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A B S T R A C T

Research in deep learning has seen extraordinary advances at a fast pace leading to the emergence

to many prospective applications, especially in the computer vision domain. Nonetheless, most of

the machine learning pipeline remains opaque and hard to explain to humans, limiting their real-

world use due to the lack of understanding and trust to deploy these systems in critical scenarios

such as health care.

In this thesis, we propose machine learning models that are inherently more explainable than

the base model they are derived from. By exposing parts of the decision-making process and

increasing the overall transparency, we develop tools that allow humans to better evaluate strengths

and weaknesses of the machine learning models as well as assess their suitability for deployment.

The research of this thesis takes inspiration from how explanations are formed between hu-

mans through communication. We present novel approaches that look at different aspects of the

communication process and embed them into neural network models to make them more inter-

pretable and/or more integrated into human-computer interactions. Communication — and to a

greater extend human language — is a natural way for humans to compose explanations, such

that explanation systems would not impose onto the users a learning curve of interacting with the

artificial intelligence.

Specifically, we propose a multi-agent communication setting, where messages between the

agents resemble a yes/no question-answer discourse. Agents trained to solve an image classification

task, learn to build a decision tree that globally describes the prediction procedure.

We find that human-understandable side-information is key for making the framework truly

explainable. While this approach finds one globally viable explanation for a given problem, humans

are diverse in their own communication, languages, and perception. To this end, we build an

agent that creates purposefully crafted messages by observing its communication partner in their

effectiveness in acting upon the communicated data and adjusting its own policy accordingly. Then,

we show that efficient communication can also be used as a metric that, when optimized for, leads

to both highly compressed abstractions and interpretable insights on humanly drawn sketches and

sketch-based tasks.

Finally, we take a broader look at how semantic information, e.g., from language, can enrich

vision models and make them more explainable.
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Z U S A M M E N F A S S U N G

Die Forschung in Deep Learning erlebt herausragende Fortschritte, die zu vielen zukünftigen An-

wendungen führen können, besonders im Bereich Computer Vision. Dennoch bleiben die meisten

Teile eines auf maschinellem Lernen basierenden Systems verborgen und schwer dem Menschen

zu erklären. Der daraus resultierende Mangel an Verständnis und Vertrauen beschränkt die Anwen-

dung solcher Methoden in kritischen Szenarien wie dem Gesundheitssystem.

In dieser Dissertation schlagen wir Modelle vor, die von Grund auf erklärbarer sind als die Ba-

sismodelle, auf denen sie aufbauen. Durch das Offenbaren von Teilen des Entscheidungsprozesses

entwickeln wir Hilfsmittel, die es Menschen erlauben, die Stärken und Schwächen der Modelle

besser zu erkennen und einzuschätzen, ob sie sich für einen Einsatz eignen.

Die Forschung dieser Dissertation ist von der Art inspiriert wie Erklärungen durch Kommu-

nikation entstehen. Wir präsentieren neuartige Herangehensweisen, welche verschiedene Aspekte

des Kommunikationsablaufs in neuronale Netze integrieren, sodass sie interpretierbarer werden

und/oder die Interaktion zwischen Mensch und Maschine verbessern. Kommunikation — und

damit auch unsere Sprache — ist ein natürlicher Weg für Menschen eine Erklärung zu verfas-

sen, sodass ein Benutzer von erklärbaren Systemen keiner Lernphase ausgesetzt ist, um mit der

künstlichen Intelligenz interagieren zu können.

Insbesondere schlagen wir eine Multiagenten-Kommunikationsumgebung vor, bei der die Nach-

richten zwischen den Agenten einem Ja/Nein Frage-Antwort-Diskurs ähneln. Agenten, die trai-

niert wurden, Bilder zu klassifizieren, bauen dabei einen Entscheidungsbaum, der den Ablauf der

Vorhersagen als Ganzes beschreibt. Während dieser Ansatz eine einheitliche Erklärung für eine

Problemstellung findet, stellen wir fest, dass Menschen vielfältig in ihrer Kommunikation, Spra-

che und Wahrnehmung sind. Aus diesem Grund erschaffen wir einen Agenten, der zielgerichtete

Nachrichten erstellt und seine Vorgehensweise anpasst, indem er seinen Kommunikationspartner

dabei beobachtet, wie effektiv dieser die übertragenen Informationen in Taten umsetzen kann.

Im Anschluss zeigen wir, dass effiziente Kommunikation auch als Maßstab verwendet werden

kann, der, wenn man sich ihn als Ziel setzt, zu hoch komprimierten Abstraktionen und zu interpre-

tierbaren Erkenntnissen führt. Schließlich werfen wir einen umfassenderen Blick darauf, inwiefern

semantische Informationen, z.B. von Sprache, Vision-Modelle bereichern und sie erklärbarer ma-

chen können.
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1

I N T R O D U C T I O N

The usage of Artificial Intelligence (AI) has increased over the past years and keeps demonstrating a

steady further growth: sophisticated models enter more areas and find more application cases, from

entertainment and gaming [Vin+19] to urban planning and “artificially intelligent cities” [Yig+20].

Such a fast-paced inclusion into human society as well as its expanding influence over our everyday

life makes AI face certain expectations and even demands.

On one hand, AI is awaited to reach a cognitive ability comparable to human’s and, thereby,

be able to perform both ordinary and specialized tasks at an equal or super-human level. In certain

fields, this expectation is already being fulfilled. For instance, AlphaGo [Sil+16], “arguably the

strongest Go player in history” [Dee22], is able to defeat a human grand master at the board game

of Go, which was long believed to be one of the hardest AI challenges in game playing. Similarly,

the most recent version MuZero [Sch+20] does so without ever seeing a human playing the game,

i.e., only by playing against itself.

On the other hand, there is a growing need for users to be able to understand how exactly AI

would make up its “mind”. In other words, in addition to making correct decisions and solving

problems successfully, the machine should be able to expose its “thinking” process. This way,

humans could utilize it and develop a better understanding of why some steps are selected over

others as well as how some choices result in a desired outcome while others do not. Such an

explainability appears especially important for critical applications:

• A health-care system should not only predict a treatment, but also provide arguments in

favor of its suggestions in an intelligible way, for doctors to analyze the situation and make

informed final decisions.

• A self-driving car could indicate its uncertainty about proceeding in a given environment,

e.g., a decision to overtake another vehicle, and specify what is causing the confusion,

effectively allowing a driver to intervene and make a better decision, potentially avoiding a

dangerous situation.

The ability to uncover the decision-making mechanisms and logic that led to a specific result would

also be beneficial for cases of under- or nonperformance on either side:
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• Having AlphaGo’s moves together with its reasoning, human players could improve their

own game and skills.

• When a chatbot failed to understand a human prompt and be helpful, specifying why mis-

communication happened on its end, a machine learning practitioner could retrospectively

debug the model and correct its behavior, to avoid facing the same problem in the future.

• If a biased model systematically puts a certain group of people at a disadvantage, seeing

an explanation how the model arrives at its conclusions would help tweaking it for more

balanced decisions.

• In general, shedding some light on why AI acts the way it does under given circumstances

would help human users build more awareness and establish more trust in machines [MKR21].

Despite this seemingly clear objective, however, working on explainability in AI becomes anything

but trivial. The biggest challenge here stems from the AI’s decision-making process remaining

hidden.

• AI does not really interact with a user, at least, not in a way usual for humans. Having fed

a required input to the machine, a user could receive its final decision for that input, but

the model’s choices are not something that could be easily deduced from the architecture or

intermediate outputs.

• The decision-making process itself is non-linear, and the large amount of parameters and

layers only boost the overall complexity, impeding the understanding on the human side.

For example, winning the Go game is an impressive achievement, but Go is a deterministic envi-

ronment, where each player has perfect information. Unlike Go, many real-world problems require

AI to act in complex, uncertain, and probabilistic environments: in an ever-changing world and

climate, autonomous cars need to deal with unforeseeable weather effects, AI-supported health-

care systems may be exposed to new diseases, chatbots must understand slang and be capable of

handling possible speech- and audio-signal defects. This contributes to the general image of AI

being a black box in the eyes of both an average consumer and a machine learning practitioner. As

a result, a difficulty to understand translates into a difficulty to accept, integrate, and make use of.

Explainable AI 1 could fill in this gap by extending existing machine learning methods, such

that they could reveal, how and why a decision or prediction is made, and do so in an interpretable

manner.

Belonging to the said field of research, this thesis gets inspiration from human interaction and

explanations and attempts to develop similar approaches for machines by modeling communication,

enhancing non-interpretable model components, and experimenting with model architectures that

would help disclosing interpretable information to a human, who then could extract valuable

insights and further analyze the model’s decision-making process.
1The research community does not seem to have unity regarding the terms Explainable and Interpretable AI:

some scientists view explainability and interpretability as different concepts [Arr+20], while others do not make a
separation [Zha+21]. In this work, both terms are used interchangeably.
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1.1 Contributions

This thesis primarily deals with tackling explainable AI in the computer vision domain. It addresses

communication as a concept and how several aspects of communication could enable novel intro-

spections into deep models while fulfilling an explanatory role. Furthermore, our work extends the

scope of explainable AI by establishing new use cases and enriching existing tasks.

Acknowledging the importance of natural language for communication and explanations, we

adjust our work, for it to appropriately account for the peculiarities of computer vision. Since in this

domain, the data usually consist of natural images, we experiment with sketches as a more abstract

representation of human drawings of objects, include textual data to bridge concepts between

different domains and use natural language as a means of communication.

A variety of tasks and use cases are considered in the course of work. We cover classification,

retrieval, image referencing, weakly supervised object detection, and image generation. While

improving the state of the art in terms of evaluation metrics for these tasks is not generally a

primary goal of explainable AI, we pay attention to carefully considered trade-offs and limitations

of our proposed methods while maintaining their applicability in challenging scenarios.

In the following sections, we discuss three lines of contributions.

First, we build introspective models and representations. To build more inherently interpretable

models, we present Recurrent Decision Trees through Communication (RDTC) (Chapter 3), a

framework of two neural-network agents communicating to solve an image classification task.

By making the agents communicate in the form of binary questions and answers and using their

communication as a discrete bottleneck, we make these agents jointly learn to solve a task it-

eratively, step by step. Communication functions as an interface for understanding the learned

decision-making process.

Instead of only obtaining an output prediction, our model exposes a sequence of binary features

responsible for causing the prediction. Due to the choice of binary communication, the global

decision mechanism is equivalent to a decision tree for the whole dataset, where each image takes

a single path through the tree, and leaf nodes contain the model’s predictions. Such an approach

allows to explain single instances, i.e., images, but also facilitates the extraction of clustering

relations of the entire dataset. In addition to being more transparent in its decision-making process,

our RDTC model retains the classification accuracy of the baseline black-box model it is derived

from, on a variety of datasets including ImageNet.

In the sketch domain, we develop a Primitive Matching Network (PMN) (Chapter 5) that learns

to match human-drawn strokes to primitive shapes under affine transformations. For instance, a

common drawing of a human face consists of a circle for the outline, two straight lines for the

eyes, and a curve for the mouth. While neural networks observe this data as a sequence of lines

consisting of a sequence of points on a 2D canvas, our network matches frequently occurring

patterns to primitive shapes, such as lines, rectangles, circles, etc. By replacing the original raw

data with arrangements of primitives, we create a new representation of the data that retains the

original information while being explicit and highly compressed. This allows us to qualitatively

and quantitatively explore the data and distill structural pattern for each semantic class in an
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unsupervised way.

While PMN creates new representations of the data in the original input space, representation-

learning approaches usually learn a distinct latent space. With our Compositional Mixture Repre-

sentations for Vision and Text (Section 6.1), we propose the CoMix model that learns a multi-modal

alignment between images and sets of labels in a latent space. CoMix utilizes a spatial-transformer

module that transparently assigns cropped image sections of the input to Gaussian components

of the feature space. Through the compositional nature of this model, the latent space becomes

interpretable while retaining expressibility by allowing multiple mixture components to correspond

to separate objects in the image.

Second, we establish communication tasks. We develop a novel communication task in the form

of an image-reference game that we use to model conceptual understanding of a speaker agent

about populations of listener agents (Chapter 4). We motivate this task by drawing the analogy to

adjusting explanations depending on the context and conceptual understanding of the receiver.

More specifically, a speaker is tasked with communicating the identity of a target image from

a set of two images by pointing to a discriminative feature of the target image. The conceptual

understanding of the features varies for every listener: e.g., if a listener is color-blind, the speaker

has to adapt its communication, to be able to solve the task successfully. Further, we present a

model that can predict these discrepancies between listeners to outperform sensible baselines.

PMN (Chapter 5) allows us to further abstract human sketches by matching and replacing

human strokes with primitive shapes. We evaluate the effectiveness of this interpretable com-

pression mechanism on sketch classification and sketch-based image retrieval by communicating

sketches iteratively to a network performing the downstream task. Our experiments demonstrate

that our primitive-based representation outperforms raw sketches as fewer communication steps

are required to convey sketch semantics and achieve higher scores at low communication budgets.

With this communication task, we showcase that primitive abstractions not only allow us to better

understand how objects are composed of shapes, but also to efficiently tackle downstream tasks

with compact representations.

Third, we incorporate semantics. A key part of human communication is language. It contains

semantics that allows to draw associations with the world around us. When we let neural agents

communicate in their own artificial language, extracting explanations for humans becomes chal-

lenging. With this point in mind, we align the products of our models with human-understandable

concepts by incorporating semantic data into the training procedure.

Our RDTC framework (Chapter 3) learns to communicate from scratch and can discover

visual concepts as binary features on its own. However, to make these features interpretable,

a human would have to create associations by hand through inspection of the learned decision

tree. Since, depending on the dataset, this is impractical and time consuming, we propose to use

human-understandable attribute information as the vocabulary for the communication. Due to

these additional constraints during training, the communication loop as well as the decision tree

become inherently explainable.

The compositional representations of our CoMix (Section 6.1) model explicitly align latent
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components with input regions in the image. At that point, components from the same region in

the latent correspond to perceptually similar concepts in images but naming them would require

human intervention. Therefore, we propose to align image latents with latents derived from an

unordered set of textual labels describing the objects in the image, effectively transferring the

semantics from the text to the image regions. With matching vision and text domains, CoMix can

perform weakly-supervised object detection while generalizing to unseen combination of objects

through its compositional latent structure.

Finally, we explore vector-quantized (VQ) models (Section 6.2) for their unique characteristic

of learning discrete visual tokens which, when arranged in a grid, encode entire images. VQ models

are a popular method for image synthesis as training a generative model on these sequences of

tokens resembles a language model. To get a better association with semantic contexts and guide

the generation process, we develop a semantically coupled VQ-model that leverages semantic maps

as conditioning information. Through the tight integration of semantic information, we improve

image synthesis results and allow fine-grained control over the generated content in an image.

1.2 Outline

This section provides a brief overview of every thesis chapter, referencing respective publications

and collaborations including their contribution to the overall work. The content of the chapters

corresponds to the published content. All the publications are first-author or shared first-author

publications. Appendix C lists all the publications including their co-authors.

Chapter 1: Introduction motivates the work of this thesis and explains why researching

explainable AI is necessary yet difficult to conduct. This chapter also describes the contribution of

this thesis to the progress of the scientific community as well as contains an structural overview of

the thesis in general.

Chapter 2: Background reviews the preliminary basis for this thesis. It discusses deep

learning as a field and tasks involved in the subsequent chapters, gives an overview of related

explainable AI research, and describes how communication fits into the scientific picture. Chapters

following the Chapter 2 contain their own respective sections about related work, specific to the

research topics they discuss.

Chapter 3: Learning Decision Trees Recurrently Through Communication introduces our

RDTC model that utilizes a communication framework between two agents to solve an image-

classification task. Explainability is obtained, on one hand, by learning a decision tree that de-

scribes a prediction structure of the communication loop, and, on the other, by restricting the vo-

cabulary, for it to consist of human-understandable attributes. On both attribute and non-attribute

datasets, we demonstrate that explainable models can maintain state-of-the-art performance while

being more interpretable at the same time. This work was published at CVPR 2021 [Ala+21]

in collaboration with Diego Marcos, who had an advisory role and assisted with setting up the

user-study experiment.

Chapter 4: Modeling Conceptual Understanding in Image Reference Games proposes

employing an image-reference game to scrutinize the variation in conceptual understanding of
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a population of agents. We develop a neural-network agent that learns how to maximize the

communication effectiveness by observing the task performance of its communication partners.

The content of this chapter was published at NeurIPS 2019 [CAA19] as a shared-author paper

together with Rodolfo Corona. Contributions were divided equally, with the specifications of

the task being shaped more by the concepts of Rodolfo Corona and the reinforcement learning

approaches as well as model integration being more influenced by the ideas of Stephan Alaniz.

Chapter 5: Abstracting Sketches through Simple Primitives covers our work on matching

primitive shapes to human strokes in their sketch drawing. By replacing raw data with a more

structured set of visual words, we could abstract sketches to a more compact representation while

maintaining their visual appearance. With classification and sketch-based image retrieval, we

present a model that enables a more efficient communication of semantic information to solve

these tasks. The research from this chapter was published at ECCV 2022 [Ala+22]. The initial

idea of abstracting sketches through primitive shapes was developed in close collaboration with

the co-author Massimiliano Mancini. Stephan Alaniz guided developing the model and required

losses to tackle the task. Massimiliano Mancini implemented some of the baselines and assisted

with integrating datasets. Diego Marcos and Anjan Dutta contributed with their domain expertise

in an advisory role.

Chapter 6: Language-inspired Extensions beyond Communication comprises two works

that go beyond explainability through communication but are connected with their inspiration taken

from semantics and the discrete nature of language respectively.

Firstly, we propose CoMix, a probabilistic model that learns compositional mixture represen-

tations from image-text pairs. By imposing a mixture of Gaussians distribution on the latent space,

we can separate and match entities in both modalities such that object-containing image regions

are aligned with their corresponding textual labels without direct supervision. Such an architecture

allows performing multiple tasks, ranging from weakly-supervised object detection to image re-

trieval, and its compositional properties enable it to generalize to unseen combinations of objects at

test time. The content of this work was published at the CVPR 2022 L3DIVU Workshop [AFA22]

in collaboration with Marco Federici, who contributed to the loss design and implementation of

the CoMix model.

Secondly, we present a semantic image synthesis with semantically coupled VQ-model, where

we employ vector quantization to, first, learn discrete codes that make up images and then learn

a model to generate them. We contribute by integrating semantic maps to outline the image

structures into the network architecture and coupling the latents of both semantics and image, to

make them more expressive together. Our experiments show an improved semantic synthesis of

images by closely tying the generated content to the semantic maps. This work was published

at the ICLR 2022 DGM4HSD Workshop [AHA22] together with Thomas Hummel as a shared

first author. Both Stephan Alaniz and Thomas Hummel contributed equally to the design and

implementation of the developed sVQ model. Stephan Alaniz took the lead by initially proposing

novelties to vector-quantized modeling with the semantic conditioning information, which resulted

in this work.
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Chapter 7: Discussion and Conclusion completes the thesis and puts its results into per-

spective of the research field. We discuss the contributions, point to limitations of our current

approaches, and suggest how they could be addressed in the future in the domain of explainable

AI.
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2

B A C K G R O U N D

This chapter briefly reviews current research in the deep learning field as we employ this back-

ground knowledge as well as certain assumptions and tasks as a foundation for our work. We also

provide an overview of different approaches to explainable AI as it is utilized to enhance deep

learning systems. Finally, we take a look at how communication is defined and describe how it

becomes both a tool and motivation for our research.

2.1 Deep Learning and its Application

Deep learning is a subfield of machine learning, a discipline dealing with algorithms that learn

from data to perform a task without a human specifically designing and implementing the solution

by hand. For instance, in computer vision, processing of images and other high-dimensional data is

required for many tasks. Thus, hand-designing filters and functions to detect the semantic content

of an image becomes infeasible at scale.

A machine learning algorithm can learn a mapping function fcls : X → Y directly from data,

where x ∈ X is an image and y ∈ Y is a label we want the algorithm to predict.

A common approach is to supervise the learning of this function by providing a dataset of

paired input-output samples {xi, yi}Ni . The task of predicting categorical labels from images is

also referred to as classification and is tackled as part of the thesis.

Classification tasks find various applications, especially in perception problems such as medical

diagnosis or detection of other cars and pedestrians in self-driving cars. The latter is an extension

to classification called object detection, where there is a label for each object in the image, and we

are not only interested in classifying the objects, but also in identifying their location in the image.

Another relevant task in the context of the thesis is image retrieval, where the goal is to match

images Ximg to a corresponding pairing from another modality Xalt such as sketches or language.

While supervised pairing data is generally provided for retrieval tasks, the output of function

fret : X → Z is often a previously unknown embedding space that captures similarities between

the two domains. We also refer to Z as the latent space because it is inferred from the observable

data. The training objective is to place data pairs close in the latent space so that we can perform

image retrieval by, first, embedding a query sample to zalt = fret(xalt) and then finding the closest
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image xret = argminximg∈Ximg
d(fret(ximg), zalt) for some distance function d. Retrieval can be

used for content discovery, search, and exploration of content across domains, for example, in

commercial settings.

We also employ unsupervised learning, where paired data is not available, but only a single

modality, e.g., a dataset of images. Unsupervised learning can be used to learn a latent space

either for generative modeling or as a pre-text task since data acquisition is not as expensive as

in supervised tasks, where labeling work is conducted by humans. Common training objectives

for unsupervised tasks include reconstructing the original input or learning a probabilistic model,

which approximates the true data-generating distribution by maximizing the likelihood, with which

the model would generate samples from the dataset. Generative models are used for drug discovery

and as an artistic tool in image processing, for example.

Deep learning provides tools to solve these learning tasks with a model class of neural networks

as function f . At its core, neural networks are composed of parameterized linear transformations

and non-linear activation functions. When chaining there two operations many times as neural

network layers, we obtain powerful function approximators that can model complex relations in

the data.

Stochastic gradient decent (SGD) [KW52; RM51] and backpropagation [RHW86] allow to ef-

ficiently train neural networks on large amounts of data, facilitating fast-paced progress in research.

Since its inception, neural network architectures have made tremendous progress to develop both

general and specialized designs. The Convolutional Neural Network (CNN) [LeC+89] alongside

popular such architectures as ResNet[He+16] and InceptionV3 [Sze+16] have enabled steady ad-

vances in the computer vision field and are being used throughout this thesis. They have been

successfully applied to classification [He+16; KSH12; Liu+22; SZ15; Sze+16], object detec-

tion [RF17; Ren+15], semantic segmentation [He+17; NHH15], zero-shot recognition [Xia+19]

and image generation [Goo+15; KLA19].

Apart from images, we also work with sequential data, e.g., in the communication between

agents. Neural networks have been purposefully designed to process sequential data, most promi-

nently with the introduction of the Long Short-Term Memory (LSTM) [HS97] network. It in-

corporates a memory component that allows information from previous time steps to be retained

while new data is sequentially observed. More recently, the Transformer [Vas+17] architecture

has become the state-of-the-art by employing self-attention layers that can aggregate information

across long time spans in sequential data. Their flexibility and expressiveness have not only es-

tablished the Transformer in the natural language domain [Bro+20; Cho+22], but its design has

been also adopted in computer vision [Dos+21; Liu+21; Tou+21] and inspired new architectures

for CNNs [Liu+22].

2.2 Explainable AI

Most deep learning models are predominantly opaque and non-interpretable. The extraction of

valuable insights from the trained model is non-trivial due to the large number of parameters, layers,

and non-linearities these models comprise.
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The importance of explanations for an end-user has been studied from the psychological per-

spective [Lom12; Mil19], showing that humans use explanations as a guidance for learning and

understanding by building inferences and seeking propositions or judgments that enrich their prior

knowledge about the goal in question. This creates a need for explainable AI to make deep models

more understandable for humans. The research community has not converged to a unified def-

inition of explainable AI, so in the context of this thesis, we define explanations as any human

understandable insight into the deep learning model or its decision-making process.

Explainability has been growing as a field in computer vision and machine learning [Aga+21;

Den+22; Hen+16; JN20; Par+18; Ped+20; Ped+19; Ram+20; Zin+17]. A common approach to

making such models interpretable involves post-hoc explanation methods. The idea is to, first,

train a non-interpretable model and then try to understand its internals. Hence, the neural network

is treated as a black box, and its input and output spaces are analyzed.

