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Abstract

In the theory of programming languages, duality is increasingly recognized as being
important for improving economy, offering the theoretical development for one of
two dual concepts “for free”. Two prevalent dualities are the extensibility duality,
related to the Expression Problem, and the De Morgan duality, related to evaluation
strategies and control flow; for instance, a language which is symmetric with re-
spect to the extensibility duality has both a facility which allows for easy extension
with new variants, similar to how classes implement an interface in certain object-
oriented languages, and a dual facility which allows for easy extension with new
operations, as in functional programming with algebraic data types. However, this
theoretical knowledge arguably has yet to be made more accessible to the practician.
In particular, the design of programming languages does not yet really benefit from
it in a systematic way.

As a step to improve this situation, building on these prior results, the present
work presents a prototype of a, in the conceptual sense rather economical, founda-
tional system, in which the extensibility duality and the De Morgan duality are con-
solidated. In particular, the system is inherently highly symmetric with respect to
both dualities and their consolidation quite naturally allows to carve out the essence
of the extensibility duality, thereby further optimizing the meta-level economy. As
will be demonstrated, this system can serve as a framework in which various lan-
guage features known from practical programming languages can be recovered (by
local syntactic abstractions, a.k.a. macros) and systematically compared, including
algebraic data types and function types as known from functional programming,
classes and objects, and exception handling, in combination with the evaluation
strategies employed by the respective languages. This is intended to facilitate a
systematic analysis of programming language concepts which may aid in the de-
sign of parsimonious languages which are symmetric with respect to one or both
of the mentioned dualities. For the more short-term perspective, the system may
also serve as a cornerstone for the systematic development of tools which automat-
ically semantically compare (and convert between) programs in different languages
by means of analyzing the results of embedding them into the framework.
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Zusammenfassung

In der theoretischen Betrachtung von Programmiersprachen wird Dualität als zuneh-
mend wichtig für die Verbesserung der Ökonomie betrachtet, da diese ermöglicht,
die Theorie-Entwicklung für eines von zwei dualen Konzepten “umsonst” zu er-
halten. Zwei vorherrschende Dualitäten sind die Extensibilitäts-Dualität, die im Zu-
sammenhang mit dem Expression Problem steht, und die De Morgan-Dualität, die im
Zusammenhang mit Auswertungsstrategien und Kontrollfluss steht; zum Beispiel
bietet eine Sprache, die symmetrisch in Bezug auf die Extensibilitäts-Dualität ist, so-
wohl ein Konstrukt, das die einfache Hinzufügung von neuen Varianten ermöglicht,
ähnlich dazu wie in gewissen Objekt-Orientierten Sprachen Klassen ein Interface
implementieren, als auch ein duales Konstrukt, das die einfache Hinzufügung von
neuen Operationen ermöglicht, wie in der Funktionalen Programmierung mit alge-
braischen Datentypen. Dieses theoretische Wissen muss wohl allerdings dem Prak-
tiker noch besser zugänglich gemacht werden. Insbesondere profitiert die Entwick-
lung von Programmiersprachen noch nicht wirklich auf eine systematische Weise
davon.

Als Schritt auf dem Weg dahin, diese Situation zu verbessern, präsentiert diese
Arbeit, auf diesen bisherigen Resultaten aufbauend, ein grundlegendes, im konzep-
tuellen Sinne recht ökonomisches System, in dem die Extensibilitäts-Dualität und
die De Morgan-Dualität miteinander vereinigt sind. Insbesondere ist dieses System
inhärent höchst symmetrisch in Bezug auf beide Dualitäten und deren Vereinigung
ermöglicht auf recht natürliche Weise die Essenz der Extensibilitäts-Dualität heraus-
zuarbeiten, was die Ökonomie auf der Meta-Ebene weiter verbessert. Wie dargestellt
werden wird, kann dieses System als Framework dienen, in dem sich verschiedene
Sprach-Features aus in der Praxis relevanten Programmiersprachen darstellen las-
sen (durch lokale syntaktische Abstraktionen, auch bekannt als Macros) und in dem
man diese vergleichen kann, wie etwa algebraische Datentypen und Funktionsty-
pen, wie man sie aus der Funktionalen Programmierung kennt, Klassen und Objek-
te, sowie Exception-Handling, in Verbindung mit den Auswertungsstrategien die
von den jeweiligen Sprachen verwendet werden. Dies soll dem Zweck dienen, eine
systematische Analyse von Programmiersprachen-Konzepten zu ermöglichen, wel-
che bei der Entwicklung von kompakten Sprachen helfen kann, die symmetrisch in
Bezug auf eine oder beide der erwähnten Dualitäten sind. Für die kurzfristigere Per-
spektive bietet es das System auch als Grundstein für die systematische Entwicklung
von Tools an, welche automatisch Programme in verschiedenen Sprache semantisch
vergleichen (und ineinander umwandeln), indem sie die Ergebnisse von deren Ein-
bettung in das Framework analysieren.
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Chapter 1

Introduction: Dualities in the
Programming Language Design
Space

For the beginner wanting to get into programming and software development, but
also for the more experienced developer or consultant who needs to make the correct
technological choice for their company or customer, programming and program-
ming languages and their underlying paradigms nowadays appear as a vast jungle.
In the worst case the decision for one or the other language may turn out to be the
wrong one only after having already made a considerable investment. Specifically,
programming languages often force upon the programmer, or at least strongly fa-
vor, a certain way to structure (in the most general sense) their program, leading
the programmer to go against the structure suggested by the problem considered
and/or its analysis. That is, unless they do decide to abandon the language in favor
of a better fit. However, even if they had been able to better anticipate their needs,
there might arise the situation where one sub-problem lends itself well to one way of
structuring, and another sub-problem lends itself well to another way.1 The central
question that this work attempts to answer, or at least open a path from it to other
questions leading us towards a solution, is thus: How can we help language designers
develop parsimonious, yet diverse programming languages in a systematic way?

Turning this into a slightly more precise research program, what we will be look-
ing for are ways to reduce the complexity of the language design space, with a focus
on relating this back to the practical reality of the programmer. This work will argue
for an explicit systematic approach to language design, overcoming the sometimes
semi-systematic, but more often than not ad hoc approach prevalent today. Espe-
cially, as part of it a simple foundational framework, called PF , is presented, in
which existing languages can be recovered by macro embeddings, which aids the
systematic exploration of the design space. Besides serving as a design aid, PF may
also serve as a rather lightweight foundation for tools which allow to automatically
compare and convert between programs in different languages.

Instrumental in the quest to reduce complexity will be the consideration of du-
alities, which, in the words of Wadler, can offer “two-for-the-price-of-one economy”

1For instance, for the particular challenge of separation of concerns, or finding the best way to de-
compose systems into modules (Parnas, 1972), Tarr et al. remark that “existing formalisms at all lifecycle
phases provide only small, restricted sets of decomposition and composition mechanisms, and these
typically support only a single, “dominant” dimension of separation at a time” (Tarr et al., 1999), and
refer to this situation as the “tyranny of the dominant decomposition.” While Tarr et al. (1999) pro-
posed ways to overcome this, real world languages and systems arguably have only incorporated this
to a limited extent.
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abstract class Expr { abstract int eval(); abstract void modn(); }

class Num extends Expr {
int v;

Num(int v0) { v = v0; }
int eval() { return v; }
void modn(int v0) { v = v % v0; }

}

class Add extends Expr {
Expr l; Expr r;

Add(Expr l0, Expr r0) { l = l0; r = r0; }
int eval() { return l.eval() + r.eval(); }
void modn(int v0) { l.modn(v0); r.modn(v0); }

}

FIGURE 1.1: Java example from Lämmel and Rypacek (2008).

(Wadler, 2003). Concretely, we will consider two dualities important in program-
ming: the extensibility duality, which is related to the Expression Problem, and the De
Morgan, or negation duality, which relates the call-by-value and call-by-name evalu-
ation strategies (Wadler, 2003). The framework PF builds upon previous work on
these dualities, especially theoretical calculi developed that exhibit them in a clear
way. As we will see, both dualities can be consolidated by recasting them in the uni-
fying framework PF , giving us an additional meta-level economy that further cuts
down the complexity of the design space.

The focus here is on the extensibility duality and how to consolidate that with
the De Morgan duality which will, in particular, make the extensibility duality even
more economic. The role of the De Morgan duality in programming languages is
the topic of a lot of research; to provide a thorough analysis of all of its facets is far
beyond the scope of this work. However, a chapter is devoted to the necessary back-
ground as far as it is relevant for this work, and a different chapter demonstrates the
relevance of concepts related to the De Morgan duality for the analysis of practical
programming languages.

The remainder of this introduction gives a first taste of the dualities as they ap-
pear in practice, then discusses the research philosophy that influenced this work
and informed its overall approach, before closing with an overview of the contribu-
tions and the content.

1.1 Dualities in Practice

Let us start by considering two programs taken from Lämmel and Rypacek (2008)
and shown in Fig. 1.1 and Fig. 1.2, respectively, one written in Java and the other in
Haskell. Those familiar with Java and Haskell will realize after a bit of study that
these programs intend to solve (and in fact do solve) the same problem, but in two
different ways that impact a possible further development in the future. There is a
simple expression language made up of literal nodes (Num) and addition nodes (Add)
which recursively have expressions as their children, and one is able to evaluate
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data Expr = Num Int | Add Expr Expr

eval :: Expr→ Int

eval (Num v) = v
eval (Add l r) = (eval l) + (eval r)

modn :: Expr→ Int→ Expr

modn (Num v) v0 = Num (v % v0)

modn (Add l r) v0 = Add (modn l v0) (modn r v0)

FIGURE 1.2: Haskell example from Lämmel and Rypacek (2008).

an expression (eval) or, when specifying a number n, to modify an expression by
applying mod n to all the numbers contained in literals that appear in the expression
(modn). Now, if we wanted to add a further operation that takes an expression as
input and computes some result from it, e.g., pretty-printing, that would be easy
with the Haskell program: just write a new function. Adding a new variant of node,
e.g., for multiplication, to the expression language would arguably not be as easy,
since it requires one to meddle with existing code by adding a case to each function
that consumes an expression. For the Java program, the situation is reversed: one
may easily add the multiplication node by writing a new class for it, but for adding
pretty-printing one would have to modify existing classes by adding new method
implementations to them.

The problem of how to safely and independently, i.e. without meddling with ex-
isting code, extend a program with both new variants and new operations has been
studied extensively and has become known as the Expression Problem (Wadler, 1998).
Many solutions with a great variety of benefits and drawbacks, as well as ranging
from requiring no to very sophisticated linguistic features, have been proposed to
solve it (Krishnamurthi, Felleisen, and Friedman, 1998; Zenger and Odersky, 2001;
Torgersen, 2004; Ernst, Ostermann, and Cook, 2006; Swierstra, 2008; Oliveira and
Cook, 2012; Wang and Oliveira, 2016). Properly dealing with recursive references is
an important aspect in this area of study. However, the present work is not about
further exploring the Expression Problem itself. Instead, we will consider the exten-
sibility dimension associated with a particular language. There may be clever ways to
achieve extensibility in the other dimension, with more or less practical usefulness,
but often these are not intended by the designer of the language (such approaches
are often based on the visitor pattern, see e.g. Palsberg and Jay (1998)). The language
itself directly offers the method by which to add new operations, as in the case of
Haskell with function definitions, or new variants, as in the case of Java with classes.

With this in mind, this author believes the following goal is worth pursuing, even
though it is not a solution to the Expression Problem: Design a language that allows
to extend some data (like the expression language) with either new variants or new
operations. In this scenario, you cannot add both easily, and you still have to make
the decision which extensibility matters for you beforehand, but you can pick to rep-
resent your data by either something like a data type in Haskell or something like
an abstract class or interface in Java. Such a language could give you back a lot of
the freedom that you could otherwise only regain by digging out some Expression
Problem solution even though you may not need simultaneous extensibility in both
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dimensions. As this work will argue for, the duality of the dimensions allows to
design such a language without blowing the structural complexity of the language.
Further, an idealized version of such a language shall serve us as a foundational sys-
tem in which existing languages can be recovered and compared, which hopefully
will further the understanding of the design space.

A brief remark about the source of the example just used is in order. In the
relevant paper, Lämmel and Rypacek (2008) consider the question of how exactly
the two programs are equivalent, in a categorical framework. Our take on this is
presented at the end of Chapter 5 (which concerns recovering existing languages in
our foundational system).

As for the second duality, De Morgan duality, this has been demonstrated to re-
late the two opposite evaluation strategies call-by-value and call-by-name (Wadler,
2003). To quickly summarize the strategies, under call-by-value the function argu-
ment is evaluated before this evaluation result gets substituted into the function’s
body, while under call-by-name the unevaluated argument is substituted. In the
present work, the De Morgan duality of the two presents itself as call-by-value ar-
guments corresponding, in a Curry-Howard sense (Curry, 1934; Howard, 1980), to
a certain kind of proof and passing the argument as combining that proof with a
certain form of refutation, and call-by-name arguments and what they are passed to
corresponding to proofs and refutations with the structural forms swapped; refer to
Chapter 3 and Chapter 5 for details.

Regarding the practical implications of evaluation strategies, call-by-name or
variants thereof can be more efficient due to delaying evaluation until it is really
necessary, particularly when additionally caching the evaluation result as in the so
called call-by-need as used, e.g., in standard implementation of Haskell. Further, call-
by-name (or a variant like call-by-need) is essential for a certain way of program-
ming with infinite data structures (Hughes, 1989). With call-by-value, on the other
hand, it is arguably easier to understand the control flow, particularly in the pres-
ence of computational effects, as one can statically see in the code when computation
needed for the evaluation of the function argument will happen.

In our foundational system PF all control flow is explicit, and surface languages
employing call-by-value, call-by-name, or both (by annotating functions accord-
ingly, as is possible, e.g., in Scala) can be recovered by macro embeddings, as demon-
strated in chapter 5. These embeddings are directly informed by the relation to struc-
tural forms of proofs and refutations mentioned above. It is thanks to this broader
view of the Curry-Howard correspondence that the two dualities discussed can be
consolidated by presenting them in a single, rather sleek foundational system that
is strongly inspired by the careful analysis of meaning theories for classical logic
by Zeilberger (2008b). Following in the footsteps of the Curry-Howard program, in
doing so trying to be as consistent and applying the correspondence as universally
as possible in order to achieve the maximal economy, is one building block of the
methodology of this work, which we now turn to in some more depth.

1.2 Developing a Design Theory

The basic approach of this work is to look at programming languages and their fea-
tures as they exist today, and, with the help of previously developed theoretical anal-
yses of aspects of programming (languages) open a path towards a systematic the-
ory of programming language design. As pointed out above, an important objective
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here is to control the complexity of the feature space while generally being as inclu-
sive as possible when it comes to capturing existing features. One way to achieve
such economy is to exploit dualities. This work will focus on features that can be
put in a direct relation to the two dualities discussed above, which arguably already
account for a lot of what programming languages have to offer today. Key to this
endeavor will be to reframe the conception of design features in logical, that is often
proof-theoretical, terms. The ping-pong between logic and programming languages
that started with Curry-Howard has proven to be very fruitful in the past, and this
author thinks that it is worthwhile to attempt to setup a system through which to
explore the design space of programming languages driven by the Curry-Howard
approach and with a focus on duality where applicable. The outlook in Chapter 6
discusses some ideas on how to extend this beyond the two dualities which are,
together with their consolidation, the focus of this work.

Developing a theoretical framework starting from observations is a process that
in itself has been the topic of considerable research. The following sketches how
the present work was informed by such research and at what stage of theory devel-
opment it arguably is situated, followed by a look at a parallel development in the
foundations of mathematics with comparable aims.

Gregor (2006) classifies the stages of development of a theory in the context of in-
formation systems into the following types: A type I stage is defined as being about
analyzing and describing, a type II stage as being about explanation, but not yet
precise prediction, a type III stage as being about prediction, but not yet offering
explanation, a type IV stage combines both offerings of type II and III, i.e. such a
theory allows to explain what has been observed as well as predicting what will be
observed, and finally in a type V stage the theory explicitly prescribes how to design
artifacts.

In our concrete case, type I specializes to be about describing practical aspects of
programming as related to features of programming languages, and then analyzing
such features in some way with the intent to bring the theory to the next develop-
ment stage. As mentioned, this analysis will be conducted by looking through the
(widened) Curry-Howard lens and letting this guide us in the exploitation of du-
alities as well as their meta-economic consolidation. The intention is that cutting
down the design space of programming languages in this way will improve our un-
derstanding of the design space, and thus help us explain (type II) why an existing
language has benefits or drawbacks, as well as predict (type III) whether some lan-
guage design potentially leads to such. Overall, what the present work aims for is
thus an early form of theory of stage type IV, with still a bit stronger focus on the
bridge from analysis to explanation rather than prediction, i.e. on the type II stage.

However, as mentioned, the ultimate goal is design prescription or at least design
aid, i.e. achieving stage type V. We will thus preliminarily also consider what our
improved perception of the design space seems to indicate for prescribing or aiding
with design. One can consider the theory presented herein as a kind of vertical pro-
totype which still requires work on multiple stages but where preliminary attempts
at developing a latter stage inform those at a prior stage.

In a sense the overall endeavor that is to lead us to design prescriptions/aids is
a step in the direction of systematically reverse engineering programming language
features. There is a comparable development in the foundations of mathematics,
in the field of reverse mathematics. In his recent book on this topic, aimed at a non-
specialist audience, Stillwell (2019) opines that the foundations of mathematics have
unfortunately been neglected for some time now and he intends to demonstrate the
importance of a particular aspect of this foundational work, the reverse engineering
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of mathematical proofs. In a nutshell, reverse mathematics is the search for the right
axiom to add to some base set of axioms to be able to prove some given theorem but
not stronger ones, thereby structuring, e.g., various theorems of analysis according
to their strength. By analogy, the present work is an attempt to reverse engineer the
wild jungle of programming language concepts manifesting in features of existing
languages.

Arguably, in contrast to the reverse mathematics program, the biggest problem in
this area is not one of neglect of foundations per se, as there has been a lot of (Curry-
Howard-inspired) work on theoretical calculi that reflect aspects of programming
in an idealized form, which we can now build upon. Rather, what arguably is the
greatest hinderance to the development of a design theory is the lack of striving for
a bigger picture, of a systematic program like that of reverse mathematics that al-
lows to relate the various aspects. Studying one of these in isolation can be a useful
approach to deal with complexity, but ideally this should be accompanied by some-
times “zooming out” to discover dualities and other similarities as a complementary
way to cut down complexity. Studying the interplay of aspects like computability,
arithmetic, and analysis has proven to be highly interesting and fruitful for improv-
ing our understanding of each, enabling the systematic exploration of the space of
mathematical proofs (Stillwell, 2019), and applying a similar, more systematic ap-
proach to programming (language) concepts could be just as impactful for the lan-
guage design space. In a sense, the present work is intended as a preliminary proof
of concept for this.

1.3 Content Overview and Contributions

Content Overview The rest of this work is structured as follows:

• Chapter 2 provides an in-depth analysis of the extensibility duality, specifically
looking at how extensibility presents itself on the logic side.

• Chapter 3 discusses De Morgan duality to the extent it is relevant for this work;
it focusses on the way the duality is embodied by sequent calculus and then on
calculi (to serve as a basis for programming languages) based on the sequent
calculus.

• Chapter 4, building on the system CU discussed at the end of Chapter 3,
presents the foundational system PF which embodies both the extensibility
and the De Morgan duality.

• Chapter 5 demonstrates how (idealized forms of) existing programming lan-
guages can be recovered in PF and how PF can serve as a framework to an-
alyze and compare languages and their features; besides aiding in the design
of languages, this may also facilitate the systematic development of tools for
comparing and converting between programs of different languages, with dif-
ferent but related features.

• Chapter 6 gives an outlook on how to further develop this framework to better
aid in systematic language design, by incorporating further sources of theoret-
ical knowledge about programming languages.

Contributions The central contribution of this work is the foundational system
PF (see Chapter 4) that consolidates the extensibility duality and the De Morgan
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duality; this system is grounded in the analyses of the two dualities in Chapter 2
and Chapter 3, respectively. The utility of PF is demonstrated in Chapter 5 by giv-
ing macro embeddings of various existing surface language features into PF and,
in Section 5.4, showing how it facilitates analyzing and comparing such features as
they are realized in real programming languages. As a potential practical applica-
tion, the framework might thus serve as the basis for automatic tools with which one
can compare programs in different programming languages such as Java, Haskell,
or ML, recognize the (partial) semantic equivalence of such programs and automat-
ically convert between them. For more details on what PF contributes to the study
of programming languages, see the respective paragraphs at the beginning of Chap-
ter 4 and Chapter 5.
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Chapter 2

Symmetric Extensibility in Logic
and Programming Languages

Disclaimer: Section 2.4 of this chapter summarizes works coauthored by the author (Oster-
mann and Jabs, 2018; Binder et al., 2019). Any quote from these works is explicitly marked
as such.

This chapter provides an in-depth analysis of the first of the two dualities consid-
ered in this work, the extensibility duality. It discusses work related to this duality
from the 1970s until today, and, as a minor novel contribution, it looks at how ex-
tensibility presents itself on the logical side. Specifically, we will see how the Cut
rule can be seen as the embodiment of the “Don’t repeat yourself” (DRY) principle
and hence how it is related to linguistic constructs that facilitate abstraction for the
purpose of avoiding such redundancy. We will also begin to consider what logi-
cal duality means for the extensibility duality via this Cut rule correspondence; the
next chapter will then pick up this issue, giving a new perspective on it that is in
line with the consolidation of the extensibility and De Morgan dualities presented in
that chapter.

Chapter overview The chapter is structured as follows:

• Section 2.1 considers the Cut rule itself and its logical background.

• Section 2.2 discusses defunctionalization and its dual, refunctionalization, as
well as how to recast these on the logic side, featuring the Cut rule.

• Section 2.3 discusses how de- and refunctionalization are special cases of ex-
tensibility switching.

• Section 2.4 concludes by summarizing initial steps in designing symmetric lan-
guages by systematically exploiting the extensibility duality.

2.1 The Cut Rule, Or: Engineering, Logician Style

This section presents the necessary background for the Cut rule (which is also useful
background for the next chapter) and concludes with a suggestion on how one can
better understand the purpose of that rule once realizing what the programmer and
the logician have in common. It is the author’s intent to make this section under-
standable to readers with only limited exposure to logic; if you are already familiar
with natural deduction and sequent calculus, feel free to skip to its last subsection.
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2.1.1 Natural deduction

For the logician, an essential question is how to design the deductive system. One
possible approach, called natural deduction, attempts to stay close to what is (nowa-
days) traditionally perceived of as “natural” reasoning; here the ideal is to have
inference rules that resemble the way one would go about proving some proposition
intuitively.1 For example, to prove a conjunction (“and”) of two propositions A and
B, the premises of the rule, one would need to have established that both A and B
are true. Natural deduction captures this formally by the following inference rule,
where the premises one has to have established already are written above the line
and the proposition the rule allows to prove from these, the conclusion, below it.

A B
A ∧ B

For a disjunction (non-exclusive “or”) it suffices to have established the single premise
A which allows to use the rule shown below on the left, or alternatively, to have es-
tablished B which allows to use the rule on the right.

A
A ∨ B

B
A ∨ B

When we say that the truth of a proposition above the rule line is established,
we mean that this itself happens by using inference rules only. More precisely, in the
rules, the letters A and B are placeholders for propositions which are to be replaced2

by a tree recursively formed from uses of rules; in summary, a proof is a tree with
nodes labelled by propositions and where edges are constituted via the lines in the
rules. As an example, where we close off the tree via a rule for > (the true constant)
with zero premises, we can deduce >∨ (>∧>) with the tree shown below.

> >
>∧>

>∨ (>∧>)

Now we saw some inference rules, but there are many more logical connectives
that we can semantically conceive of, for instance by means of a truth table, even
if we only consider connectives with arity ≤ 2. Considering its truth table, the ar-
guably simplest connective we have not seen yet is negation. Can we give an infer-
ence rule for negation that has the same form as the ones we saw already? Looking
at them again, we can discern that they all conform to this pattern:

J1 . . . Jn

J

In each rule, the J1, ..., Jn are a subset of the parameters of the connective, e.g. J =
A ∧ B, J1 = A, J2 = B for the conjunction rule and J = A ∨ B, J1 = A and J = A ∨ B,
J1 = B for the first and second disjunction rules, respectively. Trying to write a
semantically valid rule for negation that conforms to this specification is impossible,
because there is only one parameter, say, A; we can either use no premise, but this
would mean that the negation of every proposition is true, or the single premise
J1 = A but this would mean that the negation of a proposition is true when that
proposition is, and both outcomes are obviously semantically invalid.

1The design principle of previously developed deductive systems, now called Hilbert-style systems,
was to minimize the necessary inference rules by resorting to axioms or axiom schemas wherever
possible.

2In other words, the inference rule is schematic.
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2.1.2 Hypothetical judgment

Historically, the treatment of negation necessitated not only to generalize the form
of rules, but also to change the deduction mechanics which we so far saw described
as simply a tree of propositions built up from the rules. Specifically, the negation
rule looks as follows in this presentation of natural deduction, where ⊥ is the false
constant:

[A]

...
⊥
¬A

This is to be read as: “Discharge the unproven premise A somewhere up in the tree.”
When a premise is discharged, this means it does not have to be proven anymore.
Different from all other rules we saw so far, this negation rule retroactively changes
the recursively constructed tree that it is used on, by carrying out such a discharging
somewhere in the tree. We therefore call this rule highly non-local; we come back
to this aspect later, for now we just remark our observation from the negation rule
that non-locality is potentially problematic and should be handled with care. The
negation rule complicates our definition of what constitutes a proof because for it to
be applicable, sometimes a premise has to be left open such that the negation rule
may discharge it. The absolute judgment of a proposition to be true, backed up by
a tree, is therefore relaxed to a hypothetical judgment which may be contingent on the
truth of some hypotheses yet to be discharged. A tree backing this up is allowed to
have these hypotheses as open propositions, and may even consist of only an open
proposition, with no rule used at all. For instance, with the degenerate tree below
we can hypothetically judge ⊥ to be true, contingent on the truth of ⊥.

⊥

To this we can apply the negation rule, discharging ⊥ and obtaining the tree:

[⊥]
¬⊥

Thus we have proven ¬⊥ by first assuming ⊥, which we would never have been
able to prove. But we only did assume it for the sake of discharging it again to show
that its negation holds, this leads to a valid result.

While this presentation of natural deduction may be fruitful for obtaining certain
intuitions, the retroactive tree manipulation it requires is at the very least unwieldy,
so we will now turn to a different presentation. From now on, we will still use
trees but their labels themselves will be hypothetical judgments, which we write as
a sequent,3 where Γ is a set4 of open propositions:

Γ ` A

For example, our judgment with the degenerate tree above becomes ⊥ ` ⊥, and for
judgments with no open hypotheses the Γ is empty, which we notationally express
by just leaving it away, e.g. ` > ∧ >. The ` symbol is called turnstile. As for the
rules, for instance, the direct translation of the negation rule is:

3Not to be confused with the term sequent calculus that we will get to shortly.
4I.e. order and multiplicity do not matter.
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A ` ⊥
` ¬A

As we will see, in this presentation, we are finally able, for all connectives, to give
rules that conform to the simple pattern we saw before:

J1 . . . Jn

J

This time, the Ji and the J are all sequents, so we did not magically improve our
situation without any tradeoff, but we avoided retroactive and non-local tree ma-
nipulation. Nonetheless, it arguably is a valid observation that in a certain sense
we only shifted difficulties to the treatment of the sequents, but at least we have
achieved a separation of concerns: describing the overall creation of the tree, which
is simple because all rules are local, and dealing with the sequents, which we have
thus isolated as a concept and can now investigate more efficiently.

2.1.3 Sequent calculus

If we look at the form of our sequents through a naive symmetry-desiring lens, we
see that what is to the left of the turnstile consists of multiple formulas while to the
right of it there is only a single formula. Reminding us that all formulas on the left-
hand side, i.e. in the set Γ, are open hypothesis, i.e. the right-hand side formula holds
only contingent to all of these holding, we can characterize Γ as a conjunction. Taking
a cue from De Morgan duality that we will discuss in depth in the next chapter, what
we symmetrically want on the right-hand side should be a set, say ∆, which is to be
interpreted disjunctively; the form of our sequents becomes:

Γ ` ∆

This form of the sequent is one of the two defining characteristics of classical sequent
calculus.5 The other concerns the formulas allowed in the Γ and the ∆. In the natural
deduction rules we saw so far, when writing them in sequent style (again, not the
same as sequent calculus, just a different presentation of natural deduction), no con-
nectives appeared in the open hypotheses, i.e. these were always schematic place-
holders (A, B, ...). And this is actually a defining characteristic of natural deduction
that distinguishes it from sequent calculus, where one hypothesis can be built using
a connective. A rule that has the connective to the left of the turnstile is called a left
rule and a rule that has the connective to the right of the turnstile is called a right
rule. Thus natural deduction has only right rules, while sequent calculus has both
left and right rules. However, it is limited in a different fashion. The natural deduc-
tion rules we saw so far were all introduction rules, which means that the connective
only appears in the conclusion of the rule. We have not seen their opposite, called
elimination rules, yet; for now it suffices to know that there the connective appears
in a premise, allowing to deduce, e.g, A from A ∧ B. This form of rules is allowed
in natural deduction, but not in sequent calculus. In sequent calculus, only intro-
duction rules exist; one reason for why this is desirable is that it makes all logical
arguments always “flow” in one direction, in this case “upwards”. In summary,
classical sequent calculus

(1) has multiple formulas on both side of the turnstile and

(2) allows only introduction rules but these can be left and right rules.
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Γ, A ` ∆ ∧L1Γ, A ∧ B ` ∆

Γ, B ` ∆ ∧L2Γ, A ∧ B ` ∆

Γ, A ` ∆ Σ, B ` Π ∨LΓ, Σ, A ∨ B ` ∆, Π

Γ ` A, ∆ Σ, B ` Π → LΓ, Σ, A→ B ` ∆, Π

Γ ` A, ∆ ¬LΓ,¬A ` ∆

Γ ` A, ∆ ∨R1Γ ` A ∨ B, ∆

Γ ` B, ∆ ∨R2Γ ` A ∨ B, ∆

Γ ` A, ∆ Σ ` B, Π ∧RΓ, Σ ` A ∧ B, ∆, Π

Γ, A ` B, ∆ → RΓ ` A→ B, ∆

Γ, A ` ∆ ¬RΓ ` ¬A, ∆

FIGURE 2.1: Gentzen’s LK (propositional fragment, i.e. without
quantifiers).

Let us now turn to concrete sequent calculus rules. In Gentzen’s system LK
(Gentzen, 1935), the prototypical classical sequent calculus system, which is shown
in Figure 2.1, a proposition can be deduced if and only if it is valid, in other words
the system is sound and complete and since the set of connectives that appears in
the system is semantically complete, conditions (1) and (2) are sufficient for the al-
lowed rules of a deductive system, i.e. you only need rules conforming to these for
a system that captures all of classical logic; note that this also vindicates our naive
decision for condition (1) to an extent. In particular, there is no need for any struc-
tural rules, which are rules that, roughly speaking, are not directly related to the
semantical meaning of the connectives.6 Overall, the author thinks that it is not an
overstatement to say that LK is a rather elegant system; nevertheless, especially for
the sake of making more clear the relation to data and codata later on, let us look at a
modular, generic presentation of sequent calculus using a meta-schema for the rules.
This system is parametric in the list of connectives, and for each of its connectives
C the logician—the “user” if you want—has to define left rules and right rules, as
shown below, where Π ⊆ A, B.

Γ, A ` B, ∆
CLi

Γ,C(Π) ` ∆
Γ, A ` B, ∆

CRj
Γ ` C(Π), ∆

It is the user’s responsibility to pick rules that semantically fit with the connec-
tive.7 What is not in their responsibility is to make sure the empty sequent ` is
not deducible. This would make the system unsound, because it is interpreted as
one formula of an empty disjunction of formulas holding true not contingent to any
(conjunction of) hypotheses. But since the form of the rules is prescribed in such a
way that the empty sequent never appears in the conclusion, this is ruled out by the
system.

5Intuitionistic logic was not discussed yet, but we will come to its characteristics soon.
6LK does have structural rules for weakening, contraction, and permutation, but the latter two can

be dispensed with when using sets of formulas as we do. In some later sections we will consider what
happens when certain structural rules are removed, but this is not relevant here. Therefore, we also
just gloss over weakening and silently allow it to happen.

7We can retroactively view Gentzen as such a user when he defined the rules of LK, and he of course
did make sure the rules fit semantically, which one can easily convince oneself using the intuition of
the conjunctively interpreted left-hand sides and the disjunctively interpreted right-hand sides.
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D1

` A
D

A ` B CUT` B

D2

` A
D

A ` B CUT` B

FIGURE 2.2: Utilizing CUT for reuse.

2.1.4 The Cut rule

The previous statement that all rules of LK are introduction rules was a lie, however
in a moral sense it was not really. Gentzen (1935) also included the so-called AXIOM

and CUT rules in LK, but the latter is entirely redundant, while the former can at
least be restricted to propositional variables without losing any proof strength.

AXIOMA ` A
Γ ` ∆, A A, Σ ` Π

CUTΓ, Σ ` ∆, Π
For the moment, we take no further interest in the AXIOM rule. However, the

CUT rule is of great interest even though being redundant. In fact, the exact way
it is redundant will be important in the next chapter. In this chapter, we focus on
why logicians care about this rule in the first place, and how this mirrors what every
programmer naturally wants to achieve: “Don’t repeat yourself (DRY).”

In our generic sequent calculus presentation, we add CUT as a non-user-defined
rule. We have to find a different way to show soundness because it does not directly
guarantee that the empty sequent cannot be derived simply by its form. This is
actually achieved by showing that CUT is redundant, no matter what user-defined
rules there are; this property, called cut elimination, will be discussed in the next
chapter, for now we just remark that cut elimination viewed through the Curry-
Howard lens is reduction, albeit with the qualification that their precise relation is
complicated. Summing up, this generic presentation of classical sequent calculus is
made up of

• module (a): restricted user-defined (thus itself modular) left and right rules
and

• module (b): CUT, equipped with cut elimination.

Now, why do we want to have the CUT rule around at all? Consider the two
proofs shown in Figure 2.2. They are for the same sequent and both use CUT. The
difference is in their respective left premises, where we assume that D1 and D2 not
to be the same. But using the CUT rule it was possible to factor out the part D of the
proof as a common right premise. If we eschewed CUT, this reuse would not have
been possible, and we would be forced to somehow mergeD1 andD, andD2 andD.
This would mean that we would have to carry out certain proof steps that amounted
to the same in the end, essentially repeating what we did in one proof tree in the
other, but we would have no representation of this as a standalone proof tree D. In
other words, we would violate DRY. This should remind the programmer of how
they are able to get by without using any (first-order) functional abstraction, but at
the cost of duplicating code with no hope of reuse. Also, the reduction of a function
call, a single reduction step, corresponds to a single step in a certain elimination pro-
cedure for cuts that gets rid of that one particular cut, i.e. it is a certain local version
of cut elimination; more on this in the next chapter. For now, in particular observe
that reduction, like cut elimination, in general produces a result that violates DRY,
which neither the programmer nor the logician will be too worried about since in
both cases practical high-level engineering work with programs/proofs concluded
before getting rid of CUT.
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There is a connective that is related to CUT in the sense that it allows to turn the
A ` B sequent into a first-class entity of the system, which in this case is a formula.
With the perspective on CUT as reuse we just considered, we can expect that we can
utilize such a connective for the purpose of first-class functional abstraction; if we
were not in a classical but an intuitionistic setting, Curry and Howard would tell us
which one that is: implication. In the next chapter we will see a system loosely based
on the classical sequent calculus with rules with which a CUT can be turned into a
first-class entity by binding a free variable, which in particular allows to recover first-
class functions. But even now we can already see that we are likely on the right track
with the connection between CUT and implication. Compare the implication left rule
with CUT: It is like a variant of CUT that “cuts” between two different propositions
A and B by internalizing this cut as an implication formula in the hypotheses.

Γ ` ∆, A B, Σ ` Π → LΓ, Σ, A→ B ` ∆, Π

What is important here is that this internalization means that the kind of functional
abstraction corresponding to implication is not first-order, but higher-order, and,
as intended, these kinds of functions are first-class entities just like a proof of an
implication, as opposed to a use of CUT, which is not internalized. For the purposes
of this chapter, where we consider these ideas more generally in the light of the
extensibility duality, we will work in the intuitionistic natural deduction setting, but
eventually seek a way (and find it in the next chapter) to improve the symmetry
which will lead us to the sequent calculus based systems.

The next section takes the first step into concretely exploring the extensibility du-
ality. Consider that just as the logician might not always want to have the internaliz-
ing implication connective around, the programmer has reasons to avoid first-class
functions. Both are sometimes interested in transforming these away by using (what
corresponds to) CUT. This transformation will be the subject of the next section. The
sections after the next will be about improving aspects of the transformation, and
thus achieving symmetry and increasing its economy. The first underlying problem
is that the transformation is very specifically, and unnecessarily so, tailored to the
function type/implication connective. This will be solved by generalizing the trans-
formation in the spirit of the modular user-defined rules presentation of this section.
And then, to get the maximum symmetry economy, we turn to our other duality,
which will carry us over into the next chapter.

2.2 Defunctionalization: A Transformation for the Logical
Engineer

In the early 1970s, Reynolds (1972) was the first to consider the question of how to
turn an interpreter exhibiting a certain set of properties, like the use of higher-order
functions, or dependence of the evaluation strategy in the defined language upon
that of the defining language, into an otherwise equivalent interpreter with different
properties; one could call this engineering work on the interpreter. In particular, it
was his goal to define transformations to get rid of the use of higher-order functions
in the interpreter and of the evaluation strategy dependence. This was motivated
by the idea that transforming such features away helps explaining them and by the
arguably related fact that this brings the interpreter closer to a form that can be trans-
lated to machine code.
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For the first goal, the relevant transformation is the so-called defunctionalization
that replaces all first-class functions with values of a data type and an appropriately
defined first-order apply function. For the second, the relevant transformation is the
continuation-passing style (CPS) transform; in the next chapter we will encounter a
language that could be described as inherently requiring CPS. But in this section, we
focus on defunctionalization and what it has to do with the perspective on the Cut
rule described in the previous section.

2.2.1 Defunctionalization: Example

Before we delve into the Cut rule connection, let us briefly see how defunctionaliza-
tion exactly works, by means of a simple example. We follow the original presen-
tation of Reynolds (1972) who uses a pseudo-mathematical notation for the abstract
syntax of his language, but will point out the modern equivalents along the way.
Reynolds (1972) uses defunctionalization on an interpreter, and we will see this kind
of example again in later chapters; however, for now it suffices to consider a simpler
example of a use of first-class functions well-known from functional programming
practice.

map((λx.x + 1), [1, 2, 3])

Here we map an anonymous first-class function, written using a lambda abstraction,
that adds one to its input, over a list containing some numbers; computing the result
of this term produces [2, 3, 4]. There are no lists in the language of Reynolds (1972),
so we just use the well-known square bracket notation, and, later on, the symbol ::
for cons-ing an element to a list. Also, in his language, all functions are first-class,
including the map function, but we do not make essential use of this function as
a first-class entity, i.e. we do not pass it to other functions unlike the anonymous
addition function, so we disregard the first-class status of map for the purpose of this
example.

Our intent is to eliminate the first-class use of functions, which we do in the follow-
ing steps (following Reynolds (1972)):

1. Add a new data set FUN for functions, with one data record per lambda abstrac-
tion.

2. Add a (not used in a first-class way) apply function that takes a FUN value
as input, distinguishes between the records, and, for each case, has the body
of the corresponding lambda abstraction as the body for that case (slightly
adapted to use field accessors, see below).

3. Replace lambda abstractions with instances of their respective records and ap-
plications of first-class functions with calls to apply.

Let us now consider these steps in some more detail.
In our concrete example, the data set is FUN = PLUS, where PLUS = [] is the data

record for the lambda abstraction λx.x + 1. Generally, such data records created
by defunctionalization have a field per free variable that appears in the body of
the lambda abstraction. For instance, if in the example we had instead mapped
(λx.x + y) over the list, with y being a variable bound somewhere further up in the
abstract syntax tree (e.g. our example term could be the body of a function that
has y as a parameter), we would have PLUS = [y : INTEGER]. In general, properly
dealing with free variables requires, at least conceptually, to first carry out lambda
lifting before the defunctionalization; lambda lifting turns all such implicitly closed
over variables into explicit additional arguments of the function, which then become
record fields.
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Reynolds’s language is not really statically typed (though data records do specify
the field types), but defunctionalization also applies to the statically typed setting in
pretty much the same way (see, e.g., (Danvy and Nielsen, 2001)). Thus, in a modern
style, we can express the data set FUN as a data type Fun which has a single constructor,
corresponding to (λx.x + 1) and PLUS, which we call PlusOneFun:

data Fun { PlusOneFun }

For the alternative lambda abstraction with the free y variable, the constructor sig-
nature would change to PlusFun(Int). Generally, constructors take the place of
records, so defunctionalization produces a data type with one constructor per lambda
abstraction, where the arguments of the constructor correspond to the free variables
of the body.

The apply function accordingly has a case for each data record (constructor); in
our example, there is just a single case, for PLUS, and its body is that of (λx.x + 1)
where the functional parameter x is replaced by the second argument of apply (here
also conveniently called x):

apply = λ( f , x).(plus?( f ) � x + 1)

The plus? is a predicate that checks whether f is an instance of PLUS. In general,
there is a predicate for each of the data records that constitute FUN. For the alter-
native lambda abstraction with a free variable y, the corresponding record would
additionally induce a field accessor y to be applied to f (written as y( f )); in the body
of apply for the plus? case, this would have to be appropriately used, i.e., the body
is x + y( f ). In general, there would be field accessors for each record field.

In modern languages with data types and pattern matching, we could write the
apply in the following way:8

function apply( f , x) := match f {
PlusOneFun ⇒ x + 1

}

In general, there would be a case for each constructor, and instead of the field ac-
cessors we could directly write the variables as part of the constructor patterns, e.g.
PlusFun(y) ⇒ x + y.

Finally, in the term in which the lambda abstraction appeared above, we replace
it with an instantiation mk-plus() of PLUS, or, in modern style, a call to the construc-
tor PlusOneFun of data type Fun:

map(PlusOneFun, [1, 2, 3])

We also have to replace the application of the first-class function parameter f in the
definition of map with a call to apply, i.e. we now have apply( f , x) :: map( f , xs)
instead of ( f x) :: map( f , xs). Fig. 2.3 shows the result of the entire transformation
for our example map((λx.x + 1), [1, 2, 3]).

As we saw, the basic idea of this transformation is easy enough. It gets slightly
more complicated when we also consider lambda abstractions with free variables,
which means that we have to use lambda lifting first, or when we consider functions
with different pairs of input and output types, for which we can use a polymorphic
Fun data type and apply function. A bit more involved and interesting for the exten-
sibility symmetry we consider is the defunctionalization of polymorphic functions,

8We also use this and similar notation for non-first-class function declarations and pattern matches
(plus the notation for data types seen above) further on in this work (in particular it is similar to the
notation used by Rendel, Trieflinger, and Ostermann (2015) and virtually identical to that of Binder
et al. (2019) whose works are discussed in the following sections).
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data Fun { PlusOneFun }

function apply( f , x) := match f {
PlusOneFun ⇒ x + 1

}

function map( f , xs) := match xs {
x :: xs ⇒ apply( f , x) :: map( f , xs)

}

map(PlusOneFun, [1, 2, 3])

FIGURE 2.3: Result of defunctionalizing map((λx.x + 1), [1, 2, 3]).

which requires Generalized Algebraic Data Types (GADTs) in the transformation target
(Pottier and Gauthier, 2004). We will come back to this point in Section 2.4.2 and
Section 4.4.

2.2.2 First-order function calls are Cutting

Our aim is now to demonstrate how using first-class functions logically corresponds
to using implication rules and using first-order functions definition to using the Cut
rule, and from this it will follow that defunctionalization, viewed logically, is a trans-
formation for the “logical engineer” (mentioned in the previous section) eliminating
uses of the implication rules by uses of the Cut rule (and a disjunctive elimination
rule for the data type replacing the function type). We focus on the high-level pic-
ture; as outlined in the previous section, there is not a perfect match between DRY
engineering in a programming language and the Cut rule, because the former is car-
ried out in what logically corresponds to intuitionistic natural deduction while the
latter is a rule of classical sequent calculus, but we consider the basic idea of the
correspondence to be valid nevertheless, plus we will move to bridge the gap in the
next chapter.

We begin our demonstration with the simple example term from above, but with
some details abstracted away; we also leave away the second argument of the outer
function call (just think, e.g., that we specialize to a specific list).

g(λx.φ(x))

In particular, the call to g is intended to be a first-order one, i.e. g is not a first-
class function, or any first-class entity, for that matter. Let us further say that x and
φ(x), which is just a placeholder for a term with free variable x, have type A, and
the overall term has type B. Then we can (try to) write this term, in the sequent
presentation of natural deduction (basic idea shown in the previous section), as the
following proof, where, as usual, we annotate left-hand side formulas with variables
and right-hand side formulas with their assigned proof terms:

D1

x : A ` φ(x) : A
→ I` λx.φ(x) : A→ A

D2
g

?` g(λx.φ(x)) : B
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To go from A ` A to ` A→ A, we use the implication introduction rule→ I (which
generally does not require the two subformulas to be the same, of course) from in-
tuitionistic natural deduction. Its classification as intuitionistic can be defined by
its rules’ right-hand sides using only a single formula; semantically, this definition
makes sense (and can also be applied to sequent calculus) because such a restriction
of the right-hand sides leads to the tertium non datur not being derivable in the log-
ical system. This then is the underlying reason for why implication in intuitionistic
natural deduction and its proofs directly correspond to the (first-class) function type
and its constructive terms, a.k.a. the original Curry-Howard correspondence.

But what should the currently omitted rule be that we only marked by a “?”, and
what about the g? It does not seem to be a proof term assigned to a formula. Clearly,
we must find a way to turn our sloppy made-up notation into something that can at
least in a high-level way be semantically understood in our logical framework. There
is a well-known answer to this question, but it is not a rule usually found in some
system based on intuitionistic natural deduction, but rather a derivable theorem:
the substitution theorem (or substitution lemma). For our purposes, it tells us that if the
body of g, say ψg( f ), with f the functional parameter of g, typechecks as T2 (in our
example T2 = B) in a context containing f : T1 (in our example T1 = A → A), and
there is some term t that we want to substitute for the x that typechecks as A, then
the substitution of some t for f within ψg( f ) typechecks as T2. Defining g(t) to be
ψg[ f 7→ t], i.e. the substitution of t for f in the body ψg of g, we can thus finish our
proof tree using this substitution theorem instead of a rule:

D1

x : A ` φ(x) : A
→ I` λx.φ(x) : A→ A

D2

f : A→ A ` ψg( f ) : B
SubstTheorem` g(λx.φ(x)) : B

In the sequent calculus, we have a rule with a form exhibiting the same principle
idea of “cutting” out a formula appearing on the right-hand side of one premise and
on the left-hand side of other: the Cut rule. And just as in the case of the substi-
tution theorem for intuitionistic natural deduction, this rule is derivable. But it is
nevertheless often made an explicit rule, or internalized in the system, for the prac-
tical “engineering” reasons mentioned. Hence our direct use of the theorem as a
representation of a first-order function call is somewhat reasonable. With this initial
understanding of the logical perspective on first-class and first-order functions, we
can finally consider the transformation itself.

2.2.3 Defunctionalization to Cuts

In order to transform the proof tree, we first have to introduce the logical analogue
of the data type, i.e. a set of rules for Fun. In our simple example, we have only one
constructor without arguments and hence the following rule suffices:

PlusOneFun` PlusOneFun : Fun

We replace the use of the implication introduction with a use of this rule, just as we
replaced the first-class function with the constructor call, and we replace occurrences
of A→ A with Fun.

PlusOneFun` PlusOneFun : Fun
D2

f : Fun ` ψg( f ) : B
SubstTheorem` g(PlusOneFun) : B



20 Chapter 2. Symmetric Extensibility in Logic and Programming Languages

Of course, we now also have to replace what corresponds to the function application
in the body of g, i.e., in D2. More specifically, in that subtree, we have to insert the
subtree D1 used as a premise for the implication introduction rule. Consider that
we have ( f t) appearing somewhere in the body of g (where f is a parameter of g,
hence our use of AXIOM), then we have a use of the implication elimination rule
→ E somewhere in D2.

AXIOMf : A→ A ` f : A→ A
D′2
` t : A

→ E
f : A→ A ` ( f t) : A

This gets transformed to what corresponds to the first-order function call apply( f , t),
i.e. the Cut variation called the substitution theorem, in this case in the two-argument
form; similarly to what we did with g above, we refer to the body of apply as ξ( f , x),
where f and x are the two parameters of apply.

AX.f : Fun ` f : Fun
D′2
` t : A

D′1
f : Fun, x : A ` ξ( f , x) : A

SubstTh.
f : Fun ` apply( f , t) : A

What remains to do is to define the subtreeD′1 for ξ, where the mentionedD1 should
go into. Note that ξ is the body of apply, which is constructed from the body φ of
the lambda abstraction, and D1 is the subtree for φ. More precisely, the body ξ is a
match with φ in the case for PlusOneFun, which logically corresponds to a variation
of the elimination rule for disjunction, just as Fun is a variation of disjunction. Gen-
erally, for a type Fun with n constructors which have the argument type α1, ..., αn,
respectively, this rule would look like this:

Γ ` Fun Γ1, α1 ` B . . . Γn, αn ` B
Γ, Γ1, . . . , Γn ` B

But since we only have a single constructor with no argument for Fun in this ex-
ample, this degenerates to (leaving away the trivial α1 = > representing the empty
argument list):

Γ ` Fun Γ1 ` B
Γ, Γ1 ` B

This rule we can use in D′1 to complete our proof tree with the proof tree D1 for φ:

AX.f : Fun ` f : Fun
D′2
` t : A

AX.f : Fun ` f : Fun
D1

x : A ` φ(x) : A
f : Fun, x : A ` ξ( f , x) : A

SubstTh.
f : Fun ` apply( f , t) : A

This completes our transformation of our example proof tree. The overall derivation,
putting together the tree for the call to g with that of its body (seen in the upper part,
connected with the dotted line), is shown in Fig. 2.4.

