenes and visualizes the model responses in real-time.

4. Observations from case studies with machine learning experts
demonstrating that live inspection of input perturbations allows
experts to visually explore known vulnerabilities, to compare
model behaviors, and to generate new hypotheses concerning
model robustness.

5. Quantitative verification of selected user observations from the
case study shedding new light on the robustness of adversarially
trained models.

2. Related Work

In recent years, a wide spectrum of deep learning visualization
methods has emerged. For a comprehensive overview of visual
analytics (VA) for deep learning, we refer the reader to a survey
by Hohman et al. [HKPC19]. For example, graph structure visu-
alizations, such as the TensorFlow Graph Visualizer [WSW∗18],
help users to get a better understanding of their models’ struc-
ture, which comprise numerous layers and connections. Others,
such as DeepEyes [PHVG∗18] and DeepTracker [LCJ∗19], track
detailed metrics throughout the training process to facilitate the
identification of model problems or anomalous iterations. Ex-
plAIner [SSSEA20] goes beyond monitoring and also integrates
different steering mechanisms to help users understand and opti-
mize their models. A case study using a VA system to assess a
model’s performance to detect and classify traffic lights has shown
that interactive VA systems can successfully guide experts to im-
prove their training data [GZL∗20].

While these examples all focus on the inspection of a sin-
gle model, others support model comparisons. For example, us-
ing REMAP [CPCS20], users can rapidly create model architec-
tures through ablations (i.e., removing single layers of an existing
model) and variations (i.e., creating new models through layer re-
placements) and compare the created models by their structure and
performance. Ma et al. [MFH∗20] designed multiple coordinated
views to help experts analyze network model behaviors after trans-
fer learning. CNNComparator [ZHP∗17] uses multiple coordinated
views to compare the architecture and the prediction of a selected
input image between two CNNs. Model comparison is also a cru-
cial aspect of our work. However, the focus of the present work lies
on fluid modification of input stimuli and instantaneous analysis
and comparison of the network responses. Thus, we let users gen-
erate and perturb input images from 3D scenes in a “playground-
like” manner rather than letting the user select input images with a
ground-truth class label.

Interactive “playgrounds” require relatively little underlying
deep learning knowledge and can be used for educational purposes.
For more informed users, they are valuable for building an intu-
ition and validating knowledge from literature [KTC∗19]. Notable
examples are TensorFlow Playground [SCS∗17], which supports

† http://perturber.stefansietzen.at/
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the interactive modification and training of DNNs in the browser,
and GANLab [KTC∗19], which is designed in a similar style and
supports experimentation with Generative Adversarial Networks.
CNN Explainer [WTS∗20] provides a visual explanation of the in-
ner workings of a CNN by showing connections between layers and
activation maps, allowing the user to choose the input from a fixed
collection of images. More similarly to our work, Harley [Har15]
provides an online tool where users can draw digits onto a canvas.
Then, the responses of all neurons in a simple MNIST-trained net-
work are visualized in real-time. Adversarial Playground [NQ17]
allows users to interactively generate adversarial attacks and in-
stantly observe the predictions of a simple MNIST-trained network.
To support interactive probing of model responses based on input
modifications, Prospector [KPN16], the what-if-tool [WPB∗20],
and NLIZE [LLL∗18] allow users to interrogate the model by vary-
ing the input in the domains of tabular data and natural language
processing, respectively. These works inspired us to build a system
that lets users interactively explore model robustness through in-
put perturbations. In contrast to prior work, Perturber operates on
complex CNN models, such as Inception-V1 trained on ImageNet,
and can be used to discover and explain vulnerabilities to complex
input scenes, like animals or man-made objects in different envi-
ronments.

To explain a CNN model, there are powerful methods to reveal
the role of a network’s hidden units by visualizing their learned
features. Feature visualization is an activation maximization tech-
nique, which was improved by combining a variety of regular-
ization techniques [YCN∗15,OMS17]. Feature visualizations have
been used to identify and characterize causal connections of neu-
rons in CNNs [CCG∗20], and to comprehensively document the
role of individual neurons in large CNNs [Ope]. Within VA tools,
feature visualizations have been used to compare learned features
before and after transfer learning [MFH∗20] or to visualize a graph
of the most relevant neurons and their connections for a selected
target class [HPRC20]. Similarly, Bluff [DPW∗20] shows a graph
containing the most relevant neurons explaining precomputed ad-
versarial attacks, where neurons are represented by their feature
visualizations.

Other powerful interpretability methods are saliency maps (or
attribution maps), which show the saliency of the input image’s
regions with respect to the selected target class or network com-
ponent [SVZ13]. Saliency maps and other gradient-based methods
like LRP [LBM∗16], Integrated Gradients [STY17], or Grad-CAM
[SCD∗17], however, require a computationally expensive back-
propagation pass. A very simple solution to reveal relevant image
regions for a model’s prediction is to directly visualize the forward-
propagation activations of selected feature maps in intermediate
layers. For example, the DeepVis Toolbox [YCN∗15] shows live
visualizations of CNN activations from a webcam feed. The goal
is to get a general intuition what features a CNN has learned. AE-
Vis [LLS∗18] shows activations of neurons to a pre-defined set of
input images along a “datapath visualization”. This visualization
allows users to trace the effects of adversarial attacks through the
hidden layers of a network. Datapaths are formed by critical neu-
rons and their connections that are responsible for the predictions.
Like the DeepVis Toolbox [YCN∗15], Perturber visualizes activa-
tions and predictions based on live input. The major difference is

that Perturber generates input images from an interactive 3D scene
and provides a rich palette of input perturbation methods to grad-
ually explore potential vulnerabilities of a model. In addition, it
facilitates direct comparison between a standard model and a more
robust variation thereof to explore the benefits and limitations of
model variations.

3. Perturber Interface

The high-level goal of Perturber is to interactively explore potential
sources of vulnerabilities for CNNs to facilitate the design of more
robust models. Through constant exchange between visualization
researchers and machine learning experts investigating model inter-
pretability and robustness, we identified four central requirements
of a VA application to support exploratory analysis and qualitative
validation of model robustness:

R1: Rich online input perturbation of a representative scene
is essential to quickly generate input images for which model re-
sponses can be investigated. The system should provide a large va-
riety of possible perturbation parameters and allow a flexible com-
bination of these perturbations.

