

Fostering Event-Predictive Encodings
in Recurrent Neural Networks

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Dania Humaidan

aus Swaida/Syrien

Tübingen
2022

2

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 04.05.2022
Dekan: Prof. Dr. Thilo Stehle
1. Berichterstatter: Prof. Dr. Martin V. Butz
2. Berichterstatter: Prof. Dr.-Ing. Hendrik Lensch

The true scientist must dream.

For if they do not imagine the world and dream,

they will repeat what others have done,

and will add nothing.

Ahmad Zewail (1946-2016), Egyptian-American scientist, Nobel
Laureate in Chemistry 1999

. ÕÎm�'

	
à

@ YK. B ù

�
®J

�
®mÌ'@ ÕË AªË @

	
àðQ

	
k

�
B@ éÊª

	
¯ AÓ PQºJ
�

	
¯ , ÕÎm�'

ð ÕËAªË @ ÉJ

	

j
�
�K
 ÕË @

	
X @

AÓ

@

. A

J�

�
�

	
J

	
��

	áËð

ÉK. ñ
	
K

�
è 	Q

KAg. úÎ« 	Q

KAmÌ'@ ú

»Q�
Ó

B@ ø

Qå�ÖÏ @ ÕË AªË @ , (2016-1964) ÉK
ð 	P YÔg

@

1999 ÐAªË ZAJ
ÒJ
ºË@ ú

	
¯

4

Acknowledgments

I would like to thank Prof. Martin V. Butz, for his supervision and unlimited support
throughout my PhD. Not only to guide me to achieve this work, but also to teach
me how to be a good researcher. I would also like to thank Prof. Hendrik Lensch
and Prof. Sebastian Trimpe for the valuable feedback, and the International Max
Planck Research School for Intelligent Systems for the support. A big thank you goes
to my colleagues and friends, who provided the utmost support, scientifically and
emotionally. Mum and my family, thank you for always being there for me. And to
Tuebingen I say, you made it, I am staying for more adventures.

5

6

Publications

The work achieved in this thesis has been partially published in the following journal
or conference manuscripts and workshop posters. This has also been declared in the
respective footnotes.

Butz, M. V., Bilkey, D., Humaidan, D., Knott, A., Otte, S. (2018). Event Inference
for Compaction, Imagination, and Control in Recurrent Forward Models. Poster at
the 13th Women in Machine Learning workshop.

Butz, M.V., Bilkey, D., Humaidan, D., Knott, A., Otte, S. (2019) Learning, plan-
ning, and control in a monolithic neural event inference architecture. Neural Net-
works 117, 135–144

Butz, M.V., Menge, T., Humaidan, D., Otte, S. (2019) Inferring event-predictive
goal- directed object manipulations in REPRISE. Artificial Neural Networks and Ma-
chine Learning – ICANN 2019 (11727), 639–653

Humaidan, D., Butz, M. V. (2019) Event Boundaries Detection Using Artificial
Neural Networks. Poster at the Deep Learning and Reinforcement Learning Summer
School (DLRLSS). 24.07-02.08.2019 Alberta Machine Intelligence Institute, Edmon-
ton, Canada

Humaidan, D., Otte, S., Butz, M. V. (2020). Fostering event compression using
gated surprise. In I. Farkas, P. Masulli, & S. Wermter (Eds.), International conference
on artificial neural networks – icann 2020 (pp. 155–167). Springer.

Humaidan, D., Butz, M. V. (2020). SUGAR: a surprise-gated recurrent neural net-
work model for event compression. Poster at the 15th Women in Machine Learning
workshop co-located with NeurIPS 2020

Humaidan, D., Otte, S., Gumbsch, C., Charley, W., Butz, M. V. (2021) Latent
Event-Predictive Encodings through Counterfactual Regularization. The 43rd annual
meeting of the cognitive science society.

7

8

The work has also been presented in the following talks:

”Event boundaries detection using recurrent neural networks”. Talk at the Max
Planck Institute for Intelligent Systems, Stuttgart Campus. 18-10-2018.

”Event boundaries detection using artificial neural networks”. Talk at the Bosch
Center for Artificial Intelligence, Renningen, Germany. 05-07-2019.

”Using gated surprise to create and manage event compressions”. Talk at the ”10
Minutes” seminar organized at the Tuebingen AI building. 10-01-2020.

”Using gated surprise to create and manage event compressions”. 1st German So-
ciety for Cognitive Science (Gesellschaft für Kognitionswissenschaft) Doctoral Sym-
posium on Cognitive Science. Tuebingen, 24-01-2020.

Contents

1 Introduction 11
1.1 Human Cognition . 12

1.1.1 The early investigation of cognition 12
1.1.2 Common sense and awareness 14

1.2 Artificial Cognition . 14
1.2.1 Simple neural network-based systems 14
1.2.2 Incorporating more cognitive aspects 15
1.2.3 Towards human-level AI . 16

1.3 Event Cognition . 17
1.3.1 Quantitative and descriptive theories on event cognition 17
1.3.2 Why are events important . 18

1.4 Artificial Event Cognition . 18
1.4.1 Theoretical background . 18
1.4.2 Implemented models for event identification 19

2 Technical background 25
2.1 Artificial neural networks . 26
2.2 Recurrent neural networks . 27

2.2.1 Long-short term memory units 28
2.2.2 Gated recurrent units . 29

2.3 Conclusion . 30

3 Retrospective event inference using artificial neural networks 31
3.1 Context Inference . 32

3.1.1 REPRISE . 32
3.1.2 Goal location reaching behavior 34
3.1.3 Developing the contextual encodings 34
3.1.4 Prediction error, Euclidean distance 37
3.1.5 Asynchronous vehicle and target switch 39

3.2 Gradient separation and modularization 39
3.3 Conclusion . 45

i

4 Providing event switches 47
4.1 Surprise signals in event-predictive models 48
4.2 Gated surprise model . 48
4.3 Experiments . 50

4.3.1 Single network experiments . 50
4.3.2 Full network experiments . 53

4.4 Retrospective inference . 58
4.5 Conclusion . 60

5 Implementing predicted unpredictability 63
5.1 Surprise prediction . 64
5.2 Event Switching Layer . 64

5.2.1 Forward pass . 66
5.2.2 Backward pass . 66

5.3 Calculated Surprise . 67
5.4 Predicted Surprise . 68
5.5 Counterfactual Regularization . 70
5.6 Compositionality . 72
5.7 Conclusion . 74

6 Discussion 77
6.1 Summary . 78

6.1.1 The role of contextual information 78
6.1.2 Hierarchical structure with top-down/bottom-up information

flow . 79
6.1.3 Latent event-predictive encodings 80
6.1.4 Anticipating event boundaries and the role of surprise 80
6.1.5 Comparing the outcomes of different decisions 80

6.2 Limitations . 81
6.3 Conclusions . 83
6.4 Future directions . 88

Abbreviations 91

Glossary 93

Bibliography 95

ii

iv

List of Figures

1.1 The interaction between the brain and the surrounding environment.
We receive information that could be pictures, sounds, etc, and process
it to decide on what to do next. Our actions in turn affect the world
around us. 13

1.2 A simple timeline marking the appearance of important algorithms in
AI. 15

1.3 The suggested generative hierarchical event-predictive model in the
brain. The information gets more abstract as we move towards deeper
(upper) levels. The prediction error flows in the bottom-up direction
to update the beliefs and contexts, while event-predictive encodings
travel in the top-down direction to enhance the predictions based on
sensory data. 20

1.4 An illustration of the event-predictive model proposed by Raynolds et
al. [64]. The contextual information are used to enhance the predic-
tion of the model. 22

1.5 An illustration of the extended unsupervised event-predictive model
proposed by Metcalf et al. [54]. Note that the gating mechanism is
now controlled by a reinforcement learning agent. 23

2.1 An illustration of the perceptron. The input values (x) are multiplied
by the corresponding weights (w) and summed up. Then, an activa-
tion function (F) is applied to obtain the output. 26

2.2 An illustration of an artificial neural network. The neurons are grouped
in three groups: input, hidden and output. Note that there can be
many hidden layers. 27

2.3 An illustration of a recurrent artificial neural network. 28
2.4 An illustration of a long-short term memory unit. 29
2.5 An illustration of a gated recurrent unit. 30

3.1 An illustration of the investigated REPRISE. The structure uses the
sensory (st) and motor (xt) information it receives to predict the next
state of the active system (σt). 32

1

2 List of Figures

3.2 The development of three context guess neural values while control-
ling the three vehicles, switching every 150 steps. The context is
adapted via retrospective inference. While we can see good separa-
tion of the context guesses for the three vehicles, we can observe some
uncertainty in the estimates. 35

3.3 The development of the context guess representing the glider vehicle.
The star symbol with ”First” indicates the start from the initial values,
then the values get close to each other within the same cluster. Finally,
the values drift towards the values of the next context, where the last
value is located at the star symbol with ”Last”. 36

3.4 Context guess values plotted when the vehicle reaches the goal loca-
tion. The center of the cluster is marked by the star symbol. 36

3.5 2D plot of the context guess values when the vehicle reaches the goal
location, obtained by applying the PCA algorithm on the 3D values.
The center of the cluster is marked by the star symbol. 37

3.6 Top: the Euclidean distance between the vehicle and the target at
each time step. Middle: the prediction error of the network at each
time step. Bottom: the changes in the context guess at every time step. 38

3.7 The prediction error of the network when the vehicle and the goal are
being asynchronously switched (vehicle every V = 100 time steps, goal
every G = 150 time steps). We can still observe sudden increases in
the prediction error at vehicles switches, although these changes are
better observed when the goal and vehicle are switched simultaneously. 39

3.8 The updated experiment with two goals: picking up the object (the
cherries) and flying to the target location (the green sign). 40

3.9 The results of evaluating the network on the three tasks of reaching
the goal location (left), reaching the target object location (middle)
and transporting the object to the goal location (right). The black
color denotes the Euclidean distance to the goal location, the green
color indicates the Euclidean distance to the target object, and the red
color denotes the error in the current attachment signal. Each graph
also includes the respective standard deviation. 41

3.10 The evaluation results of the network in the three modes without per-
forming control inference on the object attachment. The color legend
is similar to that in Fig. 3.9. 42

3.11 The evaluation results of the network in the three modes when the
velocity-based encoding is used. The color legend is similar to that in
Fig. 3.9. 43

List of Figures 3

3.12 The default (left) and modularized (right) RNN. Grey connections in-
dicate forward-passes, while blue connections denote inference. In
the modularized RNN, we connect the output and inferred input to
one of the sub-RNNs each; thus, the back-propagated error signals are
modularized. 43

3.13 Evaluation results of the modularized RNN architecture when the velocity-
based encoding is used. The color legend is similar to Fig. 3.12. 44

3.14 Evaluation results of the modularized RNN architecture when the spatial-
based encoding is used. The color legend is similar to Fig. 3.8. 45

4.1 A single-layer network processing both contextual and sensorimotor
information. 49

4.2 A hierarchical structure composed of two layers: upper layer for con-
textual information processing and generation of context compres-
sions, and a lower layer for sensorimotor information processing and
to perform the predictive task. 50

4.3 The hierarchical structure composed of a deep contextual layer (LSTMc),
a GRU-like gating layer and a low-level function processing layer (LSTMf).
An MLP to preprocess the function input of LSTMf and a similar pre-
processing unit with LSTMc were also tested (not shown). 51

4.4 The edited GRU layer used as a gating layer between the contextual
layer and sensorimotor (functional) layer. 52

4.5 The average training error in single LSTM layer experiments. We can
see the effect of providing contextual information on decreasing the
prediction error. 52

4.6 The prediction error during training with and without providing the
contextual information (CI). 53

4.7 The prediction error during testing with and without providing the
contextual information (CI). 54

4.8 The prediction error during training with the standard deviation aver-
aged over 10 different networks. 56

4.9 Context compressions produced by the context layer. Background col-
ors indicate the different contexts. 58

4.10 Context compressions produced by the GRU-like gating layer. Back-
ground colors indicate the different contexts. Note that as the gate
was still closed during the first event in (a), context values are still on
zero. 58

4.11 Context compressions in nine differently initialized networks. 59
4.12 An illustration showing the timeline of performing retrospective infer-

ence. At the end of each event, RI is performed to infer the suitable
event encoding of the current event. 60

4 List of Figures

5.1 a) SUGARa: the surprise signal is calculated online and used to control
the update gate in the event switching module. b) SUGARb: the sur-
prise signal is anticipated in a dedicated event boundary anticipation
module, which receives fuzzy event boundary information as input. c)
SUGARc: similar to SUGARb regarding surprise anticipation, but coun-
terfactual regularization is added to foster more precise gate opening
and more compact latent event-predictive encodings. CI: contextual
information input, EB: event boundary information input. 65

5.2 The prediction error value (in purple) and surprise signals (in blue)
along time steps. The vertical blue bar indicates an event switch. It
can be observed that the prediction error significantly increases after
the event switch. We can also note some time points within the event
with a prediction error large enough to make the gate open. 68

5.3 Prediction error during the testing phase. Top: the update gate is
always closed, middle: the update gate is controlled based on calcu-
lated surprise, bottom: the update gate is precisely opened only at
event switches. Black lines denote event transition boundaries. 69

5.4 The used symbolic sequence problems with examples of the sequences
generated by each problem. 70

5.5 Prediction error and surprise signals during the testing phase of the
SUGARb model on Problem1+2. The input to the event boundary
anticipation module is an event boundary indicator plus random input. 71

5.6 Latent event encodings (xo) emerging when evaluating SUGARb on
Problem 1+2. 72

5.7 Inter-event and intra-event gate status and prediction error for SUGARb
(left) and SUGARc (right). The upper right corner includes a zoomed
image of the error value when switching to a new event. 73

5.8 Latent event encodings (xo) for Problem 1+2 emerging in SUGARc. . . 74
5.9 Latent event encodings (xo) for four randomly initialized networks

trained and evaluated on Problem 1-3. We can notice that the code
for Problem 3 lies in between the code for Problem 1 and 2 (blue and
green bars, respectively). Blue bars: code for Problem 1, green bars:
code for Problem 2, red bars: code for Problem 3. 75

6.1 The two processes updating the latent event-encodings when retro-
spective inference is implemented within the SUGAR structure. If the
two updates are not well coordinated, the encodings will not be prop-
erly updated. 82

6.2 An example of creating different handwriting objects from the same
sub-parts. Figure form [46] . 86

List of Tables

1.1 A brief comparison between the top-down and bottom-up information
flow. 19

3.1 Different systems used in REPRISE evaluation 33
3.2 Average accumulated distance to target in REPRISE using different

learning rates . 34

4.1 Average training error in single LSTM and MLP layer experiments. . . 52
4.2 Average training prediction error and average distance between the

centers of the clusters formed by the values of the context compres-
sions in different gate states. The lowest average error and largest
average distances are marked in bold. 55

4.3 Average training prediction error while using different weight update
frequency settings. 56

4.4 Average prediction error when (i) the surprise signal is fed to LSTMc,
whereby the GRU-like gate is always open (Surp. to LSTMc), (ii) the
context information is provided to LSTMc exactly in tune with the
function event (In-tune CI to LSTMc), and when an MLPf is used in-
stead of an LSTMf (MLPf). 57

5.1 Average training error for the functions example in Chapter 3 includ-
ing the calculated surprise. 67

5

6 List of Tables

Abstract

Our interaction with the world is based on the information that we receive and ac-
tions that we perform. When we observe the surrounding environment, we obtain
new information, which we use to update our beliefs and plan our next steps. It is
suggested that we organize this information within separable units, called events.
The time points at which an event ends and the next starts are called event bound-
aries. Understanding the ongoing events and the boundaries between them helps us
to better plan the upcoming steps towards our goals deeper into the future. As a
result, we can interact with the environment in more versatile, and longer-reaching
goal-directed manner.

Alongside the use of sensory information to predict upcoming events, it appears
that an additional inference process is implemented to infer the causes of our sensory
experiences, as suggested by the Bayesian brain hypothesis. When our observations
do not match our predictions, we get surprised and try to update our beliefs based
on the new information. The update is based on the prediction error between the in-
ternal expectations and the sensory observations. In order to minimize the error, we
need to be able to predict the upcoming states as accurately as possible, which means
that we need to avoid being faced with unpredictable, surprising states. Modeling
the temporal evolution of events, and the role of surprise in defining event bound-
aries, has attracted lots of attention. The structure within which such modeling can
take place would represent a schema for the Bayesian brain model. Moreover, see-
ing the connections between different areas of the cortex, and the different temporal
dynamics of them, evidence has accumulated that hierarchical, predictive structures
develop in our brain, with lower sensory processing layers, which deal with concrete
information, and deeper, or upper, layers that are responsible for abstraction, fitting
the sensory information into event-characterizing, compact latent encodings.

This thesis explores how to construct a neural network-based, hierarchical archi-
tecture for surprise-based, event-predictive modeling. First, we explore retrospective
gating by tackling the challenge of different moving vehicles as events. Then, we con-
trast this with prospective gating. In this case we use a set of temporal functions and
show that events can be segmented when surprise signals are available. Moreover,

7

8

we show that event boundary anticipation is useful to enhance the compression of
event-characterizing latent encodings. Finally, we extend the structure with a coun-
terfactual regularization term, showing that the regularization enhances the stability
and robustness of the latent event encodings in a symbolic sequence prediction task.
With the achieved robust development of event-predictive encodings, the presented
surprise-gated event segmentation structure could be employed in more complex sys-
tems to perform other decision-making tasks. Particularly the controlled opening of
the surprise gate could be useful in other systems where the efficient and selective
activation of contextual information is required.

Abstrakt

Unsere Interaktion mit der Welt basiert auf den Informationen, die wir erhalten, und
den Handlungen, die wir ausführen. Wenn wir die Umgebung beobachten, erhalten
wir neue Informationen, die wir verwenden, um unsere Überzeugungen zu aktual-
isieren und unsere nächsten Schritte zu planen. Es wird vorgeschlagen, dass wir
diese Informationen in trennbare Einheiten, sogenannte Ereignisse, kodieren. Die
Zeitpunkte, an denen ein Ereignis endet und das nächste beginnt, werden Ereignis-
grenzen genannt. Das Verständnis der laufenden Ereignisse und der Grenzen zwis-
chen ihnen hilft uns, die bevorstehenden Schritte in Richtung unserer Ziele besser zu
planen. Dadurch können wir uns besser, zielorientiert verhalten.

