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Abstract

We performed the simulation studies presented in this thesis with the goal of better
understanding the behavior of a thin film growing on a substrate. We used the Kinetic
Monte Carlo (KMC) method to simulate cubic particles on a cubic lattice using two
different approaches: One in which neighboring particles interact isotropically and one
where nearest-neighbor interactions were anisotropic.

The KMC method is widely used to study the temporal evolution of non-equilibrium
systems. Here we use it first to study the growth of a film when cubic particles are
deposited onto a substrate comprised of a different material. Specifically, we compare
two models: The well-known solid-on-solid (SOS) model, in which no cavities are allowed
to form inside the film, and a newly developed colloidal growth model (CGM). In the
CGM, particles are allowed to desorb from the film into the gas phase, and possibly
re-adsorb at a different site, leading to the formation of cavities and overhangs.

We find that in the intermediate regime (O(10) monolayers), the systems will show one
of several growth modes, depending sensitively on the ratios of inter-particle interaction
to substrate interaction and diffusion speed to deposition rate. Specifically, the film can
initially either wet the substrate or desorb from it. The point of the transition between
these two modes is shifted with respect to the equilibrium value, hence we call this a
dynamic layering transition. At longer times, the roughness of an initially dewetting film
will decrease. The main difference between the models is whether the film will become
completely smooth or retain a constant roughness. For 𝑡 → ∞, each film will eventually
roughen, independent of the initial growth mode. Finally, we tie these findings together
into a global phase diagram denoting the possible growth modes and the conditions for
their occurrences. Comparison to experimental data shows a good qualitative agreement
in the general growth modes.

The main goal of such simulations is the comparison to experimental results. Since
the previous model is extremely simplified (isotropic particles and interactions), it is not
suitable to explain many phenomena occurring during the growth of films of anisotropic
organic molecules, e.g. ordering of particles. Thus we extend the model by implementing
anisotropic interactions between particles. Each particle now had an internal orientation,
and the interaction strength now depended on the orientations and relative positions of
neighboring particles. These interactions can be implemented to either model disc-shaped
molecules (e.g. benzene) or rod-shaped molecules (e.g. pentacene).

Here we find two new ordering transitions upon increasing [, the strength of the
anisotropy, with the film first going from an unordered phase to one in which two orien-
tations dominate, and finally to one in which the third species starts dominating. The
point of the first transition is close to the equilibrium value, while the second transition
is a non-equilibrium one. At low values of [, before the second transition, the ordering
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behavior of the film is independent of the film growth mode, which depends on the en-
ergetic and kinetic parameters. For strong values of [, the change in ordering coincides
with a very strong roughening if the film, which is due to the occurrence of long needles
perpendicular to the substrate. We again tie these results together in a dynamic phase
diagram, and comparison to experimental results now shows good agreement concerning
the ordering behavior of many real-world molecules.

Finally, we explore the behavior of mixed films consisting of particles of two species: An
anisotropically and an isotropically interacting one. These simulations were performed
specifically to model the behavior of a 1:1 mixed film of CuPC and C60.
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Zusammenfassung

Die in dieser Dissertation vorgestellten Simulationsstudien wurden durchgeführt, um
das Verhalten wachsender dünner Filme auf einem Substrat zu untersuchen. Mithilfe
kinetischer Monte-Carlo-Simulationen (KMC) wurden würfelförmige Teilchen auf einem
kubischen Gitter modelliert, jeweils mit isotropen und anisotropen Wechselwirkungen.

KMC-Simulationen sind ein häufig genutztes Werkzeug zur Untersuchung des dynamis-
chen Verhaltens von Nichtgleichgewichtssystemen. In diesen Simulationen nutzten wir
sie, um zu untersuchen, wie ein Dünnfilm wächst, wenn würfelförmige Teilchen auf ein
Substrat bestehend aus einem anderen Material aufgedampft werden. Wir konzentrieren
uns hier auf zwei Modelle: Das klassische, vielgenutzte solid-on-solid -Modell (SOS), in
dem weder Überhänge noch Löcher im Film erlaubt sind, und ein neuartiges Modell, das
colloidal growth model (CGM). Im CGM Können Teilchen vom Film desorbieren, in der
Gasphase diffundieren und eventuell an anderer Stelle auf dem Film wieder adsorbieren.
Dies führt zur Entstehung von überhängen und Löchern im Film.

Bei der Untersuchung mitteldicker Filme (O(10) Monolagen) zeigt sich, dass solche
Filme in verschiedenen Wachstumsmodi wachsen können, abhängig von den energetis-
chen und kinetischen Parametern. Zum Einen kann der wachsende Filme anfänglich
entweder das Substrat benetzen oder Inseln auf diesem bilden. Der Punkt, an dem der
Übergang zwischen diesen beiden Wachstumsmodi stattfindet, ist verglichen mit dem
Gleichgewichtswert verschoben. Aus diesem Grund nennen wir dies eine dynamic layer-
ing transition. Für längere Depositionszeiten wird die Rauigkeit eines rau wachsenden
Films zunähst wieder sinken. Der Hauptunterschied zwischen den beiden Modellen ist
hier, ob der Film komplett glatt wird oder zu einem kostanten Rauigkeitswert geht.
Wenn die Zeit 𝑡 → ∞, wird jeder wachsende Film aufrauen, unabhängig von der ur-
sprünglichen Wachstumsart. Die hier aufgezählten Befunde vereinigen wir schließlich in
einem globalen Phasendiagramm der unterschiedlichen Wachstumsmodi und zeigen auf,
unter welchen Bedingungen diese auftreten. Im Vergleich mit experimentellen Befunden
zeigen sich gute qualitative Übereinstimmungen bei den möglichen Wachstumsmodi.

Das Ziel solcher Wachstumssimulationen ist üblicherweise der Vergleich mit experi-
mentellen Befunden. Da das bisher verwendete Modell sehr vereinfacht ist (isotrope
Teilchen mit isotropen Wechselwirkungen), ist es nicht geeignet, um komplexere Phänomene,
die während des Wachstums eines Films von anisotropen organischen Teilchen auftreten,
zu beschreiben. Zu solchen zählt z.B. langreichweitige Ordnung der Teilchen. Aus diesem
Grund erweiterten wir das Modell um anisotrope Wechselwirkungen zwischen Teilchen.
Jedes Teilchen hatte nun einen internen Orientierungsvektor, und die Stärke der Wechsel-
wirkung zwischen zwei Teilchen hing von ihren Orientierungen und relativen Positionen
ab. Die Anisotropie wurde so gewählt, dass entweder scheibenförmige (z.B. Benzen) oder
stäbchenförmige (z.B. Pentacen) Moleküle abgebildet werden konnten.
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In diesen Simulationen fanden wir zwei neue Ordnungsübergänge, welche auftreten,
wenn [, die Stärke der Anisotropie, erhöht wird. Zunächst ist der Film ungeordnet, dann
dominieren zwei Orientierungen und schließlich dominiert die dritte Orientierung. Der
erste Übergang ist nah am Gleichgewichtsübergang, während der zweite ein deutlicher
Nicht-Gleichgewichtsübergang ist. Bei niedrigen Werten von [, vor dem zweiten Über-
gang, ist das Ordnungsverhalten der Teilchen unabhängig vom Wachstumsmodus. Für
starke [ geht jedoch die Änderung der Ordnung mit einem starken Anstieg der Rauigkeit
einher. Dies geschieht aufgrund der Bildung langer Nadeln senkrecht zum Substrat. Ab-
schließend vereinigen wir die Ergebnisse in einem dynamischen Phasendiagramm und
zeigen, dass diese sehr gut zu den experimentellen Befunden passen.

Abschließend untersuchen wir das Verhalten gemischter Filme, bestehend aus einer
anisotrop und einer isotrop wechselwirkenden Spezies. Diese Simulationen wurden speziell
durchgeführt, um einen 1:1 gemischten Film bestehend aus CuPC und C60 zu model-
lieren.
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Chapter 1.

Introduction

1.1. Motivation

Film growth occurs when particles are deposited on top of a substrate, forming a con-
tinuous surface. The exact conditions and materials used in such experiments can vary
wildly, hence the range of applications of such grown films is very large, from solar cells
to coatings and electronic circuits. Specifically, we will be interested in thin films con-
sisting of organic molecules. Such organic thin films have been a topic of great interest
in the last decades. Due to the semiconducting nature of many organic molecules, they
are suitable for a wide array of applications, ranging from organic solar cells to organic
LEDs[1]. While such devices are inferior to their inorganic counterparts in terms of e.g.
efficiency and stability, they are cheaper to produce and can be manufactured to be e.g.
semi-transparent or flexible[2, 3].

The properties of such grown films (e.g. the solar cell efficiency or conductivity) depend
sensitively on the morphology and composition, hence the ability to precisely control
these is a research area of significant interest. The structural properties of the film,
in turn, depend on the growth conditions (substrate temperature, deposition rate) and
materials (of both film and substrate) employed.[4]

Predicting the final morphology of a growing film for a certain set of growth conditions
is no easy task. Such films are many-particle systems, typically consisting of millions of
particles, and are grown under non-equilibrium conditions. Analytical descriptions of
processes during film growth so far have been mainly limited to either the use of rate
equations to describe the sub-monolayer regime (described in more detail further down)
or to scaling arguments for sub-monolayers and very thick films. Scaling arguments are
used to describe how observables, e.g. the height-height correlation function or island
densities, are proportional to powers of other variables, e.g. temperature or deposition
speed. While these are invaluable tools for the study of short- and long-term behavior,
their use in predicting the behavior of films for intermediate thicknesses is limited. There
are some models using rate equations to study thin films in this regime[5], however, these
can be only applied to specific systems (in this case, homoepitaxial growth) and do not
yield any structural information.

Apart from these analytical studies, there is of course a large corpus of experimental
and simulation work. From previous experiments, one can then empirically predict how
a film will grow under certain conditions. In experiments, however, it is difficult to
(1) systematically study the influence of microscopic parameters and (2) investigate the

1



Chapter 1. Introduction

in-situ evolution of certain observables. In simulations, these problems are relatively
easy to solve. However, when developing a simulation model for a real-world system,
simplifications need to be made. This might mean e.g. using unrealistic kinetic conditions
or the omitting of critically important system properties, leading to behavior completely
different from that observed in the real system. If the necessary care is exercised, however,
these simplified models can yield crucial insights into the growth process.

The focus in such simulation studies has again been mainly on sub-monolayer or on
long-term behavior, not on the intermediate growth regime. This regime is however of
critical importance for the final morphology, since during this time particles will form
clusters (or domains in binary systems), the size and shape of which then influences the
behavior of particles arriving afterwards. In this work, we present a generic model for
deposition of particles on a substrate of a different material. This model is then compared
to experimental results for film growth of organic semiconductors. We will focus mostly
on the intermediate regime, trying to understand the processes at play during structure
formation and categorize the phenomena.

1.2. Overview of film growth simulation models

As already indicated, it is no easy task to formulate a microscopic theory for films
larger than the sub-monolayer. It is therefore no surprise that simulation studies of
thin film growth have been an invaluable tool in furthering the understanding of the
general principles of film growth[6]. In this section, we try to give an overview of the
evolution of film growth models. Note that this section is by no means exhaustive.

The simplest realization a film growth model (apart from the sub-monolayer models)
is one in which the simulation box is divided into discrete lattice cells forming a simple
cubic lattice. Films are then grown by assuming the lowest layer to be filled, forming a
substrate, and successively inserting new particles from the top into the simulation box
and letting them diffuse down. These are usually called ballistic deposition models[7].

Ballistic deposition models can (as far as the author is aware) be traced back to the
works of Vold[8, 9] in the 1950s. In the simplest realization of these models, new particles
are inserted at the top of the box and diffuse down until they either reach the substrate
or land on an already settled particle. Since in such models the individual columns are
independent of each other, the roughness 𝜎 of the film will grow as 𝜎 ∝ Θ1/2[10], where
Θ is the number of deposited monolayers and 𝜎 is defined as

𝜎 =

√√√
1/𝑁

𝑁∑︁
𝑖=1

(ℎ𝑖 − ℎ̄)2 (1.1)

with 𝑁 being the number of lattice sites, ℎ𝑖 the film height at lattice site 𝑖 and ℎ̄ the
average height of the film. Films produced in this way are compact, i.e. each particle
is supported by eather another particle or the substrate. Such a model is called a solid-
on-solid model. A slightly more involved (off-lattice) model is the one used by Vold,
where downward diffusing particles come to rest as soon as they come into contact with
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1.2. Overview of film growth simulation models

any other particle, not only if they land on top of one. In contrast to the solid-on-
solid models, it is here possible for cavities to occur inside the film. This is called a
ballistic aggregation model ; the most famous of these is probably the Eden model[11].
As a variation of these models, it is also possible for particles to not diffuse downward
perpendicularly to the substrate, but at an angle \[12], leading to shadowing of columns
by other columns blocking the flux.

All of these models have in common that particles will remain at their initial position
after coming to rest. In real films, however, particles will usually diffuse around after
deposition, either due to the kinetic energy of the downwards motion or general thermal
diffusion. Thus it is necessary to extend these models. An early extension was the
Wolf-Villain model[13, 14], where particles will diffuse for some distance immediately
after deposition before becoming immobilized. This is a useful approximation for the
processes occurring e.g. during molecular beam epitaxy of metallic thin films, where
particles arrive at the substrate with a considerable kinetic energy. Similarly, in models
with different lattice geometries (e.g. fcc), a particle would need multiple particles in the
layer below to fully support it. Consequently, in such models an often invoked mechanism
is downward funneling[15], where a particle which is not fully supported after deposition
will diffuse downward until it reaches a site where all supporting sites are occupied. This
leads to films growing in a much smoother fashion than those grown under a simple
cubic geometry. As an aside, this model has also been modified such that downward
diffusing particles can also be trapped at the sides of protrusions, leading to overhangs
and eventually cavities inside the film, making this more akin to a ballistic aggregation
model[16].

The next logical extension of film growth models is to incorporate particle diffusion
not only immediately after deposition, but as long as a particle is not buried by other
particles. This is realized by setting an insertion probability 𝑝, and during each time step
either inserting a new particle with probability 𝑝 or moving an existing particle with a
probability 1 − 𝑝. The first realization of this was the Clarke-Vvedensky model[17, 18].
The probabilities here depend on the ratio of the insertion flux 𝐹 and the diffusion rate
𝐷 as defined in Eq. 3.11.

In all the models presented so far, there has been no distinction between the interaction
of particles with the substrate and the inter-particle interaction, i.e. we have assumed
films to grow on a substrate of the same material. For the investigation of very long
time scales, the exact nature of the substrate is irrelevant, since as soon as the substrate
is completely covered, the film will effectively grow like it would on a substrate of the
same material (due to the usual short-ranged nature of the substrate-interaction)[19, 20].
However, for the short to medium term morphological evolution of the thin film, the exact
nature of the substrate plays a crucial role. For the growth of a thin film on a substrate
of a different material, work has been done investigating elastic strain and subsequent
stress release[21, 22, 23] and for strain-free systems by modeling specific materials, e.g.
C60 on Pentacene[24]. These approaches can be used to e.g. determine the energetic
parameters of a system by fitting the simulation data to experimental results.

The simple models presented in the previous paragraphs are of course very abstract and
thus cannot capture many of the effects seen in thin film growth. Due to this, they have

3



Chapter 1. Introduction

been extended further in order to describe investigate certain phenomena found in film
growth, by e.g. introducing patterned substrates[25, 26, 27, 28, 29, 30, 31], simulating
co-deposition of two particle species[32], introducing anisotropic interactions[33, 34] or
anisotropically shaped particles[35].

1.3. Experimental methods and materials

On the other hand, of course, the measure against which simulation results are judged
are results obtained in film growth experiments. In such experiments, a plethora of de-
position methods and materials are used. Deposition methods include e.g. various vapor
evaporation methods, sputtering, plasma processes, and chemical vapor deposition.[36]

In particle deposition film growth[37], the substrate is usually placed in a liquid phase
in which colloidal particles (e.g. proteins or polymers) are suspended. These particles
then diffuse downwards due to e.g. attractive energies between substrate and particles or
hydrodynamic flow. This leads initially to the aggregation of particles on the substrate
and subsequently the growth of a thick, usually porous film. This deposition method is
the inspiration for the colloidal growth model, which we will describe later in this work.

Growth by evaporation, on the other hand, is usually conducted either in a vacuum
chamber or under normal pressure. The main methods on which we focus here are
molecular beam epitaxy (MBE) and chemical vapor deposition (CVD). In CVD, material
of one species is heated, particles go into the gas phase, diffuse towards the substrate and
react chemically with the substrate material. CVD is a versatile deposition procedure
used for many applications, e.g. the production of solid state circuits.[36]

MBE, on the other hand, is a purely physical deposition process, used to grow single-
crystal films under high vacuum conditions. A so-called Knudsen effusion cell is used
to heat the material. Particles then sublimate and diffuse in a directed beam towards
the substrate. Here, the distinction between organic and inorganic must be pointed
out: While for inorganic materials this method is called MBE, for organic molecules one
usually uses the term organic molecular beam deposition (OMBD), since here epitaxy1

does not necessarily play a role[38].
The distinction between organic and inorganic films is crucial. Inorganic thin films are

usually grown by the deposition of atoms, which are more or less isotropic and very small,
with a strong interaction between particles. Inorganic thin films are rigid and stable at
high temperatures. Organic thin films, on the other hand are grown by deposition of
larger molecules, e.g. pentacene or C60. These molecules are often anisotropic, which
means that molecular ordering has to be considered, and interact relatively weakly.

The nature of the substrate on which the film is grown will also significantly influence
its final morphology. The main distinction here must be made between amorphous and
crystalline substrates. Crystalline substrates have a crystal structure, the exact symmetry
of which depends on how the material was cut. A structured substrate can lead to strained
growth of crystalline thin films if the lattice constants or lattice symmetry are not exactly

1The term epitaxy is used to describe the growth of crystalline films on top of crystalline substrates;
organic films may, however, also grow amorphously

4



1.4. Structure

matched, eventually leading to the film breaking up. At short times, the structure of
the surface may lead to adatoms forming needle-shaped clusters aloing the structure
of the substrate[39, 40]. Amorphous substrates have no lattice structure. There, the
film growth mode is mainly determined by interaction energies and the exact growth
conditions.

As can already be seen, a wide variety of parameters plays a role during thin film
growth. These can typically not be varied easily during experiments, which is where
simulations come into play. Simulation models are typically simplified, focusing only on
some aspects of the film growth process. While this allows us to more precisely investigate
the effects of certain parameters, special care has to be exercised in the interpretation of
the results from such studies.

1.4. Structure

This thesis is structured in the following way: In the first few chapters, we summarize the
theoretical basics necessary to understand the context and implications of the results.
The following chapters then contain descriptions of simulation results which we have
already published in scientific journals, as well as some results which were not fleshed out
enough to warrant publication. Finally, we present possible future avenues for research.
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Chapter 2.

Theory of thin film growth

Thin film growth occurs when particles (usually atoms or small molecules) are deposited
onto a substrate comprised of either the same or a different material. The structure of
the resulting film (e.g. roughness, local composition) crucially depends on the employed
materials, kinetic and energetic parameters and shapes of the particles.

Figure 2.1.: (a) Schematic particle moves
during the film growth process.
(b) Ehrlich-Schwoebel barrier
for interlayer diffusion. Source:
Fig. 1 from Ref. 41

Particles are deposited onto the sub-
strate and subsequently diffuse around un-
til they are eventually buried. In Fig.
2.1(a) we show a schematic detailing a
(non-exhaustive) variety of possible diffu-
sion processes, including e.g. nucleation
of single particles into islands, dissocia-
tion of islands, and re-evaporation of par-
ticles into the gas phase. Particles can also
“hop up” or “hop down” between differ-
ent layers, as shown for the yellow par-
ticle in Fig. 2.1(b). Such inter-layer
hopping processes are usually energeti-
cally less favorable than diffusion within a
layer, due to the loss of nearest-neighbors
when detaching from the original layer.
This energetic barrier is called the Ehrlich-
Schwoebel barrier[42, 43], denoted in liter-
ature as Δ𝐸ES, 𝐸ES, or 𝐸s.

The Ehrlich-Schwoebel barrier and the
strengths of interactions between two par-
ticles and between a particle and the sub-
strate are the relevant energetic parame-
ters in this film growth system, while the
deposition rate 𝐹 and the rates of differ-
ent kinds of diffusion (most notably the
surface diffusion rate 𝐷) are the main ki-

netic parameters. The value of 𝐷 depends on the temperature as 𝐷 = 𝐷0 exp(−𝐸𝐷/𝑘𝐵𝑇),
where 𝐸𝐷 is the diffusion barrier, 𝐷0 is the attempt frequency, 𝑘B the Boltzmann con-
stant, and 𝑇 the temperature. The value of 𝐷0 can be obtained by e.g. transition state
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Chapter 2. Theory of thin film growth

theory[44] or density functional theory[45]. Often, one just uses the value introduced by
Clarke and Vvedensky[46]. , 𝐷0 =

2𝑘𝐵𝑇
ℎ

, where ℎ is the Planck constant. Another note
has to be made regarding the substrate: In this work, we will be mainly concerned with
perfectly smooth and homogeneous substrates. While substrates in experiments may
contain e.g. impurities or steps[10] which significantly influence the diffusion behavior of
deposited particles, our aim is to first understand the general principles of film growth.

The growth of a thin film can be roughly divided into three stages:

1. Sub-monolayer regime: During the initial stages of film growth, at coverages ≪
1 monolayer, the formation of the first islands takes place, the shapes and sizes of
which are determined by the growth parameters and in turn influence the structure
of the film upon continued deposition.

2. Intermediate regime: After the initial islands have formed and a few monolayers
of material have been deposited, the structure of the thick film starts to emerge. It
may become very smooth or rough and show different kinds of ordering behavior.

3. Long-term regime: Upon continued deposition of particles, the roughness be-
havior of film will eventually increase monotonically as a power of the coverage.
This scaling behavior then falls into one of several universality classes.

We will investigate each of these three regimes in more detail in the following sections.

2.1. Sub-monolayer growth

During the initial stages of film growth, single particles will diffuse around on the sub-
strate, bind to other particles to form islands and possible break those bonds again. To
understand the dynamics of these nucleation processes, one can take inspiration from
classical nucleation theory (CNT), which is a very general, albeit simplistic[47], model
for the formation of clusters[48].

The central finding of CNT is that for a cluster to be stable and continue growing, it has
to reach a certain critical size, otherwise it is energetically more favorable to decompose
the cluster. Thus we similarly assume that in thin film growth, once a certain number
of particles has formed an island, this island will not dissociate anymore and instead
continue growing. It is usual to denote as 𝑖 or 𝑖∗ the size of the largest island which is
not stable.

Following Refs. [10, 41, 49] (see these works for more details), the dynamics of island
formation can be described using rate equations. In these, we describe the concentrations
𝑛𝑠 of clusters consisting of 𝑠 atoms (𝑛2 is the dimer density etc.). Assuming now that
islands of size 𝑠 > 1 are immobile, growth and shrinkage of a island of size 𝑠 can only
occur by attachment/detachment of a monomer to/from the island. The rate at which
the concentration 𝑛𝑠 changes is then

𝑑𝑛𝑠

𝑑𝑡
= Γ𝑠 − Γ𝑠+1 (2.1)
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2.1. Sub-monolayer growth

where Γ𝑠 is the net formation rate for a cluster of size 𝑠. These rates can be written as

Γ𝑠 = 𝜎𝑠−1𝐷𝑛𝑛𝑠−1 − 𝐾𝑠𝑛𝑠 (2.2)

where 𝐷 is the monomer diffusion rate, 𝑛 the monomer density, 𝜎𝑠 the capture number
for an island of size 𝑠, and 𝐾𝑠 the rate of detachment of a monomer from an island of size
𝑠. The capture number is a dimensionless quantity and denotes the ability of an island
to capture monomers. The net formation rate for an island of size 𝑠 is thus simply the
rate at which monomers attach to islands of size 𝑠−1, minus the rate at which monomers
detach from islands of size 𝑠.