R2: To understand what makes a model robust, it is not sufficient
to understand how a model responds to the perturbed input but also
why the model’s responses change. To this end, looking not only
at the input and output, but particularly at the numerous hidden
layers is inevitable when trying to understand what makes a model
react unpredictably for humans.

R3: Interactivity can help users to build intuitions through dy-
namic experiments [KC19]. We thus aim to make the model re-
sponses to input perturbations instantly visible to support a fluid
feedback loop in a playground-like environment.

R4: Robustness can be achieved by training models on more
versatile input images, using data augmentation methods, such
as affine image transformations, image stylization, or adversarial
training. A direct visual comparison between the standard CNN
model and its more robust fine-tuned version are necessary for a
first qualitative validation whether a fine-tuned model is generally
more robust to input perturbations or only selectively more robust
to specific perturbations it has been trained on.

Perturber supports these four core requirements through a highly
interactive web-based playground consisting of the following com-
ponents: the 3D input scene (Section 3.1, Figure 2 A), the perturba-
tion control (Section 3.2, Figure 2 B-C), the prediction view (Sec-
tion 3.3, Figure 2 F), and the (comparative) neuron activation view
(Section 3.4, Figure 2 E-D). These views allow for a qualitative in-
spection of the effects of input scene perturbations on one or two
selected models (Section 3.5).

Conceptually, Perturber can handle any CNN architecture. The
current version supports models based on the Inception-V1 (also
called GoogLeNet) [SLJ∗15] architecture. Our standard model
was trained on ImageNet [RDS∗15]. We use a pre-trained model
with weights accessible through the Lucid‡ feature visualization li-
brary [OMS17].

‡ https://github.com/tensorflow/lucid
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Figure 2: Perturber interface: users manipulate the 3D scene (A) through a large variety of input perturbation methods that are grouped
into functional categories (B). Per category, input perturbations can be seamlessly controlled through sliders (see inset (C)). Users can select
two models to compare, as well as a set of neurons from dedicated layers (D). For the selected neurons and models, respectively, neuron
responses are visualized live (E). Top-5 predictions for both models are shown as logits or probabilities along with an image example (F).

3.1. Input Scene

The input image is generated from an interactive 3D scene that can
be manipulated in numerous ways (Section 3.2). In computer vi-
sion projects, rendered images are often used instead of – or in
addition to – photographs for training CNNs [SQLG15]. Quan-
titative experiments have shown that, for high-level computer vi-
sion algorithms, the gap between synthetic and real images is fairly
small [GWCV16]. CNN responses were shown to be consistent be-
tween simple rendered 3D models and natural images [AR15]. In-
teractive exploration of CNN responses based on synthetic scenes
therefore seems to be sufficiently representative of real-world appli-
cations. The major advantage of a synthetic 3D scene is that pertur-
bation factors can be easily disentangled. That means, input modi-
fications can be flexibly applied independently from each other to
assess their isolated effects as well as their interactions.

Out of the 1000 ImageNet classes, 90 of them are dog breeds.
Therefore, there are numerous neurons in our Inception-V1 model
that specialize in dog-related patterns, such as snouts, head-
orientations, fur, eyes, ears, etc. As a consequence, we chose a dog
as our main foreground 3D object to represent this special signifi-
cance and to feed an input image that many hand-identified neuron
circuits [CCG∗20] respond to strongly. As a second 3D model, we
provide a vehicle, which has very different characteristics from a
dog and is a commonly analyzed object in the machine learning
community (e.g., [GWCV16, AR15]). In addition, users can up-
load custom 3D models. This way, users can verify observations
they have made also with other models.

3.2. Perturbation Control

The core principle of Perturber is that the user can flexibly vary
the perturbation factors they want to explore (R1) and observe their

effects instantly (R3). Below the input scene view, Perturber pro-
vides sliders for seamless control of the perturbations (Figure 2 C).
Perturber provides more than 20 scene perturbation factors, as well
as all possible combinations between these factors. We group these
perturbation methods into the following categories:

Geometry perturbations, such as rotation, translation, or crop-
ping an image, are classic perturbations a CNN might be sensitive
to [ZSLG16, ACW18, ETT∗19]. Therefore, affine image transfor-
mations are also a common data augmentation method for more ro-
bust training [PW17]. We support geometric perturbations through
simple camera controls, which allow the user to arbitrarily orbit
around the 3D model, as well as to freely zoom and pan the scene
to create image cropping effects. In addition, users can rotate the
camera around the z-axis to simulate image rotation.

Scene perturbations that may seem irrelevant for human ob-
servers may easily confuse a standard CNN model. For example,
changing the background [XEIM20] can have a tremendous effect
on the prediction. We, therefore, support various scene perturba-
tion operations, such as changing the background image, as well as
modifying the lighting and texture parameters of the main object
(see Figure 3). Through combinations of these parameters, special-
ized perturbations, such as silhouette images, can be generated (see
Figure 3 bottom right).

Shape perturbations let users morph the shape of the main scene
object into another one. Perturber currently supports morphing be-
tween dog and cat, as well as between a firetruck and a race car. By
morphing the shape of an object independently from its texture, the
texture-shape cue conflict [GRM∗19] can be investigated.

Color perturbations act on the rasterized 2d image. We support
individual post-processing effects, such as alpha blending to black,
hue shifting, and (de-)saturation. In addition to these parameters,
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Figure 3: Scene perturbations – first row: original scene, no light-
ing influence, full background blur, different background image;
second row: no texture influence, full texture blur, lowest back-
ground saturation, combination of background saturation, lighting
influence, texture influence, and background blur. All perturbation
parameters can be controlled seamlessly.

users are provided with a text field where they can write their own
GLSL code, taking a single parameter which is controlled by the
slider. The code snippet defaults to code for contrast adjustment.
Using these post-processing effects, users can assess the models’
surprisingly high robustness against low contrast [DK16] and low
image saturation [SLL20].

Frequency perturbations selectively modify different image fre-
quencies. Perturber provides three-parameter frequency decompo-
sition that splits the image into low and high-frequency bands,
which is achieved by Laplacian decomposition. Through selec-
tive frequency suppression, users can investigate phenomena such
as the one described by Yin et al. [YLS∗19], where the authors
show that adversarially trained networks are robust against high-
frequency perturbations but very sensitive to low-frequency pertur-
bations.

