
Towards a Complete Privacy Preserving

Machine Learning Pipeline

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

M. Sc. Ali Burak Ünal

aus Karaman, Türkei

Tübingen

2022



Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 29.07.2022

Dekan: Prof. Dr. Thilo Stehle

1. Berichterstatter: Prof. Dr. Nico Pfeifer

2. Berichterstatter: Prof. Dr. Sven Nahnsen



Acknowledgments
First of all, I would like to express my gratitude to my supervisor, Prof. Dr. Nico Pfeifer. I deeply thank
him for his help, understanding, support and kindness throughout my doctoral study. I was very
fortunate to be a member of his Methods in Medical Informatics group. I was also very fortunate to
work with Dr. Mete Akgün. I am truly grateful for the countless and fruitful discussions we had. I
have learned a lot from him. I would also like to thank Prof. Dr. Sven Nahnsen, Prof. Dr. Enkelejda
Kasneci and Prof. Dr. Michael Menth for the valuable time they spent evaluating my dissertation.

I would like to thank Dr. Efe Bozkır, Huajie Chen and again Prof. Dr. Enkelejda Kasneci for their
valuable collaboration. It was a great experience to work with them.

I am thankful for all my colleagues. It was so great to discuss science, to have small talks, to
have lunch together in the offices and at Unckel, but most importantly to eat cake together at every
possible occasion. Moreover, it was so nice to share the same office with Lisa Eisenberg and Nurhan
Arslan. I will definitely miss those times. And a special thanks to Agnes Molden for her help with
almost all problems I encountered.

Life in Tübingen would have been a bit boring without my friends here. I am so glad to have them.
We have had so much fun together and played countless but really countless games. I am thankful
for all of them.

Besides my friends here, I am also very grateful to my friends from Bilkent University and even
from earlier stages of my life. I want to thank Emre Kahrıman, Kenan Sevinç, Onur Konukcu, Şaban
Okka, Alper Şener, Raşit Somuncu, Kamil Yaprakcı and Hüseyin Açacak. These are just to name a few.
Also, I cannot express how precious Ahmet Küçük’s friendship is for me. It was so great to talk to him
about everything until late at night and come to no conclusion in the end. His support means a lot.

I am also always grateful to Emin Yıldırım, Onur Barut and Hüseyin Kılıç. I cannot even express
how valuable they are to me.

Most of all, I would like to express my gratitude to my mother Ayşe, my father İsmet, my brother
Çağrı and my sister Duygu. Their love and support mean so much to me. And finally, I am so happy
to share my life with my wife Elif. I cannot express how much you supported me during my doctoral
study. I do not know how I would complete my Ph.D. without your support and love.

Oh, the birds of Tübingen... Thanks a lot guys for your modelling.

Ali Burak Ünal

i





Abstract
Machine learning has proven its success on various problems from many different domains. Different
machine learning algorithms use different approaches to capture the underlying patterns in the data.
Even though the amount varies between the machine learning algorithms, they require sufficient
amounts of data to recognize those patterns. One of the easiest ways to meet this need of the machine
learning algorithms is to use multiple sources generating the same type of data. Such a solution is
feasible considering that the speed of data generation and the number of sources generating these
data have been increasing in parallel to the developments in technology. One can easily satisfy the
desire of the machine learning algorithms for data using these sources. However, this can cause a
privacy leakage. The data generated by these sources may contain sensitive information that can be
used for undesirable purposes. Therefore, although the machine learning algorithms demand for
data, the sources may not be willing or even allowed to share their data. A similar dilemma occurs
when the data owner wants to extract useful information from the data by using machine learning
algorithms but it does not have enough computational power or knowledge. In this case, the data
source may want to outsource this task to external parties that offer machine learning algorithms as
a service. Similarly, in this case, the sensitive information in the data can be the decisive factor for
the owner not to choose outsourcing, which then ends up with non-utilized data for the owner. In
order to address these kinds of dilemmas and issues, this thesis aims to come up with a complete
privacy preserving machine learning pipeline. It introduces several studies that address different
phases of the pipeline so that all phases of a machine learning algorithm can be performed privately.
One of these phases addressed in this thesis is training of a machine learning algorithm. The privacy
preserving training of kernel-based machine learning algorithms are addressed in several different
works with different cryptographic techniques, one of which is a our newly developed encryption
scheme. The different techniques have different advantages over the others. Furthermore, this thesis
introduces our study addressing the testing phase of not only the kernel-based machine learning
algorithms but also a special type of recurrent neural network, namely recurrent kernel networks,
which is the first study performing such an inference, without compromising privacy. To enable
the privacy preserving inference on recurrent kernel networks, this thesis introduces a framework,
called CECILIA, with two novel functions, which are the exponential and the inverse square root of
the Gram matrix, and efficient versions of the existing functions, which are the multiplexer and the
most significant bit. Using this framework and other approaches in the corresponding studies, it is
possible to perform privacy preserving inference on various pre-trained machine learning algorithms.
Besides the training and testing of machine learning algorithms in a privacy preserving way, this
thesis also presents a work that aims to evaluate the performance of machine learning algorithms
without sacrificing privacy. This work employs CECILIA to realize the area under curve calculation
for two different curve-based evaluations, namely the receiver operating characteristic curve and the
precision-recall curve, in a privacy preserving manner. All the proposed approaches are shown to be

iii



correct using several machine learning tasks and evaluated for the scalability of the parameters of the
corresponding system/algorithm using synthetic data. The results show that the privacy preserving
training and testing of kernel-based machine learning algorithms is possible with different settings
and the privacy preserving inference on a pre-trained recurrent kernel network is feasible using
CECILIA. Additionally, CECILIA also allows the exact area under curve computation to evaluate the
performance of a machine learning algorithm without compromising privacy.

iv



Zusammenfassung
Das maschinelle Lernen hat seinen Erfolg bei verschiedenen Problemen in vielen unterschiedlichen
Bereichen bewiesen. Verschiedene Algorithmen für maschinelles Lernen verwenden unterschiedli-
che Ansätze, um die zugrunde liegenden Muster in den Daten zu erfassen. Auch wenn die Menge der
Daten bei den verschiedenen Algorithmen für maschinelles Lernen unterschiedlich ist, benötigen
sie doch eine ausreichende Menge an Daten, um diese Muster zu erkennen. Eine der einfachsten
Möglichkeiten, diesen Bedarf der Algorithmen für maschinelles Lernen zu decken, ist die Verwen-
dung mehrerer Quellen, die die gleiche Art von Daten erzeugen. Eine solche Lösung ist machbar,
wenn man bedenkt, dass die Geschwindigkeit der Datengenerierung und die Anzahl der Quellen,
die diese Daten generieren, parallel zu den Entwicklungen in der Technologie gestiegen sind. Der
Wunsch der Algorithmen des maschinellen Lernens nach Daten kann mit Hilfe dieser Quellen leicht
erfüllt werden. Dies kann jedoch zu einer Beeinträchtigung der Privatsphäre führen. Die von diesen
Quellen erzeugten Daten können sensible Informationen enthalten, die für unerwünschte Zwecke
verwendet werden können. Obwohl die Algorithmen für maschinelles Lernen Daten benötigen, sind
die Quellen daher möglicherweise nicht bereit, ihre Daten weiterzugeben. Ein ähnliches Dilemma
tritt auf, wenn der/die Dateneigentümer*in mit Hilfe von Algorithmen für maschinelles Lernen
nützliche Informationen aus den Daten extrahieren möchte, aber nicht über genügend Rechenlei-
stung oder Wissen verfügt. In diesem Fall kann diese Aufgabe möglicherweise an externe Parteien
ausgelagert werden, die Algorithmen für maschinelles Lernen als Dienstleistung anbieten. Auch in
diesem Fall können die sensiblen Informationen in den Daten der entscheidende Faktor für den/die
Eigentümer*in sein, sich nicht für eine Auslagerung zu entscheiden, was dann dazu führt, dass die
Daten für den/die Eigentümer*in nicht genutzt werden. Um diese Art von Dilemmata und Proble-
men anzugehen, zielt diese Arbeit darauf ab, eine vollständige Pipeline für maschinelles Lernen
unter Wahrung der Privatsphäre zu entwickeln. Es werden mehrere Studien vorgestellt, die sich mit
verschiedenen Phasen der Pipeline befassen, so dass alle Phasen eines Algorithmus für maschinelles
Lernen unter Wahrung der Privatsphäre durchgeführt werden können. Eine dieser Phasen, die in
dieser Arbeit behandelt wird, ist das Training eines maschinellen Lernalgorithmus. Das Training von
kernbasierten maschinellen Lernalgorithmen unter Wahrung der Privatsphäre wird in verschiedenen
Arbeiten mit unterschiedlichen kryptographischen Techniken behandelt, von denen eine ein von
aus entwickeltes neuartiges Verschlüsselungsverfahren ist. Diese haben jeweils unterschiedliche
Vorteile gegenüber den anderen. Darüber hinaus werden in dieser Arbeit Studien vorgestellt, die sich
mit der Testphase nicht nur kernelbasierter maschineller Lernalgorithmen befassen, sondern auch
mit einem speziellen Typ rekurrenter neuronaler Netze, nämlich den rekurrenten Kernnetzen, das
die erste Studie ist, die eine solche Inferenz durchführt, ohne die Privatsphäre zu gefährden. Um eine
datenschutzkonforme Inferenz auf rekurrenten Kernnetzen zu ermöglichen, wird in dieser Arbeit ein
Framework mit dem Namen CECILIA eingeführt, das zwei neuartige Funktionen enthält, nämlich
die Exponentialfunktion und die inverse Quadratwurzel der Gram-Matrix, sowie effiziente Versionen

v



etablierter Funktionen, Multiplexer und least significant bit. Unter Verwendung dieses Frameworks
und anderer Ansätze in den entsprechenden Studien ist es möglich, datenschutzkonforme Inferen-
zen für verschiedene vortrainierte Algorithmen des maschinellen Lernens durchzuführen. Neben
dem Training und Testen von maschinellen Lernalgorithmen unter Wahrung der Privatsphäre wird in
dieser Arbeit auch eine Studie vorgestellt, die darauf abzielt, die Leistung von maschinellen Lernalgo-
rithmen zu bewerten, ohne die Privatsphäre zu gefährden. In dieser Arbeit wird CECILIA eingesetzt,
um die Berechnung der Fläche unter der Kurve für zwei verschiedene kurrenbasierte Auswertungen,
nämlich die Receiver-Operating-Characteristic-Kurve und die Precision-Recall-Kurve, auf eine daten-
schutzfreundliche Weise zu realisieren. Alle vorgeschlagenen Ansätze werden anhand verschiedener
Aufgaben des maschinellen Lernens auf ihre Korrektheit geprüft und auf ihre Skalierbarkeit mit
den Parametern des entsprechenden Systems/Algorithmus unter Verwendung synthetischer Daten
untersucht. Die Ergebnisse zeigen, dass das Training und Testen von kernbasierten maschinellen
Lernalgorithmen unter Wahrung der Privatsphäre mit verschiedenen Einstellungen möglich ist und,
dass die Inferenz mit einem vortrainierten rekurrenten Kernnetzwerk unter Verwendung von CECI-
LIA möglich ist. Darüber hinaus ermöglicht CECILIA auch die exakte Berechnung der Fläche unter
der Kurve, um die Leistung eines maschinellen Lernalgorithmus zu bewerten, ohne die Privatsphäre
zu beeinträchtigen.

vi



Contents
Acknowledgments i

Abstract iii

Zusammenfassung v

List of Figures xi

List of Tables xv

Acronyms xvii

1 List of Publications 1
1.1 Scientific Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Introduction 5
2.1 Targeted Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Oligo Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Radial Basis Function Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Recurrent Kernel Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Area Under the Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Area Under Receiver Operating Characteristic Curve . . . . . . . . . . . . . . . 9
2.2.2 Precision Recall Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Cryptographic Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Randomized Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Multi-party Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Privacy Preserving Machine Learning Approaches . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Privacy Preserving SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Privacy Preserving Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Necessity of Efficient Privacy Preserving Machine Learning Algorithms . . . . . . . . 15

3 Objectives and Expected Outcomes 17

4 Results and Discussion 19
4.1 Privacy Preserving Computation of Kernel-based Machine Learning Algorithms with

an RE-based Framework and Their Applications . . . . . . . . . . . . . . . . . . . . . . 19
4.1.1 Privacy Preserving SVM for Precision Medicine . . . . . . . . . . . . . . . . . . 20
4.1.2 Privacy Preserving Gaze Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 22

vii



4.1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 More Efficient RBF Kernel Computation for Privacy Preserving SVM . . . . . . . . . . 23

4.2.1 ESCAPED: Efficient Secure and Private Dot Product Framework . . . . . . . . 23
4.2.2 Privacy Preserving SVM via MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Towards a General Purpose MPC Framework for More Complex Operations . . . . . 28
4.3.1 Comprehensive Secure Machine Learning Framework . . . . . . . . . . . . . . 29
4.3.2 ppAURORA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Conclusion 35

6 Appendix 37
I A framework with randomized encoding for a fast privacy preserving calculation of

non-linear kernels for machine learning applications in precision medicine . . . . . 38
I.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
I.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
I.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
I.4 Our Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
I.5 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
I.6 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
I.7 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
I.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

II Privacy Preserving Gaze Estimation using Synthetic Images via a Randomized Encoding
Based Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
II.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
II.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
II.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
II.4 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
II.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
II.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

III ESCAPED: Efficient Secure and Private Dot Product Framework for Kernel-based Ma-
chine Learning Algorithms with Applications in Healthcare . . . . . . . . . . . . . . . 61
III.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
III.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
III.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
III.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
III.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
III.6 Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

IV Privacy-preserving SVM on Outsourced Genomic Data via Secure Multi-party Compu-
tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
IV.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
IV.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
IV.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
IV.4 Privacy-Preserving SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
IV.5 Evaluation & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

viii



IV.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
V CECILIA: Comprehensive Secure Machine Learning Framework . . . . . . . . . . . . 92

V.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
V.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
V.3 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
V.4 Privacy Preserving RKN (ppRKN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
V.5 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
V.6 Complexity Analysis of the Framework . . . . . . . . . . . . . . . . . . . . . . . 102
V.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
V.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
V.9 Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

VI ppAURORA: Privacy Preserving Area Under Receiver Operating Characteristic and
Precision-Recall Curves with Secure 3-Party Computation . . . . . . . . . . . . . . . . 107
VI.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
VI.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
VI.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
VI.4 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
VI.5 ppAURORA Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
VI.6 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
VI.7 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
VI.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
VI.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
VI.10 Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Bibliography 131

ix





List of Figures

4.1 The overview of the computation in RE-based framework is summarized in two differ-
ent figures. (a) The computation of the dot product of vectors from two input-parties
is shown. (1) At first, the input-party 1 shares the random values with the input-party 2.
(2) Then, both input-parties compute the required components of the encoding for the
element-wise multiplication of vectors in the function-party and send these compo-
nents to the function-party. (3) At the end, the function-party obtains the element-wise
multiplication and eventually the dot product of these vectors. (b) In the oligo kernel
computation, everything except the communication between the input-parties is the
same. The communication among these input-parties is not unidirectional as it is the
case in the dot product computation. It is rather bidirectional, that is the input-party 2
is also sending required masked data to the input-party 1. . . . . . . . . . . . . . . . . 20

4.2 Overview of the computation in ESCAPED is depicted. (1) At first, the input-parties
share the required random values and masked data between each other in order to
create the components of the encoding. (2) After computing these components, the
input-parties send these components to the function-party. (3) Once the function-
party receives these components, it combines them in a certain way to obtain the dot
product between the data of every pair of the input-parties. . . . . . . . . . . . . . . . 24

4.3 Overview of the computation in MPC-based SVM. (1) The input-parties outsource their
data to the servers in a secret shared form. (2) Then, the servers compute the required
functions in order to compute the desired kernel matrix. (3) At the end, the servers
send the share of the desired kernel matrix that they have to the designated user. . . 26

4.4 Overview of the computation in CECILIA. (1) The input-parties outsource their data
to the proxies in a secret shared form. (2) Then, the proxies compute the required
functions with the help of the helper party. . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Number format used in ESCAPED. Let N be the number of bits used to represent a
value. The most significant bit indicates the sign of the value. The least F bits are
allocated to the fractional part of the value. The rest N −F −1 bits are used to represent
the integer part of the value. As an illustrating example, let N be 6 and F be 2. In
this setting, 6.25 is represented as 011001 and −1.75 is represented as 111001 in this
number format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

xi



I.1 In this setting, Alice and Bob are the input-parties and the server is the function-party.
(a) Alice creates a uniformly chosen random value r . She shares it with Bob. (b) Once
Bob receives the random value from Alice, he computes Y − r and shares it with the
server. Meanwhile, Alice computes X +r and sends it to the server. (c) When the server
receives the components of encoding, it calculates (X +r )+ (Y −r ) to decode the result
of the addition of the input values of Alice and Bob. At the end, the server obtains X +Y
without learning neither X nor Y . Similarly, none of the input-parties learns about the
input value of the other input-party. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

I.2 In this setting, Alice and Bob are the input-parties and the server is the function-party.
(a) Alice creates three uniformly chosen random values and shares them with Bob. (b)
Once Bob receives the random values, he computes c2 = Y +r2 and c4 = r1Y +r1r2+r3.
In the meantime, Alice computes c1 = X + r1 and c3 = r2X − r3. They send c1,c2,c3

and c4 to the server. (c) When the server receives the components of the encoding, it
calculates c1c2 − c3 − c4 to decode the result of the multiplication of the input values
of Alice and Bob. At the end, the server obtains X Y without learning neither X nor Y .
Similarly, none of the input-parties learns about the input value of the other input-party. 43

I.3 In this figure, Ki represents the vector containing the positions of the occurrences of
the i -th oligomer in the corresponding sequences. In those vectors, p j of Ki represents
the position of the j -th occurrence of the i -th oligomer. (a) Both input-parties find
the positions of the oligomers in their sequences and insert a varying number of
dummy positions into randomly chosen oligomers. Then, Bob shares the length of Kj

∀ j ∈ {0, · · · ,n} with Alice. (b) Afterwards, Alice creates the vector X
′ ∈Rn′

by applying
the function T along with the vector D ∈ Rn′

for encoding. Then, she sends D and
the length of Ki ∀i ∈ {0, · · · ,n} to Bob. (c) Bob creates the vector Y

′ ∈ Rn′
by applying

the function R. Next, they calculate (−Y
′ −D) ∈ Rn′

and (X
′ +D) ∈ Rn′

, respectively,
and share them with the server. (d) At the end, the server computes the element-
wise summation of the given vectors to obtain all possible pairwise differences of the
positions for each oligomer. Once the server prunes the entries involving dummy
values, it can compute the oligo kernel function. . . . . . . . . . . . . . . . . . . . . . 44

I.4 (a) In order to create the components of the encoding, Alice creates three vectors with
uniformly chosen random values of the same length with a sample in the input vector
X . Then, she sends these vectors to Bob. (b) When Bob receives the random values,
he computes the random components M 2 and M 4. Meanwhile, Alice computes her
shares of encoding, namely M 1 and M 3. Eventually, they send these components of
the randomized encoding to the server. (c) Once the server receives the components,
it computes the dot products between the i-th sample of Alice and the j-th sample of
Bob by summing up the entries of the vector (M 1

.i ⊙M 2
. j −M 3

.i −M 4
. j ). The server repeats

this process for all pairs of samples of Alice and Bob. . . . . . . . . . . . . . . . . . . . 46

I.5 We compare the execution time of our framework (PP) to the non-private scheme (NP)
in the oligo kernel experiments. It shows that our framework is promising for real-life
applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

I.6 In each K -mer, we have 10 different experiments. The experiments of both the pri-
vate scheme and the non-private scheme with the oligo kernel yield the same results.
Therefore, we give a single plot for each type of evaluation metric to display the results
of both schemes. The results are better towards small K values due to the size of the
alphabet of the protein sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xii



I.7 The execution time of our approach in the oligo kernel experiment for a varying size of
the dataset is depicted for 10 repetitions for each size and different K -mer lengths. It
scales almost quadratically with the size of dataset for all K values. . . . . . . . . . . . 50

I.8 (a) In the RBF kernel experiment, we compare the execution time of our framework
(OF) to the key switching approach (KS) in log-scale. In each approach, we have 10
repetitions of the experiments. (b) Both OF and KS experiments yielded the same
results in terms of F1-score and AUROC. The RBF kernel yields comparable or even
better results than the oligo kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

I.9 (a) The execution time of our approach in the RBF kernel experiment for varying size
of the dataset is shown. It scales almost quadratically with the size of dataset. (b)
Similarly, the execution time of the key switching approach to compute the RBF kernel
scales quadratically with the size of dataset. Note that the units are seconds and hours,
respectively, in the figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

II.1 Eye landmarks and gaze on a synthetic image. . . . . . . . . . . . . . . . . . . . . . . . 56
II.2 Overall protocol execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
II.3 The execution time of (a) Alice, (b) Bob and (c) the server are given. We also demon-

strate (d) the time required for the prediction of the test samples, which are 20% of the
total number of samples in each case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

III.1 The overview of ESCAPED in our scenario. Each dash type corresponds to a specific
part of the gram matrix computed by a pair of input-parties. (a) First, the input-parties
exchange their masked input data (e.g. X −a) and masked masks (e.g. αa), if applicable.
(b) Then, they compute the components of all dot products they are responsible for
(e.g. aT (Y −b)) and send them to the function-party along with the mask of the mask
(e.g. α), if applicable. (c) The function-party computes the dot product based on the
corresponding components of the input-parties. . . . . . . . . . . . . . . . . . . . . . 66

III.2 (a) The execution time of ESCAPED is shown for varying sizes of the dataset. (b) The
analysis of ESCAPED for varying number of input-parties in terms of the total execution
time, the communication time between the input-parties (IP) and the function-party
(FP), and the communication time among IPs is shown. (c) The execution time of the
randomized encoding based approach is depicted for different sizes of the dataset. The
execution time increases quadratically in parallel to the increment in the dataset size.
(d) The execution time comparison of ESCAPED and the UAP [1] for two input-parties
case is given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

III.3 An arithmetic circuit to compute the dot product of the vectors x and y where x, y ∈R7. 74
III.4 The overview of the randomized encoding based approach to compute the dot product

of samples from multiple input-parties is depicted. Each dash type corresponds to
a specific part of the gram matrix computed by a pair of input-parties. (a) At first,
the input-parties exchange their number of samples. (b) Then, they generate all the
random values and send the required ones to the corresponding input-party. (c)
Afterwards, they compute their components in the encoding and share them with
the function-party. (d) Finally, the function-party computes the dot product of the
samples. (e) The dimension of the matrices are shown separately for better readability. 75

III.5 The computed incomplete gram matrix in which only the shaded parts are available. 77
IV.1 Protocol Structure: From Data Sources to MPC and Eventually to User’s Process . . . 84
IV.2 Shared Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
IV.3 Dot Product Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xiii



IV.4 Online Time against Number of Samples/Features/Data Sources in Arithmetic (A)
Circuits Protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

IV.5 Online Time against Number of Samples/Features/Data Sources in Boolean (B) Circuits
Protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

IV.6 Run Time Comparison between Arithmetic/Boolean Circuits Protocol & Key Switching 90
V.1 The arithmetic circuit showing the computation of a single time point in RKN. Black

lines represents a scalar value. Orange lines are d-dimensional vectors and blue lines
depict q-dimensional vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

V.2 The result of the experiments to analyze the execution time of CECILIA on both WAN
and LAN settings for (a) varying number of anchor points for a fixed k-mer length and
sequence length, (b) varying length of k-mers for a fixed number of anchor points and
sequence length, and (c) varying length of sequences for a fixed number of anchor
points and length of k-mer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

VI.1 (a) The execution time of various settings to evaluate the scalability of ppAURORA to
the number of samples for a fixed number of parties and (b) to the number of parties
for a fixed number of samples in each party. (c) The effect of δ on the execution time is
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

VI.2 AUROC for varying number of test samples randomly chosen from the whole dataset 122
VI.3 The merging of two same size lists with δ = 1. The red arrows represent shuffling,

the black ones denote moving the larger of the first list to the global sorted list. The
progress of the global sorted list is shown by the grey arrows. Each color in the boxes
represents different number of candidate PCVs. The coding of the colors are shown on
the right most side of the figure. For each red arrow, i.e. for each shuffling, we utilize
PC operation on PCVs from two lists which are on the same index to select the larger
of them and employ the result of this comparison along with MUXs put the larger one
into the L1 and the other into L2. Afterward, we move the top of the first list to the
global sorted list. Since δ= 1, we perform shuffling after we move the top element. . 123

VI.4 The merging of two same size lists with δ= 3. We again start with shuffling and then
move the top PCV of the first list into the global sorted list. Afterward, we compare
the second element of the first list and the top element of the second list via PC. The
proxies reconstruct the result of this comparison and move the share of the larger of
the compared PCVs to the global sorted list. They continue until they move δ PCVs to
the global sorted list. Then, they shuffle and repeat the same procedure until there is
no PCV in the first list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

VI.5 The merging of two same size lists with δ= 3. This example shows how the merging
happens in case all the PCVs are taken from the first list. . . . . . . . . . . . . . . . . . 124

VI.6 The merging of two lists with δ= 1. The second list has only one PCV. The red arrows
represent shuffling, the black ones denote moving the larger of the first list to the global
sorted list. The progress of the global sorted list is shown by the grey arrows. Each color
in the boxes represents different number of candidate PCVs. The coding of the colors
are shown on the right most side of the figure. . . . . . . . . . . . . . . . . . . . . . . . 125

xiv



List of Tables
2.1 Summary of the studies presented in this thesis. This table summarizes the topics

of the papers in terms of crytographic techniques used, algorithms addressed and
problem applied. The cryptographic techniques are randomized encoding (RE), special
encoding for dot product (SE) and multi-party computation (MPC). The algorithms
are support vector machines (SVM), recurrent kernel networks (RKN) and area under
the curve (AUC). The applications are HIV coreceptor usage prediction (HIV), gaze
estimation (GE), structural classification of proteins (SCOP), acute myeloid leukemia
(AML) and UCI heart disease benchmark dataset (UCI). . . . . . . . . . . . . . . . . . 15

II.1 The mean angular errors for varying dataset sizes. . . . . . . . . . . . . . . . . . . . . . 60
III.1 The summary of the comparison of the methods utilized in this study from different

aspects. The first part of the table presents the ability to handle a varying number of
input-parties (IP) in the framework proposed by Ünal et al. [1] (UAP), the random-
ized encoding based approach (RE) and ESCAPED. Moreover, n being the number of
samples in each IP, M being the number of IPs and f being the number of features
of samples, where n, M , f ∈ Z+ and M ≥ 2, the second part of the table presents the
communication cost analysis of RE and ESCAPED in terms of the communication cost
among IPs, between IP and the function-party (FP) and the total communication cost.
The communication cost analysis of UAP, however, is given without any dependency
on M since it can only handle two input-parties scenario. Note that we omit the com-
munication cost of sending the gram matrix of the samples belonging to the same IP
since it is fixed for all approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

V.1 Communication round complexity of CECILIA . . . . . . . . . . . . . . . . . . . . . . 102
VI.1 Complexity comparison of distinguishing protocols of ppAURORA with SecureNN [2] 111
VI.2 The summary of the results of the experiments with ppAURORA to compute AUROC

with and without tie on synthetic data. The left side of “/” represents without-tie results
and the right side of it represents with-tie results. M represents the number of data
sources and N represents the number of samples in one data sources. U N B represents
the unbalanced sample distribution, which is {12,18,32,58,107,258,507,1008}. . . . 121

VI.3 The summary of the results of the experiments of AUPR computation with ppAURORA
on synthetic data. M represents the number of data sources and N represents the
number of samples in one data sources. U N B represents the unbalanced sample
distribution, which is {12,18,32,58,107,258,507,1008}. . . . . . . . . . . . . . . . . . . 122

xv





Acronyms
AUC Area Under Curve

AUPR Area Under Precision Recall Curve

AUROC Area Under Receiver Operating Characteristic Curve

CNN Convolutional Neural Networks

DNN Deep Neural Network

DP Differential Privacy

FP False Positive

FPR False Positive Rate

FHE Fully Homomorphic Encryption

GDPR General Data Protection Regulation

HE Homomorphic Encryption

ML Machine Learning

MPC Multi-party Computation

PR Precision Recall

PCV Prediction Confidence Value

RBF Radial Basis Function

RE Randomized Encoding

ReLU Rectified Linear Unit

RKN Recurrent Kernel Network

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

SVM Support Vector Machine

SVR Support Vector Regression

TP True Positive

TPR True Positive Rate

VR Virtual Reality

xvii





1 List of Publications

Accepted Publications

1. Ali Burak Ünal, Mete Akgün, and Nico Pfeifer. “A framework with randomized encoding for a
fast privacy preserving calculation of non-linear kernels for machine learning applications in
precision medicine.” International Conference on Cryptology and Network Security. Springer,
Cham, 2019.

2. Efe Bozkir∗, Ali Burak Ünal∗, Mete Akgün, Enkelejda Kasneci, and Nico Pfeifer. “Privacy pre-
serving gaze estimation using synthetic images via a randomized encoding based framework.”
ACM Symposium on Eye Tracking Research and Applications. 2020.

3. Ali Burak Ünal, Mete Akgün, and Nico Pfeifer. "ESCAPED: Efficient Secure and Private Dot
Product Framework for Kernel-based Machine Learning Algorithms with Applications in
Healthcare." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. No. 11.
2021.

4. Huajie Chen, Ali Burak Ünal, Mete Akgün, and Nico Pfeifer.“Privacy-preserving SVM on
outsourced genomic data via secure multi-party computation.” Proceedings of the Sixth
International Workshop on Security and Privacy Analytics. 2020.

Submitted Manuscripts

1. Ali Burak Ünal, Mete Akgün, and Nico Pfeifer. “CECILIA: Comprehensive Secure Machine
Learning Framework” arXiv preprint arXiv:2202.03023 (2022).

2. Ali Burak Ünal, Mete Akgün, and Nico Pfeifer. “ppAURORA: Privacy Preserving Area Under
Receiver Operating Characteristic and Precision-Recall Curves with Secure 3-Party Computa-
tion.” arXiv preprint arXiv:2102.08788 (2021).

* indicates equal contribution

1



1.1 Scientific Contribution

This thesis advances the literature of privacy preserving machine learning by introducing novel
crytographic techniques that are used to make not well-studied machine learning algorithms private
and making untouched machine learning algorithms and evaluation metrics privacy preserving
via novel, effective and private functions based on well-known crytographic techniques. Towards
achieving the goal of this thesis, which is a complete privacy preserving pipeline, Chapter 2 intro-
duces the preliminary concepts and the existing approaches in the literature. Chapter 3 gives the
objectives and the expected outcomes of the thesis in more detail. Following the objectives, Chapter
4 summarizes six scientific publications that form the basis of this thesis by stating their motivations,
the work done, the results of the corresponding study and the discussion of these results in terms of
their contribution to the literature and towards the objectives of this thesis. Chapter 5 wraps up the
thesis by summarizing the discussions of the publications.

Personal Contributions

In the publication 1, the data preprocesssing and preparation was done by ABÜ. The method
development was done by ABÜ with the inputs from MA and NP. ABÜ implemented the method
and conducted the experiments with discussing the setup with MA and NP. The analysis was mainly
done by ABÜ with the help of MA and NP. ABÜ wrote the most part of the manuscript by taking the
feedback of MA and NP into account.

Regarding the publication 2, EB performed the data generation and preparation with inputs
from ABÜ. Improvement on the existing framework was done by ABÜ and MA with inputs from EB.
Conducting the experiments were done by ABÜ with the help of EB. ABÜ and EB performed the
analysis of the results with the help of MA, EK and NP. The manuscript was written by ABÜ and EB
by taking the feedback of the other authors into account.

In the publication 3, ABÜ did the data preprocessing and preparation for the experiments. In the
development of the methods utilized in the study, ABÜ took a leading part with the insights of MA
and NP. The implementation of the developed methods was done by ABÜ with the help of MA. ABÜ
conducted the experiments on the data to validate the correctness of the method and analyze the
scalability of the method. The results of these experiments were analyzed by ABÜ with inputs from
MA and NP. ABÜ was responsible for the most of the manuscript and wrote it with the help of MA
and NP.

In the publication 4, ABÜ and HC processed and prepared the data for the experiments. HC
developed and implemented the method with inputs from MA and ABÜ. The experiments performed
were conducted by HC with the help of MA and ABÜ. ABÜ, HC and MA analyzed the results of the
experiments with inputs from NP. Most of the manuscript was written by HC with the help of ABÜ
and MA. NP revised the manuscript at the end.

ABÜ did the preprocessing and the preparation of the data utilized in the submitted manuscript 1.
ABÜ developed the methods with the help of MA and NP. The implementation of the methods was
done by ABÜ with inputs from MA. ABÜ conducted the experiments to show the correctness and
the scalability of the developed methods with inputs from MA and NP. ABÜ analyzed the results by
considering the feedback of MA and NP. Almost all parts of the manuscript was written by ABÜ with

2



the help of MA and NP.

The data preprocessing and preparation for the submitted manuscript 2 were done by ABÜ with
inputs from MA. MA and ABÜ developed the methods employed in the publication. The implemen-
tation of the methods was done by MA with inputs from ABÜ. MA conducted the experiments with
the help of ABÜ. The analysis of the results was done by ABÜ with inputs from MA and NP. ABÜ
wrote the most part of the manuscript with inputs from MA and NP.

3





2 Introduction

Data generation has increased at a tremendous rate in today’s world. In 2020, a single person
generates an average of 1.7 MB of data per second [3]. The sources for this big data are also increasing.
They range from social media to mapping applications, from health data to email, from countless
images to voice recordings. All of this data contains specific information about the owner and
can be used to improve a person’s quality of life through better diagnosis of diseases, personalized
recommendations, autocomplete typing, and so on. Even a person can have their DNA sequenced at
an affordable price to learn what genetic diseases they might get and take precautions in advance
to prevent them [4]. However, this data can also be used against these individuals. The sensitive
information in such personal data can threaten not only the privacy of the individual, but also that
of their loved ones [5, 6, 7]. Therefore, it is extremely important to protect the data that contains
sensitive information.

On the one hand, data privacy must be preserved. On the other hand, data processing approaches
must be used to extract useful information. One of these approaches is machine learning (ML)
algorithms. They have become increasingly successful. There are countless studies in the literature
using ML algorithms to successfully address a wide range of problems that have been previously
unsolved or poorly solved [8, 9, 10, 11, 12, 13]. The algorithms used range from traditional machine
learning algorithms such as support vector machine (SVM), logistic regression, random forests,
linear regression, etc., to more complex deep neural networks (DNNs), which have become popular
and demonstrably successful at certain tasks in parallel with the increase in computer processing
power.

Although the amount varies among the ML algorithms, one of the common features of these
algorithms is that they require enough data to perform well. One can improve the performance of
the chosen ML algorithm significantly by increasing the number of data samples that are used in the
training phase of the algorithm. In particular, for DNNs, a large set of samples with high coverage is
one of the crucial criteria for high performance. The demand of DNNs for data increases in parallel
with the increase in the complexity of its network architecture. The simplest way to satisfy the ML
algorithms’ need for data is to use multiple data sources that produce the same type of data. With
this approach, one can train an ML algorithm by benefiting from the data of multiple sources whose
data alone may not be sufficient for training.

However, such an approach to solving the problem of having enough data risks exposing the
privacy of the data used to train an ML algorithm. Releasing the data with sensitive information also

5



reveals the sensitive information about the owner of the data. To prevent such data leaks, there are
various regulations such as the General Data Protection Regulation (GDPR) [14]. Such regulations
legally aim to protect the privacy of data owners by prohibiting the release and use of data in certain
ways. This conflict of interest between the privacy of data and the demand of ML algorithms for
data creates a dilemma and forces researchers to develop new approaches to meet the needs of both
sides. These efforts have led to the development of privacy preserving ML algorithms.

This thesis advances the field of privacy preserving ML by introducing both novel cryptographic
techniques and novel and efficient functions based on well-known cryptographic techniques to
enable privacy preserving training and testing of several important ML algorithms, some of which
have not been addressed before. It also presents the applications of these privacy preserving ML
algorithms to problems in healthcare, computational biology, and human-computer interfaces to
demonstrate the feasibility of performing these tasks privately by exploiting these novel approaches.
Later in the Introduction, Section 2.1 introduces the ML algorithms that this thesis aims to make
private, and Section 2.3 gives a brief overview of the cryptographic techniques used to make these
algorithms privacy preserving. Finally, Section 2.4 presents the existing approaches in the literature
that propose different privacy preserving ML algorithms using different cryptographic techniques.

2.1 Targeted Machine Learning Algorithms

This section presents the ML algorithms that are subject of this thesis before the details of how these
algorithms are made private.

2.1.1 Oligo Kernel

String kernels can be thought of a way to represent similarity of sequences enabling a set of ML
algorithms such as SVMs and Gaussian processes. They aim to measure the similarities between
strings with different mechanisms and, based on the resulting similarity matrix, perform the intended
task, which can be classification, clustering or regression, based on the resulting similarity matrix.
Considering the different types of genomic sequences, they are of great importance in the medical
domain to measure and/or compare these sequences leading to different applications and fields
such as comparative genomics, stratification of cancer patients into subgroups and so on. One of
these string kernels is the oligo kernel [15]. It measures the similarity between two sequences based
on the occurrences of oligomers, which are basically k-mers, by taking into account the positional
variations of the oligomers. Let x and y be the sequences over an alphabet A . The similarity between
sequences x and y is measured as follows:

K (x, y) =p
πσ

∑
ω∈A k

∑
p∈xω

∑
q∈yω

exp(− 1

4σ2 (p −q)2) (2.1)

where A k contains all possible oligomers of length k over the alphabet A , xω and yω are the set of
positions of all occurrences of the oligomer ω in the sequences x and y , respectively, and σ is the
positional uncertainty parameter that adjusts the contribution of oligomers with different positions
to the similarity score. When σ is close to 0, only the oligomers that occur at the same position in
both sequences contribute to the similarity score of the sequences. On the other hand, if σ is too
large, the positional information of the oligomers is completely ignored and every oligomer that

6



occurs in both sequences contributes equally to the similarity score of the sequences, regardless of
its positions.

2.1.2 Radial Basis Function Kernel

In addition to the string kernels, there is a widely used kernel function to measure the similarity
between two samples, namely the radial basis function (RBF) kernel. Thanks to its ability to capture
the underlying non-linear and complex patterns in the data, it is used to measure the similarities
in the data from different domains. Let x and y be two numeric vectors of the same length. One
can consider these vectors as feature vectors with the same set and order of attributes representing
samples in a dataset. The RBF kernel measures the similarity between these samples as follows:

K (x, y) = exp

(
−

∥∥x − y
∥∥2

2σ2

)
(2.2)

where σ is a parameter that regulates the level of similarity. As a common representation, one can
reformulate Equation 2.2 by setting γ= 1

2σ2 as follows:

K (x, y) = exp
(
−γ∥∥x − y

∥∥2
)

(2.3)

To calculate the expression
∥∥x − y

∥∥2 in both equations, one has to perform elementwise subtraction
of the feature vectors x and y , and calculate the norm of the resulting vector. Even though such a
computation is easy to perform in plaintext, computing this operation while preserving privacy is dif-
ficult and inefficient, if not infeasible. Therefore, this work utilizes the privacy-friendly reformulation
of the RBF kernel function using the dot product operation:

K (x, y) = exp
(−γ(〈x, x〉−2〈x, y〉+〈y, y〉)) (2.4)

where 〈,〉 represents the dot product operation. Thanks to Equation 2.4, one can compute the
similarity between x and y using only the dot products 〈x, x〉, 〈x, y〉 and 〈y, y〉.

2.1.3 Support Vector Machines

One of the most successful and widely used ML methods, especially for small to medium size data, is
the SVM [16]. It is a supervised machine learning method that seeks linear separation of the samples
by a hyperplane that maximizes the margin between the borderline samples of each class, called
support vectors. The following optimization problem yields the desired hyperplane:

min
w

( 1

n

n∑
i=1

max
(
0,1− yi (wT xi −b)

)+λ∥w∥2
)

(2.5)

where w is the normal vector of the hyperplane, n is the number of samples, xi is the i -th sam-
ple whose class label is yi , b is the offset and λ is the parameter adjusting the trade-off between
maximizing the margin and the correctness of the side of xi .

The given form of the SVM optimization function in Equation 2.5 allows only the linear classifica-
tion of the samples in their original space, which is also called input space. In addition to the hard

7



margin version, there is a soft margin version which adjusts the trade-off between the correct labeling
and margin size. However, linear separation of the samples in the input space is not always possible
or the performance is not sufficient. Kernel functions are at utmost utility for a good separation.
They enable mapping the samples from the input space to another, usually higher dimensional
space, which is called feature space, so that the separation of the samples from different classes can
be achieved by a hyperplane in this space. To integrate the kernel functions into the optimization
problem in Equation 2.5, one needs to replace each dot product with the kernel function which is
equivalent to the dot product in the feature space: k(xi , x j ) = 〈Φ(xi ),Φ(x j )〉 with mapping function
Φ : X → Rm . This gives SVMs the ability to capture more complex patterns by separating of the
samples which is not necessarily linear in the input space but linear in the feature space.

In order to train the SVM algorithm, one can use the pre-computed kernel matrix K , which
is a positive semi-definite square matrix. The SVM training algorithms can extract the required
dot product of the samples from this kernel matrix and find a hyperplane providing the desired
separation among the samples from different classes. This thesis exploits the idea of using a pre-
computed kernel matrix to train the SVM algorithm in order to preserve the privacy of the samples
used to train the algorithm by computing the desired kernel matrix privately.

2.1.4 Recurrent Kernel Networks

DNNs have become very popular in parallel with the increase in computational power. There are now
several different types of DNNs to process differently structured data. Images, for example, are mostly
processed by convolutional neural networks (CNN). They are able to capture the patterns in images
by employing convolutional layers, maxpooling layers and fully connected layers to name just a few
of the options. For sequential data, such as genomic sequences, recurrent neural networks (RNNs)
come in handy. These networks can identify the recurring patterns in the sequential data using
memory, which can be short- or long-term. RNNs work effectively, especially when there is enough
data to learn the patterns. However, it is difficult to find an effective architecture of RNN that works
well on genomic data as opposed to the well-known string kernels, which have been shown to
perform well specifically for this type of data. In order to bridge the gap between the RNN and string
kernels, Chen et al. [17] proposed a special way to construct an RNN whose internal computation is
the same as that of the substring kernel allowing mismatches and the local alignment kernel, which
are used in several studies proving their utility [18, 19, 20].

As an overview, Chen et al. [17] designed an RNN whose internal computation is the recursive
computation of the above kernel functions, which can be computed using dynamic programming
[21]. Unlike the traditional kernel functions that require prior selection of hyperparameters, the
proposed RNN-based computation of kernel functions, which they call recurrent kernel network
(RKN), benefits from the backpropagation algorithm to optimize these parameters. This feature
of RKN saves trying a high number of different combinations of these parameters by hand in the
traditional grid search approach. Based on the results in their paper, RKNs outperform the traditional
substring kernel and local alignment kernel, as well as LSTMs [22]. This suggests that RKNs have
high potential on various problems from different domains.

In a broader perspective on RKNs, they employ k-mer-like small motifs, called anchor points, to
measure how similar the sequences are. They act like different templates that one tries to fit onto
the sequences to measure the similarities among different sequences based on how much these

8



templates are fitting onto them. The anchor points have a similar encoding to one-hot encoding
with a slight difference that a character of an anchor point is not necessarily a single character in the
alphabet. Instead, the encoding of a character of an anchor point bears the probability of it being
each character in the alphabet.

Since this thesis is concerned with the prediction part of RKNs, the details about the backpropaga-
tion are omitted and only the forward pass needed to make predictions is given. Let q be the number
of anchor points with k characters, let d be the length of the vector encoding these characters, let x
be a sequence with s characters, each of which is encoded via one-hot encoding vectors of length d .
The similarity between a character of the input sequence, xt , and a character of an anchor point, zi

j ,
is computed as follows:

K (xt , zi
j ) = eα(〈xt ,z i

j 〉−1) (2.6)

where α is a free parameter. Such a similarity computation is performed for the j -th character of
all anchor points, yielding a vector of length q , b j [t ]. The process continues with the following
computation:

c j [t ] =λc j [t −1]+ c j−1[t −1]⊙b j [t ] (2.7)

where c j [t ] represents the initial mapping of the sequence up to the t-th character into a q-dimensional
vector based on anchor points of length j and λ is a scalar value decreasing the effect of the previous
time points for j ∈ {1, . . . ,k} and t ∈ {1, . . . , s}. Stopping conditions for this recursive computation are
c0[t ] and c j [0] which are a vector of 1s and a vector of 0s if j ̸= 0, respectively.

Once the initial mapping of the sequence for j ∈ {1, . . . ,k} is obtained, the RKN proceeds with the
multiplication of ck [ j ] by the orthogonalization factor K −1/2

Z j Z j
, which is the inverse square root matrix

of the Gram matrix of the anchor points up to their j -th character. As Chen et al. [17] also noted, this
is the only non-standard component of the entire computation of RKN. In substring kernels allowing
mismatches, the final step of the forward pass to obtain the prediction of the input sequence is to
apply the linear layer, which basically performs a dot product between ck [s] and the weight vector of
the classifier w . This completes the forward pass for a single input sequence and the prediction of a
test sequence on the pre-trained RKN model.

2.2 Area Under the Curve

One of the most widely used performance evaluation metrics for ML algorithms is the area under
curve (AUC). It summarizes the output of plot-based evaluation methods as a single value. Briefly,
it calculates the area under the curve of the desired method’s plot. This thesis investigates AUC
computation on the receiver operating characteristic (ROC) curve and the precision recall (PR) curve.
In general, if the area under the curve is 1, it indicates that the model performs well. Specifically for
the AUC of ROC, the area around 0.5 is an indication of a model predicting randomly.

2.2.1 Area Under Receiver Operating Characteristic Curve

One of those two plot-based evaluation methods is the ROC curve. It is used to evaluate how well a
ML model with binary outcome performs by considering the sensitivity and the specificity of the
model, which are calculated using the prediction confidence value (PCV) of the test samples. The
ROC curve plots the false positive rate (FPR) on the x-axis and the true positive rate (TPR) on the

9



y-axis, which are calculated using PCVs. A well-performing model would have a plot in which TPR
becomes close to 1 before FPR increases. In order to summarize an ROC curve, AUC measures the
area under this curve using the following formula:

AU ROC =
N∑

i=1

(
T [i ] · (F [i ]−F [i −1])

)
(2.8)

where N is the number of test samples that are sorted in descending order in terms of PCVs, T ∈
[0,1]N and F ∈ [0,1]N are the TPR and FPR values of the corresponding samples, respectively. For
the correct result, Equation 2.8 assumes that there is no tie between the PCVs of test samples. This
means that every PCV is unique. If this is not the case, then Equation 2.8 approximates the results
based on the order of the test samples. Depending on the case, this could result in very different
results compared to the correct result. For an illustrating example, the reader can refer to Paper VI.

To address the correct calculation of the AUC in case of a tie in PCVs, one can use the following
formula:

AU ROC =
|I |∑

i=1

(
T [I [i −1]] · (F [I [i ]]−F [I [i −1]])+ (T [I [i ]]−T [I [i −1]]) · (F [I [i ]]−F [I [i −1]])

2

)
(2.9)

where I denotes the index vector of test samples in ascending order and |I | represents the size of
the vector. I contains the indices of PCVs whose value is different from the preceding PCV. By this
formula, it is possible to compute the exact AUC in case of a tie in PCVs.