One of the most widely used forms of visual explanation is a saliency map of feature attribution

that highlights, which regions in the images contribute the most to the decision. Consider, for

example, the task of classifying an image of a dog. The input to the network is an array of RGB

pixels from the image, and the output of the network is the predicted probability distribution

over all training classes including the target class “dog”. The post-hoc explanation method now

attempts to assign an attribution value to each pixel in the input image based on how much the

pixel contributed (positively or negatively) to producing the probability value for “dog”. Saliency

maps are most commonly obtained either by backpropagating gradients [Bac+15; Sel+17; SGK17;

SF19; SF21] or by perturbing the input image [PDS18; SK19; Zin+17].

For example, Grad-CAM [Sel+17] uses gradients from the target class to the final convolutional

layer and combines them with the activations of that layer to create a coarse attribution map of input

regions. RISE [PDS18] perturbs input images with random occlusion patterns and measures the

change in the model’s output, where larger changes constitute more important regions in the image.

Richer explanations can be drawn from combining these saliency maps with part and concept

detectors [ZNZ18; Zha+19], text generators [Hen+16], or the combination of the two [Hen+18].

Contrary to post-hoc explanations, introspection is achieved by modifying the neural network

either through training the model to generate an explanation along with the result or by making its

internal representation interpretable per se. Inherently interpretable models aim to build a neural

network structure in a way that displays additional interpretable information about their inner

workings faithfully. Sometimes these models come at a cost of reduced model capacity as these

inherent structures pose a constraint on the expressiveness of the model class. For example, linear

models and decision trees are generally considered to be interpretable models, however, these

models are not universal approximators as opposed to neural networks [HSW89]. In return, input

feature importance is directly exposed by linear models and decision trees break down the whole

prediction process into interpretable steps.

In computer vision, for instance, one can use a local surrogate [RSG16], interpretable proto-

types [Che+19a; Kim+18], local features [BB19], or dynamic alignment networks [BFS21; BFS22].

CoDA networks [BFS21] reformulate the convolutional layer such that the whole network can be

described by a single linear transformation that changes based on the input image. Hence, CoDA
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neworks integrate the faithful input attribution known from linear models into existing network

architectures.

This thesis focuses on advancing built-in introspections as they provide better guarantees for

the faithfullness of the explanation. We explore the means of communication that are either integral

parts of the network’s architecture or parts of the task, to make our models and their representations

more interpretable.

2.3 Reinforcement Learning and Communication

The reinforcement learning problem [SB98] is defined by finding an agent policy that maximizes

the expected amount of reward the agent receives from interacting with an observable environment.

More formally, starting from its initial condition, the agent receives its first observation from the

state of the environment. With each time step, the agent performs an action that impacts the

environment and, as a return, receives a reward alongside the observation of the new state of the

environment. This interaction between the agent and environment can be repeated indefinitely or

ends when a so-called terminal state is encountered. The goal of the agent is to choose optimal

actions such that the accumulated future rewards are maximized. This generally implies that the

agent has to learn how to act optimally by evaluating its past experience gained from interacting

with the environment. One key difference of reinforcement learning when compared to other forms

of machine learning is the absence of a dataset to train a model on. Instead, reinforcement learning

can be considered an online learning problem because the agent gathers data from the environment

simultaneously to learning and updating its policy.

A simple policy is, for instance, ϵ-greedy, where the agent estimates the expected future return

for every action and selects the action with the highest score with the probability 1−ϵ and a random

action otherwise. Choosing a random action every now and then is important as the agent needs to

explore the environment to obtain new experience. More sophisticated algorithms are often based

on policy gradient methods [Sut+00] such as the REINFORCE algorithm [Wil92]. In addition to

acting in an environment, algorithms developed in the field of reinforcement learning can also be

used for solving other problems, where the solution set is discrete, e.g., it has been successfully

applied to tackle vehicle-routing problems [KHW19]. Hence, it is also frequently used to study

communication and the emergence of language [Cao+18; Far+22; Foe+16; HT17; LB20; Laz+18;

LPT20]. However, the setup for learning and training communicating agents differs across the

studies as the goal they are trying to achieve varies.

This thesis views communication as a bi-directional interaction between two neural network

agents. They communicate by exchanging information in the form of discrete tokens that come

from a vocabulary shared and understood by both agents. Depending on the task and goal, an agent

may communicate one or more tokens at a time before the second agent responds. Generally, the

communication continues in a loop until a stopping criteria is reached with the exact details of

the communication protocols being discussed in the respective chapters. It’s worth mentioning

that they have in common that agents have different roles during the communication, e.g., one

12
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agent asks questions and the other provides answers. Such a distinction draws similarities to the

imbalanced communication between an explainer and the explainee.

The communication problem also exists in the field of information theory as coined by Claude

Shannon in his seminal work on the mathematical theory of communication [Sha48]. In his context,

communication is about sending a message from a source over a channel with limited capacity and

reconstructing the message at the receiver’s side. While the work on communication in this thesis

is not concerned with the problem of transmitting arbitrary signals (e.g., continuous data over noisy

channels), we can still put our definition of communication into perspective. According to Shan-

non’s understanding, our communication systems are discrete and noiseless. The discrete tokens

we use come from a predefined vocabulary, e.g., words from the English language (Chapter 3 & 4),

and the average information content of each token is bounded proportionally to the size of the vo-

cabulary. Each token, however, can transmit a different amount of information for the task at hand

and might not use the channel capacity optimally. In some cases, we allow the discovery of tokens,

so that the neural network could learn to maximize the transmitted information (Chapter 3 & 6.2),

although, this comes at the cost of explainability. This is because these tokens become harder to

decode by humans. An encoding of a message could make better use of the channel capacity, and

we explore this property of communication in Chapter 5, where we re-encode sketches with a new

set of tokens.
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L E A R N I N G D E C I S I O N T R E E S

R E C U R R E N T LY T H R O U G H

C O M M U N I C AT I O N

Integrated interpretability without sacrificing the prediction accuracy of decision making algo-

rithms has the potential of greatly improving their value to the user. Instead of assigning a label

to an image directly, we propose to learn iterative binary sub-decisions, inducing sparsity and

transparency in the decision making process. The key aspect of our model is its ability to build

a decision tree whose structure is encoded into the memory representation of a Recurrent Neural

Network jointly learned by two models communicating through message passing. In addition, our

model assigns a semantic meaning to each decision in the form of binary attributes, providing

concise, semantic and relevant rationalizations to the user. On three benchmark image classifica-

tion datasets, including the large-scale ImageNet, our model generates human interpretable binary

decision sequences explaining the predictions of the network while maintaining state-of-the-art

accuracy.

3.1 Introduction

The decision mechanism of deep Convolutional Neural Networks (CNNs) is often hidden from

the user, hindering their employment in critical applications such as health-care, where a thorough

understanding of this mechanism may be required. The aim for analyzing the decision mechanism,

i.e. introspection, is to reveal the internal process of the decision maker to a machine learning

practitioner or user [Par+18]. However, models offering explanations through introspection may

result in a performance loss [GA19; Mar+04].

Incorporating recent advances in multi-agent communication [Foe+16], we formulate the deci-

sion process as an iterative decision tree and embed its structure into the memory representation

of a Recurrent Neural Network (RNN). Our model uses message-passing [HT17] with discrete

symbols from a vocabulary. A tunable parameter controls whether to learn this vocabulary from

scratch or to map it to human-understandable attributes assigning a meaning to every decision to

improve its interpretability. Further, encoding the decision tree into the memory of an RNN retains
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Figure 3.1: Our Recurrent Decision Tree (RDT) (left) asks questions, Attribute-based Learner
(AbL) (right) answers with a yes/no s.t. the accuracy improves after each step.

the flexibility and performance of CNNs while being scalable. Instead of requiring an exponential

number of tree nodes with increasing depth, our model learns orders of magnitude fewer nodes

with a constant number of model parameters for an arbitrary tree depth. After training, our neural

model can be converted exactly into a standard decision tree, being computationally efficient at

test time.

Our framework (see Figure 3.1) exposes a decision path in the form of an explainable deci-

sion chain by breaking down the decision process into multiple binary decisions. Our recurrent

decision-tree (RDT) (blue) does not see the image, and has to infer the image class, e.g. dog, by

recurrently asking binary questions, e.g. does it have whiskers? Our attribute-based learner (AbL)

(red) answers these questions with yes/no by looking at the image, allowing the RDT to update the

class probabilities and the memory representation of the previous questions and answers. This is

repeated until the RDT reaches a final decision and the decision tree becomes easily understandable

as it associates the binary answers with semantic attributes, e.g. has whiskers.

Our contributions are: 1) We propose a recurrent decision tree model (RDTC) with hard node

splits and overcome current limitations of decision trees in terms of depth scalability and flexibility;

2) We predict attributes in an end-to-end manner allowing human-interpretable explanations; 3)

We showcase on three datasets that our model generates explainable decision trees more efficiently

than related methods while retaining the performance of non-explainable CNNs. Our code is

publicly available at: https://github.com/ExplainableML/rdtc.

3.2 Related Work

Decision Trees with Neural Networks. Decision trees are used across many machine learn-

ing tasks and applications, including medical diagnosis [AE13; Kon01], remote sensing [FB97;

Han+00] and judicial decision making [Kle+18]. They make no assumptions on the data, and are

inherently interpretable [Huy+11].
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To improve their performance, combining decision trees with neural networks has been ex-

plored by building hierarchical classifiers [BD20; Mur+16; Zha+17a; Zha+17b], by transfer-

ring models [FH17; HVD15; HPM19; Siu19], and through regularization [Wu+18]. Recently,

[Kon+16; Tan+19; Wan+21] have proposed learning decision trees directly with neural networks.

NBDT [Wan+21] constructs trees in the weight space of a neural network and Adaptive Neural

Trees [Tan+19] directly model the neural network as a decision tree, where each node and edge

correspond to one or more network modules. The prior work closest to ours is the dNDF [Kon+16],

which first uses a CNN to determine the routing probabilities on each node and then combines

nodes to an ensemble of decision trees that jointly make the prediction. Our method differs in that

1) we focus on explainability by explicitly only considering a hard binary decision and 2) the depth

and branching structure of our decision trees is learned by an RNN instead of being fixed a priori.

Multi-Agent Communication. Learning to communicate in a multi-agent setting has gained

interest with the emergence of deep reinforcement learning [Cao+18; CAA19; Das+19; Foe+16;

HT17; JL18; LB20; Laz+18; LPT20]. Most works focus on establishing a novel communication

protocol from scratch. [Foe+16] and [Cao+18] train multiple agents to maximize a shared utility

by establishing their own language. However, large scale multi-agent settings can suffer from

too much communication, as valuable information comes with extensive computations [JL18].

Targeted communication focuses on key information and allows iterative exchange of information

before performing a task that can improve both performance and interpretability [Das+19].

Image reference games are used to study the emergence of language [Laz+18] and effectiveness

in communication also when concepts are being misunderstood [CAA19]. [HT17] propose an

agent that composes a message of categorical symbols to another agent that uses the information

in these messages to solve a referential game. Our model in contrast allows both to learn a

communication protocol from scratch or use human-understandable concepts as a vocabulary.

Attributes. Attributes are human understandable visual properties of objects that are shared be-

tween classes. Attributes have been used for image description [CGG12; FZ08], caption genera-

tion [OKB11], face recognition [CGG13], image retrieval [KBN08; SFD11], action recognition

[Yao+11; ZW12], novelty detection [WB13] and object classification [Che+19b; LNH14; MSN11;

SQL12; Shi+14]. In this work we propose to use attributes as explanations, i.e. they label the

branches in the learned decision tree, allowing users to easily inspect the reasoning encoded by the

tree.

Explainability through sparsity. Optimizing representations to be sparse [ZLJ16] when seeking

interpretability [Wri+10] draws some resemblance with the working memory of humans [MHB14],

which is limited to a handful of items at the same time. [DK17] hypothesizes that the nature of

these items (they need to be understandable per se), their number and the structure in which they

are presented all impact the interpretability of a representation. Furthermore, interpretability can

be achieved by regularizing neural networks such that their representations, not only to become

sparse [Mar+20], but also adopt the structure of a decision tree [Wu+18].

Although both sparsity and tree depth have been used as proxies for interpretability in deci-

sion trees, human studies suggest that the best proxy is problem-dependent [Lag+18]. Beyond
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Figure 3.2: A single communication step between the RDT (left) and AbL (right) in our RDTC
framework. RDT uses the hidden state h(t−1) of its LSTM (yellow) to requests a single attribute
ac(t) by selecting it through its fQuestMLP. AbL uses its fAttrMLP to predict a binary response
d(t) = âc(t) indicating the presence/absence of the attribute. Finally, RDT updates its state h(t)

and explicit memory M(t) with the binary response to improve its classification prediction ŷ(t).

explainable ML, a sparse representation is considered to be essential for moving towards hybrid

deep learning-symbolic models [Cra+20; Mar20] and for obtaining representations that are closer

to conscious reasoning [Ben17]. Indeed, a recent model of how human brains work postulate a

conceptualization step, linked to dimensionality reduction, followed by an attention mechanism

that sparsely selects concepts [CDK19].

3.3 RDTC Framework

Our Recurrent Decision Tree via Communication framework is a sequential interaction between

the Recurrent Decision Tree (RDT) and Attribute-based Learner (AbL) models trained to classify

images by communicating (see Figure 3.2). RDT learns a decision path allowing introspection and

AbL provides attribute-based rationales to make the communication human-understandable.

3.3.1 Communication between RDT and AbL

For any single image x, our RDT model iteratively aggregates information into an explicit memory

M that is sufficient to predict the correct class label y ∈ Y . Initially, it starts with no prior

information M(0). To gather more information, the RDT agent sends a query message c(t) to the

AbL agent. The AbL answers the query c(t) with a binary response d(t) ∈ {0, 1} that RDT uses

to update its explicit memory M(t) = M(t−1) ⊕ (c(t), d(t)) to improve its class prediction. This

constitutes one iteration t of the agent-to-agent communication. The interaction repeats until a

maximum number of steps is reached or until convergence.

Communication Protocol. The vocabulary size |A| is set to the total number of attributes for every

dataset. RDT and AbL learn to communicate with the set of tokens provided by the vocabulary

in an end-to-end manner. Note that, the AbL agent attaches a human-understandable meaning to

these tokens when annotated attribute data is available.

At each communication step t, RDT chooses one attribute ac(t) from the vocabulary, identified

by its index c(t), and requests its presence or absence in the image. AbL then provides its binary
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prediction of this attribute, i.e. d(t). We deliberately limit the messages of AbL to be binary as

clear yes/no answers are easier to interpret.

Discrete Messages. RDT asks for the attribute via the index c(t) and the AbL responds with a

binary d(t). The Gumbel-softmax estimator [JGP17; MMT17] allows to sample from a discrete

categorical distribution via the reparameterization trick [KW14; RMW14] to obtain the gradients

of this sampling process. We sample gi from a Gumbel distribution and then compute a continuous

relaxation of the categorical distribution:

GumbelSoftmax(logπ)i =
exp((log πi + gi)/τ)∑K
j=1 exp((log πj + gj)/τ)

(3.1)

where log π are the unnormalized log-probabilities of the categorical distribution, τ is the temper-

ature that parameterizes the discrete approximation. When τ ≈ 0, the output is a one-hot vector

and otherwise, it is a continuous signal.

Stochasticity is important for exploring all possible indices c(t) of vocabulary A to find the

most relevant attribute at each step t. Therefore, we use Gumbel-softmax with K = |A| to

sample the attribute index c(t) for RDT. As each d(t) corresponds to the presence or absence of an

attribute in x, a deterministic prediction is beneficial. By introducing a temperature τ to a regular

softmax [HVD15] in AbL, we approximate the argmax function deterministically as τ approaches

0:

TempSoftmax(logπ)i =
exp(log πi/τ)∑K
j=1 exp(log πi/τ)

(3.2)

Since we use binary attributes, in this case K = 2. Popular training strategies include (a) anneal-

ing τ over time and (b) augmenting the soft approximation with an argmax that discretizes the

activation in the forward pass and results in the identity function in the backward pass. Using (b)

guarantees the communication to be always discrete.

3.3.2 Recurrent Decision Tree (RDT) Model

RDT consists of three parts: an explicit memory M, an LSTM [HS97], and a question-decoder

module, Question MLP (see Figure 3.2 (left)). M(t) contains all the binary attributes, i.e. the

responses of AbL d1:t up to step t. The LSTM keeps track of the attribute order with its hidden

state h(t) to encode the current point in the decision tree and decide on the next question. RDT

decodes its last hidden state h(t−1) into a categorical distribution via fQuestMLP:

log p(c(t)|h(t−1)) = fQuestMLP(h
(t−1)) (3.3)

where p(c(t)|h(t−1)) indicates the likelihood of requesting a particular attribute. We denote the

attribute index c(t) ∈ {1, . . . , |A|} sampled by:

c(t) = GumbelSoftmax(fQuestMLP(h
(t−1))). (3.4)

After each iteration of the communication loop, RDT updates its explicit memory M(t) =

M(t−1) ⊕ (c(t), d(t)). Concretely, M ∈ {0, 1}|A|×2 is initialized with all zeros and at each time
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step, we set Mc(t),d(t) := 1. Encoding the attribute in a one-hot vector helps to indicate missing

information with all zeros. M(t) keeps track of already observed attributes and their values. RDT

updates h(t) with:

h(t) = LSTM(h(t−1),M(t), c(t), d(t)). (3.5)

and at each time step M is used to predict the class label:

ŷ(t) = fClassMLP(M(t)). (3.6)

Since the primary objective of RDT is to maximize the classification performance, we minimize

the CE loss between the predicted and the true class probabilities:

L =
1

T

T∑
t=1

LCE(y, ŷ
(t)) = − 1

T

T∑
t=1

∑
i

yi log ŷ
(t)
i . (3.7)

By averaging the LCE over all T time steps, RDT predicts the correct class in a small number of

communication steps which also allows it to be evaluated at any intermediate step unlike most other

decision tree models that classify only at the leaf nodes (see supplementary for a comparison).

Since our decision tree can be evaluated after every communication step, the depth of the tree

is not a fixed hyperparameter, but can be adaptively chosen at test time. This provides a flexible

model that can be tuned for higher interpretability (shallow tree) or higher performance (deeper

tree) at test time without the need for retraining.

3.3.3 Attribute-based Learner (AbL) Agent

The AbL feeds its CNN image features z to fAttrMLP to predict a set of learned binary attributes

queried by the RDT (Figure 3.2, right) where softmax with temperature gives us binary attributes

â ∈ {0, 1}|A|, the discretization of p(â|z):

â = TempSoftmax(fAttrMLP(z)). (3.8)

When the RDT requests the attribute with the index c(t), the AbL simply returns the binarized

response about the attribute using c(t), i.e. d(t) = âc(t) . The attributes are either discovered in an

end-to-end manner by optimizing the loss in Equation 3.7 (RDTC, i.e. Recurrent Decision Tree

via Communication) or they are predicted as human-interpretable concepts using an attribute loss

(aRDTC, i.e. attribute-based Recurrent Decision Tree via Communication).

Attribute Loss. Minimizing the classification loss at each time step is equivalent to finding a binary

data split that reduces the class-distribution entropy the most, i.e. information gain in classical

decision trees. However, a split that best separates the data is not always easy to interpret, especially

when the features used for this split result from a non-linear transformation as in a CNN.

We propose to integrate further interpretability by learning â that align with class-level human-

annotated attributes α using a second cross-entropy term weighted by λ:

L =
1

T

T∑
t=1

[
(1− λ)LCE(y, ŷ

(t)) + λLCE(αy,c(t) , âc(t))
]
. (3.9)
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Algorithm 1 RDTC decision tree distillation
Input: Training images X

Stopping threshold
Output: Decision tree DT

1: DT = empty decision tree
2: for x in X do
3: DT.reset_to_root_node()
4: â = AbL(x) # attributes from image
5: for t = 1 to n do
6: ŷ(t), c(t) = RDT.step(d(t)) # class/attribute of node
7: if not DT.node_exists() then
8: DT.add_node(ŷ(t), c(t))
9: end if

10: if maxi ŷ
(t)
i > threshold then

11: break # prune when confident
12: end if
13: d(t) = âc(t) # attribute yes/no
14: DT.to_next_branch(d(t)) # 1 → left; 0 → right
15: end for
16: end for
17: return DT

Note that the attribute loss is imposed only on those attributes employed by the model. If an

attribute is deemed not to be useful, e.g., if an attribute is weak or hard to predict, our RDT model

learns to ignore that attribute.

When λ > 0, our model (aRDTC) learns to use ground-truth attributes and gives the binary

splits a semantic meaning. For instance, the question of RDT for attribute with index c(t) can be

interpreted as “does it have a black beak?” with ac(t) : “has black beak”. When λ = 0, RDTC does

not use any human-annotated attributes and automatically discovers them. Either of these settings

may be desirable given the application as we show empirically.

3.3.4 Decision Tree Distillation

The RDT and AbL are trained end-to-end since the communication between these two models is

differentiable. At test time we distill the RDT into an explicit decision tree, i.e., the global structure

of nodes, including splitting feature and threshold. The distilled decision tree then models the

trained neural network fRDT ≡ fDT.

Algorithm 1 describes the procedure of extracting a decision tree from RDT. The decision

nodes of the decison tree make hard splits based on the presence/absence of an attribute. Gumbel-

Softmax adds stochasticity to RDT, which is useful for training, but at test time deterministically

choosing the attribute with highest probability is essential for improving the performance and

learning a static tree. Hence, it is replaced with TempSoftmax.

We start with an empty decision tree and fill it with nodes as we run the training data through
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the whole RDTC model (lines 1-2). Whenever a previously unseen node is discovered, we add it

to the tree including information about the attribute (c(t)), where the next node is added, i.e., left

of the current node if d(t−1) is 1 or to the right if d(t−1) is 0 (line 14), and the current prediction

of the class labels ŷ(t) (lines 7-9). We prune the distilled decision tree, i.e. we stop adding nodes

to the tree once ŷ is greater than a threshold (=0.95) for a class (lines 10-12). The end result is a

decision tree that outputs the same class predictions as our trained neural network RDT given the

attribute prediction from our AbL, while being fully explainable by matching learned attributes

with human-annotated attribute data.

3.4 Experiments

Datasets and attributes. We validate our model on the large-scale ImageNet [Rus+15] with 1.2M

images from 1K classes. In addition, we use AWA2 [LNH14; Xia+19] and CUB [Wah+11], i.e.

two medium-scale benchmark attribute datasets. AWA2 comprises 37K images from 50 animal

classes with 85 attributes, while CUB contains 11K images from 200 fine-grained bird species with

312 attributes. Since our model considers splits on hard decisions, we binarize the attributes on

all datasets with a threshold at 0.5, i.e., an attribute is present if more than 50% of the annotations

agree. When an official classification test set is not provided, for all experiments across the datasets,

we randomly assign 20% of each class as test data and 10% of the training data as a validation set

to tune hyperparameters.

Architecture and parameters. The MLPs consist of two layers with a ReLU non-linearity. We

learn the temperature τ of the Gumbel-softmax estimator jointly with the network from an initial

value for τ . During training, we always roll out the decision sequence to a maximum number of

steps. At test time, we apply our decision tree distillation and stop as soon as the RDT reaches a

confidence level specified by a threshold parameter (or once the maximum number of decisions is

reached). We report the mean per-class accuracy over 5 runs to avoid bias towards highly populated

classes.

3.4.1 Comparing with the State of the Art

We compare our aRDTC and RDTCwith classical decision trees (aDT and DT) as baselines, ResNet

(ResNet [He+16] and aResNet) and Deep Neural Decision Forests (dNDF) [Kon+16] as the state

of the art.

ResNet and aResNet. ResNet-152 pre-trained on ImageNet and fine-tuned on each of the datasets

including its softmax classifier serves as non-explainable deep neural network (ResNet). Aug-

mented with attribute data, we train aResNet by first predicting the attributes with the same archi-

tecture as our AbL model and then a linear layer on top.