Spatial perturbations are post-processing effects systematically
changing the image’s pixel order. Perturber supports patch shuf-
fling, which was used by Zhang and Zhu [ZZ19] to reveal a model’s
sensitivity to global structure, which gets highly disturbed for hu-
man observers by patch shuffling. The image is divided into a grid
of k× k cells, which are then randomly re-ordered.

Adversarial perturbations, finally, are a core feature to under-
standing model robustness. Users can perform projected gradient
descent (PGD) adversarial attacks [MMS∗19] on the current scene
image. To do that, they choose a model to generate the attack from,
a target class or the option to suppress the original prediction, as
well as the attack ε and Lp norm (L2 or L∞). With each but-
ton press, the user performs one PGD step with a step length of
ε/8. This perturbation is costly and cannot be performed instanta-
neously. The first step typically takes around 10 seconds on a pow-
erful consumer PC as the gradient function needs to be computed
for the current input image first. To let users inspect the effect of an
adversarial attack on the model fluidly like the other perturbation
parameters, we overlay the current input image with the perturba-
tion vector once it has been computed. This way, users can interac-
tively fade the attack alpha using a slider and observe the system’s

response instantaneously. They can also fade the original image to
inspect the perturbation vector itself.

3.3. Prediction View

The prediction view shows the top-5 classification results for each
model (Figure 2 F) either as probability or as logits. This allows the
user to observe the classification changes resulting from input per-
turbations in real-time (R3). Each model’s top result is represented
by a class image example. Perturber shows the first image of the
respective class in the ImageNet validation dataset.

3.4. Neuron Activation View

The neuron activation view is the central interface for the analysis
of how input perturbations affect the models’ hidden layers (R2).
Perturber represents neurons through feature visualizations. Fea-
ture visualizations aim at providing a lens into networks to visual-
ize what patterns certain network units respond to [OMS17]. These
patterns might be, for example, edges in a particular direction in
earlier layers (cf., Figure 4), or specific objects, like dog heads (cf.,
Figure 1) or car windows, in later layers.

Activation maps show which regions of the input image cause
the respective neuron to be activated. After experimenting with an
implementation of the gradient-based visualization method Grad-
CAM [RSG16], we decided to focus on the computationally far less
expensive activation maps showing the neuron activations for a for-
ward propagation pass. This way, neuron activations can be ob-
served instantly (R3). Input regions that highly activate the neuron
are shown in red, while blue regions cause a negative activation
(see Figure 4). As the user manipulates the input scene, the acti-
vation maps update instantaneously so that the user can observe in
real-time to which image features a neuron responds in one of the
models. For example, in Figure 4, neurons 412 and 418 of layer
mixed4a respond to oriented patterns. Rotating the textured race
car causes these two neurons to strongly change their activations.

Inception-V1 contains thousands of neurons. Clearly, it is im-
possible to show feature visualizations and interactive activation

Figure 4: Feature visualizations for neurons associated with com-
plex shapes and curvatures in layer mixed4a for the standard
model, as well as their activation maps for the input on the left.
Note how rotating the input model causes an activation change for
oriented shape detectors (insets on the bottom).
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maps for all neurons concurrently. Instead, we provide pre-selected
neuron groups and categories for each layer, which were charac-
terized into semantically meaningful neuron families in the course
of the Circuits project [CCG∗20]. In addition to these previously
presented neuron groups, we identified further sets of dog-, cat-,
race car-, and firetruck-related neurons in later layers using Sum-
mit [HPRC20]. These pre-selected neuron groups consisting of one
to up to around 70 neurons can be selected from drop-down menus
(Figure 2 D).

3.5. Model Comparison

After exploring potential sources of vulnerability, model designers
commonly fine-tune existing models using augmented training data
covering the identified vulnerability. To leverage Perturber for di-
rect comparison of robustness (R4), we employ a transfer learning
approach, which is initialized with the weights from the standard
model. This is necessary to guarantee that feature correspondence
of individual network units is kept intact. Only this way, we can as-
sume that units across models respond similarly to identical input
images.

To illustrate what individual network units respond to, Perturber
relies on feature visualizations. Feature visualizations are indepen-
dent of the input image, but they differ between models. Indeed,
Table 1 shows noticeable differences between a single neuron’s fea-
ture visualizations of three different model variations.

To showcase model comparison, Perturber already includes two
robust model variations of Inception-V1: The first model was ad-
versarially trained with projected gradient descent (PGD), which
was described by Madry et al. [MMS∗19]. Adversarial training in-
creases model robustness by incorporating strong adversarial at-
tacks into the training procedure. The second model was trained by
Stylized-ImageNet, which is a variation of ImageNet, where im-
ages were transformed into different painting styles using a style
transfer algorithm [GRM∗19]. The purpose of Stylized-ImageNet
was to induce a shape bias, while the standard ImageNet-trained
models were found to be biased unproportionally towards tex-
ture [GRM∗19]. Users can choose two models for comparison from
the interface (Figure 2 D). In addition, they can choose multiple
checkpoints along the incremental fine-tuning process to analyze
the development of the models during training. Corresponding neu-
ron activation views are then juxtaposed in the Perturber interface
for direct comparison (Figure 2 E).

4. Web-Based Implementation

Perturber runs purely on the client-side in the user’s browser and
without any server-side computations at runtime. We precomputed
all data that does not depend on interactively changeable elements
to make the UI as efficient as possible. For transfer learning,
we initialized the weights with those of the standard model (i.e.,
Inception-V1 trained on ImageNet), which were obtained through
the Lucid library [OMS17]. For adversarial fine-tuning, we used the
open-source implementation by Tsipras et al. [TSE∗19]. No layers
were frozen for transfer learning. For both fine-tuned models, we
used a learning rate of 0.003, a batch size of 128, and we trained
until the models reached a top-5 training error of around 0.5, which

Table 1: Comparison between naive pixel (top) and Fourier basis
(bottom) parametrized feature visualizations of neuron 222 in layer
mixed4a for three model variations.

standard adversarial stylized

naive pixel
param.

Fourier
basis
param.

took approximately 50K iterations for the adversarial fine-tuning
and around 90K iterations for the Stylized-ImageNet fine-tuning.