Monomers arrive on the substrate with a rate 𝐹 and attach to and detach from existing
islands. The change in monomer density 𝑛 is then

𝑑𝑛

𝑑𝑡
= 𝐹 − 2Γ2 −

∑︁
𝑠>2

Γ𝑠

= 𝐹 − 2𝐷𝜎1𝑛2 − 𝐷𝑛
∞∑︁
𝑠=2

𝜎𝑠𝑛𝑠 + 2𝐾2𝑛2 +
∞∑︁
𝑠=3

𝐾𝑠𝑛𝑠 (2.3)

Similarly, from Eqs. 2.1 and 2.2 it follows that the change in density of islands of size
𝑠 can be written as:

𝑑𝑛𝑠

𝑑𝑡
= 𝐷𝜎𝑠−1𝑛𝑛𝑠−1 − 𝐷𝜎𝑠𝑛𝑛𝑠 + 𝐾𝑠+1𝑛𝑠+1 − 𝐾𝑠𝑛𝑠 (2.4)

These equations are impossible to solve without some simplifying assumptions. Fore-
most, as indicated earlier, we will now assume that any island of size 𝑠 > 𝑖 is stable,
i.e. 𝐾𝑠 = 0 for 𝑠 > 𝑖. We are then only interested in the total number of stable islands,
𝑁 =

∑∞
𝑠=𝑖+1 𝑛𝑠. Additionally, one usually replaces 𝜎𝑠 for 𝑠 > 𝑖 by an averaged

�̄� =
1

𝑁

∞∑︁
𝑠=𝑖+1

𝜎𝑠𝑛𝑠 (2.5)

Assuming now that the number of unstable islands is quasi-stationary (islands of size
𝑠 ≤ 𝑖 decompose quasi immediately, i.e. Γ𝑠 = 0) yields from Eq. 2.2:

𝐾𝑠𝑛𝑠 ≈ 𝜎𝑠−1𝐷𝑛𝑛𝑠−1 for s ≤ i (2.6)

which yields
𝑛𝑠 ∝ 𝑛𝑠 for s ≤ i (2.7)

due to the recursive nature of this equation. To solve Eq. 2.6 for 𝑛𝑠, the process of
monomer detachment has to be considered in more detail. For a monomer to detach
from an island of size 𝑠, it has to overcome both the binding energy to the island and a
diffusion barrier. The binding energy is 𝐸𝑠 − 𝐸𝑠−1, where 𝐸𝑠 > 0 is the energy necessary
to decompose a cluster of size 𝑠 into monomers (hence 𝐸1 = 0). We can then write 𝐾𝑠 as

𝐾𝑠 = `𝑠𝐷 exp

[
−(𝐸𝑠 − 𝐸𝑠−1)

𝑘B𝑇

]
(2.8)
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Chapter 2. Theory of thin film growth

with 𝐷 = 𝐷0 exp[−𝐸𝐷/𝑘B𝑇] and `𝑠 = const. Inserting this into Eq. 2.6 yields:

𝑛𝑠 ≈
𝜎𝑠−1𝐷𝑛𝑛𝑠−1

𝐾𝑠

=
𝜎𝑠−1
`𝑠

𝑛
𝑛𝑠−1

exp[ −(𝐸𝑠−𝐸𝑠−1 )
𝑘B𝑇

]
(2.9)

all energies up to 𝐸𝑠−1 again cancel out due to the recursive nature of the equation,
leading to the Walton relations[50],

𝑛𝑠 ≈ 𝑏𝑠 exp[𝐸𝑠/𝑘B𝑇]𝑛𝑠 for s ≤ i (2.10)

where 𝑏𝑠 =
∏𝑠−1

𝑖=1 𝜎𝑖/`𝑖+1.
Using the considerations so far, the change in the monomer density is then:

𝑑𝑛

𝑑𝑡
= 𝐹 − (1 + 𝛿𝑖,1)𝜎𝑖𝐷𝑛𝑛𝑖 − �̄�𝐷𝑛𝑁 (2.11)

New monomers arrive with a rate 𝐹 and attach to islands of size 𝑠 ≥ 𝑖. For 𝑠 < 𝑖,
attachment and detachment rates cancel out while for 𝑠 ≥ 𝑖 there is no detachment from
the resulting island. The change in the density of stable islands, 𝑁, follows then from
Eq. 2.4 as (𝐾𝑠 = 0 for 𝑠 > 𝑖):

𝑑𝑁

𝑑𝑡
=

∞∑︁
𝑠=𝑖+1

𝑑𝑛𝑠

𝑑𝑡
=

∞∑︁
𝑠=𝑖+1

𝐷𝜎𝑠−1𝑛𝑛𝑠−1 − 𝐷𝜎𝑠𝑛𝑛𝑠

= 𝐷𝜎𝑖𝑛𝑛𝑖 (2.12)

Assuming the ratio Γ ≡ 𝐷/𝐹 →∞, we can solve for 𝑁 via the scaling ansatz:

𝑛(Γ,Θ) ∝ Γ−Z 𝑛∞(Θ) (2.13)
𝑁 (Γ,Θ) ∝ Γ−𝜒𝑁∞(Θ) (2.14)

where 𝑛∞ and 𝑁∞ are the monomer and island densities in equilibrium, respectively,
𝜒, Z > 0 and Θ is the layer coverage. First, Eqs. 2.11 and 2.12 can be written to depend
on Θ and Γ via:

Θ = 𝐹𝑡

Γ =
𝐷

𝐹
𝑑

𝑑Θ
=

Γ

𝐷

𝑑

𝑑𝑡

Using the Walton relation from Eq. 2.10, this yields:

𝑑𝑛

𝑑Θ
= 1 − (1 + 𝛿𝑖,1)𝜎𝑖𝑏𝑖 exp[𝐸𝑖/𝑘B𝑇]Γ𝑛𝑖+1 − �̄�Γ𝑛𝑁 (2.15)

𝑑𝑁

𝑑Θ
= Γ𝜎𝑖𝑏𝑖 exp[𝐸𝑖/𝑘B𝑇]𝑛𝑖+1 (2.16)
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2.2. Film growth modes

Inserting the ansatz from Eqs. 2.13 and 2.14 then yields:

Γ−Z
𝑑𝑛∞
𝑑Θ
∝ 1 − (1 + 𝛿𝑖,1)𝜎𝑖𝑏𝑖 exp[𝐸𝑖/𝑘B𝑇]Γ1−(𝑖+1)Z 𝑛𝑖+1∞ − �̄�Γ1−Z −𝜒𝑛∞𝑁∞ (2.17)

Γ−𝜒
𝑑𝑁∞
𝑑Θ
∝ 𝜎𝑖𝑏𝑖 exp[𝐸𝑖/𝑘B𝑇]Γ1−(𝑖+1)Z 𝑛𝑖+1∞ (2.18)

Comparing the coefficients, we thus find that 𝜒 + Z = 1 and 𝜒 = (𝑖 + 1)Z − 1 = 𝑖
𝑖+2 . For

the last term in Eq. 2.17 to become 1 and from Eq. 2.18 it additionally follows that:

𝑛∞ =
1

�̄�𝑁∞
(2.19)

𝑑𝑁∞
𝑑Θ

= 𝜎𝑖𝑏𝑖 exp[𝐸𝑖/𝑘B𝑇]𝑛𝑖+1∞ (2.20)

Using 𝑁∞(0) = 0, Eqs. 2.19 and 2.20 lead to:

𝑁∞(Θ) =
(
(𝑖 + 2)𝜎𝑖𝑏𝑖 exp[𝐸𝑖/𝑘B𝑇]

�̄�𝑖+1 Θ

)1/(𝑖+2)
(2.21)

and consequently:

𝑁 (Γ,Θ) ∝
[
(𝑖 + 2)𝜎𝑖𝑏𝑖
�̄�𝑖+1 Θ

]1/(𝑖+2)
𝑒𝐸𝑖/(𝑖+2)𝑘𝐵𝑇Γ−𝑖/(𝑖+2) (2.22)

The most important result from this equation is that island densities scale with 𝑁 ∼
Θ1/(𝑖+2)Γ𝑖/(𝑖+2) , i.e. the island density at different coverages can be identical, provided
the ratio Γ is scaled accordingly.

As indicated earlier, one usually assumes 𝑖 = 1, i.e. that any island formed by two or
more particles is stable and will not decompose. This means consequently that 𝐸𝑖 = 0,
i.e. the island density does not depend on the strength of inter-particle interactions
𝜖 . However, this assumption only holds true if 𝜖 → ∞. Usually in simulations and
experiments, the strength of inter-particle interactions is finite, meaning that 𝑖 > 1. This
significantly complicates the form of the scaling relation. More importantly, this means
that the island density now also depends on the strength of inter-particle interactions,
since now also 𝐸𝑖 ≠ 0.

2.2. Film growth modes

As the film becomes thicker, its structure emerges. The film may be either flat or become
rough, by forming islands or by different mechanisms.

Before explaining the growth modes in more detail, it is necessary to introduce the
concept of epitaxy. Epitaxy in general means the oriented growth of one crystal on top of
another.[51] In principle one distinguishes between homo- and heteroepitaxy. Homoepi-
taxy indicates that film and substrate material are identical. Typically (but not always)
this leads to rather smooth films. Heteroepitaxy conversely indicates that the two
are comprised of different materials. This can lead to a wide variety of growth modes,
depending on the ratios of interaction strengths, lattice mismatch etc.
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Chapter 2. Theory of thin film growth

2.2.1. Equilibrium growth modes

Before investigating the structure of films in non-equilibrium, it is instructive to first
describe the usual equilibrium approach using thermodynamic growth modes. These
modes are divided into three categories[52]:

• Vollmer-Weber growth: Interactions between particles are stronger than those
between particles and substrate. The particles will form tall, weakly-wetting islands
on the substrate. This leads to very rough films.

• Frank-van-der-Merwe growth: The particles will form a perfectly smooth film;
new layers will only start growing if the layer below is completely filled.

• Stranski-Krastanov growth: A hybrid of the two other modes. The film will
initially grow in a layer-by-layer fashion, before eventually breaking up due to strain
and forming islands.

Typically, it is said that Vollmer-Weber (VW) and Stranski-Krastanov (SK) growth
occur during heteroepitaxy, while Frank-van-der-Merwe (FM) growth occurs during ho-
moepitaxy. The distinction between VW and FM (and also SK) growth is then made
using an equilibrium force balance argument.

γsg γsl

γlg

Θc

Figure 2.2.: Schematic representation of the force balance determining the contact angle
of a droplet on a substrate. The 𝛾 are the free energy costs of the interfaces
and Θ𝑐 the contact angle of the droplet

In Fig. 2.2 we show a liquid droplet on a substrate. 𝛾sg denotes the free energy cost of
the solid-gas interface, 𝛾lg that of the liquid-gas interface, and 𝛾sl that of the solid-liquid
interface. Θ𝑐 is the contact angle of the droplet. According to Young’s equation[53],
force equilibrium is achieved if

𝛾sg = 𝛾lg + 𝛾sl cosΘ𝑐 (2.23)

The thin films we are interested in are not liquid. However, since at relatively high
temperatures the film particles can freely re-arrange their positions, Young’s equation
can also be used to describe the wetting behavior of such films. Smooth and rough films
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can then be distinguished by their contact angles:

Frank-van-der-Merwe : Θ𝑐 = 0⇒ 𝛾sg = 𝛾lg + 𝛾sl
Vollmer-Weber : Θ𝑐 > 0⇒ 𝛾sg < 𝛾lg + 𝛾sl

i.e. for a film to form islands (Θ𝑐 > 0), the substrate-liquid interface must be highly
unfavorable. In the thin film growth scenario, this corresponds to film particles inter-
acting more strongly with each other than with the substrate, favoring compact clusters
over a flat, spread-out film. While this is a useful phenomenological description, we will
show in this work how the distinction becomes significantly more complicated in the
non-equilibrium scenario.

The intermediate case of Stranski-Krastanov growth occurs when the film material
differs from the substrate material, both film and substrate are crystalline, and the
lattice constants of film and substrate differ. In this case, it is initially favorable for the
film to grow flat, but due to the mismatch in lattice constants a strain builds up, which
eventually at a critical film thickness “tears apart” the film, leading to strong roughening
in higher layers.

2.2.2. Kinetic growth modes

As already mentioned, the previously introduced growth modes are highly idealized.
They should be viewed as limiting cases in the equilibrium scenario. Real-world film
growth, however, does not necessarily occur close to equilibrium. During the process of
deposition a plethora of diffusion processes can occur, all at different rates compared to
the deposition speed.

Here it is useful to distinguish between atomic and molecular thin films. Atomic
thin films usually consist of metal or semiconductor atoms, while molecular thin films
usually consist of organic molecules (e.g. pentacene or most famously C60). Metal and
semiconductor atoms are more or less isotropic and exhibit relatively strong interaction.
Organic molecules, on the other hand, are comparatively large, anisotropic, and interact
relatively weakly via van-der-Waals and possible electrostatic interactions.

Homoepitaxy

In non-equilibrium homoepitaxial growth, following Michely and Krug[10], one can schemat-
ically distinguish four idealized growth modes for atomic thin films. For these modes, it is
assumed that the substrate is not perfectly flat, but instead includes a certain amount of
steps. This is a reasonable inclusion for modeling experimental data, since the formation
of such steps is not trivial to avoid when preparing a substrate.

The growth modes are shown in Fig. 2.3:

• Step flow growth: Occurs at high temperatures. This leads to the formation of a
single island within each plane which attaches to existing steps but does not form
new steps. Due to this mechanism, the steps are merely moving within the plane.
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Figure 2.3.: Idealized growth modes in non-equilibrium homoepitaxial growth. These are
(a) Step flow growth, (b) layer-by-layer growth, (c) mound formation, and
(d) self-affine growth. Source: Fig. 4.1 from Ref. 10

• Layer-by-layer growth: Occurs at slightly lower temperatures. Multiple islands
will now form within each plane, coalescing as the plane is filled. Islands will only
start growing when the layer below is completely filled, leading to an oscillating
roughness evolution. This can, however, only occur if interlayer transport is not
inhibited

• Mound formation: Occurs when interlayer transport is inhibited. Particles can-
not hop down in order to fill the layers below, instead forming new islands on top.
This leads to the formation of very rough films

• Self-affine growth: At very low temperatures, particles cannot diffuse anymore
and are confined to their initial position. Films grown in this way are very rough,
showing a random and self-similar morphology.

While homoepitactical organic thin films will often exhibit more or less the same growth
modes as atomic thin films[54], the shape anisotropy can play a role in the evolution of the
morphology. Pentacene thin films can e.g. exhibit step flow growth, while the individual
layers can be rotated with respect to each other[55]

Heteroepitaxy

When films are grown heteroepitactically in non-equilibrium conditions, the number of
parameters influencing the manner in which the film grows increases further.

In atomic thin films, strain due to lattice mismatch plays an important role, leading
to very rough films with a wide variety of morphologies[56].
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Organic thin films will show an even wider variety of morphologies, depending on their
shape and the exact substrate. Disc-shaped molecules (like phthalocyanines, benzene or
perylene) will often form needles or stacks which on amorphous substrates (e.g. SiO2) will
grow in parallel to the substrate[57], while on ordered (metallic) substrates the needles
will grow perpendicular to the substrate[58, 59, 60]. Such needles can occur throughout
the whole film[61] or only within the first layer[62].

Rod-shaped molecules (e.g. pentacene or DIP) might grow standing up on the substrate[63,
64, 65, 66, 67] or lying down[63, 68].

As can already be seen from these examples, there is no easy classification for the
growth modes of organic thin films, due to the wide variety of shapes and substrate
interactions.

2.3. Asymptotic roughening

As the film becomes thicker, it will always eventually start to roughen. Deposition of
new particles is not perfectly uniform and instead shows random fluctuations. These
fluctuations then have to be smoothed out via surface diffusion of particles, which occurs
at finite speeds. The driving force behind this smoothing out is the gradient of the free
energy of the interface between film and gas phase (In the absence of deposition and for
𝑡 → ∞, the surface of the film will become smooth).[69] . Family and Vicsek found[70]
that the roughness evolution can be described by the finite-size scaling expression

𝜎(𝐿,Θ) ∼ Θ𝛽 𝑓 (𝐿/Θ1/𝑧) (2.24)

where 𝑓 (𝑥) is the scaling function

𝑓 (𝑥) ∼
{
𝑥𝛼 for 𝑥 ≪ 1

const. for 𝑥 ≫ 1
(2.25)

, 𝐿 is the lateral size of the system, Θ is the average film thickness in monolayers, 𝛼 and
𝑧 are the scaling exponents and 𝛽 = 𝛼/𝑧.

Depending on the exact values of the parameters 𝛼 and 𝑧, growth can then be divided
into one of several universality classes.

The roughening of the film surface can be described by a Langevin equation of the
form

𝜕ℎ

𝜕𝑡
= 𝐾 (∇ℎ,∇2ℎ, ...) + 𝛿𝐹 (®𝑟, 𝑡) (2.26)

where ℎ is the local height of the film, 𝐾 is a function of the derivatives of ℎ and 𝛿𝐹 is
the random noise of deposition. Depending on which powers of ∇ℎ are included and on
their respective power (pre-factors are irrelevant; this is known as power counting), the
Langevin equation then describes different universality classes for long-term roughening.
The most important universality classes[10] are shown in Tab. 2.1.

Most prominent here is the Kardar-Parisi-Zhang universality class[71], which is thought
to encompass many growth models, including the solid-on-solid (SOS) model[72].
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Class 𝛼 𝑧

Kardar-Parisi-Zhang ≈ 0.4 ≈ 1.6

Edwards-Wilkinson 0 2
conserved KPZ ≈ 2/3 ≈ 10/3
Mullins 1 4

Table 2.1.: Universality classes for the asymptotic evolution of film roughness on a two-
dimensional substrate

A special case of this roughening is when the local roughness, defined as the square
root of the height-height correlation function, scales with a value of 𝛼 different from
the one of the global roughness. This is then called anomalous roughening[73]. The
consequence of this is that in some cases, 𝛼 and 𝑧 may not be sufficient to describe the
universality class of the roughness, but an additional parameter 𝛼loc is needed.

2.4. Concluding remarks

From these sections it should be obvious that while the sub-monolayer and the long-term
regime have been studied in great detail and can be described by mathematical models,
no such model exists for the intermediate regime.

For the description of the intermediate regime, there exist merely qualitative descrip-
tions of growth modes and general parameter regions for their occurrences. The aim of
this work is to start filling this gap.

16



Chapter 3.

Monte Carlo methods

3.1. Lattice gas

Thin films consist of many individual particles, often on the order of 106. The question
is of course how to most efficiently simulate such a many-body system. When trying to
analyze physical many-body systems, there are two main methods which are often used:
Monte Carlo (MC) and molecular dynamics. Molecular dynamics methods work by
explicitly calculating the forces acting upon each particle (e.g. attraction to or repulsion
from other particles) and then moving particles according to Newton’s laws of motion.
The advantage of MD simulations is that they include the full particle dynamics and
thus in general yield accurate results. For this to work, however, the length of each time
step has to be chosen to be very short, and since force calculations are computationally
very expensive, MD simulations are usually limited to short timescales. Often, however,
interesting dynamics only occur at relatively long timescales.

This problem can be solved by exploiting fundamental properties of such systems:
During thin film growth, particles are deposited onto the substrate or the growing film.
Once there, they will diffuse around before being eventually buried. When forming the
film, the particles will in many cases arrange in a periodic lattice structure. This leads to
subsequently deposited particles “seeing” an energy landscape consisting of periodically
arranged energy minima. Movement of the particle thus consists of diffusion around an
energetic minimum, before it will eventually cross a saddle point and “fall” into the next
energetic minimum. This process is shown schematically in Fig. 3.1.

This insight lead to the development of the lattice gas model[75]: Particles can only
reside on discrete lattice sites, and diffusion consists of discrete jumps between neigh-
boring sites. In most implementations, each lattice site can only be occupied by one
particle (hard-core repulsion), and particles may interact attractively with particles on
neighboring lattice sites. The Hamiltonian of a configuration 𝑋 in such a lattice gas
system is then

𝐻 (𝑋) =
∑︁
𝑖, 𝑗

𝜖𝑖 𝑗𝑛𝑖𝑛 𝑗 (3.1)

where 𝑖, 𝑗 are lattice sites, 𝑛𝛼 = 1 if a site is occupied and 0 otherwise, and

𝜖𝑖 𝑗 =

{
𝜖 if i and j are nearest neighbors
0 otherwise

(3.2)

the interaction strength between particles, usually in units of 𝑘B𝑇 , with 𝜖 < 0.
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Chapter 3. Monte Carlo methods

Figure 3.1.: Schematic contour plot of particle diffusion (red line) within an energy land-
scape (black lines). The particle will initially diffuse around the energy
minimum, until it randomly passes the saddle point and falls into the next
energy basin. Source: Fig. 1 from Ref. 74

The Monte Carlo method, which is usually used to solve equilibrium problems, can
then be used to model the non-equilibrium problem of diffusion by performing random
jumps of particles between lattice sites.

3.2. General Monte Carlo principles

The core of the MC method is the solution of multi-dimensional integrals. The integral
of a function 𝑓 is calculated as

∫
𝑑Γ 𝑓 (Γ)𝑤(Γ) by drawing random numbers Γ according

to the probability distribution 𝑤 and calculating the average value of 𝑓 .[76]
An often used introductory example[77] is the estimation of the value of 𝜋 by integrat-

ing the function

𝑓 (𝑥, 𝑦) =
{
1 for 𝑥2 + 𝑦2 ≤ 1

0 otherwise
(3.3)

drawing random numbers from the probability distribution

𝑤(𝑠) =
{
1 for 0 ≤ 𝑠 ≤ 1

0 otherwise
(3.4)

Such a uniform distribution is however only useful for problems in which the area of
interest is relatively large compared to the sample space. In physical many-particle
systems, the number of interesting and allowed configurations is very small compared to
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the number of possible configurations. Creating the corresponding distribution 𝑤 is an
impossible task, hence for this one often uses the Metropolis algorithm[78]

3.3. Metropolis Monte Carlo

The general idea of the Metropolis algorithm is, when simulating a system, to sample each
configuration 𝑋 (e.g. a set of positions of interacting particles or the spin distribution in
the Ising model) according to its Boltzmann probability[79]

𝑃(𝑋) = 1

𝑍
exp(−𝐸 (𝑋)/𝑘B𝑇) (3.5)

where 𝑍 =
∑

𝑋 exp(−𝐸 (𝑋)/𝑘B𝑇) is the partition function of the system, and 𝐸 (𝑋) is the
internal energy of the system in the configuration 𝑋. Sampling configurations this way
and averaging a function, we can thus calculate the equilibrium value of this function
(e.g. pair correlation function in a system of colloids).

The partition function of any sufficiently complex system cannot be reasonably known,
however. To circumvent this problem, Metropolis et al. proposed a scheme in which a
not-forbidden initial state is generated and subsequent states then chosen according to a
transition probability 𝑊 . This is an example of a Markov chain, in which new states are
generated without memory of any previous states except the current one[80]. Transition
from one state to the next might e.g. be flipping a spin in the Ising model or randomly
moving a particle by a small Δ𝑟.

A system evolving in such a way will then eventually reach the equilibrium distribution
if the transition probability 𝑊 fulfills the detailed balance condition

𝑃(𝑋)𝑊 (𝑋 → 𝑋 ′) = 𝑃(𝑋 ′)𝑊 (𝑋 ′ → 𝑋) (3.6)

where 𝑊 (𝑋 → 𝑋 ′) is the probability for the system to go from configuration 𝑋 to 𝑋 ′,
and can be written as

𝑊 (𝑋 → 𝑋 ′) = 𝑔(𝑋 → 𝑋 ′)𝐴(𝑋 → 𝑋 ′) (3.7)

where 𝑔 is the probability for the move 𝑋 → 𝑋 ′ to be proposed and 𝐴 the probability
for this move to be accepted. The Metropolis choice for the acceptance probability is

𝐴(𝑋 → 𝑋 ′) = min

(
1,
𝑃(𝑋 ′)𝑔(𝑋 → 𝑋 ′)
𝑃(𝑋)𝑔(𝑋 ′ → 𝑋)

)
(3.8)

Assuming symmetric proposal probabilities 𝑔 and using Eq. 3.5, we thus obtain:

𝐴(𝑋 → 𝑋 ′) = min (1, exp(−Δ𝐸)) (3.9)

where Δ𝐸 is the change in internal energy this move would cause.
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Thus the Metropolis algorithm is:

1. Initialize system in state 𝑋

2. For 𝑁 steps:

a) Create random next state 𝑋 ′

b) Calculate the change in internal energy Δ𝐸 = 𝐸 (𝑋 ′) − 𝐸 (𝑋)
c) Generate a random number 𝑝 ∈ [0, 1)
d) If 𝑝 < exp(−Δ𝐸/𝑘B𝑇) then 𝑋 ← 𝑋 ′

It should be noted that this method is typically used for the simulation of systems in
equilibrium. An exception here is the dynamic Monte Carlo (DMC) method, which can
be used to model e.g. the temporal evolution of a system of colloids[81, 82]. However, this
method is only exact in the limit of very small particle moves, i.e. short time steps[81].
During film growth, a large variety of processes can occur, the speeds of which can span
several orders of magnitude. To accurately model this using DMC, the length of a time
step would have to be small enough to accommodate the fastest processes, leading to
potentially very long simulation times.