2.2.2 Precision Recall Curve

The second plot-based evaluation method addressed in this thesis is the PR curve. Similar to the
ROC curve, the PR curve also evaluates the models with binary outcomes. It plots the recall on the
x-axis and the precision on the y-axis. Based on this plot, one can assess the performance of a model.
For instance, a well-performing model should have a curve that starts with a precision of 1 and goes
without too much drop until the recall becomes 1. In order to ease this evaluation, AUC can be
used so that the result of the evaluation becomes a single scalar value. An AUC close to 1 indicates a
well-performing model.

The computation of the AUC of PR curve requires a similar computation as the AUC of ROC curves
with tie, because the precision and recall values change even if there is no tie in the PCVs. Therefore,
assuming that T is the precision and F is the recall, Equation 2.9 is employed to calculate the AUC of
the PR curve.

2.3 Cryptographic Techniques

This section introduces the cryptographic techniques used in this thesis to make the ML algorithms
private.

2.3.1 Randomized Encoding

One of the cryptographic techniques used in this thesis is randomized encoding (RE) [23]. It is a
masking technique that uses random masks to protect the privacy of the data during computation.

10



Compared to homomorphic encryption (HE), another crytographic technique in the literature, it is
much lighter and faster without compromising privacy. The idea of RE is to keep the masked input
values secret except for the desired output. It masks the input values by purposefully adding/sub-
tracting/multiplying random values to/from/with those input values. In this way, the party receiving
these masked input values can extract only the output of the function that the owner of the secret
value wants to reveal from these masked input values by combining them in a certain way.

Applebaum [24] proposed the RE of several basic operations. The first and most basic of these is
the addition function f (x1, x2) = x1 +x2. The encoding of this function is as follows:

f̂ (x1, x2;r ) = (x1 + r, x2 − r ) (2.10)

where r is a uniformly chosen random value. Decoding of this encoding to obtain the desired output
is simply done by adding x1 + r and x2 − r . This addition cancels the random value used to mask x1

and x2, and reveals only the addition of x1 and x2, but nothing else about these secret values to a
third-party that only receives the results of x1 + r and x2 − r .

They also gave the encoding of the multiplication function f (x1, x2) = x1 · x2. In order to encode
this function, they proposed the following:

f̂ (x1, x2;r1,r2,r3) = (x1 + r1, x2 + r2,r2x1 + r3,r1x2 + r1r2 − r3)

= (c1,c2,c3,c4)
(2.11)

where r1,r2 and r3 are uniformly chosen random values and c1,c2,c3 and c4 are the components of
the encoding. In order to decode this encoding and obtain the result of the function f (x1, x2), one
needs to compute c1 · c2 − c3 − c4. This cancels the random values used and gives the desired output
x1 · x2 without getting to know anything about x1 or x2.

In addition to the addition and multiplication operations, there is also a function combining these
operations, namely the multiplication-addition function f (x1, x2, x3) = x1 · x2 +x3. The encoding of
such a function is achieved as follows:

f̂ (s1, s2, s3;r1,r2,r3,r4) = (s1 − r1,r2s1 − r1r2 + r3, s2 − r2,r1s2 + r4, s3 − r3 − r4)

= (c1,c2,c3,c4,c5)
(2.12)

where r1,r2,r3 and r4 are uniformly chosen random values and c1,c2,c3,c4 and c5 are the components
of the encoding. In order to recover the output of f from f̂ , one needs to compute c1 ·c3+c2+c4+c5.
This computation cancels out the random values and gives x1 ·x2 +x3 without revealing anything
about the input values.

In addition to the above functions, Applebaum [24] also stated that any arithmetic circuit with
logarithmic depth can be encoded using RE. This thesis benefits from this ability of RE to encode
the dot product of two vectors of any length later on. More details about the algorithm generating an
encoding for an arithmetic circuit can be found in [24] and the details of the algorithm generating
encoding for the dot product function can be found in Paper III in the Appendix.

2.3.2 Multi-party Computation

Another cryptographic technique employed in this thesis to make ML algorithms private is multi-
party computation (MPC) [25, 26]. In short, in MPC, multiple parties participate in the computation

11



of a function with private input value(s) such that these parties should not learn about the input
value of any of the other parties and their share of the result of the function. In other words, the
parties should only know their input values and, in the end, their own share of the output of the
function.

In order to achieve privacy of the secret values in MPC, one of the key components is the secret
sharing of the data. None of the parties in MPC should have all the shares. These shares must be
shared among the parties involved in the computation in such a way that they do not reveal any
information about the actual value. There are several schemes in the literature for sharing the secret
values among the computing parties. This thesis employs two different secret sharing schemes and
introduces only these schemes to focus on the required preliminaries for the papers. One of them is
the arithmetic secret sharing scheme. In arithmetic secret sharing, there are different methods to
arithmetically share a secret value, but the common feature of all these methods is that the secret
value is split into two or more seemingly random shares, so that a single share has no meaning by
itself, but the addition of these shares over a ring gives the secret value. Among these methods, this
thesis uses 2-out-of-2 additive secret sharing in which a secret value x is shared between two parties
over a ring ZR such that the addition of the shares x1 and x2 yields x over this ring. Even though the
specific notation may vary in the papers using MPC with 2-out-of-2 additive secret sharing, 〈x〉R

i
represents the share of x over ZR at the i -th party.

The second secret sharing employed by this thesis is boolean secret sharing. In this scheme, a
secret value x is split into two secret shares x1 and x2 such that x1 ⊕x2 yields x where ⊕ is the XOR
operation. In general, throughout this thesis the boolean sharing of x in the i -th party is shown
as 〈x〉B

i but, similarly, this may vary in individual papers. Readers are encouraged to refer to the
notations given in each paper for a more accurate representation of the shares of a secret value in
that paper.

2.4 Privacy Preserving Machine Learning Approaches

In the literature of privacy preserving ML, there are many attempts to realize different ML algorithms
in a privacy preserving way using different cryptographic techniques. One of these techniques is
differential privacy (DP) [27]. The core idea of DP is to introduce noise into the computation based
on a budget so that the exact values of the data used in the computation can be preserved. There
are several ways to perturb the data and output in the computation. When noise is added to the
training data, this approach is called input perturbation. A common application of this approach
is to perturb the input data for a specific function so that the result is within the expected range of
errors caused by the use of noisy data. The limiting factor in this approach is that perturbing the
input data for all functions is very difficult, if not impossible, due to the variety of functions that
can be computed with the data. In addition to the input perturbation, there are objective function
perturbation [28] and output perturbation. They aim to provide privacy by introducing noise into
the objective function and the output of the function, respectively. Due to the nature of DP, all
these approaches cannot provide the exact result of the computation. However, in some fields and
applications, such as precision medicine, it might be important to obtain an exact result. Since the
goal of this thesis is to propose the exact private computation of the functions, the studies employing
DP are out of the scope of this thesis.

12



2.4.1 Privacy Preserving SVM

Since an SVM requires pairwise similarity of samples in terms of dot products in the same space
for training, it cannot be made private by iterative approaches easily. Therefore, it is necessary to
gather the whole samples in one place to train an SVM algorithm. To achieve this, there are several
approaches in the literature that use different cryptographic techniques. Vaidya et al. [29] proposes
an approach to privately train an SVM algorithm on horizontally shared data by computing the
kernel matrix without compromising the privacy of the data. Their approach assumes that the
samples are represented as binary feature vectors such that each attribute of the samples can be
either 0 or 1. They benefit from the idea that the dot product of two binary vectors can be computed
by counting the intersecting 1s of these vectors. They achieve this private counting using secure
set intersection cardinality [30], which gives the number of 1s on the same indices in both vectors.
Considering the wide range of applications that need to work with real numbers, this feature of their
proposed approach limits its use quite considerably. Therefore, it is not widely applicable.

Zhang et al. [31] proposed an approach that addresses this missing part to some extent. In their
approach, they aim to privately compute the dot product between the feature vectors of samples,
which are not necessarily binary, from different sources on a third-party and train an SVM algorithm
at the end. To achieve the privacy requirements, they use integer vector encryption. Each data
source encrypts its vectors with its own key and sends the encrypted vectors to the third-party. By
using these encrypted vectors coming from different data sources, the third-party can compute
the encrypted dot product of them. To obtain the result of this dot product operation in plaintext,
the key of the dot product of the vectors, each encrypted by their owners with different keys, has
to be switched to a key that the outsourced third-party knows. To do this, they employ the key-
switching technique [32]. This key only reveals the dot product of these vectors, but nothing else
about them. Although this approach works with integer vectors, it is not extendable to vectors of real
numbers. Moreover, it is not efficient and scalable due to its encryption scheme. It cannot handle
the computation when the number of samples increases. More details about this issue can be found
in Appendix I.

In addition to the key-switching based solution, Liu et al. [33] also proposed an encryption based
approach that enables mining of the outsourced data using the SVM algorithm. They consider a
scenario where the data is outsourced after encryption, and the owners of the data and the cloud, to
which the data is outsourced, jointly mine the encrypted data without compromising privacy. They
use fully homomorphic encryption (FHE) to meet privacy requirements and allow several operations,
such as addition and multiplication, on the encrypted data. However, due to the usage of FHE, the
proposed approach is not efficient enough to train an SVM. Moreover, they perform communication
between the cloud and the data owners, which further reduces the efficiency of the approach.

2.4.2 Privacy Preserving Deep Learning

In addition to the studies that provide the privacy preserving computation of the SVM algorithm,
there are several studies in the literature that propose approaches for privacy preserving computation
for various deep learning algorithms. These studies are generally based on MPC or HE, and mostly
target DNNs and CNNs.

SecureML, proposed by Mohassel and Zhang [34], is one such study that aims to make deep

13



learning algorithms private. It uses MPC to ensure the privacy of the samples during the training
and testing of the algorithm. In their setup, they employ 2 parties and classify their framework as
2-party computational framework. Using these 2 parties, they compute several basic functions that
serve as building blocks for more complex operations. These building blocks can work not only with
integers, but also with positive and negative decimal values thanks to the number format used. This
number format is a fixed-point arithmetic that represents values with a fixed number of bits. Certain
number of least significant bits are for representing the fractional part, the most significant bit is
for the sign, and the rest are for the integer part. In their study to demonstrate the applicability of
their proposed approach, they employed these building blocks to realize the private training and
inference on logistic regression as well as a fully connected neural network. They train a 3-layer DNN
in which the exact rectified linear unit (ReLU) value and the privacy friendly version of the softmax
activation functions are computed. After training, they also perform privacy preserving inference on
the trained model using their proposed building blocks.

Inspired by SecureML, Wagh et al. [2] develop a more efficient framework based on MPC, namely
SecureNN, which offers basic building blocks for more complex operations such as ReLU, maxpool,
normalization and so on. Since these operations in deep learning algorithms need to be performed
with decimal values, they inherit the fixed-point arithmetic from SecureML so that they are able to
represent positive and negative decimal values in their computations. One of the distinguishing
features of SecureNN from SecureML is that they use 3 computing parties, making their framework
a 3-party computational framework as opposed to a 2-party computation of SecureML. This addi-
tional party in the computation allows some of the computations to be performed more effectively.
Moreover, Wagh et al. [2] targeted not only fully connected neural networks, but also more complex
DNN architectures such as CNNs. They implemented the training and inference of several different
CNN architectures without compromising the privacy of the data.

In addition to MPC-based approaches, there are attempts in the literature using HE to perform
secure computation of deep learning algorithms. One such study is proposed by Bakshi and Last
[35], which targets RNN. In their study, they introduced an approach for secure inference on an RNN
model trained on plaintext data with somewhat HE. They tackled two major issues that arise with
HE, which are the accumulation of noise through the consecutive operations and the computation
of non-linear activation functions. Due to the nature of HE, the consecutive secure operations
accumulate errors on the encrypted data, which may end up with a completely wrong result. To
deal with this problem, they presented three different ciphertext refresh mechanisms. Besides the
problem of error accumulation, HE can only allow addition and multiplication on the encrypted
data. They are inadequate for the non-linear activation functions used in deep learning algorithms,
which are the majority of them. To address this issue, they come up with two different solutions.
One of them is to outsource the computation of the non-linear activation functions to the owner of
the data. This requires the owner to be active the whole time during the computation and brings
additional communications between the owner and the computing party. The second solution is to
approximate the non-linear activation functions with polynomial functions that can be computed
on encrypted data. Such an approximation sacrifices to some extent the performance of the model
to be able to compute the activation functions inherently. Even with these solutions that sacrifice
the performance of the model, the execution time is significantly higher than the plaintext inference.

14



Crypto. Technique Algorithm Application
Paper

RE SE MPC SVM RKN AUC HIV GE SCOP AML UCI

RE-based framework ✓ ✓ ✓

RE-based framework on gaze estimation ✓ ✓ ✓

ESCAPED ✓ ✓ ✓

Privacy preserving SVM with MPC ✓ ✓ ✓

CECILIA ✓ ✓ ✓

ppAURORA ✓ ✓ ✓ ✓

Table 2.1: Summary of the studies presented in this thesis. This table summarizes the topics of the
papers in terms of crytographic techniques used, algorithms addressed and problem applied. The
cryptographic techniques are randomized encoding (RE), special encoding for dot product (SE) and
multi-party computation (MPC). The algorithms are support vector machines (SVM), recurrent
kernel networks (RKN) and area under the curve (AUC). The applications are HIV coreceptor usage
prediction (HIV), gaze estimation (GE), structural classification of proteins (SCOP), acute myeloid
leukemia (AML) and UCI heart disease benchmark dataset (UCI).

2.5 Necessity of Efficient Privacy Preserving Machine Learning Algo-
rithms

There is still room for improvement in the privacy preserving ML. In the privacy preserving SVM
algorithm, it is necessary to find efficient and applicable solutions for training and testing. The
solution should work with all numeric types. It should also be able to perform training and testing in
a privacy preserving way without sacrificing the performance of the model in terms of execution time
and accuracy. As for privacy preserving deep learning, there are also points that can be improved.
For example, the exact computation of several activation functions is still lacking. To get the full
performance of a deep learning algorithm in privacy domain, these activation functions should
be privately computable. Furthermore, the complexity of the deep learning algorithms has been
increasing and training such networks is challenging even in the plaintext domain. This leads to the
need for more efficient, scalable, secure and private deep learning frameworks that are capable of
realizing these networks while protecting privacy. This thesis aims to bridge this gap by proposing
different mechanisms for the private computation of various ML algorithms without sacrificing
the accuracy of the computation or the privacy of the data used in the computation. Table 2.1
summarizes the studies included in this thesis in terms of the cryptographic techniques used to
provide the privacy and security, the machine learning algorithms desired to be made private and
the applications of the resulting privacy preserving machine learning algorithm.

15





3 Objectives and Expected Outcomes

The goal of this thesis is to address the issues raised at the end of Chapter 2 and contribute to the
privacy preserving ML literature by introducing a complete efficient and accurate privacy preserving
ML pipeline. To achieve this goal, privacy preserving training of an ML algorithm, one of the key
components of the pipeline, occupies an important place in this thesis. We aim to train various ML
algorithms, especially those that have not been well-studied or effectively solved, without sacrificing
the performance of the model or the efficiency of the solution. The privacy preserving training of
kernel-based ML algorithms are among the targeted ML algorithms since they are relatively difficult
to deal with in the privacy domain due to the requirement to compute the kernel function between
all pairs of samples. In addition to the training phase of the pipeline, we also address the testing
phase for several different ML algorithms. In addition to the privacy preserving kernel-based ML
algorithms, we aim to perform inference on a model without sacrificing the privacy of the data
or the model. Moreover, we also target privacy preserving inference for modern neural network
architectures such as RKNs. Just as important as the training and inference phase of the ML pipeline,
there is another substantial component of the pipeline, namely the privacy preserving evaluation of
a model, that we aim to address in this thesis. We are concerned with the collaborative evaluation of
the performance of a model without sacrificing the privacy of the data, not even the labels. We expect
to perform the evaluation without revealing the sensitive information of the samples to anyone
except the owner. In order to achieve these goals, we aim to develop special cryptographic techniques
that allow the computation of ML algorithms without breaking the privacy, and to introduce new
approaches based on existing techniques. We seek not only theoretical, but also practical and
efficient solutions to the dilemma between the need to protect the privacy of data and the desire of
ML algorithms for data in the training, testing and evaluation phases of the ML pipeline.

17





4 Results and Discussion

As we have seen in Chapter 2, there is still room for improvement in the ppML domain. Some of the
ML algorithms have not been addressed before and some are the subject of this thesis. For example,
RKNs have not yet been realized in a privacy preserving manner and are one of the subjects of this
thesis. Compared to other traditional deep learning algorithms, RKNs are relatively complex to
compute due to their non-standard orthogonalization factor. In addition to the unaddressed ML
algorithms, the solutions dealing with privacy preserving computation of some ML methods, such
as SVMs and other kernel-based ML methods, lack efficiency and practicality. Furthermore, the
collaborative evaluation of the performance of models is not well-studied. The literature of privacy
preserving ML algorithms still demands for efficient and practical solutions for these algorithms
and their evaluations. All these issues harm the idea of a complete privacy preserving ML pipeline.
To advance the field and fill this gap, this thesis aims to address the ML algorithms that have not
been concerned previously with known cryptographic techniques and to propose novel and efficient
ways of computing the ML algorithms that have not been solved effectively. This thesis also aims to
realize the collaborative evaluation of model performance without compromising the privacy. In
this section, I summarize the results of the works of my Ph.D. research towards this direction and
discuss these results in terms of their soundness as well as their contribution to the literature of
privacy preserving ML algorithms. To provide a better overview, I group the studies according to
the targeted ML algorithm and the cryptographic technique used. We begin with our first attempt
to enable the privacy preserving computation of the kernel-based ML algorithms using an RE-
based framework and the applications of this framework in the fields of precision medicine and
gaze estimation. We then continue with the privacy preserving RBF kernel computation using a
specially designed encoding for the dot product and MPC-based privacy preserving SVM training and
inference, and their applications to precision medicine problems. In the last section, we present a
general purpose MPC framework, called CECILIA, for more complex operations and the applications
of this framework in privacy preserving AUC computation and privacy preserving inference on
pre-trained RKNs.

4.1 Privacy Preserving Computation of Kernel-based Machine Learning
Algorithms with an RE-based Framework and Their Applications

One of the distinguishing features of the kernel-based ML algorithms is the pairwise similarity of
the samples to train and test these algorithms. This makes it difficult to handle them in a privacy

19



Function-party

(2)

(3)

Input-party 1 Input-party 2

(1)

(a)

Input-party 1

Function-party

(1)

(2)

(3)

Input-party 2

(b)

Figure 4.1: The overview of the computation in RE-based framework is summarized in two different
figures. (a) The computation of the dot product of vectors from two input-parties is shown. (1) At
first, the input-party 1 shares the random values with the input-party 2. (2) Then, both input-parties
compute the required components of the encoding for the element-wise multiplication of vectors in
the function-party and send these components to the function-party. (3) At the end, the function-
party obtains the element-wise multiplication and eventually the dot product of these vectors. (b) In
the oligo kernel computation, everything except the communication between the input-parties is
the same. The communication among these input-parties is not unidirectional as it is the case in the
dot product computation. It is rather bidirectional, that is the input-party 2 is also sending required
masked data to the input-party 1.

preserving way. In this section, we see our first attempt at the privacy preserving computation of the
kernel-based ML algorithms by utilizing a masking technique, called RE. We introduce a framework
and take a look at the applications of this framework to precision medicine and gaze estimation
problems. This section is based on Paper I and Paper II given in the Appendix.

4.1.1 Privacy Preserving SVM for Precision Medicine

As the first attempt towards one of the goals of this thesis, which is to realize ML algorithms in a
privacy preserving way, we conducted a study to privately train and test kernel-based ML algorithms
eventually leading to privacy preserving SVM training and inference. This subsection is based on
Paper I in the Appendix.

SVMs have proven to produce excellent results in a variety of domains and problems. They are
capable of separating samples from different classes with a hyperplane. Since such separation may
not be ideal for every space from which samples originate, SVMs are often accompanied by kernel
functions. SVMs can employ kernel functions corresponding to implicitly mapping samples from
their input space, where the samples are not well separable with a hyperplane, to a different and
generally higher dimensional space, where the samples are better separable with a hyperplane. This
makes SVMs very versatile and powerful encouraging privacy preserving training and inference on
it to emerge. One of the scenarios that requires privacy preserving training and testing SVMs is

20



when two sources decide to outsource the collaborative training and testing of SVMs to an external
computing party. In this scenario, the privacy of the samples has to be protected. No other than the
designated parties are allowed to see the samples and/or the result of the computation in plaintext.
To enable this privacy preserving computation in the above scenario, we developed a framework for
computing the kernel matrix based on several kernel functions by using RE, a masking technique, to
ensure the privacy of the samples during the computation. The computed kernel matrix can then be
used to SVM training and inference or in general the kernel-based ML algorithms by the third-party.

In this study, we aim to compute the privacy preserving SVM with an RBF kernel and an oligo
kernel. These kernels require the computation of the dot product between the samples and the
positional differences of the occurrence of k-mers in sequences from different sources on an external
computing party, respectively, without compromising the privacy of the samples. We refer to these
sources as input-party and the external computing party as function-party.

To compute the kernel matrix based on the oligo kernel, we need to have the relative differences
of the occurrences of all k-mers over an alphabet between each pair of sequences in the process.
To achieve this, we take advantage of RE addition given in Equation 2.10. This encoding allows the
input-parties to encode the occurrences of the k-mers in their sequences in such a way that the
function-party can only learn the differences between these occurrences, but nothing else.

To compute the kernel matrix based on the RBF kernel, we use the privacy-friendly version of
the RBF kernel given in Equation 2.4, which requires the dot product of the vectors. To obtain the
dot product, we benefit from RE multiplication of two values. We first perform the element-wise
multiplication of two vectors from different input-parties on the function-party without revealing the
actual values of the vectors. Then, the function-party can calculate the addition of the elements of the
element-wise multiplication of these vectors to obtain the dot product of these vectors. Afterwards,
the function-party employs the resulting dot product matrix, or Gram matrix in the input space, to
compute the RBF kernel matrix. It is important to note that the Gram matrix can be used to compute
other kernel matrices that can be computed by the dot products of the vectors.

Once the desired kernel matrix is obtained, the function-party can train the SVM algorithm and
infer on the resulting model without revealing the samples of an input-party to the other input-party
or the function-party.

In order to demonstrate the correctness and applicability of our proposed approach, we selected
the HIV coreceptor prediction problem. It is an important precision medicine problem since, in the
treatment of HIV patients, it is crucial to determine which coreceptor HIV uses to enter human cells,
so that these coreceptors of cells can be blocked by known drugs and HIV can be prevented from
duplicating in the cell [36]. In our study, we conducted experiments to solve this prediction problem
without breaking the privacy. We simulated two input-parties by splitting the data into two sets. Then,
we performed the computation of the kernel matrices with both the RBF kernel and the oligo kernel
by employing the encoded samples from these sets on the function-party. Afterwards, we trained
and tested an SVM model using the resulting kernel matrices separately. Without sacrificing the
privacy of the samples, we computed the exact kernel matrices that can be obtained with no privacy
constraints by using the same set of samples, which then leads to the exact same performance of the
SVMs. We evaluated the prediction performance of both the private and the non-private models
using the area under receiver operating characteristic curve (AUROC) and both gave the same result
for both kernel functions. Since the oligo kernel computation has not been addressed so far, we only

21



compared the RBF kernel computation with the key-switching based privacy preserving SVM [31]
approach. Since both approaches compute the same kernel matrix and therefore result in the same
AUROC, we focused on comparing the execution time of the approaches. This comparison showed
that our RE-based approach is significantly more efficient than the key-switching based approach.

4.1.2 Privacy Preserving Gaze Estimation

In addition to the HIV coreceptor usage prediction problem from the field of precision medicine, we
also applied the RE-based framework for privacy preserving kernel-based ML algorithms to the gaze
estimation problem. Besides the applicability of the framework to a different domain, this study
demonstrates that the enable other kernel-based ML algorithms in a privacy preserving way. This
subsection grounds on Paper II.

The eye movements of individuals contain useful information about them. The developments in
virtual reality (VR) have improved both the quality and quantity of eye movement data. This data can
be used for various tasks such as diagnosing diseases [37] and determining human intention [38].
Therefore, it is important to protect the privacy of this data during processing. In this study, we aimed
to demonstrate the privacy preserving prediction of gaze after the extraction of the landmark data
of the eye images. To meet the privacy requirements during the computation of the kernel matrix
indicating the similarity between samples, we used the RE-based framework for privacy preserving
kernel-based ML algorithms. Finally, we trained and tested the support vector regression (SVR)
algorithm, which is a variation of the SVM for continuous labels, to predict eye gaze based on the
resulting kernel matrix.

In this study, we generated 20.000 synthetic eye images using UnityEyes [39] and extracted 36 eye
landmark features to train and test the SVR algorithm. Then, we split the data into two input-parties
to simulate the input-parties in the RE-based framework. Once these input-parties had their data,
they encoded their samples so that the function-party could only obtain the dot product of these
samples, from which it could compute the RBF kernel matrix, but nothing else. Once the function-
party computed the kernel matrix, it proceeded to train the SVR algorithm to estimate the gaze of
the eye images based on the extracted features without compromising the privacy of the data used
in this process.

The result of this study showed that it is feasible to perform the gaze estimation task while maintain-
ing privacy. We succeeded in predicting gaze from eye images without sacrificing the performance
of the model or the privacy of the data. We evaluated the model using the mean angular error for
different number of samples and found that it is 0.21, 0.18 and 0.17 for 5.000, 10.000 and 20.000
samples, respectively. These results are exactly the same as those that could be obtained without
privacy concerns. This shows that the proposed framework is able to achieve the same performance
while preserving privacy.

This study was the first to bring together gaze estimation and privacy protection based on RE. By
enabling privacy preserving gaze estimation with our RE-based framework, we demonstrated that the
framework is able to handle different problems from various domains. It is not only limited to the field
of precision medicine, but also applicable to other domains where the kernel-based ML algorithms
can be used. Moreover, the utilization of kernel-based SVR is also an important contribution to
the privacy preserving ML literature. The proposed framework works not only with SVMs or other

22



kernel-based classification algorithms, but also with kernel-based regression algorithms such as
SVR. Besides the theoretical contribution, this work also demonstrated that private gaze estimation
can be practically solvable. The framework is capable of training the SVR algorithm privately and
performing privacy preserving inference on the resulting model quite efficiently. Such efficiency is
also substantial because it shows that our system can achieve real-time privacy preserving inference
of gaze on VR devices. We managed to perform privacy preserving inference of a single eye image in
about 1.125 milliseconds.

4.1.3 Overview

The correctness and applicability of the RE-based framework was shown using two different prob-
lems, namely HIV coreceptor usage prediction and gaze estimation. The experiments on these
problems showed that the framework enables to compute the same kernel matrix and provide the
same performance that can be computed and obtained without privacy. Moreover, the experiments
demonstrated that the framework is not limited to kernel-based classification algorithms. Instead,
it can be employed to perform kernel-based regression, such as SVR, while maintaining privacy.
Additionally, the framework enables performing the prediction of the label of a sample in a reason-
ably short period of time. The execution time of the proposed framework showed that it is efficient
enough to be used in real-life cases. Besides all these positive features of the RE-based framework, it
lacks the ability to include additional input-parties in the computation. The framework is limited
to only two input-parties. If more than two input-parties are involved in the computation, all the
samples of all input-parties will be revealed to the function-party because of the way the dot product
of these samples is computed. In the proposed framework, the dot product is computed by first
calculating the element-wise multiplication of the samples privately and then summing these mul-
tiplications. With more than two input-parties, the function-party would have v1 ⊗ v2, v1 ⊗ v3 and
v2 ⊗ v3 where ⊗ is the element-wise multiplication operation and vi is a feature vector of a sample
belonging to the i -th input-party. Based on the results of these element-wise multiplications, the
function-party could easily determine the actual values of all feature vectors. Considering these
issues, there was still room for improvement in the literature of privacy preserving kernel-based ML
algorithms. There was a need to find effective solutions that allow more than two input-parties in
the private computation of these algorithms, which is what we addressed in the following research.

4.2 More Efficient RBF Kernel Computation for Privacy Preserving SVM

In order to address the problem that the previous framework was unable to include more than
two input-parties due to privacy concerns, we introduced two studies that allow more than two
input-parties to participate in the computation without compromising data privacy. These studies
use different cryptographic techniques to ensure data privacy. Paper III and Paper IV in the Appendix
form the basis for this subsection.

4.2.1 ESCAPED: Efficient Secure and Private Dot Product Framework

The lack of ability of the previous framework, which we presented in Section 4.1, to include more
than two input-parties in the computation encourages us to find a new solution to the private dot
product computation that is flexible about the number of input-parties in the computation. Efforts

23



Function-party

(3)

(1)

(2)

Input-party 2

Input-party 1 Input-party 3

Figure 4.2: Overview of the computation in ESCAPED is depicted. (1) At first, the input-parties share
the required random values and masked data between each other in order to create the components
of the encoding. (2) After computing these components, the input-parties send these components
to the function-party. (3) Once the function-party receives these components, it combines them in a
certain way to obtain the dot product between the data of every pair of the input-parties.

toward this goal lead to a new framework, called ESCAPED. We base this subsection on Paper III in
the Appendix.

In most cases, computing the dot product between vectors from different input-parties is not
necessarily limited to a scenario with two input-parties. In practice, there could be more than two
input-parties willing to participate in the joint training and testing of a kernel-based ML algorithm.
To enable this process, dot products of the feature vectors of all input-parties are required. Since the
previous framework cannot incorporate more than two input-parties due to the privacy leakage that
would occur when there are more than two input-parties in the computation, we designed a new
and special encoding scheme for the dot product operation that allows more than two input-parties.
Based on this encoding scheme, we created a new framework, namely ESCAPED. In ESCAPED, we
privately compute the Gram matrix of the data from two or more input-parties on the function-party,
and then train and test a kernel-based ML algorithm while maintaining privacy.

We devised a new lightweight encoding scheme that allows the private computation of the dot
product of two matrices of real numbers, whose columns are individual samples from different
input-parties on the function-party. In this scheme, each pair of input-parties has a separate
communication to compute the dot product of their matrices. In each pair of input-parties, the
input-parties mask their input matrices with matrices of uniformly selected random values. The
individual components of this encoding do not reveal anything unless they are combined in a
designated way. Along with the dot product of the matrices with themselves, the input-parties send
these components to the function-party. The result of the combination of these components yields
the dot product of two matrices from different input-parties in the function-party. Once every pair
of input-parties performed this computation, the function-party obtains all dot products of matrices
allowing the construction of the global Gram matrix in a privacy preserving manner. Afterwards,
the function-party computes the desired kernel matrix, and trains and tests a kernel-based ML

24



algorithm. As a major improvement over the previous framework, ESCAPED is capable of including
more than two input-parties in the computation without compromising the privacy of the data of
these input-parties thanks to its special encoding scheme for the dot product. This efficient encoding
scheme allows the input-parties to perform the private dot product computation in pairwise manner.
This means that in the case of N input-parties involved in the computation, there must be

(N
2

)
different communication pairs as well as sets of random matrices.

We demonstrated the correctness and effectiveness of ESCAPED using the same problem to which
we applied the previous framework, namely the HIV coreceptor usage prediction problem in the
field of precision medicine. To evaluate the results of the experiments, we used AUROC and F1-
score. They show that with ESCAPED we obtained the same AUROC and F1-score that could be
obtained with the same set of parameters and the samples when there is no privacy concern. This
demonstrated that ESCAPED is capable of computing the exact kernel matrix as the non-private
computation could result in. The same kernel matrices then led to the same SVM model, whose
performance was the same for both private and non-private settings. Since the performance of both
ESCAPED and the previous framework was the same, we compared them in terms of their execution
time. For this comparison, we conducted an experiment with a scenario where we only had two
input-parties, since the RE-based framework works only with two input-parties. The result of this
experiment revealed that ESCAPED is significantly faster than the previous framework thanks to its
novel and specific encoding scheme for the dot product computation. Considering that RE can be
used to encode any logarithmic depth arithmetic circuit [24], we also compared ESCAPED with the
RE-based approach where we specifically compute the dot product of vectors from different sources
as opposed to the previous framework, where we computed the element-wise multiplication of
vectors in the function-party and the function-party sums these multiplication results to obtain the
dot product of these vectors. Due to the large number of random values in the RE-based approach
resulting in a large number of components in the encoding, ESCAPED outperformed the RE-based
approach in terms of execution time. In addition to the comparisons, we analyzed the scalability
of ESCAPED to a varying number of input-parties in the computation. We conducted experiments
with 2,3,4,5 and 6 input-parties, respectively. The results demonstrated that the execution time of
ESCAPED is empirically between linear and quadratic, but close to being linear.

In addition to the supervised learning kernel-based ML algorithms, to demonstrate the applica-
bility of ESCAPED to unsupervised learning, we also used ESCAPED to stratify cancer patients into
clinically meaningful subgroups via multi-omics dimensionality reduction and clustering without
sacrificing patient privacy. For this purpose, we replicated the study conducted by Röder et al. [40].
Using the same set of parameters they used, we computed the kernel matrices of the patients via
ESCAPED based on different multi-omics, resulting in different views of the patients. To perform
the clustering of the patients into subgroups after the computation of the kernel matrices, we used
web-rMKL [40] as done by Röder et al. [40]. We evaluated the results by survival analysis and showed
that it leads to the same p-value. This demonstrates that ESCAPED is not limited to supervised
kernel-based ML algorithms. It can also be applied to unsupervised kernel-based ML algorithms, as
well as to any computation that requires the dot product of matrices from different sources.

These results of ESCAPED show that the computation of the dot product of vectors from two or
more input-parties on an external third-party is feasible without compromising the privacy of the
vectors unlike the previous RE-based framework. Even though the RE-based approach can compute
the dot product of vectors from more than two input-parties, it is not efficient. In terms of execution

25



(2)

Input-parties

Server A

(3)

(1)

(2)

Server B

User

Figure 4.3: Overview of the computation in MPC-based SVM. (1) The input-parties outsource their
data to the servers in a secret shared form. (2) Then, the servers compute the required functions in
order to compute the desired kernel matrix. (3) At the end, the servers send the share of the desired
kernel matrix that they have to the designated user.

time, ESCAPED performs this computation quite efficiently and outperforms the RE-based approach,
which is based on the state-of-the-art lightweight encoding in the literature, thanks to the utilized
novel encoding scheme that is specific to the dot product computation. This encoding scheme is a
significant contribution to the privacy preserving machine learning literature. Moreover, this study
is the first to show that the privacy preserving multi-omics dimensionality reduction and clustering,
which has recently been shown as the state-of-the-art approach in the literature [41], is feasible. This
also demonstrates that ESCAPED can also be used to perform kernel-based clustering. Besides all
these achievements and novelties, there are also some drawbacks of ESCAPED. Although it is possible
and relatively efficient to include additional input-parties in the computation, it is still challenging
to perform the computation when many input-parties are involved in the computation. Since there
must be separate communication between each pair of input-parties to determine and exchange the
random matrices used to encode the input matrices, ESCAPED could not efficiently handle the case
where there are too many input-parties. Furthermore, the communication between the input-parties
to encode their input matrices requires that these parties are actively involved in the computation.
For instance, if a new input-party participates in the computation, that new input-party must
communicate with all other input-parties already involved in the computation so that the function-
party can compute the corresponding parts of the kernel matrix. This requirement for input-parties
hurts the practicality of ESCAPED to some extent. Moreover, such pairwise communication between
input-parties may not be possible at all for various reasons such as privacy, technical difficulties, etc.
These drawbacks of ESCAPED bring us to the next paper, which uses MPC to address these concerns
while keeping the advantages of ESCAPED to some extent.

4.2.2 Privacy Preserving SVM via MPC

To more effectively handle the addition of new input-parties into the privacy preserving training
and testing of the SVM algorithm, we propose a solution based on MPC. This subsection is based on

26



Paper IV in the Appendix.

Since too many input-parties in ESCAPED can become a challenge due to the required pairwise
communication between the input-parties to exchange the random values for the encoding, we
devised a new MPC-based solution to the privacy preserving computation of the dot product of
vectors from different input-parties. Thanks to the nature of MPC, it is much easier to include
additional input-parties in the computation. Furthermore, unlike ESCAPED, the input-parties do
not need to be active during the computation or when adding a new input-party to the computation.
This makes our MPC-based solution more applicable to real-life scenarios. In addition to the
advantages over ESCAPED, our MPC-based solution also retains to some extent the advantages of
ESCAPED. The execution time of our solution remains low and acceptable in real-life applications.

In this study, we used the 2-PC setting, in which data sources outsource their data to two computing
parties, namely servers, which perform the computation of the dot product of the outsourced vectors
from multiple input-parties. Each of these servers has a share of the vectors of the input-parties.
In order to ensure the privacy of the data of the input-parties, we used two different secret sharing
techniques, namely the arithmetic secret sharing and the boolean secret sharing. In the version
with arithmetic secret sharing, the servers can compute the dot product of secret shared vectors
of positive integers by first computing the privacy preserving element-wise multiplication of these
vectors and then adding the resulting shares of the multiplications to obtain the share of the dot
product of the vectors. In this version of the solution, each positive integer is represented by a set of
bits depending on the ring size and this requires working with more than a single bit for each value.
However, when dealing with binary data, the boolean secret sharing is more practical. In boolean
secret sharing, each value is either 0 or 1 and the representation of these values can be done by a
single bit. To address this particular case, we proposed another version of the privacy preserving
dot product computation for binary vectors based on boolean secret sharing. We first performed
the privacy preserving AND operation and then the secure addition of the resulting vector to count
the number of 1s on the same indices in both vectors to obtain the dot product of the secret shared
vectors. Once the Gram matrix of vectors is computed, it is given to the user to enable the training
and testing of the SVM algorithm on the user side while maintaining the privacy of the input data.

To demonstrate the correctness of the proposed solution, we applied it to the HIV coreceptor usage
prediction problem. Since the sequences are encoded by one-hot encoding, which results in binary
vectors, we can use both secret sharing techniques. We compared the results of these experiments
with the non-private versions of these experiments using the same set of parameters. For both
secret sharing techniques, the comparisons show that our MPC-based solution is able to compute
the exact same Gram matrix and performs the same without compromising privacy. In addition to
the correctness analysis, we also performed the scalability analysis of our proposed solution. To
do this, we conducted experiments on synthetic data using both secret sharing techniques. The
results showed that our solution scales between linear and quadratic to the number of samples,
the number of features and the number of data sources, but is close to linearity empirically. We
compared our MPC-based solution with the key-switching based privacy preserving SVM [31] and
this comparison shows that our approach is significantly more efficient with both secret sharing
techniques. When we compared the execution time of the secret sharing techniques, the boolean
secret sharing outperformed the arithmetic secret sharing, suggesting that one can proceed with the
boolean secret sharing when the data is binary.

27



The results of the experiments demonstrated that MPC, in particular 2-PC, can be used to privately
compute the Gram matrix of samples belonging to different input-parties, which then allows training
and testing of the SVM algorithm on the user side. The user receives the resulting Gram matrix
in plaintext and computes the desired kernel matrix to train and test the SVM algorithm without
sacrificing model performance or data privacy. While the MPC-based solution is still efficient in
terms of execution time, it is more effective than ESCAPED when there are many input-parties or
a new input-party is involved in the computation. Besides these advantages, this solution has a
significant drawback. It cannot work with negative values or decimal values. It is limited to integers
when the arithmetic secret sharing is used, and only to binary values when the boolean secret
sharing is used. Considering that most of the ML algorithms work with both positive and negative
real numbers, the utility of the proposed approach is limited due to its restricted capabilities in the
type of numbers it can work with.

4.2.3 Overview

In this section, we see that the efficient privacy preserving computation of the Gram matrix, more
precisely the dot product of samples from different input-parties on a third-party or two computing
parties, is feasible. The resulting Gram matrix can then be used to compute the desired kernel matrix
to train and test the SVM algorithm or another kernel-based ML algorithm on the same third-party
or an external user. Compared to the framework we present in Section 4.1, we managed to improve
the efficiency of the computation of the dot product. Furthermore, we are now capable of including
more than two input-parties in the training and testing of the kernel-based ML method. As an
improvement on the previous RE-based framework, ESCAPED and the MPC-based approach can
work with more than two input-parties without compromising the privacy of samples. In ESCAPED,
the new encoding scheme designed specifically for the dot product operation enables ESCAPED to
compute the Gram matrix of the samples of multiple input-parties on the function-party in a privacy
preserving way. This encoding scheme allows efficient computation when there are a small number
of input-parties, but it is difficult for ESCAPED to handle computation with a relatively large number
of input-parties. Moreover, the input-parties are supposed to be active during the computation.
The MPC-based solution, on the other hand, can effectively cope with the large number of input-
parties and newly added input-parties without requiring the input-parties to be active. Since the
execution time of the MPC-based solution is comparable to that of ESCAPED, this practicality of
MPC encourages us to continue working with it to address the unresolved issues, such as working
with both positive and negative real numbers and performing other arithmetic operations that are
widely used in ML algorithms.

4.3 Towards a General Purpose MPC Framework for More Complex Oper-
ations

Even though the specific encoding for the private computation of a function works slightly faster than
the MPC-based solution for the kernel-based ML algorithms, the requirement of the input-parties to
be active during the computation, the communication among the input-parties, the inefficiency
of adding a new input-party to the computation and the ineffective handling of a large number of
input-parties in the computation encouraged us to proceed with MPC as a privacy preservation
technique to address other operations used in ML algorithms. In this section, we introduce a generic

28



(2)

Input-parties

Proxy 1

(1)

(2)

Proxy 2

Helper

Figure 4.4: Overview of the computation in CECILIA. (1) The input-parties outsource their data to
the proxies in a secret shared form. (2) Then, the proxies compute the required functions with the
help of the helper party.

framework based on MPC that provides several secure basic operations to perform more complex
functions in a privacy preserving way. The details are described in Paper V and Paper VI in the
Appendix.

4.3.1 Comprehensive Secure Machine Learning Framework

Considering the flexibility to add new data sources to the computation and the effectiveness in
handling a large number of data sources, we aim to design an MPC-based generic framework with
several basic building blocks such as addition, multiplication, multiplexer, exponential, etc., so that
we can address more complex and broad ML algorithms in a privacy preserving way. This subsection
grounds on Paper V in the Appendix.

So far, we have targeted specific ML learning algorithms, such as kernel-based machine learning al-
gorithms and SVMs, using somewhat specific encoding schemes which are difficult, if not impossible,
to adapt to some of the other ML algorithms. This makes the previous works limited to a specific set
of ML algorithms. However, there are several effective and powerful ML algorithms that the privacy
preserving ML literature lack. To bridge this gap, we designed an MPC-based generic framework,
called CECILIA, that provides several secure building blocks which are privately performing several
operations used in ML algorithms. We then utilized these secure building block to realize these ML
algorithms without sacrificing the privacy of data or the privacy of the model. Using CECILIA, it is
now possible to compute some of the ML algorithms in a privacy preserving way, some of which
have not been addressed previously. We used CECILIA to perform privacy preserving inference on a
specific RNN, called RKN [17].

We based CECILIA on 3-party computation. Two of these computing parties are called proxy,
which are the parties to which the data sources outsource their data in a secret shared form, and
the third party is called helper, which, as the name implies, helps the proxies perform the desired

29



N

N - F - 1 F1
Figure 4.5: Number format used in ESCAPED. Let N be the number of bits used to represent a value.
The most significant bit indicates the sign of the value. The least F bits are allocated to the fractional
part of the value. The rest N −F −1 bits are used to represent the integer part of the value. As an
illustrating example, let N be 6 and F be 2. In this setting, 6.25 is represented as 011001 and −1.75 is
represented as 111001 in this number format.

operation in a privacy preserving manner.

Since many ML algorithms work not only with integers, but also with positive and negative decimal
values, we adapt the number format used by [34] in CECILIA. This number format, which is depicted
in Figure 4.5, uses a fixed number of bits to allow representation of both negative and positive real
values up to a certain precision in a binary format. Similar to two’s complement, the most significant
bit is allocated for the sign of the value we want to represent. If it is 1, it means that the value is
negative. If it is 0, the value is positive. Depending on the parameter F of CECILIA, F -many least
significant bits are assigned to represent the decimal part of the value. The rest of the bits are for
representing the integer part of the value. This number format allows CECILIA to work with positive
and negative real numbers up to a certain precision, enabling CECILIA to fulfill the condition of
many ML algorithms about the number type.

In addition to the number type condition, the framework should provide sufficient coverage of
basic operations so that it can be used to implement ML algorithms in a privacy preserving way.
CECILIA offers the privacy preserving versions of several basic operations, some of which are also
included in other frameworks. These common operations are the addition of two secret shared
values and the multiplication of two secret shared values. We also provide efficient versions of some
previously addressed operations, such as the oblivious selection among two secret shared values and
the identification of the most significant bit of a secret shared value. In addition to these common
basic building blocks, CECILIA also introduces some novel privacy preserving operations. One of
these novel operations is the exponential of a secret shared value. CECILIA is able to compute the
exponential of a base, which is known by both proxies in plaintext, raised to the power of a secret
shared value. We are inspired by the square-and-multiply algorithm for computing the exponential
of a base raised to a positive integer power. We extend the idea of the square-and-multiply algorithm
so as to cover not only the positive integer values represented in binary form, but also the positive
and negative real values represented in the number format of CECILIA. The second novel operation
we introduce in CECILIA is the privacy preserving computation of the inverse square root of a secret
shared Gram matrix (INVSQRT). One of the methods for computing the inverse square root of a
Gram matrix is to first perform the eigenvalue decomposition of the matrix and then compute
the reciprocal of the square root of the eigenvalues, and construct the desired matrix using these
eigenvalues and the original eigenvectors. We follow the same approach, but in a privacy preserving
manner. To accomplish this, we adapt the approach of outsourcing the eigenvalue decomposition
[42] to our 3-PC scenario so that we have the masked eigenvalues and the eigenvectors in the
helper party. After the helper party has the masked eigenvalues and eigenvectors, it performs the
sharing of the masked eigenvectors without any constraint. The proxies can unmask the share of

30



the masked eigenvectors and obtain the share of the original eigenvectors. However, with respect
to the eigenvalues, the helper party takes a special approach to sharing. It purposefully divides the
share of the eigenvalues between the proxies so that they can perform the square root and reciprocal
operations on the shares of the eigenvalues. Once they obtain the share of the eigenvectors and the
reciprocal of the square root of the eigenvalues, they reconstruct the inverse square root of the Gram
matrix using the secure multiplication and addition operations of CECILIA and obtain the share of
the desired matrix.

We employed these building blocks to realize the privacy preserving inference on a pre-trained
RKN model. This was the first time that RKN inference was performed in a privacy preserving
manner. We refer to this application of CECILIA as ppRKN. We split the model parameters between
the proxies in arithmetic secret sharing form and give them the share of a test sample on which the
proxies can perform the required operations in a privacy preserving way to obtain the prediction of
this sample. During this process, neither of the computing parties learns anything about the input
data, nor does the data owner obtain any information regarding the model parameters.