To generate feature visualization, we employed the implementa-
tion provided by the Lucid [OMS17] library. For each model, we
generated feature visualizations for 5808 neurons from the most
relevant layers (i.e., the first three convolutional layers and the con-
catenation layers at the end of each mixed-block). During fine-
tuning, we obtained feature visualizations for 17 checkpoints of ad-
versarial fine-tuning and seven checkpoints of Stylized-ImageNet
fine-tuning. For each neuron, we computed feature visualizations
using two parametrization methods – naive pixel or Fourier ba-
sis [OMS17] (see Table 1). The second performs gradient ascent in
Fourier space and leads to a more equal distribution of frequencies,
resulting in more naturally looking feature visualizations. We use
transformation robustness [OMS17] in addition to both methods.
Without Fourier basis parametrization, the differences between the
models are more visually distinct (Table 1 top row). The computa-
tion of all ∼300K generated feature visualizations required around
one month on a machine with two NVIDIA GTX 1070 GPUs. §.

Manipulation of the 3D scene, model inference based on the ren-
dered image, and computation of activation maps are performed
live in the web browser. The client relies on GPU acceleration for
both, 3D scene rendering and CNN inference. We use the WebGL-
based libraries Three.js and TensorFlow.js [STA∗19] for these
tasks, respectively. The front-end GUI is based on React.js. Input
perturbations based on post-processing effects are implemented as
multiple sequential render passes with custom GLSL shaders. For
model inference, we use Tensorflow.js [STA∗19], which enables
fast GPU-accelerated CNN inference. Tensorflow.js is also used for
computing adversarial attacks.

A major requirement of Perturber is that the effects of input per-
turbations can be observed instantaneously (R3). To assess require-
ment R3, we measured the client’s performance while constantly
orbiting the camera around the object. Figure 5 shows the recorded
frame rates for two client notebooks: a MacBook Pro 13” 2018
with Intel Iris Plus Graphics 655 (MBP) and an AORUS 15G Gam-
ing Notebook with an NVIDIA GeForce GTX 2080 Super GPU

§ All generated feature visualizations can be downloaded from https:
//github.com/stefsietz/perturber/
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Figure 5: Performance benchmarks for four different output con-
figurations, measured on two machines (MBP or AORUS): neuron
activation view (NAV) only, or neuron activation view in combi-
nation with prediction view (NAV+PV) visualized for one or two
visualized models concurrently.

(AORUS). It is clearly visible that the GPU of the client machine
has a strong influence on the frame rate. The application perfor-
mance also depends on the enabled visualizations, with the predic-
tion view (Section 3.3) being more computationally expensive than
showing four live activation maps (Section 3.4). When using less
powerful client machines, users can selectively switch off views.

5. Exploration Scenario: Texture-Shape Conflict

To demonstrate the capabilities of Perturber, we selected one im-
portant aspect of robustness: the influence of shape and texture on
CNN classification results. It has been shown that CNNs are bi-
ased towards texture, which affects robustness [GRM∗19]. In this
scenario, we first aim to investigate whether this effect could have
been discovered using Perturber. Secondly, we aim to qualitatively
validate whether a more robust model variation, which was fine-
tuned using Stylized-ImageNet [GRM∗19], can improve upon this
bias.

For our first analysis, we explore the texture-shape cue conflict
through shape and texture perturbations. Figure 6 illustrates that
shape perturbations alone do not cause the standard model to pre-
dict a cat breed. However, when morphing the texture, the model
predictions switch to cat breeds – even when the object shape re-
mains unchanged. This is a first indicator that the model is indeed
much more sensitive to texture than to shape perturbations.

To further investigate the texture sensitivity of the standard
model, we replicated the patch shuffling experiment by Zhang and
Zhu [ZZ19]. Using Perturber, we can inspect single neurons’ ac-
tivations during this experiment. We illustrate our observations on
a hand-picked neuron in Figure 7, which is strongly activated by
dog faces looking to the left. Note how this neuron is activated by
strong texture contrasts, especially around the mouth of the dog.
Image regions containing ears do not activate this particular neu-
ron. For this scene, the standard model still predicts a dog breed
up to k = 7 randomly shuffled image patches. This illustrates that
the decomposed shape has indeed very little influence on the model
prediction.

In the next step, we analyze if the standard model is indeed
more sensitive to texture than the model fine-tuned on Stylized-
ImageNet [GRM∗19] by gradually removing the texture of the

shape

texture

Malinois 29%

Chesapeake Bay 
retriever 18%

Malinois 20%
German shepherd 

8%
Miniature pinscher 

16%

German shepherd 
18%

Egyptian cat 27% Tabby 18%

Border terrier 11%

Figure 6: Object morphing between dog (bottom left) and cat (top
right) along the texture dimension (y axis) and shape dimension
(x axis): Top-1 standard model predictions with their probabilities
are shown as text labels. Input images leading to cat breeds within
the top-5 or top-1 predicted classes are indicated by a yellow and
orange frame, respectively (top row).

Figure 7: Randomly shuffling the dog scene into 3 (top), 4 (mid-
dle), and 8 (bottom) patches: A dog-related neuron in mixed4b of
the standard model is activated by patches containing parts of the
dog’s face and textured body parts.

main object. The predictions in Figure 8 confirm that the Stylized-
ImageNet trained model consistently predicts a dog breed, even in
the absence of a texture. The standard model, on the other hand,
seems to rely much more on the texture. The model trained with
Stylized-ImageNet is also more sensitive to patch shuffling, which
is another indication that it relies less on texture information than
the standard model (see Section A in the Supplemental Document
for image examples).

Finally, we compare shape sensitivity between the two models.
To this end, we combine various scene perturbations to generate
a silhouette image of the dog. We then gradually change the pose
of the dog. Figure 9 shows the predictions of the standard model
and the model fine-tuned with Stylized-ImageNet. Clearly, the pre-
dictions of the standard model are unstable, especially when the
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Sorrel 16% Kelpie 100%

G. Shepherd 85%

Standard Stylized Training

Kelpie 70%Piggy bank 11%

Figure 8: Inspecting the shape vs. texture conflict through scene
perturbations for the standard (left) and the Stylized-ImageNet
trained model (right): while the standard model gets confused by
missing textures, the Stylized-ImageNet trained model predicts a
dog breed even if the 3D model is untextured.

dog is directly facing the camera. The model trained with Stylized-
ImageNet, however, reliably predicts a white wolf with high proba-
bility. The activations of relevant neurons indicate that the Stylized-
ImageNet-based model has learned a more stable representation of
a frontal dog head, which also get activated by a silhouette image.

These examples illustrate that Perturber provides flexible ways to
explore and better understand potential threats to robustness, such
as the texture-shape conflict of CNNs. Section A in the supplemen-
tal document contains more exploration scenarios.