Neben der Nutzung der sensorischen Informationen zur Vorhersage bevorstehen-
der Ereignisse wird im Gehirn auch ein Inferenzprozess durchgeführt, der die Ur-
sachen dieser sensorischen Erfahrungen ergründet. Dies wird auch von der Bayess-
chen Gehirnhypothese postuliert. Wenn unsere Beobachtungen nicht mit den Vorher-
sagen übereinstimmen, sind wir überrascht und versuchen, unsere Überzeugungen
basierend auf den neuen Informationen zu aktualisieren. Die Aktualisierung erfolgt
unter Verwendung des Vorhersagefehlers zwischen den internen Erwartungen und
den sensorischen Beobachtungen. Um den Fehler zu minimieren, müssen wir die
kommenden Zustände so genau wie möglich vorhersagen, das heißt, wir müssen
vermeiden, mit unvorhersehbaren, überraschenden Zuständen konfrontiert zu wer-
den. Die Modellierung der zeitlichen Entwicklung von Ereignissen und die Rolle
von Überraschung bei der Definition der Ereignisgrenzen hat viel Aufmerksamkeit
auf sich gezogen. Die Struktur, innerhalb derer eine solche Modellierung stattfinden
kann, würde ein Schema für das Bayessches Gehirnmodell darstellen. Angesichts
der Verbindungen zwischen verschiedenen Bereichen des Kortex und ihrer unter-
schiedlichen zeitlichen Entwicklungen wäre eine wahrscheinliche Struktur eine hier-
archische Struktur mit einer unteren sensorischen Verarbeitungsschicht, die sich mit
konkreten Informationen befasst, und einer oberen Schicht, die für die Abstraktion
verantwortlich ist, in dem sie sensorische Informationen in spezifische Ereignisse und
konzeptuelle Abstraktionen davon kodiert.

Diese Dissertation untersucht, wie eine hierarchische Architektur für überraschungsbasierte

9

10

ereignisprädiktive Modellierung konstruiert werden kann. Zuerst untersuchen wir
retrospektives Gating, indem wir die Herausforderung unterschiedlicher sich bewe-
gender Fahrzeuge als Ereignisse angehen. Dann stellen wir dies dem prospektiven
Gating gegenüber. In diesem Fall verwenden wir eine Reihe von Zeitfunktionen
und zeigen, dass Ereignisse segmentiert werden können, wenn Überraschungssignale
verfügbar sind. Darüber hinaus zeigen wir, dass die Antizipation von Ereignisgren-
zen nützlich ist, um die Komprimierung latenter Ereigniskodierungen zu verbessern.
Schließlich erweitern wir die Struktur um einen kontrafaktischen Regularisierung-
sterm und zeigen, dass die Regularisierung die Stabilität und Robustheit der latenten
Ereigniskodierungen in einer symbolischen Sequenzvorhersageaufgabe verbessert.
Mit der erreichten robusten Förderung ereignisprädiktiver Kodierungen könnte die
vorgestellte Ereignissegmentierungsstruktur in komplexeren Systemen weiter unter-
sucht werden, um andere Entscheidungsaufgaben zu erfüllen. So kann erwartet wer-
den, dass die zielgerichtete Kontrolle und Inferenz von Ereignissen und Ereignisgren-
zen auch in anderen Systemen nützlich sein wird, insbesondere wenn effiziente und
selektive Aktivierungen von Kontextinformationen hilfreich sind.

Chapter 1

Introduction

In this chapter, I will start with the big picture that represents the motivation behind
the work in this thesis: achieving a step towards understanding human cognition. I
will start by setting some definitions and shedding light on the relevant theories and
models related to the study of human cognition. Then, I will zoom in to the aspect
of how separable units are formed from the stream of information that we receive,
called events. Event cognition represents the main focus of this work.

Next, since the tools used in this work come from the field of artificial intelligence,
I will elaborate on the contributions of this field to the study of cognition. Specifically,
the theories and models introduced to study cognitive functions, with a focus on
event-predictive models.

I will end the chapter with a summary of the presented definitions and models,
and explain the current state of event-cognitive modeling, which represents the start-
ing point of my contributions in this work.

11

12 Introduction

1.1 Human Cognition

1.1.1 The early investigation of cognition

The study of human cognition does not belong to one field only, but it requires com-
bining aspects and knowledge from different fields, including but not limited to phi-
losophy, psychology, linguistics and biology.

Although the philosophical questions about how the brain works have been long
discussed, the movement of studying the mind and its intellectual abilities started
with the cognitive revolution in the 1950’s [78]. Long before this, the famous state-
ment of Descart: “I think, therefore I am” indicated that our ideas are what define
us. As a result, two movements were developed: rationalism and empiricism. While
rationalism assumes that our realization of the surrounding world is based on rea-
son and logic, empiricism drives learning back to experiences only. Interestingly, the
empiricist philosopher Hume considered our brain to be a system that can use the
previous experiences to anticipate what might happen next [9]. On the other hand,
the Bayesian brain theory suggests that the brain actively infers the causes of its ex-
periences, hence called an active inference system [26]. If the system, our brain in
this case, receives feedback regarding its predictions, then the brain might actually
be using a sort of a predictive feed-forward model. It receives an observation as an
input, processes it and outputs a prediction of the observation expected in the next
time step. Based on the received information, the brain decides on the suitable be-
havior and sends commands to perform a certain action. This action will then affect
the surrounding environment such that we will receive new observations, and so on,
as illustrated in Fig 1.1.

It is sensible to say that cognition development goes along with behavior develop-
ment [9]. We benefit from the results and effects of our actions on the surrounding
environment, by getting rewards for useful actions and negative feedback, in the
form of wrong information or pain for example, on the actions that we better not
repeat in similar situations. That being said, the use of past experiences and future
predictions is not limited to the time around the current moment, but it serves the
planning for future goals. In our daily activities, we subsequently plan for goals that
might require many steps to be achieved. If the plan is to cook a certain meal, we will
do many steps like shopping, preparing the required tools, etc., to achieve the final
goal of getting the meal prepared. Thus, we move from basic sensorimotor control
processes to decision making in a goal-directed manner. To this end, the sensorimo-
tor dynamics are compacted into units, and understanding this abstraction remains
one of the biggest challenge in cognitive science.

When we observe the surrounding environment, we use the collected informa-
tion to map certain characteristics to the observed things or scenes, forming their
”Gestalt”. When we observe a cup of tea, its characteristics are mapped to its defini-

1.1 Human Cognition 13

Observations

The brainSurrounding environment

Actions

Figure 1.1: The interaction between the brain and the surrounding environment. We
receive information that could be pictures, sounds, etc, and process it to decide on what
to do next. Our actions in turn affect the world around us.

tion in the brains. Hearing the word ”Cup”, alone or within a sentence, would then
trigger the representation of the cup that we built in our mind. However, when the
observed ”Cup” is nothing like what we had in mind, this will result in a prediction
error, which will be used to update our internal Gestalt of a cup.

Understanding human cognition also relies on biological science. This aspect in-
cludes studying the actual molecular and cellular neural units that constitute the
brain, moving on to the sensorimotor neural systems, reaching the high-level cogni-
tive processes and how to model these mathematically [9]. One useful method here
is the study of the electrophysiological activity of the brain, called electroencephalog-
raphy (EEG). By analyzing and filtering the signals, the activity of certain areas of the
brain can be experimentally linked to certain cognitive functions. Another important
tool is medical imaging of the brain. Varied types of imaging can be used, among
which the functional magnetic resonance imaging (fMRI) attracted lots of attention
for being a noninvasive tool to measure the brain activity and map it to the source
[29].

Another important aspect that is closely related to cognitive science is language.
Although learning how to speak and understand language requires collecting vocabu-

14 Introduction

laries and learning grammars, it is proposed that the actual acquisition of language is
also based on learned conceptualization and requires connecting the words to these
concepts in our brain [80]. In fact, the study of language went on to be accompanied
by cognitive studies, as the cognitive linguistics field appeared in the 1970’s [60].

1.1.2 Common sense and awareness

One of the amazing characteristics of our mind is the ability to perform an overall
comprehension and evaluation of different situations, even when no concrete situ-
ational background knowledge exists. This is known as having a common sense,
which is still difficult to understand, and thus extremely difficult to simulate in arti-
ficial agents.

Even when we receive only very little sensory data, the mind is able to extract
and deduce a significant amount of (hidden) information, forming internal behavior-
relevant state encodings. We use these encodings to generate conclusions, decide
on our next goals, and pursue them by means of inference-based planning [48] [7]
[11].

Researchers aim to understand the mechanism behind the so-called efficient learn-
ing [37], i.e., learning from few examples, attempting to implement these abilities
into artificial agents. This characteristic helps to avoid dangerous situations to a cer-
tain extent, even if not encountered before. Besides, it helps to make better decisions
in partially novel situations.

1.2 Artificial Cognition

1.2.1 Simple neural network-based systems

The field of artificial intelligence, as the name reveals, started as a way to simulate
the functions that constitute what we define as intelligence. Although we still do not
have a full definition of intelligence, it can be described as ”The ability to use memory,
knowledge, experience, understanding, reasoning, imagination and judgement in
order to solve problems and adapt to new situations” [49]. This definition gives
us an insight into the aspects that scientists have been trying to artificially simulate
using algorithms.

In order to build machines that can perform these tasks, it sounded reasonable to
first understand how these functions are operated in the brain. The argument for this
choice came from two main reasons. On the one hand, having these tasks functioning
in the human brain is a great inspiration that having such complicated functions is
possible. On the other hand, by studying animal cognition, we can develop new
algorithms and verify them [37].

1.2 Artificial Cognition 15

1940 1949 1958 1980

First ANN for logical
functions

Unsupervised learning

Supervised learning Backpropagation

Figure 1.2: A simple timeline marking the appearance of important algorithms in AI.

This mission has been pursued by neuroscientists. The field of neuroscience has
had many accomplishments in the last century, and it has inspired the field of artificial
intelligence.

The most obvious inspiration from neuroscience are artificial neural networks.
As their name reveals, these structures are composed of a set of units called neu-
rons. The neurons are computational units that receive a certain input and applies
a mathematical operation on it to produce the output. Since the first feed-forward
artificial neural networks were presented in the early 1940s to perform simple logic
operations, huge improvements have been proposed; some of the important steps
are shown in a simple timeline in Fig. 1.2. Inspired by the proposed structure of
neural computations in the brain, many layers were used in the neural networks to
form deep networks. The layers serve the simulation of the extensively parallel pro-
posed model of the peripheral sensorimotor stages of the human neural system [71]
[57]. In addition, parallel layers can act on different aspects to achieve a final result
by combining the individual results. Such multilayer structures are also helpful to
investigate the hierarchical structure of the brain computations [23].

The other aspect in artificial intelligence highly inspired by neuroscience is the
concept of using a certain reward or punishment to the performed action. This feed-
back signal can be used to encourage or limit a certain behavior to enhance the
learning process; a term called reinforcement learning (RL) [77].

1.2.2 Incorporating more cognitive aspects

In order to improve the performance of AI techniques, the use of many cognitive
functions within the AI algorithms and structures is being exploited nowadays.

16 Introduction

Among the most important additions is the inclusion of the attention mechanism.
As the name reveals, the attention mechanism means focusing on part of the input
based with the highest priority at each level. Selective attention has been studied in
the human visual cortex using the functional magnetic resonance imaging (fMRI), as
we focus on certain parts of the pictures, the parts which include important features
[51] [2]. The question of how does attention focus on what is important remains an
important question in cognition.

From the episodic memory, which represents an instance-based mechanism of
memory, to working memory, in which information are stored and updated using
an active store, different forms of memory mechanisms have been exploited in AI
structures [37].

Understanding and simulating the learning process also represented a research
hotspot in AI models. By integrating deep learning with reinforcement learning, re-
searcher have implemented the so called experience replay, i.e., storing some training
data that had a positive effect on the learning process and play it offline to learn from
it. In addition, similar to what we do as humans when we learn new skills without
forgetting old ones, thus has been implemented in AI models under the name of con-
tinual learning. In the future, researchers are aiming to develop models that are able
to generalize and transfer the experience learned from a certain task to other tasks.

1.2.3 Towards human-level AI

The recent advances in deep learning have shown enhanced performance in many
tasks, sometimes even superior to that of humans [30]. The intended goals of con-
structed and always enhanced artificial intelligence (AI) systems converge to achieve
better and better accuracy in certain tasks, like mastering a certain game [72], or
diverge to propose novel overall structures.

With the ongoing development in artificial intelligence, the argument is rising
of whether this development is going in the intended direction of Strong AI, the
AI which resembles the abilities of the human mind [18]. The argument proposed
and discussed [59] is that there is a need to expand current model-blind machine
learning research to include counterfactuals, which represent alternative scenarios
of what would happen if different choices were made. Counterfactual reasoning has
been used in plenty of ML models to decide on the best policy in decision-making
[88], but its practical integration within ML-based event cognition models is still not
well investigated.

Human-level (Strong) AI can reason about the surrounding world and adapt its
behavior accordingly to achieve the most benefit and avoid danger. Achieving such
AI requires us to dive more deeply into the actual behavior of the human brain.
Hierarchical. extensively parallel structures should be used, and the development

1.3 Event Cognition 17

of event-predictive encodings from sensorimotor experiences should be investigated
and implemented [13, 37].

1.3 Event Cognition

1.3.1 Quantitative and descriptive theories on event cognition

Surrounded by a lot that is happening and changing throughout time, we humans
can not only act based on what we are receiving at the moment. In fact, we need
to use our previous observations to learn what is the best option to consider for the
current situation. This does not mean going through all the saved information, but
rather using the accumulated information to develop an internal model representing
the outside world. This model summarizes our experiences and it is always being
updated using new observations.

Before introducing event cognition, it is necessary to distinguish between two
terms often interchangeably used: event and context. An ”event” is a segment of
time in a given location that an observer perceives as having a beginning and an end
[84]. The ”context” is the environment in which a particular event occurs [82].

For example, driving a car is an event, driving a bus is another event. While both
events represent moving from one location to another using a vehicle, the car and
bus represent two different contexts. The difference here is that the car and bus have
different characteristics, like speed, weights, etc. Thus, they represent two different
circumstances for the event of moving or driving to happen within. In the next
chapters, the information provided to the network represents contextual information,
while the encodings compressed in the network represent event encodings.

The way we perceive the information and organize it has been an interesting re-
search question since 1920’s, with many studies about the understanding and percep-
tion of events. The proposed Event Segmentation Theory (EST) [63] [86] suggests
that we use sensory information to develop representations of separable events. We
use this structure of events and subevents to represent the current event and also to
predict the next thing to happen [21]. The practical implication of this is that we
use these units to reach a final goal, starting from the current state. Thinking about
reading a book in the library in another room, we will soon realize that we need to
be close to the library to reach the book, and then we need to be in the other room
where the library is, and then need to leave the current room, and then we need to
walk, so we need to get up first. Hence, we are able to construct many intermediate
steps to reach the final goals, which we may also call intermediate goals.

The intuitive principle behind context switch recognition is that we notice a dif-
ference in the received information. When a new person appears through the door,
the visual and audio information we are receiving are different, this is how we re-

18 Introduction

alize the new event of someone entering the room. The reason this shift causes us
to believe a new event started is because it does not match our predictions, we were
expecting to see a door, but instead we see a person passing through the door, this
difference - measured mainly by prediction error - is used to update our model and
to identify an event boundary. When we want to simulate this, we should look for
similar signals that can inform our active internal models about the context switch.

1.3.2 Why are events important

Recognizing events helps to adopt an enhanced behavior that can result in better out-
comes of our actions. Many studies from the fields of neuroscience and psychology
shed light on the importance of events in our cognitive functions [62].

The ability of humans to distinguish different contexts have been previously in-
vestigated in many studies [85] [87] [69]. When the predictions do not match the
actual observations, then we realize that a new event has begun. An example of a
continuous set of events is a film with many scenes. Loschky and colleagues [50]
reported that when a group of participants were shown selected parts of a film, they
had more systematic eye movements when the seen part could be put within a larger
context. In the work of Baldassano and colleagues [5], participants were shown dif-
ferent events, like flying from the airport or eating at a restaurant. By observing the
brain activity, they showed that they had consistently different brain activity patterns
when different events were going on. In fact, having more boundaries between the
events positively affects the memory, as reported by Pettijohn and colleagues [61].

The development of event-predictive encodings plays an important role in the
creation of versatile and beneficial goal-directed behavior. Such encodings emerge
via the implementation of inductive biases, which mean the assumptions made by
the learner to perform predictions based on new input. In fact, in has been suggested
that the development of such encodings is one of the important aspects that make
the human cognitive abilities superior to what has so far been achieved using AI
techniques [13].

1.4 Artificial Event Cognition

1.4.1 Theoretical background

A main characteristic of the human mind that AI systems are still striving to reach is
the ability to maintain a robust perception of the surrounding world. This robust per-
ception is the result of a complex inference process in the brain, by which the brain
tries to infer the hidden causes of the ongoing experiences in a goal-directed man-
ner. This planning happens in a hierarchical fashion [4]. In short, our mind tends

1.4 Artificial Event Cognition 19

Table 1.1: A brief comparison between the top-down and bottom-up information flow.

Content Role Update speed

Bottom-up signals Observations, details

Used to update Fast, whenever
the contextual a new observation

encodings and thus is received
react to unexpected stimuli

Top-down signals Expectations, beliefs, contexts

Enhances the Slow, when
prediction when the beliefs
the sensory data are updated

are noisy or ambiguous

to process the stream of sensorimotor experiences and segment them to form gener-
ative event-predictive encodings [10]. The details involve two suggested directions
of information flow. On the one hand, the prediction error from lower level sen-
sory layers—mainly the divergence of the predictions from the actual observations—
travels in a bottom-up (feedback) direction towards deeper layers. Fig. 1.3 shows an
illustration of the two-way information flow inspired by the suggested hierarchical
levels of events [44]. Meanwhile, event-predictive encodings flow from the deeper
layers, where the planning happens towards the sensory level in a top-down (feedfor-
ward) direction, to enable better prediction [22]. A brief comparison [55] between
the two directions is listed in Table 1.1. It is suggested that our brain constantly tries
to predict what might happen next around us. It tries to limit its predictions within a
set of predicted states, so that it avoids any surprising signals [22].

1.4.2 Implemented models for event identification

Identifying when a certain event ends and the next one starts has been experimen-
tally studied. Examples included asking the participants to identify the points in a
certain video at which they expect the current scene to end or monitoring the brain
activity via functional MRI and identifying neural activity patterns indicating transi-
tions between events [50] [5].

Radvansky, Zacks and colleagues [63] interpreted these indicators of inter-event
switches, called event boundaries, as to correspond to an increase in prediction error,
i.e., what actually happened is different from what was expected. Thus, it is about
being able to predict what would happen next, if the reality does not match our
predictions, we realize a new event has started.