Our aRDTC and RDTC. Our attribute-based recurrent decision tree (aRDTC) (Section 3.3.3) uses

the attribute loss to associate a human-understandable meaning to the binary decisions. On the

other hand, our recurrent decision tree (RDTC) does not use an attribute loss (λ = 0), and therefore

purely optimizes classification performance.
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Model AWA2 CUB ImageNet

ResNet [He+16] 98.2 ± 0.0 79.0 ± 0.2 73.0 ± 0.1
aResNet 98.3 ± 0.0 77.3 ± 0.5 N/A

DT 92.3 ± 0.4 43.5 ± 0.3 55.2 ± 1.0
dNDF [Kon+16] 97.6 ± 0.2 73.8 ± 0.3 72.6 ± 0.1
RDTC (Ours) 98.0 ± 0.1 78.1 ± 0.2 72.8 ± 0.1

aDT 97.9 ± 0.9 70.6 ± 1.3 N/A
aRDTC (Ours) 98.1 ± 0.0 77.9 ± 0.6 N/A

Table 3.1: Comparing our aRDTC (λ = 0.2) and RDTC (λ = 0) to the decision tree (aDT and
DT), closely related dNDF [Kon+16], and ResNet [He+16] (aResNet, i.e. ResNet with attribute
prediction). As ImageNet do not have attributes, aResNet, aRDTC and aDT are not applicable
(over 5 runs).

dNDF. The dNDF explicitly models the decision tree by mapping each inner node to an output

neuron with sigmoid activation. These nodes define the routing probabilities of the input to the

leaves through exhaustive tree traversal where each leaf node stores a class distribution. The final

prediction is the averaged class prediction weighted by the routing probabilities of every leaf. As

using multiple randomized trees weakens the interpretability, for a fair comparison, we use a single

tree instead of random forests.

aDT and DT. The classical decision tree (DT) is learned on top of the same image features z

by the perceptual module. At each time step, the dataset is split using a single dimension of z

until a leaf node only contains samples of the same class or a regularization strategy leads to early

stopping. We incorporate attributes into the DT baseline, i.e. Attribute Decision Tree (aDT). First,

we train a MLP on top of the image features z to predict class attributes using a binary cross-

entropy loss analogously to the attribute loss of our aRDTC model. Second, we fit a decision tree

on these predicted attributes for each image to determine the class. Both DT and aDT are learned

using the CART algorithm [Bre+84] and the Gini impurity index as splitting criterion due to its

computational advantage over entropy-based methods [RS04].

Classification results. As observed in Table 3.1, compared to the Decision Tree baselines of their

kind, our model variants achieve significantly higher accuracy across all datasets, e.g. RDTC vs DT

achieves 98.0% vs 92.3% and aRDTC vs aDT achieves 98.1% vs 97.9% on AWA2 because our

model scales better and reaches consistent results through gradient-based optimization. Moreover,

although RDTC and aRDTC work with constrained single-bit communications to improve explain-

ability, they succeed in maintaining the accuracy of the non-explainable state-of-the-art across all

datasets, e.g. 72.8% vs 73.0% on ImageNet.

Fine-grained decision splits are extremely challenging to explain because objects are visually

similar to each other and the distinguishing factor is nuanced. Despite this challenge on CUB,

the classification accuracy of RDTC is almost twice as high than classical decision trees that

use the same deep features, i.e., 78.1% vs 43.5% DT. On the other hand, our RDTC not only

outperforms dNDF (78.1% vs 73.8%), our model exhibits improved interpretability, because we

use hard instead of soft binary splits. As it is hard for non-experts to judge the correctness of
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Figure 3.3: The user picks which set of 3 attributes best fit the image or if they match equally well
(attributes come from 2 models out of aRDTC, aDT, aResNet at a time).

aRDTC
aRDTC

aDT

29.0% 44.5% 26.5%
48.0% 35.0% 17.0%
46.5% 32.5% 21.0%

aDT
aResNet
aResNet

;

Figure 3.4: User study results. We show how often the attributes of one model were preferred over
any other and when both were found equal (middle).

the predictions, explanations in this domain are particularly important. Typically, associating a

semantic meaning to the decision path improves human interpretability with a significant loss

in accuracy, e.g. aResNet vs ResNet (77.3% vs 79.0%). On the other hand, on our model this

trade-off is less pronounced. When trained with the attribute loss, i.e. aRDTC achieves a higher

accuracy compared to aDT (77.9% vs 70.6% on CUB) as well as aResNet in addition giving a

semantic meaning to the splits.

User study. The use of named attributes enables humans to understand the decision of the model.

However, if all attributes are allowed to be used simultaneously, such as in aResNet, this decision

becomes less comprehensible. In contrast, aRDTC provides a sparse solution that considers only

a subset of attributes for each prediction. To quantify the relevance of the selected attributes,

we perform a user study with aRDTC, aDT and aResNet on CUB. Since our aRDTC predicts

the class label at each step, we select the attributes that change the class probability the most to

determine the most critical attributes for the decision. For aDT we use the Mean Decrease Impurity

(MDI) [Lou+13] to find features of maximum importance and for aResNet we select the attributes

with the highest weight for the output class.

The user is prompted with an image as well as two sets of three attributes, i.e., the three most

relevant attributes from two models at a time. As some attributes are difficult to recognize, e.g.

cone beak, we provide attribute icons with their names and a bird anatomy sketch. The task is to

select the set of three attributes that best match the image (see Figure 3.3). The user can also report

that both sets of attributes fit the image equally well. We repeat the study on 600 randomly selected

images from the CUB test such that each model is compared 200 times against every other model.

We measure how often the attributes of each model are chosen over the other models. Since we

only show attributes of two models at a time, we obtain a direct comparison for all pairs of models.
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Figure 3.5: Explainability trade-off with aRDTC on AWA2 and CUB. We vary λ of the attribute
loss and report image classification accuracy of RDT (red) and attribute prediction accuracy of
AbL (purple). λ ∈ [0.01, 0.99].

Our results in Figure 3.4 indicate that decision tree models select more relevant attributes than

aResNet. The attributes of aRDTC are preferred much more often than aResNet (48% vs. 17%).

Similarly, aDT is selected more often than aResNet (46.5% vs. 21%). When comparing the two

decision tree models, our aRDTC is slightly favored at 29% over aDT at 26.5% with the majority

of users finding them produce equally fitting attributes (44.5%). These results suggest that the

tree structure of the decision making also helps in isolating more relevant attributes by putting

more weight on individual attributes selected early by the decision tree rather than spreading the

contribution among all attributes.

3.4.2 Evaluating The Model Components

In this section, we evaluate several aspects of our model such as its behavior towards accuracy-

explainability tradeoff, ablating its memory mechanism and scalability.

Accuracy and Explainability Trade-Off The trade-off between the classification loss and the

attribute loss in our aRDTC model can be measured by varying λ ∈ [0.01, 0.99]. Our results on

AWA2 and CUB in Figure 3.5 show a slight decrease in the overall classification accuracy (red

curve), when λ approaches to 1.0 which gives more weight to the attribute prediction as opposed

to class label prediction. Indeed, RDTC achieves a higher accuracy than aRDTC that is trained with

the attribute loss indicating a tradeoff between explainability and accuracy. Increasing λ leads to

a slight decrease in classification accuracy, and generally similar to that of fully optimizing class

prediction when λ = 0.

Furthermore, we measure the effect of λ to the attribute prediction accuracy of the decision tree

as compared to their ground-truth (purple curve). We observe a high attribute prediction accuracy

even with a small λ, e.g. λ = 0.2. As we increase λ in the range of 0.2 to 1.0, there is only a slight

increase in attribute prediction accuracy, indicating that our aRDTC is robust against the choice of

λ across datasets as long as it is chosen to be at least 0.2.

Ablating the Memory Mechanism The LSTM state h and explicit memory M in RDT contains
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Model AWA2 (# att) CUB (# att) ImageNet (# att)

RDTC-L 97.7 (19) 73.0 (50) 60.8 (159)
RDTC-M 97.9 (57) 77.2 (93) 71.6 (82)
RDTC 98.0 (30) 78.1 (42) 72.8 (46)

aRDTC-L 97.9 (29) 69.1 (32) N/A
aRDTC-M 98.0 (37) 76.4 (52) N/A
aRDTC 98.1 (34) 77.9 (38) N/A

Table 3.2: Ablating the memory mechanism of aRDTC (λ = 0.2) and RDTC (λ = 0). Tree state is
encoded as either only the LSTM (L), only the explicit memory (M) or both (+ median number of
distinct attributes the model learns).

100 101 102 103

Distinct Binary Nodes

0

20

40

60

80

100

Av
er

ag
e 

Cl
as

s A
cc

ur
ac

y 
(in

 %
)

AWA2

100 101 102 103

Distinct Binary Nodes

0

20

40

60

80

Av
er

ag
e 

Cl
as

s A
cc

ur
ac

y 
(in

 %
)

CUB

100 101 102 103

Distinct Binary Nodes

0

20

40

60

Av
er

ag
e 

Cl
as

s A
cc

ur
ac

y 
(in

 %
)

IMAGENET

100 101 102 103

Distinct Binary Nodes

0

20

40

60

Av
er

ag
e 

Cl
as

s A
cc

ur
ac

y 
(in

 %
)

IMAGENET

ResNet

RDTC

dNDF(D=1)

dNDF(D=2)

dNDF(D=3)

dNDF(D=4)

dNDF(D=5)

dNDF(D=6)

dNDF(D=7)

dNDF(D=8)

dNDF(D=9)

dNDF(D=10)

dNDF(D=11)

dNDF(D=12)

Figure 3.6: Accuracy with increasing number of nodes in RDTC and dNDF on AWA2, CUB and
ImageNet. As RDTC can reuse learned nodes in the tree and has adaptive tree depth, we train it
once and evaluate it at different depths. dNDF needs to be retrained for every depth hyperparameter
(D) and the number of nodes scales exponentially with tree depth.

previously observed decision nodes and the current decision. While the LSTM state allows to

encode the attribute order, the explicit memory serves as a more direct representation of all gathered

information about the image. We ablate our RDT model with respect to its tree encoding-types.

Table 3.2 shows the classification accuracy of the following configurations: aRDTC-L, i.e.

with only LSTM and attribute loss, and aRDTC-M, i.e. with only explicit memory, (vs RDTC-L

and RDTC-M without the attribute loss). We observe that aRDTC-M consistently performs better

than aRDTC-L, e.g. on CUB (76.4% vs. 69.1%). Moreover, combining the two in our full model

generally improves the performance (up to 1.5% on CUB). These results indicate that the explicit

memory is important for accuracy.

The median number of distinct attributes in paranthesis shows that aRDTC-L retains fewer

decision nodes than aRDTC-M. For instance, aRDTC learns to only use 38 out of all 312 attributes

of CUB (≈ 12%) and on ImageNet RDTC uses only 46 learned binary attributes as opposed to

the 1000 continuous features commonly used in ResNet. This increases sparsity of our model in

the attribute space and improves interpretability by using fewer nodes when using the LSTM. We

conclude that combining the two memory types in our RDTC model provides the best of both

worlds, a high classification accuracy in few binary decisions such that the explanations of our

model are concise and accurate.
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Figure 3.7: Top: Two “Green Kingfisher” images follow the same path except for “black wings”,
i.e. the flying bird gets misclassified as a “belted kingfisher” as black wings are not visible. Middle:
Baltimore Oriole image (left) gets incorrectly classified as Prothonotary Warbler because of the
missing “black crown” in the female bird. Such discrepancies, e.g. per-class attributes not reflecting
the image content, make CUB difficult. Bottom: Cactus Wren (left) and Bewick Wren (right) share
many characteristics except from “striped wings” which our model uses to split these classes.

Scalability of the Learned Decision Trees. For our RDTC, increasing the tree depth simply trans-

lates to increasing the number of binary decisions, i.e., time steps of the model-to-model commu-

nication. Hence, RDTC scales linearly with the depth of the tree while the number of weights stays

constant. On the other hand, DT and dNDF grow exponentially in their number of parameters

with the depth of the tree. When the same attribute is needed at different locations in the tree, our

model learns the meaning of this attribute once and reuses it, while DT and dNDF would have to

relearn the split. Finally, RDTC does not require finetuning a depth parameter. Hence, we have the

flexibility of changing the tree depth at test time without retraining.

We compare the classification accuracy of RDTC and dNDF with an increasing number of

distinct tree nodes on three datasets. As shown in Figure 3.6, RDTC (orange line) is trained only

once and evaluated at different tree depths at test time while we have to retrain dNDF for each

depth parameter. While the number of nodes of dNDF scales exponentially with depth (note the

log-scale on the x-axis), our model adaptively learns the number of binary attributes needed to

solve these classification tasks. Hence, it stops using more attributes when no further distinct nodes

are necessary. We observe that RDTC uses up to an order of magnitude fewer tree nodes on AWA2,

CUB and ImageNet to achieve the same or better performance. At the same time, RDTC only needs

to be trained once and can be adaptively reduced in tree depth at test time.
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3.4.3 Qualitative Results

Zooming into the decision process of misclassifications on CUB, we investigate how our model

treats counterfactual classes which is useful as explanations are often contrastive [Hen+18]. We

provide further qualitative examples revealing the decision tree of our aRDTC model on the fine-

grained CUB and the decision tree of our RDTC model on ImageNet without the attributes in the

supplementary.

In Figure 3.7 (Top), we inspect the point in the tree where the error occurred. The lower

path corresponds to the most probable path taken for birds of class Green Kingfisher. Both images

follow the same path for four decisions, the error occurs in the fifth decision. For the flying bird, our

model decides that it “does not have black wings” and incorrectly classifies it as a Belted Kingfisher,

a closely related class to Green Kingfisher, but without black wings. In addition, our model depicts

its current belief of the correct class at any time during the process, i.e., probability plots at every

branch which reveals some critical binary decisions, when the predicted class changes drastically,

such as the “black wings” decision. This way, a user inspecting our explainable decision tree can

make a more informed decision on the value of the prediction of the model.

In Figure 3.7 (Middle), the Baltimore Oriole image on the left gets incorrectly classified as

Prothonotary Warbler because of the missing male-specific “black crown” attribute in the female

bird. Such discrepancies, e.g. per-class attributes not reflecting the image content, make CUB an

extremely challenging dataset. In Figure 3.7 (Bottom), the Cactus Wren image on the left and

Bewick Wren image on the right share many characteristics except from “striped wings”. The

decision path is common until then where our model uses this attribute to split these classes.

3.5 Conclusion

In this work, we propose to learn a decision tree recurrently through communication between

two-agents. Our RDTC framework adaptively changes tree depth at test time, allows to reuse of

the learned decision nodes and improves scalability. It also uses human understandable attributes

and hard binary splits for easier interpretation. Our experiments show that combining an explicit

memory and an LSTM is important to obtain good performances with few inquiries. Our model

maintains the accuracy of non-explainable deep models and outperforming the state-of-the-art deep

decision tree learners. Qualitatively inspecting individual examples demonstrates the reasoning

behind the failure and other challenging fine-grained cases, while a user study shows that RDTC

selects more visually relevant attributes than a comparable linear semantic bottleneck model.
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M O D E L I N G C O N C E P T U A L

U N D E R S TA N D I N G I N I M A G E R E F E R E N C E

G A M E S

An agent who interacts with a wide population of other agents needs to be aware that there may

be variations in their understanding of the world. Furthermore, the machinery which they use to

perceive may be inherently different, as is the case between humans and machines. In this work,

we present both an image reference game between a speaker and a population of listeners where

reasoning about the concepts other agents can comprehend is necessary and a model formulation

with this capability. We focus on reasoning about the conceptual understanding of others, as

well as adapting to novel gameplay partners and dealing with differences in perceptual machinery.

Our experiments on three benchmark image/attribute datasets suggest that our learner indeed en-

codes information directly pertaining to the understanding of other agents, and that leveraging this

information is crucial for maximizing gameplay performance.

4.1 Introduction

For a machine learning system to gain user trust, either its reasoning should to be transparent [Fre14;

LBL16; Let+15; Rud19], or it should be capable of justifying its decisions in human-interpretable

ways [Gil+18; Hen+16; Huk+18; WM19]. If a system is to interact with and justify its decisions

to a large population of users, it needs to be cognizant of the variance users may have in their

conceptual understanding over task-related concepts, i.e., an explanation could make sense to

some users and not to others. Although there has been work studying what affects users’ ability

to understand the decisions of machine learning models [Cha+17], to the best of our knowledge

existing work in explainable AI (XAI) does not explicitly reason about user understanding when

generating explanations for model decisions.

As an additional complication, variations in understanding can only be inferred from observed

behavior, as the system typically has no access to the internal state of its users. Further, usually not

only the understanding among the population of users vary, but also how the system and its users

perceive information about the world significantly differs, as is the case between human eyes and
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digital cameras artificial agents use for perception.

In this work, we focus on the ability of a machine learning system, i.e. an agent, to form a

mental model of the task-related, conceptual understanding other communication partners have

over their environment. Particularly, we are interested in an agent that can form an internal,

human-interpretable representation of other agents that encodes information about how well they

would understand different descriptions presented to them. Further, we would like our agent to

be capable of forming this representation quickly for novel agents that it encounters. Similar

to [Rab+18], we wish to generate a representation of other agents solely from observed behavior.

Rather than implicitly encoding information about the agents’ policies, we explicitly encourage our

learned representation to encode information about their understanding of task-related concepts.

We accomplish this through a value function over concepts conditioned on observed agent behavior,

yielding a human-interpretable representation of other agents’ understanding.

As a testbed, we formulate an image reference game played in sequences between pairs of

agents. Here, agents are sampled from a population which has variations in how well they un-

derstand different visual attributes, necessitating a mental model over other agents’ understanding

of those visual attributes in order to improve the overall game performance. For example, an

agent might understand color attributes poorly, leading it to have trouble differentiating between

images when they are described in terms of color. We present ablation experiments evaluating the

effectiveness of learned representations, and build simple models for the task showing that actively

probing agents’ understanding leads to faster adaptation to novel agents. Further, we find that such

a model can form clusters of agents that have similar conceptual understanding.

With this work, we hope to motivate further inquiry into models of conceptual understanding.

Our exemplar task, i.e. image reference game, based on real-world image data allows us to explore

and observe the utility of agents who are able to adapt to others’ understanding of the world.

4.2 Related Work

Modeling Other Agents. Inspired by [Rab+18], we would like to model another agent solely from

observed behavior, focusing on forming representations which encode information about their

understanding of task-related concepts.

Recent works have also employed a similar idea to other multi-agent settings. In [ST19], an

agent learns the abilities and preferences of other agents for completing a set of tasks, however, in

their work they assume that the identities of the agents the learner interacts with are given and that

their representation is learned over a large number of interactions. In contrast, we are interested

in a learner that can quickly adapt to agents without having prior knowledge of who they are.

The model presented by [Shu+18] learns how to query the behavior of another agent in order to

understand its policy. However, in their work only the environmental conditions vary, with the

agent being modeled remaining the same. Here, we vary both agent and environment. There also

exists a body of work on computational models of theory of mind [But+09; War+12], particularly

employing Bayesian methods [BST11; Bak+17; NBT16], although they use discrete state spaces

rather than continuous ones.
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Figure 4.1: Our image reference game with varied agent population. In a given episode k, the
speaker and listener encode the image pair (xkt , x

k
c ) using their perceptual modules ϕS , ϕL. The

speaker selects a target image xkt and an attribute ak to describe it using parameterized functions
πS and V conditioned on the image representations and agent embedding hk−1. Given ak, the
listener guesses the target image. Finally, the speaker incorporates information about the listener
into embedding hk given the reward rk received for using ak in that game.

Meta Learning. In meta-learning [Ben+92; FAL17; Sch87], an agent is tasked with learning

how to solve a family of tasks such that it can quickly adapt to new ones. In our work, we are

interested in an agent that can learn to quickly adapt to the conceptual understanding of novel

gameplay partners whose understanding is correlated to other agents from the population (e.g.

such as learning to identify when someone is color-blind).

Emergent Language. There have been a number of works presenting multi-agent systems

where agents must collaboratively converge on a communication protocol for specifying goals to

each other [CLF18; Das+17; Evt+18; Foe+16; HT17; JKG16; Kot+17; Laz+18; LPB17]. Whereas

in these works the main focus is to learn an effective communication protocol and to analyze its

properties, here we are interested in modeling other agents’ understanding of the environment. We

therefore assume a communication protocol is given so that we test agent modeling in isolation.

Further, many of these works assume that gradients are passed between agents. Here, we assume

a discrete bottleneck in that agents only have access to observations of each other’s behavior.

Although some domains have a population of agents [Cog+19; MA18], the tasks do not use real

images and all agents either share a single policy or have equal capacity to understand task-related

concepts. We believe that incorporating an emergent communication component to our domain

would be an exciting avenue for future work.

4.3 Image Reference Game with Varied Agent Population

In a multi-agent communication setting, it is generally best to send a message which maximizes

the amount of task-related information, such as describing an image by appealing to its most

discriminative attributes. However, the recipient of the message may not be familiar enough with

certain attributes, meaning that some messages are not useful to them despite being maximally

informative. In line with this motivation, we formulate an image reference game where agents

must describe images to each other using visual attributes.
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Task definition. In our visual reference game (see Figure 4.1) we have a single learner, referred

to as the speaker, who must learn to play sequences of episodes in an image reference game with

gameplay partners, referred to as listeners, that are randomly sampled from a population of agents.

Both the speaker and the listeners are given a pair of images in each episode k, and the speaker

selects an image xkt to serve as the target, with the second image xkc serving as confounder. The

speaker must then generate a description, in the form of an image attribute ak ∈ A, which the

listeners use to compare the two images before guessing the target’s identity.

As listeners are effectively black-boxes to the speaker, it can be difficult to disentangle potential

sources of error when they behave unexpectedly. Namely, when a listener guesses incorrectly, it is

difficult to tell whether the mistake was due to a lack in its understanding of 1) the game, 2) the

language used to communicate, or 3) the attribute (i.e. concept) used to describe the image. In this

work, we focus on the third option (conceptual understanding), and isolate this problem from the

other two by assuming that the speaker can communicate attribute identities noiselessly, and that

listeners are all rational game players sharing a static gameplay policy.

Perceptual Module. An agent’s perceptual module ϕ encodes images into a list of shared concepts

weighted by their relevance to the image. Specifically, the perceptual module first extracts image

features using a CNN. The image features are further processed with a function f that predicts

attribute-level features ϕ(x) = f(CNN(x)), where ϕ(x) ∈ [0, 1]|A|, and |A| is the number of

visual attribute labels in an attribute-based image classification dataset.

Every element in ϕ(x) represents a separate attribute, such as “black wing", giving us a dis-

entangled representation. The speaker and listener policies reason about images in the attribute

space A; we are interested in disentangled representations because they will allow for the speaker’s

mental model of listeners’ understanding to be human interpretable. In our setting, the speaker is

given a separate module ϕS , while all listeners share a single module ϕL.

4.3.1 Modeling Listener Populations

If a listener has a good understanding of an attribute, we would expect that it would be able to

accurately identify fine-grained differences in that attribute between a pair of images. For example,

someone with a poor understanding of the attribute “red" may not be able to distinguish between the

red in a tomato and the red in a cherry, although they might be capable of distinguishing between

the redness of a fire truck and that of water. Following this intuition, we generate a population of

listeners L = {(δl, pl)}, where each listener l ∈ L is defined by a vector of thresholds δl ∈ [0, 1]|A|

and a vector of probabilities pl ∈ [0, 1]|A|.

Given an image and attribute feature pair
(
ϕL(x

k
t ), ϕL(x

k
c )
)
, the listener l first computes the

difference between the attribute features ϕL of image xt and xc for attribute a:

zal = ϕa
L(x

k
t )− ϕa

L(x
k
c ). (4.1)

Using its attribute-specific threshold δal , if |zal | < δal , then the listener does not understand the

concept well enough and will choose the identity of the target image uniformly at random. Con-

versely, if |zal | ≥ δal , then the listener will guess rationally with probability pal and randomly with
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probability (1 − pal ). Here, a rational guess g = argmaxx∈{xk
t ,x

k
c} ϕ

a
L(x) means choosing the

image which maximizes the value of the attribute a.

To simplify the setup, we specify a total of two different levels of understanding. An agent can

either understand an attribute, i.e. u = (δ, p), or not understand an attribute, i.e. ū = (δ̄, p̄). For u,

δ is small and p is set to 1, respectively meaning that attributes are easily understood and the agent

always plays rationally on understood attributes. Conversely, ū specifies a high value for δ̄ and p̄

is lower than 1, such that an attribute that is not understood rarely leads to rational gameplay.

To form a diverse population of listeners, we create a set of clusters C where each cluster is

defined by the likelihood of assigning either u or ū to each individual attribute. Thus, listeners

sampled from the same cluster will have correlated sets of understood and misunderstood attributes,

while remaining diverse.

