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KURZFASSUNG 

Industrielle elektronische Systeme, die die Fertigungsprozesse sowie die Bewegungsteuerung 

der Fertigungsmaschinen in modernen, hochautomatisierten Produktionsanlagen steuern, sind 

hochkomplex geworden und kombinieren eine Vielzahl von elektronischen, elektrischen und 

mechanischen Komponenten, die während ihres Betriebs reibungslos zusammenwirken 

müssen. Die hohen Anforderungen bei der Entwicklung zukünftiger Produktionsanlagen 

werden insbesondere an sogenannte Motion-Control-Systeme gestellt, die beispielsweise die 

schnelle und präzise Positionierung und Bewegungssteuerung von Förderbändern und 

Roboterarmen übernehmen. Diese Systeme müssen Störungen aller Art bewältigen und die 

Sicherheit des Bedienpersonals und die Integrität der Maschine jederzeit gewährleisten. Aber 

was passiert, wenn z.B. einzelne Chips in der Steuerung eines Roboters ausfallen, ein Motor 

aufgrund eines Lagerschadens überhitzt oder ein Sensor fehlerhafte Daten liefert? Ist es 

möglich, die Steuerungssoftware dieser Systeme so zu entwickeln und zu testen, dass bei 

Störungen an einer oder mehreren Komponenten das Gesamtsystem immer in einem sicheren 

Zustand verbleibt? Ist es ferner gewährleistet, dass Menschen in der Nähe dieser Maschinen 

nicht geschädigt und teure Komponenten, wie Motoren oder Roboterarme, nicht zerstört 

werden? Bis heute basieren die Endtests dieser Systeme hauptsächlich auf realen Prototypen, 

um den korrekten und sicheren Betrieb zu sicherzustellen.  

In der konventionellen Systementwicklung sind daher reale Prototypen und 

umfangreiche Systemtests notwendig. Diese Prototypen sind jedoch erst in späteren Phasen 

des Entwurfsprozesses verfügbar. Diese Tests sind bereits heute aufwendig und teuer und sind 

nicht in der Lage alle möglichen Fehlerarten vollständig abdecken, da bestimmte Fehler in der 

realen Hardware nicht provoziert werden können. Außerdem kann die späte Ausführung der 

Tests zu langen Iterationsschleifen führen, falls bei den abschließenden Tests Schwachstellen 

festgestellt werden. Noch anspruchsvoller wird die Validierung für die hochflexiblen, 

selbstkonfigurierenden, selbstheilenden Steuerungssysteme zukünftiger Fertigungsszenarien 

mit Fokus auf die Automatisierung kleiner Losgrößen, die eine wesentlich höhere 

Konfigurierbarkeit der Systeme und eine engere Interaktion zwischen Mensch und Maschine 

erfordern. 

Die Fehlerinjektion in Low-Level-Simulationsmodelle ist weit verbreitet, um einen 

sicheren Betrieb unter unerwarteten Bedingungen, wie z.B. Eigenausfällen der Elektronik 



 

 

 

 

oder umweltbedingten Ausfällen, zu validieren. Für eine schnelle Simulation der Systeme ist 

jedoch eine hohe Abstraktion der Modelle erforderlich und die Fehlersimulation bietet einen 

Kompromiss zwischen Genauigkeit und Simulationsleistung. Virtuelle Prototypen (VPs) 

ermöglichen es, Systemtests in einem frühen Entwicklungsstadium durchzuführen. Aber sie 

leiden immer noch unter einer unzureichenden Werkzeugunterstützung und Methodik. VPs 

haben z.B. keine Simulator Unterstützung mit inhärenten Fehlerinjektionstechniken. Darüber 

hinaus nutzen Ingenieurgruppen aus verschiedenen Bereichen verschiedene 

Modellierungssprachen und -Werkzeuge, um Modelle zu entwickeln und ihre Entwürfe in der 

Industrie zu bewerten. 

In dieser Arbeit wird eine kombinierte Technik zur Modellierung von Fehlern in 

Multi-Domain-Systemen vorgeschlagen, die eine frühzeitige Validierung dieser heterogenen 

Systeme ermöglicht. Die Validierung erfolgt mittels virtueller Stresstests durch 

Zusammenführung verschiedener Domänen in eine Simulationsplattform. Es werden 

geeignete Techniken beschrieben, um physikalische Komponentenmodelle so zu erweitern 

oder zu entwickeln, dass sie Fehlerinjektionsmöglichkeiten beinhalten, bevor sie in eine 

virtuelle Plattform importiert werden. Dabei werden nur physikalische Komponentenmodelle 

berücksichtigt, die mit MATLAB/Simulink modelliert werden, da nicht-digitale Teile des 

Systems in der Industrie häufig mit MATLAB/Simulink modelliert werden. In dieser 

Dissertation wird die im Rahmen des EffektiV-Projekts entwickelte TLM-basierte 

Fehlerinjektionsinfrastruktur genutzt, um durch die Entwicklung geeigneter Fehlermodelle 

Fehler in digitale Bauteile zu injizieren. Darüber hinaus wird ein generisches 

Fehlerinjektions-Framework vorgeschlagen und implementiert, um 

Fehlerinjektionsexperimente auf der Basis virtueller Prototypen durchzuführen. Mit diesem 

Framework werden die Fehler in die heterogenen Komponenten der industriellen Systeme 

(Motion Control Systeme) entweder interaktiv während der Simulationslaufzeit aktiviert oder 

als Regressionstests mit Hilfe von Skripten ausgeführt. Des Weiteren werden 

Nachbearbeitungstechniken vorgeschlagen, um die Ergebnisse der Regressionstests 

automatisch auszuwerten. Ferner werden die vorvalidierten Fehlermodelle in ein Hardware-

in-the-Loop (HiL)Testsystem bei Siemens integriert, wodurch eine abschließende Validierung 

der Fehlersicherheit der Systeme vor der Produktfreigabe ermöglicht wird. 

Die vorgeschlagenen Methoden werden am Beispiel einer industriellen 

Motorsteuerung mit zwei virtuellen HiL- und einem HiL-Demonstrator evaluiert: (i) 



 

 

 

 

Industrielle Motorsteuerung mit Motorsignalaufbereitung mittels Beschleunigungssensor. (ii) 

Industrielle Motorsteuerung und Förderbandanwendung basierend auf dem V-REP (Virtual 

Robotic Experimentation Platform) Simulator. (iii) HIL-Testsystem basierend auf einem 

Siemens SINAMICS G120 Antrieb. Es konnte gezeigt werden, dass die Ergebnisse dieser 

Arbeit zu einer Anpassung der zukünftigen Produktentwicklung für industrielle elektronische 

Systeme bei der Siemens AG führen kann. 

 

Schlüsselwörter: Industrie 4.0, Cyber Physical Systems, Virtueller Prototyp, 

Fehlersimulation, Hardware-in-the-Loop (HIL), Virtuelle Hardware-in-the-Loop (vHIL), 

Physische Komponentenmodelle, Fehlerübertragung, SystemC/TLM, Multi-Domain 

Simulation, MATLAB/Simulink, Simscape, Validierung. 

 



 

 

 

 

ABSTRACT 

Industrial electronic systems that control manufacturing and machine motion in modern, 

highly automated production facilities have become highly complex, which combine a variety 

of electronic, electrical, and mechanical components that need to interact smoothly during 

their operation. The high critical issues in the development of future production plants are 

imposed by motion control systems, which manage the fast and most accurate positioning and 

motion control of conveyor belts and robot arms, for instance. These systems are required to 

properly cope with failures of all kinds to guarantee safety of operators and machine integrity 

at any time. But what happens, if for instance single chips in a robot‘s control unit fail, if a 

motor due to a bearing damage overheats or a sensor delivers faulty data? Is it possible to 

develop and test the control software of these systems in a way that in case of faults in one or 

more components the total system always remains in a safe state? Is it guaranteed that humans 

near to these machines are not harmed and expensive parts like motors or robot arms are not 

destroyed? As of today, the final tests of those systems are mainly based on physical 

prototypes to ensure the correct and safe operation. 

 In conventional system development, physical prototypes and extensive system tests 

are needed. However, those prototypes are available only in later phases of the design 

process. These tests are complex and expensive already today and are not able to completely 

cover all possible kinds of failures, as certain failures cannot be provoked in real hardware. 

Moreover, the late execution of the tests may cause long iteration loops in case weaknesses 

are detected in the final tests. The validation becomes even more challenging for the highly 

flexible, self-configuring, self-healing control systems of future manufacturing scenarios with 

focus on automation of small lot sizes, which requires much higher configurability of the 

systems and closer interaction between humans and manufacturing machines. 

 Fault injection into low level simulation models is widely used for validating the 

satisfactory operation under unexpected conditions like intrinsic failures of electronics or 

failures caused by the environment. However, a high level of abstraction of models is required 

for fast simulation of the systems and fault simulation is a trade-off between accuracy and 

simulation performance. Virtual prototypes (VPs) provide a possibility to perform system 

tests in an early stage of development. But they still suffer from less tool support and 

methodology features e.g. VPs lack simulator support with inherent fault-injection features. 



 

 

 

 

Additionally, engineering groups of different domains exploit different modeling languages 

and tools to develop models and evaluate their designs in industry. 

 In this work, combined techniques to model faults in multi-domain systems are 

proposed which make early validation of these heterogeneous systems possible. The 

validation is performed by conducting virtual stress tests after bringing together different 

domains into one simulation platform. Suitable techniques are described, to enhance or 

develop physical component models such that they incorporate fault injection possibilities 

before being imported into a virtual platform. Only physical components models that are 

modeled using MATLAB/Simulink are considered, as non-digital parts of the system are 

often modeled in industry using MATLAB/Simulink. The TLM-based fault injection 

infrastructure developed under the EffektiV project is used to inject faults in digital parts by 

developing appropriate fault models. Furthermore, a generic fault injection framework is 

proposed and implemented to conduct fault injection experiments based on virtual prototypes. 

Using this framework, the faults in heterogeneous parts of the industrial systems (motion 

control systems) are either activated interactively during simulation runtime or executed as 

regression tests using scripts. Also, the post processing techniques are proposed to 

automatically evaluate the results of regression tests. Later, these pre-validated fault models 

are integrated in a hardware-in-the-loop (HIL) test system at Siemens, which enables a final 

validation of the systems’ safety against faults before product release.  

 The proposed methodologies are evaluated using an industrial motor control 

application example with two virtual HIL and one HIL demonstrators: (i) Industrial motor 

control system with motor signal conditioning using acceleration sensor. (ii) Industrial motor 

control system along with conveyor-belt application based on the V-REP (Virtual Robotic 

Experimentation Platform) simulator. (iii) HIL test system based on a Siemens SINAMICS 

G120 drive. It has been shown that the contributions from this study provided further 

directions in future product development for industrial electronic systems at Siemens AG. 

 

Keywords: Industrial 4.0, Cyber Physical Systems, Virtual Prototype, Fault Simulation, 

Hardware-in-the-loop (HIL), Virtual Hardware-In-the-Loop (vHIL), Physical Component 

Models, Fault Transfer, SystemC/TLM, Multi-Domain Simulation, MATLAB/Simulink, 

Simscape, Validation.
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1 

1 Introduction 

1.1 Robust Motion Control Systems 

Production plants of the future for industrial production 4.0 [1] [2], are highly complex, 

intelligent systems that consist of a variety of heterogeneous components: software, 

microelectronics, power electronics, sensor technology and actuators. A typical motion 

control system shown in Figure 1 in which the conveyor belt and robotic arms are coordinated 

for fast and very precise position and path control to pick and sort the items moving on the 

belt-conveyor. 

 The basic components in a typical motion control system are the application controller 

(PLC – Programmable Logic Controller), the drive (the control unit (CU) along with power 

electronics), the motor, the mechanical elements, and the feedback device or position sensor. 

The path planning or trajectory calculations are performed in the PLC, which sends low-

voltage command signals to the drive, which in turn applies the necessary voltage and current 

to the motor, resulting in the desired motion. Sometimes feedback devices on the motor or the 

belt-conveyor are used to notify the drive or the controller with specific details about the 

actual movement of the motor shaft or the belt-conveyor. This feedback data is used to 

increase the accuracy of the motion, and can be used to compensate for dynamic changes that 

may occur on the belt-conveyor. The robot-arms are required to pick "on-the-fly" objects 

moving on conveyor belts; the instantaneous location of moving objects is computed by the 

vision system acquiring images from a stationary, down looking camera. Motor condition 

monitoring is constant monitoring of the motor’s condition which enables changes in the 

monitored operating parameters to be recorded at a very early stage of fault development. The 

acceleration sensor is used for the condition monitoring of the motor to detect vibrations and 

jerking. 



Multi-Domain Fault Simulation Using Virtual Prototypes 

 

 

 
2 

Application

Acceleration 

Sensor

Belt-Conveyor with Robots

PLC Control Unit

 

 Figure 1: Typical Motion Control System with Sensor, PLC and CU [3]  

1.1.1 Traditional Development 

Figure 2 shows the traditional development flow of motion control systems, which was slow 

paced, sequential and embedded software development was dependent on the availability of 

physical boards. When the software content of an embedded system was relatively small, it 

was safe to wait for hardware to become available to start developing the software. Teams 

that wanted to get started sooner used register-transfer level (RTL) descriptions to represent 

the hardware, but that process was painfully slow. Register Transfer Level (RTL) abstraction 

is used to create high-level representations of a circuit, from which lower-level 

representations and ultimately actual wiring can be derived. 
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Figure 2: Traditional Product Development Flow 

1.1.2 Design and Validation Challenges, Parallel Development 

A well-proven way of dealing with the complexity of engineering systems is to find a suitable 

abstraction level to work with, since at high abstraction level details can be masked or hidden 

and a big picture view of the system can be achieved, without getting lost in details [3] [4]. 

Time-to-market pressures and system complexity force reconsideration in how these systems 

are designed. Systems design companies are increasingly designing at higher levels, which 

require understanding and validating software earlier in the process. This has led to the 

hardware/software parallel development i.e., hardware (right) and software (left) are 

developed parallel as shown in Figure 3.   
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Figure 3: Hardware/Software Parallel Development 

In parallel hardware/software development, hardware and software teams work in 

lock-step, communicating regularly, and continuously integrating hardware and software. The 

simple way to think about this trend is that important tasks that were done later in the design 

flow are now being started earlier. The software development begins before hardware is 

completed by using hardware simulation models of electrical and electronic components 

replacing their physical counterparts. Prime examples of hardware/software parallel 

development are the efforts in software development that are early enough to contemplate 

hardware changes, i.e., for e.g., hardware optimization and hardware dependent software 

optimization. 

 The motion control systems shown before have to cope with failures of all kinds to 

guarantee safety of operators and machine integrity at any time. Validation of this ability 
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today is still mostly done by final integration and system tests on hardware after development. 

These tests are already complex and expensive today and are not able to completely cover all 

possible kinds of failures, as certain failures cannot be provoked in real hardware. Moreover, 

the late execution of the tests may cause long iteration loops in case weaknesses are detected 

in final tests. Early and comprehensive statements about system behaviour under fault 

conditions are necessary and should be integrated into the product development, a way to 

counter these pressing problems. 

 ESL (Electronic System Level) design and verification [5] is an established electronic 

design methodology at most of the world’s leading SoC design companies and it is being used 

increasingly in system design. With ESL methodologies, the SoC designs are described and 

analysed at a level of abstraction at which the functional behaviour can be described without 

considering many details of the hardware implementation. Virtual prototyping is an ESL 

technique where a software simulation of the entire hardware platform is created using 

simulation models of the various blocks in the system [4]. A virtual prototype is a software 

functional model that implements the behaviour of the real hardware device and provides a lot 

of advantages. The models can be debugged and traced to capture all interface and internal 

hardware states and better controllability is supported which enables developers to modify 

hardware behaviour’s for software and system validation. However, virtual prototyping works 

well for software development but falls short when more detailed hardware models are 

required and it is plagued by model availability, its creation cost and effort. VPs also suffer 

from less tool support and methodology features e.g., VPs lack simulator support with 

inherent fault-injection features which considerably hinders the development and validation of 

complex industrial electronic systems. 

 Due to the heterogeneous nature of system components in industrial electronic 

systems, full-system simulation is necessary since the isolated view of individual subsystems 

comprising a closed-loop control system does not suffice to represent and thus validate the 

overall functionality. As strong interdependencies between subsystems exist, the interactions 

between them are of importance [6], which highlights the need for multi-domain simulation. 

Multi-domain simulation is the ability to efficiently and accurately simulate systems by 

consideration of different domains (e.g., thermal, electrical, mechanical, hardware/software, 
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etc.) together within one simulation or a coupled co-simulation [7]. Therefore, fast and 

accurate time-domain simulations are crucial in today’s heterogeneous systems simulation, 

design exploration, and verification. Hence, the full-system simulation at higher levels is 

performed provided it enables realistic system design and testing. Designers currently use 

high-level system design languages, such as SystemC, to model only the digital parts of a 

system. Simulink [8] and SystemC-AMS [9] are two well-known modeling languages used to 

model non-digital components of a system and its building blocks behaviourally.  

1.1 Research Contributions 

In this work, we propose a virtual stress test methodology [10] based on fault injection into 

multi-domain virtual platforms to ease and speedup system validation against failures. Multi-

Domain Virtual prototypes (MDVPs) [11] can be used for early validation by performing 

fault effect simulation abstracting the hardware components which the software is developed 

for. This allows the control software to protect against a wide variety of errors through 

extensive stress tests and also protection even against errors that up to now could not or barely 

been tested with real hardware setups. Thus, the security of systems is additionally increased 

despite its rapidly growing complexity. 

 A common methodology to perform efficient fault effect simulation of heterogeneous 

system parts are necessary to successfully validate and also to provide comprehensive 

statements about system behaviour in presence of faults. We define techniques to model faults 

across different domains, which can be used to conduct fault injection simulations in multi-

domain virtual prototypes. These techniques are used to enhance the physical component 

models before integrating them into the virtual platform. Non-digital parts of the system are 

often modeled in industry using MATLAB/Simulink. For the digital parts of the system we 

use transaction-level modeling (TLM) -based fault injection techniques [12] by defining 

appropriate fault models. But fault simulations in such systems can only be done based on 

virtual prototypes at high abstraction levels, which allow for execution of real SW stacks 

within only minutes of simulation time. At high abstraction level, it is difficult to validate 

fault injection as these models are not accurate enough to simulate the physical behaviour.  
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 The key to capturing physical system behaviour in presence of faults is to have an 

accurate and appropriate multi-domain simulation model of a physical system, which 

incorporates important mechanisms such as electrical effects, magnetic effects, mechanical 

loading etc. Modeling these mechanisms is difficult and more importantly simulating such a 

system is very slow. We propose to go from an accurate simulation model to allow for 

consideration of the true physical effects to the abstract representation which is fast and 

detailed enough to simulate the behaviour of the overall system. Once we have both the 

accurate and the abstract simulation models, the effect of a particular fault can be transferred 

by following these steps. (i) Simulate the accurate model in presence of the fault and capture 

the behaviour (ii) Transfer the fault behaviour onto the abstract model and simulate the 

overall system. We also propose and develop a generic fault injection framework based on 

virtual prototypes for fault effect simulation of industrial motion control systems. Once the 

models are integrated into a virtual platform, the automated stress tests are carried out using 

scripts or each individual test interactively.   

1.2 Thesis Outline 

 Chapter 2 provides background knowledge for the remainder of this thesis. It starts by 

explaining the ESL methodology and system level design along with virtual porotypes. After 

that, we discuss the modeling of digital and analog/mixed-signal parts of the industrial 

systems in detail. Later, we will look at the model-based design and in-the-loop technologies. 

Finally, we briefly discuss the functional safety standards IEC61508 and ISO26262.  

 Chapter 3 describes the state-of-the-art relevant for work presented in this thesis. It 

also describes the motion control systems (MCS) along with providing exemplary faults in 

heterogeneous component parts in MCS. Later, fault injection current techniques are 

discussed. At the end, details of the research context which includes aim and research 

objectives along with methodology are given.   

 Chapter 4 describes the proposed concept for successfully conducting stress tests 

based on virtual prototyping. This chapter defines modeling techniques for analog and 

analog/mixed signal models to incorporate fault models for using inside virtual prototypes. 

Abstract fault models for analog and analog/mixed signal and also digital parts based on TLM 
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are defined. A concept to transfer fault behaviours from electrical to data-flow models is 

proposed and presented with examples. A generic fault injection framework to carry out fault 

injection tests using automated scripts with post processing is described. 

 Chapter 5 presents the implementation details of an industrial motor control 

application and automated fault injection tests along with results.  