Seamless transition between events relies on the effective transfer of event-encodings
from deep prediction layers to sensorimotor processing layers, which requires more
than a bidirectional transmission of the information. Mittal and colleagues [55] went
to combine the four aspects of hierarchy, attention, bidirectionality and modularity

20 Introduction

Level 3

Level 2

Level
1

Level 2

Level
1

Level
1

To
p-

do
w

n
pr

ed
ict

iv
e

en
co

di
ng

s f
lo

w Bottom
-up prediction error flow

Abstraction increases

Figure 1.3: The suggested generative hierarchical event-predictive model in the brain.
The information gets more abstract as we move towards deeper (upper) levels. The
prediction error flows in the bottom-up direction to update the beliefs and contexts, while
event-predictive encodings travel in the top-down direction to enhance the predictions
based on sensory data.

in their model to combine top-down and bottom-up signals. When it comes to identi-
fying useful experiences, one of the most commonly used methods in reinforcement
learning is experience replay, which allows determining the experiences that were
beneficial to the learning and training process, and replaying them offline to en-
hance the performance. On the other hand, reasoning about alternative experiences,
which were not originally experienced, in the form of counterfactual reasoning has
also been investigated. In reinforcement learning, Hart and Knoll [36] used counter-
factual reasoning to decide if the chosen policy in an autonomous driving task is safe
enough before applying it. In dialogue generation, Zhu and colleagues [88] applied
counterfactual off-policy training to infer the results of alternative policies.

However, as we move from a certain event to the next one, e.g. finish reading the
newspaper and start to eat something, this switch between the two different contexts
happens pretty smoothly. It is as if we predict the switch to the next event, or the

1.4 Artificial Event Cognition 21

event boundary, and adjust our predictions based on that. Our experience helps
us to enhance our predictability of when different events can be expected to finish.
Distinct event-predictive encodings of different events can help us to interpret the
received observations within the current event, since they work as an inductive bias
that affects our understanding of what we observe.

From the practical aspect, some models were presented to simulate the switch be-
tween different events, such that contextual information is saved in a submodule of
the structure. Reynolds and colleagues [64] proposed a model to process a series of
events and distinguish the boundaries between them. Event boundaries were iden-
tified as an increase in the prediction error. The model included a simple recurrent
neural network along with a set of LSTM units, as shown in Fig. 1.4. They performed
a set of simulations and pointed out extremely important features concerning how
prediction error is related to event cognition:

• Inter-event prediction error is larger than intra-event error.

• The prediction of event-like series can be enhanced when stable context is pro-
vided.

• The events can have internal representations; these are learned and updated at
event boundaries by a gating mechanism, which uses prediction error.

As we perform more tasks, the internal representations of the events play the role
of developing event encodings, which then foster their further consolidation as well
as the learning of further and more abstracted events and event boundaries.

The model of Reynolds et al. was later extended by a reinforcement learning
(RL) agent in the work of Metcalf et al. [54], as shown in Fig. 1.5. The point was
to let the RL agent control the gating mechanism, hereby getting rid of externally
set thresholds. Interestingly, this work used unsupervised control of the gate, which
goes in line with what was proposed in the event segmentation theory [63, 86].

Keeping updated information, which identifies or hints at the currently ongoing
context, in mind while processing sensorimotor prediction tasks or other learning
tasks reduces the event-specific prediction error. However, this does not mean that
we have to keep updating the contextual information all the time. In fact, this will be
impractical. The coordination between the learning process and requesting updated
contextual information has been presented in the work of Solowjow and colleagues
[74]. They proposed an event-triggered learning model, which was implemented in
a control system that requests new information to update the model only when there
is an actual apparent need for this update.

Although these models shed light on important aspects of event cognition and
simulated some points practically, a smooth, seamless transition between the events
has not yet been properly implemented. Given the proposed theories and presented

22 Introduction

Figure 1.4: An illustration of the event-predictive model proposed by Raynolds et al.
[64]. The contextual information are used to enhance the prediction of the model.

models on event cognition and to overcome their limitations, the next step would be
to construct a hierarchical model that fosters event-predictive encodings to achieve
seamless event segmentation using surprise-based gating of the information flow,
which is the core of this thesis. After this introduction in Chapter 1, Chapter 2
presents a technical background to get familiar with the used algorithms and struc-
tures of machine learning. Then, Chapter 3 investigates the role of contextual infor-
mation and how to infer them retrospectively when the information is not provided.
It also discusses how event-predictive encodings are formed, and how to separate
the connections within one structure to achieve good performance on simultaneous
tasks. In Chapter 4, the gating mechanism to control the information flow is closely
investigated, and different behaviors of the gate are discussed. Chapter 5 discusses 3
presented models that differ in the way surprise signals are obtained and introduces
the idea of evaluating the outcomes of different decisions of the gate. Finally, Chap-
ter 6 presents a summary of the work and discusses some open questions, of which
some might represent potential future work.

1.4 Artificial Event Cognition 23

Figure 1.5: An illustration of the extended unsupervised event-predictive model pro-
posed by Metcalf et al. [54]. Note that the gating mechanism is now controlled by a
reinforcement learning agent.

24 Introduction

Chapter 2

Technical background

In this chapter I will provide a summarized introduction to the machine learning
structures used in this work. I will start with a brief introduction to artificial neural
networks (ANNs), statistical models that process the input through multiplying it
by certain weights and then applying a certain function on the result. Then, I will
talk about a subtype of ANNs called recurrent neural networks (RNNs), in which the
output of the previous time step is also included in the input at the current time step.

In this work, two special types of RNNs have been used, mainly Long-Short Term
Memory (LSTM) and Gated Recurrent Unit (GRU) networks. Thus, this chapter pro-
vides an overview of the two types and the reasons behind the choice to use them.
In the subsequent chapters, the individual event-predictive neural network architec-
tures developed in this thesis will be presented. The order will follow the adjustments
applied on the subsequent structures to answer the raised limitations.

25

26 Technical background

2.1 Artificial neural networks

Just like the brain is made up of a large amount of interconnected neurons, artificial
neural networks (ANNs), as the name reveals, are a set of interconnected artificial
neurons. And as the brain processes the data and makes informative conclusions,
ANNs receive a certain input and process it to obtain the corresponding output. They
represent an important class of structures in the field of machine learning.

The main goal of ANNs is to map the input into a desired output. For example,
ANNs can be used in image classification. Consider having a set of cat images and
another of dog images. We can use the ANN to classify each image as to belong to
the class of cat images or that of dog images. In order to understand how this might
be achieved, we can have a look at what is actually happening inside an ANN.

Fig. 2.1 shows the main unit in an ANN, the artificial neuron, called the percep-
tron. The perceptron receives an input, multiplies it by certain weights, and then
applies a function, called the activation function, to obtain the output. Usually, a
constant term is added to the input to adjust the output, called the bias. If we have
many of these neurons connected to each other, then we have an artificial neural
network. Fig. 2.2 shows the overall schema of a simple ANN, where the neurons are
grouped in an input layer, processing or hidden layer and an output layer.

1

x1

xn

Input

w0

w1

wn

Σ
Π

Π

Π

Output

y

.

ℱ

Figure 2.1: An illustration of the perceptron. The input values (x) are multiplied by the
corresponding weights (w) and summed up. Then, an activation function (F) is applied
to obtain the output.

The weights in the network are updated by comparing the output of the network
with the perfect output, e.g., the predicted class of the image with the actual class

2.2 Recurrent neural networks 27

Input Layer
Hidden Layer

Output Layer

Figure 2.2: An illustration of an artificial neural network. The neurons are grouped in
three groups: input, hidden and output. Note that there can be many hidden layers.

of the image. Then, the difference between the two values, i.e., the prediction error,
is calculated. The goal here is to minimize this error as much as possible, which is
the objective function of the network. One common way is to use a method called
gradient descent, by calculating the gradient of the objective function and trying to
find the values that minimize the function as much as possible.

The hidden layer, which does not deal with the direct input or output, has a
distinct value for ANNs. As the name reveals, it contains hidden information within
the ANN, which can be included as an additional input at the next time step as we
will see.

2.2 Recurrent neural networks

When dealing with a series of data, like a stream of sensory data representing the
movement of a vehicle, these data points are then related to each other. If we want
to predict the location of the vehicle at time t+1 given where it is at time t, then it is
useful to also use the information on where it was at time t-1.

Neural networks that keep the output of the previous time step to be used as

28 Technical background

as additional input at the current time step are called recurrent neural networks
(RNNs). They represent powerful structures when analyzing time series data and
have achieved amazing results. Fig. 2.3 shows an example illustration of a recurrent
neural network.

Input Layer
Hidden Layer

Output Layer

Figure 2.3: An illustration of a recurrent artificial neural network.

However, as the data series gets longer, it becomes hard to keep the gradient
significant to cause an update. This problem is known as the vanishing gradient
problem. As a solution to this problem, a new RNN structure was presented, called
the long-short term memory.

2.2.1 Long-short term memory units

So far, the data flow in neural network is composed of the input, hidden and output
data. The key idea in long-short term memory (LSTM) units, presented by Hochreiter
and Schmidhuber in 1997 [38], is the extra line of data called the cell state. This
state is updated every time step by dropping or adding data through the connections
between this data line and the input at the current time step. The connections are
controlled with gates, which open or close to decide whether the data can pass or
not. The LSTM unit has three gates to edit and update the cell state: the forget gate,
input date and update gate. Due to this structure, LSTMs are able to retain useful
data and forget those that should be replaced. A simple illustration of an LSTM unit
is shown in Fig. 2.4.

The idea of having gated data flow is very important when the update of the
post-gate data should only happen based on certain conditions and not always or
never. LSTM units have widely spread and became the state-of-the-art in RNNs for the
processing of long time series data. However, the LSTM does not have control over

2.2 Recurrent neural networks 29

Π

Forget
gate

Input
gate

Cell
Input

Π

Cell
state

Output
gate

Π

!

ℎ

Cell output

input

input

input

inputOutput

Figure 2.4: An illustration of a long-short term memory unit.

how much of the information from the previous time step is used. All the information
from the previous time step is passed into the current time step and then updated
using the input at the current time step. To add more control on the flow of old
Information, Gated Recurrent Units were presented.

2.2.2 Gated recurrent units

In 2014, a new structure was proposed by Cho et al. [14] [15], called the Gated
Recurrent Unit (GRU). This structure allowed direct control of the information flow
from the previous time step. There are two main gates in the GRU: the update gate
and the reset gate. The GRU also contains a sort of cell state, which represents the
information saved within the GRU unit from previous time steps. At every time step,
the reset gate decides how much of the old information will be added to the input at
the current time step. Then, according to the update gate, the cell state is updated as
to contain some of the new information and some of the old cell state information.
A simple illustration of a GRU is shown in Fig. 4.4.

30 Technical background

Π

Π

1-

Π

Update
gate

Reset
gate

Combined
gate

Cell
state

input

input

input

Figure 2.5: An illustration of a gated recurrent unit.

2.3 Conclusion

ANN structures that have shown superiority in processing time series data can be very
useful to construct models that can simulate how the brain processes the stream of
sensorimotor information. The idea of using previous information to decide on how
to process the current data is similar to how the brain needs to have some contextual
information to decide on the current task. For example, to continue the sentence
”thus, I can speak”, we need to know which information was mentioned before.
If the previous sentence was: ”I was born in Germany”, then we can predict that
the sentence will continue as ”thus, I can speak German”. This information, once
entered, is saved within the cell state. Then, it is update according to the gates. Now,
how to control this update such that it is only performed when an update of this
contextual information is needed? This is one aspect of the work performed in this
thesis.

Chapter 3

Retrospective event inference using
artificial neural networks

When we decide to perform a certain action, like lifting a glass of water, we usually
have a reason for doing this. The overall context might be the desire to drink water,
and we might perform several tasks while keeping this context in mind, like getting
up and walking towards the place of the glass and filling it with water, etc. Hence,
our actions are influenced by the larger contexts they are being performed within.

In this chapter I will talk about the role of including information that indicate
the current context, within which the tasks are being performed. I will describe the
structure used to investigate the role of contextual information, and the process of
inferring these information in case they are not provided to the system.

Then, I will talk about the actual representation that encodes these contexts,
which helps to predict what might happen next given the current context. These
representations are hence called predictive-encodings, and here we will talk about
their development and role in event-predictive processing.

Finally, I will describe the trial to separate the tasks of inferring the contextual in-
formation and the other predictive task that the system might be performing through
modularizing the structure. I will show the effects of this modularization and provide
some insights into the further usage of such modularized structure 1.

1This chapter is based on our published papers:
Butz, M.V., Bilkey, D., Humaidan, D., Knott, A., Otte, S. (2019) Learning, planning, and control in a
monolithic neural event inference architecture. Neural Networks 117, 135–144
Butz, M.V., Menge, T., Humaidan, D., Otte, S. (2019) Inferring event-predictive goal- directed object
manipulations in REPRISE. Artificial Neural Networks and Machine Learning – ICANN 2019 (11727),
639–653
Most of the figures and tables are taken from these papers.

31

32 Retrospective event inference using artificial neural networks

3.1 Context Inference

In our daily life, we are always analyzing the observations we make on the surround-
ing environment. As we perform certain actions, we usually have a goal in mind
we are working to achieve. We can head to the kitchen with the goal of preparing
a sandwich. Then, all the steps that we do would be directed towards making that
sandwich. Thus, our interpretation of the actions we do is influenced by the overall
goal we have. While opening the fridge, we can take out different things, but we
take out cheese because we know we need it for the sandwich. This interpretation
of the actions in light of the contextual information leads to achieve our goals more
efficiently. To analyze the contextual information accompanying the execution of a
mission to reach a certain target, we have investigated a neural network-based sys-
tem that in addition to the sensorimotor information it receives and processes, also
includes contextual information as an input, which is used while a predictive task is
being performed.

3.1.1 REPRISE

The REtrospective and PRospective Inference SchEme (REPRISE) was proposed by
[12] to infer from previous experiences and also probe into the future. This struc-
ture is a long short-term memory (LSTM)-based temporal predictive sensorimotor
forward model [38], an illustration is shown in Fig. 3.1

Figure 3.1: An illustration of the investigated REPRISE. The structure uses the sensory
(st) and motor (xt) information it receives to predict the next state of the active system
(σt).

In this recurrent neural network structure, the performed task includes a group

3.1 Context Inference 33

of flying vehicles with different characteristics, thus different behaviors, trying to
reach a certain target. The structure tries to determine the best trajectory to reach
the target, given the type of the vehicle. There are three vehicles, representing three
events, iterated at certain time intervals: Φ1 is a multi-copter-like vehicle, called
the rocket, Φ2 is a static omnidirectional vehicle, called the stepper and Φ3 is a
dynamical, omnidirectional gliding vehicle, called the glider. The properties of these
vehicles are listed in Table 3.1.

Table 3.1: Different systems used in REPRISE evaluation

Vehicle Number of motors Gravity Inertia

Rocket 2 Yes Yes
Stepper 4 Yes Yes
Glider 4 Yes No

The structure receives the following input: actual sensory information (the lo-
cation of the vehicle), an imagined sequence of motor commands and information
denoting the currently active vehicle. The network can predict the sensory informa-
tion at the next time step that would result from executing the motor commands. To
do this, the forward model considers the current system to be dynamic, with time-
dependent states, such that the next system state is determined based on the previous
state and the mapping Φ according to the following equation:

(st, σt, xt)
Φ−→ (st+1, σt+1) (3.1)

where x represents the system control, s denotes the perceivable state, and σ

represents the hidden state, given that a partially observable Markov decision process
is assumed.

In order to reach the target, the motor commands, which are random so far,
should be adapted according to the vehicle in use. By performing prospective infer-
ence into the future, REPRISE uses the resulting prediction error to update the motor
commands, such that this error can be reduced. For this, it uses the backpropagation
through time (BPTT) algorithm.

This task becomes more difficult when the identity of the current vehicle is not
provided, and REPRISE needs then to infer this information as well, this time retro-
spectively using information from the previous steps. As a result, REPRISE performs
two-fold inference: prospectively to infer the motor commands, and retrospectively
to infer the current vehicle in use.

34 Retrospective event inference using artificial neural networks

3.1.2 Goal location reaching behavior

We started by providing the network with the following:

1. Sensory information, represented in the Cartesian coordinates (x,y) of the ve-
hicle.

2. Motor commands, which are represented by a randomly generated vector of 4
values.

3. Contextual information, a three-bit one-hot vector representing the currently
used vehicle.

First, a random vehicle is picked to be used, and the network is provided with the con-
textual information, current location of the vehicle and random motor commands.
During training, the network performs prospective motor active inference to update
the random motor commands with suitable commands to reach the goal. At every
150 time steps, a new goal location is randomly generated and the controlled vehi-
cle is switched. We trained the network for a total of 2000 epochs, each with 1000
time steps. We tried to train the network with and without providing the contex-
tual information, and using different learning rates. Then, we tested the network.
The evaluation of the method showed that the REPRISE architecture can control the
vehicle to reach the goal location by executing the motor commands updated using
active motor inference. Besides, it achieved the smallest average distance to the goal
location when the contextual information was provided, as shown in Table 3.2.

Table 3.2: Average accumulated distance to target in REPRISE using different learning
rates

Average ησ=0 ησ=1e-4 ησ=.001 ησ=.01 ησ=.1

~c set 0.061 0.060 0.060 0.061 0.109
ηc=1e-4 0.157 0.139 0.109
ηc=.001 0.106 0.100 0.079 0.082
ηc=.01 0.090 0.072 0.077 0.127
ηc=.1 0.092 0.077 0.115

3.1.3 Developing the contextual encodings

When the information that determines the currently active vehicle is not provided
to REPRISE, it needs to infer this information from the behavior produced by the
vehicle. In order to have a closer look on the inferred contextual values, we have

3.1 Context Inference 35

0 100 200 300 400
Time

0.50

0.75

1.00
Co

nt
ex

t x
 v

al
ue Rocket

Stepper
Glider

0 100 200 300 400
Time

0.0

0.5

1.0

Co
nt

ex
t y

 v
al

ue

0 100 200 300 400
Time

0.0

0.5

1.0

Co
nt

ex
t z

 v
al

ue

Figure 3.2: The development of three context guess neural values while controlling
the three vehicles, switching every 150 steps. The context is adapted via retrospective
inference. While we can see good separation of the context guesses for the three vehicles,
we can observe some uncertainty in the estimates.

recorded the inferred values that represent the current vehicle and visualized them,
as shown in Fig. 3.2

It can be observed that different clusters can indeed be distinguished, represent-
ing the different vehicles (events). One can see that since the stepper and glider both
have 4 functioning motors, their clusters are closer to each other, and even over-
lapping. The rocket, on the other hand, is more distinguishable by its two motors;
thus, its representing cluster is more clearly separated from the others. As shown
in Fig 3.3, the development of the three contextual encodings takes some time. In
the beginning of the event, the network still cannot decide which event is going
on. Then, based on the error signals backpropagated through the network and the
retrospectively-performed inference procedure, the values tend to be within a small
range. The final values before switching to the next context are the values shown in
Fig. 3.4

36 Retrospective event inference using artificial neural networks

x axis
0.4

0.6
0.8

1.0y axis
0.2 0.4 0.6 0.8 1.0

z axis

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

 First

 Last

Glider

Figure 3.3: The development of the context guess representing the glider vehicle. The
star symbol with ”First” indicates the start from the initial values, then the values get
close to each other within the same cluster. Finally, the values drift towards the values
of the next context, where the last value is located at the star symbol with ”Last”.

x axis
0.20.40.60.81.0y axis

0.0 0.2 0.4 0.6 0.8 1.0

z axis

0.0

0.2

0.4

0.6

0.8

Rocket Stepper Glider

Figure 3.4: Context guess values plotted when the vehicle reaches the goal location. The
center of the cluster is marked by the star symbol.