Summing up, we have eliminated all uses of implication rules at the cost of intro-
ducing a use of a new elimination rule, which in general is a variation of disjunction
elimination, and using the Substitution Theorem a.k.a. Cutting. In particular, this
means that we are now able to remove implication and its rules from our system,
but have to introduce disjunctive rules into the system. This situation is analogous
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PlusOneFun` PlusOneFun : Fun f : Fun ` ψg( f ) : B
SubstTheorem` g(PlusOneFun) : B

AX.f : Fun ` f : Fun
D′2
` t : A

AX.f : Fun ` f : Fun
D1

x : A ` φ(x) : A
f : Fun, x : A ` ξ( f , x) : A

SubstTh.
f : Fun ` apply( f , t) : A

FIGURE 2.4: Transformed proof tree (ψg( f ) = ...apply( f , t)...; ξ is
body of apply).

to that after defunctionalizing a program term, where we need a new data type made
up of alternatives and we have to use the first-order apply function. Note that even
though using the Substitution Theorem (corresponding to applying apply) appears
to introduce a use of a (derivable) rule that has not been there before the transforma-
tion, the implication elimination it replaces is already also related to Cutting, which
is a connection that depends on whether we are operating with intuitionistic natu-
ral deduction or the classical sequent calculus; this will become clearer in the next
chapter.

2.2.4 Applications of de- and refunctionalization

To finish up this section, we take a look at applications of defunctionalization beyond
the original Reynolds work (Reynolds, 1972). We also consider the partial inverse of
defunctionalization, refunctionalization (Danvy and Millikin, 2009), and applications
that have been found for it.

Reynolds (1972) had combined defunctionalization and CPS transformation to
bring programs closer to machine code. What followed was work in the more gen-
eral direction of inter-deriving semantic artifacts, which includes turning high-level
code into code resembling various abstract machines or automata and syntactically
described binary relations (Danvy and Nielsen, 2001; Danvy and Millikin, 2009;
Danvy, Johannsen, and Zerny, 2011). For this, defunctionalization and CPS trans-
formation were used, as well as, for moving in the respective other direction in the
semantic artifact space, their opposites refunctionalization and direct-style transforma-
tion. We only vaguely call them opposites here since they, as originally presented,
are not a perfect match, i.e. they are not full inverses of each other. There has been
extensive work regarding the language fragments that one lands in after CPS or
direct-style transformation from certain other language fragments. More important
for the present work is the mismatch between defunctionalization and refunctional-
ization, which we consider in the next section. For now, we just give an impression
of inter-deriving with one example featuring defunctionalization and another fea-
turing refunctionalization.

As our example featuring defunctionalization, we consider the string recognizer
for the language {0n1n} from Danvy and Nielsen (2001); their presentation is slightly
simplified here and we use the idealized function and data type declaration and pat-
tern match notation briefly introduced above (the original code is given in Standard
ML). Their starting point is a recursive-descent parser rec1, which they then CPS
transform, as shown in Figure 2.5. There is an auxiliary function called walk that
traverses the input string (a list of bits). The idea behind it is that it tracks how many
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function walk(xs : BitString, k : BitString→ Bool) := match xs {
Cons(0, xs′) ⇒ walk(xs′, λxs.match xs {Cons(1, xs′′) ⇒ k xs′′; _ ⇒ false})
xs ⇒ k xs

}

function rec1(xs : BitString) :=

walk(xs, λxs′.match xs′ {EmptyString ⇒ true; _ ⇒ false})

FIGURE 2.5: Recognizer for {0n1n}.

data Stack { StackBottom ; StackPush(Stack) }

function apply(k : Stack, xs : BitString) := match (k, xs′) {
(StackBottom, xs′) ⇒ match xs′ {EmptyString ⇒ true; _ ⇒ false}
(StackPush(k), Cons(1, xs′′)) ⇒ apply(k, xs′′)
(StackPush(k), _) ⇒ false

}

function walk(xs : BitString, k : Stack) := match xs {
Cons(0, xs′) ⇒ walk(xs′, StackPush(k))
xs ⇒ apply(k, xs)

}

function rec1(xs : BitString) := walk(xs, StackBottom)

FIGURE 2.6: Recognizer, defunctionalized to a push-down automa-
ton.

zeros it has seen by accumulating this state in the current continuation.9 If it sees a 1, it
just passes the current string to the current continuation. If it sees a 0, it recursively
(thanks to the CPS transformation this is a tail call) walks over the rest of the string,
with a continuation given that composes the current continuation with the request
for seeing one more 1 in front, to match the 0 just seen. More precisely, the continu-
ation given to this recursive call itself distinguishes between a 1 and a 0 as the first
bit; in the 1 case, it passes the rest to the current continuation, and in the 0 case it has
walk return false (since there is now an unmatched 0). This walk function is called
in the body of the recognizer function rec1, passing over the input string and giving
it a starting continuation that simply returns true if and only if its input is the empty
string, which one can perceive of as representing the initial state with no zeros seen
yet.

With the intuition behind the continuations representing the accumulated state,
and the way they are composed, one might hazard a guess as to what the resulting
semantic artifact after defunctionalization might be: a push-down automaton. And

9The original direct-style program has this accumulation happening implicitly on the call stack (it
case matches on the recursive walk result) and uses an exception to escape the walk function in case of
a mismatch.
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data Nat { Zero ; Succ(Nat) }

function run(ps : Dyck, n : Nat) := match (ps, n) {
(Empty, Zero) ⇒ true

(Empty, Succ(c)) ⇒ false

(Cons(L, ps), c) ⇒ run(ps, Succ(c))
(Cons(R, ps), Zero) ⇒ false

(Cons(R, ps), Succ(c)) ⇒ run(ps, c)
}

function rec2(ps : Dyck) := run(ps, Zero)

data Nat { Zero ; Succ(Nat) }
data MaybeWord { None ; Some(Dyck) }

function run(ps : Dyck, n : Nat) := match (ps, n) {
(Empty, c) ⇒ runAux(c, None)

(Cons(L, ps), c) ⇒ run(ps, Succ(c))
(Cons(R, ps), c) ⇒ runAux(c, Some(ps))

}

function runAux(n : Nat, mps : MaybeWord) := match (n, mps) {
(Zero, Empty) ⇒ true

(Zero, Some(ps)) ⇒ false

(Succ(c), None) ⇒ false

(Succ(c), Some(ps)) ⇒ run(ps, c)
}

function rec2(ps : Dyck) := run(ps, Zero)

FIGURE 2.7: Dyck recognizer before and after preprocessing.

that would be absolutely correct; taking the two functional abstractions that appear
in the program and turning them into constructors for a data type leads to the sim-
ple stack type with a one-element alphabet, isomorphic to Peano natural numbers,
shown in Figure 2.6. The starting continuation testing for the empty string becomes
the bottom of the stack or the Peano zero, and the accumulating abstraction within
walk becomes a constructor with one recursive argument, i.e. stacking one more el-
ement or the Peano successor. As usual, the bodies of the corresponding functional
abstractions move to the apply function, also shown in Figure 2.6. This resembles
a push-down automaton using the stack just described with two states, represented
by the two functions walk and apply. The tail-recursive calls transition between the
two functions (and hence the states) according to what symbol is seen next and what
is on the stack at that time. The function rec1 is the entry point redirecting to walk
with the empty stack.

As our example featuring refunctionalization, we consider the Dyck word recog-
nizer shown in Figure 2.7, i.e. a recognizer for a language over the alphabet {L, R} of
left, i.e. open, and right, i.e. close, parenthesis that consists only of the well-balanced
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words. This refunctionalization example is due to Danvy and Millikin (2009). The
recognizer they start with is, with some squinting, recognizable as a push-down au-
tomaton, similarly to the result of defunctionalization we just saw. We again have a
single-element alphabet stack, i.e. a counter, that reflects the number of open paren-
theses seen so far, for which we simply use the Peano natural number data type Nat.
What we want to do now is see how the Dyck word recognizer could have resulted
from a defunctionalization and then undo it, bringing it to a form that uses first-
class functions; specifically, we want the Nat type to serve as our defunctionalized
function type, and hence its constructors Zero and Succ to correspond to the lambda
abstractions in the refunctionalization result. What we need for the transformation
is a function that serves as the apply function, consuming and matching on Nat. In
principle, we could use the run function for that; however, this would mean that
we duplicated the third right-hand side since we would then need to split the third
case in two by splitting the pattern variable c in (Cons(L, ps), c) into the constructor
patterns for Zero and Succ. Instead, we preprocess our program a bit, resulting in
the program shown at the bottom of Figure 2.7. We introduce a new function runAux
which takes care of the case distinction between Zero and Succ for the cases of run
where it matters, i.e. in all cases except that for pattern (Cons(L, ps), c). This is the
only case where the first parenthesis, if any, is an L. Thus, in runAux we only need to
distinguish between the empty word, where we do not need to pass further infor-
mation from run to runAux, and non-empty words beginning with an R, where we
pass along the suffix that follows the R. For this purpose we introduce a simple data
type MaybeWord with constructors representing these two alternatives; one can think
of None as standing for “all balanced, no leftover suffix”, and of Some(ps) as standing
for “leftover suffix Cons(R, ps)”.

The function runAux can serve as an apply function for Nat; refunctionalizing
Nat with this apply function leads to the program shown at the top of Figure 2.8.
Just like the starting point for our defunctionalization example, this program is in
continuation-passing style. The run function now has a continuation k as one of its
inputs corresponding to the Nat input before the transformation. If one were some-
how able to get back to direct style, the program could conceivably have a rather
nice high-level form, with just a few simple pattern matches and no stack or counter,
which we already got rid of. Continuations are almost everywhere used linearly,
hence bringing to direct style is not an issue here (Danvy, 1994), however the second
right-hand side of run presents an obstacle: In the None case within the continuation
passed to the recursive run call, the continuation is not used and instead false is di-
rectly returned; semantically, this makes sense because at this point we know there
is an unmatched left (open) parenthesis and no right (close) parenthesis leftover to
balance it with. Danvy and Lawall (1992) showed how to deal with this case by en-
larging the target language fragment of direct-style tranformation with callcc, and
Danvy and Millikin (2009) make use of this for this example: This return of false
becomes a throw that interrupts the normal control flow and has to be caught (with
catch) in the surrounding code.10 In summary, refunctionalization helped us get a
program from an automaton-like form to a more high-level one making essential use
of a high-level control construct.

10Danvy and Millikin use a form of ML error handling with call/cc (Danvy and Lawall, 1992) for
this purpose; here we just use the names “throw” and “catch” for the keywords to convey an intuitive
idea of the control flow. This hopefully reminds the reader of comparable constructs in well-known
languages, e.g. throw and try-catch in Java; note that Section 5.4.5 discusses a foundation for auto-
matic conversion between this kind of ML error handling and Java exception handling that clarifies
their relation.
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data MaybeWord { None ; Some(Dyck) }

function run(ps : Dyck, k : MaybeWord→ Bool) := match (ps, n) {
(Empty, c) ⇒ c None
(Cons(L, ps), c) ⇒ run(ps, λmps.match mps {None ⇒ false; Some(ps) ⇒ run(ps, c)})
(Cons(R, ps), c) ⇒ c Some(ps)

}

function rec2(ps : Dyck) :=

run(ps, λmps.match mps {None ⇒ true; Some(ps) ⇒ false})

data MaybeWord { None ; Some(Dyck) }

function run(ps : Dyck) throws Bool := match ps {
Empty ⇒ None

Cons(L, ps) ⇒ match (run(ps)) {None ⇒ throw(false); Some(ps) ⇒ run(ps)}
Cons(R, ps) ⇒ Some(ps)

}

function rec2(ps : Dyck) := catch Bool {
match (run(ps)) {None ⇒ true; Some(ps) ⇒ false}}

FIGURE 2.8: Dyck recognizer, refunctionalized and back in direct
style.



26 Chapter 2. Symmetric Extensibility in Logic and Programming Languages

2.3 The Extensibility Duality

Let us reflect upon what we saw in programs before and after defunctionalization,
considering its relation to Cutting. As we saw in section 2.1 this is about reusing
duplicate proofs and hence relates to code reuse, and more concretely corresponds
to first-order function calls as demonstrated in section 2.2. Specifically, we now focus
on an important property of (code) reuse: A reuse mechanism should ideally not
make it necessary to break apart existing structure when introducing a new reusable
instance.

Before defunctionalization, we are able to add new instances of first-class func-
tions, i.e., new function abstractions, without touching existing code; afterwards,
all bodies of function abstractions are in the first-order apply function, and if we
wanted to add a new constructor of the Fun type we would have to add a case to the
apply function. Thus, after defunctionalization, independently (without touching
code like the case match in the apply function) adding a new Fun entity is not pos-
sible, whereas before adding a new function abstraction independently is possible.
It is not as one-sided as it looks, however. For the Fun data type after defunction-
alization, one may independently add new first-order functions that have a Fun as
their input; before defunctionalization, the not independently extensible semantic
equivalent are destructors (or observations) of so-called codata, which has multiple de-
structors instead of just apply (more on this idea soon).

Thus, defunctionalization actually switches between two dual extensibility trade-
offs, or extensibility dimensions as we will from now on refer to them. This connection
was first explicitly pointed out by Rendel, Trieflinger, and Ostermann (2015), who
used it to fix the invertibility issue of defunctionalization by generalizing first-class
functions to codata types, the dual of data types. This result is a major prerequisite for
the present work, thus we will consider it in some detail in this section. Note how,
starting out with the connection between Cuts and code reuse and then more specif-
ically first-order functions with which the program may be independently extended,
one obtains a bigger picture which raises the possibility of a connection between the
transformations and extensibility questions. Thus, arguably, this logic perspective
paves the road for a fundamental explanation of the result uncovered by Rendel,
Trieflinger, and Ostermann (2015). The end of this section provides an elaboration
of this idea.

2.3.1 Problem: Defunctionalization lacks a total inverse

Consider the result of defunctionalizing the example from the previous section (see
Fig. 2.3), which in particular included the following apply function:

data Fun { PlusOneFun }

function apply( f , x) := match f {
PlusOneFun ⇒ x + 1

}

As we saw in the previous section, refunctionalization requires there to be such an
apply function such that we can take it apart and move each of its cases’ bodies
into its own lambda abstraction. More precisely, the only thing required of such an
apply in order to be usable for refunctionalization is the form of its signature, i.e. it
should have two input arguments, one of which is of type Fun, the replacement for
the first-class function type. When we only use refunctionalization to go back from
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programs in the image of defunctionalization, everything works out fine. However,
assume that we wanted to change the program before refunctionalizing it again. This
is not something that is in general allowed because one has to be careful about two
things:

• You cannot delete the apply function or modify its signature such that it does
not have the described form anymore.

• You cannot introduce other functions which case match on Fun, like apply
does, because the transformation would not eliminate them, but afterwards
there would be no cases to match on anymore.

All these restrictions look rather ad hoc, and as Rendel, Trieflinger, and Ostermann
(2015) point out, there are at least two reasons to generalize the transformations such
that defunctionalization and refunctionalization are full inverses of each other. The
first is the relative ease with which these transformations can now be automatized;
the work of Rendel, Trieflinger, and Ostermann (2015) almost makes this just matrix
transposition, and in the next chapters we will see how to eliminate the “almost”
qualification. The second is the relation to the so-called Expression Problem: the
generalized transformations switch between the two extensibility dimensions.

2.3.2 The Expression Problem

The duality of independently extending a program with new observations, or con-
sumers, of some type and independently extending it with new producers of that type,
and ways to achieve both simultaneously has been considered by various authors
since at least the 1980s. The canonical example became what was called by Wadler
the Expression Problem Wadler (1998). In its simplest form, we start with a recursive
data type Exp that describes the abstract syntax tree (AST) for expressions in a simple
term language, with a constructor Num for the number literal, for which we assume
some natural number type Nat, and another constructor Add for the recursive addi-
tion node.

data Exp { Num(Nat) ; Add(Exp, Exp) }
We can now write a simple recursive first-order function eval that consumes an Exp
and computes its value (a natural number; we assume that addition + is defined on
natural numbers).

function eval(e : Exp) : Nat := match e {
Num(n) ⇒ n
Add(e1, e2) ⇒ eval(e1) + eval(e2)

}

In general, it is easy to add new functions consuming Exp; for instance, we could
add a function pretty that takes an expression and computes its pretty-printed form.
However, what if we want to add a new node to our AST, say, multiplication? We can
add a new constructor Mul to the data type, but then we have to adapt all functions
that consume and match on Exp to add a new case for Mul.

There have been many attempts to solve this problem to allow easy extension
with both producers and consumers simultaneously (Krishnamurthi, Felleisen, and
Friedman, 1998; Zenger and Odersky, 2001; Torgersen, 2004; Ernst, Ostermann, and
Cook, 2006; Swierstra, 2008; Oliveira and Cook, 2012; Wang and Oliveira, 2016), in
particular also in the presence of parametric polymophism and subtyping, as well as
reflections on the criteria on when such a solution is reasonable, i.e. making precise
what independent or “easy” extension is and what (type) guarantees are expected of
a solution (Zenger and Odersky, 2004; Rendel, Brachthäuser, and Ostermann, 2014).
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Here, however, we only want to look at the (idealized) language fragments which
represent the two extensibility dimensions, i.e. the one in which extension with a
consumer is easily possible and the one where extension with a producer is easily
possible. We already saw that for the first dimension: for data types, one can easily
add functions consuming data type arguments and matching upon them. In the
literature on the Expression Problem, the other dimension is frequently represented
by object-oriented programming.

In our example, instead of representing expressions by a data type, we could also
have an interface for them in which we specify what operations on expressions are
possible.

interface Exp { eval : Nat }
This interface can be implemented by a class, e.g. for Num, which amounts to give

an implementation for each operation:

class Num(n : Nat) { eval := n }

Similarly we can write another class implementing the interface for the recursive
node Add. And we can now also easily add further producers of Exp like Mul, which
we were not able to do when using a data type. However, easy extension by con-
sumers is not possible anymore. If we wanted to add a pretty-printing operation
pretty now, we would have to add it to the interface and then adapt all classes
implementing the interface to implement pretty in them.

Summing up, we saw how programming with data types and case distinction
corresponds to the consumer extensibility dimension while object-oriented program-
ming corresponds to the producer extensibility dimension. Note that we only used
an idealized subset of object-oriented programming, which is sufficient for this char-
acterization and is precisely captured by the notion of codata (Hagino, 1989). Codata
is also the language fragment that will serve as the target of the generalized refunc-
tionalization; as hinted at, this transformation is switching from consumer to pro-
ducer extensibility, and the same goes for generalized defunctionalization and the
other direction.

2.3.3 Generalizing de- and refunctionalization

Consider again the question of what should happen with a modified defunctional-
ized program. If the modification puts it outside the domain of refunctionalization
as originally defined, we cannot use this transformation. For instance, we might
have added a second function consuming Fun (we also add a second constructor to
make things a bit less degenerate):

data Fun { PlusOneFun ; MulTwoFun }

function apply( f , x) := match f {
PlusOneFun ⇒ x + 1

MulTwoFun ⇒ x ∗ 2

}

function isPlusFun( f ) := match f {
PlusOneFun ⇒ true

MulTwoFun ⇒ false

}
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The new function simply checks if the given function is an addition function or
not. Transforming this program with the generalization of refunctionalization pre-
sented by Rendel, Trieflinger, and Ostermann (2015), we obtain, in object-oriented
jargon, not simply a first-class function abstraction for PlusOneFun and MulTwoFun,
but rather an object, i.e. more specifically an instance of an anonymous class, which
implements both the apply method and the isPlusFun method. That is, first-class
functions are generalized to objects, and apply is now just one particular method;
the type of first-class functions is now defined as a particular interface (e.g., as intro-
duced in the standard library of Java 8). Carving out the essential aspect here, as
hinted at before, we can present this as codata, and instead of having to resort to
an object-oriented explanation (which shall only serve to provide some intuition as
many are familiar with OO) we can rather directly and elegantly see how program-
ming with codata is dual to programming with data.

codata Fun { apply(Nat) ; isPlusFun }

function PlusOneFun := comatch {
apply(x) ⇒ x + 1

isPlusFun ⇒ true

}

function MulTwoFun := comatch {
apply(x) ⇒ x ∗ 2

isPlusFun ⇒ false

}

In this presentation, what we referred to as an interface is a declaration of a codata
type, with a destructor signature corresponding to that of a method. Implementing
the interface corresponds to giving producer functions (which we simply write using
the keyword function as we did for consumer functions) for the codata type which
implement each of its destructors, like a class would provide implementations of the
methods. We refer to this destructor distinction as copattern matching (comatch)11,
due to Abel et al. (2013), who devised copatterns as patterns of observations dual to
constructor patterns.12 Note how this is similar to a case distinction for the different
constructors of a data type. The difference is that the comatch does not have an
entity that it comatch-es upon; rather, the implementation by copattern matching
constitutes an entity by itself. On the other side, dually, the match absolutely requires
some entity, it cannot stand by itself; in the next chapters we will set out to further
align data and codata by overcoming such differences.

Strikingly, going back and forth between data and codata is now straightforward
and can be seen as a simple rearrangement of the case implementations into func-
tions. In our example, on the data side these are arranged such that x + 1 and x ∗ 2

11The notation of Rendel, Trieflinger, and Ostermann (2015) does not use a comatch or match key-
word since their language does not have local (co)matches, so they do not need these keywords; local
(co)matches are discussed in the next section. Instead, the non-local setting enables Rendel, Trieflinger,
and Ostermann (2015) to suggestively write the pattern match cases as equations (as known from top-
level declarations in Haskell or ML), e.g. apply(PlusOneFun(), x) = x + 1. Viewing a program as
consisting of equations might facilitate conceptually understanding extensibility switching (see be-
low); this view of programs as collections of equations will also play a central role in the semantic
considerations related to the work of Lämmel and Rypacek (2008) in Section 5.4.3.

12In the work of Abel et al., copatterns (and destructors) are in fact simply projections without
arguments, but they treat first-class functions specially. This is not the case in the work of Rendel,
Trieflinger, and Ostermann who allow destructor arguments in order to be able to capture first-class
functions with codata (and more generally to make data and codata symmetric, of course).
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PlusOneFun MulTwoFun

apply(x) x + 1 x ∗ 2
isPlusFun true false

FIGURE 2.9: Program matrix.

are together in one consumer function, and true and false are in the other. On the
codata side, x + 1 and true are grouped together in one producer function, as well
as x + 1 and false. Rendel, Trieflinger, and Ostermann (2015) not only pointed out
their form of de- and refunctionalization was extensibility switching, but also that
when presenting programs in the forms of two-dimensional matrices, where the two
dimensions are the extensibility dimensions (Cook (1990) was presumably the first
to explicitly present programs this way), then their transformations are simply trans-
positions of the program matrix.13 Figure 2.9 shows the matrix for our example pro-
gram. Reading it row-by-row results in the consumer functions of the data side, and
reading it column-by-column results in the producer functions of the codata side,
thus both linearizations of the program can be directly obtained from the matrix.

2.3.4 Transforming between Cuts for user-defined rules

When we considered the logic equivalent of defunctionalization in the previous sec-
tion, we saw uses of implication elimination rules being replaced by Cutting (or
more precisely, the Substitution Theorem), and uses of implication introduction rules
by uses of introduction rules for the disjunctive Fun. Let us now consider what hap-
pens when we generalize the transformation, as presented in this section, to not just
work with first-class functions, but arbitrary codata. To start, we repeat the implica-
tion introduction rule which corresponds to (first-class) functional abstraction:

x : A ` φ(x) : B
→ I` λx.φ(x) : A→ B

Anticipating the generalization to multiple destructors, let us first explicitly use the
name apply; we also use curly braces to indicate that this is some kind of first-class
abstraction and drop the λ.

x : A ` φ(x) : B
→ I` {apply(x)⇒ φ(x)} : A→ B

Now we can simply add another destructor intrinsicProperty, with a correspond-
ing second premise, and obtain a rule that is structurally the same (modulo the para-
metric formulas) as the codata type Fun above which had a destructor isPlusFun in
addition to apply.

x : A ` φ(x) : B ` ψ : C
→∗ I

` {apply(x)⇒ φ(x); intrinsicProperty⇒ ψ} : A→∗(C) B
13Independently (but closely related), Harper (2016, ch. 26) discusses the two ways (method-based

and class-based) to orient a program matrix in the context of dynamic dispatch (which he identifies
as a “central concept” of “object-oriented” programming). In particular, Harper (2016, ch. 26) notes,
agreeing (at least in principle) with what the present work advocates for: “A bias towards either a class-
or method-based organization seems misplaced in view of the inherent symmetries of the situation.”
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We simply call the new ternary connective →∗, indicating it is an enhanced impli-
cation. In the same way we can add introduction rules for arbitrary connectives
with arbitrary destructors. Compare this to our generic rules from section 2.1.3 with
which one could add arbitrary connectives to the sequent calculus system.

In sections 2.3.2, we saw the class Num, which served as an abstraction over all
natural numbers n, each instance implementing eval to return the particular n. Pre-
sented in the codata way, a class is a producer function that possibly has some pa-
rameters, in this example the n. We saw that this is similar to consumer functions,
albeit with the difference that consumer functions necessarily have one parameter
that they consume, whereas there is no mandatory and distinguished producer func-
tion parameter. We will find a way to pull down this difference in the next chapter,
but now we already nevertheless observe that the similarity of producer and con-
sumer functions is sufficient to have their calls both correspond to the Substitution
Theorem, just as we already demonstrated it for first-order functions generally. For
instance, we can have a proof tree for→∗ with a free variable/open premise y, for a
formula C′, that corresponds to a producer function that takes a C′ as parameter and
produces a value of the type corresponding to A→∗(C) B from it.

D′
x : A ` φ(x) : B

D′′
y : C′ ` ψ : C

→∗ I
y : C′ ` {apply(x)⇒ φ(x); intrinsicProperty⇒ ψ} : A→∗(C) B

Calling this proof tree D and its corresponding term ξ(y), we can reuse it with the
help of the Substitution Theorem:

Dy

` y : C′
D

y : C′ ` ξ(y) : A→∗(C) B
SubstTh

` ξ(y) : A→∗(C) B

Hence we saw that this follows the same principle that we saw for first-order func-
tions generally.

Now, for both consumer and producer functions, each function is a particular
instance of the respective reuse mechanism. As mentioned in the introduction of
this section, a sensible reuse mechanism should allow for easy addition of new in-
stances (independent extensibility), and producer and consumer functions exhibit
this property, as we saw in section 2.3.2, as does a subtree in a proof that then uses
the Substitution Theorem. Coming full circle, since reuse is also the idea behind
Cutting, as presented in section 2.1.4, or using the Substitution Theorem, one can
arguably expect that (the result of) defunctionalization should be related to the con-
sumer reuse mechanism, as elaborated on in section 2.2.3, and the same goes for
the refunctionalization result and the producer reuse mechanism, as we just saw. In
particular, one can expect de-/refunctionalization to be related to the extensibility
property of these reuse mechanisms. Thus, with our logic perspective on reuse that
we built out starting from section 2.1.4, we have started to obtain a fundamental
explanation of the initially surprising result of Rendel, Trieflinger, and Ostermann
(2015) on the relation of extensibility and de-/refunctionalization. This is not in-
tended to devalue their finding, but to support the argument for a more thoroughly
systematic exploration of the logic corresponding to programming language aspects
put forth in the introduction: If you have a good basis for fundamental explanations
of important findings such as that of Rendel, Trieflinger, and Ostermann (2015), this
basis can be reasonably expected to carry you further.
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However, the perspective on reuse developed so far needs further refinement.
As pointed out in section 2.1.4, we seek to reconcile intuitionistic natural deduction
and sequent calculus to get the best symmetry out of both worlds, and will move
towards this in the next chapter. Regarding the insights of this section, there are two
(related) aspects that we will keep in mind as needing improvement:

• Consumer and producer functions, as presented until now, are inherently dif-
ferent. It was already remarked above how consumer functions have a dis-
tinguished mandatory argument that producer functions lack. Calling a con-
sumer function corresponds to Cutting with terms, one of which is this dis-
tinguished argument. We can think of this term as a producer of some form,
hence such a call is a meeting of producer and consumer. This is not the case
for a producer function call, which is merely creating a producer that then still
needs to meet a consumer to get computation going.

• The way a producer function call and a consumer, which is in this case a
destructor, meet, is a destructor call corresponding to use of an elimination
rule. Thus, on the producer function (codata) side, a meeting of producers and
consumers is represented differently from the consumer function (data) side;
there is no straightforward universally applicable representation for this meet-
ing. In particular, a consumer function corresponds to a standalone proof tree,
whereas a destructor corresponds to just the elimination rule itself and has no
standalone representation. As we will see, this is also related to the connection
between elimination rules and Cutting depending on the system, i.e. intuition-
istic natural deduction or classical sequent calculus, as alluded to at the end of
section 2.2.3.

As we will see, as a byproduct, the following section will provide more practical
motivation for the quest for improved symmetry and hence economy of the next
chapter.

2.4 Symmetric Language Design Using the Extensibility Du-
ality

Rendel, Trieflinger, and Ostermann (2015) envisioned their data and codata frag-
ments to form the core of a language, or rather development environment, in which
one could switch extensibility at the press of a button whenever one had access to
the whole program. This author was part of the effort to bring this idea closer to a
real system, in particular designing a mechanically verified language with both data
and codata with convenient local abstractions and integrating it into the desired de-
velopment environment (Binder et al., 2019). The first part of this section considers
this work in more detail and especially its impact on the present work. In the second
part of this section we look at how to bring parametric polymorphism to the lan-
guage fragments of Rendel, Trieflinger, and Ostermann (2015) in order to increase
the practical relevance of this symmetric pair; this author co-authored the relevant
paper (Ostermann and Jabs, 2018) and will also use the insight gleaned from that
work for the parametrically polymorphic version of the system PF presented in the
present work. This is a first example of a duality-utilizing exploration of the design
space that goes beyond simple types; it also turns out to be a first candidate for a
design prescription in that part of the design space.
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data Nat { zero; succ(Nat) }
codata Stream { head : Nat; tail : Stream }

consumer function Nat.add(n) := {
zero ⇒ n
succ(m) ⇒ succ(m.add(n))

}

producer function repeat(n) := {
head ⇒ n
tail ⇒ repeat(n)

}

-- example function calls

zero.add(succ(zero))

repeat(succ(zero)).tail.head

FIGURE 2.10: Example program in the language of Binder et al.
(2019).

2.4.1 A language with data and codata

The exposition at the very beginning of this work talked about programming lan-
guages forcing the programmer (or at least strongly favoring it) to structure their
program in a certain way. Then the ultimate goal for this work was postulated: Aid
the design of programming languages that, among other criteria, avoid this and al-
low for more diversity. The language (and environment) of Binder et al. (2019) can
be seen as a prototype of such a language with inherent diversity. Concretely, it
favors neither extensibility in one nor the other dimension, but rather allows the
programmer to pick the dimension that fits best with their mental decomposition
of the problem considered: one can either represent the relevant entities by a data
type, or by a codata type, and these two approaches are symmetric. To that end, as
mentioned, it builds upon the data and codata fragments of Rendel, Trieflinger, and
Ostermann (2015). The following illustrates the decomposition diversity of Binder
et al. (2019) with some examples reminiscent of what we have considered above in
this chapter.

First of all, the language of Binder et al. (2019) allows to specify both data and
codata types, together with consumer functions for data and producer functions for
codata. An example of this is shown in Fig. 2.10. Here we have the usual natural
number data type and a codata type for streams of natural numbers, together with
a consumer function (the consumed type Nat for the matched-upon argument is
written in front of the function name in the signature, separated by a dot: Nat.add)
to add natural numbers and a producer function repeat for a stream that simply
repeats the given number.

Just like the fragments of Rendel, Trieflinger, and Ostermann (2015), we can now
switch the extensibility dimension of one of the two types (or of both). For instance,
we can turn the Stream type into a data type with constructor repeat and consumer
functions head and tail, or we can turn Nat into a codata type with destructor add
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and producer functions zero and succ. Binder et al. (2019) implemented these trans-
positions in Coq and verified them to be total and full inverses of each other. From
the Coq source a Haskell program was extracted which serves as the backend for a
little IDE prototype in which transposition can be carried out at the press of a button.

An aspect that the data and codata language fragments lack, and which Binder et
al. (2019) added, is the ability to locally specify matches and comatches. These are im-
portant to give programmers the convenience they are used to: With local matches,
one can encode nested pattern matching; local comatches can be used to encode local
lambda abstractions. As an example of the former, consider the Fibonacci function
fib (here the argument list is empty, since the matched-upon argument is the only
one):

consumer function Nat.fib() := {
zero ⇒ zero

succ(zero) ⇒ succ(zero)

succ(succ(n)) ⇒ fib(succ(n)).add(n.fib())

}

While this cannot be expressed in the language of Binder et al. (2019), it can be
directly encoded using a local match:

consumer function Nat.fib() := {
zero ⇒ zero

succ(n) ⇒
match n {
zero ⇒ succ(zero)

succ(n0) ⇒ fib(n).add(n0.fib())

}
}

As for local comatches, consider as an example that we want to lift addition of
some number, e.g., 1, to a first class function in order to pass it to some higher-order
function like map (l is some list assumed to be available in the context):

... map(λx. x.add(succ(zero)), l) ...

The language of Binder et al. (2019) allows to encode this using a local comatch for
the codata type Fun (codata Fun { apply(Nat) }):

... map(comatch Fun {apply(x) ⇒ x.add(succ(zero))}, l) ...

We now turn to the question of what these local abstractions mean for program
transposition.

Program transposition is a global transformation that is arguably best under-
stand as the transposition of a matrix where the field entries consist of the bodies of
the cases of the top-level producer or consumer functions. The approach taken by
Binder et al. (2019) is thus to temporarily lift local (co)matches to top-level functions
and then perform transposition on the result. In order to be able to recover the origi-
nal program with the local (co)matches when transposing again, the constructors or
destructors that correspond to local abstractions are annotated as such. For example,
the local comatch shown above becomes a constructor call where the constructor is
annotated as local by a leading underscore:

... map(_addOneFun(), l) ...

The codata type Fun is now a data type with this constructor (and potentially others
for other comatches, local or top-level, in the program): data Fun{_addOneFun}. The
name addOneFun needs to be invented somehow or be provided by the programmer;
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for instance, it can be annotated to the relevant local (co)match. The body of the local
comatch is now in the apply consumer function, as expected.

There is one technical complication with the transposition of local (co)matches
that we have not considered thus far. It arises when we have free variables in the
body of a local abstraction, i.e. variables not bound by that abstraction itself but
somewhere above it. Consider again mapping the lifted addition function over some
list, but this time not simply adding 1 but some variable number y with the variable
bound somewhere else, say, in a top-level function f .

... map(comatch Fun {apply(x) ⇒ x.add(y)}, l) ...

What shall happen with this local comatch when the program is transposed? A
possible approach could be to collect all the free variables within the body of the
comatch and add corresponding arguments to the constructor that corresponds to
the comatch. In the example, we would get a constructor call like this in place of the
comatch:

... map(_addFun(y), l) ...

And in the relevant case of the apply consumer function, we would have access to
the argument of _addFun:

_addFun(y)⇒ x.add(y)

However, there is a subtle problem with this. Consider that we want to compute the
result of the term _addFun(succ(zero).add(succ(zero))). It semantically is the same
as _addFun(succ(succ(zero))). This is nothing but a nesting of constructor calls, so
there is nothing more to compute and this term is already our final result. But if we
transpose a program (with respect to Fun) in which the original term appears, the
corresponding term should have the variable y substituted with the argument of the
constructor call, i.e. it should be

comatch Fun {apply(x) ⇒ x.add(succ(zero).add(succ(zero)))}.

This term cannot be reduced further (unless when taking the unorthodox approach
of reducing under binders, which would open a different can of worms). In sum-
mary, one term is reducible while its corresponding term under transposition is not,
which is not an ideal scenario when wanting to establish a close correspondence
between operational semantics before and after transposition.

As a remedy, Binder et al. (2019) introduce explicit substitutions tacked to the
(co)match binders. This way the transformation exactly preserves the one-step re-
duction. In the example, the original constructor call becomes

comatch Fun using y := succ(zero).add(succ(zero)) {apply(x) ⇒ x.add(y)}.

under transposition, and the right-hand side of the substitution (announced by the
keyword using) is reducible just like the argument to the constructor call is. Over-
all, (co)matches are now really just local forms of producer/consumer functions,
which especially means that no binding crosses a binder. And while one may view
this as sacrificing a bit of convenience, it could also be argued that a deep and com-
plicated binding structure is not necessarily particularly convenient anyway, and
that in simple instances of binding across some fixed number of binders the explicit
substitutions could be hidden by some surface syntax.

With this we have summarized the key aspects of this prototypical symmetric
language design. A case study that recreates a semantic artifact interderivation of
Danvy, Johannsen, and Zerny (2011) and demonstrates the relevance of working
with the automatic transposition is found in the paper (Binder et al., 2019). The
present work will revisit practical applications of transposition again in chapters 4
and 5 when discussing the more fundamental language PF .

The paper of Binder et al. (2019) also contains a paragraph, mainly written by this
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author, with some initial thoughts on how to further improve the symmetry. The lan-
guage PF presented herein is the eventual result of the design process that began
there. One indication that intuitionistic natural deduction is not the optimal frame
in which to draw up a symmetric language when considering fundamental proper-
ties of the language and the transformations was that this author and his coauthors
had to always take care of the structural difference between the data side and the
codata side when proving such properties. Concretely, structurally a constructor
takes some arbitrary number of arguments, whereas a destructor also takes these
arguments, but additionally has an output type specified. This structural difference
presents an obstacle to easy formal treatment, which this author thinks supports
aiming for data and codata to be uniform such that definitions and proofs can also
be structurally identical. PF exhibits such structural equivalence of data and codata,
leading to a rather elegant formal treatment, as we will see in chapter 4. Chapter 5
presents macro embeddings for natural deduction-framed surface languages, thus
demonstrating that PF is indeed more general than the language of Binder et al.
(2019), and that formal treatment of such surface languages can be factored into a
treatment for the relevant macro embedding and the one for PF .

Chapter 4 also presents a version of PF that includes parametric polymorphism,
which was informed by a prior work which this author co-authored and which is
summarized in the next subsection.

2.4.2 Symmetric spots in the type system design space

As mentioned in Section 2.2.1, Pottier and Gauthier (2004) realized that defunction-
alizing parametrically polymorphic first-class functions requires Generalized Alge-
braic Data Types (GADTs) in the target language. This means that to find a spot in
the type system design space stable under extensibility switching, data types have
to be generalized to GADTs when allowing producer functions to have type param-
eters. Now, if we want consumer functions to have type parameters as well, exactly
mirroring the generalization of producer functions, it turns out that what we need
is a generalization of codata types that is the dual of GADTs (Ostermann and Jabs,
2018), which my coauthor of the relevant paper, Klaus Ostermann, and I decided
to call Generalized Algebraic Codata Types or short GACoDTs, until a better name sur-
faces. Notably, this kind of type was already invented at the time in the context of
Object-Oriented Programming, integrated into a research extension of C# (Kennedy
and Russo, 2005). The following summarizes the key aspects of the GA(Co)DT lan-
guage of Ostermann and Jabs (2018), especially the matrix formalism employed, by
means of some examples, before closing this chapter with some reflections on the
type system design space.

Let us start with the codata encoding of first-class functions, now finally para-
metric in the input type A and output type B:

codata Fun〈A, B〉 { Fun〈A, B〉.apply〈A, B〉(A) : B }

For each destructor (like apply), the instantiation of the type parameters is given
in the list between the angle brackets before the dot (Fun〈...〉.). In the apply exam-
ple, the instantiation is generic, thus we specify it with the variables A and B; such
variables are bound in the list between the angle brackets following the destructor
name (apply〈...〉). As a simple parametric producer function for this type, consider
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the producer for the identity function:

producer function id〈A〉() : Fun〈A, A〉 := {
apply(a) ⇒ a

}

Let us add the addition of 1 lifted to a first-class function and present all of that as a
program matrix for the codata type Fun:

Fun〈A, B〉.apply〈A, B〉(a : A) : B
id〈A〉 : Fun〈A, A〉 a
add1 : Fun〈Nat, Nat〉 add(a, 1)

The columns correspond to destructors and the rows to producer functions. We
can switch the extensibility dimensions by transposing that matrix, obtaining the
matrix shown below.

id〈A〉 : Fun〈A, A〉 add1 : Fun〈Nat, Nat〉
Fun〈A, B〉.apply〈A, B〉(a : A) : B a add(a, 1)

Here the columns correspond to constructors and the rows to consumer func-
tions. We see that the constructor signatures specialize the parameters of Fun, so the
data type associated with that matrix is a GADT. Using the matrix presentation it
becomes obvious how the constructors resulting from defunctionalization have the
same signatures as the original first-class functions and that defunctionalizing them
thus requires GADTs in the target.

The apply consumer function is parametric, but does not specialize the param-
eters of the data type Fun of the consumed data, unlike the producer functions we
considered. If we allow that same kind of type-theoretic strength, we can for in-
stance write a consumer function add? that checks if a given function (i.e. a value of
type Fun) from Nat to Nat is an addition function (this consumer is rather trivial, but
adding other functions from Nat to Nat can easily make this example more relevant):

consumer function Fun〈Nat, Nat〉.add?() : Bool := {
id ⇒ false

add1 ⇒ true

}

Now, when we consider the matrix form of the resulting program and transpose
that, we see that the destructor signature for add?, which is the same as the signa-
ture of the original consumer function, specializes the parameters of the destructed
codata type to Nat and Nat.

Fun〈A, B〉.apply〈A, B〉(a : A) : B Fun〈Nat, Nat〉.add? : Bool

id〈A〉 : Fun〈A, A〉 a false
add1 : Fun〈Nat, Nat〉 add(a, 1) true

In other words, that destructor add? may only be applied to certain codata val-
ues with the appropriately instantiated parameter types; specifically in this exam-
ple, it cannot be applied unless both parameters are Nat. Generally, just as we need
a generalization of data types, namely GADTs, when transposing producer func-
tions which are parametrically polymorphic and allowed to arbitrarily specialize
type parameters, since the resulting constructor signatures are identical to those of
the producer functions, we also need a generalization of codata types when giving
consumer functions the same liberty; as mentioned, we preliminarily chose to name
this generalization GACoDT.

Previously we saw how codata can be seen as the essence of Object-Oriented
Programming. In OO terms, a codata type can be understood as an interface, but
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in ordinary OO languages one cannot specify that some method in an interface is
only allowed (and required to be implemented) in implementations of the interface
that pick certain types for the parameters as in a GACoDT. However, there has been
some research on how to bring exactly such a kind of construct to C# (Kennedy and
Russo, 2005), who extended the where-clause of C#, which already allowed to spec-
ify subtyping constraints on the parameters, to also allow equational constraints.

interface Fun〈A, B〉 {
B apply(A);

Bool add?() where A = Nat, B = Nat;

}

In the syntax of Kennedy and Russo (2005), we could write the interface shown
above which corresponds to our codata type Fun. Unlike in the case of Kennedy and
Russo, who were evaluating a rather ad-hoc linguistic extension inspired by GADTs,
we argue that our “rediscovery” of GACoDTs was a direct necessary consequence of
our intent to extend both producer and consumer functions in the same way and
keep the system stable under matrix transposition.

Whenever the parameter specializations of a destructor and producer function or
of a constructor and consumer function are incompatible, it is impossible to fill the
respective matrix field. As an example, consider adding a (producer function for a)
first-class function toStr that has Str(ing) as its output type. This is not compatible
with destructor add? which requires that output type to be Nat, which is indicated
by graying out the respective matrix field.

Fun〈A, B〉.apply〈A, B〉(a : A) : B Fun〈Nat, Nat〉.add? : Bool

id〈A〉 : Fun〈A, A〉 a false
add1 : Fun〈Nat, Nat〉 add(a, 1) true
toStr : Fun〈Nat, Str〉 nativeToStr(a)

Of course, in the linearized forms of the program, the cases in producer or con-
sumer functions corresponding to such grayed out fields can simply be omitted. The
notion of compatibility considered here is structurally the same as in Hindley-Milner
type systems (Hindley, 1969; Milner, 1978), and can accordingly be checked by a uni-
fication algorithm like that of Robinson (1965). The type system of the GA(Co)DT
language, including the proper use of unification, was proven to be sound (with the
usual progress and preservation theorems) in Coq (Ostermann and Jabs, 2018). The
essence of the polymorphism aspect of the proof is also found in the soundness proof
for the polymorphic variant of PF in Section 4.3, which was informed by this prior
work.

We have seen two symmetric spots stable under transposition and giving the
same type-theoretic strength to both the data and codata side constructs. One is the
language of Binder et al. (2019), or the language fragments of Rendel, Trieflinger,
and Ostermann (2015) that it is based upon, for the simply typed case, and the other
is occupied by the GA(Co)DT language of Ostermann and Jabs (2018). As outlined
above, if one wants to add parametric polymorphism at all and arrive at a spot in
the design space that exhibits such stability, the minimal language is this GA(Co)DT
language. In the future it could be interesting to see what other symmetric spots
there are and if it will be possible to re-explore all that we currently know about
the type system design space, important aspects of which have been illustrated by
the so-called lambda cube (Barendregt, 1991), through the lens of the extensibility
symmetry; it could also be interesting to consider this for the foundational system
PF presented in Chapter 4.

There are some preliminary suggestions for the design of programming lan-
guages with non-simple types that can be gleaned from the one symmetric spot
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considered already. First, it lends additional support for further pursuing exper-
imental languages that contain some form of GACoDTs like that of Kennedy and
Russo (2005). Second, it shines new light on the importance of GADTs. In some
languages like Haskell, GADTs are relegated to extension status, but the result of re-
functionalization is in the core language, which suggests that a reevaluation of what
is essential and what is not might be in order. Finally, it is the author’s impression
that the best polymorphic language design that allows for diversity of decomposi-
tion is one that has both GADTs and GACoDTs, that is, it is fundamentally guided
by the GA(Co)DT language just summarized. Diversity of decomposition methods
available in a language that is not biased by giving one decomposition more power-
ful type system features than the other requires the language to occupy a spot like
that of the GADT / GACoDT pair.
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Chapter 3

From the De-Morgan Duality to
Dialogue-Inspired Systems

This chapter discusses De Morgan duality, the way it is embodied by sequent cal-
culus, and, most importantly, calculi for programming in the sequent calculus, to
the extent they are relevant for this work. Such calculi based on the sequent cal-
culus are different in nature from those based on natural deduction, as is the case
for most “normal” programming languages. Specifically, they inherently require
the “programmer” to be more explicit when it comes to control flow, similarly to
continuation-passing style (CPS). In case the reader is looking for a “concrete” intu-
ition (pun intended) before we get to the details, Wadler (2003) compared the nature
of this more symmetric setting to modern architecture styles: “[...] like the Pompi-
dou Center in Paris, the plumbing is exposed on the outside. While this can make
the expression harder on the eyes, it also – like CPS, and like the Pompidou Center
– has the advantage of revealing structure that previously was hidden.”

Chapter overview The chapter is structured as follows:

• Section 3.1 sets the stage for De Morgan duality.

• Section 3.2 discusses previous efforts of turning sequent calculus into an (un-
usual) programming language, focussing mainly on the work of Downen (2017)
whose thorough analysis assembles previous attempts into one coherent sys-
tem, and why these, rather directly following the structure of sequent calculus,
have certain drawbacks which make them less suited for the foundational sys-
tem we seek.

• Section 3.3 discusses an alternative system with polarized types, the Calculus
of Unity (Zeilberger, 2008b). Especially, polarity relates to the data/codata di-
chotomy discussed in the previous chapter and the Calculus of Unity is inher-
ently highly symmetric in both this and the previous chapter’s sense, which is
why it will serve as the basis for the foundational system introduced in the next
chapter. A potentially useful intuition for polarity is how logical proofs and
refutations, and following that, data construction and codata destruction in
programming languages, can be conceived of as dialogues between two “play-
ers”; ideas for how the foundational system could possibly be generalized un-
der such a game semantics perspective can be found in the outlook in Chapter 6.

3.1 The Negation Mirror

Throughout the previous chapter, it was highlighted how logicians and program-
mers are doing essentially the same when it comes to engineering concerning reuse
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(DRY). Of course, ultimately this all was following the tracks of the now classic
Curry-Howard correspondence: programs as proofs. Now, from the practical pro-
grammer’s perspective it is rather clear that we are not always only interested in
proving certain properties, but also in refuting certain (other) properties. It arguably
is more natural to describe what some test engineer wants to achieve as, e.g., refuting
that some machine makes a fatal error rather than proving that the machine does not
make a fatal error. Why use the positively connoted phrase prove plus the negatively
connoted not when one can just use the negatively connoted dual refute of prove?

In classical logic, a refutation may of course always be simulated by a proof of
a negation, however, this does not hold true for other forms of logic and, as we
just saw, this simulation is arguably at the expense of linguistic economy (when
assuming that the word refute is available anyway). More essentially, and what this
short introductory section wants to argue for, is that there is no inherent reason to
favor proof over refutation (or vice versa). Just as a refutation may be classically
simulated by proving a negation, one could just as well simulate a proof by refuting
a negation. The focus on either proof or refutation is very much a conscious decision
made by the programmer/logician while thinking about a certain problem.

Let us go back to the introduction rules for and (∧) and or (∨) we saw at the
beginning of the previous chapter.

A B
A ∧ B

A
A ∨ B

B
A ∨ B

There it went almost without saying that these rules are for proving formulas involv-
ing the respective connective rather than refuting them. Now, instead of relying on
such an easily misunderstandable contextual communication, let us make explicit
that we are considering rules for proving things by marking each formula with true;
i.e. we enhance the judgment from being just the formula itself to being the formula
together with the judgmental qualifier true.

A true B true
A ∧ B true

A true
A ∨ B true

B true
A ∨ B true

So far, this seems to only have made things more verbose. However, if we now ad-
ditionally introduce a refutation judgment (false) and rules for it, the clarification be-
comes more obviously useful. This approach of having a separate judgment per kind
of proof object, e.g. proof and refutation, is called the judgmental method (Martin-Löf,
1996; Pfenning and Davies, 2001); it will become even more relevant over the course
of this chapter.

A false B false
A ∨ B false

A false
A ∧ B false

B false
A ∧ B false

Looking at these concrete refutation rules, we observe that they are isomorphic to
the proof rules from before: Just exchange ∨ and ∧! Proving a conjunction requires
proving both its subformulas, but refuting a conjunction requires only refuting one
of them, and it is exactly the other way around with disjunction. Of course, the heart
of this observation is not due to this author or any contemporary work, even though
the more modern, judgment-rich presentation will be quite useful and important for
the rest of this chapter. Rather, it probably goes back to time immemorial, and is
now conventionally attributed to De Morgan.
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In his proof-biased presentation, where a refutation is expressed via a negation as
usual, the relation between ∨ and ∧ is expressed by the following equations, which
are called the De Morgan laws:

¬(A ∨ B) = (¬A) ∧ (¬B)
¬(A ∧ B) = (¬A) ∨ (¬B)

In this presentation, similarly to the one we saw before, one can obtain the first
equation from the second and the second from the first by simply exchanging ∨
and ∧. Opting for a radical perspective in the interest of parsimonious language
design, we can even go so far as to say that ∨ and ∧ are the same connective until
the previously mentioned conscious decision has been made on whether one cares
about proofs or refutations in a certain setting: both connectives spring forth from
the same set of (three) rules (as far as introduction rules are concerned) when just
considering their structure. More conservatively phrased, the two connectives are
dual to each other. Going from one to the other is induced by the switch between
proof and refutation, which are the underlying dual concepts, i.e. the duality of ∨
and ∧ just mentioned is the one of the proof-refutation pair; in the previous chapter
we have seen a different duality, the extensibility duality, and by the next chapter
we will have obtained a system in which both dualities naturally appear.