4.3.2 Modeling the Speaker

In a given sequence, the speaker plays N practice episodes, each consisting of a single time-step,

where the purpose is to explore and learn as much about the understanding of the listener as

possible, purely from observed behavior. During the k’th game in a sequence with a given listener,

the speaker first encodes the image pair with ϕS . From the previous k − 1 games, the speaker also

has access to an agent embedding hk−1, which encodes information about the listener. The speaker

uses an attribute selection policy to select an attribute ak for describing the target image. After the

listener guesses, the reward rk from the game is used to update the agent embedding into hk. After

the practice episodes, M evaluation episodes are used to evaluate what the speaker has learned.

Agent Embedding Module. To form a mental model of the listener in a given sequence of

episodes, the speaker makes use of an agent embedding module. This module takes the form

of an LSTM [HS97] which incorporates information about the listener after every episode, with

the LSTM’s hidden state serving as the agent embedding. Specifically, after selecting an attribute

ak and receiving a reward rk ∈ {−1, 1}, a one-hot vector ok is generated, where the index of

the non-zero entry is ak and its value is rk. The agent embedding hk = LSTM(hk−1, ok) is then

updated by providing ok to the LSTM.

Attribute Selection Policies. The speaker has access to two parameterized functions, V (sk, ak)

and πS(sk, ak), represented by multi-layer perceptrons. The speaker uses these functions to select

attributes during the N practice and M evaluation episodes, where sk =
[
ϕ(xkt )− ϕ(xkc );hk

]
is a

feature generated by concatenating the image-pair difference and agent embedding.

We estimate the value of using each attribute to describe the target image, i.e. V (sk, ak) :

Rd×A → R using episodes from both the practice and evaluation phases optimizing the following

loss:

LV =
1

N +M

∑
N+M

MSE(V (sk, ak), rk) (4.2)

As V approximates the value of each attribute within the context of a listener’s embedding and an

image pair, it directly provides a human-interpretable representation of listeners’ understanding.

Therefore, every model presented uses it greedily to select attributes during evaluation games.
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The purpose of practice episodes is to generate as informative an agent embedding as possible

for V to use during evaluation episodes. Therefore, speakers differ in how they select attributes

during practice episodes, probing listeners’ understanding with different strategies. One strategy is

to use an attribute selection policy πS , trained with policy gradient [Sut+00], which directly maps

to probabilities over attributes. In the following, we describe different attribute selection strategies

used during practice episodes.

a. Epsilon Greedy Policy. For this selection policy, we simply either randomly sample an

attribute with probability ϵ or greedily choose the attribute ak = argmaxa∈A V (sk, a) using V .

b. Active Policy. The active policy is trained using policy gradient:

La =
1

N

∑
N

−R log πS(st, at) with R = − 1

M

∑
M

MSE(V (sk, ak), rk) (4.3)

where the reward (R) for the policy is a single scalar computed from the evaluation episode

performance. This encourages the policy to maximize the correctness of the reward estimate

function V during evaluation episodes, requiring the formation of an informative agent embedding

during the practice episodes. Note that when optimizing the active policy πS , gradients are not

allowed to flow through V .

4.4 Experiments

In the following, we first evaluate the effects of using different attribute selection strategies during

practice episodes and then the quality of agent embeddings generated by each model. We use the

AwA2 [Xia+18], SUN Attribute [Pat+14], and CUB [Wah+11] datasets. Unless stated otherwise,

the listener population consists of 25 clusters, each with 100 listeners. We use two variants of

the perceptual module, ResNet-152 [He+16], fine-tuned for attribute-based classification with an

ALE [Aka+13] head, and PNASNet-5 [Liu+18a] with an attribute classifier head. Both ResNet and

PNASNet-5 are pre-trained on ImageNet [Den+09] and fine-tuned for the attribute-based image

classification task. Note that unless stated otherwise, in each experiment both the speaker and

listeners use the same perceptual module, i.e. ϕS = ϕL.

For all curves we plot the average over 3 random seeds, with error curves representing one

standard deviation. We use the standard splits for CUB and SUN, but make our own split for

AwA2 in order to have all classes represented in both train and test. The training splits are used for

learning speaker parameters; we present performance on the test splits, using the same splits for

each seed. We sample target and confounder images from the same dataset split. Listener clusters

C are shared across train and test but a novel population of listeners is sampled at test time1.

4.4.1 Policy Comparison

We first compare the performance of the Epsilon Greedy and Active policies described in Section

4.3.2 against three baselines, the Random Agent, Reactive, and Random Sampling policies.
1Code with full specifications for experiments may be found at: https://github.com/rcorona/

conceptual_img_ref
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Figure 4.2: A comparison of average test set performance (Avg. Reward) for different attribute
selection policies vs. the number of practice games. All agents learn from the listeners responses,
i.e. using an embedding module, except for the random agent which always acts randomly. With
an increasing number of games, the agent observes more responses providing information about
the listener’s conceptual understanding.
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Figure 4.3: Ablation study on the importance of the agent embedding module. Average reward
of the Epsilon Greedy policy on the test set as the number of practice episodes played increases.
We evaluate the performance on two different perception modules (ALE, PNAS) with embedding
module and without (baseline).

Among the baselines, the Random Agent policy simply always selects an attribute at random to

describe images. The Reactive policy, at the beginning of each set of N +M episodes, randomly

selects an attribute. It continues using this attribute for each episode, only sampling a different

attribute whenever it encounters a negative reward, keeping track over which attributes it has used.

This policy is meant as a sanity check against a degenerate strategy of only using the LSTM

to remember which attributes have worked and which have not, without incorporating useful

information about the listener’s conceptual understanding. Finally, the Random Sampling baseline

selects random attributes during practice episodes, and then follows a greedy strategy over V

during evaluation episodes.

The performance of these policies on the test set is presented in Figure 4.2 which shows that

the Epsilon Greedy and Active selection policies both outperform the Reactive baseline, suggesting

that the agent embedding is encoding information about the conceptual understanding of listeners.

After a large number of games, we would expect the performance of the Epsilon Greedy, Active

and Random Sampling policy to be the same because at some point the speaker agent has learned

about all the listener’s understood and misunderstood attributes. By comparing against the Random

Sampling policy, we can conclude that both the Epsilon Greedy and Active policies can learn more

efficient strategies that identify the misunderstood attributes within the first 20 games, at least five

times faster than the Random Sampling policy. This corroborates the positive effect of encouraging

policies to query information that helps the speaker form a mental model of the listener.
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Figure 4.4: Variation of information (V I) of agent clusters C ′ compared to ground-truth cluster
assignments C. We present V I for different policies as the number of practice games increases,
lower is better. Cluster assignments C ′ are obtained via K-Means (k = |C|) on agent embeddings
from 50K test set sequences for each policy. Random Clusters (baseline) assigns each embedding
to a random cluster. Each policy is evaluated using two different perception modules (ALE, PNAS).

4.4.2 Evaluating Agent Embedding

Here we present an ablation study to investigate the benefit of using agent embeddings when

playing the game, training an epsilon-greedy policy for each dataset until convergence with (Em-

beddings) and without (Baseline) agent embeddings.

Models without agent embeddings are given zero vectors, hk = 0, instead of agent embeddings

as input for the attribute selection policies. In these experiments, the speaker and listeners share

the same perception module; we test performance for both the ALE and PNAS perceptual modules.

Intuitively, a speaker will improve its performance over the game sequence if it encodes useful

information about the listener, since it will help it avoid using attributes which the listener does not

understand well.

In Figure 4.3, we show the average reward at different intervals of the game sequence. Using

an agent embedding module significantly improves the performance of the speaker over time in

all cases. Most importantly, performance improves as the number of games increases, showing

that a speaker using an agent embedding module can quickly adapt to individual listeners from

experience to avoid using misunderstood attributes and, thus, achieve a higher average reward.

4.4.3 Evaluating Cluster Quality

Although we have shown that agents with an agent embedding module achieve better performance,

these results do not necessarily imply that speakers with memory develop an informative mental

model over the conceptual understanding of the listeners. In order to test this, we perform an

additional experiment on the trained speaker models. Specifically, we play roughly 50K sequences

on the test set in order to generate a dataset of agent embeddings. We then perform K-Means

clustering on these embeddings with k = |C| (i.e. the number of listener clusters in the population)

to obtain cluster assignments C ′ and compare them to the ground-truth listener cluster assignments

C .

To evaluate the cluster quality, we use the variation of information (VI) metric [Mei03]:

V I(C,C ′) = H(C) +H(C ′)− 2I(C,C ′) (4.4)
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Figure 4.5: Average test set performance over different evaluation intervals for Epsilon Greedy
and a random baseline. Here we test giving the speaker and listener population different perceptual
modules (speaker uses ALE, listener uses PNAS).

Here, C and C ′ are two different clusters, H is the entropy, and I is the mutual information.

Intuitively, the V I measures how much information is lost or gained by switching from clustering

C to C ′.

The more informative agent embeddings are about listeners’ understanding, the greater the

correlation will be between the inferred cluster and the ground-truth cluster. Figure 4.4 shows

clustering performance for all parameterized policies as the number of practice games increases

per sequence. We additionally compare this performance to a random cluster assignment baseline.

Firstly, we note that every policy outperforms the random assignment baseline. The Epsilon

Greedy and Active policies experience nearly identical gameplay performance, suggesting that

simply optimizing for reward yields similarly informative embeddings as more explicitly encourag-

ing the policy to maximize the value function’s accuracy. Finally, the Random Sampling baseline

converges much more slowly, corroborating the idea that a more directed exploration of listeners’

capabilities proves useful. Due to the significant improvement over random cluster assignments,

we conclude that the speaker agent learns an embedding that clusters the listeners similar to the

ground truth. This suggest that the agent not only learns from previous games, but it also forms a

more general representation of listener groups with similar conceptual understandings.

4.4.4 Evaluating Different Perceptual Modules

If our speaker is to interact with a varied population of agents, it not only needs to be cognizant

that those it interacts with could have varying levels of understanding; the population itself could

have inherently different machinery for perceiving the world, as is the case between humans and

machines.

Therefore, we repeat the experiment from section 4.4.1 with the Epsilon Greedy policy, and

give the speaker and the listener population different perceptual modules. Specifically, in Figure

4.5, we show test performance when assigning ALE to the speaker and PNAS to the listeners

comparing to a speaker which randomly selects attributes.

We observe a drastic change in performance, which suggests that the difficulty of the problem

significantly increases when the speaker and listeners have fundamentally different perception.

Notice, however, that the performance of the Epsilon Greedy policy still significantly outperforms

the random baseline. Further, particularly in the case of the Animals with Attribute dataset, the
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Figure 4.6: Qualitative examples of the Epsilon Greedy agent on CUB interacting with a color-
blind listener. Red (green) indicates an incorrect (correct) pick by the listener. We show examples
where the speaker loses the first game due to selecting a discriminative color attribute. Even though
color attributes are objectively more discriminative, in game 10 the speaker communicates color
attributes less frequently. Finally, at convergence, i.e. game 100, the speaker prominently mentions
shape-based attributes or non-color patterns.

Epsilon Greedy speaker is still able to improve its performance as the number of episodes increases.

This motivates further work in models that are capable not only of reasoning about conceptual

understanding but also of adapting to fundamental differences in perception.

4.4.5 Qualitative Example

To provide an illustrative example of our reference game and the behavior of the agents, we train

an Epsilon Greedy policy on the CUB dataset with 5 listener clusters, pertaining to the 5 attribute

types found in the dataset (i.e. color, shape, size, pattern, and length). Each cluster in the listener

population has a generally poor understanding of the attribute type it is assigned (e.g. the color

cluster is color-blind). We visualize the center crop of the images as presented to both the speaker

and the listener populations.

In Figure 4.6, we show sequences of games with color-blind listeners, where we can observe

how the speaker adapts its strategy as it learns more about its gameplay partner – specifically,

it adapts to using non-color attributes even in cases where color attributes would generally be

most discriminative. In the first game, the speaker refers to objectively very discriminative color

attributes such as brown back and rufous belly (columns 1 and 3). By game 10, the speaker already

chooses color-invariant patterns over color attributes for some of the color-blind listeners, e.g.

pointing out a spotted belly pattern over orange legs (column 1). After 100 games, we observe

that the speaker almost always refers to non-color attributes, such as the duck-like shape or the

presence of an eyebrow (column 1 and 2) because it leads to a higher average reward for color-blind

listeners.
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4.5 Conclusion

In this work, we presented a task in which modeling the understanding that other agents have over

concepts is necessary in order to succeed. Further, we provide a formulation for an agent that

is capable of modeling other agents’ understanding and can represent it in a human-interpretable

form. We believe that the ability to perform this kind of reasoning will allow XAI systems to tailor

their explanations to the specific users with whom they interact. Learned agent embeddings can

allow us to recover a clustering over other agents’ conceptual understanding, which is a promising

result to further tie this information into explanations. For example, by having explanations that

are fitted to each cluster, generated explanations would be more easily digestible by users of the

system. Further, we show that naively modeling this type of reasoning is not sufficient for cases

where the perceptual machinery of the learner and the population is fundamentally different.
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A B S T R A C T I N G S K E T C H E S T H R O U G H

S I M P L E P R I M I T I V E S

Humans show high-level of abstraction capabilities in games that require quickly communicat-

ing object information. They decompose the message content into multiple parts and communi-

cate them in an interpretable protocol. Toward equipping machines with such capabilities, we

propose the Primitive-based Sketch Abstraction task where the goal is to represent sketches us-

ing a fixed set of drawing primitives under the influence of a budget. To solve this task, our

Primitive-Matching Network (PMN), learns interpretable abstractions of a sketch in a self su-

pervised manner. Specifically, PMN maps each stroke of a sketch to its most similar primitive

in a given set, predicting an affine transformation that aligns the selected primitive to the tar-

get stroke. We learn this stroke-to-primitive mapping end-to-end with a distance-transform loss

that is minimal when the original sketch is precisely reconstructed with the predicted primitives.

Our PMN abstraction empirically achieves the highest performance on sketch recognition and

sketch-based image retrieval given a communication budget, while at the same time being highly

interpretable. This opens up new possibilities for sketch analysis, such as comparing sketches

by extracting the most relevant primitives that define an object category. Code is available at

https://github.com/ExplainableML/sketch-primitives.

5.1 Introduction

Consider the game Pictionary1, where one player picks an object, e.g. a face, and draws the object

in an iterative manner, e.g. using a large circle for the head, small lines for eyes and an arc for

the mouth, until the other players guess the object correctly. The goal is to represent an object

by decomposing it into parts that characterize this object using as few parts as possible such that

another player can recognize it as fast as possible. The inherent human ability [FS88] that makes

playing this game with multiple players possible is the ability to identify the most distinctive parts

of the object and ground them into an interpretable communication protocol for the other players.

In other words, humans are capable of a high level of abstraction when thinking about, recognizing

1https://en.wikipedia.org/wiki/Pictionary
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Figure 5.1: Primitive-based Sketch Abstraction Task. Our Primitive-Matching Network (PMN)
takes human sketches and replaces their strokes with simple shapes from a set of 7 drawing
primitives to create an abstract representation of the sketch. We can further compress the sketch
by sub-selecting primitive strokes to meet a desired information budget. When communicating a
sketch with a limited budget, our sketch abstractions retain the original semantics to perform well
on downstream tasks.

and describing objects to other.

Inspired by this observation, we propose Primitive-based Sketch Abstraction as a new repre-

sentation learning task, where the goal is to represent free-form drawings, i.e. sketches, by means

of a fixed set of simple primitives. Sketches are an excellent tool for this task as they capture the

essential parts of an object while removing the potentially adversarial texture and color informa-

tion. However, humans have different drawing styles and skills, influenced by their upbringing and

culture [SCH66]. This causes different participants to draw the same instance of a real object in

different ways (e.g. see Fig. 5.1, left). We argue, however, that there exists a fundamental repre-

sentation of each object class. As demonstrated in [BL99; FS88; RIA93] when a participant draws

an object of their imagination using a fixed dictionary of shapes providing a heavily abstracted

representation of the object, another participant still guesses the object correctly.

To solve the Primitive-based Sketch Abstraction task, we propose a self-supervised deep

model, i.e. Primitive-Matching Network (PMN), to learn interpretable abstractions of a given

object illustration without requiring any ground-truth abstraction. Differently from standard sketch-

abstraction [Muh+19; Muh+18], which selects subsets of the original strokes, our model grounds

them to a predefined vocabulary of primitives with a budget, see Fig. 5.1. This way of repre-

senting sketches has two main advantages. First, it reduces the memory footprint of the sketch

representation, allowing to communicate sketches by their constituent primitives rather than stroke

coordinates. Second, it increases the interpretability of the sketch itself, making it much easier to

compare and contrast sketches, e.g. a human face is composed of a big circle for the head, two

small lines for the eyes and one arc for the mouth whereas a cat face is similar to a human face but

has triangles on top of the head for its ears.

Our PMN model replaces each stroke of a sketch with a single drawing primitive. This is

achieved by mapping each stroke to its most similar primitive in a given set, and predicting an

affine transformation that aligns the selected primitive to the target stroke. We train PMN by
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comparing the distance-transform of target strokes and their primitive-based version. At test time,

given a sketch, we can efficiently choose a set of primitives and their spatial transformations, such

that the generated sketch is fully composed of primitive shapes while being as similar as possible to

the original one. Experiments on sketch recognition and fine-grained sketch-based image retrieval

tasks, show that the PMN abstraction achieves the highest performance given a communication

budget (i.e. number of bytes necessary to communicate the sketch). Moreover, we show how we

can use our abstraction to compare sketches, extracting the most relevant primitives and patterns

that define an object category.

To summarize, our contributions are: i) we propose the task of Primitive-based Sketch Ab-

straction, where the goal is to produce interpretable sketch representations by means of predefined

drawing primitives; ii) we propose the first method for this task, Primitive-Matching Network,

which learns to match strokes to primitives using as supervision a reconstruction loss over their dis-

tance transforms; iii) we show that PMN provides reliable sketch representations, communicating

more information with a lower budget when compared with standard sketch abstraction methods,

and eases sketch analysis.

5.2 Related works

Sketch Abstraction. The goal of sketch abstraction [Ber+13; Muh+18] is to simplify the original

strokes (or segments) from sketches without altering their semantic meaning. Abstracting sketches

allows to communicate their information more effectively and efficiently, highlighting the most

important traits of a sketch without corrupting its content [Ber+13]. This is used in many applica-

tions, ranging from sketch-based image retrieval from edge-maps, to controllable sketch synthesis

at various abstraction levels. Previous approaches addressed this problem through reinforcement

learning, learning to remove sketch parts while preserving some desired features (e.g. semantic

category, attributes) [Muh+19; Muh+18]. Differently from previous works, we do not abstract

sketches by removing strokes, but we ground them to a set of drawing primitives. This allows us to

not only simplify the sketch representation itself, but to easily perform comparisons and analyses

across sketches in a more straight forward manner than with stroke-based abstraction methods.

Sketch Applications. The release of the TU-Berlin [Eit+10] and QuickDraw [Jon+16] datasets

attracted the attention of the research community towards sketch classification. Early works ad-

dressed the task with maximum margin classifiers over hand-crafted features [LSG13; ST14].

Advent of large-scale sketch datasets led to the development of deep learning models for this task

that even surpassed human performance [Yu+17b]. Recent approaches explored deep and hand-

crafted features [Jia+20], multi-graph transformers [XJB21], coarse-to-fine hierarchical features

[Yan+21], and learned tokenization schemes [Rib+20].

Another popular application of sketches is sketch-based image retrieval (SBIR), where the goal

is to match free-hand sketches with corresponding natural images, both at category [PM14; TC17]

and at instance level [Bhu+21; Pan+20]. Existing approaches for this task bridge the domain gap

between photos and sketches by means of two branch architectures focusing on each modality
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independently [Cao+11; Cao+10; Fed+20], and even applying attention-based objectives [Pan+19;

Son+17] or self-supervised ones [Pan+20]. Recently, [Bhu+20] proposed to perform retrieval

online, while the human is drawing. [Saa17; SBO15] perform SBIR by matching keyshapes to

patches of sketch and contour images for SBIR, e.g. through S-HELO [Saa14] descriptors. In this

work, we do not directly address sketch recognition and SBIR, but we use them to quantitatively

analyze the compression/quality of our abstract sketch representations.

Reconstruction with primitives. One way of simplifying a complicated shape is to build an

approximation using simple primitives. This is a central aspect of how humans understand the

environment [Bie87] and has been applied to vector-like bitmap images [HP11; Red+21; Wu+15],

CAD sketches [Gan+21; Par+21; Sef+21], and 3D shape reconstruction from sketches [SBS21]

or images [Liu+18b; Zen+20]. Interestingly, also many lossy image compression methods rep-

resent an image as a combination of predefined primitives [TM12; Wal92]. One closely related

work [Wu+15] focuses on diagram-like sketches, using shape proposals and an SVM classifier to

assign the best-matching primitive. [Xia+15] represents sketches and edge maps of real images

through lines and arcs for sketch-based image retrieval. Differently from these approaches, we are

not restricted to specific domains [Wu+15], or primitives [Xia+15]. PMN is generic and can be

applied to any sketch, and any set of drawing primitives.

5.3 Abstracting Sketches by Drawing Primitives

Given a sketch, our goal is to obtain an abstract representation by replacing its strokes with a set

of drawing primitives (e.g. squares, circles, lines). Formally, we have a training set T = {sk}Kk=1

of sketches, where sk ∈ S is a sketch in the set of possible drawings S . Following previous works

[Muh+18], we assume that each sketch sk (henceforth s for readability) is composed of a set of

strokes (i.e. s = {s1, . . . , sn}), and that each stroke is defined as a sequence of two-dimensional

points of length m(si). Additionally, we assume to have a set P ⊂ S of drawing primitives that

we want to use to represent our sketches, where each primitive is also a sequence of points. Note

that no constraint is imposed on the primitives composing P . At test time, given a sketch s, our

goal is to re-draw each stroke s ∈ s with a primitive p ∈ P . This requires two steps: first, we

need to map each stroke si to its closest primitive pi ∈ P . Second, we need to compute the affine

transform parameters making the primitive pi better fit the original stroke si. In the following, we

describe how we achieve these goals.

5.3.1 Learning to match strokes and primitives

There are two main challenges in matching an arbitrary stroke s with a primitive p ∈ P . First, we

have no ground-truth pairs available, thus we have no direct information on which primitive p is

the most similar to the stroke s. Second, even if we find the best primitive, we need still to align it

to the stroke. As a simple example, if we take two straight lines of equal length, a perfect match in

case they are parallel, they result in a bad match if they are orthogonal to each other. We overcome

44



5 . 3 . A B S T R AC T I N G S K E T C H E S B Y D R AW I N G P R I M I T I V E S

 

 

 

   

 ƒ
stroke encoder compatibility scores

 

P

 
 

   

 ƒ
stroke encoder compatibility scores

 
 

 

 

Tp->s

Tp->s

Tp->s

 

Tp->s Tp->s Tp->s

  

transformed primitives

affine transformations

P

d(z,s)

d(z,p)

Z

 

 
 

 
 

dt

 

ƒ

P affine transformer

stroke 
encoder

compatibility scores 

Tp->s Tp->s

Tp->s

  

Tp->s

 

stroke encoder

   

 

   

 

transformed primitives

compatibility function distance-transform loss

coordinate 
grid

drawing primitives primitive distance 
transforms

target 
distance

transform

face

face

          
 

 

Figure 5.2: PMN Model Architecture. Given an input stroke (top left) and a set of primitives
(bottom left), PMN encodes them into a shared embedding space using f . The embeddings are split
in two parts, one for h to compute the affine transformations aligning primitives to the target stroke,
and one to compute the compatibility between primitives and the strokes with ϕ. From a coordinate
grid G, we compute a distance transform function of the stroke and the transformed primitives. We
then use distance transforms and the compatibility scores to build the self-supervised objective of
PMN.

these issues by i) applying an affine transformation to the primitives in P and ii) comparing the

original strokes and the transformed primitives through their distance transform.

Aligning strokes and primitives. We need to transform a primitive in such a way that it better

matches a given target stroke. To this end, we instantiate two functions, a stroke encoder f : S →
Rd, mapping a stroke (or primitive) to a d-dimensional embedding, and an alignment function

h : Rd × Rd → Aff(R2), predicting the affine transformation that best aligns two strokes given

their encoded representations. With h, we compute a transformation matrix T p
s as:

T p
s = h(zp, zs) (5.1)

where zy = f(y) is the feature vector of the encoded sketch/primitive y, and T p
s the transformation

aligning the primitive p to the stroke s.