6. Case Studies

While the previous scenario investigated a known vulnerability, we
further explored whether Perturber can help to discover unknown
threats to robustness through case studies with machine learning

Ibizan hound 3%

White wolf 100%

Toilet tissue 3%

White wolf 100%

Lab coat 5%

White wolf 96%

Bonnet 8%

White wolf 99%

Standard Stylized

Figure 9: Rotating a dog silhouette: the corresponding predictions
of the standard model and the model trained on Stylized-ImageNet,
as well as activations of dog-related neurons for the front-facing
dog image in mixed4d of the standard model (left) and the robust
model (right).

experts. We conducted case studies with five machine learning re-
searchers (four PhD students, one post-doctoral researcher; one fe-
male, four males). Except for one user, sessions were conducted
individually through video conferencing and lasted approximately
one hour each. One user preferred to perform the case study offline
and sent a textual text report instead.

The researchers cover various topics of expertise in the field of
AI interpretability and the design of robust machine learning mod-
els. The concrete research areas are listed in Section B of the sup-
plemental document. Two users were involved in the co-design pro-
cess of Perturber and are co-authors of the paper. Three users were
unfamiliar with the system before the evaluation. One of these users
entered the co-design iteration process after the case study and is
also a co-author. Paper co-authorship is a common collaboration
role in design studies [SMM12].

During the video conference, the participant used the online tool
while sharing his/her screen with the first and last author. Every
session was recorded while conversations and observations were
transcribed on-the-fly or in retrospective through automatic speech-
to-text.

Every video conferencing session started with a short introduc-
tion by the participant describing his/her research focus. After-
wards, we gave a short demonstration of Perturber’s features. We
then asked the participant to shortly comment on his/her first im-
pression and his/her expected insights from the analysis. Then,
the participant freely played around with Perturber while thinking
aloud. In particular, we asked the user to always state his/her intent
before performing an action and whether he/she would have any
particular hypotheses about the response and behavior of the net-
work based on the chosen input. If a user could not find the respec-
tive functionality of the tool, the first and/or last author provided
oral assistance. At the end of the study, the user was encouraged
to summarize his/her impressions, the potential benefits of the tool,
and to provide suggestions for improvements.

6.1. Observations and Feedback

Users praised the fact that Perturber works “live” and therefore al-
lows for ad-hoc exploratory analyses. They liked that Perturber
allows to play around with simple examples to quickly find pat-
terns and form hypotheses. Generally, the main focus of the ex-
ploratory analyses was trying to identify input perturbations where
a model would respond unexpectedly. One user described this pro-
cess as trying to answer the following questions: “How can I break
a model? What do I need to do so that the resulting prediction is
wrong?” For example, three users were surprised to see how vul-
nerable the adversarially trained model seems to be to some geo-
metric changes, such as zooming or rotating. Two users also dis-
covered a high sensitivity of adversarially trained models to back-
ground modifications, as illustrated in Figure 10. The live approach
was praised in particular for cases without a clear ground truth,
such as object morphing (Figure 6). Such scenarios would not be
possible to assess quantitatively without human subject studies. Be-
ing able to quickly generate hypotheses that could then be formally
tested in a more controlled setting was considered very useful.

We also observed indications that Perturber is practically helpful
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Racer 59%

Racer 72% Goldfinch 61%

Lawn mower 27%

Standard Adversarially Trained

Figure 10: Blurring the background of the race car has little influ-
ence on the standard model’s predictions (left). The adversarially
trained model (right) is very sensitive to the chosen background.
The probability for “racer” is 11% with a grass background and
7% with a uniform green background.

for visual confirmation. For example, using the model predictions
and activations of selected neurons, one user verified that adversar-
ial attacks only affect the standard model. He also observed how
animal-related neurons of the standard model got activated during
an attack with the target class “badger” (Figure 11). Not all assump-
tions were actually confirmed. For example, one user expected that
the model trained on Stylized-ImageNet would be noticeably more
vulnerable to image blur than the standard model. Unexpectedly,
the model’s responses were not more sensitive to blur than the stan-
dard model’s for the chosen input scene (see Section A in the sup-
plemental document).

Standard Adversarially Trained

Fire engine 56%

Badger 14%

Fire engine 13%

Snowplow 10%

mixed4b

172 172207 207

Figure 11: Adversarial attack with target class “badger” on the
fire truck scene (top) and the effect on two cat-related neurons
in layer mixed4b for the standard model (left) and adversarially
trained model (right): As the attack strength is increased (bottom),
activations of some standard model neurons increase while the ac-
tivations of the adversarially trained model are hardly affected. The
prediction probabilities for the fire engine decrease to 0.1% for the
standard model and to 6% for the adversarially trained model after
the attack.

Finally, a user pointed out that playing around with Perturber
would let non-experts get an intuition how easily CNNs are
fooled. For example, one user demonstrated how the standard
model sometimes rapidly changes its predictions during a simple
translation of the dog. Another expert demonstrated that a rotation
of the dog along the z-axis in combination with an unusual back-
ground (street) was sufficient to disturb the adversarially trained
model. Accordingly, he stated that Perturber could be informative
for “people fearing that AI will take over the world”.

A comprehensive list of observations reported by the individual
users can be found in Section B of the supplemental document.
Overall, the most frequently performed perturbations leading to the
most interesting observations in our case studies were 1) geometric
transformations, such as object rotation, zooming, and translation,
2) modification of the background, 3) combinations of (1) and (2),
as well as 4) object morphing. The prediction view was perceived
as giving instant, easily interpretable, and useful feedback. It was
thus the primary view to observe model behavior. Feature visual-
izations were considered useful to characterize the difference be-
tween the models. Participants described feature visualizations of
the adversarially trained model as more “intuitive” or “cartoonish”
compared to the corresponding standard model’s neurons. One par-
ticipant found feature visualizations sometimes hard to interpret.
One recommendation therefore was to additionally show strongly
activating natural image examples from a dataset.

6.2. Quantitative Evaluation of User Observations

We performed quantitative measurements to see whether what
users observed visually can be generalized beyond the given in-
put scene, synthesized input images, and the Inception-V1 net-
work architecture. To test the generalizability of the users’ ob-
servations, we performed quantitative measurements using differ-
ent models than the ones used in the online tool. Specifically, we
used the pre-trained ResNet50 from the torchvision library of Py-
Torch [PGM∗19] as the standard model. For comparison, we used
weights of an adversarially trained version of the same model from
the robustness library [EIS∗19] (ResNet50 ImageNet L2-norm ε
3/255).

