
Judgements of Higber Levels and Standar dized Rul e s f or 

Logical Constants in Martin-Lof's Tbeory of Logic 

Pe t er Schroeder-Heister 

The aim of these notes is to carry over some of wbat I d i d in 

my thesis to the framework of Martin-Lof's logical theor y , in 

particul ar the idea of rules of higher levels (wbich i n Martin

Lof ' s non- formalistic approach will become bypotbet ica l judge-

ments of higher levels ) and the general schema for intr oduction 

and elimination rules for logical constants (which will have to 

be extended to a schema conta i n i ng formation and detraction 

rules ) . I make no claims to originality. Concerning Martin-Lof's 

syst em I mainly rely on bis Siena lectures of 1983 . In the firs t 

part, I s hall deal with propositional l ogic , end in the second 

part I shall try to show bo w the results extend to logi cal con

stants of any arity, leav i ng out , however, the theory of expressions 

wbicb is an i ntegral part of Martin-Lof's logical theory , but 

which is not immediately necessary for the understandin g of the 

logical rules. 

I. Propositional Logic 

a) Categor ical and hypothetical judgements 

Propositional logic is that part of logic wh ich deals with closed 

expressions and c ertain n- a r y constants to be defined as logical 

operators . Accor ding to Martin- Lof , i t does not deal wi t h "propo

sitions" which are given as a domain of discourse from outside . 

Whether a closed expression is a proposit ion is something that 

is to be establ ished withi n the theory. Otherwise the theory would 

Joose i ts formal char acter ("formal" = indepen dent of the content ) 
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or would become a forma l system ("formal"= syntactically defined ) 
which is interpreted from outside. 
Therefore Martin-Lof's theory distinguishes t wo forms of catego-

rical judgements , A is a proposition (A prop ) and A is true 

(A true) which are explained in such a way that the latter pre

supposes tbe former . 

More precisely , A prop and A true ere explained by telling 

what it means to know them, i.e. whet it means to have proved 

them. Proof , as well as judgement , is understood as an act , not 

as a formal object . A proof of a judgement is the act which 

makes this j udgement evident, i.e . known , to someone. So judge

ments are not justified independently of the subject who makes 

tbe judgement . This does not mean that formal proofs are no longer 

allowed. Once I have seen that a certain inference step leads 

me from a j udgement which is evident to me to another one which 

is evident to me , I can later on use this step as a formal rule 

of inference , relying on the evidence for this step which I 

had and which I can reproduce if I w~nt . However , the basic con

cept of proof with respect to which formal rules are justified , 

is the subject- dependent one , 

The explanations of A prop and A true run as follows: 

To know A prop means to know what one must do in order t o 

verify A, i .e. what counts as a verificat ion of A. So if I have 

grasped what f .. verification of A looks like , I have proved J.. prop. 

For example , if I know the procedure which would verify an obser

vation statement A, I have proved A prop. It is obvious that this 

diverges from the usual notion of proof . The explanation of a 

verification procedure , provided it is understood , already const i 

tutes the proof of a j udgement . (There is no dichotomy in principle 

between explanation and demonstration. ) 
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A true is explained only under the presupposition that A prop 

has been proved . So suppose A prop is known. Then to know A true 

means to know bow to verify A, i .e. to be able to produce a 

verification of A, i .e. to produce something of wbicb one knows 

what i t looks like because of the presupposition A prop. 

Accorning to these explanations , A prop i s always a judgement 

(perhaps an un j ustified one) , whereas A true is a judgement only 

under tbe condition that A prop bas been proved . This bas to do 

with what Martin-Lof c all s tbe intentional character of proposi

tions , following ITeyting and Kolmogorov . If propositions are i n

tentions,and verifications are fulfilments of intentions , then 

in order to be in a position to verify A one must first know what 

counts as a verific ation of A, since an intention (even if it i s 

not successful) is possible onl y on the basis of knowl edge of what 

is intended . 

Note that to verify A is not the s ame as to prove A true . 

Otherwise A true could not bave been explained by reference to 

veri f ication. Verification is a basic notion which is used to ex

press the intentionality connected with propositions. Of course , 

if I have ver i fi ed A, I know bow to veri fy A and thus have proved 

A true . But conversely, i f I have proved A true , I only know bow 

to veri fy A; therefore the furt her step of executing this know

ledge is necessary to obtain a verification. 

Similar to A true, mo s t cases of hy~othetical judgement s 

will be explained under the presuppos ition tb At c ertain other 

j udgements ( wh i ch are already explained ) have been proved . In the 

follo~i ng , if R i s t o be expl ained as a judgement , by ~ (R) I 

shall denote those j udgements which must have been ex¥ained be

fore and which are supposed to be known(= proved ) . So in general 
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an explanation of R will take tbe form: 

{

Suppose ;z)(R) bas been proved. Then 
( . ) 

R means •••• 

to know(= to have proved ) 

In tbe case A prop, ;/J (A prop ) is empty (so there is no presuppo

sition ) , and tbe dots are to be replaced by the above eXl)lanation 

of A prop. In tbe case A true, .JJ (A true ) is A prop, and the 

dots are to be replaced by the above eXl)lanation of A true. 