We analyzed ppRKN in terms of its correctness and scalability to various factors affecting execution
time. To demonstrate the correctness of CECILIA, we used the same problem as Chen et al. [17],
which is the Structural Classification of Proteins (please refer to Paper V for more details). It consists
of several fold recognition tasks. We trained the RKN algorithm on a randomly selected task and
performed inference on the model in plaintext using randomly chosen samples from the test set. To
compare the result of the plaintext inference with the privacy preserving inference, we first shared the
model parameters between the proxies. Afterwards, the proxies performed the required operations
for inference using the building blocks of CECILIA and reconstructed the resulting prediction score
for comparison. The comparison showed that we managed to compute almost exactly the same
prediction score except for some precision error, which is less than 2×10−5. The error stems from
the fact that we only have a limited number of bits to represent values in our system, which causes
some precision loss that can accumulate. Note that we performed the empirical correctness analysis
on LAN since WAN has no effect on the correctness of the results.

As opposed to the correctness analysis, the network type has a significant impact on the execution
time of ppRKN. Therefore, we analyzed the impact of the number of anchor points, the length of
k-mers and the length of the input sequence on the execution time of ppRKN on both LAN and WAN.
In both settings, the analyses demonstrated that ppRKN scales linearly with the length of k-mers and
the length of the input sequence. It also scaled almost linearly with the number of anchor points.
When we compared the results between the network types, WAN took more time to compute , as
expected, due to the relatively high round trip times between the computing parties.

The correctness analysis demonstrated that CECILIA is capable of realizing the privacy preserving
inference on a pre-trained RKN model without revealing the sensitive information of the input se-
quence to the computing parties and the model parameters to any party involved in the computation.
Considering that the complexity of the operations used in RKNs is higher than the operations in
most of the deep learning algorithms, CECILIA has a high potential to enable not only the RKN
inference, but also other deep learning algorithms in a privacy preserving manner. Furthermore, the
applicability of CECILIA in real-life scenarios seems feasible, as demonstrated by the analysis of the
scalability of CECILIA to various parameters of the RKN method.

One of the most important outcomes of this study was that a generic framework to realize the

31



ML algorithms in the privacy domain is feasible. Instead of having a unique and separate privacy
scheme for each ML algorithm, it is practical to have a generic framework that provides the ability
to realize any ML algorithm or at least most of the ML algorithms privately. The success of ppRKN
proves that CECILIA is an important step towards the goal of having such a framework. CECILIA
offers some novel privacy preserving operations that have not been addressed in the literature before.
Thus, CECILIA covers the set of ML algorithms better than other privacy preserving ML frameworks
in the literature such as SecureML [34] SecureNN[2].

Up to this point in the thesis, we managed to privately train several ML algorithms and perform in-
ference on a model without violating data privacy. However, another important part of the complete
privacy preserving ML pipeline is missing, which is the collaborative evaluation of the model in a
privacy preserving manner.

4.3.2 ppAURORA

To obtain a complete privacy preserving ML pipeline, we use the building blocks of CECILIA to
address one of the least studied parts of this pipeline, namely the privacy preserving evaluation of a
ML model. We base this subsection on Paper VI in the Appendix.

In the previous works, we have addressed the privacy preserving training of several ML algorithms
and the privacy preserving inference on several pre-trained algorithms. However, the privacy pre-
serving collaborative evaluation of a ML model of the complete privacy preserving ML pipeline is
lacking. If multiple data sources want to perform a collaborative testing of an ML model and the
privacy of the labels of the test samples of these sources matters, the data sources cannot outsource
the collaborative evaluation of the model by simply sharing the labels and the predictions of the test
samples with a third-party in plaintext. The collaborative evaluation has to be performed privately
to ensure the protection of sensitive information, which is, in this case, the labels of the samples
and the prediction scores. In order to address this need, we use CECILIA to propose the privacy
preserving computation of one of the widely used evaluation metrics in ML studies, namely the
AUC. It summarizes the information of a curve-based evaluation of an ML model as a single value.
There are several plot-based evaluation metrics in the literature. In this study, we address the private
collaborative computation of the area under the ROC curve with and without tie conditions in the
predictions (AUROC) and the PR curve (AUPR).

The computation of AUC requires the predictions of all samples that are sorted based on their
prediction confidence values (PCVs). Assuming that the PCVs of the samples from each individual
data source are sorted, the first task of the computing parties is to obtain a globally sorted PCVs of
all test samples from all data sources in a privacy preserving way. This process can be thought of as
the merging step of the merge sort algorithm, where individually sorted lists are merged to obtain
the globally sorted list. To achieve this in a privacy preserving way, we merged the lists in pairs. We
compared the top PCVs of two lists and selected the larger one while protecting the privacy of the
samples. In this sorting, the computing parties cannot associate the elements between the globally
sorted list and the individually sorted lists. Even though this privacy preserving merging of the
individually sorted lists provides full privacy, it requires relatively many rounds of communication
between the computing parties. In order to have a more practical privacy merging option, we make
this process parametric so that it becomes significantly faster by only exposing the mapping of
δ-many samples from the individually sorted list to the globally sorted list, where δ is the parameter

32



that adjusts the trade-off between practicality and privacy. Once the globally sorted list is available,
the computing parties proceed with the AUC computation of the desired evaluation metric.

In privacy preserving AUROC computation, the computing parties proceed to calculate the number
of true positive (TP) and false positive (FP) samples for each split of the sorted list. In the without-tie
version of AUROC, the computing parties treat the PCV of each sample as a different threshold and
privately calculate the nominators and the denominators of the TPR and FPR, separately, which are
required to compute the AUC of the ROC curve. Afterwards, the computing parties iterate over these
values of each sample to compute the nominator and denominator of AUROC. The final step is to
divide these values in a privacy preserving manner to obtain the AUROC without tie. When using
the with-tie version of AUROC, the computing parties first privately determine the samples after
which PCV changes and treat them as threshold PCVs. Then, the computing parties follow the same
procedure as the AUROC without-tie version, but in the AUROC with-tie version, only the TP and FP
values of these threshold PCVs have an impact on the result and the rest are neutralized during the
process without knowing which PCVs are thresholds or have been neutralized.

The area under the PR curve is also a often-used performance metric for ML methods, especially
when labels are unbalanced. Since the PR curve can be computed similarly to the ROC curve with tie
condition, we employ the computational approach of AUROC with-tie for the privacy preserving
computation of the area under the PR curve (AUPR). The only difference is that the denominators of
the precision for each sample are different and this forces the use of the privacy preserving division
operation to compute the precision of each sample in the list, as opposed to a single private division
operation at the end in AUROC.

We demonstrated the correctness of the AUC computation on two real datasets up to a certain
precision, which results from the adjustable parametric precision of the privacy preserving division
operation. The first dataset is the Acute Myeloid Leukemia dataset of the first subchallenge of a
DREAM Challenge [43] and the second is the UCI Heart Disease benchmark dataset *. In both
datasets, we obtained the exact AUC for both ROC and PR curves up to a certain precision as one
could obtain without privacy. This shows that we can compute the same exact AUC in a privacy
preserving way. In addition to the correctness analysis, we also analyzed how ppAURORA scales to
different parameters in the computation. More specifically, we conducted experiments to understand
the impact of the number of data sources, the number of samples in the data sources and the δ
parameter on the execution time of ppAURORA. The analyses demonstrated that ppAURORA scales
between linear and quadratic to the number of data sources with a fixed number of samples in each
data source and the number of samples in a fixed number of data sources. ppAURORA manages to
perform both privacy preserving AUROC and AUPR computations of 1,000 samples from each 16
data source in about 2,500 seconds. With respect to the δ parameter, which adjusts the trade-off
between the privacy and practicality of ppAURORA, we find that the execution time displays a
logarithmic decrease when δ increases. As an example of the choice of δ that balances the trade-off
between privacy and practicality, ppAURORA takes only 150 seconds to compute the AUC of 1000
samples from each 8 data source when we set δ to 11.

The results of the experiments demonstrated that we are able to privately and efficiently compute
the exact same AUC of ROC and PR curves up to a certain precision as one could obtain without
privacy constraint. This ability addresses the private and collaborative evaluation part of the com-

*https://archive.ics.uci.edu/ml/datasets/heart+disease

33

https://archive.ics.uci.edu/ml/datasets/heart+disease


plete privacy preserving ML pipeline. It is now possible to collaboratively evaluate how well a model
performs without compromising the privacy of the data used in any of these phases.

4.3.3 Overview

This section shows that an MPC-based generic framework to realize the ML algorithms in a pri-
vacy preserving way is feasible without inserting noise into the computation or approximating the
operations. With CECILIA, we are able to perform several basic operations with a small precision
error due to the number format that we use to represent numbers in our system. In addition to the
basic operations such as addition and multiplication, to the best of our knowledge, we addressed
the exact exponential computation and the exact computation of the inverse square root of Gram
matrix for the first time in the literature. In addition to these operations, in CECILIA we improve
the computational efficiency of the already solved operations, such as the multiplexer and the most
significant bit. We used these building blocks of CECILIA to realize privacy preserving inference on
a specific type of RNNs, namely RKNs. Compared to other DNNs, RKNs are difficult to train and
test. They have a non-standard operation, which is the inverse square root of a Gram matrix, on top
of the standard operations such as addition, multiplication, exponential, etc. The implementation
of the private inference RKN indicates that CECILIA can be used to address other DNN types in a
privacy preserving way. Furthermore, CECILIA provides more operations with higher computational
accuracy compared to the other privacy preserving ML frameworks that use approximation for the
activation functions. In addition to the privacy preserving inference, we employed the building
blocks of CECILIA to address the collaborative evaluation of a model in a privacy preserving way.
We developed an application of CECILIA, called ppAURORA, to calculate the AUC of two different
widely used curve-based evaluation metrics, which are ROC curve and PR curve. With only a small
precision error, we privately obtained the exact same AUC of both metrics. The computation of AUC
shows that we are capable of performing not only the training and inference of the model, but also
the collaborative evaluation of the model without sacrificing the privacy of the data. In summary,
CECILIA and its application contribute to the privacy preserving ML literature and represent a major
step towards a complete privacy preserving ML pipeline.

34



5 Conclusion

This thesis promotes the idea of a complete privacy preserving ML pipeline. It addresses the training,
testing and evaluation of an ML algorithm without sacrificing the privacy of the data or model
parameters.

To achieve this, the thesis introduces several studies that address different phases of the pipeline.
The first study, presented in Section 4.1.1, uses a lightweight encoding scheme, namely RE, to ensure
the privacy of data from two different input-parties that want to train and test a kernel-based ML
method, such as an SVM and SVR, on a function-party without exposing their data to another party
in the computation. In that study, the input-parties allowed the function-party to obtain the Gram
matrix of their data in order to train and test a kernel-based ML algorithm without knowing anything
about the data of the input-parties. This framework was applied to several problems from different
domains such as precision medicine (refer to Section 4.1.1) and gaze estimation (refer to 4.1.2) in
order to demonstrate the ability to solve them in a privacy preserving manner.

Even though the proposed RE-based framework provides privacy protection for a specific scenario,
it lacks the flexibility to extend to more than two input-parties. The studies introduced in Section
4.2.1 and Section 4.2.2 addressed this issue in order to improve the ability to compute kernel-based
ML algorithms such as SVMs in a privacy preserving way so that more than two input-parties can
participate in the computation. The first of these studies presented a special lightweight encoding for
private computation of the dot product of multiple sources on the third-party to obtain a Gram matrix
and eventually train and test a kernel-based ML algorithm privately. This new encoding scheme
cannot efficiently handle adding new input-parties and too many input-parties altogether, which
was addressed in the second study. It employs MPC to ensure privacy and sacrifices execution time
slightly for the sake of effectively handling a large number of input-parties and new input-parties
participating in the computation.

Despite the effective solution for collaborative computation of Gram matrices in a privacy preserv-
ing way, it is not feasible to address every single ML algorithm to accomplish the goal of a complete
privacy preserving ML pipeline. Instead, a generic privacy preserving ML framework can be more
effective, which is what Section 4.3.1 introduces. Considering the effectiveness of MPC in dealing
with input-parties, that section proposes an MPC-based comprehensive secure machine learning
framework, CECILIA, which provides several privacy preserving basic operations to realize many
ML algorithms in a privacy preserving manner. CECILIA was used to address the privacy preserving
inference of a complex deep learning method, more specifically RKNs. It is the first study in the

35



literature to perform the privacy preserving inference of RKNs.

In addition to the efforts in privacy preserving training and testing of ML algorithms, the study in
Section 4.3.2 used the building blocks of CECILIA to address the privacy preserving collaborative
evaluation of an ML model. It occupies an important place in the complete privacy preserving ML
pipeline and the application of CECILIA to the evaluation phase, ppAURORA, contributes to the
privacy preserving ML literature.

The studies introduced in this thesis make important contributions to the idea of a complete
privacy preserving ML pipeline in many different ways. They show how an existing cryptographic
technique can be used to implement a previously unaddressed ML algorithm in a privacy preserv-
ing manner. They also present a new cryptographic technique, specifically designed for private
computation of the dot product to address kernel-based ML algorithms. Moreover, they also prove
that an existing cryptographic technique can be employed to design the exact privacy preserving
computation of functions, which either had not been addressed before or were only calculated by
approximation. As an important contribution towards the complete privacy preserving ML pipeline,
this thesis addresses the privacy preserving collaborative evaluation of an ML model via AUC as well.

This thesis contains scientifically important and successful studies that address various aspects of
a complete privacy preserving ML pipeline using several different novel and existing cryptographic
techniques. However, there is still room for improvement. One of the most important missing phases
of a complete privacy preserving ML pipeline is privacy preserving data preprocessing. It occupies
an important place in ML studies. Furthermore, the existing function coverage of CECILIA is not
sufficient to address every ML algorithm in the literature while protecting privacy. CECILIA needs to
be extended to allow the privacy preserving training and testing of other ML algorithms that we have
not addressed in this thesis. Although the efficiency of CECILIA is promising, the privacy preserving
ML literature could require even more efficient solutions given the increasing complexity of ML
methods like deep learning methods and the increase in dataset sizes.

36



6 Appendix

In this chapter, all the publications used in this thesis are given with minor template modifications.
They have the permission to be included in this dissertation. The definitive versions of the publi-
cations can be found in the respective venues. The corresponding citations of the publications are
listed in Chapter 1 in the same order in which the publications appear here.

37



I A framework with randomized encoding for a fast privacy
preserving calculation of non-linear kernels for machine

learning applications in precision medicine

Ali Burak Ünal Mete Akgün Nico Pfeifer

Abstract

For many diseases it is necessary to gather large cohorts of patients with the disease in order to have
enough power to discover the important factors. In this setting, it is very important to preserve the
privacy of each patient and ideally remove the necessity to gather all data in one place. Examples in-
clude genomic research of cancer, infectious diseases or Alzheimer’s. This problem leads us to develop
privacy preserving machine learning algorithms. So far in the literature there are studies addressing
the calculation of a specific function privately with lack of generality or utilizing computationally
expensive encryption to preserve the privacy, which slows down the computation significantly. In
this study, we propose a framework utilizing randomized encoding in which four basic arithmetic
operations (addition, subtraction, multiplication and division) can be performed, in order to allow the
calculation of machine learning algorithms involving one type of these operations privately. Among
the suitable machine learning algorithms, we apply the oligo kernel and the radial basis function kernel
to the coreceptor usage prediction problem of HIV by employing the framework to calculate the kernel
functions. The results show that we do not sacrifice the performance of the algorithms for privacy in
terms of F1-score and AUROC. Furthermore, the execution time of the framework in the experiments
of the oligo kernel is comparable with the non-private version of the computation. Our framework in
the experiments of radial basis function kernel is also way faster than the existing approaches utilizing
integer vector homomorphic encryption and consequently homomorphic encryption based solutions,
which indicates that our approach has a potential for application to many other diseases and data
types.

I.1 Introduction

By the recent development of next generation sequencing (NGS) technologies, DNA sequencing
and RNA sequencing can be performed effectively and efficiently [44]. However; the generated
sequence data contains private information about the host and one could infer many phenotypes of
an individual, such as hair color, skin color and more importantly genetic diseases, from the relevant
sequence data of that individual [45, 46, 47]. Such private information can be used against the owner
of the sequence data potentially leading to increased health insurance premiums due to the genetic
disease of that person. On the other hand, machine learning algorithms still require these sequence
data to capture the underlying patterns of the diseases. In many of the real-world problems, machine
learning algorithms need to have more data than one source can provide [48, 49, 50].

In this paper, we consider a scenario where we have two parties with sequence data, each of
which we call input-party and one party, which we call function-party that wants to run machine
learning algorithms on the data of these input-parties. To avoid the aforementioned privacy issues
in our scenario due to the leakage of sequence data utilized in machine learning algorithms, we
propose a framework utilizing randomized encoding [23, 24] to enable machine learning algorithms
involving a single type of basic arithmetic operation to use the data from two sources without

38



sacrificing the privacy of participants. We provide the function-party with the private calculation of
four basic arithmetic operations, that is addition/subtraction and division/multiplication. In order
to demonstrate the performance of our framework, we chose support vector machine (SVM) with
the oligo kernel and the radial basis function kernel on the prediction of coreceptor usage of HIV
based on V3 loop sequences [51]. We computed the kernel matrices by employing our proposed
framework and trained a prediction model on top of these kernel matrices.

In the rest of the paper, we will explain the similar studies in the literature in Section I.2. We will
give the background information about the oligo kernel, the radial basis kernel and randomized
encoding in Section I.3. Then, we will propose our framework in Section I.4. Afterwards, we will
discuss the security of the proposed framework in Section I.5. Next, we explain the dataset that
we utilized in the experiments in Section I.6. We will then show and evaluate the results of these
experiments in Section I.7. Finally, we will conclude the paper in Section I.8.

I.2 Related Work

In this context, we refer to a source with data, such as a clinic having sequence data, or an entity
computing a function, such as a university conducting a study on the data of clinics, as party. In the
literature, some approaches using an SVM are based on the distributed model, which assumes that
each party of the computation has its own data and the function needs to be calculated by using
the data of all parties. Vaidya et al. [29] proposed a privacy-preserving SVM classification algorithm.
In the proposed approach, each party has its own data and they compute the gram matrix to train
an SVM model by using a modified secure dot product calculation method. However; it focuses
more on binary feature vectors and does not support advanced string kernels. Furthermore, there
are also a number of studies which employ an outsourced model in which the data of the parties
are stored on a cloud server as encrypted by the secret key of the owners of the data. Liu et al. [52]
introduced an SVM algorithm which can be used to mine the encrypted outsourced data. Since the
data is encrypted before outsourcing, this slows down the process of model training. Zhang et al.
[31] also proposed a secure dot product calculation method to train an SVM model. The underlying
idea is to transform the secret key of the dot product of two vectors encrypted by different keys into a
known key by the server. In order to accomplish the transformation, the server collaborates with the
owners of the keys of these vectors. The proposed approach fits into our scenario where we have
two input-parties and one function-party. However; the approach utilizes integer vector encryption
to preserve the privacy of the data. Therefore, it cannot handle the data having a large number of
features within a reasonable time frame.

I.3 Preliminaries

In this section, we will explain the kernel functions that we utilized and the randomized encoding
which is our base security scheme.

I.3.1 Oligo Kernel

Although the oligo kernel belongs to the family of string kernels, it is widely used to discover the
patterns of biological sequences [15, 53, 54]. In the context of sequence analysis, the oligo kernel

39



is designed to work with oligomers occuring in sequences such as DNA and protein. They can be
varying lengths but general tendency is to keep the length of the oligomers short. The DNA oligomers
with length 2, for instance, consist of all possible 2-length-monomer combinations of the DNA
alphabet A , where A = {A,T,C ,G}. To be more specific, the DNA oligomers with length 2 form a set
A 2 where A 2 = {A A, AT, AC , AG ,T A,T T,TC ,
TG ,C A,C T,CC ,CG ,G A,GT,GC ,GG}. In general, all possible combinations of K-length-monomers
in an alphabet A of a sequence type are called K-mers and they form a set A K . These K-mers are
utilized by the oligo kernel to determine the similarity between sequences. For each K-mer ω ∈A K

occurring in a sequence S, the corresponding oligo function µ is calculated as:

µω(x) = ∑
p∈Sω

exp(− 1

2σ2 (x −p)2) (I.1)

where Sω is the set of occurrences of K-mer ω in sequence S, σ is the positional tolerance parameter
for inexact matches. Based on the oligo function of each K-mer, the mapping function Φ in the oligo
kernel is defined as follows:

ΦK (s) = [µω1 ,µω2 , · · · ,µωn ]

where s is the sequence and n is the size of the set A K . Even though this representation is suitable
for visualization and interpretation, we need to have the kernel function. As stated in [15], the kernel
function is calculated as follows:

k(si , s j ) =p
πσ

∑
ω∈A K

∑
p∈Si

ω

∑
q∈S j

ω

exp(− 1

4σ2 (p −q)2) (I.2)

where si and s j are the sequences, σ is the positional tolerance parameter, A K is the set of all

possible K-mers of monomers in alphabet A , Si
ω and S j

ω are the set of occurrences of ω in sequence
si and sequence s j , respectively.

Unlike other similar approaches, the oligo kernel can be adjusted in a way that positional inexact
matches of K-mers would also contribute to the similarity of sequences. The degree of this positional
independence can be manipulated by the parameter σ. If σ is set close to 0, then only the exact
matches of K-mers would contribute to the similarity. On the other hand, if σ is set to ∞, then there
would be no importance of positions of K-mers.

Based on Equation I.2, the calculation of the oligo kernel requires the differences of the positions
of K-mers in both sequences. In our framework, we address the required operation and enable the
computation of the differences privately.

I.3.2 Radial Basis Function Kernel

The radial basis function (RBF) is one of the most popular kernel functions in kernel learning
algorithms [55]. It is commonly used in many different areas [56, 57, 58]. For samples x, y ∈Rn , the
RBF kernel can be formulated solely based on the dot product of samples as follows:

K (x, y) = exp

(
−

∥∥x · x −2x · y + y · y
∥∥2

2σ2

)
(I.3)

where “·” represents the dot product of vectors and σ is the parameter that adjusts the similarity
level. As shown in Equation I.3, the calculation of the RBF kernel between the samples x and y can

40



be done by the dot product, which consists of the element-wise multiplication and summing up
the results of these multiplications. In our framework, we allow the private computation of the RBF
kernel by enabling the element-wise multiplication of the vectors.

Alice Bob

𝑋 ∈ ℝ, 𝑟 ∈ ℝ 𝑌 ∈ ℝ

Server

𝑟

(a)

Alice Bob

𝑋, 𝑟 𝑌, 𝑟

Server
𝑌 − 𝑟𝑋 + 𝑟

(b)

Alice Bob

Server

𝑋 + 𝑟) + (𝑌 − 𝑟

𝑋 + 𝑌
yields

𝑋, 𝑟 𝑌, 𝑟

(c)

Figure I.1: In this setting, Alice and Bob are the input-parties and the server is the function-party.
(a) Alice creates a uniformly chosen random value r . She shares it with Bob. (b) Once Bob receives
the random value from Alice, he computes Y − r and shares it with the server. Meanwhile, Alice
computes X + r and sends it to the server. (c) When the server receives the components of encoding,
it calculates (X + r )+ (Y − r ) to decode the result of the addition of the input values of Alice and
Bob. At the end, the server obtains X +Y without learning neither X nor Y . Similarly, none of the
input-parties learns about the input value of the other input-party.

I.3.3 Randomized Encoding

In the cryptography literature, randomized encoding is proposed to compute a function f (x) by a
randomized function f̂ (x;r ), where r is a uniformly chosen random value, without revealing the
input value x [59, 60]. The formal definition of the randomized encoding is as follows:

Definition 1 (Randomized Encoding [24]). Let us define a function f : X → Y . There exists a function
f̂ : X ×R → Z which is a δ-correct, (t ,ϵ)-private randomized encoding of f if randomized algorithms,
decoder Dec and simulator Sim, can be defined and the followings hold for these algorithms:

• (δ-correctness) ∀x ∈ X :
Pr

r←R
[Dec( f̂ (x;r )) ̸= f (x)] ≤ δ.

41



• ((t ,ϵ)-privacy) ∀x ∈ X and any circuit A of size t :∣∣∣Pr[A (Sim( f (x))) = 1]− Pr
r←R

[A ( f̂ (x;r )) = 1]
∣∣∣≤ ϵ.

where Dec decodes the given encoding and Sim simulates the encoding such that simulation and
real encoding are indistinguishable.

Besides the formal definition of the randomized encoding, they also proposed two perfect decom-
posable and affine randomized encodings (DARE) for addition and multiplication of two values. In
order for a randomized encoding to be affine and decomposable, each component of randomized
encoding should be an affine function over the set that the function is defined and they should
depend on only a single input value and a varying number of random values.

Definition 2 (Perfect RE for Addition [24]). Let us define a function f (x1, x2) = x1 + x2 over some
finite ring R. This addition function can be perfectly encoded by the following DARE:

f̂ (x1, x2;r ) = (x1 + r, x2 − r )

where r is a uniformly chosen random value. The encoding can be decoded by summing up the
components of the encoding, and one can simulate the function by sampling two random values
whose sum is y .

Definition 3 (Perfect RE for Multiplication [24]). Let us define a function f (x1, x2) = x1 · x2 over a
ring R. This multiplication function can be perfectly encoded by the following DARE:

f̂ (x1, x2;r1,r2,r3) = (x1 + r1, x2 + r2,r2x1 + r3,r1x2 + r1r2 − r3)

where r1,r2 and r3 are uniformly chosen random values. Given the encoding (c1,c2,c3, c4), we can
recover f (x1, x2) by computing c1 ·c2−c3−c4. The simulator Sim(y ;c1,c2,c3) := (c1,c2,c3,c1c2−y−c3)
perfectly simulates f̂ .

Randomized encoding preserves the privacy of the data by randomizing the input values and
creating components by these values. At the end, it only allows the computation of the desired
output and nothing else about the input values is revealed. Compared to the other methods in the
literature such as homomorphic encryption and secure multi-party computation that result in a
high overhead due to the use of computationally expensive cryptographic tools, the randomized
encoding is faster and more efficient.

In the scenario where we have two input-parties and one function-party, the randomized en-
coding is also applicable. The randomized encoding of addition can be adapted to calculate the
summation of two input values belonging to two different input-parties. The process is depicted in
Figure I.1. The computation of the differences of two values can be done with the same encoding
after multiplying the corresponding input value by −1. Similarly, one can employ the randomized
encoding of multiplication in a function party in order to compute the multiplication of two input
values owned by two distinct input-parties. The steps are demonstrated in Figure I.2. One can use
the randomized encoding of multiplication to compute the division by simply using the reciprocal of
the corresponding input value. It is worth to note that we assume that the value at the divisor should
be non-zero.

42



Alice Bob

𝑋 ∈ ℝ
𝑟1 ∈ ℝ
𝑟2 ∈ ℝ
𝑟3 ∈ ℝ

𝑌 ∈ ℝ

Server

𝑟1, 𝑟2, 𝑟3

(a)

Alice Bob

Server
𝑐1 = 𝑋 + 𝑟1 𝑐2 = 𝑌 + 𝑟2

𝑋, 𝑟1, 𝑟2, 𝑟3 𝑌, 𝑟1, 𝑟2, 𝑟3

𝑐3 = 𝑟2𝑋 − 𝑟3

and

𝑐4 = 𝑟1𝑌 + 𝑟1𝑟2 + 𝑟3

and

(b)

Alice Bob

Server

𝑐1𝑐2 − 𝑐3 − 𝑐4

yields

𝑋𝑌

𝑋, 𝑟1, 𝑟2, 𝑟3 𝑌, 𝑟1, 𝑟2, 𝑟3

(c)

Figure I.2: In this setting, Alice and Bob are the input-parties and the server is the function-party.
(a) Alice creates three uniformly chosen random values and shares them with Bob. (b) Once Bob
receives the random values, he computes c2 = Y + r2 and c4 = r1Y + r1r2 + r3. In the meantime,
Alice computes c1 = X + r1 and c3 = r2X − r3. They send c1,c2,c3 and c4 to the server. (c) When the
server receives the components of the encoding, it calculates c1c2 − c3 − c4 to decode the result of
the multiplication of the input values of Alice and Bob. At the end, the server obtains X Y without
learning neither X nor Y . Similarly, none of the input-parties learns about the input value of the
other input-party.

I.4 Our Framework

In this paper, we propose a framework utilizing randomized encoding to support the computation of
four basic arithmetic operations over the vectors of two input-parties in a function-party privately. In
this application, we focus on the computation of differences and multiplications of these vectors. Our
framework allows the server to learn only the intended outcome, either the element-wise differences
or multiplications of the vectors, and nothing else about these vectors. Similarly, an input-party
learns neither the input vector of the other input-party nor the result of the computation. Among the
features of the framework, we use the element-wise differences of the vectors to compute the oligo
kernel on the data owned by the input-parties. Additionally, we employ element-wise multiplication
feature in order to compute the RBF kernel on the same setting. However; the framework is not
limited to these methods. One can use the framework to compute a function which requires one of
the features of the framework.

43



Alice

𝐗 =

𝐾0: [p1, … , p𝑙0𝑋]

𝐾1: [p1, … , p𝑙1𝑋]

⋮
𝐾𝑛: [p1, … , p𝑙𝑛𝑋]

Server

[𝑙0
𝑌, 𝑙1

𝑌 … , 𝑙𝑛
𝑌]

Bob

𝐘 =

𝐾0: [p1, … , p𝑙0𝑌]

𝐾1: [p1, … , p𝑙1𝑌]

⋮
𝐾𝑛: [p1, … , p𝑙𝑛𝑌]

(a)

Server

𝐃 = [𝑟0, 𝑟1, … 𝑟𝑛′]

[𝑙0
𝑋, 𝑙1

𝑋, … , 𝑙𝑛
𝑋]

Bob

𝐘 =

𝐾0: [p1, … , p𝑙0𝑌]

𝐾1: [p1, … , p𝑙1𝑌]

⋮
𝐾𝑛: [p1, … , p𝑙𝑛𝑌]

Alice

𝐗′ =

𝑻 𝐗[𝐾0], 𝑙0
𝑌 T

𝑻(𝐗[𝐾1], 𝑙1
𝑌)T

⋮
𝑻(𝐗[𝐾𝑛], 𝑙𝑛

𝑌)T

𝐗,𝐃

(b)

Server
−𝐘′ − 𝐃𝐗′ + 𝐃

Bob

𝐘′ =

𝑹(𝐘 𝐾0 , 𝑙0
𝑋)T

𝑹(𝐘 𝐾1 , 𝑙1
𝑋)T

⋮
𝑹(𝐘 𝐾𝑛 , 𝑙𝑛

𝑋)T

𝐘,𝐃

Alice

𝐗′ =

𝑻 𝐗[𝐾0], 𝑙0
𝑌 T

𝑻(𝐗[𝐾1], 𝑙1
𝑌)T

⋮
𝑻(𝐗[𝐾𝑛], 𝑙𝑛

𝑌)T

𝐗,𝐃

(c)

Server

𝐗′ + 𝑫) + (−𝐘′ − 𝐃

𝐗′ − 𝐘′

yields

Alice

𝐗,𝐃, 𝐗′

Bob

𝐘,𝐃, 𝐘′

(d)

Figure I.3: In this figure, Ki represents the vector containing the positions of the occurrences of the
i -th oligomer in the corresponding sequences. In those vectors, p j of Ki represents the position of
the j -th occurrence of the i -th oligomer. (a) Both input-parties find the positions of the oligomers in
their sequences and insert a varying number of dummy positions into randomly chosen oligomers.
Then, Bob shares the length of Kj ∀ j ∈ {0, · · · ,n} with Alice. (b) Afterwards, Alice creates the vector
X

′ ∈Rn′
by applying the function T along with the vector D ∈Rn′

for encoding. Then, she sends D
and the length of Ki ∀i ∈ {0, · · · ,n} to Bob. (c) Bob creates the vector Y

′ ∈Rn′
by applying the function

R . Next, they calculate (−Y
′−D) ∈Rn′

and (X
′+D) ∈Rn′

, respectively, and share them with the server.
(d) At the end, the server computes the element-wise summation of the given vectors to obtain all
possible pairwise differences of the positions for each oligomer. Once the server prunes the entries
involving dummy values, it can compute the oligo kernel function.

I.4.1 Computation of Oligo Kernel

We utilize the randomized encoding of addition in order to compute the oligo kernel. Since the
calculation of difference is required to compute the oligo kernel, we adapt the encoding of addition
by taking the negative of the input value of one of the input-parties. The process of the computation
of the oligo kernel is depicted in Figure I.3. Let us assume that Alice and Bob have hashmap-like
input vectors X and Y where X ,Y ∈Rn and n is the number of different oligomers. These vectors

44



contain Ki representing the vector of positions of i -th oligomer in the sequence of the corresponding
input-party for i ∈ {0,1, ...,n}. The length of the vector Ki in X is denoted by l X

i . It is worth to note
that we have non-empty vectors for all oligomers in Figure I.3 due to the illustration purposes. In
fact, Ki can be any length vector including empty vector, that is Ki ∈ {;,R1,R2, · · · ,RM } ∀i ∈ {0, · · · ,n}
where M is the maximum possible number of oligomer that could occur in a specific length of
sequences. First of all, the input-parties find the positions of oligomers in their sequences. Before
Bob shares the length of vectors K j ∀ j ∈ {0,1, ...,n} with Alice, that is the vector [l Y

0 , l Y
1 , · · · , l Y

n ], Bob
inserts varying number of dummy positions into randomly chosen oligomers where the position
value is smaller than possible. In our case, it is −109. Similarly, Alice inserts some number of dummy
positions into randomly chosen oligomers where the position is too large. For Alice, this value is 109.
After receiving the number of occurrences of oligomers in the sequence of Bob, Alice applies the
function T , which repeats the vector as a whole for the specified number of times, over her oligomers.
As an example, T ([2,5],3) yields A = [2,5,2,5,2,5]. Once Alice has the transpose of these repeated
vectors, she concatenates them to create the vector X

′ ∈Rn′
where n′ is the length of the vector after

concatenation. Alice also creates the vector D ∈Rn′
having uniformly chosen random values for each

entry of X
′
. Afterwards, Alice shares the vector D and the number of occurrences of her oligomers,

that is the vector [l X
0 , l X

1 , · · · , l X
n ]. It is important to note that all oligomers exist and they are common

among input-parties due to the illustration purpose. However, in case of missing oligomers, Alice
can work on and send only the common oligomers among the input-parties in order to reduce the
communication cost. Once Bob gets the number of occurrences of oligomers in Alice and the vector
D , he applies the function R , which repeats each entry of the given vector for the specified number of
times, over his oligomer vectors. As a clarification, R([2,5],3), for instances, yields A = [2,2,2,5,5,5].
After Bob has the transpose of these repeated vectors, he concatenates them to create the vector
Y

′ ∈Rn′
and calculates (−Y

′ −D). In the meantime, Alice computes (X
′ +D). Then, the input-parties

share these vectors with the server. After the server receives the components of the encoding, it
computes the summation of these components in order to obtain all possible pairwise differences
of the positions for each oligomer in the sequences of Alice and Bob. At this point, the obtained
vector contains the entries which are the results of the operation involving dummy values in addition
to the actual entries. Since the server knows the artificial position values of Alice and Bob, it can
detect whether a result is valid or not. If the absolute of a result is larger than or close to the artificial
position value, then the server ignores it in the computation. At the end, the purified vector is utilized
to compute the oligo kernel function over two sequences via Equation I.2. In order to compute the
kernel matrix via the oligo kernel for multiple sequences in each input-party, we repeat the same
process for all pairs of sequences from Alice and Bob. The differences among the sequences in the
same party can be computed by that party and shared with the server to complete the kernel matrix.
It is worth to note that sharing the number of occurrences of oligomers can be done once for all in
order to reduce the communication cost.

I.4.2 Computation of RBF Kernel

We employ the randomized encoding for multiplication to compute the RBF kernel over the data of
the input-parties. The first step of the computation is to calculate the element-wise multiplication
of the vectors from different input-parties. We utilize the randomized encoding to overcome this
problem. The process is demonstrated in Figure I.4. In the computation, let us assume that Alice
and Bob have input matrices X and Y , respectively, whose columns represent samples and A.i

shows the vector at the i-th column for any matrix A. In order to create the components of the

45



Alice Bob

𝐗 ∈ ℝ𝑚×𝑛′

𝑟1 ∈ ℝ𝑚

𝑟2 ∈ ℝ𝑚

𝑟3 ∈ ℝ𝑚

𝐘 ∈ ℝ𝑚×𝑛′′

Server

𝑟1, 𝑟2, 𝑟3

(a)

Alice Bob

Server
𝐌.𝑖

1 = 𝐗.𝑖 + 𝑟1

𝐗, 𝑟1, 𝑟2, 𝑟3 𝐘, 𝑟1, 𝑟2, 𝑟3

𝐌.𝑖
3 = 𝑟2⨀𝐗.𝑖 − 𝑟3

and

𝐌1, 𝐌3 ∈ ℝ𝑚×𝑛′

where

∀𝑖 ∈ {0,1, … , 𝑛′}

𝐌.𝑗
2 = 𝐘.𝑗 + 𝑟2

𝐌.𝑗
4 = 𝑟1⨀𝐘.𝑗 + 𝑟1⨀𝑟2 + 𝑟3

and

𝐌2, 𝐌4 ∈ ℝ𝑚×𝑛′′

where

∀𝑗 ∈ {0,1, … , 𝑛′′}

(b)

Alice Bob

Server

𝑘𝑖𝑗 = 

𝑑=1

𝑚

𝐌.𝑖
1⨀𝐌.𝑗

2 −𝐌.𝑖
3 −𝐌.𝑗

4

𝑑

𝐗, 𝑟1, 𝑟2, 𝑟3 𝐘, 𝑟1, 𝑟2, 𝑟3

∀𝑖 ∈ {0,1,… , 𝑛′)

∀𝑗 ∈ {0,1,… , 𝑛′′)

(c)

Figure I.4: (a) In order to create the components of the encoding, Alice creates three vectors with
uniformly chosen random values of the same length with a sample in the input vector X . Then, she
sends these vectors to Bob. (b) When Bob receives the random values, he computes the random
components M 2 and M 4. Meanwhile, Alice computes her shares of encoding, namely M 1 and M 3.
Eventually, they send these components of the randomized encoding to the server. (c) Once the
server receives the components, it computes the dot products between the i-th sample of Alice and
the j-th sample of Bob by summing up the entries of the vector (M 1

.i ⊙M 2
. j −M 3

.i −M 4
. j ). The server

repeats this process for all pairs of samples of Alice and Bob.

46



encoding, Alice creates three vectors with uniformly chosen random values of the same length with
a sample in the input vector X . Afterwards, Alice shares these vectors with Bob. When Bob receives
the random values, he computes the random components M 2 and M 4. Meanwhile, Alice computes
her shares of encoding, namely M 1 and M 3. Eventually, they send these components of randomized
encoding to the server. Once the server receives the components, it computes the dot products
between the i-th sample of Alice and the j-th sample of Bob by summing up the entries of the vector
(M 1

.i ⊙M 2
. j −M 3

.i −M 4
. j ) where “⊙" represents the Hadamard product. The server repeats this process

for all pairs of samples of Alice and Bob. In order to complete the gram matrix which indicates the
inner product of the vectors, the input-parties compute the dot product among their own samples
and send the resulting matrices to the server. Then, the server employs Equation II.3.3, in which the
RBF kernel computation via the inner product is shown, to compute the RBF kernel matrix.

I.5 Security Analysis

In this section, we give the threat model that we used to assess the security of the framework. Based
on the threat model, we evaluated the security of the oligo kernel and the RBF kernel calculations.

I.5.1 Threat Model

We use the semi-honest adversary model in which a computationally bounded adversary that is
not allowed to deviate from the protocol description attempts to obtain a valuable information
from the messages sent during the execution of the protocol. In other words, all parties follow the
protocol specification, but the parties may try to obtain additional information about the private
input values of other parties based on their views on the execution of the protocol. In our framework,
the input-parties try to keep their data private so, they can be assumed to be trusted parties not
to actively cheat. The function-party wants to perform arithmetic operations on the data of the
input-parties. It is expected that the function-party actively misbehaves in order to obtain the data
of the input-parties. However, the function-party does not send messages to the input-parties in our
framework. Therefore, it has to make a coalition with one of the input-parties in order to obtain the
data of the other input-party.

I.5.2 Oligo Kernel Computation

Lemma 1. Let A be a semi-honest adversary. The advantage of A of obtaining the positions of
oligomers by analyzing the number of occurrences of oligomers is negligible .

Proof. Alice and Bob share the number of occurrences of oligomers [l X
0 , l X

1 , · · · , l X
n ] and [l Y

0 , l Y
1 , · · · , l Y

n ]
to each other. A can try to reconstruct Alice’s sequence and Bob’s sequence by using [l X

0 , l X
1 , · · · , l X

n ]
and [l Y

0 , l Y
1 , · · · , l Y

n ], respectively. We assume that A can obtain some possible position information
of the oligomers from all possible sequences that she can construct. The success rate of the attack
increases with the increase in the size of oligomers, that is the value of K . Alice and Bob add a varying
number of dummy positions for randomly chosen oligomers. This method increases the number of
possible sequences that A can construct, and thus reduce the success rate of this attack to negligible
levels.

47



Theorem 2. The computation of the oligo kernel described in Section I.4.1 is secure in the presence
of a semi-honest adversary A .

Proof. In the computation of the oligo kernel, Alice and Bob compute (X ′ + D) and (−Y ′ − D),
respectively, where X ′ and Y ′ are vectors of their secret values and D is the vector of random values.
The calculation is directly based on the randomized encoding for addition. The only difference is
that it is made over multiple values. Alice and Bob share the number of occurrences of oligomers
LX = [l X

0 , l X
1 , · · · , l X

n ] and LY = [l Y
0 , l Y

1 , · · · , l Y
n ] to each other during the calculation. We assume that

there is a semi-honest adversary A that can obtain X ′ or Y ′ with non-negligible probability. A can
use LX or LY in order to obtain X ′ or Y ′, respectively. However, A cannot obtain X ′ or Y ′ from LX

or LY , respectively (Lemma 1). A has to decode X ′ and Y ′ from messages (X ′+D) and (−Y ′−D).
However, this contradicts with the privacy property of the perfect randomized encoding of addition
function (Definition 2).

I.5.3 RBF Kernel Computation

Theorem 3. The computation of RBF kernel described in Section I.4.2 is secure in the presence of
semi-honest adversary A .

Proof. In the computation of the RBF kernel, Alice and Bob compute {(X .i + r1), (r2 ⊙X .i − r3)} and
{(Y. j +r2), (r1⊙Y. j +r1⊙r2+r3)}, respectively, where X .i and Y. j are the column vectors of their secret
values, and r1,r2 and r3 are the vectors of random values. The calculation is directly based on the
randomized encoding of multiplication. The only difference is that it is made over multiple values.
We assume that there is a polynomial-time adversary A that can decode X .i and Y. j from messages
(X .i +r1), (r2⊙X .i +r3), (Y. j +r2) and (r1⊙Y. j +r1⊙r2+r3). This contradicts with the privacy property
of perfect randomized encoding of the multiplication function (Definition 3).

I.6 Dataset

To show the benefit of privacy-preserving machine learning, we chose a genomic data set with
clinical relevance in precision medicine. It comprises V3 loop sequences of HIV together with the
coreceptor usage as the label. Coreceptor usage determines, how the viruses are entering the human
cells. Since the most common variants can only use the human CCR5 coreceptor, which can be
blocked by a drug, it is very important to determine the coreceptor usage of the viral population
before prescribing those antiretroviral drugs [61]. Over recent years several successful applications
based on predicting the phenotype from genetic data have been introduced [62]. We downloaded
publically available data from the Los Alamos National Laboratory (LANL) HIV Sequence Database at
http://www.hiv.lanl.gov/. We chose all amino acid sequences with coreceptor usage information and
then classified the data into two classes (CCR5 only versus OTHER). We had 642 and 124 sequences
in each class, respectively. The sequences were aligned with the HIVAlign tool from the LANL website
with standard options. At the end, we obtained 766 sequences with 44 characters each.

48

http://www.hiv.lanl.gov/


I.7 Results and Discussion

We utilized the framework to calculate the oligo kernel and the RBF kernel. We applied these kernels
on V3 loop sequences of HIV to predict the coreceptor usage by employing support vector machines
[16]. We shared the labels of the samples with the server in plaintext domain since it does not reveal
any additional information. We determined the best parameters according to F1-score by 5-fold
cross-validation. In this process, we evaluated different values for the kernel parameters, which
are the positional tolerance parameter σ ∈ {2−5,2−4, · · · ,210} of the oligo kernel and the similarity
adjustment parameterσ ∈ {2−5,2−4, · · · ,210} of the RBF kernel. Similarly, we evaluated different values
for the SVM parameters, which are the weight w1 ∈ {20,21, · · · ,25} of the minority class OTHER and the
misclassification penalty parameter C ∈ {2−5,2−4, · · · ,210}. We repeated the parameter optimization
step 10 times with different random folds and conducted the corresponding experiments with each
set of optimal parameters separately. We evaluated the results of the experiments by employing
F1-score and area under receiver operating characteristic (AUROC) curve. In the experiments, we
selected the random values from the range [1,100].

In the experiments with the proposed framework, we employed three processes. Two of them are
the input-parties and the last one is the function-party. We split the data into input-parties equally
and used around 20% of the data of each input-party as test data. We conducted the experiments on
a server having 512 GB memory, Intel Xeon E5-2650 processor and 64-bit operating system. We let
the parties communicate with each other over TCP sockets and assumed that the communication is
secure. We implemented the framework in Python. This holds also for the key switching approach
[31] to which we compare our approach.

I.7.1 Oligo Kernel Experiments

In the oligo kernel experiments, we utilized the proposed framework to calculate the kernel function
without sacrificing the privacy of the sequence data. Since we were not able to find a study which
aimed for a similar scenario and utilized the oligo kernel, we compared our approach to the non-
private oligo kernel computation in which we simply ran the oligo kernel in a single party where the
whole data is available. The execution time of both private scheme (PP) and non-private scheme (NP)
is shown in Figure I.5. Based on the figure, it can be stated that the privacy setup in the framework
does not put too much extra burden on the execution time of the computation in PP. The private
computation of the oligo kernel function is still done within a reasonable time. Moreover, the actual
time required to obtain the results in PP is around one third of the given total execution time of PP
since we utilized three processes, which are two processes for input-parties and one process for
the function-party, to compute the function. Figure I.5 displays the total execution time of these
processes.

The execution time for the experiments of both schemes with larger K -mers tend to decrease with
larger K values due to the decrease in the number of occurrences of K -mers in the sequences. The
number of possible occurrences of K -mers in a sequence of length l is l −K −1 and it gets lower by
the increase of K. Furthermore, since the sequences that we employ have gap characters due to the
alignment, the number of K -mers occurring in the sequences decreases parallel to the increase of K
in our experiments considering that we do not allow gapped K -mers. Both approaches produced
the same results in terms of F1-score and AUROC, and Figure I.6 demonstrates these results. Having
the same results indicates that our framework is able to calculate the exact differences without

49



PP NP
1-mer

100

200

300

400

500

Ti
m
e 
(s
ec

)

PP NP
2-mer

100

200

300

400

500

PP NP
3-mer

100

200

300

400

500

PP NP
4-mer

100

200

300

400

500

Figure I.5: We compare the execution time of our framework (PP) to the non-private scheme (NP) in
the oligo kernel experiments. It shows that our framework is promising for real-life applications.