3.4. Kinetic Monte Carlo

The most commonly used MC method which can be used to ameliorate the problem of
time scales and simulate the temporal evolution of dynamical systems is kinetic Monte
Carlo (KMC)[83, 84].

As noted earlier, MD simulations can be used to accurately model the temporal evolu-
tion of dynamical systems, but suffer from the problem that only small systems (≲ 1000
particles) and short times (⪅ 10−6 s) can be investigated, due to the need for time steps
short enough to capture atomic vibrations (O(10−15) s). The key insight in the develop-
ment of the KMC method was that for the investigation of long-term diffusive behavior,
it is usually not necessary to model short-time vibrations around an energy minimum,
and that is is sufficient to model the diffusion of a particle as discrete jumps between
energy minima[74]. Compared to e.g. DMC, this leads to a significant speedup of simu-
lations, since only concrete events have to be simulated. Hence KMC is called an event
driven method.

In Fig. 3.1 we show this schematically. The particle will randomly diffuse around the
energy minimum, until it passes the saddle point and falls into the next energy basin.
Since the energy barrier between two minima is usually on the order of several 𝑘B𝑇 ,
a significant amount of simulation time is used to explore the basin, all of which does
not matter for the eventual hop into the next basin. In a KMC simulation, we only
model particle movement as jumps between the basins. This saves a significant amount
of simulation time compared to MD simulations. However, it is now necessary to choose
which moves (i.e. jumps between energy minima) must be implemented. Apart from hops
to neighboring sites on a substrate, we also have to consider e.g. rotations of anisotropic
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3.4. Kinetic Monte Carlo

particles and under which conditions they should be allowed (check whether a rotation
would be blocked by another particle). The choice which moves to include can here be
guided by the use of MD simulations[85].

We define then as all possible states only those where particles are located at minima
in the free energy landscapes (i.e. the lattice gas model), where each move from a state
𝑖 to a state 𝑗 occurs on average with a rate 𝑘𝑖 𝑗 . The change of 𝑃𝑖 (𝑡), the probability for
a particle to be in state 𝑖, can then be described by the Markovian master equation[86]

𝑑𝑃𝑖 (𝑡)
𝑑𝑡

= −
∑︁
𝑗≠𝑖

𝑘𝑖 𝑗𝑃𝑖 (𝑡) +
∑︁
𝑗≠𝑖

𝑘 𝑗𝑖𝑃 𝑗 (𝑡) (3.10)

It is, however, unfeasible to solve this equation for any interesting system. Instead, we
treat the jump from a state 𝑖 to a state 𝑗 as a Poisson process with an average waiting
time 𝜏𝑖 𝑗 ≡ 𝑘−1𝑖 𝑗 , since the time at which the particle crosses the energy barrier is effectively
random. This allows us to randomly evolve the system one jump at a time, making KMC
an event driven method.

In order to determine the rates 𝑘𝑖 𝑗 for the different moves, one often used approach
is transition state theory (TST)[87], where one takes the rate constant 𝑘𝑖 𝑗 to be the
equilibrium flux through the surface dividing states 𝑖 and 𝑗 , i.e. we count the number of
crossings of this surface and divide it by the total number of trajectories at state 𝑖. While
this approach can yield good results, it is rather elaborate. For the simulation of diffusing
particles on top of a substrate, for example, one often rather uses the Clarke-Vvedensky
bond counting ansatz[46]

𝑘𝑖 𝑗 =
2𝑘B𝑇

ℎ
exp

(
−𝐸𝐷 + 𝑛𝑖𝐸𝐵

𝑘B𝑇

)
(3.11)

where 𝐸𝐷 > 0 is the diffusion barrier, 𝑛𝑖 the number of nearest neighbors the hopping
particle has in state 𝑖, and 𝐸𝐵 > 0 the nearest-neighbor interaction between particles.
Another approach is to use molecular dynamics simulations in order to determine the
rates of possible moves[85].

The total rate at which the system tries to leave a state 𝑖 is

𝐾𝑖 =
∑︁
𝑗≠𝑖

𝑘𝑖 𝑗 (3.12)

and the average time the system spends in state 𝑖 is 𝐾−1
𝑖

[74]. To evolve the system from
state 𝑖 to a new state 𝑗 , we randomly choose one move from a list of all currently possible
moves[88], as shown in Fig. 3.2. For this, we create a list of all possible transitions,
with the weight of each entry being proportional to its rate. We then generate a uniform
random number 𝑟 in the range (0, 𝐾) and choose the transition 𝑗 for which

𝑗∑︁
𝑙=0

𝑘𝑙 ≤ 𝑟 <
𝑗+1∑︁
𝑙=0

𝑘𝑙 (3.13)
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Chapter 3. Monte Carlo methods

Figure 3.2.: Linearized list of all possible transitions from a current state, the length of
each box being proportional to its rate 𝑘𝑖. To choose a move, we choose an
item from this list with a probability proportional to its length 𝑃 = 𝑘𝑖/𝐾

To be more concrete: In a lattice model where each particle occupies one lattice site,
state 𝑖 is a given configuration denoted by which lattice sites are occupied by a particle.
Transitions from state 𝑖 to different states are realized by either (1) inserting a new
particle into the system (at a random site), (2) an already existing particle hopping to
an unoccupied neighboring site, or (if we perform a 3D simulation) (3) a particle hopping
on top of a neighboring particle or hopping down from a particle into the layer below (see
the following chapter for schematic diagrams of these moves). After a move is chosen
with its corresponding probability, the list of all possible moves is of course different, and
subsequently 𝐾 might also be different.

Before pulling everything together into the final algorithm, some remarks must be
made regarding the length of each time step. As indicated earlier, the average length of
each time step can be calculated to be 𝜏av = 𝐾−1. This has however been found to lead to
inaccurate dynamics[89]. Due to the jumps being Poisson processes, it is more accurate
to draw the length of each time step from a Poisson distribution with an average time
𝐾−1, i.e. 𝑝(𝜏) = 𝐾 exp(−𝐾𝜏). Instead of drawing from this exponential distribution, it is
easier to draw a number from a uniform distribution and transform it using the inverse
transform sampling method[90]. This yields for the length of the time step:

𝜏 = − ln 𝑟
𝐾

(3.14)

with 𝑟 being a uniformly distributed random number in the range (0, 1). Finally, pulling
everything together, we can summarize the general KMC algorithm as shown in Alg.
3.1. As can be seen there, the KMC algorithm is rejection-free, in the sense that it is
guaranteed that during each time step, a move will be performed.
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3.4. Kinetic Monte Carlo

Initialize list of all possible moves
Set simulation time 𝑡 = 0
while Stop condition is not met do

Calculate 𝐾
Calculate length of timestep 𝜏 according to Eq. 3.14
𝑡 ← 𝑡 + 𝜏
Make linearized array of all rates
Draw 𝑟 ∈ (0, 𝐾)
Choose move 𝑗 according to Eq. 3.13
Execute move 𝑗
Update list of all possible moves

end
Algorithm 3.1: Kinetic Monte Carlo algorithm

This rejection-free implementation is however not suitable for every kind of simulation.
Depending on the exact model, the calculation of 𝐾 can be a significant bottleneck,
especially in systems with many classes of moves. If we calculate the rates as shown in
Eq. 3.11, we have to inspect the local environment of each particle at each time step in
order to calculate 𝑛𝑖𝐸𝐵. If the number of particles in the system becomes large and each
particle has to be considered at all times, the number of necessary calculations quickly
explodes.

To ameliorate this, it is possible to combine the KMC algorithm with a Metropolis
step, leading to the so-called hybrid KMC method[89]. This is akin to splitting the
interactions into two parts, repulsive and attractive. Instead of investigating the local
environment of each particle, we only calculate 𝑘 using the (constant) diffusion barrier,
which would lead the rate in Eq. 3.11 to become

𝑘𝑖 𝑗 =
2𝑘B𝑇

ℎ
exp

(
− 𝐸𝐷

𝑘B𝑇

)
(3.15)

i.e. the rates are constant and identical for all moves of the same class.
Thus, in order to calculate 𝐾, we only have to know how many moves of each class are

allowed (not forbidden due to hard-core repulsion) at the current time. To then account
for the attractive interactions, each move is accepted with the Metropolis probability
from Eq. 3.9. Whether or not the proposed move is accepted, the time is still advanced
by the random time step length.
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Chapter 3. Monte Carlo methods

Note also that the resulting dynamics are now subtly different from those in the CV
model: Instead of only inspecting the local environment of a particle to determine the
rates, we now inspect the initial and target environment to determine whether a move is
allowed. Consequently, implementing this hybrid KMC method using CV kinetics would
lead to a move acceptance probability

𝑃𝐶𝑉 = exp

(
−𝑛𝑖𝐸𝐵

𝑘B𝑇

)
(3.16)

which also fulfills the detailed balance condition of Eq. 3.6.
While this hybrid KMC method speeds up the simulation in some respects, it of course

also leads to possible moves being rejected due to being energetically unfavorable, poten-
tially wasting a significant amount of simulation time. Thus one must carefully choose
which of the two methods is better suited for the task at hand. Further down in this
work, we present two different simulation models, for both of which we used the hybrid
KMC method. This was done due to the fact that for one model (the Colloidal Growth
Model; see later) the number of degrees of freedom was excessively large, which would
have made the rejection-free KMC method prohibitively slow. For the other model, we
suspect that a rejection-free implementation would have been significantly faster. In or-
der to be able to compare the results of both models, however, we also used the hybrid
KMC method there.
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Chapter 4.

Wetting and phase transitions

4.1. The Ising model

The Ising model is the simplest, most widely known lattice model used to study phase
behavior, originally developed to study ferromagnets[91]. The model consists of a 𝑑

dimensional lattice, where each lattice site is occupied by either a spin-up (+1) or a spin-
down (−1). Next-neighbor spins interact with a strength 𝐸𝑖 𝑗 = 𝑠𝑖𝑠 𝑗𝐽, where 𝑠𝑖 and 𝑠 𝑗 are
the values of spins 𝑖 and 𝑗 , respectively, and 𝐽 is the coupling strength in units of 𝑘B𝑇 .
Additionally, one often introduces an external magnetic field ℎ, which couples to each
spin with a strength ℎ𝑖 = ℎ · 𝑠𝑖, i.e. the Hamiltonian of this system is

𝐻

𝑘B𝑇
= −𝐽

∑︁
𝑖, 𝑗

𝑠𝑖𝑠 𝑗 − ℎ
∑︁
𝑖

𝑠𝑖 (4.1)

where 𝑖, 𝑗 are nearest-neighbor sites. Upon increasing the value of 𝐽, the system will show
a first-order transition going from a state in which both spins are equally likely to one in
which one orientation dominates. The exact value 𝐽𝑐 at which this transition occurs was
found for the 1D system by Ising, while the exact solution for the 2D system was found
by Onsager[92]

Since sites in the Ising model can only have one of two possible states, it is easy to
map a state in this model to one in the lattice gas[93], e.g. by assigning spin-down to an
unoccupied site and spin-up to an occupied site, which leads to

𝑠𝑖 = 2𝑛𝑖 − 1 (4.2)

where 𝑛𝑖 ∈ [0, 1] denotes whether a lattice site is occupied or not. Using Eqs. 3.1 and
4.1, it becomes obvious that the energetic parameters can be mapped as

𝜖 = −4𝐽 (4.3)

The ordering transition in the Ising model then becomes a gas-liquid transition.

4.2. The wetting transition

Binder and Landau[94, 95] studied a variation of the Ising model in 3D. They considered
systems of size 𝐿 × 𝐿 × 𝐷 lattice sites, with the upper and lower boundaries being free
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(a)

Wet

Non-wet 1 ML

2 ML

(b)

Figure 4.1.: (a) Schematic equilibrium wetting diagram for a 3D lattice gas model for
Υ ≡ 𝜖sub/𝜖 . Starting at 𝜖 = 𝜖𝑐, gas-liquid separation can occur and the
system will show a wetting transition (infinitely thick films for Υ above this
line, films of finite thickness below the line). For |𝜖 | ≥ |𝜖rough |, the film will
show roughening. For higher values of |𝜖 |, the layering transition occurs,
where films of thickness 1 or 2 monolayers will occur before the film grows
infinitely. The data points are from Ref. [94]. (b) Schematic depiction of
the adsorption Γ as a function of Υ along the blue dashed line in (a).

surfaces of size 𝐿×𝐿. In these layers, neighboring spins interacted with strength 𝐽𝑠, while
in the bulk they interacted with strength 𝐽. Thus here the Hamiltonian was

𝐻 = −𝐽
∑︁
bulk

𝑠𝑖𝑠 𝑗 − 𝐽𝑠
∑︁

surfaces

𝑠𝑖𝑠 𝑗 − 𝐻
∑︁
𝑖

𝑠𝑖 − 𝐻1

∑︁
surfaces

𝑠𝑖 (4.4)

They found that this seemingly simple model shows complex phase behavior. As had
been found earlier, the system would show a wetting transition. In the context of this
version of the Ising model, wetting means that, starting from the free surface, all spins
will be oriented in parallel (this orientation wets the free surface) and growing on from
there, all spins will assume this orientation. Another view of this phenomenon is that
the interface between “adsorbed phase” and mixed bulk phase becomes unbound from
the free surface and distances itself infinitely from there. This transition can be either
first or second order. In the lattice gas model, the corresponding transition would be an
infinite accumulation of particles on a substrate.

In addition to this, two other transitions are important in the context of this work:
The layering and the roughening transition. Given the right parameters, in the layering
transition neighboring layers of spins will be re-ordered successively, instead of in the
whole system at once. The roughening transition occurs when steps in the surface cost
free energy to create, leading to a rough interface between the ordered region and the
unordered region.
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Translating the parameters from Ref. [94] to the lattice model via:

𝜖 = −4𝐽 (4.5)
𝜖sub = −2𝐽 − 2𝐻1 (4.6)

we can construct the phase diagram shown in Fig. 4.1. For |𝜖 | ≲ 0.89, no film will form,
since this is below the critical gas-liquid separation value 𝜖𝑐 (𝐽𝑐 ≈ 0.22 in the 3D Ising
model[96]). Relevant for the following discussions of thin film growth and the dynamic
layering transitions is the fact that for the values of 𝜖 which we investigated during the
course of this work (|𝜖 | > 3), the value of Υ for the wetting transition is ∼ 1, i.e. in an
equilibrium lattice gas with moderately strong interactions, wetting will occur only when
|𝜖sub | > |𝜖 |

4.3. Landau theory

Landau theory[97] provides a simplified model to describe ordering transitions. It is
mainly used to describe e.g. the phase behavior of liquid crystals. The following consid-
erations mainly follow Ref. [98]; see there for more details.

The basis of Landau theory is the assumption is that the behavior of a certain order
parameter 𝑄 close to the transition point can be described by a single function, which is a
free energy. This free energy 𝐹 can be represented as a function of some thermodynamic
variables (e.g. particle number 𝑁, volume 𝑉 , and temperature 𝑇) and the order parameter
𝑄. Often, one uses the free energy density 𝑓 (𝜌, 𝑇 ;𝑄) = 𝐹/𝑉 , where 𝜌 = 𝑁/𝑉 is the particle
density. Landau theory then starts with expanding 𝐹 in terms of 𝑄:

𝐹 (𝑁,𝑉,𝑇 ;𝑄) = 𝐹0(𝑁,𝑉,𝑇) + 𝑎2𝑄2 + 𝑎3𝑄3 + 𝑎4𝑄4 (4.7)

This expansion is typically only performed up to the fourth term, since the value of 𝑄
is small close to the transition point. The equilibrium state (i.e. the value of 𝑄 at given
values of 𝑁, 𝑉 , and 𝑇) is then the value at which 𝐹 becomes minimal. Since Eq. 4.7
describes an ordering transition, i.e. a transition between different values of 𝑄, some
conditions for 𝑎2 can be derived: In the derivative 𝜕𝐹/𝜕𝑄, it is the lowest coefficient,
and thus should change its sign upon the phase transition when varying 𝑇 . The phase
transition then occurs at the point where 𝑎2(𝑁,𝑉,𝑇) = 0. This temperature is usually
denoted as 𝑇𝑐. Considering a given pressure 𝑝, an equation that fulfills these conditions
is:

𝑎2(𝑁,𝑉,𝑇) = 𝑎(𝑇 − 𝑇𝑐) (4.8)

where 𝑎 = (𝜕𝑎2/𝜕𝑇)𝑇=𝑇0 . If an external field is applied, the free energy gains an additional
term −𝑎1𝑄, where 𝑎1 is the strength of the external field.

The transitions we can describe using this free energy are usually between a state in
which 𝑄 = 0 and one in which 𝑄 ≠ 0. Such transitions are said to be either first or second
order.

In Fig. 4.2 we show the difference between first and second order transitions. A system
prepared at a certain 𝑇 > 𝑇𝑐 will be unordered, i.e. at 𝑄 = 0. If the system is now cooled
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Figure 4.2.: Order parameter 𝑄 during (a) first order and (b) second order phase transi-
tions

down, upon reaching 𝑇𝑐 a transition will occur. A first order transition, as shown in Fig.
4.2(a), occurs when 𝑄 is discontinuous at 𝑇 = 𝑇𝑐, while a second order transition, as
shown in Fig. 4.2(b), will exhibit a discontinuity in its first derivative.

The origins of these transitions become clear when examining the free energy near the
phase transition:

Q

(a)

F

T > Tc

T Tc

T < Tc

Q

(b)

T > Tc

T Tc

T < Tc

T Tc

Figure 4.3.: Free energy close to the critical temperature exhibiting (a) a first order and
(b) a second order phase transition. Markers denote the absolute minima of
the respective free energies.

In Fig. 4.3(a) we show schematically a free energy for a system exhibiting a first order
transition. For 𝑇 > 𝑇𝑐, the free energy has one minimum, which corresponds to the
stable composition. At 𝑇 ≈ 𝑇𝑐, the free energy has two minima at the same height. This
indicates a coexistence between two phases at the corresponding values of 𝑄. For 𝑇 < 𝑇𝑐,
there is again only one lowest minimum at a high value of 𝑄.
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In Fig. 4.3(b), the free energy for a system exhibiting a second order transition is
shown. When preparing this system at a 𝑇 > 𝑇𝑐 and lowering it, this minimum contin-
uously shifts to higher values of 𝑄 as soon as 𝑇 ≲ 𝑇𝑐. For very low 𝑇 , the function can
become non-convex; however, there is again only one minimum.

A classical example for the application of Landau theory is the description of ordering
of liquid crystals. There one can find, among other transitions, a first order isotropic-
nematic transition and a second order transition from the uniaxial nematic to the biaxial
nematic phase. This phase behavior can be modified by introducing external magnetic
fields. Depending on the magnitude of such a field, this can lead to either increasing the
nematic ordering or to a suppression of the first-order transition.

The system which we will be concerned with further below is a system of cubic particles
on a cubic lattice. Each particle has an internal orientation vector in either the 𝑥,
𝑦 or 𝑧 direction, and interaction between particles depends on their orientations and
relative positions. In this system, the order parameter is defined as either the relative
concentration of particles of one orientation, 𝑥𝛼, or a dimensionless order parameter

Z = 𝑥𝛼 − 1
2

(
𝑥𝛽 + 𝑥𝛾

)
(4.9)

Assuming 𝑥𝛽 = 𝑥𝛾 =
1−𝑥𝛼
2 , it is easy to convert from one order parameter to the other.

There are several ways to obtain a free energy function for such a system. The
most straightforward approach is a mean-field calculation, inspired by Flory-Huggins
theory[99]. There one assumes that each particle interacts with an averaged field of all
particles. This significantly simplifies calculations, but ignores local fluctuations, which
leads to an underestimation of the value of 𝑇𝑐. Qualitatively, however, such an approach
yields good results. The resulting free energy function can then be written as a Taylor
series and analyzed according to Landau theory.

In Sec. 6.4 we explicitly calculate the mean-field free energy for such a system and
predict phase the phase behavior using arguments from Landau theory.
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Chapter 5.

Isotropic interactions

The results of this chapter have been previously published in Phys. Rev. E
103, 023302 [100]

Previously, most work regarding simulations of thin film growth has been concerned
with systems in which substrate and deposit consist of the same material[6]. However,
in real-world film growth experiments the substrate and film usually consist of different
materials, which leads to different growth modes. These growth modes occur on medium
time-scales, i.e. for thin films with a thickness on the order of a few monolayers.

As discussed earlier, in the equilibrium limit, one classically distinguishes between
Frank-van-der-Merwe, Vollmer-Weber, and Stranski-Krastanov growth. The exact growth
mode there is determined by the particle-substrate interactions and the lattice mismatch
between film and substrate. Real-world thin films, however, do not grow under equi-
librium conditions, leading to more complicated conditions for the occurrence of certain
morphologies.

In this chapter, we investigate how kinetic conditions and the ratio of inter-particle
and particle-substrate attractions influence the morphology of a growing film. We then
quantify where the transitions between different growth modes occur.

5.1. Models

We will investigate the system using two different models of thin film growth (see snap-
shots in Fig. 5.1). These are both lattice models, meaning the particles can only reside
on discrete positions within a three-dimensional box. The upper and lower boundary of
this box are hard, while periodic boundary conditions (PBC) were implemented in the 𝑥
and 𝑦 direction.

Interactions between neighboring particles have a strength 𝜖 (in units of 𝑘B𝑇), while
particles at 𝑧 = 0 interact with the substrate with a strength 𝜖sub.

The first model we implement is a conventional solid-on-solid (SOS) model. Here each
particle has to be supported by either the substrate or another particle, meaning that
there can be no cavities inside the film. Particles cannot desorb from the film, preventing
the formation of a vapor phase. For many experiments (most notably metal-on-metal
growth) these restrictions are realistic, since there one typically obtains a compact film
without particles desorbing.
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Figure 5.1.: Snapshots after deposition of 5 ML for 𝜖 = −3, 𝜖sub = −1.33, Γ = 104 in the
CGM (left) and the SOS model (right). Due to the fact that particles can
desorb from the film in the CGM, we see the formation of a vapor phase
above the film.

(a) (b)

Figure 5.2.: (a) Schematic representation of the allowed moves in the SOS model and (b)
additional moves allowed in the CGM

During each time step of the KMC simulation, we randomly choose to either insert a
new particle into the system or to move an existing particle. If we insert a new particle,
we choose a random lattice site and insert the particle on top of the highest particle in
this column. If we choose to move a particle, we pick a random particle at the surface
and try to move it to a neighboring site according to the Metropolis condition (with the
restriction that the height difference between both sites can be no larger than 1 lattice
site). Schematic representations of these moves are shown in Fig. 5.2(a).

The second model we dub Colloidal Growth Model (CGM). In this model, restrictions
are relaxed insofar that particles are now allowed to desorb from the film. This leads to
the formation of a vapor phase above the film, as well as the existence of overhangs and
cavities inside the film (see Fig. 5.2(b) for schematic representations of the additional
moves).

This model is reminiscent of the growth of colloidal films in solution[101], hence the
name. It is the most generic extension of the simple SOS model. However, a large amount
of additional bookkeeping is required here, since certain assumptions (e.g. that only the
highest particle in any column can move) are no longer valid, leading to a sharp increase
in simulation time. Additionally, we now also have to consider how exactly new particles
are inserted into the system.
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(a) (c)(b)

Figure 5.3.: Possible ways to insert new particles in the CGM. Red particles are connected
to the substrate, blue particles are in the gas phase, and the newly inserted
particle is indicated in green. (a) The new particle diffuses down until it
touches any other particle (including those in the vapor phase). (b) The
particle diffuses down towards the topmost particle in the chosen column.
(c) The particle diffuses down until it touches any particle connected to the
film.

In principle, there are three possible ways (shown schematically in Fig. 5.3):

1. A particle is inserted at the top of the box and diffuses downwards until it touches
any other particle. Since we do not implement cluster moves, this however leads
to the formation of large, stable clusters inside the gas phase, eventually blocking
new particles from reaching the substrate.

2. The new particle is inserted on top of the topmost particle in the chosen column.
This is most similar to insertion in the SOS model.

3. A particle is inserted at the top of the box and diffuses downwards until it touches
any particle connected to the film. This is similar to insertion in colloidal growth
experiments.