 Chapter 6 presents the demonstrators for industrial use cases. These include two 

virtual HIL; condition monitoring of motor using an acceleration sensor and a conveyor belt 

application using a virtual robotic experimentation platform (V-REP simulator). Finally, HIL 

demonstrator based on SINAMICS G120 drive with fault injection is presented. 

 Chapter 7 presents the conclusions on what has been achieved in this work and 

proposes future prospects. 
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2 Background 

2.1 Electronic System Level (ESL) 

ESL (Electronic System Level) design and verification [5] is an established electronic design 

methodology at most of the world’s leading SoC design companies and it is being used 

increasingly in system design. With ESL methodologies the SoC designs are described and 

analysed at a level of abstraction at which the functional behaviour can be described without 

many details of the hardware (RTL) implementations. Hence many engineering tasks and 

design optimizations can be sufficiently accomplished more quickly, efficiently and cheaply 

than at the RTL. 

2.1.1 ESL Design Methodology 

The “design gap” shows the spread between technology capabilities and hardware design 

capabilities. The rising “design gap” demands for continuous improvements of the design 

productivity.  One of the most critical issues is how the available chip has to develop even 

more complex integrated circuits and systems under fixed time-to-market and quality 

constraints. Here, designers describe an integrated circuit with an HDL (e.g. Verilog or 

VHDL) at RTL. There, the design is (almost) automatically synthesized down and circuit tool 

suites are applied using techniques such as tracking and reporting information about the code 

coverage, or performing a constraint random simulation. Two basic approaches could help to 

improve the design productivity: The first one lifts the design level to a higher more abstract 

level above RTL. The second approach introduces a design reuse methodology by means of 

(third-party) IP components. Modern flows combine both approaches to maximize benefits. 

 The SystemC TLM standard [13] does not focus on abstraction levels. In fact, the 

standard mentions particular use cases, such as software development, software performance 

analysis, or hardware architecture analysis. These use cases are supported by two different 
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coding styles, i.e. loosely-timed and approximately-timed modeling. Coding styles guide the 

designer in model writing using particular programming interfaces. 

2.1.2 System Level Design using SystemC 
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Figure 4: SystemC language architecture [14] 

SystemC is the most accepted system level modeling language for system on chip 

design in the Electronic Design Automation (EDA) community. SystemC was introduced in 

1999 by the Open SystemC Initiative (OSCI), which in 2011 merged with the Accellera 

Systems Initiative [15]. SystemC is an ANSI (American National Standards Institute) 

standard C++ class library [14] that allows modeling and dynamic verification of system level 

designs in various modeling abstractions. This includes classical RTL hardware modeling up 
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to transaction-level design. SystemC together with standard C++ software development tools 

are used to create system-level behavioural and architectural models of embedded systems. 

They provide hardware and software development teams a virtual platform for design, 

verification and test purposes without the need of hardware prototypes. 

SystemC is both a system level design language and an even-driven simulation kernel. 

Figure 4 shows the layers of the SystemC library. The base layer highlights the fact that 

SystemC is built on top of C++, which makes it compatible with standard compilers and 

software development tools. The SystemC standard defines the three middle blocks. It defines 

the simulation kernel and the core language which together provide the main mechanisms for 

HW/SW co-design. 

 SystemC also defines the data types and elementary channels supporting libraries. The 

data type library is used for hardware modeling and for certain kinds of software 

programming, such as bits and bit vector data types for hardware and fixed-point data types 

for software implementations. Elementary channels include basic communication models 

widely applicable for hardware and software modeling. Finally, the upper blocks are 

examples of MoC and methodologies supported by SystemC, but are not included as part of 

the standard. They provide additional support for specific design methodologies and can be 

extended or form part of other standards. Further information regarding SystemC can be 

found in [16] and [17]. 

2.1.3 Virtual Prototypes 

A virtual prototype [4] is an executable software model of a hardware/software system that 

runs on a host computer. These are system level simulation models that emulate (mimic) the 

behaviour of hardware prototypes and execute unmodified production code and provide 

higher debugging and analysis efficiency. Virtual prototypes are composed of system level 

models of processing elements and peripherals, such as memories, buses, interrupt controllers, 

etc. Their early availability, binary software compatibility and high execution performance 

enable virtual prototypes to be used to develop, debug, integrate and validate system software 

long before the first set of physical development targets becomes available and in most cases, 

even before the chip hardware design is done. 
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 A virtual platform is a fully functional software representation of a hardware design 

that encompasses a single- or multi-core SoC, peripheral devices, I/O and even the user 

interface. The virtual platform runs on a general-purpose PC or workstation and is detailed 

enough to execute unmodified production code including drivers, the OS and applications at 

reasonable simulation speed. Users have articulated the need for virtual platforms to not be 

slower than 1 tenth of real time to be effective for embedded software development. The 

achievable simulation speed depends on the level of model abstraction, which also determines 

the platform’s accuracy.  

 Virtual platforms can be used in most stages of a design. The main applications of 

virtual prototypes are during the development phase. They are especially useful in the 

following cases: software-driven verification and software development. Software-driven 

verification is equivalent to software-in-the-loop testing, where production code can be 

verified inside a virtual platform along with a simulated environment. This facilitates the 

verification process without the need of real hardware prototypes and experimental setups. In 

early design stages, virtual platforms are used as executable specification models that capture 

HW and SW requirements at a high abstraction. Due to their high abstraction, they can be 

made available in less time and can serve as golden reference models for further development 

and refinement stages. 

 Virtual platforms are also very useful for software development. Initial software 

applications and drivers can be developed and tested using virtual platforms. This allows the 

identification of software bugs and communication bottlenecks, which might be too 

complicated to find in real prototypes. Virtual platforms can also be useful after the 

deployment of a product. For instance, they may be used by a software designer to verify 

software updates in the form of firmware or higher level functionalities, done on multiple 

versions of deployed products which may not be physically available at the moment of testing 

the update. Aside from the previously stated verification benefits, virtual prototypes enable 

many other testing capabilities such as performance optimization, power analysis and fault 

injection. 
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2.1.3.1 Processor Models 

 Processor models use instruction set simulators (ISS) [18] to emulate the behaviour of 

the implementation model. By being an abstract representation of the RTL model, the 

simulation performance gained is typically several orders of magnitude faster than the 

implementation model. This allows hardware and software designers to run more application 

code or more comprehensive verification suites to prove the design. Processor models are 

system level descriptions of processing elements, such as microcontrollers, DSP’s used in 

embedded systems. They are responsible for the simulation of binary code compiled for 

particular processor architectures and for their communication with other components inside a 

virtual platform. The processor models are composed of structural and behavioural 

descriptions. Structural descriptions contain architectural details of a processor such as 

functional units, caches, registers, counters, etc. Behavioural descriptions correspond to a 

software application that is loaded into the system model. Timing information is afterwards 

obtained by the combined interaction of structural and behavioural descriptions. The 

behaviour and timing information of a processor model is dictated by an Instruction Set 

Simulator (ISS). An ISS is used to perform binary translation of a software application 

complied for a specific microprocessor or DSP [19] instruction set and to execute it in a host 

computer. 

 Synopsys [4] virtual platforms provide comprehensive models of physical platforms. 

Virtual platforms combine high-speed processor instruction-set simulators and fully 

functional C/C++ transaction-level models (TLM) of the hardware building blocks to provide 

a high-level model of the hardware for early software development. The functionally accurate 

ARM Instruction Set Models are available from Synopsys which are fully validated against 

ARM processor designs and include modeling of advanced ARM technologies such as 

TrustZone and VFP (Vector Floating Point) [20]. Fast Models [21] uses Code Translation 

(CT) processor models, which translate ARM instructions into the instruction set of the host 

dynamically, and cache translated blocks of code. This and other optimization techniques, for 

instance temporal decoupling and Direct Memory Interface (DMI), produce fast simulation 

speeds for generated platforms, between 20-200 MIPS on a typical workstation enabling an 
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OS to boot in tens of seconds. They allow full control over the simulation, including profiling, 

debugging and tracing. 

2.2 Digital Component Modeling  

2.2.1 Introduction 

The growing complexity in modern SoC (System on Chip) [22] is forcing the industry to look 

for design methodologies above RTL that can be used for architectural analysis and 

embedded software development. In system level design of these SoCs, communication takes 

the central role. Therefore a methodology for modeling communication at a higher abstraction 

level has become important. TLM is one such methodology that promises to be used in 

system level SoC modeling for early software development, architectural analysis and 

functional verification [23].  

2.2.2 Transaction Level Modeling (TLM) 

 TLM is a transaction based modeling approach founded on high-level modeling 

languages such as SystemC. It highlights the concept of separating communication from 

computation within a system. TLM aims at enabling system level simulation of large systems, 

for which RTL simulation would require an unacceptable amount of time. This goal is 

achieved by abstracting from signal level communication and modeling complex 

communication operations as atomic transactions, thereby reducing the number of events to 

be processed by event-driven simulators.  

 TLM defines a transaction as a data transfer or synchronization between two modules 

at an instant. The definition of transaction is refined as a structure that is specific to bus 

protocol. The application of TLM is not tied with one programming language. 

2.2.2.1 Overview of TLM2.0 Standard  

TLM enables simulation of complete hardware-software systems at much higher speeds. The 

simulation of TLM model is often orders of magnitude faster compared to RTL and low level 
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models. TLM models are used for different purposes by different people. Abstraction level of 

the model and their accuracy depends on use case and it is the clear trade-off between 

simulation speed and accuracy as shown in Figure 5. 

Virtual platform created using TLM at different abstraction levels can be used for different 

purposes (see Figure 6).  

• For architectural exploration and performance analysis, especially of large systems, 

where the efficiency of the high-level TLM model enables rapid simulation.  

• As a platform for early application software development, since the TLM definition of 

the hardware functionality can have enough detail for software to run on it and be 

available months before a detailed RTL implementation.  

 

Cycle Accurate (CA)

Approximately 
Timed (AT)

Loosely Timed (LT)

Untimed (UT)

Slower Faster

Simulation speed

Accuracy

 

Figure 5: Simulation speed versus accuracy trade-off [13] 

As a golden reference model for hardware verification, since TLM wrappers can be 

used to create a consistent interface to functional blocks whose detailed implementation is 

evolving. 
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The precision or correctness of a model in replicating the intended behaviour and 

activities of a system-under-design is determined by modeling accuracy of a given modeling 

approach. There are two decisive factors which determine the accuracy of a model, 

communication data granularity and timing accuracy. 

 The precision or correctness of a model in replicating the intended behaviour and 

activities of a system-under-design is determined by modeling accuracy of a given modeling 

approach. There are two decisive factors which determine the accuracy of a model, 

communication data granularity and timing accuracy. 

• Communication data granularity: This criterion reflects the fineness of the data carried 

by the communication structure of a model. In the order of increasing accurateness, 

the data granularity can be broadly categorized into application packet, bus packet, 

and bus size levels.  
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Figure 6: Use cases and abstraction levels [13] 
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• Timing accuracy: Timing accuracy of a TLM model determines the fidelity of the 

model to the intended timing behaviour. Based on the timing accuracy, TLM models 

can be broadly classified into timed and untimed models. These models are tailored 

for different purposes. Untimed TLM model is an architectural model targeted 

specifically at early functional software development and functional verification where 

timing annotations are not necessary. The objective of this model is high simulation 

speed. On the other hand, timed model is less abstract and it focuses on simulation 

accuracy. It can be conceptually perceived as a scale of two extremes, i.e. untimed 

model and CA (Cycle Accurate) model. The timing accuracy of TLM model is 

increased as we move from untimed to CA level end as shown in Figure 6. 

 Although the AT coding style enables the creation of more accurate models than the 

LT coding style, the amount of communication timing details that can be modeled is still 

limited as it uses only four transaction phases. For SoC design use cases such as detailed 

performance analysis and hardware/software validation that require even more accuracy, the 

base protocol of the AT coding style is insufficient. Typically these use cases require the 

communication to be accurate at the level of the system clock. At this cycle-accurate (CA) 

level of abstraction, the approximately-timed base protocol must be replaced with a more 

specific communication protocol [24]. For specific communication protocols that require 

additional timing points, the base protocol can be extended with custom phases.  
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Figure 7: TLM-2.0 communication [13] 
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 The SystemC TLM2 standard distinguishes between coding styles and interfaces 

instead of defining abstraction levels for each particular use case. A use case can be for 

instance software development, software performance analysis or hardware verification. The 

coding styles guide the designer in system modeling where the interfaces define low-level 

programming mechanisms. The TLM2 standard defines two coding styles: loosely-timed and 

approximately-timed that is supported by particular blocking and non-blocking transport 

interfaces. 

•  A module can act in three different ways: 

• Initiator: This module type creates new transactions and passes them to the channel by 

calling a predefined interface method. 

• Target: A module of this type receives transactions and executes them according to the 

target module task. 

• Interconnect: This component type forwards a transaction and possibly modifies it. So 

it acts as initiator and target at the same time. 

 The transportation path of a transaction that is going from an initiator to a target is also 

called the forward path. The opposite direction is named the backward path. Over the 

backward path, the target informs the initiator about the transportation state. Either the 

modified transaction object is returned or a specific backward method is called explicitly. 

Two socket types encapsulate the connection between components. The initiator socket 

enables interface calls on the forward path by a port and on the backward path by an export. 

The target socket offers the same mechanism in case of a backward path. 

 TLM-based methodology is increasingly used to improve the design productivity of 

complex systems. The communication interfaces enable TLM to achieve separation of 

communication from computation and interoperability between components. By incorporating 

TLM in a SoC design flow, it is possible to model systems at various abstraction levels. 
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2.3 Analog and Mixed-Signal (AMS) Modeling 

2.3.1 Introduction 

Virtual prototyping is a well-known technique applied in digitally-oriented ESL design 

methodologies. The objective is to create a reference platform of the complete system or IC 

architecture (the “prototype” part) by an executable description captured as an abstract model 

(the “virtual” part), which is then simulated. In this way, virtual prototyping provides software 

developers and system architects an environment for software development, architecture 

exploration, or HW/SW co-design. However, virtual prototypes based on purely digital 

models and model descriptions may not offer an efficient way to capture analog behaviour, 

which is often an integral part of the embedded system. This can be a serious drawback, as the 

interfaces to the outside world which are analog in nature – are thus not adequately modeled 

or even not modeled at all. Examples of these analog interfaces are sensors and actuators or 

the power supply and management unit of an integrated circuit. Furthermore, for optimized 

system architectures containing analog, digital, and software functionality, the software or 

firmware often directly interacts with analog/mixed-signal (AMS) hardware. Therefore, the 

correctness and robustness of the system in terms of its architecture, functional aspects, and 

timing aspects cannot be validated in the analog or digital domain only hence mixed-signal 

simulations are needed. 

2.3.2 Analog and Mixed-Signal Modeling Languages 

VHDL-AMS, Verilog-AMS [25], and SystemC-AMS allow modeling of discrete and 

continuous-time signals or a combination of both. All the three afore said HDL languages can 

represent AMS systems at a higher level of abstraction by bringing down the simulation time 

while providing the intended functionality of the design. Simulink (Simscape) or other 

interpretation tools can be used to model AMS systems if supporting libraries and functions 

are available. Simulink has an in built analog tool set which can be used for AMS modeling 

and the accuracy results are comparable to that of spice simulation results. In the following 

section, we will briefly look at SystemC-AMS and Simulink (Simscape [26]). 



Multi-Domain Fault Simulation Using Virtual Prototypes 

 

 

 
20 

2.3.2.1 SystemC-AMS 
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Figure 8: AMS Extensions for the SystemC Language Standard [9] 

The SystemC-AMS language is an extension to the SystemC language. It enables analog and 

mixed-signal modeling and simulation capabilities. SystemC-AMS is not yet defined by an 

international standard, although a detailed documentation [9] and its respective proof-of-

concept simulator [27] are available. SystemC-AMS extensions are fully compatible with the 

SystemC language standard as shown in Figure 8. The architecture of the SystemC-AMS 

language follows a layered approach built on top of the SystemC kernel. The user layer 

corresponds to the two top levels of Figure 8 and supports the following MoC’s (Models of 

Computation): Electrical Linear Networks (ELN), Linear Signal Flow (LSF) and Timed Data 

Flow (TDF). The solver layer provides a linear DAE solver for ELN and LSF models and a 

scheduler for TDF models. The synchronization layer is responsible for embedding MoC 
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descriptions and their solvers/schedulers into data flow cluster processes [28] which are able 

to co-simulate with SystemC’s discrete-event simulator. 

The ELN MoC supports the modeling of non-causal continuous-time models 

described as electrical networks. Electrical network are built by the instantiation and 

interconnection of basic passive components derived from available macro models, such as 

resistors, capacitors and inductors, as well as sources and monitors. ELN does not support the 

use of non-linear elements (e.g. transistors and diodes), although there are some workarounds 

[29] [30]. A further limitation relies on the available linear DAE solver provided in the recent 

SystemC-AMS proof-of-concept simulator. The solver implements simple fixed-step 

numerical integration methods (a combination of backward Euler and trapezoid methods [31]) 

which may lead to numerical instabilities. The LSF MoC supports modeling of continuous-

time systems described in a causal form using the following basic blocks: additions, 

multiplications, integration and delay. The connection of such blocks is used to define 

systems of equations, similarly to MATLAB /Simulink, which can be solved by the available 

linear DAE solver. The same limitations with respect to the linear DAE solver apply as 

before. The TDF MoC is an implementation of the Synchronous Data Flow (SDF) [32] 

principle, where processes are statically scheduled according to production and consumption 

rates. The advantage of TDF is the possibility to describe applications using a MoC similar to 

SDF. This is very useful for modeling digital signal processing algorithms. A further benefit 

is high simulation efficiency, since the TDF static scheduler reduces the dynamic overhead 

imposed by the discrete-event kernel of SystemC. SystemC-AMS is not yet a fully capable 

multi-domain simulator. It provides basic modeling capabilities for AMS systems in the 

electrical domain, but it lacks the modeling support for describing other type of physical 

energy domains. In addition, the available linear DAE solver in proof-of-concept simulator 

[27] is not robust enough, although improvements on this sense have been investigated [31]. 

2.3.2.2 Simulink (Simscape) 

Simulink is commercial software from Mathworks [8] for modeling, simulation and analysis 

of dynamic systems. It is a graphical programming environment used for creating models with 

block diagrams. It is capable of simulating models using different solvers and automatically 
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generating code. The basic elements in Simulink are blocks and lines. Basic blocks are 

mandatory units to perform computation or display functions, such as Add, Memory, Scope, 

etc. The designer builds hierarchical systems by encapsulating basic blocks into subsystems. 

Lines (also called edges or channels) are used to connect blocks and have register semantics 

(non-destructive read, destructive write). It has a large library of function blocks and users can 

also create their own customized blocks. By creating systems and subsystems in different 

blocks it is easy to organize a system and to get a clear overview of the different parts of the 

system, in a way that is often not available when using text based editors. Simulink provides 

several solvers to compute the model that contains continuous and/or discrete states. It is very 

efficient to use Simulink during early design stages for algorithm exploration. Simulink is 

often used in MBD (Model-Based Design). MBD is a process that enables fast and cost-

effective development of dynamic systems, including control systems, signal processing, and 

communications systems.  

 Simscape [33] is one such toolbox which allows you to quickly create models of 

physical systems within the Simulink environment. With Simscape, you create physical 

component models based on physical connections that are directly integrated into block 

diagrams and other modeling paradigms. Simscape provides a set of block libraries and 

special simulation features especially for modeling physical systems that consists of real 

physical components. It is accessible as a library within the Simulink environment. They 

model systems such as electric motors, bridge rectifiers, hydraulic drives and cooling systems 

by combining essential components in a scheme. Simscape add-on products provide more 

complex components and analysis capabilities. From these different physical domains you can 

create models of your own custom components.  

 Simscape provides a foundation library with blocks from physical components for the 

domains mechanical, magnetic, electrical, hydraulic and thermal elements, as well as 

Simscape Multibody (formerly SimMechanics) for 3D mechanical systems, such as robots, 

vehicle suspensions, construction equipment, and aircraft landing gear. The following 

toolboxes are available, Simscape Driveline (formerly SimDriveline) for rotational and 

translational mechanical systems, Simscape Electronics (formerly SimElectronics) toolbox for 

electronic and mechatronic systems, Simscape Fluids (formerly SimHydraulics) for fluid 
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systems and Simscape Power Systems (formerly SimPowerSystems) for electrical power 

systems. To release designs to other simulation environments, consisting of HIL or vHIL 

systems, Simscape supports C-code generation. Transaction-Level Model Generation feature 

of HDL Verifier [34], when used with Simulink Coder automatically generates IEEE 1666 

SystemC TLM 2.0 compatible transaction-level models. Generated SystemC models have a 

TLM 2.0 compliant interface with a target socket that uses the TLM 2.0 generic payload. You 

can select options for memory mapping, processing times as well as input and output 

buffering. 