In order to better visualize the context values, we used the Principle Component
Analysis (PCA) algorithm to reduce the dimensionality and plotted the context values
in 2D space. The results are shown in Fig. 3.5

3.1 Context Inference 37

Figure 3.5: 2D plot of the context guess values when the vehicle reaches the goal loca-
tion, obtained by applying the PCA algorithm on the 3D values. The center of the cluster
is marked by the star symbol.

3.1.4 Prediction error, Euclidean distance

At every time step, the vehicle moves according to the motor command trying to
get closer to the target. Two values change along: the distance between the vehicle
and the target and the prediction error between the vehicle location predicted by the
network and the actual location after executing the command.

In order to inspect the dynamics around the event boundaries, we recorded the
changes in the Euclidean distance between the vehicle and target and the prediction
error during the testing phase. In addition, we plotted the corresponding step-wise
change in the context guess, as shown in Fig. 3.6.

We can observe that after a new target is set, it takes some time for the distance
to start decreasing, during which the prediction error also fluctuates. This is because
at every new randomly generated target, some time steps are needed for the motor
commands to be appropriately adapted to drive the vehicle towards the target.

Besides and more importantly, a vehicle switch happens at the same time as the
target switch (every 150 time steps here). Since the vehicles have different charac-
teristics, representing different contexts, time is needed after the switch to adapt the
network dynamics to the new vehicle. This can also be seen in the visualization of
the context guess development in the bottom part of Fig. 3.6, such that the context
guess gradually changes after the switch until it hovers within a cluster of values.

38 Retrospective event inference using artificial neural networks

0
100

200
300

400
500

600
700

Tim
e

0.0

0.2

0.4

0.6

0.8

1.0

Euclidean distance

Euclidean distance between the current position and target
Rocket

Stepper
Glider

0
100

200
300

400
500

600
700

Tim
e

0.02

0.01

0.00

0.01

0.02

0.03

0.04

Predition error

Prediction error

x axis
0.6

0.8
1.0

y axis
0.250.500.751.00

z axis

0.0

0.5

1.0

x axis
0.6

0.8
1.0

y axis

0.000.250.500.75

z axis

0.0

0.5

1.0

x axis
0.6

0.8
1.0

y axis

0.000.250.500.75

z axis
0.00

0.25

0.50

0.75

x axis
0.0

0.5
1.0

y axis
0.40.60.81.0

z axis

0.0

0.5

1.0

x axis
0.0

0.5
1.0

y axis
0.900.951.00

z axis

0.00

0.25

0.50

0.75

Figu
re

3.6:
Top:

the
Euclidean

distance
betw

een
the

vehicle
and

the
target

at
each

tim
e

step.
M

iddle:
the

prediction
error

ofthe
netw

ork
at

each
tim

e
step.

Bottom
:

the
changes

in
the

context
guess

at
every

tim
e

step.

3.2 Gradient separation and modularization 39

3.1.5 Asynchronous vehicle and target switch

So far, the switch of the vehicle and target happened simultaneously. However, we
wanted to explore how the prediction error would change if only one of them was
changed at a time.

We performed an experiment in which the vehicle and target were asynchronously
switched (vehicle switch every 100 time steps, target switch every 150 time steps).
Then, we plotted the prediction error during the testing phase of the trained network,
as shown in Fig. 3.7.

It can be observed that we can still see increases in the prediction error at the
vehicle switches, although the increases are less than when this switch was accom-
panied by a target switch.

It can also be seen that the amount of these sudden increases depends on whether
the vehicle switch happens when the prediction error starts to stabilize (ex. time
point 200) or while the prediction error is still largely fluctuating (ex. time point
500).

Figure 3.7: The prediction error of the network when the vehicle and the goal are being
asynchronously switched (vehicle every V = 100 time steps, goal every G = 150 time
steps). We can still observe sudden increases in the prediction error at vehicles switches,
although these changes are better observed when the goal and vehicle are switched si-
multaneously.

3.2 Gradient separation and modularization

The actively inferred motor commands in REPRISE led to an enhanced performance
in reaching the target, achieving the best behavior when the contextual information
was provided. However, in the goal-directed planning in the brain, multitasking can
happen. In this case, many tasks are being processed at the same time, and or-
ganizing these tasks within the corresponding events is important to perform them
efficiently. Besides, it is important to still be able to use the separate errors result-

40 Retrospective event inference using artificial neural networks

ing from different tasks to update the corresponding believes and event-predictive
encodings.

In the next experiment, we investigated the behavior of REPRISE when there are
competing goals to be achieved. In addition to the goal location that the vehicle
needs to reach, we added a target object that the vehicle needs to pick up and attach
before heading to the goal location. An example is shown in Fig. 3.8.

Figure 3.8: The updated experiment with two goals: picking up the object (the cherries)
and flying to the target location (the green sign).

In this case, the network receives the following input:

1. Sensory information, represented in the Cartesian coordinates (x,y) of the ve-
hicle and a sensor for the attachment of the object [0,1].

2. Motor commands, which are represented by a randomly generated vector of 4
values representing the 4 thrusts and one signal to attached the target [0,1].

3. Contextual information, a three-bit one-hot vector representing the currently
used vehicle.

We trained the network in three different modes:

1. Free Flight: the vehicle moves in a random fashion across the environment.

2. Seek: the vehicle moves towards the object to be transported and attach it
when the distance between the vehicle and the object is below a predefined
threshold.

3. Transport: the vehicle moves randomly, like in the free flight mode, but with
the object attached.

3.2 Gradient separation and modularization 41

The switch from one mode to another happened when attaching or detaching the
object, or every 50 time steps.

We first started by evaluating the ability of REPRISE to reach the goal location,
sequentially with a learning rate of 1e-3 and 1e-4 and switching the vehicle and
target every 150 steps. Then, we evaluated the ability of the structure to reach the
object location and attach it. Finally, the two tasks were combined to evaluated the
ability of the structure to attach the object and transport it to the goal location.

The results showed that the vehicle could reach the goal location while keeping an
average Euclidean distance of 0.042 units within the last third of the overall running
period. However, when the task was to reach the target object, although the object
was finally reached, the average Euclidean distance between the vehicle and the
object was 0.535. This increased distance from the object made it hard to pick it up
and transport it. The results are shown in Fig. 3.9 as the average over seven trained
and evaluated networks.

Figure 3.9: The results of evaluating the network on the three tasks of reaching the goal
location (left), reaching the target object location (middle) and transporting the object
to the goal location (right). The black color denotes the Euclidean distance to the goal
location, the green color indicates the Euclidean distance to the target object, and the
red color denotes the error in the current attachment signal. Each graph also includes
the respective standard deviation.

Although the two tasks were similar, the second one included attaching the object
in addition to reaching it. In order to check if the discrepancy is a result of the addi-
tional error cased by the object attachment, we ran the object reaching experiment
without performing control inference on the attachment part. The results showed
that the performance was significantly improved, as shown in Fig. 3.10. The table
shows that the goal location could be reached with an average Euclidean distance of
0.080 units during the last 50 time steps of the trial. On the other hand, the target
object could be reached with the average distance of 0.146 units during the last 50

42 Retrospective event inference using artificial neural networks

time steps.

Figure 3.10: The evaluation results of the network in the three modes without perform-
ing control inference on the object attachment. The color legend is similar to that in Fig.
3.9.

The observed results could be explained by two points. On the one hand, the
training statistics in the scenario of object attachment can be biased. This is because
in order to be able to attach the object, the vehicle needs to be close enough to the
object, so the attachment task is affecting the flying behavior. On the other hand,
having more than one task on which active control inference is applied means that
many gradients would be competing and interfering with each other, resulting in
performance drop.

In order to handle these issues, we first considered to avoid using the information
of the vehicle location as the sensory input to the network. This is because when
the vehicle is often close to the object, the absolute locations will be non-uniformly
distributed. Hence, we used the velocity of the vehicle instead of the location, and
changed the desired goal reaching objective into a velocity objective. The results,
illustrated in Fig. 3.11, show a significant performance improvement. The target
location could be reached with an average Euclidean distance of 0.0006 units dur-
ing the last 50 time steps, while the goal object could be reached with an average
Euclidean distance of 0.045 units within the last 50 time steps.

3.2 Gradient separation and modularization 43

Figure 3.11: The evaluation results of the network in the three modes when the velocity-
based encoding is used. The color legend is similar to that in Fig. 3.9.

However, during transportation of the object to the target location, there still
exists the problem of target objects being dropped. Hence, although the objectives
of reaching the location or objects were achieved more efficiently with switching to
the velocity objective, the attached object was frequently lost. We speculate that this
behavior might be driven back to the problem of interferring gradients.

In order to overcome this problem, we updated the used REPRISE structure into a
modularized scheme. In this modularized architecture, one sub-RNN is used for the
task of the sensory prediction, and another sub-RNN is used for the task of predicting
the attachment status. The original and modularized architectures are shown in Fig.
3.12.

Figure 3.12: The default (left) and modularized (right) RNN. Grey connections indicate
forward-passes, while blue connections denote inference. In the modularized RNN, we
connect the output and inferred input to one of the sub-RNNs each; thus, the back-
propagated error signals are modularized.

44 Retrospective event inference using artificial neural networks

We performed two experiments using the modularized network. First, the velocity-
based encoding was used. The results show that the average Euclidean distance when
reaching the goal location was 0.018, and that when reaching the target object was
0.028 during the last 50 time steps. During the objective of reaching the location
while transporting the object, the average Euclidean distance was 0.036, and the
object was attached in 98% of the cases. The results are shown in Fig. 3.13.

In the second experiment, we used the spatial-encoding. The goal location could
be reached with an average Euclidean distance of 0.014 units, and the target object
could be reached with an average Euclidean distance of 0.037 units during the last
50 steps. The average Euclidean distance when reaching the goal location while
transporting the object was 0.086 units. The results are shown in Fig. 3.14.

In summary, the experimental results show that this constellation succeeds in
preventing the gradient interference problem, not only when the velocity is used as
the sensory input to the network, but also when the location is used.

Figure 3.13: Evaluation results of the modularized RNN architecture when the velocity-
based encoding is used. The color legend is similar to Fig. 3.12.

3.3 Conclusion 45

Figure 3.14: Evaluation results of the modularized RNN architecture when the spatial-
based encoding is used. The color legend is similar to Fig. 3.8.

3.3 Conclusion

So far we found that events stay stable over time, as REPRISE managed to infer
context values that form distinguishable clusters. However, there seems to be some
issues that need to be handled. Although the context values lie within distinguishable
clusters, the different context clusters overlapped in some places, and the values were
not stable. Hence, we need to achieve a better segmentation of the events. In order
to tackle these issues, we investigated the segmentation of events using RNNs, while
maintaining a stable event representation within the same event. In the next section,
we show how the edits we performed helped the structure to segment the events
by adding inductive bias. Through the different experiments, we show how our
proposed generative structure can develop hidden states that encode events.

46 Retrospective event inference using artificial neural networks

Chapter 4

Providing event switches

It has long been suggested that the switches between subsequent events, called event
boundaries, are signaled by an increase in the prediction error [63]. This increase
is caused by predicting what would happen next within the current context, while
the context has already changed. Thus, the next thing to happen could be correctly
predicted only if we start to predict within the new context. If we try to plot the
values representing how surprised the model would be by what is happening with
respect to time, these event boundaries will be represented by spikes in the surprise
signal. On the other hand, no such spikes would be observed as long as the same
event is going on.

We constructed a model that can develop event-predictive encodings based on
provided signals that indicate switches between events; these encodings are stable
within the same event. Evaluating the model showed that the use of such mechanism
leads to a lower prediction error, both due to interpreting the sensorimotor changes
in light of the ongoing event, and having the encodings of these events stable as long
as we are still within the same event 1.

1This chapter is based on our published paper:
Humaidan, D., Otte, S., Butz, M. V. (2020). Fostering event compression using gated surprise. In I.
Farkas, P. Masulli, & S. Wermter (Eds.), International conference on artificial neural networks – icann
2020 (pp. 155–167). Springer.
Most of the figures and tables are taken from this paper.

47

48 Providing event switches

4.1 Surprise signals in event-predictive models

Despite the important role of surprise signals in identifying event transitions, only
a few event-predictive models implemented surprise signals. Surprise signals were
indirectly used in form of unexpected prediction error to predict event transitions
in the work of Reynolds and colleagues [65]. In this work, a feed forward net-
work was combined with a recurrent neural network module, memory cells and a
gating mechanism. An RL agent was later added to this model to control the gat-
ing mechanism with a learned policy [54]. Furthermore, reservoir computing was
also used to successfully segment the information stream into understandable units
[1]. More recently, the SUBMODES architecture [33] used surprise signals to detect
switches between different behavioural primitives. In this model, surprise signals
represented unexpected prediction error signals. The model presented in this chap-
ter uses surprise signals to control the flow of information though a top-down gate
in a hierarchical multi-level structure.

4.2 Gated surprise model

In order to simulate the event processing procedure and the changes in the prediction
error within the same event and between different events, we considered extending
the single-level network used in the context inference experiment (see Chapter 3),
into a multi-level hierarchical structure. Hence, we included two layers: one respon-
sible for generating the contextual encodings, and another responsible for perform-
ing the predictive task using the contextual information provided by the contextual
layer. Fig.4.2 shows the extended structure compared with the single-level structure
in Fig.4.1.

However, there was still one element missing, which is a way to organise the flow
of information between the two layers. To add such element, we further extended
the structure by adding a middle gating layer.

The final event prediction structure is then composed of three layers. The first
layer is a deep neural network layer, implemented using an LSTM network (LSTM-
context = LSTMc); this layer is responsible of generating the context value that will
then be fed into the middle layer, the gated recurrent unit (GRU)-like layer. At the
middle layer, it is decided whether the old context, which is saved in the recurrent
hidden information in the layer, is to be forwarded to the third layer, the sensorimo-
tor layer (LSTMfunction = LSTMf), or if the new context, received from the context
layer, is to be used instead. The chosen context will last until a new context value
representing a new event is provided by the context layer LSTMc. The sensorimotor
layer performs a prediction task of the next sensory state of the system in use.

The decision about the current context is taken at the GRU layer based on a

4.2 Gated surprise model 49

Figure 4.1: A single-layer network processing both contextual and sensorimotor infor-
mation.

signal that determines the end of one event and the beginning of another one. When
a new event begins, the sensorimotor layer that was predicting the sensory state
of the system will now start to produce erroneous predictions as the system has
been switched. This will lead to an increase in the prediction error, and this error
can be used to generate the event boundary signal, i.e., the Surprise signal, or the
predictability of the current context. If the predictability is large, then the network
realizes that the same event is still going on. Once the predictability decreases, this
indicates a switch in the context and a new event beginning. This will open the
switch at the GRU layer allowing the context prediction from the context layer to be
forwarded to the sensorimotor layer and saved in the GRU layer to be used until a
new event begins.

We have also added the option to include input preprocessing layers to each of
LSTMc and LSTMf. The structure is shown in Fig. 4.3.

The switch GRU The used GRU structure was edited to act as a switch to decide
when to use the already saved context from the previous time step, and when to let
the new context generated by LSTMc flow. To perform this task, the update gate at
the GRU was modified to be unweighted, with its input being the surprise received
as input from the Surprise gate. The combined gate now gets the new context from
LSTMc and the hidden cell state (context of the previous time step) as inputs. The
reset gate was removed as it has no role here. The following figure shows the used
GRU structure. Note that the dotted lines denote unweighted inputs. Fig.4.4 shows
the detailed structure of the GRU-like layer.

50 Providing event switches

Figure 4.2: A hierarchical structure composed of two layers: upper layer for contextual
information processing and generation of context compressions, and a lower layer for
sensorimotor information processing and to perform the predictive task.

4.3 Experiments

The performed experiments included having a prediction task performed by the sen-
sorimotor layer, for which the useful contextual information are being provided by
the top-down layer after being received from the context layer. For our experiment,
we used a simple example of a time series that includes four functions represent-
ing four different contexts or events: an addition function (Add) that adds the two
inputs, a subtraction function (Sub) that subtracts one input from another, a Sine
function (Sin) that applies the Sine function on one of the inputs and adds the re-
sult to the other one, and a constant function (Const) that outputs one of the inputs
without any change and ignores the other one. The switching between the different
contexts happened at random frequencies.

4.3.1 Single network experiments

As a proof of concept, we first used a single LSTM layer, as the one showed in Fig.
4.1, which takes the function value at the previous time step (x) and a randomly gen-
erated value (y) between -1 and 1 and outputs the prediction about the next function
value that would be the result of applying one of the four functions on the x and y
inputs. Then, we added the input of context related information represented in a
one-hot vector denoting the ongoing event. Next, we tried to include the prepara-
tion part on a single-layer level, such that the provided contextual information were
switched at random frequencies earlier that the actual context switch to simulate the
idea of preparing for the next event before it actually happens.

4.3 Experiments 51

Figure 4.3: The hierarchical structure composed of a deep contextual layer (LSTMc),
a GRU-like gating layer and a low-level function processing layer (LSTMf). An MLP to
preprocess the function input of LSTMf and a similar preprocessing unit with LSTMc
were also tested (not shown).

The idea behind using an LSTM layer was for the good performance it shows when
processing time series data. This would be helpful when no contextual information is
provided, so reflecting on previous steps can be helpful. We repeated the experiments
using an MLP layer instead of the LSTM layer to compare the performance of the two
networks.

The results are shown in Table 5.1 and Fig. 4.5, which show that using only
one layer for the sensorimotor and contextual processing provides the best result
when no planning is included, such that the network receives the exact contextual
information on the ongoing event, better than when planning for the next event is
included. The worst performance is obtained when the network does not receive any
context related information.

In addition, so far the switches between the different contexts happened at ran-
dom frequencies, but the consecutive functions were in the same order; thus, we ran
an experiment in which the next function was randomly chosen. The results show
that the network keeps the same good performance.

Regarding the LSTM vs. MLP, the results show that when no contextual infor-
mation is provided, or when the information is provided but earlier that the actual
function switch, the LSTM has a better performance than the MLP. On the other
hand, the MLP performs better when the contextual information is provided, both
with a fixed or a random order of the functions. This is because providing the helpful
information makes it less advantageous to have the recurrency characteristic; on the
contrary, it causes a drop in the performance.