First, we investigated the adversarially trained model’s sensi-
tivity to background changes, which was reported by two users
in the case study. For verification, we performed the Background
Challenge by Xiao et al. [XEIM20], where a model is tested with
(natural image) adversarial backgrounds. The adversarially trained
model can only correctly predict 12.3% under background varia-
tions. The standard model achieves 22.3% accuracy. Using this test
dataset, random guessing would yield 11.1% accuracy [XEIM20].
This shows that the robustified network is considerably more sus-
ceptible to adversarial backgrounds than the standard model.

Second, we tested if the adversarially trained model is indeed
more sensitive to geometric scene transformations than the stan-
dard model (reported by three users). In particular, we looked into
camera rotation. We generated a synthetic dataset, where we ren-
dered the four 3D models provided in Perturber from seven yaw
angles, ranging from -70◦to 70◦ (Figure 12a), two pitch angles,
and two distances of the camera to the object, as shown in Figure
12b. In total, we generated 28 views for each of the four 3D models.
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(a)

(b)

Figure 12: Seven yaw angles variations (a) tested for four proto-
type views (b) per model (two of the four models are shown here).
The prototype view in (a) is highlighted.

To compare how much the predictions fluctuate, we chose a pro-
totype view with a yaw angle of -23.3◦for each of the four pitch /
distance combinations and 3D model (Figure 12b). For each of the
16 resulting prototypes, the logits of the top-10 classes served as
ground truth vector l?10. For the 16 prototype views, we then calcu-
lated a fluctuation score fp:

fp = ∑
y

‖l?10− ly10‖2

s(l?n)
, (1)

where l?10 are the top-10 predictions of the prototype view, ly10 is
the logit vector of these 10 classes for the view associated with yaw
y, and s(l?n) is the standard deviation of the logits of all n classes in
the prototype view. In other words, the fluctuation score measures
how strongly the logits of the top-10 prototype classes diverge in
the rotated input images.

Figure 13 shows the average fluctuation score of all 28 prototype
views. The fluctuation scores are considerably higher for the adver-
sarially trained model for three of the four 3D models. This verifies
that the adversarially trained model can be indeed more vulnerable
to rotations of the main object.

7. Discussion & Conclusions

We showed that interactive perturbations in combination with live
activations can be an effective method to explore potential vulner-
abilities of CNNs and to perform qualitative evaluations of more
robust model variations. In an exploration scenario, we could repli-
cate the known texture-shape conflict [GRM∗19] through multiple
perturbation examples. Machine learning experts participating in
our case study observed a variety of known but also unexpected
network behaviors. They could successfully replicate known CNN
properties, such as models’ varying sensitivity to adversarial at-
tacks or patch shuffling, using our synthetic input scenes. In ad-
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Figure 13: Average yaw fluctuation scores for the standard model
and the adversarially trained model across the four 3D models.
Error bars show the standard deviation.

dition, our quantitative post-study experiments of selected user ob-
servations could replicate their observations using a different net-
work architecture and natural images. Through these experiments,
we demonstrated vulnerabilities of adversarially trained models to
background modifications and yaw rotations of the main object
that, to the best of our knowledge, have not been discussed yet in
the machine learning community.

The majority of insights reported by our users were based on
observations how the model predictions changed when perturbing
the image. This implies that the principle of live input perturbations
could also be useful for pure black-box models. To get a better intu-
ition about which image features are influential for the model’s final
decision, our exploration scenarios indicate that neuron activations
are also essential. But due to the large number of logical neuron
units distributed among multiple layers, it can be time-consuming
to find a set of neurons that eventually is affected strongly by the
performed input perturbation. In the future, we thus plan to investi-
gate alternative methods to select the displayed neurons in the neu-
ron activation view. Also visual guidance to support the discovery
of potentially harmful perturbation factors would be helpful. How-
ever, traditional guidance mechanisms may require costly compu-
tation, which will hamper interactivity (R3). Effective guidance
mechanisms can therefore be considered interesting future work.
Another interesting line of future work would be the support for
encoder-decoder architectures, used prominently for semantic seg-
mentation and image translation tasks among others. This could be
facilitated by replacing the prediction view with a continuously up-
dating display of the generated image.
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A Extended and Additional Exploration Scenarios
In addition to the exploration scenario shown in the main paper, we show here results of the following
exploratory analyses:

• texture influence (Section A.1 and Section A.2),

• shape sensitivity (Section A.3),

• low frequency information (Section A.4),

• high frequency information (Section A.5),

• adversarial attacks (Section A.6),

• fading to black (Section A.7),

• geometric transformations (Section A.8),

• as well as geometric transformations in combination with background modifications (Section A.9).

• development of activations & feature visualizations during fine-tuning (Section A.10).

For the respective scenarios, we compare the standard model (Inception-V1 trained on ImageNet)
with the Stylized-ImageNet trained model (Inception-V1 fine-tuned with Stylized-ImageNet [1]) in Sec-
tions A.1, A.2, A.3, A.4, A.5 and with the adversarially trained model (Inception-V1 adversarially fine-
tuned [2, 5]) in Section A.6, A.7, A.8, A.9. Finally, we show the development of feature visualizations
during fine-tuning for both models in Section A.10.
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A.1 Texture vs. Shape

Figure A.1 shows a comparison between the standard trained model and the model trained by Stylized-
ImageNet. The middle row shows how cat-related neurons get activated by morphing the texture and
shape, respectively. Please note how the standard model (top row in Figure A.1 e-h) gets strongly
activated by the cat texture, while the respective neurons of the Stylized-ImageNet trained model (bottom
row in Figure A.1 e-h) seem to get more activated by shape changes. Also note that the Stylized-ImageNet
trained model never predicts a cat.