2.4 Model-Based Design and In-the-loop Technologies 

Modeling is the step between the collection of high level requirements and implementation. 

Models allow testing and verification to be done continuously, in parallel with system design 

and implementation. In the early design stages, one can develop behavioural models to clarify 

and define detailed low level requirements. Such models may have the basic architecture of 

the solution, but are independent of the target platform. A model used to capture key 

requirements and to demonstrate correct behaviour in simulation, as well as to demonstrate 

traceability to high level requirements, is often referred to as executable specification. Further 

development of the executable specification and the addition of implementation details lead to 

the definition of a model that represents a final implementation. Often, such a model is 

optimized for code generation. It honours the data types, the target architecture and even the 

required coding style. Changes require a verification process that ensures the change 

introduced in the model for production code generation does not change the model’s 

behaviour.  
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Figure 9: The V-model of the Systems Engineering Process 

Model-based design (MBD) is a well-established approach to design embedded 

control systems [35]. By using MBD, engineers can find errors earlier in the design process 

and create high-performance motor control systems. It enables designers to start verification 

and testing with models of these components thereby saving design time, reducing costs and 

also improving overall system quality with accuracy and performance. MBD and in-the-loop 

methods are widely used today in the industry to develop and test control strategies. In-the-

loop testing techniques allow one to reuse the model test cases and test environment for 

execution with the production. There are several different kinds of workflow approaches. As 

the integration level changes during development, the individual test execution environment 

changes as well. A workflow approach that takes this into consideration is the V-model, 

which links early development activities to their corresponding testing activities later on. The 

V-model that can be used as a design process of a project and it is illustrated in Figure 9. 

Conventionally, the left side of the V-model represents the embedded system design phases, 

while the right side represents the validation and verification phases of the embedded system. 

The first step is the requirement analysis. This phase is about establishing what the ideal 

system has to perform, without determining how the software will be built or designed. This 
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is done in the section where goal specifications and requirements are made. The second phase 

of the V-model is the system design. This is the phase where the developers analyse and 

understand the business of the proposed system by studying the user requirements documents 

and try to enable the requirements and specifications. This is done by testing the model 

continuously using Model-in-the-loop (MIL) [36] and coming up with solutions to the 

requirements and specifications. The third stage is where the code is written or generated. 

This is the software design stage of the V-model. To make sure that the code is working 

correctly it is tested using Software-in-the-loop (SIL) [37] [38]. On the right side of the V-

model are unit testing, integration and validation. The unit testing stage is about testing the 

processor. This will not be a large part in this project since a PLC that is guaranteed to work 

by the manufacturer is used. In other cases, where the construction of the processor is part of 

development, Processor-in-the-loop (PIL) [39] [40] testing can be made in this stage. The 

integration part is where the generated code is integrated with the hardware and Hardware-in-

the-loop (HIL) [41] [42] testing is made. In this phase tests are made to see if the controller 

that was made in the system design stage works in the system. This links System Design 

together with the Integration Testing part. The last step is to validate if the results fulfils the 

requirements. 

    

Controller Plant Input stimuli Plant output

 

Figure 10: Typical control system 

  

 In a typical MBD workflow of designing a control system as shown in Figure 10: 

Typical control system, it is common to model a controller along with the plant it is designed 

to control. Plant is the common term for a model of the physical system and its environment. 
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The starting point is the creation of the model of the controller and the plant in a modeling 

tool. Then, it is common to run simulations inside the modeling tool with simulated inputs 

and outputs to test the design as it evolves. As the project progresses, the controller model 

will need to migrate to the real electronic system of software and hardware, while the plant 

model will be replaced by real physical systems and tested in the real environment. 

2.4.1 Model-in-the-loop (MIL) 

MIL [36] consists of mixing the physical plant model (including mechanical, electrical, 

thermal, etc., effects) with the control strategy at the algorithmic level (typically using state 

machines). This creates a complete mechatronic model that can be simulated together to find 

out whether the behaviour of the control logic is correct. Very often a tool that is used for this 

is Simulink from the company Mathworks. Initial tests can be created at this level. These tests 

should be reusable for the next subsequent phases. Once the MIL simulation shows that the 

results are correct, the control part is implemented (typically in software). Implementing the 

control model can be done manually by writing C code or automatically by using code 

generation tools. 
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Figure 11: Model-in-the-loop 

2.4.2 Software-in-the-loop (SIL) 

SIL testing involves executing the production code for the controller within the modeling 

environment for non-real-time execution with the plant model and interaction with the user. 

The code executes on the same host platform that is used by the modeling environment. A 

code wrapper of the generated code provides the interface between the simulation and the 
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generated code. The problem with SIL is that the C code is compiled for the host PC instead 

of the target control unit (CU). This may introduce differences in precision due to different 

data types (saturation and overflow effects), as well as other problems due to resource 

limitations on the CU (memory and processing power). 

Code generation

Host compiled C with

S-function

Controller 
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Plant 

Model
Input stimuli Plant output

 

Figure 12: Software-in-the-loop 

2.4.3 Processor-in-the-loop (PIL) 

PIL is used to overcome some of the limitations of SIL. PIL still focuses on the control 

algorithmic implementation, but this time the C code is compiled for the targeted processor 

architecture. The execution of the software code is synchronized with the simulated physical 

plant in order to reuse the same tests. Memory allocation and execution time can be measured 

at this point. The main problem of PIL is that in reality a control function is not targeted to a 

single MCU architecture, but too many different MCUs depending on the specific 

requirements and variant of the end product. Combined with that people working with SIL are 

not familiar or keen to work with hardware environments hence making this approach a 

limited adoption. 
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Figure 13: Processor-in-the-loop 

2.4.4 Hardware-in-the-loop (HIL) 

HIL simulation is a technique that is used for the development and testing of control systems 

which are used for the operation of complex machines and systems. HIL simulation provides 

an effective platform by adding the complexity of the plant under control to the test platform. 

The complexity of the plant under control is included in test and development by adding a 

mathematical representation of all related dynamic systems.  
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Figure 14: Hardware-in-the-loop 

In HiL simulation, a production controller is tested against a real-time simulation of the plant 

(motors and machine). This capability is useful in cases where access to the actual system is 

limited or unavailable – for example, motors attached to large industrial machines such as 

printing presses or packaging equipment. HIL simulation is also invaluable when it is 

dangerous to test the plant’s full operational envelope. Consider the risks of trying out a 

complex motor control algorithm in an industrial environment. If something goes wrong, a 

system failure can damage equipment and endanger people nearby. Testing the production 

controller against a real-time simulation of the motors and machine is far better. Just as 

important, hardware-in-the-loop simulation can be used to fully exercise system diagnostics –

for example, emergency condition detection and shutdown procedures – which might be 

difficult or impossible to test on the motor and/or machine itself. 

HiL Current Limitations:  

• Limited access due to limited number of HIL systems (cost and access)  
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• Limited visibility and controllability of HW and SW  

• Hard to deploy in regression  

• Complex to setup  

2.4.5 Virtual Hardware-in-the-loop (vHIL)  

The vHIL [43] using a virtual prototype (VP) can add multiple benefits to a standard 

development flow.  In the context of an “in-the-loop” methodology, a VP removes the 

dependency on the ECU hardware and enables earlier software integration and testing. This 

creates a smoother path between MIL, SIL and HIL. With a vHiL environment, a virtual ECU 

model is connected in closed-loop to the same plant model that runs, for instance, on 

Simulink. The same tests applied on the MIL and SIL phases can be now executed on the 

vHIL environment. More importantly new tests can now be created by the software testing 

teams without having to wait for an ECU prototype or having to allocate time on a HIL 

environment. The vHIL accelerates integration, testing and also improves quality through 

parallel regressions. 
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Figure 15: Virtual Hardware-in-the-loop 
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2.4.5.1 Advantages over HIL 

• Start early: before CU HW is available  

• Reduced costs: easier deployment and setup costs  

• Improve productivity: Non-intrusive SW debug and analysis  

• Improve quality: more testing coverage (scripting for automated regression execution) 

2.5 Fault Injection and Simulation 

A system may not always perform the function it is intended for. The causes and 

consequences of deviations from the expected function of a system are called the factors to 

dependability. The Fault injection (FI) is defined as a validation technique for the 

dependability of fault tolerant systems. It is used to assess robustness, including the 

evaluation of error handling mechanisms. The causes and consequences of deviations from 

the expected function of a system are called the factors to dependability. 

• Fault is a physical defect, imperfection, or flaw that occurs within some hardware or 

software component. 

• Error is a deviation from accuracy or correctness and is the manifestation of a fault. 

• Failure is the non-performance of some action that is due or expected. 

When a fault causes an incorrect change in a machine stage, an error occurs. Although a fault 

remains localized in the affected code or circuitry, multiple errors can originated from one 

fault site and propagate throughout the system. When the fault-tolerance mechanisms detect 

an error, they may initiate several actions to handle the faults and contain its errors. 

Otherwise, the system eventually malfunctions and a failure occurs. 

2.5.1 Fault Classification on Temporal Behaviour 

The faults that arise during system operation are best classified by their temporal behavior, as 

permanent, intermittent, and transient:  
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• Permanent: Faults remain in existence indefinitely if no corrective action is taken. 

Many of these are residual design or manufacturing faults. Those that are not most 

frequently occur during changes in system operation, for instance, after system start-

up or shutdown, or as a result of a catastrophic environmental disturbance such as a 

collision.  

• Intermittent: Faults appear, disappear, and reappear repeatedly. They are difficult to 

predict, but their effects are highly correlated. Most intermittent faults are due to 

marginal design or manufacturing. The system works well most of the time, but fails 

under typical environmental conditions.  

• Transient: Faults appear and disappear quickly, and are not correlated with each 

other. They are most commonly induced by random environmental disturbances.  

2.5.2 Fault Injection Current Techniques 

The fault injection techniques have been recognized for a long time as necessary to validate 

the dependability of a system by analysing the behaviour of the devices when a fault occurs. 

Several efforts have been made to develop techniques for injecting faults into a system 

prototype or model.  Most of the developed techniques fall into these following categories. 

2.5.2.1 Hardware-based Fault Injection  

It is performed at the physical level. This is typically done by modifying the value of the 

hardware input/output pins (with contact fault injection) and also by creating external 

disturbances with electromagnetic interference, heavy ion radiation, etc. (without contact fault 

injection). The advantage of hardware fault injection techniques is the ability to access some 

locations that are not easy to access by other techniques. It has several disadvantages such as 

high risk of damage to the system under study, needs a special hardware which in turn incurs 

additional costs and moreover, the results are difficult to collect and observe. 
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2.5.2.2 Software-based Fault Injection 

It uses an implementation model and is attractive because they don’t require expensive 

hardware. Although the software approach is flexible, the software-based fault-injection 

techniques [44] [45] are limited since they can only inject errors on those locations accessible 

by the software. The biggest problem with software-based fault injection is that it involves 

changing the software by inserting code to cause errors, which means it might act differently 

when compared with the production software. 

2.5.2.3 Simulation-based Fault Injection  

It uses an implementation model to perform the experiments. Simulation-based fault injection 

[46] has the advantage of having full access to all hardware elements in the system. Without 

being intrusive it has full observability, controllability and is fully deterministic. The down 

side of this level of simulation is that they are extremely slow. This makes them unusable for 

more complex fault scenarios where software must be taken into account. 

2.5.2.4 Emulation-based Fault Injection 

This technique [47] [48] [49] has been presented as an alternative solution for reducing the 

time spent during simulation-based fault injection campaigns. It is based on the exploration of 

the use of Field Programmable Gate Arrays (FPGAs) for speeding-up fault simulation and 

exploits FPGAs for effective circuit emulation. This technique can allow the designer to study 

the actual behaviour of the circuit in the application environment, taking into account real-

time interactions. However, when an emulator is used, the initial VHDL description must be 

synthesizable and optimized to avoid a costly emulator and also to reduce the total running 

time during the injection campaign. Other drawbacks include the cost of a general hardware 

emulation system and the implementation complexity of a dedicated FPGA based emulation 

board. A low cost can be reached but at the expense of a reduced speed of the fault injection 

campaign. 

 There are certain merits and demerits of every method stated above. Detailed 

information about this is presented in [50]. 
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2.6 Functional Safety Standards 

Functional safety [51] [52] means the prevention of unjustifiable risks that can arise from 

hazards caused by malfunctions in electrical or electronic systems. Systems comprised of 

electrical and/or electronic elements have been used for many years to perform safety 

functions in most application sectors. Computer-based systems generically referred to as 

programmable electronic systems are being used in all application sectors to perform non-

safety functions and increasingly to perform safety functions. Functional safety is a concept 

applicable across all industry sectors. It is fundamental to the enabling of complex technology 

used for safety-related systems. It provides the assurance that the safety-related systems will 

offer the necessary risk reduction required to achieve safety for the equipment. 

 To achieve functional safety, the risk of hazards caused by system malfunction must 

be removed. Safety standards ensure that associated risks are reduced or removed to meet 

safety requirement levels. The functional safety standards include IEC-Standard IEC-61508 

[53] for the general industry and ISO-Standard ISO-26262 [54] for road vehicles. These 

standards define the appropriate safety lifecycle and Safety Integrity Levels (SILs) to develop 

hardware, software and provide a safety analysis with supporting confirmation measures and 

processes. 

 IEC 61508 was developed for the industrial automation industry, but derivatives for 

other industries such as rail (EN 50128), medical (IEC 62304) and machinery (IEC 62061) 

are already existing. IEC 61508 is still used for commercial vehicles – especially off-highway 

vehicles. 

2.6.1 IEC61508 

 IEC61508, functional safety of electrical/electronic/programmable electronic safety-

related systems, is designated by IEC as a generic standard and a basic safety publication. 

This means that industry sectors will base their own standards for functional safety on the 

requirements of IEC61508. This International Standard sets out a generic approach for all 
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safety lifecycle activities for systems comprised of electrical and/or electronic and/or 

programmable electronic (E/E/PE) elements that are used to perform safety functions. This 

unified approach has been adopted in order that a rational and consistent technical policy be 

developed for all electrical-based safety-related systems. A major objective is to facilitate the 

development of product and application sector international standards based on the IEC 61508 

series. 

The IEC61508 framework consists of 7 parts: 

• IEC61508-1 (General requirements): defines the activities to be carried out  at  each  

stage  of  the  overall  safety  lifecycle,  as  well  as  the requirements  for  

documentation,  conformance  to  the  standard, management and safety assessment. 

• IEC61508-2 (Requirements for electrical/electronic/programmable electronic safety-

related systems): Interprets IEC61508-1 for hardware.   

• IEC61508-3 (Software requirements): Interprets IEC61508-1 for software. 

• IEC61508-4 (Definitions and abbreviations): Contains definitions and abbreviations in 

the standard. 

• IEC61508-5 (Examples of methods for the determination of safety integrity levels): 

provides risk analysis and demonstrates the allocation of safety integrity levels 

(SIL’s). The Safety Integrity Level or SIL is a measure for the quantification of risk 

reduction. 

• IEC61508-6: Guidelines on the application of IEC61508-2 and IEC61508-3 

• IEC61508-7 (Overview of measures and techniques): provides brief descriptions of 

techniques used in safety and software engineering, as well as references to sources of 

more detailed information about them. 

2.6.2 ISO 26262 

ISO 26262 [54] is the adaptation of IEC 61508 to comply with needs specific to the 

application sector of electrical and/or electronic (E/E) systems within road vehicles. This 

adaptation applies to all activities during the safety lifecycle of safety-related systems 

comprised of electrical, electronic and software components.  
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 Safety is one of the key issues of future automobile development. New functionalities 

not only in areas such as driver assistance, propulsion, in vehicle dynamics control, active and 

passive safety systems increasingly touch the domain of system safety engineering. 

Development and integration of these functionalities will strengthen the need for safe system 

development processes and the need to provide evidence that all reasonable system safety 

objectives are satisfied. With the trend of increasing technological complexity, software 

content and mechatronic implementation, there are increasing risks from systematic failures 

and random hardware failures. ISO 26262 includes guidance to avoid these risks by providing 

appropriate requirements and processes. 

System safety is achieved through a number of safety measures, which are implemented in a 

variety of technologies (e.g. mechanical, hydraulic, pneumatic, electrical, electronic, 

programmable electronic) and applied at the various levels of the development process.
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3 State-of-the-Art and Research 

Context 

3.1 Related work 

As discussed in section 1.1 Robust Motion Control Systems, comprehensive system tests and 

early applicable stress tests are an important component for the protection and qualification of 

electronic systems in industrial automation, especially where fast moving parts are to be 

controlled, i.e. in motion control systems. In this application domain, fault safety and 

functional safety play an important role, which is also reflected in several standards (e.g., IEC 

61508, IEC 61511 etc.). System tests are now carried out on extremely complex test setups in 

which the motion control products to be qualified are constructed in various configurations 

with a number of standard machines. In these tests, the response of the system is validated to 

various errors e.g. interrupted communication lines, failure of the power supply of individual 

devices and the like. These tests are not only very complex, lengthy and expensive, but also 

cover a limited range of applications. This is due on the one hand to the relatively few 

machines available in the test compared to the almost infinite number of possible 

combinations in the field. On the other hand, many important errors, e.g. subtle errors in 

electronic circuits (such as a bit-flip in a memory cell) or the heat running and blocking of a 

mechanical bearing can hardly be represented in these tests. 

 A wide-spread approach to address this problem is the so-called Failure Mode and 

Effect Analysis (FMEA), which involves reviewing as many components, assemblies, and 

subsystems of a system as possible to identify failure modes, and their causes and effects [55] 

[56] [57] [58]. A support for this qualitative process by comprehensive simulation of fault 

effects and stress scenarios is so far not available or only at lower abstraction levels, such as 

the error simulation at gate level. Although, the provision of approaches to high-level error 

simulation has been called for several times since 2011, for e.g., at the Design Automation 
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Conference (DAC) 2011, the solutions still remain. At higher abstraction levels, there are 

solutions for model-based fault analysis using abstract black box component models used in 

current delivery projects, e.g. CHESS [59], SAFE [60] and SPES_XT [61] in particular with 

regard to current safety standards (for example ISO 26262) as well as an integration in a 

model-based design sequence for different application domains. The aim of the model-based 

fault analysis is to determine the failure probability of a system, taking account of the error 

rates of all components by applying established techniques for reliability analysis, e.g. the 

fault tree analysis (FTA). A number of monographs on the reliability analysis [62] [63] and on 

fault tolerance [64] [65], can be referred to in this area, which discuss this subject intensively. 

 In [15] a system was developed for rapid simulation in the industrial system (IEEE 

Std. 1666) in the field of modeling and simulation of electronically based systems based on 

ESL (Electronic System Level). Through the availability of the open source C++ library, the 

language allows the development of open, tool-independent system C / C++ libraries and the 

integration of any C++ modules. The bus abstraction standard TLM (Transaction Level 

Modeling), which is now integrated in the current IEEE Std. 1666, was developed for the 

further simulation acceleration. Furthermore, SystemC-AMS [66] provides extensions for the 

modeling and simulation of analog systems and open system libraries that implement the 

essential parts of the UVM (Universal Verification Methodology) standard for test 

environments [67]. Since SystemC is completely based on C++, proprietary C / C++ modules 

can be seamlessly integrated into the simulation. Thus, any model-based tool chains can also 

be used provided they have code generation features. For e.g., Simulink [8] or UML (Unified 

Modeling Language) [68] with C / C++ code generators such as Simulink Coder [69] or 

TargetLink [70] respectively. 

 In the context of the rapid co-simulation of HW / SW systems, the area of so-called 

virtual prototyping (VP) has developed over the last few years, which essentially means the 

integration of software emulators with ESL simulators, e.g., Synopsys Virtualizer [71]. Since 

the emulators perform the binary code of the target platform, they are based on the virtual 

model of the processor for early software development using the tool chains of the target 

platform. This includes the development of hardware-related software, such as device drivers, 

as advanced techniques allow execution accelerators to perform complete images (application 
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software, operating system, etc.). Meanwhile, Cadence, Synopsys and Mentor Graphics offer 

VP environments. Alternatively, there are also approaches to integrate SystemC with open 

source emulators, such as QEMU [72] [73] [74]. 

 The fault simulation had its origin at gate level in order to be able to detect production 

errors in the production of circuits. An error based on a fault model is injected into the circuit 

and for a given test pattern, a simulation is performed to determine whether there is a 

difference between fault-free and faulty circuit behaviour. This procedure with the necessary 

methods for the generation of test patterns is also very well understood for the lower levels 

(gate level and register transfer level) [75] [76] [77] [78]. A first method of fault simulation 

for SystemC has been proposed in [79], but only low abstraction-level and structural errors 

are addressed. The increase of the fault simulation to higher levels of abstraction took place 

only in the first approaches [80] [68] [81]. The inclusions of software, metrics for the 

detection of fault coverage, the generation of scenarios as well as a methodology out of the 

requirements are not addressed. General methods of fault injection for SystemC models based 

on mutations were presented in [82] [83]. However, no reference has been made to known 

hardware fault models and thus the continuity to the lower levels is not guaranteed. 