Both for simulating proofs with refutations and for simulating refutations with
proofs we saw the same connective used: negation (¬); that is, if we were looking
for a connective with which to capture the dual pair proof-refutation, ¬ would be a
good contender. One could say the proof-refutation duality is the ¬-duality, and ¬
is what mediates between two sides of an entirely symmetric mirror; the De Mor-
gan laws succinctly express this mediation relation. Focussing on the structure of
the rules in the context of this mirror, consider the ∨ introduction rules with just
the structure remaining, i.e. without the information that they are for proving ∨.
We cannot distinguish them from the rules for refuting ∧ (and the same applies for
proving ∧ and refuting ∨). Looking through the mirror we see the structure of the
rule for proving ∧ (the rule for proving ∨), which is the structure dual to the rules
(the rule) we have on our own side. Only when taking both sides of the mirror into
account can we purely structurally apprehend the entire system with two connec-
tives and two judgments. Therefore, it makes sense to regard a central role of ¬, as
a representation of the proof-refutation switch, as essential for our desired design
parsimony. As we will see, it will replace implication, which often plays a central
role in programming languages and logical systems, but lacks the symmetric prop-
erties of ¬ outlined in this section. Implication can be recovered, similarly to how
codata types allow to define the function type, but does not need a special status.
This status was often more due to biases, anyway, rather than due to any (intrinsic
or extrinsic) motivations.1

1An example of how this bias influenced the thinking of researchers when it comes to comparing
CBN and CBV is given by Levy (2001). Levy refutes the suggestion that “CBN is “mathematically
better behaved but practically less useful” than CBV” by showing that “although the CBN function
type is mathematically superior to the CBV function type, the CBN sum type (and boolean type) is
inferior to the CBV sum type.” Regarding the bias towards function types, he remarks (emphasis
added): “Thus, the perception of CBN’s superiority is actually due to the fact that function types have
been considered more important, and hence received more attention, than sum types or even ground types.”
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` A Prove A
A ` Refute A
` Contradiction

FIGURE 3.1: Sub-judgments for proof, refutation, contradiction.

3.2 Programming in the Sequent Calculus

3.2.1 Sequent calculus embodies the negation mirror

A system that is not biased towards proof or refutation is the classical sequent calcu-
lus we saw in section 2.1. Using the mirror analogy on the sequents, we can say the
turnstile plays the role of the mirror. Consider the sequent A, B ` C, D. Remember
that the left-hand side is interpreted conjunctively and the right-hand side is inter-
preted disjunctively, hence the turnstile that sits between the two sides relates the
two interpretation similarly to how negation relates the conjunction and disjunction
connectives. One can read A, B ` C, D as: If A and B are true, then either C or D
or both must be true. However, the sequents are not biased towards such a proof-
oriented reading, and we can just as well read it as: If C and D are false, then either
A or B or both must be false. One can easily convince oneself that the two readings
are logically equivalent: If it is the case that from the truth of both A and B follows
the truth of (at least) one of C and D, then if both C and D are false it cannot have
been the case that both A and B were true.

Of course, the approach generalizes to arbitrary sequents Γ ` ∆ with more than
two formulas on either side. The most radical cases arise when either Γ or ∆ is
empty. ` ∆ is very familiar, it just means that no hypotheses are needed to prove
(the disjunctively interpreted) ∆. Γ `, on the other hand, looks rather strange at
first sight, but has completely natural readings, though one is more straightforward.
The proof-oriented one is: If all of Γ is true, then something in the empty set must
be true. The conclusion of this conditional sentence is of course impossible, hence
its premise must have been false, so there is a formula in Γ that is false. And this
brings us to the more straightforward reverse reading, the refutation-oriented one:
If everything in the empty set is false, then something in Γ must be false. Since
the condition is vacuously tautological (universal statements about members of the
empty set are always unconditionally true), the implication sentence is equivalent to
just its conclusion. Thus the arguably most straightforward reading of Γ ` is a pure
refutation: Something in Γ is false.

Specializing to one formula on one side and zero formulas on the other, one
obtains the sub-judgments shown in Figure 3.1 for proof and refutation, as well as
the contradiction judgment with zero formulas on both sides with the readings: If
something in the empty set is true, then the empty set contains at least one true
formula; if something in the empty set is false, then the empty set contains at least
one false formula. Of course, both theses sentences are obviously false (because the
empty set does not contain anything), justifying to call it the contradiction judgment
and demanding that there is no way to derive it; we have briefly considered cut
elimination as a way to show this property in section 2.1, and will soon return to it.
Overall, these three sub-judgments will be instrumental in the following sections.

In this section, we consider the relation between the proof and refutation sub-
judgments and the dichotomy of left and right rules briefly touched upon in section
2.1. Based upon this, we then consider term assignments for the sequent calculus
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and the problems arising when trying to find one that is suitable for programming
“in the sequent calculus”. Specifically, we compare it to the ease with which one
can find such a term assignment when restricting oneself to intuitionistic, or con-
structive, logic, in particular the natural deduction breed. What will be crucial in
these considerations is the role of reduction and locality of reduction as a central prop-
erty of practically usable programming languages. Intuitionistic natural deduction
obeys such a property, but it is not as well suited for our symmetry purposes as the
classical sequent calculus. Thus this section will close with putting forth the goal
of reconciling the two, which was hinted at in section 2.1, and which will be made
possible by the observations of the last section of this chapter.

3.2.2 Refutation/proof and left/right rules

As pointed out in section 2.1, all rules in sequent calculus are introduction rules, i.e.
they introduce a connective on either the left-hand side or the right-hand side. The
rules where the connective appears to the left of the turnstile are called left rules, and
the rules where the connective appears to its right are called right rules. An example
of a left rule is the first left rule for conjunction (from Gentzen’s LK, see Fig. 2.1):

Γ, A ` ∆ ∧L1Γ, A ∧ B ` ∆

With the understanding of proof and refutation sub-judgments we just developed,
where we saw that having a formula to the left of the turnstile can be desired as
refuting it, we can give the following simplified gloss of this rule: If we can refute A
in some circumstances, as expressed by the Γ and the ∆, we can also refute A ∧ B in
these same circumstances. More precisely, the circumstances are that all of Γ is true
and that all of ∆ is false. In other words, the refutation is contingent since it happens
modulo the truth values of Γ and ∆, but we can straightforwardly describe the left
rule as a refutation rule nevertheless, and the same goes by a similar argument for all
the left rules. We consider one more example due to its special role that we explored
in the previous parts of this chapter: the left rule for negation.

Γ ` A, ∆ ¬LΓ,¬A ` ∆

What is interesting here is that in the premise the subformula A of the negation
appears not on the left-hand side, as it is with the subformulas of conjunction and
disjunction, but on the right-hand side. Intuitively, this rule makes sense since hav-
ing a contingent proof of A means that one also has a contingent refutation of the
negation of A. This also demonstrates how in a certain sense the ¬ connective in-
ternalizes the meaning, i.e. the relation to the parts of the sequent, of the turnstile
itself: Formulas can always simply wander across the turnstile by wrapping them
in a negation, as the left-hand side and the right-hand side are ¬-dual to each other,
just as the two sides of the negation mirror discussed in section 3.1.

A completely analogous argument applies for right rules and the proof sub-
judgment. Overall, we have seen how we can conceive of left rules being concerned
with refutation, contingent upon formula contexts on the left-hand side and right-
hand side, and of right rules being concerned with contingent proofs. We can thus
enhance our sub-judgments and suggestively rearrange the respective parts of the
sequents and add explicit qualifications, as shown in Figure 3.2, to give a first ap-
proximation of a formal embodiment of these intuitive ideas. This is actually already
rather close to the system we will eventually arrive at, as we will see in section
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Sequent Rearranged Meaning
Γ ` A, ∆ Γ; ∆ ` A true Prove A
Γ, A ` ∆ Γ; ∆ ` A false Refute A

Γ ` ∆ Γ; ∆ ` contradiction Contradiction

FIGURE 3.2: Sub-judgments for contingent proof, refutation, contra-
diction.

3.4. However, we have not yet considered if the structure of these proofs is in any
way suitable for a programming language under a Curry-Howard-like reading, and
we will now explore this issue, utilizing the intuitions for reading off sequents in a
proof-like or a refutation-like way and our first approximation of a formal system
for this.

3.2.3 Term assignments for the sequent calculus

When we think about a term assignment, we need to consider what this means for
the computation embodied in the terms. There is a long line of theoretical work on
this topic. Since the present work is primarily concerned with finding a consolidated
system for both the extensibility duality and the negation duality, and especially
with how the latter can inform a highly symmetric perspective of the former, an in-
depth discussion of this historical development is beyond its scope; what follows is
a (very) quick summary of the most important works. The rest of this section will
then follow Downen’s thorough analysis of a programming language for the sequent
calculus (Downen, 2017), which builds upon these and arguably forms a preliminary
end point of this line of work.

On the road towards programming in the sequent calculus, the λµµ̃-calculus
(Curien and Herbelin, 2000) has proven to be highly influential. It was itself in-
fluenced by the λµ-calculus (Parigot, 1992), an early system that paved the road for
widening the Curry-Howard program by relating non-linear control flow and clas-
sical logic, albeit in natural deduction style, in a straightforward manner. The dual
µ and µ̃ control operators will be of particular interest in this section. Logically, µ
allows to prove a statement by leading all its possible refutations to contradictions,
while µ̃ allows to refute a statement by leading all its possible proofs to contradic-
tions. Computationally, µ is related to call-by-name evaluation, since it allows to
encapsulate and thus delay a computation, while µ̃ is related to call-by-value evalu-
ation, since it encodes a continuation that (via the rules of λµµ̃) necessarily triggers
evaluation (only a value can be “passed” to µ̃). The equational theory of a system
with these two operators allows to make formally precise the statement that call-by-
value is dual to call-by-name, a result that was independently achieved for a slightly
different, but likewise sequent calculus based system by Wadler (2003).

The starting point for the programming language for the sequent calculus of
Downen (2017) is a core system with only the µ and µ̃ operators, due to Herbelin
(2005). In section 2.1 we saw how to separate sequent calculus into two modules,
one for CUT and one for user-definable rules for connectives. It is the first of these
that forms the core of Downen’s system. The key idea behind the reduction rules for
this core part is that reduction is somehow related to elimination of cuts. We have
seen this idea at play in the previous chapter, albeit with the Substitution Theorem
of intuitionistic natural deduction rather than the CUT rule of classical sequent cal-
culus. Getting rid of a use of the CUT rule is a local version of cut elimination in the
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Γ| e : A ` ∆ Γ′ ` v : A| ∆′
CUT〈v‖e〉 : (Γ, Γ′ ` ∆, ∆′)

AXIOM L| α : A ` α : A

c : (Γ, x : A ` ∆)
ACTIVATE L

Γ | µ̃x.c : A ` ∆

AXIOM R
x : A ` x : A |

c : (Γ ` α : A, ∆)
ACTIVATE R

Γ ` µα.c : A | ∆

FIGURE 3.3: Downen’s core sequent calculus language.

sense that combining these local eliminations ultimately adds up to the elimination
of cuts entirely, and hence reduction can be characterized as the entity that the CUT

module should come equipped with in order to provide a consistency proof for the
system.2

Downen’s (and Herbelin’s) approach is somewhat similar to the characterization
of the sub-judgments we saw in section 3.2.2. What he does is split the judgment
into three judgments, which correspond to our sub-judgments as far as it concerns
the core system; here c, v, and e are metavariables for syntactic expressions and each
in formula in the contexts Γ and ∆ is annotated with a variable, named xi for Γ and
αi for ∆.

Γ ` v : A | ∆
Γ | e : A ` ∆

c : (Γ ` ∆)

However, in Downen’s full system including the rules for connectives, the proof and
refutation judgments are not merely rearrangements with one formula standing out,
but rather this one formula, marked by separating it from the rest of the context with
a pipe symbol (|), is treated specially. Essentially, the proof is split up into different
phases, and the rules are formulated in such a way that a proof with some distin-
guished formula requires proofs where the distinguished formula is a subformula of
the original one. This approach, called focussing, was originally devised by Andreoli
(2001), who intended it as a way to cut down non-essential nondeterminism in proof
search; we come back to focussing and a different way of using it to develop a term
assignment in section 3.4.

For now we concentrate on the term assignment Downen gives for the rules he
obtains from the CUT and AXIOM rules via splitting the judgment. These rules are
shown in Figure 3.3. Downen refers to the proof-related judgment Γ ` v : A | ∆
and the refutation-related judgment Γ | e : A ` ∆ as an active sequent on the right/left,
respectively, and the assigned syntactic expressions v and e as term (or producer) and
co-term (or consumer), respectively. The simple judgment without a distinguished
formula he refers to as a passive sequent and the syntactic expression assigned to it
as command. The CUT rule now has as premises one active sequent on the left and
another active sequent on the right, and results in a passive sequent. Syntactically,
the command assigned to the result of this rule is thus a pair of a term v and a co-
term e written as 〈v‖e〉. The AXIOM rule is split into two with one concerned with

2Such a description of cut elimination does not apply to Gentzen’s LK (Gentzen, 1935), but only to
the calculi with term assignment that we now look at. Other than in those systems, in LK a cut does not
necessarily obtain from a meeting of a left and right rule for the same connective. Therefore reduction
of cuts in the sense described here is only sufficient for some cases of cuts in LK; in other cases, cut
elimination does not remove the cut in a single step, but rather first makes the relevant subproofs
smaller (the cut can then be removed iteratively by further shrinking the subproofs).



48 Chapter 3. From the De-Morgan Duality to Dialogue-Inspired Systems

active sequents on the left and the other with active sequents on the right; in both
cases, the (co-)term assigned to the distinguished formula is simply the variable for
that formula from the context. For going from a passive sequent to an active one by
picking a distinguished formula there are two rules that we name ACTIVATE, one for
the left, one for the right, which are not present in plain sequent calculus (naturally,
since the need for them only arises when splitting judgments in this way).

It is the term assignment for these last two rules that arguably requires the great-
est amount of creativity. The author thinks that these are best understood by con-
sidering the computational, i.e. reduction, perspective. We said that we started out
with the CUT module of sequent calculus because a local version of cut elimination
relates to a reduction step. But we now saw that a cut constitutes a meeting of a
proof and a refutation (and active sequent on the right and one on the left), so we
can easily characterize computation as being triggered by this meeting of opposing
forces. Let us sketch what we expect of the reduction rule for commands, which are
the terms assigned for uses of CUT, where we use for the reduction relation:

〈v‖e〉 v and e merge somehow

Assuming the command is really just pairing the two forces and leaves it up to them
how to carry out this merging, and further assuming that both forces are created
equal, then both v and e, when they are not a variable, should “know” how to react
to the respective other one in order to merge with it. This respective other entity
is what they bind with the µ or µ̃ binder. It suffices to consider µ for the rest of
this argument, the other side is readily dualized. Since we said that we µ-bind the
opposing force and then need to know how to merge with it, we can express the
body of the µ-abstraction with a unary function M which we apply to the entity
bound with µ. We refine our reduction rule according to the state of our discussion:

〈µα.M(α)‖e〉 M(e)

But we know that the result of the reduction should again be a meeting of oppos-
ing forces, and hence a command. For the binding structure we use the one we
already have, for the variables in the contexts; this brings the variable into context
and makes the command contingent on it, just as intended. And thus we obtain the
term assignment for the ACTIVATE rules, as well as the reduction rules for the µ- and
µ̃-abstractions, where we write substitution of a variable using a 7→:

〈µα.c‖e〉 c[α 7→ e] 〈v‖µ̃x.c〉 c[x 7→ v]

To sum up, starting from the perspective on the sequent calculus as enabling a proof-
and a refutation-reading equally well, with some careful analysis one can relatively
automatically arrive at a system with a term assignment and reduction rules. The
definitions of the typing and reduction rules look easy enough, and it is also rather
straightforward to enhance the system to actually cover the left and right rules for
connectives so as not to operate on empty air anymore. However, the setup of the
core µ and µ̃ is already problematic if we want to employ this system as a (basis for
a) practical programming language, for reasons that we consider in the next subsec-
tions.

3.2.4 Caveats of sequent calculus programs

To understand why programming in the classical sequent calculus, at least using the
system Downen arrived at by a rather straightforward development, can be prob-
lematic, we first discuss the fundamental issue of µ/µ̃ compared to constructive
systems by considering a well-known non-constructive proof. In the next and final
subsection we will then concretely explore reduction in the non-constructive system
built on these constructs and how it requires non-local reasoning. Specifically, we
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will see that it can be regarded as a low-level programming language with jumps. It
is important to note, though, that an important application for Downen’s system is in
this low-level area, specifically, as a compiler intermediate language (Downen et al.,
2016; Ariola and Downen, 2020). As such, the following discussion is not intended
as a general criticism of this work, but rather merely serves to make clear one of the
reasons for turning to a different system on which to build the foundational system
PF presented in the next chapter, which does not focus on efficient compilation.

More precisely, proof arguments such as the one we will now consider exhibit
non-local control flow with no warning sign of it on the type level. That is, µ/µ̃
is very powerful, and one needs to be careful when using it. It will be our goal to
arrive at a system where some of this carefulness is moved from the programmer to
the system itself, especially regarding making control flow more explicit on the type
level.

Our example makes use of two logical rules of Downen’s system for connectives,
specifically, for disjunction and negation. Particularly negation, with the rule that
carries formulas over the turnstile, will be instrumental in demonstrating how we
can obtain a non-constructive proof and what this means for the understandability of
the program.

Γ ` v : A | ∆
∨R1Γ ` ι1(v) : A ∨ B | ∆

Γ ` v : B | ∆
∨R2Γ ` ι2(v) : A ∨ B | ∆

Γ | e : A ` ∆
¬R

Γ ` not(e) : ¬A | ∆

We now want to obtain a proof term for X ∨¬X, where X is a logical atom. We have
not considered logical atoms yet, but it suffices to say that one can think of it like a
type variable; Downen’s system has rules for universal quantification, and thus we
can conceive of our example formula as a completely generic statement that holds
for all X. In other words, what we want to generically prove here is nothing else
but the tertium non datur, which famous rejection as non-constructive by Brouwer
helped trigger the foundational crisis of mathematical logic at the turn of the 20th
century.

If we attempt to prove X ∨ ¬X in constructive logic, we fail. From a program-
ming perspective, in any “standard” programming language based on constructive
logic we can also not create a term corresponding to this proof. For instance, in a lan-
guage with first-class functions we would model negation of X as the function type
X → ⊥. In order to prove X ∨ (X → ⊥) we then would have to either generically
provide an X or provide a function that takes an X and cannot produce anything,
which both is not possible. However, in a language that supports non-local control
flow, as is the case for Downen’s classical sequent calculus language, there is the
possibility to first decide to enter one branch and later backtrack, which ultimately
enables to prove the tertium non datur, among other things, but requires non-local
reasoning to understand what is happening.

As a first attempt at finding the sequent calculus term for X ∨ ¬X, we could
try to use one of the rules for disjunction, followed by the rule for negation. But
this sounds just like the constructive logic attempt that we know fails, and indeed it
cannot work since the premise of the right negation rule is an active sequent on the
left, which we do not obtain from the right disjunction rules.

Since it appears that there is no way to prove what we want by starting with an
injection ιi, the only other option is to activate a passive sequent using a µ abstrac-
tion. This means that we think of the proof of X ∨ ¬X as something that is being
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requested. Remember that a command 〈v‖e〉 pairs a proof and a refutation of the
same formula, and hence is evidence for a contradiction. Now, a µ abstraction re-
quires a reaction to an arbitrary refutation α, that we know nothing about but what
formula it refutes, hence it being a variable. This reaction is to provide evidence
for a contradiction given α, and hence (assuming the system is sound, which it is in
our case) we have shown that there could not have been any refutation that instan-
tiates the α. Thus (since our system is complete) the formula under consideration is
proven.

This ability to prove a formula by demonstrating that it cannot be refuted is the
core aspect that makes proofs in the system indirect and hence non-constructive. In
our example, we will make essential use of it by reacting to the refutation variable
α twice; it is easy to show that a singular use of α does not provide additional prov-
ability strength over direct proofs, i.e. proofs only using the rules used for forming
canonical values. We can sum up the proof of the tertium non datur as follows:

1. In a µ abstraction, react to α by a left injection ι1, now requiring to prove X.

2. The argument to the injection is itself a µ abstraction with variable α1 for a
refutation of X.

3. In this abstraction, react to α again (and not yet α1!) by a right injection.

4. The argument of this injection uses the proof term for negation not with α1.

Intuitively, we first try to prove X in order to counter α. And this we do by coun-
tering α1 but this time we do not form a contradiction by finding a proof for X as a
direct counterpart to α1. Rather, we provide different evidence for a contradiction
by pairing α with a right injection, and for this injection we need to prove ¬X, so we
use α1 and embed this refutation into a proof using negation. That is, we contradict
a refutation of X ∨ ¬X by a proof of ¬X obtained from the refutation of X, which
we had assumed in order to show that no such refutation exists. With the final re-
mark that inserting a variable that we have in context somewhere amounts to using
AXIOM, we are ready to translate our idea of the proof into a formal derivation.

AX α

AX α

| α1 : X ` α1 : X
¬R` not(α1) : ¬X | α1 : X
∨R2` ι2(not(α1)) : TND | α1 : X
CUT〈ι2(not(α1))‖α〉 : (` α : TND, α1 : X)

ACTIVATE R` µα1.〈ι2(not(α1))‖α〉 : X | α : TND
∨R1` ι1(µα1.〈ι2(not(α1))‖α〉) : X ∨ ¬X | α : TND
CUT〈ι1(µα1.〈ι2(not(α1))‖α〉)‖α〉 : (` α : TND)

ACTIVATE R` µα.〈ι1(µα1.〈ι2(not(α1))‖α〉)‖α〉 : TND |

Here we abbreviate X ∨¬X as TND and a use of AXIOM L for some variable α as
AX α. Note that in the first use of CUT (counting bottom-up), we implicitly duplicate
the α variable as needed.3

We can also describe what we did as trying to prove the disjunction by going
into the left branch (i.e., pairing with α), but then “semi-backtracking” into the right
branch (i.e., again pairing with α) after learning that to show the left branch we need
to react to a refutation of X. Thus we actually are in both branches when finishing
the proof. To put it like an electrical engineer, the output of the term, that is captured
by α, is wired to two points, where for one we went to the left branch and for the
other to the right branch. One can also conceive of this as the “events” in the two

3This is ultimately just contraction which we announced in chapter 2 to be admissible due to us
using sets of formulas, which we also do for Downen’s system to simplify things.
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Γ | e : A ` ∆ Γ | e′ : B ` ∆
∨L

Γ | [e, e′] : A ∨ B ` ∆
Γ ` v : A | ∆

¬L
Γ | not[v] : ¬A ` ∆

FIGURE 3.4: Left rules for disjunction and negation with their term
assignments (Downen, 2017).

branches not being independent of each other, but being able to interact via the α.
Let us now consider this in terms of the reduction steps that happen when we pair
the proof

µα.〈ι1(µα1.〈ι2(not(α1))‖α〉)‖α〉

with some refutation, and how these are essentially different from reductions in con-
structive systems.

3.2.5 Reduction requiring non-local reasoning

Triggering a reduction always requires a proof and a refutation to meet. There is
computational content inside the µ abstractions, but without a refutation to trigger
it the computation does not get started. Of course, it is not possible to refute the
tertium non datur, thus we will make use of a trick: We specify the refutation as
far as possible and when we arrive at a point where we would need to specify a
command but cannot do so, we simply “give up” and act as if we somehow did
have the necessary command. We will use D to refer to such so-called daimonic
commands.

Side remark on daimons. This idea goes back to Girard (2001) who likened it to
some supernatural force and thus referred to such evidence for a contradiction as
daimonic. The underlying philosophical idea is that one might want to engage with
some proof by challenging it with some refutation in order to find out more about
the proof. And even if no such refutation would be logically possible, the ability to
challenge the proof for such a purpose is still desirable, hence the introduction of the
daimon. From such a wider perspective, daimonic commands form part of a larger
logical framework that also allows “good mistakes”, as Girard (2001) puts it. We will
make further use of daimons later on, but for now we just use them to challenge the
tertium non datur proof.

Using daimonic commands, we construct the refutation e for the tertium non datur
shown below; it is a case analysis, written using square braces ([..., ...]), that is the
term assignment for the left rule for disjunction shown in Fig. 3.4, i.e. with case
analysis one can refute a disjunction by refuting both its alternatives.

e := [µ̃x.D1(x), e2], e2 := µ̃x.〈x‖not[µα.D2(α)]〉

Command-pairing e with the proof developed in the previous subsection leads to
the following (possible, see the remark on ambiguity below) reduction sequence:

〈µα.〈ι1(µα1.〈ι2(not(α1))‖α〉)‖α〉 ‖ e〉
 〈ι1(µα1.〈ι2(not(α1))‖e〉) ‖ [µ̃x.D1(x), e2]〉
 〈µα1.〈ι2(not(α1))‖e〉 ‖ µ̃x.D1(x)〉
 〈ι2(not(µ̃x.D1(x))) ‖ [µ̃x.D1(x), e2]〉
 〈not(µ̃x.D1(x)) ‖ µ̃x.〈x‖not[µα.D2(α)]〉〉
 〈not(µ̃x.D1(x)) ‖ not[µα.D2(α)]〉
 〈µα.D2(α) ‖ µ̃x.D1(x)〉
 D2(µ̃x.D1(x))
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Reduction of µ- and µ̃-abstractions paired with some term happens by instantia-
tion of the respective variable that was abstracted over with the term, as outlined in
section 3.2.3. To resolve ambiguity we always have µ take precedence over µ̃.4 Even-
tually, we arrive at the meeting of a not proof term and a not refutation term; the not
refutation is like the not proof explained above, just the other way around: it embeds
a proof into a refutation. It thus is the term assignment for the left negation rule also
shown in Fig. 3.4. Computationally, the two not terms cancel out in a reduction step
that leads to the command that pairs the proof embedded in the refutation with the
refutation embedded in the proof. After this, there is only one further step possible
(that is, without some specification of daimonic reduction), instantiating a refutation
variable to produce the daimonic command D2(µ̃x.D1(x)).

The reduction shows again how the proof involves moving into the left branch
and then the right and using the refutation variable α twice. Let us now try to re-
late this to, and differentiate it from, reductions of the more familiar intuitionistic
natural deduction proofs for which there is a direct relation to familiar (functional)
programming languages.

In such languages, we have introduction and elimination rules, and reduction
amounts to simplifying terms by simplifying meetings of introduction and elimina-
tion. For instance, we can have an injection and a case analysis on it, and if it is
a left injection this meeting reduces in one step to the left branch of the analysis,
and likewise for the right injection and the right branch. This phenomenon, and the
analogous one for conjunction, can also be realized in the sequent calculus language
we are considering, by pairing injection and case analysis in a command as we saw
above.

But this computation, like any proof-reduction computation, must be encapsu-
lated in a µ-abstraction (µ̃ in the case of refutations). For simple instances of such
abstractions, we can draw a direct correspondence to intuitionistic natural deduction
by conceiving of the α in µα.c as the return which signifies the end of the computa-
tion. As a simple example of such a correspondence, consider the two terms below,
one from intuitionistic natural deduction shown on the left (where tt is the only
value of the unit type) and the other from sequent calculus shown on the right.

inl(match (inr(tt)) { ι1(µα.〈ι2(()) ‖[
inl(x)⇒ x; µ̃x.〈x‖α〉,
inr(x)⇒ x}) µ̃x.〈x‖α〉]〉)

The term on the left obviously reduces to inl(tt) in one step, by reducing the match.
The term on the right is not reducible, but if we trigger computation by pairing it to
a command with some refutation, say [µ̃x.D(x), ...], this command reduces to

〈ι2(()) ‖ [µ̃x.〈x‖µ̃x.D(x)〉, µ̃x.〈x‖µ̃x.D(x)〉]〉

in two steps (the first step is just for the case analysis of the ι1); α is now instantiated
with our outer refutation (for the relevant injection ι1). Now this reduces in one step,
by case distinction, to:

〈() ‖ µ̃x.〈x‖µ̃x.D(x)〉〉

And this reduces to D(()) in two steps, so the result of the reduction passes the
unit value to the daimon, and the unit value was also the result of the intuitionistic
natural deduction example reduction. Especially, the positions behind the⇒ in the
two cases of this example are the return positions of the entire match and hence

4This ambiguity is called the fundamental dilemma of computation and there exist well-known fixes
for it. In the system we eventually arrive at, this dilemma is circumvented, hence we will not further
consider it for now.
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function tnd〈T〉() : T + JumpPoint(T) :=

markα {inl(tnd_aux())}

function tnd_aux〈T〉() : T :=

markα1 {jumpα inr(α1)}

FIGURE 3.5: Tertium non datur proof as a program.

determine what the argument value to inl is, and this return directly corresponds
to the use of α in the µ̃, as promised.

More generally, however, such an α need not be used only for such simple re-
turns. In the tertium non datur proof we saw α being used twice, and this not simply
in two separate cases of a case analysis. We can conceive of such a more liberal use
of α as allowing us to jump around in the program, giving us a powerful way to alter
the control flow. Figure 3.5 shows a translation of this proof into some hypothetical
programming language with jumps.5 Here we only use (parameterless) functions to
give names to subterms and easily show their types. Function tnd is for the over-
all term, it is for a disjunction, which we translated to a sum type, with generic T
bound by a type parameter using angle brackets (〈T〉). Since tnd is at the position
of the overall result that is to be paired with the refutation α, we mark it as a jump
target α with markα. Its body wraps a left injection around a use of tnd_aux, which
similarly is a jump target marked with α1. The most important feature of our hypo-
thetical programming language is its treatment of jump markers as first-class entities,
which we type as JumpPoint(T), corresponding to the negation of the type at the po-
sition of the marker. We use this in tnd_aux to provide something that typechecks at
position (marker) α, by jumping to α with a right injection of the first-class marker α1.
This jump to α directly corresponds to the sequent calculus term’s second use of α,
and the way we can pass around the first-class marker α1 corresponds to wrapping
the refutation variable α1 with neg to obtain a proof from a refutation.

Overall, we can say that there is a way to think of the sequent calculus system
as a programming language, but programs in it in general are allowed to have arbi-
trary jumps, meaning that there is no guarantee of the ability to reason in a locally
restricted way. Thus this language does not look much like the high-level declar-
ative functional programming languages, but more like a low-level language with
finer control over the control flow.

In the following section, we turn to a different system inspired by the sequent cal-
culus but not directly following its structure, the Calculus of Unity (CU) (Zeilberger,
2008b); CU is likewise entirely symmetric in the negation duality sense. Crucially,
CU does not have the µ and µ̃ operators; it is possible to recreate proofs involving
such operators, but this requires to use the constructs of CU in such a way that the
control flow becomes more explicitly reflected in the types. CU is also more gener-
ally presented in a different way, build up from judgments and fragments, that in
particular allows for easily combining it with the program transposition of the pre-
vious chapter, to arrive at the foundational system PF presented in the next chapter.

5The relation between classical proofs and typed programs with control operators allowing for
jumps was first described by Griffin (1989) for a typed variant of Scheme containing an operator similar
to call/cc.
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The two fragments that CU is built from represent the positive and negative polar-
ity, respectively. The next chapter discusses polarity in so far as it is relevant for
the present work; a key aspect for the development of PF is the relation between
polarity and the data/codata dichotomy.6 As we will see, the different judgments
also delineate precisely the boundaries of intuitionistic and classical logic within the
system. Together with the typing precision, this will allow to easily recover existing
languages in PF , as we will see in a later chapter.

3.3 Dialogical Polarity and Symmetry

When we considered sequent calculus and ways to program “in” the sequent cal-
culus, what we have neglected thus far is how we made the decision which rules
we pick for a certain connective. In the sequent calculus, to fully specify some con-
nective one has to provide left rules and right rules for it, which are explained in
Section 2.1.3. This means that there are actually two ways to specify what is seman-
tically (think of truth tables) the same connective. In this section, we consider how
this aspect eventually leads us to an alternative way to combine programming and
classical logic, one in which both the extensibility and the negation duality appear
quite natural. The key to this is to embrace the idea that the two different ways to
specify the connective actually indicate that these are two different connectives, of
opposite polarity, i.e. one has positive polarity and the other has negative polarity.
This, as Zeilberger (2008b) demonstrated, can be given a philosophical justification
via two dual meaning theories of logic. His considerations lead him to design a fully
symmetric system, the Calculus of Unity (CU), which integrates two structurally
identical fragments, one for each polarity, via so-called shifts. This system CU will
be the basis for the foundational, duality-consolidating system PF presented in the
next chapter, which in particular eliminates the structural difference between data
and codata by conceptually equating them with positive and negative polarity con-
nectives. The seed of making use of the polarized system CU like this is found in
Binder et al. (2019) (in a paragraph written by the author, as mentioned in chapter
2).

An interesting connection between (co)data and polarity is also pointed out by
Downen et al. (2019): When viewing computation as a dialogue between two actors
where polarity defines who gets to move first, data types are related to the proponent
side (seeking to prove a statement) and hence to positive polarity, while codata types
are related to the opponent side (seeking to refute) and hence to negative polarity.
Both data and codata types can be seen as specifying the valid moves the respective
side starts with (which the other side then has to react to). This dialogical perspec-
tive is an interesting starting point for a better understanding of data and codata
in the Curry-Howard sense. However, it is only rather superficially represented by
data and codata languages (including PF ); the outlook in Chapter 6 contains some
thoughts on developing a session type system which subsumes PF and which more
fully embodies the dialogical view. While this work is not intended to travel the full
road from De Morgan duality to dialogical systems, the author still thinks that hav-
ing this mental picture relating the two can be instructive when considering data

6Downen (2017) also enhances his system with polarity and a central aspect of his work is also
about this relation, plus the connection to evaluation strategies (see also the paper specifically about
this topic that Downen coauthored (Downen and Ariola, 2014)). We turn to the system of Zeilberger
(2008b) for the reasons given in this paragraph; it should also be noted that Zeilberger’s system is
inherently about polarity rather than adding polarity in a later step.
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and codata within the greater picture of the extended Curry-Howard program, in
particular when thinking about polarity.

Let us now climb into the central ideas leading to CU, beginning with the proof-
theoretical background of polarity.

3.3.1 Polarity

Consider the following left and right rules for conjunction (left rules are from Gentzen’s
LK, right rule is modified from the one given in LK by disallowing merging of dif-
ferent premise contexts).

Γ, A ` ∆ ∧L1Γ, A ∧ B ` ∆

Γ, B ` ∆ ∧L2Γ, A ∧ B ` ∆

Γ ` A, ∆ Γ ` B, ∆ ∧RΓ ` A ∧ B, ∆

An important property of the right rule that the left rules lack is invertibility. That
is to say, whenever a sequent of the form given in its conclusion is derivable, the
respective sequents obtained by “inverting” the rule and applying it to that sequent
are also derivable using the rules of the system. The same does not hold for any
of the two left rules, and this would be semantically invalid anyway (or one could
also say the connective specified would not be what we semantically perceive of as
conjunction), since when a conjunction A ∧ B implies some ∆ that does not mean A
or B alone implies ∆. The alternative way to specify conjunction by left and right
rules, shown below, is to use the same right rule as before but a different left rule.

Γ, A, B ` ∆ ∧LΓ, A ∧ B ` ∆
Γ ` A, ∆ Γ ` B, ∆ ∧RΓ ` A ∧ B, ∆

This left rule is invertible (which semantically is obvious considering the conjunctive
interpretation of the left-hand side of the sequent). We will now consider the two set
of rules to specify distinct connectives, despite their semantic, in the sense of truth
tables, equivalence. The former connective we will write ∧− and say that it has
negative polarity due to its left rule being non-invertible, and the latter connective we
will write ∧+ and say that it has positive polarity due to its left rule being invertible.
The same approach applies to other connectives as well, as we will see shortly.

What is the benefit of having the full diversity of rules in the system that gives
rise to two “artificial” connectives per “semantic” connective? First of all, whether
a rule is invertible or not has profound practical implications in proof search. When
one wants to prove some sequent that is an instance of the conclusion of some in-
vertible rule, one can just go “backwards” over the rule and prove the respective
instances of the premises. This is guaranteed to eventually lead to a proof tree if
one exists, since the set of premises is logically equivalent to the conclusion. Non-
invertible rules, on the other hand, potentially require backtracking and choosing a
different rule to go “backwards” over. Combined with the idea of focussing on a for-
mula, and that of shifts which allow to change the focus and embed one polarity into
the other, polarizing a formula by picking the polarity of connectives that appear in it
and inserting shifts appropriately can help to control the search space. A discussion
of this is beyond the scope of this work, but we will soon again consider focussing
and shifts in so far as these are relevant for the analysis of programming languages.

It is also worth mentioning that the concept of polarity originally came from the
study of linear logic, in which, due to the lack of certain structural rules, a connective
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and its counterpart of opposite polarity are indeed not equivalent logically. This is
in itself an interesting area of study, involving the resource and dialogical interpre-
tations of linear logic, and we will briefly discuss its relation to the present work in
the outlook in Chapter 6.

However, while all that may be indicating that polarity is potentially relevant,
there does not seem to be fundamental, perhaps philosophical, explanation of its
place in logic outside of linear logic, does there? Actually, there is such an expla-
nation that will even help us resolve the tension between intuitionistic natural de-
duction and classical sequent calculus hinted at earlier and pave the road for the
fundamental system PF . To get there, we now turn back to natural deduction in the
style without sequents, i.e. hypotheses are explicitly positioned in the proof trees,
and consider what the notion of polarity means in this context and what this has to
do with the justification of logical rules by an analysis of their meaning.

3.3.2 Meaning theories

First, remember that in natural deduction there are only right rules, but other than in
sequent calculus these may not only be introduction rules, but also elimination rules.
For example, conjunction introduction (I) and elimination (E) in natural deduction
look like this (presented without sequents):

A ∧ B ∧E1A
A ∧ B ∧E2B

A B ∧IA ∧ B

What we now want to consider is how to justify that these rules make sense, and
more specifically how to achieve that within proof theory, without appealing to some
external semantic argument. The following is a summary of Dummett’s account of
verificationist and pragmatist meaning theories (Dummett, 1991) following Zeilberger
(2008b) who aptly worked out its essential points.

In the verificationist meaning theory, a proposition is considered to be given a
meaning by its canonical proofs, which Dummett (1991) defines to be proofs that end
in a sequence of introduction rules. We can then justify some arbitrary logical rule,
including elimination rules, by showing that, for any proposition that has a proof
ending in a use of this rule where the premises have canonical proofs, one can find
a canonical proof for that proposition. For example, to justify the first conjunction
elimination rule shown above we first consider some proof ending in a use of this
rule applied to an arbitrary canonical proof D of the premiss A ∧ B.

D
A ∧ B ∧E1A

By definition, we know that the canonical proof D must end in a sequence of intro-
duction rules, the final one of which must be the conjunction introduction rule.

D1

A
D2

B ∧IA ∧ B ∧E1A

We also know that the proofs D1 and D2 to which the introduction rule is applied
must themselves be canonical. Further, D1 must be a proof for A, and so we have
found a canonical proof for the proposition A proven in the original proof:
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D1

A

Thus, according to the verificationist meaning theory, we have justified the first con-
junction elimination rule; the second rule is similarly justified.

The reader has hopefully acquired some familiarity with looking for dualities by
now. If so, it will not be too surprising that the pragmatist meaning theory, which
is intended to be dual to the verificationist one, is concerned with canonical uses
of elimination rules. More precisely, Dummett (1991) defines a canonically-obtained
consequence as being a sequence of elimination rules. The idea, dually to the ver-
ificationist side, is then that justifying some rule requires to transform any proof
that begins with that rule applied to some propositions, followed by a canonically-
obtained consequence, into a proof with one of the same initial propositions to which
that consequence is immediately applied. For example, to justify the conjunction in-
troduction rule, we consider its possible canonically-obtained consequences. There
are two possibilities: The first elimination rule used could be ∧E1, or it could be
∧E2. After that, some other elimination rules follow (the corresponding trees here
are named D1 and D2, respectively).

A B ∧IA ∧ B ∧E1A
D1

 A
D1

A B ∧IA ∧ B ∧E2B
D2

 B
D2

The proof tree on the left can obviously be transformed into one that starts with the
initial proposition A and ends with the canonically-obtained consequence D1 (just
take its tail); the same goes for the proof tree on the right with the proposition B and
consequence D2.

In summary, both theories are about reducing proofs, which in the examples con-
sidered amounted to simply cancelling out introduction and elimination, to a form
in which only a certain kind of rules is used, i.e. a canonical form. What is cru-
cial, according to Dummett (1991), is that both the verificationist approach, in which
canonicity comes from building a proof in the most elementary way, and the prag-
matist approach, in which canonicity comes from using a given proposition in the
most elementary way, are equally convincing. Zeilberger (2008b) goes one step fur-
ther and argues that these two ways of assigning meaning to a connective actually
give rise to different connectives. He states that from the point of view of the mean-
ing theories, these are really semantically distinguishable and do not require to be
“harmonized” as Dummett (1991) demanded.

And with this we have actually found a more fundamental way to justify (the
relevance of) allowing positive polarity and negative polarity connectives to exist
side-by-side. Conceiving of positive polarity connectives to be those which are jus-
tified verificationally, and of negative polarity connectives to be those which are
justified pragmatically, we can keep them apart even without appealing to linearity
restrictions. The characterization of the positive connective in terms of the ability to
turn any proof into a canonically-obtained proof, which consist only of introduction
rules, in sequent calculus corresponds to the specification of the connective with an
invertible left rule, and a similar correspondence can be established for negative con-
nectives, canonically-obtained consequences, and invertible right rules. The idea of
the existence of proof (consequence) trees in canonical form from natural deduction
in sequent calculus translates into the logical equivalence between a left (right) rule’s
conclusion sequent and the set of sequents in its premises.
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Observe how building a proof for some proposition in a canonical way and us-
ing some proposition for a proof in a likewise canonical way are reminiscent of con-
structing a value using the constructors of some data type, and observing a value
of some codata type by means of its destructors, respectively. This was the reason
for why Binder et al. (2019) were interested in the work of Zeilberger (2008b) for
improving the symmetry of their (co)data language and obtaining what is perhaps
an ideal system for the extensibility duality. Zeilberger builds on Dummett’s ideas,
developing two isomorphic system fragments, one with canonical proofs, represent-
ing the verificationist side, and the other with canonical refutations, representing the
pragmatist side; for the latter, the basic idea relating this to the pragmatic meaning
theory could be summarized by refutation being the most elementary way of using
a proposition. The system formed from these fragments, the Calculus of Unity (CU),
in turn forms the basis for the foundational system PF presented in the next chapter.
In PF , the data and codata types of Binder et al. (2019) are replaced by more sym-
metric counterparts, called positive and negative data types, which are structurally
identical. These are variations of the types from the two isomorphic fragments of
Zeilberger (2008b) just mentioned. The data and codata languages presented in the
previous chapter can also be recovered as surface languages as presented in chapter
5, demonstrating that one can view PF as a proper generalization of these.

Overall, the negation duality studied in this chapter and the extensibility duality
studied in the previous one both quite naturally arise from CU (and, by extension,
PF ). The end of the present chapter will also sketch the basic idea behind employ-
ing shifts that go between the positive and negative fragments, for recovering the
call-by-value and call-by-name evaluation strategies; the details of achieving that in
PF are found in chapter 5. The essence of this approach, due to Zeilberger (2008b),
is related to how the negation duality underlies the pair call-by-value and call-by-
name. Due to the polarized setting, where a type is either positive or negative, each
type inherently lends itself to be used to model either call-by-value or call-by-name,
rather than being agnostic in this regard. That is, in the non-polarized setting, the
evaluation order is only controlled by constructs like µ / µ̃, as mentioned in Sec-
tion 3.2.3. This allows to make use of some type for either call-by-value or call-by-
name, and, as Wadler (2003) showed explicitly, a term reduces under call-by-value
to some other term when there is a call-by-name reduction between the respective
dual terms, where these dual terms have types which are De Morgan dual to the
original terms, i.e. product (conjunction) is dual to sum (disjunction). In the po-
larized setting, polarity records the evaluation strategy that befits the type, e.g. a
negative product delays evaluation until a projection is chosen (the evaluation be-
havior known from lazy records). Because of this association between types and
evaluation, the shifts are needed if one wants to, e.g., delay evaluation of a positive
term, in which case the respective positive type needs to be explicitly wrapped in a
shift to produce a negative type, making the evaluation strategy explicit at the type
level; more on this later.

3.3.3 The Calculus of Unity

This section and the following summarize the key aspects of CU in so far as they are
relevant for the following chapter. In the system one can prove all valid propositions
of classical logic and refute all of its invalid propositions, provided that one chooses
the appropriate connectives of the polarity related to proving or refuting, respec-
tively. More specifically, one can understand the system as a kind of a refinement
of classical sequent calculus with polarization and focussing, and with canonical
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[A]

...
C

[B]

...
C A ∨ B ∨EC

FIGURE 3.6: Disjunction elimination rule in natural deduction.

proof and refutation judgments for intuitionistically valid propositions and dual-
intuitionistically refutable propositions, respectively, and judgments for refuting the
possibility of a canonical proof and for refuting the possibility of a canonical refuta-
tion; the latter two judgments are exactly classical proof and refutation when erasing
the polarity of the connectives.

It should be noted that using the sequent calculus formalism, with its symme-
tries discussed previously, as a starting point for the refinement is important, even
though the inspiration for the meaning theories came from natural deduction. There
are connectives not considered in the examples above, like disjunction in the case of
the pragmatist meaning theory, which, in the natural deduction setting, require con-
siderable bureaucracy that complicates the definition of canonical forms and hinders
symmetric treatment of positive and negative polarity.

The natural deduction disjunction elimination rule is shown in Fig. 3.6. It has
as a premiss the proposition with the disjunction to be eliminated (A ∨ B), plus two
premises with the proposition C in its conclusion, which both depend on some hy-
pothesis which is the left (A) or the right (B) subformula of the disjunction, respec-
tively. As explained in chapter 2, in general, rules in natural deduction require a
non-local manipulation of the proof tree, and this is the case for disjunction elimi-
nation: In order to conclude C from A ∨ B, C must depend on both a hypothesis A
and a hypothesis B somewhere up in the proof tree, and these hypotheses are then
closed by the application of the rule. The sequent-style presentation, while semanti-
cally equivalent, more clearly shows the symmetry to conjunction rules: To conclude
Γ, A∨ B ` C one needs Γ, A ` C and Γ, B ` C; when generalizing the right-hand side
to multiple propositions as in sequent calculus, this is just like the right rule for con-
junction shown above, but with the left-hand and right-hand sides of each sequent
flipped.

As we will see, in the canonical forms of proofs and refutations in CU based on
the sequent calculus right and left rules, the duality of conjunction and disjunction
is even more readily apparent: Both the evidence for refuting a negative disjunction
and that for proving a positive conjunction are structurally pairs (of proofs and refu-
tations, respectively), just as the evidence for proving a positive disjunction and that
for refuting a negative conjunction are structurally injections into a disjoint union
(cf. the structural similarity of injections for sum types and projections for product
types); more details on this follow below.

However, before we delve into the details of CU, note that though it is similar to
the sequent calculus system of Downen (2017), the non-polarized variant of which
we discussed above in this chapter, the design of CU is inherently about polarity, due
to it conceptually building on the meaning theories of Dummett (1991), whereas
Downen (2017) starts from a core system to which polarity is later added. Another
key difference between CU and the system of Downen (2017) is that the former lacks
anything that corresponds to the latter’s µ and µ̃ constructs, which however form the
core of that sequent calculus language. It is possible to add these to CU, however, as
outlined above, there are reasons, like the lack of typing precision, to decide against
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that. As announced, the central goal is to recover a diverse variety of surface lan-
guages by macro embedding, which is possible in the CU-based PF by utilizing
shifts, and does not require anything that corresponds to µ/µ̃. A key point will in-
deed be how the shifts enable the typing precision which µ/µ̃ would actually help
circumvent. We will thus not consider adding this feature in this work.7

The following considers the positive polarity fragment, then briefly the struc-
turally isomorphic negative polarity fragment, and finally the shifts that combine
these to form CU.

3.3.4 The positive and negative fragments

The positive fragment is made up of a judgment for direct proofs, i.e. the canoni-
cal proofs which cover intuitionistically true statements, and a judgment for justified
refutations, which cover classically false statements. When thinking about the sys-
tem in a more programming language-like way, direct proofs are called values, and
justified refutations are called continuations; the idea is that the latter take the former
as inputs, and, using this input value, provide evidence for a contradiction, thereby
refuting the proposition that the possible inputs are proofs of. An evidence for a
contradiction is formed by combining a value and a continuation (written with a
juxtaposition K v) for the same proposition; this combination is called a command8

(this aspect is very similar to the system of Downen (2017)).

Γ ` K
cnt
: P Γ ` v

val
: P

Γ ` K v
cmd

: #

The three judgments for values, continuations, and commands, each in some con-

text Γ (see below), are written Γ ` v
val
: P, Γ ` K

cnt
: P, and Γ ` C

cmd
: #, respec-

tively. The first judges a value v to be a direct proof for proposition P, the second
judges a continuation K to be a justified refutation for proposition P, and the third
judges a command C to be evidence for a contradiction. Just as with the system of
Downen (2017), a command is the syntactic entity that represents computation: a
command combining some value and continuation reduces to another command by
substituting parts of the value, according to a pattern match, into the body of the
continuation; more details on this follow below.

The context Γ is a list of variables together with a proposition, as usual; however,
each of the variables stands for either a proof or a refutation, with the judgment being

explicitly annotated, e.g. x
val
: X or y

cnt
: P. In CU, value variables are restricted to

atoms, the reason for which we will consider soon. Rearranging the value variables
and the continuation variables to be to the left of the turnstile and to its right, respec-
tively, one obtains the presentation of contextual proofs and refutations used by the
sequent calculus. The value judged to be proof for some atom or the continuation
judged to be a refutation are then in the place of the proposition that the current focus
of the proof is on, as in the sequent calculus system of Downen (2017); just as in that
system, the command judgment has no such focussed-upon proposition as it is for

7The author still thinks that µ/µ̃ does have its place, though, whenever programming convenience
in the core system itself becomes relevant. Here, a potentially interesting research topic is making µ/µ̃
compatible with program transposition.

8Zeilberger (2008b) uses the terminology statement, but the author decided to use command (follow-
ing, e.g., Downen (2017)) instead (also for PF ), due to it sounding slightly less general to his ears.
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evidence of a contradiction, which has a special place in sequent calculus (specifi-
cally, the empty sequent being a non-contingent contradiction and hence impossible
to derive).