Distance transform loss. Our goal is to find replacements for human strokes from a set of

primitive shapes such that the visual difference is minimal. Given a stroke s, which is represented

as a sequence of m(s) connected points, i.e. s = {x1, . . . , xm} and given a coordinate g ∈ G,

with G being a sampled coordinate grid, we can define the influence of the stroke at g as:

d(g, s) = max
i∈{1,...,m(s)−1}, r∈[0,1]

exp
(
− γ ||g − r xi − (1− r)xi+1||2

)
. (5.2)

Computing d(g, s) for every coordinate in G we obtain a distance map, also called distance

transform [RP68]. Note that in Eq. equation 5.2 we do not use directly the distance transform

but its exponentially inverted version. This allows us to highlight the map on points closer to the
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stroke, with γ acting as a smoothing factor. We can interpret this map as a visual rendering of the

particular stroke, where the intensity of each pixel (coordinate) g decreases with the distance of

g to the stroke itself. Considering a stroke s and a primitive p, we can then define the distance

transform loss as:

Ld(s, p|h) =
∑
g∈G

||d(g, s)− d(g, pT p
s )||. (5.3)

With Eq. equation 5.3, we are defining a reconstruction loss that sidesteps possible mismatches in

the number of points contained in s and p as well as the need of matching points across the two

strokes. For simplicity, we normalize the coordinates of each point in s and p to the range [−1, 1]

before applying the loss and we consider G as a set of linearly spaced coordinates in [−1.5, 1.5].

Exploiting stroke similarities. Up to now we have discussed how we can align one primitive

to a target stroke by means of the affine transformation computed by h and how we can train h

by comparing distance transforms. However, during inference we want to replace s with the best

matching primitive selected from the set P . With the current formulation, this could be done by

replacing s with the primitive p ∈ P for which the loss Ld(s, p|h) has the lowest value.

While straightforward, this solution entails two issues. First, during inference we would need

to compute the distance transform d(g, p) for each g ∈ G and p ∈ P . Computing this map for

each primitive is costly and would increase the inference time of the model. Second, if we do not

consider how well a primitive p matches a stroke s, we may have misleading training signals for h.

To clarify, let us consider a simple example, where s is a full circle and p a simple straight line. In

such case, the loss Ld(s, p|h) would be high even if h predicts the best possible alignment. This

means that the loss would be dominated by primitives that, such as p, cannot represent the stroke

s, making h focus on an ill-posed problem rather than on matching compatible primitive-stroke

pairs.

To address both issues, we inject the compatibility between a stroke and a primitive in the loss

function. With this aim, we modify the stroke encoder as f : S → R2d and, given an input y, we

divide its embedding into two d-dimensional parts zy = [zhy , z
ϕ
y ] = f(s), where zhy will be the part

used to compute the alignment function through h and zϕy will be used to compute the similarity

between strokes/primitives. Given this embedding function, we calculate the relative similarity

between a target stroke s and a primitive p as:

ϕ(s, p) =
exp(z̄ϕ⊺s z̄ϕp /κ)∑

q∈P exp (z̄ϕ⊺s z̄ϕq /κ)
(5.4)

where κ is a temperature value, and z̄ϕy is the L2-normalized version of zϕy . Note that while ϕ needs

to be invariant to the particular poses of s and p to score their compatibility, h in Eq. (5.1) needs

to capture their pose to better align them. These conflicting objectives are what lead us to split the

output of f in two parts. With the compatibility scores, we can define our final loss as:

L(s,P|h, f) =
∑
p∈P

ϕ(s, p) Ld(s, pT
p
s ). (5.5)
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With this formulation, the lower the compatibility ϕ(s, p) between a primitive p and the stroke

s, the lower the weight of the distance transform loss between p and s. Notably, the lowest

value of L(s,P|h, f) is achieved when i) the transformation matrices computed through h align

all primitives to the target stroke in the best way (w.r.t. the distance transforms), and ii) the

primitives with the highest compatibility scores are the ones that better match the target stroke.

Thus, minimizing L(s,P|h, f) forces h to output correct transformation matrices and f to encode

similar strokes close in the second half of the embedding space, fulfilling both our goals. We name

the full model composed of f , h and ϕ our Primitive Matching Network (PMN). Fig. 5.2 shows

the PMN pipeline.

5.3.2 Replacing strokes with primitives

After learning f and h, we can replace strokes with primitives at test time. In particular, since

computing the distance transform for each possible primitive is costly, we can directly use f and ϕ

to select the best matching primitive for a given stroke. Specifically, given a stroke s of a sketch s,

we replace it by:

p̂ = argmax
p∈P

ϕ(s, p) (5.6)

where p̂ is the best-matching primitive. Given the primitive p̂, we can now compute the correspond-

ing alignment matrix as T p̂
s from Eq.equation 5.1, and the abstracted sketch ŝ as:

ŝ = {p̂1⊺T p̂1
s1 , · · · , p̂n

⊺T p̂n
sn , } (5.7)

where n = m(s) is the number of strokes in s. We highlight that our formulation is agnostic to the

number of strokes in a sketch, the shape and number of primitives in P , and the number of points

composing each stroke.

5.4 Experiments

In this section, we present our experimental results. We first discuss our experimental setting

(Section 5.4.1) and show results on sketch classification (Section 5.4.2) and fine-grained sketch-

based image retrieval (Section 5.4.3) under a limited communication budget. Finally, we study the

impact of the primitives (Section 5.4.4) and show qualitative analysis on the abstract representations

(Section 5.4.5).

5.4.1 Experimental setting

Datasets and benchmarks. Following previous works on sketch abstraction [Muh+19; Muh+18]

we test our model on sketch classification using Quickdraw [HE18], and on fine-grained sketch-

based image retrieval (FG-SBIR) on ShoeV2 [Yu+17a] and ChairV2 [Yu+17a].

For Quickdraw, we follow [Muh+18] and select, 630k sketches from nine semantic categories

(cat, chair, face, fire-truck, mosquito, owl, pig, purse and shoe). In this benchmark, we train a

classifier on the original training sketches (details in the Supplementary), testing it on sketches
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Figure 5.3: Message content. Human-drawn sketches (top) are split into messages of three points
each (gray-coded). A primitive from the PMN representation (bottom) encodes more semantic
information while requiring the same bytes for a single message.

abstracted using PMN or the competing methods given a specific budget (details below). We

measure the performance as classification accuracy of the pretrained classifier given the abstracted

inputs.

ShoeV2 comprises 5982 training and 666 testing image-sketch pairs of various shoes. For

this task, we train a Siamese network [Son+17] on the original training sketches with the same

architecture of [Bhu+20; Muh+18], replacing the standard triplet loss with a contrastive objective2.

We measure the image-retrieval accuracy (top-10) of this network on test sketches abstracted using

either PMN or one of competing methods, with the abstraction conditioned on a given budget.

ChairV2 contains 952 training and 323 testing pairs of chairs. For this dataset, we follow the

FG-SBIR evaluation protocol described for ShoeV2.

Implementation details. We train two neural networks f and h as described in Section 5.3. The

stroke encoder f is a 6-layer Transformer [Vas+17], each with 8 self-attention heads. In all datasets,

sketch data is represented as a list of points with their 2D coordinates and a binary label denoting

whether the human is drawing or lifting the pen. We use the latter label to identify strokes. We feed

as input to f the sequence of 2D-points of a stroke, together with an extra token used to obtain the

final stroke embedding. We implement h as a 3-layer MLP that takes the concatenated embedding

zhp and zhs as input. We use 7 predefined primitives P , as shown in Fig. 5.1, as they can represent

a wide variety of human strokes. We restrict T p
s to be a composite transformation of rotation,

anisotropic scale, rotation in sequence, since we found it to be flexible enough to represent a wide

variety of hand-drawn strokes. The translation is directly taken from the coordinates of s and not

predicted. The Supplementary contains more details about the transformation. Hyperparameters

γ = 6 and κ = 0.2 are the same on all datasets and chosen by performing grid-search on a

validation set.

Budget computation. To quantify the level of abstraction of our primitive representation, we

adopt a similar evaluation procedure as in [Muh+19]. Instead of measuring classification accu-

racy of full sketches, the evaluation is done at different subsets of the full sketch given a budget,

amounting to different levels of sketch compression. Concretely, we test at budgets of 10%, 20%

and 30% of the original sketch’s information content to focus on the high compression regime. To

2We found the contrastive objective to stabilize and speed up the training without sacrificing retrieval accuracy.
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compute the budget, we follow the same procedure of [Muh+18], considering a single message as

made of three stroke points, i.e. three sets of 2D coordinates (see Fig. 5.3). Note that each message

contains information equivalent to six floating points values and a categorical value indicating to

which stroke the points belong. This is the same amount of information as a single primitive of

our proposed model, defined as a 2D-translation, 2D-scale, 2D-rotation for its transformation and

a categorical label indicating which of the 7 primitives is used. When evaluating the budget on

human sketches, each message corresponds to three points of a hand-drawn stroke while, when

using our abstract representation, each message is a single primitive. Given a N% budget, we

calculate the number of messages that can be communicated as the N% of the total messages

forming the sketch. In Fig. 5.3, we illustrate what constitutes a message for human-drawn sketches

and our primitive representations.

Compared methods. There are two ways in which a sketch can be abstracted. The first is

by keeping the input representation untouched (i.e. original hand-draw strokes) but ranking the

messages based on their importance for preserving the sketch content. Given a budget, we can

then select only the most important subset of the messages. This is the approach of standard

sketch abstraction methods [Muh+19; Muh+18]. We categorize this strategy as Selection-based

abstraction.

The second strategy is orthogonal and simplifies the sketch by grounding strokes to shapes in

a fixed vocabulary, as in our PMN. This strategy does not define any ranking for the messages,

but achieves abstraction by changing the stroke itself. We categorize this strategy under the name

Shape-based abstraction. In the experiments, we consider both type of approaches.

Selection-based. For this category, we consider two state-of-the-art methods: Deep Sketch

Abstraction (DSA) [Muh+18] and Goal-Driven Sequential-data Abstraction (GDSA) [Muh+19].

DSA and GDSA are reinforcement learning methods that learn to order messages based on the

performance on a downstream task. Specifically, DSA models the importance of each stroke by

means of a classification (retrieval) rank-based reward, encouraging the target class (photo instance)

to be highly ranked at all communication steps. GDSA is a more general strategy, applicable to

various type of data. It directly uses the accuracy on the downstream task as reward function for

the reinforcement learning agent, enforcing that the performance is preserved when the number of

messages increases.

Shape-based. Since PMN is the first approach, we did not find other competitors in the liter-

ature addressing the same abstraction problem. As additional baseline we consider Shape Words

(SW) [Xia+15], proposed in the context of sketch-based image retrieval. SW uses an heuristic

algorithm to split the original strokes into multiple parts, fitting either a line or an arc to each

part through Least Squares. Since SW cannot use arbitrary primitives, we use the same set of the

original paper, i.e. lines and arcs. When PMN and SW are applied alone, the message order is the

same on which the original strokes were drawn.

Shape+Selection-based. Since the two type of approaches are orthogonal, it is interesting to

test if they can benefit each other. For this purpose, we also test other two models, combining

GDSA with SW and our PMN.
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Abstraction method Budget (%)
Type Name 10 20 30 100

Selection
DSA [Muh+18] 20.12 43.85 64.04 97.20

GDSA [Muh+19] 26.88 51.65 71.60

Shape
SW [Xia+15] 51.21 68.20 75.60 78.30

PMN 67.08 83.69 89.15 91.78

Selection
+Shape

SW+GDSA 62.70 74.87 77.61 78.30
PMN+GDSA 77.22 87.79 90.23 91.78

Table 5.1: Classification accuracy on Quickdraw at budgets of 10%, 20% and 30% evaluated with
a classifier trained on the original human-drawn sketches.

5.4.2 Sketch classification

In Tab. 5.1, we report the classification accuracy for both our PMN and the competitors on Quick-

draw for budgets 10%, 20%, 30%, and 100% as reference. From the experiments, we can see

that methods SW and PMN, based on shape abstraction, outperform by a margin DSA and GDSA,

based on message selection. This is a direct consequence of using shapes as messages rather than

original stroke parts, since the former can communicate much more semantic information in a

single message. We see the largest gain at low budgets, e.g. at a 10% budget, DSA achieves

20.12% accuracy, and GDSA 26.88%, whereas SW reaches 51.21% and PMN obtains 67.08%,

outperforming the rest significantly. This shows how PMN is better than SW at preserving the

content of the sketch. This is a consequence of the higher flexibility in terms of 1) shapes that PMN

can use and 2) precision of the alignment procedure, guided by the distance transform loss rather

than Least Squares on heuristically selected points. The trend is similar at 20% and 30% budgets,

at which point PMN achieves an accuracy of 89.18% against 75.60% of SW and 71.60% of GDSA.

Notably, abstracting strokes with PMN is not lossless and the data distribution is different from

the classifier’s training data such that the accuracy at 100% of PMN (91.78%) is lower than using

human sketches (97.20%). On the up side, this allows PMN to reach an accuracy close to the upper

bound of the original sketches at already 30% budget showing that PMN well retains the semantic

of the original dataset.

Finally, if we couple a selection-based method (GDSA) with a shape-based ones, we see a

consistent improvement of performance, with an improvement of 10% (77.22% accuracy) at 10%

budget for PMN+GDSA over simple PMN. Despite the improvement, SW+GDSA achieves lower

performance than PMN alone at every budget (e.g. 62.70% at 10%), showing again how the

abstraction of PMN is more precise than SW one.

5.4.3 Sketch-based image retrieval

In Tab. 5.2, we show the results of our PMN abstractions and the competing methods in the fine-

grained sketch-based image retrieval (FG-SBIR) task for the ShoeV2 (left) and ChairV2 (right)

datasets. Similarly to classification, we report the results at three different budgets: 10%, 20% and

30%.
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Abstraction method ShoeV2, Budget (%) ChairV2, Budget (%)

Type Name 10 20 30 100 10 20 30 100

Selection
DSA [Muh+18] 10.96 18.32 26.88 75.22 16.72 31.58 45.20 86.99

GDSA [Muh+19] 14.86 21.32 31.08 20.74 33.13 47.68

Shape
SW [Xia+15] 15.47 25.53 29.13 29.82 28.79 45.82 48.92 51.27

PMN 29.58 48.50 54.35 56.55 53.87 70.59 73.99 75.92
Selection SW+GDSA 19.96 28.97 29.27 29.82 35.60 47.98 50.77 51.27
+Shape PMN+GDSA 36.18 50.45 55.10 56.55 63.15 73.68 75.23 75.92

Table 5.2: Fine-grained sketch-based image-retrieval (FG-SBIR) results (top-10 accuracy) on
ShoeV2 and ChairV2 at budgets of 10%, 20% and 30% evaluated with a retrieval network trained
on the original sketch-image pairs.

FG-SBIR has different challenges from sketch classification, since the communicated repre-

sentation should precisely capture the specific characteristics of an instance rather than the shared

ones of object categories. Despite our PMN abstraction smooths the specific details of strokes

when grounding them to drawing primitives, it still preserves the most recognizable characteristics

of an instance given a specific budget. Overall, the results are consistent with the ones on sketch

classification, with PMN achieving the best results in both datasets and for each level of abstrac-

tion. For instance, at 10% budget, PMN achieves a retrieval accuracy of 29.58% on ShoeV2 and

53.87% on ChairV2, surpassing by a comfortable margin SW (i.e. 15.47% on ShoeV2, 28.79%

on ChairV2) and selection-based models (e.g. GDSA, 14.86% on ShoeV2, 20.74% on ChairV2).

As a direct consequence of the inherent challenges of this FG-SBIR (requiring more detailed

information), we see that the higher the budget, the higher the the gap between PMN and the

competitors. With 30% budget, PMN achieves 54.35% accuracy on ShoeV2 and 73.99% on

ChairV2 while SW best result is 29.13% on ShoeV2 and 49.92% on ChairV2 and GDSA achieves

31.08% on ShoeV2 and 47.68% on ChairV2. SW shows an opposite trend, with the performance

gap with selection-based methods becoming smaller as the budget increases, performing lower than

GSDA on ShoeV2 for a 30% budget. These results highlight that PMN makes a more precise use

of the available primitives, achieving the best trade-off between compression and distinctiveness

of the sketch representation.

As expected, coupling PMN with GDSA leads to the best results overall (e.g. 36.18% on

ShoeV2 and 63.15% on ChairV2 at 10%), with the performance of PMN alone consistently sur-

passing the ones of SW+GDSA (e.g. 19.96% on ShoeV2 and 35.60% on ChairV2 at 10%),

highlighting that while selection and shape-based methods are complementary, it is fundamental

that the latter precisely reconstructs the input, something achieved by PMN and not by SW.

5.4.4 Ablation study

In Tab. 5.3, we analyze the importance of the primitive shapes by evaluating the PMN model with

different subsets of primitives for Quickdraw and ChairV2. We use the PMN model trained with all

seven primitives and at test time only provide a subset of them. We start with the most commonly
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Quickdraw (Classification) ChairV2 (FG-SBIR)

Primitives Usage (%)
Budget (%)

Usage (%)
Budget(%)

10 20 30 10 20 30

22.72 45.99 70.58 79.82 39.17 41.79 62.53 69.34
+ 20.97 62.48 79.68 86.15 10.63 42.72 63.77 69.65

+ 19.60 62.04 79.92 86.63 15.89 43.03 64.08 69.65
+ 15.84 64.07 81.26 87.81 13.81 43.96 64.70 69.96

+ 8.67 64.98 82.64 88.85 7.57 44.58 65.94 70.27
+ 6.20 66.93 83.59 89.12 5.79 49.22 69.34 73.37

+ 6.00 67.08 83.69 89.15 7.12 53.87 70.59 73.99

Table 5.3: Results of PMN with different primitives on Quickdraw (acc.) and ChairV2 (top-10
acc.). Primitives added one at a time in order of usage in Quickdraw.

used shape, the arc, and add one primitive at a time in the order of their usage frequency in the

Quickdraw dataset. While the arc alone does not provide enough flexibility in Quickdraw, with

only two primitives, arc and circle, our PMN model achieves a higher classification accuracy than

both GDSA and SW with 62.48% (vs. 51.21% in SW) at a 10% budget and 86.15% (vs. 75.60%

in SW) at a 30% budget. To put these results into perspective, SW is able to represent line, circle

and arc shapes, so even without using lines the PMN model can better fit shapes and reconstruct

sketches while retaining their semantics. This is particularly evident for ChairV2, where, even by

using only arcs, PMN surpasses SW at all budgets (e.g. 41.79% vs 28.79% at 10% budget).

As more shapes are added, there are diminishing returns in increasing classification accuracy

for Quickdraw. However, every primitive contributes to the performance our model achieves. The

triangle, square and U-shape stand out to provide a significant improvement despite their relatively

low usage of 8.67%, 6.20% and 6.00% respectively. Interestingly, on ChairV2 we see a more

monotonic increase in the performance (e.g. from 44.58% to 49.22% when adding squares at

10% budget). This is expected, since FG-SBIR requires a more precise reconstruction of the

original sketch, thus having more primitives helps in better modeling the specificity of each stroke,

improving the overall results.

As a final note, while there are many options on which primitives to include, these results

validate the choice of these seven primitives. Nonetheless, depending on the dataset and use case,

other choices could be considered.

5.4.5 Qualitative analysis

How are objects represented through primitives? An interesting aspect of PMN is that we can

now compare strokes across different sketches, extracting possible patterns. To show one possible

application, in Fig. 5.4, we analyze the use of primitives when reconstructing Quickdraw classes.

We show a representative abstracted sample of each class and the distribution of the primitives per

class.

When inspecting the primitive distributions, we observe that the most used primitives are arcs

and circles. As shown in our ablation study (cf. Tab. 5.3), using these two primitives alone can
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cat chair face firetruck mosquito owl pig purse shoe

26.3% 22.9% 24.9% 16.7% 20.7% 20.1% 20.0% 38.7% 24.9%
13.6% 2.8% 29.6% 21.8% 23.3% 27.3% 31.0% 10.9% 11.3%
23.7% 30.8% 14.7% 22.0% 21.1% 13.7% 18.0% 11.7% 20.0%
17.6% 23.0% 15.5% 14.6% 15.9% 18.5% 11.1% 10.4% 15.3%
10.4% 5.2% 7.0% 5.5% 10.0% 9.5% 9.4% 4.9% 17.8%
3.6% 5.5% 3.4% 11.5% 3.9% 4.4% 4.5% 16.9% 5.8%
4.8% 9.8% 4.9% 7.8% 5.1% 6.5% 6.0% 6.4% 4.9%

Figure 5.4: Primitive analysis on Quickdraw. Primitive representation of each Quickdraw class
and the usage frequency of each primitive per class (in %).

already cover a lot of variation on human strokes. Common use cases for arcs include the ears in

animals, smiles in faces and handles in purses. Circles most frequently represent heads in animals

and faces and firetrucks’ wheels. The body of the firetruck and the purse are often represented

by rectangles. These correlations can be observed when comparing the average distribution of

primitives per class, e.g. more frequent use of line and corner in chairs or rectangle and arc in

purses than in other classes.

Fig. 5.4 also shows a limitation of our PMN model. PMN tries to match one primitive to each

human stroke. However, when a stroke cannot be easily represented by a primitive, PMN may

provide inaccurate representations. This is the case of the shoe class, where the main part of the

shoe is usually drawn in a single stroke with a closed L-shape. In this case, PMN approximates

this L-shape with a triangle (17.8% of shoe primitives are triangles, more than in any other class)

that, despite driving the semantic of the sketch, provides a less accurate abstraction. In the future it

would be interesting to address such cases by either learning to split/merge strokes and their parts

into simpler shapes or by learning the primitives P together with PMN.

Representations at different budgets. We inspect some example qualitative results of our model

in Fig. 5.5, showing sketch abstractions with varying compression budgets. We can see that

partitioning the original strokes into three-point sub-strokes results in unrecognisable sketches

even if GDSA is used to optimize the selection order. On the other hand, both SW and our PMN

preserve the semantic much better given the same budget levels (e.g. shoe, bottom right). However,

the additional flexibility allowed by PMN results in a much more faithful abstraction than SW, as

exemplified by the body and ladder of the firefighting truck (top left), which are both represented

by unnaturally rounded shapes by SW. Even when SW and PMN select the same shapes, PMN

better aligns them to the original stroke, as can be seen from the circle used as seat of the chair

(top right), or the arc used as left-ear of the cat (bottom left). This confirms the advantage of our

self-supervised alignment objective w.r.t. the less flexible Least Squares solution of SW.
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Figure 5.5: Qualitative example of sketches at different budgets. We show example sketches
of Quickdraw (left), ChairV2 (top right) and ShoeV2 (bottom right) at 10%, 20%, 30% budgets
when using GDSA, SW, PMN. Primitive color legend: .

5.5 Conclusion

Motivated by how humans abstract object representations in interpretable messages when playing

communication games, in this paper we proposed a new representation learning task, Primitive-

based Sketch Abstraction, where the goal is to represent a sketch with a given set of simple drawing

primitives. To address this task we proposed a model, Primitive-Matching Network, that maps each

stroke of a sketch to its closest drawing primitive and predicts the affine transformation to align

them. We overcome the lack of annotation for stroke abstractions by developing a self-supervised

objective using the distance transforms of the primitives and the target strokes. Experiments show

that our model surpasses standard sketch abstraction methods on sketch classification and sketch-

based image retrieval at a given budget. Differently from hand-drawn strokes, our PMN abstraction

is highly interpretable and leads to new types of sketch analyses, comparing sketches by means of

their primitives.
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L A N G U A G E - I N S P I R E D E X T E N S I O N S

B E Y O N D C O M M U N I C AT I O N

In this chapter, we present two lines of work that do not utilize communication directly, but extend

the scope of this thesis by looking at aspects of language beneficial in communication scenarios.

Section 6.1 proposes a representation learning approach with the goal of transferring the com-

positionality inherent in language to the vision domain. We propose a probabilistic model of

Gaussian mixtures that embed both images and textual labels into a joint latent space. Through

aligning the two modalities by their components, our model learns to ground words in the image

and generalize to unseen combination of objects in images.

Section 6.2 deals with the problem of semantic image synthesis by learning visual tokens that,

when arranged together, produce natural images. These discrete tokens can be viewed as words

from a vocabulary that are discovered from scratch from images. We propose to tie them closer

together with semantic information to improve the synthesis process.