Additionally, an attempt to use fault injection techniques for dependability evaluation of 

software functional model is done with development of MODIFI tool [84]. MODIFI (or 

MODel-Implemented Fault Injection tool) extends the fault injection methodology to 

behaviour models in Simulink. The tool allows for introducing single or multiple points faults 

on behavioural models, the fault tolerant system properties are studied by analysing faults 

leading to failure. Even though experiments have been performed on a variety of dataflow-

algorithms of software described in Simulink but the primary focus was on the control 

software of an automotive application. Furthermore, so far no approaches are known which 

provide fault simulation for heterogeneous systems e.g. the effects of errors in analog 

components, on the digital circuit components and the reaction of the application software. A 

special application of fault simulation on embedded software has been proposed in [85]. 

However, software operates without considering the underlying hardware mutated, so that no 

realistic statements are possible for a given hardware. To validate the specification of the new 

MOST network standard, a first TLM-based method was developed in [86] fault simulation, 
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which is specifically designed for a specific application use case and not directly on the 

problems addressed here are generalized.  

 In this work, we propose a virtual stress methodology based on virtual prototypes to 

validate the functional safety of motion control systems. Using this methodology it will be 

possible to carry out system tests at an early stage and more importantly it is possible to 

protect the reaction of motion control systems against faults which could hardly be provoked 

in real hardware setups. 

3.2 Motion Control Systems (MCS) 

Motion control systems contain both analog and digital circuitry parts and the associated 

software as shown in Figure 16. The performance of a motion control system depends on the 

interaction of these components. The analog components include the power module, the 

encoder and the motor. The digital components are the control unit, the pulse logic control 

and monitoring with the associated software. Examples of work machines are conveyor belts, 

fans, pumps, printing machines, industrial robots, crane systems, wind power plants. 

Power electronics of a power module converts an input alternating voltage of a fixed 

frequency and amplitude into a variable output voltage with variable frequency and 

amplitude. The components of the PM power section are shown in Figure 17. The control unit 

and the pulse logic will determine and regulate the frequency and amplitude of the alternating 

voltage at the motor that drives the work machine. The power rectifier of the PM power 

section in Figure 17 consists of an uncontrolled three-phase bridge circuit. Their task is to 

convert the alternating voltage of the power supply into a (pulsating) DC voltage, which is 

smoothed by the intermediate circuit capacitor. The inverter consists of three bridge divisions, 

each consisting of two IGBTs and two diodes. The inverter converts the intermediate circuit 

voltage into a three-phase pulsating output voltage. 
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Figure 16: Drive Model of a Motion Control System 

The encoder in Figure 16 provides the speed and position information required for the 

current control to the pulse logic of the power module. The electronics for control and 

monitoring will determine the control signals of the electric drive from the set point values of 

the control unit and the actual values from the frequency converter of the power module and 

from the sensor. 

The motor of an electric drive converts electrical energy into mechanical energy. Since 

the requirements for electric motors are extremely diverse, there are both DC motors and 

three-phase motors. For three-phase motors, a distinction is made between synchronous 

motors [87] and asynchronous motors [88]. Synchronous motor is a typical AC electrical 

motor that is capable of producing synchronous speeds. In these motors, both the stator and 
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the rotor rotate at the same speed thus achieving synchronization. The basic working principle 

is, when the motor is connected to the mains, electricity flows into the stator windings, 

producing a rotating electromagnetic field. A synchronous motor is started by applying AC 

power to the stator and an external DC power then is applied to the rotor coils after the motor 

reaches maximum speed. This produces a strong, constant magnetic field in the rotor, which 

locks in step with the rotating magnetic field of the stator. This is in turn induced on to the 

windings in the rotor which then starts rotating. As a result of this interlocking, the motor has 

either to run synchronously or not run at all. 

L1

L2

L3

T1

T4

T2

T5

T3

T6

motor terminals

m
a

in
s

Rectifier DC-Link Inverter

─ 

+

2

3

1

4 5 6

 

Figure 17: Power electronics of a power module 

 The working principle of asynchronous motors is almost same as to that of 

synchronous motors except that it has no external exciter connected to it. Asynchronous 

motors also known as induction motors which also run by the principle of electromagnetic 

induction. In asynchronous motors there is no external device connected to excite the rotor in 

asynchronous motors and hence, the rotor speed depends on the varying magnetic induction. 

This varying electromagnetic field causes the rotor to rotate at a speed lower than that of the 
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stator’s magnetic field. Since the speed of rotor and the speed of stator’s magnetic field vary 

these motors are known as asynchronous motors. The motor is generally connected to a work 

machine via a rotating shaft with a clutch. Using the mechanical energy the motor performs 

application-specific tasks, e.g. the material transport (conveyor belt). 

3.3 Exemplary Faults in MCS 

A comprehensive list of software and analog or digital hardware faults that can occur in 

motion control systems and their respective effects can be found together with selected error 

scenarios in motion control applications in [Ref]. We list some of them as examples in this 

section.  

3.3.1 Exemplary Faults in the Analog Hardware 

The analog components of a motion control system as shown in Figure 16 are power 

electronics, motor and encoder. 

• One broken input terminal of the motor  

o Fault ID: HW_Analog_001 

o There is no input voltage at exactly one at the input terminals of the motor 

o Reduced power and unbalanced network load 

• Two broken input terminals of the motor 

o Fault ID: HW_Analog_002 

o There is no input voltage at exactly two at the input terminals of the motor 

o Drive failure 

 

• A diode to the positive pole is short-circuited in the mains rectifier of the PM power 

section. 

o Fault ID: HW_Analog_003 

o Intermediate circuit voltage breaks 

o Drive failure 

• The intermediate circuit capacitor of the PM power section is short-circuited. 
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o Fault ID: HW_Analog_004 

o No smoothing of the DC voltage generated by the mains rectifier 

o Drive failure 

• In the inverter of the PM power section, an IGBT is short-circuited. 

o Fault ID: HW_Analog_005 

o Intermediate circuit voltage breaks 

o Drive failure 

• Sensor defective. 

o Fault ID: HW_Analog_006 

o No or incorrect actual values are passed to the pulse logic for control and 

monitoring 

o drive failure 

• Short circuit between the stator windings of different voltage phases in the 

asynchronous motor. 

o Fault ID: HW_Analog_007 

o An overcurrent is generated in the motor 

o drive failure 

3.3.2 Exemplary Faults in Mixed-Digital/Analog Hardware 

The digital components of a motion control system (including sigma-delta converters) as 

shown in Figure 16 are Pulse logic with control and monitoring, and microcontroller 

hardware. 

• Hardware error in the control unit or in pulse logic. 

o Fault ID: HW_AMS_001 

o The PM performance part receives incorrect control signals from the pulse 

logic 

o Drive failure 

• No clock signal at the output of the sigma-delta converter for the intermediate circuit 

voltage. 
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o Fault ID: HW_AMS_002 

o No digitization and therefore no measurement of the DC link voltage possible 

o Drive failure 

• Incorrect clock frequency at the output of the sigma-delta converter with at least 1 

phase of the 3-phase inverter output voltage. 

o Fault ID: HW_AMS_003 

o Error measurement of the voltage of a phase 

o Drive failure 

• Faulty bit stream at the output of the sigma-delta converter with at least one phase of 

the 3-phase inverter output voltage. 

o Fault ID: HW_AMS_004 

o Error measurement of the voltage of a phase 

o Drive failure 

• The pulse logic generates a short turn-on or switch-off pulse for the inverter IGBTs. 

o Fault ID: HW_AMS_005 

o This leads to overheating and destruction of the affected IGBTs 

o Drive failure 

• The pulse logic generates a short circuit with each switching of at least one of the 

three phases in the PM inverter (for e.g., from 1 to 0). 

o Fault ID: HW_AMS_006 

o Drive failure 

3.3.3 Exemplary Faults in the Communication Bus 

The data exchange between the Control Unit (CU) and the Power Module (PM) takes place 

via the communication bus (K-Bus) (see Figure 16). 

• K-Bus cable defective or interrupted. 

o Fault ID: K_BUS_001 

o No data exchange between CU and PM is possible 

o Drive failure 
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• K-Bus cable is too long. 

o Fault ID: K_BUS_002 

o Sporadic errors can occur during the data exchange between CU and PM 

o Drive failure is possible 

• The CU parameterization does not match the PM parameterization. 

o Fault ID: K_BUS_003 

o No data exchange between CU and PM is possible 

o Drive failure 

3.3.4 Exemplary Faults in the Software 

With the software (SW) of the Control Unit (CU), the microcontroller (μC) can calculate the 

set point values for the pulse logic (see Figure 16). 

• Software does not correctly support the operating system. 

o Fault ID: Software_001 

o Application is not executable 

o Drive failure 

• Faulty command processing due to a bit-dumper in the command memory. 

o Fault ID: Software_002 

o Application crashes 

o Drive failure 

• Software processes unauthorized data. 

o Fault ID: Software_003 

o Application crashes 

o Drive failure 

3.3.5 Exemplary Faults in the Application 

For the execution of the tasks from applications, the work machines are necessary to perform 

the mechanical work. Examples of work machines are conveyor belts, fans, pumps, printing 
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machines, industrial robots, crane systems, wind power plants, etc. The application module is 

shown in Figure 16. We list some example fault scenarios in conveyor belts. 

• Conveyor belt is accelerated too much or decelerated. 

o Fault ID: Appl_001 

o Material can fall from the conveyor belt 

• Product jam on the conveyor belt. 

o Fault ID: Appl_002 

o Further processing of the product by subsequent processes is endangered 

• Conveyor belt blocked. 

o Fault ID: Appl_003 

o Drive overload 

o Shutdown is necessary 

3.3.5 Hardware Induced Software Errors 

Hardware failures can modify software and/or induce totally unpredictable results in the 

software. While the failure mechanism is within the hardware, the software is erroneous 

because it has new and unintended reaction. For example, a hardware bit perturbation can 

result in an incorrect instruction or data, or a jump to an incorrect memory location. We list 

some example fault scenarios. 

• Exposure of microcontroller to cosmic radiation  

o Fault ID: HW_SW_001 

o one or more bits of program code or HW registers or from RAM or Flash are 

set incorrectly, software registers are changed 

o slight deviations from the nominal behavior or in the case no error impact 

o massive deviations from the desired behavior with harmful potential or SW 

crash 

• Hardware part of a sensor in the system is defect 

o Fault ID: HW_SW_002 

o It may  induce an unintended reaction from the application software 
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 ISO26262 explicitly mentions possibilities for fault effect simulation as an effective 

measure for the achievement of safety targets: Clause 5: 10.4.5 "Fault injection testing aims at 

introducing faults in the hardware product and analysing the response. This testing is 

appropriate whenever a safety mechanism is defined. Model based fault injection (e.g. fault 

injection done at the gate-level netlist level) is also applicable, especially when fault injection 

testing is very difficult to do at the hardware product level. For example, showing the 

response of safety mechanisms to transient faults inside hardware parts, such as a 

microcontroller, is very difficult to do with fault insertion at the hardware product level since 

it would require irradiation tests." 

3.4 Fault Injection using Virtual Prototypes 

A virtual prototype (VP) is a fast simulation model of the digital hardware e.g., control unit 

(CU). This model enables fast simulation, while being able to execute exactly the same binary 

software as the target CU. Because a virtual prototype is a software simulation model which 

helps to address the previously issues by providing the following advantages [89]. 

• full access to internal and external hardware elements (that have been modeled), as 

well as software,  

• high observability i.e., all hardware and software events recorded and correlated,  

• high controllability i.e., faults can be triggered by software, hardware or time events 

• complete repeatability i.e., simulations are completely deterministic and 

• faults reside in the simulation framework and do not go into release code 

3.5 Aim of the Research and its Objectives 

The aim of this work is to propose and develop methodologies for efficient fault simulation 

for industrial electronic systems consisting of system parts of heterogeneous domains 

(digital/analog/mechanical) using virtual prototypes and also in the context of hardware-in-
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the-loop system. The aim of the research was further decomposed into the following 

objectives:  

• Creation of concepts for the efficient simulation of digital, analogous electrical and 

mechanical system components, which enable fault simulation for real systems.  

• Integration of heterogeneous system parts in to a virtual platform (multi-domain 

virtual platform).  

• Integration of fault injection into analog and mixed-signal components in to a virtual 

platform and also in the context of hardware-in-the-loop simulations.  

• Prepare a virtual and hardware-in-the-loop prototype systems for demonstration 

3.6 Drawbacks of Existing Solutions and Research Methodology 

The system qualification has a special role to address possible errors constructively and 

proactively in the development of future industrial electronic systems. The early detection and 

correction of the errors is of central importance. However, early error detection is not possible 

without the detailed consideration of all components along the entire value chain. Fault 

simulation techniques are today established at a very low level of abstraction or in the context 

of real hardware test setups. The consideration on a low level of abstraction does not allow a 

comprehensive system view and also test setups are only available in late development phases 

which involve considerable effort. Hence, an early and comprehensive consideration of all 

relevant failure scenarios is not feasible. 

 Virtual prototyping in the industry has for some time received the greatest attention 

and acceptance. Meanwhile in the system development virtual representations of hardware are 

increasingly used. On the one hand these virtual models, in contrast to real hardware, provide 

better insight into the system, while simulating a variety of scenarios efficiently. On the other 

hand one of the concerning things about virtual prototyping has been the separation between 

speed and accuracy. Therefore, our goal is to raise the existing fault simulation techniques to 

the virtual system-level without compromising on accuracy i.e., accurate simulation of faults 

on abstract system models. Hence, for quality assessment, this includes the modeling of faults 

in abstract heterogeneous component models as well as the assessment of the impact of 
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disturbances on the system in order to identify faults and deficiencies in the virtual prototype 

early in the design process and to prevent them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Multi-Domain Fault Modeling and 

Simulation 

4.1 Introduction 

Future industrial electronic systems (IES) have to cope with a wide spectrum of applications, 

which demand the design of much more complex and trustworthy systems. As a result of 

growing complexity and more stringent requirements, early design space exploration and full-

system simulation is crucial for these systems with traditionally long development cycles and 

rush market demands. IES are of multi-domain nature which in general consists of digital 

electronic components with embedded software (SW) on single or multiple processor cores 
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along with analog electronics, mechanical components and the environment. The interaction 

between these heterogeneous subsystems becomes very crucial. Multi-domain simulation is 

the ability to efficiently and accurately simulate systems of different domains (e.g., thermal, 

electrical, mechanical, hardware/software, etc.) together within one simulation [7].  

 Considering the complexity of IES, simulations are preferable to pure mathematical 

analysis. Engineering groups of different domains in industry exploit different domain 

languages and tools to model and evaluate their designs, which may not be familiar to 

everyone. It is error-prone and inefficient to work with these domain languages and tools 

directly to design and evaluate overall systems. Given the multi-domain nature of IES, it is 

more appropriate either to bring different domains into one simulation [90] or use a 

heterogeneous simulation environment (co-simulation) [91] [92] to study system dynamics. 

We propose to bring together different domains into one simulation platform in a closed loop. 

Moreover, these systems are required to properly cope with failures of all kinds to guarantee 

safety of operators and machine integrity at any time. As of today, the final tests of those 

systems are mainly based on physical prototypes to ensure the correct and safe operation of 

the system. In conventional system development, physical prototypes and extensive system 

tests are needed. However, those prototypes are available only in later phases of the design 

process. These tests are complex and expensive already today and are not able to completely 

cover all possible kinds of failures, as certain failures cannot be provoked in real hardware. 

Moreover, the late execution of the tests may cause long iteration loops in case weaknesses 

are detected in the final tests. We propose a virtual stress methodology based on virtual 

prototypes to validate the functional safety of motion control systems. Using this 

methodology it will be possible to carry out system tests at an early stage and more 

importantly it is possible to protect the reaction of motion control systems against faults early 

in the development and also against faults which could hardly be provoked in real hardware 

setups. 

 We identified the following tasks in order to successfully carry out virtual stress tests, 

which will be discussed in the remainder of this chapter. 

• Fault scenario identification and fault specification 

• Identifying critical system states 
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• Analog and mixed-signal fault modeling 

• Digital fault modeling 

• Integration of heterogeneous system parts in a virtual platform 

• Infrastructure/generic framework for fault injection in a virtual platform 

• Automated fault injection tests and post processing 

 

4.2 Virtual Stress Tests 

To perform virtual stress tests i.e., to analyse the behaviour of a system under the influence of 

faults, a model of the system is required which describes for each fault its impact on system, 

the time at which the fault occurs (fault activation time) and how long it lasts (fault duration). 

Hence as a prerequisite it is needed to list the possible fault scenarios which are of interest on 

system behaviour level. 

4.2.1 Fault Scenario Identification and Fault Specification 

 

System 

component Name of the system component 

Function Functionality of the system component 

Abstraction Abstraction level at which the fault is modeled 

Fault Abnormal condition that can cause an element or an item to fail [54] 

Error 

Discrepancy between a computed, observed or measured value or 

condition, and the true, specified or theoretically correct value or 

condition [54]  

Failure Termination of the ability of an element to perform a function as 
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required [54]  

Impact 
Effect on system functionality. Possible values; high, low, process 

dependent 

Comments Additional information for user 

Figure 18: Fault Scenario Template 

A widely used method in industry to identify all possible failures in a system is failure mode 

and effects analysis (FMEA) [56] [57]. We use the FMEA reports to extract fault scenarios 

and derive their corresponding fault specifications which aid in fault modeling. We define the 

template shown in Figure 18 to list the possible fault scenarios in a system and the template 

for derived fault specification is shown in Figure 19. 

 

 

Fault ID Unique identifier 

Abstraction Transaction level, signal level 

Modeling SystemC, SystemC-AMS, Simulink, ... 

Fault model 
Fault model e.g. open-circuit, short-circuit, stuck-at, value-drift, 

delay, ... 

Fault type Fault type based on timing behaviour: transient, permanent... 

Time-window 

(Period) 

Time interval in which the fault occurs at least once. Not 

relevant for permanent faults 

Duration 
Fault active time in one time window (duration, period). Not 

relevant for permanent faults 
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Comments Additional information for user 

Figure 19: Fault Specification Template 

System component Variable Frequency Drive (VFD) 

Function 
3-phase motor control using AC voltage dependent on 

frequency and amplitude 

Abstraction System level; Simulink or SystemC-AMS 

Fault Broken-wire fault on one of the three input phases 

Error No input (value) on one of the three input phases 

Failure Reduced performance and unsymmetrical network load 

Impact Process dependent 

Comments 

VFD converts from a 3-phase AC voltage at the input to the 

frequency and amplitude adjustable 3-phase AC voltage at the 

output, e.g. for the operation of three-phase motors 

Figure 20: Fault Scenario Example 

Fault Broken-wire fault on one of the three input phases 

Fault ID HW_Analog_0001 

Abstraction Signal level 

Modeling Simulink 

Fault model Open-circuit 
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Fault type Permanent 

Time-window Not applicable 

Duration Not applicable 

Comments 
The motor operation depends on load when one of the 3-Phase input 

lines is broken 

Figure 21: Fault Specification Example 

An industrial electronic system, e.g. motor control application is a typical example of multi-

domain system, which in general consist of components of multiple domains, i.e. digital 

electronic components with embedded software (SW) running on one or multiple processor 

cores as well as analog electronics, mechanical components and the environment. Various 

numbers of faults can occur on these multi-domain system components. An example fault 

scenario of broken-wire fault on one of the three input phase lines and its corresponding fault 

specification are shown in Figure 20 and Figure 21 respectively. 
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4.2.2 Identifying Critical System States 
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Figure 22: Speed Profile of a Motor 

Another step necessary for conducting fault injection campaigns is identifying the critical 

states of a system, which helps to extract the fault activation times for an application use case. 

It is a challenging task as each output system state is dependent on various factors, e.g., 

application use case, environment, system parameters etc. and for complex systems it is hard 

to consider all the system use cases at once. Hence, it is important to develop a framework 

which is independent of this step in order to use the same infrastructure with minimal 

modifications for different use cases. An example speed profile of a motor is as shown in 

Figure 22. As seen the motor output has three different states ramping or transient (a, c, e and 

g), and steady (b, d, f and h). We can extract fault activation times from this speed profile, 

which helps in conducting fault injection campaigns. 