In Fig. 4.6 and Fig. 4.6, the effect of including the contextual information while

52 Providing event switches

Figure 4.4: The edited GRU layer used as a gating layer between the contextual layer
and sensorimotor (functional) layer.

Figure 4.5: The average training error in single LSTM layer experiments. We can see
the effect of providing contextual information on decreasing the prediction error.

Table 4.1: Average training error in single LSTM and MLP layer experiments.

Experiment LSTM MLP

avg. error stdev. avg. error stdev.

No CI provided 0.2670 0.0272 0.4180 0.0016
CI provided with fixed function order 0.0533 0.0292 0.0098 0.0011

CI provided with random function order 0.0551 0.0215 0.0139 0.0022
CI provided but switched earlier 0.1947 0.0134 0.3180 0.0012

performing a prediction task can be clearly seen in the training phase and also in the
testing phase, respectively.

4.3 Experiments 53

(CI)

Figure 4.6: The prediction error during training with and without providing the con-
textual information (CI).

4.3.2 Full network experiments

Next, we ran the full structure composed of a deep LSTM context layer (LSTMc), a
top down GRU-like layer and a sensorimotor functional LSTM layer (LSTMf). LSTMc
receives context-related information as an input represented in a one-hot vector de-
noting the ongoing event, and outputs a compression of this event that is passed on
to the gating GRU-like layer, which receives the context compression and decides on
whether to pass on the new context compression or to keep using the same one. This
decision is based on whether a ”Surprise” was encountered. This ”Surprise” hap-
pens when actual observations do not match the predictions, because the context has
switched. In this experiment, and in order to closely investigate the role that these
surprise signals play in event processing, we provided different values of the surprise
signals and observed the outcomes. After the gate status has been decided on, the
output of the gating layer is provided to LSTMf, which takes it as an input alongside
the sensorimotor input, i.e., the two values on which the function will be performed
in this example. We evaluated the structure by testing four cases:

54 Providing event switches

Prediction error during testing w/o providing contextual information (CI)

Figure 4.7: The prediction error during testing with and without providing the contex-
tual information (CI).

1. The gate is always open: In this case we keep providing large surprise signals.
The GRU output is mainly contributed by the new context from LSTMc.

2. The gate is always closed: In this case we keep providing small surprise signals.
The GRU output is mainly contributed by the old context.

3. The gate is half open: The provided surprise signals are large enough to keep
the gate half open, i.e., the old and new context contribute equally to the GRU
output.

4. The gate is only open at context switches: This case simulates providing the
perfect surprise signals only at the switch of the event. The gate is closed
otherwise.

We ran the four scenarios on the structure and computed the average overall pre-

4.3 Experiments 55

Table 4.2: Average training prediction error and average distance between the centers
of the clusters formed by the values of the context compressions in different gate states.
The lowest average error and largest average distances are marked in bold.

Gate status avg. error stdev error Compared clusters avg. distance stdev distance

Always closed 0.280 0.059 Any 0.0 0.0

Always open 0.206 0.014

Add Sin 0.28 0.17
Add Sub 1.22 0.42

Add Const 0.64 0.19
Sin Sub 1.27 0.34

Sin Const 0.70 0.24
Sub Const 0.7 0.26

Only open at switch 0.059 0.017

Add Sin 0.69 0.15
Add Sub 3.12 0.42

Add Const 1.46 0.27
Sin Sub 2.59 0.47

Sin Const 0.92 0.17
Sub Const 1.72 0.4

Gradually opened 0.083 0.030

Add Sin 0.61 0.17
Add Sub 2.17 0.69

Add Const 1.35 0.56
Sin Sub 1.81 0.39

Sin Const 1.00 0.20
Sub Const 0.82 0.31

diction error during training and the average distance between the clusters formed
by the values of the context compressions. Then, we computed the average over 10
differently initialized networks. The results are shown in Table 4.2.

The results show that the best performance can be obtained by keeping the gate
closed while the same context is going, and only opening it when a new event starts
to pass the new event compression to the GRU to provide it to LSTMf. The worst case
is when the gate is always closed, so no context information is provided from LSTMc.
Similar results can be obtained using a random order of consecutive functions. The
training performance average over 10 different network is shown in Fig. 4.8.

So far, we have been using a fixed weight update frequency of 20 time steps, such
that we backpropagate the error along the 20 previous time steps. Next, we tried
with different weight update frequencies to show the effect of this parameter, the
results are shown in Table 4.3. Good results can be obtained when a random weight
update frequency between 10 and 30 is used. We can observe that the best result can
be achieved when the provided surprise signal is gradually changed. This might be
because this gradual open/close of the gate increase the likelihood of convergence.
This shows the importance of further investigating the gradual surprise signal.

56 Providing event switches

Figure 4.8: The prediction error during training with the standard deviation averaged
over 10 different networks.

Table 4.3: Average training prediction error while using different weight update fre-
quency settings.

Weight update frequency
Fixed at 35 Random 20-50 Random 10-30

avg. error stdev error avg. error stdev error avg. error stdev error

Always closed 0.365 0.070 0.428 0.083 0.345 0.078
Always open 0.270 0.071 0.224 0.022 0.206 0.018

Open at context switch 0.200 0.142 0.318 0.122 0.166 0.149
Gradually opened 0.106 0.077 0.103 0.041 0.070 0.013

In order to show the importance of the hierarchical flow of information, we tried
to provide the surprise signal directly to LSTMc, which led to worse results. This
points out the role the surprise signal plays in gating the information flow. Then,
we removed the preparation part regarding the early switch of the contextual infor-
mation input and provided in-tune contextual information to LSTMc. The results
showed that the network still performs equally well and achieves the best results
when the gate is only open at the event switches. This shows that although the
information is now tuned in with the current event, having the gate always open
with contextual compressions flowing all the time to LSTMf will negatively affect
the performance as it leads to unstable and varying compressions, even if slightly
only. Finally, we tried the other alternative for the network type that we tried before
with the single-level network, the MLP network. The results show that although the

4.3 Experiments 57

MLP achieved a good performance in the simple case of a single-level network with
contextual information directly provided, it performed badly when used within the
hierarchical multi-level structure. The results are shown in Table 4.4.

Table 4.4: Average prediction error when (i) the surprise signal is fed to LSTMc,
whereby the GRU-like gate is always open (Surp. to LSTMc), (ii) the context informa-
tion is provided to LSTMc exactly in tune with the function event (In-tune CI to LSTMc),
and when an MLPf is used instead of an LSTMf (MLPf).

Input to LSTMc / Surp. to LSTMc In-tune CI to LSTMc MLPf

Gate status avg. error stdev avg. error stdev avg. error stdev

0 / Always closed 0.2515 0.0678 0.310 0.080 0.4213 0.00164
1 / Always open 0.2280 0.0198 0.066 0.040 0.4215 0.00123

1 at c.s. / open at c.s. 0.1031 0.0555 0.055 0.019 0.4211 0.00165

It is worth mentioning here, that the context related information that is provided
as input to the LSTMc layer corresponds to the currently ongoing context for some
time, then switches to denoting the next event that is about to take place (Event
boundary signal or EB), as this layer starts to plan for the next event. Here comes
the role of the GRU-like gating layer in keeping the preparation part going in the
LSTMc while blocking the new context compression from being passed to LSTMf
before the actual switch happens. When the preparation part was excluded, and the
provided contextual information was equivalent to the actual ongoing event, opening
the gate only at the switches yielded the same performance of when the gate was
always open or half-open; thus, triggering the call for new contextual information
only at the switches is sufficient for the best performance, which can have significant
resource-efficient effect when permanent triggering of the contextual information
can be wasteful regarding the resources (computational power, memory, etc.).

In order to have a closer look on the event compressions generated by the net-
work, we plotted their values during testing. Fig 4.9 shows these context compression
produced by the deep context layer structure, while Fig 4.10 shows the values that
are decided on by the GRU-like top down layer. We can see the stable compressions
when the gate is only open at the switches, which resulted in the best performance.
Fig 4.11 shows the context compressions for nine differently initialized networks. We
can notice that the increasing function has a context-encoding that is always close to
zero. This might be because the network activities are alway reset to zero before
starting with the first function of increasing at each epoch. Besides, the encoding for
the constant function is between the increasing and decreasing encodings. Further-
more, the sine function has a distinct compression.

58 Providing event switches

(a) Gate open at switch (b) Gate always open

Figure 4.9: Context compressions produced by the context layer. Background colors indicate
the different contexts.

(a) Gate open at switch (b) Gate always open

Figure 4.10: Context compressions produced by the GRU-like gating layer. Background colors
indicate the different contexts. Note that as the gate was still closed during the first event in (a),
context values are still on zero.

4.4 Retrospective inference

The previous experiments showed that prospective context inference using surprise
signals can be applied to segment the continuous sensorimotor stream of data into
separable events. Reflecting on the retrospective context inference performed in
REPRISE (see Chapter 3), we went on to investigate if a retrospective context in-
ference process can be added to the current structure. The aim here was to infer the
output of the gating layer, i.e., the contextual input to LSTMf.

4.4 Retrospective inference 59

Network4Network3 Network5

Network8Network7Network6

Network0 Network1 Network2

Context
Value

Context
Value

Context
Value

Context
Value

Context
Value

Context
Value

Context
Value

Context
Value

Context
Value

Contexts Contexts Contexts

Contexts

ContextsContexts

ContextsContexts

Contexts

Add Sin Sub Const Add

AddAdd

Add Add Add

Add

Add

Sin Sin

Sin Sin

Sin

SinSinSin

Sub

SubSub

Sub Sub

Sub

Sub

SubConst

ConstConst

Const Const Const

Const

Const

Figure 4.11: Context compressions in nine differently initialized networks.

First, the predictive task was performed for the first two events. Then, at the end
of the second event, retrospective inference was performed, which benefited from the
resulting prediction error during the event to infer the event encoding that should
have been provided by the gating layer. An illustration of the execution timeline is
shown in Fig. 4.12.

After evaluating the results of retrospective context inference, the inferred con-
textual encodings were not informative. One reason that might explain why the ret-
rospective inference, which proved useful in REPRISE, did not result in well-adapted
context compressions here might be the effect of providing contextual information at
the deep layer. In this case, two different directions of information flow in the struc-
ture are cancelling each other’s effect: the provided contextual information flowing
from the upper layer to the lower one, and also the retrospective inference performed
at the lower layer inferring the contextual values to be set as the input from the pre-
vious layer. Hence, we did not include this component in later experiments. It will be
interesting though to further investigate a possible way to benefit from both adaptive
sources to shape the best contextual compressions.

60 Providing event switches

Contextual
information

Event-predictive
encodings

Event1 Event2 Event3 Event4

Perform retrospective
inference (RI) to infer
Event1 encoding

Perform RI to infer
Event2 encoding

Perform RI to infer
Event3 encoding

Time

Figure 4.12: An illustration showing the timeline of performing retrospective inference.
At the end of each event, RI is performed to infer the suitable event encoding of the
current event.

4.5 Conclusion

The computational models of event cognition are a hot research topic. These models
aim to validate neuroscience theories about how our mind works. While implement-
ing stand-alone units for specific tasks can contribute to the overall understanding,
simulating the integrated functionalities of interrelated brain areas within models
that are structurally inspired by the information processing structure in the brain is an
important step towards an overall understanding of the brain functionality and more
flexible robotic agents. In this chapter, we presented a hierarchical neural network
structure that contains a deep preparation layer, processing contextual information
and generating suitable event compressions, which pass through a top-down layer to
decide between this newly arrived compression and the one from the previous time
step. If the surprise is low, then the same old compression is used, as this indicates
that the same event is still ongoing; otherwise, the new context compression is passed
to the sensorimotor processing layer, which performs a certain predictive task.

Our structure shows that the best predictive performance can be obtained when
the gate is only open as a new event starts, compared with the cases of being always
close, open or half-open. The deep context layer does not only consider the currently
ongoing event, but starts after a while to prepare for the next one. Thus, it is impor-
tant that the gating top-down layer passes on a new context compression only when
a new event actually starts.

4.5 Conclusion 61

Event-triggered learning was proposed for control, such that the system only re-
quests new information and the model is updated when learning is actually needed
[74]. To this end, our suggested structure shows that even when the part of prepar-
ing for the next event is not included in the structure, and the context layer always
receives the information regarding the actual ongoing event, the performance of the
network when the gate is only open at the switch is no less than that when the gate
is always open or half-open; thus, the same prediction accuracy is achieved in a
significantly more resource-efficient manner.

62 Providing event switches

Chapter 5

Implementing predicted
unpredictability

After showing that providing perfect surprise signals helps to efficiently segment the
stream of data into distinct events in Chapter 4, this chapter introduces the enhance-
ment of the gated surprise model with 1) a module to calculate surprise signals di-
rectly from the prediction error, 2) a module to anticipate surprise using masked
information that indicates an upcoming event switch, 3) a counterfactual regulariza-
tion process to evaluate alternative decisions regarding the gate control, such that
the best option is picked to achieve more stable event encodings 1.

1This chapter is based on our published paper:
Humaidan, D., Otte, S., Gumbsch, C., Charley, W., Butz, M. V. (2020) Latent Event-Predictive Encod-
ings through Counterfactual Regularization. The 43rd annual meeting of the cognitive science society.
Most of the figures and tables are taken from this paper.

63

64 Implementing predicted unpredictability

5.1 Surprise prediction

The use of prediction error-based surprise signals allowed to use the appropriate
event encoding. It also enhanced the results of the prediction task compared with
when no event information is used. However, the fact is that waiting for the pre-
diction error to increase to realize the change in the context only happens in really
surprising events. For example, if it suddenly started to rain after we left our place,
we will update our plan and probably go back to pick up an umbrella. In normal
times, we would already estimate the end of the current event. Baldwin and Kosie
[6] had an interesting way to form this idea as: predicting the unpredictable. While
we do not always know what would happen next, we always have clues that help
to expect a certain event to end. In the proposed “Free Energy Principle” [22] [23],
Friston expressed that being able to avoid surprise means that we need to take into
account every possible thing to happen next, which is impossible; otherwise, we in-
tend to minimize our surprise as much as possible, by trying to limit the possibilities
to a set of well-realized states. An example of such prediction of the event boundaries
might be when we predict that the lecture is about to end because the time is almost
over, or because the lecturer said “I will stop here for today .. “.

To implement a smooth surprise-free transition between the events, we extended
the model presented in Chapter 4 with a surprise prediction module. The role of this
module is to receive event boundary information indicating when the current event
might end, such that an appropriate surprise signal can be predicted in a timely
manner at the switch, which reduces the increase in the resulting prediction error at
the switches between different events.

Overall, we implement three models in this chapter, which differ according to
the source of the surprise signal and how it is decided upon the use of old or new
information to construct event encodings.

5.2 Event Switching Layer

The event switching layer is implemented using a state switching gate, which is also
used in gated recurrent unit RNNs [14]. The switching gate controls when the next
top-down guidance signal from the event anticipation layer will be passed down to
the event processing layer. The input to the event switching layer comes from the
event anticipation layer (xa) and the event boundary layer (xb). We denote its input
layer with η and its update gate with ζ.

5.2 Event Switching Layer 65

E
ve

nt

Sw
it

ch
in

g

E
ve

nt

A
nt

ic
ip

at
io

n

Su
rp

ri
se

C

al
cu

la
ti

on

Top-down information flow

E
ve

nt

P
ro

ce
ss

in
g

C
I

P
re

di
ct

io
n

er
ro

r

E
ve

nt

Sw
it

ch
in

g

E
ve

nt

A
nt

ic
ip

at
io

n

E
ve

nt

B
ou

nd
ar

y
A

nt
ic

ip
at

io
n

E
ve

nt

P
ro

ce
ss

in
g

C
I

E
B

E
ve

nt

Sw
it

ch
in

g

E
ve

nt

A
nt

ic
ip

at
io

n

E
ve

nt

B
ou

nd
ar

y
A

nt
ic

ip
at

io
n

Bottom-up information flow

E
ve

nt

P
ro

ce
ss

in
g

C
I

C
ou

nt
er

fa
ct

ua
l

R
eg

ul
ar

iz
at

io
n

+

E
B

a
b

c

! !"! #"
! $
%"

! $
%"

! $
%"

! #"
! #"

! &"
! &"

" #
'""

" #
'""

!"
!"

!"
" #
'""

" '
("

#""

Fi
gu

re
5.

1:
a)

SU
G

AR
a
:

th
e

su
rp

ri
se

si
gn

al
is

ca
lc

ul
at

ed
on

lin
e

an
d

us
ed

to
co

nt
ro

l
th

e
up

da
te

ga
te

in
th

e
ev

en
t

sw
it

ch
in

g
m

od
ul

e.
b)

SU
G

AR
b
:

th
e

su
rp

ri
se

si
gn

al
is

an
ti

ci
pa

te
d

in
a

de
di

ca
te

d
ev

en
t

bo
un

da
ry

an
ti

ci
pa

ti
on

m
od

ul
e,

w
hi

ch
re

ce
iv

es
fu

zz
y

ev
en

t
bo

un
da

ry
in

fo
rm

at
io

n
as

in
pu

t.
c)

SU
G

AR
c
:

si
m

ila
r

to
SU

G
AR

b
re

ga
rd

in
g

su
rp

ri
se

an
ti

ci
pa

ti
on

,b
ut

co
un

te
rf

ac
tu

al
re

gu
la

ri
za

ti
on

is
ad

de
d

to
fo

st
er

m
or

e
pr

ec
is

e
ga

te
op

en
in

g
an

d
m

or
e

co
m

pa
ct

la
te

nt
ev

en
t-

pr
ed

ic
ti

ve
en

co
di

ng
s.

CI
:

co
nt

ex
tu

al
in

fo
rm

at
io

n
in

pu
t,

EB
:e

ve
nt

bo
un

da
ry

in
fo

rm
at

io
n

in
pu

t.

66 Implementing predicted unpredictability

5.2.1 Forward pass

The switch between maintaining the previous latent event encoding or updating it
with new contextual information is controlled through the scalar activity xζ of the
update gate, which is defined as follows:

nettζ = xts (5.1)

xtζ = ϕζ(net
t
ζ),

where xts is the surprise signal input at the current time step t, and ϕη represents the
sigmoid activation function of the cell.

The output of the event anticipation layer xa combined with the previous hidden
state of the event switching layer xh constitute the activity xη of the input layer as
follows:

nettηj =
∑
i

waijx
t
ai +

∑
j′

wηj′jx
t−1
hj′ (5.2)

xtηj = ϕη(net
t
ηj),

where the activation function ϕη is linear.
Then, the input layer activities are fused with the previous hidden layer activities,

dependent on the current activity of the update gate, to give the hidden cell state xh
as follows:

xthj = xtζx
t−1
hj + (1− xtζ)xtηj (5.3)

Lastly, a regular feed-forward pass is used to define the output of the event switch-
ing layer, which is fed into the event processing layer, as follows :

nettoj =
∑
i

woijx
t
hi (5.4)

xtoj = ϕo(net
t
oj),

where the respective activation function ϕo is linear.