6.1 Compositional Mixture Representations for Vision and Text

Learning a common representation space between vision and language allows deep networks to

relate objects in the image to the corresponding semantic meaning. We present a model that learns

a shared Gaussian mixture representation imposing the compositionality of the text onto the visual

domain without having explicit location supervision. By combining the spatial transformer with

a representation learning approach we learn to split images into separately encoded patches to

associate visual and textual representations in an interpretable manner. On variations of MNIST

and CIFAR10, our model is able to perform weakly supervised object detection and demonstrates

its ability to extrapolate to unseen combination of objects.

6.1.1 Introduction

For an artificial intelligence agent to gain an understanding of the world comparable to the one

of humans’, it should to be able to connect the visual world with its semantic meaning. There

has been a substantial effort in learning image representations [Che+16; KW14] as well as text
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representation [Dev+19; Mik+13; PSM14], capturing the semantic meaning and disentangling

the variation factors in a way similar to how humans learn their surroundings. However, learning

unsupervised visual representations from the image data, (e.g., through image reconstruction), can

be challenging because there is no guidance towards an informative content (e.g., presence of

objects) and uninformative content (e.g., the exact pixel location of the horizon), when there is

no supervision involved or the downstream task is unknown [ZSE17]. [Ben17] hypothesises that

language can be a good prior towards forming useful representations, i.e., things that are commonly

described or talked about by people in visual data is information we would like to preserve in our

representations.

Our goal is to build upon the idea of preserving the semantic information in the learned rep-

resentations and learn an unified representation between the text and images, where we use the

semantic structure of the text to disentangle the visual data. For instance, when a caption mentions

a car, the corresponding representation of the image should not only include the same information,

but should be able to report as well, which part of the image caused the representation of "car".

Naturally, such a representation is not limited to hold only a single concept, but can be composed

of several individual components, both on the text as well as on the image side. As text is already

highly structural, its representation can be viewed as the aggregation of its words’ meanings. Im-

ages could be then decomposed into patches associated with the building blocks that encode the

semantics within the text.

By directly modeling the compositionality of the representation, it becomes possible to obtain

several desirable properties. The first property is generalizability. In other words, learning a

representation of its constituents is usually simpler than inferring a meaningful joint representation

of a complex example. Hence, in novel scenarios, being able to robustly embed partial entities,

which are well known from the training set, allow representations to generalize more easily. The

second property is combinatorial extrapolation. Certain objects in the images might have high

co-occurrence probability. Previously unknown object combinations during test time can cause a

deep model to fail. Compositionality can overcome this bias as it allows to arbitrarily combine

partial representations. The third and the final property is interpretability. Associating the visual

components of the image to the semantics encoded by the textual components allows humans to

develop a better understanding of how deep models form their complex representations and might

also assist in identifying the causes behind possible failures.

In this work, we implement the idea of using textual guidance to learn compositional image

and text representations. One goal of the representation learning is to create representations of

the raw input data, which are useful for an a priori unknown downstream tasks. We choose to

evaluate our approach on image retrieval and weakly supervised object detection. The latter task

is particularly fitting as an aim to decompose images into their respective objects as given by

the textual labels without having any bounding box supervision. Therefore, it allows to give a

good indication about the compositionality and disentanglement of the image representation that

is achieved by our model.

Our contributions are as follows: we present a novel model that learns a compositional Gaussian

mixture representation for both the image and the text and matches them with a KL divergence loss.

56



6 . 1 . C O M P O S I T I O NA L M I X T U R E R E P R E S E N TAT I O N S F O R V I S I O N A N D
T E X T

cat
frog

E
m
be
dd
in
g

0.5

0.5

Image Encoder

Text Encoder

Text Decoder

fro
g

ca
t ...

fro
g

ca
t ...

(a)

x

c(k)

z

wi

K

I

(b)

Figure 6.1: Compositional Mixture (CoMix) Model. The graphical model is shown in the (b) while
(a) shows the architecture of our proposed CoMix model that learns two Gaussian mixtures, one
is learned from the image and the other one is from the text data. The image encoder first uses
a CNN to predict the Gaussian mixture weights π(k)(x) as well as the transformation parameters
p(c(k)|x) used by the spatial transformer module to extract image patches xc

(k)
. Each patch is

individually encoded by a second CNN into Gaussian distributions N (z|µ(xc(k)), σ(xc(k))). A text
decoder p(w|z) is learned with a negative log likelihood loss and ensures that textual information is
contained in the representation. A text encoder embeds individual words into Gaussian components
and then mixes them into the textual Gaussian mixure representation p(z|w). A KL-divergence
loss allow to learn the correspondence between text tokens and image crops by matching the two
representations. Without any bounding box supervision, our CoMix model learns to detect images.

The vision part of the model incorporates the spatial-transformer architecture to learn bounding

boxes of the image parts corresponding to the different textual components. We evaluate our model

on the altered MNIST and CIFAR10 datasets, where each image is composed of several images

from the original dataset.

6.1.2 Related work

Representation Learning. We distinguish ourselves from most representation learning approaches

on images in that we do not try to embed the complete image information in the latent code.

Nonetheless, the goals of representation learning are shared across related work in this direction.

MONet [Bur+19] also employs a compositional approach to scene understanding and reconstruc-

tion. It iteratively constructs a scene by its components such as objects and background elements

and uses a VAE [KW14] architecture at each step. Similarly, IODINE [Gre+19] also employs a

VAE iteratively to infer and reconstructs scene an object at a time. Related work has previously

combined the spatial transformer architecture [Jad+15] with image representation learning both

iteratively [Esl+16] and by processing the whole image at once [CP19].

Multi-modal Learning. When considering models working with multi-modal data, MVAE [WG18]

applies the VAE setting to multiple modalities such as image and text and can be trained semi-

supervised, but it does not employ a compositionality approach. Learning shared representations
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between images and text is often done targeting a specific application such as retrieval [Zhe+20]

or grounding sentences in images [Roh+16]. Work on associating objects with parts of language

through visual-semantic alignment [KJL14; KL15] usually uses greater level of supervision at

least on object detection. One such example is VisualBERT [Li+19] which combines the rich

textual representations of BERT [Dev+19] with supervised object detectors to solve a variety of

visual-language tasks. Similarly, [LZY20] uses natural language explanations to improve the per-

formance of a visual classifier. LXMERT [TB19] and UNITER [Che+20b] demonstrate that rich

representations learned from multi-modal vision and text data can benefit diverse tasks such as

Visual Question Answering (VQA). The learned representations of CLIP [Rad+21] achieve zero-

shot object recognition capabilities by training on a large dataset of unstructured image-text pairs.

Recently, several works [Huo+21; Jia+21; Li+21; She+21] build upon the contrastive learning

objective similar to CLIP to learned multi-modal representations in an unsupervised manner.

Weakly Supervised Object Detection. Following the advances in supervised object detection

in models such as YOLO [Red+16], Faster-RCNN [Ren+15] and Mask-RCNN [He+17], more

work is dedicated in solving the object detection task without bounding box labels, i.e. weakly

supervised with only labels about which object are present in the image. WSDDN [BV16] works by

pooling spatial regions on the last convolutional feature layer of a CNN and has been challenged by

similar approaches such as C-MIDN [Gao+19] and PredNet [AJK19]. These approaches, however,

do not offer the same level of introspection and interpretability as our CoMix.

6.1.3 Compositional Mixture Model

We present our proposed compositional mixture model (CoMix) in the following subsection. In

our setting, we consider a joint data distribution p(x,w) of images x and text w with vocabulary V .

Our goal is to use a deep learning model to encode the visual signal coming from the images into

a compositional representation, which entails all the semantic information that the components of

the textual counterpart contains. At the same time, the representation should be interpretable in

terms of which image region contributes to its components’ representations.

6.1.3.1 CoMix Overview

In our CoMix model, we choose to model the latent representation as a Gaussian mixture. By

being a multimodal distribution, it is able to model complex data while having the desired property

of being compositional as it consists of several simple Gaussian distributions. Hence, each textual

component as well as inferred image patches are embedded into individual Gaussians before being

mixed to form the final representation. Our CoMix model consists of three parts as depicted by

Figure 6.1a. A text encoder p(z|w) takes as input the text tokens w and encodes each one of them

into a latent mixture component.

Analogously, an image encoder maps the input image to another Gaussian mixture p(z|x),
where each Gaussian component corresponds to a different spatial image region. By aligning the

two mixture distributions with a KL-divergence loss term, CoMix learns to associate components

of the text to the concrete image regions. Attending to separate image patches is learned end-to-end
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by a spatial transformer module without requiring any extra supervision. Finally, a text decoder

p(w|z) ensures that the learned Gaussian mixture representation retains all the textual information,

effectively preventing degenerate solutions. Thus, CoMix is trained by supplying image-text paris

(x,w) without any additional supervision as to how these two modalities are related, e.g. there is

no bounding box supervision on where the text is grounded in the image.

6.1.3.2 Text Encoder

A string of text w, such as a sentence, is composed of entities of interest, such as objects, that are

also present in the image. Each word is embedded into a Gaussian latent componentN (z|µ(wi), σ(wi)),

where µ(wi) and σ(wi) are determined by an embedding layer. The latent variables of all the words

of the text are then combined into a Gaussian mixture model

1

|w|
∑
i

N
(
z|µ(wi), σ(wi)

)
, (6.1)

where each Gaussian of the mixture is weighted equally. This allows us to express a complex

multi-modal representation as the sum of simple uni-modal Gaussian components representing its

constituent words. Given a one-hot vector for each word, the text encoder is a single matrix that

stores a trainable set of Gaussian parameters for each word.

6.1.3.3 Image Encoder

A spatial transformer module [Jad+15] determines a total of k image regions, which are embedded

into the parameters of a Gaussian distribution. Such an architecture allows us to crop, translate,

and scale portions of the original input image by defining an affine transformation Aθ that maps

image pixel locations of the source and the target image:

(
xsi
ysi

)
= Aθ

xti
yti
1

 (6.2)

where (xs, ys) and (xt, yt) are the source and target coordinates of pixel locations. The spatial

transformer can be viewed as hard attention on the input image with differentiable transformation

parameters Aθ.

We employ a convolutional neural network (CNN) to learn k different transformations p(c(k)|x)
from the input image. By applying the spatial transformer on each of these, we get k different

image crops xc
(k)

, which are then individually encoded with another CNN that, in its turn, provides

the parameters µ and σ to a Gaussian distribution N (z|µ(xc(k)), σ(xc(k))). Hence, each Gaussian

component of the image is also associated to an image region by a hard-attention mechanism. The

Gaussian components are combined through the categorical mixture distribution π(k)(x), which is

anticipated from the original input image with the same network that predicts the k transformations

c(k) to form the Gaussian mixture
∑

k π
(k)N (z|µ(xc(k)), σ(xc(k))).
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6.1.3.4 Representation Learning

Our requirements for learning a meaningful representation are twofold: 1) The data likelihood

under our graphical model needs to be maximized. Since the prediction of w depends only on z,

this forces z to capture all the required textual information from the corresponding images x; 2)

The representation should discard image details that are irrelevant for text prediction to obtain a

correspondence of text and image components.

To address the former, we train a text decoder p(w|z) on top of the image representation. This

results in the full graphical model depicted in Figure 6.1b. According to the graphical model, we

can now define the joint distribution of our data p(x,w) = p(w|x)p(x), where we are particularly

interested in the conditional

p(w|x) =
∏
i

p(wi|x) (6.3)

=
∏
i

∫∫
p(wi|z)p(z|x, c)p(c|x)dcdz (6.4)

=
∏
i

∫∫
p(wi|z)

∑
k

π(k)(x)N
(
z|µ(xc(k)), σ(xc(k))

)
(6.5)

p(c(k)|x)dc(k)dz (6.6)

=
∏
i

∑
k

π(k)(x)E
z∼N (z|µ(xc(k) ),σ(xc(k) ))

[
p(wi|z)

]
(6.7)

where the crop parameters c(k) are deterministically determined as a parametric function of x,

which is represented by the transformer architecture.

By parameterizing the conditional distribution with our model parameters, we can define our

objective to minimize the negative log-likelihood of the joint occurrence of pictures x and text w:

min
θ

Ex,w∼p̃

[
− log pθ(x,w)

]
(6.8)

= H(x) + min
θ

Ex,w∼p̃

[
− log pθ(w|x)

]
(6.9)

where H(x) is the entropy of the image data and as a constant is irrelevant for the optimization

procedure. Specifically, the second term on the right-hand side is the negative log-likelihood of the

text data given the image under our model and will be denoted as NLL. By minimizing NLL, we

are effectively capturing the information required to predict w since the predictive text distribution

p(w|z) depends only on the representation z.

Since we want the representation z to focus only on the image details which have a textual

counterpart, the second condition aims to discard any image-specific detail from z. This can be

done by minimizing the distance between the conditional distributions p(z|x) and p(z|w) to enforce

consistency between encoded images and corresponding text. While we model p(z|x) directly,

p(z|w) is intractable under our graphical model. Hence, we introduce a variational distribution

q(z|w) to approximate the representation induced by the observation of the text data. We model

q(z|w) as a Gaussian mixture distribution in which each component corresponds to a single word to
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capture the compositional nature of the text. By minimizing the Kullback-Leibler (KL) divergence

between p(z|x) and q(z|w) we are effectively minimizing the amount of image-specific information

embedded into z, fulfilling our second requirement:

DKL

(
pθ(z|x)

∥∥qϕ(z|w)
)
≥ DKL

(
p(z|x)

∥∥p(z|w)
)

(6.10)

= DKL

(
p(z|x,w)

∥∥p(z|w)
)

(6.11)

= I(z; x|w). (6.12)

When I(z; x|w) is minimal, the representation z must contain only the information that can be

determined through the text (as z and x become conditionally independent), discarding picture

specific nuisances not mentioned in the textual description w.

Combining the KL-divergence term with NLL, we arrive at the loss function

min
θ,ϕ

L = min
θ,ϕ

Ex,w∼p̃

[
− log pθ(w|x) (6.13)

+DKL

(
pθ(z|x)

∥∥qϕ(z|w)
)]

. (6.14)

The KL-divergence between the two mixture models p(z|x) and q(z|w) is approximated by sam-

pling from each Gaussian component using the reparameterization trick [KW14] resulting in a

stochastic estimate of the loss.

6.1.3.5 Image Area Loss

In the previous subsections, we provided a detailed description of how a compositional Gaussian

mixture representation for both text and image may be learned. Learning the representation is

the key part that makes CoMix implicitly split the image into elements that match the textual

components. However, the crops that are learned by the spatial transformer are not guaranteed to

be minimally enclosing the objects they represent. Since neural networks are able to learn arbitrary

mappings from the image region to representation, the network can learn to attend to a larger

image part than just the object, effectively including unnecessary information without harming the

modeling performance.

We are specifically interested in the smallest bounding box per object to be encoded into a Gaus-

sian component because a precise localization greatly helps model inspection and interpretability.

Hence, we introduce another tunable loss term that penalizes the size of the image crops learned

by the spatial transformer. Our final loss is given by

min
θ,ϕ

L = min
θ,ϕ

Ex,w∼p̃

[
− log pθ(w|x) (6.15)

+DKL

(
pθ(z|x)

∥∥qϕ(z|w)
)

(6.16)

+ λ
∣∣∏

i

Aθ,ii

∣∣]. (6.17)

where the product of the diagonal elements of the affine transformation matrix Aθ equal the area of

the patches by the transformer architecture. The coefficient λ regulates to which degree we would

like to penalize the area of the image crops. In the experiments subsection below, we investigate

the effect of this hyperparameter.
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6.1.4 Experiments

In this subsection, we describe the datasets and experimental tasks and provide quantitative and

qualitative results evaluating the representation learned by CoMix. Furthermore, we demonstrate

the performance of our model on classification, image-retrieval, and weakly supervised object

detection.

6.1.4.1 Datasets and Setup

Datasets. We conduct experiments on two datasets, MultiMNIST and MultiCIFAR10, which

represent variations of MNIST [Lec+98] and CIFAR-10 [Kri09], respectively. MNIST consists

of 60K/10K training/test examples from 10 handwritten digits and CIFAR-10 contains 50K/10K

training/test natural image examples from 10 classes.

In contrast, MultiMNIST and MultiCIFAR10 combine several original images randomly sam-

pled onto the same canvas. For each example, we sample between one to four original images,

scale them with a factor drawn from N (1.3, 0.1), and place them at random locations on the canvas.

The canvas size is 56× 56 for MultiMNIST and 80× 80 for MultiCIFAR10. The presence of an

object class in the image is indicated with the help of labels, regardless of how many times the

same object appears. We sample training and test data once according to the original data sizes and

then keep the datasets fixed across all the experiments. See Figure 6.3 for the examples of images

from these datasets.

Experimental setting. All the compared models consist of the same neural-network architectures

with the similar or same number of parameters. For MultiMNIST, the image encoder is a 3-layer

convolutional network with BatchNorm and ReLU after each layer. For MultiCIFAR10, we use

ResNet18 as the image encoder. For both datasets, we use an embedding layer for the text encoder,

a 2-layer MLP with ReLUs as the text decoder, and a spatial transformer network consisting of a

3-layer convolutional network with BatchNorm and ReLU.

The number of the mixture components k learned by the spatial transformer network is set to

5 across all the datasets such that the model has to learn to actively choose to use or not to use

components. The decision about using a particular component is regulated by the mixture weights

π(k), which is a learned output of the same network. The area loss coefficient λ is set to 4 for both

datasets (see subsection 6.1.4.3). We randomly split 10% of the training data as a validation set to

tune the remaining hyperparameters. The model’s code, experiments, and data generation will be

made publicly available.

6.1.4.2 Classification and Object Detection

Task. We evaluate our model on its ability to detect and classify objects in an image. For the classi-

fication, since there are multiple target classes per image, we measure the mean average precision

(mAP) of the predictions of our model’s text decoder. While our model has a direct supervision

on the classification task, there is no supervision signal or loss on object detection. Solely the

learning of a compositional representation as well as the spatial-transformer architecture facilitates
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MultiMNIST MultiCIFAR10

Cls Det Cls Det

CNN 95.87 n/a 73.99 n/a
WSDDN 99.63 88.27 75.42 49.47
CoMix 99.39 87.04 90.74 75.83

Table 6.1: Classification and object detection performance measured in mean average precision
(mAP, in percent) on MultiMNIST and MultiCIFAR10 datasets.

the fact that our model naturally learns to detect objects without the ground-truth bounding-box

supervision. Thus, the task setup is identical to weakly supervised object detection (WSOD).

The predicted bounding boxes come from the transformer networks predictions that select

a region of the image to be used as one component in our mixture model. We evaluate on the

ground-truth bounding boxes that are known from the data generation process, i.e., location and

boundary of each individual original image. Following [Eve+], object detection is measured by

mAP, where a detection is considered to be a true positive whenever the intersubsection over union

(IOU) of the predicted and the ground-truth bounding box is greater than 0.5.

Baselines. Two baselines are introduced for the classification and object-detection tasks. Firstly,

we isolate the image encoder of our model to do the classification directly from the input image to

the label output without any representation learning denoted as CNN. This baseline is exclusively

trained on a binary cross-entropy loss to predict the presence of the object classes in the image.

Our model should match the CNNs classification performance to ensure that the representation

learning does not hinder the prediction performance.

Secondly, we compare against Weakly Supervised Deep Detection Network (WSDDN) [BV16]

serving as an object-detection baseline. WSDDN is an established backbone for the weakly

supervised object-detection networks that relies on adaptive pooling over a convolutional feature

map similar to modern supervised object detection networks such as Faster-RCNN [Ren+15].

Contrary to our approach, bounding-box proposals are not learned, but generated algorithmically

using the selective windows search strategy [San+11].

Results. We report the classification and object detection results in Table 6.1. On classification,

our CoMix model outperforms both baselines on MultiCIFAR10 by a large margin (90.7% vs

75.4%/74%) and is on par with WSDDN on MNIST. The close results on MultiMNIST can most

likely be explained by getting close to the perfect classification results rather than choices in the

model. We believe, the considerably higher performance of our model on MultiCIFAR10 can be

attributed to the compositional modelling of the individual objects in the image. For this reason,

mAP approaches ResNet18’s classification performance of around 93% on the individual CIFAR10

images. Since our model processes image parts separately, we can generalize from the single image

CIFAR10 classification performance to our more difficult MultiCIFAR10 dataset. Both baseline

models back this property and, therefore, fall short in classification.

Similarly on the object detection, CoMix obtains a comparable performance as WSDDN on

MultiMNIST, but outperforms it on MultiCIFAR10 (75.8% vs. 49.5%). Being able to flexibly
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Figure 6.2: Mean average precision of our CoMix model on both classification as well as object
detection with varying values of λ. The hyperparameter λ enables an area loss term that tightens
bounding box predictions around objects.

MultiMNIST MultiCIFAR10

avg. Rank R@1 R@5 R@10 avg. Rank R@1 R@5 R@10

Regular
Gauss 6.85 21.09 64.84 86.72 16.47 14.06 32.03 55.47
CoMix 2.33 64.06 91.41 96.88 2.5 46.09 93.75 97.66

Skewed
Gauss 15.96 31.25 40.63 53.13 22.35 7.81 35.16 49.22
CoMix 2.45 57.03 89.84 98.44 5.45 47.66 77.34 85.94

Table 6.2: Image retrieval results of our CoMix model compared to the Gauss baseline where we
replace our composition Gaussian mixture latent representation with a single Gaussian distribution.
Regular refers to the normal version of our datasets MultiMNIST and MultiCIFAR10, whereas
skewed indicates a more difficult version where the combination of seen objects is highly correlated
during training. Scores refer to the average retrieval rank and recall percentage at rank 1, 5 and 10.
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learn the location of the objects instead of relying on the statically generated bounding boxes helps

our model to more accurately pinpoint the image region responsible for a class label. Both results

show the benefit of modelling image parts in isolation instead of the whole image as once (CNN)

and of learning bounding boxes for our components with the spatial transformer module.

6.1.4.3 Inspecting the Area Loss

We argue that our area loss is essential for our model to learn bounding boxes that enclose the

object tightly, which is important for both the detection performance and model inspection. In

order to validate this claim, we train our model on both datasets with varying values of λ. A

λ of 0 indicates that no area-loss term was applied while the bigger λ gets, the more bounding

boxes will be penalized for their size. In Figure 6.2, we report mAP for both the classification and

object detection for different values of λ. Interestingly, the classification performance is largely

unaffected with increasing λ and it is even higher for MultiCIFAR10 for any λ > 0 compared to

no area loss.

The mAP of the weakly supervised object-detection task steadily increases for both datasets

until λ reaches a value of 4. A value greater than 4 enforces bounding boxes that are too small

and, thus, detection accuracy diminishes. Based on this analysis, we set λ = 4 for our experiments.

Most importantly, introducing this loss term only benefits both the detection and classification in

the range that we tested, so that its use can be easily justified.

6.1.4.4 Image Retrieval

Task. To evaluate our model’s representation learning capabilities, we introduce an image-retrieval

task. Given a text sample, the task is to find the best matching image from a set of images.

If our model learns a good shared representation of image-text pairs, it should be possible to

retrieve the image matching a query text by finding the image representation closest to the inferred

text representation. With the use of our model, we first encode both the text and all the images

into Gaussian mixtures independently. Then, we score the text representation to all the image

representations. Since these representations are multi-modal distributions, we resort to calculating

the piece-wise distance between Gaussian components of all the possible text-image pairs. The

distance is defined by the average euclidean distance of each text component’s mean to the closest

image component’s mean.

Based on the distance score, we can rank the images from the high to low similarity. To

evaluate retrieval performance, we report the average rank of the ground-truth matching image as

well as the recall at ranks 1, 5, and 10.

Ablation Study. A key advantage of our model is that its representations are compositional. To

study the impact of having a compositional representation, we create an ablation model (Gauss),

where the latent variable z is a Gaussian instead of a mixture of Gaussians. In this ablation

model, the image encoder directly infers the latent variable z from the input image without the

compositional spatial transformer. Moreover, the text encoder’s embedding layer is replaced by

a 2-layer MLP such that the representation of the full sentence can be learned as it can no longer
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Figure 6.3: Qualitative results on MultiMNIST and MultiCIFAR10. For each dataset there are three
columns: 1) data example visualiing the ground truth bounding boxes (yellow, dotted line) and
the predicted bounding boxes, one for each component (various colors, solid line); 2) Categorical
prediction of object for each individual component corresponding to bounding box with sample
color; 3) Categorical mixture prediction of the whole image with colors indicating the contribution
of each component.

be composed of simple embeddings. Since the ablation model only uses a single Gaussian, the

retrieval distance is calculated by taking the euclidean distance between the means of the text and

image latents.