 As strong inter-dependencies between components across domains exist in multi-

domain systems, possibilities to combine different faults within and across domains are 

necessary to validate the system. Hence, it is important that the infrastructure for fault 
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injection should provide generic mechanisms for the users to not only activate simple 

predefined faults but also to combine multiple faults in order to make fault injection 

campaigns possible in multi-domain systems. 

4.3 Analog and Mixed-Signal Fault Modeling 

 Virtual prototypes based on purely digital models and model descriptions may not 

offer an efficient way to capture analog behaviour, which is often an integral part of the 

embedded system. The fault model complexity in analog and mixed-signal circuits is different 

from that in digital circuits. In digital circuits, the stuck-at fault model is widely used at gate 

level [93]. In contrast, in analog circuits accurate analog fault models are not always 

available. Also, describing the good and faulty circuit for all types of faults at higher levels 

such as the behaviour or the macro-model level is a very complicated task and still remains a 

challenge in analog circuit testing. Several fault models at different abstraction levels are 

proposed. Furthermore, probability methods are often not efficient because the statistical 

distributions of analog faults, generally, are not known with enough precision to accurately 

predict the fault coverage of a test set. The information provided in the literatures can be used 

for making test decisions, creating fault models, generating fault lists, and calculating fault 

coverage in fault simulation. A comprehensive structured approach for testing and fault 

diagnosis of analog and mixed-signal (AMS) circuits and systems have not yet materialised. 

The basic problem with analog IC fault diagnosis is the absence of efficient fault models [94], 

component tolerances and non-linearities. It is difficult to arrive at a general fault model like 

the stuck-at models for the digital circuits. 

 Different failures modes exist in analog domain such as degraded performance, 

functional failures, open circuit, short circuit etc. Degradation faults depend mainly on 

variations of certain parameters of the components used in a circuit from its nominal values. 

This may be due to manufacturing defects, process variations, change in the environment or 

ambient temperature and/or wear out due to aging. Functional faults, on the other hand, are 

based on the fact that a circuit may continue to function, but some of its performance 

specifications may lie outside their acceptable ranges.  
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 We can broadly categorize the types of faults occur in analog circuits as parametric 

and catastrophic faults. Parametric faults occur in circuit due to some manufacturing defects 

(change in some parameter like due to doping level and due to oxide thickness). Due to 

parametric faults in circuit the tolerance of component will vary to certain value. In these 

types of faults the circuit output may or may not be changed. Because the value of component 

will increase or decrease to certain value. This type of fault can be removed with the help of 

knowing the tolerance of component. Catastrophic faults will completely change the output of 

the circuit as these faults which eventually will lead to a short or an open circuit. These are 

also called hard faults. Due to these types of faults the behaviour of system changes 

drastically. Parametric faults are more realistic but the list of faults to simulate is nearly 

impossible. Hence it is necessary to identify a set of faults to simulate before preparing the 

models [95]. In most of the studies, the faults are modeled mostly as open, short, and variable 

component values. However, component value changes are usually significant in these failure 

modes. As a result, a faulty value with a value ten times larger or ten times smaller is a 

reasonable assumption in generating the fault list. Open and short faults are only the extreme 

cases of these two. Therefore, it is also important to test these variations (parametric faults) 

along with open and short faults.  

 In our study, we have mainly chosen to use open and short fault models for analog 

fault modeling as most defects seen in manufactured ICs are shorts and opens (except in the 

most advanced process nodes). Also, in the state-of-the-art production processes, shorts are 3-

10X more likely than opens [96]. Additionally, 80 to 90 percent of analog faults involve 

shorted and open in electrical components such as capacitors, diodes, transistors [62]. Our 

goal is to simulate faults in analog/mixed-signal abstract component models at system level.  

 In analog models, short circuit and open circuit should be considered as resistive 

values according to the technology and process [97]. Open faults are hard faults in which the 

component terminals are out of contact with the rest of the circuit creating a high resistance at 

the incidence of fault in the circuit. Addition of a high resistance in series with the component 

(e.g., capacitor or diode) can simulate the open faults. Short faults, on the other hand, are a 

short between terminals of the component (effectively shorting out the component from the 

circuit). A small resistor in parallel with the component can simulate this type of fault for the 
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component. Parametric faults can also be simulated by having an appropriate deviated 

resistance value. In this study we have chosen the fault models of devices such as capacitor 

and transistor as shown in Figure 23. The capacitor has one resistor in series (Rs) and one in 

parallel (Rp) in order to simulate open and short circuits respectively. Similarly a transistor 

has 6 resistors. 
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Figure 23: Fault models of capacitor and transistor 

4.3.1 SystemC-AMS and MATLAB/Simulink 

One of the important concepts of fault diagnosis in analog ICs is the use of model-based 

observer scheme. Most popular approaches to model analog and mixed-signal components on 

system behavioural level are using the SystemC language [98] along with the analog and 

mixed-signal (AMS) extension (SystemC-AMS [9]) and MATLAB/Simulink [8], which has 

become a de-facto standard in industry. SystemC-AMS extensions introduce three different 

models of computation to support AMS behavioural modeling at different levels of 

abstraction. It offers various advantages such as interportability, ease of integration into 

virtual prototypes, open-source, etc. On the other hand, MATLAB/Simulink is a good 

candidate for simulating behavioural macromodels as it provides various libraries and 

toolboxes for the modeling flexibility along with code generation and integration facilities. It 

also supports physical component and electrical power systems modeling with Simscape and 
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Simscape Power Systems (formerly SimPowerSystems) toolboxes respectively. Also, recently 

introduced HDL verifier [34] toolbox supports SystemC/TLM component generation for 

virtual platform development. 

 Both MATLAB/Simulink and SystemC-AMS have their own strengths. This 

dissertation focuses on MATLAB/Simulink models as it has become the de-facto standard in 

industry for modeling and simulation of physical systems and the weighted factor being the 

most common modeling tool used at Siemens (i.e., model availability).  

4.3.2 Abstract Fault Models and Fault Interface Design 

The aim of test generation (fault injection) is to minimize production tests and improve test 

quality by choosing an optimal set of test patterns. This task is well understood for digital 

circuits, for which automatic test pattern generators (ATPGs) assume a fault model (stuck-at, 

stuck-open, delay faults, etc.) and generate tests based on these. However because of the 

complex nature of analog circuits, a direct application of digital fault models proves to be 

inadequate in capturing the faults behaviour. Hence analog test selection has to be approached 

in a rather ad-hoc way. Sometimes circuits tend to be over tested to avoid shipping a faulty 

product, while, at other times, the tests may be inadequate and moreover we look at the 

system on behaviour level. The first step towards developing an analog testing methodology 

is to develop comprehensive analog fault models. The proposed standard analog fault model 

(AFM) for behaviour models is shown in Figure 24. 

AFMn

Actual 

value

Fault

value

Control

Output

 

Figure 24: Analog Fault Model (AFM) 
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 Each AFM implements a failure mode by manipulating signals between blocks in a 

model. As a general remark valid for all AFMs presented is that at each time step when a fault 

is not activated the output value is equal to the non-faulty value (actual value) ; else the actual 

value assumes the value determined by the AFM (fault value). Some of the AFM’s are listed 

below (1-3 AFM’s are boolean and 8-10 are real or integer), 

• AFM 1: Forces the actual value (boolean) to be "1"  

• AFM 2: Forces the actual value (boolean)  to be "0" 

• AFM 3: Inverts the actual value (boolean) 

• AFM 4: Forces the actual value (real/integer) to be "0" 

• AFM 5: Forces the variable’s actual value (real/integer) to a constant value, provided 

as a parameter 

• AFM 6: Increases the variable’s nominal value (real/integer) by an amount, provided 

as a percentage change 

• AFM 7: Decrease the variable’s nominal value (real/integer) by an amount, provided 

as a percentage change 

• AFM 8: The actual value (real/integer) is multiplied by a fixed value, provided as a 

parameter, at each time step 

• AFM 9: Makes the actual value (real/integer) drift away from the nominal value by a 

fixed amount, provided as a parameter, at each time step 

• AFM 10: Makes the actual value (real/integer) to keep the nominal value – at the time 

step when the failure occurred – for as long as the failure is active 

 

 The temporal aspect (transient, intermittent, permanent) is also embedded in the AFM 

and it is controlled by the additional control signal as shown in Figure 25. The time-window 

and duration are multiples of simulation time-step of the fixed-point solver. For e.g., consider 

a Simulink model with simulation time-step of 100 us, the value of time-window field equals 

10 and duration equals 5. The value of time-window is calculated as 10*100 us and duration 

as 5*100 us. 
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Time-window Duration Reserved
Fault

Type

Fault 

Type

Permanent
0b0001

Transient
0b1000

Periodic
0b0010

Aperiodic
0b0100

Intermittent

031 23 15 3

 

Figure 25: Control Interface and Fault Type 

4.3.3 Fault Simulation in Abstract Models 

 Fault models are anomalies in the system and hence, they inherently cannot be 

accurately described with the means of standard electrical primitives. As technology 

continues to shrink, fault models are becoming more and more complicated. As the result, 

fault injection is becoming harder, less accurate and in some cases impossible to perform. 

Designers are usually forced to approximate fault behaviours to be able to add their effect to 

the circuit and in doing so, they would reduce precision. For a reliability researcher or 

engineer, it is very important to have a precise description of faults for an abstraction level 

i.e., abstraction level depends on use case and be able to rapidly model and implement new 

fault models as the design or technology evolve.  

 Abstract models of MATLAB/Simulink are based on signal-flow graphs. The bi-

directional voltage-current relationship known from kirchoffian networks must be separated 

into input- and output only signals, where by voltages are considered as input and current as 

output. Electronic devices such as resistors cannot be directly attached to voltage ports; rather 

feedback loops are utilized to model the voltage drop correctly. For this reason, data flow 
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models are not appropriate for electronic design, whereas they are preferred environment for 

use cases such as system simulations, software validation, etc. 

 The amount of details to be incorporated inside the models will certainly depend on 

system use case. For use cases such as system simulation and software validation using virtual 

prototypes, it is not necessary to incorporate each and every physical effect of the electrical 

system as this will cost a lot of simulation performance (simulation time) but in turn has a 

drawback of being less accurate making it difficult to simulate fault effects accurately. 

Consider a motor control application system modeled on behaviour level using Simulink; it is 

difficult to simulate electrical faults like short-circuit between motor-phases, open-circuit 

(setting a phase value to ‘0’ might not have an open-phase effect), etc. Hence, a better 

approach to solve this issue is to capture the fault behaviour on right abstraction level and 

transfer it on to behaviour model, we call it as fault transfer. Although more accuracy to 

simulate faults would be possible in the simulation we choose Simscape electrical model to 

capture the fault behaviour as this would give enough insight on the abstraction level of the 

virtual prototypes (VP). 

Why fault transfer?  

• It is not possible to accurately simulate the faults such as electrical faults in abstract 

behavioural models.  

• Although the electrical faults can be simulated in a virtual platform by integrating 

Simscape models using code generation feature, they are very slow for virtual 

prototyping use case (refer Simulation Performance Test). 

In HIL (hardware-in-the-loop) systems, only the abstract model can be used due to 

stringent real time requirements. 

4.4 Fault Transfer 

We propose to go from an accurate simulation model to the abstract representation, which is 

fast and detailed enough to simulate the behaviour of the overall system. Once we have both 

the accurate and the abstract simulation models, the effect of a particular fault can be 

transferred by following these steps.  
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• Simulate the accurate model in presence of the fault and capture the behaviour.  

• Transfer the fault behaviour onto the abstract model and simulate the overall system. 

 We use Simscape toolbox from Mathworks for electrical model simulation, which is 

closest to that of SPICE simulations (The variable-step solver, ode23t is closest to the solver 

that SPICE traditionally uses [99]). Incorporating every physical effect certainly will slow 

down the simulation speed. Hence, these Simscape models does not necessarily incorporate 

every physical aspect, but should be detailed enough to carry out simulations on system level. 

For abstract representation Simulink data-flow models are used. We simulate Simscape 

models to capture the fault behaviour, which are relatively accurate representation and 

transfer the fault effect onto an abstract representation (Simulink data-flow model). 

4.4.1 Motor Control Application 

The power electronics components (selected by the red dotted rectangle as shown in Figure 

26) are modeled in both Simscape and Simulink. 

Power Module (PM)

Power electronics 

3 -phase 
supply

Control Unit (CU)

Load
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Figure 26: Motor Control Application Setup 

 

4.4.1.1 Simulation and Results Analysis 

 Once we have both the Simscape and Simulink models, the initial step is to validate that both 

are functionally equivalent (without any fault injection). Figure 27 and Figure 28 show the 

simulation output with omega, torque and stator currents of Simscape and Simulink models 

respectively.  

The comparison graph of motor speed is shown in Figure 29 respectively. From the 

speed comparison graph, we can clearly see that the signals in the graphs are overlapping only 

with the slight variations. These slight variations are due to differences in modeling artefacts 

in Simscape and Simulink. Hence we conclude from the simulation results that both the 

models are functionally equivalent. 
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Figure 27: Simulation Output (Simscape) 

 

Figure 28: Simulation Output (Simulink) 
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Figure 29: Speed Comparison 

4.4.2 Examples of Fault Transfer 

T1

T4

T2

T5

T3

T6

Cdc

Rdc

A B C

F1

F4, F5.1

F6

F8

F9

F7

F2, F3

F5.2

F1 - Short circuit between two motor phases 

F2 - Short circuit of one motor phase to earth 

F3 - Short circuit of two motor phases to earth

F4 - Open circuit of one motor phase

F6 - Short circuit of IGBT (high-side) to high 

F7 - Short circuit of IGBT (low-side) to low

F8 - Open circuit of IGBT-Gate signal  

F9 - Short circuit across DC-link capacitor 

F10 - Capacity reduction of DC-link capacitor

F5 - Open circuit of two motor phases 

F3

F10

 

Figure 30: Fault Selection in Inverter and Motor 

The most of electric motor drive system malfunctions deal with power converter failures, 

resulting in a significant decrease of a drive performance [84][85][86]. Along with DC-link 

capacitor faults, that make up more than 60% deviations, which are related to the power 

converters [87], IGBT transistor failures are the vast majority ones. These faults are mainly 
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caused by an ageing process, which is intensified due to a thermal stress of the transistors, 

when the inverter operates under wide range of environment temperature variations and a 

changeable load condition [88]. From two types of the transistor malfunctions, namely short 

and open-circuit faults, the first ones are more destructive for the power converters than the 

second ones because they can result in a high current flow through the DC-link circuit and a 

complementary transistor of the faulty converter phase, which leads to a capacitor destruction. 

We have selected various faults as shown in Figure 30 that could occur in power converter 

and also on motor phases for fault transfer process. In the electrical model the hard-faults like 

open or short are simulated using a switch (open or close) and variable resistor for simulating 

both hard-faults and parametric faults like capacitance reduction of dc-link capacitor.  

 In order to validate the fault transfer, it is necessary to consider different system 

output states as the behaviour of the system in presence of faults is dependent on system 

output state. We consider one of the transient (a, c, e and g) and one of the steady states (b, d, 

f and h) as examples from the motor speed profile shown in Figure 22   

 The effects of selected faults on motor speed output and stator currents are 

demonstrated in the experiments of this section. In order to prove the flexibility of the fault 

transfer methodology, we consider the following two cases assuming protection mechanisms 

i.e., fault remedial strategies (see Figure 100) might not be present or not completely 

developed,  

• Protection mechanisms are not present 

• Protection mechanisms are present 

4.4.2.1 Short circuit between two motor phases (F1) 

The short circuit between motor phases fault is simulated by using a switch connected 

between them in electrical model as shown in Figure 30 whereas for data-flow model it is not 

straightforward as the input phase lines to the motor are not electrical. Hence, we propose to 

simulate the fault F1 in electrical model and extract the information on how the motor input 

phases are affected and model this behaviour in data-flow model.   
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Protection mechanisms are not present 

 

Figure 31: Simulation Output (Transient State) – Simscape (F1) 

 

The simulation output during two-phase short circuit with no protection mechanisms is as 

shown in Figure 31. When the fault happens at t=1.25s (transient state), high transient stator 

currents are detected in motor (see Figure 32) and the motor is unstable. 

 

 

Figure 32: Motor Currents Zoomed (Transient State) – Simscape (F1) 

Omega 

Torque 

Stator Currents 



Multi-Domain Fault Simulation Using Virtual Prototypes 

 

 

 
70 

 

Figure 33: Phase-to-Phase Short-Circuit Fault Model without Protection – Simulink 

(F1) 

 The behaviour of input phase voltages with the fault is extracted manually and 

modeled in Simulink (data-flow) model as shown in Figure 33. Now the short circuit between 

motor phases fault is simulated in Simulink (data-flow) model at t=1.25s (transient state) as 

shown in Figure 34. The motor output speed comparison is shown in Figure 36, as clearly 

seen the motor behaviour is very similar and slight variations are due to modeling artefacts in 

Simscape and Simulink. The stator current signals (zoomed) of Simscape and Simulink 

models are shown in Figure 32 and Figure 35 respectively. 
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Figure 34: Simulation Output (Transient State) - Simulink (F1) 

 

Figure 35: Motor Currents Zoomed (Transient State) – Simulink (F1) 

 Similarly, the short circuit between motor phases fault without protection mechanisms 

is simulated at t=1.5s (steady state) and the speed comparison graph of Simscape and 

Simulink is shown in Figure 37. The slight variations in speed curves are due to modeling 

artefacts in Simscape and Simulink. After the phase short circuit fault happens, motor is 

unstable and high currents are detected in the motor phase components (see Figure 38 and 

Figure 39). 
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Figure 36: Speed Comparison without Protection - Transient State (F1) 

 

 

Figure 37: Speed Comparison without Protection - Steady State (F1) 
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Figure 38: Motor Currents Zoomed (Steady State) – Simscape (F1) 

 

Figure 39: Motor Currents Zoomed (Steady State) – Simulink (F1) 

 

Protection mechanisms are present 

In this test the two-phase short circuit with protection mechanisms is simulated and the 

behaviour of input phase voltages with the fault is extracted manually and modeled in 

Simulink (data-flow) model as shown in Figure 40. When the fault occurs at t=1.25s (transient 

state), high transient stator currents are detected in two of the motor currents and the current 

in the third phase is almost zero (see Figure 41). The hardware i.e., all six IGBT’s are shutoff 

by the protection mechanism due to these high current components and the motor starts to 

decelerate abruptly towards zero. 
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Figure 40: Phase-to-Phase Short-Circuit Fault Model with Protection – Simulink (F1) 

 

Figure 41: Motor Currents Zoomed (Transient State) – Simscape (F1) 

 

Figure 42: Motor Currents Zoomed (Transient State) – Simulink (F1) 
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Figure 43: Speed Comparison with Protection - Transient State (F1) 

 

Figure 44: Speed Comparison with Protection - Steady State (F1) 
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Figure 45: Motor Currents Zoomed (Steady State) – Simscape (F1) 

 

Figure 46: Motor Currents Zoomed (Steady State) – Simulink (F1) 

4.4.2.2 Short circuit of one motor phase to earth (F2) 

The short circuit between motor phases fault is simulated by using a switch connected 

between the phase and ground lines (see Figure 30) in electrical model whereas for data-flow 

model it is simulated by modifying the corresponding phase component to zero. 

Protection mechanisms are not present 

The speed comparison curve of Simscape and Simulink during one phase short circuit to 

ground without protection mechanisms is shown in Figure 49 and Figure 50. The oscillation 

in motor speed is clearly seen when fault happens at t=1.25s (transient state), whereas when 

fault is introduced at t=1.5s (steady state), the motor output is relatively stable due to more 

energy drawn from the two healthy phases. 

 The phase currents are as shown in Figure 47, Figure 48, Figure 51 and Figure 52. The 

current is reduced to low value in the faulty phase and high currents are seen in the healthy 

phases due to high energy (voltage) drawn by the control software algorithms. 
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Figure 47: Motor Currents Zoomed (Transient State) – Simscape (F2) 

 

Figure 48: Motor Currents Zoomed (Transient State) – Simulink (F2) 

 

Figure 49: Speed Comparison without Protection - Transient State (F2) 
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Figure 50: Speed Comparison without Protection - Steady State (F2) 

 

 

Figure 51: Motor Currents Zoomed (Steady State) – Simscape (F2) 

 

Figure 52: Motor Currents Zoomed (Steady State) – Simulink (F2) 
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Protection mechanisms are present 

 

 

Figure 53: Speed Comparison with Protection - Transient State (F2) 

The speed comparison curve of Simscape and Simulink during one phase short circuit to 

ground without protection mechanisms is shown in Figure 53 and Figure 54. When fault 

happens at t=1.25s (transient state), the high values in the phase currents is detected by the 

protection mechanism and the hardware is shutoff. Hence the motor speed gradually reduces 

towards zero. The phase currents are shown in Figure 55 and Figure 56, as clearly seen a high 

value of current is detected in one of the phase after the fault is introduced and all the phase 

currents are set to zero after that. 
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Figure 54: Speed Comparison with Protection - Steady State (F2) 

 

 

Figure 55: Motor Currents Zoomed (Transient State) – Simscape (F2) 

 

 

Figure 56: Motor Currents Zoomed (Transient State) – Simulink (F2) 
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Figure 57: Motor Currents Zoomed (Steady State) – Simscape (F2) 

 

Figure 58: Motor Currents Zoomed (Steady State) – Simulink (F2) 

 

For the remaining faults F3 to F10; we consider only the case with protection 

mechanisms being a part of control software. 