Furthermore we introduce tbe following termino l ogy: We call 

a cand idate R for the explanation as a j udgement a potential 

judgement. A potential judgement R is called a judgement if tU (R) 

bas been proved . Th is terminology i s justifi ed by tbe fact tha t 

if ~ (R) bas been proved , then tbe explanation ( • ) of R c1m be 

applied to R saying what it means to know R, i.e . explaining R 

as a j udgement. For example , A prop is a potential judgement for 

any A and at the same time a judgement since l> (A prop) is empty, 

i .e. A prop is expla i ned without any precondition. A true is a 

potentia l judgement for any A and a judgement if :lJ (A true ) 

( = A prop ) bas been proved, for then the explanat ion of A true 

can be applied. 

The full apparatus of hypothetical judgements is introduced 

by tbe following definitions: A prop and A true are potential 

judgements for any closed expression A. If R1 , • • • ,Rn,R are pot en

tial judgements, then so is (R1 , ••• , Rn) ~ R. Potential j udgements 

different from A prop and A true are potential hypothetical j udge

ments. Lists of potential j udgements are of the form (R1 , ••• , Rn ) 

or 0 ( empty list ) , tbe Ri being called elements if the list . 

U, v, W, X, Y, Z denote lists of potential judgements , Rand R' 

(with and without indices ) potential j udgements . ( X, Y) or ( X, R) 

etc. are underst ood as usual. In the notation of lists we usual ly 

omit outer brackts. Single potential j udgements are considered 
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to be limiting cases of lists. Our task now is to define .:b (R) 

and to give an explanation of the form(• ) for each R. 

The main idea is that to know (R1 , ••• , Rn) ~ R means to have 

a hypothetical proof of R from R1 , •.. , Rn , wbicb in turn means 

that one bas a proof of R which is uniform in R1 , .• • , Rn. "Uniform 

in R1 , .. • ,Rn" means that after supplementation by proofs of the 

R1 , ••• , Rn one immediately obtains a proof of R (pr oof here under

stood in the primary, categorical sense ) . To have a hypothetical 

proof of R from R1 , • •• , Rn constitutes a new single act of know

l edge , it i s not an infinit e collection of proof s of R, one for 

each list of proofs of the R1 , .. • , Rn. This is why I used the term 

"uniform" . "Schematic" would be another term to express this fact . 

Hypothetical proofs resul t from categorical proofs by a similar 

ki nd of abstraction as do general proofs ( i . e . proofs with free 

variable s). Assumptions in hypothetical proofs can be viewed like 

variables to be instantiated by the i r proofs . 

It is an essential featur e of Martin-Lof's system that the 

suppl ement at ion of R1 , ..• , Rn in a hypothetical proof of R from R1 , •• • 

Rn by proofs of R1 , •.• , R
0 

is not considered to be performed in 

one step , but may be done stepwise, i . e . by f i r st s upplementing 

R1 by its proof , then supplementing R2 by its proof, and so on. 

This makes a great differ ence in the presupposition under which 

(R1 , • •• , Rn) '9'R is explain ed. According to the approach where the 

R1 , ... , Rn are considered t o be replaced by proofs simultaneousl y , 

one would require (1) that all R1 , ••• , Rn be judgements , and 

(2) that R be A j udgement provided all R1 , ••• , Rn have been proved 

(since it is not until the R1 , ••• , Rn have been proved that R 

needs to be explained as a j udgement ) . So ~ ((R1 , • •• , Rn)9 R) would 

be defined as ~ (R1 ) , .• • , .1J (Rn ) , (R1 , • •• ,Rn ):>~(R ) . According to 

Martin-Lof's approach , R2 need not be explained as a j ud~ement 

unti l R1 h?s been proved , R, not unt i l R1 and R2 have been proved , 
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etc . Tbis leads to tbe fo llowing defini t i on of~• where ;J, assigns 

lis t s of potential j udgements to lists of potential j udgements : 

;J) (A p!'op) 

;/'J ( A t rue ) 

.;b ( X* R) 

;2l ( X, R) 

A prop 

;o( X) • X • J) (R) 

2 ( X) , X =-;:. o2>( R ) . 

(not ( .o ( X) , X ) ~ .;?>(R) ! ) 

Here the implicit convention is used that X,. 0 i s identified witb 

0 and X ~ (R1 , ••• , R
0

) with tbe list X~ R1 , ... ,X ~ Rn. For example , 

~ ((A
1 

true,A2 true , A3 true) :;>A prop ) = o2> (A1 true,A2 true , A3 true ) 

~ (A1 true,A2 true), (A1 true , A2 true )~A3 prop 

olJ (A1 true)A1 true ~ A2 prop , (A1 true ,A2 true ) + A3 prop 

A1 prop,A1 t rue °"A2 prop, (A1 true,A2 true ) e+A3 prop. 

For ;;l> ((A1 true , A2 true,A
3 

true ) ~ A t rue ) one would h1we to add 

(A1 true,A2 true, A3 true) ~ A prop. 

It foll ows from the def i nition of 2) tbat ;/; ( ( X, Y) ~ R) = 

;zi (x~(Y ~ R)) , which is quite natural and which would not hol d 

in the non-stepwise conception , save one would def i ne ;;l> (R) to 

be j ust tbe l i st of those A prop for wh ich A true occurs in R. 

Tb is would make a potent ial bypotbetical j udgement a hypothetical 

judgement only i f it is built up from categorical judgements . 