1-mer 2-mer 3-mer 4-mer0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C

1-mer 2-mer 3-mer 4-mer0.0

0.2

0.4

0.6

0.8

1.0

F1
-s
co
re

Figure I.6: In each K -mer, we have 10 different experiments. The experiments of both the private
scheme and the non-private scheme with the oligo kernel yield the same results. Therefore, we give
a single plot for each type of evaluation metric to display the results of both schemes. The results are
better towards small K values due to the size of the alphabet of the protein sequences.

quarter half full
1-mer

0

100

200

300

400

500

Ti
m
e 
(s
ec

)

quarter half full
2-mer

0

100

200

300

400

500

quarter half full
3-mer

0

100

200

300

400

500

quarter half full
4-mer

0

100

200

300

400

500

Figure I.7: The execution time of our approach in the oligo kernel experiment for a varying size of
the dataset is depicted for 10 repetitions for each size and different K -mer lengths. It scales almost
quadratically with the size of dataset for all K values.

50



sacrificing the privacy of the data.

We further conducted experiments on our proposed framework by using datasets of varying sizes
to demonstrate the scalability of the framework. We used a quarter, a half and the full of the dataset.
The execution time for these experiments are depicted in Figure I.7. The complexity of the framework
grows almost quadratically with the size of dataset.

OF KS−3

−2

−1

0

1

2

3

Ti
m
e 
(h
) i
n 
lo
g-

sc
al
e

(a) The execution time

OF & KS0.0

0.2

0.4

0.6

0.8

1.0

F1
-s
co
re

OF & KS0.0

0.2

0.4

0.6

0.8

1.0

AU
RO

C

(b) F-measure and AUROC

Figure I.8: (a) In the RBF kernel experiment, we compare the execution time of our framework (OF)
to the key switching approach (KS) in log-scale. In each approach, we have 10 repetitions of the
experiments. (b) Both OF and KS experiments yielded the same results in terms of F1-score and
AUROC. The RBF kernel yields comparable or even better results than the oligo kernel.

quarter half full
Dataset size

0

2

4

6

8

10

Ti
m
e 
(s
ec

)

(a)

quarter half full
Dataset size

0

25

50

75

100

125

150

175

Ti
m
e 
(h
)

(b)

Figure I.9: (a) The execution time of our approach in the RBF kernel experiment for varying size
of the dataset is shown. It scales almost quadratically with the size of dataset. (b) Similarly, the
execution time of the key switching approach to compute the RBF kernel scales quadratically with
the size of dataset. Note that the units are seconds and hours, respectively, in the figures.

51



I.7.2 RBF Kernel Experiments

As an alternative approach, we employed the RBF kernel to predict the coreceptor usage of HIV. In
order to prepare the data for the RBF kernel, we encoded the sequences with one-hot-encoding such
that each amino acid in a sequence was represented by 21 bits in which only one of those bits is 1
and the rest are 0. We utilized the formula given in Equation II.3.3 to calculate the RBF kernel on
the samples of input-parties, which requires us to perform the element-wise multiplication of the
feature vectors of these samples. In order to compare the performance of our proposed framework
to existing approaches, we used key switching approach [31] which utilized the idea in [32, 63]. We
selected the length of the secret key in the key switching approach as 10 which was the length of
the secret key in their experiments. In both experiments, the dot product among the samples in
the same input-party is calculated directly in that input-party and the result is sent to the server.
To compute the dot product of the samples from different input-parties, we utilized our proposed
approach and the key switching approach separately. Both approaches gave the same results for the
same set of parameters. F1-score and AUROC of these experiments are shown in Figure I.8b. Based
on the results, the RBF kernel can be considered as a competitive alternative to the oligo kernel for
this prediction scenario.

The execution time of both approaches are shown in Figure I.8a. It indicates that our approach
is way faster than the key switching approach. The underlying reason for such a difference is that
the number of features of the samples affects the execution time of the key switching approach
drastically [31]. In our case, the length of the feature vectors is 21∗44, that is 924. Whereas, our
approach can handle high dimensional vectors efficiently compared to the key switching approach
and it does not involve any computationally expensive encryption. Moreover, we can conclude that
our approach is more efficient than the computation of the dot product via HELib [64, 65] since
integer vector homomorphic encryption is faster than HELib based dot product calculation [63].

I.8 Conclusion

Due to the necessity of data sharing in biomedical studies, privacy preservation becomes very
essential. Especially in genetics, the protection of the sequence data of patients in the studies
involving two sources requires the development of new privacy methods. In order to address this, we
propose a framework utilizing randomized encoding in order to enable the computation of machine
learning algorithms with a single basic arithmetic operation on the data from two sources. During
the computation, none of the input value of these sources is revealed to neither of the other parties
in the computation. Moreover, the result of the computation is not revealed to the sources. We
demonstrate the performance of the framework on the coreceptor usage prediction problem of
HIV by utilizing V3 loop sequences. The results of experiments of the oligo kernel show that our
framework can yield the same results as with non-private scheme. The execution time analysis of
oligo kernel experiments shows that our framework is promising for real-life applications. In the
experiments of the RBF kernel, we show that our framework can compute the kernel function without
losing information. Moreover, it is significantly more efficient than the key switching approach and
the dot product computation via HELib consequently. In addition to the utilized machine learning
algorithms, our framework can be used on any problem requiring one type of four basic arithmetic
operations on data from two sources. If two different basic arithmetic operations are required, then
the function-party would infer the input values of the input-parties in the current setting by utilizing

52



the information coming from different operations. As a future work, the proposed framework can be
improved in a way that it could perform more than a single type of basic arithmetic operation in the
same computation without sacrificing the privacy of the input values. Additionally, one can extend
the idea to cover more than two input-parties in the computation.

Acknowledgement

This study is supported by the DFG Cluster of Excellence “Machine Learning – New Perspectives
for Science”, EXC 2064/1, project number 390727645. Furthermore, NP and MA acknowledge fund-
ing from the German Federal Ministry of Education and Research (BMBF) within the ‘Medical
Informatics Initiative’ (DIFUTURE, reference number 01ZZ1804D).

53



II Privacy Preserving Gaze Estimation using Synthetic
Images via a Randomized Encoding Based Framework

Efe Bozkir* Ali Burak Ünal* Mete Akgün Enkelejda Kasneci Nico Pfeifer

Abstract

Eye tracking is handled as one of the key technologies for applications that assess and evaluate human
attention, behavior, and biometrics, especially using gaze, pupillary, and blink behaviors. One of the
challenges with regard to the social acceptance of eye tracking technology is however the preserving
of sensitive and personal information. To tackle this challenge, we employ a privacy-preserving
framework based on randomized encoding to train a Support Vector Regression model using synthetic
eye images privately to estimate the human gaze. During the computation, none of the parties learn
about the data or the result that any other party has. Furthermore, the party that trains the model
cannot reconstruct pupil, blinks or visual scanpath. The experimental results show that our privacy-
preserving framework is capable of working in real-time, with the same accuracy as compared to
non-private version and could be extended to other eye tracking related problems.

II.1 Introduction

Recent advances in the fields of Head-Mounted-Display (HMD) technology, computer graphics,
augmented reality (AR), and eye tracking enabled numerous novel applications. One of the most
natural and non-intrusive ways of interaction with HMDs or smart glasses is achieved by gaze-
aware interfaces using eye tracking. However, it is possible to derive a lot of sensitive and personal
information from eye tracking data such as intentions, behaviors, or fatigue since eyes are not fully
controlled in a conscious way.

It has been shown that cognitive load [66, 67], visual attention [68], stress [69], task identification
[70], skill level assessment and expertise [33, 71, 72], human activities [73, 74], biometric information
and authentication [75, 76, 77, 78, 79], or personality traits [80] can be obtained using eye tracking
data. Since highly sensitive information can be derived from eye tracking data, it is not surprising that
HMDs or smart glasses have not been adopted by large communities yet. According to a recent survey
[81], people agree to share their eye tracking data only when it is co-owned by a governmental health-
agency or is used for research purposes. This indicates that people are hesitant about sharing their
eye tracking data in commercial applications. Therefore, there is a likelihood that larger communities
could adopt HMDs or smart glasses if privacy-preserving techniques are applied in the eye tracking
applications. The reasons why privacy preserving schemes are needed for eye tracking are discussed
in [82] extensively. However, until now, there are not many studies in privacy-preserving eye tracking.
Recently, a method to detect privacy sensitive everyday situations [83], an approach to degrade iris
authentication while keeping the gaze tracking utility in an acceptable accuracy [84], and differential
privacy based techniques to protect personal information on heatmaps and eye movements [85, 81]
are introduced. While differential privacy can be applied to eye tracking data for various tasks, it
introduces additional noise on the data which causes decrease in the utility [85, 81], and it might
lead to less accurate results in computer vision tasks, such as gaze estimation or activity recognition.

In light of the above, function-specific privacy models are required. In this work, we focus on the

54



gaze estimation problem as a proof-of-concept by using synthetic data including eye landmarks
and ground truth gaze vectors. However, the same privacy-preserving approach can be extended to
any feature-based, eye tracking problem such as intention, fatigue, or activity detection, in HMD or
unconstrained setups due to the demonstrated real-time working capabilities. In our study, the gaze
estimation task is solved by using Support Vector Regression (SVR) models in a privacy-preserving
manner by computing the dot product of eye landmark vectors to obtain the kernel matrix of the
SVR for a scenario, where two parties have the eye landmark data, each of which we call input-party,
and one function-party that trains a prediction model on the data of the input-parties. This scenario
is relevant when the input-parties use eye tracking data to improve the accuracy of their models and
do not share the data due to the privacy concerns. To this end, we utilize a framework employing
randomized encoding [86]. In the computation, neither the eye images nor the extracted features
are revealed to the function-party directly. Furthermore, the input-parties do not infer the raw
eye tracking data or result of the computation. Eye images that are used for training and testing
are rendered using UnityEyes [87] synthetically and 36 landmark-based features [88] are used. To
the best of our knowledge, this is the first work that applies a privacy-preserving scheme based on
function-specific privacy models on an eye tracking problem.

II.2 Threat Model

We assume that the input-parties are semi-honest (honest but curious) that are not allowed to deviate
from the protocol description while they try to infer some valuable information about other parties’
private inputs using their views of the protocol execution. We also assume that the function-party is
malicious and the input-parties and the function-party do not collude.

II.3 Methodology

In this section, we discuss the data generation, randomized encoding, and privacy-preserving gaze
estimation framework.

II.3.1 Data Generation

To train and evaluate the gaze estimator, we generate eye images and gaze vectors. As our work is a
proof-of-concept and requires high amount of data, synthetic images from UnityEyes [87], which is
based on the Unity3D, are used. Camera parameters and Eye parameters are chosen as (0,0,0,0) (fixed
camera) and (0,0,30,30) (eyeball pose range parameters in degrees), respectively. 20,000 images
are rendered in Fantastic quality setting and 512×384 screen resolution. Then, processing and
normalization pipeline from [88] is employed. In the end, we obtain 128×96 sized eye images, 18 eye
landmarks including eight iris edge, eight eyelid, one iris center, and one iris-center-eyeball-center
vector normalized according to Euclidean distance between eye corners, and gaze vectors using
pitch and yaw angles. Final feature vectors consist of 36 elements. Figure II.1 shows an example
illustration.

55



(a) Landmarks. (b) Gaze.

Figure II.1: Eye landmarks and gaze on a synthetic image.

II.3.2 Randomized Encoding

The utilized framework employs randomized encoding (RE) [59, 60] to compute the dot product of
the landmark vectors. The dot product is needed to compute kernel matrix of the SVR which is later
used for training the gaze estimator and validation of the framework.

In the randomized encoding, the computation of a function f (x) is performed by a randomized
function f̂ (x;r ) where x is the input value, which corresponds to eye landmarks in our setup, and
r is the random value. The idea is to encode the original function by using random value(s) such
that the combination of the components of the encoding reveals only the output of the original
function. In the framework, the computation of the dot product is accomplished by utilizing the
decomposable and affine randomized encoding (DARE) of addition and multiplication [24]. The
encoding of multiplication is as follows.

Definition 4 (Perfect RE for Multiplication [24]). A multiplication function is defined as fm(x1, x2) =
x1 · x2 over a ring R. One can perfectly encode the fm by employing the DARE ˆfm(x1, x2;r1,r2,r3):

ˆfm(x1, x2;r1,r2,r3) = (x1 + r1, x2 + r2,

r2x1 + r3,r1x2 + r1r2 − r3),

where r1,r2 and r3 are uniformly chosen random values. The recovery of fm(x1, x2) can be accom-
plished by computing c1·c2−c3−c4 where c1 = x1+r1, c2 = x2+r2, c3 = r2x1+r3 and c4 = r1x2+r1r2−r3.
The simulation of ˆfm can be done perfectly by the simulator Sim(y ; a1, a2, a3) := (a1, a2, a3, a1a2 −
y −a3) where a1, a2 a3 are random values.

II.3.3 Framework

To perform the private gaze estimation task in our scenario, we inspire from the framework as in [86]
due to its efficiency compared to other approaches in the literature. The framework is proposed to
compute the addition or multiplication of the input values of two input-parties in the function-party
by utilizing randomized encoding. We utilize the multiplication operation over the eye landmark
vectors to compute the dot product of these vectors to obtain kernel matrix of the SVR in a privacy-
preserving way.

We have two input-parties as Alice and Bob, having the eye landmark data as X ∈ Rn f ×na and
Y ∈ Rn f ×nb where na and nb represent the number of samples in Alice and Bob, respectively, and
n f is the number of features. In addition to the input-parties, there exists a server that trains a
model on the data of the input-parties. A. j for any matrix A represents the j -th column of the
corresponding matrix and ”⊙“ represents the element-wise multiplication of the vectors. As a first

56



Figure II.2: Overall protocol execution.

step, Alice creates a uniformly chosen random value r3 ∈R and two vectors r1,r2 ∈Rn f with uniformly
chosen random values, which are used to encode the element-wise multiplication of the vectors and
shares them with Bob. Afterwards, Bob computes C 2

. j = Y. j +r2 and C 4
j =

∑n f

d=1(r1⊙Y. j +r1⊙r2)d −r3,

∀ j ∈ {1, · · · ,nb} where C 2 ∈ Rn f ×nb and C 4 ∈ Rnb . Meanwhile, Alice computes C 1
.i = X .i + r1 and

C 3
i =∑n f

d=1(r2 ⊙X .i )d + r3, ∀i ∈ {1, · · · ,na} where C 1 ∈Rn f ×na and C 3 ∈Rna . Input-parties send their
share of the encoding to the server with the gram matrix of their samples, which is the dot product
among their samples. Then, the server computes the dot product between samples of Alice and
Bob to complete the missing part of the gram matrix of all samples. To achieve this, the server
computes ki j =∑n f

d=1(C 1
.i ⊙C 2

. j )d −C 3
i −C 4

j , ∀i ∈ {1, · · · ,na} and ∀ j ∈ {1, · · · ,nb} where ki j is the i -th
row j -th column entry of the gram matrix between the samples of the input-parties. Once the
server has all components of the gram matrix, it constructs the complete gram matrix K by simply
concatenating the parts of it. In our solution, Alice and Bob send to the server (C 1,C 3) and (C 2,C 4)
tuples, respectively. These components reveal nothing but only the gram matrix of the samples after
decoding. Furthermore, the input-parties shuffle their raw data before the computation to avoid the
possibility of private information leakage such as the behavior of the person due to the nature of the
visual sequence information. The overall flow is summarized in Figure II.2.

After having the complete gram matrix for all samples that Alice and Bob have, the server uses it as
a kernel matrix as if it was computed by the linear kernel function on pooled data. Additionally, it
is also possible to compute a kernel matrix as if it was computed by the polynomial or radial basis
kernel function (RBF) by utilizing the resulting gram matrix. As an example, the calculation of RBF
from the gram matrix is as follows.

K (x, y) = exp

(
−

∥∥x · x −2x · y + y · y
∥∥2

2σ2

)
,

57



where “·” represents the dot product of vectors, which is possible to obtain from the gram matrix,
and σ is the parameter utilized to adjust the similarity level. Once the desired kernel matrix is
computed, it is possible to train an SVR model by employing the computed kernel matrix to estimate
the gaze. In the process of the computation of the dot product, the amount of data transferred
among parties is (n f na +n f nb +na +nb +2n f )×d bytes where d is the size of one data unit.

5 10 20
Number of samples (in thousand)

0

10

20

30

40

Ti
m
e 
(s
ec

)

(a) Execution time of Alice.

5 10 20
Number of samples (in thousand)

0

10

20

30

40

50

60
Ti
m
e 
(s
ec

)

(b) Execution time of Bob.

5 10 20
Number of samples (in thousand)

0

50

100

150

200

250

300

350

Ti
m
e 
(s
ec

)

(c) Execution time of Server.

5 10 20
Number of samples (in thousand)

0

1

2

3

4

5

Ti
m
e 
(s
ec

)

(d) Prediction time of Server.

Figure II.3: The execution time of (a) Alice, (b) Bob and (c) the server are given. We also demonstrate
(d) the time required for the prediction of the test samples, which are 20% of the total number of
samples in each case.

II.4 Security Analysis

A semi-honest adversary who corrupts any of the input-parties cannot learn anything about the
private inputs of the other input-party. During the protocol execution, two vectors of random values
and a single random value are sent from Alice to Bob. The views of the input-parties consist only
of vectors with random values. Using these random values, it is not possible for one party to infer
something about the other party’s private inputs [86].

Theorem 4. A malicious adversary A corrupting the function-party learns nothing more than the
result of gram matrix. It is computationally infeasible for A to infer any information about the
input-parties’ data X and Y as long as Perfect RE multiplication is semantically secure (Definition 4).

Proof. We first show the correctness of our solution. We assume n f = 2 and encode the function
fd (x, y) = x1 y1 +x2 y2 over some finite ring R by the following DARE:

f̂d (x, y ;r ) = (x1 + r11, y1 + r12, x2 + r21, y2 + r22,r12x1 + r22x2 + r3,

r11 y1 + r11r12 + r21 y2 + r21r22 − r3)

Given an encoding (c1,c2,c3,c4,c5,c6), fd (x, y) is recovered by computing c1c2 + c2c4 + c5 + c6.

By the concatenation lemma in [24], we can divide c5 and c6 into n f shares by using n f random
values instead of a single r3 value.

f̂d (x, y ;r ) = (x1 + r11, y1 + r12,r12x1 + r13,r11 y1 + r11r12 − r13,

x2 + r21, y2 + r22,r22x2 + r23,r21 y2 + r21r22 − r23)

58



Given an encoding (c1,c2,c3,c4,c5,c6,c7,c8),

ˆfm(x1, y1;r ) = (c1,c2,c3,c4)

ˆfm(x2, y2;r ) = (c5,c6,c7,c8)

By the concatenation lemma in [24], f̂d (x, y ;r ) = ( ˆfm(x1, y1;r ), ˆfm(x2, y2;r )) perfectly encodes the
function fd (x, y) if Perfect RE multiplication is semantically secure.

After showing the correctness, we analyze the security with the simulation paradigm. In the
simulation paradigm, there is a simulator who generates the view of a party in the execution. A
party’s input and output must be given to the simulator to generate its view. Thus, security is
formalized by saying that a party’s view can be simulatable given its input and output and the parties
learn nothing more than what they can derive from their input and prescribed output.

The function-party F does not have any input and output. A simulator S can generate the views of
incoming messages received by F . S creates four vectors C 1′

,C 2′
,C 3′

,C 4′
with uniformly distributed

random values using a pseudorandom number generator G ′. Finally, S outputs {C 1′
,C 2′

,C 3′
,C 4′

}.

In the execution of the protocol π, A receives four messages which are masked with uniformly
random values generated using a pseudorandom number generator G . The view of A includes
{C 1,C 2,C 3,C 4}. The distribution over G is statistically close to the distribution over G ′. This implies
that

{S (C 1′
,C 2′

,C 3′
,C 4′

)}
c≡ {vi ewπ

A (C 1,C 2,C 3,C 4)}

II.5 Results

To demonstrate the performance, we conduct experiments on a PC equipped with Intel Core i7-
7500U with 2.70 GHz processor and 16 GB memory RAM. We employ varying sizes of eye landmark
data, that are 5,000, 10,000 and 20,000 samples of which one-fifth is the test data and we split
the data between the input-parties equally. The framework allows us to optimize the parameters
of the model in the server without further communicating with the input-parties. Thanks to this,
we utilize 5-fold cross-validation to optimize the parameters, which are the similarity adjustment
parameter γ ∈ {2−3,2−2, · · · ,24} of the Gaussian RBF kernel, the misclassification penalty parameter
C ∈ {2−3,2−2, · · · ,23}, and the tolerance parameter ϵ ∈ {0.005,0.01,0.05,0.1,0.5,1} of SVR. After param-
eter optimization, we repeat the experiment on varying sizes of eye landmark data with the optimal
parameter set 10 times to assess the execution time. To evaluate the gaze estimation results, we em-
ploy mean angular error in the same way as in [88]. Table II.1 demonstrates the relationship between
the dataset size and the resulting mean angular error. Since no additional noise is introduced during
the computation of the kernel matrix, the results from our privacy-preserving framework are the
same with the non-private ones. The mean angular errors are lower compared to the state-of-the-art
gaze estimation techniques since we use synthetic data and fixed camera position during image
rendering.

The amount of time to train and test the models increases as the sample sizes increase since com-
putation requirements get larger. The increment in the dataset size increases the communication

59



Table II.1: The mean angular errors for varying dataset sizes.

# of samples Mean angular error
5k 0.21

10k 0.18
20k 0.17

cost among parties. The execution times of all parties for 10 runs with the optimal parameters are
shown in Figure II.3. We also demonstrate the amount of time to predict the test samples, which cor-
responds to one-fifth of the total number of samples to emphasize the real-time working capabilities.
In the experiment with 20,000 samples, for instance, we spend ≈ 4.5 seconds to predict 4,000 test
samples, which corresponds to 1.125 ms per sample. When the current sampling frequencies of eye
trackers are taken into consideration, it is possible to deploy and use the framework to estimate gaze
if an optimized communication between the parties is established.

II.6 Conclusion

In this work, we utilized a framework based on randomized encoding to estimate human gaze in a
privacy-preserving way and in real-time. Our solution can provide improved gaze estimation if input-
parties want to use each other’s data for different reasons such as to account for genetic structural
differences in the eye region. None of the input-parties has the access to the eye landmark data of
the others or the result of the computation in the function party, while the function-party cannot
infer anything about the data of the input-parties. Temporal information of the visual scanpath,
pupillary, or blinks cannot be reconstructed due to the shuffling of the data, and lack of sensory
information and direct access to the eye landmarks. Our solution works in real-time, hence it could
be deployed along with HMDs for different use-cases and extended to similar eye tracking related
problems if similar amount of features is used. To the best of our knowledge, this is the first work
based on function-specific privacy models in the eye tracking domain. The number of parties is
a limitation of our solution. Thus, as future work we will extend our work to a larger number of
parties.

60



III ESCAPED: Efficient Secure and Private Dot Product
Framework for Kernel-based Machine Learning

Algorithms with Applications in Healthcare

Ali Burak Ünal Mete Akgün Nico Pfeifer

Abstract

Training sophisticated machine learning models usually requires many training samples. Especially in
healthcare settings these samples can be very expensive, meaning that one institution alone usually
does not have enough. Merging privacy-sensitive data from different sources is usually restricted by
data security and data protection measures. This can lead to approaches that reduce data quality
by putting noise onto the variables (e.g., in ϵ-differential privacy) or omitting certain values (e.g., for
k-anonymity). Other measures based on cryptographic methods can lead to very time-consuming
computations, which is especially problematic for larger multi-omics data. We address this problem
by introducing ESCAPED, which stands for Efficient SeCure And PrivatE Dot product framework.
ESCAPED enables the computation of the dot product of vectors from multiple sources on a third-
party, which later trains kernel-based machine learning algorithms, while neither sacrificing privacy
nor adding noise. We have evaluated our framework on drug resistance prediction for HIV-infected
people and multi-omics dimensionality reduction and clustering problems in precision medicine. In
terms of execution time, our framework significantly outperforms the best-fitting existing approaches
without sacrificing the performance of the algorithm. Even though we only present the benefit for
kernel-based algorithms, our framework can open up new research opportunities for further machine
learning models that require the dot product of vectors from multiple sources.

III.1 Introduction

In the era of data, the same kind of data is produced by multiple sources. Utilizing this variety of
sources is one of the easiest ways to satisfy the hunger of machine learning algorithms for data.
Often, one can train a machine learning model on the pooled data from different sources to get high
accuracy on a particular prediction task. However, gathering data can compromise the sensitive
information of the samples in the data. Ayday et al. [45] showed that genomic data can be used to
infer the physical and mental health condition of a patient with the support of information about
the patient’s lifestyle and environment. Furthermore, Kale et al. [47] introduced a method to keep
kinship private in an anonymously released genomic dataset, from which such information could
otherwise be inferred. Several studies [46, 89, 90] discussed various privacy issues that occurred in
studies using medical data from different aspects.

One class of machine learning methods that usually requires gathering the whole data is kernel-
based learning methods. To train such a model privately, one of the architectural models in the
literature is the distributed model, where each party in the computation has its own data, and the
desired kernel matrix contains the whole data that all parties have. Note that throughout this paper,
we refer to a source having data or an entity performing a computation as “party”. Vaidya et al.
[29] proposed an algorithm that uses such a model to compute the gram matrix of the whole data
belonging to the parties in the computation and train a support vector machine (SVM) privately
afterwards. The disadvantage of the proposed algorithm is that it focuses only on binary vectors

61



because it utilizes private set intersection to compute the dot product. In addition to the distributed
model, there is also the outsourced model where the data is outsourced after encryption and then
these encrypted data are used to train a kernel-based machine learning method. Liu et al. [52]
proposed an approach to use an SVM on the encrypted outsourced data. Due to the nature of
encryption, the proposed approach is very time consuming. Zhang et al. [31] introduced a key-
switching [32] based secure dot product calculation method. The basic idea is to change the key of
the dot product of the vectors, which is originally the combination of the keys utilized to encrypt
these vectors, to the key of the server. Ünal et al. [1] demonstrated the inefficiency of this method
and proposed a randomized encoding based framework to compute the dot product of the vectors
of two parties in a third-party, which later trains an SVM model. However, the framework is not
extendable to more than two data sources, since this would compromise the data due to the nature of
elementwise multiplication of the vectors, which they use to compute the dot product. Furthermore,
for the same reason, their approach has a potential privacy leakage for binary encoded data, even
for the case with two data sources. We will show that our approach outperforms their framework
in such a scenario. Moreover, the randomized encoding itself [60] is independently applicable to
our scenario. The authors claimed that any function expressed by a logarithmic depth arithmetic
circuit can be encoded by randomized encoding. In this work, we implemented and applied the
randomized encoding based approach and show that it is not as efficient as our framework in terms
of the communication cost.

In this paper, we address the privacy problem of data gathering for dot product based algorithms
such as kernel-based learning methods. We first implement and apply one of the fastest encodings
in the literature, namely the randomized encoding, to our scenario. Due to the inefficiency of the
randomized encoding based approach, we come up with a new encoding scheme that enables
the secure and private computation of the dot product of vectors. Furthermore, we build a new
framework, called efficient secure and private dot product (ESCAPED), which allows multiple data
sources, called input-parties, to involve in the computation of the dot product. ESCAPED allows
a third-party, called function-party, to privately obtain the dot product of input-parties’ vectors
of size larger than 1, while neither gathering the data in plaintext domain nor compromising the
privacy of the data. Then, the function-party trains a kernel-based machine learning method. We
utilized ESCAPED to predict personalized treatment recommendations for HIV-infected patients in
a supervised learning experiment and to perform privacy preserving multi-omics dimensionality
reduction and clustering in unsupervised learning experiments. To the best of our knowledge, this
is the first study that enables the privacy preserving multi-omics dimensionality reduction and
clustering.

III.2 Background

III.2.1 Radial Basis Function Kernel

Among the kernel functions, the radial basis function (RBF) kernel is one of the most effective and
widely used kernels [55, 57, 56, 58]. The computation of the RBF kernel for samples x, y ∈Rn can be
expressed based on only the dot product of these samples. The formula is as follows:

K (x, y) = exp

(
−

∥∥〈x, x〉−2〈x, y〉+〈y, y〉∥∥2

2σ2

)
(III.1)

62



where “〈·, ·〉” represents the dot product of vectors and σ is the parameter that adjusts the similarity
level between the samples. Equation III.1 indicates that the gram matrix is enough to compute the
RBF kernel. We benefit from such computation to obtain the RBF kernel matrix in ESCAPED.

III.2.2 Randomized Encoding

Randomized encoding (RE) is designed to hide the input value s in the computation of a function
f (s) by encoding the function with a randomized function f̂ (s;r ), where r is a uniformly chosen
random value [60, 59]. The decoding of the encoding reveals only the output of the function f but
nothing else.

Applebaum [24] introduced the perfect decomposable and affine randomized encoding (DARE)
of some operations in their study. For a randomized encoding to be affine and decomposable,
all components of the encoding should be affine functions over the set on which the function is
defined and each of these components should depend on only a single input value and a varying
number of random values. Here, we give only the encodings that we used, which are addition and
multiplication-addition operations.

Definition 5 (Perfect RE for Addition [24]). Let there be an addition function t = f (s1, s2) = s1 + s2

defined over some finite ring R. The following DARE can perfectly encode such a function:

f̂ (s1, s2;r ) = (s1 + r, s2 − r )

where r is a uniformly chosen random value. The decoding can be done by summing up the
components of the encoding, and the simulation of the function can be performed by sampling two
random values whose sum is t .

Definition 6 (Perfect RE for Multiplication-Addition [24]). Let there be a function t = f (s1, s2, s3) =
s1 ·s2+s3 defined over a ring R. The following DARE function t̂ = f̂ (s1, s2, s3;r1,r2,r3,r4) can perfectly
encode the function f :

t̂ = (s1 − r1,r2s1 − r1r2 + r3, s2 − r2,r1s2 + r4, s3 − r3 − r4)

where r1,r2,r3 and r4 are uniformly chosen random values. Given the encoding (c1,c2,c3,c4,c5), the
recovery of f (s1, s2, s3) is done by computing c1 · c3 + c2 + c4 + c5. In order to simulate f̂ , one can
employ the simulator Sim(t ;c1,c2,c3,c4) := (c1,c2,c3,c4,−c1c3 + t − c2 − c4).

In addition to the given DAREs, the authors claim that any arithmetic circuit with logarithmic depth
can be encoded by a perfect DARE [24]. An example of such an arithmetic circuit that computes the
dot product of two vectors is given in the Supplement [91]. Taking this into account, we encode the
dot product of the vectors by utilizing the aforementioned encodings. Since we only deal with the
private computation of the dot product of the vectors, we optimize the generation of the encoding.
Let us assume that we have vectors x, y ∈ RD , where R is a finite ring and D ∈Z+. In the dot product
computation, we have D multiplication nodes in the circuit and the results of these multiplication
nodes are summed up by using the addition nodes. To generate the encoding of the dot product
of vectors x and y , we first find the largest 2’s power smaller than D, which we represent here as
P , where 2q = P for q ∈ {Z+∪ {0}} and P < D ≤ 2 ·P . We separate the summation of the first P of
those multiplication nodes from the summation of the remaining D −P multiplication nodes using

63



Definition 5. We repeat the same procedure for these two parts recursively until we end up with a
multiplication node. Once we reach the multiplication node i from an addition node, we utilize the
DARE for multiplication-addition given in Definition 6, where s1 = xi , s2 = yi and s3 represents the
resulting value of addition/subtraction of the random values separating summations up to that node.
The pseudo code of the randomized encoding generation of the dot product of two vectors of size D
and the encoding of the sample arithmetic circuit are given in the Supplement [91].

Randomized encoding has two main applications, namely, secure computing and parallel cryptog-
raphy. It is commonly used in multi-party computation (MPC) to minimize the round complexity
of MPC protocols [92]. Thus, more efficient MPC protocols can be designed using randomized
encoding.

III.3 Methods

In this section, we first explain the scenario employed in the paper. Then, we introduce the random-
ized encoding based approach and our proposed framework ESCAPED. Later, we give the security
definition as well as the security analysis of ESCAPED based on the given definition. Finally, we
explain the data we used.

III.3.1 Scenario

We consider a scenario where we have multiple input-parties and a function-party, which computes
the dot product of vectors of these input-parties and then trains a kernel-based machine learning
algorithm. The real life correspondence of such a scenario would be a study in which a researcher
wants to employ the same type of data from different patients collected by multiple hospitals, like
cancer subtype discovery. In this scenario, one would like to group cancer patients according to
similarities with respect to their omics data. For a new patient, the subtype could give first hints about
how severe the cancer is and how well the prognosis is with regard to potential treatments and life
expectancy. Due to patient privacy, such data cannot be shared without a permission process, which
can significantly slow down the study. However, a framework, like ESCAPED, ensures the protection
of the privacy of patients’ data, hence enabling the researcher to speed up permission processes and
enables studies that would otherwise not be approved due to privacy concerns. While describing the
approaches, even though both the randomized encoding based approach and ESCAPED can have
multiple input-parties, for simplicity, we use a scenario with three input-parties, namely, Alice, Bob
and Charlie with ids 1, 2 and 3, respectively, and a function-party.

III.3.2 Randomized Encoding Based Approach

To address the aforementioned problem, we first implemented a randomized encoding based
approach and applied it to our scenario. In this scenario, each of the input-parties has their own
data X ∈ R f ×na , Y ∈ R f ×nb and Z ∈ R f ×nc , respectively, where f represents the number of features,
nx represents the number of samples in the corresponding input-party and R is a finite ring. Each
pair of input-parties needs to communicate separately, i.e., there is communication between Alice
and Bob, Alice and Charlie, and Bob and Charlie. For simplicity, we explain only the communication
between Alice and Bob. To compute X T Y , they first exchange the size of their own data. Afterwards,

64



Alice generates the scheme of the encoding of the dot product by utilizing the randomized encoding
generation algorithm given in the Supplement [91]. Using the resulting encoding scheme, she creates
a new set of random values for each possible pair of samples, consisting of one sample from Alice and
one sample from Bob. This is quite important in order to protect the relative difference of the features
of the input-parties’ samples from the function-party. For instance, using the component s1 − r1 in
the encoding, the function-party could learn the relative differences of the input values in the case
that the same random value r1 is utilized for more than one pair of samples. Once Alice created all
random values, she sends Bob the part of these random values that he will use to encode his own
data. Afterwards, both Alice and Bob encode their data by employing the corresponding random
values and send the resulting components to the function-party along with the gram matrix of their
own samples. To compute the dot product of samples of Alice and Bob, the function-party combines
these components according to the decoding described in Definitions 5 and 6. Such communication
is done between all possible pairs of the input-parties, which means that if we have M input-parties,
there will be

(M
2

)
communications in total (more detailed communication cost analysis in Table

III.1). Once the function-party has all partial gram matrices, it constructs the gram matrix by
vertically concatenating the horizontally concatenated partial gram matrices [X T X , X T Y , X T Z ],
[Y T X ,Y T Y ,Y T Z ] and [Z T X , Z T Y , Z T Z ]. Then it can compute the desired kernel matrix, which can
be computed via the gram matrix, and train a kernel-based machine learning method. The overview
of the dot product computation procedure via the randomized encoding based approach is given in
the Supplement [91]. Note that in the supervised scenario the input-parties share the labels of the
samples with the function-party in plaintext domain since they do not reveal any extra and sensitive
information. However, this could easily be extended if more sensitive labels are supposed to be used
in the learning process.

III.3.3 ESCAPED

Due to the high communication cost of the randomized encoding based approach to securely
compute the dot product of vectors from multiple input-parties in the function-party, we propose a
new, efficient and secure framework, called ESCAPED, which is based on a new encoding scheme for
the dot product computation. In the computation, the input-parties do not learn anything about
the data of the other input-parties or the result of any dot product computed by the function-party.
Similarly, the function-party learns only the dot product of the data from the input-parties, but
nothing else.

For simplicity, we explain only the computation of the dot product of the data from Alice and
Bob in ESCAPED. Figure III.1 depicts the overview of ESCAPED. First, Alice and Bob create matrices
of random values a ∈ R f ×na and b ∈ R f ×nb , respectively, where R is a finite ring. Along with these
random valued matrices, Alice also creates a random value α ∈ R \ {0}. Afterwards, Alice computes
X − a and αa, and shares them with Bob. In the meantime, Bob computes Y −b and sends it to
Alice. Once Alice receives the masked data of Bob, she computes A1 = aT (Y −b). Meanwhile, Bob
computes B1 = (X −a)T Y and B2 = αaT b. Then, Alice sends A1 and α, and Bob sends B1 and B2

along with the gram matrix of their own samples, which are X T X and Y T Y , respectively, to the
function-party. At this point, the function-party computes A1 +B1 + 1

αB2 to obtain the dot product
of the data of Alice and Bob, which is X T Y . Such communication is done similarly among all pairs
of input-parties. In these communications, the input-party with a smaller id becomes “Alice” and the
other becomes “Bob”. In the end, the function-party has the gram matrix of all samples. Afterwards,

65



Function-party

and and

and

Alice-Bob

Alice-Charlie

Bob-Charlie

Alice Charlie

Bob

(a)

and

and

and

and

and

Function-party

Alice-Bob

Alice-Charlie

Bob-Charlie

Alice Charlie

Bob

(b)

Charlie

Function-party

Alice

Bob

(c)

Figure III.1: The overview of ESCAPED in our scenario. Each dash type corresponds to a specific
part of the gram matrix computed by a pair of input-parties. (a) First, the input-parties exchange
their masked input data (e.g. X − a) and masked masks (e.g. αa), if applicable. (b) Then, they
compute the components of all dot products they are responsible for (e.g. aT (Y −b)) and send them
to the function-party along with the mask of the mask (e.g. α), if applicable. (c) The function-party
computes the dot product based on the corresponding components of the input-parties.

the function-party can compute the desired kernel matrix like the RBF kernel matrix, which can
be calculated by using Equation III.1, and train a kernel-based machine learning method using the
computed kernel matrix to obtain a prediction model. Note that the input-parties share the labels
with the function-party in the plaintext domain for of the same reason we mentioned earlier.

Table III.1 summarizes the features and the communication cost analysis of ESCAPED, the ran-
domized encoding based approach and the approach proposed by Ünal et al. [1].

66



III.3.4 Security Definition

In our proof, we utilize two different adversarial models, which are the semi-honest adversary
model, or honest-but-curious, and the malicious adversary model. A semi-honest adversary is a
computationally bounded adversary that follows the protocol strictly but also tries to infer any
valuable information from the messages seen during the protocol execution. On the other hand,
in the malicious adversary model, a malicious adversary can arbitrarily deviate from the protocol
specification. Although the semi-honest model has more restrictive assumptions than the malicious
model, it makes the development of highly efficient privacy preserving protocols relatively easy.

Let there be M input-parties (I1, ...,IM ) and a function-party F in the proposed system. We
assume that an adversary is either a semi-honest adversary corrupting a subset of input-parties or a
malicious adversary corrupting the function-party. We restrict the collusion between the function-
party and the input-parties so as not to allow the corruption of the function-party and at least one
input-party at the same time. Otherwise, an adversary A who corrupts the function-party and
at least one input-party obtains the inputs of all other input-parties. Even though we allow the
collusion among input-parties, one might think that it is not so realistic because involved entities,
such as medical institutions, lose their reputations if they misbehave in this setting.

We use the simulation paradigm [93] in our security proofs. In the simulation paradigm, the
security is proven by showing that the simulator can simulate the input and the output of a party,
given the actual input and output, such that the simulated input and output cannot be distinguished
from the actual ones by an observer. Such an indistinguishability indicates that the parties cannot
learn more than what can be learned from their inputs and outputs.

The function-party constructs the final output, i.e. the gram matrix, by using the partial outputs
each of which is computed by a pair of input-parties. This enables us to consider these computations
as a separate two-party computation. The following notations are used in the security definition:

• Let f = ( f1, f2) be a probabilistic polynomial-time functionality, where fp is the input provided
by the p-th party to f and let π be a two-party protocol for computing f .

• The view of the i -th party (i ∈ 1,2) during an execution of π over (x, y) is denoted by vπi (x, y)
and equals (w,r i ,mi

1, ...,mi
t ), where w ∈ {x, y}, r i equals the contents of the i -th party’s internal

random tape and mi
j represents the j -th message it received.

• The output of the i -th party during an execution of π over (x, y) is denoted by oπi (x, y) and can
be computed from its own view of the execution. We denote the joint output of both parties by
oπ(x, y) = (oπ1 (x, y),oπ2 (x, y)).

Definition 7. Let f = ( f1, f2) be a functionality. We say that a protocolπ is secure against semi-honest
adversaries if there exist probabilistic polynomial time (PPT) simulators S1 and S2 such that:

(S1(x, f1(x, y)), f (x, y))
c≡ (vπ1 (x, y),oπ1 (x, y))

(S2(y, f2(x, y)), f (x, y))
c≡ (vπ2 (x, y),oπ2 (x, y))

where
c≡ denotes the computational indistinguishability. More details can be found in [94].

67



III.3.5 Security Analysis

Theorem 5. ESCAPED is secure against a semi-honest adversary A that corrupts any subset of
input-parties.

Proof. The proof is provided in the Supplement [91].

Theorem 6. Assume that the function-party is malicious and does not collude with any input-parties.
Then, ESCAPED is secure against the malicious function-party A such that A cannot infer the
data of input-parties from neither the components sent by the input-parties nor the resulting gram
matrix.

Proof. The proof is provided in the Supplement [91].

III.3.6 Data

In this section, we briefly explain the datasets we employed in our supervised and unsupervised
learning experiments, respectively.

HIV V3 Loop Sequence Dataset: To predict the personalized treatmet of HIV-infected patients in
the supervised learning experiments, we retrieved the HIV V3 loop dataset from Ünal et al. [1]. It
consists of the protein sequence of the viruses as well as their coreceptor usage information. Due to
the availability of drugs blocking the human CCR5 coreceptor, which is exclusively used by the most
common variant of HIV to enter the cell, identifying the coreceptor usage is crucial for determining
whether or not to use these drugs [61]. The dataset consists of 642 samples for the class “CCR5 only”
and 124 samples for the class “OTHER”. The sequence data exists as a one-hot encoded data matrix
with 766 rows and 924 columns.

Head and Neck Squamous Cell Carcinoma Dataset: We aim to perform the privacy preserving
multi-omics dimensionality reduction and clustering on the TCGA data for head and neck squamous
cell carcinoma (HNSC) [95] to stratify patients into clinically meaningful subgroups. Therefore, we
replicate a recent state-of-the-art study [40] in a privacy-preserving setting, obtaining the data from
the authors. The data consists of 465 patients with their gene expression (IlluminaHiSeq), DNA
methylation (Methylation450k), copy number variation (gistic2), and miRNA expression (Illumi-
naHiSeq) data. They have 19433, 57159, 23817 and 581 features, respectively. We also obtained the
survival times of the patients.

III.4 Results

In order to simulate multiple input-parties, we created a process for each input-party and shared the
data among them equally. We also created an additional process to simulate the function-party. All
processes communicate with each other over TCP sockets and we assume that the communication
is secure. We conducted the experiments on a server with has 512 GB memory, an Intel Xeon E5-
2650 processor and a 64-bit operating system. We utilized Python to implement ESCAPED and the
randomized encoding based approach.

68



Number of IPs Communication cost

Approach Two
IPs

Three or
more IPs

Among
IPS

Between
IPs and FP

Total

UAP Yes No 3R f ×n2
* 4R f ×n2

* 7R f ×n2
*

RE Yes Yes 4
(M

2

)
R f ×n2

5
(M

2

)
R f ×n2

9
(M

2

)
R f ×n2

ESCAPED Yes Yes 3
(M

2

)
R f ×n 3

(M
2

)
Rn2

3
(M

2

)
(R f ×n +Rn2

)

Table III.1: The summary of the comparison of the methods utilized in this study from different
aspects. The first part of the table presents the ability to handle a varying number of input-parties
(IP) in the framework proposed by Ünal et al. [1] (UAP), the randomized encoding based approach
(RE) and ESCAPED. Moreover, n being the number of samples in each IP, M being the number of IPs
and f being the number of features of samples, where n, M , f ∈Z+ and M ≥ 2, the second part of the
table presents the communication cost analysis of RE and ESCAPED in terms of the communication
cost among IPs, between IP and the function-party (FP) and the total communication cost. The
communication cost analysis of UAP, however, is given without any dependency on M since it can
only handle two input-parties scenario. Note that we omit the communication cost of sending the
gram matrix of the samples belonging to the same IP since it is fixed for all approaches.

III.4.1 Classification of HIV Coreceptor Usage

In these supervised learning experiments, we used an SVM with an RBF kernel matrix. We op-
timized the parameters of the SVM, which are the misclassification penalty C ∈ {2−5,2−4, · · · ,210}
and the weight w1 ∈ {20,21, · · · ,25} of the minority class, and the similarity adjustment parameter
σ ∈ {2−5,2−4, · · · ,210} of the RBF kernel via 5-fold cross-validation and F1-score. Note that we tuned
the parameters outside of the approaches and used them in the experiments directly. However, one
can employ both ESCAPED and the randomized encoding based approach for tuning. To have a
fair evaluation, we repeated the optimization step 10 times with different random folds and con-
ducted separate experiments by using each optimal parameter set. We evaluated the experiments
via F1-score and area under receiver operating characteristic curve (AUROC).

We utilized our proposed framework, ESCAPED, to compute the dot product of samples of three
different input-parties on a function-party. Once the function-party has the gram matrix, it computes
the RBF kernel matrix based on the optimal σ using Equation III.1. We separated 20% of the data
of each input-party for testing. The function-party trains an SVM model on the rest of the data by
employing the optimal parameters w1 and C . Then, we tested the model on the test data. Finally,
we evaluated the prediction of our model via F1-score and AUROC. We repeated this experiment
for each optimal parameter set and obtained 0.843 (±0.013) AUROC and 0.615 (±0.016) F1-score on
average. To demonstrate the scalability of ESCAPED in terms of the total dataset size, we conducted
experiments in which we used a quarter, a half and the full dataset. The execution time of ESCAPED
increases almost quadratically with respect to the size of the dataset. Figure III.2a shows the trend of

*The communication cost analysis is given after an update on UAP to protect the privacy of relative differences
between features of samples. Without any update, the communication costs would become 3R f , 4R f ×n and 3R f +4R f ×n ,
respectively.

69



the increase in the execution time in parallel to the increment in the dataset size. Furthermore, we
analyzed the performance of the framework for varying number of input-parties each of which has
the same number of samples. Figure III.2b displays the effect of the number of input-parties involved
in the computation on the execution time of various parts. The total execution time and the total
communication time between input-parties and the function-party (black and red, respectively) are
almost linear. The total communication among input-parties (orange), however, displays a slightly
different pattern. Since there is an idle party in each turn of the communication among input-parties
when there is an odd number of input-parties, the execution time for the cases with an even number
of input-parties is almost the same as the case where we have one less input-party.

We also applied the randomized encoding based approach to the same scenario. Similar to
the experiments with ESCAPED, we repeated the whole experiment for each optimal parameter
set. Since we obtained exactly the same F1-score and AUROC with ESCAPED for the same set of
parameters, we demonstrate only the execution time of the randomized encoding based approach
for the varying size of the dataset in Figure III.2c. When we compared the execution time of the
randomized encoding based approach to ESCAPED for full dataset experiments, the randomized
encoding based approach took 1.3×104 (±1.4×103) sec whereas ESCAPED took only 1.19×101

(±3.5×10−2) sec. Since the randomized encoding based approach is quite inefficient compared
to ESCAPED, we did not evaluate it in terms of the number of input-parties. Based on the results
and the cost analysis shown in Table III.1, it is fair to claim that ESCAPED is more efficient than the
randomized encoding approach and other MPC protocols in the literature.

