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Sand 13, 72076 Tübingen, Germany

psh@informatik.uni-tuebingen.de

Extended version of a paper which will appear in The Bulletin of Symbolic Logic. In particular, in

this version all proofs are spelt out in detail.

In the 1920s, Paul Hertz (1881–1940) developed certain calculi based on struc-

tural rules only and established normal form results for proofs. It is shown that

he anticipated important techniques and results of general proof theory as well

as of resolution theory, if the latter is regarded as a part of structural proof

theory. Furthermore, it is shown that Gentzen, in his first paper of 1933, which

heavily draws on Hertz, proves a normal form result which corresponds to the

completeness of propositional SLD-resolution in logic programming.

1. Introduction: Structural Reasoning

By structural reasoning we mean reasoning in a sequent style system using structural

rules only. Structural rules do not refer to the internal composition of formulas by

means of logical connectives or quantifiers but only affect the way formulas appear

within sequents. If sequents are of the form Γ → A, prominent structural rules are

Weakening and Cut :

Γ → A

Γ, B → A
(Weakening)

Γ → A A,∆ → B

Γ,∆ → B
(Cut) .

∗The results reported here have been presented in part at a seminar at CIS, University of Munich

(July 1999), at the Polish-German “Logic and Logical Philosophy” conference, University of Dresden

(April 2001), and at the “Natural Deduction” conference, PUC Rio de Janeiro (July 2001). I would

like to thank the anonymous referee for helpful comments and suggestions.
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If we encode the fact that proofs may start with identities of the form A → A by means

of a rule without premisses, we have as a third prominent structural rule

A → A (Identity) .

Identity, Weakening and Cut are sufficient as structural rules, if only minimal logic

is considered, and if the antecedent of a sequent is a set (rather than a multiset, a

sequence or a more sophisticated [e.g., binary] structure) of formulas.

The terminological distinction between structural rules and rules for logical con-

nectives was drawn by Gentzen in his Investigations into Logical Deduction (1934/35),

where he laid out the idea of a sequent calculus and established the eliminability of Cut

as its fundamental feature. However, in certain areas structural rules play a role differ-

ent from their functioning as non-logical inferences within calculi of logic or arithmetic.

One such area is the treatment of resolution in terms of a sequent calculus based on

structural rules only; another one would be the consideration of rule-based (produc-

tion) systems in general. The view of structural reasoning as an (albeit essential) part

of logical reasoning should not conceal the fact that it represents a subject in its own

right. This is particularly important in the light of modern developments such as logic

programming.

The calculi developed by the Paul Hertz1 in the 1920s are structural systems in

this independent sense. In the following we shall show that the normal form theorems

proved by Hertz for these systems anticipate certain ideas and techniques of general

proof theory as well as of the theory of resolution, in particular of logic programming

(understood in a proof-theoretic setting). We shall also place Gentzen’s first publication

of 1933, which heavily draws on Hertz’s ideas and results, in this context. It turns out

that Gentzen proves what in modern terminology can be described as the completeness

of propositional SLD-resolution. At the same time, this shows that structural systems

stood at the beginning of Gentzen’s intellectual development.

Two particular features of structural reasoning which go beyond Gentzen style

sequent calculi are the following:

Sequents may occur as assumptions.

and

Cut is an indispensable rule which cannot be eliminated.

The first feature normally implies the second one. Actually, Gentzen (1934/35) called

his own sequent calculi, which allow cut elimination, “logistic” calculi (and abbreviated

1For biographical data on Hertz see Bernays (1969). For an overview of his life and work, placing

it in the logical and philosophical context of the time, as well as a bibliography of Hertz’s writings,

see Legris (1999). A concise sketch of Hertz’s contributions to logic is Abrusci (1983).
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them by LJ and LK ) to characterize the fact that they are assumption-free (pp. 184,

190 [Szabo-transl., pp. 75, 81 seq.])2.