(a) original (b) cat texture (c) cat shape (d) cat shape + texture

(e) original (f) cat texture (g) cat shape (h) cat shape + texture

(i) original (j) cat texture (k) cat shape (l) cat shape + texture

Figure A.1: Object morphing to assess the texture vs. shape conflict: input scene (a-d), activations of four cat-
related neurons in mixed4e (e-h) by the standard model (top) and the Stylized-ImageNet trained model (bottom),
and the predictions (i-l) by the standard model (left) and the Stylized-ImageNet trained model (right).
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A.2 Patch Shuffling

Figure A.2 shows the effect of randomly shuffling image patches on the standard and the Stylized-
ImageNet trained model. The dog is still predicted correctly by both models when shuffling 2 × 2 image
patches (Figure A.2 g). The Stylized-ImageNet trained model is more sensitive to patch shuffling than
the standard model (Figure A.2 h-i). Note how the activations of neuron 429 in layer mixed4b (third
column in Figure A.2 d-f) follow certain regions in the dog face.

(a) k = 2 (b) k = 5 (c) k = 8

(d) k = 2 (e) k = 5 (f) k = 8

(g) k = 2 (h) k = 5 (i) k = 8

Figure A.2: Patch shuffling: increasing the number of randomly shuffled image patches k (a-c), activations of
dog-relevant neurons in mixed4b (d-f) by the standard model (top) and the Stylized-ImageNet trained model
(bottom), and the predictions (g-i) by the standard model (left) and the Stylized-ImageNet trained model (right).
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A.3 Silhouette

Figure A.3 investigates the models’ shape sensitivity by analyzing the dog’s silhouette against a red
background in different poses. The activations of dog-related neurons in mixed4d (Figure A.3 e-h) show
that the standard model seems to be more sensitive to pose changes. Indeed, the predictions (Figure A.3
i-l) of the standard model fluctuate with the pose modifications, while the Stylized-ImageNet trained
model consistently predicts “white wolf” with a very high probability.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure A.3: Analyzing shape influence: different silhouette poses as input (a-d), activations of four dog-related
neurons in mixed4d (e-h) by the standard model (top) and the Stylized-ImageNet trained model (bottom), and
the predictions (i-l) by the standard model (left) and the Stylized-ImageNet trained model (right).
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A.4 Blur

In the case study, a suspicion of one user was that the model trained on Stylized-ImageNet would be
more sensitive to high-frequency information. Blurring the image would therefore disturb this model more
heavily than the standard model. Figure A.4 illustrates that this is not necessarily the case: Activations
of dog-related neurons gradually degrade by applying blur for both models (Figure A.4 d-f). At a high
blur level, both models have very uncertain predictions (Figure A.4 i).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.4: Blurring the image: input image with gradual blur (a-c), activations of oriented dog heads in mixed4a
(d-f) by the standard model (top) and the Stylized-ImageNet trained model (bottom), and the predictions (g-i)
by the standard model (left) and the Stylized-ImageNet trained model (right).
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A.5 High-Pass Filtering

In contrast to low-pass filtering shown in the previous section, here we show the effects of high-pass
filtering on the standard trained model and the Stylized-ImageNet trained model (Figure A.5). As
the frequency threshold is increased to a high level, the activations of dog-related neurons considerably
decrease for the standard model (Figure A.5 f, top row), while the same neurons are still highyly activated
for the Stylized-ImageNet trained model (Figure A.5 f, bottom row), and it also still predicts a canine
(Figure A.5 i, right column).

(a) f = 0 (b) f = 15 (c) f = 30

(d) f = 0 (e) f = 15 (f) f = 30

(g) f = 0 (h) f = 15 (i) f = 30

Figure A.5: Applying a high-pass filter on the input image: input image with increasing frequency threshold
(a-c), activations of oriented dog-related neurons in mixed4e (d-f) by the standard model (top) and the Stylized-
ImageNet trained model (bottom), and the predictions (g-i) by the standard model (left) and the Stylized-
ImageNet trained model (right).
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A.6 Adversarial Attack

Figure A.6 shows an adversarial attack (target class “Egyptian cat”) for a standard and an adversarially
trained model. Figure A.6 c-d, bottom row shows how the activations of the adversarially trained model
remain unaffected, while the cat-related neurons get strongly activated by the attack for the standard
model (Figure A.6 c-d, top row). Consequently, the standard model’s prediction switches to the attack’s
target class (Figure A.6 f, left column), while the adversarially trained model still predicts a German
shepherd with very high confidence.

(a) (b)

(c) (d)

(e) (f)

Figure A.6: Adversarial attack with target class “Egyptian cat”: input image before (a) and after (b) a successful
attack, activations of cat-related neurons (c,d) by the standard model (top) and the adversarially trained model
(bottom), and the predictions (e,f) by the standard model (left) and the adversarially trained model (right).
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A.7 Alpha

Figure A.7 illustrates the saturation effect [3] by gradually blending the input image to black. Note
how the activations of the standard model (Figure A.7 d-f, top row) remain high and the predictions
(Figure A.7 g-i, left column) remain correct even though the α is already very low on the last image
so that humans can no longer perceive any content. The adversarially trained model, however, is more
sensitive to the reduced image contrast.

(a) α = 50 (b) α = 30 (c) α = 10

(d) α = 50 (e) α = 30 (f) α = 10

(g) α = 50 (h) α = 30 (i) α = 10

Figure A.7: Reducing the overall alpha and blending into black: input image with different alpha values (a-c),
activations of oriented dog heads in mixed4a (d-f) by the standard model (top) and the adversarially trained model
(bottom), and the predictions (g-i) by the standard model (left) and the adversarially trained model (right).
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A.8 Rotation

Figure A.8 compares two models’ sensitivities to viewpoint changes. From a side view (Figure A.8 a-b),
both models fairly reliably predict a race car (Figure A.8 i-j). However, when looking at the car from
a front-top view (Figure A.8 c), predictions are getting unstable for both models (Figure A.8 k) – in
particular for the adversarially trained model, which does not predict any car-like object as top-5 target
(Figure A.8 k, right). Looking at the activations of neurons that are important for the prediction of race
cars in mixed4b (Figure A.8 e-h), it seems that wheels play a very important role. As the car is rotated
and wheels disappear, the activations of these neurons decrease considerably (Figure A.8 g-h).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure A.8: Orbiting around the race car: input scene from different camera angles (a-d), activations of four race
car-related neurons in mixed4b (e-h) by the standard model (top) and the adversarially trained model (bottom),
and the predictions (i-l) by the standard model (left) and the adversarially trained model (right).
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A.9 Roll + Background

To assess the sensitivity to the context, we analyze the influence of the main object’s rotation and the
background image in Figure A.9. While the standard model still predicts dog breeds after a 180◦rotation
(Figure A.9 h, left column), the adversarially trained model has a tendency to predict sea animals (Fig-
ure A.9 h, right column). After changing the background, none of the models predicts a dog (Figure A.9
i). The adversarially trained model also has artifacts in the top-5 in case of a street background (Fig-
ure A.9 i, right column). Also, note how the dog-related activations decrease once the object is rotated
(Figure A.9 e) and the background is swapped (Figure A.9 f) for both models.