Even though Ünal et al. [1] cannot handle three or more input-parties, we compared ESCAPED
to this framework in case of a scenario with two input-parties. Since we obtained the same results
for both methods, we only give the execution time comparison of them. Figure III.2d shows that
ESCAPED outperforms their framework. Based on this observation, we can state that ESCAPED
is more efficient and comprehensive, especially considering its applicability to more than two
input-parties.

III.4.2 Clustering of HNSC Cancer Patients

To demonstrate the applicability of ESCAPED on unsupervised learning problems on multi-view data,
we employed it to determine biologically meaningful subgroups of cancer patients. Speicher and
Pfeifer [8] studied such a problem and suggested a regularized multiple kernel learning algorithm
with dimensionality reduction (rMKL-DR). The method was recently evaluated as the best method
in a large benchmark study that compared many different methods [41]. Later, Röder et al. [40]
published the online version of the method called web-rMKL. In that study, one of their use cases is
the identification of subgroups of HNSC. To stratify patients into biologically meaningful subgroups,
they employed four different data types: gene expression, DNA methylation, miRNA expression and
copy number variation. They computed one RBF kernel matrix, whose γ is chosen based on a rule of
thumb, for each data type and input these kernel matrices to the web-rMKL to obtain the subgroups
of patients. They pruned patients whose survival is longer than 5 years. Then they evaluated the
results by survival analysis and obtained a p = 0.0006 in log-rank test. To show the applicability of
ESCAPED, we replicated their study in a privacy preserving way. We utilized the same dataset and
split it equally into three input-parties. We employed ESCAPED to compute the kernel matrix for
each data type, based on the data belonging to different input-parties. It took 129.17 (±3.81) sec to

70



quarter half full
Dataset size

0
2
4
6
8

10
12

Ti
m
e 
(s
ec

)

(a)

2 3 4 5 6
Number of input-parties

0

10

20

30

40

Ti
m
e 
(s
ec

)

Total execution time
Between IPs and FP
Among IPs

(b)

quarter half full
Dataset size

0

50

100

150

200

250

Ti
m
e 
(m

in
)

(c)

ESCAPED UAP
Approach

0

2

4

6

8

10
Ti
m
e 
(s
ec
)

(d)

Figure III.2: (a) The execution time of ESCAPED is shown for varying sizes of the dataset. (b) The
analysis of ESCAPED for varying number of input-parties in terms of the total execution time, the
communication time between the input-parties (IP) and the function-party (FP), and the communi-
cation time among IPs is shown. (c) The execution time of the randomized encoding based approach
is depicted for different sizes of the dataset. The execution time increases quadratically in parallel to
the increment in the dataset size. (d) The execution time comparison of ESCAPED and the UAP [1]
for two input-parties case is given.

compute the required kernel matrices. We then input the resulting kernel matrices to web-rMKL
with the same parameter choices to cluster patients. We applied the same filters and evaluated
the results by survival analysis as they did. In the end, we obtained the same p-value, indicating
that ESCAPED is capable of performing privacy preserving multi-omics dimensionality reduction
and clustering. We were unable to conduct these experiments via the randomized encoding based
approach due to the excessive memory usage stemming from the inefficiency of the randomized
encoding on high dimensional data.

71



III.5 Conclusion

The tension between the unavoidable demand of machine learning algorithms for data and the
importance of the privacy of the sensitive information in data urges researchers to come up with
efficient and privacy preserving machine learning algorithms. To address this necessity, we intro-
duced ESCAPED to enable the secure and private computation of the dot product in our scenario. In
ESCAPED, we preserve the privacy of the data in the computation while neither sacrificing the perfor-
mance of the model nor adding noise. We demonstrated the efficiency and applicability of ESCAPED
on the personalized treatment prediction system of HIV-infected patients and the privacy preserving
multi-omics dimensionality reduction and clustering of HNSC patients into biologically meaningful
subgroups. Also, we implemented and applied the randomized encoding based approach to solve
these problems securely. In the supervised learning problem, both approaches yielded the same
result in terms of F1-score and AUROC, but ESCAPED outperformed the randomized encoding based
approach in terms of execution time. In the unsupervised learning case, we replicated the state-of-
the-art experiments conducted by Röder et al. [40] in a privacy preserving way without sacrificing
performance. This indicates that ESCAPED enables performing privacy preserving multi-omics
dimensionality reduction and clustering whereas it was not possible to compute the required kernel
matrices with the randomized encoding based approach, which is one of the fastest competitors, due
to the excessive memory usage. Even though we applied ESCAPED to two machine learning methods,
it is applicable to any method requiring the dot product of the vectors from multiple sources on a
third-party, showing the promise of efficiently making other learning algorithms privacy preserving
as well. As a future work, other commonly used operations in machine learning algorithms could be
included in the framework to extend the scope of the framework. Furthermore, the interpretability
of the resulting model could be improved to allow more sophisticated analyses via the model.

Acknowledgements

This study is supported by the DFG Cluster of Excellence “Machine Learning – New Perspectives
for Science”, EXC 2064/1, project number 390727645. Furthermore, NP and MA acknowledge fund-
ing from the German Federal Ministry of Education and Research (BMBF) within the ’Medical
Informatics Initiative’ (DIFUTURE, reference number 01ZZ1804D).

Ethics Statement

Thanks to the promising results of ESCAPED, our study could open up new collaboration oppor-
tunities among hospitals, universities, institutes, data centers and many other entities with faster
permission processes by providing secure and private computation of dot product enabling, not
only the kernel-based learning algorithms but also other methods requiring the dot product. This
would help to speed up healthcare research that helps humanity and the world in general. We could
not think of a negative ethical impact of our work.

72



III.6 Supplement

III.6.1 Randomized Encoding Generation Algorithm

The pseudo code of the randomized encoding generation of the dot product of two vectors of size D
is given in Algorithm III.1.

1 Algorithm REGen()
input :eY : the list of the indices of the random values for Y

eO: the list of the indices of the random values for the offline part
eOS: the list of the sign of the random values of the offline part
R: the starting value of the random values that will be generated

output :R: the latest value of the generated random values
2 D ← length of eX
3 if D = 1 then
4 eX[0] ← [0,R+1,R,R,R+1,R+2] ▷ In the generated random values afterwards, the first

one, indicated by 0 here, is always 1
5 eY[0] ← [0,R,R+1,R+3]
6 eO[0] ← [eO[0],R+2,R+3]
7 eOS[0] ← [eOS[0],−1,−1]
8 R ← R+4
9 return R

10 q ← argmaxq (2q < D) ▷ q ∈ {Z+∪ {0}}

11 P ← 2q

12 eO[0] ← [eO[0],R]
13 eOS[0] ← [eOS[0],+1] ▷ +1 represents positive sign
14 R ← R+1
15 R ← REGen(eX[0 : P],eY[0 : P],eO[0 : P],eOS[0 : P],R)
16 R ← REGen(eX[P : D],eY[P : D],eO[P : D],eOS[P : D],R)
17 return R

Algorithm III.1: Randomized Encoding Generation for Dot Product

73



III.6.2 Sample Encoding

A sample arithmetic circuit computing the dot product of two vectors is given in Figure III.3, where
we use two vectors of size 7. The encoding of the corresponding circuit is given in Equation III.2.

+ + +

+ +

+

x x x x x x x

Figure III.3: An arithmetic circuit to compute the dot product of the vectors x and y where x, y ∈R7.

f̂ (x, y,R) =
(

x1

[
1
r7

]
+

[ −r6

−r6r7 + r8

]
, y1

[
1
r6

]
+

[−r7

r9

]
,r0 + r1 + r3 − r8 − r9,

x2

[
1

r11

]
+

[ −r10

−r10r11 + r12

]
, y2

[
1

r10

]
+

[−r11

r13

]
,−r3 − r12 + r13,

x3

[
1

r15

]
+

[ −r14

−r14r15 + r16

]
, y3

[
1

r14

]
+

[−r15

r17

]
,−r1 + r4 − r16 + r17,

x4

[
1

r19

]
+

[ −r18

−r18r19 + r20

]
, y4

[
1

r18

]
+

[−r19

r21

]
,−r4 − r20 − r21,

x5

[
1

r23

]
+

[ −r22

−r22r23 + r24

]
, y5

[
1

r22

]
+

[−r23

r25

]
,−r0 + r2 + r5 − r24 − r25,

x6

[
1

r27

]
+

[ −r26

−r26r27 + r28

]
, y6

[
1

r26

]
+

[−r27

r29

]
,−r5 − r28 − r29,

x7

[
1

r31

]
+

[ −r30

−r30r31 + r32

]
, y7

[
1

r30

]
+

[−r31

r33

]
,−r2 − r32 − r33

)

(III.2)

Let f̂ (x, y,R) be

([
c1

c2

]
,

[
c3

c4

]
,c5, . . . ,

[
c31

c32

]
,

[
c33

c34

]
,c35

)
, decoding of f̂ is done by computing the fol-

lowing:
f (x, y) = xT y = ∑

i∈S
ci ∗ ci+2 + ci+1 + ci+3 + ci+4

where S = {1,6,11,16,21,26,31} is the set of indices indicating the beginning of each encoded multi-
plication xi · yi for i ∈ {1,2, . . . ,7}.

74



III.6.3 The Scheme of Randomized Encoding Based Approach

The scheme of the randomized encoding based approach to compute the gram matrix is depicted in
Figure III.4.

Alice Charlie

Function-party

Alice-Bob

Alice-Charlie

Bob-Charlie

Bob

(a)

Alice-Bob

Alice-Charlie

Bob-Charlie

Charlie

Bob

Alice

Function-party

(b)

Alice-Bob

Alice-Charlie

Bob-Charlie

Charlie

Bob

Alice

1

2

3

4

5

6

Function-party

(c)

Charlie

Bob

Alice

Function-party

(d)

(e)

Figure III.4: The overview of the randomized encoding based approach to compute the dot product
of samples from multiple input-parties is depicted. Each dash type corresponds to a specific part of
the gram matrix computed by a pair of input-parties. (a) At first, the input-parties exchange their
number of samples. (b) Then, they generate all the random values and send the required ones to the
corresponding input-party. (c) Afterwards, they compute their components in the encoding and
share them with the function-party. (d) Finally, the function-party computes the dot product of the
samples. (e) The dimension of the matrices are shown separately for better readability.

75



III.6.4 Security Proof

Theorem 7. Efficient secure and private dot product framework (ESCAPED) is secure against a
semi-honest adversary A that corrupts any subset of input-parties.

Proof. According to the definition of the semi-honest adversary, A cannot deviate from the protocol
description. Thus, A has to use the real inputs of the corrupted input-parties. Based on this
information, it is easy to prove the correctness of ESCAPED. For simplicity, we present our proof
using a scenario with three input-parties (I1,I2,I3). The private data of I1,I2, and I3 are X , Y ,
and Z , respectively, and the function-party F wants to learn X T Y , X T Z , and Y T Z . Equation III.3
shows the correctness of ESCAPED.

X T Y = aT (Y −b)+ (X −a)T Y + 1

α
αaT b

= aT Y −aT b +X T Y −aT Y +aT b

= X T Y

X T Z = aT (Z − c)+ (X −a)T Z + 1

α
αaT c

= aT Z −aT c +X T Z −aT Z +aT c

= X T Z

Y T Z = bT (Z − c)+ (Y −b)T Z + 1

β
βbT c

= bT Z −bT c +Y T Z −bT Z +bT c

= Y T Z

(III.3)

After showing the correctness, we now prove the security of ESCAPED. I1,I2, and I3 learn (Y −b,
Z −c), (X −a, αa, Z −c), and (X −a, αa, Y −b, βb), respectively. These values are generated by using
random values α and β, and matrices of uniformly chosen random values, a,b and c. Thus, they
can be perfectly simulated by matrices of uniformly random values, which indicates the security of
ESCAPED. More clearly, an input-party gets the randomly masked input data of other input-parties
as well as their randomly masked masks. For instance, I2 receives (X −a), (Z −c) and αa. Since both
the mask of the mask, α, and the mask of the data, a and b, are uniformly random, it is impossible
for I2 to learn the input data of other input-parties, which are X and Z in this case.

Theorem 8. Assume that the function-party is malicious and does not collude with any input-parties.
Then, ESCAPED is secure against the malicious function-party A such that A cannot infer the
data of input-parties from neither the components sent by the input-parties nor the resulting gram
matrix.

Proof. Since the function-party does not have any input, it cannot change the output of any input-
parties. This guarantees and proves the correctness of ESCAPED against the malicious function-party.

The security of the framework from the perspective of the function-party leans on two facts. The
first one is that the number of features of the input data is unknown for the function-party. A cannot

76



be sure which vector space the samples are coming from. This makes unique prediction impossible.
The second one is that A gets the gram matrix of input data among input-parties, that is X T Y , X T Z
and Y T Z , the gram matrix of their own samples, that is X T X ,Y T Y and Z T Z , the gram matrix of
the input data and the random mask, which are aT Y , aT Z and bT Y , and the gram matrix of some
of the random masks, more precisely aT b, aT c and bT c. They form an incomplete gram matrix
K̃ = DT D , where D = [X ,Y , Z , a,b,c] (see Figure III.5). Even if the number of features is known by A

and the complete version K = DT D is available, one can come up with multiple matrices satisfying
the gram matrix K. Assume that there is a rotation matrix R ∈RN×N where N = 2(na +nb +nc ). Then,
we can compute a matrix E such that E = R−1D. Hence, we can express D as D = RE . Then, the
computation of K = DT D becomes as follows:

K = DT D

= (RE)T (RE)

= E T RT RE

= E T R−1RE

= E T E

(III.4)

due to the property of the rotation matrices, which is R−1 = RT . Based on this observation, we
can say that for every new rotation matrix Θ ∈RN×N there exists a new matrix β=Θ−1D satisfying
K =βTβ. Since Aguilera and Pérez-Aguila [96] demonstrated a way to generate rotation matrices for
any dimension, one cannot obtain a unique matrix satisfying K . To be exact, one cannot recover D
from K = DT D , which implies that it is not possible to recover D from K̃ = DT D either.

Figure III.5: The computed incomplete gram matrix in which only the shaded parts are available.

77



IV Privacy-preserving SVM on Outsourced Genomic Data
via Secure Multi-party Computation

Huajie Chen Ali Burak Ünal Mete Akgün Nico Pfeifer

Abstract

Machine learning methods are employed in many areas, such as medical data research, for their
efficient and powerful data mining ability. However, submitting unprotected data to a third party,
which attempts to train a machine learning model, may suffer from data leakage and privacy violation
when the third party is compromised by an adversary. Hence, designing a protocol to execute encrypted
computation is inevitably indispensable. In order to address this problem, we propose protocols based
on secure multi-party computation to train a support vector machine model privately. Utilizing the
semi-honest adversary model and oblivious transfer, the proposed protocols enable the training of a
non-linear support vector machine on the combined data from various sources without sacrificing the
privacy of individuals. The protocols are applied to train a support vector machine model with the
radial basis function kernel on HIV sequence data to predict the efficacy of a certain antiviral drug,
which only works if the viruses can only use the human CCR5 coreceptor for cell entry. Benchmarked
on synthesized data with 10 data sources that consist of random generated integers, containing 100
labeled samples each, the protocol has consumed online time 2991.386/166.912 ms on average in
arithmetic/boolean circuits, respectively. The cross-validation has reached 0.5819 F1-score on average
on training data with the optimized parameters, which have reached 0.7058 F1-score afterwards on
testing data set, which consist of protein sequence of CCR5 and its subtypes. The complete training and
testing process on the real data, which contains in total 766 samples having 924 features after encoding,
has consumed 43.75/15.84 seconds on average using arithmetic/boolean circuits, respectively, which
shows the effectiveness and efficiency of our protocols compared to some of the existing studies in the
literature.

IV.1 Introduction

Machine learning methods have been widely employed in many scientific research areas recently,
solving problems by discovering patterns in the data. Applying machine learning methods, e.g.
support vector machines (SVM), on medical data enables the detection of patterns which were
previously unknown or too hard for a human entity to recognize. Hence it can be a contribution to
medical technology development. For instance, novel HIV drug resistance mutations have been char-
acterized by using clustering, multi-dimensional scaling and an SVM [97]. Network-based outcome
prediction (NOP) method with the core of “sparse group lasso regression" has been programmed
to predict the breast cancer state based on gene expression profiles [98]. Artificial neural network
(ANNs) can yield prediction and prognosis of cancer [99].

With the latest technologies, such as second/third generation of DNA sequencing, obtaining
full human genomes has become efficient and cheap, leading to many studies tackling a wide
variety of health related research questions. However, the privacy of the patients can suffer from
leakage during the process of accessing data by a third-party. To address this problem, privacy-
preserving machine learning methods based on secure multi-party computation (MPC) [100, 101]
and homomorphic encryption [102, 103, 104] were designed. However, all these approaches show
different performances under different security assumptions. This means they have to make a

78



trade-off between privacy and performance. To the best of our knowledge, efficient approaches
utilizing MPC to train a non-linear SVM were lacking.

IV.1.1 Our Contributions

In this paper, we have designed and implemented an MPC-based solution for outsourcing SVM
training to two non-colluding proxy servers. Our goal is to make privacy preserving training of an SVM
on large volume data from multiple sources efficient. To this end, we propose two different solutions
based on Beaver’s multiplication triples [105] over arithmetic secret sharing and the Goldreich-
Micali-Wigderson (GMW) protocol [26] over boolean secret sharing. We utilize single instruction
multiple data (SIMD) operations which allows parallelization to increase the performance of our
protocols.

In our protocols, the initialization phases can be completed locally. The genomic sequence data
from various data sources, such as hospitals, are firstly encoded by employing one-hot encoding.
Next, the encoded sequences are split into two shares and distributed onto computational parties,
respectively. Self dot products are also locally computed, split and distributed onto the parties. In
terms of training procedure, MPC is conducted between computational parties to get calculated
results, which will be thereafter sent to the user and reconstructed to obtain the complete gram
matrix which contains the dot product of the data from different sources as well as the dot product of
the data from the same party. At the end, the user trains an SVM model on the desired kernel matrix
which can be calculated by the derived gram matrix. Class labels are sent in plain text domain since
they will not reveal any extra information regarding the samples.

We applied our protocol on HIV sequence data to predict the efficacy of a certain antiviral drug,
which only works if the viruses can only use the human CCR5 coreceptor for cell entry. Our designed
protocols based on arithmetic and boolean circuits have consumed 2991.38/166.912 ms online
time executing circuits on synthesized data with 10 data sources that consist of random generated
integers, containing 100 labeled samples each and in each sample there are 924 features, namely
columns. We evaluated our results via F1-score and obtained 0.5819 on average on training data
and 0.7058 on the test data, which certifies the potency of the protocol. The complete training and
testing process on real data, which contains in total 766 samples having 924 features after encoding,
took 43.75/15.84 seconds in arithmetic/boolean circuits protocol, respectively.

The rest of the paper is organized as follows: in Section IV.2, related works are presented. Required
preliminaries and the concepts of our protocols in details are listed in Section IV.3 and IV.4, respec-
tively. The evaluation of the protocols and the further discussion are given in Section IV.5. The paper
is concluded in Section IV.6.

IV.2 Related Work

In the work of Yu et al.[106], a protocol is proposed to train an SVM model on the vertically partitioned
data securely. In linear kernel, the multiplication of a matrix and its transpose will produce a gram
matrix, which can also be generated by the addition of vertically partitioned matrix multiplication.
Thereby, a random generated matrix of the same size as its local matrix will firstly be produced and
passed to the next server iteratively until the last server passes the very last addition result back to

79



the master server. By substracting the initial random matrix, the kernel matrix can thus be derived.
Each server involved in this process can hence not breach into the real data. Training an SVM model
on the resulting kernel matrix can then be done locally on the master server.

Vaidya et al. [107] have proposed a protocol to train an SVM model on the distributed data. In
order to compute the gram matrix, the modified secure dot product calculation method is employed
to protect the private information of the samples. The method is applicable on the vertically,
horizontally and even arbitrarilly partitioned data. However, their method is mainly focus on the
binary data.

In the work of Zhang et al. [108], they have addressed the privacy-preserving SVM training problem
by avoiding utilizing fully homomorphic encryption (FHE) and partially homomorphic encryption
and realizing proxy re-encryption on only one server. By employing the key switching technique,
the designed protocol is able to compute dot product within one single cloud system, supporting
further operations for SVM. However, the process is not so efficient on the large dimensional dataset
due to the employed encryption technique.

In [100], Mohassel et al. have implemented a secure two-party computation (2PC) protocol in
C++ language to realize privacy preserving machine learning for linear regression, logistic regression
and neural network training. In the protocol, fixed-point addition and multiplication are two kernel
operations. Shared decimal number can be manipulated. A specially designed activation function
replacing the original rectified linear unit (ReLU) function has been brought out in this work to
mitigate the problem incurred by the expensive computing time of MPC. Sharing switching is
also employed to minimize the rounds of interaction and the number of oblivious transfer (OT).
Vectorization, a concept raised in this paper, meaning operating matrices and vectors has been
implemented based on linearly homomorphic encryption (LHE) and oblivious transfer and has
achieved great improvement.

Wagh et al. [109] have developed a set of protocols using secure 3-party computation (3PC) for neu-
ral network training. They have made improvement in three ways, namely scalability, performance,
and security. A new secure and efficient non-linear functions for linear layer, convolution, ReLU, and
etc. have been implemented in this protocol, enabling the full capability of neural network training.
The use of Yao’s garbled circuits [110] is avoided due to the multiplicative overhead proportional to
the safety parameter. Following this protocol honestly, none of the subsets of the servers can access
the data and not a single malicious server can learn anything about the input and the output.

Ünal et al. [111] have proposed a framework to train an SVM model for a scenario where there are
two parties having the data and one party that wants to perform training the model by using the data
of those parties. They utilized randomized encoding, which means briefly that a function is encoded
by random values, to provide security while training the model on genomic data set consisting of V3
loop sequences of HIV. The disadvantage of their approach is that the parties with the data should
be active while the third party wants to have the gram matrix of those data.

There are many studies on privacy-preserving machine learning in the literature. Interested
readers are referred to review by Tanuwidjaja et al. [112].

80



IV.3 Preliminaries

In this section, the utilized methods and algorithms underlying our approach are given.

IV.3.1 Sequence One-Hot Encoding

At data pre-processing stage, the sequences we utilized are encoded into numeric form by employing
one-hot encoding. Let ci be a character at the position i in the sequence S where i ∈Z, i < |S|. Since
there are 20 amino acid residues and 1 gap, ci can be encoded into a 21-digit form.

For example, if ci is an alanine, ci will be encoded into “1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0". If
ci is a gap, ci is then “0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1". As the encoding program iterates, the
whole sequence will be encoded into the aforementioned format.

IV.3.2 Measurement of Sequence Similarity

In order to assess the similarity of the sequences, the reverse of the Hamming distance is utilized.
Hamming distance is described as the number of pairs of different characters at same positions
between two strings having the same length. For instance, given two strings s1 and s2 of same length
l , there are in total l characters in each string. The Hamming distance DH is defined for the strings
s1 and s2 as follows:

DH(s1, s2) =
l∑

i=1
I (s1(i ), s2(i ))

where l is the length of the sequences and I is the function which returns 1 if the given two characters,
s1(i ) and s2(i ), are the same, 0 otherwise. In this project, the base similarity of two sequences are
measured adversely compared to Hamming distance, that is l −DH(s1, s2).

Based on Section IV.3.1, one sequence can now be considered as one vector #»v of binary values.
If any two of the characters from any two sequences at the same position are identical, these two
encoded characters will yield 1 as the result of the dot product, that is #»v1 · #»v2 = 1, 0 otherwise. In
this case, the more similarities two sequences share, the higher the dot product will be. Once the
similarities of all possible pairs of sequences are computed, a matrix M ∈Zn×n where n stands for
the number of sequences involved in the computation is obtained.

IV.3.3 Secure Multi-party Computation

Secure multi-party computaiton (MPC) was proposed in [110, 26] in early 1980s. Andrew Yao used
MPC to address the famous “Millionaire Problem”. MPC allows multiple parties, namely P1, · · · ,Pn ,
to compute a function f on their private inputs X = {x1, · · · , xn} without revealing the private inputs
to each other. At the end, each party learns the output of the function f (X ).

There are two types of adversaries leading to different security goals against the security of MPC
protocols. Semi-honest adversaries are not allowed to abort the protocols but assumed to have the
potential to learn additional information from the messages derived from the protocol execution,
whereas the malicious adversaries are supposed to have the ability to completely deviate from the
protocol[113]. Thereby, the mediator data will not leak the original information to any one of the

81



two parties if the protocols are strictly followed.

Over the years, MPC has been speculated to be an impractical solution. However, with hardware
improvements and optimizations, the applications based on MPC have become much more practical
[114]. In this context, several studies have been presented to replenish MPC applications. For
example, Demmler et al. [113] have designed a mixed-protocol framework that enables users to
construct protocols using C++ language and converting share types freely. Pattuk et al. [115] have
proposed a framework combining mixed protocol which is able to invoke the cheapest MPC cloud
cost. In [116], a protocol utilizing additively homomorphic encryption and Yao’s garbled circuits has
been implemented in TASTY framework and has been adopted in face recognition applications.

Oblivious Transfer
Oblivious transfer [117] is an important building block of MPC. The sender employs the 1-out-of-2
OT to send one of the messages (m0,m1) to receiver based on the choice c ∈ {0,1} of it. In the end of
the protocol, the sender only learns mc and the receiver does not learn c.

Notations
Pi denotes the computing party where i ∈ {0,1}. A shared value of x assigned to Pi is denoted by 〈x〉t

i
where t ∈ {A : Arithmetic,B : Boolean}. Rec t

i (〈x〉t ) represents the operator of reconstruction function
where x = Rec t

i (〈x〉t ).

Arithmetic Sharing
In arithmetic sharing, secret values are shared between two parties using additive secret sharing.

• Shared Values: Given arithmetic share 〈x〉A of bit length l , (〈x〉A
0 +〈x〉A

1 ) mod 2l = x, 〈x〉A
0 ,〈x〉A

1
∈Z2l .

• Sharing: Randomly generate 〈x〉A
i ∈Z2l in Pi and send x +2l −〈x〉A

i to P1−i as 〈x〉A
1−i .

• Reconstruction: Rec A
i (x) = 〈x〉A

0 +〈x〉A
1 mod 2l . 〈x〉A

1−i is sent to Pi .
• Addition: 〈z〉A = 〈x〉A +〈y〉A , 〈z〉A

i = 〈x〉A
i +〈y〉A

i is computed locally on each Pi .
• Multiplication: 〈z〉A = 〈x〉A ·〈y〉A . Multiplication triplets 〈c〉A = 〈a〉A ·〈b〉A are at first generated.

In Pi , 〈e〉A
i = 〈x〉A

i −〈a〉A
i , 〈 f 〉A

i = 〈y〉A
i −〈b〉A

i . Rec A(e) and Rec A( f ) are then performed in both
party. 〈z〉A

i = i ·e · f + f · 〈a〉A
i +e · 〈b〉A

i +〈c〉A
i is eventually computed on Pi .

Boolean Sharing
In boolean sharing, XOR based secret sharing is used to share secret values between two parties.

• Shared Values: Given a boolean share 〈x〉B of a bit, x = 〈x〉B
0 ⊕〈x〉B

1 . “⊕" denotes the operator
of XOR.

• Sharing: Randomly generate an r ∈ {0,1}. Let 〈x〉B
i = r in Pi and send x⊕〈x〉B

i to P1−i as 〈x〉B
1−i .

• Reconstruction: RecB
i (x) = 〈x〉B

0 ⊕〈x〉B
1 , 〈x〉B

1−i is sent to Pi .
• XOR: 〈z〉B = 〈x〉B ⊕〈y〉B . 〈z〉B

i = 〈x〉B
i ⊕〈y〉B

i is computed locally on each Pi .
• AND: 〈z〉B = 〈x〉B∧〈y〉B . Boolean multiplication triplets are firstly generated: 〈c〉B = 〈a〉B∧〈b〉B .

On each Pi , 〈e〉B
i = 〈a〉B

i ⊕〈x〉B
i and 〈 f 〉B

i = 〈b〉B ⊕〈y〉B are then computed. Afterwards, RecB (e)
and RecB ( f ) are performed on each party. 〈z〉B

i = i ·e · f ⊕ f · 〈a〉B
i ⊕e · 〈b〉B

i ⊕〈c〉B
i is eventually

computed on Pi .

82



IV.3.4 Support Vector Machine

As a supervised machine learning method, SVMs are frequently employed to solve classification
problems. They have been shown to outcompete many other methods for low to medium size
prediction problems, especially in combination with kernels. The optimization problem of SVM is
formulated as follows:

min
ω∈Rd ,b∈R,ξ∈Rn

1

2
||ω||2 + C

n

n∑
i=1

ξi

s.t. Yi (〈ω, Xi 〉+b) ≥ 1−ξi

∀ i = 1, ...,n, ξi ≥ 0

(IV.1)

where ω, b, ξ, C , n denote a vector with d dimensions, a parameter interfering the dot product
between ω and Xi , a parameter determining how far a point can go beyond the hyperplane, the
weight of punishment, and number of data points Y , following the listed order. Xi and Yi represent
the data features vector and its label. In the SVM model above, data points are allowed to cross the
hyperplane but will be punished by the slack variables ξi scaled by the penalty factor C . By adjusting
C , one can alter the weight of the punishment.

IV.3.5 Radial Basis Function Kernel

RBF kernel is commonly employed in SVM classification for its efficiency and universality [118].The
kernel function is defined as follows:

K (⃗x, y⃗) = exp(−||⃗x − y⃗ ||2
2σ2 )

= exp(− x⃗ · x⃗ −2x⃗ · y⃗ + y⃗ · y⃗

2σ2 )

(IV.2)

In this equation,“·" represents the operator of dot product between vectors, whereas σ plays the
role as the parameter adjusting the similarity level. If σ increases, the result of the exponential
function will tend to be closer to 1, indicating that the similarity of two sequences is high, and vice
versa. Furthermore, the second line of the equation indicates that the RBF kernel can be computed
based on only the dot product of the vectors which we exploit to compute the RBF kernel matrix in
our protocols.

IV.4 Privacy-Preserving SVM

In this section, we briefly describe our privacy-preserving SVM protocol systematically. In Section
IV.4.1, we give an overview of it, afterwards each phase of the protocol will be illustrated in detail.
The notations in Section IV.3.3 are succeeded here.

IV.4.1 System Overview

In our protocol, the genomic dataset from multiple medical institutions are outsourced to two
non-colluding proxy servers in a secret-shared form. After getting request from a third-party who is

83



allowed to query the data, such as a researcher, the two non-colluding proxy servers perform MPC
to produce the required gram matrix of the samples for SVM training. The protocol structure is
depicted in Figure IV.1. In this protocol, following parties are playing roles:

1. Data Sources: In this context, they are medical institutions, which are denoted as H j , where
j ∈N+ and j ≤ n, where n denotes the number of data sources. They upload their genomic
data to the two proxy servers in a secret-shared form.

2. User: User U , such as a scientific researcher, who requests the two proxy servers to perform
some secure computations over the secret shared data to produce the gram matrix for SVM
training.

3. Two Proxy Servers: Two non-colluding servers are serving as computational parties, which
are denoted as Pi , where i ∈ {0,1}, and they are responsible of the secure computation of the
gram matrix. Selecting two semi-trusted third parties is believed to be the most practical and
affordable solution [119] to secure the privacy preservation while utilizing genomic data to
train a machine learning model.

Figure IV.1: Protocol Structure: From Data Sources to MPC and Eventually to User’s Process

Initialization

(1) Original sequence data in H j are locally encoded into digital vectors (see Section IV.4.2).
(2) Encoded sequence data are split into two shares A/B locally in H j and sent to P0 and P1,

respectively (see section IV.4.3).
(3) Self dot products are pre-computed locally in H j , afterwards they are also split into two shares

A/B and sent to P0 and P1, respectively (see Section IV.4.4).

Training Procedure

(4) After receiving the query from U , MPC is conducted between P0 and P1 to get the desired

84



processed data between files containing encoded sequences (see Section IV.4.5 and IV.4.6).
(5) Self and cross dot products are then integrated to obtain the whole gram matrix and passed to

U (see Section IV.4.7).
(6) The gram matrix is utilized in U to train an SVM model and test the resulting model (see

Section IV.4.8).

IV.4.2 Protein Sequence Encoding

The sequence encoding function takes one character that represents one residue and encodes it into
a 21-digit format as described in Section IV.3.1. The output file contains the encoded sequences,
where each row stands for one protein sequence and each of the 21 columns for one residue (or a
gap).

IV.4.3 Secret Sharing of Encoded Data

The original encoded data is split into two shares using arithmetic sharing and boolean sharing.
In arithmetic sharing based protocol, random integers less than 2l are generated. Thereafter, the
random integers will serve as share and help to construct the other share. In the booelan sharing
based protocol, random bits are generated as one share and they are used to construct the other
share. Eventually, in both protocols, two shares will be written into two files, respectively. Secret
sharing of encoded data using arithmetic sharing is illustrated in Figure IV.2.

Figure IV.2: Shared Data Generation

IV.4.4 Self Dot Product Local Computation

Data sources compute the "self dot product", which means that the dot products of two instances
of each data point are computed locally. Such local computation reduces the total communication
cost. The outcomes of this process are two shares of the dot product matrix that are produced by the
previously mention shared data generation technique. The shares of the dot product matrix are next
distributed onto two third-party proxy servers, namely P0 and P1, and these shares can afterwards
be reconstructed on U .

IV.4.5 Dot Product Computation using Arithmetic Circuits

All files that need multiplying into two long arrays are integrated, omitting unnecessary procedures to
repeat the SIMD data generation. For example, given three files File A, B, C, which are denoted as fa ,
fb ,and fc , there are 3, 2, and 1 shared encoded sequences respectively contained in these files, which

85



are represented by ai , bi , ci , where i denotes the index of sequence in a certain file. The long array A
will be “a1a2a3a1a2a3a1a2a3b1b2", whereas the other long array will be “b1b1b1b2b2b2c1c1c1c1c1".
These operations are called GetLongArrayA() and GetLongArrayB(), respectively

1 Algorithm ComputeCrossDotProduct()
input :sd f : Shared data files, di m: Number of dimensions of a vector contained in file.
output :〈ar rD〉A

i : Array containing dot product between files in shared form on Pi .

2 〈ar r A〉A
i = GetLongArrayA(sd f )

3 〈ar rB 〉A
i = GetLongArrayB(sd f )

4 〈ar rC 〉A
i = 〈ar r A〉A

i · 〈ar rB 〉A
i ▷ Secure multiplication

5 〈ar rD〉A
i = [] ▷ Create an empty array for summing up multiplication results in dot product blocks.

6 for j in range(|〈ar rC 〉A
i |)) do

7 〈sum〉 = 0
8 for k in range(j , j +di m) do
9 〈sum〉 = 〈sum〉+〈ar rC [k]〉A

i ▷ Local addition

10 〈ar rD〉A
i .append(〈sum〉)

11 Output 〈ar rD〉A
i

Algorithm IV.1: Dot Product Computation (Arithmetic Circuit)

Algorithm IV.1 construct two long arrays at first to reduce the times of creating SIMD data. By
multiplying two long arrays in one time, the run time of the protocol has been successfully lowered.
This algorithm omits the dot product computation between a file and itself for it can be previously
locally calculated as described in Section IV.4.4. By putting an array into a SIMD share, operation on
multiple data is thus enabled. After the multiplication, summation of multiplication results in each
block of dot product computation is then executed, in order to locally sum up multiplication of each
pair of elements from two vector separately. Eventually, the final result is loaded into an array. Figure
IV.3 shows the general structure of the secure protocol based on arithmetic circuits.

IV.4.6 Dot Product Computation using Boolean Circuits

1 Algorithm ComputeCrossDotProduct()
input :sd f : Shared data files, di m: Number of dimensions of a vector contained in file.
output :〈ar rD〉B

i : Array containing dot product between files in shared form on Pi .

2 〈ar r A〉B
i = GetLongArrayA(sd f )

3 〈ar rB 〉B
i = GetLongArrayB(sd f )

4 〈ar rC 〉B
i = 〈ar r A〉B

i ∧〈ar rB 〉B
i ▷ Secure AND

5 〈ar rD〉B
i = [] ▷ Create an empty array for summing up multiplication results in dot product blocks.

6 for j in range(|〈ar rC 〉B
i |) do

7 〈sum〉 = 0
8 for k in range(j , j +di m) do
9 〈sum〉 = 〈sum〉+〈ar rC [k]〉B

i ▷ Secure addition

10 〈ar rD〉B
i .append(〈sum〉)

11 Output 〈ar rD〉B
i

Algorithm IV.2: Dot Product Computation (Boolean Circuit)

Algorithm IV.2 is similar to Algorithm IV.1. The structure of the protocol is depicted in Figure IV.3.

86



Figure IV.3: Dot Product Computation

The differences between these two are the types of shares and circuits. In this context, multiplication
is executed between only 0 and 1, which fits the bit length (1-bit) of boolean shares. Therefore,
secure AND operation in boolean circuits can replace secure multiplication in arithmetic circuits and
accomplish better computation performance. The bit length of the shares can hence be reduced to 1,
which can save a great deal of computational power during the communication process. In terms of
boolean share, it varies much from arithmetic share and can thus not be summed up after multiplied
in the previous way locally. A specific function based on secure addition is thereby designed for
summing up the multiplication results in a dot product block.

IV.4.7 Result Array Integration & Dot Product Matrix Generation

Through our protocol, the self dot products can be reconstructed into one array on U manually.
The index list of the access position in both self / cross dot product array will be then calculated.
Based on the index list, a 2D vector, namely an n ×n matrix, where n indicates the total number of
sequences involved in the computation, will be generated and written into a file as the final output.
In machine learning, the order of data and label must be strictly followed so that the model can be
trained correctly. Therefore, the sorting process of the arrays is indispensable.

IV.4.8 SVM Cross Validation Experiment

Among all data, 20% of them are randomly chosen for testing the model. Once the gram matrix
is computed, the parameters, which are the misclassification penalty parameter C and the class
imbalance weight W of the SVM and the similarity adjustment parameter σ of RBF, are optimized
by 5-fold cross-validation. C and σ are optimized over the set SC = [10−3,10−2, · · · ,102,103], Sσ =

87



[0.125,0.25,0.5,1,2,4,8], respectively, whereas the class weight is chosen from the set SW = [1 : 1,1 :
2,1 : 4,1 : 8,1 : 16], where former number indicates the class weight of label 0, which is the majority,
and latter of label 1, which is the minority.The combination of parameters and the corresponding
F1-score will be documented simultaneously. Eventually, the set of parameters achieving the highest
F1-Score in the optimization process is determined. Afterwards, these optimal parameters are
employed to train the final model. At the end, the trained model is tested on the test data and the
predictions are evaluated by using F1-score.

IV.4.9 Security Analysis

Outsourcing data to N non-colluding semi-honest third parties was first studied in [120]. The
authors also presented the security proof of the generic solution. In our protocols, utilizing the out-
sourcing idea in [120], multiple medical institutions outsource genomic data to two non-colluding
semi-honest third parties. We need to protect the privacy of individuals whose genomic data are out-
sourced to the two non-colluding servers. The security of our protocols based on arithmetic circuits
and boolean circuits depends on the proven security of the protocol based on Beaver’s multiplication
triples [105] and the GMW protocol [26] respectively. A semi-honest adversary compromising at
most one proxy server can get one share of the private genomic data of the individuals. We know that
genomic data is shared using arithmetic or boolean sharing so it looks like a uniformly random data.
This ensures that the adversary can not obtain anything about private genomic data of individuals.
Our protocols are secure against malicious data providers and users. Data providers only send
genomic data to the two proxy servers in a shared form and do not receive any messages from other
parties. Their malicious inputs do not result in any data leakage. Any changes in the input of the user
result in different analysis response. This ensures security against malicious users. Confidentiality,
integrity and authentication between all communicating parties are provided using state-of-the-art
technologies such as TLS [121].

IV.5 Evaluation & Discussion

The GMW protocol [26] is used for operations on boolean circuits and the protocol based on Beaver’s
multiplication triples [105] is employed for operations on arithmetic circuits. Our protocols have
been implemented using C++ and ABY framework [113]. ABY framework allows researchers to use
combination of schemes based on arithmetic sharing, boolean sharing and Yao’s garbled circuits. It
supports three types of data shares and converts between any two types, which provides high degree
of freedom in the protocol design.

This work has been benchmarked and run on two identical computers with Intel Core i7-7700HQ
equipped with 2.80GHz CPU and 16.0GB 2667MHz RAM connected via gigabit ethernet.

IV.5.1 Experiment on Synthesized Data

The online run time of the protocols consumed in performing the MPC on synthesized data has been
documented. This process has been repeated for 25 times for each selected parameters. The relation
between the online time and the number of sequences/dimensions/data sources has been depicted
in Figure IV.4 and IV.5. Thereby, the positive correlation between the online time and the concerned

88



parameter can be observed. Ascending respective parameters lead to increasing the online time of
the protocols. In addition, the boolean circuits protocol has outperformed the arithmetic circuits
protocol under each same situation.

100 200 300 400 500
Number of Samples in One File (A)

0

1

2

3

4

5

Ru
n 

Ti
m

e 
(s

)

(a) #Features=100, #Data Sources=2

100 400 900 1600 2500
Number of Features of One Sample (A)

0

1

2

3

4

5

Ru
n 

Ti
m

e 
(s

)

(b) #Samples=100, #Data Sources=2

2 3 4 5 6
Number of Data Sources (A)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ru
n 

Ti
m

e 
(s

)

(c) #Samples=100, #Features=100

Figure IV.4: Online Time against Number of Samples/Features/Data Sources in Arithmetic (A) Circuits
Protocols.

100 200 300 400 500
Number of Samples in One File (B)

0

50

100

150

200

250

300

350

Ru
n 

Ti
m

e 
(m

s)

(a) #Features=100, #Data Sources=2

100 400 900 1600 2500
Number of Features of One Sample (B)

0

50

100

150

200

250

300

350

Ru
n 

Ti
m

e 
(m

s)

(b) #Samples=100, #Data Sources=2

2 3 4 5 6
Number of Data Sources (B)

25

50

75

100

125

150

175

200

Ru
n 

Ti
m

e 
(m

s)

(c) #Samples=100, #Features=100

Figure IV.5: Online Time against Number of Samples/Features/Data Sources in Boolean (B) Circuits
Protocols.

With the help of the aforementioned "Long Array Integration", the time required to construct
SIMD shares has been successfully lowered and the run time has been thus reduced. Nevertheless,
the run time in arithmetic circuits still needs improving. The encoded sequence data consist of only
1 and 0, which means that the data can be bitwisely shared. Hence, we implemented a protocol
based on boolean circuits by substituting the arithmetic circuits. Compared to the arithmetic
shares, boolean shares have only 1 bit length and can only be manipulated bitwisely, whereas the
arithmetic shares are of 8 bit length in this context, burdening the communication cost. Though
the arithmetic/boolean circuits need to generate multiplication/and triples, respectively, while
performing secure multiplication or secure AND, and the boolean circuits need extra online secure
addition, the total protocol run time of the boolean circuits has still outperformed the other. The
underlying reason for such difference between the boolean and arithmetic circuits is mainly because
of the reduced communication data which stems from having less data to transfer in the boolean

89



Quarter Half Full
Proportion of Used Real Data Set

5

10

15

20

25

30

35

40

To
ta

l T
ra

in
in

g 
Ti

m
e 

(s
)

(a) Arithmetic Circuits Protocol

Quarter Half Full
Proportion of Used Real Data Set

2

4

6

8

10

12

14

16

To
ta

l T
ra

in
in

g 
Ti

m
e 

(s
)

(b) Boolean Circuits Protocol

Quarter Half Full
Proportion of Used Real Data Set

0

25

50

75

100

125

150

175

To
ta

l T
ra

in
in

g 
Ti

m
e 

(h
)

(c) Key Switching

Figure IV.6: Run Time Comparison between Arithmetic/Boolean Circuits Protocol & Key Switching

circuits. Hence, the performance has been significantly enhanced using the protocol in boolean
circuits.

IV.5.2 Experiment on Real Data

In Figure IV.6, the comparison between three different methods with respect to run time is shown.
Three different approaches have been benchmarked on real experiment data of various proportion
and repeated for 10 times, respectively. Our two protocols has significantly outperformed the key
switching methods in the total SVM training time. The boolean circuits protocol remains still the
best in terms of the execution time.

After the benchmarking process, the program has been tested on real data set consisting of 766
protein sequences. Those sequences are split into 2 files each of which contains 383 sequences,
representing 2 sets of data originating from 2 hospitals. The sequence data was firstly encoded and
partitioned into two shares for each. Next, the self dot product was calculated and also split into
two shares separately. Once the shares are prepared, they were sent to the two servers. Thereafter,
the cross dot product computation started based on the protocols. Eventually, the resulting gram
matrix was utilized to compute the RBF kernel matrix via the formula given in Equation IV.2. Once
the RBF kernel matrix is calculated, an SVM is trained by employing the resulting kernel matrix. The
5-fold cross validation has reached 0.5819 F1-score on average (standard deviation: 0.1509) with
the optimized parameters. Using these parameters, the SVM accomplished 0.7058 F1-score on the
test data set. A proper explanation to the higher F1-score in the testing process compared to the
training process can be the bias of the data set. The standard deviation of the cross validation is
0.1509, indicating that the F1-score may happen to be significantly higher or lower than the average
score. Thus, 0.7058 is achieved coincidentally. Due to the limitation of the RAM, the computation
process must be split into 24 steps. In total, the arithmetic/boolean circuits protocol has consumed
43.75/15.84 seconds for the entire training and testing process on the full data set, respectively, with
respect to the data originating from 2 data sources and having 388 respective samples and in each of
the samples 924 features.

In terms of the F1-Score of the SVM model, unequal distribution of the labels in the training

90



and test data sets may be the incurring reason to the relatively lower final result. One could create
data sets having the same ratio of the labels to further improve the performance. In the meantime,
a new model that enables better accuracy and data form that carries more information are thus
demanded. Online time can be further decreased with larger bandwidth and better implemented
protocols. Meanwhile, sufficient memory allows the computation to be done in less rounds, saving
the communication cost. Inevitably, the cost of local setup time is immutable. In order to mitigate
this issue, there is an option in our protocols allowing server to generate all needed parameters in
anytime, making preparation for the online communication. Thereby, users can start getting access
to the computation at any time with already generated parameters. The set of parameters will be
discarded and replaced by the renewed ones as soon as they are used, ensuring the security of the
MPC.

IV.6 Conclusion

In this paper, we presented two schemes that enable privacy-preserving training of an SVM on
outsourced genomic data from multiple sources. In our schemes, we utilized the arithmetic secret
sharing, the boolean secret sharing, and oblivious transfer to make SVM training secure and efficient
simultaneously. Our protocols are executed on two semi-trusted proxy servers, each of which only
accesses one share of the resulting dot product that is needed for the training of an SVM. Our schemes
are secure under the semi-honest adversary model. We conducted experiments on both a real HIV
data set and synthetic data sets in order to show the efficacy and efficiency of our protocols. For
future work, we will make our protocols secure against malicious adversaries without decreasing the
performance noticeably.