~ bas tbe following property: 

Lemma 1 If R' i s an e l ement of 2> (R) , then each element of 

~ (R') is an e l ement of ~ (R) . That is , e l ementwisr application 

of 3J to ~ (R) does not yield anything new ( whereas ;2l ( ~ (X)) , 

which is not defined elementwise, can yield something new ) . 

[ I do not reproduce any proofs of lemmas or theorems i n these 

notes . ) 

Now the precise explan ation of a hypotheticol j udgement 

(R
1

, ••. , R
0

) '9R is the following: Suppose all e l ement s of 

;b ( (P.
1

, ..• , Rn) ~ R) have been proved . Tben to know (R1 , ••• , R
0

) 9 R 
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means to have a hypothetical proof of R from R1 , ••• , Rn i n the 

sense that it becomes a proof of R by stepwise supplement at ion 

by proofs of R1 , .. . , Rn . 

7 

We mus t convince ourselves that this is a genu i ne explanation . 

I f we measure the complexit y of a potential judgement R' by the 

pair (number of occurrences of A true in R' , number of occurences 

of A prop in R' ) , then e ach e l ement of ;/, (R' ) is of lower com

pl ex i ty than R'. Furthermore , according to LemmA 1 , g, (R') con

t ain s al l presuppositions of tbe explana tions of its elements, 

so that it makes s ense t o assume all of them to be pr oved . Thus , 

when ordered accor ding to their compl exity , all potential hY1)o

t bet ical judgements are covered by tbe explanation in a non

c i rcul ar way . Moreover , because of the presupposition of the ex

planation , it can be consider ed explained what it means to have 

proof s of R1 , ... , Rn and of R depending on R1 , •• • , Rn: Since J) (R1 ) 

belongs to cl>((R1 , ... , Rn) .al!>R) , R1 is explained. Since f or each 

i <n, (R1 , • • . , Ri ) • .2> (Ri+'1 ) belongs to ~ ((R1 , ••• , Rn) + R) , 

R- 1 is explained provided R,, , • •• , R . have been proved. That i s , 
1+ , 1 

the R1 , • .. , Rn can be considerErl explained s tep by s tep , provided 

i n eacb s tep tbe previous judgements h ave been proved , which is 

all t h at must be requ ired fur P stepwise supplementation by proofs 

of R,1' • •• , Rn . Since (R1 , •. • , Rn) * ~ (R) belongs to ~ ((R1 , •• . , Rn) -9>R 

R is explained provided R1 , . •• , Rn h Ave been proved which is all 

that is necessary for a hypothetica l proof of R from R1 , • •• , Rn. 

Therefore the above explanation , togethe r with the explana

tions of A prop and A true , explains each Ras a judgement pro

v ided ~ (R) has been proved. Hence we can , as already proposed , 

call Ra j udgement if o'b ( R) b as been proved . As an extension of 

this mode of speach , we shall call a list of potential j udgements 

X a system of judgements , if 2 (X) ( i. e . each element of :D(X)) bas 

been proved . I n a system of j udgements , each el ement is a j ud ge-
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ment provided the previous elements have been proved . In Martin

Lof's framework , the assumptions of hypothetical proofs are 

systems of judgements in this sense (for wh ich order is important), 

and not just finite sets. 

Theorem 1 For any list of potential j udgements X, ~ (X) is 

a system of judgements , and therefore also ~ (X) , X. 

b) General rules of inference 

Rules of inference lead one from judgements wh ich are known ( = proved 

to another judgement which is known. So the justificat ion of a 

rule of inference must show that if I have proofs of the premisses 

I also obtain a proof of the conclusion. Now the proofs in question 

may themselves be hypothetical proofs, and it is useful to make 

the assumptions of such hypothetical proofs explicit using the 

notation X:R for a hypothetical proof of R from X (where 0:R de

notes the limiting case of a categorical proof). So the general 

f orm of a rule of inference is 

X:R 

to be read as: if hypothetical proofs of R1 , • •• ,Rn from x1 , ..• ,Xn, 

respectivel y , are given , one obtains a hypothetical proof of R 

from X. Unlike Martin-Lof's , this notation also mentions those 

assumptions which are not discharged by the appl ication of the 

rule. For example, instead of 

(A true) 

B true 

A ::> B true 

we write 

X, A true: B true 

X : A ::, B true 
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The reason is that in the present framework the assumptions of 

a hypothetical proof form a more complicated structure than in 

usual natural deduction proofs. In particular, order is im

portant , as tbe example 

A t rue , X: B true 

X : A:::> B true 

shows , which is not in general a valid rule of i nference. 

The proposed notation allows one to formulate rules of in

ference whose justificat ion is based only on the explanations of 

categorical and hypothetical judgements and is still independent 

of the introduction of logical constants. I call these rul es, 

which correspond to Gentzen's structural rules , general rules 

of inference, i n contrad i st i nction to special rules of inference 

which govern the logical constants . 

Note that I use the colon as a specific sign to express hy-po

thetical proofs wh ich is different from~, i.e. 1 I distinguish 

a categorical proof of X::;.R ( expressed by 0 : X ,+R; from a hypo

thet ical proof of R from X (expressed by X: R) . This is justifi ed 

since t he notion of a hypothetica l proof is the pr i mary notion 

with respect to which the notion of a hypothetical judgement is 

explained. Est ablishing X~ R, given a hypothetical proof of R 

from X, is an extra inference step, even if it is an immedi a te 

one (based on the explanat ion of hypothet ical judgements ) . 