Structural rules may be looked upon as axiomatizing a consequence relation in

Tarski’s sense (for the finite case, of course). From this point of view, structural

systems may be considered as providing a general framework of consequence, in terms

of which specific logical systems can be defined. This indicates again that structural

reasoning is a powerful tool which can be investigated from a variety of aspects.

2. Propositional Resolution

We recapitulate some notions from resolution theory in a proof-theoretic setting.3 We

consider the fragment of propositional resolution which deals with clauses of the form

A1, . . . , An → A ,

because only those are relevant in the context of Hertz’s and Gentzen’s contributions.

In the terminology of resolution, these are clauses with exactly one positive literal. In

the terminology of logic programming, they have the form of definite program clauses.

In the following we simply speak of clauses. The Ai’s and A are taken from a finite

or denumerably infinite domain E of atomic expressions, called atoms. The body

A1, . . . , An is considered to be a set. Using Γ and ∆ for sets of atoms, notations such

as Γ,∆ → A or Γ, B → A are understood in the usual way as standing for Γ∪∆ → A

or Γ ∪ {B} → A, respectively. Clauses are denoted by S, S ′, S1, S2, . . . etc.

A derivation of S from S1, . . . , Sn is a treelike structure of clauses such that (i) top

clauses are either identities A → A or occur among S1, . . . , Sn, (ii) the bottom clause

is S, and (iii) the clauses below the top clauses are generated by the rules of Cut and

Weakening. If there is such a derivation, we write S1, . . . , Sn `S. In the propositional

case, which we are considering here, the resolution rule is just the cut rule. Identities

A → A are only needed to generate trivial clauses of the form Γ, A → A.

A derivation of S from S1, . . . , Sn is called a proper resolution derivation of S from

S1, . . . , Sn, if it only uses Cut (and neither Identity nor Weakening). Moreover, we

assume that in applications of Cut, A does not occur in ∆, i.e., the cut formula is

removed from the body of the right premiss.4 A derivation of S from S1, . . . , Sn is then

2As Gentzen emphasizes, they share the property of being assumption-free with the calculi con-

sidered in symbolic logic at that time. Gentzen’s term is reminiscent of “logistics” (“Logistik”), as

symbolic logic was called in Germany (see Carnap 1929).

3We do not rely on a particular presentation. An overview of resolution in the standard

(disjunction-based) framework is given in Leitsch (1997). The classical reference for the theory of

logic programming is Lloyd (1987).

4The literature on resolution is not uniform with respect to this requirement. In the presence of

Weakening, this strict formulation of Cut is equivalent to the more relaxed one, where A is allowed
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called a resolution derivation of S from S1, . . . , Sn, if it is either (i) an identity A → A

or (ii) a proper resolution derivation or (iii) a derivation of the form (i) or (ii) followed

by one or more applications of Weakening. This means, a resolution derivation uses

Weakening only at the end. If there is such a resolution derivation, we write

S1, . . . , Sn `RES S .

Let “|=” denote logical consequence in (classical or intuitionistic) propositional

logic, where clauses A1, . . . , An → A are given their natural reading as formulas

A1& . . .&An⊃A. Then the completeness theorem of resolution theory says

S1, . . . , Sn `RES S iff S1, . . . , Sn |= S .

A special form of resolution which is of interest in the following is SLD-resolution. A

proper SLD-derivation is a proper resolution derivation whose tree has the following

form5:

@@ ��dd @@ ��dd @@ ` ` `dd ` ` `` d

As for resolution derivations, an SLD-derivation is obtained by (possibly) applying

Weakening to an identity or to the end clause of a proper SLD-derivation. We write

S1, . . . , Sn `SLD S ,

if there is an SLD-derivation of S from S1, . . . , Sn. Again we have as a theorem:

S1, . . . , Sn `SLD S iff S1, . . . , Sn |= S .

This means that for definite clauses, SLD-resolution is as strong as full resolution.

It should be emphasized that we are dealing here with the resolution calculus as

a formal system and not with the resolution method, which is a refutation procedure

for clauses based on the resolution calculus. Therefore we do not terminologically

distinguish goal clauses from other clauses.6

to occur in ∆. The strict form, which we adopt here, has the advantage of fully separating Cut from

Weakening. Both Hertz and Gentzen adopt the strict form (see the corresponding remarks in the next

section).