5.2. Observables

An important observable in both thin film growth experiments and simulations is the
film roughness 𝜎. It is defined as

𝜎 =

√√√
1/𝑁

𝑁∑︁
𝑖=1

(ℎ𝑖 − ℎ)2 (5.1)

where 𝑁 is the number of lattice sites, ℎ𝑖 the film height at lattice position 𝑖 and ℎ

the mean height of the film. As the name indicates, 𝜎 is a measure of how rough the
film is, and its magnitude allows us to draw conclusions about the morphology of the
film. For example, when 𝜎(𝑡) oscillates between 0 and 0.5, the film typically grows in a
layer-by-layer fashion.
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The advantage of 𝜎 as an observable is the relative ease with which it can be mea-
sured in experiments, both in-situ (using e.g. X-ray reflectivity measurements[102]) and
ex-situ (using e.g. atomic force microscopy measurements[103]). However, it does not
contain any information about structure, creating the need to complement 𝜎 by other
observables, or often omitting its measurement in favor of e.g. reciprocal space maps
obtained by X-ray scattering or grazing incidence diffraction[104].

The second observable we will use in this chapter is the layer-filling difference

Ψ𝑖− 𝑗 = Ψ𝑖 − Ψ 𝑗 (5.2)

where Ψ𝑖 is the ratio of occupied lattice sites in layer 𝑖. Specifically, we are interested in

Ψ1-2 = Ψ1 − Ψ2

which denotes the difference in layer filling between the layer in contact with the substrate
and the one on top of it. If we measure Ψ1-2 after deposition of one monolayer, it allows
us to decide whether a film initially grows in a layer-by-layer fashion (Ψ1-2 = 1), an island
fashion (Ψ1-2 = 0), or something in-between.

5.3. Parameter scaling

Ultimately, we perform our simulations in order to compare the results to those of thin-
film growth experiments, mostly of organic molecules. For this to yield plausible results,
the kinetic and energetic parameters need to be in approximately the same regions.

To put this in context, for thin film growth of C60 on C60 at room temperature[105, 106],
the diffusion coefficient is typically 𝐷 = O(108) nm2/s, while deposition flux is usually
on the order of 𝐹 = 0.001 ... 0.1 monolayers per second. We then find for the ratio of
deposition rate and flux Γ = 𝐷/(𝐹𝑙2) = O(109)..O(1011), where 𝑙 is the length of a unit
cell. Additionally, using the Girifalco potential[107], we can estimate the inter-particle
interaction to be 𝜖0 ≈ −10𝑘B𝑇 . Such slow growth and strong interactions are difficult
to model computationally, even in the SOS model. Usually simulation studies at such
parameters will be limited to only simulating a few monolayers[85]. We argue, however,
that we can simulate film growth at lower Γ and weaker values of 𝜖 and reasonably
extrapolate to higher Γ and stronger values of 𝜖 .

As indicated earlier, for the island density in sub-monolayer growth a scaling relation
of the form

𝑁 (Γ,Θ) ∝ Θ1/3Γ−1/3 (5.3)

has been identified[41]. In this scenario, where dimers are stable (𝑖∗ = 1), the sub-
monolayer island density does not depend on the inter-particle interactions.

The assumption that dimers are stable for the typical duration of the growth exper-
iment does, however, necessitate very strong values of 𝜖 , comparable to e.g. covalent
bonds between metallic molecules. Interactions between organic molecules are typically
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5.3. Parameter scaling

significantly weaker, leading to dimers not necessarily being stable against decomposition
and thus changing the scaling behavior of island densities.

To investigate this, we obtained the publicly available sub-monolayer data from Ref.
108, which contains pairs of energies 𝐸𝐷 and 𝐸𝐵 with the corresponding occupation of
lattice sites at a coverage Θ = 0.15. Here, 𝐸𝐷 was the diffusion barrier energy and 𝐸𝐵

was the strength of the inter-particle attraction. We used these data to calculate island
densities at the different parameter sets and then translated the energetic parameters to
our 𝜖 and Γ in order to determine whether we could find scaling behavior.

The authors used a Clarke-Vvedensky ansatz to determine the diffusion rate,

𝑑𝑖 𝑗 =
2𝑘𝐵𝑇

ℎ
exp

(
−𝐸𝐷 + 𝑛𝑖𝐸𝐵

𝑘𝐵𝑇

)
(5.4)

where 𝑛𝑖 is the number of nearest neighbors of a particle.
The parameters used were 𝑇 = 273 K, 𝐸𝑠 = 0 and deposition rate 𝑓 = 0.0167 monolayers/s.

Thus we can translate these parameters to our system parameters as:

|𝜖 | = 𝐸𝐵

𝑘𝐵𝑇
(5.5)

Γ =

2𝑘𝐵𝑇
ℎ

exp
(
− 𝐸𝐷

𝑘𝐵𝑇

)
0.01671

𝑠

(5.6)

which gives for 𝐸𝐷 ∈ [0.4 eV...0.55 eV] a range of Γ ∈ [4.78 · 104...2.8 · 107] and for
𝐸𝐵 ∈ [0.1 eV...0.4 eV] a range of |𝜖 | ∈ [4.25− 17]. Note the subtle difference in kinetics:
We accept moves with a probability depending on the energetic difference between initial
and final state, while in the CV model only the number of neighbors in the initial state
is considered. The general argument still holds, however.
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Figure 5.4.: Island density at Θ = 0.15 vs. 𝜖 at 𝐸𝐷 = 0.55 eV, i.e. Γ ≈ 4.78 · 104. When 𝜖
is weak, the island density clearly scales with 𝜖 , while for strong 𝜖 it remains
constant, showing the crossover into the domain where dimers are stable.

In Fig. 5.4 we plot the calculated island density vs |𝜖 | for a constant value of Γ ≈
4.78 · 104. For low values of 𝜖 , the island density clearly changes as the strength of 𝜖
increases, eventually going towards a constant value for |𝜖 | ≳ 8. This change occurs due
to the cross-over into the regime in which dimers of particles do not dissociate during
the simulation time, i.e. the regime where dimers are stable and thus the island density
only depends on Γ and Θ. We found such behaviors for all values of Γ.

To show that for weak 𝜖 we recover a scaling of the island density with 𝜖 , we plot the
measured island densities scaled versus a function of the form Γ𝑥 (𝜖 + 𝑎), which was used
in Ref. [19] to determine the scaling of surface roughness. We find empirically that for
|𝜖 | ≲ 9, a good data collapse can be achieved for 𝑎 = exp(−8) and 𝑥 = 1.5 (see Fig. 5.5).

This means that in the regime of weak 𝜖 , which we have investigated in our work,
the island density scales with both Γ and 𝜖 . More specifically, this allows us to run our
simulations at low values of Γ and 𝜖 and extrapolate to higher values , provided we do not
cross over into the regime where dimers become stable. In our simulations, we investigate
|𝜖 | between 2 and 6 at Γ = 104 and 105, which is well within the scaling region.

However, it should be reiterated that this scaling relation has so far only been identified
for sub-monolayer films at low densities. It is unclear whether such a relation still holds
in the multilayer regime, especially since here additional energetic parameters (𝜖sub and
𝐸ES) have to be considered and possibly enter the scaling relation.
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Figure 5.5.: Island density vs Z = Γ1.5(𝜖 +exp(−8)) for |𝜖 | ≲ 9. Colors denote the strength
of 𝜖 , going from purple (weak) to yellow (strong)

5.4. Results

Unless denoted otherwise, results for the CGM will be for a box of size 64 × 64 × 200.
In the SOS model, we were able to simulate larger lateral lattice sizes (up to 𝐿 = 300),
however, most results will be for 𝐿 = 64 in order to be able to compare the two models.
While these are rather small lattice sizes, we will show that the systems are sufficiently
large for our study of film morphologies.

5.4.1. Dynamic layering transition

In Fig. 5.6 we show the evolution of 𝜎 vs. the total coverage Θ for both models at
different values of 𝜖 and 𝜖sub. In both models, for both 𝜖 = −3 and −5, upon increasing the
magnitude of 𝜖sub the value of 𝜎(Θ) will initially decrease and then go towards oscillating
behavior, indicating a transition from island formation to layer-by-layer growth. This
transition, which we dub ISL ↔ LBL, is a dynamic layering transition. As discussed in
Sec. 4.2, in an equilibrium system we would expect the transition ISL ↔ LBL to occur
at 𝜖sub, crit = 𝜖 when 𝜖 → −∞, i.e. if 𝜖sub is weaker than 𝜖 we expect the film to form
islands and vice versa. For finite values of 𝜖 , this transition is slightly shifted, however
still at 𝜖sub, crit ≈ 𝜖 . In Fig. 5.6 it becomes clear, however, that in the non-equilibrium
film growth situation, this transition can occur at significantly weaker 𝜖sub. This is due
to the fact that, at the right parameters, particles on the substrate will be “buried” and
hence immobilized before they are able to properly equilibrate and form islands. After
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Figure 5.6.: Plot of 𝜎 vs Θ, averaged over 5 runs, in the CGM and SOS model at Γ = 104

and multiple substrate strengths 𝜖sub. (a), (b) 𝜖 = −3 and (c), (d) 𝜖 = −5

the first layer of particles has been buried in this way, the next layers will essentially
grow on a substrate where 𝜖sub = 𝜖 and thus continue to grow in the LBL fashion.

The exact value of this non-equilibrium 𝜖sub, crit cannot be determined analytically.
However, we find that after deposition of 1 ML it is already clear whether the film will
grow in an LBL fashion or form islands. Thus we focus on this regime in order to find
an observable to pinpoint the transition.
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Figure 5.7.: Values of several observables after deposition of one monolayer for 𝜖 = −3,
Γ = 104. All observables (anti-phase Bragg intensity 𝐼anti, growth number 𝑔,
filling of the first monolayer Ψ1, roughness 𝜎, and difference of the filling of
the lowest two layers Ψ1-2) show a change of behavior at approximately the
same value of 𝜖sub

In Fig. 5.7 we show the value of several observables after deposition of one monolayer
at 𝜖 = −3, Γ = 104 plotted vs. 𝜖sub. The shown observables are:

• Anti-phase Bragg intensity 𝐼anti

• Growth number 𝑔

• Filling of the first layer Ψ1

• Roughness 𝜎

• Difference of the filling of the lowest two layers Ψ1-2

The growth number 𝑔 is defined[10] as:

𝑔 =

∑∞
𝑛=1

��Θ𝑛 − Θ𝑛,𝐿𝐵𝐿

��∑∞
𝑛=1

��Θ𝑛,𝑠𝑡𝑎𝑡 − Θ𝑛,𝐿𝐵𝐿

�� (5.7)

where Θ𝑛 is the filling of layer 𝑛, Θ𝑛,𝐿𝐵𝐿 is the filling of layer 𝑛 in the case of perfect LBL
growth, and Θ𝑛,𝑠𝑡𝑎𝑡 is the filling of this layer in the case of completely random (Poisson)
growth. It indicates whether a film grows in an LBL fashion (𝑔 = 0), a Poisson manner
(𝑔 = 1), or in-between.
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The anti-phase Bragg intensity is defined[10] as:

𝐼anti(Θ) =
����� ∞∑︁
𝑖=0

(−1)𝑖 (Ψ𝑖 (Θ) − Ψ𝑖+1(Θ))
�����2 (5.8)

where 𝑖 = 0 denotes the substrate, hence Ψ0 ≡ 1. It is used extensively in the analysis of
experiments, e.g. if 𝐼anti(Θ) shows oscillations, this is an indication for LBL growth[38].

All observables show a change in behavior at approximately the same value of 𝜖sub,
indicating that they are all more or less suitable to pinpoint the location of the dynamic
layering transition. As already indicated, we decided to use Ψ1-2 as our second observable.
This is due to the fact that the value of Ψ1-2 is known for LBL (Ψ1-2 = 1) and ISL
(Ψ1-2 = 0) growth, and that it empirically shows the “best” behavior. For each value of 𝜖 ,
we perform simulations at 𝜖sub from −2 to −6, deposit one monolayer in each simulation,
and calculate Ψ1-2 afterwards. We average the resulting value of Ψ1-2 over 5 runs for each
parameter set. We can then easily fit a hyperbolic tangent to the data points of Ψ1-2
vs 𝜖sub and extract the inflection point of this curve as an estimation of 𝜖sub, crit for the
dynamic layering transition.
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Figure 5.8.: Ψ1-2 at Θ = 1 in the CGM for (a) Γ = 104 and (b) Γ = 105, averaged over
5 runs. 𝜖sub, crit is determined by the value of 𝜖sub of the inflection point of
the fitted tanh (dotted lines for |𝜖 | = 7)

In Fig. 5.8 we show exemplary results for Γ = 104 and 105 at different values of 𝜖 . It is
clear that, as the magnitude of 𝜖 increases, a stronger substrate is necessary for the film
to grow in a LBL fashion, while simultaneously the transition becomes more smeared
out. This is due to the fact that at stronger 𝜖 , the system will be further away from
equilibrium. Conversely, for |𝜖 | = 3 and Γ = 105 (in Fig. 5.8(b)), the transition is almost
a discontinuous jump, similar to what we would expect in an equilibrium system. This
dependence of the transition width on the kinetic parameters is, however, not a finite
size effect, which would occur in equilibrium simulations.

In Fig. 5.9 we show Ψ1-2 vs. |𝜖sub | for 𝜖 = −7 and Γ = 104. Neither in the CGM
nor the SOS model does the width of the transition change with system size. Merely for
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Figure 5.9.: Ψ1-2 vs. |𝜖sub | at Γ = 104 and 𝜖 = −7 for different system sizes in (a) the
CGM and (b) the SOS model. In neither model the transition width depends
on the lateral system size.

small 𝐿 ≲ 32 the data become very noisy. Due to these results, we are confident that
the results presented in this chapter are representative despite the comparatively small
value of 𝐿 = 64.
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Figure 5.10.: Critical ratio Υ𝑐 ( |𝜖 |) =
𝜖sub, crit

𝜖
for the dynamic layering transition at Γ =

104 and Γ = 105 in the CGM and the SOS model. The blue line indicates
the equilibrium value for the layering transition, where 𝜖sub, crit ≈ 𝜖

In Fig. 5.10 we show the extracted values for 𝜖sub, crit, re-scaled to Υ𝑐 ≡
𝜖sub, crit

𝜖
. In

these results, it is striking that (1) the extracted 𝜖sub, crit for the CGM and the SOS model
are virtually identical, indicating that the dynamic layering behavior in both systems is
similar, and (2) as |𝜖 | increases, the value of Υ𝑐 continuously decreases, which indicates
an increasing “dynamic gap” in the layering behavior due to the increased distance to
equilibrium.
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It may seem surprising that the CGM and the SOS model show similar layering be-
havior, given the fact that in the CGM particles can desorb from the film, which is a
non-negligible process, especially at weaker 𝜖 and 𝜖sub. However, as already seen in Fig.
5.6, the roughness evolution in both models at short times is very similar, indicating that
at these timescales desorption might not play a significant role.
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Figure 5.11.: The fraction 𝑟nc of floating par-
ticles vs. Θ in the CGM at
Γ = 105, 𝜖 = −3, 𝜖sub = −2.
Inset: 𝑟nc if only particles in
the lowest two layers are con-
sidered.

This can be confirmed by measuring the
amount of particles not connected to the
film divided by the total number of par-
ticles, 𝑟nc, vs. Θ, as shown in Fig. 5.11.
The parameters for this figure were chosen
to maximize the ratio of floating particles,
i.e. the interaction strengths were mini-
mized and Γ was maximized. At very low
Θ, 𝑟nc is indeed substantial, but quickly
approaches 0 as Θ→ 1. If we only consider
disconnected particles in the lowest two
layers (shown in the inset in Fig. 5.11),
which we also do when measuring Ψ1-2, the
ratio 𝑟nc, 2 drops even faster and is zero at
Θ = 1. Thus we can expect the number of
film particles in the first two layers to be
identical in both models, leading to similar
morphologies.

In this section, we have shown that
the transition from island to LBL growth,
which in equilibrium occurs when 𝜖 ≈ 𝜖sub,

is shifted to lower values of 𝜖sub in non-equilibrium deposition simulations, thus we call
this the dynamic layering transition. Using the parameter Υ ≡ 𝜖sub/𝜖 , we show how this
parameter depends on 𝜖 and Γ. We suspect that the Ehrlich-Schwöbel barrier 𝐸ES also
plays a role, since it modifies how quickly the system can equilibrate (e.g. how quickly
particles can desorb from a weakly attractive substrate to form islands). Hence in general
Υ𝑐 = Υ𝑐 (𝜖, 𝐸ES, Γ).

Verifying this experimentally would be challenging: Neither of the energetic parameters
can be easily tuned. 𝐸ES is an inherent property of the material. 𝜖sub can be modified
by changing the substrate, but this only allows for a limited amount of values for 𝜖sub.
Γ can be tuned more easily by changing the deposition rate 𝐹. The most commonly
used control parameter in experimental setups is the substrate temperature 𝑇 . Changing
𝑇 will, however, change all three variables: 𝜖, 𝐸ES ∝ 1/𝑇 and 𝐷/𝐹 ∝ exp(−1/𝑇). The
dynamic layering transition is a hypersurface in the parameter space (𝜖sub/𝜖, 𝜖 , 𝐸ES, Γ),
meaning that by varying 𝑇 it is possible to hit one point of the transition, but it is not
possible to independently change parameters to find other points of the transition.
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Figure 5.12.: 𝜎 vs. Θ up to Θ = 50, in the CGM and SOS model at Γ = 104 and multiple
substrate strengths 𝜖sub. (a), (b) 𝜖 = −3 and (c), (d) 𝜖 = −5. Note that the
y-axes for the two models are different. The data for the CGM are averaged
over three runs, thos of the SOS model over 5 runs.

5.4.2. Flattening transition

While in the previous section we were concerned with the behavior of thin film morphol-
ogy after deposition of one or few monolayers of material, we will now shift our attention
to the processes which occur at intermediate times when Θ = O(10). In Fig. 5.12 we
show the roughness evolution for the same parameter sets as in Fig. 5.6, but now up to
Θ = 50.

For weaker 𝜖sub, 𝜎 will initially increase strongly, indicating island growth. Interest-
ingly, this is not permanent: After further deposition, the film roughness will decrease
again and eventually go towards oscillating values of 𝜎 ≲ 1, indicating LBL growth.
This behavior can be observed in both model; however, in the CGM it occurs for all
𝜖sub < 𝜖sub, crit, while in the SOS model it will only occur at relatively weak 𝜖 and rel-
atively strong 𝜖sub. Otherwise, the film will not go towards the LBL growth mode, but
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to a new mode where 𝜎 reaches a constant value > 1. Hence we dub this growth mode
CONST.

The decrease of 𝜎 as time increases can be explained intuitively: As the amount
of particles increases, islands will grow in size and hence more substrate sites will be
covered. Due to the choice to let the substrate only interact with the first layer of
particles, newly arriving particles will “see” an effective substrate which is a mixture of
the original substrate and other particles with an increased 𝜖sub, eff = 𝜖 . Eventually the
substrate will be completely covered and hence growth continues as in a homoepitaxial
system (as long as 3D effects are weak at short times, i.e. for sufficiently high Γ and
weak 𝐸ES).

We call the transitions from island growth to LBL or CONST growth ISL→ LBL and
ISL → CONST, respectively. As already indicated, the CONST mode only occurs in
the SOS model. This is a consequence of restricting inter-layer moves to only occur one
layer up or down. At very weak 𝜖sub, the initially formed islands will be comparatively
high when coalescence occurs, leaving deep grooves which can only be filled by deposition,
not by inter-layer moves. Since deposition is equally probable for all sites, the relative
heights of islands and grooves do not change and 𝜎 remains constant. In the CGM,
where particles can desorb into the gas phase, this growth mode will thus not occur,
since any height difference can eventually be smoothed out, leading to LBL growth.
Additionally, the desorption of particles will in the early stages of film growth lead to
larger, higher islands and consequently higher roughness than in the SOS model at the
same parameters.

Pinpointing the times at which these transitions occur is not feasible using the film
roughness, since 𝜎 only gradually returns to the constant value. When determining
transition points, one usually tries to do this using an observable which is discontinuous
upon transition. One observable which proved to be viable candidates was the minimum
film height.

In Fig. 5.13 we show plots of the minimum film height and 𝜎 vs. Θ for different
values of 𝜖sub in both models. For weak substrates, the minimum height in the CGM
initially be be 0 but then exhibit a discrete jump and start increasing linearly such that
min{ℎ(Θ)} ≈ Θ. This coincides with the value of 𝜎 being < 1, indicating LBL growth.
In contrast, in the SOS model the minimum height will be 0 initially and then start
increasing linearly near the roughness drop (without jumping).
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Figure 5.13.: Minimum film height and roughness vs. Θ in the CGM and the SOS model
for 𝜖 = −3, Γ = 104 at (a), (b) 𝜖sub = −0.89 and (c), (d) 𝜖sub = −2.67.
At 𝜖sub = −0.89 in the CGM model, the minimum height will exhibit a
jump at the transition from ISL to LBL growth, while in the SOS model,
the minimum height starts increasing from 0 at the transition from ISL to
CONST. At 𝜖sub = −2.67 such an increase is visible in both models from
the start

Due to these two different behaviors, we used different methods to extract the numerical
value of the transition point Θtrans. In the SOS model, we averaged min{ℎ(Θ)} over
several runs, fit a line to the region of linearly increasing min. height, and extracted the
root of this line as the value of Θtrans for the transition ISL→CONST. In the CGM, we
defined a fit function,

𝑓 (𝑥) =
{
0, if Θ < Θtrans

𝑎 · Θ + 𝑏, else
(5.9)

where Θtrans is the transition point ISL→LBL. 𝑎, 𝑏, and Θtrans are free parameters
which we fitted for each run. The resulting Θtrans for all runs were then averaged to
obtain the final result. Examples for the fit procedures can be seen in Fig. 5.14.
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Figure 5.14.: Examples for the fit procedure to determine Θtrans for 𝜖 = −3, 𝜖sub = −0.89,
Γ = 104 in (a) the CGM and (b) the SOS model.

The dependence of Θtrans on 𝜖sub reveals an interesting characteristic of the system. In
Fig. 5.15 we show Θtrans vs. 𝜖sub for 𝜖 = −3, −5 in both models. In the SOS model for
𝜖 = −3 (in Fig. 5.15(b)) we can identify three distinct regions: For |𝜖sub | ≲ 1.33, Θtrans
has a value of ∼ 10, indicating that at these substrate strengths the system will initially
grow in the ISL mode and after deposition of ∼ 10 monolayers the growth mode changes
to CONST. For 1.33 < |𝜖sub | < 2.67 the value of Θtrans is ≈ 2. This indicates that here
the system will initially grow in the ISL mode (since |𝜖sub | < |𝜖sub, crit |, i.e. the system
is below the dynamic wetting transition) and at later times transitions towards the LBL
mode. For even stronger values of 𝜖sub, the system will grow in the LBL mode from
the start. These abrupt changes thus mean that the system shows a “transition (upon
change of 𝜖sub) between transition scenarios (in roughness evolution)”. For 𝜖 = −5 (in
Fig. 5.15(d)), the jump in Θtrans occurs at 𝜖sub ≈ 𝜖sub, crit, leading to the disappearance of
the ISL→LBL transition, which is swallowed by the LBL mode. Consequently, we observe
only a transition from ISL→CONST to LBL upon increasing |𝜖sub |. In the CGM (Fig.
5.15(a) and (c)), there is only the transition from ISL→LBL to LBL at 𝜖sub = 𝜖sub, crit,
with Θtrans smoothly decreasing as |𝜖sub | increases.
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Figure 5.15.: Θtrans vs 𝜖sub in the CGM and SOS model at (a), (b) 𝜖 = −3 and (c), (d) 𝜖 =
−5. For 𝜖 = −3 in the SOS model, Θtrans shows a jump from ISL→CONST
to ISL→LBL at an 𝜖sub which is lower than the dynamic wetting transition.
For 𝜖 = −5, this jump is at 𝜖 ≈ 𝜖sub, leading to the disappearance of
the ISL→LBL mode. In the CGM, Θtrans smoothly decreases as |𝜖sub is
increased, leading to a continuous transition from ISL→LBL to LBL growth
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5.4.3. Asymptotic growth behavior

In the preceding sections, we have quantitatively analyzed the dynamic layering transition
and the flattening transition, as well as the transition between transition scenarios in
systems where 𝜖sub ≠ 𝜖 . In both the SOS model and the CGM, eventually all sites
of the substrate will be covered by particles. This means that the system returns to
homoepitaxial growth where substrate and film consist of the same material.