Skewed Datasets. To better contrast two different representation-learning approaches, we conduct

experiments on a skewed version of MultiMNIST and MultiCIFAR10. During the training, there

are three groups of object classes, where each object only co-occurs with objects from the same

group. For instance, for MultiMNIST, only the digits (0, 1, 2) would be seen together on the same

canvas and similarly for digit groups (3, 4, 5) as well as (6, 7, 8, 9).

During the test phase, all the digits can co-occur with any other digits as in our initial Mul-

tiMNIST and MultiCIFAR10 definition. The purpose of this skewed dataset versions is to show

how compositionality can help overcome dataset bias, where objects are highly correlated in the

training data, but might occur in the novel combinations during the test time.

Results. Image-retrieval results are reported in Table 6.2. We observe, learning a Gaussian mixture

representation achieves a lower retrieval rank on average and a higher recall at all the measured
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levels as compared to a single Gaussian representation. There are two reasons for these results.

Firstly, the Gaussian mixture of CoMix is multimodal and, thus, can model more complex latent

distributions. Secondly, the compositionality of CoMix allows it to extrapolate to the unseen com-

bination of objects during the test time. We observe this property when comparing the performance

loss between the regular and skewed datasets. CoMix can maintain a low mean rank (2.3 →2.5;

2.5 → 5.5), while average rank for the Gauss ablation gets considerably worse (6.9 → 16.0; 16.5

→ 22.4) on both datasets. In conclusion, the explicit modelling of a compositional representation

greatly benefits CoMix’s generalization and extrapolation performance of the downstream tasks.

6.1.4.5 Qualitative Results

To illustrate the datasets and inspect our model, we present qualitative example of CoMix applied

to MultiMNIST and MultiCIFAR10 in Figure 6.3. For each dataset, we show an example for 1 to

4 objects in the image. In each data image, we visualize the ground-truth bounding boxes of the

objects (dashed yellow line) as well as the object detections by our CoMix model (blue, orange,

green, red, purple boxes).

Each image is accompanied by two additional columns. The first column displays the textual

prediction of the text decoder applied onto the representation of the patch with the same color.

The opaqueness of the bounding boxes and the bar plots is proportional to the categorical mixture

distribution π that is predicted by the spatial transformer network. In other words, CoMix predicts

the number of objects in the image through the π values of each component and sets a components’

π(k) (close) to zero when less than the maximum number of components are needed. The second

additional column is the joint categorical class prediction of the whole image that is obtained by

mixing the individual component prediction by their respective π weights.

CoMix transparently shows which image patch causes which label prediction as visualized by

the color in the last column. As an interesting side effect, the joint classification prediction reflects

the count of objects in the image. For example, in the third row of the MultiMNIST data, the joint

prediction probability of number 3 is twice the probability of number 9. Naturally, this is caused

by the number 3 occurring twice in the image. Hence, our model learns to count without ever

having received the supervision in this regard because the textual labels only indicate the presence

of objects and not the number of them.

Being able to backtrack exactly how predictions are composed and caused by the concrete

image regions is another strength of our model that makes it more interpretable. Due to the hard-

attention mechanism of the spatial transformer module, CoMix only uses pixel information inside

the bounding box to form its representations and the predictions. In contrast, while WSDDN also

predicts bounding boxes, there is no exclusive relationship to the part of the picture the bounding

box captures. The relationship is on a feature level that often has a receptive field covering the

whole image.
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6.1.5 Conclusion

We introduced our CoMix model that learns a compositional Gaussian mixture representation

for both images and text. It utilizes the spatial-transformer architecture to decompose the raw

image and expose transparently, which patches are responsible for the Gaussian components of

the representation. The information content of the representation is guided by the textual data by

employing a likelihood and KL-divergence loss. Without any additional supervision, CoMix learns

to detect objects solely facilitated by an additional area loss.

We demonstrate the advantages of learning a compositional representation on the tasks of

weakly supervised object detection and image retrieval, where we can validate that our model can

generalize and extrapolate to an unseen combination of objects while, at the same time, being eas-

ier to inspect and interpret. Although our current results focus on synthetically generated datasets,

a plausible next step would be to scale to the natural images with the natural-language captions,

where the employment of recent language models such as BERT [Dev+19], GPT-3 [Bro+20] could

enable richer textual representations. Taking further advantage from advances in contrastive learn-

ing such as in CLIP [Rad+21], our model could extend these approaches to be more interpretable

and inherently exhibit compositionality in their representations.
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6.2 Semantic Image Synthesis with Semantically Coupled VQ-Model

Semantic image synthesis enables control over unconditional image generation by allowing guid-

ance on what is being generated. We conditionally synthesize the latent space from a vector

quantized model (VQ-model) pre-trained to autoencode images. Instead of training an autoregres-

sive Transformer on separately learned conditioning latents and image latents, we find that jointly

learning the conditioning and image latents significantly improves the modeling capabilities of

the Transformer model. While our jointly trained VQ-model achieves a similar reconstruction

performance to a vanilla VQ-model for both semantic and image latents, tying the two modalities

at the autoencoding stage proves to be an important ingredient to improve autoregressive modeling

performance. We show that our model improves semantic image synthesis using autoregressive

models on popular semantic image datasets ADE20k, Cityscapes and COCO-Stuff.

Semantically CoupledIndependent Semantics

VQGAN

VQVAE

Semantically CoupledIndependent Semantics

V
Q

G
A

N
-T

Semantic conditioning

ADE20K
Test set images

No. 14 and No. 53
Figure 6.4: A semantically coupled VQ-model together with a Transformer generator synthesizes
images that follows the semantic guidance closer and has higher fidelity. For instance, the semanti-
cally coupled model correctly reproduces the lamp next to the bed and more accurately matches
the shape of the store fronts.

6.2.1 Introduction

Semantic image synthesis allows for precise specification of the semantic content of an image. This

enables applications such as artistic image creation, e.g. by outlining the scene and components

in novel ways, or data augmentation [SFS20], e.g. creating similar images or changing objects or

styles. In this work, semantic information refers to the class identity of objects (e.g. person, car,

dog, chair) and scene concepts (e.g. sky, road, grass, lake), but also their locations, size and shape

in the image. Advances in generative models have led the progress in semantic image synthesis

methods mostly through improvements to GAN-based models [Hon+18; Iso+17; Nta+20; Par+19]

and autoregressive generative models [Che+20a; Chi+19; ROV19]. Vector-quantized models (VQ-

model) such as the VQGAN model [ERO21] combine the benefits of both GANs and autoregressive

training into a single model. By building upon the VQVAE [OVK17; ROV19], the addition of a

discriminator results in high-fidelity image generations similar to other GAN-based models.

In this work we propose improvements to the architecture of VQ-models, such as the VQGAN,

that allows more effective usage of semantic conditioning information. Our model incorporates

semantic information already at the autoencoding stage, allowing the VQ-model to combine the

two modalities before the autoregressive training stage. We train a Transformer model [Vas+17] to

generate latents which can subsequently be synthesized by the decoder of the VQ-model.
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Figure 6.5: Overview of our semantically coupled VQ-model architecture. A single encoder
produces both semantic and image latents. Two decoders reproduce semantics and image, while
the image decoder also uses semantic information. The Transformer is trained to predict image
latents conditioned on semantic latents and the image decoder synthesizes the latents.

To accomplish this, we make the following contributions. We propose an extension to the

VQ-model auto-encoder that incorporates the semantic information used for image synthesis. By

doing so, the decoder already learns the relationship between semantics and image content to make

better image generations. An autoregressive Transformer model then only needs to act on the latent

space of a single encoder model as opposed to requiring an auxiliary VQVAE which was proposed

by [ERO21]. Our semantically coupled latents enable the Transformer model to create a better

generative model of the data as seen in Figure 6.4, where semantic detail is better replicated in the

synthesized images.

6.2.2 Model

We follow the methodology of [ERO21] to produce a generative model with semantic conditioning

as a two-step approach. Instead of directly generating on the image space, we perform the task

on the latent space. To do so, our image synthesis pipeline consists of two models parts: 1) an

auto-encoder that learns a latent representation of the images; 2) an autoregressive model that

learns to generate the latent code.

Auto-Encoding with VQ-Models. We consider both VQVAE [OVK17; ROV19] and VQGAN [ERO21]

as the latent variable models and refer to them collectively as VQ-models. A VQ-model consists of

an encoder fEnc that maps the input x to a discrete latent space z and a decoder fDec reconstructing

x from z. The output of the encoder fEnc(x) is quantized to the closest vector of a learned codebook

c ∈ RK×D where K is the number of codebook entries and D the dimensionality. The quantization

of the latent space allows using autoregressive generative models on shorter sequences than the

full input data dimension. VQGAN sets itself apart from the VQVAE by introducing an additional

discriminator CNN that is trained to distinguish between ground truth images and reconstructions

from the decoder fDec.

Autoregressive Modeling with Transformer. After training the VQ-model on images x completes,

an autoregressive model is typically trained to generate the image latents z(x) of the training
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Cityscapes ADE20k COCO-Stuff
FID ↓ SSIM ↑ LPIPS ↓ FID ↓ SSIM ↑ LPIPS ↓ FID ↓ SSIM ↑ LPIPS ↓

VQVAE-T [OVK17; ROV19] 190.22 0.3652 0.6406 142.11 0.0769 0.8043 111.85 0.0820 0.8127
sVQVAE-T 192.65 0.4000 0.6002 148.09 0.1343 0.7846 114.55 0.1382 0.7857

VQGAN-T [ERO21] 130.49 0.2797 0.4873 46.50 0.0667 0.6460 33.38 0.0638 0.6533
sVQGAN-T 131.37 0.3013 0.4034 38.36 0.0987 0.5534 28.80 0.0984 0.5583

Table 6.3: Semantic image synthesis results for VQ-Tansformer models on Cityscapes, ADE20K
and COCO-Stuff datasets measuring SSIM, FID and LPIPS between generations and ground truth
images with the same semantic map. (sVQVAE-T and sVQGAN-T uses λ = 0.1)

images, by maximizing the likelihood of the factorized joint distribution

p(z(x)) = p(z
(x)
1 , ...z(x)n ) =

n∏
i

p(z
(x)
i |z(x)1 , . . . , z

(x)
i−1). (6.18)

In order to perform semantic image synthesis, [ERO21] trains a separate VQVAE on auto-

encoding the semantic map s to produce semantic latents z(s). To condition the autoregressive

model with this semantic information, we prepend the semantics latents z(s) to the image latents

z(x) and train the autoregressive model on the conditional likelihood

p(z(x)|z(s)) =

n∏
i

p(z
(x)
i |z(x)1 , . . . , z

(x)
i−1, z

(s)) (6.19)

which is done by minimizing the negative log-likelihood LT = − log p(z(x)|z(s)). For the

autoregressive model, we use a Transformer [Vas+17].

Semantically Coupled VQ-Model. We deem the existing approach of conditioning semantic

information to the autoregressive Transformer suboptimal for several reasons. It requires training

two independent VQ-models and the decoder only uses the image latents to produce the reconstruc-

tion, while more information in form of the semantic latents is available. This shifts the learning

of correlations and dependencies between semantics and image entirely to the Transformer. We

propose a semantically coupled VQ-model that incorporates the conditioning information already

in the auto-encoding stage of a single VQ-model that jointly learns to reconstruct both images and

semantics.

Figure 6.5 illustrates the joint model learning both latents at the same time. The encoder

fsEnc(x, s) is a shared encoder that takes the concatenation of the image and semantic map as input

to produce two latents, z(x), and z(s), respectively. The decoder is then split into two CNNs, one

reconstructing the semantics using only the semantic latent fsDec(z
(s)) = ŝ and one reconstructing

the image having access to both the semantic and the image latent fxDec(z
(x), sg

[
z(s)

]
) = x̂. We

stop the gradient flow from the image decoder to the semantic latent, such that each decoder is

responsible for training exactly one of the latents, separating and focusing their training signal,

while still allowing the image encoder to access the semantic latent and, thus, allowing it to encode

complementary information in the image latents.
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Figure 6.6: Qualitative results comparing multiple generations of an individually trained VQGAN-
T with a semantically coupled sVQGAN-T on COCO-Stuff (top) and ADE20K (bottom). Semantic
details are only retained by sVQGAN-T, e.g., bridge (top), airplane (bottom).

By restricting the gradient flow and using two decoders, we also induce the dependency struc-

ture of the two latents, i.e., the image latent depends on the semantic latent, but not vice versa,

and the semantic latent is learned independently. Apart from this architectural change, the loss

functions remain the same for both VQVAE and VQGAN. The semantic reconstruction is again

trained with a cross-entropy term. Thus, the loss terms are combined into a single loss function

LsVQ = LVQ(x, fxDec(z
(x), z(s))) + λLVQVAE(s, fsDec(z

(s))) (6.20)

where the second term comes from the VQVAE reconstructing the semantics and LVQ concerns

reconstructing the image and can be either LVQGAN or LVQVAE. The hyperparameter λ allows

balancing the two loss terms.

After training the semantic VQ-model to auto-encode both images and semantics, we train the

Transformer network with a cross-entropy loss to maximize the log-likelihood of Equation 6.19

where both the conditioning latents and the prediction latents come from the same VQ-model.

6.2.3 Experiments

Experimental Setup. To train and evaluate our models, we combine several semantic image

datasets into one large dataset with dense semantic image annotations, namely Cityscapes [Cor+16],

ADE20k [Zho+17] and COCO-Stuff [CUF18]. We create a unified semantic class mapping across

the three datasets combining the 20, 150 and 183 object classes of Cityscapes, ADE20k and COCO-

Stuff into a total of 243 classes by merging labels that occur across datasets such as person, car,

building, etc. We evaluate our semantically coupled VQ-model in comparison to the traditional

approach of training semantic latents and image latents separately. We use the VQVAE and

VQGAN as base models and evaluate the VQ-models after the second stage when performing

semantic image synthesis. The quality of image reconstructions and generations is evaluated using

the Fréchet Inception Distance (FID) [Heu+17], the structural similarity index (SSIM) [Wan+04],

and the Learned Perceptual Image Patch Similarity (LPIPS) [Zha+18].
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Semantic Image Synthesis using VQ-Transformer. We find that semantically coupling the

latents with our sVQVAE or sVQGAN model significantly improves the performance of the Trans-

former model in predicting the conditional sequence of latents. In Table 6.3, we observe that our

semantically coupled VQ-model improves over the individually trained models across all datasets

and metrics. For instance, the FID score of sVQGAN-T significantly improves over VQGAN-T

with 38.4 vs. 46.5 on ADE20k and 28.8 vs. 33.4 on COCO-Stuff (lower is better). Thus, sVQGAN-

T can better model the whole data distribution of the original datasets, which includes covering all

semantic classes without distortions. For both VQVAE-T and VQGAN-T models, we find that our

semantic variants achieve better SSIM and LPIPS scores, e.g., LPIPS of sVQVAE-T is 0.403 vs

0.487; 0.553 vs 0.646; 0.558 vs 0.653 (lower is better). These results indicate that our semantically

coupled VQ-models better follow the semantic structure of the image as the semantic maps are the

only source of information about the ground truth image which the metrics use for evaluation. We

find that the improvements of our semantically coupled VQ-models stem from the complementary

structure the semantic and image latents have learned during the auto-encoding training stage.

In Figure 6.6, we illustrate synthesized images from the VQGAN-T and the sVQGAN-T model,

sampling three times each. Some details of the semantic information is sometimes not properly

replicated by the VQGAN-T model, e.g., the bridge in the first row or the plane in the second

row. On the other hand, our sVQGAN-T model consistently generates these details provided by

the semantics. These results show that training the latents of the two modalities together create

stronger dependencies between them, which the Transformer model can leverage.

6.2.4 Conclusion

In this work, we present semantically coupled VQ-models that jointly learn latents of two modali-

ties, images and semantic maps. We have shown that coupling the latents during training leads to

dependencies that are easier to pick up by the Transformer model used to model their conditional

distribution. For both VQVAE and VQGAN as the VQ-model, the semantic coupling improves

the synthesis of images especially in following details of the semantic maps that is being condi-

tioned on. Further investigation into understanding the cause of our findings could allow designing

latent variable models with better synergies across data modalities beneficial for autoregressive

modeling of Transformers. Currently, a reference image is required during inference as input to

the VQ-Model. Further work will try to alleviate this dependency completely.

73





7

D I S C U S S I O N A N D C O N C L U S I O N

This thesis deals with the problem setting of explainable AI in the computer vision domain. The

purpose of our work is to expose an explanation about why and how our deep models made a

certain prediction for a given task. To achieve this goal, we propose means of communication to

enrich existing problem settings and facilitate interpretation of the deep models and their results.

In the previous chapters, a novel application of communication and language in the field of

deep learning and explainable AI was established. To summarize, we

• exposed interpretable information of neural networks, thus, allowing introspection into their

internal structure or intermediate representations,

• demonstrated how communication tasks help shaping and evaluating explainable systems,

• provided evidence why incorporating human-understandable semantics is important.

The following section reviews each contribution individually and collectively, discusses their

strong sides as well as takes a look at their current limitations, proposing how the drawbacks could

be overcome in the future.

7.1 Discussion of Results

Learning Decision Trees Recurrently Through Communication. We present RDTC, a frame-

work to solve image-classification tasks by two communicating neural agents, in Chapter 3. The

AbL agent holds an image while the RDT agent has to query the AbL agent, to obtain information

about the image and make the classification.

In a standard CNN setup, the network would produce a prediction in a single step. Instead, our

communication imposes a bottleneck that regulates the information flow and allows us to analyze

and interpret each step of the question-answer loop. We specifically choose to make responses

binary: asking yes/no questions is a common way for humans to learn new information and it is

the smallest discrete unit of information, which makes explanation as intuitive as possible. Our

goal is to transfer this idea to how our RDTC model presents its explanations to a human user.

Our proposed framework integrates components for training the two agents end-to-end by making
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the discrete communication differentiable with Gumbel-Softmax. Consequently, we can jointly

optimize a classification loss and learn to effectively communicate between the two agents. This

leads to two types of introspections into our model:

• each image is classified by following a sequence of binary decisions, where each question-

answer pair contributes incrementally to the class prediction,

• our model learns to arrange questions globally, building a decision tree.

These contributions align with our goal of developing more interpretable model components for

explainable AI. However, we find that human understanding is challenging when binary features,

i.e., vocabulary, are discovered from scratch and are unrelated to semantic concepts known to the

human in advance. We, therefore, incorporate a loss for aligning the binary features with a set

of human-understandable attributes about the images. At this point, the questions asked by the

RDT agent refer to clear concepts about the object in the image, e.g., “Does it have whiskers?”.

Our user study provides evidence that the combination of both using interpretable concepts in

the communication and building decision trees improves the explainability of our RDTC model.

Furthermore, with examples, we demonstrate, where we can pinpoint the exact binary decision

leading to an error in the prediction. This enables model debugging and helps establishing trust for

cases, when explanations are coherent with the output.

While we generally expect a trade-off between an explainable and a non-explainable model

because we impose additional constraints through the communication, in the case of RDTC, we

can retain the classification performance compared to a base model without our communication

framework. This could be explained by the fact that we are still using a complex CNN backbone

that can learn structured binary features but is ultimately not interpretable. Additionally, human-

understandable attributes allow separating all the classes in AWA2 and CUB. Doing so is a

requirement for achieving the same performance when they are used as an explainable vocabulary

in the communication.

Modeling Conceptual Understanding in Image Reference Games. In Chapter 4, we investigate

how differences of the conceptual understanding of the world affect interactions between agents

when they communicate with one another.

Humans have the ability to tailor their explanations to the variations of the receiver’s conceptual

understanding over task-related concepts. For instance, different words have to be chosen when

providing an explanation to a child than to an adult. Similarly, an expert terminology could make

communication efficient given a suitable context and a communication partner, who understands

its meaning.

With this work our goal is to have artificial agents obtain a similar ability of adjusting their

communication behavior depending on how well the receiver understands the presented terms.

Since the internal states of different actors in the environment are generally not available, the

conceptual understanding of others needs to be inferred by observing their behavior. To study this

idea, we formulate an image reference game between two agents, where modeling the conceptual

understanding of other agents is key to performing well on the task.
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Given a set of two images, the speaker agent communicates the presence of an attribute to the

listener, who, in return, tries to determine, which image the speaker wants to identify. The listener,

however, might not understand certain attributes and can only solve the task when the understood

concepts are communicated. The goal of the speaker is to infer, which attributes are understood, by

repeatedly playing the game and form a “mental model” of its communication partner to maximize

reward. The proposed task contributes to better evaluation of the deep learning systems in more

challenging environments, which is especially important to explainable AI, where communication

of concepts is involved. We further develop a speaker-agent model that learns to quickly adapt

to individual listeners based on the past experience, to avoid using misunderstood attributes in

the future. After training, our agent is able to expose its inferred states for the listener agents,

i.e., it provides details about which concepts it believes are understood and which are not. Our

experiments illustrate that the learned agent embeddings can be used to cluster listeners based

on their similarities in understanding concepts, e.g., if several agents misunderstand the same

concepts because they are all color blind, these concepts would be clustered in the corresponding

embedding space. Being able to expose this additional information allows us to further inspect,

what the speaker agent has learned. This could potentially be used to discover biases in either the

model or the data.

While these are promising results, we also notice that strong differences in the perceptual

encoding of images, i.e., when we use different CNNs for the speaker and listener, degrade the

effectiveness of our model. In such cases, the observation of other agents performing the pre-

sented task might not provide enough information to infer more complex differences in conceptual

understanding.

Abstracting Sketches through Simple Primitives. In Chapter 5, we shift the focus from images

to the sketch domain, to study abstractions through simple primitives and how they can benefit

such scenarios, where communication of semantic concepts needs to be quick, i.e., when there

is a limited budget on communicating the information. While sketches are already simplified

representations of real-world concepts, the nuances of human drawing still need to be understood

by a neural network. These nuances also make it difficult to computationally relate different

sketches in an interpretable manner.

We develop PMN, a neural network that matches human strokes with a set of predefined

primitives representing common shapes such as circle, line, arc, rectangle, in a self-supervised

manner. By doing this, our model derives two key insights:

• Firstly, by transferring the raw sketch data into a sequence of primitive tokens, we are able

to communicate the semantic content of the sketch more efficiently. This becomes possible

due to the compression obtained from the translation.

• Secondly, the sketch representations become more interpretable as now all the sketches are

made up from the same set of primitives and inter-sketch and inter-class relations can be

inspected. Since the new representation still lies in the input space, it can be visualized just

as any sketch, further contributing to its interpretability.
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We evaluate PMN on a downstream task of sketch classification and sketch-based image retrieval

through a communication bottleneck that defines a maximum information budget. This way, we

can measure the effectiveness of both the primitive vocabulary and the compression achieved by

our primitive encoding.

Our results demonstrate much higher task performance on low budget compared to commu-

nicating the original sketch data. Our result indicates that abstracting the data can lead to both

increased explainability and improved task performance, when communication with a limited chan-

nel capacity is desired or is a requirement. Moreover, primitives let us relate different classes to

one another in a self-supervised way, e.g., circles are used for heads of humans, cats, pigs, and

owls, while arcs often represent the ears of different animals.

At the moment, we use a pre-defined and fixed vocabulary of primitives. This restricts the

discovery of patterns that are not covered by the primitives and represents a trade-off, when it comes

to interpretable compression and fine-grained details as our abstraction is not lossless. When the

budget constraint is removed, using all the details from the raw data achieves better downstream

performance. While we find that our selection covers most human strokes, an automated way of

learning primitives could ensure a greater coverage of the input data alleviating the information

loss. Nonetheless, with the goal of explainability in mind, it is generally preferred to have a small

set of primitives that are distinct enough to ease making associations between sketches. This work

contributes both in terms of creating more interpretable representations with PMN as part of its

model design and with building upon the communication task, to evaluate this property.

Compositional Mixture Representations for Vision and Text. We develop an interpretable

representation-learning approach called CoMix in Chapter 6.1.

Learning a representation of the data allows us to view it from a different perspective. We

can make an attempt to regularize this representation, for the model to become more explainable.