The propositional connectives of the positive fragment are conjunction, written
⊗, disjunction, written ⊕, and negation, written

v¬.9 The underlying inspiration for
CU were the meaning theories of Dummett (1991) and their association to polarity,
as discussed above. Especially, as summarized above, positive polarity is linked to
canonical proofs which Dummett, in natural deduction, defined to be ending in a
sequence of introduction rules. Therefore, rules for the value judgment mirror the
introduction rules. As a first attempt, one could hence give the following rules for
conjunction and disjunction, where P and Q are positive propositions (i.e. proposi-
tions formed from ⊗, ⊕, and

v¬):

Γ ` v1
val
: P Γ ` v2

val
: Q

Γ ` (v1, v2)
val
: P⊗Q

Γ ` v
val
: P

Γ ` inl(v)
val
: P⊕Q

Γ ` v
val
: Q

Γ ` inr(v)
val
: P⊕Q

Indeed, these rules are derivable in CU; however, the actual rules specified for the
positive fragment are a bit different. In effect, they are refactored from such rules
such that there is only a single rule for the value judgment that makes use of an

auxiliary pattern judgment ∆⇒ p
val
: P and a substitution judgment Γ ` σ : ∆.

∆⇒ p
val
: P Γ ` σ : ∆

Γ ` pσ
val
: P

A value is thus defined as a pattern p with some substitution σ applied to it. Here
pattern has a meaning similar to that in functional programming: a tree of construc-
tors, corresponding to introduction rules, with variables at the leaves. These vari-
ables may only be continuation variables or variables for logical atoms; we will see
shortly what the idea behind that is. The pattern judgment says that any substitu-
tion σ that fills the variables in p with continuations which are, in order, refutations
for the propositions in ∆, results in a value pσ which is a proof for P. The rules
for the substitution judgment merely check each continuation against its associated
proposition. The rules for the pattern judgment omit the context Γ since there are
no variables in the patterns themselves. For conjunction and disjunction, the pattern
rules look like this:

∆1 ⇒ p1
val
: P ∆2 ⇒ p2

val
: Q

∆1, ∆2 ⇒ (p1, p2)
val
: P⊗Q

∆⇒ p
val
: P

∆⇒ inl(p)
val
: P⊕Q

∆⇒ p
val
: Q

∆⇒ inr(p)
val
: P⊕Q

9In the latter, the v stands for call-by-value. Zeilberger (2008b) calls positive polarity negation call-
by-value negation due to how one can model call-by-value using it; we return to this in chapter 5.
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neg(K
cnt
: 1⊕ 1)

cnt
: 1⊕ 1 := λ{

inl(()) 7→ K inr(())

inr(()) 7→ K inl(())

}

FIGURE 3.7: Continuation example.

The decomposition into pattern and substitution judgments reduces the bureaucracy
when adding new user-defined connectives, for which it suffices to give such pat-
tern rules.10 For completeness sake, let us also list the rather trivial pattern rules
for logical atoms X and for the nullary connective 1 (constant truth), where · is the
empty context.

x
val
: X ⇒ x

val
: X · ⇒ ()

val
: 1

Unsurprisingly, there is no rule that allows one to obtain a pattern for the constant
falsehood (nullary connective 0).

Now, what is still missing among the pattern rules is that for negation, which is
shown below.

x
cnt
: P⇒ x

val
:

v¬ P

A pattern for a negation cannot be further discriminated, it is only a placeholder for
the continuation to be substituted for it. Thus, obtaining a proof of a negation means
embedding a continuation for the negated proposition.

So how do we obtain a continuation? The idea is that a continuation considers
all patterns from which a value for the proposition under consideration could be
formed, according to the pattern judgment. In constructing the evidence for the con-
tradiction, i.e. a command, in each pattern case, it can make use of the continuation
(and atom) variables, and only those, since value variables do not exist. The idea be-
hind the lack of value variables (of non-atomic propositions) is that this aligns with
focussing, which also does not allow to liberally switch to deconstructing a differ-
ent subformula. This property is interesting since it demonstrates a correspondence
between focussing and pattern matching, but is not relevant for the foundational
system PF considered in the next chapter. We will therefore lift this restriction in
PF and allow value variables for any proposition/type.

Now, the actual rule for the continuation judgment given in Zeilberger (2008b) is
not particularly syntactic:

∀(∆⇒ p
val
: P) : Γ, ∆ ` φ(p)

cmd
: #

Γ ` (λφ)
cnt
: P

Just as described above, a continuation λφ consists of a map φ from patterns to com-
mands, the details of how to implement it are not specified. Fig. 3.7 shows an exam-
ple of a continuation called neg, which consumes a 1⊕ 1 (which encodes the boolean
type) value, matches on it and sends (i.e. forms a command from the value and the

10This approach is not directly described in Zeilberger (2008b), but Zeilberger (2008a) employs this
approach, albeit with a less symmetric variant of CU.
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continuation) the opposite injection (as in a boolean negation) to some other con-
tinuation K assumed to be available in the context (indicated by writing it in braces
behind the name neg). Generally, the rule for the continuation judgment requires,
for all possible patterns p for the relevant proposition P (that is to be refuted) and
all possible substitutions σ : ∆ that fit the respective pattern, that φ(p) is a valid
command according to the command judgment, when extending the context Γ with
∆. How to concretely implement this ∀-check is also not specified. In the case of
the original CU (Zeilberger, 2008b), there are no recursive types, thus there are only
finitely many patterns for each proposition/type, which means that the check can
of course be implemented. But specifying pattern rules for recursive types is easily
possible (see Zeilberger (2008a)), and for these cases we end up with exotic terms, like
infinite maps from natural number patterns, which are not generally implementable.
For Zeilberger (2008a), questions of how to concretely realize his system to make it
applicable as a programming language are not his main focus, thus leaving this as-
pect abstract is arguably comprehensible enough.11

As mentioned above, reducing a command amounts to substituting into the body
of the continuation according to the pattern match. As an example, using the con-
tinuation neg as defined in Fig. 3.7 and assuming some concrete continuation K, we
can write the command neg(K) inr(()), which reduces, in one step, to K inl(()). The
next reduction steps depend on K. Why not give a concrete example for K here? We
could try to, but this would just lead us to needing another continuation, and so on.
As a matter of fact, there is no way to obtain a closed (i.e. without free variables)
command, and this is in line with our logical interpretation: a command is evidence
for a contradiction, and a closed command would be evidence for a non-contingent
contradiction; if such a thing were allowed by the typing rules, the system would be
unsound. What we can do is deliberately add special commands that allow us to get
computation started. We saw this approach already when “challenging” the proof
of the tertium non datur; as pointed out, the idea behind this, based on the notion
of daimon, goes back to Girard (2001). Zeilberger (2008b) enhances CU with a sin-
gle daimonic command Done; e.g. we could define K such that its patterns always
map to Done and hence K inl(()) would reduce to Done. When considering log-
ical properties of CU, Zeilberger only considers the pure system without Done. In
summary, daimonic commands allow to introduce a “harmless” inconsistency in a
controlled way; the next chapter makes further use of daimonic commands, includ-
ing for structuring the soundness proofs for PF .

Now that we have seen how reduction in CU works, let us consider if our quest
for symmetry was successful: How does the extensibility duality concretely bene-
fit from moving to the CU setting? Section 3.2.3 explained how, in the systems of
Downen (2017) and Herbelin (2005), getting rid of a use of the CUT rule is a local
version of cut elimination, relating consistency with the reduction relation in a di-
rect way. In these systems, the command is the term assignment for the CUT rule.
One of its components can be thought of as an abstraction, and the other as the en-
tity that instantiates that abstraction (resulting in evidence for a contradiction). In
the positive fragment of CU, a command is structured in the same way, however,
the “abstraction” is now necessarily a continuation and the entity that “instantiates”
it is now necessarily a value. That is, a command is still a meeting of an abstraction
and some entity to “plug into”, but this entity now has a canonical form and the ab-
straction (continuation) only matches on such canonical forms. This is reminiscent

11Since, as mentioned above, value variables are allowed in PF , and, to support program trans-
position, actually only shallow matches are allowed, a concrete implementation of the type system
supporting recursive types is ensured for PF .
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of first-order functions pattern matching on data type values, except that the result
is another such explicit meeting of two forces rather than a term which may contain
computation in a rather arbitrary way. There is a dual abstraction to continuations in
the negative fragment (summarized in the next paragraph), which likewise results
in a command when instantiated. As will be demonstrated in more detail in the next
chapter, this uniformity simplifies the presentation of the extensibility duality in the
CU-based PF , as opposed to the natural deduction setting. As pointed out in Sec-
tion 2.3.4, recognizing the symmetry there requires quite some lateral thinking and
is certainly not directly apparent from the structure; this is inherently different in the
CU setting.

The negative polarity fragment is completely structurally isomorphic to the pos-
itive fragment, with the structural properties of proofs and refutations exactly re-
versed: Refutations, called covalues, are now canonical, consisting of a pattern and a
substitution just like values, where the pattern is a tree of observations. Proofs µφ,
called expressions, pattern match on such covalues and again provide evidence for a
constradiction, i.e. a command (all specified in the map from patterns to commands
φ, as with continuations). Commands for the negative fragment are combinations
of expressions and covalues (again written with a juxtaposition); when combining
the fragments to full CU, the two kinds of commands are simply merged into one
syntactic entity and may be used wherever a rule from either fragment expects a
command. The connectives for negative conjunction, disjunction, and negation are
written &, `, and n¬12, respectively. The pattern rules for negative conjunction are
structurally the same as that for positive disjunction, and the same goes for negative
disjunction and positive conjunction; negative and positive negation pattern rules
are isomorphic to each other. The negative falsehood constant is written ⊥ and has
a pattern rule structurally identical to that of the positive truth constant 1; finally,
there is no pattern rule for the negative truth constant > as that would mean that
it is possible to refute constant truth (just as it is impossible to prove constant false-
hood 0).

In Section 3.1, it was announced that in the foundational system we were seeking,
implication would lose its special status to the more symmetric negation. Indeed, a
function from A to B, which is a proof term for an implication, can be emulated in the
negative fragment by an expression of type n¬A` B. The idea is that an input is itself
an expression and not a covalue and hence its type must be embedded into a cov-
alue type using the negative fragment negation n¬ to be able to combine it with the
output type to a covalue type using the negative fragment disjunction (`).13 Note
that the covalue type judgment is a refutation judgment and this conceptually cor-
responds to the typing of the result of destructing codata, as mentioned earlier, and
thus the covalue type judgment types an output. To further combine the implication
expression to form more complex covalues (and from there, expressions), it has to
be embedded into a covalue itself, which on the type level again employs negation,
obtaining covalue type n¬( n¬A` B). The high-level view of this is that negation, com-
pared to implication, is conceptually more focused, giving rise to a greater economy
of concepts: Where terms assigned for implication under a Curry-Howard interpre-
tation, i.e. functions, conceptually involve an input and an output, negation only has
an input, or, perhaps more neutrally, only a single “port”; implication is recovered by
requiring what is connected to this port to be able to be split in two parts, or two

12Called call-by-name negation dually to positive call-by-value negation; again, refer to chapter 5 for
details on recovering call-by-value and call-by-name.

13Erasing polarity, we get the usual definition A→ B :≡ ¬A ∨ B.
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sources if you will, which are on the type level combined using `.14 The part of the
input of covalue type n¬A is what is conceptually the input of the function modeled
by the expression; it is of a negated form since to view an input as an output (of
covalue type), it has to be negated (inverting the direction of the flow, if you will).
The other part of the input of type B models the output of the function (and thus is
not negated). Generalizing codata types to negative data types following the nega-
tive types of CU to make them entirely symmetric to positive data types, as is done
in the next chapter, will allow us to define the function type exactly like this, as a
combination of input and output.

3.3.5 Shifts

The final ingredient for CU are shifts, which allow to embed a positive, justified
refutation (a continuation) into a negative refutation (a covalue) and conversely a
negative, justified proof (an expression) into a positive proof (a value). Full CU
consists of the rules for the positive and the negative fragment taken together plus
the pattern rules for shifts shown below:

u
exp
: N ⇒ u

val
: ↓N u

cnt
: P⇒ u

cov
: ↑P

Shifts can be used for the purpose of improving proof search performance, or more
generally tackling the proof search space, as mentioned above. More relevant for our
purposes, as we will see, being able to combine positive and negative types like this
is essential for embedding different evaluation strategies of surface languages (like
the data and codata languages considered in the previous chapter) and reflecting
surface behavior by precise types in the core system.

In particular, one can describe data like natural numbers by some positive type
N, as one is used to from functional programming, and then model surface some
term that types as a natural number, and that contains computation, by a negative
expression of type ↑N. As an initial example, assume that there is some surface-
level function add with two N parameters and that this is translated to a function
in the core system of the same name but with an additional continuation parameter
of continuation type N. The surface-level term add(4, 2) is then translated to the
following core term:

µ{k 7→ add(4, 2, k)}

The variable k has continuation type N, and hence the expression that matches on
it has expression type ↑N. One can think of k as a “return” continuation that the
expression passes control to when it is finished with the computation it contains.

In the foundational system PF presented next (Chapter 4), it is possible to define
shifts as user-defined types (see Section 5.1.1). They can then be used, as mentioned,
to recover surface languages in PF ; this approach will be studied in detail in Chap-
ter 5.

14Closely related to this is the conception of the negative disjunction ` of linear logic as being related
to parallelism computationally, which was originally pointed out by Girard (1987) and recently studied
by Aschieri and Genco (2019).
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Chapter 4

Polarized Flow: A Framework
Consolidating both Symmetries

Disclaimer: The system PF presented in this chapter was jointly developed with David
Binder and Ingo Skupin, with support from our advisor Klaus Ostermann. A version of PF
forms the formal core of a manuscript currently under review for publication (as of December
2020). The specific formalization and systematic development of the soundness proofs in this
chapter (Section 4.2, Section 4.4) are novel and have not been submitted for review for any
publication. The same goes for the pragmatic extensions in Section 4.3 (these are ported from
the language of Binder et al. (2019)).

This chapter introduces the foundational system Polarized Flow (or PF for short),
which is in particular intended as a design framework for programming languages.1

PF is a variation of the Calculus of Unity (CU) discussed at the end of the previous
chapter, made to fit the matrix formalism for the extensibility duality discussed in
chapter 2.

Chapter overview This chapter is structured as follows:

• Section 4.1 gives an informal introduction to PF and its central aspects.

• Section 4.2 formally defines PF and shows its soundness, following the logical
intuitions behind sequent-calculus-inspired systems discussed in the previous
chapter.

• Section 4.3 considers some extensions to make PF more practical, in particu-
lar demonstrating with some examples how these increase its potential to be
leveraged for automated tooling, based upon ideas discussed in Section 2.4.1.

• Section 4.4 defines the extension of PF with parametric polymophism, follow-
ing the approach discussed in Section 2.4.2.

Contributions

• The main contribution is the system PF itself, along with its formal details.
(The applicability of PF as a framework for studying programming language
design is discussed in the following chapters, chiefly by giving macro embed-
dings of surface languages into PF .)

1The name Polarized Flow was chosen to indicate the polarized type setting and that computation in
the system can be conceptually understood as the “flow” between producers and consumers; the con-
crete manifestation of this “flow” depends upon whether the producer or the consumer is of canonical
form, and hence on polarity.
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consumer function Nat.pred() := {
zero() ⇒ zero()

succ(m) ⇒ m
}

function+ pred(k : Nat) : Nat := {
zero() ⇒ zero()� k
succ(m) ⇒ m� k

}

FIGURE 4.1: Example data fragment program (left) and a correspond-
ing PF program (right).

• In particular, that consumers and producers are structurally identical allows
for an easy formalization of program transposition as one single, parametric,
direction-agnostic transformation, with no lurking technical complications.

• A major part of the formal details in Section 4.2 is devoted to demonstrating
how elegantly the soundness proof for PF can be carried out and how an in-
tuitive understanding of this soundness is gleaned directly from the logical
intuitions via Curry-Howard; in particular, there is arguably no technical dif-
ficulty involved in the core part of the proof, and the rest is some also rather
straightforward plumbing. Therefore, the author also considers PF as a useful
tool that allows to decompose a soundness proof for some surface language into
a demonstration of the correspondence between the surface language into PF
via a macro embedding and the elegant soundness proof for PF ; the latter can
be reused while the former really carves out the specifics of the surface lan-
guage as opposed to the common traits many languages share and which are
captured by PF .

4.1 Informal Introduction to Polarized Flow

4.1.1 Computation in PF
To understand the central ideas behind the design of PF , it is instructive to go back
to the intuition behind computation initially considered in chapter 2, as a meeting
of the two opposing forces of production and consumption. In the data and codata
languages discussed in chapter 2, computation is triggered by a meeting of a con-
structor or producer function call and a destructor or consumer function call, e.g.
succ(zero()).pred(). Such a term reduces in one step to the term (body) looked up
in the producer or consumer function, with appropriate instantiation of the variables
bound by the relevant pattern and those which are arguments of the function; when
pred is a consumer function, it could be defined as shown on the left-hand side of
Fig. 4.1 (returning the predecessor of the given number if it exists, or zero otherwise;
the result of reducing the example term is thus zero()). We will abstractly refer to
the terms that in our system represent the two opposing forces as producers and con-
sumers; the following paragraphs will lead to a clear definition of these in PF which
makes producers and consumers isomorphic. This is guided by the correspondence
between producers and proofs and consumers and refutations hinted at in chapter
3, and the fact that the sequent calculus-inspired systems discussed in that chapter
are not biased towards either proof or refutation.

As mentioned in chapter 2, constructors and destructors are structurally different
(as are producer and consumer function signatures). Borrowing ideas discussed in
chapter 3, particularly from CU, this difference is eliminated in PF by making the
result of a destructor call (or consumer function call) without the consumed argument
a first-class entity. In the example, pred() could now perhaps be such a first-class
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entity (but see below), called a negative value if it is a destructor call, dual to positive
values like succ(zero()) (when built using constructors). While a positive value is
constructed using the constructors specified in the relevant data type, as usual, the
negative value can be seen as a first-class observation which has the same structure as
a data value, but is built up using the destructors specified in the relevant negative
data type; we will from now on refer to the usual data types as positive data types and
generally refer to either as a data type where the polarity (positive or negative) does
not matter. Negative data types are not quite the same as the codata types we saw
in chapter 2. A destructor signature now lacks a return type, like the second Nat
in Nat.pred() : Nat. This makes constructor and destructor signatures structurally
isomorphic: both consist of the type that is produced or consumed, together with a
(possibly empty) list of argument types.

This leads us to the question: If, seemingly, there is no result of a destructor
call (there is no result type given in the signature!), how does it even make sense to
speak of computation? Well, first of all, observe how the situation is reminiscent of
continuation-passing style (CPS), in which we also would not return results. Rather,
an additional argument has to be provided, a continuation, into which the result is to
be fed. Keeping this idea in the back of our minds, let us now turn to the syntactic
entity of PF which actually directly represents a computation and over which the
reduction relation is thus defined in PF .

In PF , a meeting of a producer and a consumer, which triggers computation,
is of a separate syntactic form called a command. Logically, as explained in chapter
3, a producer corresponds to a proof of some statement/type A while a consumer
corresponds to a refutation of some statement/type B, and thus a command, which
is only well-formed when A = B, corresponds to a logical contradiction. Different
from the data and codata languages we saw before, both producers and consumers
are now first-class entities. There are two possible well-formed commands: In the
positive variant, a positive value meets with a consumer function call, which is of
a syntactic category called positive continuation and, like destructor calls, results in
a first-class entity logically corresponding to a refutation. In the negative variant, a
negative value meets a negative continuation, which is a producer function call which,
like constructor calls, results in a first-class entity logically corresponding to a proof.
Consequently, commands reduce, to other commands, by looking up the relevant
case in the (producer or consumer) function definition for the constructor or destruc-
tor call. An example of a consumer function definition is shown on the right-hand
side of Fig. 4.1; read on for an explanation of this.

Getting back to the problem of arriving at a “result”, observe that consumers, i.e.
positive continuations and negative values, are first-class entities (just like produc-
ers), thus they can also be passed as arguments to calls. And this is exactly how the
result (type) is emulated: the destructor signature pred(Nat) takes the place of the
original destructor signature from the codata type, where the bar over the type says
that the expected argument is a consumer. Generally, every argument type in signa-
tures in PF is specified to either be a producer or a consumer, which is distinguished
notationally by putting a bar on top of the latter. And similarly to CPS, “emitting”
a result requires to make a producer for that result meet with a consumer that was
made available via passing it as an argument.2

2It should be noted that there is an important high-level conceptual difference between
continuation-passing style and PF (note the emphasis): The former is only a particular way (a choice)
of writing programs in languages in which one may also write them differently, while the latter gives
the programmer no other choice but to employ continuations (or rather, consumers) in this way (not
because of some static check that rules out other styles, but because PF inherently requires this).
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The example term from above is emulated by the command succ(zero()) �
pred(k) (written with infix � with the producer to its left and the consumer to its
right), where k is a consumer assumed to be available in that context. The bodies
of a producer or consumer functions (negative and positive continuations) are also
commands (they have to be since commands reduce to commands), and k could
thus for instance be an argument of such a function. For example, on the right-
hand side of Fig. 4.1, there is the definition of the consumer function pred (in PF ),
which consumes a Nat and pattern matches on this input, and which additionally
has a continuation argument of consumer type Nat to pass the result to, e.g., the
command for the first case of pred combines the producer zero() (the “result”) with
the consumer argument variable k.

4.1.2 Daimons

InPF , there is no implicitly assumed “outer” consumer like, the user who “looks at”
the result; rather, it must always be explicitly specified what should “happen next”
with the result (which is again similar to the CPS perspective). This raises another
question, however: Is it at all possible to write a closed program, i.e. one containing
no free variables? The answer to this question is simply “no”; this is again similar to
CPS, where we always need an “outer continuation” if we want to be able to run the
program somehow.

Now, while one might be content with this situation and e.g. use a form of sym-
bolic execution that stops when the result is the command v � k where v is a con-
crete value and k is the open symbol standing for the “outer” consumer, in practice
it would be nice to have a less non-standard way of running a program. For this
purpose we can use daimonic commands, based on the concept of daimon (Girard,
2001), which we already saw in action when “challenging” the tertium non datur
proof/program in Section 3.2.5. A very simple daimonic command is Result, which
is intended for the purpose of simulating the situation known from the usual declar-
ative languages in which the end result is implicitly assumed to be “looked at” by the
user; when this final point of the computation has been reached, instead of trigger-
ing more computation by having producer and consumer meet, this “look-at-me”
daimon is triggered by Result(v) (where v is a concrete positive value that is this
“end result”). We will also employ daimons for other extra-logical aspects, where
reducing daimonic commands “passes control to the daimon” (instead of making
producer and consumer meet) in order to, e.g., handle I/O, mutate state, or make
“native” calls,3 but also to structure our system into a core part which has no recur-
sion facilities and a recursion daimon.

The purpose of modelling extra-logical aspects deserves some illustration, for
which we consider a simple I/O daimon specification. For our purposes, a specifi-
cation of a daimon requires at least the syntax of its daimonic commands and reduc-
tion rules for these. The I/O daimon has two daimonic commands for reading from
some source and writing to some target (that we assume to be specified somehow):
Read and Write. These come equipped with the following reduction rules, from

3This idea is similar to the concept of a “central administrator” as introduced by Cartwright and
Felleisen (1994) for their semantic framework for extensible denotational language specifications. The
administrator takes care of effects that the interpreter propagates to it (“the meaning of a program is
defined as the composition of the interpreter and the administrator” (Cartwright and Felleisen, 1994)),
i.e., of effects that can be considered extra-logical.
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> 39 Read(µ̄{n⇒ Read(...)})
. 39� µ̄{n⇒ Read(µ̄{m⇒ n� add(m, ...)})}

> 3 . Read(µ̄{m⇒ 39� add(m, ...)})
. 3� µ̄{m⇒ 39� add(m, ...)}
. 39� add(3, µ̄{r ⇒ Write(r, ...)})
.∗ Write(42, µ̄{_⇒ Done})

42 . 42� µ̄{_⇒ Done}
. Done

Process ended.

FIGURE 4.2: Console interaction example for I/O daimon.

Nat zero() succ(m : Nat)

pred(k : Nat) zero()� k m� k
out_cns() Result(zero()) Result(succ(m))

FIGURE 4.3: Example PF program in matrix form (only one matrix,
for Nat).

which one can also see which type the arguments of the daimonic commands have:

Read(k : Nat) . n� k, n read from the input

Write(n : Nat, k : Nat) . n� k, n written to the output

For simplicity, we let the commands read and write natural numbers Nat (which can
be specified by the usual Peano data type). Read reads from the input source and
passes the result to the given continuation. Write writes the given number n to the
output target, then passes n to the given continuation.

For instance, we can implement the “daimonic” input source and output target
by the standard input and output streams of some console. The command4

Read(µ̄{n⇒ Read(µ̄{m⇒ n� add(m, µ̄{r ⇒ Write(r, µ̄{_⇒ Done})})})})

can then be interactively executed as shown in Fig. 4.2.
Section 4.2.3 considers formal details that generally apply to daimons and that

are relevant for the soundness of PF , and also gives another example of a daimon,
for mutable state.

4.1.3 Program transposition for PF
Before turning to the formal details, let us look at how our system fares symmetry-
wise. We already saw that producers and consumers, which logically correspond
to proofs and refutations, respectively, are structurally identical. It turns out that
this also simplifies the presentation of the other duality considered in this work, the
extensibility duality, in particular making program transposition in both directions,
i.e. from data to codata and vice versa, one single, parametric transformation.

Following the ideas from Chapter 2, we can view programs as matrices where
(for instance) the columns are labelled with producer signatures and the rows are
labelled with consumer signatures. In the next section, we will use this formalism
forPF . An examplePF program in this matrix form is shown in Fig. 4.3.5 Generally,
programs consist of multiple matrices, one per type; in this simple example we have
only one matrix, for type Nat. Linearizing this matrix by reading it row-for-row

4The µ̄ construct is used for a local version of consumer functions (details in Section 4.3).
5This matrix is for the program in Fig. 4.1, with one trivial consumer out_cns added.
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data+ Nat { zero() | succ(Nat) }

function+ pred(k : Nat) : Nat := {
zero() ⇒ zero()� k
succ(m) ⇒ m� k

}

function+ out_cns() : Nat := {
zero() ⇒ Result(zero())

succ(m) ⇒ Result(succ(m))

}

data− Nat { pred(Nat) | out_cns() }

function− zero() : Nat := {
pred(k) ⇒ zero()� k
out_cns() ⇒ Result(zero())

}

function− succ(m : Nat) : Nat := {
pred(k) ⇒ m� k
out_cns(m) ⇒ Result(succ(m))

}

FIGURE 4.4: The two possible linearizations for the example PF pro-
gram from Fig. 4.3 (top: positive polarity, bottom: negative polarity).
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gives us the program with the positive data type and consumer functions for this
type, in Fig. 4.4 (top); a column-by-column linearization yields the program with the
negative data type and producer functions of this type (Fig. 4.4, bottom).

Producer and consumer signatures are structurally identical inPF , which stream-
lines the formal presentation and in particular the definition of transposition. For
this definition we consider programs as maps from type names to matrices which
are labelled by signatures and the cells of which are filled with commands; the pro-
gram is well-formed if all of its commands are, which in turn means that the con-
structor/destructor and function calls within them comply with the signatures. Each
matrix is to be understood as representing (consumer or producer) functions, read
off row-by-row (we could also choose column-by-column, for the sake of the follow-
ing it is only important that this is fixed globally). To each matrix it is annotated
whether it is of positive polarity (for a positive data type) or of negative polarity
(for a negative data type). Depending on this, we read the rows as consumer or as
producer functions. Transposing with respect to some type T is now just flipping
the polarity annotation for the matrix for T and transposing that matrix.

In particular, no technical tinkering is necessary, other than with the program
transposition for the data and codata languages of Chapter 2, where the structural
difference between consumer and producer signatures required one to be careful in
the precise formalization of the transformations, distinguishing the direction of the
transformation, i.e. from data to codata or from codata to data. In the PF setting,
the simple description from above translates easily into a single, direction-agnostic
formal definition of transposition parametric in the polarity; there is no need to in-
spect the polarity other than to flip the polarity annotations. Also, with this simple
definition of transposition the proofs that operational semantics and typing (pro-
gram well-formedness) are preserved by it are trivial. More precisely, such proofs
actually become unnecessary since we can just view programs as matrices in the
first place (the matrix being the ground truth, if you will), with data and codata
programs merely being linearizations of matrices; it is clear that transposition as de-
scribed above is equivalent to switching between linearizations and hence inherently
preserves our desired properties. Following this idea, the next section formalizes
programs as collections of matrices.

4.2 Core Polarized Flow

We now first present a practical version of PF which allows unrestricted recursion.
It is this pragmatic form of the system that we will use in later sections and the next
chapter; in particular, the practical version is the one we employ when we consider
transposition, since restricting recursion would also complicate transposition. We
then present a logical core form of the system, which fixes the polarity (and hence
linearization) of individual matrices and restricts recursive references to only func-
tions “below” the call site. Next, we present how to daimonically extend the logical
core, and prove soundness (including progress and preservation) in these settings
(first for the logical core, then extending this result to daimonic extensions). Finally,
we translate the practical version into a certain daimonic extension (for unrestricted
recursion) of the logical core, thereby demonstrating progress and preservation for
the practical version. Figure 4.5 gives an overview of the soundness proofs.



74 Chapter 4. Polarized Flow: A Framework Consolidating both Symmetries

Pract. version

Daimonic ext. (matrix)

Daimonic ext. (inline)
(Theorem 4.2)

Logical core (matrix)

Logical core (inline)
(Theorem 4.1)

Sec. 4.2.4

Sec. 4.2.2Remark (Sec. 4.2.4)

Sec. 4.2.3

FIGURE 4.5: Overview of soundness proofs.

4.2.1 Practical version

We start with the definition of a program as a collection (more precisely, a map with
types as its domain) of program matrices, as shown in Fig. 4.6b, plus the term syntax,
shown in Fig. 4.6a.6 The typing rules for the practical version are shown in Fig. 4.7
(with term typing rules in Fig. 4.7a and program wellformedness rules in Fig. 4.7c),
and its reduction rules in Fig. 4.8. Reduction of commands happens with respect to a
program P , identified by a subscript P when not clear from the context. Also, when
not clear from context, we will distinguish the reduction of the practical version by
a superscript 0, i.e. writing it as .0.

The term syntax and typing rules formally capture the intuitions conveyed in
the informal overview above. Especially, commands C consist of a producer p and a
consumer c (of the same type, i.e. one of producer type T and one of consumer type
T; cf. rule T-CMD), which syntactically both have the same form Xσ (the identifier
t is used in all places where the distinction between producer and consumer does
not matter7). Here X is some generic label name, i.e. the name of some signature XΞ
that appears as a label in a matrix (i.e. it is in the program’s global signature context
Σ, collected via rule M-SIG, denoted as being available to the term typing judgment
by a subscript; cf. rule P-OK), which means that it refers to some constructor, de-
structor, or (producer or consumer) function in a linearized version of the program.
In order for a (producer or consumer) term Xσ to typecheck (rule T-X, parametric
in judgment J , generically covers this), the substitution σ (a map from variables to
terms) has to fit with the relevant signature’s argument context Ξ (rule T-SUBST; an
argument context maps variables to types). Where they appear in a term, producer
and consumer variables have to be bound in the relevant matrix field, by the argu-
ment context (Ξp or Ξc) of the row or column label (rule M-OK checks the command
in the matrix field in the context combining Ξp and Ξc and rule T-VAR looks up the
variable in the context).

6The vector notation
−→iXi is used, throughout the rest of this work, for a sequence X1, ..., Xi, ..., Xn

(following Downen and Ariola (2014)). When clear from the context the index i is left implicit (as in
−→
X ). In this formalization all collections are ordered sequences (order does not always matter, but is
always safe to assume), written using set notation ({...}); set operators like × apply to these sequences
in the obvious way (preserving the order).

7The identifiers p, c, and t are merely distinguished to indicate where a producer or consumer is
expected or where this does not matter. Whether some term is a producer or consumer is not actually
determined by the syntax, but rather by the signatures in the global signature context Σ of the program
(by looking up X in Σ).
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T ∈ type names, X ∈ label names, x ∈ variable names (Names)
(var. naming convention: plain (e.g. x, y) for prd, overbar (e.g. x̄, ȳ) for cns)

J ::= prd | cns (Judgments)

Ξ ::=
−−−→
x
J
: T (Argument context)

(shorthands: x : T for x
prd
: T, x̄ : T for x̄

cns
: T)

Σelem ::= {prd 7→ −→XΞ, cns 7→ −→XΞ} (Signature element)

Σ ::=
−−−−−−→
T 7→ Σelem (Signature)

σ ::=
−−−→
x 7→ t (Substitutions)

p, c, t ::= Xσ | x (Producers / Consumers)
C ::= p � c | D (Commands)

(A) Terms (common). Daimonic commands D customizable.

Mcells ::=
−−−−−−−−−→
(XΞ,XΞ) 7→ C (Program matrix, unlabeled)

M ::= (Mcells,
−→
XΞ,
−→
XΞ) (Program matrix, labeled)

P ::=
−−−−−→
T 7→ M (Program)

(B) Programs (practical version).

Mcells ::=
−−−−−−−−−−→
XΞ 7→ −−−−−→XΞ 7→ C (Program matrix, unlab.)

(If the outer Xi are for producers,Mcells is of negative polarity.
If the outer Xi are for consumers,Mcells is of positive polarity.)
M ::= (Mcells,

−→
XΞ,
−→
XΞ) (Program matrix, labeled)

P ::=
−−−−−→
T 7→ M (Program)

(C) Programs (logical core).

FIGURE 4.6: Syntax of PF .

Figure 4.9 shows an example program8 together with a reduction sequence rela-
tive to that program. Here we assume the simple daimonic command former Result
(the same as informally used above), which does not have any custom reduction
rules, i.e. Result simply ends the reduction, simulating the behavior of reaching a
value known from natural deduction. The typing rule for Result allows to type-
check any command of the form Result(v) (in any context), with the only premise
that v typechecks in the empty context.

4.2.2 Logical core

Next we present the syntax of the logical core, shown in Fig. 4.6c for programs and
matrices; the term syntax is reused from Fig. 4.6a (though daimonic commands are
excluded for now and added in the next subsection). The program/matrix syntax is
also almost identical to that of the practical version except, importantly, for an ex-
plicit orientation (polarity) of the matrices which distinguishes function definitions
from xtors. Unlike the practical version of PF , the program wellformedness rules of
the logical core system, shown in Fig. 4.7d (term typing rules are identical to those
for the practical version, see Fig. 4.7a), prohibit unrestricted recursion, by actually

8In left-hand sides of matrix entries, types are omitted from argument types (they are redundant
since the label lists, i.e. lists of XΞ, are also separately specified); also, these left-hand sides are written
in the usual first-order function application style, e.g. succ(x) instead of succ{x : Nat}.
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XΞ ∈ Σ(T)(J ) Γ `Σ σ : Ξ
T-X

Γ `Σ Xσ
J
: T

x
J
: T ∈ Γ

T-VAR
Γ `Σ x

J
: T

Γ `Σ p
prd
: T Γ `Σ c

cns
: T

T-CMD
Γ `Σ p � c

cmd
: #

−−−−−−→
Γ `Σ t

J
: T

T-SUBST

Γ `Σ
−−−→
x 7→ t :

−−−→
x
J
: T

(A) Term typing (common). For daimonic commands D custom rules are added.

M = (Mcells,
−−−→
XpΞp,

−−→
XcΞc) L =

−−−→
XpΞp ×

−−→
XcΞc

dom(uncurry(Mcells)) ∈ {L, LT}
M-SIG

` M SIG({prd 7→ −−−→XpΞp, cns 7→ −−→XcΞc})

(B) Signature judgment. Gray-text parts only apply to logical core.

−−−−−−−−−−−→
Ξp, Ξc `Σ C

cmd
: #

M-OK
`Σ (
−−−−−−−−−−−−→
(XpΞp,XcΞc) 7→ C, ..., ...) OK

−−−−−−−−−−→
`M SIG(Σelem)

Σ =
−−−−−−→
T 7→ Σelem −−−−−−→

`Σ M OK
P-OK

` −−−−−→T 7→ M OK

(C) Well-formedness (practical version).

` P OK P-MEMPTY-OK` {T 7→ ∅} ∪ P OK

P DECOMPOSE(XΞ 7→
−−−−−−−→i
X′iΞ

′
i 7→ Ci ;

−−−−−→
T 7→ M)

−−−−−−−−−−→
`M SIG(Σelem) ` −−−−−→T 7→ M OK

Σ =
−−−−−−→
T 7→ Σelem

−−−−−−−−−−−−−−→i
XΞ,X′iΞ

′
i `Σ Ci

cmd
: #

P-OK` P OK

(D) Well-formedness (logical core).

M = ({XΞ 7→ m} ∪Mcells,
−−−→
XpΞp,

−−→
XcΞc)

M0 = (Mcells,
−−−→
XpΞp \ {XΞ},−−→XpΞc \ {XΞ})

M-DCPM DECOMPOSE(XΞ 7→ m;M0)

P = {T 7→ M} ∪ P0
P0 = {T 7→ M0} ∪ P

M DECOMPOSE(XΞ 7→ m;M0)
P-DCPP DECOMPOSE(XΞ 7→ m;P0)

(E) Decomposition auxiliary (logical core).

FIGURE 4.7: Typing rules for PF .

not allowing recursion at all, which requires this distinction (since the recursion issue
does not apply to xtors). Specifically, the typing rules demand there to be an order
among the matrices and, within each matrix, among the rows, which each comprise
a function definition. A field in a row may only refer to functions defined below its
row, thus excluding any cyclic references; cf. rule P-OK which typechecks this “top
row” (containing the Ci) given the signatures (Σ) computed (via rule M-SIG) for the
rest of the program without that row9), and which separately checks (` − OK) that
rest of the program recursively.10

When we now consider commands relative to some given program, as we did for
the practical version, we can straightforwardly simplify the presentation by transi-
tively inlining all function definitions as local abstractions. This is possible since we

9Obtained via auxiliary judgment DECOMPOSE (see Fig. 4.7e) which decomposes a matrix into the
“top row” m (containing the Ci) and the remainder.

10Rule P-MEMPTY-OK is for the base case, i.e. an empty “top” matrix, where the program is well-
formed whenever the program without that empty matrix is.
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Xpσp � Xcσc .P Cσpσc,
if there exist T, C such that P(T)(Xp,Xc) = C

D .P user-defined

FIGURE 4.8: Reduction rules for the practical version of PF (identi-
fied by superscript 0 where necessary).

Mcells
Nat := { (zero, add(y, ȳ)) 7→ y � ȳ,

(succ(x), add(y, ȳ)) 7→ x � add(y, succCns(ȳ)),
(zero, succCns(ȳ)) 7→ succ(zero) � ȳ,
(succ(x), succCns(ȳ)) 7→ succ(succ(x)) � ȳ,
(zero, doneCns) 7→ Result(zero),
(succ(x), doneCns) 7→ Result(succ(x))

}
Σelem(prd) := {zero{}, succ{x : Nat}}
Σelem(cns) := {add{y : Nat, ȳ : Nat}, succCns{ȳ : Nat}, doneCns{}}
Pex := {Nat 7→ (Mcells

Nat , Σelem(prd), Σelem(cns))}
Reduction steps:

succ(succ(zero)) � add(succ(zero), doneCns)
. succ(zero) � add(succ(zero), succCns(doneCns))
. zero � add(succ(zero), succCns(succCns(doneCns)))
. succ(zero) � succCns(succCns(doneCns))
. succ(succ(zero)) � succCns(doneCns)
. succ(succ(succ(zero))) � doneCns
. Result(succ(succ(succ(zero))))

FIGURE 4.9: Addition example.

prohibited recursive references. So, instead of a command C which contains a call
to some function f (

−→
t ) specified in program P , we consider C with the call to f

replaced by an inlined function definition µ(
−−−→
x 7→ t){−−−−−→XΞ⇒ C}. The C in that local

abstraction are taken from the matrix row for f ; the concrete arguments
−→
t of f at the

call site are annotated to the µ as an explicit substitution (to be substituted into the
C). We use µ for producer abstractions (negative) and µ̄ for consumer abstractions
(positive).

It is clear that this presentation of the logical core is equivalent to the matrix-
based one, but that it looks much more like a conventional logical calculus. There-
fore we now use it to demonstrate the soundness of this system. Especially, instead
of requiring the entire signature of the implicitly assumed program for typecheck-
ing the considered command, it suffices to have an implicitly assumed set of xtor
signatures (for each positive and negative type in the program).

The reduction rules for the reduction . for the system are shown in Fig. 4.10, but
let us first motivate them from a logical perspective. We can directly express the
soundness of the system:

Theorem 4.1 (Soundness). There is no command C such that ` C
cmd
: #.

In other words, there is no way to obtain evidence for a contradiction (as ` C
cmd

:
# says that C is evidence for a contradiction). Now, how do we prove the soundness
theorem? Basically, we shrink the evidence until it disappears, and our reduction
steps are an internalization of the shrinking steps we use to demonstrate this. More
precisely, we prove the following lemma, from which the soundness theorem im-
mediately follows, since it means that the number of commands appearing in the
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µ(σp){
−−−−−−→iXiΞ⇒ Ci } � Xiσc . Ciσcσp

Xiσp � µ̄(σc){
−−−−−−→iXiΞ⇒ Ci } . Ciσcσp

FIGURE 4.10: Reduction rules for the logical core of PF .

substructure can be iteratively made arbitrary small, even smaller than 1, which is
impossible.

Lemma 4.1 (Evidence shrinking). Denote the number of syntactically different com-
mands appearing in the substructure of some command C as #(C). Now, consider any

command C with ` C
cmd
: #. We can find another command C′ with ` C′

cmd
: # and

#(C′) < #(C).

To prove the lemma, we do two things. First, we define the reduction rules for
commands (Fig. 4.10), which gives us exactly the first part of what we need: A
way to obtain a command C′ containing at least one fewer command, up to syn-
tactic equality, in its substructure than any given command C.11 This can be rather
straightforwardly seen in the right-hand sides by calculating their amount of com-
mands relative to that of the left-hand sides.12 Second, we need to show that the
newly obtained command C′ actually is evidence for a contradiction, for which we
use the knowledge that C is such evidence. That is, we need to show that reduction
preserves the command typing.

Lemma 4.2 (Preservation). For all commands C, C′, if ` C
cmd
: # and C .C′, then ` C′

cmd
:

#.

Proof. We know C′ is a right-hand side Ci inside a µ or µ̄ with some substitution σ
applied to it, i.e. C′ = Ciσ. Since we assume the relevant program to be well-formed,
Ci (which comes from a matrix cell in the matrix form of the program) typechecks in
some argument context Ξ. By the command substitution lemma, which we leave for
the appendix (Lemma A.2), we can conclude that Ciσ typechecks if ` σ : Ξ. Since
C typechecks and σ consists of two parts which are respectively applied to an xtor
call and used as an explicit substitution for a µ- or µ̄-abstraction, both part of C, by
inversion we know that ` σ : Ξ′ for some argument context Ξ′. But this is necessarily
the same as Ξ, since it is the cell for this xtor and this abstraction from which we got
the Ci.

11To be precise, a reduction rule can only be applied when the lookup of the xtor in the µ/µ̄ abstrac-
tion succeeds. Since we assume the command we want to reduce to typecheck relative to the original
matrix program P , we know this to be the case, i.e. progress holds, if the cases listed in the abstrac-
tion are complete for the signatures from P . And this we also know to hold since we only consider
commands created by inlining function definitions from these matrices.

12We demonstrate this for the first reduction rule (proceed similarly for the second rule). We have
(where we use the command count #(...) for other syntactic domains as well, defined in the expected
way):

#(Ciσcσp) ≤ #(Ciσp) + #(Xiσc)−Oi

≤ #(µ(σp){
−−−−−−→iXiΞ⇒ Ci }) + #(Xiσc)−O < #(µ(σp){

−−−−−−→iXiΞ⇒ Ci }) + #(Xiσc)−O + 1 = #(C′),

where C′ is the left-hand side, O is the overlap within C′ (i.e., the number of commands appearing on
both sides of the top-most� in C′), and Oi is the overlap limited to comparing σc with only Ciσp. In
particular, the first inequality holds because (1) while a variable in dom(σc) may appear more than once
in Ciσp, the number of syntactically different commands in Ciσpσc is still the same as if the variable only
appeared once, and (2) variable bindings do not cross binders (due to the explicit substitution syntax),
so the terms substituted by σc and σp do not potentially increase the count of different commands by
now appearing deeper inside the substructure.
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Note that the goal of the process of eliminating commands until none are left is
analogous to that of the complete elimination of uses of cut rules, or cut elimination,
of Gentzen (1935) (with commands and cut rules being the only ways of obtaining
evidence for a contradiction in their respective systems). However, there is no judg-
mental organization in the system LK of Gentzen (1935) that enforces cuts to be only
obtainable from a meeting of a producer and a consumer (logically, of a left and a
right rule for the same connective; cf. Footnote 2 in Section 3.2.3). Thus, LK inher-
ently requires a quite more elaborate cut elimination proof: Gentzen (1935) does not
always just completely remove a cut in each of his proof steps. In some cases he
instead, e.g., transforms the proof tree such that a subproof leading to a cut becomes
smaller (iteratively leading to the cut disappearing eventually). But in our setting it
suffices to show that there is no evidence for any possible closed instance of a com-
mand, which could only be obtained as a meeting of a producer and a consumer,
and hence we were able to simply employ the shrinking argument.

In using the reduction relation to demonstrate consistency, we follow Zeilberger
(2008b), who however does not separately prove consistency for the “vacuous” (Zeil-
berger, 2008b) purely logical part of CU without daimonic commands. Methodolog-
ically, he is interested in demonstrating the practically relevant progress and preser-
vation properties for CU with the “Done” daimon (with a “runnable” reduction),
and does not approach consistency as fundamentally (conceptually starting from the
meta-logical property of non-derivability for the judgment) as we did above (with
progress and preservation being “tools” to achieve this conceptually “prior” prop-
erty). Therefore shrinking towards disappearance does not explicitly occur in his
proof: He does not explicitly prove that there is no closed command in the pure sys-
tem (though he does mention this property and it is rather straightforward to prove
for CU, similarly to the proof for PF ). We, however, will utilize the rather simple
proof of this section, which demonstrates just that for our logical core, as a starting
point which we systematically enhance to arrive at the consistency proof for the dai-
monic setting, thereby highlighting how exactly this setting differs from the purely
logical core.

4.2.3 Daimonic extension

We now consider extending the logical core by adding daimonic commands. Let the
accompanying collection of typing and reduction rules be T-RulesD and R-RulesD13,
respectively. The added typing rules are only for typing commands and these com-
mands are all daimonic. Further, we require substitutions to be applicable to dai-
monic commands in such a way that the command substitution lemma (Lemma A.2
in the appendix), as used in the proof of preservation above, is preserved. We refer
to a reduction that happens via a rule in R-RulesD by a superscript D, e.g. C .D C′.

For a daimonically extended system, we can prove a modified version of sound-
ness, which says that if one has evidence for a contradiction, one can also always ob-
tain a daimonic command that already serves as evidence for a contradiction. This
makes it clear that there is no unsoundness introduced into the system beyond that
introduced by the daimons.

Theorem 4.2 (Modified soundness). If there is a command C with ` C
cmd
: #, there is a

daimonic command D such that ` D
cmd
: #.

13We assume the overall set of reduction rules to be deterministic unless specified otherwise.
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This theorem actually follows from another which says that D can be found by
reduction:

Theorem 4.3 (Evidence shrinking to daimon). For all commands C with ` C
cmd
: #,

there is a daimonic command D such that C .∗ D and ` D
cmd
: #.

We can compare this to the situation in the logical core system, where we shrinked
away the evidence for the contradiction by using the reduction steps. In a daimonic
extension, the evidence does not shrink away completely, but the only thing remain-
ing is daimonic.

To see why the daimonic shrinking theorem holds, consider the following: We
can use the reduction of non-daimonic commands to reduce C (if it is not already
a daimonic command, in which case we are done).14 And as in the shrinking for
the logical core, if we do not encounter a daimonic command, we could make it
structurally smaller than any size, including 1, which is impossible, hence we must
encounter a daimonic command at some point in the reduction sequence. All that
remains now is to show that each reduction step preserves typing, and we have
proven the theorem.

Lemma 4.3 (Preservation (daimonic extension)). For all commands C, C′, if C is non-

daimonic and ` C
cmd
: # and C . C′, then ` C′

cmd
: #.

Proof. Reuse the proof of the preservation lemma for the logical core, which, if C is
non-daimonic, does not depend on the absence of daimonic extension (especially it
does not depend on C′ being non-daimonic).

It may be desirable that even daimonic commands do not destroy well-typedness
when reduced, in which case we call the daimonic extension good-natured.

Definition 4.1. The daimonic extension is good-natured iff for all daimonic commands D

and commands C, when ` D
cmd
: # and D .D C, it follows that ` C

cmd
: #.

Note that we do not require daimonic commands to reduce at all, irrespective of
whether the extension is good-natured or not. Overall we can conclude that while al-
lowing to derive what corresponds to evidence for a contradiction, a good-natured
daimonic extension does not break the practically relevant properties of progress
and preservation (and even if the extension is not good-natured, preservation is pre-
served for non-daimonic commands).

An example of a good-natured daimonic extension is the simple I/O daimon
from Section 4.1.2. Another such example, that we will make use of in the next chap-
ter, is a daimonic extension for mutable state. To model mutable state, we consider
the reduction of pairs of a command C and a current storage state S , written using a
superscript as CS . We will omit the superscript whenever S = ∅. For this general-
ized form of reduction we give rules for the three daimonic commands for mutable
state, NewBox, OpenBox, and SetBox, as shown in Fig. 4.11. For each the rele-
vant type T is annotated as a subscript. NewBox picks a fresh storage cell address α
and writes the given value a : T to that cell, passing addr to the given continuation.
Addresses that contain a value of type T have the primitive positive type Ref〈T〉.
OpenBox looks up the given address in the current store and passes the resulting
value to the given continuation. SetBox updates the store at the given address with

14Same as in the logical core, progress is straightforward.
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NewBoxT(a : T, k : Ref〈T〉)S . (α� k)S∪{α 7→a} (α : Ref〈T〉 fresh)
OpenBoxT(α : Ref〈T〉, k : T)S . (S(α)� k)S

SetBoxT(α : Ref〈T〉, a : T, C)S . CS [α 7→a]

(v� k)S . CS

(C is the result of ordinary one-step reduction of v� k)

FIGURE 4.11: Mutable state daimon reduction rules.

the given value and reduces to the given command in that new storage state. Logical
commands do not touch the store when one-step reducing.