(a) 0◦+ grass (b) 180◦+ grass (c) 180◦+ street

(d) 0◦+ grass (e) 180◦+ grass (f) 180◦+ street

(g) 0◦+ grass (h) 180◦+ grass (i) 180◦+ street

Figure A.9: Rotating the main object and changing the background: input image with different rotations and
/ or background images (a-c), activations of dog-related neurons in mixed4d (d-f) by the standard model (top)
and the adversarially trained model (bottom), and the predictions (g-i) by the standard model (left) and the
adversarially trained model (right).
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A.10 Model Fine-Tuning

To better understand what happens during fine-tuning, users can compare models at various intermediate
checkpoints of the fine-tuning process. This is similar to the transfer learning visualizations by Szabo
et al. [4]. However, they investigated transfer learning with different datasets, while we fine-tuned the
models with variants of the same dataset.

Perturber provides 17 selected checkpoints during adversarial fine-tuning and seven selected check-
points during Stylized-ImageNet fine-tuning. We chose to include more checkpoints for the adversarial
fine-tuning because it appears more dynamic compared to the Stylized-ImageNet fine-tuning (as can be
seen in Figure A.10), and generating the required data is computationally expensive.

Figure A.10 shows activations and feature visualizations of neuron 222 in layer mixed4a at various fine-
tuning checkpoints. During Stylized-ImageNet fine-tuning, the activations and feature visualizations stay
relatively consistent. During intermediate steps of adversarial fine-tuning, however, the positive response
vanishes before reappearing after iteration 10K. The corresponding feature visualizations also reflect this
phenomenon by becoming less similar to a dog head intermediately before assuming the appearance of a
smoother version of a dog head than before fine-tuning.

1 10 100 1000 5000 25000 35000 90000

1 10 100 1000 5000 10000 13000 50000

Input

Figure A.10: Activations and feature visualizations of neuron 222 in layer mixed4a at selected fine-tuning
checkpoints. Numbers above and below show the fine-tuning iteration.
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B Case Study Observations & Feedback
Here, we list all observations and feedback recorded during the case studies. Table B.1 shows the research
focus of the individual study participants.

Table B.2 lists all reported observations. Some of these observations are visual confirmations of known
facts, some observations are highly speculative, some are just descriptions of what the users saw.

In Table B.3, finally, we list all suggestions for future improvements mentioned by the users.

Table B.1: Research focus of the case study participants.

User Research Focus

P1 Understanding vision in humans and machines, with a special focus on Deep Learning interpretability and feature
visualizations.

P2 On the interface between psychophysics and deep learning, in particular understanding how object recognition differs
between humans and machines.

P3 Detection and interpretation of failure cases of computer vision models.

P4 Learning more robust, safe, and verifiable machine learning models.

P5 Designing interpretable deep learning models.
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Table B.2: Observations reported by the participants in our case studies, including references to corresponding
exemplary scenarios.

User Observation Reference

Geometric Perturbations

P3 The adversarially trained model is robust to translation when the dog is viewed from the side,
while the standard model fluctuates.

P3 Zooming into the race car makes the Stylized-ImageNet trained model predict a school bus,
which is incorrect.

P4 Rotation affects the class output of the adversarially trained model more than that of the standard
model.

Section A.8

P5 The adversarially trained model tends to misclassify the scene more often upon viewpoint changes
than the standard model.

Section A.8

P5 The adversarially trained model seems to be less sensitive to object distance (zoom).

Scene Perturbations

P3 Background blur makes the adversarially trained model less consistent. The adversarially trained
model seems to use the background more than the standard model.

Section 6.2 (main paper)

P5 Background significantly alters the decisions made by the adversarially trained model. This is
less apparent for the standard model.

Section 6.2 (main paper)

Object Morphing

P1 The cat is predicted surprisingly “late”. Section A.1

P2 Predictions first change to another dog class before they switch to a cat. Section A.1

P3 Activations for dog-related neurons do not necessarily peak at “pure” dog images.

Frequency Decomposition

P1 The strong influence of frequency decomposition operations on the class predictions is surprising.

P2 The Stylized-ImageNet trained model is more robust under blur than expected. Section A.4

Patch Shuffling

P2 The target class is soon difficult to predict for a human, but it is still correctly predicted by the
model

Section A.2

Adversarial Attacks

P2 Adversarial attacks only affect the standard model. Section A.6

P4 Adversarial attacks change the activations of the early layers very little. The activations seem to
change more on the later layers.

P4 An adversarial attack on a car scene towards “badger” leads to fur neurons getting activated.

Complex Perturbations

P2 A small rotation in combination with an unusual background is sufficient to disturb the adver-
sarially trained model.

Section A.9

P3 The untextured dog head can be quite certainly predicted by the adversarially trained model,
but leads to a hammerhead prediction upon close-up for the standard model. Texture makes
predictions more certain, but blurred texture (coloring) also helps.

P3 Rotation has a strong influence in combination with low texture influence and zooming.

Feature Visualizations & Activation Maps

P1, P3 Feature visualizations of the adversarially trained model look more “intuitive” / “cartoonish”.

P2 Eye detectors react to surprisingly many regions in the street background image.

P4 The lack of differences of activation maps between models is suprising. The only major differences
were observable during adversarial attacks.
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Table B.3: Suggestions for improvement provided by the participants of the study.

User Suggestion for Improvement

Scene Perturbations

P1 Allow users to upload custom background images.

P2 Support background rotation.

P3 Object texture could be more detailed.

Adversarial Attacks

P4 Change the scene behind the adversarial attack instead of adversarial attack being tied to a fixed image.

Feature Visualizations

P1 Show dataset examples (i.e., strongly activating examples from the training data) instead of / in addition to feature
visualizations.

P3 Support different feature visualizations.

General Suggestions

P1 Provide more guidance through the interface, otherwise it can be overwhelming.

P1, P3 Provide more 3D models.

P3 Show dataset examples with similar activations as the current input scene.

P5 Perform a grid search to systematically generate input images and store the results for quantitative evaluation.
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