We then expect the film roughness to increase for long deposition, albeit only weakly
for 𝐸ES = 0. This case has recently been studied for the SOS model[19], and it has been
found that the roughness shows a scaling behavior of the form

𝜎 ∝ Θ𝛽/(Γ3/2(exp(−|𝜖 |) + 𝑎)) (5.10)

with 𝛽 ≈ 0.2 and 𝑎 = 0.025. For the case |𝜖 | < − ln 𝑎 ≈ 3.7 this then leads to equivalent
roughness evolution if

|𝜖 | − 3

2
log Γ = const. (5.11)

(Compare this to Eq. 2.22 for the scaling of island density at sub-monolayer coverage,
where the factor 3

2 is absent.).
These transitions will only occur at sufficiently high values of Γ. For Γ → 0, the SOS

system goes towards the limiting case of stochastic growth (𝜎 ∝ Θ1/2). In this extreme
case, the system will grow in a rough manner from the beginning, and upon increasing
Γ we eventually cross over to the scenarios described above.

48



5.4. Results

5.4.4. Non-zero 𝐸ES

The previously shown results are all for 𝐸ES = 0. We want to briefly discuss how changing
the value of 𝐸ES impacts the occurrence of growth modes and especially transitions
between them. For the case of homoepitaxial growth with 𝜖 = 𝜖sub, an analytical solution
has been found[109] for the SOS model with 𝜖 → −∞ using rate equations. There it was
found that increasing 𝐸ES gradually increases the Γ necessary for LBL growth to occur,
which matches our simulations quite well. In general, we can find the same growth
modes as for 𝐸ES = 0, as well as the transitions between them, albeit shifted to higher
values of Γ. This is especially the case for the ISL→LBL transition, since this transition
necessitates inter-layer moves of particles, which are slowed down by non-zero 𝐸ES.

For finite values of 𝐸ES, the phenomenologies in the CGM and the SOS model are
qualitatively identical, however, for 𝐸ES → ∞ (effectively prohibiting direct inter-layer
moves) interesting discrepancies arise. In the SOS model, this leads to the film growing
stochastically. In the CGM, on the other hand, there will always be net inter-layer
particle transport due to particles desorbing from the film, diffusing in the gas phase,
and re-adsorbing in a different layer, effectively lowering the value of 𝐸ES.
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Figure 5.16.: 𝜎 vs. Θ in the CGM for 𝐸ES = ∞ at Γ = 104 for different 𝜖sub and (a) 𝜖 = −3,
(b) 𝜖 = −5. The black line denotes the statistical roughness evolution
𝜎 =
√
Θ.

In Fig. 5.16 we show 𝜎 vs. Θ in the CGM for 𝜖 = −3 and −5 and a range of 𝜖sub.
For weak values of |𝜖sub |, the roughness is significantly higher than

√
Θ, indicating strong

island formation. As |𝜖sub | increases, the roughness evolutions for the two values of 𝜖
diverge: For 𝜖 = −3, 𝜎 decreases to values < 1, indicating that here the system will
again go towards smooth films as |𝜖sub | increases. In contrast, for 𝜖 = −5 the roughness
curves at increasing |𝜖sub | will saturate around the stochastic evolution 𝜎 ∝ Θ1/2. Other
observables, such as layer-filling vs. time, confirm that here indeed 𝜖 is strong enough
for desorption from the film to become negligible and the film to grow in a stochastic
manner.
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We thus have a new transition for 𝐸ES → ∞: For weak 𝜖 , the system will show the
familiar growth modes which we can also find for 𝐸ES = 0, while for stronger 𝜖 the system
will grow in a stochastic manner.

To determine the location of the transition from LBL to stochastic growth, we per-
formed simulations at 𝜖sub = −106, such that particles which reach the substrate will
stay in the first layer. This was done in order to ensure that no other transitions, e.g.
ISL→LBL, could occur upon changing 𝜖 . We then performed simulations for different
values of Γ, where for each Γ we sweeped |𝜖 | from 2 to 6. Each simulation was run until
Θ = 1 before measuring Ψ1-2( |𝜖 |), similar to Sec. 5.4.1.
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Figure 5.17.: Ψ1-2( |𝜖 |) after deposition of one ML in the CGM at 𝐸ES = ∞ and 𝜖sub = −106
for different values of Γ. The dashed lines indicate the inflection points
of the fitted curves, while the solid line indicates the stochastic limit of
Ψ1-2 = exp(−1).

In Fig. 5.17 we show the resulting data points. We can again fit a tanh curve to the
data and extract its inflection point as the transition from LBL to stochastic growth.
For weak 𝜖 , Ψ1-2 has a value of almost 1, since there particles in the second layer can
easily reach the substrate via a multi-step diffusion process, after which they are stuck
in the first layer, leading to all particles being in the first layer eventually. For strong
𝜖 , Ψ1-2 will go towards the value 𝑒−1 (denoted as the black line), which is the value we
expect for stochastic growth with no inter-layer diffusion: The filling of the 𝑛th layer at
coverage Θ is:[10]

Ψn,stat(Θ) = 1 − exp(−Θ)
𝑛−1∑︁
𝑘=0

Θ𝑘

𝑘!
(5.12)
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with the 0th layer being the substrate, i.e. Ψ0 ≡ 1. Thus we obtain:

Ψstat
1-2 = Ψ1,stat(1) − Ψ2,stat(1)

= exp(−1) (5.13)

Hence we find that even in the CGM, the system can grow in a stochastic manner,
given 𝜖 is strong enough. For increasing Γ, the critical 𝜖 for this transition increases, and
for Γ → ∞ we should also find |𝜖 | → ∞, since in such an equilibrium scenario particles
will always be able to desorb from the film eventually.

5.4.5. Global growth mode diagram
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Figure 5.18.: Schematic representations of possible transitions in thin film growth. (a)
Three-dimensional growth from the start. This occurs at small values of
Γ or large values of 𝐸ES. (b) Initial LBL growth, followed by 3D growth
for larger Γ and |𝜖sub | > |𝜖sub, crit |. (c) Initial ISL growth, followed by 3D
growth for intermediate Γ and |𝜖sub | < |𝜖sub, crit |. (d) Initial ISL growth,
followed by LBL or const growth and finally 3D growth for high Γ and
|𝜖sub | < |𝜖sub, crit |.

Tying everything together, we can now construct a diagram of all global growth scenar-
ios of these systems, which we show in Fig. 5.18. As already indicated, systems will show
asymptotic 3D growth for long times in all scenarios. For small values of Γ (high deposi-
tion rates) or high values of 𝐸ES, the system will show 3D roughening from the start (Fig.
5.18(a)). For larger values of Γ and weaker values of 𝜖sub, we have to distinguish between
the cases |𝜖sub | > |𝜖sub, crit | and |𝜖sub | < |𝜖sub, crit |, where 𝜖sub, crit = 𝜖sub, crit(𝜖, Γ, 𝐸ES)
(since 𝜖sub, crit is the point of the dynamic layering transition). In the first case, the
system will initially grow in a LBL fashion and then show increased roughness for long
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times, i.e. the LBL→3D transition as seen in Fig. 5.18(b). In the second case, the sys-
tem will initially form islands. For intermediate values of Γ, the film will then transition
to strongly roughening 3D growth without the roughness decreasing first (Fig. 5.18(c)),
while for large values of Γ the roughness does decrease due to the film going to either
the LBL or the CONST growth mode (the flattening transition discussed in Sec. 5.4.2)
and then subsequently roughening (Fig. 5.18(d)).
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Figure 5.19.: Examples of simulations of the growth modes sketched in Fig. 5.18 in
the SOS model. (a) 3D growth at Γ = 103, 𝜖 = −3, 𝜖sub = −3.56 (b)
LBL→3D at Γ = 104, 𝜖 = −5, 𝜖sub = −3.56 (c) ISL→3D at Γ = 103, 𝜖 = −5,
𝜖sub = −2.22 (d) ISL→LBL→3D at Γ = 104, 𝜖 = −4, 𝜖sub = −2.22. Above
each roughness plot are three height maps of representative runs at the
coverages Θ = 1, 10, 100, respectively. The corresponding color bars are
shown below the roughness plots.

The schematic growth modes described in Fig. 5.18 are illustrated by simulation results
for the SOS model in Fig. 5.19.
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5.5. Comparison to experiments

To put these previous results into context of experimental results, we can consider either
molecular thin films (consisting if organic molecules) or atomic thin films (consisting of
metals and semiconductors). Thin films in these two categories will show significantly
different behaviors, since organic molecules are usually anisotropic, interacting mostly
via (relatively weak) van-der-Waals interactions, while atoms are isotropic and typically
interact more strongly.

For atomic thin films, we could be tempted to draw on the extensive catalog of ex-
periments of heteroepitaxial growth of metallic and semiconductor thin films[110, 111].
However, such systems are usually crystalline, meaning they have a specific lattice con-
stant. Due to this, elastic strain plays a non-negligible role. Such strain occurs due to
lattice constant mismatch between the substrate material and the thin film. This can
lead to growth behavior such as Stranski-Krastanov growth[112], where the film will ini-
tially grow in a LBL fashion, until the strain becomes too large and the surface “breaks”,
leading to the formation of islands. This is problematic since (1) the lattice parameter is
an intrinsic property of the material and cannot be modified and (2) lattice parameters of
different materials usually do not match. One way around this is to look at experiments
in which the substrate is amorphous, i.e. it has no lattice constant which could lead to
strain. An example for this is growth of polycrystalline Al on Si(100), which initially
exhibits LBL growth and shows roughening at later times[113] (Fig. 5.18(b)). AlCu on
SiO2 will, depending on the deposition rate, either form islands, which coalesce into a
smooth film before roughening or form a smooth film from the start; again, in both cases
the film roughens for long times[114] (Fig. 5.18(c),(d)). Sputter deposited Au on PS
and PMMA will initially form islands which will coalesce into a rough film, roughening
further for longer times[115] (Fig. 5.18(c)).

Despite the considerable role of strain in systems with crystalline substrates, some of
the general growth scenarios presented in Fig. 5.18 can also be found here. Al grown on
sapphire will initially show a high roughness which decreases at later times[116], which
is reminiscent of Fig. 5.18(d). Al grown on Si(111), on the other hand, will grow in an
LBL fashion before slowly roughening[117].

Molecular thin films do not present as many problems, since strain usually plays a
negligible role there. All growth scenarios depicted in Fig. 5.18 can be found there. Pure
3D growth from the start can e.g. be observed for DIP grown on MoS2[118] or pentacene
grown on graphene[119]. LBL→3D growth, which in this case is not due to lattice strains,
can usually be observed for growth on weakly interacting substrates like SiO2, e.g. for
pentacene[65, 120] or PTCDI-C𝑥[121, 122]. This growth mode is extremely common.
Coalescence of islands and subsequent LBL growth (ISL→LBL), on the other hand, is
rarely observed, e.g. during growth of rubrene on SiO2[123]. For the ISL→3D mode,
we were unable to find hard experimental proof. We suspect that C60 on SiO2 grows in
this mode, but due to limitations of the XRR method (which can be used to measure
the in-situ roughness of a growing film), only roughness data for the intermediate growth
regime are available there. It is, however, known that C60 forms islands on SiO2, and
the film roughness continually increases at later times.
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In Fig. 5.20 we show experimental examples for the other three growth modes. These
are all from growth experiments using organic molecules, and intriguingly they show
a (compared to our simulations) very early onset of roughening. This kind of rapid
roughening cannot be reproduced using our simple simulation models.

5.6. Conclusion

In this chapter we have investigated the growth modes of a thin film of cubic particles on
a substrate of a different material. We investigated two models: A standard SOS model,
in which particles were prohibited from desorbing from the film and cavities could not
occur, and the colloidal growth model, in which particles were allowed to desorb and
re-adsorb.

We have identified two transitions between growth modes, both of which are non-
equilibrium transitions. The first transition occurs upon increasing the strength of the
substrate interaction, leading to the growth mode of the film changing from forming
islands to growing in a layer-by-layer fashion. This transition corresponds to the layering
transition in an equilibrium. There we would expect the transition to occur at 𝜖 ≈ 𝜖sub.
For the non-equilibrium transition, however, we find that the value of the critical 𝜖sub, crit
is shifted to lower energies, making this a dynamic layering transition. The exact value of
𝜖sub, crit now depends on 𝜖 , Γ, and 𝐸ES, as opposed to only 𝜖 in equilibrium. The second
transition is a transition in time, where in conditions under which the film initially forms
islands on the substrate, these islands will coalesce at later times. Depending on the
model and the exact system parameters, this can lead to several outcomes: The film
might continue to grow in a LBL fashion, it might go towards a rough film with constant
roughness, or it might continue to increase in roughness.

After very long deposition times, thin films will always start roughening, a phenomenon
which is well-known in the literature for growth of thin films on substrates consisting of
the same material. Since at some point all lattice sites will be covered in our simulations,
each film eventually behave as if grown on a substrate of the same material.

Tying all these findings together, we were able to create a global phase diagram with
four possible scenarios, show in Fig. 5.18. Films may start roughening from the begin-
ning, they may grow in a LBL fashion before roughening, they may form islands and
continue roughening after island coalescence, or they may form islands, then smooth
after island coalescence before roughening again.

We have compared our results to previous experimental findings. For the growth of
molecular thin films, consisting of organic molecules, we were able to identify all growth
modes from our simulations and their dependence on substrate and temperature. This
is despite the fact that our particles were isotropic, while organic molecules are usually
anisotropic (one notable exception being C60). This indicates that anisotropy might not
always play a significant role in the evolution of roughness. The exception here is the
strength and time of the onset of roughening. In experiments (as shown in Fig. 5.20)
thin films will usually start roughening after deposition of only a few layers. This effect
is significantly stronger and the onset earlier than we can reproduce using our models.
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We suspected the anisotropic shape of those particles to be the origin of this roughening,
since there one can usually observe ordering effects which simply cannot be captured by
our isotropic model. Hence the next step was to expand this model in order to more
accurately capture such effects (see next chapter). Additionally, the Ehrlich-Schwoebel
barrier plays a significant role: In our simulations, we used 𝐸ES = 0, which leads to
relatively weak roughening. For finite values of 𝐸ES, the roughening effects are stronger,
but this leads to the initial LBL mode vanishing.

Comparisons to atomic thin films were also possible, albeit more complicated. In such
systems, strain usually plays an important role if one is not careful to either match lattice
constants of substrate and film or to use an amorphous substrate.
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Figure 5.20.: Experimental in-situ roughness measurements exhibiting different growth
modes. (a) tetracene on SiO2[124] (1 ML ≡ 13.4 Å[125]), (b) pentacene
on SiO2[65] (1 ML ≡ 15.4 Å), (c) rubrene on SiO2[123] (1 ML ≡ 13.4 Å
in an orthorhombic polymorph crystal[126]; however, in these experiments
the rubrene films were amorphous), (d) DIP on SiO2[64] (1 ML ≡ 17 Å),
(e) HBC on HOPG[59] (1 ML ≡ 3.37 Å; reflectivity measurements indicate
initial quasi-LBL growth), (f) PTCDI-C8 on SiO2[122](1 ML ≡ 20 Å), (g)
6P and (h) 6P-F4 on ZnO[40] (1 ML ≡ 26 Å in the 6P 𝛽-phase), (i) PTCDA
on Ag(111)[127], (j) 6T on SiO2[128]
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Chapter 6.

Anisotropic interactions

The simulation results presented in this chapter have previously been pub-
lished in Phys. Rev. E 105, 045306 [129]

In the previous chapter, we focused on simulations of thin film growth of isotropic parti-
cles. We were able to identify roughness modes which corresponded well to those found
in film growth of anisotropic organic molecules, indicating that anisotropy does not nec-
essary influence film roughness.

In the chosen region of O(10) deposited monolayers, the system of isotropic particles
can, however, not yield more insights, due to its limited nature. Thus the next logical step
was to extend the model. We chose to extend it by implementing anisotropic interactions
between the lattice-isotropic, cubic particles in order to mimic the effects of anisotropic
shape.

We chose to implement the anisotropy in this way since simulations of anisotropically
shaped particles become quite tricky in the multilayer regime. On one hand, it is difficult
to prevent cavity-rich films from occurring; hence, previous work usually focused on
monolayers of e.g. rod-shaped molecules[35, 130]. On the other hand, shape anisotropy
introduces a host of new parameters which need to be considered for translational and
rotational moves.

In this chapter, we investigate how this anisotropy leads to ordering and re-orientation
effects and how the grown films relate to those grown with isotropic interactions.

6.1. Model

As a basis for the model with anisotropic interactions we use the SOS model from Ch. 5.
This means that each particle in the film always needs to be supported by either another
particle or the substrate, and that no particle can desorb from the film.

We extend this model by giving each particle an internal “orientation” along either the
𝑥, 𝑦, or 𝑧 axis. Depending on the relative positions of two neighboring particles and on
their respective orientations, they can now interact with a strength −[ · 𝜖 , where [ ≥ 1,
or with a strength −𝜖 . The particle-substrate interaction strength is for the most part
again −𝜖sub, but we will also discuss the case of a strongly interacting substrate.
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Figure 6.1.: Schematic representation of anisotropic nearest-neighbor interactions. The
colors and arrows denote the orientations of particles.

In Fig. 6.1 we show a schematic representation of a few particles. We investigate two
major ways in which to implement the interaction anisotropy:

• Disc-like: Particles interact strongly if their orientation vectors align and are
parallel to the vector connecting the two particles. In Fig. 6.1, this would mean
that particle pairs 1-2, 4-5, and 6-7 interact strongly, while all other pairs interact
with strength −𝜖 .
This leads to particles stacking and forming “needles”, similar to what is observed
in growth experiments for disc-shaped particles.

• Rod-like: Particles interact strongly if their orientation vectors align and are
perpendicular to the vector connecting the two particles. In Fig. 6.1, this would
mean that particle pairs 2-3, 4-9, and 7-8 interact strongly while all other particle
pairs interact weakly.
This leads to the alignment of parallel particles, similar to what can be observed
in growth experiments of rod-shaped particles.

This implementation of anisotropic interactions differs from e.g. the Lebwohl-Lasher
model[131] for liquid crystals in that the interaction strength depends on the relative
positions of particles (in the Lebwohl-Lasher model, all neighboring particles of identical
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6.2. Effective Ehrlich-Schwoebel barrier

orientation will interact strongly). Most of the results shown in this chapter are for
so-called disc-like interactions between particles.

The KMC simulations are then performed in a manner similar to those of the previous
chapter, with the introduction of a new move. During each time step, either a new
particle can be inserted with a rate 𝐹, or an already existing particle can attempt to
either hop to a neighboring site with a rate 𝐷 (with the restriction that the height
difference between origin and target site is ≤ 1 layer) or to change its orientation vector,
i.e. rotate, with a rate 𝐷rot. These moves are then again accepted with a probability
𝑝 = min (1, exp(−Δ𝐸)), where Δ𝐸 is the change in internal energy this move would cause.
Both 𝐷 and 𝐷rot are again given in units of 𝐹.

For the implementation of the rotation moves, we investigate two different scenarios:

• Model B: Here, all particles, including those buried inside the film, can possibly
rotate at any time. This implementation is the more intuitive one, since our parti-
cles are isotropic with respect to the lattice and thus no steric blocking of rotations
can occur

• Model S: Only particles at the surface can rotate. This implementation is closer to
the behavior of anisotropic molecules in growth experiments, which cannot rotate
easily once they have been buried.

6.2. Effective Ehrlich-Schwoebel barrier

In these simulations, we again do not implement an explicit Ehrlich-Schwoebel barrier.
The newly introduced interaction anisotropy does, however, lead to an effective, asym-
metric ES barrier.

Figure 6.2.:
Schematic illus-
tration for the
origin of the ef-
fective ES barrier

In Fig. 6.2 we schematically show the origin of this barrier
in a system of disc-like interacting particles. For the top-
most 𝑧 particle to hop down, the change in internal energy
is Δ𝐸 = 2𝜖 − [𝜖 . For [ > 2, this hop down becomes energeti-
cally unfavorable. The reverse, upwards hop, however, would
be energetically favorable.
The results presented in this chapter show that for strong
anisotropies, a strong roughening effect accompanied by the
formation of 𝑧 needles can be observed, which can probably
be traced back to this barrier.
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6.3. Observables

In addition to the morphology of the grown film, we are now also interested in the
ordering inside the film. To measure this, we use the order parameter

Z =
𝑁𝑧 − 1

2

(
𝑁𝑥 + 𝑁𝑦

)
𝑁𝑥 + 𝑁𝑦 + 𝑁𝑧

(6.1)

where 𝑁𝛼 is the number of particles oriented in direction 𝛼. This order parameter is
frequently used to study the ordering of anisotropically shaped particles[132]. Its value
ranges from −0.5 (if all particles are oriented in the 𝑥 or 𝑦 direction) to 1 (if all particles
are oriented in the 𝑧 direction). In an isotropic system, where all orientations are equally
likely, it has the value 0.

This value can also be calculated layer-wise, allowing us to measure order vs. height
inside the film.

6.4. Mean-field calculations

As already indicated in Sec. 4.3, we can derive a mean-field approximation to predict
equilibrium phase behavior for a system of particles with multiple possible orientations.
The goal of these calculations is to investigate whether such an approximation is appli-
cable in this scenario, and if so, how well it works.

We do this by equating the concentrations (𝑥𝛼 = 𝑁𝛼/𝑁) of two of the three species,
e.g. 𝑥𝑥 = 𝑥𝑦, and then calculate when phase separation between these two species and
the third, e.g. 𝑥𝑧 occurs. Rather than writing the free energy as a function of 𝑇 , we will
write it as a a function of energies which are ∝ 1/𝑇 .

The free energy of a mixed system is defined as:

Δ𝐹mix = Δ𝐸mix − 𝑇Δ𝑆mix (6.2)

The internal energy in a system of three particle species is

Δ𝐸mix = − 𝑛𝑥𝑥𝜖𝑥𝑥 − 𝑛𝑦𝑦𝜖𝑦𝑦 − 𝑛𝑧𝑧𝜖𝑧𝑧 − 𝑛𝑥𝑦𝜖𝑥𝑦 − 𝑛𝑥𝑧𝜖𝑥𝑧 − 𝑛𝑦𝑧𝜖𝑦𝑧 (6.3)

where 𝑛𝛼𝛽 is the number of nearest neighbor pairs of species 𝛼 and 𝛽, and 𝜖𝛼𝛽 the
interaction strength between particles of species 𝛼 and 𝛽.

To calculate the mixing entropy in such a three-component system, we assume that
the lattice is completely filled. The number of possible configurations is then:

Ω =
𝑁!

𝑁𝑥!𝑁𝑦!𝑁𝑧!
(6.4)

where 𝑁 is the number of lattice sites and 𝑁𝛼 the number of particles oriented in the
direction 𝛼. Consequently, we can calculate the entropy of this system using the Stirling
approximation:

Δ𝑆𝑚𝑖𝑥 = 𝑘 log

(
𝑁!

𝑁𝑥!𝑁𝑦!𝑁𝑧!