Acknowledgement

This study is supported by the DFG Cluster of Excellence “Machine Learning – New Perspectives
for Science”, EXC 2064/1, project number 390727645. Furthermore, NP and MA acknowledge fund-
ing from the German Federal Ministry of Education and Research (BMBF) within the ‘Medical
Informatics Initiative’ (DIFUTURE, reference number 01ZZ1804D).

91



V CECILIA: Comprehensive Secure Machine Learning
Framework

Ali Burak Ünal Mete Akgün Nico Pfeifer

Abstract

Since machine learning algorithms have proven their success in data mining tasks, the data with
sensitive information enforce privacy preserving machine learning algorithms to emerge. Moreover,
the increase in the number of data sources and the high computational power required by those
algorithms force individuals to outsource the training and/or the inference of a machine learning
model to the clouds providing such services. To address this dilemma, we propose a secure 3-party
computation framework, CECILIA, offering privacy preserving building blocks to enable more complex
operations privately. Among those building blocks, we have two novel methods, which are the exact
exponential of a public base raised to the power of a secret value and the inverse square root of a
secret Gram matrix. We employ CECILIA to realize the private inference on pre-trained recurrent
kernel networks, which require more complex operations than other deep neural networks such
as convolutional neural networks, on the structural classification of proteins as the first study ever
accomplishing the privacy preserving inference on recurrent kernel networks. The results demonstrate
that we perform the exact and fully private exponential computation, which is done by approximation
in the literature so far. Moreover, we can also perform the exact inverse square root of a secret Gram
matrix computation up to a certain privacy level, which has not been address in the literature at all. We
also analyze the scalability of CECILIA to various settings on a synthetic dataset. The framework shows
a great promise to make other machine learning algorithms as well as further computations privately
computable by the building blocks of the framework.

V.1 Introduction

In recent years, machine learning algorithms, especially deep learning algorithms, have become
more sophisticated and are now more data-driven to achieve better performance. At the same time,
the number of sources generating data with sensitive information and the amount of that data
have increased dramatically. By its very nature, the privacy of this data must be protected during
collaborative model training and testing. Likewise, the privacy of such a model must be kept private
when the owner of the trained model deploys it as a prediction service.

In order to preserve the privacy of both the data and the model, there are several privacy techniques
utilized in the literature. One of these techniques is differential privacy (DiP) introduced by Dwork
et al. [27]. In DiP, to protect the privacy of the components involved in the process, one needs to
perturb the input data, the model parameters, and/or the output by adding noise in a certain budget
that adjusts the privacy level[122, 123]. By adding noise, one has to sacrifice to some extent the
performance of the model and exactness of the result. In addition to DiP, there is a cryptographic
technique called homomorphic encryption (HE) that takes into account the missing points of DiP in
addition to the basic privacy requirements. HE protects the privacy of the data and/or the model
by encrypting the data and/or the parameters of the model with different key schemes. Thanks to
this mechanism, various operations such as addition and multiplication can be performed in the
encrypted domain. There are several attempts to implement machine learning algorithms using
HE [35, 124, 125]. However, the drawbacks of HE are its huge runtime and the limited number of

92



practical operations that can be realized with HE. Secure multi-party computation (MPC), on the
other hand, satisfies these requirements in addition to those already mentioned. The idea is to
employ several parties performing the required computations and to share the data and/or the
model parameters among these parties in such a way that none of the parties can learn about the
data and/or the model parameters on its own. There are several MPC frameworks proposed in the
literature to address various machine learning algorithms [126, 127, 34, 128]. Although they have
several efficient and secure basic functions used by convolutional and feedforward neural networks,
from which we have also benefited, they lack the exact computation of more complex operations,
such as the exponential computation and the inverse square root of a Gram matrix.

In this study, we introduce a general purpose efficient secure multi-party computation framework,
CECILIA, based on 3 computing parties. In addition to the inherited or adapted methods such
as addition, multiplication, the most significant bit and multiplexer, CECILIA provides two novel
functions, to the best of our knowledge, for the first time, which are the privacy preserving exact
computation of the exponential of a known base raised to the power of a secret shared value and
the inverse square root of a secret shared Gram matrix. We show the potential of our framework
CECILIA by realizing privacy preserving prediction on a specific type of pre-trained deep neural
network, namely recurrent kernel networks [17], which has more complex operations than most of
the other deep neural networks. As a summary, we can list the contributions of our paper:

• We present a new comprehensive secure machine learning framework providing basic building
blocks addressing the functions used in machine learning algorithms.

• For the first time, CECILIA provides the exact privacy preserving computation of the exponen-
tial of a known base raised to the power of a secret shared value.

• CECILIA enables the privacy preserving inverse square root of a secret shared Gram matrix as
the first attempt in the literature.

• We introduce the first efficient approach of privacy preserving inference on recurrent kernel
networks via CECILIA.

V.2 Preliminaries

V.2.1 Security Model

In order to prove the security of CECILIA, we use the honest-but-curious security model, in other
words we analyze the security of the framework when there is a semi-honest adversary who corrupts
a party and follows the protocols honestly, but at the same time tries to infer information during the
execution of these protocols. In our analyses of the protocols proposed in CECILIA, we consider a
scenario where a semi-honest adversary corrupts either one of the proxies or the helper party and
tries to infer the input and/or output values of the executed function. We take the same approach to
analyze the security of privacy preserving RKN and focus on if the semi-honest adversary corrupting
a party can break the privacy of the test sample of the data owner and/or the model parameters of
the model owner during the prediction of a test sample using the outsourced model.

93



V.2.2 Square-and-multiply Algorithm for Exponential

One of the approaches to computing the exponential of a base raised to the power of value that can
be represented in a binary form is the square-and-multiply algorithm. Let b be the base and a be the
power, whose binary representation is 〈a〉 of length n. Then, one can compute ba as follows:

ba =
n−1∏
i=0

b〈a〉i ·2i
(V.1)

where 〈a〉i represents the bit value of a at position i , assuming that the indexing starts from the least
significant bit, that is 〈a〉0 corresponds to the least significant bit and 〈a〉n−1 corresponds to the most
significant bit.

V.2.3 Recurrent Kernel Networks

Chen et al. [17] gave a kernel perspective of RNNs by showing that the computation of the specific
construction of RNNs mimics the substring kernel allowing mismatches and the local alignment
kernel which are widely used on sequence data [18, 19, 20]. In short, they construct an RNN, which
they call a recurrent kernel network (RKN), that performs kernel function computation by benefiting
from the recursive structure of the similarity computation. In addition to a well-designed kernel
formulation, this brings the advantage that the parameters of the model can be optimized via
backpropagation, allowing the RKN to outperform the traditional substring kernel and the local
alignment kernel as well as the LSTM [22]. Such performance promises to have a large impact on the
results of tasks with small to medium size data.

In RKN, small motifs, called anchor points, are used as templates to measure similarities among
sequences. The anchor point encoding is similar to one-hot encoding with one small difference. The
encoding of each character of these anchor points does not indicate what that character is exactly,
but rather the probability that that character is a certain single character in the alphabet. Let there
be q anchor points of length k, each of whose characters is encoded using a vector of size d , and a
sequence x of length s, whose characters are encoded using one-hot encoded vectors of length d .
For the t-th character of the input sequence, the RKN approach first computes the similarity of this
character to each character of all anchor points by the following:

K (xt , zi
j ) = eα(〈xt ,z i

j 〉−1) (V.2)

whereα is the similarity measure parameter, xt is the d-dimensional vector representation of the t-th
character of the sequence x and zi

j is the d-dimensional vector representation of the i -th character of
the j -th anchor point. Once the similarity of the t-th character of the sequence to the j -th character
of all q anchor points is computed and represented as a vector b j [t ], the computation continues as
follows:

c j [t ] =λc j [t −1]+ c j−1[t −1]⊗b j [t ] (V.3)

where c j [t ] is the initial mapping of the sequence up to its t-th character into a q-dimensional vector
based on anchor points of length j , λ is a scalar value to downgrade the effect of the previous time
points for j ∈ {1, . . . ,k} and t ∈ {1, . . . , s} and ⊗ is Hadamard product. As the base of this recursive
equation, c0[t ] is a vector of 1s and c j [0] is a vector of 0s if j ̸= 0.

94



To obtain the final mapping of the sequence, the RKN approach multiplies c j [s] by the inverse
square root matrix of the Gram matrix of the anchor points up to their j -th characters. Afterwards,
in the substring kernel allowing mismatches, they use a linear layer, which is a dot product between
ck [s] and the weight vector of the classifier w , to obtain the prediction of the input sequence. Figure
V.1 depicts the computations of an RKN for a single character of the input sequence.

V.3 Framework

CECILIA is based on 3 computing parties. Two of them are called proxy and are the parties with
which the external entities such as the model owner and the data sources interact. The third one is
the helper party helping the proxies compute the desired function without breaking the privacy. It
provides the proxies with the shares of the purposefully designed values or performs calculations on
the data masked by the proxies in the real number domain and returns the share of these calculations.
To ensure the privacy in CECILIA, we utilize 2-out-of-2 additive secret sharing. In this scheme, let
〈x〉i be the share of x represented with n-bits in party Pi for i ∈ {0,1}, one can reconstruct x by
computing (〈x〉0 +〈x〉1) mod L. In the rest of this section we describe the number format we use to
represent values. We then introduce the methods provided by CECILIA.

V.3.1 Number Format

Since the numbers in the methods of CECILIA can be both positive and negative real numbers, we
need to display the fractional part along with the integer part. To achieve this, we follow the number
format proposed by Mohassel and Zhang [34] in SecureML. In this number format, a certain number
of least significant bits represents the fractional part of the value and the rest expresses the integer
part.

V.3.2 Addition (ADD)

The proxies add the shares of two secret shared values they have and obtain the share of the addition
of these values without any communication.

V.3.3 Multiplication (MUL)

The base of the multiplication is the pre-computed multiplication triple [105]. However, because of
the special number format, there is an additional operation called truncation. The goal of truncation
is to preserve the number format after multiplication. Let 〈c〉i = 〈a〉i · 〈b〉i be the shares of the
multiplication triple in Pi for i ∈ {0,1}. To compute 〈z〉 = 〈x〉 · 〈y〉, Pi first computes 〈e〉i = 〈x〉i −〈a〉i

and 〈 f 〉i = 〈y〉i−〈b〉i , and then sends them to P1−i . Afterwards, Pi reconstructs e and f and calculates
〈z〉i = i ·e · f + f ·〈a〉i +e ·〈b〉i +〈c〉i . In the last step to obtain the shares of the multiplication, P0 shifts
z0 to the right by f . Slightly differently, P1 first shifts (−1∗ z1) to the right by f and then multiplies
the result by −1. For more details, see [34, 127].

95



V.3.4 Comparison of Two Secret Shared Values (CMP)

In order to compare two secret shared values in CECILIA, we utilize the comparison method proposed
by Ünal et al. [129]. In CMP, the proxies input the secret shares of x and y , and receive 0 if x ≥ y , 1
otherwise in secret shared form.

V.3.5 Multiplexer (MUX)

One of the common methods used by the proxies is the multiplexer. Due to privacy, the proxies must
choose between two options without knowing which one is chosen. To fulfill this requirement, we
adapt the multiplexer method [129] to CECILIA. The proxies input the secret shares of x and y into
MUX along with the secret shared selection bit s. Then, the proxies receive the fresh secret share of x
if s = 0, y otherwise.

V.3.6 Most Significant Bit (MSB)

CECILIA deals with the private determination of the most significant bit of a secret shared value x
by MSB [129]. Given x, MSB returns the secret shared form of the most significant bit of x. In the
number format of CECILIA, 0 means that x ≥ 0 and 1 means that x < 0.

V.3.7 Dot Product (DP)

Since the dot product between two vectors is a widely used method in machine learning algorithms,
we provide DP in CECILIA. It essentially uses MUL to compute the element-wise multiplication of
the vectors and sums the elements of the resulting vector to obtain the dot product result.

V.3.8 Exponential Computation (EXP)

One of the novel methods of CECILIA is the exponential of a publicly known base raised to the power
of a given secret shared value. For this purpose, we have been inspired by the square-and-multiply
algorithm. We extend the core idea of this algorithm to cover not only the positive numbers, but also
the negative numbers as well as their decimal parts in a multi-party scenario. Briefly, we compute
the contribution of each bit to the result in advance and privately select the correct contribution
depending on the sign of the power and the bit value corresponding to each contribution. Then we
privately multiply the selected contribution to obtain the share of the exponentiation.

More precisely, at the beginning, the proxies calculate the possible contribution of each bit of the
positive and negative real numbers to the result of the exponentiation. That is, they calculate the
exponential of the base as if only that bit of the power is 1 and the rest is 0. Here, it is important to
note that the proxies take into account the binary representation of the absolute value of the negative
power throughout the exponentiation. For positive powers represented in our number format, the
integer part is the same as the original square-and-multiply algorithm. However, for the decimal
part, they change the update operation of the base from taking the square of the base to the square
root of the base. This leads the base to approach 1 when one proceeds further in the decimal part of
the power. When calculating the possible contribution of a negative real number in the power, the

96



proxies follow the same procedure as for the positive power, with the only difference in the starting
value of the base. Instead of starting with the original base, they start with the reciprocal of the base,
that is 1 divided by the original base. Note that one can compute these contributions once in offline
time and reuse them later to save some time if the base is known in advance.

Once the proxies have calculated the possible contributions of the bits of positive and negative
number in the power, they first use MSB to determine the sign of the power. Then they use the
output of MSB in MUX to privately select between these contributions without knowing which one
is selected. They also use this bit to select the power itself or the result of subtracting the power from
0. If the power is positive, they select the power itself. If it is negative, they select its absolute value
without knowing which one is selected. After this point, we refer to the output of this selection as
power, regardless of the selection.

After selecting the power and the corresponding set of possible contributions, they determine
the secret shared values of each bit of the power using MSB. They first call MSB and then shift
the share of the power by 1 to the left and repeat these steps until they have processed all bits.
Afterwards, they input the resulting secret shares of each bit of the power into MUX as selection bits
to choose between the contributions of the power selected based on the sign and the vector of plain
1s, which indicates the contribution of the bits if the bits are 0. Once they have the result of the MUX
operation, they use MUL operations to multiply all the selected contributions to obtain the result of
the exponentiation.

V.3.9 Inverse Square Root of Gram Matrix (INVSQRT)

In addition to the usual operations, CECILIA also provides a more sophisticated and special operation,
namely the inverse square root of a secret shared Gram matrix (INVSQRT). To compute the inverse
square root of a secret shared Gram matrix, we follow the idea of computing the reciprocal of the
square root of the eigenvalues of the Gram matrix and reconstructing the desired matrix using
the diagonal matrix of these reciprocals of the square root of the eigenvalues and the original
eigenvectors. The first step, then, is to perform a private eigenvalue decomposition of the Gram
matrix. For this purpose, we were inspired by the approach proposed by Zhou and Li [42], where
the eigenvalue decomposition was designed as an outsourcing operation from a single party. We
adapted this approach to the multi-party scenario such that the parties own a share of the Gram
matrix and perform the eigenvalue decomposition without learning anything other than their share
of the outcome.

Let Gi be the share of the Gram matrix in Pi for i ∈ {0,1}, M and (τ, s) be a common orthogonal
matrix and common scalars, respectively, known by both proxies. The proxies first mask their share
of the Gram matrix by computing G

′
i = M (τGi + sI )M T , where I is the identity matrix, and then

send it to the helper party. First, the helper party reconstructs G
′

and then performs an eigenvalue
decomposition on G

′
. It obtains the masked versions of the original eigenvalues, represented as

Λ
′
, and eigenvectors, represented as Q

′
. The helper party splits Q

′
into two secret shares and sends

them to the corresponding proxies. To unmask Q
′
i and obtain the share of the eigenvectors Q of

G , the proxies compute M T Q
′
i . As for the eigenvalues, the helper party first generates a vector of

random values ∆ and a random scalar α, and sends them to P1. Once P1 has received ∆ and α, it
computes the vector U = s∆+α, which will act as unmasker, and sends it to P0. The final task of the

97



helper party is to mask the masked eigenvalues by computing Λ′′ =Λ′⊙∆+α and to send it to P0.
Once P0 receives U and Λ′′, it computes Λ′′′ = (Λ′′−U )/τ. To obtain the shares of the reciprocal of
the square root of the original eigenvalues, i.e. Λ−1/2, P0 and P1 perform private multiplication with
inputs ((Λ′′′)−1/2,0) and (0,∆1/2), respectively. The final step for the proxies to obtain the share of the
inverse square root of G is to reconstruct it by computing G−1/2

i =Qi ·di ag (Λ−1/2) ·QT
i for i i n{0,1}.

It is important to note that INVSQRT is a private method with a high probability, since M , τ and
s must be in a problem specific range so that G

′
does not overflow and lose its connection to the

real numbers. This restriction affects the feature of complete randomness of the shares in secure
multi-party computation. Based on the resulting values from the computation, the parties can
reduce the range of secret values, which in this case are the values in G , Q and Λ, to a range slightly
smaller than the original range. However, in order to perform private inference with RKN, one can
outsource the inverse square root of the required Gram matrices along with the other parameters of
the model so that the randomness regarding the aforementioned values is preserved. The reason
why we have included INVSQRT here is to initiate the effort of realizing such a computation, which
is required if one wishes to train an RKN or other algorithms requiring this operation from scratch in
a secure multi-party computation. We discuss further details in Section V.5.

V.4 Privacy Preserving RKN (ppRKN)

In this section, we explain the procedure of the privacy preserving inference on RKN, which is called
ppRKN.

V.4.1 Outsourcing

The first step for the private inference is the outsourcing of the model parameters from the model
owner and the test sample from the data owner to the proxies. To outsource the model parameters,
which are the anchor point matrix, the linear classifier weights and the inverse square root of the
Gram matrices of the anchor points, if one does not want to use INVSQRT for the sake of fully
randomness, the model owner splits them into two arithmetic shares and sends them to the proxies
in such a way that each proxy has a single secret share of each parameter. In the outsourcing of the
test samples, the data owner proceeds similarly after using one-hot encoding to convert a sequence
into a vector of numbers. It divides this vector into two shares and sends them to the proxies.

V.4.2 Private Inference

After outsourcing the model parameters and the test sample, we use the building blocks of CECILIA
to realize the private inference on pre-trained RKN. Let t ∈ {1, . . . , s} be the index of the characters in
the sequence. The first step is to compute the similarity of the one-hot encoded t-th character of
the sequence to each character of each anchor point via Equation V.2. Such a similarity calculation
involves the dot product of two secret shared vectors, the subtraction of a plaintext scalar value
from a secret shared value, the multiplication of a plaintext scalar value by a secret shared value
and the exponential of a known base raised to the power of a secret shared value, respectively. The
output of this process corresponds to the component b j [t ] in Equation V.3. Once the similarity
computation is complete, the proxies proceed with the private elemenent-wise product between

98



b j [t ] and c j−1[t −1], which is the initial mapping of the sequence up to the (t −1)-th character based
on the anchor points of length j −1. Then the proxies add the result of the element-wise product with
the downgraded c j [t −1] with a plaintext scalar value λ. At the end of this computation, the proxies
obtain the secret shared initial mapping of the sequence, namely c j [t ], up to the t-th character to q
dimensional space based on each anchor point of length j ∈ {1, . . . ,k}.

After computing the initial mapping of the sequence up to its total length, that is obtaining ck [s],
the proxies either compute the inverse square root of the Gram matrices of the anchor points up
to each length of the anchor points via INVSQRT, which is K −1/2

Z j Z j
, where Z j is the anchor points

up to the j -th character, or use the inverse square root of the Gram matrices directly if they are
also outsourced. To obtain the final mapping, they multiply these matrices by the corresponding
initial mapping vectors of the sequence. Afterwards, the proxies perform the private dot product
computation of two secret shared vectors, which are the weights of the classifier and the mapping of
the sequence. In the end, they obtain the prediction of ppRKN for the given sequence in a secret
shared form. These shares can then be sent back to the owner of the data enabling the reconstruction
of the prediction of the ppRKN.

V.5 Security Analysis

In this section, we provide the security analysis of the functions of CECILIA that are novel and
ppRKN. For the security analysis of the adapted or taken functions, we kindly refer the reader to the
corresponding papers.

Lemma 9. The protocol EXP securely computes the exponential of a publicly known base raised to
the power of a secret shared value.

Proof. The proof is in the Supplement.

Lemma 10. The protocol INVSQRT privately computes the inverse square root of a secret shared
Gram matrix with a high probability.

Proof. We first demonstrate the correctness of INVSQRT. Once the Gram matrix G whose eigen-
values and eigenvectors are Λ and Q, respectively, is masked by G

′ =M (τGi + sI )M T , we conduct
eigenvalue decomposition on G

′
resulting in the masked eigenvalues and eigenvectors of G , which

are Λ
′ = τΛ+ s and Q

′ =MQ, respectively. The recovery of Q can be achieved by Q =M T Q
′

since
M T = M−1 due to the orthogonality. Since the masked eigenvalues Λ

′
are, once again, masked by

computing Λ
′′ =∆Λ′ +α, we have to compute the partial unmasker U = s∆+α by using ∆, α and s,

and subtract it from Λ
′′

and divide the result by τ to obtain Λ
′′′ =∆Λ. Then, the multiplication of

(Λ
′′′

)−1/2 and ∆1/2 gives us the reciprocal of the square root of the original eigenvalues, i.e. Λ−1/2.
Finally, we construct the inverse square root of G by computing Q ·di ag (Λ−1/2) ·QT . This concludes
the correctness of INVSQRT.

Regarding the security of INVSQRT, we adapted this method from the private eigenvalue decom-
position provided by Zhou and Li [42]. Since they utilize the real number domain rather than a ring,
one can employ brute-force attack to infer the values as they also pointed out. The protection of the
privacy of the data, however, comes from the fact that the attack has non-polynomial bounds [42].

99



•

−

e

x

1

⍺

•

−

e

x

1

⍺

•

−

e

x

1

⍺

⊗
+

xƛ

•

−

e

x

1

⍺

•

−

e

x

1

⍺

•

−

e

x

1

⍺

⊗
+

xƛ

•

−

e

x

1

⍺

•

−

e

x

1

⍺

•

−

e

x

1

⍺

⊗
+

xƛ

Figure V.1: The arithmetic circuit showing the computation of a single time point in RKN. Black
lines represents a scalar value. Orange lines are d-dimensional vectors and blue lines depict q-
dimensional vectors.

Corruption of a proxy: In case of a corruption of P1 by a semi-honest adversary, there is no gain for
the adversary, since it only receives the share of the masked eigenvectors and the masks utilized by
the helper party to mask the eigenvalues. At the end, P1 gets the share of the reciprocal of the square
root of the eigenvalues as a secret shared result of MUL. Therefore, INVSQRT is secure against an
adversary corrupting P1. On the other hand, if an adversary corrupts P0, then it can reduce the
possible eigenvalues of the Gram matrix into a specific set considering that M , τ, s, ∆ and α are
from a specific range. Even in the worst case that the adversary deduces all the eigenvalues, which is
extremely unlikely and negligible, it cannot reconstruct and learn the Gram matrix since P0 receives
only the share of the eigenvectors, which is indistinguishable from a random matrix for P0. Thus,
INVSQRT is also secure against an adversary corrupting P0.

Corruption of the helper: Since the values in M , τ and s are from a specific range, the helper
party can utilize the linear systems Λ

′ = τΛ+ s and Q ′ = MQ to narrow down the possible values of
Q and Λ, and G implicitly. Unless a masked value in the linear systems is at one of its edge cases,

100



0 20 40 60 80 100 120
# Anchor Points

0

200

400

600

800

1000

1200

1400
Ti

m
e 

(s
ec

)

WAN
LAN

(a)

0 20 40 60 80 100 120
k-mer Length

0

200

400

600

800

Ti
m

e 
(s

ec
)

WAN
LAN

(b)

0 10 20 30
Sequence Length

0

5

10

15

20

Ti
m

e 
(s

ec
)

WAN
LAN

(c)

Figure V.2: The result of the experiments to analyze the execution time of CECILIA on both WAN
and LAN settings for (a) varying number of anchor points for a fixed k-mer length and sequence
length, (b) varying length of k-mers for a fixed number of anchor points and sequence length, and
(c) varying length of sequences for a fixed number of anchor points and length of k-mer.

it is, however, not possible for the adversary to infer the actual value. It is plausible to assume that
not every value is at the edge case in these linear systems. Furthermore, considering that obtaining
the eigenvalues of G has a relatively high chance compared to obtaining the eigenvectors of G ,
the adversary cannot form a linear system based on the inferred eigenvalues resulting in a unique
solution for the eigenvectors, eventually a Gram matrix. Considering all these infeasibilities of
obtaining the eigenvalues and eigenvectors in addition to the computational infeasibility and lack of
validation method of a brute-force approach, the adversary cannot obtain G by utilizing Λ′ and Q ′.
Therefore, INVSQRT is secure against a semi-honest adversary corrupting the helper party with a
high probability.

Lemma 11. In case of the utilization of the outsourced inverse square root of the Gram matrices
of the anchor points, the protocol ppRKN securely realizes the inference of a test sample via the
pre-trained RKN model. If INVSQRT is utilized, then the protocol ppRKN privately performs the
inference of a test sample via the pre-trained RKN model with a high probability.

Proof. In addition to the experimental proof of the correctness of ppRKN, based on the hybrid model,
we can state that ppRKN correctly performs the private inference since it utilizes the methods of
CECILIA which are already shown to perform their corresponding tasks correctly.

Corruption of a proxy by a semi-honest adversary: In case of utilization of the outsourced inverse
square root of the Gram matrices, the private inference of RKN via ppRKN involves a series of MUL,
ADD, EXP, MSB, MUX and CMP operations on secret shared data, and addition and multiplication
between secret shared data and a public scalar. Since we proved or gave the references to the proof of
the security of those methods, we can conclude that ppRKN is secure via the hybrid model. Instead of
using the outsourced inverse square root of the Gram matrices, if we employ INVSQRT to compute
those matrices, the adversary corrupting P0 can narrow down the set of possible eigenvalues of the
matrices to a relatively small set of values. Even in the worst case, the adversary cannot obtain the
Gram matrix since it has only the share of the eigenvectors of the Gram matrix. For an adversary
compromising P1, there is no information gain at all. Therefore, ppRKN performs the fully private
inference in case of the utilization of the outsourced inverse square root of the Gram matrices and

101



Protocol Round Complexity

ADD 0

MUL 2

CMP 2

MUX 2

MSB 6

DP 2

EXP 26

INVSQRT 15

Table V.1: Communication round complexity of CECILIA

realizes the private inference with a high probability when INVSQRT is used.

Corruption of the helper party by a semi-honest adversary: In case of utilization of the out-
sourced inverse square root of the Gram matrices, considering the same reason we stated in the
scenario where the adversary corrupts a proxy, we can conclude that ppRKN is secure via the hybrid
model. Instead of using the outsourced inverse square root of the Gram matrices, if we employ
INVSQRT to compute those matrices, the adversary corrupting the helper party can narrow down
the set of possible values of the eigenvalues and the eigenvectors of the Gram matrix to a relatively
small set of values. As we discuss in the security analysis of INVSQRT, such a reduction on the set
is not enough for the adversary to reconstruct the Gram matrix with a high probability. Therefore,
ppRKN is either fully secure or secure with a high probability depending on whether INVSQRT is
used or not, respectively.

V.6 Complexity Analysis of the Framework

In this section, we analyze the communication round complexity of the methods in CECILIA. Table
V.1 summarizes the round complexities for each method in the framework. Note that we also give
the analysis of the methods that we adapted from the other studies to give the comprehensive view
of CECILIA. Except from ADD, the rest of the methods require communication between the parties.
Most of the methods, namely MUL, CMP, MUX and DP, cost 2 communication rounds between the
parties. MSB, on the other hand, requires 6 communication rounds between parties to obtain the
most significant bit of a given secret shared value. One of the novel methods of CECILIA, which is
INVSQRT, costs 15 communication rounds to compute the inverse square root of a secret shared
Gram matrix. The other novel method that we proposed is EXP and the communication round
complexity of this method is 26.

V.7 Results

V.7.1 Dataset

To replicate the experiments of the RKN and verify the correctness of ppRKN, we utilized the same
dataset as Chen et al. [17], namely Structural Classification of Proteins (SCOP) version 1.67 [130]
consisting of 85 fold recognition tasks, each of which contains protein sequences of different lengths,
labeled as positive or negative.

102



We also created two synthetic test sets. One of them contains 5 sequences of length 128. We used
this test set to evaluate the effects of the hyperparameters q and k on the execution time of CECILIA.
The second test set consists of 5 sequences of different lengths to evaluate the effect of sequence
length on execution time.

V.7.2 Experimental Setup

To conduct experiments, we used Amazon EC2 t2.xlarge instances. For the LAN setting, we selected all
instances from the Frankfurt region, and for the WAN setting, we selected additional instances from
London and Paris. We represent numbers with 64 bits whose least significant 20 bits are allocated
to the fractional part. When computing the final mapping of the sequence, we chose INVSQRT to
compute the inverse square root of the Gram matrices to provide the worst case runtime results,
since the runtime of the experiments in which we directly use the outsourced inverse square root
of the Gram matrices is significantly shorter than the runtime of the experiments in which we use
INVSQRT to compute these matrices.

V.7.3 Correctness Analysis

We conducted the experiments to analyze the correctness of ppRKN on the LAN. We performed
the predictions of test samples of a task of SCOP to verify that we can get the same predictions
score as with RKN in plaintext. We selected the first task and trained a different RKN model for
each combination of the parameters q ∈ {16,32,64,128} and k ∈ {5,7,10}. Afterwards, we split
the parameters of the models into two arithmetic secret shares and sent the set of shares to the
corresponding proxies. In addition to the parameters, we randomly selected 5 sequences from the
test samples utilized by the RKN in this task and input these sequences into ppRKN by splitting
the one-hot encoded versions of them into two arithmetic secret shares and sending them to the
corresponding proxies. They privately performed the prediction of these test samples on the secret
shared model. At the end of this process, we received the shares of the predictions from the proxies
and performed the reconstruction to obtain these predictions in plaintext. When we compared the
predictions of ppRKN with the predictions of RKN for these randomly selected test samples, the
largest absolute difference between the corresponding predictions is less than 2×10−5. Such close
predictions of ppRKN suggest that CECILIA can correctly perform almost the same predictions as
RKN without sacrificing the privacy of the test samples or of the model.

There are two reasons for the small deviation in prediction results. The first is the truncation
operation at the end of the multiplication to preserve the format of the resulting number [34].
Although this causes only a small error for a single multiplication, it can add up for thousands of
multiplications. Second, the utilized number format has inherently limited precision and this could
cause a small error between the representation of the value in our format and the actual value itself.
Such an error could also accumulate during the calculation and lead to a relatively high error in the
end. Depending on the problem, one can address these problems by setting the number of bits for
the fractional part to a higher number to increase the precision and minimize the overall error.

103



V.7.4 Execution Time Analysis

In addition to the verification of the correctness of ppRKN, we also examined the effects of the
parameters of the RKN, namely the number of anchor points q , the length of the k-mers k and the
length of the sequence s, on the execution time of ppRKN on both LAN and WAN. For this purpose,
we used two synthetic datasets. To demonstrate the scalability of ppRKN to q ∈ {2,4,8,16,32,64,128},
we set k = 16 and s = 128. The results demonstrated that the runtime of CECILIA on both WAN and
LAN settings scales close to linear to varying number of anchor points. Similarly, we evaluated the
effect of k ∈ {2,4,8,16,32,64,128} for a fixed q = 16 and s = 128. In this case, the execution time of
ppRKN is best characterized with a linear line indicating the linear scalability of ppRKN to the length
of the k-mer. We also experimented with s ∈ {4,8,16,32} for a fixed q = 4 and k = 4 to analyze the
impact of s on execution time. Similar to k, ppRKN scales linearly to s. Figure V.2 summarizes these
results and demonstrates the trends in the execution time of ppRKN for different parameters.

V.8 Conclusion

In this study, we propose a new comprehensive secure framework, called CECILIA, based on 3-party
computation to enable privacy preserving computation of complex functions utilized in machine
learning algorithms, some of which have not been addressed before such as the exact exponential
computation and the inverse square root of a Gram matrix. To the best of our knowledge, CECILIA
enables privacy preserving inference of RKNs for the first time. We demonstrate the correctness
of CECILIA on the LAN using the tasks of the original RKN paper. The experiments demonstrate
that CECILIA can give almost the exact same prediction result as one could obtain from the RKN
without privacy. This proves the correctness of the proposed methods. Moreover, we evaluate the
performance of CECILIA in terms of execution time on two synthetic datasets. We carry out these
analyses on WAN and show that CECILIA scales linearly with the length of the k-mers and the length
of the input sequence, and almost linearly with the number of anchor points. It is important to
note that CECILIA is not just limited to the privacy preserving inference on RKN but also capable
of realizing other machine learning algorithms employing the provided building blocks. In future
work, building on CECILIA, we plan to address the privacy preserving training of the RKN and other
state-of-the-art machine learning algorithms.

V.9 Supplement

V.9.1 Number Format

To illustrate the number format, let n be the number of bits to represent numbers, f be the number
of bits allocated for the fractional part and S be the set of values that can be represented in this
number format, one can convert x ∈R to x̂ ∈S as follows:

x̂ =
{ ⌊x ∗2 f ⌋ x ≥ 0

2n −⌊|x ∗2 f |⌋ x < 0
(V.4)

For example, x = 3.42 is represented as x̂ = 112066, which, if you omit the leading zeros, is 1101101011100001010001
in binary. The two most significant bits, the 21st and 22nd bits, are used to represent 3 and the
remainder represents 0.42.

The choice of f depends on the task for which CECILIA is used. If the numbers in the task are

104



mostly small or they need to be as accurate as possible, the precision of the representation of the
numbers is crucial. In such a case, a higher value for f is required to allow for more decimal places
of the original value, which in turn requires sacrifices in the upper limit of the exponential to be
calculated. However, if the numbers that appear during the process are large, f must be set to lower
values to allow the integer part to represent larger numbers with fewer decimal places.

In our experiments with CECILIA, we represent the numbers with 64 bits and set f to 20 to have
a relatively high precision in representing the numbers and a sufficient range for the exponential.
Although we have used the 64 bit representation in the rest of the explanations of the functions in
CECILIA, CECILIA can also work with a different number of bit representations. The reason for our
choice is to take advantage of the natural modular operation of most modern CPUs, which operate
with 64 bits. In this way, we avoid performing modular operations after each arithmetic operation
performed on the shares. However, one can still use a larger or smaller number of bits on 64 bit CPUs
by performing the modular operations manually.

V.9.2 Security Analysis of EXP

In this part, we give the security analysis of EXP.

Lemma 12. The protocol EXP securely computes the exponential of a publicly known base raised to
the power of a secret shared value.

Proof. We begin the proof by showing the correctness of the method. Let x be the power whose
representation in our number format is 〈x〉 and b be the publicly known base. One of the proxies com-
putes Cp = {. . . ,b8,b4,b2,b,b1/2,b1/4,b1/8, . . .} and Cn = {. . . ,b−8,b−4,b−2,b−1,b−1/2,b−1/4,b−1/8, . . .}
and the other generates a corresponding set of 0s for Cp and Cn . These values in Cp and Cn cor-

respond to b2i
and b−1·2i

, respectively, for i ∈ {(n − f ), . . . ,2,1,0,−1,−2, . . . ,− f } assuming that the
corresponding bit value is 1. They choose one of these sets based on the sign of x and let C be
the selected set. Afterwards, they must choose between c j ∈ C and 1 depending on 〈x〉 j where
j ∈ {0,1, . . . ,n}. For this selection, they repeat the most significant bit operation and bit shifting of x
to the left by 1 until they have processed each bit. Once they have the correct set of contributions,
they basically multiply all of those contributions to obtain the result of the exponential. This proves
the correctness of EXP.

Corruption of a proxy: At the beginning, since the adversary corrupting a proxy knows only one
share of the power x, that is either x0 or x1, it cannot infer any information about the other share.
The first step of the exponential is to compute the possible contribution of every bit of positive and
negative power. This is publicly known. The following step is to select between these contribution
depending on the result of MSB(x) by using MUX. Since both MSB and MUX are secure, the
adversary can neither infer anything about x1− j nor relate the share of the result it obtains to x
in general. In the next step, they obtain each bit of x in secret shared form by using MSB and bit
shifting on the shares of x. Considering the proven security of MSB and the shifting being simply
multiplication of each share by 2, there is no information that the adversary could obtain. Afterwards,
the proxies select the correct contributions by employing MUX. Since MUX gives the fresh share of
what is selected, the adversary cannot associate the inputs to the output. The last step is to multiply
these selected contributions via MUL, which is also proven to be secure. Therefore, we can conclude
that EXP is secure against a semi-honest adversary corrupting a proxy.

105



Corruption of the helper: Since the task of the helper party in the computation of the exponen-
tial of a secret shared power is either to provide multiplication triples or to perform the required
computation on the masked data, there is nothing that the adversary corrupting the helper party
could learn about x. Therefore, it is fair to state that EXP is secure against a semi-honest adversary
corrupting the helper.

106



VI ppAURORA: Privacy Preserving Area Under Receiver
Operating Characteristic and Precision-Recall Curves

with Secure 3-Party Computation

Ali Burak Ünal Mete Akgün Nico Pfeifer

Abstract

Computing an AUC as a performance measure to compare the quality of different machine learning
models is one of the final steps of many research projects. Many of these methods are trained on
privacy-sensitive data and there are several different approaches like ϵ-differential privacy, federated
machine learning and methods based on cryptographic approaches if the datasets cannot be shared
or evaluated jointly at one place. In this setting, it can also be a problem to compute the global
performance measure like an AUC, since the labels might also contain privacy-sensitive information.
There have been approaches based on ϵ-differential privacy to deal with this problem, but to the best
of our knowledge, no exact privacy preserving solution has been introduced. In this paper, we propose
an MPC-based framework, called ppAURORA, with private merging of sorted lists and novel methods
for comparing two secret-shared values, selecting between two secret-shared values, converting the
modulus, and performing division to compute the exact AUC as one could obtain on the pooled
original test samples. With ppAURORA computation of the exact area under precision-recall curve and
receiver operating characteristic curve is even possible when ties between prediction confidence values
exist. To show the applicability of ppAURORA, we use it to evaluate a model trained to predict acute
myeloid leukemia therapy response and we also assess its scalability via experiments on synthetic
data. The experiments show that we efficiently compute exactly the same AUC with both evaluation
metrics in a privacy preserving manner as one can obtain on the pooled test samples in the plaintext
domain. Our solution provides security against semi-honest corruption of at most one of the servers
performing the secure computation.

VI.1 Introduction

Recently, privacy preserving machine learning studies aimed at protecting sensitive information
during training and/or testing of a model in scenarios where data is distributed between different
sources and cannot be shared in plaintext [34, 2, 131, 132, 86, 133, 134, 135]. However, privacy
protection in the computation of the area under curve (AUC), which is one of the most preferred
methods to compare different machine learning models with binary outcome, has not been ad-
dressed sufficiently. Even though there are no studies in the literature enabling such a computation
for the precision-recall (PR) curve, there are several differential privacy based approaches in the
literature for the receiver operating characteristic (ROC) curve [136, 137, 138]. Briefly, they protect
the privacy of the data by introducing noise into the computation so that one cannot obtain the
original data employed in the computation. However, due to the nature of differential privacy, the
resulting AUC is different from the one which could be obtained by using non-perturbed prediction
confidence values (PCVs). For private computation of the exact AUC, there exists no approach in the
literature to the best of our knowledge.

In this paper, we propose the privacy preserving area under receiver operating characteristic and
precision-recall curves (ppAURORA) based on a secure 3-party computation framework to address

107



the necessity of an efficient, private and secure computation of the exact AUC. We compute the area
under the PR curve (AUPR) and ROC curve (AUROC) with ppAURORA. We address two different
cases of ROC curve in ppAURORA by two different versions of AUROC computation. The first one is
designed for the computation of the exact AUC by using PCVs with no tie. In case of a tie of PCVs of
samples from different classes, it just approximates the metric based on the order of the samples,
having a problem when values of both axes change at the same time. In order to compute the exact
AUC even in case of a tie, we introduce the second version with a slightly higher communication cost
than the first approach. Along with the AUC, both are capable of protecting the information of the
number of samples belonging to the classes from all participants of the computation, which could
be used to obtain the order of the labels of the PCVs [139]. Furthermore, since we do not provide
the data sources with the ROC curve, they cannot regenerate the underlying true data. Therefore,
both versions are secure against such attacks [140]. We utilized the with-tie version of AUROC
computation to compute the AUPR since the values of both axes can change at the same time even if
there is no tie.

We introduce a novel 3-party computation framework to achieve privacy preserving AUC compu-
tation with ppAURORA. The framework consists of privacy preserving sorting and four operations
with novel and efficient versions, which are select share (MUX), modulus conversion (MC), compare
(CMP) and division (DIV). MUX is designed to select one of two secret shares based on a secret
shared bit value. MC privately converts the ring of a secret shared value from 2ℓ−1 to 2ℓ. CMP
compares two secret shared values, determines if the first argument is larger than the second one
without revealing values and splits the result in a secret shared way. DIV performs the division of
two secret shared values without sacrificing the privacy of the values. Note that our new DIV is
specifically customized for efficient and secure AUC computation.

VI.2 Scenarios

In this section, we describe the scenarios at which ppAURORA is applicable. Note that it is not
limited to these scenarios.

End-to-end MPC-based Collaborative Learning: Recently, researchers proposed multi-party
computation (MPC) based training and testing of several machine learning algorithms [34, 2, 133].
Their approaches can train the model privately and collaboratively, and make predictions on the test
data of the data sources involved in the computation. However, the privacy preserving collaborative
evaluation of the model is lacking. To fulfill such a gap, one can integrate ppAURORA at the end of
the process once the PCVs are secret shared among two computing parties. One possible scenario
would be that one wants to build a model for predicting hospitalization times for COVID-19 patients.
Usually, the personal data cannot be shared easily, due to the private nature of the data, but even
sharing the hospitalization times might be problematic in case the hospitals do not want to allow
competitors to learn about this piece of information. Nevertheless, one can assume that a model
built on data from many hospitals will perform much better than models built on individual datasets
and that the global AUC will allow for a better model selection than an average of locally computed
AUCs. This privacy preserving global AUC computation can be performed with our ppAURORA.

Evaluation of Models Trained by Federated Learning: In some cases, the data is not allowed to
be shared at all. For such cases, federated learning has been widely utilized to train a collaborative
machine learning model without gathering the data in one place. Each data source updates the

108



model by its own data in an online learning process and passes the model to the next data source
until the model converges or the iteration limit is reached. Once the data sources obtain the trained
model, they make the predictions of their own test data. In order to collaboratively evaluate the
performance of the model, they can utilize ppAURORA.

VI.3 Preliminaries

Security Model: In this study, we prove the full security of our solution (i.e., privacy and correctness)
in the presence of semi-honest adversaries that follow the protocol specification, but try to learn
information from the execution of the protocol. We consider a scenario where a semi-honest
adversary corrupts a single server and an arbitrary number of data owners in the simulation paradigm
[141, 142] where two worlds are defined: the real world where parties run the protocol without any
trusted party, and the ideal world where parties make the computation through a trusted party.
Security is modeled as the view of an adversary called a simulator S in the ideal world, who cannot
be distinguished from the view of an adversary A in the real world. The universal composability
framework [142] introduces an adversarial entity called environment Z , which gives inputs to all
parties and reads outputs from them. The environment is used in modeling the security of end-to-
end protocols where several secure protocols are used arbitrarily. Security here is modeled as no
environment can distinguish if it interacts with the real world and the adversary A or the ideal world
and the simulator S . We also provide privacy in the presence of a malicious adversary corrupting
any single server, which is formalized by Araki et al. [143]. The privacy is formalized by saying that
a malicious party, which arbitrarily deviates from the protocol description, cannot learn anything
about the inputs and outputs of the honest parties.

Notations: In our secure protocols, we use additive secret sharing over three different rings ZL ,
ZK and ZP where L = 2ℓ, K = 2ℓ−1, P = 67 and ℓ= 64. We denote two shares of x over ZL , ZK and
ZP with (〈x〉0, 〈x〉1), (〈x〉K

0 , 〈x〉K
1 ) and (〈x〉P

0 , 〈x〉P
1 ), respectively. If a value x is shared over the ring ZP ,

each bit of x is additively shared in ZP . This means x is shared as a vector of 64 shares where each
share takes a value between 0 and 66. We also use boolean sharing of a single bit which is denoted
with (〈x〉B

0 , 〈x〉B
1 ).

VI.3.1 Secure Multi-party Computation

Secure multi-party computation was proposed in the 1980s [25, 26]. These studies showed that
multiple parties can compute any function on inputs without learning anything about the inputs of
the other parties. Let us assume that there are n parties I1, · · · , In and Ii has a private input xi for
i ∈ {1, . . . ,n}. All parties want to compute the arbitrary function (y1, . . . , yn) = f (x1, . . . , xn) and get the
result yi . MPC allows the parties to compute the function through an interactive protocol and Ii to
learn only yi .

We first explain the 2-out-of-2 additive secret sharing and how addition (ADD) and multiplication
(MUL) are computed. In additive secret sharing, an ℓ-bit value x is shared additively in the ring ZL as
the sum of two values. For ℓ-bit secret sharing of x, we have 〈x〉0 +〈x〉1 ≡ x mod L where Ii knows
only 〈x〉i and i ∈ {0,1}. All arithmetic operations are performed in the ring ZL . For additive secret
sharing, we use protocols based on Beaver’s multiplication triples [105].

109



Addition: 〈z〉 = 〈x〉+〈y〉. Ii locally computes 〈z〉i = 〈x〉i +〈y〉i . In order to compute the addition
of a shared value 〈x〉 and a constant c, Ii locally computes 〈z〉i = 〈x〉i + c and I1−i locally computes
〈z〉1−i = 〈x〉1−i for i is either 0 or 1.

Multiplication: 〈z〉 = 〈x〉 · 〈y〉. Multiplication is performed using a pre-computed multiplication
triple 〈c〉i = 〈a〉i · 〈b〉i [105]. Ii computes 〈e〉i = 〈x〉i −〈a〉i and 〈 f 〉i = 〈y〉i −〈b〉i . Ii sends 〈e〉i and
〈 f 〉i to I1−i . Ii reconstructs e and f , and then computes 〈z〉i = i · e · f + f · 〈a〉i + e · 〈b〉i +〈c〉i . The
computation of the multiplication triple is performed via homomorphic encryption or oblivious
transfer. Ii cannot perform multiplication locally.

VI.3.2 Area Under Curve

One of the most common ways to summarize the plot-based model evaluation metrics is area under
curve (AUC) which measures the area under the curve. It is applicable to various different evaluation
metrics. In this study, we employ AUC to measure the area under the ROC curve and the PR curve.