5.2.2 Backward pass

We used standard backpropagation through time to update the parameters of the net-
work throughout the model. The ADAM optimizer was used for the weight update.
The error term was defined as the squared reconstruction loss, which is calculated as
the squared difference between the prediction output of the event processing layer
and the label. Hence, the full model was trained end-to-end.

The following equations were used to compute the gradient.

5.3 Calculated Surprise 67

The cell output:

δthj = εthj = Σkw
t
jkδ

t
k + Σj′w

η
jj′δ

t
ηj′ + xt+1

ζj δ
t+1
hj (5.5)

The update gate:

δtζj = Φ′ζjt(nettζj)(−xtηjδthj + xt−1hj δ
t
hj) (5.6)

The input gate:
δtηj = Φ′ηjt((1− Φζj(net

t
ζj))δ

t
hj) (5.7)

5.3 Calculated Surprise

We adopted the example used in Section 3.2 to test the use of a generated surprise
signal, which is calculated based on the prediction error.

The mechanism is based on keeping a moving average of the prediction error,
such that an error value that is significantly higher than the average is considered
as a surprising signal. First, we calculated the difference between the current error
value and the average value. Then, the surprise signal was calculated by dividing the
difference by the current standard deviation of the surprise signal.

The results show that using the prediction error to calculate a corresponding sur-
prise signal resulted in opening the gate right after the switch, in addition to a few
openings during the events. The resulting prediction error was comparable with that
obtained when the perfect surprise signal was provided.

The average prediction error of the calculated surprise compared with the pro-
vided surprise during training is shown in Table 5.1.

Table 5.1: Average training error for the functions example in Chapter 3 including the
calculated surprise.

Surprise Signal Gate Average Prediction Error

Provided Always closed 0.280
Provided Always open 0.230
Provided Open at switch 0.059
Provided Gradual open/close 0.083

Calculated According to the surprise 0.080

In addition, Fig.5.2 shows the calculated surprise signal, with spiking signals in-
dicating a high surprise mainly after the switches, and a few times within events.

Next, we checked the difference between the calculated surprise scenario and the
previously used perfect surprise signals, both when the contextual compressions were
never updated, i.e., the gating layer was always stopping the information flow from

68 Implementing predicted unpredictability

Time

Value

Figure 5.2: The prediction error value (in purple) and surprise signals (in blue) along
time steps. The vertical blue bar indicates an event switch. It can be observed that the
prediction error significantly increases after the event switch. We can also note some
time points within the event with a prediction error large enough to make the gate open.

the contextual layer to the predictive layer, and when the gate was perfectly opened
at the context switch. Fig. 5.3 shows the actual event switches and the surprise
values during the testing phase of the network. We can notice that the performance
of the calculated surprise was better that when the gate was always closed. In both
cases, we can see the spikes in the surprise signal at the event switches, which are less
in the calculated surprise case. The figure also shows the perfect case, such that the
surprise signal does not spike across switches anymore because the gate is perfectly
opened at the switches and the corresponding event-predictive encodings are passed
to the predictive layer.

5.4 Predicted Surprise

We have seen that when calculated surprise is used, the signal spikes at event switches.
This is because when the switch happens to a new event, the predictive task is still
being performed in light of the previous event predictive-encoding. Then, since the
event has changed, the prediction error is high, and it is translated into a spiking sur-
prise signal that will lead to opening the gate and passing on a new event predictive-
encoding. In order to achieve a seamless transition between events, we extended
the structure by adding a surprise prediction module. This module receives surprise
prediction information in the form of a high signal when a transition is predicted to

5.4 Predicted Surprise 69

0 100 200 300 400 500
Time

0.0

0.5

Er
ro

r
Error during testing

0 100 200 300 400 500
Time

0.0

0.5

Er
ro

r

0 100 200 300 400 500
Time

0.0

0.5

Er
ro

r

Figure 5.3: Prediction error during the testing phase. Top: the update gate is always
closed, middle: the update gate is controlled based on calculated surprise, bottom: the
update gate is precisely opened only at event switches. Black lines denote event transition
boundaries.

happen, and it predicts the suitable surprise signal to be provided to the gating layer.

We used an example of a hierarchical sequence prediction task. The different
problems consisted of different sequences of a set of symbols: [A,B]∗, [B,C]∗ and
[A,B,C,B]∗. The switching time between different problems was randomly chosen
from a uniform standard distribution U(10,30). The symbols of the sequence were
provided as input to the event processing layer as a one-hot vector. The used example
is shown in Fig. 5.4, and the general structure of the problems is shown in Fig. 5.4.

We evaluated the structure on this task and the results showed that using the
surprise prediction module to predict surprise signals leads to a similarly accurate
prediction as when the perfect surprise signal is provided. As shown in the exam-
ple in Fig. 5.5, the prediction error values during testing show a smooth transition
between events. Plotting the predicted surprise signals by the added module shows
how spiking signals are predicted at the context switches. This allows to pass the con-

70 Implementing predicted unpredictability

B C

A B

BCBCBCBC ABCBABCBABCBA

C

A B

ABABABAB

Problem 1 Problem 2 Problem 3

B

Figure 5.4: The used symbolic sequence problems with examples of the sequences gen-
erated by each problem.

textual encoding of the event that has just started, which leads to better prediction
at the low-level layer.

To show the robustness of this prediction, we added a random input to the sur-
prise prediction module. The results showed that even when mixed signals are being
provided, the network learns to recognize those indicating the context switch and
responds by predicting high surprise values at the switches.

5.5 Counterfactual Regularization

Although having a definitive clue that the current event has ended is essential to start
acting within the context of the next one, we usually observe various indicators that
the current event is about to end. We mimicked this idea by having the input to the
surprise prediction module change gradually a few time steps before the switch and
then at the switch step. The results shown in Fig. 5.6 showed that this would lead
to the gate being open also before the actual switch. This resulted in the context
compressions being unstable during the same event, leading to a slightly increased
surprise signal between the events.

To tackle this problem, we investigated the possible effects of including counter-
factual reasoning. We updated the loss function of the surprise prediction module by
an additional error term. This term refers to the difference between the prediction
error obtained using the current settings, and the error that could have been obtained
should the settings be different, termed as the counterfactual error (CFR) term.

For every time step, after running the network using the surprise signal predicted
by the surprise prediction module, we re-run the lower-level layer using the opposite
status of the gate. If the gate is open at time t, then we re-run with the gate closed,

5.5 Counterfactual Regularization 71

0 20 40 60 80 100 120 140
Time

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e
Prediction error and gate status during testing

Prediction error
Gate status
Problem 1
Problem 2

Figure 5.5: Prediction error and surprise signals during the testing phase of the SUGARb
model on Problem1+2. The input to the event boundary anticipation module is an event
boundary indicator plus random input.

and vice versa. Then, the difference between the two prediction errors is calculated
and used as a penalty term to be added to the loss function if the gate was open.
Thus, such a signal could encourage the network to lean towards keeping the gate
closed as much as possible.

The counterfactual regularization was included as an additional term in the gra-
dient equation of the update gate as follows:

δtζ,reg = δtζ + β
(√

(ytact − ŷt)2 −
√

(ytcf − ŷt)2
)
, (5.8)

where β indicates the gate status, with the value of 1 if the gate was open and 0
otherwise, ytact denotes the actual prediction of the event processing network, ytcf
represents the alternative prediction if the gate had been in the counterfactual state,
ŷt is the true label, and δtζ,reg is the gradient term that regularizes the utility of gate
openings. Note that the values of β could be adjusted to more complex systems by
setting it to be more scaled.

The results showed that the use of the counterfactual error term can result in more

72 Implementing predicted unpredictability

stable context compressions, as shown in Fig. 5.8, compared with no counterfactual
error, shown in Fig. 5.6. This might be due to further increasing the surprise signals
at the event boundaries and further decreasing them within the events.

Having a closer look at the inter-event and intra-event changes in the prediction
error and surprise signal, thus the gate status, reveals that the use of counterfactual
regularization leads to less fluctuations in the surprise signal within the same event
and more differences in the signal pattern among different events. These details can
be seen in Fig. 5.7.

2 4 6 8 10 12
Context switches

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Co
nt

ex
t v

al
ue

Problem 1 encoding
Problem 2 encoding

Event latent encodings

Figure 5.6: Latent event encodings (xo) emerging when evaluating SUGARb on Problem
1+2.

5.6 Compositionality

An important skill in human learning is the ability to combine different experiences
and use them within a new task that has some degree of similarity to each of the
individual subtasks. In AI systems, many related learning techniques have been in-
vestigated. Continual learning represents the ability to remember different tasks

5.6 Compositionality 73

0 50 100 150
Time

0.0

0.2

0.4

0.6

0.8

1.0
Va

lue

0 50 100 150
Time

0.0

0.2

0.4

0.6

0.8

1.0

Va
lue

Prediction error and surprise signals during testing

Event boundaries
Prediction error
Gate status

100 120

0.01

0.02

100 120

0.01

0.02

Figure 5.7: Inter-event and intra-event gate status and prediction error for SUGARb
(left) and SUGARc (right). The upper right corner includes a zoomed image of the error
value when switching to a new event.

without forgetting previously learned ones. Efficient learning means the ability to
learn from a few examples only. Transfer learning denotes the capacity to transfer
the experience acquired at a certain task to perform another that has something in
common. These characteristics, especially the last two, represent areas in need for
further research. In fact, as we humans have these techniques, we might say that
scientists can inspire from neuroscience in developing them in artificial agents [37].

In this experiment, we wanted to investigate the developed encodings of different
problems that have certain characteristics in common. Training the structure on
problems that are partially similar brings up insights inspired by the principle of
transfer learning, and how latent encodings formed from a stream of sensorimotor
observations could be inspired or partially learned from encodings constructed based
on somehow similar observations. Using the problems in Fig. 5.4, we investigated
the latent event encodings developed in SUGARb for the three problems. Fig. 5.9
illustrates these encodings for different runs with differently initialized networks. It
could be observed that the encoding for Problem 3 is more similar to that of Problem
1. This is because, apart from the fact that the symbols (subproblems) in Problem 1
are used in Problem 3 as well, Problem 3 starts with the same symbols as in Problem
1. Still, there is a difference between the two encodings, which could be due to the
fact that the symbols in Problem 2 are also included in Problem 3, but they do not

74 Implementing predicted unpredictability

2 4 6 8 10 12
Context switches

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Co
nt

ex
t v

al
ue

Problem 1 encoding
Problem 2 encoding

Event latent encodings

Figure 5.8: Latent event encodings (xo) for Problem 1+2 emerging in SUGARc.

appear in the very beginning.

5.7 Conclusion

Modeling cognitive functions using artificial intelligence is a very important research
direction. This is not only due to its applications in the fields of robotics, natural lan-
guage perception, etc., but also because connecting theories on how the mind works
with practical simulations brings us closer towards human-level AI. Event cognition
drives much of our behavior and helps us to solve the problems and understand the
world around us [62]. In this chapter, we investigated an important aspect of event
cognition, that is, seamless event segmentation. First, we showed that an appropriate
segmentation of sensorimotor experience into events can be achieved using surprise
signals developed based on significant increases in the prediction error. However,
calculating surprise signals based on the prediction error causes a delay in identify-
ing the beginning of a new event. This negatively affects the performance. Inspired
by how our brain preempts surprise [6], we included predicted surprise signals using

5.7 Conclusion 75

Figure 5.9: Latent event encodings (xo) for four randomly initialized networks trained
and evaluated on Problem 1-3. We can notice that the code for Problem 3 lies in between
the code for Problem 1 and 2 (blue and green bars, respectively). Blue bars: code for
Problem 1, green bars: code for Problem 2, red bars: code for Problem 3.

provided information on when an event switch will happen. The result was good
performance in the prediction task and a smooth, seamless transition between the
events in terms of the prediction error. Still, if the provided information to the sur-
prise prediction module includes further indications to prepare for the switch even
before it happens, this might mislead the structure to let new contextual information
flow in the top-down direction while the switch still has not yet happened. Thus,
we added a counterfactual loss term to reason about the decisions of the network in
letting the information flow or not, and adding a penalty when this happens at in-
appropriate times. As a result, we investigated the latent event encodings developed
in our structure. Finally, we discussed how problems with similar subproblems can
have similar latent event encodings to a certain extent.

76 Implementing predicted unpredictability

Chapter 6

Discussion

In this final chapter, I will conclude this thesis by summarizing the presented ideas
and reflecting on the resulting discussions. I will quickly revisit the research questions
and the proposed investigations towards finding the answers. Then, I will discuss
some of the limitations that appeared while working on this thesis. While some of
them were possible to overcome, others remained as challenges that could represent
interesting ideas for future work. Finally, I will discuss possible further investigations
that could complement the presented work.

77

78 Discussion

6.1 Summary

This thesis aimed to discuss the following questions:

• What role does contextual information play when performing predictive tasks?
In other words, how does our knowledge regarding the overall ongoing event
affect our ability to predict what might happen next?

• Can we design a hierarchical structure that simulates the proposed two-way
bottom-up/top-down information flow in the brain?

• How do event-predictive encodings develop and how do they change between
intra-event and inter-event moments?

• What role does anticipating surprise signals play in surprise-gated event switch-
ing structures?

• What would be the effects of having the ability to reason about alternative
decisions: would this have happened had I acted in a different way?

6.1.1 The role of contextual information

An important part of robust perception of the surrounding world is the ability to
explain what we observe in the light of a larger context, i.e., understand opening the
door of the fridge to pick up milk as one step of larger activity of preparing coffee
with milk. If such guiding information is not known, i.e., I saw someone opening the
fridge without knowing their intent to prepare coffee with milk, then I will not be
able to predict what will they do next.

A simple example of a predictive task was used to show the utility of top-down
contextual information. Using the REPRISE structure [12], an evaluation of the con-
text inference process was performed. The used example included three different
vehicles moving towards a target location. The network received the current loca-
tion of the vehicle and predicted the location at the next time step. The other two
inputs to the network were a random motor command to move the vehicle and a
one-hot vector encoding the currently controlled vehicle. The network performed
two tasks:

• Prospectively, actively inferring the motor commands needed to reach the goal;

• Retrospectively inferring the identity of the currently controlled vehicle.

First, we trained the network while providing the one-hot encoding, which indi-
cated the currently controlled vehicle (contextual information). Then, we tested the

6.1 Summary 79

network without providing the contextual information, having the network infer it on
the fly. The results showed that the network was able to identify the three different
vehicles by performing retrospective inference based on the observed different sen-
sorimotor dynamics. The resulting prediction error indicated a better performance
when the network used its inferred encodings of the vehicles instead of using the
one-hot vector values. Although the network managed to produce context values
that lie in different distinguishable clusters, the inferred values were not stable, and
the clusters overlapped. To this end, the structure was extended to overcome these
limitations.

6.1.2 Hierarchical structure with top-down/bottom-up informa-
tion flow

In order to investigate the phenomenon of event segmentation, an extended struc-
ture was built. In addition to the sensorimotor predictive layer, another layer was
added to be responsible for the generation of event encodings. The flow of informa-
tion between the two layers was controlled using a middle gating layer. The point
of controlling the information flow was to allow it only when new information is
needed. In other words, as long as the same event is going on, no need to pass
new contextual information. Once an event switch happens, a new event encoding
is passed from the upper contextual layer to the lower sensorimotor layer.

As an indicator of event switching, we used the surprise signal. We started by pro-
viding this signal to the gating layer at the event boundaries. When a surprise signal
is provided, the gate is open, and new contextual information flow from the upper
layer. Then, a new event encoding is passed on to the lower layer. The predictions
can now be performed in light of the new event.

Once we start to execute a certain task, we start to plan for the next one. We
simulated this act by starting to prepare for the next event few steps after start-
ing the current one. The contextual information provided to the upper layer were
changed to indicate the next event few steps after the event has started. However,
this preparation only happens at the contextual layer, while the sensory layer is al-
ways performing the sensory prediction task within the current event. Here appears
the role of keeping the same event encoding provided to the lower layer to perform
good prediction and only allow the encoding to be updated once a switch to the next
event has happened. This was achieved by controlling the information flow at the
gating layer. The experimental results showed that we obtain the best prediction
error when the gate is only open at event switches (cf. Table 4.2).

80 Discussion

6.1.3 Latent event-predictive encodings

Providing the network with contextual information helps to reduce the prediction
error between the sensorimotor predictions and actual observations. In this work,
we showed that better prediction results can be achieved when different events have
distinct encodings. These encodings are formed in the upper layer, LSTMc in the
model with provided surprise signals or the event anticipation layer in SUGAR. Then,
they flow down to the sensorimotor processing layer.

Having distinct event compressions helps to identify the ongoing event and use
this knowledge to better predict the upcoming observation. Besides, when studying
the hierarchical event cognition structure with many levels of abstraction (see the
example in [44]), these distinct event compactions can well represent the different
events across levels.

6.1.4 Anticipating event boundaries and the role of surprise

When it comes to the surprise signal controlling the gating functionality of the mid-
dle GRU-like layer, different sources of this signal can be investigated. We started
by testing the effects of providing perfect surprise signals to the gating layer. The
results showed that using a high signal to indicate an event switch can well control
an efficient top-down flow of context encodings.

Then, we implemented an increasing prediction error as an indicator of the event
switches in the SUGAR Model 1. We added a surprise generating unit, which calcu-
lates how far away is the current prediction error from the moving average value.
A large positive difference indicates a switch. The experimental results showed that
it is promising to use spikes in the prediction error to represent the switch to a new
event.

In SUGAR Model 2, we assigned the task of generating surprise signals to the
event boundary anticipation unit. The point here was to simulate the idea of pre-
empting surprise signals using some information related to the event boundaries. By
evaluating this model, we found that even when masked event boundary information
is provided, the network is still able to make use of the provided information to pre-
dict surprise signals and use them to switch the top-down event contextual encoding
just in time.

6.1.5 Comparing the outcomes of different decisions

When the decision to open the gate allowing the change in context encodings is
made based on the surprise signal, this decision is not always optimal. Sometimes,
the taken decision is wrong due to an incorrect interpretation of the event boundary

6.2 Limitations 81

information, and sometimes the decision is not directly wrong, but unnecessary, pos-
sibly leading to a waste of resources, e.g., computational resources, time, etc. Thus,
we enhanced the structure with a counterfactual regularization unit, in the SUGAR
Model 3. In this case, the prediction errors resulting from both possible decisions are
compared. If the gate opening did not improve the prediction accuracy, the opening
action is punished with an additional, regularizing loss. The results showed that this
counterfactual regularization helps to reach even more stable and expressive event
encodings.