However , th i s is not a matter of principle. Everything 

that fol l ows remains val id if one replaces the colon by ~- The 

difference is that when using the colon a rule of inference is 

conceived as something that l eads one from hypothetic a l proofs to 

a hypothetical proof (where something may be chan~ed i n t he assump

tions , e . ~. a ssumptions may be dischar~ed ) , whereas when using~ . 
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a rule i s viewed as l eading f r om hYJ)othetica l j udgements (or 

categor ical proofs t hereof ) t o hypothetic al judgements (or c a

tegor ical proofs t hereof). Which i nterpr etation on e prefer s de

pends on whether one wants to make t he step of reflection , which 

l ies between proof s of hypothet i ca l j udgements and hypothetica l 

pr oof s , eXJ>licit in t he notat ion of r ules of inference. 

In t he followi n g f ormulation o f the gen e r al rul es of i n ference 

we use the convent i on tha t X:Y mean s X:R1 ••• X:Rn if Y is the 

l ist R1 , • .. , Rn, and that X:Y i s empty i f Y is empty. 

X, R, Y, R : R' 
( Cont r ) 

X, Y: R ' 
(Th in ) 

X : ;2> (R) 

X, R, Y: R' X, R, Y : R' 

X : ~ (R ) 
( Ass) 

X, R : R 

X 
( Hyp ) 

( 7 ) 
X, Y: R 

X : Y~ R 

(wh er e X must be empty i f 
.b ( R ) is empty ) 

X X 

X R 

Note t hat accor ding to the f ormulat ion of ( Ass) , R c an be intro

duces a s an a s m.ption only i f R i s a j udgement ( i.e. , .;1l ( R) bas 

been proved ) . Hence R:R is not ir. geueral jus t i f i ed . Sinc e A prop 

is always a j udgement (i.e. ;/> (A prop ) = 0 ) , A prop can a l ways 

be assumed , i . e . A prop : A prop i s j u s t i f i ed . 

These rules can be j ustified i n the followi ng sense . 

Theorem 2 Let 

X1 :R1 X
0

:Rn 

X:R 

b e one of the rul es in question. I f f or each premiss , ( Xi , Ri ) is a 

system of j udgements ( i .e., .2 (Xi , Ri ) h as been proved ) and a 
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hypothetical proof of Ri from Xi is ~iven , then one obtains a 

proof of ;D (X, R) (i . e ., ( X, R) is a system of j udgements ) and a 

hypothetical proof of R from X. 

This theorem is proved by reflection on t he eX1)lanat ion of 

t he forms of judgement . [Agai n , I omit the det ailed proof her e] . 

Roughly speaking, t he theorem says that i f t he premisses are 

eX1)lained and proved then so i s the conclusion. The j ustif ic a tion 

of a rule of i n ference includes showing t hat the conclusion is 

expla ined before showing that it is proved , since to speak of a 

hypothetica l proof of R from X makes sense only if (X, R) is a 

system of judgements , i . e . if a proof of 2) (X , R) is given. The 

latter may depend itself on t he proofs of tbe premisses of the rul e . 

Having j ustified certain rules of inference , we may consider 

the forma l ca l culus we obt ain i f we t ake the genera l rules of in

ference to be formal rules wh i ch allow one to produce s equ ences of 

signs from sequences of s i gns already produced. In that case , we 

shall s peak of formal provabil ity and formal proofs , as distinguished 

from proofs as acts wh ich make something evident . Th e formal cal

culus has proof-theoretic properties whic h correspond in acer-

t ain sense to properties which have to do with non-formal proofs . 

Th i s is not surprizing s i nce the justification of the general rules 

of i nference may be viewed as a demonstration of tbe soundness 

of the corr esponding formal system. 

Theorem 3 Consider the c alculus ba s ed on (Contr ) , (Thin ) , 

(Ass ) , (Hyp) and ( -=9) as forma l rul es of inference. 

( i) For each X, both 

forma lly nrovable . 

;/)( X) : ~ ( X) and cil ( X) , X : X are 

( ii ) I f X:R is formally provable , then 0 : ~ (X, R) is fo r mal ly 

provable . 
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(i) corresponds to Theorem 1 , (ii) in part to Theorem 2. 

Note that from (i) we may conclude that there are proofs in the 

non-formal sense of the elements of .;l> (X ) from 0 ( X) and from 

the elements of X from c2>(X ) , X. Just take the formal proofs and 

combine the justifications of the inference rules which are 

used. ( ii) does not have an immediate non- forma l reading , since 

for having a hypothetical proof of R from X (in the non-forma l 

sense) it is already presupposed that a proof of .;3( X,R ) is at 

one's disposal . The significance of ( ii ) lies in the fact that, 

though it is possible to speak of a formal proof of X:R without 

any presupposition, the presupposition of the non-formal case 

bas a formal analogue in the formal provability of~: ~(X,R ) . 

If we bad not made assumptions explicit and thus had not formu

lated the general rules of inference , we woul d at least h ave l ost 

this nice correspondence between results of non-formal reflections 

and proofs i n a certain formal system. The structura l rules of 

this forma l system are not as simple as in the case of ordinary 

natura l deduction, where explicit mentioning of assumptions and 

structura l rules can well be avoided as i n Gentzen's first and 

in Prawitz's presentation. 