4.4.2.3 Short circuit of two motor phases to earth (F3) 

The short circuit between motor phases fault is simulated by using a switch connected 

between phase lines and ground (see Figure 30) in electrical model whereas for data-flow 

model it is simulated by modifying the corresponding phase component to zero. In this test, 

two of the three motor phases are shorted to ground with protection. When two of the phases 

are shorted to ground irrespective of whether it is transient or steady state, the motor works 

mainly as generator and speed gradually reduces to zero. 

4.4.2.4 Open circuit of one motor phase (F4) 

The open circuit of motor phases fault is simulated by using an open switch (see Figure 30) in 

electrical model whereas for data-flow model it is not straightforward as the input phase lines 

to the motor are not electrical. It cannot be simulated in data flow model by setting the phase 

value to zero, since its meaning is dependent on modeling. Open circuit on phase line means 
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the faulty phase should not deliver any energy (voltage). Hence a better strategy to simulate 

this fault in case of data flow model is switching off both the IGBT’s of inverter leg which 

corresponds to the faulty phase line. 

 An open circuit fault on one phase is activated when the motor is running under 

steady-state set speed conditions. High currents are drawn on other two phases as shown in 

Figure 60 and Figure 61 to operate the drive without any problems. Whereas, when the same 

fault is activated while motor being accelerated as in at t = 1.25s, hardware shutoff is 

activated due to detection of overcurrent condition. Figure 59 and Figure 62 show the speed 

comparison curves of Simscape and Simulink in steady (t=1.5s) and transient (t=1.25s) states 

respectively. 

 

 

Figure 59: Speed Comparison with Protection - Steady State (F4) 
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Figure 60: Motor Currents Zoomed (Steady State) – Simscape (F4) 

 

Figure 61: Motor Currents Zoomed (Steady State) – Simulink (F4) 

 

Figure 62: Speed Comparison with Protection - Transient State (F4) 
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Figure 63: Motor Currents Zoomed (Transient State) – Simscape (F4) 

 

Figure 64: Motor Currents Zoomed (Transient State) – Simulink (F4) 

4.4.2.5 Open circuit of two motor phases (F5) 

 

Figure 65: Speed Comparison with Protection - Steady State (F5) 
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The open circuit of motor phases fault is simulated by using an open switch (see Figure 30) in 

electrical model whereas for data-flow model similar to fault F4, both the IGBT’s of inverter 

legs which corresponds to the faulty phase lines are switched off. Irrespective of system state 

either transient or steady, the motor cannot be driven anymore with this fault. As soon as fault 

is activated, motor speed slowly damps down towards zero. The speed comparison curves of 

Simscape and Simscape in steady and transient states are shown in Figure 65 and Figure 66 

respectively. The motor currents are shown in Figure 67, Figure 68, Figure 69 and Figure 70. 

 

 

Figure 66: Speed Comparison with Protection - Transient State (F5) 

 

Figure 67: Motor Currents Zoomed (Steady State) – Simscape (F5) 
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Figure 68: Motor Currents Zoomed (Steady State) – Simulink (F5) 

 

Figure 69: Motor Currents Zoomed (Transient State) – Simscape (F5) 

 

Figure 70: Motor Currents Zoomed (Transient State) – Simulink (F5) 

4.4.2.6 Short circuit of IGBT (high-side) to high (F6) 

The IGBT short circuit puts extreme stress on the inverter switching devices and therefore 

requires immediate attention of the protection circuit. An IGBT might fail due to current 

stress or voltage stress. The failure due to current occurs when the device is carrying load 

current whereas the voltage failure occurs when the device is switching off the load current. 
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Figure 71: Motor Currents Zoomed (Transient State) – Simscape (F6) 

The short circuit of IGBT1 (high-side) fault is simulated by using a closed switch (see 

Figure 30) in electrical model. The short circuit IGBT (high-side) means, one transistor on 

that inverter leg cannot switch-off. A short-circuit on IGBT1 condition is introduced in data-

flow model by always switch-on high-side transistor and switch-off the complementary 

transistor IGBT4 thereby resulting in short-circuit through dc-link capacitor. 

 

Figure 72: Speed Comparison with Protection - Transient State (F6) 
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Figure 73: Motor Currents Zoomed (Transient State) – Simulink (F6) 

The stator currents are shown in Figure 71, Figure 73, Figure 75 and Figure 76. As 

soon as fault is injected, the current in phase ‘A’ gets substantially positive and other two 

phases ‘B’ and ‘C’ are negative. Because of the high positive and negative torque pulses the 

motor speed drastically reduces. The motor speed comparison curves in transient and steady 

states are shown in Figure 72 and Figure 74 respectively. 

 

Figure 74: Speed Comparison with Protection - Steady State (F6) 
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Figure 75: Motor Currents Zoomed (Steady State) – Simscape (F6) 

 

Figure 76: Motor Currents Zoomed (Steady State) – Simulink (F6) 

4.4.2.7 Short circuit of IGBT (low-side) to low (F7) 

The short circuit of IGBT4 (low-side) fault is simulated by using a closed switch (see Figure 

30) in electrical model. In case of short circuit across IGBT (low-side), one transistor on that 

leg cannot switch-off. Similar to F6, it is introduced by always switching on the low-side 

transistor IGBT4 and switching off the complementary transistor IGBT1 thereby resulting in 

short-circuit through dc-link capacitor. 

4.4.2.8 Open circuit of IGBT-gate signal (F8) 

 

Figure 77: Motor Currents Zoomed (Transient State) – Simscape (F8) 
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Figure 78: Motor Currents Zoomed (Transient State) – Simulink (F8) 

 The inverter transistors (IGBT’s) are normally controlled by isolated base drive 

amplifiers. Malfunctioning of one of these units can result in a missing base drive. Since the 

faulty IGBT is inoperative, the output phase voltage of the inverter leg is determined by the 

polarity of current and the switching pattern of the complementary IGBT of the same inverter 

leg. 

 

Figure 79: Speed Comparison with Protection - Transient State (F8) 
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Figure 80: Motor Currents Zoomed (Steady State) – Simscape (F8) 

 

Figure 81: Motor Currents Zoomed (Steady State) – Simulink (F8) 

 

Figure 82: Speed Comparison with Protection - Steady State (F8) 
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4.4.2.9 Short circuit across DC-link capacitor (F9)  

The short circuit across dc-link capacitor fault is simulated by using a closed switch (see 

Figure 30) in electrical model. In case of data flow AFM4 fault model (refer 4.3.2 Abstract 

Fault Models and Fault Interface Design) is used to set the dc voltage (capacitor output 

voltage) to zero. 

 

Figure 83: Motor Currents Zoomed (Steady State) – Simscape (F9) 

 

Figure 84: Speed Comparison with Protection - Steady State (F9) 
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Figure 85: Motor Currents Zoomed (Steady State) – Simulink (F9) 

4.4.2.10 Performance Degradation of Electrical Components 

Electrical components tend to degrade and fail faster under high electrical and thermal stress 

conditions that they are often subjected to during operations. As these components undergo 

aging and lose, partially or totally, their desired functions. If not effectively monitored and 

controlled, degradation of these components may impair their performance characteristics and 

lead to a reduction in reliability of associated systems. To maintain adequate performance the 

system, it is essential to check the component tolerance levels and also monitor, to take 

appropriate preventive actions. As an example, the degradation of capacitor is presented in the 

following section. 

 

Capacity reduction of dc-link capacitor (F10): 

Capacitors tend to degrade their performance over time. Parametric faults are those 

changes that cause performance degradation of the circuit and these faults involve parameters’ 

deviations from their nominal value that can consequently quit their tolerance band. In this 

experiment, we carry out a few capacity reduction tests for dc-link capacitor. 

The capacity reduction of dc-link capacitor fault is simulated by using a variable resistor (see 

Figure 30) in electrical model. In case of data flow AFM7 fault model (refer 4.3.2 Abstract 

Fault Models and Fault Interface Design) is used to decrease the dc voltage (capacitor output 

voltage) by a specific percent. 
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Figure 86: Speed Comparison - Steady State (F10 - 50 % Reduction) 

 

 

Figure 87: Speed Comparison - Steady State (F10 - 20 % Reduction) 
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4.4.2.11 Conclusion 

In this section, how the fault behaviors are transferred from Simscape electrical (detailed) 

models to Simulink data-flow (abstract) models are discussed. Various faults in the inverter 

module of an industrial motor control system are presented. This generalized idea 

independent of modeling abstraction and application, could be applied to faults, to transfer 

their behavior from accurate models to an abstract models.  

4.5 Digital Fault Modeling based on TLM 

While several fault-injection tools have been developed over the years for gate-level and 

register-transfer level (RTL), fault-injection mechanisms for transaction-level models are still 

a relatively new topic with limited research.  

4.5.1 State-of-the-art 

• [79], [100]: An effective fault injection at gate level was researched.  

• [101]: Different fault injection techniques and strategies are highlighted.  

• [82]: proposes a mutation model for perturbing transaction level modeling (TLM) 

SystemC descriptions. In particular, the main constructs provided by the SystemC 

TLM 2.0 library have been analysed, and a set of mutants is proposed to perturb the 

primitives related to the TLM communication interfaces.  

• [102]: proposes a multi-level fault simulation method which combines the accuracy of 

gate-level fault simulation and the simulation speed of behavioural models. A 

transaction-level model of the system is augmented by precise gate-level models of 

components which are subject to fault injection.  

• [103]: provides a methodology that leverages state-of-the-art techniques for efficient 

fault simulation of structural faults together with transaction-level modeling.  

• [104] [105]: A non-intrusive fault-injection technique is presented in which C++ 

virtual function tables are modified to extend the TLM transport interfaces with fault-

injection capabilities. The modification is achieved by mutating the executable TLM 
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models of a LEON3 CPU. To add fault injection capabilities to the models, this 

approach augments the TLM initiator and target sockets. However, the approach is 

platform and compiler dependent. These dependencies are overcome in [106] by 

applying code mutation on the source code of TLM models. Therefore, faults are 

introduced directly into the models without manipulation of the C++ virtual-function 

tables. However, this latter method is intrusive because of its requirement to change 

the original code.  

• [12]: The fault injection techniques presented are focused on fault injection into TLM-

based VPs and target the extension of TLM sockets, payload, and interfaces with fault 

injection capabilities, which enable abstract fault-model definitions and non-intrusive 

fault injection during a simulation. This approach has the advantages of platform and 

compiler independent, and enables VP fault-model development outside of the TLM 

model. We use these injectable sockets by defining appropriate fault models to enable 

not only the modeling of simple faults like single bit flips but also double and triple bit 

flips.  

4.5.2 Fault Injection for TLM Abstraction 

In TLM-based VPs [10], modules exchange information using generic payload objects. The 

generic payload has attributes which are used as basis for modeling communication protocols. 

The attributes include command, address, data, byte enables, single word transfers, burst 

transfers, streaming and response status. Faults can be injected by modifying generic payload 

attribute fields. It is evident, that the faults happening in the bus signals will lead to data 

transaction errors and finally cause a system failure. The meta-model-based fault-library 

concept proposed in [107] is a systematic approach to define fault models for TLM 

abstraction level. For the fault-library to be widely applicable, the metamodel must be as 

abstract as possible, such that it can serve as foundation for libraries addressing not only 

different domains, but also different levels of abstraction. In our work, we consider mainly 

bit-flips (single, double, and triple) and stuck-at faults as these represent the smallest 

observable change at this abstraction level. By using the meta-model-based fault library 
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concept, the fault models could be extended with formalized semantic to describe the 

correlations between the different abstraction layers. 

 

Initiator
Target

Initiator 

socket

Target 

socket

Forward path

Backward path

tlm_injectable_socket

Transaction 

Fault

Injector
Transaction

Object

 

Figure 88: TLM Injectable Socket 

To provide TLM-based VPs with fault-injection capabilities, interconnects have been 

embedded into the standard TLM initiator and target sockets to sabotage the transport 

methods normal functionality (e.g., blocking transport - b_transport, non-blocking transport - 

nb_transport_fw, nb_transport_bw). Three hooks (pre-hook, override-hook, post-hook) are 

provided inside the saboteur-like transport methods of interconnects to add more flexibility to 

the standard TLM transport flow (Figure 89). These hooks do not consume simulation time 

and fault injection is enabled by connecting a fault injector to one of the available hooks. The 

pre-hook gets called before the actual transport method, while the post-hook is called after the 

transport method is executed. The override-hook replaces the target socket’s transport 

implementation completely and acts like an external (non-intrusive) mutant. The fault injector 

is a user-defined class derived from a TLM interface with specialized transport method 

through which a payload’s contents are changed during the simulation. By modeling the VP 

faults inside the fault injector and connecting the injector to a specific TLM block, fault 

injection is performed without changing the TLM block’s original code. 
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Figure 89: TLM Injectable Socket Block Diagram [13] 

 For using TLM injectable sockets it is necessary to model the fault injector and attach 

it to one of the hooks. We identify fault class and bit position information to inject faults in 

the transaction payload. The fault class is used to determine which field of the transaction a 

fault is injected into TLM transaction, and type of fault (error type in Figure 90, on the 

bottom-left, i.e., single-bit, double-bit, etc.). The possible fault classes on payload fields are 

shown in Figure 90, on the bottom-right. 

4.5.3 Fault Interface Design and Injector 

In addition, the information of the triple-bit-fault is entered in the field TBF (fault class 

information in Figure 90). The tlm_injectable_socket is reported by the bit position parameter 

to which bit of the corresponding field an error is injected. The bit position information is 

used to decide of which bit of the corresponding field an error is injected. As shown in Figure 

91, the bit position information is divided into three fields, each of which is responsible for a 

particular bit error. 
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TBF Payload FieldsError Type

23 19 15

Reserved

31

Error Type Value

No Error 0

Single Bit Flip 1

Double Bit Flip 2

Triple Bit Flip 3

All Bits Reset 4

All bits Set 5

Payload Fields Bit Mask

Address 0b000000001

Data

Command

Data Length

Byte Enable

Streaming Width

Return status

Response Status

Phases

0b000000010

0b000000100

0b000001000

0b000010000

0b000100000

0b001000000

0b010000000

0b100000000

 

Figure 90: Fault Class Information 

 

  

Bit-Pos-2Bit-Pos-3 Bit-Pos-1Reserved
 

Figure 91: Bit Position Information 
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X -> don’t care

No. Type of Fault Bit-Pos-3 Bit-Pos-2 Bit-Pos-1 TBF Error Type Payload-Fields

1 No Fault X X X X X 0bXXXX XXX0  0000 0000

2 Single Bit Flip X X 0 – 2^16 X 0001 0bXXXX XXX0  0000 0001

3 Single Bit Flip X X 0 – 2^16 X 0001 0bXXXX XXX0  0000 0010

4 Double Bit Flip X 0 – 2^16 0 – 2^16 X 0010 0bXXXX XXX0  0000 0011

5 Double Bit Flip X 0 – 2^16 0 – 2^16 X 0010 0bXXXX XXX0  0100 0100

6 Triple Bit Flip 0 – 2^16 0 – 2^16 0 – 2^16 X 0011 0bXXXX XXX0 0010 1001

7 Triple Bit Flip 0 – 2^16 0 – 2^16 0 – 2^16 0110 0011 0bXXXX XXX0 0001 0100

8 Triple Bit Flip 0 – 2^16 0 – 2^16 000..111 X 0011 0bXXXX XXX0 0000 0001

9 Reset all bits X X X X 0100 0bXXXX XXXX XXXX 0001

10 Set all bits X X X X 0101 0bXXXX XXXX XXXX 0101

 

Figure 92: Fault Injection Examples 

This method makes it possible to combine up to three different types of errors in a 

fault injection command. Figure 92 shows a series of different fault injection possibilities. For 

example: at number 4, a fault injection command contains two errors (bit-flips), a fault is 

injected to the bit position 1 (bit-pos-1) of address, and another is in bit-position 2 (bit-pos-2) 

of data. Another example at number 7, fault information contains three errors (bit-flips), in 

which bit-pos-1 and bit-pos-2 corresponds to two faults  in payload field ‘data’ and bit-pos-3 

corresponds to a fault in payload field ‘byte enable’. This information is embedded in the TBF 

= 0110, where value of two LSB bits corresponds to ‘data’ payload field and value of other 

two bits corresponds to ‘byte enable’ payload field. Number 9 and 10 will reset and set all bits 

of a particular field(s). 



Multi-Domain Fault Simulation Using Virtual Prototypes 

 

 

 
101 

4.6 Multi-Domain Virtual Platform 

4.6.1 Preparing the Simulink Models for Fault Injection 

 

Figure 93: Normal Line 

The principal idea is to extend the Simulink model by adding additional blocks to provide a 

mechanism to inject fault values. This is achieved by providing a possibility to insert a fault 

value and also a control mechanism to select either of them. Finally, control and fault signals 

are externalized as input ports in a top-level system, so that the values can be injected into the 

system. 

 

Figure 94: Branched Line 

 A new fault injection block (FIB) is inserted for each line of interest, which simulates 

the effect of faults. The output of FIB is equal to the actual value (non-faulty value), when the 

fault-injection is not activated. A simple example is shown in Figure 93, in which a fiblock is 

inserted between source and destination Simulink blocks, A and B respectively. For a 

branched line as shown in Figure 94, a FIB can be either inserted close to source or 
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destination blocks. In order to avoid an additional FIB, it is inserted close to Simulink source 

block A. A FIB is nothing but AFM (refer 4.3.2 Abstract Fault Models and Fault Interface 

Design). 

4.6.2 Simulink Model Integration  

Once the Simulink model has been adapted by adding appropriate FIB’s for fault injection, it 

is imported into a virtual platform. In this section, different solutions for integrating Simulink 

models into a virtual platform are discussed. 

4.6.2.1 Virtualizer-Simulink Interface (VSI) 

The third-party tools support package of Synopsys-Virtualizer provides connector blocks that 

connects to a signal in the Simulink simulation model on one side and interface to SystemC 

ports on the other side as shown in Figure 95. It shows a small Simulink system with one 

input and one output. Both signals are routed to connector blocks.  

 

Simulink system

Simulink Plant Model (SPM)

Signal

Signal

Connector Blocks

Input

Output

 

Figure 95: Simulink System with Connector Blocks to Interface to SystemC 
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• Co-simulation: The SPM and the SystemC simulation run in separate processes and 

communicate with each other by means of interprocess communication (IPC). The 

advantages of this flow are short turnaround times and full availability features of 

Simulink. The third-party integration package includes a generic connector block 

library for Virtualizer to interface a SystemC platform with Simulink. The first flow is 

to use these generic blocks and instantiate them for every corresponding connector 

block/module on the Simulink side. In the co-simulation flow, both simulators run in 

their own process. The name of the connector blocks must be unique within the 

Simulink model. The connector blocks transport data from the interprocess 

communication layer to the connector blocks on Simulink side and the SystemC 

model. In the Co-simulation flow, Simulink acts as the master and SystemC is a slave. 

• Export: In this flow, the SPM is exported into a SystemC peripheral using Simulink 

Coder. The resulting set of header files and libraries is linked to the SystemC 

simulation. The resulting simulation runs in a single process without IPC. Advantage 

of this flow is the higher simulation speed compared to the co-simulation flow. 

 

The interface to the SystemC simulation is done by connector blocks that wrap the Simulink 

protocol to the SystemC counterparts. The export flow adds registers (fifo) between the 

Simulink system and the connector blocks and creates a library with a SystemC interface as 

shown in Figure 96. This Simulink SystemC peripheral is shown in the dotted-line box on the 

right side. The original Simulink scheduler is responsible for driving the simulation of the 

Simulink system with the fifo’s being the boundary, while the SystemC scheduler drives the 

rest of the simulation. In this setup, the SystemC scheduler acts as the master, while Simulink 

is the slave. This is different from the co-simulation flow where Simulink is the master. With 

regard to the timing and synchronization, it must be explicitly performed, i.e., for instance, 

using an additional interface module between Simulink and SystemC. 
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Simulink Coder (Export)

SystemC Model

Simulink 
Model

fifo
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Figure 96: Exporting Simulink to SystemC 
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4.6.2.2 Simulink Model as SystemC Module with TLM Standard Socket 

Interfaces 

HDL Verifier™ (R2015b) from MathWorks [34] lets you create a SystemC Transaction Level 

Model (TLM) that can be executed in any OSCI-compatible TLM 2.0 environment, including 

a commercial virtual platform.  