)
≈ −𝑘 (𝑁𝑥 log 𝑥𝑥 + 𝑁𝑦 log 𝑥𝑦 + 𝑁𝑧 log 𝑥𝑧) (6.5)
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6.4. Mean-field calculations

6.4.1. 3D

Since in 3D the average inter-particle interactions are identical for all three species, we
only differentiate interactions between particles of like and unlike species, 𝜖0 and 𝜖 ′0.
Translating these parameters to the system of anisotropically interacting particles yields:

• Disc-like: 𝜖0 =
[+2
3 𝜖 , 𝜖 ′0 = 𝜖

• Rod-like: 𝜖0 =
2[+1
3 𝜖 , 𝜖 ′0 = 𝜖

In a similar spirit to Flory-Huggins theory, we will here subtract the bulk energies of
the pure systems, 𝐸0 = − 𝑧

2𝜖𝑥𝑥𝑁𝑥 − 𝑧
2𝜖𝑦𝑦𝑁𝑦 − 𝑧

2𝜖𝑧𝑧𝑁𝑧, from Δ𝐸mix. This is done purely to
simplify the calculations and does not change the phase behavior, since it constitutes a
shift by a constant. Thus we can substitute in Eq. 6.3:

𝜖𝑥𝑥 = 𝜖𝑦𝑦 = 𝜖𝑧𝑧 ≡ 𝜖0
𝜖𝑥𝑦 = 𝜖𝑥𝑧 = 𝜖𝑦𝑧 ≡ 𝜖 ′0

𝑛𝛼𝛼 =
𝑧𝑁𝛼 − 𝑛𝛼𝛽 − 𝑛𝛼𝛾

2

This yields

Δ𝐸mix = − 𝑛𝑥𝑥𝜖𝑥𝑥 − 𝑛𝑦𝑦𝜖𝑦𝑦 − 𝑛𝑧𝑧𝜖𝑧𝑧 − 𝑛𝑥𝑦𝜖𝑥𝑦 − 𝑛𝑥𝑧𝜖𝑥𝑧 − 𝑛𝑦𝑧𝜖𝑦𝑧
+ 𝑧

2𝜖𝑥𝑥𝑁𝑥 + 𝑧
2𝜖𝑦𝑦𝑁𝑦 + 𝑧

2𝜖𝑧𝑧𝑁𝑧

= (𝑛𝑥𝑦 + 𝑛𝑦𝑧 + 𝑛𝑥𝑧) (𝜖0 − 𝜖 ′0) ≡
𝑘𝑇 (𝑛𝑥𝑦+𝑛𝑦𝑧+𝑛𝑥𝑧 )𝜒

𝑧

= 𝑁𝑘𝑇 𝜒(𝑥𝑥𝑥𝑦 + 𝑥𝑦𝑥𝑧 + 𝑥𝑧𝑥𝑥) (6.6)

with

𝑛𝛼𝛽 = 𝑧𝑁𝛼𝑥𝛽

𝜒 ≡ 𝑧

𝑘𝑇
(𝜖0 − 𝜖 ′0)

Thus we obtain:

Δ𝐹𝑚𝑖𝑥 = Δ𝐸𝑚𝑖𝑥 − 𝑇Δ𝑆𝑚𝑖𝑥

= 𝑁𝑘𝑇 (𝜒(𝑥𝑥𝑥𝑦 + 𝑥𝑦𝑥𝑧 + 𝑥𝑧𝑥𝑥) + 𝑥𝑥 log 𝑥𝑥 + 𝑥𝑦 log 𝑥𝑦 + 𝑥𝑧 log 𝑥𝑧)
(6.7)

All three particle species behave identically, thus it plays no role which species is picked
as the distinct one. We choose to set 𝑥𝑥 = 𝑥𝑦. This yields:

Δ𝐹mix = 𝑁𝑘𝑇 (𝜒(2𝑥𝑧𝑥𝑦 + 𝑥2𝑦) + 𝑥𝑧 log 𝑥𝑧 + 2𝑥𝑦 log 𝑥𝑦)

We now use 𝑥𝑦 =
1−𝑥𝑧
2 and 𝑓 =

Δ𝐹mix

𝑁𝑘𝑇
to obtain:

𝑓 =
𝜒

4

(
−3𝑥2𝑧 + 2𝑥𝑧 + 1

)
+ 𝑥𝑧 log 𝑥𝑧 + (1 − 𝑥𝑧) log

1 − 𝑥𝑧
2

(6.8)
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And thus we obtain an equation which only depends on 𝑥𝑧 and 𝜒. The composition
of the stable phase is again the one at which the free energy has its global minimum.
Analytically determining the minima of such a function is no easy task. This is where
Landau theory comes in useful, since finding the minima of a polynomial is considerably
easier.

To analyze this function using Landau theory, we first rewrite it to depend on Z using
𝑥𝑧 = 2

3 Z +
1
3 . The reason for this is that for 𝜒 < 𝜒𝑐, Z will be 0, while it is nonzero for

𝜒 > 𝜒𝑐; this is a requirement for Landau theory to apply. This rewrite yields:

𝑓 (Z) = 1

3

(
−𝜒Z2 + 2Z log(2Z + 1) − 2(Z − 1) log(1 − Z) + log

(
1

27
(2Z + 1)

)
+ 𝜒

)
(6.9)

which can be written as a Taylor expansion up to the fourth order:

𝑓 (Z) ≈ 𝜒

3
− log(3) +

(
1 − 𝜒

3

)
Z2 − Z

3

3
+ Z

4

2
(6.10)

The stable phases are those where 𝜕 𝑓

𝜕Z
= 0, i.e.

𝜕 𝑓

𝜕Z
= Z

(
6Z2 − 3Z − 2𝜒 + 6

)
!
= 0 (6.11)

This yields two solutions:

1. Z = 0: This is the solution for 𝜒 < 𝜒𝑐, i.e. below the phase transition

2. Z = 1
12

(
3 ±
√
48𝜒 − 135

)
, for the position of the maximum and second minimum.

This is the result for 𝜒 ≥ 135/48. However, when the second minimum initially
appears, it is energetically less favorable than the one at Z = 0. Only for 𝜒 ≥ 𝜒𝑐
is this the absolute minimum of the free energy. To find the value of 𝜒𝑐, we can
use the condition that at coexistence the value of the free energy at both minima
is identical, and that the first minimum will be at Z = 0, i.e.

𝑓 (Zmin,2) = 𝑓 (0) = 𝜒𝑐

3
− log(3)

⇔
(
1 − 𝜒𝑐

3

)
Z2min,2 −

Z3min,2

3
+
Z4min,2

2
= 0

Using Zmin,2 =
1
12

(
3 +
√
48𝜒𝑐 − 135

)
, this yields:

𝜒𝑐 =
17

6
≈ 2.833 (6.12)

𝜒𝑐 is the critical point at which the system will undergo a first order phase transition.
The transition being first order is evident from the fact that there is a jump between
the compositions of the stable phases, from Z = 0 to Z = 1/3. As already stated, Landau
theory only yields useful results close to the critical point. In order to determine the
phase behavior further away from 𝜒𝑐, it is more instructive to inspect the free energy
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6.4. Mean-field calculations

function itself, as shown in Fig. 6.3. From visual inspection of 𝑓 , we find the value of
𝜒𝑐 to be closer to ∼ 2.772. This slight discrepancy from the value found using Landau
theory can be explained by the fact that higher order terms are not taken into account
in the Taylor expansion of 𝑓 . Additionally, the second minimum at coexistence is now
at Z ≈ 0.5.

0.50 0.25 0.00 0.25 0.50 0.75 1.00
ζ

0.3

0.2

0.1

0.0

f

2.4
2.772
3

Figure 6.3.: Plot of 𝑓 vs Z in the three-component 3D system for three values of 𝜒 below,
at, and above 𝜒𝑐. Markers denote the absolute minima of 𝑓 .

As expected, we find that for 𝜒 < 𝜒𝑐, there is one minimum at Z = 0, i.e. the system
is isotropic. At 𝜒 ≈ 𝜒𝑐, the free energy has two minima of equal depth, indicating
that here phase coexistence occurs. For 𝜒 > 𝜒𝑐, the free energy becomes non-convex.
However, for 𝜒 > 𝜒𝑐 there is only one point at which the free energy reaches this lowest
value, indicating that it is energetically most favorable for the system to be at a high
concentration of orientation 𝑧 as 𝜒 increases. This indicates a first-order phase transition
upon increasing 𝜒 from an isotropic system to one in which one species dominates. As
we will show below, this matches very well our simulation results for rod-like anisotropy.
For disc-like interactions, however, our simulations yield that demixing always yields a
phase with two dominating particle species.

This discrepancy is due to the averaging nature of the mean-field approximation, which
prohibits it from accounting for the anisotropy of the interactions. Consider a completely
filled 3D box of disc-like interacting particles. Energetically, there is no difference between
a system in which all particles are oriented in the same direction and one in which there
are alternatingly oriented “sheets” of particles (e.g. in the 𝑥 and 𝑦 direction). Entropically,
the latter is favorable and thus occurs more easily.
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Chapter 6. Anisotropic interactions

6.4.2. 2D

Apart from the 3D case, we want to investigate whether (and if so, how well) a mean-field
description describes the ordering behavior in a 2D film, i.e. a monolayer. The monolayer
case is especially interesting, since it might give us insight regarding the initial stages
of film growth. We now investigate a completely filled 2D layer in which particles can
assume all of the three orientations. The interaction parameters are now:

• Disc-like: 𝜖0 =
[+1
2 𝜖 for 𝑥 and 𝑦 particles, 𝜖0 = 𝜖 for 𝑧 particles, 𝜖 ′0 = 𝜖

• Rod-like: 𝜖0 = [𝜖 for 𝑧 particles, 𝜖0 = 𝜖 for 𝑥 and 𝑦 particles, 𝜖 ′0 = 𝜖

In the previous section we found that a mean-field approximation of our three-component
system will show a first order phase transition. The question is whether this transition
still occurs. Also, in the previous section we subtracted the bulk internal energy from
Δ𝐸mix due to this making the calculations easier. In the 2D system, there is no clear way
to subtract the bulk energy, since now the bulk energy of a pure 𝑧 system differs from
those where only 𝑥 and 𝑦 particles are present.

For disc-like interactions, we thus obtain

Δ𝐸mix = 𝐸mix

= − 𝑛𝑧𝑧𝜖 − 𝑛𝑥𝑥
[ + 1
2

𝜖 − 𝑛𝑦𝑦
[ + 1
2

𝜖 − (𝑛𝑥𝑦 + 𝑛𝑦𝑧 + 𝑛𝑥𝑧)𝜖

=
([−1)

4 𝜖𝑛xz + ([−1)4 𝜖𝑛yz + [−1
2 𝜖𝑛xy − 2𝜖𝑁𝑧 − ([ + 1)𝜖𝑁𝑥 − ([ + 1)𝜖𝑁𝑦

= 𝑁 (([ − 1)𝜖𝑥𝑥𝑥𝑧 + ([ − 1)𝜖𝑥𝑦𝑥𝑧 + 2([ − 1)𝜖𝑥𝑥𝑥𝑦 − 2𝜖𝑥𝑧 − ([ + 1)𝜖𝑥𝑥 − ([ + 1)𝜖𝑥𝑦)

using 𝑛zz =
𝑧𝑁𝑧−𝑛xz−𝑛yz

2 etc. for 𝑧 = 4. Due to the broken symmetry, particles oriented
in the 𝑧 direction now interact differently than those in the 𝑥 and 𝑦 directions. We are
thus interested in the concentration of this species. Substituting 𝑥𝑥 = 𝑥𝑦 =

1−𝑥𝑧
2 , we then

obtain

𝑓 = − 𝜖
2
([ + ([ − 1)𝑥2𝑧 − 2([ − 1)𝑥𝑧 + 3) + 𝑥𝑧 log 𝑥𝑧 + (1 − 𝑥𝑧) log

(
1 − 𝑥𝑧
2

)
(6.13)

In a similar way for rod-like interactions, we can obtain

𝑓 = − 𝜖
2
([ + 5([ − 1)𝑥2𝑧 − 2([ − 1)𝑥𝑧 + 3) + 𝑥𝑧 log 𝑥𝑧 + (1 − 𝑥𝑧) log

(
1 − 𝑥𝑧
2

)
(6.14)

Similarly to the results in the previous section, we can rewrite this function to depend
on Z and analyze the Taylor expansion using Landau theory. This yields for Eqs. 6.13
and 6.14:

𝑓disk(Z) ≈ −
2

9
([ + 8)𝜖 − log(3) + 4

9
([ − 1)𝜖Z +

(
1 − 2

9
([ − 1)𝜖

)
Z2 − Z

3

3
+ Z

4

2
(6.15)

𝑓rod(Z) ≈ −
2

9
(2[ + 7)𝜖 − log(3) − 4

9
([ − 1)𝜖Z +

(
1 − 10

9
([ − 1)𝜖

)
Z2 − Z

3

3
+ Z

4

2
(6.16)
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6.4. Mean-field calculations

This functional form is more complicated than in the 3D case and reminiscent of that for
a 2D system with an applied external field (see App. C). In such systems, the external
field will often suppress the first order transition in favor of a second order transition.
Note also that the sign of the linear term is opposite in both equations, i.e. 𝑧 particles
will be suppressed when implementing disk-like interactions and promoted by rod-like
interactions.
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Figure 6.4.: Order parameter Z at which the free energy from Eq. 6.16 has an absolute
minimum (a) for the full free energy function and (b) for the free energy
without including the term −4

9 ([ − 1)𝜖Z

In order to determine whether a second order transition occurs, we plot the position
of the value of Z for the global minimum of Eq. 6.16 (for rod-like interactions) in the
𝜖-[-plane in Fig. 6.4 for (a) the full free energy and (b) the free energy without including
the linear term −4

9 ([ − 1)𝜖Z . In Fig. 6.4(a), the minimum continuously shifts as [ and 𝜖
increase, while in Fig. 6.4(b), a discrete jump from Z = 0 to a non-zero ordering is visible.
This indicates that the three-component system on a 2D lattice will indeed exhibit a
second order phase transition, due to the anisotropic interactions acting similarly to an
external field. In both cases, Zmin will go from 0 to 1, i.e. the system transitions from an
unordered state to one in which all particles are oriented in the 𝑧 direction. Conversely,
for Eq. 6.15 (disc-like interactions) we find a transition of Zmin from 0 to −0.5.

Using this knowledge, we will now numerically analyze the minima of Eqs. 6.13 and
6.14. Since these systems will only exhibit a second order phase transition, it is sufficient
to determine the position of the global minimum, i.e. 𝜕 𝑓 /𝜕𝑥𝑧 = 0:

• Disc-like: 𝜕 𝑓

𝜕𝑥𝑧
= 𝜒(1 − 𝑥𝑧) − log(1 − 𝑥𝑧) + log(2𝑥𝑧) ≡ 0

• Rod-like: 𝜕 𝑓

𝜕𝑥𝑧
= 𝜒(1 − 5𝑥𝑧) − log(1 − 𝑥𝑧) + log(2𝑥𝑧) ≡ 0

where 𝜒 ≡ ([ − 1)𝜖 .
We now calculate 𝜒 for a range of values for xz,min and then plot 𝜒 vs. xz,min for both

types of anisotropy in Fig. 6.5. In the system with rod-like anisotropy, xz,min quickly
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Figure 6.5.: 𝜒 vs xz,min found by solving 𝜕 𝑓 (𝑥𝑧)/𝜕𝑥𝑧 = 0 for disc-like and rod-like inter-
actions. Disc-like interactions lead to the disappearance of 𝑧 particles as 𝜒
is increased, while for rod-like interactions all particles quickly orient in the
𝑧 direction.

goes towards 1, i.e. a state in which all particles are oriented in the 𝑧 direction, as 𝜒
increases, while for the disc-like interactions xz,min slowly relaxes towards 0, i.e. a state
in which particles are only oriented in the 𝑥 and 𝑦 directions.

To test whether this fits simulation data, we can convert xz,min and 𝜒 to Z and [,
respectively, as:

Z = 𝑥z,min − 1
2 (1 − 𝑥z,min) (6.17)

[ = 1 + 𝜒
𝜖

(6.18)

We performed equilibrium simulations in a completely filled 2D lattice, where during each
time step we attempted to rotate a randomly chosen particle. The value of [ was varied
from 1 to 3 for several values of 𝜖 , letting the system run for 1010 steps and extracting
the average order parameter at each value of [.

In Fig. 6.6 we show the results compared to the respective mean-field calculations.
While there are slight deviations, it is obvious that in this 2D three-component system
the mean-field calculations yield very good results.

These findings indicate that during the initial stages of film growth, the film will be
only ordered partially. As shown below, thick films will, however be oriented completely
for strong enough values of [, i.e. an ordering transition vs. time occurs here.

Additionally, we find that, while in 2D the system will show a second-order phase
transition, it will show a first-order transition in 3D. This is due to the fact that the
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Figure 6.6.: Z vs. [ in equilibrium simulations for rod-like and disc-like interactions. The
colored lines indicate the values predicted by mean-field calculations.

restriction to 2 dimensions is akin to applying a symmetry breaking field which disfavors
𝑧 particles in the case of disc-like interactions and favors them for rod-like interactions.,
effectively suppressing the first order transition.

6.5. Simulations

Unless stated otherwise, all KMC results shown in this section were performed at 𝐿 = 256
for disk-like interactions. 𝜖 is investigated in the range −2...−6, D for 103...105, and 𝐷rot
for 10...104. As explained in the previous chapter, the values for 𝜖 and 𝐷 are significantly
lower than what we would expect them to be in growth experiments. However, we still
assume that these will lead to qualitatively the same roughness behavior as the “real”
parameters, provided the scaling relations still hold for anisotropic interactions. For the
choice of values for 𝐷rot there is no real justification. We chose for rotations to occur
more slowly than diffusion since we assume that the energy barriers are stronger for
rotations.

67



Chapter 6. Anisotropic interactions

(a) (b) (c)

Figure 6.7.: Snapshots of films after deposition of 50 monolayers at 𝜖 = −3, 𝜖sub = −3.11,
𝐷 = 104, 𝐷rot = 100 in model S. Red, green, and blue indicate particles
oriented in the 𝑥, 𝑦 and 𝑧 direction, respectively. The snapshots were taken
for [ = (a) 1.5, (b) 2.5 and (c) 3.5

In Fig. 6.7 we show snapshots of KMC simulations of disc-like interacting particles
after deposition of 50 ML for several values of [.

If [ were 1, i.e. in an isotropic system, the system would show LBL growth under such
conditions. At [ = 1.5 (Fig. 6.7(a)), this is still the case. Additionally, the system is more
or less isotropic, evidenced by the fact that all orientations occur approximately equally
likely. Slightly increasing [ to 2.5 (Fig. 6.7(b)), the film is still very smooth, while now
there seems to be a depletion of blue particles (oriented in the 𝑧 direction). This is due
to the fact that at these parameters fibers of 𝑥- and 𝑦-oriented particles (𝑥-fibers and 𝑦-
fibers) start forming within the planes. These fibers are themselves relatively short and
randomly distributed within the planes, leading to layers being relatively unordered. If
we increase [ even further to 3.5 (Fig. 6.7(c)) we can now observe the formation of long
𝑧 fibers (blue), which reach throughout the whole film and lead to a significant increase
in film roughness.

These two transitions (unordered to ordered and smooth to rough) were found to occur
in both models and over wide ranges of parameters and will be analyzed below.
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6.5.1. Growth modes
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Figure 6.8.: Temporal evolution of rough-
ness 𝜎 and order parameter Z
for 𝜖 = −3, Γ = 104. 𝐷rot = 100
and [ = 1, 1.5, 2 for different
𝜖sub in model S
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Figure 6.9.: Same as Fig. 6.8, but for Model
B

First we investigate if and how the interaction anisotropy influences the growth modes
described in the previous chapter for isotropic interactions. For such systems we found
that the roughness evolution of thin films can be divided into four categories, depending
on the parameters Γ, 𝜖 , and 𝜖sub:

1. LBL: smooth layer-by-layer growth

2. ISL → LBL/CONST: initial island formation, followed by a reduced roughness

3. ISL → 3D: initial island formation, followed by increasing roughness

4. 3D: Increasing roughness from the beginning

In the top rows of Figs. 6.8 and 6.9 we show typical examples of growth modes 1, 2, and
3 (depending on the value of 𝜖sub) for weak anisotropies. Growth mode 4 is not shown
since, again, it mainly occurs at very low Γ or at strong 𝐸ES.

From left to right we increase the value of [ from 1 to 2. The growth modes of the thin
films do not change upon increasing [, although the exact value of the roughness does
change. For weak substrates (𝜖sub = −0.89), the film shows the ISL→CONST growth
modes, and the final roughness decreases as [ increases. One might assume that for
even stronger values of [, it will eventually go down to 0.5 and the film will go to the
ISL→LBL growth mode. As will be explained in more detail in the following sections,this
does however not occur, since above a critical [trans the particles will no longer be all
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oriented in the 𝑥 and 𝑦 directions, instead now also forming long 𝑧-fibers, roughening the
film in the process.

When looking at the values for the order parameter in the lower rows, however, it is
obvious that the order parameter Z undergoes a significant change upon increasing [.
The film goes from completely unordered (Z = 0) at [ = 1 to completely ordered in the
𝑥 and 𝑦 direction (Z = −0.5) for [ = 2. At [ = 1.5, in model B Z will initially decrease
(partial ordering) before returning to 0 at longer times. In model S the film will remain
frozen in the partially ordered state, due to the fact that buried particles cannot rotate.

These findings indicate that for sufficiently weak anisotropies, roughness and ordering
of thin films are independent of each other. Additionally, the value of Z seems to be
independent of 𝜖sub for long times. This is most likely due to the short-ranged nature of
the substrate attraction, due to which the film behaves as one grown under homoepitaxial
conditions as soon as the substrate is completely covered.

6.5.2. Equilibrium transition
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η

0.4
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0.2

ζ f

D= 104, Drot = 10

D= 104, Drot = 100

D= 105, Drot = 100

Figure 6.10.: Zfinal (Z after deposition of 50 ML) vs. [ for 𝜖 = −3 and 𝜖sub = −4 in
model B. The isotropic→ ordering transition from Zfinal = 0 to Zfinal = 1 is
independent of the kinetic parameters in the observed range.

As shown in Figs. 6.8 and 6.9, Z will go from 0 to −0.5 upon increasing [, indepen-
dent of the substrate. We suspected this to be an equilibrium ordering transition, i.e.
independent of kinetic parameters. To confirm this, we performed [ sweeps at different
kinetic parameters and then plotted Z after deposition of 50 ML (≡ Zfinal) vs [, as shown
in Fig. 6.10. The cut-off of 50 ML was chosen arbitrarily as a “thick enough” film. From
Figs. 6.8 and 6.9 it seems that for thicker films, Z will not change noticeably for longer
times.
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It is evident from Fig. 6.10 that, at least in the range of used kinetic parameters, the
transition from unordered to ordered is completely independent of the kinetics, indicating
equilibrium behavior.
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Figure 6.11.: Order parameter Zfinal vs [ for different values of 𝜖 at 𝜖sub = −4, 𝐷 = 104

in model B ((a) and (b)) and model S ((c) and (d)) for 𝐷rot = 10 ((a) and
(c)) and 𝐷rot = 100 ((b) and (d))

We can now again extract the transition point by fitting a tanh curve to the data points
(here only to those points before the re-ordering transition at higher [) and extracting
the inflection point as the transition point [crit. This is shown in Fig. 6.11

In Fig. 6.12 we show the thus extracted values of [crit for several values of 𝜖 , re-scaled
to ([crit − 1)𝜖 . The values are compared to those obtained in equilibrium Monte Carlo
simulations performed by Nicolas Bader[129].
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Figure 6.12.: [crit for the unordered to ordered transition for several values of 𝜖 , re-scaled
to ([crit − 1)𝜖 , for both models. In model B, the transition occurs at the
same point as in equilibrium, while in model S it is shifted slightly.

In those equilibrium simulations the re-scaled values are approximately constant, show-
ing that [crit scales as

[crit = 1 + 𝜒
𝜖

(6.19)

with 𝜒 ≈ 2.07. The extracted values of [crit for model B are very close to these points,
indicating that the transition in model B is indeed the equilibrium one. This makes
sense, since in model B all particles are allowed to rotate at any time, allowing the film
to equilibrate from any configuration. In model S, the extracted values for [crit deviate
from the equilibrium ones, being significantly lower.

6.5.3. Non-equilibrium transition

From Figs. 6.10 and 6.11 it is clear that if we increase [ beyond [crit, Zfinal will eventually
increase again. The value of [ at which this increase begins seems to now depend on the
kinetic parameters (see Fig. 6.10), indicating that this is a non-equilibrium transition.
The increase of Zfinal indicates that beyond this transition point, which we call [trans, a
significant fraction of the particles will be oriented in the 𝑧 direction. Referring back to
the snapshot Fig. 6.7(c), it is clear that this does occur, accompanied by the 𝑧 particles
now forming long 𝑧-fibers.

72



6.5. Simulations

2

4

σ
η= 2.5 η= 3 η= 3.5

0 50
Θ

(a)

0.5

0.0ζ

−0.89

−1.78

−3.11

0 50
Θ

(b)

0 25
Θ

(c)

Figure 6.13.: Temporal evolution of rough-
ness 𝜎 and order parameter Z
for 𝜖 = −3, Γ = 104. 𝐷rot =

100 and [ = 2.5, 3, 3.5 for dif-
ferent 𝜖sub in model S.
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Figure 6.14.: Same as Fig. 6.13, but for
model B

In Figs. 6.13 and 6.14 we show how the evolution of Z and 𝜎 changes as [ is increased.
For large values of [, we see that now both Z and 𝜎 strongly increase with Θ. This can be
seen in both models. We were now interested in the value [trans at which this roughening
and re-ordering transition occurs. As is already obvious from e.g. Fig. 6.11, Zfinal is not
suitable for this purpose, since there is no clear point after which Zfinal increases, and a
tanh fit similar to those performed in the previous sections is also not practical.