There are of couse further general rules of inference wh ich 

can be j ustified , e . g . the following ones : 

X : ;J:, (Y ) 
(Ass' ) 

_X, Y: Y 

X,Y R 
(Thin' ) 

X,Z,Y 

(1,/bere X must be empty 
if ~ (Y ) is empty ) 

X : c2> ( Z) 
( 9 ' ) 

: R 

X : Y~R 

X, Y : R 

X,R , Y, R, Z : R' X, R1, R2,Y : R X : J> (R,, ) 
C (Contr') (Perm ) 

X,R, Y, Z : R' X,R2,R1,Y : R 

These rules , read as formal rules, can be shown to be admissibl e i n 
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the calculus based on (Contr), (Thin) , (Ass) , (Hyp) , ( ~ ) , i.e. 

do not extend what is formally provable in this calculus . 

c) Logi ca l operators - s pecial rules of inference 

Now we consider n- ary constants Sand explain their meaning by 

telling what counts as a verification of SA1 • •• An. More precise

ly , we do not give an explanation for specific const ants but 

give a schema of an explanation ior an arbitrary n-ary constant 

S, which , when instantiated appropriately, becomes an explana

tion of the specific logical constants one wants to have , e.g. 

&, v , ::, and ..L • In general this explanat i on will depend on the 

assumption that something bas been proved which must have been 

explained before. This will be expressed by use of lists of po

tential judgements to be associated with S. 

Let p1 , • •• , pn· be additional closed expressions , called propo

sitional variabl es , and l et 6. 1 (p1 , ... , pn ) , • •• , Am(P1 ,- --,Pn ) 

be lists of potential judgements associated with s , whose expressions 

are built up only by use of propositional variables and logical 

constants wh ich have already been explained (if there are any), 

and wh ich c onta i n potential categorical judgements of the form 

"A true" only. The lists may be empty, and we even allow form 

to be O, in which case no list (not even the empty one) is asso

ciated with S . A i(A1 , . .. , An) is obta ined from L\ i(p1 , ... , pn ) 

by simultaneously substituting A1 , • •• , An for p1 , ••• , pn , respec

tively. I shall also wr i te p for p1 , • •• , p
0

, A for A1 , .•• , An, 

SA for SA1 . .. A0 , A i (p) for 6. i (p1 , ... , pn) , and Ai(A) for 

D,i (A1 , ···•An). 

Now the me an ing of Sis explained as follows : Let A be given. 

Suppose b..i (A ) is a system of j udgements for every i . Then a 

verificat ion of SA consists of a proof of (the elements of) 

A i (1: ) for some i. 
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Let us use {-j-J j for - 1- -- -- (empty i f m 

m= D), where --j-- is anything containing an index j , and 

{ - -j- -1 i/j for - ,.,- • • • --i-1- -i+1- - • • · -m-· 

Then the explanation of S immediately leads to the following 

rule of inference: 

(S form ) 
{ X : -<} ( 6 /X) ) } j 

X: SA prop 

14 

Justification: If one knows that ( X,:?J ( !J. /A))) i s a system of 

judgements for every j , one knows in particular that X is a 

system of judgements and tbus that (X, SA prop ) is a system of 

judgements. So tbe conclusion is explained. If one fur t hermore 

ba s a bypotbetical proof of :lJ( I:,. j (A )) from X for every j , then 

tbe presupposition of the explanation of SA is fulfilled (nrovi

ded X) . Thus it is explained what counts as a verification of 

SA, i.e. one knows SA prop (provided X) . This is exactly wbat the 

conclusion of tbe rule says. 

Tbe inverses of tbe formation rule are the detract i on rul es 

( the idea of introducing detraction rules was developed jointly 

with Roy Dyckboff , and the term "detraction rules" is due to bim ) . 

(S detr ) 
X: SA prop (fbis is considered to be 

a l ist of rules in the 
obvious way. ) 

Just i fication: (Here and i n the follow i ng I omit reference to 

X, which is a list of assumptions common to premiss and conc l us ion ) . 

If one knows SA prop , one knows what counts as a veri fic ation of 

SA, thus one has grasped the expl anat i on of SA, whicb means th P. t 

one must have proved eb ( A i (A )) for every i (which i s the pre

supposition of the explanation ) . This is exactly what the conclu

sion P.sserts. (We need not show in add i t i on that t he conc l usion 

is explained, i.e. that for each P. in ~ ( A i (A )) we have a hypo

thetical proof of l)(R) from X. By Lemma 1 , this is cont ained in 

what we have shown . ) 



15 

Martin-Lof does not formulate detraction rules , probably be

cause be does not need them i n the development of hi s theory . 

My reason for the f ormulation of these rules is that without 

them cert ain rules of inference would not be equival ent in the 

formal read i ng although they are equ i valent in the non-formal 

r ead i ng which shows that in non-formal reasoning detract ion rules 

are used i mplicitly. This applie s , for example , to the equival ence 

between direct and i ndirect e limination rules for operators with 

only one associat ed system ~ 
1

(p) ( see below) And to the f ollowing 

two kind s of i ntroduction rules . 

X : 6. i ( A ) X SA prop (S intr ) _ __ .;;;_ ________ _ (1 ~ i ~m ) 

X: SA true 

X 
(S intr' ) 

{x 

X: SA true 

In the presence of (S form ) and (S detr ) these rules are forma lly 

i nterderivable ( for the proof one bas to us e Theorem 3(ii) , which 

extends to the calculus with (S f o~m ) and (S detr )) : without 

(S detr) , ( S i ntr ) is the stronger rule . Since we have already 

justified (S form ) , it suffic es to justify (S i ntr ) . 