This description already suggests which types the arguments of the daimonic
commands are allowed to have; these are also annotated in Fig. 4.11. It easy to see
that, assuming these types, the command part of each reduction result is well-typed
again; that is, as claimed, the mutable state daimon is good-natured, thus progress
and preservation hold when extending PF with it.

There is one (easily resolved) caveat: We do not actually know that the address
passed to OpenBox or SetBox exists in the current store and that it has the cor-
rect type. However, assuming that the address can only be obtained from a use
of NewBox, these properties are automatically guaranteed. We thus impose the
restriction that it is not possible to access address values directly (i.e. other than
via NewBox). Reduction does lead to concrete address values being arguments of
OpenBox or SetBox, but these are not accessible to the programmer.

4.2.4 Soundness of the practical version

We can now prove preservation15 for the practical version by translating a program
into a logical core program with a certain daimonic extension for unrestricted recur-
sion. It will be instructive to see how exactly the practical version presentation is
daimonic, i.e. how its unrestricted recursion is extra-logical.

We translate a cell entry C (a command) to a cell entry in the (daimonically ex-
tended) logical core program, as follows: We collect all names F of functions called
that are specified in a row or matrix above or equal to the current row. If F is empty,
we do not need to change C. Otherwise, we replace each such occurrence of an f ∈ F
by a new kind of variable φ f ; call the resulting command C0. Finally, the cell entry
in the logical core program is:16

Rec
−→f∈Fφ f .C0

For such a daimonic command we add the following reduction rule:

Rec
−→f∈Fφ f .C .D C

−−−−−−→f∈F
[φ f 7→ f ]

And we add the following typing rule:

Γ `
Σ∪
−→ff

C
−−−−−−→f
[φ f 7→ f ]

cmd
: #

T-CMD
Γ `Σ Rec

−→fφ f .C
cmd

: #

On its own, this daimonic extension is not good-natured, since there is no guar-
antee that all function names f actually appear in the signature of the program.
However, for the image of the translation from practical version programs to logical

15Progress is again easy, similarly to the logical core.
16For the proofs of the previous sections to be applicable, we need a way to deal with inlining func-

tion definitions in this daimonic command; see the remark below on how to do that.
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Mcells
Nat := { add(y, ȳ) 7→ {

zero 7→ y � ȳ,
succ(x) 7→ Rec φadd. x � φadd(y, succCns(ȳ)) },

succCns(ȳ) 7→ {
zero 7→ succ(zero) � ȳ,
succ(x) 7→ succ(succ(x)) � ȳ },

doneCns 7→ {
zero 7→ Result(zero),
succ(x) 7→ Result(succ(x)) }

}
Σelem(prd) := {zero{}, succ{x : Nat}}
Σelem(cns) := {add{y : Nat, ȳ : Nat}, succCns{ȳ : Nat}, doneCns{}}
(note thatMcells

Nat is a positive polarity matrix)
Pex := {Nat 7→ (Mcells

Nat , Σelem(prd), Σelem(cns))}
Reduction steps:

succ(succ(zero)) � add(succ(zero), doneCns)
. Rec φadd. succ(zero) � φadd(succ(zero), succCns(doneCns))
.D succ(zero) � add(succ(zero), succCns(doneCns))
. Rec φadd. zero � φadd(succ(zero), succCns(succCns(doneCns)))
.D zero � add(succ(zero), succCns(succCns(doneCns)))
. succ(zero) � succCns(succCns(doneCns))
. succ(succ(zero)) � succCns(doneCns)
. succ(succ(succ(zero))) � doneCns
. Result(succ(succ(succ(zero))))

FIGURE 4.12: Addition example, translated to the logical core.

core programs, this is the case, allowing us to conclude that progress and preserva-
tion hold (in the logical core) relative to all programs in the image of the translation.
As an example of this translation from programs to programs, consider the result of
the translation of the addition program (Figure 4.9), shown in Figure 4.12. Compared
to the practical version presentation, two daimonic steps (.D) are now interspersed,
exactly in the spots where a recursive addition call occurs.

Of course, we would like the practical version reduction .0 to always be in close
correspondence with the reduction for the translated commands. We will now demon-
strate this to be the case and immediately have preservation for the practical version
of PF from this fact. The translation only changes commands in matrix cells; the
closed commands where we consider their reduction relative to a program of the
practical version stay the same. Now, such a command C reduces to a command
instantiated from a cell entry, i.e. C .0 C′ with C′σ being a cell entry. We also have
C . C′′σ in the logical core, where C′′ is the translation of C′. If C′ = C′′ (because it
does not contain a recursive reference), the reduction steps in the practical version
and in the logical core agree. Otherwise, it is, for some C0:

C′′σ = (Rec
−→f∈Fφ f .C0)σ .D (C0

−−−−−−→f∈F
[φ f 7→ f ] )σ = C′σ.

Thus, overall we have C . C′′σ .D C′σ, so the reduction in the logical core takes at
most one extra step, and this step is guaranteed to be daimonic. Moreover, since
typechecking of commands (individually) does not differ between the practical ver-
sion and the logical core, from this reduction correspondence we immediately have
preservation for the practical version as well.

Remark: Inlining for Rec. We have not yet considered how to inline function def-
initions in a daimonic Rec command, but we used this inlined presentation in the
proofs of the previous sections, so we need to make sure this inlining is possible. We
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take the recursion command
Rec
−→f∈Fφ f .C,

as created above, and turn it into

Rec
−−−−→f∈Fφ f : t f .C,

where each t f is the inline form of f , i.e. a µ- (or similarly a µ̄-)abstraction

µ{−−−−−−→iXiΞ⇒ Ci },

where the variables −→jxj annotated in the matrix row label for f are left open. The
Ci themselves undergo inlining, but only for functions not in F; the other function
names f simply become their respective φ f . Finally, we accordingly adapt the re-
duction rule for Rec, replacing recursive function calls by such inline forms of the
functions, with the call arguments substituted for the xj:

Rec
−−−−→f∈Fφ f : t f .C .D C

−−−−−−−−−−−−−−−−−−−→f∈F
[φ f (
−−→jt f ,j ) 7→ t f

−−−−−−−→j
[xj 7→ t f ,j] ]

As intended, a reduction step now does not lead to global references to functions
anymore.

4.3 Pragmatic Extensions

In this section we consider two rather small extensions of the practical version,
which will however be quite handy when practically working with the system, as
evidenced by some initial examples. These will also serve as a first demonstration
of how PF is indeed able to serve as a foundation for automated tooling. From now
on, we will exclusively use the practical version as our base system, unless otherwise
noted.

4.3.1 Local annotations

As a first little aid, we can allow the X identifiers appearing in the program to be
annotated as local. Now, consider some concrete linearization. If the respective iden-
tifier becomes a function name (and not an xtor name), then this annotation indicates
that it should be inlined using a µ- or µ̄-abstraction (as used in the logical core proofs,
but without the explicit substitutions). We only allow local annotations in the sim-
ple case that the relevant function is only called once in the entire program. We also
require calls to local functions to have only variables as their arguments, which will
enable us to recover the matrix form from the linearized form, as we will see below.

As a first example, consider again the addition program from the previous sec-
tion. We do not really want an extra top-level definition for succCns, since its pur-
pose is limited to the place where it appears in the matrix cell for add. For simplicity
we will place a local annotation by prefixing the identifier with an underscore _ (as-
suming identifiers never start with that symbol). When we have _succCns, lineariz-
ing Nat can produce one of the two programs shown in Figure 4.13. The program on
the top, where Nat is positively polarized, has a µ̄ abstraction for the successor con-
sumer. Note that in order to be able to unambiguously recover the name information
for the matrix from the linearized form, the name _succCns is also annotated to the
µ̄. The program on the bottom, where Nat is negatively polarized, has _succCns as
a destructor. We can read this program back into matrix form, together with the
local annotation. From there we can decide to linearize the other way, and recog-
nize _succCns to be inlined by means of the annotation. Put in another way, in the
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data+ Nat { zero | succ(Nat) }

function+ add(y, ȳ) := {
zero ⇒ y � ȳ
succ(x) ⇒

x � add(y, µ̄_succCns{zero⇒ succ(zero)� ȳ | succ(x)⇒ succ(succ(x))� ȳ})
}

data− Nat { add(Nat, Nat) | _succCns(Nat) }

function− zero := {
add(y, ȳ) ⇒ y � ȳ
_succCns(ȳ) ⇒ succ(zero) � ȳ

}

function− succ(x) := {
add(y, ȳ) ⇒ x � add(y, _succCns(ȳ))
_succCns(ȳ) ⇒ succ(succ(x)) � ȳ

}

FIGURE 4.13: Addition example with local annotation.

negatively polarized program there is no inlining happening in this example, but
the local annotation on the destructor makes it clear what to inline in the other lin-
earization, and is necessary so we do not lose the information. That is, with these
annotations, there is no information loss when switching between the linearization,
thus these switches are full inverses of each other (i.e. going back and forth we will
always come back to the same program we started with).

Going from a linearized program with local abstractions back to the matrix form
also requires to collect the variables, and their types that appear free in each abstrac-
tion’s body. As indicated above, here we assume that the arguments of the call to the
function annotated as local are variables only, allowing to uniquely recover the ma-
trix form from the linearized form. In the addition example, there is the free variable
ȳ within the body of the µ̄-abstraction for _succCns. In the other linearization, this
free variable corresponds to the argument of the _succCns destructor. In the slightly
more involved example of Figure 4.14, which is (close to) Reynold’s meta-circular in-
terpreter in the linearization for the negatively polarized Val (top of the figure), this
automatic process gives us an interpreter with closures in the opposite linearization
(bottom). More precisely, the local abstraction in the Abs case of eval that encodes a
first-class function is turned into the _closure constructor. That is, the transposition
combined with the proper treatment of local abstractions sort of “invents” closures
for us.

This is another example in the vein of uses of defunctionalization to interderive
semantic artifacts, as elaborated on in Section 2.2.4; this can be leveraged for auto-
mated tooling similarly to the tools build upon the system of Binder et al. (2019) (see
Section 2.4.1). Starting from the high-level code with first-class function abstractions
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that is meta-circular in the sense that it uses first-class functions to implement first-
class functions, we arrive at code closer to code runnable on a machine (with the
code itself resembling an abstract machine). In particular, there is less “cleverness”
required to write the high-level code, as it almost only amounts to a straightfor-
ward realization of the rather self-referential description: “An abstraction evaluates
to something that can be applied to a value.” Practically the only thing one has
to take care of is variable binding, which in this example was dealt with by using
environments (in a De Bruijn-style).17 And with program transposition ready as a
tool, there is no need to be clever if one wants to obtain a “real” implementation of
first-class function, since transposition gives that for free.

Note that, as in the previous example, we gave the abstraction corresponding to
the closure constructor a name, _closure. In an interactive programming environ-
ment, it should also be possible to create such names automatically, perhaps with
some help from the user and/or taking contextual information into consideration.
Finally, note that in the example there is another constructor corresponding to a lo-
cal abstraction, named _aux. This one is a bit annoying, as it is only an artifact of
how we encoded sequential evaluation in our system. This artifact can be avoided
by a more careful encoding, but it is also related to a somewhat intricate asymmetry
between data and codata; we will come back to this topic in the next chapter when
we consider macros for surface languages.

4.3.2 Whole-value patterns

In each of the examples of the previous section, we saw an abstraction which does
not actually inspect the values it is pattern matching on: Both cases of the successor
consumer are identical relative to the whole pattern for the respective case; the _aux
producer has only one case, but this likewise only inserted the whole pattern into
the right-hand side, and not the pattern variables individually. Our system was
deliberately designed to facilitate program transposition, and thus there is only one
case per constructor, i.e. all matches are shallow. However, allowing a whole-value
pattern (like the as-pattern from Haskell, but only for the entire pattern), with which
one can abbreviate the entire constructor call, does not break the ability to transpose.
Also, adding this feature allows us to write a simple macro that just repeats the same
command for all cases, so that we have the ability to (on the macro level) write µ- and
µ̄-abstractions that simply map from a variable to a command where this variable
appears freely (like in a λ-abstraction, for instance).

We use a new symbol W for a whole-value pattern reference in a matrix cell. We
refer to the respective pattern from the row label as Wr and to that from the column
label as Wc. We straightforwardly enhance the reduction rules to first replace the W
with the respective pattern, i.e. a Xσid

Ξ , where the σid
Ξ simply map the variables from

the respective label’s argument context Ξ back to themselves, before instantiating
the variables as usual. Once the program is linearized, if the respective X refers to
a function, we will write that pattern out in place of the W to make it clear that this
is a recursive reference. If it is an xtor pattern, there is thus no need for a r or c
subscript, so we simply write W; we also suggestively write W@XΞ ⇒ C, like in a
Haskell-style as-pattern.18 For example, the _aux abstraction from the meta-circular
interpreter example above becomes:

µ_aux{W@apply(v, v̄)⇒ e2 � eval(l, W)}

17We have omitted the straightforward definition of lookup (used in the var case of eval).
18We may sometimes use a different symbol than W since we can recognize it as a whole-value

reference via the as-pattern, i.e. the relevant symbol is what stands before the @.
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data− Val { apply(Val, Val) }
data+ ValList { nil | cons(Val, ValList) }
data+ Exp { var(Nat) | app(Exp, Exp) | abs(Exp) }
data+ Nat { zero | succ(Nat) }

function+ eval(l, v̄) := {
var(n) ⇒ n � lookup(l, v̄)
app(e1, e2) ⇒ e1 � eval(l, apply(µ_aux{apply(v, v̄)⇒ e2 � eval(l, apply(v, v̄))}, v̄))
abs(e) ⇒ µ_closure{apply(v, v̄)⇒ e� eval(cons(v, l), v̄)} � v̄

}

data+ Val { _closure(Exp, ValList) | _aux(Exp, ValList) }
data+ ValList { nil | cons(Val, ValList) }
data+ Exp { var(Nat) | app(Exp, Exp) | abs(Exp) }
data+ Nat { zero | succ(Nat) }

function+ apply(v, v̄) := {
_closure(e, l) ⇒ e � eval(cons(v, l), v̄)
_aux(e, l) ⇒ e � eval(l, apply(v, v̄))

}

function+ eval(l, v̄) := {
var(n) ⇒ n � lookup(l, v̄)
app(e1, e2) ⇒ e1 � eval(l, apply(_aux(e2, l), v̄))
abs(e) ⇒ _closure(e, l)� v̄

}

FIGURE 4.14: Meta-circular interpreter (top) and interpreter with clo-
sures (bottom).
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For readability, we will also sometimes leave out the variables in the pattern if they
are unused (on the surface), like v or v̄ in the _aux abstraction, replacing them by
underscores (as known from, e.g., Haskell or Scala).

Now, for abstractions where all cases are identical when utilizing such a W, as is
the case for the succCns abstraction, as announced we use a simple macro that turns
(µ̄ analogously) µ{W ⇒ C}, an abstraction for some type T, to µ{−−−−−−−−−→iW@XiΞi ⇒ C },
where

−−→i
XiΞi are the xtor signatures of T; we may use a different symbol than W (see

footnote above). The succCns abstraction we can now write (on the macro level) as:

µ̄_succCns{n⇒ succ(n)� ȳ}

Overall, with a few small extensions we have gotten rid of some practically im-
portant awkwardnesses exhibited by our parsimonious, transposition-friendly core
system. Next we equip it with parametric polymorphism, and then are ready to put
it to use by recovering existing languages in the next chapter.

4.4 Polymorphic Extension

This section presents the extension of PF with parametric polymorphism. Just like
with the polymorphic natural deduction-based system (Ostermann and Jabs, 2018)
summarized in Section 2.4.2, this requires Generalized Algebraic Data Types and
their dual, which we called Generalized Algebraic Codata Types in the natural de-
duction setting. Actually, the modification applied to the syntax of types is exactly
the same as for natural deduction, and the key change to the type system, which
involves computing the most general unifier (Hindley, 1969; Milner, 1978; Robin-
son, 1965) of producer and consumer type parameters, also carries over from there.
Thus, for the intuition underlying the polymorphic extension and unification, and
more examples, refer to Section 2.4.2.

In this section, we first consider a system which extends the practical version of
PF , with built-in recursion. As with the non-polymorphic system, we then consider
the logical core, from which recursion and hence the practical version extension can
be recovered by a daimon. Daimonic extensions in general and the recursion dai-
mon, as well as showing how consistency of the practical version follows from that
of the logical core via the daimon, are all straightforward adaptations of what is pre-
sented above, so we will not consider them in detail again. Instead, we focus on
proving the polymorphic logical core consistent, for which it turns out to be suffi-
cient to adapt the preservation lemma to take unification into account. Compared to
the natural deduction based GA(Co)DT language of Ostermann and Jabs (2018) and
its Coq proof, the proof presented here is streamlined quite a bit thanks to the fully
symmetric setting.19

4.4.1 Practical version

Fig. 4.15 shows the syntax for the polymorphic system extending the practical ver-
sion of PF (in Fig. 4.15a and Fig. 4.15b; Fig. 4.15c is for the logical core considered
below). Types are now either data types with an instantiation of type parameters
〈−→T 〉, or variables A. X-calls now also have type parameters instantiated, with the

19The non-polymorphic data and codata language can be embedded into the non-polymorphic ver-
sion of PF (see Section 5.2), and the same goes for the GA(Co)DT language and the polymorphic
version of PF ; in the polymorphic embedding type parameters simply carry over, otherwise the em-
bedding is identical to that for the non-polymorphic version (Section 5.2.5 presents an example em-
bedding of a GA(Co)DT program into PF ).
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D ∈ type names, X ∈ label names, x ∈ variable names (Names)
A ∈ type variable names
(var. naming convention: plain (e.g. x, y) for prd, overbar (e.g. x̄, ȳ) for cns)

T ::= D〈−→T 〉 | A (Types)
J ::= prd | cns (Judgments)

Ξ ::=
−−−→
x
J
: T (Argument context)

(shorthands: x : T for x
prd
: T, x̄ : T for x̄

cns
: T)

Σelem ::= {prd 7→ −→XΞ, cns 7→ −→XΞ} (Signature element)

Σ ::=
−−−−−−→
T 7→ Σelem (Signature)

Σelem
T ::=

−−−−−−→
X 7→ 〈−→T 〉,

−−−−−−→
X 7→ 〈−→T 〉 (Type parameters element)

ΣT ::=
−−−−−−→
T 7→ Σelem

T (Type parameters)

σ ::=
−−−→
x 7→ t (Substitutions)

p, c, t ::= X 〈−→T 〉σ | x (Producers / Consumers)
C ::= p � c | D (Commands)

(A) Terms (common).

Mcells ::=
−−−−−−−−−−−−−−−−→
(X 〈−→A 〉Ξ,X 〈−→A 〉Ξ) 7→ C (Program matrix, unlabeled)

M ::= (Mcells,
−−−−−→
X 〈−→A 〉Ξ,

−−−−−→
X 〈−→A 〉Ξ, Σelem

T ) (Program matrix, labeled)

P ::=
−−−−−→
D 7→ M (Program)

(B) Programs (practical version).

Mcells ::=

−−−−−−−−−−−−−−−−−→
X 〈−→A 〉Ξ 7→

−−−−−−−−→
X 〈−→A 〉Ξ 7→ C (Program matrix, unlab.)

(If the outer Xi are for producers,Mcells is of negative polarity.
If the outer Xi are for consumers,Mcells is of positive polarity.)

M ::= (Mcells,
−−−−−→
X 〈−→A 〉Ξ,

−−−−−→
X 〈−→A 〉Ξ, Σelem

T ) (Program matrix, labeled)

P ::=
−−−−−→
T 7→ M (Program)

(C) Programs (logical core).

FIGURE 4.15: Syntax for the polymorphic system. Differences to the
syntax of the non-polymorphic system (Fig. 4.6) are highlighted.

signatures of the X (in the program matrices) now being of the form X〈−→A 〉Ξ, where
−→
A are the type variables available in Ξ and in the bodies (i.e., the cells of the matrix).
For each X, it must also be specified how the type parameters of their respective
data type should be instantiated; the type variables

−→
A bound in the signatures are

available here.
Fig. 4.16 presents the typing rules, extending Fig. 4.7 (for the non-polymorphic

system). The differences to the non-polymorphic system are (1) that we carry around
more static signature information, namely the type parameter instantiations just
mentioned, and properly make use of these in T-X, and (2) the unification of the
type parameter instantiations of the relevant data type for X employed in M-OK.
Note that, just as with the system of Section 2.4.2, when unification of this instanti-
ation for some Xp and Xc fails, the matrix cell need not actually be filled with any
command since when considering only well-formed programs this code can never
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Γ `Σ;ΣT σ : Ξ
−−−−−→
[A 7→ T′]

X 〈−→A 〉Ξ ∈ Σ(D)(J ) 〈−→T 〉 = ΣT(D)(X)
T-X

Γ `Σ;ΣT Xσ
J
: T

x
J
: T ∈ Γ

T-VAR
Γ `Σ;ΣT x

J
: T

Γ `Σ;ΣT p
prd
: T Γ `Σ;ΣT c

cns
: T

T-CMD
Γ `Σ;ΣT p � c

cmd
: #

−−−−−−−−→
Γ `Σ;ΣT t

J
: T

T-SUBST

Γ `Σ;ΣT

−−−→
x 7→ t :

−−−→
x
J
: T

(A) Term typing (common). For daimonic commands D custom rules are added.

M = (Mcells,
−−−→
XpΞp,

−−→
XcΞc, Σelem

T ) L =
−−−→
XpΞp ×

−−→
XcΞc

dom(uncurry(Mcells)) ∈ {L, LT}
M-SIG

` M SIG({prd 7→ −−−→XpΞp, cns 7→ −−→XcΞc}; Σelem
T )

(B) Signature judgment. Gray-text parts only apply to logical core.

Σelem
T =

−−−−−−−−−→i
Xp,i 7→ 〈

−→
Tp,i〉 ,

−−−−−−−−→j
Xc,j 7→ 〈

−→
Tc,j〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−→i,j
τi,j = mgu(

−−−−−−→
Tp,i = Tc,j) =⇒

Ξp,i τi,j , Ξc,j τi,j `Σ;ΣT Ci,j τi,j
cmd

: #
M-OK

`Σ (
−−−−−−−−−−−−−−−−−→i,j
(Xp,iΞp,i,Xc,jΞc,j) 7→ Ci,j ,

..., ..., Σelem
T ) OK

−−−−−−−−−−−−−−−→
`M SIG(Σelem; Σelem

T )

Σ; ΣT =
−−−−−−→
T 7→ Σelem;

−−−−−−→
T 7→ Σelem

T
−−−−−−−−→
`Σ;ΣT M OK

P-OK
` −−−−−→T 7→ M OK

(C) Well-formedness (practical version).

` P OK P-MEMPTY-OK` {T 7→ ∅} ∪ P OK

P DECOMP.((XΞ 7→
−−−−−−−→i
X′iΞ

′
i 7→ Ci , 〈

−→
T′ 〉 );

−−−−−→
T 7→ M)

−−−−−−−−−−−−−−−→
`M SIG(Σelem, Σelem

T ) ` −−−−−→T 7→ M OK

Σ; ΣT =
−−−−−−→
T 7→ Σelem;

−−−−−−→
T 7→ Σelem

T
−−−−−−−−−−−−−−−−−−−−−−−−−−→i
τi = mgu(

−→
T′ = ΣT(T1)(X̃

′
i)) =⇒

Ξ τi , Ξ′i τi `Σ;ΣT Ci τi
cmd

: #
P-OK` P OK

(D) Well-formedness (logical core).

FIGURE 4.16: Typing rules for PF with parametric polymorphism.
Type parameter bindings 〈−→A 〉 are omitted whenever they are not di-
rectly used by the respective rule. Differences to the non-polymorphic
system (Fig. 4.7) are highlighted (except Σ; ΣT in the term judgments).
The M-DCP rule for DECOMPOSE is straightforwardly extended to

cover Σelem
T .

be reached. In examples we will leave these cases away or grayed out when in ma-
trix form; technically, in order to keep the rule concise, M-OK allows for an arbitrary
command to be in such a place (in the premiss of M-OK, typechecking the com-
mand is only necessary when mgu computation is successful), which is fine since it
is unreachable anyway.

For computing the mgu, we have the simple algorithm shown in Fig. 4.17, essen-
tially following Robinson (1965).

Lemma 4.4 (mgu computes the most general unifier). If τ = mgu(
−−−−→
T = T′) for two

lists of types
−→
T ,
−→
T′ , then τ is the most general unifier for these lists. That is, for any map
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mgu(∅) := ∅
mgu({A = T} ∪ C) := mgu(C[A 7→ T]) ◦ [A 7→ T] if A 6∈ FV(T)
mgu({T = A} ∪ C) := mgu({A = T} ∪ C)
mgu({D〈−→T 〉 = D〈

−→
T′ 〉} ∪ C) := mgu(

−−−−→
T = T′ ∪ C)

mgu fails otherwise

FIGURE 4.17: Computing the most general unifier (mgu).

from type variables to types τ′ that is a unifier of these two lists (i.e.
−→
T τ′ =

−→
T′τ′) there

exists a map from type variables to types τ′′ such that τ′ = ττ′′.

Proof. The algorithm of mgu is virtually the same as that given by Pierce (2002, Def.
22.4.4), allowing us to reuse his proof (Pierce, 2002, Th. 22.4.5). The only difference
is that D〈T1, ..., Tn〉 takes the place of the function type T1 → T2 in the substructure
case; we thus need to generalize the relevant parts of the proof to take into account
the arbitrary number (instead of constant 2) of arguments Ti, but this is straightfor-
ward.

Continuing the example from the previous sections, Fig. 4.18 shows the meta-
circular interpreter, now with a proper user-defined generic function type Fun〈∗, ∗〉
(top), and its transposition result, the interpreter with closures (bottom). In lin-
earized forms of programs such as these, we indicate the number of type parameters
of some data type in its declaration, right next to the name of the type, with a list of
asterisks 〈∗, ..., ∗〉. In constructor or destructor signatures, the respective instantia-
tion of the data type parameters is given behind a colon, e.g.

apply〈A1, A2〉(A1, A2) : Fun〈A1, A2〉.

Note that in the transposition result (the interpreter with closures) the type parame-
ters of Fun are only used in a limited fashion, namely being always instantiated with
Val and Val. In such cases the post-processing of the transposition result described
below may be useful.

Safe monomorphization. In the example there is only one constructor for Fun, and
this constructor specifies the type parameters to be Val. In this situation and of
course also in the case that all type parameter instantiations of all constructors of the
considered type agree, as long as they are concrete types (without type variables),
the type parameters can be safely removed (but the fact that Fun was originally para-
metric should ideally be recorded to facilitate going back to the other linearization).

Recursive type elimination. After safe monomorphization, it becomes apparent
that there is no recursive reference to Val within its constructor signatures and that
Val is now merely a wrapper around Fun. This is a case where a type (like Val) is
only needed to tie a recursive knot for some other type (like for Fun), and where
this purpose disappears after transposition. We can thus collapse the two types into
one. This also allows for auxiliary wrapper functions like inCns to be removed.
Possibly it is desirable to add a linguistic construct that makes it explicit that some
type (like Val) has exactly the recursive knot-tying purpose, in order to automate
such an elimination step, and, in particular, to ease discovery of auxiliary wrapper
functions.
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data− Fun〈∗, ∗〉 { apply〈A1, A2〉(A1, A2) : Fun〈A1, A2〉 }
data+ Val { in(Fun〈Val, Val〉) }
data+ ValList { nil | cons(Val, ValList) }
data+ Exp { var(Nat) | app(Exp, Exp) | abs(Exp) }
data+ Nat { zero | succ(Nat) }

function+ inCns( f̄ ) := {
in( f ) ⇒ f � f̄

}

function+ eval(l, v̄) := {
var(n) ⇒ n � lookup(l, v̄)
app(e1, e2) ⇒

e1 � eval(l, inCns(
apply(in(µ_aux{W ⇒ e2 � eval(l, inCns(W))}), v̄)))

abs(e) ⇒
in(µ_closure{apply(v, v̄)⇒ e� eval(cons(v, l), v̄)})� v̄

}

data+ Fun〈∗, ∗〉 { _closure(Exp, ValList) : Fun〈Val, Val〉 | _aux(Exp, ValList) : Fun〈Val, Val〉 }
data+ Val { in(Fun〈Val, Val〉) }
data+ ValList { nil | cons(Val, ValList) }
data+ Exp { var(Nat) | app(Exp, Exp) | abs(Exp) }
data+ Nat { zero | succ(Nat) }

function+ apply(v, v̄) := {
_closure(e, l) ⇒ e � eval(cons(v, l), v̄)
_aux(e, l) ⇒ e � eval(l, inCns(apply(v, v̄)))

}

function+ eval(l, v̄) := {
var(n) ⇒ n � lookup(l, v̄)
app(e1, e2) ⇒ e1 � eval(l, inCns(apply(in(_aux(e2, l)), v̄)))
abs(e) ⇒ in(_closure(e, l))� v̄

}

FIGURE 4.18: Meta-circular interpreter with user-defined generic
function type (top) and interpreter with closures (bottom).
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4.4.2 Logical core

As announced, to prove the system to be sound we now turn to the polymorphic
logical core, i.e. the extension of the logical core of PF with parametric polymor-
phism, the consistency of which implies that of the system with built-in recursion
in the same way as shown in Section 4.2. The syntax of the logical core is shown
in Fig. 4.15 (Fig. 4.15a and Fig. 4.15c). The set of changes between the practical
polymorphic system with built-in recursion and the polymorphic logical core is the
same as that between the respective non-polymorphic systems: in both cases, going
from one to the other requires to impose a linearization per matrix, depending on
whether the type is specified to be of positive or of negative polarity. The typing
rules, shown in Fig. 4.16d, are thus enhanced with polymorphism starting from the
non-polymorphic logical core rules (in Fig. 4.7d, which rule out recursion via a de-
composition into “top row” and the rest of the program) in the same way as the typ-
ing rules for the practical version are enhanced starting from the non-polymorphic
practical version.

Proving the logical core to be sound means proving the following theorem:

Theorem 4.4 (Soundness). There is no command C such that ` C
cmd
: #.

To show this, we can easily extend the evidence shrinking argument from Sec-
tion 4.2.2. The only difference is that the reduction now also instantiates the type
parameters, i.e. reduction is now defined like this:

µ〈τ〉(σp){
−−−−−−−−−−→i
Xi〈
−→
A 〉Ξ⇒ Ci } � Xi〈

−→
T 〉σc . Ciτ

−−−−−→
[A 7→ T]σpσc

Xi〈
−→
T 〉σp � µ̄〈τ〉(σc){

−−−−−−−−−−→i
Xi〈
−→
A 〉Ξ⇒ Ci } . Ciτ

−−−−−→
[A 7→ T]σpσc

It is clear that this does not affect the validity of the shrinking argument.20 So we
only need to take care of the preservation lemma:

Lemma 4.5 (Preservation). For all commands C, C′, if ` C
cmd
: # and C .C′, then ` C′

cmd
:

#.

Proof. We approach this proof similarly to that for the non-polymorphic logical core.
We now just need to also take into account the instantiation of type variables, which
will crucially hinge on program cell entries being typechecked using the most gen-
eral unifier of the relevant type parameters.

We know C′ is a right-hand side Ci inside a µ or µ̄ with some type variable in-
stantiations τp, τc and some substitution σ applied to it, i.e. C′ = Ciτpτcσ. Since we
assume the relevant program to be well-formed, and Ci comes from a matrix cell
in the matrix form of the program, Ciτ

′ typechecks in some argument context Ξτ′,
where τ′ = mgu(

−−−−→
Tp = Tc) and

−→
Tp ,
−→
Tc are the instantiations of the type parameters

of the data type relevant for the matrix cell.
Since C typechecks and σ consists of two parts which are respectively applied to

an xtor call and used as an explicit substitution for a µ- or µ̄-abstraction, both part of
C, by inversion (rules T-CMD and T-X) we know that ` σ : Ξ′τpτc for some argument
context Ξ′. This Ξ′ is necessarily the same as Ξ, since it is the cell for this xtor and
this abstraction from which we got the Ci. By the same inversion we also gather that
−→
Tpτp =

−→
Tc τc, i.e. τpτc is a unifier for

−−−−→
Tp = Tc.

20In particular the lookup in the cases is not affected (i.e. progress still holds).
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It remains to show that from Ξτ′ ` Ciτ
′ cmd

: # and ` σ : Ξτpτc it follows that

` Ciτpτcσ
cmd

: #. If we can somehow obtain Ξτpτc ` Ciτpτc
cmd

: #, by the com-
mand substitution lemma (polymorphism variant), which we leave for the appendix
(Lemma A.4), we have the desired conclusion. Since τpτc is a unifier for

−−−−→
Tp = Tc,

and τ′ is the most general unifier for these constraints (see Lemma 4.4 above that
states that mgu indeed computes the most general unifier), we know that there is a

type instantiation τ′′ such that τpτc = τ′τ′′. Finally, from Ξτ′ ` Ciτ
′ cmd

: # we get

Ξτ′τ′′ ` Ciτ
′τ′′

cmd
: # by the type instantiation invariance lemma (Lemma A.5 in the

appendix).
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Chapter 5

Recovering Surface Languages in
Polarized Flow

The foundational system PF allows to encode a wide variety of programming lan-
guages. This chapter demonstrates this by giving appropriate macro embeddings
intoPF ; thus, all translations from the surface languages that we consider are highly
local. More precisely, the constructs of a surface language arise from syntactic abstrac-
tions, in the sense of Felleisen (1991), over PF ; in practical programming, the term
macro is used for the language feature that facilitates such syntactic abstractions.
(Felleisen’s work enabled the creation of systematic macro systems for, e.g., Racket,
which can be used as a tool for language specification.)

Notably, Felleisen (1991) directly adapts ideas from Kleene et al. (1952) and Troel-
stra (1973) on conservative extensions of logic with eliminable syntactic symbols;
thus, arguably, his work also occupies a spot in the “wider” Curry-Howard pro-
gram. That is to say, this chapter does not leave the realm of studying programming
languages by finding corresponding concepts in logic, or generally, the theory of
formal systems. Rather, we stay on track, just considering a different aspect that fits
well with our “reverse engineering” goal inspired by “reverse mathematics” (Still-
well, 2019): the correspondence of the constructs of a surface language to symbols
of a conservative extension of a formal system.

Following Felleisen (1991), we will write a syntactic abstraction for such a con-
struct C as follows:

AC(t1, ..., tn) = ... t1 ... tn ...

Here t1, ..., tn are terms in the surface language which are to be recursively trans-
lated to PF and inserted into an PF term as specified by the right-hand side of the
equation for AC. For example, for calling a function with some value the following
syntactic abstraction could be used:

A f (·)(v) = µ{k̄⇒ v� f (k̄)}

(The syntactic abstraction actually used for such calls is a bit different; see the section
below.) Assuming some other abstractions for values, together the abstractions give
rise to a translation into PF , say φ. Translating, e.g., f (v) requires to use φ recur-
sively on v and then unfold the syntactic abstraction, i.e. φ( f (v)) = µ{k̄ ⇒ φ(v) �
f (k̄)}.

The following sections give embeddings for first-order functions, with call-by-
value and call-by-name evaluation strategies, for the data and codata languages
considered in the first chapter (Rendel, Trieflinger, and Ostermann, 2015; Binder
et al., 2019), as well as embeddings involving daimons (for I/O, mutable state, call-
by-need) and simple control effects. The final section walks through embeddings
for subsets of real languages (Java and Haskell) and how to combine these with pro-
gram transposition in PF , illustrated by an example of Lämmel and Rypacek (2008)
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(taken from their work on the “expression lemma”; see Section 5.4).

Chapter overview More precisely, this chapter is structured as follows:

• Section 5.1 first generally illustrates the basic principles for embeddings for
languages based on intuitionistic natural deduction by means of a simple first-
order call-by-value language, then discusses how the embedding has to be
adapted for call-by-name.

• Section 5.2 generalizes the first-order languages and its embedding to the full
data fragment and dualizes the development to also recover the codata frag-
ment; it also considers how program transposition in these surface languages
can be made compatible with transposition in PF .

• Section 5.3 considers embedding languages with control effect constructs which
allow to realize non-linear control flow, enhancing the macros from Section 5.1.

• Section 5.4 considers an example given by Lämmel and Rypacek (2008) involv-
ing two semantically equivalent programs, using what was established in this
chapter to re-explore this development.

Contributions

• Based upon some ideas of Zeilberger (2008b), this chapter demonstrates that
PF is indeed able to serve as a foundational system for various kinds of (ide-
alized) programming languages, via macro embeddings. Note that this is not
intended to claim that this is the only or even necessarily the best such system
which is capable of that. Rather, the intention is to show that PF , which has
been deliberately designed to consolidate the extensibility duality and the De
Morgan duality, is still conceptually closely connected with previously exist-
ing languages, and not merely an elegant framework. This also supports that,
as announced in the introduction, PF can potentially serve as a systematic
foundation for tools that allow to automatically compare and convert between
semantically equivalent programs in different languages; this aspect will be
fleshed out in Section 5.4 (see below), providing some initial information on
how PF can strategically support the development of such tools as a kind of
backbone.

• In particular, program transposition for PF is compatible with transposition
for (co)data surface languages (this just requires some care when specifiying
the embeddings, see Section 5.2.3 of why this is in a certain sense a likely un-
avoidable technical complication).

• The final Section 5.4 brings the framework PF to bear on programming lan-
guages existing in the real world, giving a first impression of how it enables
principled, fully formal analysis of the relationship between the linguistic fea-
tures, semantics, and dualities involved. In particular, utilizing PF in this
way is compatible with the categorical semantics framework of Lämmel and
Rypacek (2008) which allows to state and prove the equivalence between al-
gebraic and coalgebraic programs in a formally precise way. Centrally, with
PF , one can rather straightforwardly close the formal gap left by Lämmel and
Rypacek, 2008 between the categorical framework and the concrete languages,
which they only relate in an informal manner.
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f ∈ F (function names)
t ::= tv | tc
tv ::= Z | S(tv) | xS | y
tc ::= f @(t, t) | return(tv)

E ::= f @(E , t) | f @(v, E) | []
v ::= Z | S(v)

f @(Z, v) Iv π1(D( f ))[y 7→ v]
f @(S(v′), v) Iv π2(D( f ))[xS 7→ v′, y 7→ v]
E [t] Bv E [t′] if t Iv t′

E [return(tv)] Bv E [tv] if E 6= []

FIGURE 5.1: Syntax, contraction and reduction rules of a simple first-
order CBV language.

add 7→ (return(y), suc@(add@(xS, y))
suc 7→ (return(S(Z)), return(S(S(xS))))

FIGURE 5.2: Addition function example.

5.1 First-Order Functions

We start our exploration with a simple declarative language with first-order func-
tions. This is used to illustrate the basic principles for recovering all languages based
on intuitionistic natural deduction. We will especially see how macro embeddings
for various evaluation strategies look like.

5.1.1 Embedding call-by-value

We first show how to macro-translate a first-order language with a call-by-value se-
mantics. The language consists of Peano natural numbers, with their usual zero and
successor constructors, as well as first-order functions from pairs of natural numbers
to natural numbers with shallow matching on the first argument (zero or successor)
integrated. The following definitions globally assume the presence of function def-
initions, which are formally a map D from the set of function names F to pairs of
computation terms (see below); for each pair, the first element is the body of the func-
tion for the zero case, which is projected out by π1, and the second element is that
for the successor case, projected by π2. Fig. 5.1 shows the syntax, contraction and
reduction rules; this presentation takes the well-known approach with evaluation
contexts (Felleisen and Hieb, 1992). The variable xS is used to access the predecessor
of the first argument in the successor case (cf. the second contraction rule). Fig. 5.2
shows the addition function as an example (see the remark on return below).1 The
type system is trivial, as all terms have type N.

A central aspect of this language’s macro embedding into PF is that the result-
ing terms have different types depending on whether the original terms are fully
evaluated or still contain computation. For instance, the translation of the term
add@(S(S(Z)), S(Z)), which has computational content, has type Shift〈Nat〉, while

1We only allow values and variables as arguments of S, but can easily lift S to a function suc, as
shown in the example, to circumvent this restriction. Also, as in the call to suc in the example, we will
omit the second argument (think of it as an arbitrary value) when it is ignored by the function, thereby
encoding unary functions.
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Value terms (trivial):
AZ() = z AS(·)(tv) = s(tv) AxS () = xS Ay() = y

Computation terms:
A′f @(·,·)(t

1
v, t2

v) = t1
v � f (t2

v, k̄)
A′f @(·,·)(t

1
c , t2

v) = t1
c � sh( f (t2

v, k̄))
A′f @(·,·)(t

1
v, t2

c ) = t2
c � sh(µ̄{n⇒ t1

v � f (n, k̄)})
A′f @(·,·)(t

1
c , t2

c ) = t1
c � sh(µ̄{n1 ⇒ t2

c � sh(µ̄{n2 ⇒ n1 � f (n2, k̄)})})
A′return(·)(tv) = tv � k̄

AC(
−→
t ) = µ{sh(k̄)⇒ A′C(

−→
t )}

for constructs C forming computation terms

FIGURE 5.3: Syntactic abstractions for the embedding into PF .

the translation of the fully evaluated term S(S(S(Z))) has type Nat. The type Shift
is defined as follows2:

data− Shift〈A〉 { sh〈A〉(A) : Shift〈A〉 }

The idea is that a consumer k̄ of type A (e.g. Nat) is available in the body of a pro-
ducer for Shift〈A〉 (e.g. Shift〈Nat〉), and to this k̄ the result of the computation gets
passed. For example, add@(S(S(Z)), S(Z)) is translated to:

µ{sh(k̄)⇒ s(s(z))� add(s(z), k̄)}

Function definitions are translated such that a consumer argument for the “return” is
introduced, and here k̄ is passed as this argument to add. If we compose our example
term with, e.g., a call to suc, such that the resulting term is suc(add@(S(S(Z)), S(Z))),
this is translated by combining the µ-abstraction above with a sh destructor applied
to the suc consumer, to form a command that is in turn wrapped in a µ abstraction.

µ{sh(k̄)⇒ µ{sh(k̄)⇒ s(s(z))� add(s(z), k̄)} � sh(suc(k̄))}

The consumer argument for suc comes from the outer µ-abstraction. Importantly,
the local structure is kept intact as expected from a macro; i.e. in this example, the
call to add is a constituent subterm before the translation, and so is its translation
result. In the syntax given in Fig. 5.1 we have already anticipated the split between
computation terms tc and fully evaluated terms tv (see also the remark on return
below).3 The macros for each kind of tc and tv are given in Fig. 5.3 in the style
of syntactic abstractions, following Felleisen (1991) (see the exposition at the begin-
ning of this chapter); we refer to the compositional macro translation induced by
the syntactic abstractions asM and to the translation of computation terms with the
outer µ-abstraction stripped off asM′ (corresponding to the auxiliary syntactic ab-
stractions A′). The macros come bundled with the usual Peano data type definition
data+ Nat { z | s(Nat) }.

2This definition, assuming parameter A is only used for positive types, in CU corresponds to the
shift ↑ from positive to negative; Shift can actually also be used for negative instantiations of A, since
type parameters in PF are polarity-agnostic, but a proof of a negative type already contains computa-
tion, so wrapping this type in a Shift is superfluous. It should be noted that the negative-to-positive
shift ↓ can be defined similarly. But due to the polarity-agnostic type parameters of PF , polymorphic
type formers resulting in positive types, e.g., sums, can directly use a negative type, leaving the shift
implicit. Such (implicit) negative-to-positive shifts can be used to model more interesting variations of
evaluation strategies; we discuss one such variation in Section 5.4.4.

3Thus, strictly speaking, the macro embedding requires a preprocessing that identifies which terms
are fully evaluated, but this is easy to recognize.
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function+ add(y, k̄) := {
z ⇒ y� k̄
s(xS) ⇒ µ{sh(k̄)⇒ xS � add(y, k̄)} � sh(suc(k̄))

}

function+ suc(k̄) := {
z ⇒ s(z)� k̄
s(xS) ⇒ s(s(xS))� k̄

}

FIGURE 5.4: Addition function example from Fig. 5.2, embedded into
PF .

Remark: return(tv). We clearly delineate when the evaluation of a subterm reaches
a value by requiring the extra reduction step specified by the second reduction rule.
Contraction formally may always only result in computation terms, and thus the
definition of a function must use return if the body is directly a value or a variable,
as in the zero case of the addition function (Fig. 5.2). Making the transition from one
contraction sequence to another, with a new redex being picked (if any), explicit, will
make it simpler to demonstrate the correspondence of the reduction of the translated
term with a machine for the macro-level reduction.

What remains to define is the embedding of function definitions. To do so, we
simply turn

f 7→ (tZ, tS)

into:

function+ f (y, k̄) := {
z ⇒M′(tZ)

s(xS) ⇒M′(tS)

}

That is, we add a consumer argument k̄ to the function signature, and macro-translate
the body without wrapping the result in a µ-abstraction, such that k̄ is bound by
the function signature. Fig. 5.4 shows the result of embedding the functions from
Fig. 5.2. Especially, here we can see again how the term translation kept the local
structure intact, as expected; e.g., add@(xS, y) was a constituent subterm (within the
successor case of add) before the translation, and so is its embedding µ{sh(k̄) ⇒
xS � add(y)}.

5.1.2 CBV reduction correspondence

We now turn to the question of how the reduction of our surface CBV language
corresponds to the reduction of the translated terms in PF . The short answer is that
there is no one-to-one correspondence, but that there is a one-to-one correspondence
between an abstract evaluation machine, which in turn is in a certain correspon-
dence with surface reduction, and reduction in PF . The underlying reason is that
PF makes all control flow explicit while there are some implicit steps in Bv, partic-
ularly the search for the next redex within the currently considered term that can be
contracted with Iv. Also, the result of a macro translation for some term t does not
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actually reduce, not even in multiple steps (.∗), to the result of the macro translation
of t′ with tBv t′. Rather, it reduces to the result of macro translating the machine
configuration for the evaluation machine that makes searching for redexes explicit.
We now consider the formal details of the correspondence between surface (macro)
level reduction and reduction in PF , via the abstract evaluation machine.

Contraction correspondence. In the next paragraph we introduce the evaluation
machine, but first we want to show that while reduction is not in one-to-one corre-
spondence, each contraction step corresponds to a single PF reduction step via the
macro translation; the machine is built upon this principle.4 Intuitively, our contrac-
tion correspondence lemma should say that when a term t1 contracts to a term t2,
then the result of macro translating t1, a negative continuation k1, should reduce to
k2, the result of macro translating t2. While this does not work out directly (continu-
ations do not reduce, commands do), there is a specific way how we can conceive of
such a continuation reducing to another. For this we think of the matching abstrac-
tion for the shifted positive continuation k as a universal quantification. Stripping
this abstraction off we obtain a command with the free variable k, and we think of
a negative continuation as reducing to another when their unwrapped commands
reduce when substituting an arbitrary, but the same for both commands, positive
continuation for k (hence universal quantification):

Lemma 5.1. When t1 Iv t2, then for all positive continuations k0:M′(t1)[k0] .M′(t2)[k0].

Proof. By distinguishing the two possible rules for deriving the contraction, obtain-
ing the possible redexes by inversion; the rest is just unfolding of definitions. (Details
in Appendix B.)

As defined in Section 5.1.1, we write M′ for M5 followed by stripping off the
outer negative match, freeing the continuation variable (k), and we use the short-
hand notation c[v] for the substitution of v in a command c with only a single free
variable. More generally, we will write k

′
for the command that results from taking

the continuation k and stripping off the outer abstraction.

Evaluation machine. A machine configuration is a pair of an evaluation context and
a computation term. We define the machine step relation as follows:

(1) (E , t)  (E , t′) if t Iv t′

(2) (E , return(v))  (E0, E ′[v]) if E = E0[E ′], E ′ has depth 1
(3) (E , E ′[tc])  (E [E ′], tc) if E ′ has depth 1

The first rule captures reduction via contraction of a found redex, the second cap-
tures recomposition with the context once a value6 is reached, while the third rule
captures the search for the next redex, with accumulation of the context. We write
 (i) when a step is derived by rule (i); observe that there is no recursive occur-
rence of in the definition of , which means that the relation is simply the union⋃

i∈{1,2,3}  (i). This abstract machine can be seen as a variant of the CEK machine
(Felleisen and Friedman, 1987), albeit without the environment (unnecessary in the

4We will later employ this fact when showing the one-to-one correspondence between machine
steps and PF steps.

5The macro translation induced by the syntactic abstractions of Section 5.1.1.
6As pointed out in the remark above, our contraction relation is purposefully defined in such a way

that only computation terms are reachable. It is this machine rule’s task to unpack the value from a
return clause and then deal with it in the appropriate way.
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Mctx( f @(v, [])) := µ̄{n⇒ v � f (n, k̄) }
Mctx( f @([], t)) := µ̄{n⇒ t� sh(µ̄{m⇒ n � f (m, k̄) }) }
T ([]) := µ̄{n⇒ Result(n) }
T (E [E ′]) := Mctx(E ′)[T (E)], if E ′ has depth 1
T ((E , t)) := M′(t)[T (E)]

FIGURE 5.5: Translating context frames and machine configurations

first-order setting) and presented with evaluation contexts (Felleisen and Hieb, 1992)
taking the place of continuations.7

Correspondence of term reduction to machine steps. We can associate a semanti-
cally equivalent term with each machine configuration: (E , t) � E [t]; in particular,
we refer to ([], t) as the initial configuration for t. Intuitively, machine steps are “only”
more fine-grained than term reduction steps, making more aspects of the evaluation
explicit but never semantically “moving away” from the reduction, i.e., the config-
urations stay associated with only the terms appearing in the reduction sequence
and in the order they appear in within the sequence. Formally, we can prove the
following lemma about this “tightness” of the correspondence.

Lemma 5.2. For any two terms t1, t2 with t1Bv t2 and any machine configuration c1 � t1,
there are configurations c′1, ..., c′k � t1 (k ≥ 0) and c2 � t2 such that: c1  c′1  ...  
c′k  c2.

Proof. By distinguishing the two possible rules by which the reduction could have
been derived. Then, for each case, the desired reduction sequence follows by a sim-
ple induction on the context entangled with the term in the configuration. (Details
in Appendix B.)

Translating machine configurations. Let us now consider whether our definition
of the machine steps is sufficient for one-to-one correspondence with reduction in
PF . We need a non-compositional translation T from evaluation contexts to con-
tinuations and extend that to machine configurations. This translation T is similar
to a CPS transformation; this is because its source are evaluation contexts which in
our machine configurations play the role of containing “already finished” parts of
the computation. Correspondingly, in Fig. 5.5 we define a translationMctx of single
frames, i.e. contexts of depth 1, to positive continuations, and then use this to define
T . The translationMctx fits with term translation:

Lemma 5.3.

1. M′(E [tc]) =M(tc)� sh(Mctx(E)) if E has depth 1.

2. M′(E [tv])[k] = (Mctx(E)[k])′ [tv] if E has depth 1.

Proof. Straightforward from the macro definitions.