CoMix achieves this by building a compositional latent space that explicitly separates concepts

from the input space, e.g., objects in an image, to different parts of the embedding. We do this by

modeling the latent as a Gaussian mixture distribution, where each mixture component corresponds

to a different region in the image. The region in the image is transparently exposed through the use

of a spatial-transformer module isolating an enclosed part of the image for encoding. To further

improve the explainability of CoMix, the latent space of images is aligned with a latent space from

textual labels. Through this multi-modal alignment, we impose the compositionality of language

onto the vision domain, i.e., images. Equally, a weak supervision of the text acts as a transfer of

the semantic information such that CoMix can locate objects by their label and location in images.

We show these properties on the weakly supervised object-detection task as well as on image

retrieval given an unordered set of text labels, for which we want to find a matching image. The

compositionality in the latent space allows CoMix to generalize to an unseen combination of labels

at test time. Being a desirable property directly exposed in natural language, i.e., composing two

words to form new phrases, this is hard to achieve in computer vision: in this domain, concepts are

not always clearly separated.
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While we do not employ communication directly in this work, compositionality and multi-

modal alignment are important aspects for a communication model, when expressing visual con-

cepts in a language. To bridge this gap further, the textual data could be extended to be from natural

language such that the model creates associations between objects and all their synonyms.

Semantic Image Synthesis with Semantically Coupled VQ-Model. In Chapter 6.2, we explore

vector-quantized (VQ) models in the context of semantic image synthesis.

VQ-models learn a discrete latent space for images, where each image is encoded to a grid

of latent codes. Each individual latent code comes from a learned codebook that is similar to

vocabularies in the language domain. Due to discretization, images can be treated as a sequence of

visual tokens such that learning a generative model of images corresponds to learning a sequence

model of the image tokens.

The vocabulary is learned from scratch; therefore, it is not easily interpretable as there is

no direct correspondence to semantic concepts for each token. Nonetheless, each token could

potentially encode unique image features. We examine how semantic conditioning influences the

generative model of visual tokens. In the context of VQ-models, conditioning information in the

form of semantic maps is first also encoded into discrete tokens and then prepended to the sequence

the generative model is tasked to produce.

Our contribution revolves around a tighter integration between semantic and image token by

encoding them jointly with a single encoder and using the semantic tokens as additional information

while decoding the image. Our experiments demonstrate that with such a semantic coupling,

generative image follows the semantic guidance better, i.e., objects are generated more consistently,

where the semantic mask indicates them to be.

While this work mostly focuses on the task performance for image synthesis, the results sug-

gest visual tokens correspond to the semantic information better through our semantic coupling.

Our contribution underlines the importance of integrating semantic information into the model’s

architecture, and we could potentially use these observations to learn if visual tokens have the same

properties as language tokens for them to be used to communicate information or explanations

about the content of images.

7.2 Conclusion and Future Directions

Research on computer vision and deep learning can be characterized with an extraordinary progress:

the pace at which new methods and disciplines are established continues to grow. Alongside more

sophisticated models, arises the necessity for building more explainable models as well. With

more explainability, these novel technologies would find a faster and easier way into everyday life

and encourage the research community to better understand, learn from, and be more interested in

further advancements in the deep learning field in general.

The goal of this thesis is to contribute to the research in the field of explainable AI by proposing

means of communication to enhance the explainability of deep models. With our RDTC, PMN,

and CoMix models, we present new building blocks and learning objectives that make parts of the
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neural network inherently interpretable and that can be included into existing model architectures

for tackling common tasks in the field.

One aspiration is to have deep models that are inherently interpretable throughout, from input

to output. RDTC and CoMix use standard CNN backbones that by themselves are not interpretable.

At the same time, their contributions are orthogonal to the research on post-hoc explanations that

aim at explaining deep models after the fact. One could analyze the non-interpretable part of

our models with a perturbation-based attribution method such as RISE [PDS18] or obtain input

saliency maps with activation or gradient-based approaches like GradCAM [Sel+17]. In RDTC,

these post-hoc explanations would allow to inspect whether the learned attributes are grounded

in the correct regions of the image, further establishing trust in case of coherence, and enabling

informed decisions in conjunction with humans in case of misalignment.

The recently proposed dynamic alignment networks [BFS21; BFS22] are a promising direction

towards inherently interpretable neural networks. The model’s explanations guarantee faithfulness,

making them a great choice as a backbone. Yet, we can observe a trade-off between model’s

interpretability and a task performance. Similarly, we discussed that the lossy compression of

our PMN greatly benefits explainability but can lead to a trade-off with achieving state-of-the-art

scores in specific scenarios. While the current conclusion is that inherently interpretable models

still come with a trade-off at least in some situations, it is an interesting research direction, to

attempt to close this gap.

To better analyze cases where explainability is of interest, it is important to come up with new

tasks reflecting real-world situations. Determining evaluation criteria is equally important as they

would help explainable models’ advancement. We propose a communication task in the context of

an image-reference game, to study the influence of conceptual understanding on communicating

explanations. This represents a specific use case for explanations and helps covering a width of

desirable properties when developing new explainable AI systems.

The research community has established sanity checks for saliency maps [Ade+18; YG21]

to uncover failure cases of post-hoc methods. At the same time, the evaluation of explainability

remains a challenge.

For RDTC, we conducted a user study to measure the effectiveness of our explanation and

observed positive results. User studies can be advantageous for measuring partially subjective

effects of explanations but are far from being perfect. We currently lack a unified methodology and

designing user studies to assess the task-specific influence of an explanation is non-trivial. In our

communication setup, we tried to develop multi-agent scenarios, where the interaction between

neural agents could act as a surrogate target for quantifying explainability, e.g., when our sketch

primitives convey more semantic information for a downstream task. Nonetheless, the ultimate

effect on a human can only be studied together with a human, so, additional efforts are required to

find a fitting way to evaluate explainable AI.

Incorporating semantics from a natural language guarantees to some extent that explanations

align with human-understandable concepts. Some related work takes the approach to generate full

natural language explanations [Her+22; KT20; LZY20; Maj+21]. Natural language models such

as GPT-3 [Bro+20] and the recently presented PaLM [Cho+22] have become so powerful that the
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latter can explain complex jokes simply by prepending “Explain this joke:” to a natural-language

prompt. Despite that, they cannot be used to make internal representations and structure of a neural

network more explainable. For this purpose, we propose to align internal aspects of the models

with semantic side information, to make model parts of the neural networks more explainable,

e.g., when we use attributes as the vocabulary in the RDTC communication or when CoMix

learns mixture representations, where image and text latents are located in the same space. With a

similar idea, representation-learning approaches have been proposed to learn a shared feature space

between image and language features using a contrastive loss [Huo+21; Jia+21; Li+21; She+21]

building upon CLIP [Rad+21].

These approaches currently lack desirable properties of CoMix such as the compositionality

of the latent features and the granularity in grounding latent components in the image. A logical

next step would be to combine these efforts and integrate more general language models into the

architectures from this thesis. In CoMix, this could be done at the encoding stage of the text data

while at the same time scaling to both natural images and language pairs.

One clear advantage of a natural language is that the textual data is available in abundance.

When we align the discrete vocabulary of our communication models with human-understandable

words, human annotations are required as supervised information. Therefore, CoMix and RDTC

currently rely on the availability of such a human-annotated data, so that we can train them with

explainability in mind. Related work has explored the emergence of language in communica-

tion [Cao+18; CLF18; Evt+18; Far+22; Foe+16; HT17; Kot+17; LB20; Laz+18; LPT20], but it

remains non-trivial to connect a learned neural language with a natural language without human

intervention. RDTC can learn an emergent language with a vocabulary corresponding to binary

features relating to input images. These features clearly correspond to visual concepts but naming

them is challenging to do computationally.

Analogously, our semantic VQ-models learn visual tokens in an unsupervised task but cannot

expose the meaning of each token in their vocabulary. In the vision domain, the discovery of

visual concepts and subsequent association with semantic words is arguably more difficult than in

more structured environments studied in reinforcement learning. Therefore, we believe the sketch

domain could be a promising starting point to research this direction further.

Instead of pre-defining sketch primitives for our PMN, the shape of primitives could be discov-

ered end-to-end with our reconstruction objective. Since our primitives lie in the input space, even

learned ones can be visually inspected and remain interpretable. This contrasts with the situation

when the communication vocabulary is used at an intermediate layer of the model such as for

RDTC and sVQ. With the sketch domain as a test bed, it would be interesting to see whether such

an idea could be ultimately transferred to natural images, where visual tokens lie in the input space

and compose images when arranged together to communicate the semantic content of a scene.
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A

S U P P L E M E N TA RY M AT E R I A L - L E A R N I N G

D E C I S I O N T R E E S R E C U R R E N T LY

T H R O U G H C O M M U N I C AT I O N

A.1 Ablating Loss and Maximum Steps T

When training our RDTC model with a cross-entropy loss for image classification, we found that

training is more efficient and yields better results when applying the loss term at every step t in the

communication loop up to the maximum step T .

L =
1

T

T∑
t=1

LCE(y, ŷ
(t)) (A.1)

One natural alternative to this approach is to apply the loss only at step T , the leaf node,

essentially removing the sum Equation A.1. In Figure A.1, we show the difference of applying

the loss at every time step (full loss) or only at the end (leaf loss) on CUB and AWA2. The final

performance of the decision tree is the same, however, applying the loss at every time step produces

a tree that has a better performance when evaluated at intermediate steps and results in a smaller

tree after pruning, i.e., fewer tree nodes are used for the final tree to obtain best performance.

Moreover, we found that when hyperparameter T is chosen sufficiently high, we are able to

reach this maximum performance while our tree distillation process ensures that the tree size does

not increase past the point where the classifier achieves the highest accuracy. Figure A.2 shows

classification accuracy with increasing tree depth. Accuracy does not decrease past some value for

T where the model performs best, and choosing any value bigger results in an equally explainable

tree after pruning.

A.2 Decision Trees and Explanations of CUB and AWA2

Illustrating the decision making process helps the user get an explainable overview of the internal

decision process of the whole classifier. We point to the tree branch into which a certain class

(indicated by an example image from this class) falls along with the attribute associated with that
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Figure A.1: Accuracy and number of distinct nodes in RDTC on AWA2, CUB comparing our full
loss at each time step (solid line) with a loss only applied at leaf nodes (dashed line). The full loss
uses fewer nodes, i.e., a smaller tree, to achieve the same accuracy.
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Figure A.2: Training RDTC while varying hyperparameter T . As T increases, the model achieve a
better accuracy up to a value of T where a plateau is reached. When increasing T further, the final
tree size of RDTC does not increase due to pruning during tree distillation.

branch. We inspect the learned structure of the decision tree by illustrating the splits from our

aRDTC model on CUB in Figure A.4, and on AWA2 in Figure A.6. Here, the left and right sub-tree

indicates that the attribute is present or absent respectively. For instance, on CUB, the first decision

deals with identifying bird with white underparts, separating these from birds with any other

color. These categories get further refined with each binary split via a hierarchical clustering that

reveals the decision tree structure of our aRDTC framework. These serve as additional examples

of introspection, showing that our model allows to make a more informed decision about the
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trustworthiness of the network’s prediction.

In Figure A.5, we illustrate a qualitative example of the classification of two images of Scarlet

Tanagers made by our model trained on CUB. Both images follow the same path for the first

decisions, before diverging when it comes to the decision whether the bird has black wings. The

top bird actually does not have black wings and, thus, is classified as a Summer Tanager, a bird

species with the same appearance as Scarlet Tanager except for having red instead of black wings.

Equivalently in Figure A.7, we illustrate a qualitative example of the classification of two

images of tigers made by our model trained on AWA2. Again, both images follow the same decision

until, for the white tiger, our model wrongly predicts “no stripes” and incorrectly classifies it as a

lion. Together with the full decision trees, these explanations allow for detailed introspections into

the global decision process our aRDTC model.

A.3 Explanations without Attributes

When working with datasets that do not provide annotated attributes, we can train our RDTC

with λ = 0, which still exposes the decision tree structure. This allows introspection into the

intermediate class splits of the model revealing a hierarchy that can reveal semantics. When

applies on CIFAR-10, our RDTC model not only retains ResNet performance (93.1% vs. 93.3%),

it also semantically clusters the data even though there is no attribute guidance. Figure A.3 shows

the resulting decision tree of RDTC on CIFAR-10. In the first binary split, we observe that RDTC

separates the animal classes from the vehicles. Subsequently, vehicles are clustered into motor

vehicles (car, truck) and the rest (airplane, ship). For animals, our model also finds reasonable

clusters such as grouping cat and dog, as well as grouping horse and deer. ImageNet is a more

challenging dataset, where we observe similar behaviour. In Figure A.8, we show the decision tree

of the first decisions on ImageNet with a randomly selected subset of classes, each represented

by one representative image. Our model separates animals from inanimate objects in the first tree

split following the data semantics. In the later decisions of the tree, there are clusters of dogs/cats,

birds, monkeys on one side of the tree and clusters of furniture and electrical appliances on the

other. These example show that, even when no additional attribute information is given, tree splits

often follow semantics that are exposed by the decision tree learned by our RDTC.

A.4 RDTC Training Algorithm

For a concise representation of the RDTC training algotithm, we present a summary in Algorithm 2

including both components, RDT and AbL, iterative loss calculation and gradient updates using

the terminology of the main paper.
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Figure A.3: Our RDTC learns the decision tree on CIFAR10 without attribute data. While decision
nodes do not have ground truth attributes, we can still interpret the decision, e.g., the first node
separates animals from vehicles.

Algorithm 2 RDTC training
Input: Image x, label y

Max # of decisions T , Attribute data α
Output: Predicted label ŷ

Binary decision sequence d(1), . . . , d(T )

1: z = CNN(x)
2: â = TempSoftmax(fAttrMLP(z))
3: init M0, h0
4: L = 0
5: for t = 1 to T do
6: c(t) = GumbelSoftmax(fQuestMLP(h

(t−1)))
7: d(t) = âc(t)
8: M(t) = M(t−1) ⊕ (c(t), d(t))
9: h(t) = LSTM(h(t−1),M(t), c(t), d(t))

10: ŷ(t) = fClassMLP(M(t))

11: L(t) = 1
T

[
(1− λ)LCE(y, ŷ

(t)) + λLCE(αy,c(t) , âc(t))
]

12: L = L+ L(t)

13: end for
14: gradient update with L
15: return ŷ(T ); d(1), . . . , d(T )
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Figure A.5: Our aRDTC points to the reasoning behind a wrong decision. Here we illustrate two images from the “Green Kingfisher” class. The lower
path lead to a correct classification. Both images follow the same path except for the decision of “black wings”. The flying bird gets classified as a “Belted
Kingfisher” incorrectly because the black wings are not visible.
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S U P P L E M E N TA RY M AT E R I A L -
A B S T R A C T I N G S K E T C H E S T H R O U G H

S I M P L E P R I M I T I V E S

B.1 Network Architecture Details

For all our networks that take sketches as input, we use the Transformer [Vas+17] architecture

with GeLU activations [HG16], 8 self-attention heads and a layer size of 128 for the self-attention

layers and 512 for the fully-connected layers. Our network f has 6 Transformer layers and embeds

strokes by adding a single embedding token to the input sequence of points. We find that adding

positional embeddings to encode the order of points does not improve the performance, so we only

use the coordinates as input for each point.

We train a sketch classifier on Quickdraw with the same architecture as our stroke encoder,

i.e. we use the 6-layer Transformer architecture. The first three layers embed strokes and the last

three layers embed the full sketch by taking the sequence of stoke embeddings as input. First, we

pass the sequence of points of individual strokes (or primitives in PMN) through the first three

Transformer layers without positional embedding. To integrate stroke relative positions, the global

position and scale are mapped linearly and added to the stroke embeddings. We then pass this

stroke embedding sequence to the last three Transformer layers. A linear layer maps the final

sketch embedding to the class logits before taking the cross entropy loss on the ground truth class

label. When partial sketches are evaluated, we mask out unused strokes or sub-strokes at the input

to obtain the predicted class logits.

For FG-SBIR, we train a Siamese network [Son+17] on the original training sketches with the

same architecture of [Bhu+20; Muh+18], based on the InceptionV3 [Sze+16] architecture with

an embedding size of 128. Since the network acts on natural images and images of sketches, we

render our primitive reconstructions to images when evaluating them on the task. Similarly, partial

sketches are rendered and fed to the CNN to obtain the retrieval scores for different budget and

when applying DSA and GDSA.
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Batch size with ϕ without ϕ factor

32 13.14 ms 118.82 ms 9.04×
64 14.28 ms 226.46 ms 15.85×

128 20.16 ms 449.22 ms 22.28×
256 34.79 ms 905.66 ms 26.03×
512 65.23 ms out-of-memory -

Table B.1: Average time is milliseconds for a forward pass of PMN using the compatibility function
(with ϕ) or not using it (without ϕ) on a V100 GPU.

B.2 Compatibility function

Our proposed PMN model uses a compatibility function ϕ to choose which primitive to match

to a human stroke. In theory, the model can also be trained without ϕ, where the loss functions

is applied to each transformed primitive independently, regardless of how well a primitive fits a

human stroke. At inference time, without ϕ the distance transform needs to be calculated for each

transformed primitive to determine which one best fits the human stroke.

Using ϕ brings two main advantages. The first is reducing the inference time, without requiring

the computation of the distance transform, and the second is providing a better definition of the

training loss. Firstly, at inference time, we do not require the distance transform to be computed

which is the most computationally expensive operation in our pipeline. To quantify this speed-up

obtained by using ϕ, we measured the time a forward pass takes on a V100 GPU (in milliseconds)

with and without ϕ in Table B.1. We see a speed-up of an order of magnitude at small batch sizes

of 32 to up to 26 times faster inference time at a batch size of 256. Using a batch size of 512 is not

possible without ϕ as the 32GB of memory of the V100 is not sufficient to calculate all required

distance transforms. On the other hand, we can use a batch size of up to 16384 when using ϕ

(tested at powers of two).

Secondly, without ϕ, the loss cannot reach zero, due to the distance transform between target

strokes and their most different primitives (e.g. a circle-like human stroke vs the "line" primitive).

With ϕ instead, the loss can become close to zero since only the most compatible primitives will be

used to compute the loss. While we found no clear difference between the two strategies in terms

of overall performance on downstream tasks, with ϕ the training loss becomes more expressive

when comparing varying configurations and it avoids eventual loss spikes caused by matching

primitives to strokes of very different shape.

B.3 Affine Transformation

The affine transformation applied on primitives to reconstruct human strokes differs when comput-

ing the loss and when recreating a whole sketch. During training, human strokes and primitives

are normalized to the range [-1, 1] while retaining the their aspect ratio by subtracting the mean of

its points µ and then dividing by the size of the longest side w. The function h(zhp , z
h
s ) predicts the

transformation T p
s to align p with s on this normalized scale. When reconstructing full sketches,
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Transformation
Budget

10% 20% 30%

rotate 44.05 64.35 73.12
scale 57.39 69.59 73.92
shear 57.38 74.52 80.93
scale, rotate 64.75 80.08 85.46
shear, rotate 64.69 81.74 87.86
shear, scale 65.99 82.12 87.69
shear, scale, rotate 67.11 83.73 88.86
rotate, scale, rotate 67.08 83.69 89.15

Table B.2: Classification accuracy on Quickdraw at budgets of 10%, 20% and 30% for different
types of transformations learned by h.

primitives are first transformed by T p
s followed by denormalizing based on the mean and size of

the human stroke to obtain the transformed primitive pT p
s ∗ ws + µs. In practice, we combine

the scaling factor ws and the translations µs into the transformations matrix T p
s before applying it

to p as it also assures that we always use at most six floating point values (maximum number of

parameters of a 2D transformation matrix) for our fixed budget communication messages.

The affine transformation predicted by h can be defined in several different ways. We do

not allow arbitrary affine transformations in order to retain similarity with the original shape.

For instance, if the scaling factors are not controlled, any shape can be collapsed into a line by

applying a small factor on one of the axis. Therefore, we restrict the scaling transformation to

be a proportional scale where one axis is scaled by a value between 0.05 and 1 while the other

is fixed (at 1). Since scaling alone does not provide enough flexibility to fit primitives to strokes,

we experiment with combining scaling with rotation and shear transformations. As reported in

Table B.2, the composite transformation of rotate-scale-rotate works best and is chosen for all of our

experiments. Notably, these transformations are applied in order, but except for rotate-scale-rotate,

changing the order of the transformations, does not have a significant impact on the performance.

B.4 Additional Quickdraw Results

All budget levels. Figure B.1 shows the performance of all evaluated methods at different budget

levels between 0% and 100%. It illustrates the difference between selection-based and shape-

based methods. While selection-based methods steadily increase in classification accuracy as the

budget increases, shape-based methods have a more steep increase in the beginning and flatten off

afterwards, making them favorable in low-budget regimes. As PMN performs lossy compression

of the sketches, it requires at most a budget of 70% to abstract the whole sketch. The intersection

of PMN with GDSA is at around 55% budget.

Quickdraw-345. In the main paper, we follow [Muh+18] and we use Quickdraw with 9 classes.

Here, we also train and evaluate our PMN model and the compared methods on the Quickdraw

dataset with 345 classes. Table B.3 shows the results. The trend is consistent with Quickdraw-9,
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Figure B.1: Classification accuracy on Quickdraw at varying budgets between 0% and 100%
evaluated with a classifier trained on the original human-drawn sketches.

with PMN+GDSA performing the best, and shape-based abstraction outperforming selection-based

strategies at low budgets.

Abstraction method Budget (%)
Type Name 10 20 30 100

Selection
DSA [Muh+18] 1.18 2.78 7.22 70.12

GDSA [Muh+19] 1.39 3.45 9.04

Shape
SW [Xia+15] 5.56 13.51 18.95 23.17

PMN 11.45 25.50 33.33 38.55

Selection
+Shape

SW+GDSA 5.92 14.82 20.12 23.17
PMN+GDSA 13.43 27.80 34.87 38.55

Table B.3: Classification accuracy on the Quickdraw345 dataset at budgets of 10%, 20% and 30%
evaluated with a classifier trained on the original human-drawn sketches.

B.5 Additional FG-SBIR Results

In the main paper we report the results of sketch-based image retrieval on top-10 accuracy, follow-

ing previous works [Muh+18]. For completeness, Table B.4 shows the results for top-1 retrieval

accuracy. With this metric, we observe the same trend in all datasets, with PMN+GDSA achieving

the best results at low budgets.

Additionally, apart from the Selection-based and Shape-based abstraction methods discussed in

the main paper, On-the-Fly Fine-Grained Sketch Based Image Retrieval (OTF) [Bhu+20] proposes

a Finetuning-based approach that can be employed specifically for the FG-SBIR. Such a method

does not learn to abstract, but finetunes the embedding network with partial sketches, optimizing

the FG-SBIR ranking to better retrieve their respective images.
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Results for OTF are added to Table B.4. Since shape-based abstraction is orthogonal to fine-

tuning, we also evaluate the combination of SW/PMN with OTF for FG-SBIR. OTF generally

performs well when there is a shift in the data distribution fed through the sketch embedding net-

work. For instance, at 10% budget on ShoeV2 and ChairV2, OTF outperforms GDSA as finetuning

the embedding works better than selecting more relevant parts of the sketch. This gap closes as

we increase the budget, and at 30% GDSA already performs better than OTF on both datasets.

Similarly, OTF boosts SW more than our PMN when combined, as the sketches reproduced by SW

less accurately resemble the original sketches while the reconstructions of our model stay closer

to the original data distribution.

ShoeV2, Budget (%) ChairV2, Budget (%)

Type Name 10 20 30 100 10 20 30 100

Finetuning OTF [Bhu+20] 2.40 3.45 5.11 36.49 3.38 5.56 8.98 53.56

Selection
DSA[Muh+18] 1.35 2.40 4.05 36.49 2.48 6.19 10.22 53.56
GDSA [Muh+19] 1.86 3.45 6.46 2.79 7.43 12.07

Shape
SW [Xia+15] 3.30 6.16 7.96 9.11 8.98 14.24 16.72 17.85
PMN 6.76 16.07 18.17 20.04 16.41 31.89 35.91 37.53

Shape SW+OTF 4.80 8.41 10.66 11.92 9.91 17.03 18.89 20.31
+Finetuning PMN+OTF 9.16 17.17 18.92 20.77 16.72 31.89 35.15 38.04
Shape SW+GDSA 4.20 7.21 8.56 9.11 9.29 14.86 17.03 17.85
+Selection PMN+GDSA 9.61 17.37 19.22 20.0 20.74 33.75 36.84 37.53

Table B.4: Top-1 accuracy for FG-SBIR on ShoeV2 and ChairV2.
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