4.6.2.3 Comparison of Solutions to Export Simulink Model to Virtual 

Platform 

• As SystemC Module with Signal Interfaces: The integration is very simple, since the 

script to import the Simulink model into virtual platform are already generated during 

the code generation, but the limitation is for each signal one needs an interface block, 

for larger Simulink modules increases the number of signals to interface.  

• As SystemC Module with TLM Standard Socket Interfaces: With this solution the 

generated module is very compact because it has only standard TLM2.0 socket as 

interface. But the importing into virtual platform and linking the module as static 

library after compiling has to be done manually and also an extra interface module has 

to be written to encode and decode payload information. 

In our work, we have chosen the solution with exporting “As SystemC module with TLM 

standard socket interfaces”, since the number of faults signals to interface are high.  

4.6.3 Generic Fault Injector 

Once the multi-domain parts of the system after fault modeling are integrated into a virtual 

platform, to perform fault injection tests i.e., to activate faults in heterogeneous system 

components, a generic mechanism is necessary to interact with the system during simulation 

run.  
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4.6.3.1 Command Processor 

Synopsys SystemC Modeling Library (SCML) is a TLM 2.0 compliant API library for 

creating and integrating user-defined SystemC TLM models into virtual prototypes. The 

SCML command processor [108] is an SCML object that connects the interactive debugger to 

the simulation to execute commands from the debugger during simulation. The command 

processor works locally within a specific component in a model, and can execute multiple 

commands, each with a specific set of arguments. Thus, the SCML command processor is 

also suitable for controlling the fault injection. The SCML commands were implemented 

using SCML_COMMAND_PROCESSOR and SCML_ADD_COMMAND macros. 

SCML_COMMAND_PROCESSOR: 

This macro is used to indicate which method should be called when the external debugger 

sends a command to the object. The macro takes exactly one argument: the name of the 

command handler method. The return type of this method should be std::string and it should 

accept one parameter of type const std::vector<std::string> &, which contains the command 

and its arguments, if any. It is guaranteed that the command handler method is only called for 

commands that have been declared using the SCML_ADD_COMMAND macro and for 

which the number of arguments lie within the bounds declared by the 

SCML_ADD_COMMAND macro. The string that is returned by the command handler 

method is displayed by the debugger. 

SCML_ADD_COMMAND: 

This macro is used to declare the commands that can be executed by the SCML Command 

Processor.  

 An example implementation of an SCML command ‘faultx’ is as follows: 

SC_MODULE(MyModule)  

{          

 SC_CTOR(MyModule) {    

 // ProcessCommand method is invoked When a debugger sends a command to this 

object 

  SCML_COMMAND_PROCESSOR (ProcessCommand);  

  SCML_ADD_COMMAND (“faultx", 0, 1, "allowed values<1,0>", "activate 

faultx fault injection");  

 }  



Multi-Domain Fault Simulation Using Virtual Prototypes 

 

 

 
107 

}; 

// ProcessCommand function  

std::string MyModule::ProcessCommand (const std::vector< std::string >& cmd) 

{ 

 std::string command = cmd[0]; 

  if (command == "faultx ") {  

  outMsg << faultx_faultinjection(cmd);   

 } 

}; 

// ‘faultx_faultinjection’ implementation 

std::string MyModule::faultx_faultinjection (const std::vector< std::string >& cmd) 

{  

 std::string switch_val = cmd[1];    

 if (switch_val == "1") {      

 // activate faultx fault injection 

 } 

 else if (switch_val == “0") {      

 // de-activate faultx fault injection  

 } 

 else  {      

 // wrong input parameter  

 } 

} 

4.6.4 Mapping Fault ID’s 

Each fault signal is assigned an identifier after fault modeling and these identifiers are 

mapped to fault ID’s from the fault scenarios (see 3.3 Exemplary Faults in MCS). For 

example, HW_Analog_001 is mapped to FAULT_SIG_001 whereas HW_Analog_002 is 

mapped onto two signals FAULT_SIG_001 and FAULT_SIG_002, each corresponding to one 

motor terminal.  

4.7 Automated Fault Injection Tests and Results Evaluation 

4.7.1 Motivation 

Virtual stress tests or simulated system tests with fault injection are performed in hardware 

and software at an early stage to provide comprehensive statements about system behaviour 

under fault conditions and also to prove that the entire system behaviour is always safe also in 

the event of errors. Hence, there are many simulation results with and without fault injection, 
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to compare. The time required for these comparisons is very high but with an automated 

evaluation it can be significantly reduced. In the case of an automated evaluation, the 

simulation results with fault injection are compared with reference values from simulations 

without fault injection. 

4.7.2 Automated Comparison of the Simulation Results of Fault Injection 

Tests 

A procedure for the automated comparison of simulation results with fault injection and 

without fault injection is described in the following section. It is also available in the form of 

a C++ program as a prototype as well as tcl package. The implementation details are 

presented in the next chapter. This prototype is suitable to be integrated in different script 

environments for an automated comparison of simulation results. To be able to compare the 

result of a simulation with fault injection (i.e., a measurement curve) with the result of a 

simulation without fault injection (i.e., with a reference curve), the following actions are to be 

performed: 

1. Read the reference curve 

2. Reading the measurement curve 

 

Figure 97: Example of an interpolated reference curve with the assigned tolerance 

rectangles 



Multi-Domain Fault Simulation Using Virtual Prototypes 

 

 

 
109 

3. Replace the reference curve with an interpolated reference curve in which equidistant 

time points are assigned to all reference points. 

4. Replace the readout curve with an interpolated measuring curve in which equidistant 

time points are assigned to all measuring points 

5. A tolerance rectangle as shown in Figure 97 is assigned to each point of the 

interpolated reference curve.  

6. Parameterize the size of the tolerance rectangle. 

7. The tolerance curve of the interpolated reference curve is used to determine whether 

the reference curve (i.e., the simulation results without error injection) and the 

measurement curve (i.e., the simulation results with error injection) differ or whether 

the fault injection has not changed the behaviour. For this purpose, a check is made for 

each point of the interpolated measuring curve as to whether the measuring point lies 

within one of the tolerance rectangles of the interpolated reference curve. 

8. Determination of the percentage of tolerance rectangles which contain at least one 

measuring point of the interpolated measuring curve. As long as this percentage is 

greater than or equal to a predetermined target percentage, the reference curve and the 

measurement curve are considered to be the same curves, i.e., the fault injection did 

not change the system behaviour. 

4.7.3 Post-Processing Scripting  

It allows one to record and extract the simulation results for analysis. In the scripting API, 

there is a sequence of steps you take in working with your simulation results:  

1. First, choose which simulation run you are interested in.  

2. Then choose which recorded result to work with, like a trace of a port or some 

statistics on a bus.  

3. Then you can either export the actual data records of that result to external files or 

view using VP explorer GUI. 

 

 

 



Multi-Domain Fault Simulation Using Virtual Prototypes 

 

 

 
110 

 

 

 

 

 

 

 

 

5 Implementation Aspects and 

Results 

In this chapter we present the implementation details of the industrial motor control 

application and also the results of automated fault inject tests presented in section 4.7 

Automated Fault Injection Tests and Results Evaluation. 
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5.1 Industrial Motor Control Application 
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Figure 98: Motor Control Application Block Diagram 

 Block diagram of closed-loop motor control application is shown in Figure 98. The 

mains components include control software, PWM generator, power electronics and motor. 

5.1.1 Control Software 
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Figure 99: Control Software 

 

Figure 100: Protection Mechanisms 

The control software consists of speed control algorithm and protection mechanisms. The 

primary function of the control software is the speed control of the motor. The control 

algorithm implemented in the control software consists of two control loops as shown in 

Figure 99, an internal current control and an external speed control. The motor current is 

directly proportional to the motor torque. It is correspondingly increased by the control at a 

necessary acceleration or an increased load on the motor shaft in response to a deviation of 

the actual from the desired speed, and vice versa. The protection mechanisms (shown in 

Figure 100) are based on monitoring motor currents, dc-voltage (minimum and maximum) 

and speed (maximum). 

5.1.2 PWM Generator 

The computation of the three duty-cycles according to the space-vector modulation is as 

shown in Figure 101. Balancing of the zero-pointers is performed by subtracting the middle-
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value of the extrema of the three phases and then by division with the DC voltage. This is 

followed by a modification of the duty cycle corresponding to the lock time (Tlock) and a 

conversion into PWM signals by comparison with a reference with PWM frequency 

(frq_pwm). The enable signal ‘en’ at the bottom is used by the control software to release or 

block the pulses. 

 

Figure 101: PWM Generator 

5.1.3 Simscape Power electronics 

The power electronics part consists of LC filter, DC link capacitor, and the inverter modules 

as shown in Figure 102. The small circles are electrical ports for which node and mesh 

equations are set up. The feed (left) is controlled by a controlled voltage source which is 

controlled by a physical signal. A converter converts the Simulink signal vol_bat into this 

physical signal. Various sensors provide the voltages and currents for the Simulink outputs. 

The intermediate circuit receives its ground reference via two resistors. The Solver block 

allows settings for the Simscape Solver for this network. The semiconductors are modeled 

with finite on and off resistors. This results in a rigid equation system, which requires a 

corresponding solver thereby increasing the computation time. 
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Figure 102: Power electronics (Simscape) 

5.1.4 Simulink Power electronics  

For the virtual prototyping application, the Simscape power electronics module is not 

appropriate, since the speed of simulation is a major factor. The Simulink power electronics 

module is abstracted into sub-components LC filter, DC link capacitor, and the inverter 

modules as shown in Figure 103. 

 LC filter along with DC-link is shown in Figure 104. There is an integrator for the two 

state variables coil current and capacitor voltage, which integrates the voltage across the coil 

or the current into the capacitor. The opening of the battery contactor is modeled by resetting 

the coil current to zero. The switch allows bridging the LC filter so that it can also be 

simulated with a constant DC voltage. 
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Figure 103: LC filter, DC link and Inverter (Simulink) 

 The inverter module is shown in Figure 105. The switch (switch2) switches the output 

terminals to the upper or lower DC bar, where the reference potential is placed in the center. 

Before this, the forward voltage of the semiconductors is subtracted. This is determined as a 

characteristic curve depending on the phase current. The positive part of the characteristic 

curve corresponds to the transmission behaviour of the IGBT and the negative part is of the 

diode. Therefore the characteristic curve is reversed to the phases connected downwards. 
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Figure 104: LC filter + DC-link (Simulink) 

 The DC current results from the sum of the currents of the up-connected phases or the 

negative sum of the down-connected phases, thus it is equal to half the total sum. The 

switching state of the phases is uniquely determined in the case of active switching signals, 

i.e. in this case, the flip-flop is set directly. During the interlocking time or in the case of pulse 

interrupts, the state is determined by the current: the upper diode conducts with a negative 

current, the lower diode when the current is positive. 
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Figure 105: Inverter module (Simulink) 

5.1.5 Motor Module 

The motor model shown in Figure 106 simulates a permanent-magnet synchronous motor 

with flow characteristic fields. First, the terminal variables are transformed into rotor-oriented 

dq coordinates. The mode of operation is dictated by the sign of the torque (positive for motor 

mode, negative for generator mode). In dq-coordinates, the flux is formed by integrators from 

the voltage (see Figure 107). In the case of characteristic fields, the current is stored as a 

function of the flux, and the torque is determined from the cross product of flux and current 

(see Figure 108). Trailing losses (iron and friction) are not considered in this model. 
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Figure 106: Synchronous Motor 

 

Figure 107: Motor in dq-coordinates 
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Figure 108: Flux-Torque table 

5.2 Simulation Performance Test 
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Figure 109: Simulation Platform 
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In this test, we compare the simulation performance of Simulink (dataflow) and Simscape 

(electrical) models inside a virtual platform. The dataflow and electrical power electronics of 

the setup is already discussed in the subsection Motor Control Application. 

The simulation platform for motor control application is shown in Figure 109. It has 

been implemented in the Synopsys Virtualizer and contains models for the components 

application unit (AU), control unit (CU), power module (PM) [pulse width modulator (PWM) 

+ power electronics (PE)] and motor along with load. The simulation platform here includes 

models for an AU for controlling the application and a virtual drive platform (VDP) for 

controlling the motor. VDP includes CU, power electronics along with motor module and 

load. AU and CU are built around ARM fast model cortex-m4 processor. 

 The AU controls the entire process by sending instructions to the motor to make it 

rotate at a certain speed. In the case of problems which occur and are detected in the 

application, the AU sends commands to the control of the drive (to the VDP) to stop the 

motor. The ARM CU runs the control software algorithms to control the motor. The transactor is 

a generic adapter component which decodes the information received on its inputs and 

forwards it. 

 

 

Figure 110: Simulation Performance 
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The dataflow model is integrated into the virtual platform using the HDL Verifier as a 

SystemC / TLM component (Simulink Plant Model). The electrical model is integrated into 

the virtual platform by C-code generation of Simscape model and writing an additional 

SystemC wrapper. The simulation performance graph is shown in Figure 110. The real-time 

factor (real-time / simulation time) of Simulink and Simscape are close to 10 and 60 

respectively which means to simulate 1 second of real time, it takes 10 seconds for Simulink 

whereas 60 seconds for Simscape. Note that only power electronics part of the Simulink and 

Simscape models is different. We conclude for this experiment a significant performance is 

gained in case of Simulink (data-flow) model. 

5.3 Automated Fault Injection Tests and Results Evaluation 

The implementation details of the concept for automatic evaluation of results of the fault-

effect simulations described in previous chapter (refer 4.7 Automated Fault Injection Tests 

and Results Evaluation) are presented here. 

5.3.1 Automated Simulations using Tcl Scripts 

VP explorer [71] [109] from Synopsys provides TCL (Tool Command Language) [110] 

interface to interact and control the virtual platform simulation. For e.g., using TCL 

commands one can create breakpoint at particular simulation time point and also attach 

callbacks when a breakpoint is hit. There are various functions one can use to write automated 

tests. 

5.3.2 Configuration Strategy  

To analyse different properties of your simulation, VP Explorer allows you to connect and 

configure monitors to different blocks in the system. It depends on the simulation which 

monitors can be connected to which blocks. You can attach monitors to your platform to 

probe aspects of your platform’s state in order to trace or analyse it. Monitors can be attached 

at any point after the end of elaboration, but can only be attached to points in your platform 
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that have been instrumented for this purpose. The Synopsys SystemC simulation kernel and 

Synopsys IP models have been instrumented to support monitors. 

5.3.3 Simulation Control Scripting  

VP Explorer offers various procedures related to controlling the simulation such as 

start/stop/pause simulation, creating breakpoints, attach callbacks to breakpoints, read 

simulation information etc. It also offers many ways to interact with the blocks that make up 

your simulation. For e.g., model, which corresponds to a sc_module, sc_port, sc_export, or 

scml_memory instance in the simulation. The blocks can be addressed by using means of a 

hierarchical instance names, and specific commands can be sent to these blocks. 

5.3.4 Automated Fault Injection Tests 

Figure 111 shows the overview of the main script in which the following actions are 

performed: 

1. Read input files – ‘trace signals’, ‘fault injection tests’ and ‘script configuration 

parameters’. Format for fault injection tests is shown in Fehler! Verweisquelle k

onnte nicht gefunden werden. in which each ‘test number’ corresponding to one 

simulation run and each row corresponds to a fault. Multiple faults can be activated 

using the same test number for the multiple rows e.g., test number 2. Each fault has 

‘fault id’, fault interface (see Figure 25: Control Interface and Fault Type ), ‘injection 

time – when to inject fault’ and ‘fault duration – how long fault is active’. The script 

configuration parameters are mainly to make the script generic i.e., independent of the 

simulation platform. 

2. Configuration: setup monitors for trace signals, load curve comparison tcl package 

3. Reference (golden) simulation run (without fault injection) and store result 

4. Execute each fault injection test as separate simulation and store the result 

5. Perform the curve comparison of each fault injection test with reference simulation 

and store the results 

6. Show the output signal waveforms (using a GUI such as ‘gnuplot’) 
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Figure 111: TCL Script 

5.3.5 Example 

The virtual drive platform (VDP) is shown in Figure 112. The generic fault injector module is 

used for fault injection by defining and implementing necessary commands. The commands 

modify the ‘fault memory’ inside the Simulink interface module for ‘analog fault injection’ in 

which each location inside the ‘fault memory’ is mapped to fault signals in the Simulink plant 

model (SPM). The faults in the TLM transaction for ‘digital fault injection’ are introduced by 

modifying the transaction inside ‘tlm_injectable_target_socket’. 
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Figure 112: Virtual Drive Platform for Fault Simulation 

 

Figure 113: Format for Fault Injection Tests 
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Figure 114: Motor Speed Output 

Figure 113 shows an example input for fault injection tests for analog faults i.e., inside 

Simulink plant model (SPM), which includes a total of four tests with each row, corresponds 

to a single fault. Three of the tests have one fault except test 2 which has 2 faults. In test 4, a 

transient fault is activated at 1000 ms with fault interface value of 0x0a020002, which means 

in an interval (period) of 0x0a (10)*Ts, fault is active for 2*Ts (duration). ‘Ts’ is the sample 

time of Simulink module (analog parts). 

 The curve comparison output and the motor speed output signal are shown in Figure 

114 and Figure 115 respectively. The ‘max_matching_rate’ will give you the percentage of 

matching points with comparison to reference curve (without fault injection). The tolerances 

‘delta_x’ and ‘delta_y’ must be configured appropriately in order to interpret the results of 

curve comparison. In our example, the output curve of tests 1 and 4 with ~70% matching look 

very similar whereas tests 2 and 3 with ~63% and ~22% matching are clearly differentiable.  
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Hence, the tolerance rectangles must be carefully parameterized for using and interpreting the 

results of curve comparison. 

 

 

Figure 115: Curve Comparison Output 

5.3.6 Conclusion  

The simulation results of automated fault injection tests are presented with an example which 

allows the comparison of simulations with and without fault injection. The automated fault 

injection framework provides the users configuration possibilities for preparing the tests. At 

the end, the results are visualized with the help of a plot tool for further analysis. 
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6 Motion Control System: Case 

Studies 

When using virtual stress tests in the development of intelligent motion control systems, 

different system configurations must be considered, in which digital and analog system 

components or even virtual system parts and real hardware can be investigated in co-

simulations depending on the task. The aim is to be able to prove that the reaction of the 

system to certain faults which occur within a system or which act on a system from the 

outside takes place safely. The system reaction includes hardware and software procedures for 

fault handling. For example, in virtual system tests, it can be examined whether the motion 

control system responds correctly to signals from the acceleration sensors for the condition 

monitoring of the motor or how faults of these components affect the overall system. Also, 

errors in the digital part, e.g. the control unit (such as the failure of a PROFINET, 

DRIVECLIQ or CAN transceiver or the reception of faulty signals via one of these interfaces) 

as well as the response of the entire motion control system to these errors. This makes virtual 

system integration possible, i.e., the simulative execution of extensive system tests on 

intelligent motion control systems already in development. The final system tests (HIL) on the 

real hardware, which cannot be omitted entirely for safety reasons, then usually only serve to 

confirm the correct function. These tests can then be carried out essentially with the same test 

sequences used in the virtual system test. Hence we developed various demonstrators for 

different purposes mentioned here. 
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6.1 Motor Condition Monitoring using Acceleration Sensor from 

RB 

6.1.1 Setup 

 

Figure 116: Simulation Platform for Motor Condition Monitoring 

Simulation Platform for Condition Monitoring of motor using acceleration sensor is shown in 

Figure 116. The first case study discusses a sensor module from Bosch [111] which is 

integrated into the virtual platform. The sensor is used for precise monitoring of motor wear 

and tear using vibrations. The sensor measures up to 35 g with a resolution of 2 mg and the 

sampling frequency is 285 kHz. The sensor module takes the acceleration value as analog 

input and the output is sent over TLM bus using SPI protocol. The output also includes fault 
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information whether a fault is detected inside the sensor module. The sensor has internal 

protection mechanism, when a fault occurs it is registered internally. During initialization this 

status signal must be checked in order to make sure it is working properly. The sensor module 

provides possibilities to inject faults in its analog, digital and software parts. 

6.1.2 Fault Injection GUI 

 

 

Figure 117: Fault Injection GUI 

A tcl based GUI is developed to inject faults in the virtual platform is as shown in Figure 117. 