Using Lemma 5.3 (2) we obtain a variant of the definitional equation for T for
instantiation with values; here we write T ′ for T followed by stripping off the outer
value abstraction (freeing the variable n).

7The same kind of presentation with tuples of terms and evaluation contexts, albeit using a different
approach for the step rules and an additional label, is used in lecture notes by Ronald Garcia (https:
//www.cs.ubc.ca/~rxg/cpsc509/05-abstract-machines.pdf; accessed Nov. 6, 2020).

https://www.cs.ubc.ca/~rxg/cpsc509/05-abstract-machines.pdf
https://www.cs.ubc.ca/~rxg/cpsc509/05-abstract-machines.pdf
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f ∈ F (function names)
t ::= tv | tc
tv ::= Z | S(tv) | xS
tc ::= f @(t, tc ) | return(tv) | y

E ::= f @(E , t) | []
v ::= Z | S(v)

f @(Z, t ) In π1(D( f ))[y 7→ t ]
f @(S(v), t ) In π2(D( f ))[xS 7→ v, y 7→ t ]
E [t] Bn E [t′] if t In t′

E [return(tv)] Bn E [tv] if E 6= []

FIGURE 5.6: Syntax, contraction and reduction rules of a simple first-
order CBN language (differences to CBV highlighted).

Lemma 5.4. T ′(E [E ′])[v] =M′(E ′[v])[T (E)] if E ′ has depth 1.

Proof.

T ′(E [E ′])[v] = (T (E [E ′]))′ [v] = (Mctx(E ′)[T (E)])′ [v] Lem. 5.3(2)
= M′(E ′[v])[T (E)]

Correspondence of machine steps to PF reduction. Taking a look at a simple ex-
ample first, our translation seems to do fine:

([], add@(3, 2)) 3 � add(2, µ̄{n⇒ Result(n)}︸ ︷︷ ︸
k

)

 (1) ([], suc@(add@(2, 2)) . add(2,2)� sh(suc(k))

 (3) (suc@([]), add@(2, 2)) . 2� add(2, suc(k))

We can prove that the one-to-one correspondence holds in general:

Theorem 5.1. For any two machine configurations with c1  c2 it is T (c1) . T (c2).

Since =
⋃

i∈{1,2,3}  (i), to verify this theorem it suffices to separately consider
each of the rules for . For the three rules, the desired implication is a straightfor-
ward consequence of, respectively, Lemma 5.1, Lemma 5.4, and Lemma 5.3 (1); for
details we refer to Appendix B.

Using Lemma 5.2 about the association between machine configurations and
terms�we get the following easy corollary of Theorem 5.1:

Corollary 5.1. When t1 Bv t2 and c1 � t1 (e.g. c1 is the initial configuration for t1), then
there are c′1, ..., c′k � t1 (k ≥ 0) and c2 � t2 such that T (c1) . T (c′1) . ... . T (c′k) . T (c2).

5.1.3 Embedding call-by-name

We now change the evaluation strategy of our first-order language to call-by-name,
resulting in the syntax, contraction and reduction rules shown in Fig. 5.6. We only
consider a simple flavor of call-by-name here, in which the second argument of a
function call is not evaluated (reflected in the definition of evaluation contexts and
contraction rules) but the first is. This suffices to demonstrate how we have to change
our syntactic abstractions, shown in Fig. 5.7, to account for call-by-name evaluation.

In our syntax, compared to CBV we now have the variable y for the second ar-
gument as a computation term, and as second arguments to a function call we now
only allow computation terms. The syntactic abstraction for the y variable does not
have to change, but we will have to take care of the fact that it is not a continua-
tion abstraction anymore when translating function bodies in order to always get



5.1. First-Order Functions 103

Value terms (trivial):
AZ() = z AS(·)(tv) = s(tv) AxS () = xS

Computation terms:
A′f @(·,·)(t

1
v, t2

c ) = t1
v � f (t2

c , k̄)
A′f @(·,·)(t

1
c , t2

c ) = t1
c � sh( f (t2

c , k̄))
A′return(·)(tv) = tv � k̄

AC(
−→
t ) = µ{sh(k̄)⇒ A′C(

−→
t )}

for constructs C 6= y forming computation terms
Ay() = y

FIGURE 5.7: Syntactic abstractions for the CBN embedding.

t0 B≤n
n,t E [ f @(1, t)] Bn,f E [t] B≤m

n,t t1
�� �� �� ��
c0  n (E , f @(1, t)) 6 (E , t)  m c1

↓ T ↓ T ↓ T ↓ T

T (c0) .n 1� f (M(t), T [E ]) .M(t)� sh(T (E)) . M′(t)[T (E)] .m T (c1)

FIGURE 5.8: CBN reduction correspondence for an example with f 7→
(y). Top: Thunk forcing term reduction step in between two macro-

steps. Bottom: Corresponding PF steps.

commands at the top-level. In the syntactic abstractions for function calls, there is
no evaluation of the second argument tc happening anymore, instead it is passed
directly to the function. Translation of function bodies is the same as for CBV, with
the decisive difference that the second argument of the original function is now a
computation term and hence the first argument of the function in PF is of shifted
type. Further, as hinted at, when the function bodies are translated, a top-level (and
only top-level) y becomes y� sh(k̄) since we must create a command here.

The correspondence between surface reduction and PF reduction is, like in the
CBV case, not a direct one, but again there is a one-to-one correspondence between
an evaluation machine and PF reduction. The demonstration of this one-to-one cor-
respondence and the correspondence between surface reduction and machine steps
is very similar to what we saw for CBV, but we now distinguish different phases,
or macro-steps, of the evaluation. All reduction steps up until one that leads to a
function body which is a variable y that would then next be instantiated form one
such macro-step. The next step (which we call thunk forcing) takes care of getting the
evaluation of the until now unevaluated term, as substituted for y, started, which
we capture by the definition following below; after this step another macro-step fol-
lows, and so on until a macro-step leads to a value. Fig. 5.8 shows an example with
two macro-steps and the corresponding PF steps per machine step comprising the
macro-steps and for the thunk forcing term reduction step.

Definition 5.1. We call a contraction step t1 In t2 thunk forcing, in symbols t1 In,f t2,
when t1 = f @(n, t) and πi(D( f )) = y, with i = 1 if n = Z and i = 2 otherwise.

When a contraction is not thunk forcing, we denote it with t1 In,t t2 (with a t
for thunked). We lift the notions of thunk forcing and not thunk forcing to reduction:
When the reduction step is derived by the first rule using aIn,t step, or by the second
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rule, we denote it with Bn,t. When the reduction step is derived by the first rule
using aIn,f step, we denote it withBn,f. Combined, the not thunk forcing stepsB∗n,t
until the next thunk forcing step Bn,f formally characterize a macro-step. Similarly
to CBV, we have a direct correspondence between contraction and PF reduction,
but in this case the correspondence is restricted to the In,t steps.

Lemma 5.5. When t1 In,t t2, then for all positive continuations k0:M′(t1)[k0] .M′(t2)[k0].

Proof. Almost identically to the corresponding Lemma 5.1 for CBV, making use of y
not being the body in the relevant case of the applied function.

Our evaluation machine is, like in the CBV case, build on top of contraction.
The actual rules for the machine are identical to the CBV case, but we restrict the
contractions taken into account to the not thunk forcing ones (In,t).

(1) (E , t)  (E , t′) if t In,t t′

(2) (E , return(v))  (E0, E ′[v]) if E = E0[E ′], E ′ has depth 1
(3) (E , E ′[tc])  (E [E ′], tc) if E ′ has depth 1

Similarly to CBV, there is a close correspondence between In,t and , where again
(E , t)� E [t]:

Lemma 5.6. For any two terms t1, t2 with t1Bn,t t2 and any machine configuration c1 � t1,
there are configurations c′1, ..., c′k � t1 (k ≥ 0) and c2 � t2 such that: c1  c′1  ...  
c′k  c2.

Proof. The proof of Lemma 5.2 can be reused as is, with Bn,t taking the place of
Bv.

However, like the macro-steps which do not always end in a value, the transitive
closure of the machine step relation  ∗ does not for all starting configurations c
contain a pair of c and a final configuration ([], return(v)) where v is a value. Instead,
in general the machine has to be run multiple times with thunk forcing interspersed.
By the following lemma (plus remark) we know that there is always a one-to-one
correspondence8 for such an interspersed step and PF reduction that is compatible
with the machine steps preceding the interspersed step. As in the CBV case, T refers
to the translation of machine configurations, shown in Fig. 5.9.

Lemma 5.7. Consider any two terms t1, t2 with t1 Bn,f t2, i.e., by definition of Bn,f,
t1 = E [ f @(n, t)] for some n and t. For any machine configuration c1 � t1 with the form
c1 = (E , f @(n, t)) (this restriction is insignificant, see the remark below):
T (c1) . force(t, E) . T (c2) for some c2 � t2.
We define force(t, E) :=M(t)� sh(T (E)).

Proof. By the definition of Bn,f it is t2 = E [t]. The desired c2 � t2 is simply c2 =
(E , t), since:

T (c1) =M′( f @(n, t))[T (E)] = n� f (M(t), T (E))
.M(t)� sh(T (E)) . M′(t)[T (E)] = T (E , t).

Remark 5.1. The restriction to machine configurations c1 of the form (E , f @(n, t)) is in-
significant for the overall correspondence, since in the general case we would just have more
context frames wrapped around f @(n, t) in the second component of the configuration. Thus
there would just follow some more machine steps  (3) that move these frames to the first

8It takes two steps from T (c1) to T (c2) in the lemma below, but the first step is for carrying out the
function call (i.e. lookup and substitution) that leads to the actual thunk forcing.
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Mctx( f @([], t)) := f (t, k̄)
T ([]) := µ̄{n⇒ Result(n) }
T (E [E ′]) := Mctx(E ′)[T (E)], if E ′ has depth 1
T ((E , t)) := M′(t)[T (E)]

FIGURE 5.9: Translating context frames and machine configurations
(CBN).

component (in particular upholding� to the original term) until the form of machine con-
figuration required for the lemma is reached.

Last but not least, as for CBV, we can show that the machine steps are in one-to-
one correspondence to translated steps in PF .

Theorem 5.2. For any two machine configurations with c1  c2, it is T (c1) . T (c2).

Just as for CBV, this is proved by separately considering the three rules for  ,
in each case straightforwardly applying the relevant lemma: Lemma 5.5 for rule
(1), and direct adaptations of Lemma 5.4, and Lemma 5.3 (1) for rule (2) and (3),
respectively; these lemmas are proven in the same way as their CBV counterparts.
Together with Lemma 5.6 and Lemma 5.7 we obtain as a direct corollary the (up
to the possibly interspersed step) same statement concerning the correspondence
between surface and PF reduction that we also have for CBV:

Corollary 5.2. When t1 Bn t2 and c1 � t1 (e.g. c1 is the initial configuration for t1), then
there are c′1, ..., c′k � t1 (k ≥ 0) and c2 � t2 (and possibly tf, Ef s.t. Ef[tf] = t2) such that

T (c1) . T (c′1) . ... . T (c′k) (. force(tf, Ef)) . T (c2)

(optional step in braces).

It is also possible to embed call-by-need as a daimonic modification of call-by-
name with a caching (memoization) daimon, which we consider next.

5.1.4 Embedding call-by-need

So far we have seen how to translate call-by-value and call-by-name languages into
PF . Call-by-need has a bit of a different nature in that it involves an extra-logical
aspect of caching intermediate computations, which should in PF be modelled by a
daimon. We can just use the mutable state daimon from the end of Section 4.2.3 for
this purpose (with one little variation in the technical details, see below), though we
will only make use of it in a limited fashion.9

Specifically, we need NewBox to put a negative producer of type Shift〈T〉,
which encapsulates some computation, into the store, say, at address α. Once the
value v that this computation produces is requested, OpenBox retrieves the pro-
ducer and carries out the computation, followed by SetBox which replaces the stor-
age cell content at α with v. In later requests to the value associated with α, the
stored value v can now be reused. Conceptually, in the usual terminology of lazy
evaluation, α together with the content at α is a thunk, i.e. an entity that caches a
computation result, since the content changes from having type Shift〈T〉 (i.e., it
contains computation) to T (i.e. it is a value).

9Modifying the call-by-name embedding to make use of the daimon has some similarities to the
enhancement of call-by-name operational semantics with constructs for modifying the heap in the
compiler intermediate language based on sequent calculus of Downen et al. (2016).
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Mlazy( f 7→ (t0, tS)) = f (y : Ref〈Nat〉, k : Nat) : Nat := {
Zero⇒M′(t0),
Succ(n)⇒M′(tS) }

Alazy
f @(,)(t

1
c , t2

c ) = µ{sh(k)⇒ NewBox(t2
c , µ̄{α⇒ t1

c � sh( f (α, k))})}
Alazy

y () = µ{sh(k)⇒ OpenBox(y, k,
µ̄{tc ⇒ sh(µ̄{v⇒ SetBox(y, v, v� k)})})}

FIGURE 5.10: Macros for call-by-need.

Making this formally precise gives us the modification of the call-by-name em-
bedding shown in Fig. 5.10, obtaining a translation of a call-by-need language into
PF . Compared to the call-by-name macros, there is one additional macro for refer-
ence variables: Instead of directly using the PF variable y in the body as for call-
by-name, we now wrap each occurrence of a reference variable using this macro to
use the OpenBox command (with one decisive alteration, see below). Correspond-
ingly, the second argument of functions, accessed by y, is now of type Ref〈Nat〉 (or
generally Ref〈T〉 for some data type T). The function application macro now uses
NewBox to bring the thunk on the heap and make the reference to it available.

The macro for variable y uses a variant of OpenBox with two continuation argu-
ments, which triggers the first continuation in case the reference pointed to a value,
and the second in case the reference pointed to a producer p encapsulating a com-
putation. As the first continuation argument, the result continuation k is passed. As
the second continuation argument, a continuation is passed which first updates, us-
ing SetBox, the content of the cell with the result v of the computation of p, thereby
caching that result, then passes v to k.

This concludes our consideration of embeddings for different evaluation strate-
gies. In the next section we consider how we can employ the embedding technique
introduced in this section for full data and codata language fragments (we only con-
sider call-by-value, but the approach can be readily adapted for other evaluation
strategies) and how the symmetry of these surface languages is reflected in PF via
the embeddings.

5.2 Data and Codata

5.2.1 Data fragment

This section generalizes the simple call-by-value language from the previous section
to arbitrary data types and functions of arbitrary arity ≥ 1; the first argument is
required and the only one that is pattern matched upon. This language is, up to pre-
sentation details (the explicit computation and value term distinction, return, and the
necessary lifting of constructors to functions), the data fragment of Rendel, Trieflinger,
and Ostermann (2015). The next section considers the codata fragment, which Rendel,
Trieflinger, and Ostermann showed to be the image of program transposition of data
fragment programs and vice versa.

Fig. 5.11 shows the syntax and operational semantics of our presentation of the
data fragment. As a simple example we can again consider the addition function,
shown in Fig. 5.12.10 A reduction example involving addition is shown in Fig. 5.13.

10In examples, we leave out the types of constructors (and later, similarly, that of destructors) in
cases of a function, say with name f , since it can be inferred from the type T of the argument that f
pattern matches upon (which is specified in its name, i.e. f = (T, ...)).
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D : data type names
C ⊆ D×C′ (constructor names, where C′ is some set of names)
F ⊆ D×F′ (function names, where F′ is some set of names)
C ∈ C

f ∈ F

t ::= tv | tc
tv ::= C(tv) | xi | yi (i ∈N)
tc ::= f (t) | return(tv)

Global signatures and declarations:
ΣC : C→ D∗ (constructor signatures)
ΣF : F→ D∗ ×D (function signatures)
F : F→ (C 7→ tc) (function declarations)

Operational semantics:
E ::= f (v, E , t) | []
v ::= C(v)

f (C(v), v′) Iv F ( f )(C)[x 7→ v, y 7→ v′]
E [t] Bv E [t′] if t Iv t′ (1)
E [return(tv)] Bv E [tv] if E 6= [] (2)

FIGURE 5.11: Syntax and operational semantics (data fragment).

D := {Nat}, C := {(Nat, z), (Nat, s)},
F := {add, suc},
ΣC := {(Nat, z) 7→ (), (Nat, s) 7→ (Nat)},
ΣF := {(Nat, add) 7→ ((Nat), Nat), (Nat, suc) 7→ ((), Nat)},
F := {
(Nat, add) 7→ {z 7→ return(y1), s 7→ suc(add(x1, y1))},
(Nat, suc) 7→ {z 7→ return(s(z)), s 7→ return(s(s(x1)))}}.

FIGURE 5.12: Data fragment example: natural numbers with addi-
tion.

add(s(s(z)), s(z))
Bv,(1) suc(add(s(z), s(z)))
Bv,(1) suc(suc(add(z, s(z))))
Bv,(1) suc(suc(return(s(z))))
Bv,(2) suc(suc(s(z)))
Bv,(1) suc(return(s(s(z))))
Bv,(2) suc(s(s(z)))
Bv,(1) return(s(s(s(z))))

FIGURE 5.13: Addition reduction example.
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C = (T, ...) ΣC(C) = T′ _ ` tv : T′
T-CONSTR

_ ` C(tv) : T

ΣC(C) = T
T-VAR-Xf , C ` xi : Ti

ΣF( f ) = (T, ...)
T-VAR-Yf , C ` yi : Ti

f ∈ F ΣF( f ) = (T′, T) _ ` t : T′
T-FUN

_ ` f (t) : T

_ ` tv : T
T-RET

_ ` return(tv) : T

ΣF( f ) = (..., T′), f = (T, ...)

∀C ∈ dom(F ( f )). f , C ` F ( f )(C) : T′

dom(F ( f )) = {C ∈ C | C = (T, ...)}
WF-FUN` f OK

FIGURE 5.14: Type system (data fragment).

Value terms (trivial):
AC(·,...,·)(

−→
tv ) = C(

−→
tv ) Axi () = xi Ayi () = yi

Computation terms:
A′f @(·,·)(t

1
v, t2

v) = t1
v � f (t2

v, k̄)
A′f @(·,·)(t

1
c , t2

v) = t1
c � sh( f (t2

v, k̄))
A′f @(·,·)(t

1
v, t2

c ) = t2
c � sh(µ̄{n⇒ t1

v � f (n, k̄)})
A′f @(·,·)(t

1
c , t2

c ) = t1
c � sh(µ̄{n1 ⇒ t2

c � sh(µ̄{n2 ⇒ n1 � f (n2, k̄)})})
(etc. for other arities)
A′return(·)(tv) = tv � k̄

AC(
−→
t ) = µ{sh(k̄)⇒ A′C(

−→
t )}

for constructs C forming computation terms

FIGURE 5.15: Syntactic abstractions (data fragment).

The data fragment has a simple type system, shown in Fig. 5.14, that checks
whether function calls and variable uses comply with the signatures. The judgment
f , C ` t : T says that term t has type T ∈ D when in the body of function f for
constructor case C. We use an underscore to indicate that the respective definition
site is not relevant and is merely passed to the premises. For f ∈ F, ` f OK says that
f is wellformed, i.e. its cases’ bodies typecheck under the appropriate definition site
contexts and these cases are exactly the ones for all the constructors of the correct
type (the function’s input type).

The syntactic abstractions for the data fragment, shown in Fig. 5.15, are straight-
forwardly extended from those for the simple CBV language from the previous sec-
tion. Constructor signatures are translated by just taking them over syntactically
identical. Thus the entire data type declarations are also taken over syntactically
identical. Computation terms tc surface-typed T are PF -typed Shift〈T〉, and value
terms tv surface-typed T are PF -typed T. Embedding of function definitions is also
straightforwardly extended to an arbitrary number of arguments and arbitrary ar-
gument types.
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C : codata type names
D ⊆ C×D′ (destructor names, where D′ is some set of names)
F ⊆ C×F′ (function names, where F′ is some set of names)
d ∈ D

f ∈ F

t ::= tv | tc
tv ::= f (tv) | xi | yi (i ∈N)
tc ::= d(t, t)| return(tv)

Global signatures and declarations:
ΣD : D→ C∗ ×C (destructor signatures)
ΣF : F→ C∗ (function signatures)
F : F→ (D 7→ tc) (function declarations)

Operational semantics:
E ::= d(v, E , t) | []
v ::= f (v)

d( f (v), v′) Iv F ( f )(d)[x 7→ v, y 7→ v′]
E [t] Bv E [t′] if t Iv t′ (1)
E [return(tv)] Bv E [tv] if E 6= [] (2)

FIGURE 5.16: Syntax and operational semantics (codata fragment).

5.2.2 Codata fragment and transposition

The dual (in the sense of Rendel, Trieflinger, and Ostermann (2015)) of the data frag-
ment, the codata fragment, is presented in Fig. 5.16. Rendel, Trieflinger, and Os-
termann (2015) deliberately designed the data and codata fragments such that their
respective syntaxes are isomorphic, i.e. each construct has a structurally identical
counterpart (and the presentation of the fragments in this section preserves this).
What distinguishes the fragments is that one has data types and the other has co-
data types and the terms are accordingly organized into functions in different ways.
This was already considered in-depth in Chapter 2, along with the matrix view of
programs that this gives rise to and which is also the view chosen for PF . Here
we just quickly give a formal definition of when a data and a codata program are
related by transposition, fitting with the formal language specifications from this
section. A program P ∈ DATA or P ∈ CODATA, i.e. from either the data fragment
or codata fragment, is a triple (ΣC/ΣD, ΣF,F ) (with either constructor signatures
ΣC or destructor signatures ΣD).

Definition 5.2. Two programs Pd = (ΣC, ΣF
d ,F d) ∈ DATA and Pc = (ΣD, ΣF

c ,F c) ∈
CODATA are related by CODATA-transposition, in symbols Pd ↔CODATA Pc, iff: ΣC =
ΣF

c , ΣD = ΣF
d , and for all C ∈ ΣC and d ∈ ΣD it is F d(d)(C) = F c(C)(d).

The syntactic abstractions for our embedding of the codata fragment into PF are
shown in Fig. 5.17 (top).11 For any structurally identical pair of constructs C1, C2 from
the data and codata fragment, respectively, the syntactic abstraction for C1 is almost
identical to that for C2. The difference is caused by the fact that there is no local con-
sumer abstraction for negative types, hence in order to keep the µ̄-abstractions after
transposition we introduce a generic positive wrapper type WrapP〈A〉{pos(A)}. The

11Add to these the translation of destructor signatures; they are translated just like consumer
function signatures in the first-order CBV language and the data fragment: d(T,

−→
T ) : T′ becomes

d(T,
−→
T , T′) (the output type T′ becoming a consumer type).
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Value terms (trivial):
A f (·,...,·)(

−→
tv ) = f (

−→
tv ) Axi () = xi Ayi () = yi

Computation terms:
A′d(·,·)(t

1
v, t2

v) = t1
v � d(t2

v, wrap(k̄))
A′d(·,·)(t

1
c , t2

v) = t1
c � sh(posk(d(t2

v, wrap(k̄))))
A′d(·,·)(t

1
v, t2

c ) = t2
c � sh(µ̄{pos(a)⇒ t1

v � d(a, wrap(k̄))})
A′d(·,·)(t

1
c , t2

c ) = t1
c � sh(µ̄{pos(a1)⇒ t2

c � sh(µ̄{pos(a2)⇒ a1 � d(a2, wrap(k̄))})})
(etc. for other arities)
A′return(·)(tv) = tv � wrap(k̄)

AC(
−→
t ) = µ{sh(k̄)⇒ A′C(

−→
t )}

for constructs C forming computation terms

Value terms (trivial):
AC(·,...,·)(

−→
tv ) = f (

−→
tv ) Axi () = xi Ayi () = yi

Computation terms:
A′f (·,·)(t

1
v, t2

v) = t1
v � f (t2

v, wrap(k̄))
A′f (·,·)(t

1
c , t2

v) = t1
c � sh(posk( f (t2

v, wrap(k̄))))
A′f (·,·)(t

1
v, t2

c ) = t2
c � sh(µ̄{pos(a)⇒ t1

v � f (a, wrap(k̄))})
A′f (·,·)(t

1
c , t2

c ) = t1
c � sh(µ̄{pos(a1)⇒ t2

c � sh(µ̄{pos(a2)⇒ a1 � f (a2, wrap(k̄))})})
(etc. for other arities)
A′return(·)(tv) = tv � wrap(k̄)

AC(
−→
t ) = µ{sh(k̄)⇒ A′C(

−→
t )}

for constructs C forming computation terms

FIGURE 5.17: Syntactic abstractions for the codata fragment (top),
and modified abstractions for the data fragment isomorphic to these

(bottom).
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function+ add(y1) := {
z ⇒ y1

s(x1) ⇒
suc(add(x1, y1)

}

function+ suc := {
z ⇒ s(z)

s(x1) ⇒ s(s(x1))

}

function+ add(y1, k̄) := {
z ⇒ y1 � k̄
s(x1) ⇒

µ{sh(k̄)⇒ x1 � add(y1, wrap(k̄))} � sh(posk(suc(k̄)))
}

function+ suc(k̄) := {
z ⇒ s(z)� k̄
s(x1) ⇒ s(s(x1))� k̄
}

function− z := {
add(y1) ⇒ y1

suc ⇒ s(z)

}

function− s(x1) := {
add(y1) ⇒
suc(add(x1, y1))

suc ⇒ s(s(x1))

}

function− z := {
add(y1, k̄) ⇒ y1 � k̄
suc(k̄) ⇒ s(z)� k̄
}

function− s(x1) := {
add(y1, k̄) ⇒

µ{sh(k̄)⇒ x1 � add(y1, wrap(k̄))} � sh(posk(suc(k̄)))
suc(k̄) ⇒ s(s(x1))� k̄
}

FIGURE 5.18: Addition function example from Fig. 5.2 and its trans-
position (left), and the respective embeddings (right). The embed-

dings are themselves related by transposition.

shift type is modified to take such a wrapped type: Shift〈A〉{sh〈A〉(WrapP〈A〉)}.
We use generic auxiliary functions posk and wrap to convert between consumers
of A and consumers of WrapP〈A〉. The key idea is now that we can modify the data
fragment embedding in the same way such that it is actually isomorphic, in the sense
of the syntactic abstractions for corresponding constructs being identical. We sim-
ply make use of the wrapping and unwrapping with WrapP in the relevant places,
as shown at the bottom of Fig. 5.17. This is possible since in PF type parameters
are polarity-polymorphic, so we can use WrapP for both negative and positive types.
Changing the data fragment embedding leads to reduction being interspersed by
“unnecessary” reduction steps that take care of wrapping and unwrapping, but that
does not significantly affect the close correspondence between surface reduction and
embedded PF reduction.

Since the embeddings are isomorphic, transposition of the surface programs is
compatible with that for PF via the embedding as far as the terms are concerned.
As one may have expected, the crucial difference lies in the translation of function
definitions: The continuation parameter added in the translation goes to consumer
function signatures for the data fragment, and to destructor signatures for the co-
data fragment. But in either translation, the relevant variable k̄ is available in each
constructor/destructor case, either as input of the consumer function or through the
destructor pattern match, thus translation of the bodies of these cases (which will be
re-arranged when transposing), which are constituents of the function definitions, is
not affected either.

Fig. 5.18 shows an example data fragment program and the result of transposing
it to a codata fragment program (on the left) and their respective embeddings (on
the right). In the example, each embedding is likewise the result of transposing the
respective other one, and this compatibility of the program transposition also holds
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in the general case. For the following we lift the embedding M to programs and
refer to two linearized PF programs as being related by transposition, written with
infix↔P F , when they are linearizations of the same matrix program, i.e. up to the
linearization choice they are identical. This transposition is of course the same kind
of reorganization as for the data and codata fragments, and the following theorem
directly relates the two transpositions.

Theorem 5.3 (Transposition compatibility). For all programsPd ∈ DATA,Pc ∈ CODATA:
If Pd ↔CODATA Pc, thenM(Pd)↔P FM(Pc).

This is a direct consequence of how we translate function definitions, namely
in a structure-preserving way, and that the syntactic abstraction for some data frag-
ment construct is always identical to that of its structurally identical codata fragment
counterpart.

With this theorem we can see that we have decomposed surface transposition into
the macro embedding and PF transposition. This has the benefit that we are not re-
quired anymore to take surface transposition itself into consideration. For instance,
as explained in Section 2.4.1, proofs involving the surface transposition were often
technically tedious due to the structural differences between data and codata types,
despite being quite obvious when intuitively thinking about them. On the other
hand, transposition of PF programs is really just that, matrix transposition with
positive entities becoming negative entities or vice versa but not needing any fur-
ther plumbing to deal with structural differences. These are simply gone: positive
and negative data cannot be distinguished structurally.

Most importantly, with our decomposition with the structurally identical term
embeddings as well as the structurally positive and negative data, we have clearly
carved out the only structural difference between the data and the codata fragments,
namely the organization into function definitions.

5.2.3 Codata’s greater degree of macro freedom

It is quite apparent that the syntactic abstractions for the codata fragment just pre-
sented are rather verbose. If we do not care about transposition compatibility, we can
give a simpler embedding, shown in Fig. 5.19. Specifically, we do not actually need
Shift anymore, since a negative producer of any type is an abstraction which brings
the consumer into scope. This also means that our preprocessing step in which we
classified terms as computations terms and value terms actually becomes unneces-
sary. We can thus simplify not only the embedding but also the language fragment
specification, merging computation and value terms such that, in particular, pro-
ducer function calls may now take computation terms as arguments. We indicate
that the simpler embedding also applies to this simpler form of the codata fragment
specification, which does not distinguish computation and value terms, by writing
the arguments of syntactic abstractions with a generic t (instead of tc and tv where
necessary). Fig. 5.20 shows how the addition example, written according to the sim-
pler codata fragment specification, is embedded using the simpler embedding. Es-
pecially, s can directly take as an argument the call to add, thus the suc destructor is
now actually not needed anymore.

Now, in a certain sense this technical complication of having two codata frag-
ment embeddings, one compatible with transposition but not as simple as conceiv-
able, and vice versa for the other, might be regarded as the consequence of a con-
ceptual difference between the data and the codata fragments that presents itself
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A f (·,...,·)(
−→
t ) = f (

−→
t ) Axi () = xi Ayi () = yi

Ad(·,·,...,·)(t
′,
−→
t ) = µ{k̄⇒ t′ � d(

−→
t , k̄)}

FIGURE 5.19: Simpler syntactic abstractions for the codata fragment.

function− z := {
add(y1) ⇒ y1

suc ⇒ s(z)

}

function− s(x1) := {
add(y1) ⇒
s(add(x1, y1))

suc ⇒ s(s(x1))

}

function− z := {
add(y1, k̄) ⇒ y1 � k̄
suc(k̄) ⇒ s(z)� k̄
}

function− s(x1) := {
add(y1, k̄) ⇒
s(µ{k̄⇒ x1 � add(y1, k̄)})

suc(k̄) ⇒ s(s(x1))� k̄
}

FIGURE 5.20: Codata addition example from Fig. 5.18 (left; simplified
version of the codata fragment specification), and its simpler embed-

ding (right).

when viewing these through the lens of PF . Specifically, the data fragment inher-
ently restricts the reasonable macros that one may specify for it, and more so than
the codata fragment. This subsection makes formally precise the property that a sur-
face language (fragment) requires the distinction between computation and value
terms at the PF type level in order for any macro embedding to be reasonably com-
patible with surface operational semantics and typing; it then shows that the data
fragment exhibits this property while the codata fragment does not. The subsection
that follows adds transformations between the simple and the verbose form of the
codata abstractions to our toolbox for the practical programmer; this involves cre-
ating/removing destructors that correspond to constructors lifted to functions, like
suc in the running example (addition).

For the purpose of the following definitions, we consider a surface language to
have some term syntax, a deterministic reduction relation, which we denote .s, and
distinguished value terms tv and values v, as in the languages considered previously
in this chapter. As before, computation terms are the terms that the reduction relation
.s is defined for.

Definition 5.3 (Value (semantic) compatibility). A macro embeddingM for some sur-
face language is value compatible iff:

• there is some function F such that: for all computation terms t and values v in the
surface language with t .∗s v, it is F (M(t)) .∗ Result(M(v)), and

• M(t1
v) 6=M(t2

v) for any two value terms t1
v 6= t2

v.

The data fragment embedding shown above is value compatible, with

F (x) := x � sh(µ̄{v⇒ Result(M(v))})},
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which is a valid definition since M translates all computation terms to producers
of the negative type Shift. (The use of the Result daimon is of course entirely
inessential for the definition above and purely for illustrative purposes.)

Definition 5.4 (Value type contiguity). A macro embeddingM for some surface language
is value type contiguous iff

• for any type T of the surface language, the signatures declared for M(T) are struc-
turally the same as those for T,

• for any value v and type T the judgment ` v : T implies ` M(v) :M(T), and

• there is a type with a hole Tc s.t. for any computation term tc and type T the judgment
` tc : T implies ` M(tc) : Tc[M(T)].

Definition 5.5 (Value type precision). A value type contiguous macro embeddingM for
some surface language has the property of value type precision iff Tc 6= [], where Tc is the
holed type given by the definition of contiguity.

The data fragment embedding we saw above exhibits value type precision, since
the constructor signatures and values are taken over unchanged, and computation
terms are typed Shift〈T〉, thus Tc = Shift〈[]〉. In fact, this property is necessarily
exhibited by all data fragment embeddings we are interested in:

Definition 5.6 (Enforcing macro property). A surface language enforces a property iff
it holds for all possible value compatible and value type contiguous macro embeddings into
PF .

Theorem 5.4. The data fragment enforces value type precision.

Proof. LetM be any value compatible and value type contiguous macro translation
for the data fragment. Assume that M does not exhibit value type precision; we
show that this leads to a contradiction. The argument boils down to the fact that
computation terms cannot be macro translated to values in PF without breaking
(any reasonable) correspondence between surface and PF semantics through the
macro translation (as abstractly expressed by value compatibility).

Consider the surface term t := add(z, z), which types ` t : Nat. SinceM does not
exhibit value type precision, this means that the type T′ ofM(t) is equal toM(Nat)
(i.e. Tc = []), and thus due to value type contiguity T′ is structurally identical to Nat,
soM(t) is a value of type Nat in PF . BecauseM is a macro translation, we know
that M(t) = A(M(z),M(z)) for some syntactic abstraction A. Since M is value
compatible, and t .∗s z, we know that F (M(t)) .∗ Result(M(z)). We also know that
the statements in this paragraph hold analogously for all other surface computation
terms in the place of t, e.g., t′ := add(z, s(z)); in particular, the previous sentence
uses the same F .

In summary, we have:

F (A(M(z),M(z))) .∗ Result(M(z)),

and
F (A(M(z)),M(s(z))) .∗ Result(M(s(z))),

and A applied to any two arguments is a value of type Nat in PF . Because of the
latter property, A(α1, α2) = si(z), i ≥ 0 (1), A(α1, α2) = si(α1), i ≥ 0 (2), and
A(α1, α2) = si(α2), i ≥ 0 (3), are the only possible cases for the form of A.

In cases (1) and (2), since (at least) the second argument is ignored, the two inputs
to F in the reduction sequences above are identical, i.e. there is some v such that
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F (v) .∗ Result(M(z)) and F (v) .∗ Result(M(s(z))). Because reduction in PF is
deterministic, this can only be the case ifM(z) =M(s(z)), but this is ruled out by
value compatibility.

For case (3), simply flip the arguments to add in t′ to arrive at the same contra-
diction.

We thus have a contradiction to our precondition thatM is compatible. There-
fore our assumption thatM does not exhibit value type precision must have been
wrong, and soM does exhibit value type precision. We letM be entirely generic,
thus all macro translations for the data fragment exhibit value type precision, which
by definition means that the data fragment enforces value type precision.

The practical implication of this is that we cannot give a reasonable, i.e., value
type contiguous and compatible, macro embedding for the data fragment in which
computation and value types are not distinguished at the type level in PF . In this
regard, the codata fragment differs from the data fragment.

Theorem 5.5. The codata fragment does not enforce value type precision.

Proof. The simple version of the embedding for the codata fragment does not exhibit
value type precision, since all computation terms typed T are typedM(T) after the
translation.12

In summary, PF has helped characterize a conceptual difference between the
data and codata fragments that was not directly apparent beforehand. The data
fragment enforces value type precision, while the codata fragment does not. This
greater degree of freedom offers an initial explanation for why it might be inevitably
necessary to consider two macro embeddings for the codata fragment and convert
between them. However, this is still only an early result (in an exploratory theory
development) and a possible influence on language design may need to be explored
more.

5.2.4 Practical surface transposition

We saw that the greater freedom of the codata fragment when it comes to reasonable
macro embeddings into PF arguably makes it necessary to convert between the
result of the simpler embedding and that of the embedding amenable to surface
transposition, that however forces upon us many additional destructors, in the worst
case one per producer function. We view these transformations as pieces of the
overall transformation process that has the data fragment, in the presentation with
constructors directly applied to computation terms, on one end and the simple form
of the codata fragment on the other end. We now briefly describe each bidirectional
step; the running example used before (addition) illustrates each step of the process,
as shown in Fig. 5.21.

Lift constructors As noted at the beginning of the previous section, first create a
surface-level consumer function for each constructor that simply applies the con-
structor to the arguments of the function. (It suffices to do this for all constructors
that are called with computation terms.) Then replace each constructor call on (at

12It can be readily checked that the simple codata fragment embedding is value compatible and
value type contiguous (as is the verbose embedding); for instance, a destructor signature d(T,

−→
T ) : T′

becomes the structurally isomorphic d(T,
−→
T , T′) (merely turning the surface output type into a PF

continuation type, but not touching the structural three-part form).
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function+ add(y1) := { z ⇒ y1 | s(x1) ⇒ s(add(x1, y1) }
Step 1: Lift constructors

function+ add(y1) := { z ⇒ y1 | s(x1) ⇒ suc(add(x1, y1) }
function+ suc := { n ⇒ s(n) }
Step 2: Embed data fragment

function+ add(y1, k̄) :=

{z⇒ y1 � k̄ | s(x1)⇒ µ{sh(k̄)⇒ x1 � add(y1, wrap(k̄))} � sh(posk(suc(k̄))) }
function+ suc(k̄) := { n ⇒ s(n)� k̄ }
Step 3: Transpose

function− z := { add(y1, k̄)⇒ y1 � k̄ | suc(k̄)⇒ s(z)� k̄ }
function− s(x1) :=

{ add(y1, k̄)⇒ µ{sh(k̄)⇒ x1 � add(y1, wrap(k̄))} � sh(posk(suc(k̄)))
| suc(k̄)⇒ s(s(x1))� k̄ }

Step 4: Eliminate destructors

function− z := { add(y1, k̄)⇒ y1 � k̄ }
function− s(x1) := { add(y1, k̄)⇒ s(µ{k̄⇒ x1 � add(y1, k̄)}) }
Step 5: Un-embed codata fragment

function− z := { add(y1)⇒ y1 }
function− s(x1) := { add(y1)⇒ s(x1.add(y1)) }

FIGURE 5.21: From the data to the codata fragment by example.
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least one) computations term(s) by calls to the respective function. By annotating
the functions with the name of their corresponding constructor, this step can be eas-
ily undone; also, annotate the relevant constructors themselves with the information
that they underwent this process.

Embed data fragment Macro-embed the constructs of the data fragment by the
modified syntactic abstractions of Fig. 5.17 (bottom). Annotate each resulting µ-
abstraction with the syntactic abstraction it was created from, and the process is
readily invertible.

Transpose The central but at the same time easiest step: Transpose the underlying
matrix.

Eliminate destructors All the destructors which resulted from consumer functions
that were created in the first step are annotated with the corresponding constructor
name. Replace each µ-abstraction not annotated to correspond to such a destructor
call with the result of the simpler syntactic abstraction from Fig. 5.19:

Ad(·,·,...,·)(t
′,
−→
t ) = µ{k̄⇒ t′ � d(

−→
t , k̄)}

Replace the µ-abstractions indeed corresponding to the to-be-eliminated destructors
using the syntactic abstraction A f (·,...,·)(

−→
t ) = f (

−→
t ), then remove all these destruc-

tors and their cases in producer function definitions. Replacing the results of syntac-
tic abstractions works likewise for the other direction. The functions corresponding
to the relevant constructors are still annotated as such, so we know which ones to
consider.

Un-embed codata fragment (simple embedding) Use the syntactic abstractions
from Fig. 5.17 (top). Like the embedding for the data fragment, this step is easily
made bidirectional by annotating the resulting µ-abstractions (and function calls just
stay function calls anyway).

5.2.5 GA(Co)DT example: interpreter transposition

To conclude this section, we take a look at a somewhat more difficult example in-
volving parametric polymorphism. It is the meta-circular interpreter with a user-
defined generic function type, which, when transposed, “invents” closures for us.
We gave a direct PF implementation in Section 4.4.1 of the previous chapter (in
Fig. 4.18). Now we will see how we can write the interpreters in the GA(Co)DT
matrix language discussed at the end of the first chapter, and embed them into PF
and use transposition in PF to go from one to the other. We will do this in the steps
described in the previous subsection. Type parameters simply carry over from the
surface to PF but do not otherwise affect the embeddings.

We start with the meta-circular interpreter shown in Fig. 5.22, a GACoDT pro-
gram which is one of the two linearized forms of a matrix program in the matrix
language; the other linearized form, a GADT program, will be the end result of our
steps. For the first step, lifting of constructors and introduction of additional de-
structors, we do not need to do anything. The only constructors applied are cons
and in and the parameters of the constructor applications are value terms (variables
and a producer function applied to variables, respectively), and the same goes for
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codata Fun〈∗, ∗〉 { Fun〈A, B〉.apply〈A, B〉(A) : B }
data Val { in(Fun〈Val, Val〉) }
data ValList { nil | cons(Val, ValList) }
data Exp { var(Nat) | app(Exp, Exp) | abs(Exp) }
data Nat { zero | succ(Nat) }

function− closure(e, l) := {
apply(v) ⇒ eval(e, cons(v, l))

}

function+ apply_aux(v) := { in( f ) ⇒ f .apply(v) }
function+ eval(l) := {

var(n) ⇒ lookup(n, l)
app(e1, e2) ⇒ apply_aux(eval(e1, l), eval(e2, l))
abs(e) ⇒ in(closure(e, l))

}

FIGURE 5.22: Meta-circular interpreter with user-defined generic
function type as one of the linearized forms of a GA(Co)DT matrix

program.

data− Fun〈∗, ∗〉 { apply〈A, B〉(A, B) : Fun〈A, B〉 }
data+ Val { in(Fun〈Val, Val〉) }
data+ ValList { nil | cons(Val, ValList) }
data+ Exp { var(Nat) | app(Exp, Exp) | abs(Exp) }
data+ Nat { zero | succ(Nat) }

function− closure(e, l) : Fun〈Val, Val〉 := {
apply(v, k̄) ⇒ e� eval(cons(v, l), k̄)

}

function+ apply_aux(v, k̄) := { in( f ) ⇒ f � apply(v, k̄) }
function+ eval(l, k̄) := {

var(n) ⇒ n� lookup(l, k̄)
app(e1, e2) ⇒

µ{sh(k̄)⇒ e1 � sh(posk(eval(l, wrap(k̄))))} �
sh(µ̄{pos(v1)⇒ µ{sh(k̄)⇒ e2 � sh(posk(eval(l, wrap(k̄))))} �
sh(µ̄{pos(v2)⇒ v1 � apply_aux(v2, k̄)})})

abs(e) ⇒ in(closure(e, l))� k̄
}

FIGURE 5.23: Result of embedding the program in Fig. 5.22 into PF .
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data+ Fun〈∗, ∗〉 { closure(e, l) : Fun〈Val, Val〉 }
data+ Val { in(Fun〈Val, Val〉) }
... /* other data types unchanged */

function+ apply〈A, B〉(v, k̄) : Fun〈A, B〉 := {
closure(e, l) ⇒ e� eval(cons(v, l), k̄)

}

function+ apply_aux(v, k̄) := {... /* unchanged */ }
function+ eval(l, k̄) := {... /* unchanged */ }

FIGURE 5.24: Result of transposing the program in Fig. 5.23 w.r.t. Fun.

data Fun〈∗, ∗〉 { closure(e, l) : Fun〈Val, Val〉 }
data Val { in(Fun〈Val, Val〉) }
... /* other data types same as in original program */

function+ apply〈A, B〉(v) : Fun〈A, B〉 := {
closure(e, l) ⇒ eval(e, cons(v, l))

}

function+ apply_aux(v) := { ... /* same as in original program */ }
function+ eval(l, k̄) := { ... /* same as in original program */ }

FIGURE 5.25: Un-embedding the program in Fig. 5.24.

the only producer function applied, closure. The second step, embedding into PF
using the more verbose macros amenable to transposition, results in the program
shown in Fig. 5.23.

Transposing this program with respect to type Fun results in the program shown
in Fig. 5.24. Un-embedding this program results in the GADT program shown in
Fig. 5.25. As intended, this is the same as one would have obtained by surface-
transposing the initial GACoDT program with respect to Fun.

There are a few things to remark about this process and possible further process-
ing of the result. First, for practical (e.g. performance) reasons, it might be desirable
to carry out the embedding in a lazy fashion. That is, a term is only really replaced
by the result of macro-embedding it if some step that works on the PF level actually
needs to inspect it somehow. In particular, in the transposition step, if the term is
not involved in the underlying matrix, i.e. by being in a relevant function body or
containing a relevant local abstraction that is to be transposed, the embedding can
be delayed. Later, the un-embed step is then simplified by just keeping all not-yet-
embedded terms as they are.

Second, as in Section 4.4.1, there is only one constructor for Fun, and this con-
structor specifies the type parameters to be Val, and Val) is only there to tie a re-
cursive knot for Fun. Thus, safe monomorphization and then recursive type elimination,
as described in Section 4.4.1, can be applied to the transposition result to simplify it
(doing so in PF is directly reflected in the types of the surface language since the
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type parameter mechanism is the same for both). Again, this allows for the removal
of auxiliary wrapper functions, in this case apply_aux, which may be facilitated by
a linguistic construct that makes it explicit that some type (like Val) has exactly the
recursive knot-tying purpose (this linguistic enhancement applies in the same way
to PF and the surface language).

5.3 Control Effects

We have seen how to recover declarative surface constructs like function application
in PF at “shifted type”, expanding upon ideas of Zeilberger (2008b). In the result
of embedding such constructs, continuations were of course always used linearly.
In this section we turn to constructs manipulating control flow, with probably the
most famous (or infamous) one being call/cc. Zeilberger (2008b) gives a syntactic
abstraction for its restricted variant let/cc13 that we can easily translate to PF :

A(let/cc k.·)(t[k̄]) = µ{sh(k̄)⇒ t[k̄]� sh(k̄)}

The idea is that the “return” continuation bound to k is now available for use earlier
in the control flow; using it somewhere within t “jumps” out of the computation
and passes control flow to the context surrounding the let/cc. We now consider
enhancing first-order and higher-order languages with let/cc and full call/cc based
on this syntactic abstraction. Regarding delimited continuation, PF is arguably not
as well suited to emulate those, at least in its current form; Chapter 6 contains some
preliminary thoughts on how to recover delimited continuations in an extension of
PF or a system related to PF instantiated from a common meta system.

5.3.1 First-order CBV language enhanced with let/cc

To present a simple cohesive example, we take the simple first-order CBV language
presented at the beginning of this chapter and enhance this language with let/cc,
embedded using the syntactic abstraction just given. Formally, we enhance the lan-
guage by adding the following reduction rule:

E [(let/cc k.t[k])] Bv E [t[cont(E)]]

For this, we introduce a new class of variables, continuation variables k, bound by
let/cc (there may be nested let/cc constructs, in which case we distinguish the dif-
ferent k by a subscript). Continuation variables are one of two kinds of continuation
terms tk, a new syntactic category we introduce:

tk ::= k | cont(E)

The other kind of continuation term cont(E) lifts evaluation contexts to terms; as
shown above, reducing a let/cc results in the relevant k being substituted with the
evaluation context surrounding the let/cc. We add the let/cc construct itself, and a
new construct that allows to call continuation terms, to our computation terms, plus
we enhance evaluation contexts with a variant for these calls:

tc ::= ... | call(tk, t) | (let/cc k.tc)

E ::= ... | call(cont(E), E)
Note that, for our simple language, we restrict the “first-class-ness” of continuations
such that they may only be referred to within these call constructs; they cannot be
passed around freely. We have the expected reduction rule for such calls that throws

13Zeilberger (2008b) calls the construct “callcc”, but the actual syntactic abstraction he gives is for
what is known as “let/cc” in, e.g., Scheme.
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Continuation terms:

Acont(E)() = T (E) Ak() = k̄

Computation terms enhancement:

Acall(·,·)(tk, tc) = µ{_⇒ tc � sh(tk)}
Acall(·,·)(tk, tv) = µ{_⇒ tv � tk}

FIGURE 5.26: Syntactic abstractions for continuation constructs.

try_inv_sq 7→ (let/cc k.sq@(if_zero@(x, call(k, y), div@(100, x))))
if_zero 7→ (y1, y2) (call-by-name)

FIGURE 5.27: Let/cc example in the enhanced first-order CBV lan-
guage.

away the surrounding evaluation context in favor of that contained in the call:

E ′[call(cont(E), v)] Bv E [return(v)]

The syntactic abstractions for continuation terms and for call are shown in Fig. 5.26,
where we use the context translation T from Fig. 5.5 for the cont construct. While
embedded value terms have type Nat and embedded computation terms have type
Shift〈Nat〉 as before, continuation terms have type Nat. Finally, we additionally
allow functions with two non-matched parameters, accessed by variables y1, y2, and
straightforwardly extend the relevant macro embeddings.

In this enhanced language we can give our first let/cc example, shown in Fig. 5.27
(we omit the definitions of the squaring function sq and the division (followed by
rounding) function div). The function try_inv_sq is given two inputs x and y and
tries to compute b100/xc2, producing the default value y if division would fail be-
cause x is zero.14 If division would fail, the result is immediately y, i.e. without
squaring it. In other words, we “escape” the computation, discarding the evaluation
context sq([]), and jump back to before we started (which is exactly the mechanism
that let/cc provides in Scheme).

In Fig. 5.28, showing reduction steps on the surface and in PF side-by-side, we
see that our macro embedding is compatible with PF reduction for our example.
As explained in Section 5.1.2, there is a one-to-one correspondence between ma-
chine steps of configurations of an evaluation machine for the surface language and
reduction steps in PF . Machine configurations, which consist of a context and a
term, are translated by translating the context, obtaining a continuation k where the
input variable corresponds to the hole, and the term, then stripping off the Shift
abstraction from it and substituting k for the variable freed by this. When consid-
ering E0[sq([])][call(E0, E2)], taking this particular presentation of the term as in-
dicative of where the evaluation focus lies, we would translate the configuration
(E0[sq([])], call(E0, E2)). In particular, since call(E0, 5) is translated to a µ-abstraction
which ignores its input argument, i.e. its form is µ{_ ⇒ C} for some command
C, the context is just ignored here, i.e. the result of translating the configuration is

14Checking for zero and branching accordingly requires (in this example) that only the relevant
branch is evaluated; this can be implemented by the call-by-name function if_zero shown in Fig. 5.27.
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E0[try_inv_sq(0, 5)] 0 � try_inv_sq(5, k0)
Bv E0[sq(if_zero(0, call(E0, 5), div(100, 0))︸ ︷︷ ︸

t′

)] . sq(t′)[k0]� sh(k0)

.2 t′[k0]� sh(sq(k0))

Bv E0[sq(call(E0, 5))] .2 5� k0
Bv E0[return(5)] . Result(5) (e.g.)