From looking at snapshots, we can however conjecture that the size distribution of the
lengths of 𝑧 fibers might be significantly changed during this transition, since it coincides
with the appearance of large fibers.

In Fig. 6.15 we show the distributions of fiber lengths before and after the non-
equilibrium transition. It is clear that before the transition, the distribution of 𝑧-fiber
lengths is narrow, with the longest fiber being ∼ 8 lattice sites long. After the transition,
however, the distribution becomes very wide, with maximum fiber lengths up to 50 (i.e.
fibers going from the substrate to the top of the film). Thus we now try to extract the
transition point by using the width of this 𝑧-fiber distribution.

For each parameter set, we run 5 simulations (now at 𝐿 = 100), create a distribution of
all 𝑧-fibers in all 5 simulations, then determine the width of this distribution (excluding
fibers of length 1), 𝑊𝑧. We take as the transition point [trans the value of [ at which 𝑊𝑧

jumps to a significantly higher value.
In Fig. 6.16 we show Zfinal and 𝑊𝑧 vs [. As noted earlier, Zfinal slowly increases,

making it difficult to use this observable to quantify the transition point. 𝑊𝑧, on the
other hand, shows a clear jump from ∼ 1 to ∼ 10, allowing us to precisely quantify
the location of [trans, indicating that this observable is well suited to pinpoint the non-
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Figure 6.15.: Fiber length distributions in a film for Θ = 50 (a) before and (b) after the
non-equilibrium transition at 𝜖 = −2, 𝐷 = 104, 𝐷rot = 10 and (a) [ = 2.6,
(b) [ = 2.7. In the distribution of 𝑧 fibers, it can be seen that the transition
leads to the occurrence of long 𝑧 needles.

equilibrium transition. Notable here is that this jump occurs at a lower value of [ than
one might choose when using the increase of Zfinal as the criterion for the non-equilibrium
transition. This is due to the fact that shortly after the transition, there are relatively
few long 𝑧-fibers, changing the value of Zfinal only slightly.

We now used this method to determine the value of [trans at several values of 𝐷 and
𝐷rot, sweeping over several orders of magnitude, for both model B and model S. We
found that this method works reasonably well in both models, for the most part. At
very low values of 𝐷 and 𝐷rot, the exact transition point is not as clear as in Fig. 6.16,
but still distinguishable. At very high values of 𝐷 and 𝐷rot, interestingly the transition
seems to disappear completely in model B. There we were unable to see a deviation from
the equilibrium ordering for values of [ up to 105, as shown in App.A

In Fig. 6.17 we show a heatmap of [trans as as function of 𝐷 and 𝐷rot in model S.
Even though the kinetic parameters range over several orders of magnitude, the value of
[trans shifts only slowly, going from ∼ 2 to ∼ 4.

Putting together the results of the previous two sections, we can now construct a
“dynamic phase diagram” in the 𝜖sub-[ plane at a given value of 𝜖 , of which we show an
example in Fig. 6.18 for 𝜖 = −3.

The diagram of growth modes from the previous chapter is expanded into a new dimen-
sion showing the film ordering. For [ ≲ 1.6 (i.e. [ < [crit), the film remains unordered
and we recover the “simple” growth modes from the isotropic system. In general we find
that for [ ≲ 2.4 (i.e. [ < [trans, below the non-equilibrium transition), roughness and
film ordering are completely independent of each other, and for higher values of [ the
system shows the new roughness growth mode caused by the formation of long 𝑧-fibers.
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Figure 6.16.: Comparison of Zfinal and 𝑊𝑧 vs [ after deposition of 50 monolayers for
𝜖 = −3, 𝜖sub = −4, 𝐷 = 10, and 𝐷rot = 100 in model S. 𝑊𝑧 shows a discrete
jump which corresponds to the non-equilibrium transition. This occurs
slightly before Zfinal changes.
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Figure 6.17.: Heatmap showing the value of [trans for the non-equilibrium transition at
different kinetic parameters ad 𝜖 = −3 in model S. Increasing 𝐷 and 𝐷rot
leads to a higher value of [trans. Even so, when the kinetic parameters are
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Figure 6.18.: Modified growth mode diagram for 𝜖 = 3,𝐷 = 104,𝐷rot = 10 in model S.
The simulated parameter sets are denoted by symbols, background colors
mark the approximate extent of the respective growth modes. For weak
anisotropies ([ < [trans), roughness and ordering behavior are indepen-
dent of each other, leading to separate regions. For strong anisotropies
([ > [trans), non-equilibrium roughening behavior occurs, changing both
the ordering and roughness.
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6.6. Model variations

The results shown so far are all for a system of disc-like interacting particles growing a
film on a substrate which interacts equally strong with particles of all orientations. We
now want to briefly discuss two obvious extensions of the model.

6.6.1. Strongly interacting substrate

In addition to the orientation-agnostic (“weakly-interacting”) substrate from the previ-
ous sections, we now implement a “strongly-interacting” substrate. Here the substrate
interaction of 𝑧 oriented particles becomes −[ · 𝜖 , while for other orientations it remains
−𝜖sub. This substrate interaction anisotropy was chosen to mimic substrates preferring
e.g. disk-like particles lying down flat.
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Figure 6.19.: Layer-wise ordering Z𝑙 vs layer 𝑧 after deposition of 50 ML in model S for
𝜖 = −3, [ = 2. We compare substrates where (1) all orientations interact
equally strongly with the substrate (“weak”) and (2) 𝑧 oriented particles
interact with strength [ · 𝜖sub with the substrate (“strong”). On the strong
substrate, all particles in the lowest layer are oriented in the 𝑧 directions.
Z𝑙 then slowly relaxes towards −0.5 as 𝑧 increases. On the weak substrate,
all layers are perfectly ordered in parallel to the substrate.

In Fig. 6.19 we show an example for moderate anisotropy ([ = 2). Particles in the
lowest layers will now all be oriented in the 𝑧 direction (Z𝑙 = 1), slowly relaxing towards
the equilibrium orientation in higher layers (in contrast to this, Z𝑙 will be −0.5 in all
layers for films grown on the weakly-interacting substrate). The increase of Z𝑙 in the
highest layers is due to these layers not being completely filled.
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Figure 6.20.: Comparison of the final Zfinal vs [ after deposition of 50 ML between strong
and weak substrate for 𝜖 = −3 in model S. The isotropic→ ordered transi-
tion occurs approximately at the same [. The non-equilibrium roughening
transition, however, occurs earlier on the strong substrate. This is due to
the fact that there, all particles in the first layer will be oriented in the 𝑧
direction, which act as nucleation sites for the formation of needles. In the
inset we show the results for 𝜎final, where a similar trend can be observed.

Due to this relaxation of Z𝑙, the value of Zfinal will never truly reach −0.5, as shown in
Fig. 6.20. Additionally, this figure shows that the non-equilibrium transition is shifted to
lower values of [ upon switching from the weakly to the strongly interacting substrate.
This is a consequence of the fact that the lowest layers on the strongly interacting sub-
strate will now be filled by 𝑧-oriented particles, acting as nucleation sites for the formation
of 𝑧-fibers and consequently enhancing the roughening growth mode.

6.6.2. Rod-like interactions

As indicated earlier, we can also implement the interaction anisotropy to mimic rod-
shaped molecules (e.g. pentacene). This is realized by letting NN particles interact
strongly if their orientations are identical and perpendicular to the vector connecting the
particles (see description in Sec. 6.1).

For these systems we found the ordering behavior to be the inverse of the one found for
disc-like molecules, as seen in Fig. 6.21. Inverse behavior means that, upon increasing [
from 1 (Fig. 6.21(a)), the system will first go from an unordered state to one in which
all particles are oriented in the 𝑧 direction(≡ standing-up rods, Fig. 6.21(b)). When
[ is increased even further, we again find a non-equilibrium roughening transition, this
time accompanied by particles orienting in the 𝑥 and 𝑦 directions (≡ lying-down rods,
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(a) (b) (c)

Figure 6.21.: Snapshots after deposition of 50 ML at 𝜖 = 3, 𝜖sub = 3.11, 𝐷 = 104,𝐷rot =

100 in model S for rod-like interactions at [ = (a) 1, (b) 1.6, (c) 3. Red,
green, and blue particles are oriented in the 𝑥, 𝑦 and 𝑧 direction, respectively.
Upon increasing [, the film will initially go from an isotropic state to one in
which all particles are oriented in the 𝑧 direction. Upon increasing [ even
further, sheets consisting of 𝑥 and 𝑦 particles start forming, leading to a
rough film.

Fig. 6.21(c)). These lying-down particles then form “sheets” which consolidate into large,
compact blocks.

In Fig. 6.22, we show Zfinal and 𝜎final vs. [ at different values of 𝜖 . It is evident
that rod-like interactions lead to an ordering opposite to the one found for disk-like
interactions, i.e. to a state where all particles are oriented in the 𝑧 direction. Upon
increasing [ further, again an equilibrium transition will occur, leading to a decrease of
Zfinal. Qualitatively, these are the same transitions as found for disc-like interactions. In
the non-equilibrium roughening regime, 𝜎final seems to be independent of the value of 𝜖 .
The final roughness is similar to the one found for disc-like interactions, now due to the
occurrence of sheets consisting of 𝑥 and 𝑦 particles which lead to a strong roughening of
the film (for snapshots see Fig. 6.21).

In simulations and experiments using rod-shaped molecules, it was found that the
anisotropic particle shape plays a significant role in the ordering of the film. Depending
on the molecules used and the exact growth conditions, one can also find there a standing-
up transition (similar to our ordering transition from Z = 0 to Z = 1). However, in
simulations it was found that this occurred due to the anisotropic shape of the particles,
where rods would lie down at low layer filling and only stand up at higher filling[35].

6.7. Comparison to experiments

The extension of the SOS model with anisotropic interactions has thus lead to new
ordering effects. These anisotropic interactions were implemented in the first place in an
attempt to mimic the anisotropic shape of organic molecules, hence it is instructive to
compare our findings to those of experiments.

We mainly used the interaction anisotropy to model disc-shaped molecules. Corre-
sponding molecules used in organic thin film experimental studies are hexa-peri -hexabenzo-
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Figure 6.22.: (a) Zfinal and (b) 𝜎final after deposition of 50 ML vs [ at 𝜖sub = 4, 𝐷 = 104

and 𝐷rot = 100 for different 𝜖 in model S.

coronene (HBC), phthalocyanines (e.g. CuPC and ZnPC), benzene, and perylene. These
particles will, given the right conditions, form needles or stacks, similar to particles in
our simulations at strong enough anisotropies. The variety of possible structures is of
course larger than in our orientation restricted model. Stacking structure there include
e.g. herringbone or 𝜋-𝜋 stacking[133].

The growth direction and ordering of such needles also strongly depends on the sub-
strate. The main distinction can be made here between amorphous substrates, such as
SiO2 (corresponding to a weakly interacting substrate in our work) and ordered sub-
strates, such as metal surfaces (corresponding to a strongly interacting substrate).

Disc-like particles grown on an amorphous substrate will stand up on the substrate.
Phthalocyanines will arrange in a herring-bone structure and form needles growing per-
pendicularly to the substrate[57], while HBC on SiO2 will form a polycrystalline film con-
sisting of standing molecules[59]. On metallic (ordered) substrates, on the other hand,
disc-like particles in the first layer will lie down flat on the substrate, subsequently form-
ing needles growing perpendicularly to the substrate. This has been found for growth
of perylene on copper[58] and for HBC on various metallic substrates[60] and HOPG
(highly ordered pyrolytic graphene)[59]. These results are of course reminiscent of the
behavior found in our simulations for disc-like particles grown on weakly and strongly
interacting substrates, respectively. Benzene particle grown on a substrate modified by a
self-assembled monolayer (SAM) will either form needles throughout the whole film, or
form an ordered structure in the first layer and a polycrystalline film in higher layers[61].
The latter behavior can also be found for a benzene derivative grown on HOPG[62]. This
behavior of ordering at short times and disordering at long times is similar to our results
for films grown with relatively low anisotropy (1 < [ < [crit), judging from the Z vs Θ

curves.
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6.8. Conclusion

In an experiment, varying just the inter-particle or the substrate-particle interaction
is not easy to achieve. In most cases, the only control parameter here is the substrate
temperature 𝑇 . In Ref. 134 benzene was deposited onto gold-coated copper at different
substrate temperatures. It was found that upon increasing 𝑇 , the film will go from an
amorphous to a partially ordered to a completely ordered state. This is in contrast
to our findings that when keeping [ constant and decreasing 𝜖 (increasing 𝑇), the film
will go from the partially ordered non-equilibrium roughened phase to the completely
ordered equilibrium phase. However, changing 𝑇 does not only change the value of 𝜖 , but
also those of 𝜖sub, 𝐷, and 𝐷rot in a non-linear manner. Due to this the correspondence
between experiments and simulations is not always immediately obvious.

It is unclear whether the formation of perpendicularly growing needles as found in
experimental studies is accompanied by the type of rapid roughening which we observe
in our simulations. The in-situ roughness evolution of films of disc-shaped particles is
not often measured, being often omitted in favor of reciprocal space maps. Examples
which we could find include the growth of CuPC on SiO2[135] and of F16CuPC on
SiO2[136], which both show initial LBL growth followed by rapid, strong roughening.
Simultaneously, a change in grain sizes is observed. However, for these results there is
no information on the molecular orientation during film growth. The roughening effect
could as well be produced by a strong ES barrier.

While for disc-like molecules the number of studies is limited, a wide variety of data
and observations can be found for thin film growth with rod-like molecules, especially
pentacene (PEN) and diindenoperylene (DIP). These molecules will show a rapid rough-
ening behavior (see Fig. 5.20) which cannot be explained using rod-like interactions in
our model. On SiO2 at high temperatures, molecules of these species will initially stand
up on the substrate forming a smooth film, with the film later breaking up and strongly
roughening [63, 64, 66, 67, 137]. Growth of DIP on SiO2 at low temperatures[63] or on
gold[68] will, however, lead to particles lying down and forming a rough film, which is
reminiscent of our results,see Sec. 6.6.2. Pure pentacene films will not show this effect,
while a 1:1 mixture of pentacene and perfluoropentacene does[138]. All in all, the com-
parison of results from our model to those from experiments is more complicated here,
since the shape of rod-like molecules is highly anisotropic, leading to a stronger influence
of steric interactions on the morphology.

6.8. Conclusion

We have extended the lattice SOS model for film growth from the previous chapter by
introducing anisotropic interactions, where the interaction anisotropy depended upon
the orientations and relative positions of the particles. The anisotropy was chosen in
a way to model the anisotropic interactions between anisotropically (disk-like or rod-
like) shaped particles, where the strength of interactions between neighboring particles
could be increased by a factor [ ≥ 1. Along with these anisotropic interactions, we
introduced a new rotation move with a corresponding rate 𝐷rot. For these rotations, we
distinguish two scenarios: Model B, where all particles within the film can rotate at any
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time, and model S, where only particles at the surface can rotate. If the anisotropy is
small ([ < [trans), the roughness growth modes presented in the previous chapter will still
occur. We find in this regime that upon increasing the value of [, the growth mode of the
film is unchanged, while particles will orient themselves in parallel or perpendicularly to
the substrate for disk- and rod-like interactions, respectively. In model B, this ordering
transition is independent of the kinetic parameters and occurs at the same value of [ as
a first order ordering transition in a 3D equilibrium system. In model S, the location
of the transition depends only weakly on the kinetic parameters and is still close to the
equilibrium position. However, the transition is now for most kinetic parameters not to
a state in which all particles are ordered.

At strong anisotropies ([ ≥ [trans), the roughness evolution of the thin film changes.
Films will now exhibit a strong roughening. The location of this roughening transition
now depends on the kinetic parameters, making it non-equilibrium. For disk-like inter-
actions, this is due to the occurrence of needles perpendicular to the substrate, while for
rod-like interactions, “sheets” of 𝑥 and 𝑦 particles will start forming. These new structures
change both the ordering and the roughness of the film.

In model B, the transition can disappear close to equilibrium (i.e. for high values
of 𝐷 and 𝐷rot). For film thicknesses smaller than the lateral lattice size, it is e.g. for
disk-like interactions energetically more favorable for all particles to orient in parallel to
the substrate. Since in model B particles can rotate at any time, they are at sufficiently
high 𝐷 and 𝐷rot always able to reach this stable state. Conversely, in model S particles
cannot rotate once they are buried. This prevents all particles from rotating, providing
nucleation sites for 𝑧 needles to start growing. Thus this non-equilibrium transition will
always occur there.
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Chapter 7.

Binary systems

In addition to simulations of a species of anisotropically interacting particles, simulations
of binary films are of significant interest, since these are also the subject of a wide variety
of experimental studies[139, 140, 141]. Such mixed films show a large variety of new
behavior: Depending on the interaction energies, the particle species might intermix or
phase separate[142], and the sizes of these demixed domains can vary drastically depend-
ing on temperature, deposition flux etc. The roughness evolution might significantly
differ from those of the pure components and new morphological features might emerge
(see next section).

Binary thin films play an important role in many manufacturing processes. Most no-
table here are donor-acceptor thin films comprised of semiconducting organic molecules.
These are used in the manufacturing of organic solar cells[4]. Since electronic properties
sensitively depend on the morphological properties, a precise control of the film structure
is desirable.

In simulations of binary systems, there is an additional energetic parameter 𝜖 ′, denoting
the interaction strength between particles of different species. Furthermore, one can also
assign each of the two species an own 𝜖𝛼 for interactions between two particles of species
𝛼, as well as a species-dependent substrate interactions 𝜖sub,𝛼 and diffusion coefficient
𝐷𝛼, complicating the investigation of such systems even more.

Extending the KMC simulations to incorporate two particle species is relatively straight-
forward:

• Any time a deposition move is chosen, generate a random number to determine the
species of the new particle. E.g. for a desired concentration of species 1 𝑐1 = 0.5,
the new particle is of species 1 if 𝑟 ≤ 0.5, with a random 𝑟 ∈ [0, 1].

• Any time a diffusion move is proposed, check the species of all neighboring particles
in order to properly calculate the energy barrier Δ𝐸
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Figure 7.1.: (Left) Copper phthalocya-
nine (CuPC) molecule, (right)
Buckminster Fullerene (C60)
molecule. Figure by courtesy of
B. Reisz

In this chapter, we present two ansatzes
for binary systems: The study performed
in Ref. [135], where we used simple
isotropically interacting particles, trying
to recreate the film morphology by us-
ing Ehrlich-Schwoebel barriers which de-
pend on the local environment of the par-
ticle, as well as preliminary results for a
binary film incorporating anisotropic in-
teractions. In both of these studies, the
focus is on recreating the film morphology
for a CuPC:C60 blend. In Fig. 7.1 we
show the structure of these two molecules.
There we see that CuPC is relatively flat,
while C60 is “football-shaped”, i.e. approx-
imately round.

7.1. Species-dependent Ehrlich-Schwoebel barrier

The results of this section have been previously published in Phys. Rev. Mat.
5, 045601. The author of this thesis did not perform the simulations presented
in this section. [135]

In growth experiments, it was found that co-depositing CuPC and C60 at 310 K will
lead to a film which is smoother than pure films of either particle species, while at 400
K the grown film will be significantly rougher. One conjectured explanation for this
is the reduction of the ES barrier for inter-layer diffusion in a mixed system, due to a
higher number of possible pathways around the edge, leading to different roughening
mechanisms at different diffusion speeds.

To test this hypothesis, we modified the SOS model from Ch. 5 such that the species
onto which the hopping particle would move is checked before each inter-layer hop. If
both particles are of the same species (which is always the case in a one-component
system), the ES barrier is 𝐸ES = 𝐸11

ES = 𝐸22
ES for species 1 and 2, respectively. If, in a

two-component film, the two particles are of different species, the ES barrier for such a
hop would be 𝐸12

ES. The other energetic and kinetic parameters were chosen such that
pure films of species 1 and 2 mimic the general growth behavior of CuPC and C60 films,
respectively.

In Tab. 7.1 we show the parameters used in these simulations. This table shows
that inter-layer hops are unrestricted for hops onto a particle of a different species, but
severely limited otherwise.

The ratios Γ = 𝐷/𝐹 were chosen in such a way to mimic the change in temperature
in experiments when going from 𝑇 = 310𝐾 to 𝑇 = 400𝐾, since 𝐹 = const. and 𝐷 ∝
𝑘B𝑇 exp(−𝐸𝐷/𝑘B𝑇). This is a valid choice if the diffusion barrier 𝐸𝐷 ≈ 11𝑘B𝑇 , which is a
realistic value for organic molecules (see e.g. our calculations for C60 in Ch. 5; also note
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7.1. Species-dependent Ehrlich-Schwoebel barrier

Parameter Value
𝜖1 = 𝜖2 −3
𝜖sub,1 −2.7
𝜖sub,2 −1.0
𝐸11

ES = 𝐸22
ES 3

𝐸12
ES 0

Γ1 = Γ2 104, 105

Table 7.1.: Parameters used for the simulations of binary systems with a species-
dependent ES barrier

that the scaling is not completely accurate here: Changing 𝑇 in an experiment would
also change the values of the energetic parameters, since these are in units of 𝑘B𝑇).

0 10 20
Thickness [nm]

0

1

2

3

4

5

R
ou

gh
ne

ss
 [n

m
]

Experiment

C60
CuPc
blend

0 10 20
Layers

0

1

2

3

4

5

R
ou

gh
ne

ss
 [L

ay
er

s]
Simulation

Γ = 105

Γ = 104

Figure 7.2.: In-situ roughness vs. layer coverage for (left) experiments (extracted from
Kiessig simulations at 𝑇 = 310K) and (right) simulations. The ratios Γ = 104

and 105 correspond to temperatures 𝑇 = 310 K and 400 K, respectively, while
the thickness of one layer is equivalent to 0.7, 1.3, and 1 nm for C60, CuPC,
and the blended film, respectively. Figure by courtesy of B. Reisz.

In Fig. 7.2 we show a comparison of the roughness evolution in experiments and
simulations for deposition of 20 monolayers. There we see how in the experiments, the
blend film will be significantly smoother than the pure films (for C60, the roughness
cannot be extracted at short times due to the absence of Kiessig oscillations; see Ref.
[143] for more details). The roughness evolution in the simulations for Γ = 104 matches
the experimental ones quite well, indicating that the chosen parameters are at least
adequate to properly model the roughness evolution of such mixed films.
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Figure 7.3.: Final film roughness after deposition of (a) 20 nm in an experiment and (b)
20 monolayers in simulations at 310 K and 400 K and Γ = 104 and 105,
respectively. Figure by courtesy of B. Reisz.

In Fig. 7.3 we compare the final film roughness after deposition of 20 monolayers. The
general trend, i.e. a strong roughening in the blend at high temperature and a smoothing
at low temperature, are replicated very well. Notice how:

1. XRR data are missing for C60 and the blend at 400 K. This is due to the fact that
here no Kiessig oscillations could be observed, which is usually a consequence of
very rapid roughening.

2. The roughness extracted via atomic force microscopy (AFM) is significantly higher
than the values obtained via XRR and simulations. This can be traced back to the
fact that AFM measurements are performed some time after the film has stopped
growing. During this time, the film will usually undergo significant morphological
changes, in this case apparently very strong roughening. XRR, on the other hand,
is performed during film deposition, allowing us to extract the in-situ roughness
evolution. The caveat here is, however, that this method is highly sensitive.

Such results lead to the question of whether these post-growth effects could be modeled
in simulations, since these effects appear to strongly influence the morphology of the
resulting film.

Similarly, the island densities after deposition in Fig. 7.4 show a good qualitative
match between experimental and simulation results. The method to determine the island
densities was devised by B. Reisz and can be found in Ref. [143]. Quantitatively, however,
the discrepancy is rather large. Assuming that one lattice site has an area of 1 nm2, the
simulated island density would be around 9000 `m−2, i.e. two orders of magnitude
higher than the densities measured in experiments. This is to be expected, since Γ in
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Figure 7.4.: Measured island densities after deposition in experiment and simulation.
Experimental island densities were extracted using AFM. Figure by courtesy
of B. Reisz.

these simulations is estimated to be 4 to 6 magnitudes lower than in experiments, and
lower values of Γ lead to a higher island density (see Ch. 2.1).

In Fig. 7.5, the origin of the increased roughness and island densities for the blended
film at high temperature is revealed. In the experimental HIM image, large protruding
needles on top of the film are clearly visible. Similar protrusions are found in the simula-
tions. From there we can conjecture a mechanism for the formation of these protrusions:
First, species 2 will form islands on top of the wetting layer of species 1. These islands
will then act as nucleation points for clusters of species 1, which in turn act as nucleation
points for clusters of species 2 etc. This appears to occur due to the absence of the
cross-species ES barrier.