5In treatments of input resolution and SLD-resolution the input clauses usually occur on the right

rather than on the left in the derivation tree . This is just a notational variant due to a converse

ordering of the premisses of Cut, which comes with the writing of program clauses as A← Γ.

6We would have to represent them by A1, . . . , An → ⊥, where ⊥ is a distinguished atom denoting

absurdity.
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3. Hertz’s and Gentzen’s Structural Systems

In a series of articles, Hertz proposed structural inference systems and proved results

about them. We shall mainly rely on his 1929 paper, which presents the most mature

versions of his systems, taking into account certain crucial issues from the 1923 and

19287 papers. In his first publication of 1933, Gentzen presents a modified version of

Hertz’s system.

Besides a propositional version, on which he puts the primary emphasis, Hertz

1929 also presents a system with variables and predicate symbols. This will be dealt

with in section 6 below. In the present section we present Hertz’s and Gentzen’s

propositional systems. Sections 4 and 5 deal with the results obtained by Hertz and

Gentzen, respectively, for the propositional case. We shall try to make our presentation

self-contained so that it can be read without consultation of Hertz’s and Gentzen’s

original papers. This is particular important for Hertz, whose papers have not been

translated into English. As for terminology, we shall give the original German terms

in parentheses.

Hertz introduces sentences (“Sätze”) of the form A1, . . . , An → A 8, where the

capital letters stand for elements (“Elemente”) from a given domain (“Bereich”) E,

which is finite or denumerably infinite (Hertz 1929, p. 460). The element A is called

the succedent (“Sukzedens”), and the complex (“Komplex”) of elements A1, . . . , An is

called the antecedent (“Antezedens”) of A1, . . . , An → A.9 This complex is understood

as a set of elements, i.e. order and multiplicity of elements in the antecedent is irrelevant

(p. 461). If we identify elements with their names, calling the latter atoms, sentences

can be identified with sequents or clauses in the terminology used in the previous

section. In the following, when presenting Hertz’s and Gentzen’s systems, we shall

use this identification and talk of elements A,A1, . . . , An as synonymous with atoms,

and of sentences of the form A1, . . . , An → A as synonymous with sequents or clauses,

respectively. We shall use our previous notation accordingly, writing sentences as

Γ → A or Γ, A → B etc.

Hertz’s inference system is based on the following rules:

Γ1 → A1 . . . Γn → An ∆, A1, . . . , An → A

∆,Γ1, . . . ,Γn → A
(Syllogism)

Γ → A

Γ,∆ → A
(Immediate Inference)

7This paper was written when the 1929 paper had already been submitted.

8He writes u1, . . . , un → v. For readability, we stick to the notation used so far.

9The terms antecedent and consequent were thus coined by Hertz.
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The terms Syllogism (“Syllogismus”) and Immediate Inference (“unmittelbarer

Schluß”) are due to Hertz.10 A more modern terminology would be multicut11 for

the first inference. The second one is a sort of multiple weakening. In resolution ter-

minology it may be called propositional subsumption12. Gentzen 1933 introduces the

term Thinning for it. In the context of the presentation of Hertz’s results, we shall use

his terminology.

The right premiss of a Syllogism is called the major sentence (“Obersatz”), the

other premisses are called minor sentences (“Untersätze”). The A1, . . . , An are called

the main members (“Hauptglieder”) of the antecedent of the major sentences, the

remaining ones its accessory (“akzessorische”) members.

The schema of Syllogism is understood in such a way that the A1, . . . , An do not

occur in Γ1, . . . ,Γn. Although this is not clear from Hertz’s notation13, his verbal

explanation in the early paper (1923, p. 82) suggests this reading, which we presuppose

in the following. This coincides with Gentzen’s understanding of Cut (see below).