FIGURE 5.28: Example reduction and embedded reduction in PF for
the example in Fig. 5.27 (e.g. E0 := [], k0 := µ̄{n⇒ Result(n)}).

just C, with no need to substitute in a continuation. This reflects that calling a con-
tinuation passed by let/cc discards the current evaluation context. There is also a
general correspondence between surface and PF reduction mediated by the embed-
ding which can be demonstrated by extending the results from the first section of
this chapter; details can be found in Appendix C.

5.3.2 A higher-order language with let/cc

We now extend the language with (call-by-value) first-class functions (and with lists
of numbers, to facilitate a slightly more interesting example). We add functional (λ-)
abstractions and applications (written as a pair of function and argument term with
a space in between) to computation terms:

tc ::= ... | λn.tc | tc tc

For simplicity we only consider first-class functions from Nat to Nat. We add a new
kind of variable n to the value terms which is used for the formal parameter of func-
tional abstractions; in nested λ-abstractions a subscript i, i.e., in ni, is used to distin-
guish binding sites. The types of non-matched parameters of first-order functions
may now be either Nat, lists of Nat or the function type; the result of a first-order
function may only be a number or a list of numbers.15 Note that in this simplified
setting, first-order function parameter variables yi and lambda abstractions are the
only possible terms of function type. Finally, we have the usual contraction rule for
a meeting of lambda abstraction and application, as well as the extension of eval-
uation contexts with contexts for application terms and that of values with lambda
abstractions.

((λn.t) v) Iv t[n 7→ v]
E ::= ... | (E t) | (v E)
v ::= ... | (λn.t)

Note that lambda abstractions are not allowed as the result of a first-order function,
due to the restriction of results of such functions to numbers.

Since first-class functions are just a special kind of codata, the embedding follows
that of the codata fragment, with the function type being encoded as a negative data
type with one destructor apply(Nat, Nat). The constructs added to the computation
terms are thus embedded as follows:

A(λn.·)(t) = µ{apply(n, k̄)⇒ t� sh(k̄)}
A(· ·)(t1, t2) = µ{sh(k̄)⇒ t2 � sh(µ̄{a⇒ t1 � apply(a, k̄)})}

15The latter are specified with the usual data type with a nil constructor and a cons constructor
(written infix ::), and abbreviated with the usual notation, e.g. [4, 5, 2].
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map 7→ (return(nil), (y1 x1)::(map@(x2, y1)))

ign_fst 7→ (return(y))
if_zero 7→ (y1, y2) (call-by-name)

search 7→ (let/cc k. ign_fst@(map@(x, λn.if_zero@(n, call(k, n), n)), y))

FIGURE 5.29: Let/cc example with CBV first-class functions.

As an example16, consider the first-order function search, shown in Fig. 5.29,
which makes use of a first-class function (and of the higher-order function map, de-
fined as usually). The search function is given a list and checks whether some el-
ement is zero and if yes, returns the first such element.17 In summary, to do so, it
emulates a loop using map and a return statement, as known from C-like languages
(Java, C, C++), using let/cc. More precisely, it uses let/cc as its topmost syntac-
tic node and, within the body of the let/cc, maps a first-class function over the list
which checks if the given element is zero or not. When the element is zero, the con-
tinuation captured by the let/cc is called with the element to return that element as
the result of search. Otherwise, the first-class function simply returns the element
unchanged. If for no element the captured continuation is called (since no element
is zero), a default value passed as an additional argument to search is returned; this
is implemented with a call to an auxiliary function ign_fst which ignores one of
its arguments (in this case, the result of map) and returns the other (in this case, the
default value).

Fig. 5.30 shows the reduction steps of a term using search, side by side with the
reduction steps in PF of the respective macro translations of the terms in the re-
duction sequence. A general correspondence between reduction in the higher-order
let/cc language and reduction of the embedded terms in PF can be demonstrated
by straightforwardly extending the results from the above sections to take first-class
functions into account; first-class function calls can here be treated similarly to first-
order function calls.

5.3.3 Passing first-class functions to call/cc

The language extension with first-class functions above showed that the embedding
into PF can be straightforwardly extended to combine let/cc and first-class func-
tions, allowing for examples known from, e.g., Scheme, like the search function
shown above which uses map to emulate a loop and let/cc to emulate a “return”
statement as known from C-like languages. However, languages like Scheme even
allow to pass a first-class function as a parameter to call/cc (or rather, a first-class
function must be passed, since in Scheme call/cc is not a binder, just an operator that
takes such an argument). This section modifies the language and the embedding to

16Adapted from the Community Scheme Wiki: http://community.schemewiki.org/
?call-with-current-continuation (accessed Oct. 26, 2020).

17Since the result is always zero if a zero is found, “the first such element” is not actually a relevant
property in this simplified example, but it is easy to imagine a more general search function with a
boolean predicate (e.g., the first odd element of [2, 5, 3, 6, 7] is 5).

http://community.schemewiki.org/?call-with-current-continuation
http://community.schemewiki.org/?call-with-current-continuation
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E0[search([4, 0, 2]︸ ︷︷ ︸
l

, 7)] l � search(7, k0)

Bv E0[ign_fst(map(l, f )︸ ︷︷ ︸
t′

, 7)] . ign_fst(t′, 7)[k0]� sh(k0)

( f := λn.if_zero(n, call(E0, n), n)) .2 t′[k0]� sh(ign_fst(7, k0))

Bv E0[ign_fst(( f 4)::(map([0, 2], f )), 7)] .2 f [k0]� apply(4, µ̄{a⇒ ...})

Bv E0[ign_fst(4::(map([0, 2], f )), 7)] .3 4 � µ̄{a⇒ map(...)[k0]� ...}

Bv E0[ign_fst(4::(( f 0)::(map([2], f ))), 7)] .3 f [k0]� apply(0, ...)

Bv E0[ign_fst(4::((call(E0, 0))::(map([2], f ))), 7)] .3 0� k0
Bv E0[return(0)] . Result(0) (e.g.)

FIGURE 5.30: Example reduction and embedded reduction in PF for
the example in Fig. 5.29 (e.g. E0 := [], k0 := µ̄{n⇒ Result(n)}).

reflect this, replacing let/cc with call/cc (the former can of course be defined using
the latter), and gives a slightly more involved example reminiscent of coroutines18.

The surface reduction rule for call/cc looks like this, where f is some lambda
abstraction:

E [(call/cc f )] Bv E [( f cont(E))]
That is to say, the first-class function f is invoked with a continuation which embeds
the current context. Thus the only first-class functions allowed to be passed as an
argument to call/cc are those which take a continuation term as their input; we have
a new syntactic form for such function abstractions (which have continuation vari-
ables k as their formal parameter), as well as applications (function to continuation
term), extending computation terms (call/cc itself is also added, replacing let/cc):

tc ::= ... | (call/cc t) | (λk.tc) | (tc tk)

The syntactic abstraction for the function abstraction and application for functions
taking continuations are like those seen in the previous section, just with the input
being of continuation type (like Nat) and hence not needing to be evaluated.

A(λk.·)(t) = µ{apply(k̄, k̄1)⇒ t� sh(k̄1)}
A(· ·)(t1, t2) = µ{sh(k̄)⇒ t1 � apply(t2, k̄)}

First-order functions are now also allowed to return continuation terms, not just
value terms. Therefore, a computation term can reduce to a continuation term. In
particular, call/cc may be invoked with some computation term that reduces to a
continuation term, thus we also need a reduction rule for call/cc called with a con-
tinuation term that embeds a context.

E [(call/cc cont(E0))] Bv E [call(cont(E0), cont(E))]

After such a reduction step, the next step will always be to throw away the outer
evaluation context E as specified by the reduction rule for continuation calls. How-
ever, after this call, E is now still available as a continuation, substituted into the
body of cont(E0), so it is possible to return to it in the remaining computation.

In summary, call/cc can take either a value term f (a lambda abstraction), a com-
putation term (still to be reduced), or a continuation term (embedding a context) as

18Adapted from the Community Scheme Wiki: http://community.schemewiki.org/
?call-with-current-continuation (accessed Oct. 26, 2020).

http://community.schemewiki.org/?call-with-current-continuation
http://community.schemewiki.org/?call-with-current-continuation
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its argument. Accordingly, there are three syntactic abstractions:

A(call/cc ·)( f ) = µ{sh(k̄)⇒ f � apply(k̄, k̄)}
A(call/cc ·)(tk) = µ{sh(k̄)⇒ k̄� tk}
A(call/cc ·)(tc : Fun) = µ{sh(k̄)⇒ tc � sh(µ̄{ f ⇒ f � apply(k̄, k̄)})}
A(call/cc ·)(tc : T) = µ{sh(k̄)⇒ tc � sh(µ̄{k̄0 ⇒ k̄� k̄0})}

In the syntactic abstraction for passing a lambda abstraction to call/cc, the outer con-
tinuation is passed to the apply destructor both as the function’s argument and as its
result continuation. For passing a continuation term the embedding directly wraps
a command that triggers the continuation (which simply stays as it is under the em-
bedding) with the outer continuation as its input; i.e., the continuation tk is a contin-
uation that takes a continuation as its input, which logically corresponds to double
negation. Passing a computation term is embedded similarly, just with evaluation
of that term prefixed; there are two embeddings, applied depending on whether the
evaluation of the computation term will result in a lambda value (i.e. the embedded
term is of Fun type) or a continuation. In the example that follows below, there are
functions which may either return a continuation or a function value, for which we
use a simple sum type with constructors fun and cnt; we straightforwardly extend
the reduction rules and macros for call/cc to allow discriminating between the two.
We also assume that there is a wrapper for continuation calls and lambda applica-
tions which matches on these constructors and picks the correct construct; we omit
this wrapper for ease of reading when presenting the example.

In the example in Fig. 5.31, we see a continuation that takes a continuation as its
input, as mentioned above, in action. In order to understand this example in detail,
let us first go over the basic setup. The idea is that we model two routines which
pass control back and forth between them, a.k.a. coroutines. More precisely, we have
the functions loop_1 and loop_2 defined as infinite loops which over and over call
stuff_1 and stuff_2, respectively, which in turn carry out some computation that
we are not further interested in as far as this example is concerned. After carrying
out stuff_1, loop_1 does something to pass control to the other routine (which we
will setup to be loop_2), then recurses. Linking the two routines initially is achieved
by calling the cmp_1 function, which expects as its argument a first-class function
that embeds the other routine cmp_2.19 Before calling loop_1 to get the computation
started, cmp_1 stores that first-class function on the heap. (We omit any mention of
heap addresses since we only need a single storage cell anyway.) For writing to and
reading from the heap, the functions set and get are used, which are implemented
“natively”, i.e. using the PF daimon for mutable state discussed in Section 4.2.3.
Since all functions need to return some value, we let set return the unit value ()
from the unit data type. We also assume that stuff_1 and stuff_2 return (), and
use a simple function seq, that ignores its first input and returns its second input, to
model sequential computation (we use the infix abbreviation ; for seq; see Fig. 5.31).

Let us now look at the something necessary for passing control between the rou-
tines mentioned above, i.e., this part:

set@(call/cc get@())

What this does first is retrieve what is currently on the store, which is either the
initial first-class function (for the respective other routine), or, later, a continuation
that allows to jump back to where one previously jumped out of a routine. That

19One can also switch the roles of cmp_1 and cmp_2; this does not make a difference for this example
except for determining which routine goes first.
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seq 7→ (return(y))
(seq@(t1, t2) is abbreviated with t1; t2. seq is associative. Leading (); omitted.)

set “native” (daimonic) using SetBox, see text

get “native” (daimonic) using OpenBox, see text

loop_1 7→ (stuff_1@(); set@(call/cc get@()); loop_1@())

loop_2 7→ (stuff_2@(); set@(call/cc get@()); loop_2@())

cmp_1 7→ (set@(k); loop_1@())

cmp_2 7→ (set@(k); loop_2@())

FIGURE 5.31: Call/cc coroutines example.

(except for the first time) continuation, say k, is then called with the current continu-
ation, say, k′, which begins by calling set upon its input. Thus, when k′ is eventually
called within the computation specified by the body of k, it returns to the routine
we originally came from and then immediately sets the storage cell to the remain-
ing computation of the other routine; this is because on the other routine the same
process plays out, calling k′ with the current continuation.

As a concrete example, consider the reduction sequence on the left-hand side of
Fig. 5.32. The term (call/cc get()) is in the focus of the reduction for the first time
just after it says “(stuff_1 happens)”, and hence the actual computation of the first
routine has been run, for the first time. The get() fetches cmp_2, encapsulated into a
first-class function k2, from the store; k2 is then called with the current continuation
(embedding context) E1 and immediately sets the storage cell to that continuation,
to allow us to go back to the first routine, then goes on with loop_2(). This means
that first “stuff_2 happens”, and we then again encounter (call/cc get()). Since
get() now retrieves the continuation stored previously, this time a continuation is
called with the current continuation, namely E1 with E2 (highlighted with a gray
shading); E1 brings us to the first routine, where the first thing that happens is to
set the storage cell to E2, to facilitate the return to the second routine. This return
then happens later on in the same way, by calling that continuation contained in the
storage cell with the current continuation, and so on, always moving back and forth
between the routines and in effect alternately running stuff_1() and stuff_2().

On the right-hand side of Fig. 5.32, we again see (just as in the reduction sequence
figures above) the corresponding reduction steps in PF after macro embedding. In
particular, the command corresponding to the term E2[call(E1, E2)] (highlighted in
gray in Fig. 5.32) is translated from a machine configuration such that the context
E2 is discarded, in the same way as explained at the end of Section 5.3.1; as for
let/cc in Section 5.3.1, this reflects that calling a continuation passed by call/cc dis-
cards the current evaluation context. As before, the general close correspondence
between surface and embedded steps can be shown by straightforwardly extend-
ing the results from above to take the new syntactic abstractions of this section into
consideration.
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E0[cmp_1(k2)] k2 � cmp_1(k0)

(k2 := λk.cmp_2(k))
Bv E0[set(k2); loop_1()] . set(k2)� sh(µ̄{a⇒ loop_1()� sh(µ̄{b⇒

a� seq(b, k0)})})
Bv E0[loop_1()]k2 .2 (loop_1()� sh(µ̄{b⇒ ()� seq(b, k0)}))

k2

Bv E0[stuff_1(); set(call/cc get()); loop_1()]k2 . (stuff_1()� sh(µ̄{a⇒ seq(...)� ...}))
k2

(stuff_1 happens)

B∗v E0[set(call/cc get()); loop_1()]k2 .∗ (set(call/cc get())� µ̄{b⇒ loop_1()� ...})
k2

Bv E1[((get()) E1)]
k2 .2 (get()� sh(µ̄{fun( f )⇒

f � apply(E1, E1) | ...}))
k2

Bv E1[(k2 E1)]
k2 .2 (k2 � apply(E1, E1))

k2

(E1 := E0[set([]); loop_1()])

Bv E1[set(E1); loop_2()]k2 .2 (E1 � set(µ̄{a⇒ loop_2()� sh(E1)}))
k2

Bv E1[loop_2()]E1 .2 (loop_2()� sh(E1))
E1

Bv E1[stuff_2(); set(call/cc get()); loop_2()]E1 . (stuff_2()� sh(µ̄{a⇒ seq(...)� ...}))
E1

(stuff_2 happens)

B∗v E1[set(call/cc get()); loop_2()]E1 .∗ (set(call/cc get())� µ̄{b⇒ loop_2()� ...})
E1

Bv E2[call(get(), E2)]
E1 .2 (get()� sh(µ̄{... | cnt(k̄)⇒ E2 � k̄}))

E1

Bv E2[call(E1, E2)]
E1 .2 (E2 � E1)

E1

(E2 := E1[set([]); loop_2()])

Bv E0[set(E2); loop_1()]E1 .2 (E2 � set(µ̄{a⇒ loop_1()� sh(E0)}))
E1

Bv E0[loop_1()]E2 .2 (loop_1()� sh(E0))
E2

Bv E0[stuff_1(); set(call/cc get()); loop_1()]E2 .2 (stuff_1()� sh(µ̄{a⇒ seq(...)� ...}))
E2

(stuff_1 happens)

B∗v E0[set(call/cc get()); loop_1()]E2 .2 (set(call/cc get())� µ̄{b⇒ loop_1()� ...})
E2

B∗v E1[stuff_2(); set(call/cc get()); loop_2()]E1 .∗ ... (see above)
B∗v E0[stuff_1(); set(call/cc get()); loop_1()]E2 .∗ ...
B∗v E0[set(call/cc get()); loop_1()]E2 .∗ ...
etc.

FIGURE 5.32: Example reduction and embedded reduction in PF for
the coroutines example in Fig. 5.31 (e.g. E0 := [], k0 := µ̄{() ⇒

Result(())}).
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5.4 Case Study: Transposing a Java Subset

This section walks through an example given by Lämmel and Rypacek (2008), who,
in a formally precise categorical (i.e. category theory) setting, show how algebraic
and coalgebraic approaches to programming are semantically equivalent. They term
this result the Expression Lemma due to the relation to the extensibility duality with its
canonical expression language example. They represent the two approaches (alge-
braic and coalgebraic) with an idiomatic Java program using mutable state with two
classes for two kinds of expressions in a simple expression language and a Haskell
program with two functions operating on such expressions, respectively; the two
Languages Java and Haskell, together with a certain style of programming, can in-
tuitively be understood to correspond to categorical semantics, but the mapping
from these concrete surface languages to category theory is not made formally pre-
cise by Lämmel and Rypacek (2008). This section utilizes what the previous sections
of this chapter established to close this gap within the formal framework PF and
demonstrates the compatibility between this development and that of Lämmel and
Rypacek.

In the algebraic approach to programming, a program can be thought of as con-
sisting of recursive data types and folds, also called catamorphisms over these. Folds
are well-known from functional programming practice, e.g. for the special case of
lists, where the recursive result for the rest of the list is combined with its head as
specified by some function. Generally, folding a function f over a term of some
recursive data type means to apply the fold to the subterms of that same type, ob-
taining the recursive results, then apply f to these results and possibly other terms
(like the head of the list). Categorically, a recursive data type D is conceived as being
formed from a functor F that maps types to types (actually, categories to categories,
but we work only with functors from one category to itself), where the input re-
places the recursive occurrences of D in the signatures of the type declaration, such
that one can think of D as being the result of forming the least fixed point µF of F. In
categorical semantics, the objects of a category are types and functions between those
are its morphisms (also called arrows), and the fixed point of F is described by means
of a morphism F µF −→ µF which “collapses” one layer of recursive structure. This
kind of morphism is called an initial F-algebra; in general a morphism FX −→ X is
called an F-algebra, and one can think of this as a function as would be passed to a
fold, with X being the recursive result type.

Coalgebraic semantics are dual to algebraic semantics, in the categorical sense of
inverting the arrows. In this context we consider a different kind of functor B, also
called an interface functor, which concerns the form of the output of computation
rather than that of the input like F does. In practice, types specified by outputs are
for instance found in Object-Oriented Programming, where an interface (to be im-
plemented by a class) consists of method signatures. An interface functor B can be
understood as taking a type as its input and replacing each corecursive occurrence
of the type specified by the interface with this input; the type specified by the inter-
face one can think of as being the result of forming the greatest fixed point νB of B.
Methods can be implemented, in particular, by calling the method on fields of a class
which has the same interface type, i.e. recursive subobjects. To let a class implement
an interface, one has to implement all the methods specified by it. The essence of this
can be described by an unfold, also called anamorphism, which produces an unfolded
value of νB from some initial value of some to-be-unfolded type and a function f
which describes how to produce the different parts of the output (one per method)
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from a value of this type, by applying f on the initial value and in the result co-
recursively unfolding20 the relevant (as identified by B) subterms which are of the
to-be-unfolded type. Categorically, f is a morphism X −→ BX called a B-coalgebra
(dually to algebras), where X is this type to-be-unfolded (the corecursive type).

For example, consider streams where one may access the head which is an inte-
ger or the tail which itself is a stream, and a class with two (constructor) parameters,
also for streams. The class could be implemented, for instance, by returning as the
head of the stream the sum of the two heads of the streams passed as parameters,
and for the tail invoking the constructor of the class on the tails (effectively zipping
the streams with addition). A coalgebra for the stream interface functor B takes some
value of some type X and produces a pair of an integer (the head of the stream) and
a value of type X. When we specialize X to (νB)2, pick the appropriate (i.e., seman-
tically fitting with the class) coalgebra, the unfold construction for (νB)2 and this
coalgebra gives us a morphism from (νB)2 to νB that corresponds to the class. This
is because unfolding a (νB)2 using this coalgebra means to first apply the coalgebra
to the input, which gives us a B (νB)2 = Int× (νB)2 (adding the heads), and then
corecursively unfold the (νB)2 in the second component (zipping the tails).

The Expression Lemma forms a semantic connection between the algebraic and
the coalgebraic approach, in the following way: The algebras and coalgebras that
semantically make up the programs are themselves combined from so-called dis-
tributive laws (a special form of natural transformation going between functors).
An algebraic program gives rise to a single distributive law obtained by combining
these distributive laws in a certain way, and what was described (in Lämmel and
Rypacek’s work) informally as a coalgebraic program that is (by “folklore” (Lämmel
and Rypacek, 2008)) expected to have the same semantics, gives rise to the same dis-
tributive law. The Expression Lemma says that any distributive law, including the
distributive law “extract[ed]” (Lämmel and Rypacek, 2008) from both programs, can
be used for either a coalgebraic construction or an algebraic construction such that
both result in the same morphism from µF to νB.

Our walkthrough begins by embedding into PF a subset of Java (building on the
codata fragment macros from Section 5.2.2) that is sufficient for the kind of example
Lämmel and Rypacek consider. We consider the difference between this Java subset
and the codata fragment and then use program transposition to arrive at the data
fragment and, eventually, Haskell.

We then specify a rather straightforward mapping from the data and codata frag-
ment to categorical semantics. For some program, these also give rise to a distribu-
tive law that captures the overall semantics of the program, along the same lines
as informally described for Java and Haskell programs. Transposition between the
data and codata fragment21 reflects the development surrounding the Expression
Lemma in the sense that the distributive laws (which may be plugged into the Expression
Lemma) extracted from two programs (one data and one codata) are the same if and only if
the programs are related by transposition.

The last part of our walk through the example of Lämmel and Rypacek (2008)
using the PF lens considers the difference between the data fragment and (a sub-
stantive subset of) Haskell (as for the codata fragment and Java). Concretely, the
formal correspondence between the concrete surface languages (Java and Haskell in
this case) and the categorical (co)algebraic semantics, not considered by Lämmel and

20Note that we are specifying how a value of νB, a greatest fixed point, is to be destructed, i.e. what
we are describing here is an infinite process to be partially triggered on demand.

21This surface transposition is compatible with PF transposition as shown in Section 5.2.2 and can
thus be carried out directly in PF .
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Rypacek (2008), is established by considering the changes made to the macro embed-
dings of the (co)data fragment (which in turn is mapped to categorical semantics) in
order to account for evaluation strategies (following Section 5.1) or extra-logical as-
pects like mutable state.

The section finishes by considering PF transposition for programs with a differ-
ent kind of surface feature not considered in the example, non-linear control flow
constructs. We will see how, when adding exception handling as a feature of the
surface language using an embedding (following the ones shown in Section 5.3),
transposition in PF preserves this feature. Concretely, transposing a Java program
containing exception handling almost directly results in a program that fits an em-
bedding of some ML dialect with a similar feature.

5.4.1 Embedding a Java subset with mutability

We consider a subset of Java with interfaces, classes, mutable fields and local vari-
ables, but without inheritance or Generics (though a simple variant of the latter
would be straightforward to add in the parametric polymorphism variant of PF ).
Fig. 5.33 gives the macro embedding of that language into PF ; we assume primitive
types like int to be available along with their value literals. We also assume that any
primitive operator, like +, has an PF function that it translates to. This translation
follows the same approach as that for method calls, i.e. the continuation k is passed
as the last argument of the function corresponding to the operator, e.g. +(4, 2, k).

The Java example of Lämmel and Rypacek (2008) is shown in Fig. 5.34. It is a
Java implementation of a simple expression language with nodes for number literals
(class Num) and addition nodes (class Add), which both implement the interface Expr
which specifies the methods available to be applied to expressions: evaluation to a
number (method eval) and replacing each number literal v contained in the tree by
vmodv0, with some number v0 passed to the relevant method modn as an additional
argument. The following illustrates key aspects of the embedding into PF by means
of that example.

Embedding the eval method implementation from the Num class results in this
clause of a local producer which corresponds to the object created using new:

eval(k̄)⇒ v� k̄

Likewise, embedding the modn method implementation results in its other clause:

modn(v0, k̄)⇒ µ{k̄⇒ OpenBox(v0, k̄)} � µ̄{a0 ⇒ µ{k̄⇒ OpenBox(v, k̄)} � µ̄{a⇒
Mod(a, a0, µ̄{b⇒ SetBox(v, b, void� k̄)})}}

The local producer that these two clauses comprise becomes, after transposition, a
constructor annotated as local. However, it would have been just fine to create a
top-level producer function for this object since there is exactly one such “object
producer” for each class constructor anyway. The other Expr producer is for objects
of the Add class and also becomes a constructor under transposition. Thus, somewhat
unsurprisingly since our embedding is built around the codata embedding, the core
of the transposition result is this data type:

data Expr { num(Ref〈int〉) | add(Ref〈Expr〉, Ref〈Expr〉) }

A bit more interesting is how the calls to these constructors now appear in the sur-
rounding producer function responsible for object initialization (which, being of
type WrapP, is not itself affected by transposition). Within the bodies of these pro-
ducer functions the innermost commands (“following” commands responsible for
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Interfaces:

φ(interface T {
−−−−−−−→i

Ti mi(
−→j
T j

i ) }) = codata T {
−−−−−−−→i

mi(
−→j
T j

i , Ti) }

Classes:

φ(class c impl. T {

−−−→kTk yk ; c(
−−−→kTk yk ){

−−−−−−−−→kthis.yk = yk };
−−−−−−−−−−→i

Ti mi(
−→j
xj

i ){bi} }) =

function− c(
−−−−→kyk : Tk ) : T {k̄⇒ φ(<init>(

−−−−−−−→kTk yk = yk ;
−−−−−−−−−−→i

Ti mi(
−→j
xj

i ){bi} ))}

Object initialization:

φ(<init>(s; i)) = φ(s)[φ(<init>(i))]

φ(<init>(
−−−−−−−−−−→i

Ti mi(
−→j
xj

i ){bi} )) = pos(µ{
−−−−−−−−−−−−−−→i

mi(
−→j
xj

i , k̄i)⇒ φ′(bi) })� k̄

Bodies:

φ(return t) = µ{k̄⇒ φ(t)� k̄}
φ(s; b) = µ{k̄⇒ φ(s)[φ′(b)]}

Statements:

φ(T x = t) = NewBox(t, µ̄{x ⇒ []})
φ(x = t) = φ(t)� posk(µ̄{a⇒ SetBox(x, a, [])})

φ(t.m(
−→iti )) = φeval({x 7→ φ(t)} ∪

−−−−−−−→ixi 7→ φ(ti) , x � posk(m(−→ixi , µ̄{x ⇒ []})))

Terms:

φ(x) = µ{k̄⇒ OpenBox(x, k̄)}

φ(t.m(
−→iti )) = µ{k̄⇒ φeval({x 7→ φ(t)} ∪

−−−−−−−→ixi 7→ φ(ti) , x � posk(m(−→ixi , k̄)))}

φ(new c(
−→iti )) = µ{k̄⇒ φeval(

−−−−−−−→ixi 7→ φ(ti) , c(−→ixi )� k̄)}

Auxiliary: Chained evaluation:

φeval(∅, C) = C
φeval({x 7→ t} ∪ σ, C) = t� posk(µ̄{x ⇒ φeval(σ, C)})

FIGURE 5.33: Translating a Java subset into PF .
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interface Expr { int eval(); void modn(); }

class Num implements Expr {
int v;

Num(int v) { this.v = v; }
int eval() { return v; }
void modn(int v0) { v = v % v0; }

}

class Add implements Expr {
Expr l; Expr r;

Add(Expr l, Expr r) { this.l = l; this.r = r; }
int eval() { return l.eval() + r.eval(); }
void modn(int v0) { l.modn(v0); r.modn(v0); }

}

FIGURE 5.34: Java example from Lämmel and Rypacek (2008).

field initialization and the statements specified in the class constructor) are now sim-
ply pos(num(v)) � k̄ and pos(add(l, r)) � k̄, respectively. The variables v, l, and r
are bound via daimonic commands, corresponding to mutable fields.

We next consider a more restricted subset of Java and its relation to codata, before
comparing the transposition result above to transposition results of that restricted
subset and the codata fragment, and to Haskell.

5.4.2 Functional update restriction and codata

Lämmel and Rypacek (2008) picked this example such that it falls into a specific class
of Java programs, namely ones where the use of mutable state is inessential and can
easily be avoided, merely losing some superficial convenience (as well as, arguably,
using a less idiomatic style of “object-oriented programming” than one may be used
to). They informally describe how to get from a Java program falling in this class
to categorical semantics, then do the same for a Haskell program intended to fulfill
the same task, and finally demonstrate that and how precisely the semantics are
equivalent, proving their Expression Lemma.

We will now consider a mutable-state-less subset of the surface language (Java
subset) described by the macros above that can serve as the target of an intermedi-
ate step. A program in the full Java subset that makes use of mutable state can be
transformed to an equivalent program in this more restricted subset that, instead of
mutating fields, returns a new object with the updated field. Using functional up-
dates in OO, instead of mutation, is close to the formal categorical semantics used by
Lämmel and Rypacek (2008), precisely, coalgebraic semantics, and was also used to
illustrate such semantics practically (Jacobs, 1996). The restricted Java subset we con-
sider can be further modified to arrive at the codata fragment, which arguably really
capture the essence of programming coalgebraically. This modification is fairly mi-
nor, demonstrating that “functional update Java” is really just superficially different
from the codata fragment. The following details the functional update restriction,
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interface Expr { int eval(); Expr modn(); }

class Num implements Expr {
int v;

Num(int v) { this.v = v; }
int eval() { return v; }
Expr modn(int v0) { return new Num(v % v0); }

}

class Add implements Expr {
Expr l; Expr r;

Add(Expr l, Expr r) { this.l = l; this.r = r; }
int eval() { return l.eval() + r.eval(); }
Expr modn(int v0) { return new Add(l.modn(v0), r.modn(v0)); }

}

FIGURE 5.35: Java example from Lämmel and Rypacek (2008), trans-
lated to functional update style (differences shaded in gray).

together with a sketch of how to transform programs, and the delta to apply to it to
arrive at the codata fragment.

The functional update restriction for the macros above could actually be specified
in two sentences directly relating to daimonic commands for mutable state:

1. The daimonic command SetBox is disallowed.

2. The daimonic command NewBox is only allowed in object initialization.

However, this would allow method bodies with useless method calls like

e.eval(); return e;

The only body that we really need for functional update is that for return. By dis-
allowing other forms of bodies, we automatically exclude all uses of SetBox, and of
NewBox outside of object initialization, so this condition is actually sufficient:

Only bodies of the form return t are allowed.

Translating the example from Fig. 5.34 to functional update style such that it com-
plies with this restriction gives the program shown in Fig. 5.35. Where previously
some method had return type void, it now has the type of the interface it was speci-
fied in, in our example: Expr. Accordingly, a method implementation that modified
a field, setting it to some value v, now returns a new object with that field initial-
ized with v, as in the method implementation for modn in class Num. Thus, a call to
a method that previously had return type void now returns a new object. In the
example, method modn in class Add calls modn on the fields of type Expr (a recursive
structure); in functional update style, these calls return objects of type Expr which
are then passed as arguments to return a new object instead of recursively modifying
the current object.

The modifications that turn this restricted Java subset into the codata fragment
can be described as consisting of two steps. The first eliminates the last remaining
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Interfaces:

φ(interface T {
−−−−−−−→i

Ti mi(
−→j
T j

i ) }) = codata T {
−−−−−−−→i

mi(
−→j
T j

i , Ti) }

Classes:

φ(class c impl. T {

−−−→kTk yk ; c(
−−−→kTk yk ){

−−−−−−−−→kthis.yk = yk };
−−−−−−−−−−→i

Ti mi(
−→j
xj

i ){bi} }) =

function− c(
−−−−→kyk : Tk ) : T {

−−−−−−−−−−−−−−→i

mi(
−→j
xj

i , k̄i)⇒ φ′(bi) }

Bodies (only return, macro same as in Fig. 5.33):

φ(return t) = µ{k̄⇒ φ(t)� k̄}

Terms:

φ(x) = x
other syntactic abstractions and macros same as in Fig. 5.33

No object initialization or statements

FIGURE 5.36: Translating a functional update Java subset into PF .
(Syntactic abstractions are a subset of those in Fig. 5.33.)

traces of mutability. Due to the restrictions imposed on the macros, storage cells
could not be modified anymore anyways, thus it is actually possible to reuse the
same surface syntactic abstractions, merely changing the macros specified for these.
The second step does change the syntactic abstractions, but in a superficial way.

Let us consider the new macros of the first step, shown in Fig. 5.36. Since we
restricted bodies to only return clauses, the only place where (using the previous
macros) statements for variable assignment were still possible was in object initial-
ization. But we do not use mutable state, and hence fields, anymore, so we can
just directly translate a class to a producer function, simply ignoring the assign-
ments specified in the constructor and making assignment statements unnecessary.
A class is now really just a different notation for a producer function. In line with
this removal of field storage, variables can now be taken over unchanged, eliminat-
ing OpenBox; the other macros for terms are orthogonal to issues of mutable state
and stay the same.

Now it is rather straightforward to see that these remaining syntactic abstractions
are merely a notational variation of those of the codata fragment. This is obviously
case for the interface abstraction. As mentioned, one can ignore the assignments in
constructors, hence classes are also just a variation of producer function syntax; that
is, if we remove the now superfluous keyword return. The syntax of terms is also
fully identical once we likewise remove the keyword new.

5.4.3 Program transposition and the Expression Lemma

After the preparatory steps above we have arrived at a program in the codata frag-
ment, shown in Fig. 5.37 (top), which can be transposed to obtain a data fragment
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C := {Expr}, D := {(Expr, add), (Expr, modn)},
F := {(Expr, Num), (Expr, Add)},
ΣD := {(Expr, eval) 7→ ((), Int), (Expr, modn) 7→ ((Int), Expr)},
ΣF := {(Expr, Num) 7→ (Int), (Expr, Add) 7→ (Expr, Expr)},
F := {
(Expr, Num) 7→ {eval 7→ return(x), modn 7→ Num(x % y)},
(Expr, Add) 7→ {eval 7→ eval(x1) + eval(x2), modn 7→ Add(modn(x1, y), modn(x2, y))}}.

D := {Expr}, C := {(Expr, Num), (Expr, Add)},
F := {(Expr, eval), (Expr, modn)},
ΣC := {(Expr, Num) 7→ (Int), (Expr, Add) 7→ (Expr, Expr)},
ΣF := {(Expr, eval) 7→ ((), Int), (Expr, modn) 7→ ((Int), Expr)},
F := {
(Expr, eval) 7→ {Num 7→ return(x), Add 7→ eval(x1) + eval(x2)},
(Expr, modn) 7→ {Num 7→ Num(x % y), Add 7→ Add(modn(x1, y), modn(x2, y))}}.

FIGURE 5.37: Running example in the codata fragment (top) and data
fragment (bottom).

Map data consumers to morphisms:
J f 7→ −−−→c 7→ tK := LJ f 7→ −−−→c 7→ tKalgMJTK, where f = (T, ...)

Map data consumers to algebras:
J−Kalg : (F→ (C 7→ t))→ {h : F(B µF) −→ (B µF) | F, B : C→ C}

J f 7→ −−−→c 7→ tKalg :=
`−−−−−−−→iJ( f , ci, ti)K

if ΣF( f ) = ((), Tpr) and ∃T s.t. for all ci:
ci = (T, ...) ∧ (ΣC(ci) = Tn ∨ ∃−→Tpr.ΣC(ci) =

−→
Tpr)

J f 7→ −−−→c 7→ tKalg :=
`−−−−−−−−−−−−−−−−−−−−−−−−→i

((inJTK ◦ ιi) ◦ −) ◦ (J( f , ci, ti)K)µJTK

if ΣF( f ) = (
−→
Tpr, T) and for all ci:

ci = (T, ...) ∧ (ΣC(ci) = Tn ∨ ∃
−→
T′pr.ΣC(ci) =

−→
T′pr)

Map data consumer equations to distributive laws:
J−K : F×C× t→ {η : FB −→ BF | F, B : C→ C}

J( f , c, t)K := FV(t) 7→ t : (Π
−−→
JTprK)JTprK −→ JTprK(Π

−−→
JTprK),

if ΣC(c) =
−→
Tpr, ΣF( f ) = ((), Tpr)

J( f , c, t)K := −→i≤nxi 7→ t
−−−−−−−−→i≤n
[ f (xi) 7→ xi] : IdnJTprK −→ JTprKIdn,

if c = (T, ...), ΣC(c) = Tn, ΣF( f ) = ((), Tpr)

J( f , c, c(
−→
t ))K := FVx(

−→
t ) 7→ FVy(

−→
t ) 7→ −→t : (Π

−−→
JT′prK)Id

Π
−−→
JTprK −→ IdΠ

−−→
JTprK(Π

−−→
JT′prK),

if c = (T, ...), ΣC(c) =
−→
T′pr, ΣF( f ) = (

−→
Tpr, T)

J( f , c, c(
−−−→if (...) ))K := M(n) : IdnIdΠ

−−→
JTprK −→ IdΠ

−−→
JTprKIdn,

if c = (T, ...), ΣC(c) = Tn, ΣF( f ) = (
−→
Tpr, T)

FIGURE 5.38: Categorical semantics for the data fragment.
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Map codata producers to morphisms:
J f 7→

−−−→
d 7→ tK := (J f 7→

−−−→
d 7→ tKcoa)JTK, where f = (T, ...)

Map codata producers to coalgebras:
J−Kcoa : (F→ (D 7→ t))→ {h : (F νB) −→ B(F νB) | F, B : C→ C}

J f 7→
−−−→
d 7→ tKcoa :=

a−−−−−−−→iJ( f , di, ti)K
if ΣF( f ) =

−→
Tpr and ∃T s.t. for all di:

di = (T, ...) ∧ ((∃−→Tpr.ΣD(di) = (
−→
Tpr, T)) ∨ ΣD(di) = ((), Tpr))

J f 7→
−−−→
d 7→ tKcoa :=

a−−−−−−−−−−−−−−−−−−−−−−−−→i
(J( f , di, ti)K)νJTK ◦ Idn(πi ◦ outJTK)

if ΣF( f ) = Tn and for all di:
di = (T, ...) ∧ ((∃−→Tpr.ΣD(di) = (

−→
Tpr, T)) ∨ ΣD(di) = ((), Tpr))

Map codata producer equations to distributive laws:
J−K : F×D× t→ {η : FB −→ BF | F, B : C→ C}

J( f , d, t)K := J(d, f , t)K in the data fragment semantics,
with the codata destructor (producer function) signatures used
as data consumer function (constructor) signatures

FIGURE 5.39: Categorical semantics for the codata fragment.

program, also shown in Fig. 5.37 (bottom). In the development of Lämmel and Ry-
pacek (2008), the counterpart to the Java program is a Haskell program; the next
subsection discusses differences between Haskell and the data fragment. This sub-
section defines a mapping from the data and codata fragment to categorical seman-
tics, making the informal connection between (co)algebraic programs and category
theory of Lämmel and Rypacek formally precise. Using this semantics mapping,
program transposition is compatible with the way an algebraic and a coalgebraic
program are semantically related by the Expression Lemma.

Specifically, for any two programs related by transposition, a so-called distribu-
tive law can be “extract[ed]” (Lämmel and Rypacek, 2008) (which turns out to be
the same for both programs); as we will see, this distributive law can be obtained
by combining individual distributive laws induced by the equations that comprise a
(co)data program. Any distributive law (as stated by the Expression Lemma), in-
cluding this combined distributive law extracted from the program, can be either
employed in an algebraic construction or in a coalgebraic construction, in both cases
obtaining the same morphism from the object that represents the least fixed point µF
of the relevant data type functor (also called a sum-of-products functor) F to the object
that represents the greatest fixed point νB of the relevant codata type functor (also
called an interface functor) B.

An exposition to category theory and categorical semantics is beyond the scope
of this work (the use of category theory in functional programming theory is well-
established, see for instance Meijer, Fokkinga, and Paterson (1991)). Here we focus
on the essential ideas required for a high-level understanding of the semantic map-
ping and the Expression Lemma.

The basic idea is that a (statically typed) programming language’s types are
mapped to the objects and its functions are mapped to the morphisms (or arrows) of
some category C. The concrete choice of C is not important beyond that it needs
to admit all the constructions we need, like products, sums, and exponentials; the
category of sets SET (with functions between sets as morphisms) works.

Let us begin by considering the semantics of the static typing information of a
(co)data program: its (co)data types and signatures. Under a structural reading, a
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recursive data type can be seen as the least fixed point of some “function” where
the inputs replace the recursive occurrences in the constructor signatures. The same
goes for codata types and greatest fixed points. In categorical terms, the “functions”
are functors mapping a category to some other category (which means mapping ob-
jects and morphisms), more specifically endofunctors from C to itself, and the “least
fixed points” and “greatest fixed points” are indirectly defined via the algebra and
coalgebra construction; more on this follows below. For some functor F for a data
type, the type obtained by forming its least fixed point, representing the data type
itself, is denoted by µF, and likewise for codata types with functor B and greatest
fixed point νF. For some (co)data type T, we denote the functor associated to it
according to its declaration by JTK.

As an example, the functor JNatK associated with the data type Nat is 1 + Id. As
with all functors associated to data types, this functor, which is hence also called
a sum-of-products functor, is a sum over all functors associated with the individual
constructor signatures, which in turn are products (1 is the empty product) formed
from the result of mapping the types in the signature in the following way: If the
type is a recursive occurrence of the currently considered type, map it to the identity
functor Id; otherwise map it to the constant functor for the type.22 (In particular, one
might obtain a product of several Id, say n of them, which we abbreviate Idn.) An
example for an interface functor is JIntK× Id, associated with codata type Stream with
destructors head() : Int and tail() : Stream (where we treat Int as a primitive type
Tpr for which we assume a given mapping J−K to a constant functor). Generally,
we obtain an interface functor by forming the product of the functors associated
with each destructor signature. As we saw, for destructors without arguments we
just have identity functors and constant functors. If, as in the modn destructor in the
case study example, we do have arguments, we form an exponential with the functor
associated to the arguments appearing in the exponent; for modn, this exponential
functor is IdJIntK since modn takes an Int as an argument and returns an Expr, which
is the corecursively specified codata type.

Finally, let us consider the actual dynamic content of the program, its consumer
or producer definitions. Mapping data consumers and codata producers to mor-
phisms in C is defined in Fig. 5.38 and Fig. 5.39, respectively. The idea is that a
consumer function is an algebraic fold and a producer function is a coalgebraic un-
fold. Conceptually, we replace occurrences of recursive consumer function calls23 by
holes and in this spirit map a function declaration φ to an algebra JφKalg. The algebra
can then be turned into the morphism LJφKalgMJTK that semantically represents the
function, by the fold construction24 L−MJTK for the relevant data type T. An algebra is
a morphism FX −→ X, where F is a functor and X is an object of C; in the mapping,
F is the functor associated with the relevant data type T. For example, replacing
recursive calls in the eval function with holes, we obtain

eval 7→ {Num 7→ x, Add 7→ [] + []},

which is why eval is mapped to an algebra (Int+ Id2)Int −→ Int. Operationally,
the behavior of the consumer function can be described in terms of this “holed”
definition as first computing the recursive results and then plugging them into the

22We do not consider mutually recursive types.
23We only consider simple function definitions which only refer to themselves (especially excluding

mutual recursion).
24This can easily be made precise by a categorical diagram (see e.g. Lämmel and Rypacek (2008)), by

means of which one can also define µF (and similarly for unfolds (−)B and νB), but for the purpose
of this work the usual understanding of a fold (unfold), a.k.a. catamorphism (anamorphism), from
functional programming suffices.
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relevant term, e.g. computing the results of eval for its two subterms and plug-
ging them into [] + [] in order to add them together. Where the recursive results are
located in the structure is specified by the functor for the data type, e.g. two occur-
rences in the second injection for Expr. A similar approach maps producer functions
to morphisms via coalgebras.

Mapping a function to a (co)algebra (to be used for a fold/unfold) is the central
part of our development and decisive for the Expression Lemma and its compatibil-
ity with program transposition. It is perhaps best understood when conceiving of
a program as a set of equations, which specify the result of a meeting of a consumer
(a consumer function or destructor call) and a producer (a constructor or producer
function call). Combining the subset of these equations for a specific function one
obtains the specification for that function, but considering the entire set of equations,
when two program are related by transposition, they both give rise to the same set.
This is because transposition merely rearranges the same cases contained in the func-
tion definitions into a different collection of function definitions. The mapping from
consumer functions to algebras, as well as from producer functions to coalgebras,
follows this idea, using some operators established in category theory to combine
the result of mapping equations.

Such an equation is mapped (cf. the bottom of Fig. 5.38) to a distributive law,
which is a special kind of natural transformation, a structure-preserving mapping be-
tween functors, of the form FB −→ BF. The functor F describes the form of the
input, pertaining to the relevant constructor or producer function signature; for con-
structors, the various such functors combine to form the functor associated with
the relevant data type, as explained above. The functor B describes the form of the
output, pertaining to the relevant consumer function or destructor signature; for de-
structors, the various such functors combine to form the functor associated with the
relevant codata type. For example, the first equation of the definition of the map-
ping, yielding a distributive law from (Π

−−→
JTprK)JTprK (= (Π

−−→
JTprK)) to JTprK(Π

−−→
JTprK)

(= JTprK), is for equations like that for eval and Num, where the constructor signa-
ture’s types as well as the function return type are all primitive (and hence F and B
are both constant functors), with no recursive occurrences.

The other three equations of the definition are for other kinds of equations; in
order, examples for these are, respectively, eval and Add, modn and Num, and modn
and Add.25 In line with how algebras conceptually take recursive results as inputs,
for the mapping to distributive laws recursive function calls to f inside the right-
hand sides of the equations for f are likewise considered as inputs to the components
of the distributive law. Only the last of the four kinds of equations is mapped to a
natural transformation between two non-constant functors; it is hence the only one
where the component signatures vary, being parametric in what is conceptually the
recursive result type. There, the operator M(n) is used to combine a tuple of identical
exponentials with Id in the base to an exponential with a tuple of Id in the base. For
the concrete equation for modn and Add, in colloquial (Haskell-like) terms we can
describe this as turning a pair of parametric functions of type Int → a to a single
parametric function Int → (a, a), which corresponds to the right-hand side of the
equation that specifies to apply f = modn on both subterms of Add (cf. the component
function addModn of Lämmel and Rypacek (2008)).

As mentioned, multiple distributive laws are combined to a single algebra or
coalgebra. The result is a morphism from, in the case of two distributive laws (and

25The definition does not cover all possible cases of equations in catamorphic/anamorphic pro-
grams; only the ones appearing in the running example are given (the remaining cases are similar).
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this readily generalizes to arbitrary numbers), (F1 + F2)(B µ(F1 + F2)) to (B µ(F1 +
F2)) (algebra), or from (F ν(B1 + B2)) to (B1 + B2)(F ν(B1 + B2)) (coalgebra). That
is, in order to combine the distributive laws, for one of the two kinds of functors the
relevant functor (F or B) has to be the same for both distributive laws. For example,
the algebra for modn is obtained by combining the distributive law for modn and Num
with that for modn and Add, where the functor pertaining to the output B = IdInt is
the same in both cases, and the functors pertaining to the input are F1 = Int and
F2 = Id2, respectively. For coalgebras the situation is reversed, e.g. combining the
distributive law for eval and Num with that for modn and Num to a coalgebra is possible
since B = Int in both cases.

A few words about the technical details of how the distributive laws are com-
bined are in order, since here, in general, one needs to deal with the recursive struc-
ture. In the case where the sources FB and targets BF of the distributive laws are all
constant functors, e.g. as for the algebra for eval (F1 = Int, F2 = Id2, B = Int), it suf-
fices to form their cotuple26 (for algebras), which is denoted by O, or their tuple (for
coalgebras), denoted by M. In the case with non-constant functors, it is additionally
necessary to “collapse” one recursive layer using inF : F µF −→ µF (for algebras)
or to “roll out” one such layer using outB : νB −→ B νB (for coalgebras).27 For ex-
ample, to obtain the algebra (F (µF)Int −→ (µF)Int, with F = Int+ Id2) for modn
the distributive laws for the two relevant equations for Num and Add (Int −→ IntInt

and Id2IdInt −→ (Id2)Int) are combined as follows: Precompose, for each distribu-
tive law λi, its component at µF with ((inF ◦ ιi) ◦ −), then cotuple the results. For
the first of the two distributive laws we consider, the precomposition means that
the morphism that comprise the target exponential IntInt are precomposed with
inF ◦ ι1, such that the target exponential becomes (µF)Int (accessing the component
is omitted in the relevant definition in Fig. 5.38 since the target of the distributive law
is a constant functor). For the second distributive law, the target exponential also
becomes (µF)Int, since the component at µF has the target exponential ((µF)2)Int

where the base is injected into F µF with ι2. After cotupling, the resulting morphism
has source Int+ ((µF)Int)2 (which is the same as F (µF)Int) and (as we just saw)
target (µF)Int, as desired for an algebra where the result depends upon an Int. Ob-
taining coalgebras from distributive laws works in a dual fashion, postcomposing
distributive law components with outB and the relevant projection (to be precise,
postcompose with mapping these over tuples with Idn) and then tupling the results.

The Expression Lemma states that to any distributive law a certain algebraic con-
struction and a certain coalgebraic construction can be applied which both result in
the same morphism from µF to νB. The intention of Lämmel and Rypacek (2008) in
proving this result is to demonstrate the semantic equivalence of algebraic and coal-
gebraic programs by “extract[ing]” (Lämmel and Rypacek, 2008) a distributive law
λ, combined from individual distributive laws using the ⊗ and ⊕ operators, by in-
formally describing how these can be understood as “component functions” which
can be combined to form classes or Haskell functions. We have seen how categorical
semantics for the data and codata fragment can be given in a fully formal way, and
we conclude this subsection by showing how this notion of extracting a distributive
law is compatible with program transposition, in the sense that one obtains the same
distributive law for either of the two programs related by transposition.