Area Under ROC Curve (AUROC): In machine learning problems with binary outcome, the ROC
curve is very effective to take the sensitivity and the specificity of the classifier into account by
plotting the false positive rate (FPR) on the x-axis and the true positive rate (TPR) on the y-axis.
AUC summarizes this plot by measuring the area between the line and the x-axis, which is the
area under ROC curve (AUROC). Let us assume that M is the number of test samples, V ∈ [0,1]M

contains the sorted PCVs of test samples in descending order, T ∈ [0,1]M and F ∈ [0,1]M contain
the corresponding TPR and FPR values, respectively, where the threshold for entry i is set to V [i ],
and T [0] = F [0] = 0. In case that there is no tie in V , the privacy-friendly AUROC computation is as
follows:

AU ROC =
M∑

i=1

(
T [i ] · (F [i ]−F [i −1])

)
(VI.1)

This formula just approximates the exact AUROC in case of a tie in V depending on the order of
the samples. As an extreme example, let V have 10 samples with the same PCV. The first 5 samples
have label 1 and the second 5 samples have label 0. Such a setting outputs AU ROC = 1. As a contrary,
if we have samples with 0 at the beginning and samples with 1 later, we obtain AU ROC = 0. In order
to define an accurate formula for the AUROC in case of such a tie condition, let ξ be the vector of
indices in ascending order where the PCV of the sample at that index and the preceding are different
for 0 ≤ |ξ| ≤ M where |ξ| denotes the size of the vector. Assuming that ξ[0] = 0, the computation of
AUROC can be done as follows:

AU ROC =
|ξ|∑

i=1

(
T [ξ[i −1]] · (F [ξ[i ]]−F [ξ[i −1]])+

(T [ξ[i ]]−T [ξ[i −1]]) · (F [ξ[i ]]−F [ξ[i −1]])

2

) (VI.2)

As Equation VI.2 indicates, one only needs TPR and FPR values on the points where the PCV changes
to obtain the exact AUROC. We will benefit from this observation in the privacy preserving AUROC
computation.

Area Under PR Curve (AUPR): PR curve evaluates the models with binary outcome by plotting
recall on the x-axis and precision on the y-axis, and it is generally preferred over AUROC for scenarios

110



SecureNN [2] Our Framework

Protocol Rounds Communication Protocol Rounds Communication

SelectShare 2 5ℓ MUX 2 6ℓ

ShareConvert 4 4ℓ logP +6ℓ ModulusConversion 3 4ℓ logP +6ℓ

ComputeMSB 5 4ℓ logP +13ℓ Compare 5 4ℓ logP +11ℓ

DIV 10ℓD (8ℓ logP +24ℓ)ℓD DIV 2 6ℓ

Table VI.1: Complexity comparison of distinguishing protocols of ppAURORA with SecureNN [2]

with class imbalances. The AUC summarizes this plot by measuring the area under the PR curve
(AUPR). Since both precision and recall can change at the same time even without a tie, we measure
the area by using the Equation VI.2 where T being the precision and F being the recall.

VI.4 Framework

In this section, we give the definitions of basic operations of the framework that we use in ppAURORA.
Note that we include only the operations with novelty due to the page limit. One can refer to the
Supplement for the other operations.

Selecting One of Two Secret Shared Values: Algorithm VI.1 performs 3-party computation to
select one of two secret shared values based on the secret shared bit value (functionality FMUX). At
the beginning of the protocol, S0 and S1 hold (〈x〉0, 〈y〉0, 〈b〉0) and (〈x〉1, 〈y〉1, 〈b〉1), respectively. At
the end of the secure computation, S0 and S1 hold the fresh shares of z = x −b(x − y). We utilize the
randomized encoding of multiplication [144]. As shown in Equation VI.3, we need to multiply two
values owned by different parties in the computation of 〈b〉0(〈x〉1 −〈y〉1) and 〈b〉1(〈x〉0 −〈y〉0. We
assume that S2 is the computation party and performs these multiplications via the randomized
encoding.

z = x −b(x − y)

= 〈x〉0 +〈x〉1 −〈b〉0(〈x〉0 −〈y〉0)−〈b〉1(〈x〉1 −〈y〉1)

−〈b〉0(〈x〉1 −〈y〉1)−〈b〉1(〈x〉0 −〈y〉0)

(VI.3)

Modulus Conversion: Algorithm VI.2 describes our 3-party protocol realizing the functionality
FMC that converts shares over ZK to fresh shares over ZL where L = 2K . Assuming that S0 and S1

have the shares 〈x〉K
0 and 〈x〉K

1 , respectively, the first step for S0 and S1 is to mask their shares by
using the shares of the random value r ∈ZK sent by S2. Afterwards, they reconstruct (x + r ) ∈ZK , by
first computing 〈y〉K

i = 〈x〉K
i +〈r 〉K

i for i ∈ {0,1} and sending these values to each other. Along with
the shares of r ∈ZK , S2 also sends the information in boolean shares telling whether the summation
of the shares of r wraps so that S0 and S1 can convert r from the ring ZK to the ring ZL . Once they
reconstruct y ∈ZK , S0 and S1 can change the ring of y to ZL by adding K to one of the shares of y
if 〈y〉K

0 +〈y〉K
1 wraps. After conversion, the important detail regarding y ∈ ZL is to fix the value of

it. In case (x + r ) ∈ ZK wraps, which we identify by using PC, depending on the boolean share of
the outcome of PC, S0 or S1 or both add K to their shares. If both adds, this means that there is no
addition to the value of y ∈ZL . At the end, Si subtracts ri ∈ZL from yi ∈ZL and obtains xi ∈ZL for
i ∈ {0,1}.

Comparison of Two Secret Shared Values: Algorithm VI.3 gives the definition of the 3-party

111



1 Algorithm MUX()
input :S0 and S1 hold (〈x〉0, 〈y〉0, 〈b〉0) and (〈x〉1, 〈y〉1, 〈b〉1), respectively.
output :S0 and S1 get 〈z〉0 and 〈z〉1, respectively, where z = x −b(x − y).

2 S0 and S1 hold four common random values ri where i ∈ {0,1,2,3}
3 S0 computes M1 = 〈x〉0 −〈b〉0(〈x〉0 −〈y〉0)+ r1〈b〉0 + r2(〈x〉0 −〈y〉0)+ r2r3, M2 = 〈b〉0 + r0,

M3 = 〈x〉0 −〈y〉0 + r3

4 S0 sends M2 and M3 to S2

5 S1 computes M4 = 〈x〉1 −〈b〉1(〈x〉1 −〈y〉1)+ r0(〈x〉1 −〈y〉1)+ r0r1 + r3〈b〉1,
M5 = (〈x〉1 −〈y〉1)+ r1, M6 = 〈b〉1 + r2

6 S1 sends M5 and M6 to S2

7 S2 computes M2M5 +M3M6 = z
8 S2 divides z into two shares (〈z〉0 +〈z〉1) and sends 〈z〉0 and 〈z〉1 to S0 and S1, respectively
9 S0 computes 〈z〉0 = M1 −〈z〉0

10 S1 computes 〈z〉1 = M4 −〈z〉1

Algorithm VI.1: Select Share (MUX)

protocol for the functionality FCMP comparing two secret shared values x and y , and outputs zero if
x ≥ y , 1 otherwise. In Algorithm VI.3, we find the value of (x−y)∧2L−1 indicating the most significant
bit (MSB) of (x − y). First, Si where i ∈ {0,1} computes 〈d〉K

i = (〈x〉L
i −〈y〉L

i ) mod K . Si converts the
ring of d from ZK to ZL by calling MC. Finally, S0 and S1 subtract the shares of d over ZL from the
shares of x − y and map the result to 1 if it equals K , otherwise 0.

Division: Algorithm VI.4 gives the definition of the 3-party protocol realizing the functionality
FDIV that computes x/y . S0 and S1 hold shares of x and y , and DIV outputs fresh shares of x/y . DIV
computes x/y correctly when S0 and S1 know the upper bound for x and y . Thus, it is not a general
purpose method over ZL . We rather specifically designed it for ppAURORA since S0 and S1 know the
upper bound of inputs to DIV in the computation of the AUC.

VI.4.1 Complexities of Our Protocols

There are some frameworks in the literature that also perform 3-party secure computation. The
recently published SecureNN [2] has shown successful results in terms of performance in private
CNN training. We compared our secure protocols with the corresponding building blocks from
SecureNN that one needs to use for computing AUC. Table VI.1 summarizes the comparison. It is
clear that our protocols have lower costs. Therefore, we can deduce that our framework outperforms
SecureNN in AUC computation. Our novel protocols (MUX, MC, CMP, DIV) require at most 5
communication rounds, which is the most important factor affecting the performance of secure
computing protocols. Our new protocols show an improvement in terms of round complexities.

VI.5 ppAURORA Computation

In this section, we give the description of our protocol for ppAURORA computation. In ppAURORA,
we have data owners that outsource their PCVs and the ground truth labels in secret shared form and
three non-colluding servers that perform 3-party computation on secret shared PCVs to compute
AUC. The protocol starts with outsourcing by the data sources. Afterward, the servers perform the
desired calculation privately. Finally, they send the shares of the result back to the data sources. The

112



1 Algorithm MC()
input :S0 and S1 hold 〈x〉K

0 and 〈x〉K
1 , respectively

output :S0 and S1 get 〈x〉0 and 〈x〉1, respectively
2 S0 and S1 hold a common random bit n′

3 S2 picks a random numbers r ∈Z2L−1 and generates 〈r 〉K
0 , 〈r 〉K

1 , {〈r [ j ]〉p
0 } j∈[ℓ] and {〈r [ j ]〉p

1 } j∈[ℓ].

4 S2 computes w = isWrap(〈r 〉K
0 ,〈r 〉K

1 ,K ) and divides w into two boolean shares wB
0 and wB

1

5 S2 sends 〈r 〉K
i , {〈r [ j ]〉p

i } j∈[ℓ] and wB
i to Si , for each i ∈ {0,1}

6 For each i ∈ {0,1}, Si executes Steps 7-8

7 〈y〉K
i = 〈x〉K

i +〈r 〉K
i

8 Si reconstructs y by exchanging shares with S1−i

9 nB
i =PC({〈r [ j ]〉p

i } j∈[ℓ], y,n′)
10 S0 computes nB

i = nB
i ⊕n′

11 For each i ∈ {0,1}, Si computes cB
i = wB

i ⊕nB
i

12 S0 computes 〈y〉0 = 〈y〉K
0 + isWrap(〈y〉K

0 ,〈y〉K
1 ,K ) ·K

13 S1 sets 〈y〉1 = 〈y〉K
1

14 For each i ∈ {0,1}, Si computes 〈x〉i = 〈y〉i − (〈r 〉K
i + cB

i ·K )

Algorithm VI.2: Modulus Conversion (MC)

communication between all parties is performed over a secure channel (e.g., TLS).

Outsourcing: At the start of ppAURORA, each data owner Hi has a list of PCVs and corresponding
ground truth labels for i ∈ {1, . . . ,n}. Then, each data owner Hi sorts its whole list Ti according to
PCVs in descending order and divides it into two additive shares Ti0 and Ti1 , and sends Ti0 and Ti1 to
S0 and S1, respectively. We refer to S0 and S1 as proxies.

Sorting: After the outsourcing phase, S0 and S1 obtain the shares of individually sorted lists of
PCVs of the data owners. Afterwards, the proxies need to perform a merging operation on each pair
of individually sorted lists and continue with the merged lists until they obtain the global sorted list
of PCVs. This can be considered as the leaves of a binary tree merging into the root node, which is, in
our case, the global sorted list. Due to the high complexity of privacy preserving sorting, we decided
to make the sorting parametric to adjust the trade-off between privacy and practicality. Let δ= 2a+1
be this parameter that determines the number of PCVs that will be added to the global sorted list
in each iteration for a ∈N, Tik and T jk be the shares of two individually sorted lists of PCVs in Sk s
for k ∈ {0,1} and |Ti | ≥ |T j | where |.| is size operator. At the beginning, the proxies privately compare
the lists elementwise. They utilize the results of the comparison in MUXs to privately exchange
the shares of PCVs in each pair if the PCV in T j is larger than the PCV in Ti . In the first MUX, they
input the share in Tik to MUX first and then the share in T jk along with the share of the result of the
comparison to select the larger of the PCVs and move it to Tik . In the second MUX, they reverse
the order to select the smaller of the PCVs and move it to T jk . We call this stage shuffling. Then,
they move the top PCV of Tik to the merged list of PCVs. If δ ̸= 1, then they continue comparing the
top PCVs in the lists and moving the largest of them to the merged list. Once they move δ PCVs to
the merged list, they shuffle the lists again. Until finishing up the PCVs in Tik , the proxies follows
shuffling-moving cycle.

The purpose of the shuffling is to increase the number of candidates for a specific position and,
naturally, lower the chance of matching a PCV in the individually sorted lists to a PCV in the merged

113



1 Algorithm CMP()
input :S0 and S1 hold (〈x〉0, 〈y〉0) and (〈x〉1, 〈y〉1), respectively
output :S0 and S1 get 〈z〉0 and 〈z〉1, respectively, where z is equal to zero if x >= y and 1

otherwise
2 S0 and S1 hold a common random bit f
3 For each i ∈ {0,1}, Si executes Steps 4-9.

4 〈d〉K
i = (〈x〉i −〈y〉i ) mod K

5 〈d〉i =MC(〈d〉K
i ).

6 〈z〉i = 〈x〉i −〈y〉i −〈d〉i .
7 〈a[0]〉i = i f K −〈z〉i

8 〈a[1]〉i = i (1− f )K −〈z〉i

9 Si sends 〈a〉i to S2

10 S2 reconstructs a[ j ] where j ∈ {0,1} and computes a[ j ] = a[ j ]/K
11 S2 creates two fresh shares of a[ j ] where j ∈ {0,1} sends them to S0 and S1

12 For each i ∈ {0,1}, Si executes Step 13
13 〈z〉i = 〈a[ f ]〉i

Algorithm VI.3: Comparison of two secret shared values (CMP)

1 Algorithm DIV()
input :S0 and S1 hold (〈x〉0, 〈y〉0) and (〈x〉1, 〈y〉1), respectively.
output :S0 and S1 get 〈z〉0 and 〈z〉1, respectively, where z = x/y .

2 S0, S1 and S2 know the common scaling factor F
3 S0 and S1 know the upper limit of x and y , which is denoted by U
4 S0 and S1 hold two common random values r0 and r1, where r0 < ⌊L/2U⌋ and r1 < ⌊L/2U⌋
5 For each i ∈ {0,1}, Si executes Steps 6-7.
6 Si computes 〈a〉i = r1〈x〉i + r0〈y〉i and 〈b〉i = r1〈y〉i

7 Si sends 〈a〉i and 〈b〉i to S2

8 S2 reconstructs a and b and computes c = aF /b
9 S2 creates two shares of c denoted by 〈c〉0 and 〈c〉1, and sends them to S0 and S1, respectively

10 S0 computes 〈z〉0 = 〈c〉0

11 S1 computes 〈z〉1 = 〈c〉1 − r0F /r1

Algorithm VI.4: Division (DIV)

list. The highest possible chance of a matching is 50%. This results in a very low chance of guessing
the matching of whole PCVs in the list. Regarding the effect of δ on the privacy, it is important
to note that δ needs to be an odd number to make sure that shuffling always leads to increment
in the number of candidates. Even value of δ may cause ineffective shuffling during the sorting.
Furthermore, δ = 1 provides the utmost privacy, which means that the chance of guessing the
matching of the whole PCVs is 1 over the number of all possible merging of those two individually
sorted lists. However, the execution time of sorting with δ= 1 can be relatively high. For δ ̸= 1, the
execution time can be low but the number of possible matching of PCVs in the individually sorted
list to the merged list decreases in parallel to the increment of δ. As a guideline on the choice of δ,
one can decide it based on how much privacy loss any matching could cause on the specific task. In
case of δ ̸= 1 and |T jk | = 1 at some point in the sorting, the sorting continues as if it had just started
with δ= 1 to make sure that the worst case scenario for guessing the matching can be secured. More
details of the sorting phase are in the Supplement.

114



input :〈T 〉i = ({〈con1〉i ,〈l abel1〉i }, ..., {〈conM 〉i ,〈l abelM 〉i }), 〈T 〉i is a share of the global sorted
list of PCVs, and labels

1 For each i ∈ {0,1}, Si executes Steps 2-11
2 〈T P〉i ← 0, 〈P〉i ← 0, 〈pF P〉i ← 0, 〈N〉i ← 0
3 foreach item 〈t〉 ∈ 〈T 〉 do
4 〈T P〉i ←〈T P〉i +〈t .l abel〉i

5 〈P〉i ←〈P〉i + i
6 〈F P〉i ←〈P〉i −〈T P〉i

7 〈A〉i ←MUL(〈T P〉i ,〈F P〉i −〈pF P〉i )
8 〈N〉i ←〈N〉i +〈A〉i

9 〈pF P〉i ←〈F P〉i

10 〈D〉i ←MUL(〈T P〉i ,〈F P〉i )
11 〈ROC〉i ←DIV(〈N〉i ,〈D〉i )

Algorithm VI.5: Secure AUROC computation without ties

VI.5.1 Secure Computation of AUROC

Once S0 and S1 obtain the global sorted list of PCVs, they calculate the AUROC based on this list by
employing one of the versions of AUROC depending on whether there exists tie in the list.

Secure AUROC Computation without Ties: In Algorithm VI.5, we compute the AUROC as shown
in Equation VI.1 because we assume that there is no tie in the sorted list of PCVs. At the end
of the secure computation, the shares of numerator N and denominator D are computed where
AU ROC = N /D. Si for i ∈ {0,1} knows the number of test samples M . Thus Si can determine the
upper bound for N and D and DIV can be used to calculate AU ROC = N /D . With the help of high
numeric value precision of the results, most of the machine learning algorithms yield different
PCVs for samples. Therefore, such an approach to compute the AUROC is applicable to most of the
machine learning tasks. However, in case of a tie between samples from two classes in the PCVs,
it does not guarantee that it gives the exact AUROC. Depending on the order of the samples, it
approximates the score. To have a more accurate AUROC, we will propose another version with a
slightly higher communication cost in the next section.

Secure AUROC Computation with Ties: To detect ties in the list of PCVs, S0 and S1 compute the
difference between each PCV and its following PCV. S0 computes the modular additive inverse of
its shares. The proxies apply a common random permutation to the bits of each share in the list to
prevent S3 from learning the non-zero relative differences. They also permute the list of shares using
a common random permutation to shuffle the order of the real test samples. Then, they send the list
of shares to S2. S2 XORes two shares and maps the result to one if it is greater than zero and zero
otherwise. Then, proxies privately map PCVs to zero if they equal to their previous PCV and one
otherwise. This phase is depicted in Algorithm VI.7. In Algorithm VI.6, S0 and S1 use these mappings
to take only the PCVs which are different from their subsequent PCV into account in the computation
of the AUROC based on the Equation VI.2. In Algorithm VI.6, DIV method is used because the upper
limit for the numerator and denominator is known, as in the AUROC computation described in the
previous paragraph.

Secure AUPR Computation: As in the AUROC computation described in the previous paragraph,
S0 and S1 map a PCV in the global sorted list to zero if it equals to the previous PCV and one otherwise

115



input :〈T 〉i = ({〈con1〉i ,〈l abel1〉i }, , ..., {〈conM 〉i ,〈l abelM 〉i }), 〈T 〉i is a share of the global sorted
list of PCVs, and labels

1 For each i ∈ {0,1}, Si executes Steps 2-18
2 〈T P〉i ← 0, 〈P〉i ← 0, 〈pF P〉i ← 0, 〈pT P〉i ← 0, 〈N1〉i ← 0, 〈N2〉i ← 0
3 foreach item 〈t〉i ∈ 〈T 〉i do
4 〈T P〉i ←〈T P〉i +〈t .l abel〉i

5 〈P〉i ←〈P〉i + i
6 〈F P〉i ←〈P〉i −〈T P〉i

7 〈A〉i ←MUL(〈pT P〉i ,〈F P〉i −〈pF P〉i )
8 〈A〉i ←MUL(〈A〉i ,〈t .con〉i )
9 〈N1〉i ←〈N1〉i +〈A〉i

10 〈A〉i ←MUL(〈T P〉i −〈pT P〉i ,〈F P〉i −〈pF P〉i )
11 〈A〉i ←MUL(〈A〉i ,〈t .con〉i )
12 〈N2〉i ←〈N2〉i +〈A〉i

13 〈pr e_F P〉i ←MUX(〈pF P〉i ,〈F P〉i ,〈t .con〉i )
14 〈pr e_T P〉i ←MUX(〈pT P〉i ,〈T P〉i ,〈t .con〉i )

15 〈N〉i ← 2 · 〈N1〉i +〈N2〉i

16 〈D〉i ← 2 ·MUL(〈T P〉i ,〈F P〉i )
17 〈ROC〉i ←DIV(〈N〉i ,〈D〉i )

Algorithm VI.6: Secure AUROC computation with tie

by running the Algorithm VI.7. Then, we use Equation VI.2 to calculate AUPR as shown in Algorithm
VI.8. In the AUPR calculation, the denominator of each precision value is different. Thus, we need
to perform division in each iteration. Since the proxy servers can determine the upper bound for
numerators and denominators we can use the DIV operation to perform divisions.

VI.6 Security Analysis

We provide all semi-honest simulation-based security proofs for the MUX, MC, CMP and DIV
functions defined in our framework as well as the computations of ppAURORA in the Supplement.

64 250 500 1000
# Samples

0

500

1000

1500

2000

2500

Ti
m

e 
(s

ec
)

AUROC with no tie
AUROC with tie
AUPR

(a)

2 4 8 16
# Data Sources

0

500

1000

1500

2000

2500

Ti
m

e 
(s

ec
)

AUROC with no tie
AUROC with tie
AUPR

(b)

1 11 25 51 101
Delta

100

200

300

400

500

600

Ti
m

e 
(s

ec
)

AUROC with no tie
AUROC with tie
AUPR

(c)

Figure VI.1: (a) The execution time of various settings to evaluate the scalability of ppAURORA to the
number of samples for a fixed number of parties and (b) to the number of parties for a fixed number
of samples in each party. (c) The effect of δ on the execution time is shown.

116



input :〈C〉i = (〈con1〉i , ..., 〈conM 〉i ), 〈C〉i is a share of the global sorted list of PCVs, M is the
number of PCVs

1 S0 and S1 hold a common random permutation π for M items
2 S0 and S1 hold a list of common random values R
3 S0 and S1 hold a list of common random permutation σ for ℓ items
4 For each i ∈ {0,1}, Si executes Steps 5-13
5 for j ← 1 to M −1 do
6 〈C [ j ]〉i ← (〈C [ j ]〉i −〈C [ j +1]〉i )
7 if i = 0 then
8 〈C [ j ]〉i = L−〈C [ j ]〉i

9 〈C [ j ]〉i = 〈C [ j ]〉i ⊕R[ j ]
10 〈C [ j ]〉i =σ j (〈C [ j ]〉i )

11 〈D〉i =π(〈C〉i )
12 Insert arbitrary number of dummy zero and non-zero values to randomly chosen locations in 〈D〉i

13 Si sends 〈D〉i to P2

14 S2 reconstructs D by computing 〈D〉0 ⊕〈D〉1

15 foreach item 〈d〉 ∈ 〈D〉 do
16 if d > 0 then
17 d ← 1

18 S2 creates new shares of D , denoted by 〈D〉0 and 〈D〉1, and sends them to S0 and S1, respectively.
19 For each i ∈ {0,1}, Si executes Steps 18-21
20 Remove dummy zero and non-zero values from 〈D〉i

21 〈C〉i =π(〈D〉i )
22 for j ← 1 to M −1 do
23 〈T [ j ].con〉i ←〈C [ j ]〉i

24 〈T [M ].con〉i ← i

Algorithm VI.7: Secure detection of ties

VI.7 Dataset

To demonstrate the correctness of ppAURORA and its applicability to a real-life problem, we utilized
Acute Myeloid Leukemia (AML) dataset * † from the first subchallenge of DREAM Challenge [43].
We chose the submission of the team with the lowest score in the leaderboard with accessible files,
which is the team Snail. The training dataset has 191 samples, among which 136 patients have
complete remission. We also used UCI Hearth Disease dataset ‡ for the correctness. In the test set,
we have 54 samples with binary outcome.

Additionally, we also aimed to analyze the scalability of ppAURORA at different settings. For this
purpose, we generated a synthetic dataset with no restriction other than having the PCVs between 0
and 1.

*https://www.synapse.org/#!Synapse:syn2700200
†https://www.synapse.org/#!Synapse:syn2501858
‡https://archive.ics.uci.edu/ml/datasets/heart+disease

117

https://www.synapse.org/#!Synapse:syn2700200
https://www.synapse.org/#!Synapse:syn2501858
https://archive.ics.uci.edu/ml/datasets/heart+disease


input :〈T 〉i = ({〈con1〉i ,〈l abel1〉i }, ..., {〈conM 〉i ,〈l abelM 〉i }), 〈T 〉i is a share of the global sorted
list of PCVs, and labels

1 S0 and S1 hold a common random permutation π for M items
2 For each i ∈ {0,1}, Si executes Steps 3-24
3 〈T P [0]〉i ← 0, 〈RC [0]〉i ← 0, 〈pPC〉i ← i , 〈pRC〉i ← 0, 〈N1〉i ← 0, 〈N2〉i ← 0
4 for j ← 1 to M do
5 〈T P [ j ]〉i ←〈T P [ j −1]〉i +〈T [ j ].l abel〉i

6 〈RC [ j ]〉i ←〈RC [ j −1]〉i + i

7 〈T _T P〉i =π(〈T P〉i )
8 〈T _RC〉i =π(〈RC〉i )
9 for j ← 1 to M do

10 〈T _PC [ j ]〉i ←DIV(〈T _T P [ j ]〉i ,〈T _RC [ j ]〉i )

11 〈PC〉i =π′(〈T _PC〉i )
12 for j ← 1 to M do
13 〈A〉i ←MUL(〈pPC〉i ,〈RC [ j ]〉i −〈pRC〉i )
14 〈A〉i ←MUL(〈A〉i ,〈T [ j ].con〉i )
15 〈N1〉i ←〈N1〉i +〈A〉i

16 〈A〉i ←MUL(〈RC [ j ]〉i −〈pRC〉i ,〈PC [ j ]〉i −〈pPC〉i )
17 〈A〉i ←MUL(〈A〉i ,〈T [ j ].con〉i )
18 〈N2〉i ←〈N2〉i +〈A〉i

19 〈pPC〉i ←MUX(〈pPC〉i ,〈PC [ j ]〉i ,〈T [ j ].con〉i )
20 〈pRC〉i ←MUX(〈pRC〉i ,〈RC [ j ]〉i ,〈T [ j ].con〉i )

21 〈N〉i ← 2 · 〈N1〉i +〈N2〉i

22 〈D〉i ← 2 · 〈T P [M ]〉i

23 〈PRC〉i ←DIV(〈N〉i ,〈D〉i )

Algorithm VI.8: Secure AUPR computation with tie

VI.8 Results

Experimental Setup: We conducted our experiments on Amazon EC2 t2.xlarge instances. For
the LAN setting, we utilized only the instances in the Frankfurt region. For the WAN setting, we
additionally selected one instance from both London and Paris.

Correctness Analysis: We conducted the experiments on LAN setting. We set the precision of
the division operation to cover up to the fourth decimal place. To assess the correctness of AUROC
with tie, we computed the AUROC by ppAURORA and compared it to the result obtained without
privacy on DREAM Challenge dataset. We obtained AU ROC = 0.693 in both setting. To check the
correctness of AUROC with no-tie of ppAURORA, we randomly picked one of the samples in DREAM
Challange dataset in tie condition and generated a subset of the samples with no tie. We obtained
the same AUROC with no-tie version of AUROC of ppAURORA as the non-private computation. We
directly used UCI dataset in AUROC with no-tie since it does not have any tie condition. The result,
which is AU ROC = 0.927, is the same for both private and non-private computation. Additionally,
we verified that ppAURORA computes the same AUPR as non-private computation for both DREAM
Challenge and UCI dataset. AUPR scores are AU PR = 0.844 and AU PR = 0.893, respectively. These
results indicate that ppAURORA can privately compute the exact same AUC as one could obtain on
the pooled test samples. To justify the collaborative evaluation, we performed 1000 repetitions of the
non-private AUROC computation with N ∈ {5,10,20,40,80,160} samples, which are randomly drawn
from the whole data. The AUC starts to become more and more stable when we increase the size of

118



the samples.

Scalability Analysis: We evaluated no-tie and with-tie versions of AUROC and AUPR of ppAURORA
with δ= 1 on the settings in which the number of data sources is 16 and the number of samples is
N ∈ {64,125,250,500,1000}. The results showed that ppAURORA scales almost quadratically in terms
of both communication costs among all parties and the execution time of the computation. Figure
VI.1a displays the results. We also analyzed the performance of all computations of ppAURORA
on a varying number of data sources. We fixed δ= 1, the number of samples in each data sources
to 1000 and experimented with D data sources where D ∈ {2,4,8,16}. As Figure VI.1b summarizes,
ppAURORA scales around quadratically to the number of data sources. We also analyzed the effect
of δ ∈ {1,3,5,11,25,51,101} by fixing D to 8 and N in each data source to 1000. The execution
time shown in Figure VI.1c displays logarithmic decrease for increasing δ. In all analyses, since
the dominating factor is sorting, the execution times of the computations are close to each other.
Additionally, our analysis showed that LAN is 12 to 14 times faster than WAN on average due to the
high round trip time of WAN, which is approximately 13.2 ms. However, even with such a scaling
factor, ppAURORA can be deployed in real life scenarios if the alternative is a more time-consuming
approval process required for gathering all data in one place still protecting the privacy of data. We
provided the detailed results as tables in the Supplement.

VI.9 Conclusion

In this work, we presented a novel secure 3-party computation framework and its application,
ppAURORA, to compute AUC of the ROC and PR curves privately even when there exist ties in the
PCVs. We proposed four novel protocols in the framework, which are MUX to select one of two secret
shared values, MC to convert the ring of a secret value from 2ℓ−1 to 2ℓ, CMP to compare two secret
shared values and DIV to divide two secret shared values. They have low round and communication
complexities. The framework and its application ppAURORA are secure against passive adversaries in
the honest majority setting. We implemented ppAURORA in C++ and demonstrated that ppAURORA
can both compute correctly and privately, and scales quadratically to the number of parties and
samples. To the best of our knowledge, ppAURORA is the first method that enables computing the
exact AUC (AUROC and AUPR) privately and securely.

VI.10 Supplement

VI.10.1 Framework

In this section, we give the definitions of basic operations that we utilized in addition to the novel
operations given in the main paper.

Multiplication: In two-party setting, multiplication is performed using a multiplication triple
[105] which is generated via homomorphic encryption or oblivious transfer. In our 3-party setting, S2

generates the multiplication triple and sends the shares of it to S0 and S1. S0 and S1 hold (〈x〉0,〈y〉0)
and (〈x〉1,〈y〉1), respectively, and secure multiplication outputs fresh shares of x y (functionality
FMUL).

Comparison of a Secret Shared Value and a Plain Value: In this function, a value r in the ring ZK

119



1 Algorithm MUL()
input :S0 and S1 hold (〈x〉0, 〈y〉0) and (〈x〉1, 〈y〉1), respectively.
output :S0 and S1 get 〈z〉0 and 〈z〉1, respectively, where z = x · y .

2 S2 picks three random numbers a, b and c where c = a ·b
3 S2 generates 〈a〉i , 〈b〉i and 〈c〉i , and sends them to Si for i ∈ {0,1}
4 For each i ∈ {0,1}, Si executes Steps 5-7
5 Si computes 〈e〉i = 〈x〉i −〈a〉i and 〈 f 〉i = 〈y〉i −〈b〉i

6 Si reconstructs e and f by exchanging the shares with S1−i

7 Si computes 〈z〉i = i ·e · f + f · 〈x〉i +e · 〈y〉i +〈c〉i

Algorithm VI.9: Multiplication

whose bits are secret shared to S0 and S1 in the ring P where P = 67 is compared with a common
value y . At the end of the secure computation, S2 learns a bit n′ = n⊕ (r > y). We get the definition of
this functionality FPC from [2] where it is called as Private Compare (PC). The only change that we
made is S2 sends the fresh boolean shares of n′ to S1 and S2. PC is described in Algorithm VI.10 in
the Supplement.

1 Algorithm PC()
input :S0,S1 hold

{〈r [ j ]〉p
0

}
j∈[ℓ] and {〈r [ j ]〉p

1 } j∈[ℓ], respectively, a common input y and
a common random bit n.

output :S0 and S1 get n′ = n ⊕ (r > y), 〈n′〉B
0 and 〈n′〉B

1 , respectively.
2 S0,S1 hold ℓ common random values s j ∈Z∗

p for all j ∈ [ℓ] and a random permutation π
for ℓ elements. S0 and S1 additionally hold ℓ common random values u j ∈Z∗

p .

3 Let t = y +1 mod 2ℓ

4 Pi executes Steps 5−17:
5 for j = ℓ; j > 0; j = j −1 do
6 if n = 0 then
7

〈
w j

〉p
i = 〈r [ j ]〉p

i + i y[ j ]−2y[ j ]〈r [ j ]〉p
i

8
〈

c j
〉p

i = i y[ j ]−〈r [ j ]〉p
i + j +∑ℓ

k= j+1 〈wk〉p
i

9 else if n = 1 AND r ̸= 2ℓ−1 then
10

〈
w j

〉p
i = 〈r [ j ]〉p

i + i t [ j ]−2t [ j ]〈r [ j ]〉p
i

11
〈

c j
〉p

i =−i t [ j ]+〈r [ j ]〉p
i + i +∑ℓ

k= j+1 〈wk〉p
i ;

12 else
13 if i ̸= 1 then
14

〈
c j

〉p
i = (1− i )

(
u j +1

)− i u j

15 else
16

〈
c j

〉p
i = (−1) j ·u j

17 Send
{〈

d j
〉p

i

}
j
=π

({
s j

〈
c j

〉p
i

}
j

)
to P2

18 For all j ∈ [ℓ], P2 computes d j =Reconst(〈d j 〉p
0 ,〈d j 〉p

1 ) and sets n′ = 1 iff ∃ j ∈ [ℓ] such
that d j = 0.

19 P2 sends 〈n′〉B
i to Si for i ∈ {0,1}

Algorithm VI.10: Private Compare [2]

120



VI.10.2 Result Tables

In this section, we provide the detailed results of the experiments with ppAURORA to compute
AUROC and AUPR in Tables VI.2 and VI.3, respectively.

Communication Costs (MB)

M × N δ P1 P2 Helper Total Time (sec)

16×64 1 73.51/73.76 73.48/73.73 139.36/139.64 286.36/287.13 10.1/14.55

16×125 1 279.71/280.20 279.65/280.12 530.35/530.90 1089.71/1091.22 29.18/38.43

16×250 1 1117.32/1118.30 1117.20/1118.15 2116.65/2120.23 4351.17/4356.68 144.24/157.01

16×500 1 4466.23/4468.19 4466.00/4467.90 8469.41/8470.51 17401.65/17406.60 627.19/655.78

16×103 1 17858.86/17862.78 17858.4/17862.18 33863.45/33876.00 69580.71/69600.96 2578.46/2556.93

2×103 1 149.04/149.53 149.03/149.50 282.17/282.98 580.24/582.02 13.68/23.07

4×103 1 893.51/894.49 893.45/894.39 1693.99/1694.75 3480.94/3483.63 116.24/134.42

8×103 1 4168.03/4169.99 4167.86/4169.75 7903.60/7907.26 16239.49/16247.01 597.8/626.66

8×103 3 2068.78/2070.74 2068.66/2070.55 3921.74/3923.83 8059.18/8065.11 307.49/334.96

8×103 5 1383.59/1385.56 1383.49/1385.38 2622.98/2625.59 5390.06/5396.53 210.13/248.72

8×103 11 693.62/695.58 693.53/695.42 1313.98/1316.86 2701.13/2707.87 114.93/151.21

8×103 25 322.52/324.49 322.45/324.34 610.66/612.96 1255.63/1261.79 64.16/99.35

8×103 51 162.59/164.56 162.52/164.41 306.88/309.43 631.99/638.40 43.98/78.24

8×103 101 85.58/87.54 85.50/87.39 161.12/163.50 332.21/338.43 34.56/70.19

8×250 1 260.95/261.44 260.91/261.38 494.57/495.27 1016.43/1018.08 26.35/34.43

8×U N B 1 331.49/331.98 331.42/331.9 628.7/629.15 1291.61/1293.03 34.4/43.81

Table VI.2: The summary of the results of the experiments with ppAURORA to compute AUROC with
and without tie on synthetic data. The left side of “/” represents without-tie results and the right
side of it represents with-tie results. M represents the number of data sources and N represents
the number of samples in one data sources. U N B represents the unbalanced sample distribution,
which is {12,18,32,58,107,258,507,1008}.

VI.10.3 AUC Stability Analysis

We analyzed the stability of the AUROC based on the number of test samples to justify the collabora-
tive evaluation. We experimented with N ∈ {5,10,20,40,80,160} test samples which are randomly
chosen from the DREAM Challenge Dataset. In order to have a fair evaluation, we repeated these
experiments 1000 times. The experiments showed that the AUROC becomes more reliable and stable
if we increase the number of test samples. In case a data source has no more additional test samples,
the collaborative evaluation can be a best option. Figure VI.2 summarizes the results of the analysis.

VI.10.4 Privacy Preserving Merging

We include some sorting examples to demonstrate the process. In Figure VI.3, we show the merging
of two lists of PCVs with the same size. In this example, δ= 1. By this setting, we do not decrease the
number of possible merging of two individually sorted lists, which can be computed as:

|L2|−1∑
i=0

(
|L1|+1

i +1

)(
|L2|−1

i

)
(VI.4)

121



Communication Costs (MB)

M × N δ P1 P2 Helper Total Time (sec)

16×64 1 73.79 73.75 139.70 287.24 15.49

16×125 1 280.25 280.17 530.90 1091.32 39.50

16×250 1 1118.39 1118.24 2120.17 4356.80 160.25

16×500 1 4468.38 4468.08 8470.66 17407.12 666.28

16×103 1 17863.16 17862.55 33874.20 69599.90 2639.34

2×103 1 149.58 149.55 283.02 582.14 23.09

4×103 1 894.58 894.49 1695.60 3484.67 137.44

8×103 1 4170.19 4169.94 7905.92 16246.05 635.72

8×103 3 2070.93 2070.73 3924.48 8066.14 346.11

8×103 5 1385.75 1385.57 2624.46 5395.77 249.01

8×103 11 695.77 695.61 1316.72 2708.10 152.96

8×103 25 324.68 324.52 613.25 1262.45 104.86

8×103 51 164.75 164.59 309.92 639.25 85.14

8×103 101 87.73 87.58 163.67 338.98 75.98

8×250 1 261.49 261.43 495.38 1018.29 35.95

8×U N B 1 332.03 331.94 629.20 1293.17 46.00

Table VI.3: The summary of the results of the experiments of AUPR computation with ppAU-
RORA on synthetic data. M represents the number of data sources and N represents the number
of samples in one data sources. U N B represents the unbalanced sample distribution, which is
{12,18,32,58,107,258,507,1008}.

5 10 20 40 80 160
Number of Test Samples

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

Figure VI.2: AUROC for varying number of test samples randomly chosen from the whole dataset

where L1 and L2 are the individually sorted lists and |.| denotes the size operation.

Since the cost of having fully private merging is high and may not necessary for some applications,
we can have an intermediate solution. By setting δ to a higher odd value, we can speed up the
merging process. Figure VI.4 and VI.5 demonstrates an example of such a merging with δ= 3. The
total number of shuffling is 5 and 3, respectively.

In Figure VI.6, we show the sorting when the number of PCVs in the second list is 1 to justify why
we set δ= 1 regardless of the initial δ due to the privacy reasons. By setting δ, we secure that the

122



1: 
2: 
4: 
6: 
8: 

Figure VI.3: The merging of two same size lists with δ= 1. The red arrows represent shuffling, the
black ones denote moving the larger of the first list to the global sorted list. The progress of the
global sorted list is shown by the grey arrows. Each color in the boxes represents different number of
candidate PCVs. The coding of the colors are shown on the right most side of the figure. For each red
arrow, i.e. for each shuffling, we utilize PC operation on PCVs from two lists which are on the same
index to select the larger of them and employ the result of this comparison along with MUXs put the
larger one into the L1 and the other into L2. Afterward, we move the top of the first list to the global
sorted list. Since δ= 1, we perform shuffling after we move the top element.

1: 
2: 
4: 
6: 
8: 

Figure VI.4: The merging of two same size lists with δ= 3. We again start with shuffling and then
move the top PCV of the first list into the global sorted list. Afterward, we compare the second
element of the first list and the top element of the second list via PC. The proxies reconstruct the
result of this comparison and move the share of the larger of the compared PCVs to the global sorted
list. They continue until they move δ PCVs to the global sorted list. Then, they shuffle and repeat the
same procedure until there is no PCV in the first list.

number of possible PCVs in each position of the global sorted list is the same as one can see on such
a merging without privacy. The beginning and the end of the global sorted list have two possible
matching, however, due to the nature of the individual sorting, the number of possible PCVs for the

123



1: 
2: 
4: 
6: 

Figure VI.5: The merging of two same size lists with δ = 3. This example shows how the merging
happens in case all the PCVs are taken from the first list.

other positions is only 3, which is lower than the ones in Figure VI.3.

VI.10.5 Security Analysis

Here, we provide semi-honest simulation-based security proofs for the MUX, MC, CMP and DIV
functions we have defined in our framework. Since the protocols we propose for AUC calculation use
MUX, MC, CMP, DIV and previously defined functions, we prove the security of the main protocols
in the F-hybrid model by proving the security of each function we call.

Lemma 13. The protocol MUL in Algorithm VI.9 in the Supplement securely realizes the functionality
FMUL.

Proof. In order to prove the correctness of our protocol we show that 〈z〉0 +〈z〉1 = x y .

〈z〉0 +〈z〉1 = f · 〈x〉0 +e · 〈y〉0 +〈c〉0 −e · f

+ f · 〈x〉1 +e · 〈y〉1 +〈c〉1

= ( f x +e y + c −e f )

= ((y −b)x + (x −a)y + c − (x −a)(y −b))

= x y −xb +x y − y a + c −x y +xb + y a −ab

= x y

(VI.5)

124



1: 

2: 

3: 

Figure VI.6: The merging of two lists with δ= 1. The second list has only one PCV. The red arrows
represent shuffling, the black ones denote moving the larger of the first list to the global sorted list.
The progress of the global sorted list is shown by the grey arrows. Each color in the boxes represents
different number of candidate PCVs. The coding of the colors are shown on the right most side of
the figure.

We prove the security of our protocol. During the protocol execution, S2 sends a multiplication
triple to S0 and S1 and does not receive any values. Thus the view of S2 is empty and it is very easy
to prove security in case S2 is corrupted. Si where i ∈ {0,1} sees 〈a〉i ,〈b〉i ,〈c〉i ,〈e〉i and 〈 f 〉i . These
values are uniformly distributed random values and hence can be perfectly simulated.

Lemma 14. The protocol MUX in Algorithm VI.1 in the main paper securely realizes the functionality
FMUX.

Proof. We first prove the correctness of our protocol. 〈z〉i is the output of Si where i ∈ {0,1}. We need
to prove that Reconstruct(〈z〉i) = (1−b)x +by .

〈z〉0 +〈z〉1 = 〈x〉0 + s −〈b〉0(〈x〉0 −〈y〉0)+ r1〈b〉0

+ r2(〈x〉0 −〈y〉0)+ r2r3 +〈x〉1 + t

−〈b〉1(〈x〉1 −〈y〉1)+ r0(〈x〉1 −〈y〉1)

+ r0r1 + r3〈b〉1 −〈b〉0〈x〉1 +〈b〉0〈y〉1

−〈b〉0r1 − r0〈x〉1 + r0〈y〉1 − r0r1

−〈x〉0〈b〉1 −〈x〉0r2 +〈y〉0〈b〉1 +〈y〉0r2

− r3〈b〉1 − r3r2 − s − t

= (1−〈b〉0 −〈b〉1)(〈x〉0 +〈x〉1)

+ (〈b〉0 +〈b〉1)(〈y〉0 +〈y〉1)

= (1−b)x +by

(VI.6)

Next we prove the security of our protocol. S2 gets M2, M3, M5 and M6. All these values are
uniformly random values because they are generated using uniformly random values r0,r1,r2,r4.
S2 computes M2M5 +M3M6. The computed value is still uniformly random because it contains
uniformly random values r0,r1,r2,r4. As a result, any value learned by S2 is perfectly simulated. For

125



each i ∈ {0,1}, Si learns a fresh share of the output. Thus Si cannot associate the share of the output
with the shares of the inputs and any value learned by Si is perfectly simulatable.

Lemma 15. The protocol PC in Algorithm VI.10 in the Supplement securely realizes the functionality
FPC .

Proof. The proof of PC is given in [2].

Lemma 16. The protocol MC in Algorithm VI.2 in the main paper securely realizes the functionality
FMC in FPC hybrid model.

Proof. First, we prove the correctness of our protocol by showing (〈x〉K
0 +〈x〉K

1 ) mod K = (〈x〉0+〈x〉1)

mod L. In the protocol, y = (x + r ) mod K and isWrap(x,r,K ) = r
?> y , that is, isWrap(x,r,K ) = 1 if

r > y , 0 otherwise. At the beginning, S0,S1 and S2 call FPC to compute c = r
?> y and S0 and S1

obtain the boolean shares c0 and c1, respectively. Besides, S2 sends also the boolean shares w0 and
w1 of w = isWrap(〈r 〉0,〈r 〉1,K ) to S0 and S1, respectively. If isWrap(〈y〉0,〈y〉1,K ) is 1 then S0 adds K
to 〈y〉0 to change the ring of y from K to L. To convert r from ring K to ring L, S0 and S1 add K to
their shares of r based on their boolean shares w0 and w1, respectively. If w0 = 1, then S0 adds K
to its r1 and S1 does the similar with its shares. Later, we need to fix is the summation of x and r ,
that is the value y . In case of x + r ≥ K , we cannot fix the summation value y in ring L by simply
converting it from ring K to ring L. This summation should be x +r in ring L rather than (x +r ) mod
K . To handle this problem, S0 and S1 add K to their shares of y based on their shares c0 and c1. As a
result, we convert the values y and r to ring L and fix the value of y if necessary. The final step to
obtain xi for party Si is simply subtract ri from yi where i ∈ {0,1}.

Next, we prove the security of our protocol. S2 involves this protocol in execution of FPC . We give
the proof FPC above. At the end of the execution of FPC , S2 learns n′. However, n′ = n ⊕ (x > r ) and
S2 does not know n. Thus n′ is uniformly distributed and can be perfectly simulated with randomly
generated values. Si where i ∈ {0,1} sees fresh shares of 〈r 〉K

i , {〈r [ j ]〉p
i } j∈[ℓ], wB

i and nB
i . These values

can be perfectly simulated with randomly generated values.

Lemma 17. The protocol CMP in Algorithm VI.3 in the main paper securely realizes the functionality
FC MP in FMC hybrid model.

Proof. First, we prove the correctness of our protocol. Assume that we have ℓ-bit number u. v =
u − (u mod 2ℓ−1) is either 0 or 2ℓ−1. v is only represented with the most significant bit (MSB) of u.
In our protocol, 〈z〉i is the output of Si where i ∈ {0,1}. We need to prove that Reconstruct(〈z〉i) is 1 if
x < y and 0 otherwise. Si where i ∈ {0,1} computes d K

i = (xi − yi ) mod K which is a share of d over
K . Si computes di which is a share of d over L by invoking MC. Note that z = x−y−Reconstruct(〈d〉i)
and all bits of z are 0 except MSB of z which is equal to MSB of (x − y). Now we need to map z to 1 if
it’s equal to K and 0 if it’s equal to 0. S0 sends the z0 and z0 +K in random order to S2 and S1 sends
the z1 to S2. S2 reconstructs two different values, divides these values by K , creates two additive
shares of them, and sends these shares to S0 and S1. Since S0 and S1 know the order of the real MSB
value, they correctly select the shares of its mapped value.