These findings (increased roughness of the blended film at high 𝑇 , increased island size
in the blended film, and the formation of needles) indicate that a reduced cross-species
ES barrier might indeed be the origin of certain phenomena observed. None of the afore-
mentioned features could be produced in simulations with no or a species independent
𝐸ES. However, the needles observed in experiments are thought to be composed entirely
of CuPC, which cannot be accounted for using these simulations. Rather, we expect, and
find, protrusions consisting of both species. In experiments, needles form due to ordering
and alignment of the anisotropically shaped CuPC molecules. This cannot be mimicked
using only cubic particles with isotropic interactions. Hence, a different approach seems
necessary.
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(a) Helium ion microscopy
(HIM) image of CuPC:C60

blend at 400 K.

(b) Snapshots of 1:1 mixed film in simulations at different times

Figure 7.5.: Film morphology (a) after deposition of 20 nm in an experiment and (b) at
Θ = 2, 8, 10 in simulations, both for mixed films. Figure by courtesy of B.
Reisz

7.2. Anisotropic interactions - preliminary results

In the previous section, we showed how a species-dependent 𝐸ES can lead to morphologies
of mixed films similar to those observed in experiments. However, the composition of
such needles could not be modeled appropriately using the simple model of isotropically
interacting particles. Due to this, we performed preliminary investigations of binary
thin films incorporating anisotropically interacting particles. For the particle species, we
chose a disc-like species growing in the LBL→3D mode (Species 1) and an isotropically
interacting species growing in the ISL→3D mode (Species 2). These were again chosen
in order to most faithfully model a mixture of CuPC and C60. CuPC will initially show
layer-by-layer growth before eventually roughening, and it is disc-shaped. C60, on the
other hand, will show a strong initial roughening before eventually going towards a more
or less constant roughness, and its shape is more or less isotropic.

The simulation parameters are shown in Tab. 7.2. All shown values correspond to the

Parameter Value
𝐿 200

𝜖1 = 𝜖2 −3
𝜖sub,1 −4
𝜖sub,2 −0.5
𝐸ES 0

[ 3

𝐷rot 10

Table 7.2.: Parameters used for the simulations of binary systems
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result of a single simulation run, respectively. The parameters were chosen guided by
the results of the previous chapters, e.g. for species 1 to form needles (relatively strong
[) and initial LBL growth (𝜖sub relatively strong compared to 𝜖) and for species 2 to
initially form islands (𝜖sub relatively weak compared to 𝜖). Note that now 𝐸ES = 0, in
contrast to the results of the previous section. This was chosen in order to gain an initial
understanding of the general behavior of such mixed films. Due to the fact that one
species interacts anisotropically and one does not, there is now an anisotropy regarding
the Ehrlich-Schwoebel barrier (see Sec. 6.2) in addition to the chosen values of 𝐸ES.

For the diffusion constants, we investigated three combinations:

• Set 1: 𝐷1 = 104, 𝐷2 = 104

• Set 2: 𝐷1 = 105, 𝐷2 = 105

• Set 3: 𝐷1 = 104, 𝐷2 = 105

In general, one expects the film to grow smoother for larger values of 𝐷. Provided
the two particle species can phase separate, a larger value of 𝐷𝛼 will also lead to the
corresponding species forming larger islands and consequently larger domains.

In Figs. 7.6, 7.7, and 7.8 we show four 𝜎 vs Θ plots for each parameter set, varying
the value of 𝜖 ′ from 0 to −3. From these plots it can be seen that upon increasing the
strength of interaction between particle of different species, 𝜖 ′, the roughness evolution
of the 1:1 mixture will change, going from 3D at 𝜖 ′ = 0 to ISL→LBL at 𝜖 ′ = −3. This
behavior is observable in each of the three sets.

From Fig. 7.2 we find that a 1:1 mixture of CuPC and C60will grow in the ISL→LBL
growth mode at 310 K, which best fits the simulation results for 𝜖 ′ = −3 from e.g. Fig.
7.8(d). However, there the value of 𝜖 ′ is as strong as 𝜖 , which for isotropic interactions
means that both particle species will show intermixing, while from experiments, it is
known that CuPC and C60 will demix.

While the phase behavior in this four-component system is not immediately clear, the
fact that the particle species intermix can be clearly seen from Fig. 7.9(a) (note that Fig.
7.9 is for parameter set 3). However, in Fig. 7.9(b) it can be seen that 𝜖 ′ = −2 is already
weak enough for the species to demix, while we have simultaneously chosen a value of [
strong enough for the orientations of species 1 to demix. This then leads to a blended film
which is smoother than the pure films of either component. Simultaneously, protrusions
consisting purely of particles of species 1 form on top of the film. In App. B we show
snapshots of mixed films for parameter sets 1 and 2. From these snapshots, it becomes
clear that the size of these protrusions sensitively depends on the kinetic parameters of
the system.

In Fig. 7.10 we show the simulated island densities after deposition for all three
parameter sets. Island densities were determined as described in Ref. [143]. The pure
species 2 films (isotropic particles, 𝑐1 = 0) show an extremely low island density, due
to the islands having coalesced into a relatively smooth film at this point, while in the
pure species 1 film, the strong anisotropy means that the film will show non-equilibrium
roughening and thus a large number of 𝑍 fibers. The island densities in the mixed
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(d) 𝜖 ′ = −3

Figure 7.6.: 𝜎 vs Θ at different values of 𝜖 ′ and the parameters of set 1. Plotted are
systems composed of only isotropic particles (blue), only disc-like particles
(orange), and 1:1 mixtures of both (green)

films are highest at 𝜖 ′ = 0 and lowest at 𝜖 ′ = 3, coinciding with the decrease in film
roughness seen in Figs. 7.6-7.8. For none of these parameter sets, however, we observe
the significant increase in island densities for blend films found in experiments.

In the previous section, we showed that post-growth AFM studies at high temperatures
found the roughness and island density for blend film grown at 400 K to be higher than
those of the pure films. These values were, however, measured post-growth, allowing for
re-ordering effects to significantly alter the morphology of the film after deposition. What
is striking in the simulations presented here, is the formation of protrusions consisting
purely of oriented particles of the disc-like species, a feature which we also suspect to
occur in the co-deposition experiments.
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Figure 7.7.: Same as in Fig. 7.6 for set 2

Simultaneously, the fiber distributions of species A will show the effect of the particle
species intermixing: In Fig. 7.11, the average length of particle fibers as well as the
widths of the fiber distributions significantly decrease upon decreasing 𝜖 ′ from −2 to −3,
while for all |𝜖 ′ | ≤ 2 the distributions of fiber lengths are more or less identical within
each parameter set. Comparing the parameter sets, however, the influence of 𝐷1 becomes
visible. When compared to set 1 and 3 (where 𝐷1 = 104), the average length of 𝑧 fibers
is significantly increased for 𝐷1 = 105. This effect vanishes for 𝜖 ′ = −3.

The fact that the mixing-demixing transition is clearly visible in the fiber distributions
indicates that this observable can be used to quantitatively determine the transition
point, instead of using visual inspection.
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(c) 𝜖 ′ = −2
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(d) 𝜖 ′ = −3

Figure 7.8.: Same as in Fig. 7.6 for set 3

7.3. Conclusions and outlook

In this chapter, we presented a preliminary investigation into the behavior of binary thin
films in which one species interacts anisotropically and one does not. These films were
simulated in order to gain a deeper understanding of mixed films of organic molecules,
specifically mixed films of CuPC and C60.

In Ref. [135], such films were grown under ambient conditions. There it was found
that the 1:1 mixed film will show a significantly decreased roughness compared to pure
films of the two components, and that large protrusions will form on top of the film which
are thought to be comprised of CuPC needles. Additionally, it was found in earlier work
that CuPC and C60 do not intermix.

In the simulations presented in this chapter, we have shown potential parameters which
might be well-suited to simulate these films. Either of the three sets of diffusion constants
leads to morphology similar to what we expect from experiments. The 1:1 mixed film
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(a) 𝜖 ′ = −3 (b) 𝜖 ′ = −2

Figure 7.9.: Snapshots of a 1:1 mixture thin film after deposition of 20 monolayers at
the parameters of Tab. 7.2 for parameter set 3 at different values of 𝜖 ′.
Red, green, and blue particles are of species 1, oriented in the 𝑥, 𝑦, and 𝑧

direction, respectively. Yellow particles are of species 2.

will grow more smoothly than either of the pure films if demixing is not too strong
(|𝜖 ′ | > 1), while we simultaneously observe the formation of protrusions of 𝑧 fibers on
top of the film. For these protrusions to occur, the two particle species have to demix,
which corresponds very well to experimental results where similar behavior was observed.
The size of these protrusions then depends on the exact kinetic parameters. We found
that the distributions of fiber lengths of species 1 provide a useful measure to determine
whether the two particle species demix or not, since intermixing leads to a significant
decrease in both fiber lengths and numbers.

One remaining inconsistency is the fact that from experiments, we would expect the
roughness and island density of blended films compared to pure films grown at higher
𝑇 (i.e. higher values of 𝐷) to be significantly increased. However, it is unclear what
mechanism is at work here, since this might be the result of post-growth re-ordering.
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Figure 7.10.: Island densities after deposition of 20 ML vs. ratio of species 1 for all three
parameter sets. Different colors denote different values of 𝜖 ′. Increasing the
strength of 𝜖 ′ decreases the island density at all parameter sets. The legend
in Fig. (a) also applies to Figs. (b) and (c)
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Figure 7.11.: Fiber lengths of species A in the 1:1 mixed system at different values of 𝜖 ′.
Between 𝜖 ′ = −2 and −3, a mixing transition occurs, leading to significantly
shorter fibers at all parameter sets
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All in all, these results indicate that simulating mixed films of an isotropically and
an anisotropically interacting particle species could be a viable endeavor when trying to
understand the exact mechanisms occurring during film growth in experiments. However,
this entails now a large amount of parameters: 𝜖𝛼, 𝜖sub,𝛼, 𝐷𝛼 for each particle species,
𝐷rot and [ for the anisotropically interacting species, 𝜖 ′ for the inter-species interactions,
and possibly an Ehrlich-Schwoebel barrier 𝐸ES. Here it is necessary to use the results
of Chs. 5 and 6 as guidance in finding the suitable parameters for desired behavior, as
has been demonstrated in this chapter. In order to determine whether the two particle
species intermix or not, the fiber distributions of species 1 can be used as guidance,
since the mixing transition coincides with a significant decrease in fiber lengths and
of the width of the length distribution. This method is of course preferable to visual
inspection, and invites comparison to the method of measuring domain sizes as used in
e.g. Ref. [32]. It would be of interest here whether a scaling relation can be found for
fiber size distributions.

Of special interest here is also kinetically limited demixing behavior as found e.g.
in Ref. [104]. There it was found that DIP and C60, when co-deposited, will phase
separate, forming domains which grow laterally in size as the distance from the substrate
increases. It is speculated that this behavior is due to the kinetic nature of film growth,
an assumption which could be adequately analyzed using simulations.
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Chapter 8.

Outlook

Based upon the work presented in this thesis, several directions for continuing research
are possible.

8.1. Rejection-free KMC

All simulations presented in this work have been performed using the so-called hybrid
KMC algorithm, in which proposed moves are accepted with a probability depending on
the change of internal energy they would cause.

The motivation for this choice was that in the CGM, a rejection-free implementation
would be too costly, since there in principle each particle could be able to move at any
given time (due to abolishing the solid-on-solid restriction). Since now a rich variety of
moves was possible, it would make simulating this model using a rejection-free algorithm
too costly.

However, in the study of anisotropic interactions we have only employed the SOS
model. We did use the hybrid KMC algorithm there in order to be able to compare
the results to those of the isotropic system. We suspect that in this model, either a
rejection-free algorithm as e.g. used in Refs. [19, 144] or an adaptive method such as
the one used in Ref. [89] would lead to a significant speed-up, allowing us to study
larger systems and thicker films. This would enable us to study the long time roughness
behavior, determining the roughness exponents and comparing them to other models.

8.2. No hop restrictions

In our SOS simulations, inter-layer hops were only allowed if the height difference between
the sites was ≤ 1 layer. This restriction is however highly artificial and was implemented
in order to inhibit unrealistically large jumps.

In Fig. 8.1 we show an example for the consequences of unrestricted hop heights in a
system with anisotropic interactions. In this snapshot it is obvious that extremely high,
narrow towers of 𝑧 oriented particles start forming. This is due to the strong anisotropy,
which leads to an effective Ehrlich-Schwoebel barrier for 𝑧 particles hopping down from
such a tower, while upwards hops are always energetically favorable.

A more realistic method to treat interlayer diffusion along larger steps was proposed
in Ref. [145]. There, interlayer diffusion was treated as the diffusing particle performing
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Figure 8.1.: Snapshot after deposition of 50 ML in the system with disc-like interactions
and no restrictions for inter-layer hops at 𝜖 = −3,𝜖sub = −4, 𝐷 = 104, 𝐷rot =

100, [ = 3.5. Due to the strong anisotropy, large towers of 𝑧 particles start
forming.

a random walk along the side of the step. This leads to an acceptance probability of

𝑃cross =
𝑝

1 + 𝑝 · ( |Δℎ| − 1) (8.1)

where 𝑝 is the Ehrlich-Schwoebel factor 𝑝 = exp(−𝐸ES/𝑘B𝑇) and Δℎ the height differ-
ence between initial and target site. It is clear that for Δℎ = 1, this reduces to 𝑃cross = 𝑝.
For 𝐸ES = 0, as we used in most of our simulations, this would yield

𝑃cross =
1

|Δℎ| (8.2)

The modified acceptance probability for inter-layer moves is then

𝑃 = 𝑃cross ·min (1, exp (−Δ𝐸)) (8.3)

Using this 𝑃 would suppress the unrealistic mounding found in our implementation of
the SOS model. It would be interesting to compare morphologies and growth modes
between this model, our implementation of the SOS model, and the CGM.

8.3. Anisotropic particles

In addition to the anisotropic interactions studied in the present work, the KMC study
of multilayer growth should eventually be expanded to anisotropically shaped particles in
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8.4. Post-growth effects

order to capture steric effects, which can have a significant influence on the morphology
evolution of a film.

Studies of anisotropically shaped particles so far have only been performed using MD
and all-atom simulations for few layers[35, 146, 147, 148, 149], where the role of shape
anisotropy has already been obvious: The rod-shaped particles will lie down at low
coverages, but re-orient to stand up as the coverage increases, which cannot be re-created
by only implementing anisotropic interactions.

As already indicated, multi-layer KMC studies of anisotropicaly shaped particles pose
a significant challenge, however. Especially the choice of possible moves, which crucially
influence the morphology, becomes more complicated. This problem might be alleviated
by a combination of molecular dynamics and KMC simulations[150], where the MD
simulations are performed to identify the possible moves and their respective rates, and
the KMC simulation is then performed to find the behavior for thick films.

Due to the anisotropic shape of the particles, it might be impossible in such a simulation
to impose the solid-on-solid restriction, meaning this would have to be simulated using
the CGM.

8.4. Post-growth effects

Since film growth is a non-equilibrium process, it stands to reason that the morphology
immediately after deposition might not be the final one, since there may be energetically
more favorable configurations which take longer to reach.

It has indeed been found in many growth experiments[68, 151, 152, 153] that thin films
will undergo significant changes in morphology after deposition, up to a timescale on the
order of months later. Hence it is of great importance to understand the mechanisms
guiding these re-ordering processes.

Some simulation work has been done regarding monolayer dewetting[154, 155, 156],
however for thicker films an analysis is missing.

We assume such work would have to be performed using either the CGM or the SOS
model with inter-layer hopping as described in Ref. [145], since restricting inter-layer hops
to |Δ𝑧 | ≤ 1 will artificially restrict the system and inhibit possible relaxation paths (e.g.
this might stop a thick film from fully dewetting from a weakly-interacting substrate).

In Fig. 8.2 we show a plot of roughness evolution in the binary system from Ch. 7.
After deposition of 20 monolayers, the particle flux was shut off and existing particles
were allowed to continue diffusing for a time corresponding to Θ = 10. From this plot it
seems that at least the roughness will not change significantly after deposition. However,
a more in-depth study would be necessary to reliably confirm this suspicion.
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Figure 8.2.: 𝜎 vs. Θ in the binary system, for parameters, see Ch. 7. After Θ = 20, no
new particles are added to the system, but diffusion is still allowed. The film
roughness shows no significant changes after deposition is shut off.

Apart from the ideas presented in this chapter, there is also a lot more to discover
regarding structure formation in binary systems. Thus, a wide variety of possible path-
ways for future research exists, all of which could help in gaining a deeper understanding
of structure formation during film growth.
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Chapter 9.

Summary and conclusion

The simulation studies presented in this work were performed in order to understand
more deeply the mechanisms governing the growth of thin films. We focused on films of
intermediate thickness, since in this regime the formation of 3D structures commences.
The structures formed during these stages of film growth will then in turn influence the
subsequent evolution of the thin film.

We first presented a framework to analyze the roughness evolution of a film of isotropic
particles growing on a substrate comprised of a different material. We found there that
the roughness evolution of such films can be categorized into several modes, and were
able to quantify the conditions necessary for each mode to occur. Most significantly, the
transition from island to LBL growth is shifted to a lower value of 𝜖sub compared to the
wetting transition in an equilibrium system. When comparing the standard SOS model
to our newly developed colloidal growth model (in which the film is not restricted to be
cavity-free), we found that both models in principle show the same behavior, with the
exception of the ISL→CONST growth mode in the SOS model.

Expanding upon this, we introduced anisotropic interactions between particles in order
to mimic the steric anisotropy of organic molecules. We found two ordering transitions
upon increasing the anisotropy factor, an equilibrium and a non-equilibrium one. The
equilibrium transition is from an unordered state to one in which all particles are oriented
in parallel (perpendicular) to the substrate and is independent of the roughness evolution
of the film, while the non-equilibrium transition coincides with a strong roughening of
the film due to the formation of needles (sheets) perpendicular to the substrate for disk-
like and rod-like interactions, respectively. We investigated these effects for weak and
strong substrates, and were able to find experimental results in literature corroborating
our findings.

Finally, we investigated the evolution of binary thin films. First, we studied the effect
of a species-dependent hopping barrier. We found that making the interlayer hopping
probability dependent on the local environment of a particle will lead to morphologies
similar to those observed in blended films in experiments. Additionally, we studied the
morphology of mixed films consisting of an isotropically and an anisotropically interacting
species. There we found that such films can also show morphologies similar to those found
in a C60:CuPC blend film, offering a possible mechanism for the formation of needles in
experiments.
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Chapter 9. Summary and conclusion

The results presented in this thesis show that simulation of films of an intermediate
thickness is a research area which has great potential to explain mechanisms of structure
formation during film growth. We were able to find correspondences between our results
and those found in experiments, finding e.g. possible mechanisms for needle formation
in C60:CuPC blend.

There are limitations regarding the interpretation of such simulation results. These
systems are, after all, simplified models of reality which cannot capture many details.
Most importantly, organic molecules are shaped anisotropically, while the particles used
here only interact anisotropically. This steric anisotropy leads to many effects which we
cannot capture using our model, but which might be relevant for structure formation (see
e.g. the effects described in Ref. [149]). However, keeping these limitations in mind, such
simplified models can be a useful tool for research. In a next step, this simple model
could then be extended to incorporate more features of real molecules, allowing us to
systematically study the effects of these.
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Appendix A.

Very strong anisotropies in model B

10 20 30 40 50
Θ

0.8

1.0

1.2

1.4

1.6

1.8

σ

η
100.00
215.44
464.15
1000.00
2154.43
4641.58
10000.00
21544.34
46415.88
100000.00

Figure A.1.: 𝜎 vs Θ for various [, 𝜖 = −3, 𝜖sub = −4, 𝐷 = 104, 𝐷rot = 103 in model B

As indicated in Ch. 6, if the kinetic parameters are high enough, the non-equilibrium
transition in model B completely disappears. In Fig. A.1 we show a plot of 𝜎 vs Θ

for values of [ up to 105. Even at these very strong anisotropies, there is no significant
change in the roughness evolution. While there is an increase in roughness, the origin
of this becomes clear in Fig. A.2: The bulk of the film is completely ordered in the 𝑋
and 𝑌 directions and relatively smooth, but due to the restriction on inter-layer hops,
scattered 𝑍 needles start forming. These are responsible for the increase in roughness.
Since they are only on top of the film and will disappear when buried, this is distinct
from the non-equilibrium transition described earlier.
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Appendix A. Very strong anisotropies in model B

Figure A.2.: Snapshot of a film at [ = 105 after deposition of 50 ML
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Appendix B.

Binary system snapshots

Figure B.1.: Snapshot of a 1:1 blended film after deposition of 20 monolayers for param-
eter set 1 from Sec. 7.2

In Figs. B.1 and B.2 we show snapshots of blend thin films after deposition of 20
ML for parameter sets 1 and 3, respectively. From these snapshots, the influence of 𝐷𝛼

on the domain sizes becomes obvious: Larger values of 𝐷𝛼 lead to larger domains and
subsequently larger protrusions on top of the film. To illustrate this, we show in Figs.
B.3-B.5 vertical slices through the film for each parameter set.
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Appendix B. Binary system snapshots

Figure B.2.: Same as Fig. B.1 but for parameter set 3
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Figure B.3.: Vertical slice through a 1:1 blended after deposition of 20 monolayers for
parameter set 1 from Sec. 7.2

Figure B.4.: Same as Fig. B.3, but for parameter set 2
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Figure B.5.: Same as Fig. B.3, but for parameter set 3
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Appendix C.

Landau theory for a three-component
system in 2D with an external field

As indicated in Sec. 6.4, the mean-field free energy for a three-component system on a
2D lattice where 𝑧 particles interact differently from 𝑥 and 𝑦 particles is reminiscent of
that of a three-component system with completely isotropic interactions and an applied
external field. The mixing energy of such an isotropic system is:

Δ𝐸mix = −𝜖0(𝑛𝑥𝑥 + 𝑛𝑦𝑦 + 𝑛𝑧𝑧) − 𝜖 ′0(𝑛𝑥𝑦 + 𝑛𝑥𝑧 + 𝑛𝑦𝑧)
= (𝜖0 − 𝜖 ′0) (𝑛𝑥𝑦 + 𝑛𝑥𝑧 + 𝑛𝑦𝑧) − 2𝜖0(𝑁𝑥 + 𝑁𝑦 + 𝑁𝑧)
= 𝑁

(
𝑘𝐵𝑇 𝜒(𝑥𝑥𝑥𝑦 + 𝑥𝑥𝑥𝑧 + 𝑥𝑦𝑥𝑧) − 2𝜖0

)
where 𝜒 ≡ 𝑧

𝑘𝑇
(𝜖0 − 𝜖 ′0). This leads to a free energy:

𝑓 (𝑥𝑧) = 𝜒
(
(1 − 𝑥𝑧)2

4
+ 𝑥𝑧 (1 − 𝑥𝑧)

)
− 2𝜖0 + 𝑥𝑧 log 𝑥𝑧 + (1 − 𝑥𝑧) log

(
1 − 𝑥𝑧
2

)
(C.1)

Rewriting this as a function of Z and expanding around Z = 0 up to the fourth order then
yields:

𝑓 (Z) ≈
(
−2𝜖0 +

𝜒

3
− log(3)

)
+
(
1 − 𝜒

3

)
Z2 − Z

3

3
+ Z

4

2
(C.2)

which is identical to Eq. 6.10, apart from the factor −2𝜖0. This factor stems from the
fact that the bulk energy was not subtracted here.
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Appendix C. Landau theory for a three-component system in 2D with an external field

Applying an external field which specifically promotes/suppresses 𝑧 particles adds an-
other term −ℎZ , where ℎ is the strength of the external field. This yields:

𝑓 (Z) ≈
(
−2𝜖0 +

𝜒

3
− log(3)

)
− ℎZ +

(
1 − 𝜒

3

)
Z2 − Z

3

3
+ Z

4

2
(C.3)

Eq. 6.16 had the form

𝑓 (Z) ≈ −2
9
(2[ + 7)𝜖 − log(3) − 4

9
([ − 1)𝜖Z +

(
1 − 10

9
([ − 1)𝜖

)
Z2 − Z

3

3
+ Z

4

2
(C.4)

which is strikingly similar.
These findings indicate that when restricting the three-component system to a 2D

lattice, the anisotropic interactions act similarly to an external field proportional to 𝜒,
effectively suppressing the first order transition.
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