6.2 Limitations

Although this work managed to suggest plausible answers to the proposed questions,
it has some limitations. Firstly, we always needed to provide an external signal to
indicate event switches. These signals were inspired by the guidance that we receive
when a certain event is about to finish. For example, when the lecturer says “For next
week, we will work on ..”, we expect that the current lecture is about to end. Al-
though this information would be included in any model simulating event cognition,
a more indirect information might cover the cases when the received hints are not
very clear, yet we manage to predict a change. Hence, this could help to embrace the
potential of the structure in predicting the not-so-straightforward predictable event
switches.

The presented structure is a starting point for many enhancements. While many
signals, direct and masked, were provided to the network to indicate the ongoing
event and event boundaries, a promising extension to the structure would be to infer
the anticipated event boundaries using direct signals flowing back up from the sen-
sory predictions. In the same direction, the provided ground truth data to represent
the currently ongoing event could be limited or changed into more indirect indica-
tors. One possible representation of the event could be a latent vector compressed
from the observations using an autoencoder. This will also be similar to the obser-
vations we receive, let it be images, sounds, smells, etc., all of them are compressed
into predictive identifiers of what is currently going on.

Secondly, we used the backpropagation through time (BPTT) algorithm in the
learning process. As the observations get more complex, performing the prospective
and retrospective calculations in the recurrent structure can be computationally ex-
pensive. Relying more on expected information gain to modify the random behavior
generation during the training process can enhance the performance. Furthermore,
given how AI is inspired by neuroscience and how it tries to simulate brain function-
ality, we need more biologically plausible methods to update the beliefs. The heavily
used backpropagation method has long been discussed to be biologically somewhat
implausible [76] [40].

82 Discussion

Event Anticipation Layer

Event Processing Layer

Latent event-predictive encoding

Gating layer

Top-down
Prediction

Retrospective
Inference

Figure 6.1: The two processes updating the latent event-encodings when retrospective
inference is implemented within the SUGAR structure. If the two updates are not well
coordinated, the encodings will not be properly updated.

Thirdly, the integration of retrospective inference with the SUGAR structure could
not yet be achieved. We speculate that the reason behind this is that the same piece
of information, i.e., event encoding, is being updated in two directions, as shown in
Fig. 6.1. On the one hand, the performed top-down prediction drives the updates
from the upper layer. On the other hand, the retrospective inference also tries to
update the encodings. This situation might lead to conflicting or untimely updates
of the latent even encodings. Integrating the retrospective inference would not only
help to better shape the event encoding to be more coherent with the sensory expe-
riences, but also the hidden states of the recurrent neural network to better fit the
ongoing event.

Fourthly, given that the structure was tested on few examples with a limited set of
events, it will be interesting to investigate the scalability of the network when applied
on further problems with more events on one or more layers. Hence, the structure
could be used for the processing of further sequences that can be seen as a series of
events.

Finally, an important aspect in this structure that deserves to be further explored
is the calculated surprise in SUGAR Model 1. In this model, direct calculation of sur-
prise signals from the prediction error reflects the idea of event switches being initi-
ated by large surprising increases in the prediction error. A value could be considered
as surprising if it is significantly larger that the average error within a pre-determined

6.3 Conclusions 83

time window (calculated as the difference between the current error and the mean
error within the time window, divided by the standard deviation of the error). In
the proposed structure, we managed to practically implement this idea such that the
gate would open to allow the flow of contextual information when the prediction
error is suddenly increased due to the change in context. However, when the events
are somehow similar, such that a change in the currently ongoing event would not
lead to a highly increased error at the boundaries, the structure could not precisely
identify event switches. Thus, the gate would sometimes open at unnecessary times
or keep closed while information on the new context is needed. In future work, cal-
culated surprise should be further studied to enhance its performance and explore
its potentials. Possible enhancements could include new formulas of calculating the
surprise based on prediction error, such that the intra-event error is clearly distin-
guishable compared with the inter-event error. One example may be to search for an
explanation of why this would represent a surprising event [20]. Another example
may be to combine the factors of event probability, outcome valence and outcome
meaningfulness [41].

6.3 Conclusions

Hierarchical representation of knowledge in the brain The established research
in a wide range of fields, including cognitive science, neuroscience and psychology,
has shown that our brain can be characterized as a generative, predictive system.
Approximating Bayesian inference, the brain compares sensations, which flow in a
bottom-up direction, with predictions transmitted in a top-down manner [39]. The
upper and lower levels in these directions indicate the more abstract representation
of knowledge and the more sensational representation, respectively. This hierar-
chy has also been anatomically discussed in the early 90s [56], investigating how
cortico-cortical connections update raw low-level data and high-level abstract data.
Although this hierarchical representation of the information flow in the brain has
been discussed in many works, it is still unclear how many levels there truly are and
how the information is partitioned within a level

This work investigated how to segment and compact contextual encodings, for
which we need hierarchies. A very good example of the usage of hierarchies is the
divide-and-conquer method. It is widely used not only in computer algorithms but
in everyday plans. As the name reveals, it is based on the idea of dividing a problem
into many subproblems, forming a hierarchical representation of the main problem
in the form of smaller problems with different levels of difficulty. As long as you
can still simplify the problem by dividing it into further subproblems, new levels will
be added to the hierarchy. In our brain, when we want to understand an idea, a
representation of the idea is built. Moving from the very abstract representation of

84 Discussion

the idea, simplifying it into a more materialized form, until we reach the very tangible
sensorimotor data.

The Free Energy Principle One formulation of the “Bayesian Brain” is the “Free
Energy Principle” [25] [27] [39], which was proposed by the neuroscientist Karl
Friston. The notion of free energy comes from statistical physics, and is used to ease
the handling of complex integration problems. This principle starts from the point
that any biological system always strives to keep a homeostatic state. As a result, it
tries to move among a set of predefined states that are familiar and avoid any surpris-
ing actions. But how can one actually avoid any surprises? This would mean taking
into account anything that might happen and prepare the suitable reactions to each
and every situation, which is not realistic. Instead, the system can try to minimize an
upper bound on surprise, which is the proposed free energy. In mathematical forms,
the free energy is defined as

F = − ln p(ỹ) +D(q(ϑ;λ)||p(ϑ|ỹ)) (6.1)

where ỹ represents the sensory observations by the system, ϑ denotes the environ-
ment state (thus, the causes of the sensory inputs), and λ is the system state. Simply
explained, the free energy would then be equal to the surprise signal plus the dif-
ference between the predictive posterior (q) and future posterior (p) beliefs. Hence,
minimizing the free energy means that the posterior density will be closer to the prior
one, so the system can infer the causes of its sensory input.

Despite the many follow-up works on the free energy and related aspects [24]
[28], the free energy principle of the brain still suffers from being too difficult and
too general as well. Although it discusses surprising events and the role of active
inference, it does not explain the specifics of event cognition. Hence, it has been crit-
icized for offering an incomplete theory of cognition [16] [73]. Furthermore, it is not
clear yet how can the presented equations be translated into practical applications.

The closest form of application has been in starting from the surprise point. In or-
der to update our beliefs to be more accurate compared with the actual observations
from the surrounding environment, our brain compares them, and the resulting error
is used to update our ideas. When the error is significantly large, then what happened
is more than small discrepancies between what we believe and what we observed, it
means that the whole context of what is going on around us is now different. This
large error is then called a “Surprise” signal. Surprise signals are avoided, or at least
minimized, by doing the following [39]:

• Adapting the actions that will affect the environment.

• Updating the priors based on the acquired experience.

6.3 Conclusions 85

• Optimizing the generative model of the world in the brain.

Learning from children If building perceptive and cognitive systems is a main task
in the field of AI, why not learning from the best example of building knowledge over
time, that is, learning from children? As Turing previously asked, why not trying to
produce a system that simulates the child’s mind? [79, p. 456] Observing how
knowledge is accumulated in children is a great inspiration for AI systems. We can
explain why a human being is able to learn different tasks by only few samples (while
an AI system might need millions of them) by the accumulated knowledge and deep
experience collected across the years. This makes it easy for human beings to apply
what they learned in one task on other similar tasks; a method already applied in AI
under the name of ”Transfer Learning” [37], or learn a task using few examples as in
zero- or one-shot learning [34].

An important example is the development of goal-directed gaze in infants. Start-
ing from about six months onward, infants start to move their gaze from a moving
action to the goal of this action before it ends. Gumbsch and colleagues [32] studied
this behavior, and simulated it in terms of a generative event-predictive model, which
performs active inference. As a result, the system begins to fixate the goal briefly af-
ter the movement of the agent started it, inferring both the reaching event and the
need to look at the goal to minimize uncertainty about the upcoming interaction.

In 2019, the scientist Gül Deniz Salalı, who does field research in Congo study-
ing Mbendjele BaYaka hunter-gatherers wrote an interesting article comparing their
learning behavior to the unsupervised learning in AI. In both cases, the agent (be-
ing a human-gatherer or an AI model) learns by exploring without having a prede-
fined goal. She reported that learning by being taught accounted only for 6% of the
episodes observed by the team, while the remaining learning was based on free ex-
ploration and learning from others [67]. This could be reflected in event-predictive
systems by transfer-learning the event-predictive encodings learned in one system to
another. Hence, enriching the encoding reservoir of the system faster. By combining
these observations, advances in artificial cognitive models may indeed be inspired
from human cognitive processes, especially as it is being developed in children.

Compositionality Simply put, compositionality refers to the property of having
new representations constructed from a limited set of primitive elements [48]. It
plays a very important role in cognition, since it enables us to use the existing infor-
mation, especially in an abstract form, to expand the knowledge base. A very good
example of representations that are compositional is handwriting. A previous work
of Lake and colleagues [46] showed how we combine sub-parts to create letters;
the same sub-parts can be used to generate a large number of final representations.
Fig. 6.2 shows how primitive elements can constitute sub-parts, which can then be

86 Discussion

Figure 6.2: An example of creating different handwriting objects from the same sub-
parts. Figure form [46]

combined to create larger parts, until a full object is created.
Compositionality can be observed in compressed, event-predictive encodings. In

a work from 2019 [58], modular RNN modules were used to learn compositional
dynamics and infer the subdynamics. More recently, the formation of such compo-
sitional encodings has been shown to help solve the Omniglot challenge [19]. The
Omniglot challenge aims at developing algorithms that can act on a human level, by
constructing one model that can perform many concept learning tasks; examples in-
clude One-Shot learning for handwritten characters [47]. In [19], a generative RNN
was used to solve the Omniglot challenge by learning compositional representations,
which could be reassembled into new character trajectories. They showed that com-
positionality can be introduced as an inductive bias into a simple LSTM network,
enhancing its ability to solve different tasks.

With the many levels of abstraction in an event-cognitive schema come many lev-
els of complexity in the respective event-predictive encodings. Encodings of higher-
level events might be composed of the encodings of lower-level events. Indeed,
our experiments have shown that some compositionality properties could be ob-
served in the developing event compressions. For example, Fig. 5.9 showed how
the event encodings of similar events had similar sub-parts and characteristics. Fu-
ture work should thus further explore and foster the emergence of compositional
event-predictive structures.

Learning to learn Establishing cognitive systems is not only about the learning
results, but also about the learning process itself. In order to achieve human-level

6.3 Conclusions 87

AI, two main components should be included: meta-learning and meta-reasoning.
These two components and the interaction between them were beautifully described
in the work of Griffiths and colleagues in 2019 [31]. They discussed how meta-
reasoning, that is, the efficient deployment of computational resources, and meta-
learning, that is, the efficient usage of cognitive resources, could be combined to
explain the ability in humans to learn a lot from very little data. This has remained
an important research topic in machine learning, as researchers try to develop models
that learn successfully with the least amount of training data. Examples of such trials
include zero-, one- and few-shot learning models [42] [83]. Similar to meta-learning,
meta-cognition can be seen as the control and awareness of one’s cognitive functions
[3].

Earlier in 1987, Schmidhuber, who later co-created the extensively used LSTM
units along with Hochreiter [38], presented his ideas on learning how to learn.
In his thesis [68], he explained how recurrent neural networks can learn to run
different learning algorithms on themselves, what is called being ”self-referential”.
Then, it would be reasonable to consider the generalization and abstraction abilities
of the model essential for combining different algorithms and tasks. In the event-
compression model presented in this work, the constructed event-encodings allow
the model to generalize among tasks as required. The abstraction level achieved
through the higher level encodings give the model a self-referential property.

Conscious machines and the role of cognition As more advances are being achieved
in computational cognitive science, one might think: how far are we from cognitive
machines? As a matter of fact, combining all the required units that are similar to
what we have in the human body will not create a cognitive being. What creates
our cognitive abilities? Before diving into cognition, another point that needs an-
swering is how cognition is related to consciousness. Does the latter have a cognitive
nature? Or are these two separated? [8]. With the emergence of new technolo-
gies to study the brain in even more detail, including functional magnetic resonance
imaging (fMRI) and electroencephalography (EEG), more research approached the
origin of consciousness. The difficulty starts from the task of defining conscious-
ness. Many theories on human consciousness [17] [52] looked at it as a form of
information processing, continuously processing the sensory information and mak-
ing predictions. These predictions are compared with the observations and updated
accordingly. Recently, Kotchoubey [43] defined consciousness as a behaviour, which
controls movements. An opinion by van Gaal and colleagues [81] discussed how
cognitive control, which is a general term for how our goals and plans affect our be-
haviour in a flexible way, is affected by conscious and unconscious information. The
functions related to cognitive control, including responding to stimuli and switching
tasks, have been linked with prefrontal areas in the cortex, thus seemingly encoding

88 Discussion

top-down cognitive control. This initiates the question of what role does this top-
down control play in event cognition, being itself updated in a top-down/bottom-up
scheme of information flow.

Top-Down, goal-directed control In speech perception, top-down processing re-
lies on language experience to realize meaning, which is combined with bottom-up
processing, mainly depending on instant auditory input [70]. Top-down control has
been described by Melloni et al. [53] as the way our inner goal affects our selection
of the stimulus. They presented the example of looking for a pencil. The sensory ob-
servations would represent the bottom-up control, while the top-down control would
be our endogenous control to meet our goals.

It is believed that event cognition is an essential cognitive aspect to achieve a
robust perception of the world. All the observations that we make about what is go-
ing on around us contain different forms of data used to update our internal beliefs.
Hence, when there is a sudden change in what we observe compared with what we
have been observing for a while, we realize that an event has ended and another has
started. This process of identifying event boundaries and the formation of distinct
event-predictive encodings in the brain has been widely discussed in cognitive neu-
roscience. However, when it comes to the modeling of this process, there certainly
still remains rather huge room for improvement.

This work has developed a structure that can be used to compress latent event-
predictive encodings in different tasks. One usage of this structure can be in decision
making tasks, such that alternative options are evaluated to decide on the best action
to perform next within an overall policy. Besides, the information flow is controlled
at the gating layer, which allows the use of this structure in event-triggered learn-
ing, achieving efficient information flow. Further usages would be in planning when
the states are partially observable, in reasoning and in finding fast and generalizing
solutions in reinforcement learning problems [34]

6.4 Future directions

As difficult as it is to picture how future artificial cognitive models would look like,
one can plan developmental lines that emerged from the achievements made in this
thesis, limitations encountered during the work and enhancements inspired from the
reviewed literature.

Although the property of predictive inference is investigated in event-predictive
models, the power of inference can still be more deeply exploited. Our brain relies
on active inference to achieve precise perceptions, but it is not very clear how the
information can be indirectly encoded and observed to predict future events. This
point can be further explored in future research, by providing input information to

6.4 Future directions 89

the model in more indirect ways, such that more inference is performed and more co-
herent updates of the predictive encodings are achieved. This does not only include
prospective inference but also retrospective inference. Combining both would help in
problems where the context is not provided, and yet a task that relies on identifying
the context should be performed. An example would include a virtual reality envi-
ronment in which the agent needs to use a tool to move some cubes. However, the
agent does not know the characteristics of the tool to be used. In a recent work, ret-
rospective inference has indeed been used to tune parametric bias neurons in order
to solve the binding challenge [66].

The surprise-gated top-down layer presented in this work can be integrated within
other structures, in which an efficient and controlled information flow is needed. It
can be an essential part of any model that can make use of compositional event-
predictive encodings. An important example comes from language learning, where
a structure that forms such encodings called ’LEARNA’ has been recently proposed to
infer events as an interpretation of ambiguous utterances [75]. The surprise-gated
layer can also be used in a form of reward shaping in reinforcement learning tasks.
The flow of information can be controlled to determine the switching between ex-
ploration and exploitation, a challenging point in reinforcement learning. The recent
work of Gumbsch et al. [34] has actually presented a novel recurrent architecture
capable of maintaining stable, sparsely changing latent states by incorporating such
an inductive bias.

The modular nature of the presented structure makes it practical to edit the de-
tails. This means that varied input/output/bias combinations could be used to de-
termine which of them has the most effect on the performance and which could be
ignored or masked. Besides, the inter-layers connections could be edited. For ex-
ample, residual connections could be added to the input of the contextual and/or
sensorimotor layers. It would be interesting to see the effect of such connections on
the gradient, and thus on the formed encodings.

The problems used in the evaluation of the model are only examples of how the
structure can be used. Further studies can use the structure in varied problems in
which hierarchical surprise-gated compression of event-predictive encodings can be
useful. An example could be controlling an unidentified moving entity across differ-
ent environments. Additionally, although two main levels of abstraction were used
here, the resulting encodings can be used as the representational basis to conduct
conceptual, event-predictive reasoning and planning on multiple levels of abstrac-
tion. Furthermore, it would be interesting to see how can the resulting compositional
encodings be linked with language encodings. An example would be a scenario in
which two agents communicate and form language encodings from auditory obser-
vations.

As a final word, working in the field of neuro-cognitive modeling to try to under-

90 Discussion

stand the brain and simulate the functionalities it carries within may be driven by
the desire to achieve human-level AI. When would we be able to build highly intel-
ligent agents that are as cognitive as human beings? Event-cognition constitutes a
key aspect to be considered here. A human-level AI should go beyond the processing
of individual observations to realizing how events are unfolding in the surrounding
environment. There is now more than ever a trend in research labs to form inter-
disciplinary groups of researchers. Combining philosophers, psychologists, computer
scientists, computational neuroscientists and others, the advancements toward super
AI are expected to be enormous. While the futurist Ray Kurzweil predicted that the
tome when AI systems will pass the Turing test and reach the level of human intel-
ligence or more will be as early as 2029 [45], the historian Yuval Harari thinks that
not even in 200 years we could think of merging our mind with computers [35].

Away from predictions, this work showed the importance of the hierarchical flow
of event-predictive encodings in minimizing prediction error compared with single
level structures. Besides, it showed the emergence of compositional encodings: en-
codings representing similar problems were composed of similar sub-units. This is
very important for transfer learning and domain adaptation. The combination of top-
down and bottom-up signals seem to be essential in artificial cognitive systems to act
in a goal-directed manner. The gathered observations support the belief that hier-
archical event-predictive models will constitute an important unit in more advanced
and complex artificial cognitive systems with an increasing level of human-like or
even super-human intelligence.