126



Second, we prove the security of our protocol. Si where i ∈ {0,1} sees 〈d〉i which is a fresh share
of d and 〈a[0]〉i and 〈a[1]〉i one of them is a fresh share of the MSB of x − y and the other is a fresh
share of the complement of the MSB of x − y . Thus the view of Si can be perfectly simulated with
randomly generated values.

Lemma 18. The protocol DIV in Algorithm VI.4 in the main paper securely realizes the functionality
FDIV.

Proof. We first prove the correctness of our protocol. 〈z〉i is the output of Si where i ∈ {0,1}. We
prove that Reconstruct(〈z〉i) = xF

y .

〈z〉0 +〈z〉1 = (r1〈x〉0 + r0〈y〉0 + r1〈x〉1 + r0〈y〉1)F

r1〈y〉0 + r1〈y〉1
− r0F

r1

= (r1x + r0 y)F

r1 y
− r0F

r1

= xF

y
+ r0F

r1
− r0F

r1

= xF

y

(VI.7)

DIV method produces correct results when S0 and S1 know the upper limit of x and y values. In this
case, the values of r0 and r1 are chosen in such a way that the values r1〈x〉0 + r0〈y〉0 + r1〈x〉1 + r0〈y〉1

and r1〈y〉0 + r1〈y〉1 do not wrap around ZL . If wrapping occurs around ZL , DIV method produces
the wrong result.

Next we prove the security of our protocol. S2 gets a0, a1,b0 and b1. All these values are uniformly
random values because they are generated using uniformly random values r0 and r1. As a result, any
value learned by S2 is perfectly simulated. For each i ∈ {0,1}, Si learns a fresh share of the output.
Thus Si cannot associate the share of the output with the shares of the inputs and any value learned
by Si is perfectly simulatable.

Lemma 19. The protocol in Algorithm VI.5 in the main paper securely computes AUROC in (FMUL,
FDIV) hybrid model.

Proof. In the protocol, we separately calculate the numerator N and the denominator D of the
AUROC, which can be expressed as AU ROC = N

D . Let us first focus on the computation of D. It is
equal to the multiplication of the number of samples with label 1 by the number of samples with
label 0. In the end, we have the number of samples with label 1 in T P and calculate the number of
samples with label 0 by P −T P . Then, the computation of D is simply the multiplication of these
two values. In order to compute N , we employed Equation VI.1 in the main paper. We have already
shown the denominator part of it. For the numerator part, we need to multiply the current T P by the
change in F P and sum up these multiplication results. 〈A〉←MUL(〈T P〉,〈F P〉−〈pF P〉) computes
the contribution of the current sample on the denominator and we accumulate all the contributions
in N , which is the numerator part of Equation VI.1 in the main paper. Therefore, we can conclude
that we correctly compute the AUROC.

127



Next, we prove the security of our protocol. Si where i ∈ {0,1} sees {〈RL〉} j∈M , {〈A〉} j∈M , 〈D〉 and
〈ROC〉 which are fresh shares of these values. Thus the view of Si is perfectly simulatable with
uniformly random values.

Lemma 20. The protocol in Algorithm VI.7 in the main paper securely marks the location of ties in
the list of prediction confidences.

Proof. For the correctness of our protocol, we need to prove that for each index j in T , t [ j ].con = 0
if (C [ j ]−C [ j +1]) = 0, t [ j ].con = 1, otherwise. We first calculate the difference of successive items
in C . Let assume we have two additive shares (〈a〉0,〈a〉1) of a over the ring ZL . If a = 0, then
(L −〈a〉0)⊕〈a〉1 = 0 and if a ̸= 0, then (L −〈a〉0)⊕〈a〉1 ̸= 0 where L −〈a〉0 is the additive modular
inverse of 〈a〉0. We use this fact in our protocol. S0 computes the additive inverse of each item 〈c〉0 in
〈C〉0 which is denoted by 〈c〉′0, XORes 〈c〉′0 with a common random number in R , which is denoted by
〈c〉′′0 and permutes the bits of 〈c〉′′0 with a common permutationσwhich is denoted by 〈c〉′′′0 . S1 XORes
each item 〈c〉1 in 〈C〉1 with a common random number in R which is denoted by 〈c〉′′1 and permutes
the bits of 〈c〉′′1 with a common permutation σ which is denoted by 〈c〉′′′1 . Si i ∈ {0,1} permutes values
in 〈C〉′′′i by a common random permutation π which is denoted by 〈D〉i . After receiving 〈D〉0 and
〈D〉1, S2 maps each item d of D to 0 if 〈d〉′0 ⊕〈d〉1 = 0 which means 〈d〉0 +〈d〉1 = 0 and maps 1 if
〈d〉′0 ⊕〈d〉1 ̸= 0 which means 〈d〉0 +〈d〉1 ̸= 0. After receiving a new share of D from S2, Si i ∈ {0,1}
removes dummy values and permutes remaining values by π′. Therefore, our protocol correctly
maps items of C to 0 or 1.

We next prove the security of our protocol. Si where i ∈ {0,1} calculates the difference of successive
prediction values. The view of S2 is D which includes real and dummy zero values. Si XORes each
item of 〈C〉i with fresh boolean shares of zero, applies a random permutation to bits of each item
of 〈C〉i , applies a random permutation π to 〈C〉i and add dummy zero and non-zero values. Thus
differences, the index j where D[ j ] = 0, the index j where D[ j ] ̸= 0 are uniformly random. The
number of zero and non-zero values are not known to S2 due to dummy values. With common
random permutations σ j∈M and common random values R[ j ], j ∈ M , each item in C are hidden.
Thus S2 can not infer anything about real values in C . Furthermore, the number of repeating
predictions is not known to S2 due to a random permutation π.

Lemma 21. The protocol in Algorithm VI.6 in the main paper securely computes AUROC in (FMUL,
FMUX,FDIV) hybrid model.

Proof. In order to compute the AUROC in case of tie, we utilize Equation VI.2 in the main paper,
of which we calculate the numerator and the denominator separately. The calculation of the de-
nominator D is the same as Lemma 19. The computation of the numerator N has two different
components, which are N1 and N2. N1, more precisely the numerator of T [i −1]∗ (F [i ]−F [i −1]),
is similar to no-tie version of privacy preserving AUROC computation. This part corresponds to
the rectangle areas in ROC curve. The decision of adding this area A to the cumulative area N1 is
made based on the result of the multiplication of A by t .con. t .con = 1 indicates if the sample is
one of the points of prediction confidence change, 0 otherwise. If it is 0, then A becomes 0 and
there is no contribution into N1. If it is 1, then we add A to N1. On the other hand, N2, which is the
numerator of (T [i ]−T [i −1])∗ (F [i ]−F [i −1]), accumulates the triangular areas. We compute the
possible contribution of the current sample to N2. In case this sample is not one of the points that

128



the prediction confidence changes, which is determined by t .con, then the value of A is set to 0. If it
is, then A remains the same. Finally, A is added to N2. Since there is a division by 2 in the second part
of Equation VI.2 in the main paper, we multiply N1 by 2 to make them have common denominator.
Afterwards, we sum N1 and N2 to obtain N In order to have the term 2 in the common denominator,
we multiply D by 2. As a result, we correctly compute the denominator and the nominator of the
AUROC.

Next, we prove the security of our protocol. Si where i ∈ {0,1} sees {〈RL〉} j∈M , {〈A〉} j∈M , {〈pF P〉} j∈M ,
{〈pT P〉} j∈M , 〈D〉 and 〈ROC〉 which are fresh shares of these values. Thus the view of Si is perfectly
simulatable with uniformly random values.

Lemma 22. The protocol in Algorithm VI.8 in the main paper securely computes AUPR in (FMUL,
FMUX,FDIV) hybrid model.

Proof. In order to compute the AUPR , we utilize Equation VI.2 in the main paper of which we
calculate the numerator and the denominator separately. We nearly perform the same computation
with the AUROC computation in case of tie. The main difference is that we need perform division
to calculate each precision value because denominators of each precision value are different. The
rest of the computation is the same with the computation in Algorithm VI.6 in the main paper. The
readers can follow the proof of Lemma 21.

Next, we prove the security of our protocol. Si where i ∈ {0,1} sees {〈RL〉} j∈M , {〈T _PC〉} j∈M ,
{〈A〉} j∈M , {〈pPC〉} j∈M , {〈pRC〉} j∈M , 〈D〉 and 〈ROC〉 which are fresh shares of these values. Thus the
view of Si is perfectly simulatable with uniformly random values.

Lemma 23. The sorting protocol in Section 5 in the main paper securely merges two sorted lists in
(FCMP,FMUX) hybrid model.

Proof. First, we prove the correctness of our merge sort algorithm. L1 and L2 are two sorted lists.
In the merging of L1 and L2, the corresponding values are first compared using the secure CMP
operation. The larger values are placed in L1 and the smaller values are placed in L2, after the secure
MUX operation is called twice. This process is called shuffling because it shuffles the corresponding
values in the two lists. After the shuffling process, we know that the largest element of the two lists is
the top element of L1. Therefore, it is removed and added to the global sorted list L3. On the next
step, the top elements of L1 and L2 are compared with the CMP method. The comparison result is
reconstructed by S0 and S1 and the top element of L1 or L2 is removed based on the result of CMP
and added to L3. The selection operation also gives the largest element of L1 and L2 because L1 and
L2 are sorted and the selection operation selects the larger of the top elements of L1 and L2. We show
that shuffling and selection operations give the largest element of two sorted lists. This ensures that
our merge sort algorithm that only uses these operations correctly merges two sorted lists in ordered
manner.

Next, we prove the security of our merge sort algorithm. In the shuffling operation, CMP and MUX
operations are called. CMP outputs fresh shares of comparison of corresponding values in L1 and
L2. Shares of these comparison results are used in MUX operations and MUX operation generates
fresh shares of the corresponding values. Therefore, S0 and S1 cannot precisely map these values
to the values in L1 and L2. In the selection operation, CMP is called and the selection is performed

129



based on the reconstructed output of CMP. S0 and S1 are still unable to map the values added to L3

to the values in L1 and L2 precisely because at least one shuffling operation took place before these
repeated selection operations. Shuffling and δ−1 selection operations are performed repeatedly
until the L1 is empty. After each shuffling operation, the fresh share of the larger corresponding
values in L1 and the fresh share of the smaller corresponding values in L2 are stored. The view of
S0 and S1 are perfectly simulatable with random values due to the shuffling process performed at
regular intervals.

It is possible in some cases to use unshuffled values in selection operations. To prevent this, the
following rules are followed in the execution of the merge protocol. If there are two lists that do not
have the same length, the longer list is chosen as L1. If the δ is greater than the length of the L2 list, it
is set to the largest odd value smaller or equal to the length of L2 so that the unshuffled values that
L1 may have are not used in selection processes. If the length of L2 is reduced to 1 at some point in
the sorting, the δ is set to 1. Thus L2 will have 1 element until the end of the merge and shuffling is
done before each selection.

Privacy against Malicious Adversaries: Araki et al. [143] defined the notion of privacy against
malicious adversaries in the client-server setting. In this setting, the servers performing secure
computation on the shares of the inputs to produce the shares of the outputs do not see the plain
inputs and outputs of the clients. This notion of privacy says that a malicious party cannot break
the privacy of input and output of the honest parties. This setting is very similar to our setting. In
our framework, two parties exchange a seed which is used to generate common randoms between
them. Two parties randomize their shares using these random values which are not known to the
third party. It is very easy to add fresh shares of zero to outputs of two parties with common random
values shared between them. In our algorithms, we do not state the randomization of outputs with
fresh shares of zero. Thus, our framework provides privacy against a malicious party by relying on
the security of a seed shared between two honest parties.

130



Bibliography

[1] Ali Burak Ünal, Mete Akgün, and Nico Pfeifer. A framework for a fast privacy preserving
calculation of non-linear kernels for machine learning applications in precision medicine. In
Proceedings of the 18th International Conference on Cryptology and Network Security CANS,
October 2019.

[2] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: Efficient and private neural
network training. IACR Cryptol. ePrint Arch., 2018:442, 2018.

[3] How much data is created every day in 2021? [you’ll be shocked!], Dec 2021. URL https:
//techjury.net/blog/how-much-data-is-created-every-day/.

[4] The cost of sequencing a human genome. URL https://www.genome.gov/about-genomics/
fact-sheets/Sequencing-Human-Genome-cost.

[5] Muhammad Naveed, Erman Ayday, Ellen W Clayton, Jacques Fellay, Carl A Gunter, Jean-Pierre
Hubaux, Bradley A Malin, and XiaoFeng Wang. Privacy in the genomic era. ACM Computing
Surveys (CSUR), 48(1):6, 2015.

[6] Shuang Wang, Xiaoqian Jiang, Siddharth Singh, Rebecca Marmor, Luca Bonomi, Dov Fox,
Michelle Dow, and Lucila Ohno-Machado. Genome privacy: challenges, technical approaches
to mitigate risk, and ethical considerations in the united states. Annals of the New York
Academy of Sciences, 1387(1):73, 2017.

[7] Abraham P Schwab, Hung S Luu, Jason Wang, and Jason Y Park. Genomic privacy. Clinical
chemistry, 64(12):1696–1703, 2018.

[8] Nora K Speicher and Nico Pfeifer. Integrating different data types by regularized unsupervised
multiple kernel learning with application to cancer subtype discovery. Bioinformatics, 31(12):
i268–i275, 2015.

[9] Yasin Ilkagan Tepeli, Ali Burak Ünal, Furkan Mustafa Akdemir, and Oznur Tastan. Pamogk: a
pathway graph kernel-based multiomics approach for patient clustering. Bioinformatics, 36
(21):5237–5246, 2020.

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

131

https://techjury.net/blog/how-much-data-is-created-every-day/
https://techjury.net/blog/how-much-data-is-created-every-day/
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost


[11] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

[12] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep face recognition. 2015.

[13] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep
learning. Journal of big data, 6(1):1–48, 2019.

[14] General Data Protection Regulation. Regulation eu 2016/679 of the european parliament and
of the council of 27 april 2016. Official Journal of the European Union, 2016.

[15] Peter Meinicke, Maike Tech, Burkhard Morgenstern, and Rainer Merkl. Oligo kernels for
datamining on biological sequences: a case study on prokaryotic translation initiation sites.
BMC bioinformatics, 5(1):169, 2004.

[16] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):
273–297, 1995.

[17] Dexiong Chen, Laurent Jacob, and Julien Mairal. Recurrent Kernel Networks. arXiv preprint
arXiv:1906.03200, 2019.

[18] Yasser EL-Manzalawy, Drena Dobbs, and Vasant Honavar. Predicting linear b-cell epitopes
using string kernels. Journal of Molecular Recognition: An Interdisciplinary Journal, 21(4):
243–255, 2008.

[19] Saghi Nojoomi and Patrice Koehl. A weighted string kernel for protein fold recognition. BMC
bioinformatics, 18(1):1–14, 2017.

[20] Christina Leslie, Eleazar Eskin, and William Stafford Noble. The spectrum kernel: A string
kernel for svm protein classification. In Biocomputing 2002, pages 564–575. World Scientific,
2001.

[21] Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris Watkins. Text
classification using string kernels. Journal of Machine Learning Research, 2(Feb):419–444,
2002.

[22] Sepp Hochreiter, Martin Heusel, and Klaus Obermayer. Fast model-based protein homology
detection without alignment. Bioinformatics, 23(14):1728–1736, 2007.

[23] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic circuits. SIAM
Journal on Computing, 43(2):905–929, 2014.

[24] Benny Applebaum. Garbled circuits as randomized encodings of functions: a primer. In
Tutorials on the Foundations of Cryptography, pages 1–44. Springer, 2017.

[25] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Proceedings of the 27th Annual
Symposium on Foundations of Computer Science, SFCS ’86, pages 162–167, Washington, DC,
USA, 1986. IEEE Computer Society. ISBN 0-8186-0740-8. doi: 10.1109/SFCS.1986.25. URL
https://doi.org/10.1109/SFCS.1986.25.

132

https://doi.org/10.1109/SFCS.1986.25


[26] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proceedings
of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC ’87, pages 218–
229, New York, NY, USA, 1987. ACM. ISBN 0-89791-221-7. doi: 10.1145/28395.28420. URL
http://doi.acm.org/10.1145/28395.28420.

[27] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3-4):211–407, 2014.

[28] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private empirical
risk minimization. Journal of Machine Learning Research, 12(3), 2011.

[29] Jaideep Vaidya, Hwanjo Yu, and Xiaoqian Jiang. Privacy-preserving svm classification. Knowl-
edge and Information Systems, 14(2):161–178, 2008.

[30] Jaideep Vaidya and Chris Clifton. Secure set intersection cardinality with application to
association rule mining. Journal of Computer Security, 13(4):593–622, 2005.

[31] Jun Zhang, Xin Wang, Siu-Ming Yiu, Zoe L Jiang, and Jin Li. Secure dot product of outsourced
encrypted vectors and its application to svm. In Proceedings of the Fifth ACM International
Workshop on Security in Cloud Computing, pages 75–82. ACM, 2017.

[32] Hongchao Zhou and Gregory Wornell. Efficient homomorphic encryption on integer vectors
and its applications. In 2014 Information Theory and Applications Workshop (ITA), pages 1–9.
IEEE, 2014.

[33] Yan Liu, Pei-Yun Hsueh, Jennifer Lai, Mirweis Sangin, Marc-Antoine Nussli, and Pierre Dil-
lenbourg. Who is the expert? analyzing gaze data to predict expertise level in collaborative
applications. In 2009 IEEE International Conference on Multimedia and Expo, pages 898–901.
IEEE, June 2009. doi: 10.1109/ICME.2009.5202640.

[34] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving
machine learning. In 2017 IEEE Symposium on Security and Privacy (SP), pages 19–38. IEEE,
2017.

[35] Maya Bakshi and Mark Last. Cryptornn-privacy-preserving recurrent neural networks using
homomorphic encryption. In International Symposium on Cyber Security Cryptography and
Machine Learning, pages 245–253. Springer, 2020.

[36] Thomas Lengauer, Oliver Sander, Saleta Sierra, Alexander Thielen, and Rolf Kaiser. Bioinfor-
matics prediction of hiv coreceptor usage. Nature biotechnology, 25(12):1407–1410, 2007.

[37] Benedikt W Hosp, Florian Schultz, Oliver Höner, and Enkelejda Kasneci. Soccer goalkeeper
expertise identification based on eye movements. PloS one, 16(5):e0251070, 2021.

[38] Brendan David-John, Candace Peacock, Ting Zhang, T Scott Murdison, Hrvoje Benko, and
Tanya R Jonker. Towards gaze-based prediction of the intent to interact in virtual reality. In
ACM Symposium on Eye Tracking Research and Applications, pages 1–7, 2021.

[39] Erroll Wood, Tadas Baltrušaitis, Louis-Philippe Morency, Peter Robinson, and Andreas Bulling.
Learning an appearance-based gaze estimator from one million synthesised images. In
Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications,
pages 131–138, 2016.

133

http://doi.acm.org/10.1145/28395.28420


[40] Benedict Röder, Nicolas Kersten, Marius Herr, Nora K Speicher, and Nico Pfeifer. web-rmkl: a
web server for dimensionality reduction and sample clustering of multi-view data based on
unsupervised multiple kernel learning. Nucleic acids research, 2019.

[41] Nimrod Rappoport and Ron Shamir. Multi-omic and multi-view clustering algorithms: review
and cancer benchmark. Nucleic acids research, 46(20):10546–10562, 2018.

[42] Lifeng Zhou and Chunguang Li. Outsourcing Eigen-Decomposition and Singular Value De-
composition of Large Matrix to a Public Cloud. IEEE Access, 4:869–879, 2016.

[43] David P Noren, Byron L Long, Raquel Norel, Kahn Rrhissorrakrai, Kenneth Hess,
Chenyue Wendy Hu, Alex J Bisberg, Andre Schultz, Erik Engquist, Li Liu, et al. A crowd-
sourcing approach to developing and assessing prediction algorithms for aml prognosis. PLoS
computational biology, 12(6):e1004890, 2016.

[44] Jorge S Reis-Filho. Next-generation sequencing. Breast Cancer Research, 11(3):S12, 2009.

[45] Erman Ayday, Emiliano De Cristofaro, Jean-Pierre Hubaux, and Gene Tsudik. Whole genome
sequencing: Revolutionary medicine or privacy nightmare? Computer, 48(2):58–66, 2015.

[46] Jeantine E Lunshof, Ruth Chadwick, Daniel B Vorhaus, and George M Church. From genetic
privacy to open consent. Nature Reviews Genetics, 9(5):406, 2008.

[47] Gulce Kale, Erman Ayday, and Oznur Tastan. A utility maximizing and privacy preserving
approach for protecting kinship in genomic databases. Bioinformatics, 34(2):181–189, 2017.

[48] Eirini Marouli, Mariaelisa Graff, Carolina Medina-Gomez, Ken Sin Lo, Andrew R Wood, Troels R
Kjaer, Rebecca S Fine, Yingchang Lu, Claudia Schurmann, Heather M Highland, et al. Rare
and low-frequency coding variants alter human adult height. Nature, 542(7640):186, 2017.

[49] Kyriaki Michailidou, Jonathan Beesley, Sara Lindstrom, Sander Canisius, Joe Dennis, Michael J
Lush, Mel J Maranian, Manjeet K Bolla, Qin Wang, Mitul Shah, et al. Genome-wide association
analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer.
Nature genetics, 47(4):373, 2015.

[50] Jing Ming, Eric Verner, Anand Sarwate, Ross Kelly, Cory Reed, Torran Kahleck, Rogers Silva,
Sandeep Panta, Jessica Turner, Sergey Plis, et al. Coinstac: Decentralizing the future of brain
imaging analysis. F1000Research, 6, 2017.

[51] Thomas Lengauer, Nico Pfeifer, and Rolf Kaiser. Personalized hiv therapy to control drug
resistance. Drug Discovery Today: Technologies, 11:57–64, 2014.

[52] Fang Liu, Wee Keong Ng, and Wei Zhang. Encrypted svm for outsourced data mining. In Cloud
Computing (CLOUD), 2015 IEEE 8th International Conference on, pages 1085–1092. IEEE, 2015.

[53] Christian Igel, Tobias Glasmachers, Britta Mersch, Nico Pfeifer, and Peter Meinicke. Gradient-
based optimization of kernel-target alignment for sequence kernels applied to bacterial gene
start detection. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4(2),
2007.

[54] Britta Mersch, Alexander Gepperth, Sándor Suhai, and Agnes Hotz-Wagenblatt. Automatic
detection of exonic splicing enhancers (eses) using svms. BMC bioinformatics, 9(1):369, 2008.

134



[55] Bernhard Schölkopf, Alexander J Smola, et al. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

[56] Nico Pfeifer and Oliver Kohlbacher. Multiple instance learning allows mhc class ii epitope
predictions across alleles. In International Workshop on Algorithms in Bioinformatics, pages
210–221. Springer, 2008.

[57] Jukka-Pekka Kauppi, Melih Kandemir, Veli-Matti Saarinen, Lotta Hirvenkari, Lauri Parkkonen,
Arto Klami, Riitta Hari, and Samuel Kaski. Towards brain-activity-controlled information
retrieval: Decoding image relevance from meg signals. NeuroImage, 112:288–298, 2015.

[58] Jianguo Zhang, Kai-Kuang Ma, Meng-Hwa Er, and Vincent Chong. Tumor segmentation
from magnetic resonance imaging by learning via one-class support vector machine. In
International Workshop on Advanced Image Technology (IWAIT’04), pages 207–211, 2004.

[59] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in ncˆ0. SIAM Journal on
Computing, 36(4):845–888, 2006.

[60] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private randomizing
polynomials and their applications. computational complexity, 15(2):115–162, 2006.

[61] Thomas Lengauer, Oliver Sander, Saleta Sierra, Alexander Thielen, and Rolf Kaiser. Bioinfor-
matics prediction of HIV coreceptor usage. Nat Biotechnol, 25(12):1407–1410, dec 2007. URL
http://dx.doi.org/10.1038/nbt1371.

[62] Matthias Döring, Joachim Büch, Georg Friedrich, Alejandro Pironti, Prabhav Kalaghatgi, Elena
Knops, Eva Heger, Martin Obermeier, Martin Däumer, Alexander Thielen, Rolf Kaiser, Thomas
Lengauer, and Nico Pfeifer. geno2pheno[ngs-freq]: a genotypic interpretation system for
identifying viral drug resistance using next-generation sequencing data. Nucleic Acids Research,
page gky349, 2018. doi: 10.1093/nar/gky349. URL http://dx.doi.org/10.1093/nar/gky349.

[63] Angel Yu, W Lok Lai, and James Payor. Efficient integer vector homomorphic encryption, 2015.

[64] Shai Halevi and Victor Shoup. Helib-an implementation of homomorphic encryption. Cryp-
tology ePrint Archive, Report 2014/039, 2014.

[65] Shai Halevi and Victor Shoup. Algorithms in helib. In Annual Cryptology Conference, pages
554–571. Springer, 2014.

[66] Siyuan Chen and Julien Epps. Using task-induced pupil diameter and blink rate to infer
cognitive load. Human-Computer Interaction, 29:390–413, 2014.

[67] Tobias Appel, Christian Scharinger, Peter Gerjets, and Enkelejda Kasneci. Cross-subject work-
load classification using pupil-related measures. In Proceedings of the 2018 ACM Symposium
on Eye Tracking Research & Applications, ETRA ’18, pages 4:1–4:8, New York, NY, USA, 2018.
ACM. ISBN 978-1-4503-5706-7. doi: 10.1145/3204493.3204531.

[68] Efe Bozkir, David Geisler, and Enkelejda Kasneci. Assessment of driver attention during a
safety critical situation in VR to generate VR-based training. In ACM Symposium on Applied
Perception 2019, SAP ’19, pages 23:1–23:5, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-
6890-2. doi: 10.1145/3343036.3343138.

135

http://dx.doi.org/10.1038/nbt1371
http://dx.doi.org/10.1093/nar/gky349


[69] Thomas C. Kübler, Enkelejda Kasneci, Wolfgang Rosenstiel, Ulrich Schiefer, Katja Nagel,
and Elena Papageorgiou. Stress-indicators and exploratory gaze for the analysis of hazard
perception in patients with visual field loss. Transportation Research Part F: Traffic Psychology
and Behaviour, 24:231–243, 2014.

[70] Ali Borji and Laurent Itti. Defending yarbus: Eye movements reveal observers’ task. Journal of
vision, 14, 03 2014. doi: 10.1167/14.3.29.

[71] Shahram Eivazi, Ahmad Hafez, Wolfgang Fuhl, Hoorieh Afkari, Enkelejda Kasneci, Martin
Lehecka, and Roman Bednarik. Optimal eye movement strategies: a comparison of neurosur-
geons gaze patterns when using a surgical microscope. Acta neurochirurgica, 159(6):959–966,
2017.

[72] Nora Castner, Enkelejda Kasneci, Thomas Kübler, Katharina Scheiter, Juliane Richter, Thérése
Eder, Fabian Hüttig, and Constanze Keutel. Scanpath comparison in medical image reading
skills of dental students: Distinguishing stages of expertise development. In Proceedings of the
2018 ACM Symposium on Eye Tracking Research & Applications, ETRA ’18, New York, NY, USA,
2018. ACM. ISBN 9781450357067. doi: 10.1145/3204493.3204550.

[73] Julian Steil and Andreas Bulling. Discovery of everyday human activities from long-term visual
behaviour using topic models. In Proceedings of the 2015 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, UbiComp ’15, pages 75–85, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3574-4. doi: 10.1145/2750858.2807520.

[74] Christian Braunagel, David Geisler, Wolfgang Rosenstiel, and Enkelejda Kasneci. Online recog-
nition of driver-activity based on visual scanpath classification. IEEE Intelligent Transportation
Systems Magazine, 9(4):23–36, 2017.

[75] Tomi Kinnunen, Filip Sedlak, and Roman Bednarik. Towards task-independent person authen-
tication using eye movement signals. In Proceedings of the 2010 Symposium on Eye-Tracking
Research & Applications, ETRA ’10, pages 187–190, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-994-7. doi: 10.1145/1743666.1743712.

[76] Oleg V. Komogortsev, Sampath Jayarathna, Cecilia R. Aragon, and Mechehoul Mahmoud.
Biometric identification via an oculomotor plant mathematical model. In Proceedings of the
2010 Symposium on Eye-Tracking Research & Applications, ETRA ’10, pages 57–60, New York,
NY, USA, 2010. ACM. ISBN 978-1-60558-994-7. doi: 10.1145/1743666.1743679.

[77] Oleg V. Komogortsev and Corey D. Holland. Biometric authentication via complex oculomotor
behavior. In 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and
Systems (BTAS), pages 1–8. IEEE, Sep. 2013. doi: 10.1109/BTAS.2013.6712725.

[78] Yongtuo Zhang, Wen Hu, Weitao Xu, Chun Tung Chou, and Jiankun Hu. Continuous au-
thentication using eye movement response of implicit visual stimuli. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol., 1(4):177:1–177:22, January 2018. ISSN 2474-9567. doi:
10.1145/3161410.

[79] Yasmeen Abdrabou, Mohamed Khamis, Rana Mohamed Eisa, Sherif Ismail, and Amrl Elmougy.
Just gaze and wave: Exploring the use of gaze and gestures for shoulder-surfing resilient
authentication. In Proceedings of the 11th ACM Symposium on Eye Tracking Research &

136



Applications, ETRA ’19, pages 29:1–29:10, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-
6709-7. doi: 10.1145/3314111.3319837.

[80] Shlomo Berkovsky, Ronnie Taib, Irena Koprinska, Eileen Wang, Yucheng Zeng, Jingjie Li, and
Sabina Kleitman. Detecting personality traits using eye-tracking data. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, pages 221:1–221:12,
New York, NY, USA, 2019. ACM. ISBN 978-1-4503-5970-2. doi: 10.1145/3290605.3300451.

[81] Julian Steil, Inken Hagestedt, Michael Xuelin Huang, and Andreas Bulling. Privacy-aware eye
tracking using differential privacy. In Proceedings of the 11th ACM Symposium on Eye Tracking
Research & Applications, ETRA ’19, pages 27:1–27:9, New York, NY, USA, 2019. ACM. ISBN
978-1-4503-6709-7. doi: 10.1145/3314111.3319915.

[82] Daniel J. Liebling and Sören Preibusch. Privacy considerations for a pervasive eye tracking
world. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiqui-
tous Computing: Adjunct Publication, UbiComp ’14 Adjunct, pages 1169–1177, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-3047-3. doi: 10.1145/2638728.2641688.

[83] Julian Steil, Marion Koelle, Wilko Heuten, Susanne Boll, and Andreas Bulling. Privaceye:
Privacy-preserving head-mounted eye tracking using egocentric scene image and eye move-
ment features. In Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applica-
tions, ETRA ’19, pages 26:1–26:10, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-6709-7.
doi: 10.1145/3314111.3319913.

[84] Brendan John, Sanjeev Koppal, and Eakta Jain. Eyeveil: Degrading iris authentication in eye
tracking headsets. In Proceedings of the 11th ACM Symposium on Eye Tracking Research &
Applications, ETRA ’19, pages 37:1–37:5, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-
6709-7. doi: 10.1145/3314111.3319816.

[85] Ao Liu, Lirong Xia, Andrew Duchowski, Reynold Bailey, Kenneth Holmqvist, and Eakta Jain.
Differential privacy for eye-tracking data. In Proceedings of the 11th ACM Symposium on Eye
Tracking Research & Applications, ETRA ’19, pages 28:1–28:10, New York, NY, USA, 2019. ACM.
ISBN 978-1-4503-6709-7. doi: 10.1145/3314111.3319823.

[86] Ali Burak Ünal, Mete Akgün, and Nico Pfeifer. A framework with randomized encoding for a
fast privacy preserving calculation of non-linear kernels for machine learning applications in
precision medicine. In Cryptology and Network Security, pages 493–511, Cham, 2019. Springer
International Publishing. ISBN 978-3-030-31578-8.

[87] Erroll Wood, Tadas Baltrušaitis, Louis-Philippe Morency, Peter Robinson, and Andreas Bulling.
Learning an appearance-based gaze estimator from one million synthesised images. In
Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications,
ETRA ’16, page 131–138, New York, NY, USA, 2016. ACM. ISBN 9781450341257. doi: 10.1145/
2857491.2857492.

[88] Seonwook Park, Xucong Zhang, Andreas Bulling, and Otmar Hilliges. Learning to find eye
region landmarks for remote gaze estimation in unconstrained settings. In Proceedings of the
2018 ACM Symposium on Eye Tracking Research & Applications, ETRA ’18, pages 21:1–21:10,
New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5706-7. doi: 10.1145/3204493.3204545.

137



[89] C-A Azencott. Machine learning and genomics: precision medicine versus patient privacy.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 376(2128):20170350, 2018.

[90] Luca Bonomi, Yingxiang Huang, and Lucila Ohno-Machado. Privacy challenges and research
opportunities for genomic data sharing. Nature Genetics, pages 1–9, 2020.

[91] Ali Burak Ünal, Mete Akgün, and Nico Pfeifer. Escaped: Efficient secure and private dot product
framework for kernel-based machine learning algorithms with applications in healthcare.
arXiv preprint arXiv:2012.02688, 2020.

[92] Manoj M Prabhakaran and Amit Sahai. Secure multi-party computation, volume 10. IOS press,
2013.

[93] Yehuda Lindell. How to simulate it–a tutorial on the simulation proof technique. In Tutorials
on the Foundations of Cryptography, pages 277–346. Springer, 2017.

[94] Oded Goldreich. Foundations of cryptography: volume 2, basic applications. Cambridge
university press, 2009.

[95] Cancer Genome Atlas Network et al. Comprehensive genomic characterization of head and
neck squamous cell carcinomas. Nature, 517(7536):576–582, 2015.

[96] Antonio Aguilera and Ricardo Pérez-Aguila. General n-dimensional rotations. 2004.

[97] Tobias Sing, Valentina Svicher, Niko Beerenwinkel, Francesca Ceccherini-Silberstein, Martin
Däumer, Rolf Kaiser, Hauke Walter, Klaus Korn, Daniel Hoffmann, Mark Oette, et al. Charac-
terization of novel hiv drug resistance mutations using clustering, multidimensional scaling
and svm-based feature ranking. In European Conference on Principles of Data Mining and
Knowledge Discovery, pages 285–296. Springer, 2005.

[98] Amin Allahyar and Jeroen De Ridder. FERAL: Network-based classifier with application to
breast cancer outcome prediction. Bioinformatics, 31(12):i311–i319, 2015. ISSN 14602059. doi:
10.1093/bioinformatics/btv255.

[99] Joseph A Cruz and David S Wishart. Applications of machine learning in cancer prediction
and prognosis. Cancer informatics, 2:117693510600200030, 2006.

[100] Payman Mohassel and Yupeng Zhang. SecureML: A System for Scalable Privacy-Preserving
Machine Learning. Proceedings - IEEE Symposium on Security and Privacy, pages 19–38, 2017.
ISSN 10816011. doi: 10.1109/SP.2017.12.

[101] Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine learning.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 35–52, 2018. doi: 10.1145/3243734.
3243760. URL https://doi.org/10.1145/3243734.3243760.

[102] Thore Graepel, Kristin E. Lauter, and Michael Naehrig. ML confidential: Machine learning
on encrypted data. In Information Security and Cryptology - ICISC 2012 - 15th International
Conference, Seoul, Korea, November 28-30, 2012, Revised Selected Papers, pages 1–21, 2012. doi:
10.1007/978-3-642-37682-5\_1. URL https://doi.org/10.1007/978-3-642-37682-5_1.

138

https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1007/978-3-642-37682-5_1


[103] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael Naehrig, and John
Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. In Proceedings of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, pages 201–210, 2016. URL http://proceedings.
mlr.press/v48/gilad-bachrach16.html.

[104] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Cryptodl: Deep neural networks over
encrypted data. CoRR, abs/1711.05189, 2017. URL http://arxiv.org/abs/1711.05189.

[105] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Advances
in Cryptology - CRYPTO ’91, 11th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 11-15, 1991, Proceedings, pages 420–432, 1991. doi: 10.1007/
3-540-46766-1\_34. URL https://doi.org/10.1007/3-540-46766-1_34.

[106] Hwanjo Yu, Jaideep Vaidya, and Xiaoqian Jiang. Privacy-preserving SVM classification on
vertically partitioned data. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3918 LNAI:647–656, 2006.
ISSN 03029743. doi: 10.1007/11731139_74.

[107] Jaideep Vaidya, Hwanjo Yu, and Xiaoqian Jiang. Privacy-preserving SVM classification.
Knowledge and Information Systems, 14(2):161–178, 2008. ISSN 02191377. doi: 10.1007/
s10115-007-0073-7.

[108] Jun Zhang, Xin Wang, Siu-Ming Yiu, Zoe L. Jiang, and Jin Li. Secure Dot Product of Outsourced
Encrypted Vectors and its Application to SVM. pages 75–82, 2017. doi: 10.1145/3055259.
3055270.

[109] Sameer Wagh, Divya Gupta, and Nishanth Chandran. SecureNN: 3-Party Secure Computation
for Neural Network Training. Proceedings on Privacy Enhancing Technologies, 2019(3):26–49,
2019. doi: 10.2478/popets-2019-0035.

[110] Andrew C Yao. Protocols for secure computations. In 23rd annual symposium on foundations
of computer science (sfcs 1982), pages 160–164. IEEE, 1982.

[111] Ali Burak Ünal, Mete Akgün, and Nico Pfeifer. A framework for a fast privacy preserving
calculation of non-linear kernels for machine learning applications in precision medicine. In
Cryptology and Network Security - 17th International Conference, CANS 2019, Fuzhou, China,
October 25 - 27, 2019, Proceedings, 2019.

[112] Harry Chandra Tanuwidjaja, Rakyong Choi, and Kwangjo Kim. A survey on deep learning tech-
niques for privacy-preserving. In Machine Learning for Cyber Security - Second International
Conference, ML4CS 2019, Xi’an, China, September 19-21, 2019, Proceedings, pages 29–46, 2019.
doi: 10.1007/978-3-030-30619-9\_4. URL https://doi.org/10.1007/978-3-030-30619-9_4.

[113] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A Framework for Efficient
Mixed-Protocol Secure Two-Party Computation. (February):8–11, 2015. doi: 10.14722/ndss.
2015.23113.

[114] Thomas Schneider and Oleksandr Tkachenko. Episode&#58; efficient privacy-preserving
similar sequence queries on outsourced genomic databases. In Proceedings of the 2019 ACM

139

http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://arxiv.org/abs/1711.05189
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-030-30619-9_4


Asia Conference on Computer and Communications Security, Asia CCS ’19, pages 315–327,
New York, NY, USA, 2019. ACM. ISBN 978-1-4503-6752-3. doi: 10.1145/3321705.3329800. URL
http://doi.acm.org/10.1145/3321705.3329800.

[115] Erman Pattuk, Murat Kantarcioglu, Huseyin Ulusoy, and Bradley Malin. Cheapsmc: A frame-
work to minimize secure multiparty computation cost in the cloud. In IFIP Annual Conference
on Data and Applications Security and Privacy, pages 285–294. Springer, 2016.

[116] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. A systematic approach to
practically efficient general two-party secure function evaluation protocols and their modular
design. Journal of Computer Security, 21:283–315, 2013.

[117] Michael O. Rabin. How to exchange secrets with oblivious transfer. IACR Cryptology ePrint
Archive, 2005:187, 1981.

[118] Shunjie Han, Cao Qubo, and Han Meng. Parameter selection in svm with rbf kernel function.
In World Automation Congress 2012, pages 1–4. IEEE, 2012.

[119] Thomas Schneider and Oleksandr Tkachenko. Episode: Efficient privacy-preserving similar
sequence queries on outsourced genomic databases. ASIACCS, 2019.

[120] Seny Kamara and Mariana Raykova. Secure outsourced computation in a multi-tenant cloud.
In IBM Workshop on Cryptography and Security in Clouds, pages 15–16, 2011.

[121] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246
(Proposed Standard), August 2008. URL http://www.ietf.org/rfc/rfc5246.txt. Updated by RFCs
5746, 5878, 6176.

[122] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pages 308–318, 2016.

[123] Si Chen, Anmin Fu, Jian Shen, Shui Yu, Huaqun Wang, and Huaijiang Sun. Rnn-dp: A new
differential privacy scheme base on recurrent neural network for dynamic trajectory privacy
protection. Journal of Network and Computer Applications, 168:102736, 2020.

[124] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Cryptodl: Deep neural networks over
encrypted data. arXiv preprint arXiv:1711.05189, 2017.

[125] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John
Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. In International conference on machine learning, pages 201–210. PMLR, 2016.

[126] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark Ibrahim, and
Laurens van der Maaten. Crypten: Secure multi-party computation meets machine learning.
arXiv preprint arXiv:2109.00984, 2021.

[127] Sameer Wagh, Divya Gupta, and Nishanth Chandran. SecureNN: 3-Party Secure Computation
for Neural Network Training. Proc. Priv. Enhancing Technol., 2019(3):26–49, 2019.

140

http://doi.acm.org/10.1145/3321705.3329800
http://www.ietf.org/rfc/rfc5246.txt


[128] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Annual Cryptology Conference, pages 643–662.
Springer, 2012.

[129] Ali Burak Ünal, Nico Pfeifer, and Mete Akgün. ppAUC: Privacy Preserving Area Under the
Curve with Secure 3-Party Computation. CoRR, abs/2102.08788, 2021. URL https://arxiv.org/
abs/2102.08788.

[130] Alexey G Murzin, Steven E Brenner, Tim Hubbard, and Cyrus Chothia. Scop: a structural
classification of proteins database for the investigation of sequences and structures. Journal
of molecular biology, 247(4):536–540, 1995.

[131] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. {GAZELLE}: A low
latency framework for secure neural network inference. In 27th {USENIX} Security Symposium
({USENIX} Security 18), pages 1651–1669, 2018.

[132] Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine learning.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
pages 35–52, 2018.

[133] Ivan Damgård, Daniel Escudero, Tore Frederiksen, Marcel Keller, Peter Scholl, and Nikolaj
Volgushev. New primitives for actively-secure mpc over rings with applications to private
machine learning. In 2019 IEEE Symposium on Security and Privacy (SP), pages 1102–1120.
IEEE, 2019.

[134] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. Flash: fast and robust framework
for privacy-preserving machine learning. Proceedings on Privacy Enhancing Technologies, 2020
(2):459–480, 2020.

[135] Arpita Patra and Ajith Suresh. BLAZE: blazing fast privacy-preserving machine learning. In
27th Annual Network and Distributed System Security Symposium, NDSS 2020, San Diego,
California, USA, February 23-26, 2020. The Internet Society, 2020.

[136] Kamalika Chaudhuri and Staal A Vinterbo. A stability-based validation procedure for differen-
tially private machine learning. In Advances in Neural Information Processing Systems, pages
2652–2660, 2013.

[137] Kendrick Boyd, Eric Lantz, and David Page. Differential privacy for classifier evaluation. In
Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security, pages 15–23, 2015.

[138] Yan Chen, Ashwin Machanavajjhala, Jerome P Reiter, and Andrés F Barrientos. Differentially
private regression diagnostics. In ICDM, pages 81–90, 2016.

[139] Jacob Whitehill. How does knowledge of the auc constrain the set of possible ground-truth
labelings? In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
5425–5432, 2019.

[140] Gregory J Matthews and Ofer Harel. An examination of data confidentiality and disclosure
issues related to publication of empirical roc curves. Academic radiology, 20(7):889–896, 2013.

141

https://arxiv.org/abs/2102.08788
https://arxiv.org/abs/2102.08788


[141] Yehuda Lindell. How to simulate it - A tutorial on the simulation proof technique. In Yehuda
Lindell, editor, Tutorials on the Foundations of Cryptography, pages 277–346. Springer Interna-
tional Publishing, 2017. doi: 10.1007/978-3-319-57048-8\_6. URL https://doi.org/10.1007/
978-3-319-57048-8_6.

[142] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October
2001, Las Vegas, Nevada, USA, pages 136–145. IEEE Computer Society, 2001. doi: 10.1109/
SFCS.2001.959888. URL https://doi.org/10.1109/SFCS.2001.959888.

[143] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-throughput
semi-honest secure three-party computation with an honest majority. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pages 805–817,
2016.

[144] Benny Applebaum. Garbled circuits as randomized encodings of functions: a primer. In
Yehuda Lindell, editor, Tutorials on the Foundations of Cryptography, pages 1–44. Springer
International Publishing, 2017. doi: 10.1007/978-3-319-57048-8\_1. URL https://doi.org/10.
1007/978-3-319-57048-8_1.

142

https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-319-57048-8_1
https://doi.org/10.1007/978-3-319-57048-8_1

	Acknowledgments
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Acronyms
	List of Publications
	Scientific Contribution

	Introduction
	Targeted Machine Learning Algorithms
	Oligo Kernel
	Radial Basis Function Kernel
	Support Vector Machines
	Recurrent Kernel Networks

	Area Under the Curve
	Area Under Receiver Operating Characteristic Curve
	Precision Recall Curve

	Cryptographic Techniques
	Randomized Encoding
	Multi-party Computation

	Privacy Preserving Machine Learning Approaches
	Privacy Preserving SVM
	Privacy Preserving Deep Learning

	Necessity of Efficient Privacy Preserving Machine Learning Algorithms

	Objectives and Expected Outcomes
	Results and Discussion
	Privacy Preserving Computation of Kernel-based Machine Learning Algorithms with an RE-based Framework and Their Applications
	Privacy Preserving SVM for Precision Medicine
	Privacy Preserving Gaze Estimation
	Overview

	More Efficient RBF Kernel Computation for Privacy Preserving SVM
	ESCAPED: Efficient Secure and Private Dot Product Framework
	Privacy Preserving SVM via MPC
	Overview

	Towards a General Purpose MPC Framework for More Complex Operations
	Comprehensive Secure Machine Learning Framework
	ppAURORA
	Overview


	Conclusion
	Appendix
	A framework with randomized encoding for a fast privacy preserving calculation of non-linear kernels for machine learning applications in precision medicine
	Introduction
	Related Work
	Preliminaries
	Our Framework
	Security Analysis
	Dataset
	Results and Discussion
	Conclusion

	Privacy Preserving Gaze Estimation using Synthetic Images via a Randomized Encoding Based Framework
	Introduction
	Threat Model
	Methodology
	Security Analysis
	Results
	Conclusion

	ESCAPED: Efficient Secure and Private Dot Product Framework for Kernel-based Machine Learning Algorithms with Applications in Healthcare
	Introduction
	Background
	Methods
	Results
	Conclusion
	Supplement

	Privacy-preserving SVM on Outsourced Genomic Data via Secure Multi-party Computation
	Introduction
	Related Work
	Preliminaries
	Privacy-Preserving SVM
	Evaluation & Discussion
	Conclusion

	CECILIA: Comprehensive Secure Machine Learning Framework
	Introduction
	Preliminaries
	Framework
	Privacy Preserving RKN (ppRKN)
	Security Analysis
	Complexity Analysis of the Framework
	Results
	Conclusion
	Supplement

	ppAURORA: Privacy Preserving Area Under Receiver Operating Characteristic and Precision-Recall Curves with Secure 3-Party Computation
	Introduction
	Scenarios
	Preliminaries
	Framework
	ppAURORA Computation
	Security Analysis
	Dataset
	Results
	Conclusion
	Supplement


	Bibliography