J ustif ication: If I know SA prop, SA t rue is explained as a j udge

ment . According t o this explanation , a proof of Ai(A) is e veri

fic ation of SA. Since I have such a proof, I know how to veri fy 

SA. 

X SA true 
( S elim ) 

X R 

X SA true { x, 6 , (A) C prop 3 j 
J 

(S elim' ) 
X : C prop 

X SX true [x, 6. "(Ji: ) C true 1 j 
k 

X : C t r ue 
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(Selim') is j ust en instance of (Selim ) . Conversely, (S elim ) 

can be formally proved from (Selim') us i ng ~9' ) , (Perm ) , (Th i n ) 

end Theorem 3(ii). I justify (Selim) . 

Justification: If one knows SA true , one i s abl e to produce a 

verificRtion of SA which according to the explanation of SA con

sist s of a proof of ~ i (A ) for some specific i. Together wi th 

the proof of R from /j, i (A) (and X) end its presupposition, a 

proof of ~ (R) from bi (A) (and X) , one obtains proofs of ;;z> (R ) 

end R (from X) . 

The elimination rules which Mart i n-Lof formulate s follow the 

pattern 

X: SA true X, SA true : C prop C true ~ j 

X: C true 

and seem to me to be too weak for some purposes. For exampl e , 

t he following theorem would not bold with tbem: 

Theorem 4 If one adds to the formal calculus considered 

in Theorem 3 (S form), (S detr ) , (S intr ) and (S elim ) 9S f or

mal rules of inference, then Theorem 3(ii ) remains val i d, i . e ., 

if X: R is formally provable, then so is 0: ob (X,R ) . 

If only one list A(p) is associated with S, we formul ate 

the following alternative introduction and elimination rules: 

X ~ (A ) 
(S intr• ) 

X SA true 

X SA true 
(S elim• ) 

X 6. (A) 

The equivalence between (S intr• ) and (S intr) is obvious . To 

prove that (S el im) P.nd (S e lim• ) are forma lly interderi vable , 

one must hAve detraction rules at one's disposal. Otherwise one 

cannot formelly prove X: ib ( b,. (A )) , i .e. show that the conclusion 

is explained. For examplP. , 
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X : A&B true 

X: A true 

is forma l ly shown to f ollow from (& elim) in the following 

way , where 

I 
X : A&B true 

17 

represents en arbitrary formal proof of X 

supposed to be given: 

A&B true which is 

X 
I 

A&B true 
(Theorem 4 ) 

X A&B prop 
(& detr ) 

X A&B true 
(Theorem 

X A prop X A&B prop 
4) 

(Ass) (& detr) 
X, A true A true X, A true : B prop 

(Thin ) 
X A&B true X, A true , B true A true 

(& e l im) 
X: A true 

Func tional compl eteness of &, v ,:, , ..L is proved a s in my 

thes is . Th i s proof uses replacement of (B1 true, ••• , En true ) ~ B tru 

by ( B1& ••• &Bn ) ::, B true , so it crucially depends on the fact that 

the t:. i (A ) do not contain any B prop . The reason for not permitting 

B prop in Ai (A) is the intentional character of proposit i ons . 

In the explanation of SA, the fulfi l ment of the intention SA 

( = verificat i on of SA ) is reduced to the fulfi l ment of the in

tentions A1 , . •• , An , or more precisely, to certain relations bet

we en such fulfilments (expressed by hypothetical judgements of 

certain forms ) . And since only knowledge of B true leads , when 

executed , to the fulfilment of the intention B, we cannot per-

mit B prop to occur in A i (A) . Knowl edge of B prop does not 

le~d to the fu l filment of an intention, but is only t he presuppo

s i tion which is necessary to understand Bas en intention (whose 

rea l izability is established by a proof of B true ) . ( I n th i s sense, 

proofs of A prop on ly have an aux i l iary function~ 
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This point i s of extreme importance. I f A (A ) may contain 

E prop , one could define a one-place constant P with the asso

ciated list ~ ( p ) = p prop. This would lead to t he rules 

X A prop 
(P form ) (P intr) 

f2l PA prop X PA true 

X PA true 
(P elim) 

X A true 

18 

which would represent an internal definit ion of the category of 

propositions. In an extended system this leads to a contradiction 

as shown by Aczel . 

II . Quant i f i er Logic 

a) General proofs and general judgements 

Hypothet i cal judgements were explained using the notion of a 

hypothetical pr oof. A hypothetical proof of R from R1 , .•• , Rm 

bas t he characteristic feature that , when successively appli ed 

to proofs of R1 , • • • , Rm' i t becomes a pr oof of R. Similarly the 

notion of a general proof can be defined , if we consider expressions 

with free variabl es. If R1 , ••• , Rm and R conta i n no other free 

variables than x1 , •• • , xn , then a general proof of R from R1 , ••• , Rm 

( which in f act is a hypotbetico-general proof, if the R1 , • .• , Rm 

are actually present, ) is defined as someth i ng that becomes a 

proof of R(x1 ···xn/A A ) from R1 ( x1 ···xn/ A A ) , ••• , 
1 · ·· n 1 ·· · n 

R (x1···xn/ A A ) , if expressions A. of the same arities as xi 
m 1···n 1 

are given . Here (x1 · · ·xn/A A ) means simultaneous sub-
1 · • • n 

stitution of the Ai for the corresponding x i . This mean s t hat 

the proof is uni f orm or schematic in the x i , i .e . , we do not 

have an infin:te collection of proofs (one for each list A1 , .•. ,A
0

) , 

but one single ac t of knowl edge. 