Abbreviations

AI Artificial Intelligence
ADAM ADAptive Moment estimation
ANN Artificial Neural Network
BPTT BackPropagation Through Time
EB Event Boundary information
EEG ElectroEncephaloGraphy
CFR CounterFactual Regularization
CI Contextual Information
fMRI functional Magnetic Resonance Imaging
GRU Gated Recurrent Unit
LSTM Long Short-Term Memory
LSTMc LSTM contextual
LSTMf LSTM functional
PCA Principal Component Analysis
REPRISE REtrospective and PRospective Inference SchEma
RI Retrospective Inference
RL Reinforcement Learning
RNN Recurrent Neural Network
SUGAR SUrprise-GAted Recurrent neural network

91

92 Abbreviations

Glossary

Abstraction: Moving towards a more conceptualized idea instead of a concrete spe-
cific instance.

Context: The overall conditions that define the occurrence of an event.

Event: a segment of time in a given location at which a certain activity happens that
can be observed to have a beginning and an end.

Event boundary: The time point at which an event ends and the next starts.

Event-predictive encodings: a code that represents an event; it can be used to pre-
dict the upcoming observation in light of the corresponding event.

Hierarchical structure: A multi-level model in which each layer is more general and
abstract than the layer below it. The information flows between the layers subse-
quently.

Inductive bias: the assumptions affecting the output that will result from processing
an input not previously encountered.

Meta-learning: observing the learning algorithms and developing better ones that
can learn quickly and efficiently.

Model: A structural representation of an object or an event.

Modularization: Reorganizing a model into submodels that can have shared in-
puts/outputs but can also have different connections to achieve separate tasks.

Prospective: looking ahead into the future time steps to update the current coeffi-
cients as to decrease the expected error.

Retrospective: looking back into the past time steps to update the current coeffi-

93

94 Glossary

cients as to decrease the expected error.

Bibliography

[1] Toshitake Asabuki, Naoki Hiratani, and Tomoki Fukai. Interactive reservoir
computing for chunking information streams. PLOS Computational Biology,
14(10):e1006400, October 2018.

[2] B. Harvey B. Klein and S. Dumoulin. Attraction of position preference by spatial
attention throughout human visual cortex. Neuron, 84:227–237, 2014.

[3] L. Baker. Metacognition. International Encyclopedia of Education, page 204–210,
2010.

[4] J. Balaguer, H. Spiers, D. Hassabis, and C. Summerfield. Neural mechanisms of
hierarchical planning in a virtual subway network. Neuron, 90:893–903, 2016.

[5] C. Baldassano, J. Chen, A. Zadbood, J. W. Pillow, U. Hasson, and K. A. Norman.
Discovering event structure in continuous narrative perception and memory.
Neuron, 95:709–721, 2017.

[6] D. A. Baldwin and J. E. Kosie. How does the mind render streaming experience
as events? Topics in Cognitive Science, 2020.

[7] Matthew Botvinick and Marc Toussaint. Planning as inference. Trends in Cog-
nitive Sciences, 16(10):485–488, 2012.

[8] Richard Brown. Consciousness doesn’t overflow cognition. Frontiers in Psychol-
ogy, 5, Dec 2014.

[9] M. Butz and E. Kutter. How the mind comes into being: Introducing cognitive
science from a functional and computational perspective. Oxford University Press,
2016.

[10] M. V. Butz, A. Achimova, D. Bilkey, and A. Knott. Editors’ review and intro-
duction: Topic event-predictive cognition: From sensorimotor via conceptual
to language-based structures and processes. Topics in Cognitive Science, 2020.

[11] Martin V. Butz. Towards a unified sub-symbolic computational theory of cogni-
tion. Frontiers in Psychology, 7(925), 2016.

95

96 Bibliography

[12] Martin V. Butz, David Bilkey, Alistair Knott, and Sebastian Otte. Reprise: A
retrospective and prospective inference scheme. Proceedings of the 40th Annual
Meeting of the Cognitive Science Society, 2018, in press.

[13] M.V. Butz. Towards strong ai. KI - Kuenstliche Intelligenz, 2021.

[14] Kyunghyun Cho, Bart van Merriënboer, Çağlar Gülçehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder–decoder for statistical machine translation. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (ENMLP), pages 1724–1734, Doha, Qatar, 2014.

[15] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Em-
pirical evaluation of gated recurrent neural networks on sequence modeling.
CoRR, abs/1412.3555, 2014.

[16] Andy Clark. Embodied Prediction. Frontiers, 2015.

[17] D. C. Dennett. Consciousness explained. Back bay books. Little, Brown, 1. pa-
perback ed edition, 1991.

[18] W. Dunin-Barkowski. Editorial:toward and beyond human-level ai. Front. Neu-
rorobot, 2020.

[19] Sarah Fabi, Sebastian Otte, and Martin V. Butz. Fostering compositionality in
latent, generative encodings to solve the omniglot challenge. Lecture Notes in
Computer Science, page 525–536, 2021.

[20] Meadhbh I. Foster and Mark T. Keane. Predicting surprise judgments from
explanation graphs. In International Conference on Cognitive Modelling, 2015.

[21] Nicholas T. Franklin, Kenneth A. Norman, Charan Ranganath, Jeffrey M. Zacks,
and Samuel J. Gershman. Structured event memory: a neuro-symbolic model
of event cognition. bioRxiv, page 541607, February 2019.

[22] K. Friston. The free-energy, principle: a rough guide to the brain? Trends Cogn.
Sci., 13:293–301, 2009.

[23] K. Friston and K. Stephan. Free-energy and the brain. Synthese, 159:417–458,
2007.

[24] Karl Friston. Hierarchical models in the brain. PLoS Computational Biology,
4(11):e1000211, Nov 2008.

[25] Karl Friston. The free-energy principle: a unified brain theory? Nature Reviews
Neuroscience, 11(2):127–138, Feb 2010.

Bibliography 97

[26] Karl Friston. The history of the future of the bayesian brain. NeuroImage,
62(2):1230–1233, 2012. 20 YEARS OF fMRI.

[27] Karl Friston, James Kilner, and Lee Harrison. A free energy principle for the
brain. Journal of Physiology-Paris, 100(1–3):70–87, Jul 2006.

[28] Karl Friston, Francesco Rigoli, Dimitri Ognibene, Christoph Mathys, Thomas
Fitzgerald, and Giovanni Pezzulo. Active inference and epistemic value. Cogni-
tive Neuroscience, 6(4):187–214, Oct 2015.

[29] Gary H. Glover. Overview of functional magnetic resonance imaging. Neurosurg
Clin N Am, 22(3):133–vii, 2011.

[30] Y. C. Goh, X. Q. Cai, W. Theseira, G. Ko, and K. A. Khor. Evaluating human
versus machine learning performance in classifying research abstracts. Sciento-
metrics, 125:1197–1212, 2020.

[31] Thomas L Griffiths, Frederick Callaway, Michael B Chang, Erin Grant, Paul M
Krueger, and Falk Lieder. Doing more with less: meta-reasoning and meta-
learning in humans and machines. Current Opinion in Behavioral Sciences,
29:24–30, 2019.

[32] Christian Gumbsch, Maurits Adam, Birgit Elsner, and Martin V. Butz. Emergent
goal-anticipatory gaze in infants via event-predictive learning and inference.
Cognitive Science, 45(8), 2021.

[33] Christian Gumbsch, Martin V. Butz, and Georg Martius. Autonomous identifi-
cation and goal-directed invocation of event-predictive behavioral primitives.
IEEE Transactions on Cognitive and Developmental Systems, 13(2):298–311,
2021.

[34] Christian Gumbsch, Martin V. Butz, and Georg Martius. Sparsely changing
latent states for prediction and planning in partially observable domains. In
Advances in Neural Information Processing Systems (NeurIPS 2021), December
2021. to appear.

[35] Yuval Noah Harari. Homo deus: A brief history of Tomorrow. Vintage Publishing,
2017.

[36] P. Hart and A. Knoll. Using counterfactual reasoning and reinforce-
ment learning for decision-making in autonomous driving. arXiv preprint
arXiv:2003.11919, 2020.

[37] D. Hassabis, D. Kumaran, C. Summerfield, and M. Botvinick. Neuroscience-
inspired artificial intelligence. Neuron, 95:245–258, 2017.

98 Bibliography

[38] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[39] Jeremy Holmes and Tobias Nolte. “surprise” and the bayesian brain: Implica-
tions for psychotherapy theory and practice. Frontiers in Psychology, 10:592,
Mar 2019.

[40] Bernd Illing, Wulfram Gerstner, and Johanni Brea. Biologically plausible deep
learning — but how far can we go with shallow networks? Neural Networks,
118:90–101, 2019.

[41] James Juergensen, Joseph S. Weaver, Kevin J. Burns, Peter E. Knutson, Jen-
nifer L. Butler, and Heath A. Demaree. Surprise is predicted by event proba-
bility, outcome valence, outcome meaningfulness, and gender. Motivation and
Emotion, 38(2):297–304, 2013.

[42] Suvarna Kadam and Vinay Vaidya. Review and analysis of zero, one and few
shot learning approaches. Advances in Intelligent Systems and Computing, page
100–112, 2019.

[43] Boris Kotchoubey. Human consciousness: Where is it from and what is it for.
Frontiers in Psychology, 9:567, Apr 2018.

[44] G. R. Kuperberg. Tea with milk? a hierarchical generative framework of se-
quential event comprehension. Topics in Cognitive Science, 2020.

[45] Ray Kurzweil. The singularity is near: When humans transcend biology. Duck-
worth, 2018.

[46] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learn-
ing through probabilistic program induction. Science, 350(6266):1332–1338,
2015.

[47] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. The om-
niglot challenge: A 3-year progress report. Current Opinion in Behavioral Sci-
ences, 29:97–104, 2019.

[48] Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Ger-
shman. Building machines that learn and think like people. Behavioral and
Brain Sciences, 2017.

[49] S. Legg. A collection of definitions of intelligence. ArXiv e-prints, 0706.3639,
2007.

Bibliography 99

[50] Lester C. Loschky, Adam M. Larson, Joseph P. Magliano, and Tim J. Smith.
What would jaws do? the tyranny of film and the relationship between gaze
and higher-level narrative film comprehension. PloS One, 10(11):e0142474,
2015.

[51] G. Buracas M. Saenz and G. Boynton. Global effects of feature-based attention
in human visual cortex. Nature Neuroscience, 5:631–632, 2002.

[52] Tiago V. Maia and Axel Cleeremans. Consciousness: converging insights
from connectionist modeling and neuroscience. Trends in Cognitive Sciences,
9(8):397–404, Aug 2005.

[53] Lucia Melloni, Sara van Leeuwen, Arjen Alink, and Notger G. Mueller. Inter-
action between bottom-up saliency and top-down control: How saliency maps
are created in the human brain. Cerebral Cortex, 22(12):2943–2952, 2012.

[54] K. Metcalf and D. Leake. Modeling unsupervised event segmentation: Learning
event boundaries from prediction errors. In Proceedings of the 39th Annual
Conference of the Cognitive Science Society, pages 2717–2722, 2017.

[55] S. Mittal, A. Lamb, A. Goyal, V. Voleti, M. Shanahan, G. Lajoie, N. Mozer, and
Y. Bengio. Learning to combine top-down and bottom-up signals in recurrent
neural networks with attention over modules. In Proceedings of the 37th Inter-
national Conference on Machine Learning, pages 6972–6986. PMLR, 2020.

[56] D. Mumford. On the computational architecture of the neocortex: I. the role of
the thalamo-cortical loop. Biological Cybernetics, 65(2):135–145, Jun 1991.

[57] J. Nassi and E. Callaway. Parallel processing strategies of the primate visual
system. Nature Review Neuroscience, 10:360–372, 2009.

[58] Sebastian Otte, Patricia Rubisch, and Martin V. Butz. Gradient-based learning of
compositional dynamics with modular rnns. Artificial Neural Networks and Ma-
chine Learning – ICANN 2019: Theoretical Neural Computation, page 484–496,
2019.

[59] J. Pearl. The limitations of opaque learning machines. In: J. Brockman (ed.)
Possible minds: 25 ways of looking at AI, chap. 2, pp. 13–19. Penguin Press, New
York, 2020.

[60] Leonid Perlovsky. Language and cognition. Neural Networks, 22(3):247–257,
2009. Goal-Directed Neural Systems.

100 Bibliography

[61] Kyle A. Pettijohn, Alexis N. Thompson, Andrea K. Tamplin, Sabine A. Krawi-
etz, and Gabriel A. Radvansky. Event boundaries and memory improvement.
Cognition, 148:136–144, March 2016.

[62] G. A. Radvansky and J. M. Zacks. Event cognition. Oxford University Press,
2014.

[63] Gabriel A. Radvansky and Jeffrey M. Zacks. Event perception. WIREs Cognitive
Science, 2(6):608–620, 2011.

[64] J. R. Reynolds, J. M. Zacks, and T. S. Braver. A computational model of event
segmentation from perceptual prediction. Cognitive Science, 31:613–643, 2007.

[65] Jeremy R. Reynolds, Jeffrey M. Zacks, and Todd S. Braver. A computational
model of event segmentation from perceptual prediction. Cognitive Science,
31(4):613–643, July 2007.

[66] Mahdi Sadeghi, Fabian Schrodt, Sebastian Otte, and Martin V. Butz. Binding
and perspective taking as inference in a generative neural network model. Lec-
ture Notes in Computer Science, page 3–14, 2021.

[67] Gul Deniz Salali, Nikhil Chaudhary, Jairo Bouer, James Thompson, Lucio Vini-
cius, and Andrea Bamberg Migliano. Development of social learning and play
in bayaka hunter-gatherers of congo. Scientific Reports, Jul 2019.

[68] Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on
learning how to learn: The meta-meta-... hook. Diplomarbeit, Technische Uni-
versität München, München, 1987.

[69] Ana Serrano, Vincent Sitzmann, Jaime Ruiz-Borau, Gordon Wetzstein, Diego
Gutierrez, and Belen Masia. Movie editing and cognitive event segmentation in
virtual reality video. ACM Transactions on Graphics, 36(4):1–12, July 2017.

[70] Lan Shuai and Tao Gong. Temporal relation between top-down and bottom-up
processing in lexical tone perception. Frontiers in Behavioral Neuroscience, 8,
2014.

[71] M. Sigman and S. Dehaene. Brain mechanisms of serial and parallel process-
ing during dual-task performance. The Journal of Neuroscience, 28:7585–7598,
2008.

[72] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. vandenDriessche,
J. Schrit-twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,

Bibliography 101

K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of go with
deep neural networks and tree search. Nature, 529:484–489, 2016.

[73] Andrew Sims. A problem of scope for the free energy principle as a theory of
cognition. Philosophical Psychology, 29(7):967–980, 2016.

[74] Friedrich Solowjow, Dominik Baumann, Jochen Garcke, and Sebastian Trimpe.
Event-triggered learning for resource-efficient networked control. 2018 An-
nual American Control Conference (ACC), pages 6506–6512, June 2018. arXiv:
1803.01802.

[75] Christian Stegemann-Philipps and Martin V. Butz. Learn it first: Grounding
language in compositional event-predictive encodings. 2021 IEEE International
Conference on Development and Learning (ICDL), 2021.

[76] Stork. Is backpropagation biologically plausible? International Joint Conference
on Neural Networks, 1989.

[77] R. Sutton and A. Barto. Reinforcement Learning, second edition: An Introduction.
MIT Press, Cambridge, MA, 2018.

[78] P. Thegard. Mind: Introduction to cognitive science. MIT Press, 2005.

[79] A. M. TURING. I.—computing machinery and intelligence. Mind,
LIX(236):433–460, 1950.

[80] E. Uenal and A. Papafragou. Relations between language and cognition: Ev-
identiality and sources of knowledge. Topics in Cognitive Science, 2:115–135,
2018.

[81] Simon van Gaal, Floris P De Lange, and Michael X Cohen. The role of con-
sciousness in cognitive control and decision making. Frontiers, Jan 2012.

[82] G. R. VandenBos. Apa dictionary of psychology. American Psychological Asso-
ciation, 2007.

[83] Yongqin Xian, Christoph H. Lampert, Bernt Schiele, and Zeynep Akata.
Zero-shot learning—a comprehensive evaluation of the good, the bad and
the ugly. IEEE Transactions on Pattern Analysis and Machine Intelligence,
41(9):2251–2265, 2019.

[84] J. M. Zacks and B. Tversky. Event structure in perception and conception. Psy-
chological Bulletin, 127(1):3–21, 2001.

[85] Jeffrey M. Zacks, Nicole K. Speer, Khena M. Swallow, Todd S. Braver, and
Jeremy R. Reynolds. Event perception: A mind-brain perspective. Psychological
Bulletin, 133(2):273–293, 2007.

[86] Jeffrey M. Zacks and Khena M. Swallow. Event segmentation. Current directions
in psychological science, 16(2):80–84, April 2007.

[87] Jiaying Zhao, Ulrike Hahn, and Daniel Osherson. Perception and identification
of random events. Journal of Experimental Psychology. Human Perception and
Performance, 40(4):1358–1371, August 2014.

[88] Q. Zhu, W. Zhang, T. Liu, and W. Y. Wang. ounterfactual off-policy training for
neural dialogue generation. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, pages 3438–3448, 2020.

	Introduction
	Human Cognition
	The early investigation of cognition
	Common sense and awareness

	Artificial Cognition
	Simple neural network-based systems
	Incorporating more cognitive aspects
	Towards human-level AI

	Event Cognition
	Quantitative and descriptive theories on event cognition
	Why are events important

	Artificial Event Cognition
	Theoretical background
	Implemented models for event identification

	Technical background
	Artificial neural networks
	Recurrent neural networks
	Long-short term memory units
	Gated recurrent units

	Conclusion

	Retrospective event inference using artificial neural networks
	Context Inference
	REPRISE
	Goal location reaching behavior
	Developing the contextual encodings
	Prediction error, Euclidean distance
	Asynchronous vehicle and target switch

	Gradient separation and modularization
	Conclusion

	Providing event switches
	Surprise signals in event-predictive models
	Gated surprise model
	Experiments
	Single network experiments
	Full network experiments

	Retrospective inference
	Conclusion

	Implementing predicted unpredictability
	Surprise prediction
	Event Switching Layer
	Forward pass
	Backward pass

	Calculated Surprise
	Predicted Surprise
	Counterfactual Regularization
	Compositionality
	Conclusion

	Discussion
	Summary
	The role of contextual information
	Hierarchical structure with top-down/bottom-up information flow
	Latent event-predictive encodings
	Anticipating event boundaries and the role of surprise
	Comparing the outcomes of different decisions

	Limitations
	Conclusions
	Future directions

	Abbreviations
	Glossary
	Bibliography