The first tab we see digital (digital parts in the system- TLM based Fault Injection), second 

tab analog (analog parts in the system) and the last tab is sensor (faults inside sensor). The 

user has the possibility to query for injectable ports, analog fault signals and also fault 
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injection possibilities in sensor on each tab before configuring them to activate during 

simulation runtime. Multiple faults can be activated in a single simulation run. Faults on TLM 

based Fault Injection side has parameters such as fault type (single/double/triple bit-flip), bit 

positions, payload fields, activation time and deactivation time. A fault on analog side has 

parameters such as fault type (permanent/transient/intermittent), period (optional) and 

duration (optional), activation time and deactivation time. The sensor module also supports 

different fault injection possibilities such as range check, bit flips etc. 

 

6.1.3 Test Scenario’s 

In this setup the following three different fault scenarios are demonstrated, 

I. Scenario 1 

a. Sensor is not configured correctly  

b. Motor vibrations are started to intensify   

c. Problem is not detected by sensor 

d. System is not aware of the problem 

e. Hence no reaction of the system but problem detected by simulation 

II. Scenario 2 

a. Sensor is configured correctly  

b. Motor vibrations are started to intensify   

c. Sensor output shows the intensified vibrations 

d. System is aware of the problem 

e. System reacts by stopping the motor 
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Figure 118: Scenario 1 - Simulation Output 

III. Scenario 3 

a. Sensor monitoring is switched on 

b. Fault is injected in sensor 

c. Sensor sends an alarm signal 

d. PLC-SW shuts off  the motor-torque 

 Figure 118 shows the results of the simulation for scenario 1. First, the motor runs 

stably, almost no vibrations, i.e., the acceleration remains in the range up to 0.1 mg, up to 

1000 RPM (revolutions per minute). As soon as the engine rotates faster than 1000 rpm, it 

starts to vibrate. The amplitude and frequency of the vibration depends on the rotational 

speed. The acceleration values by the vibration are in the range between 5 mg and 10 mg. At 

the time t = 2000 ms, the sensor begins to vibrate (as a result of the fault injection). However, 

the sensor does not provide an increased acceleration signal because it is configured 

incorrectly. This makes the problem (the increasing engine vibrations) unrecognizable for the 

system (the PLC), which subsequently leads to a serious problem of the whole system, even 

to the destruction of plant parts or a risk to the life and limb of the operating personnel at the 
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production plant. In the simulation, this problem can becomes apparent e.g. is easily detected 

by an automatic comparison between sensor input (which is known in the simulation, unlike 

the real system) and sensor output so that the user of the fault effect simulation can notice and 

correct the faulty configuration of the sensor. 

 

Figure 119: Scenario 2 - Simulation Output 

In scenario 2, the simulation result of which is shown in Figure 119, the motor also begins to 

vibrate at time t = 2000 ms. In this case, the sensor functions as expected, supplies a signal 

that can be evaluated so that the system (the PLC) detects the fault and switches off the motor. 

Figure 120 shows the results for scenario 3. In this case, a fault is injected into the sensor at 

the time t = 2000 ms, the sensor detects the internal fault and sends an alarm together with the 

measured values for the vibration to the PLC. The system (the PLC) reacts by turning off the 

motor. The engine speed decreases accordingly. 
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Figure 120: Scenario 3 - Simulation Output 

6.1.4 Conclusion 

In this case study, it is demonstrated in detail, not only how the faults are injected in the drive 

platform but also in the third-party vendor modules (Sensor module from Bosch). 
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6.2 Conveyer-Belt Simulation using V-REP Simulator 

6.2.1 Setup 

 

Figure 121: Simulation Platform with Belt-conveyor 

The simulation platform (Virtualizer) shown in Figure 121 includes models for a PLC 

(Programmable Logic Controller) for controlling the manufacturing process, i. the application 

(conveyor belt), a virtual drive platform (VDP) for controlling the motor as well as the model 

of the conveyor belt as an application. The PLC controls the entire process by sending 

instructions to the CU to turn the motor at a certain speed; the motor, which in turn drives the 

conveyor belt. In the case of problems detected in the application, the PLC sends commands 

to the control unit of the drive (to the VDP) to stop the motor. Generic fault injector is used to 

trigger errors that can be injected into the VDP during the simulation. 
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Figure 122: Virtual Conveyor Belt 

 The V-REP [112] simulation (virtual conveyor belt) shown in Figure 122 consists of a 

production unit which produces T- and I-shaped parts in green, red and blue and places these 

on the conveyor belt. This is followed by the optical sensor, which implements both position 

detection and part detection, so that the parts are gripped by the following grippers and sorted 

according to the shape and colour if the sequence is not affected. The conveyor belt is 

controlled via a virtual drive platform. 

 In an intelligent drive system, faults which may occur in the drive must be recognized 

by the drive itself and must be handled with a corresponding fault response. This includes 

either stopping the drive or switching it to a torque-free state, and, on the other hand, defined 

information (an alarm) about the occurrence of the fault should be passed to the PLC i.e., an 

alarm signal should be passed on to the PLC, so that corresponding fault reaction routines can 

be triggered by the application software. If this information (alarm) is not passed on to the 
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other components, they will continue to work despite faults, e.g. further produce parts, even 

though the belt-conveyor is already stopped, leading to undesirable behaviour.  

6.2.2 Test Scenario’s 

In this demonstrator platform, a number of different faults can occur in every component but 

our focus is only on occurring faults in VDP. When a fault is detected in drive platform, this 

information should be sent to conveyor-belt module so that appropriate action is taken i.e., in 

presence of faults both the motor/conveyor-belt and piece production must be stopped. 

Whenever a fault is detected in the drive operation, a fault detected flag is set and this 

information is passed on to the conveyor-belt application. 

  

 

Figure 123: Simulation Output without Fault Injection 

The simulation output in Figure 123 shows the output of both Virtualizer and V-REP 

simulations without fault injection. The virtual connection of motor to the conveyor-belt can 

be observed in ‘omega’ and ‘conveyor speed’ signals. 
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 When one of the three phases of supply voltage to the motor is broken, the control 

system will draw more current in the other phases. Only if the current exceeds the limits then 

the motor will be shut off by protection mechanisms. Whereas when two of the three phases 

of supply voltage to motor are broken, it will be shut off as it will not be able to drive it 

anymore.   

  

 

Figure 124: Simulation Output with Fault Injection 

The simulation output is shown in Figure 124 and the example fault injection scenario is 

demonstrated as follows, 

➢ At t = 1500 ms, a transient fault (loose contact) occurs on one of the 3 input motor 

terminals for a short duration of 50 ms, this fault is not detected as the system is still 

able to drive the motor. 
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➢ At t = 1550 ms, a permanent fault on one phase of the 3 input motor terminals is 

activated. The system is still able to drive the motor as currents drawn are within 

limits. 

➢ At t = 1600 ms, a permanent fault on second phase of the 3 input motor terminals is 

activated. Now, system cannot drive the motor and the over-current is detected by 

protection mechanisms in the control software.  

Hence at t = 1600 ms the motor is shutoff and the parts production is stopped. The motor 

speed will drop gradually to zero. 

6.2.3 Conclusion 

In this case study, with the help of the methods developed in the work, it is demonstrated in 

detail how the faults are simulated in the conveyor-belt application. The behavior of the 

system along with the application under influence of faults is studied and using these results 

counter measures can be developed to ensure correct function of an intelligent motion control 

system in the event of a fault. 

6.3 Hardware-in-the-loop (HIL) 

The final step of validating a newly developed embedded electronic system, in particular in 

the domains of automotive and industrial motion control, is to use a HIL set-up, where the 

final implementation of the embedded control electronics is connected to a real-time 

simulation system. Also in such a configuration, fault injection into the physical components 

that run in the real-time simulation, is needed to validate the proper implementation of 

previously developed failure reaction mechanisms in final hardware and SW. In case the 

adapted Simulink model used before in the virtual prototype is abstract enough to be executed 

in real time, it can be re-used for this task. It has to be imported into the real-time simulation 

system and the fault injection has to be controlled by proper means. In our investigations, we 

use the modular dSPACE real time simulation system with DS1006 processor board.  
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6.3.1 Setup 

SINAMICS G120 [113] is a modular frequency inverter system that is designed to provide 

precise and cost-effective speed/torque control of three-phase motors. A G120 system 

essentially comprises of two function units: Control Unit (CU) and Power Module (PM). The 

CU controls and monitors the PM and the connected motor using several different control 

types that can be selected. Comprehensive protection functions provide a high degree of 

protection for the PM and the motor. 

 

Figure 125: HIL Setup with SINAMICS G120 with CU240 and PM240 

The HIL setup is based on G120 (shown in Figure 125) which consists of the following 

components: 

• Control Unit (CU240S): The CU controls and monitors the PM and the connected 

motor in various control modes which can be selected as required. It supports 

communication with local or central control as well as with monitoring devices. 

• Power Module (PM240):  The Power Modules (PM) is available for motors with a 

power range of between 0.37 kW and 250 kW. It features state-of-the-art IGBT 

technology with pulse-width-modulated motor voltage and selectable pulse frequency. 
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Comprehensive protection functions provide a high degree of protection for the PM 

and the motor. IGBT technology and pulse-width modulation are used to ensure 

reliable and flexible motor operation. The PM consists of ASIC and power electronics 

components.  

• Motor: A three-phase induction (asynchronous) motor is used. 

• SINAMICS STARTER (Version - V4.4.1.0): The STARTER commissioning tool 

[114] features a project Wizard that guides you step-by-step through the 

commissioning process. Configuring the drive setup (CU, PM and motor) using the 

PC is user friendly and faster. The speed of the motor is specified via the STARTER 

software tool using the analog input interface board. 

• DS1006 Processor Board with DS2201 Multi-I/O Board: The DS1006 processor board 

is one of the processors that form the core of the modular dSPACE [115] hardware. It 

is our flagship for very complex, extensive, computer-intensive models for virtual 

simulations. In such simulations, the ds1006 provides the computing power for the 

real-time system and also acts as an interface to I / O boards and the host PC. It can be 

directly connected to all dSPACE I / O boards via the PHS bus. The ds2201 multi-i/o 

board as an external interface to time varying signals. 

• ControlDesk: ControlDesk is the dSPACE experiment software for seamless ECU 

development. It performs all the necessary tasks and gives you a single working 

environment, from the start of experimentation right to the end. 

• Interfaces (serial bus, PHS bus …): The STARTER software and the CU are 

interfaced using serial cable (RS232). CU and PM are interfaced using power stack 

interface (PS-IF: RS-485). 

• Analog Oscilloscope: For observation of varying signals from dSPACE system 

interfaced through the ds2201 multi-i/o board. 
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6.3.2 Characteristics of the Setup 

 

Figure 126: CU Hardware with Virtual PM 

A real hardware device CU240S is used as a CU which is integrated in real world 

environment. The PM module (ASIC + power electronics) along with mains and motor are 

modeled in Simulink. The CU is coupled with PM via serial communication interface. 

Typical use cases of this setup are software validation and virtual system test of CU. A FPGA 

piggyback module is connected between CU and PM to handle the high real time 

requirements of CU. Figure 127 and Figure 128 show the HIL demonstrator setup and user 

interface of SINAMICS STARTER software tool. 
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Figure 127: HIL Demonstrator Setup 

6.3.3 Fault Injection 

The Simulink model is extended (see 4.6.1 Preparing the Simulink Models for Fault Injection) 

for fault injection; it is prepared for execution on the dSPACE system by using the Real-Time 

Interface (RTI) library provided by dSPACE. The standard Simulink coder based flow is then 

used to upload the prepared model to the dSPACE real time simulator, which is connected to 

the new controller. The ControlDesk [116] software from dSPACE provides possibility to 

access and modify parameters inside the Simulink model. To control fault injection in such a 

set-up, ControlDesk is used to modify the fault values and control signals. The ControlDesk 

experiment is shown in Figure 129. 
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Figure 128: SINAMICS STARTER User Interface 

 

Figure 129: ControlDesk Experiment 
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Figure 130: Fault detected in SINAMICS STARTER 

Figure 130 shows the oscilloscope output with motor input voltages and the measured stator 

currents without fault injection and with fault injection. When one of the input phase lines 

broken fault is activated, the motor still continues to run but with reduced output power and 

also the disturbance is observed in the motor stator currents. Whereas when two input phase 

lines are broken, there is no rotating magnetic field to produce torque on rotor hence the 

motor deaccelerates.  This shows the high applicability of the approach in terms of covering 

physical effects in an abstract model. As soon as this fault is activated, the reaction is 

observed instantly in the system and it is recorded in the SINAMICS STARTER 

commissioning tool as frequency consistency fault (see Figure 131). 
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Figure 131: Motor Voltages and Currents measured using an Analog Oscilloscope 

6.3.4 Conclusion 

In this case study, the faults in physical component model (Simulink model) are simulated in 

a setup with SINAMICS CU with real (production) software running on it. It has been shown 

that, the same fault models which were developed for fault simulation in virtual platform can 

be used to simulate the faults in HIL setup.  
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7 Conclusion and Outlook 

7.1 Summary 

The manufacturing facilities of the future, the so-called Cyber-Physical Production Systems 

(CPPS) for Industry 4.0, are highly complex, intelligent systems consisting of a variety of 

components, which have to interlock smoothly. Even more complex is the embedded 

software, which controls these systems. The highly critical issues in the development of future 

production plants are imposed by motion control systems, which manage the fast and most 

accurate positioning and motion control of conveyor belts and robot arms, for instance. These 

systems are required to properly cope with failures of all kinds to guarantee safety of 

operators and machine integrity at any time. But what happens, if for instance single chips in 

a robot‘s control unit fail, if a motor due to a bearing damage overheats or a sensor delivers 

faulty data? Is it possible to develop and test the control software of these systems in a way 

that in case of faults in one or more components the total system always remains in a safe 

state? Is it guaranteed that humans near to these machines are not harmed and expensive parts 

like motors or robot arms are not destroyed? As of today, the final tests of those systems are 

mainly based on physical prototypes to ensure the correct and safe operation of the system. 

However, those prototypes are available only in later phases of the design process. 

 This thesis researched to overcome these constraints and developed a methodology for 

fault simulation of intelligent motion control systems based on virtual prototypes. The 

hardware simulation models of electrical and electronic components with fault injection 

possibilities are used replacing their physical counterparts for validation in early design 

phases. With the results it is now possible to carry out system tests, which were previously 

only possible in late design phases. Expensive iterations with rework, limited functionality or 

even the threat to the product success with the consequent impairment of the competitiveness 

can be avoided. The fault effect simulation developed in this work makes it also possible to 

protect the reaction of motion control systems against such errors, which could hardly be 

provoked with the test methods available before with real hardware constructions. This can 



Multi-Domain Fault Simulation Using Virtual Prototypes 

 

 

 
147 

further increase the safety in manufacturing plants, despite the rapidly growing complexity of 

these systems. Previous solutions either worked exclusively on low levels of abstraction, thus 

allowing only a small system to be viewed or based on complex, real test setups, which do not 

allow an early and comprehensive analysis of all relevant fault scenarios.  

  

7.2 Contributions 

7.2.1 Fault Injection in Heterogeneous Component Models 

Industrial electronic systems in general consist of heterogeneous components, digital 

electronics, analog electronics, mechanical components and the environment. MATLAB / 

Simulink is the most widely accepted tool as the development environment for control 

engineering in industry, both as a simulator on system level and as a fault analysis tool. The 

digital peripherals of microcontrollers are commonly developed as models at the transaction 

level in SystemC; this allows fast simulation due to model dependencies. A fast co-simulation 

of MATLAB / Simulink and SystemC supports early simulation of a heterogeneous system at 

system level for complex real-time applications or the MATLAB / Simulink models could be 

integrated into a SystemC based simulation environment. 

 A concept for the connection of the fault simulation techniques to heterogeneously 

abstracted platform models was developed. In order to enable fault simulations, a method was 

developed as to how fault injector blocks can be inserted into physical component models in 

MATLAB/Simulink. A TLM-based fault injection technique is used for digital component 

models by defining appropriate fault models. Further results were obtained during the 

integration of MATLAB/Simulink models into virtual platform and the control of the fault 

injection within the framework of these simulation platforms. In detail, this included the fault 

injection and integration of MATLAB / Simulink and SystemC-TLM models using the 

example of an industrial drive. The SystemC modules were generated from MATLAB / 

Simulink. Later, the abstract fault models of physical component models are transferred to 

hardware-in-the-loop (HIL) system to conduct fault simulation tests. 
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7.2.2 Fault Transfer 

The key to capturing physical system behaviour in presence of faults is to have an accurate 

and appropriate multi-domain simulation model of a physical system, which incorporates 

important mechanisms such as electrical effects, magnetic effects, mechanical loading etc. 

Modeling these mechanisms is difficult and more importantly simulating such a system is 

very slow. On the other hand in abstract models, the functional behaviours are extracted 

which might result in lack of accuracy in order to simulate faults. For example, it is difficult 

to simulate electrical faults like short-circuit between phases voltage lines in abstract data 

flow models. We proposed a methodology to transfer fault behaviours from accurate 

simulation models to the abstract representation, which is fast and detailed enough to simulate 

the behaviour of the overall system. The following actions are performed. (i) Simulate the 

accurate model in presence of the fault and capture the behaviour (ii) Transfer the fault 

behaviour onto the abstract model and simulate the overall system. 

7.2.3 Automated Stress Tests and Post Processing 

With the help of virtual stress tests methodology proposed in this work, simulated system 

tests are carried out with fault injection in hardware and software at the earliest possible stage. 

As the number of tests is significantly high, the time and effort required to carry out is very 

high and it is considerably shortened by an automated tests execution and evaluation.  

 A method for the automated tests execution and evaluation of results of fault effect 

simulations was developed. The automated stress tests are performed with the TCL script with 

necessary inputs and the automated evaluation method was implemented in the C ++ 

programming language as a prototype in order to achieve an optimal evaluation performance. 

The prototype for automatic evaluation of simulation results was used in a TCL regression 

test environment by developing a TCL wrapper using the SWIG (Simplified Wrapper and 

Interface Generator) library i.e., it was integrated as a prototype into the script for automated 

stress tests. Using this method, the simulated measuring curves with fault injection are 

automatically evaluated for motion control systems and compared with the corresponding 

reference curves (without fault injection). The results are graphically visualized using plotting 

tool for analysis. 
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7.2.4 Case Studies of Motion Control System 

In order to demonstrate our proposed methodologies, two virtual HIL demonstrators and one 

HIL demonstrator were established. These demonstrators were able to demonstrate in detail 

how, with the help of the methods developed in this work, the correct function of an 

intelligent motion control system can be ensured even in the event of a fault. 

7.3 Outlook 

7.3.1 ASAM XIL Standard for Fault Effect Simulation 

ASAM XIL [117] is an API standard for the communication between test automation tools 

and test benches. The standard supports test benches at all stages of the development and 

testing process – most prominently model-in-the-loop (MIL), software-in-the-loop (SIL) and 

hardware-in-the-loop (HIL). The notation "XIL" indicates that the standard can be used for all 

"in-the-loop" systems. This has the advantage that it enables users to freely choose testing 

products according to their requirements and integrate them with little effort. The major goal 

of the ASAM XIL standardization effort is to allow for more reuse in test cases and to 

decouple test automation software from test hardware. As a consequence, the reuse of test 

cases within the same test automation software on different test hardware systems is achieved. 

This leads to a significant reduction of efforts for test hardware integration into test 

automation software. ASAM XIL focuses on the decoupling of test-cases from real and 

virtual test systems. It broadly covers all use cases in the testing area and is primarily used in 

conjunction with test automation tools on a client server base. The standard is used in test 

automation applications of all automotive E/E domains, e.g. drivetrain, steering, electric 

lighting, body electronics etc. 

 The concept of the ASAM XIL standard should be looked upon to standardize the test 

specification for vHIL and HIL platforms presented in our work for virtual stress tests 

automation. 
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7.3.2 Improved Workflow for Virtual Prototypes with Stress Tests 

In [118] an improved workflow for the generation of virtual prototypes based on model-based 

design and automatic code generation is presented. An extended IEEE 1685 ™: IP-XACT 

[119] register description is the basis for MathWorks code generation tools to automatically 

generate a functional C / C ++ description of the signal processing algorithms as well as the 

interface description necessary for the integration into the SystemC TLM 2.0 based virtual 

platform. The register description uses the Synopsys® SystemC Modeling Library (SCML). 

These signal processing components, which were previously, designed using Model-Based 

Design and MathWorks MATLAB / Simulink, can then be integrated directly into a virtual 

platform. Through this workflow, both their structure is accelerated and the functional match 

between the algorithm design in MATLAB and Simulink and the simulation in the virtual 

platform is guaranteed. 

Incorporating the information of faults in Simulink models in IP-XACT descriptions 

will completely automate the Simulink model integration into virtual platforms for virtual 

stress tests. 
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