I n the follow i ng , when speaking of a proof of R frore X, th is 

is to be understood i n the s ense of a genera l proof i f X and R 
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conta i n f ree vari ables . It c an easily be seen tha t none of the 

genera l rules of inference just i fied in part I need be changed 

wh en read in this way . The explanation of genera l proofs and 

of free variables which serve to express the general ity of proofs 

immediatel y j ust i fies the fol lowing general rule of 

inference : 

R 

In order to introduce genera l judgements , we take as an 

addit i onal c l ause in the definition of potential j udgementsthe 

fo llowing : If R i s a potent ial judgement , then so is ~ xR for 

a va r iab l e x. ~ •• ·* ( X ~ R ) may be wri tten as X9x x R. 
x 1 x!l 1··· n 

The def inition of (7) i s ext ended by 2>( =,>xR ) = 9x .:O(R) (where , 

i f .2>(R) ha s more then one element, this i s t aken e l ementwise ) . 

General j ud gement s a re then expl a i ned as fol l ows : Suppo s e a l l 

elements of ';J) ( ~ xR) h ave been proved . Then to know 9 xR means 

t o have a gen era l proof of R. This j ustifies t he fo llowing general 

rul e s of i nference: 

( Gen ) 
X 

(x not free in X) 

( Subs t ) and (Spee ) could be formul ated i n one rule. However , t aking 

di fferent rules s eems to me to be conceptually clear e r . (Subs t) 

bes t o do wi th the not ion of a (bypotbetico- ) genera l proof , 

(Gen ) and (Spee ) with the notion of a ( hypotbetico- ) general 

judgement as defi ned from t his not i on. 

Similar to wha t was remarked i n p ert I , we d i stingui sh 

genera l p roofs (X : R) from pr oof~ of general judgement s 

(~ : X9.x x R, where x ✓, , ••• , xn ere the free VP.ri abl es of X 
1 • • • n 
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and R). If one does not want to draw this distinction . one may 

throu~hout r eplace X:R by X~ x R. 
1•• • Xn 

b) Logical constants 

We immediately deal with higher-order logic . i.e. with logical 

constants of arbitrary arity. Here o is the arity of closed 

expressions and ( cic:. 1 ••••• o<..n ) the arity of expressions wh ich . 

when applied to expressions of arities ot 1 , ...• cw..
0

• yield a 

closed expression. The arity n of propositional logic now corre

sponds to (o • ••. ,o ) . It is a characteristic feature of Martin-
o times 

Lof's system that on the level of expressions it distinguishes 

onl y arities . starting from the one basic arity of closed ex

pressions. Whether something belongs to a cer tain type or catego

ry cannot be learned from an inspection of the expression but 

is a judgement of the theory. This makes it very closely related 

t o Frege's system. whereas in presentations of simple type 

theory , for example . it is usual to categorize expressions from 

the very beginning, in particular to start with t1·10 basic t ypes 

of expressions, one for propositions or sentences, and one for 

individuals or terms. 

So we assume that we have variables of any arity at our dis

posal . furthermore constants if we want . Simultaneous substitution 

A(x,, • • • xn/ ) of variables b · B f d · B
1 

• • • Bn xi Y expressions i o correspon ing 

arities in expressions A is defined as usual. similarly for 

potentiAl j udgements and lists of potential j udgements . We assume 

that substitution includes relabelling of bound variables in 

such a way the.t it is always defined. FurthermorE> we assume 

that we have abstraction in tbe s ense that ((x1 •• • xn )A) is of 

arity ( ac. 1 ..... 0(..n ) , i f A is of arity o and each x i of arity a::.i , 

and application in the sense that CB1 • • • Bn is of arity o if C 
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is of arity ( oe. 1 , .•• , «-n) and each Bi of arity oc.i. If the arities 

of A, C, xi and Bi are as above , ((x1 ••• xn)A)B1 ••• Bn is considered 

definitionally equal to A( x., ..• xn/B B) and ((x1 ••• xn)Cx1 . . . x) 
1 • • • n n 

to C. This justifies 

X : R 
(/3 "J ) X : R' 

as a general rule of inference , where R' results f r om R by exchanging 

defini tionally equal expr essions in the above sense. In a thorough 

treatment of definit i onal equality between expressions, (fo , ) 
would be reduced to more basic rules . However, for tbe present 

purposes , where we are mainly inter ested in hypothetical and 

general j udgements and rules for logical constants based on them, 

it i s enough to have ( /3"? ). 
The above expl anation of ( hypothetico-) general proofs and 

j udgements and the justification of tbe i nference rules based 

thereon hel d for any a r i ty and was not confined to the arity of 

closed expressions. 

Now we sketch bow to deal with logical constants S which 

may be of arbitrary arity. The usua l V and 3 quantifiers are 

considered to be of arity ((o)) , VxA and 3 xA b eing abbrev i a

tions of ~ ( (x)A ) and 3 ((x)A). Propositional operators fit into 

the uresent framewor k as limiting cases. 