26I.e. ( f O g) ◦ ι1 = f , ( f O g) ◦ ι2 = g.
27Categorically, the objects µF and νB are actually defined in terms of inF and outB respectively,

namely by the condition that (co)algebras uniquely factor through those (in the (co)algebra category,
that is; see e.g. Lämmel and Rypacek (2008) for details).



140 Chapter 5. Recovering Surface Languages in Polarized Flow

data Expr = Num Int | Add Expr Expr

eval :: Expr→ Int

eval (Num i) = i
eval (Add l r) = eval l + eval r

modn :: Expr→ Int→ Expr

modn (Num i) v = Num (i ‘mod‘ v)
modn (Add l r) v = Add (modn l v) (modn r v)

FIGURE 5.40: Haskell program corresponding to the Java program in
Fig. 5.34 (Lämmel and Rypacek, 2008).

We define a consumer or producer function definition to semantically induce a
family (a set of sets) of distributive laws

{{λi,j | j ∈ {1, ..., mi}} | i ∈ {1, ..., n}}

iff its semantics J−K are composed from these λi,j as defined in Fig. 5.38 and Fig. 5.39.
Let Fdata be a data program and Fcodata be a codata program.28

Theorem 5.6 (Transposition — Distributive laws). When Fdata and Fcodata are related
by CODATA transposition, i.e. Fdata ↔CODATA Fcodata (see Definition 5.2), then⋃

i∈{1,...,n}
Λi =

⋃
i∈{1,...,n′}

Λ′i,

where Λ1, ..., Λn (Λ′1, ..., Λ′n′) are the sets of distributive laws semantically induced by Fdata
(Fcodata).

Proof. By the definition of the data and codata fragment semantics (cf. Fig. 5.38 and
Fig. 5.39), the distributive laws semantically induced by the programs are semanti-
cally mapped from the equations which comprise the program. Since transposition
only rearranges those equations, the distributive laws, like the equations, are the
same for both programs.

This means we can combine either family of distributive laws, with⊗ and⊕, into
a single distributive law, which in both cases is the same (due to the distributivity of
⊗ and ⊕).

5.4.4 Haskell vs. data fragment in PF
The original mutable state transposition result can perhaps be likened to some hy-
pothetical mutable state extension of some functional language like Haskell. For the
example program of Lämmel and Rypacek (2008) we saw above, the use of mutable
state would be so restricted that in could be eliminated in a similar way as described
for the Java subset. In fact, to present their algebraic dual to the coalgebraic pro-
gram, Lämmel and Rypacek (2008) directly use Haskell; this dual program is shown

28Here we implicitly assume the presence of the relevant signatures and thus simply equate a pro-
gram with its function declarations F .
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Value terms (trivial):
A(c · ... ·)(

−→
tv ) = c(

−→
tv ) Axi () = xi Ayi () = yi

Computation terms:
A′( f · ·)(t

1
v, t2

v) = t1
v � f (t2

v, k̄)
A′( f · ·)(t

1
c , t2

v) = t1
c � sh( f (t2

v, k̄))
A′( f · ·)(t

1
v, t2

c ) = t2
c � sh(µ̄{n⇒ t1

v � f (n, k̄)})
A′( f · ·)(t

1
c , t2

c ) = t1
c � sh(µ̄{n1 ⇒ t2

c � sh(µ̄{n2 ⇒ n1 � f (n2, k̄)})})
(etc. for other arities)
A′return(·)(tv) = tv � k̄

AC(
−→
t ) = µ{sh(k̄)⇒ A′C(

−→
t )}

for constructs C forming computation terms

Function definitions:

M( f :: T → (T1 → ...(Tn−1 → Tn)) \n
−−−−−−−−−−−−−−−→i
f (ci

−→xi )
−→1≤j≤nyj = ti ) =

function+ f (
−−−−→1≤j≤nyj : Tj , k̄) := {

−−−−−−−−−−−→i
ci(
−→xi )⇒M′(ti) }

(for value terms useM′(return(tv)) = tv � k̄ instead)

Data type definitions:

M(data D =
−−−→i
ci
−→
Ti ) = data+{

−−−−→i
ci(
−→
Ti ) }

FIGURE 5.41: Macro embedding for a Haskell-lookalike language.

Haskell CU PF

E : τ E
exp
: N E

prd
: N

(τ1, τ2) N&M data− Pair〈A, B〉{fst(A) | snd(B)}
() ↑1 Shift〈Unit〉 (data− Shift〈A〉{sh(A)})

Either τ1 τ2 ↑ (↓N⊕ ↓M) Shift〈Sum〈N, M〉〉
(data+ Sum〈A, B〉{inl(A) | inr(B)})

Void ⊥ data− Void{absurd()}
τ → Void

n¬ N data− Neg〈A〉{neg(A)}
τ1 → τ2

n¬ N ` M data− Fun〈A, B〉{apply(A, B)}

FIGURE 5.42: “Polarity Pocket Dictionary” of Zeilberger (2008b)
(added third column: PF types).

in Fig. 5.40. But there are some differences between Haskell and the data fragment,
just as the codata fragment would be less similar to the functional update Java sub-
set when extending this subset with (non-mutable-state) features like inheritance.
However, while inheritance is not among the features that PF attempts to capture,
the difference between Haskell and the data fragment can be analyzed within the
framework PF .

As a first step, we can macro-embed a small Haskell-lookalike that is a mere
notational veriation of the data fragment, as shown in Fig. 5.41, which is sufficient
for the example in Fig. 5.40. The embedding acts as if Haskell’s function type did
not exist and thus as if T1 → ...(Tn−1 → Tn) was merely its notation for a multiple
argument first-order function signature. First-order functions that discriminate on
the first argument as in the data fragment are sufficient for the kind of program-
ming with algebraic data types that is dual to the restricted form of object-oriented
programming which gives rise to a coalgebraic semantics view as considered by
Lämmel and Rypacek (2008).
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The following sketches how to get closer to actual Haskell, inspired by the “Po-
larity Pocket Dictionary” of Zeilberger (2008b), the Haskell part of which is repeated
in Fig. 5.42 (first and second column).29 In this little table Zeilberger shows how he
considers Haskell types to correspond to CU types; the added third column shows
the corresponding PF types.

In PF , the function type is just a special kind of codata with a single destructor
apply, as shown in the last row of Fig. 5.42 (in CU, combining consumer argument
types of a destructor corresponds to their negative sum `, and negative producers
need to be embedded into consumers using

n¬). So in order to bring the embedding
shown above closer to Haskell, we just have to add this little piece of the codata
fragment30 and properly deal with nested apply patterns. The resulting language
can be seen as a restriction of the data and codata language of Binder et al. (2019),
discussed in Section 2.4.1.

There we also saw how local matches enable nested patterns, and in this way the
nested constructor patterns of Haskell can also be supported, utilizing the pragmatic
extension of PF with local annotations discussed in Section 4.3.1. Regarding the as-
patterns of Haskell (x@(C...)), as already mentioned in Section 4.3.2, these may be
realized by using the other pragmatic extension discussed in that section.

A key feature of Haskell that we did not incorporate yet is lazy evaluation. Here
we build on the embedding of call-by-name of Section 5.1.3 that utilizes the Shift
type to delay computation, or the slightly more elaborate call-by-need embedding
(Section 5.1.4) that builds on the call-by-name embedding and additionally makes
use of daimonic commands. More specifically, we can give versions of the data
fragment embedding which use these evaluation strategies instead of call-by-value,
in the way the call-by-value data fragment macros generalize those of Section 5.1.1.31

However, these would not quite give us the behavior of Haskell yet, since the flavor
of CBN we considered in Section 5.1.3 always fully evaluated the pattern matched
upon argument. In Haskell, the evaluation only proceeds as far as necessary for the
discrimination specified by the pattern, e.g., for a shallow pattern for a sum type, it
ends after having determined which of the injections was applied.

In CU, the type that captures this behavior is a slightly more complex construc-
tion involving shifts, seen in the fourth row from the top of Fig. 5.42: ↑ (↓N⊕ ↓M).
Here N and M are negative types, which means that expression of these types still
contain (delayed) computation. Since they are negative, they can not directly be
combined to a positive sum N ⊕M; rather, they first must be embedded into posi-
tive types using the shift ↓ from the negative to the positive side. The shift ↑ in the
other direction then embeds the result back into a negative type. Intuitively, the con-
nection to the evaluation behavior described above can probably be best understood
when reading the type starting from the outside. The outermost shift tells us that we
have an expression with computation that will result in a value of the sum type that
the shift is applied to. But even when this computation has been carried out, there
is still computation contained in the result, since it is either of type ↓N or ↓M; it is

29Note that Zeilberger (2008b) warns: “These translations are provided only for intuition, and do not
capture all the properties of the source languages (e.g., the purity of Haskell). Establishing a formal
correspondence is far beyond the scope of this paper.” The present work likewise does not attempt
to establish a full formal correspondence to Haskell; nevertheless, the author hopes that fleshing out
Zeilberger’s ideas some more will help leverage them in the future and maybe achieve a more complete
correspondence.

30The function codata type can then itself undergo transposition again (the original defunctionaliza-
tion).

31To simplify things, here we work in the setting without function types; adding these and changing
to lazy behavior are two rather orthogonal developments anyway.
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Bodies:

φ(return t) = µ{k̄⇒ φ(t)� k̄}
φ(try {b1} catch(Exception x) {b2[x]}) =

µ{k̄⇒ µ{k̄exc ⇒ φ(b1)� k̄} � sh(µ̄{x ⇒ φ(b2)[x]� k̄})}
φ(throw t) = µ{_⇒ φ(t)� k̄exc}

enhance method signatures and calls with an additional continuation argument

for exceptions where needed (see text)

FIGURE 5.43: Extending the Java subset embedding with exception
handling.

only a value through the delaying of an expression. This corresponds to the shallow
Haskell match on the sum type which does not trigger the evaluation of the injected
terms.

As an example of how to implement a shallow Haskell match in PF follow-
ing the connection to polarity just laid out, let us consider the eval function from
the running example. As with the embedding in Fig. 5.41, this becomes a positive
consumer function, but its input type is translated differently, resulting in a type
LazyExpr following that in the fourth row of Fig. 5.42, so that we have

function+ eval(k̄ : Int) : LazyExpr := ...

with
data+ LazyExpr {Num(Shift〈Int〉) | Add(Pair〈LazyExpr, LazyExpr〉)}.

The type LazyExpr is isomorphic to the type Sum〈N, M〉 in Fig. 5.42,32 with N in-
stantiated to Shift〈Int〉 and M instantiated to the negative pair type (second row of
Fig. 5.42) where both type parameters are LazyExpr. A producer of a negative pair
can be either invoked with destructor fst or destructor snd, respectively triggering
evaluation of either the first or the second component and passing the result to the
continuation passed as the destructor argument. The bodies of eval translate to

Num(n)⇒ n� sh(k̄)

and

Add(p)⇒ p� fst(µ̄{e1 ⇒ p� snd(µ̄{e2 ⇒
e1 � eval(µ̄{n1 ⇒ e2 � eval(µ̄{n2 ⇒ +(n1, n2, k̄)})})
})}).

In both cases the evaluation of the constructor arguments still has to be triggered in
the body (so one could also ignore any of the arguments in a different implementa-
tion and they would not get evaluated at all), as desired.

5.4.5 Embedding exception handling

Let us close this section by considering a feature that can be encoded in PF that is
present, looking at the languages that Lämmel and Rypacek (2008) use for illustra-
tion, in real Java but not in standard Haskell: exception handling. We also take a
look at how exception handling constructs, as encoded along the lines presented in
Section 5.3.1, are preserved when a program containing them is transposed.

32Note that the negative-to-positive shifts ↓ do not explicitly appear in the PF type, since type pa-
rameters in PF are polarity-agnostic.
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Fig. 5.43 shows the extension of our embedding with exception handling. The
only syntactic category for which a new syntactic abstraction is added are method
bodies. The try-catch construct itself consists of two bodies b1 and b2; b1 is either a
return clause or a throw clause and b2 catches the exception, bound to variable x,
that is possibly thrown by b1, either directly with throw or during the evaluation of
the term given in the return clause. Of course, if b1 does not throw an exception,
the result of running the try-catch construct is what b1 returns. If b1 does throw an
exception, the responsibility of producing the result falls to b2 (which has the ex-
ception bound to x in its environment). Macro-wise, try-catch is implemented by
nested µ-abstractions which bring two continuations into the context for b1. With
continuation k̄exc, one can pass control to the catch clause, while continuation k̄ is
simply the outer continuation that the entire try-catch returns its result to. Similarly
to the macro for calling a continuation term from Section 5.3.1, a throw ignores its
outer continuation and passes its result directly to k̄exc. For simplicity, we assume
that k̄exc is a fresh variable not used by the programmer and different from any other
variable appearing in macros. Every method signature of a method which is called
in an environment in which k̄exc is available is now translated such that it does not
only have the continuation argument for its result, but also a continuation argument
for the “exceptional” result (which in patterns will also always be called k̄exc), in-
serted just before the result continuation argument.33 In the translation of a call of
such a method, k̄exc is passed as that new argument if it is available in the environ-
ment (otherwise, a dummy continuation like µ̄{_ ⇒ Error} is passed instead). In
our very restricted variant of exception handling using only this globally recogniz-
able identifier k̄exc and no exception subtypes specified for throw clause argument
variables, a thrown exception is always caught by the next surrounding try-catch.

As an example, consider adding a new class Err as an implementation of inter-
face Expr, as shown in Fig. 5.44 (modifying the example of Fig. 5.35). Both its meth-
ods directly throw exceptions, and since in the method bodies of Add the methods
are called on the recursive subtrees, the bodies of Add are now changed, wrapping
the calls in a try-catch (the catch clause simply returns some dummy value). Let
us now look at how the result of embedding this into PF , using the macros shown
above, looks like; we focus on the body of Add#eval (the try-catch). This becomes:

µ{k̄⇒
µ{k̄exc ⇒ φ(return l.eval() + r.eval())� k̄}
�
sh(µ̄{_⇒ φ(return − 1)� k̄})},

where φ(return l.eval() + r.eval()) is:

l � eval(k̄exc, µ̄{v1 ⇒ r � eval(k̄exc, µ̄{v2 ⇒ +(v1, v2, k̄)})}).

After transposition with respect to Expr, this µ-abstraction is now found in the
consumer function corresponding to destructor eval (which encodes the method
eval). The signature of this consumer function has two continuation arguments,
like the destructor:

eval(Exception, int)

We can now eliminate the differences between this resulting program and an equiv-
alent data fragment program that captures its algebraic programming essence as

33The only reason for that order is that it makes examples more legible than adding it at the end,
since this argument is always a variable in calls, as opposed to the result continuation which may be
specified in greater detail.
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interface Expr { int eval(); Expr modn(); }

class Num implements Expr {...}

class Add implements Expr {
Expr l; Expr r;

Add(Expr l, Expr r) { this.l = l; this.r = r; }
int eval() {

try {
return l.eval() + r.eval();

} catch(Exception e) {
return − 1;

}
}
Expr modn(int v0) {

try {
return new Add(l.modn(v0), r.modn(v0));

} catch(Exception e) {
return new Add(new Num(v0), new Num(v0));

}
}

}

class Err implements Expr {
int eval() { throw new Exception("implementation missing"); }
Expr modn(int v0) { throw new Exception("implementation missing"); }

}

FIGURE 5.44: Java example with exception handling (modified ver-
sion of Fig. 5.35).
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φ(case callcc (fn exit⇒ Right t1) of Left _⇒ t2 | Right x ⇒ x) =

µ{k̄⇒ µ{k̄exc ⇒ φ(t1)� k̄} � sh(µ̄{_⇒ φ(t2)� k̄})}
φ(throw exit (Left ())) = µ{_⇒ tt()� k̄exc}

FIGURE 5.45: Exception handling macros for an ML-lookalike.

open SMLofNJ.Cont

datatype (’a, ’b) either = Left of ’a | Right of ’b
datatype expr = Num of int | Add of (expr * expr) | Err
(* expr * (unit,int) either cont -> int *)

fun eval (Add (l, r), _)

= (case callcc (fn exit⇒ Right (eval (l, exit) + eval (r, exit)))

of Left _⇒ ~1

| Right i⇒ i)
| eval (Err, exit)

= throw exit (Left ())

| eval (Num v, _) = v
...

FIGURE 5.46: ML program obtained viaPF -transposing the Java pro-
gram in Fig. 5.44.

outlined above, as far as the other syntactic abstractions are concerned, while pretty
much keeping the syntactic abstractions utilized for Java exception handling.

More precisely, we can for instance view the data fragment as a notational vari-
ation of a first-order restriction of ML and use the macros from Fig. 5.45 to add a
restricted variant of ML error handling with call/cc (Danvy and Lawall, 1992) to
this ML-lookalike language.34 These syntactic abstractions are structurally the same
as those for Java exception handling (Fig. 5.43) and so is their mapping to PF (ex-
cept for the Exception x, which was not used in the example, not being accessible
anymore, i.e. we replace Exception with Unit). Fig. 5.46 shows the result of PF -
transposing the Java program in Fig. 5.44, macro-expressed to appear like ML.35

Compared to real ML error handling, the syntax forces the programmer to spec-
ify how to respond (e.g. by returning −1) to the error case globally per call/cc.
Specifically, this is realized by an artificially required case discrimination for an
either type wrapping the call/cc, wrapping the regular result with Right and “send-
ing” the exception as a Left ()); this reflects the catch-clause of Java. Observe also
how “sending” the exception happens by using throw with the exit continuation,
which is, as mentioned above, an argument of eval; importantly, and differing from
Java, this exit argument also appears in the surface language.36

34We deliberately employ call/cc instead of the simpler exception handling mechanism that also
exists in ML, in order to demonstrate further processing of the running example program (together
with a corresponding adaptation of the macros) to more fully use the power of call/cc (see below).

35This program is valid SML/NJ (http://www.smlnj.org/); tested with version 110.98.1.
36In SML/NJ, there is a type constructor cont (in module SMLofNJ.Cont) which corresponds to the
PF continuation type judgment.

http://www.smlnj.org/
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...

(* expr * (unit,int) either cont -> int *)

fun eval (Add (l, r), _)

= callcc (fn exit⇒ eval (l, exit) + eval (r, exit))

| eval (Err, exit)

= throw exit ~1

| eval (Num v, _) = v
...

FIGURE 5.47: ML program adapted from that of Fig. 5.46, using
call/cc more liberally for more localized error responses.

As we did with Haskell in the previous subsection, restrictions like the artificially
required emulation of catch-clauses can be tracked in a formally precise way within
PF . Besides allowing to localize control over responding to error cases, we can also
lift the first-order restriction and adapt the exception handling macros accordingly
to obtain a full-fledged call/cc to which one can actually pass a first-class function
(what is called call/cc in Fig. 5.43 actually just has the power of a let/cc); the formal
details of this development in PF were discussed in Section 5.3.3. Changing the
macros to support full call/cc in this way, one can then for instance restructure the
program in Fig. 5.46 to locally respond to error cases, e.g. in the Err case throw −1
to the exit continuation, as shown in Fig. 5.47.

Overall, transposing a program in the functional update restriction fragment of
Java that we considered, enhanced with simple exception handling, gives us a pro-
gram in a language with a syntax that reuses the syntactic constructs for exception
handling. We can make some superficial changes to the notation to obtain (a frag-
ment of) some functional language that supports some form of exception handling,
like ML. In summary, macro embeddings together with transposition in PF give us
a rather straightforward path from an object-oriented language like Java to a func-
tional language like ML, when both support exception handling. In other words,
when considering a certain feature that impacts control flow in a way not present
in the data and codata languages, like exception handling, we see that PF , together
with appropriate macros for that feature, conservatively extends the transposition
process in the sense that the constructs of the feature itself stay as they are.

For instance, this process may serve as the building block for tools that allow
to automatically analyze what some object-oriented program using exception han-
dling, say, in Java, could have as a semantic equivalent in, say, ML. The tool could
then inform the programmer of the relationship between the exception handling fea-
tures and how this manifests in the programs, and, extending what was mentioned
in Section 2.4.1, allow them to convert between the programs at the press of a button.
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Chapter 6

Outlook: Towards Systematic and
Symmetric Design

In the previous chapter, we have seen how various surface languages can be embed-
ded into the foundational system PF by sets of macros. In particular, as shown in
the case study in Section 5.4, this enables to systematically compare different surface
languages and semantically equivalent programs specified in different languages,
especially when they are related by program transposition in the sense of the Ex-
pression Problem. It also allows to factor soundness proofs into (a) demonstrating
correspondence between the surface language and the image of the macro embed-
dings within PF , and (b) the soundness proof for PF , which can be reused for each
surface language. Part (b) was developed in chapter 4 closely following logical in-
tuitions about proofs, refutations, contradictions, and their term assignments. All of
this would not have been possible without the large stack of prior work on trans-
ferring ideas between programming languages and logic that began with Curry-
Howard. The present work’s approach has been to “zoom out”, trying to find a
wide view to utilize this prior knowledge to better deal with the complexity of the
programming language design space, specifically, by more economically exploiting
the extensibility duality and the De Morgan duality. The foundational system PF
consolidates these dualities and allows to start leveraging this knowledge for a more
systematic exploration of the design space.

Of course, this work is only a tiny piece on the road to a more systematic pro-
gramming language design methodology that integrates the logical perspective via
the “enhanced” Curry-Howard correspondence. In part, its intention is to provide
motivation for taking a more holistic approach to programming language analysis
and design, systematically integrating results from various related areas, potentially
helped by a common “standard” formal framework. The latter also has the poten-
tial to allow better reasoning about the design and to arrive at reasonable design
prescriptions, i.e. it could lead us to a type V theory in the terminology mentioned
in the introduction. Now, besides what has been discussed for PF , there are some
other more or less directly related areas of research, in the broadest sense part of the
Curry-Howard program, that seem promising enough to drive forward the design
methodology to consider their integration into the “standard” framework. Thus,
these final pages will be devoted to briefly summarizing these areas and speculating
about their potential impact and connections to be unveiled, in the spirit of what this
work has attempted for the extensibility and De Morgan dualities.

Dialogues, Sessions, and Communication As was briefly hinted at, one possibil-
ity of further development of PF is to extend it into a kind of session type (Honda,
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1993; Honda, Vasconcelos, and Kubo, 1998) system with what could be called ses-
sion data and codata types. The reason for considering this as a consequential next
step is the conceptual connection between polarity and the dialogical (i.e. game se-
mantics) view (due to Lorenzen (1967)) of proofs and refutations as games between
two participants, the proponent and the opponent. This dialogical interpretation
subsumes the usual interpretation of classical logic propositions as just truth val-
ues, i.e. zero game moves, and that of intuitionistic logic as proof terms, i.e. only
one move (Blass, 1992). In a Curry-Howard-like way, the proponent and opponent
and the formulas they prove/refute correspond to a client and a server and their
interface specifications, i.e. session types (Caires and Pfenning, 2010). This is a set-
ting in which it is natural to think of resources being exchanged and in particular
their amount being tracked, which relates this to linear types (based on linear logic,
due to Girard (1987)), which Wadler prophesied to have the potential to “change
the world” (Wadler, 1990). In a nutshell, a linear type system is like a substructural
logic, dropping the weakening and contraction rules from classical or intuitionis-
tic logic, which is why types/propositions cease to be ephemeral and give rise to a
resource interpretation. Similarly to how the dialogical interpretation is more gen-
eral than traditional interpretations, the interpretation of proofs as programs can be
generalized to proofs as processes (Abramsky, 1994), with propositions corresponding
to session types (Caires and Pfenning, 2010; Wadler, 2012). Research on the precise
correspondence between linear logic and process calculi (Abramsky, 1994; Bellin and
Scott, 1994), and, eventually, session types (Caires and Pfenning, 2010), has in partic-
ular led to systems in which the type system guarantees deadlock freedom (Wadler,
2012).

An interesting theoretical aspect that makes clear the placement ofPF “between”
practical surface languages and session type systems is the correspondence between
cut elimination and communication (between processes) (Caires and Pfenning, 2010;
Wadler, 2012) that goes along with “proofs as processes, propositions as session
types”. Cut elimination normalizes evidence for a (contingent) contradiction, which
is also the logical correspondence of reduction in PF (cf. the evidence shrinking
argument used in the soundness proof of PF in Section 4.2.2). Reduction in intu-
itionistic natural deduction based surface languages also corresponds to normaliza-
tion of evidence, namely of proofs. So communication takes the place of reduction
in Wadler’s “change[d] [...] world” (Wadler, 1990), with the reduction in PF taking
sort of a middle ground by normalizing commands (corresponding to contradiction
evidence) instead of natural deduction based terms, but not yet truly giving rise to a
communication interpretation. The “interaction” between producers and consumers
is somewhat reminiscent of a dialogue and thus communication (with polarity dic-
tating the “flow” of the communication), but still removed from being able to model
interaction of processes. Finding the proper way to generalize PF into a system
that allows to emulate processes and sessions is also of practical interest, enabling to
leverage the design framework and its duality economy for concurrent programming,
which is prevalent in the modern world.1

1Wadler (2012) remarks that “today, mobile phones, server farms, and multicores make us all con-
current programmers” and adds that (as of the time of his writing) “[m]any process calculi have
emerged [...] but none is as canonical as λ-calculus, and none has the distinction of arising from Curry-
Howard.” The author thinks that this quest for “canonical” systems is important (and has already
been significantly advanced by Wadler and others), but that the bias towards the λ-calculus (cf. e.g.
Section 3.1) is not necessarily helpful for it.
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Controlled Symmetry Breaking Another avenue for future work, mentioned in
Section 5.3, arises from the question of how to recover delimited continuations in PF .
Undelimited continuations are at the conceptual heart of this system, which pro-
vides a straightforward path to the embedding of languages with undelimited first-
class continuations (see Section 5.3). However, delimited continuations are reified
“slices” of the whole continuation frame, which means that conceptually they are
like functions, with the delimiter placed where this function outputs its result; the
type of this output is called the answer type. Now, in PF , as in the calculus CU that
it is based on, we can recover first-class functions by a negative (data) type. So one
option could be to use functions emulated like that for delimited continuations, but
then delimited and undelimited continuations would be realized in two quite differ-
ent ways. In particular, this would not reflect the idea that a delimited continuation
is “sliced” from an undelimited one. A possible alternative comes from a work of
Zeilberger (2010) (in a CU-related setting) that relates delimited continuations with
deliberately breaking the symmetry between the negative and the positive polarity
in a controlled way: the answer type is necessarily positive.

This follows the intuition that the purpose of the computation that is a slice of
an (undelimited) continuation is to “produce some piece of observable data” (Zeil-
berger, 2010); positive types specify this data canonically, other than negative types,
which specify the canonical ways to destruct data. Zeilberger (2010) introduces what
he calls “generalized polarity”, for which he moves from the classical setting, start-
ing from a system similar to CU (Zeilberger, 2008b) (discussed in Section 3.3 and
forming the basis for PF ), back to an intuitionistic system. Remember that intu-
itionistic logic is characterized by a single consequence, corresponding to the sin-
gle output each term produces in “normal” surface languages. Formally, Zeilberger
generalizes the command typing atom # to an ultimate consequence P, i.e., the (posi-
tive) answer type (that types the result of the delimited continuation). The rule for
the positive negation connective, which embeds positive refutations (which concep-
tually correspond to undelimited continuations) into proofs (values) is accordingly
parameterized by P′ (P is used for the input type) such that it types delimited con-
tinuations with answer type P′.2

∀(∆⇒ p
val
: P) : Γ, ∆ ` φ(p)

cmd
: P′

Γ ` (λφ)
cnt
: P . P′

The symbol . is part of the judgment notation; read (λφ)
cnt
: P . P′ as λφ is a de-

limited continuation with input type P and answer type P′. Crucially, the general-
ization of # to a consequence P′ also requires to change the rule for negative nega-
tion, which types expressions (negative continuation in the terminology we used for
PF ), which can be used to model laziness. In a nutshell, a negative proof of such
a negated negative proposition requires to lead any contingent negative refutation
to a contradiction, as in CU, but this must now also be polymorphic over consequences
(Zeilberger, 2010), i.e. the proof-by-contradiction argument must work for arbitrary
answer types.

We will not discuss further details of the system of Zeilberger (2010), but note that
his overall résumé is “that “intuitionistic polarity” arise[s] from the same principles

2The rule is taken from Fig. 3 of Zeilberger (2010), slightly adapted to fit the notation of Zeilberger
(2008b).
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as classical polarity, but in the more general framework of delimited continuation-
passing, and that this setting enriches constructive logic with delimited control op-
erators.” Viewed the other way around, we can say that to obtain a Curry-Howard-
like correspondence for delimited control, we can generalize the classical setting to
an intuitionistic one in a principled way. Doing so gives up on the elegant symmetry
of classical logic, but in a controlled way that carves out the essence of “delimiting”.
Speculating on further development of PF , this could mean that it might be helpful
to add a meta-layer to the system which allows to analyze certain generalizations
like that of command typing. It is an open question of whether this also indicates
that this meta-layer should even allow to derive PF and PF -related, but construc-
tive systems by instantiating it somehow, and, if yes, if and how to combine this
approach with the macro embedding approach discussed in the present work. The
more fundamental, dialogical approach to “constructive-ness” discussed above may
be instrumental in better understanding this. As a final remark, the logical inter-
pretation of answer types as being related to positive polarity also seems to beg the
question of whether there is a somehow dual correspondence: Is there something
like a “question type” related to negative polarity?3 Adding a meta-layer to the
framework might facilitate systematically discussing questions such as this one.

Extensibility Symmetry for the Lambda Cube As mentioned in Section 2.4.2, other
quite obviously interesting extensions of PF could be generalizations of the sys-
tem along the other dimensions of the lambda cube (Barendregt, 1991) besides the
parametric polymorphism one (terms depending on types; already realized in Sec-
tion 4.4), i.e. for types depending on terms and types depending on types. Such a
generalization would have to be done in a way that upholds the extensibility sym-
metry (which can be made technically precise as program transposition being a sin-
gle, polarity-polymorphic transformation). Just as this required GA(Co)DTs in the
case of parametric polymorphism, for the other lambda cube dimensions it is like-
wise to be expected that finding these symmetric spots may require more general
variants of type declaration mechanisms than standardly considered.

Logics for Modularity Remember that we started our analysis of the extensibility
duality with a common goal of programmers and logicians: reuse of programs/proofs
(cf. Section 2.1.4). With data and codata one can structure the program in two differ-
ent ways (cf. also the notions of algebraic and coalgebraic programming discussed
in Section 5.4.3), which also corresponds to two different reuse facilities. With both
consumer and producer functions one can abstract over a certain pattern, and they
both are the smallest reusable unit of the respective approach, and they provide a
well-defined interface for instantiating the pattern. On another conceptual level, a
(co)data type declaration is itself a kind of an “instantiable” unit of the program, in
the sense that it prescribes the (interface) structure that the function units have to
adhere to, and which can hence be relied on at their usage sites (like a consumer
function being able to be applied to any constructor call of its data type). A general
term for such a unit is module. The characteristics of a module system include that
it allows to structure the program into smaller pieces to help control its complex-
ity and that modules refer to each other by well-defined interfaces; usually some
kind of information hiding is also involved, where modules have a private part and a
public one which is often only their interface (but see below). Modularity is an im-
portant aspect of programming languages that this work, and hence the system PF ,

3This idea is due to Ingo Skupin (personal communication).
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does not attempt to cover in its generality, beyond the specific instances of consumer
and producer functions. However, due to the practical relevance and the relation to
foundational concepts behind PF just sketched, let us take a (speculative) look at
how research on modularity, particularly if it likewise attempts to port ideas from
the realm of logic, could be integrated in the further development of a foundational
system based on PF .

But before we start, it is worth reconsidering the nature of transfer between the
realms of logic and programming languages. Throughout this work, we have only
considered the kind of transfer that is, in essence, the same as that of the origi-
nal Curry-Howard correspondence. That is, we were always considering program
terms, in the broadest sense, as corresponding to evidence (e.g. proofs, refutations,
contradictions), and as a natural consequence along with this the correspondence
between types, in the broadest sense, and propositions (or more generally logical
formulae; possibly also distinguishing different judgments). But that is not the only
conceivable way how results from logic can inform programming language research.
For instance, we can model the semantics of a program in some form of logic, or more
generally some formal system. We have seen an example of this when demonstrat-
ing the compatibility of program transposition and the Expression Lemma, which
is a semantic categorical statement, i.e. the relevant formal system for modelling
the semantics is category theory. When we want to examine whether a program ful-
fills its intended purpose, it can instead often be useful to work with (some kind of)
first-order predicate logic, in which we can state some property to be verified, e.g. the
commutativity of some function.

Research on such forms of knowledge representation informs programming lan-
guage research when it comes to how to best design a language and its module
system to facilitate modular reasoning; for instance, how to enable the programmer to
easily verify the correctness of some module assuming that the modules is references
are correct. Regarding transfer from the realm of logic, it has been noted by Os-
termann et al. (2011) that while classical logic has informed traditional approaches
to modularity, like functional abstraction and abstract data types, this may not be
the best perspective for (somewhat) more recent developments like aspect-oriented
programming (AOP). Specifically, information hiding is deliberately weakened in
these approaches for practical reasons, for instance to facilitate the modularization
of cross-cutting concerns like, to cite a classic AOP example, signaling that a display
update has occurred (Kiczales and Mezini, 2005). Ostermann et al. (2011) point out
that the underlying discrepancy is that programmers, for concrete practical benefit,
do not reason classically (in the sense of classical logic); they forego classical rules
of reasoning, like monotonicity of entailment, i.e. that a truth of some statement can-
not be invalidated by adding further axioms (assuming they preserve consistency,
of course). Rather, programmers often operate with the understanding that a certain
property, considered in the context of some module, may be invalidated by a change
within a different module, for instance for some cross-cutting concern, contrary to
the principles of information hiding and classical reasoning. In summary, a certain
awareness of implementation details of other modules is arguably not something
that can always be avoided. To still be able to reasonably control the complexity
of reasoning about properties of some system, upholding some degree of modular
reasoning, Ostermann et al. (2011) propose to turn to non-classical logic, for instance
non-monotonic logic, for guidance on the proper kind of modularity for program-
ming.

The author thinks that a design framework for programming languages, likePF ,
if its design prescriptions are to truly be of practical relevance (especially for large
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code bases where modularization is essential), generally needs to integrate this in-
sight that classical reasoning is often not sufficient. But there is also a more direct
relation to PF that should be kept in mind when further developing it. As hinted at,
this system already contains a rudimentary “module system”, allowing to write new
“modules” in the form of producer or consumer functions, together with (co)data
type declarations. In Section 2.4.1, it was argued that languages with both data and
codata that allow the programmer to choose how to decompose a part of a program
into modules are an improvement over existing languages which force or strongly
encourage a certain decomposition, like OO languages which inherently favor the
producer decomposition (classes) or many functional languages which inherently
favor the consumer function decomposition. The general situation in many existing
languages is referred to by Tarr et al. (1999) as the tyranny of the dominant decompo-
sition, regarding which Ostermann et al. remark that the “best” decomposition de-
pends on the “points of view of the different stakeholders” (Ostermann et al., 2011).
The choice of decomposition also entails an “information hiding policy” (Ostermann
et al., 2011).4 Languages with symmetric data and codata at least allow the choice
of different decompositions per type (one can either use a data or a codata type), so
one could say that different “stakeholders” can get their way with at least part of the
program, following their desired information hiding policy. Data types make public
the available producers and in a sense keep private the consumers, i.e., they do not
guarantee which consumers exist and which do not, allowing to, e.g., independently
add new ones, and vice versa for codata types.

However, even when one stakeholder prefers the data type decomposition and
the other the codata type decomposition, symmetric data and codata in one lan-
guage can have a concrete benefit. Under the assumption that at some points dur-
ing the development process the whole program (or rather the part for the relevant
data/codata type) is available, program (matrix) transposition allows to switch the
decomposition, giving priority to one stakeholder’s preference at certain times and
to the other stakeholder’s at other times. In the interpreter example of Section 4.3
and Section 4.4, one stakeholder could start writing, using codata, the interpreter in
the meta-circular style, since they are not concerned with low-level implementation
details; transposition gives these for free by “inventing” a closure data type and then
a different stakeholder who is knowledgeable about such details can refine the pro-
gram, working in this data type decomposition. This a rather small and theoretical
example from the field of programming languages itself, but it is conceivable that
comparable situations arise in different contexts and for larger code bases. Being
able to easily implement program transposition depends crucially on the symme-
try between data and codata, so with this argument for the relevance of program
transposition we also have additional support for the importance of this symmetry,
besides general design parsimony.

Closing Words This ends the speculative outlook on incorporating related research
into the design framework. It is the impression of the author that a lot of research
effort that in the broadest sense affects the design of programming languages has
been and still is invested into many of these particular areas, advancing them indi-
vidually. There is nothing wrong with that, but it is worth pointing out that striving

4In the words of Ostermann et al. (2011): “What one stakeholder would hide as an implementation
detail behind an interface is of primary importance to another stakeholder, who would hence choose a
different decomposition that exposes that information.”
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to keep within sight of related fields is likewise important. The author’s central pro-
posal is hence to systematically develop a framework that is able to support this
endeavor, especially uncovering connections that have the potential to cut down
the problem space. An important yardstick for this framework is that it should in-
corporate known symmetries and other “economic” knowledge; it should also stay
connected to the problems programmers face in practice. Such a foundational sys-
tem can never be quite finished, and will not even be able to cover all aspects of
programming language design known at a given time. Nevertheless, the present
work has attempted to motivate the utility of such a system. It only had the limited
goal of developing a parsimonious unified framework for the extensibility and De
Morgan dualities, but, considering this, it is able to recover a rather wide variety of
linguistic features, demonstrating that from the proper perspective the design space
does not seem quite so vast any more. Arguably, this more holistic perspective is
already more prevalent in the study of logic and formal systems, so the transfer of
ideas between programming languages and logic that began with Curry-Howard
will continue to be a great asset. Making use of the wider Curry-Howard corre-
spondence, while trying to take a more holistic approach to the analysis and design
of programming languages can sustainably transform programming languages and
with them the everyday work of software developers.
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Appendix A

Lemmas for Soundness Proofs

A.1 Logical core

The following lemmas are for the logical core of PF .

Lemma A.1 (Term substitution). For all producers p, substitutions σ and argument con-

texts Ξ, if Ξ `Σ p
prd
: T and `Σ σ : Ξ, then `Σ pσ

prd
: T. And analogously for consumers.

Proof. By simultaneous structural induction over producers and consumers. We
show just the case for a producer p, the consumer case is analogous. It is p = Xσ′

for some X and some substitution σ′. By inversion, we know Ξ `Σ σ′ : Ξ′ for a
certain Ξ′ as given in the signature of X, and we need to show `Σ σ′σ : Ξ′ for that
same Ξ′. Now σ′ is a list of assignments from variables to terms (producers or con-

sumers), say
−−−−→ixi 7→ ti , and Ξ′ is a list of types assigned to variables, say

−−−−→i

xi
Ji: Ti . To

show `Σ σ′σ : Ξ′ we need to show `Σ tiσ
Ji: Ti for all the i. By inversion, we know

Ξ `Σ ti
Ji: Ti, and thus we have the desired term typing by the induction hypothe-

sis.

Lemma A.2 (Command substitution). For all commands C, substitutions σ and argu-

ment contexts Ξ, if Ξ `Σ C
cmd
: # and `Σ σ : Ξ, then `Σ Cσ

cmd
: #.

Proof. We know C = p � c for some producer p and consumer c, and by inversion

Ξ `Σ p
prd
: T and Ξ `Σ c

cns
: T, for some T. Thus, by the term substitution lemma,

`Σ pσ
prd
: T and `Σ cσ

cns
: T. Since Cσ = pσ � cσ, we have the desired conclusion

by T-CMD.

A.2 Polymorphic logical core

The following lemmas are for the logical core of the polymorphic extension of PF .

Lemma A.3 (Term substitution). For all producers p, substitutions σ and argument con-

texts Ξ, if Ξ `Σ p
prd
: T and `Σ σ : Ξ, then `Σ pσ

prd
: T. And analogously for consumers.

Proof. By simultaneous structural induction over producers and consumers, virtu-
ally identically to the proof of Lemma A.1. We again only consider a producer p
(consumer analogous). It is p = X〈

−→
T′ 〉σ′ for some X and

−→
T′ and some substitution

σ′. By inversion, we know Ξ `Σ σ′ : Ξ′
−−−−−→
[A 7→ T′] for a certain Ξ′ and

−→
A as given

in the signature of X, and we need to show `Σ σ′σ : Ξ′
−−−−−→
[A 7→ T′] for that same Ξ′
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and
−→
A . Now σ′ is a list of assignments from variables to terms (producers or con-

sumers), say
−−−−→ixi 7→ ti , and Ξ′′ := Ξ′

−−−−−→
[A 7→ T′] is a list of types assigned to variables,

say
−−−−→i

xi
Ji: Ti . To show `Σ σ′σ : Ξ′′ we need to show `Σ tiσ

Ji: Ti for all the i. By

inversion, we know Ξ `Σ ti
Ji: Ti, and thus we have the desired term typing by the

induction hypothesis.

Lemma A.4 (Command substitution). For all commands C, substitutions σ and argu-

ment contexts Ξ, if Ξ `Σ C
cmd
: # and `Σ σ : Ξ, then `Σ Cσ

cmd
: #.

Proof. Identical to the proof of Lemma A.2, since type parameters do not appear in
rule T-CMD.

Lemma A.5 (Type instantiation invariance). For all maps τ from type variables to types,

if Ξ ` C
cmd
: #, then also Ξτ ` Cτ

cmd
: #.

Proof. We know C = p � c for some producer p and consumer c, and by inversion

Ξ `Σ p
prd
: T and Ξ `Σ c

cns
: T, for some T. By simultaneous structural induction

over producers and consumers we show that producers and consumers themselves

are type instantiation invariant, i.e. that, for arbitrary T, Ξ `Σ p
prd
: T and Ξ `Σ

c
cns
: T imply Ξτ `Σ pτ

prd
: Tτ and Ξτ `Σ cτ

cns
: Tτ; from this we get the desired

command typing for Cτ = pτ � cτ by T-CMD. The inductive proof proceeds in
the same manner: use inversion and apply the induction hypothesis to draw τ over
the typings of the producers and consumers in the substitution that constitutes p or
c.
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Appendix B

Proof Details for Reduction
Correspondence

Proof for Lemma 5.1. It is

t1 = f @(n, m), t2 = πi(D( f ))[y 7→ m, [xS 7→ pred(n)]],

where the xS substitution only happens if i = 2, i.e. n is a successor of some number
and pred(n) refers to that number. It follows that:

M′(t1)[k0]
= n� f (m, k0)
. Ci[m 7→ m, k 7→ k0, [n 7→ pred(n)]]
= M′(t2)[k0]

Here Ci is the command in the relevant case of the translated body of f (the zero case
for i = 1 and the successor case for i = 2), so the last equation holds definitionally;
cf. how we defined the translation of function bodies.

Proof for Lemma 5.2. There are two possible rules with which t1Bv t2 could have been
derived.

For the first, we know that t1 = E ′[t′1], t2 = E ′[t′2], t′1 Iv t′2. In particular,
this means that the possible machine configurations c1 � t1 are of the form c1 =
(E , E0[t′1]), where E [E0] = E ′. We continue by induction on the structure of E0.

• E0 = []. It follows that c1 = (E , t′1) (1) (E , t′2)� t2.

• E0 = E ′0[E1], where E ′0 has depth 1. It follows that

c1 = (E , E ′0[E1[t′1]]) (3) (E [E ′0], E1[t′1]) =: c′1 � t1.

By the induction hypothesis we have the remaining configurations c′2, ..., c′k �
t1 and c2 � t2 with c′1  c′2  ... c′k  c2.

Finally, we have to consider the second evaluation step rule, for which we know
that t1 = E ′[return(tv)], t2 = E ′[tv], where E ′ has depth ≥ 1. For the machine config-
uration c1 � t1 this means that its form is c1 = (E , E0[return(tv)]) with E [E0] = E ′.
Similarly to before, we finish the proof by induction on E0.

• E0 = []. It follows that there is some E1 and some single frame E2 with E1[E2] =
E = E [[]] = E ′, such that c1 = (E ′, return(tv)) (2) (E1, E2[tv])� t2.

• E0 = E ′0[E1], where E ′0 has depth 1. It follows that

c1 = (E , E ′0[E1[return(tv)]]) (3) (E [E ′0], E1[return(tv)]) =: c′1 � t1.

By the induction hypothesis we have the remaining configurations c′2, ..., c′k �
t1 and c2 � t2 with c′1  c′2  ... c′k  c2.
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Proof for Theorem 5.1, rule (1). For rule (1), contraction in a context, the computational
gloss for the desired PF reduction

T (c1) =M′(t1)[T (E)] . T (c2) =M′(t2)[T (E)],

with t1 Iv t2, is: “Running the computation t1 while keeping track of some remain-
ing computation leads to the computation t2 with the same remaining computation
to keep track of.” Intuitively, we have to show that the translation of each possible
redex is compatible with this gloss, i.e., that the remaining computation is carried
along unchanged while contracting the redex. But this is easy since our configura-
tion translation is exactly aligned with the universal-quantification-like abstraction
over the remaining computation that underlies the notion of contraction correspon-
dence employed in Lemma 5.1. That is, our remaining computation T (E) is instan-
tiated for the opaque, inaccessible, universally quantified continuation and we can
just directly use Lemma 5.1:

T (c1) =M′(t1)[T (E)]
Lem. 5.1

. M′(t2)[T (E)] = T (c2)

Proof for Theorem 5.1, rule (2). For rule (2), recomposition with a context, the compu-
tational gloss for the desired PF reduction step from

T (c1) =M′(return(v))[T (E0[E ′])] = v� T (E0[E ′]

to
T (c2) =M′(E ′[v])[T (E0)],

where E ′ has depth 1, is: “Running a value embedded as a computation with some
remaining computation, corresponding to a stack, kept track of leads to the continu-
ation that corresponds to the innermost part of that stack applied to the value, while
keeping track of the initial segment of the stack.” We observe that this is a direct
consequence of Lemma 5.4, which is a variation of the definitional equation for T
for instantiation with values.

T (c1) = v� T (E0[E ′]) . T ′(E0[E ′])[v]
Lem. 5.4

= M′(E ′[v])[T (E0)] = T (c2)

Proof for Theorem 5.1, rule (3). For rule (3), redex search, or accumulation of the con-
text, the computational gloss for the desired PF reduction step

T (c1) =M′(E ′[tc])[T (E)] . T (c2) =M′(tc)[T (E [E ′])],

where E ′ has depth 1, is: “A computation that is some other computation followed
by some one-step continuation while keeping track of remaining computation leads
to that other computation with the one-step continuation followed by the previous
remaining computation kept track of.” We use Lemma 5.3 (1), which relates the
translation of a single stack frame (= one-step continuation) (like E ′) to the transla-
tion of the term obtained by appending the stack frame at the end (obtaining e.g.
E ′[tc]), to obtain:

T (c1) = sh(Mctx(E ′)[T (E)])�M(tc)

Now we know what T (c1) reduces to and can conclude:

T (c1) .M′(tc)[Mctx(E ′)[T (E)]] =M′(tc)[T (E [E ′])] = T (c2)
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Appendix C

Reduction Correspondence for
let/cc

The step relation for the evaluation machine for the simple first-order CBV language,
i.e.

(A.1) (E , t)  (E , t′) if t Iv t′

(A.2) (E , return(v))  (E0, E ′[v]) if E = E0[E ′], E ′ has depth 1
(A.3) (E , E ′[tc])  (E [E ′], tc) if E ′ has depth 1,

is extended as follows for the let/cc and call constructs:

(B.1) (E , (let/cc k.t[k]))  (E , t[cont(E)])
(B.2) (E , call(cont(E ′), v))  (E ′, return(v))

Using the same definition of term associated to machine configuration as for the
first-order CBV language (i.e. (E , t)� E [t]), we show that Lemma 5.2 also holds for
the first-order CBV language with let/cc.

Lemma C.1. For any two terms t1, t2 with t1Bv t2 and any machine configuration c1 � t1,
there are configurations c′1, ..., c′k � t1 (k ≥ 0) and c2 � t2 such that: c1  c′1  ...  
c′k  c2.

Proof. We distinguish the four possible rules by which the reduction could have been
derived. For two of those, which are already present in the language without let/cc
(i.e. the ones for contraction in a context and for return) we finish the proof exactly
as for Lemma 5.2.

For the reduction rule for let/cc, we know that t1 = E ′[(let/cc k.t[k])] and t2 =
E ′[t[cont(E ′)]]. In particular, this means that the possible machine configurations
c1 � t1 are of the form (E , E0[(let/cc k.t[k])]), where E [E0] = E ′. We continue by
induction on the structure of E0, where for the inductive case we proceed in the
same way as for the other reduction rule cases. In the base case, i.e. E0 = [], we have:
c1 = (E , (let/cc k.t[k])) (E , t(cont(E)))� t2.

Finally, for the reduction rule for a continuation call, we know that

t1 = E ′[call(cont(E ′′), v)], t2 = E ′′[return(v)],

as well as c1 = (E ′, E0[call(cont(E ′′), v)]), where E [E0] = E ′. We finish by induction
on the structure of E0, where we again only need to consider the base case E0 = []:

c1 = (E , call(cont(E ′′), v)) (E ′′, return(v))� t2

To conclude, we prove the correspondence theorem for the language with let/cc,
where T is the translation for machine configurations defined in the same way as
for the language without let/cc (see Fig. 5.5).

Theorem C.1. For any two machine configurations with c1  c2 it is T (c1) . T (c2).
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Just as with the correspondence theorem for the simple language without let/cc
(Theorem 5.1), this can be proven by separately considering the rules for . For the
rules (A.1-3) taken over from the language without let/cc, the proofs are identical1 ;
thus we only need to consider the new rules (B.1) and (B.2).

Proof for Theorem C.1, rule (B.1). By inversion we know the form of c1, and it is:

T (c1) =M′((let/cc k.t[k]))[T (E)] = (M(t)[k̄]� sh(k̄))[T (E)] .M′(t)[T (E)]

and
T (c2) =M′(t[cont(E)])[T (E)] =M′(t)[M(cont(E))] =M′(t)[T (E)].

Proof for Theorem C.1, rule (B.2). By inversion we know the form of c1, and it is:

T (c1) =M′(call(cont(E ′), v))[T (E)] =M(v)� T (E ′)

and
T (c2) =M′(return(v))[T (E ′)] =M(v)� T (E ′).

1As is easily checked, the auxiliary lemmas (Lemma 5.3, Lemma 5.4) used in these proofs also hold
for the extended specification of evaluation contexts, with the continuation call context translated as
follows:Mctx(call(tk, [])) := µ̄{n⇒ n� tk}.
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