If Sis of arity ( 0(. 1 , • .• ,o£. n ) , let x1 , • •• , xn be dist i ngu i shed 

variabl es of arit i es °' ., , ... ,0£..n ' respectively. As in part I, we 

shall use the abbreviation x for x1 • • • xn , and similar ly A for 

A1 •• • An where the elements of X must correspond in arities to the 

element s of x. Let again list s A1 ( x ) , .. . ,Am(x ) of potential 

j udgements be associated with S , which besides free variables of 

x may conta in bound variables different from x, additional free 

variables , and logica l constants which bave already been explained, 

but no other const ant s . As in the propositional case , •• • prop ' 
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must not occur in them. For example , in the case of \:/ and 3, 

m is 1 and .61 (x1 ) is ~ Yx1 y and x1y , respectively, where x1 

is of arity (o) and y of arity o . ~ i (A) is not defined as 

(~i(x))(x/r) , but as ( 6. i(x))(xy/Az) , where y are the free 

variables in 6 i(x) beyond x , and z are distinct variables of 

the same arities which do not occur in A. Thus 6. i (A) includes 

relabelling of the additional free variables in ll i (x) in order 

to avoid confusion with the free variables in A. 
Now Sis explained as follows: Let A be given. Let z consist 

of all veriables which are free in at l east one 6.i (A) (1 ~ i ~m ) 

but not free in A. Suppose ~ z 4 i (A) is a system of j udgements 

for every i , that is, ~ z.V( 6 i(I )) bas been proved. Then a veri 

fic ation of SA consists of a proof of ( ~i(A))(~/c) for some i 

and list of expressions C. 

It would not suffice j ust to require that t::. i(A) be a system 

of judgements, i . e . to leave z as free variables . For if SA 

is to be proved hypothetically from X, this explanation itself 

is to be understood under the assumption X, and X may already 

contain some variable of z free . 

I just state the spec ial rules of inference - the j ustifica

tions 8re completely along the lines of part Ic) , only generality 

bas to be taken into account in the obvious way. 

{ x : 7 z: 2) ( ll /I) ) j j 
(S form ) 

X : SA prop 

X: SA prop 

(S intr ) 
X X SA prop 

X : SA true 
(1 ! i ~m ) 
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Note that if z is not empty ( i . e. in a proper quantifier case ) , 

the following rul e is not adequate: 

x : ( ~ i(A))(~/-c ) {x 9z"°( 6. / A))Jj,ii 
(S intr' ) ---------------------- (1 ~i ~m ) 

X: SA true 

If the left premiss is explained , we have a hypothetical proof of 

~ (( ~ i(A))('Z"; C )) from X, but not necessarily of ~-z~(L\i(A)) 

from X, which would be required to guarantee, together wi th 

the right premisses , a hypothetical proof of SA prop from X. 

X : SA true 
(S elim) 

X 

X SA true 

X 

(Selim ' ) 

X SA true 

X 

Ix, !.l. . (A) 

R 

{x, b. .(A) 

C prop 

{ X, D. . (A) 

C true 

R}- (z not free in 
X or R) 

C prop 1 . 

Cz not free 

C tru<= ~ . 
in X or C) 

I f only one L\ ( x ) is associated with S, we have direct elimination 

rules only i f ,0.(x) contai ns no free variables beyond x (for 

example, 3 has no direct elimination rules) . In that case 

(S i ntr • ) and (Selim* ) are to be formulated as in the proposi

tional case ( the A now being expressions of possibly higher 

arity ) . 

Functional completeness of&, v, :::> ,.1. ,V ,3 can now be 

proved as i n my Aachen paper. The quantifiers come i n by trans

lating general judgements in A i (A) by the universal quantifier 

and free variables besides those in A by the existential quanti

fier . 

Since we have immediately deBlt with higher-order logi c , one 

may ask whether Prewi tz's result about the definability of logi

cal operators in terms of V and :=, c:;:in be obt;:iinea in this 
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framework. The answer is negative . For examrle , suppose we know 

Av3 prop . Then we cannot prove 

( A true =;:- x true, B true =:, x true) 7'x x true 

from AvB true which would be needed f or Prawitz's res ult . What 

one can prove from AvB true is 

x prop ~ x ((A true "" x true , R true -=,. x true ) ~ x true ) , 

or , if one uses ~ PR as an abbreviation for x prop ~ x R, 

( A true 9 p true , B true ~ p true ) 9 p p true. 

This shows that Prawitz' s result crucially depends on the fact 

that one considers propositionally restricted quantification to 

be a l ogic8l operation . In Martin-Lof 's framework this is not per

mitted since ' ••• prop' must not occur in the h. i(x ) associated 

with logical operators. By use of propositionally restricted 

quantification one could internally define the c ategory of pro

positions which would l ead to a contradiction. What remains of 

Prawitz 's result in Martin-Lof's framework i s that i f one knows 

SA prop, then one can prove 

{6 /A) ~ p true} j ~ p p true 

from SA true and v i ce versa , but not necessari ly C(A) true from 

SA true and vice versa for some C(x) for which Sx prop 9 xC(x) prop 

holds. This shows once again that in Martin-Lof's system not every 

hypothetical judgement of higher level can be translated into a cate

gorica l judgement, so that hypothetical judp,ements of higher 

levels may have useful applications beyond questions of a standar

dized schema for elimination rules and functional completeness . 

Peter Schroeder- Heist er 
June 1985 