It is very interesting to note that Hertz was the first to consider tree-like proof

structures, an idea that became essential for Gentzen’s later development of natural

deduction and of the full sequent calculus. Hertz defines a proof (“Beweis”) as a linear

sequence of inferences (1929, p. 463), and an inference system (“Schlußsystem”) as

a corresponding tree-like structure (p. 464).14 In the following, we do not make this

distinction and always understand proofs as tree-like structures.

If we use this terminology, a proof from a system of sentences T is defined by Hertz

as a tree-like structure, whose top sentences (“oberste Sätze”) are either tautological

sentences, i.e., sentences of the form

A → A,

10Hertz gives detailed explanations of why Syllogism is supposed to be the most fundamental infer-

ence rule in logic and therefore deserves its name. We shall not discuss this point here.

11To my knowledge, Slaney (1989) was the first to introduce this term.

12Hertz 1923, p. 82, speaks of the conclusion of an immediate inference as contained (“enthalten”)

in its premiss.

13In fact, the literal reading of Hertz 1929, pp. 461 seq., seems to suggest the opposite.

14Hertz (1923, pp. 85 seqq.) explicitly shows that proofs can be transformed into inference systems

and vice versa. See also 1929, p. 464. It seems to us that Hertz’s notion of a (linear) proof is not

exactly the same as that of a sequence of sentences generated by rules, and there are differences

between the 1923 and 1929 papers (see 1929, p. 464, footnote 12). We do not want to discuss this

issue here as the notion of a tree-like proof (inference system) is clear, and is the only relevant notion

in the present context. However, it is interesting to remark that the step from linear to tree-like proofs

would have been a very small one already for Hilbert (1923, p. 158), who considers linear proofs in

which each formula occurrence is used only once as a premiss, and thus is able to decompose linear

proofs into threads which would correspond to branches in tree-like proofs. This is quoted in Hertz

(1929, p. 464, footnote).
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or sentences taken from T, and which is generated by means of the rules of Syllogism

and Immediate Inference.15

Initially, Hertz considered his systems as directly understandable. A justification by

means of an external semantics and a completeness proof was subsequently delivered

in Hertz (1928), motivated by comments from Bernays. This issue will be dealt with

at the end of the following section.

Gentzen (1933) builds on Hertz’s approach. In the development of his structural

system, he follows Hertz’s terminology in many details. The only fundamental devi-

ation from Hertz is that he introduces the notion of Cut (“Schnitt”) as a variant of

Syllogism with just a single minor sentence as left premiss. He uses the term Thinning

(“Verdünnung”) for what Hertz calls Immediate Inference. So the system Gentzen

proposes is based on the following rules

Γ → A ∆, A → B

∆,Γ → B
(Cut)

Γ → A

Γ,∆ → A
(Thinning) ,

where in Cut it is supposed that ∆ does not contain A. Corresponding to Hertz’s

terminology, the left and right premisses of Cut are called minor sentence and ma-

jor sentence, respectively. The atom A is called the cut element (“Schnittelement”)

(Gentzen 1933, p. 331 [Szabo-transl., p. 31]). We may look upon Identity as an (im-

proper) rule, as derivations are allowed to start with tautological sentences of the form

A → A. The (obvious) equivalence of Gentzen’s system with that of Hertz is explicitly

established by Gentzen (p. 332 [Szabo-transl., p. 32]).

4. Hertz’s Normal Form and Completeness Proofs

The main goal of both Hertz (1922, 1923, 1929) and Gentzen (1933) was to establish

axiomatizability results for systems of sentences. Given a set S of sentences which con-

tains all tautological sentences (i.e., sentences of the form A → A) and which is closed

under Immediate Inference / Weakening and Syllogism / Cut, we may ask questions

like the following ones: Can S be axiomatized? If S can be axiomatized, is there an

15It might be mentioned that for Hertz (as well as for Gentzen, see Gentzen 1933, p. 331 [Szabo-

transl., p. 31]) a formal proof has always to contain at least one proper rule application. For example,

a formal proof of A → A would be

A → A

A → A

rather than the tautological sentence A → A alone, and analogously for a proof of a non-tautological

sentence from itself (see Hertz 1929, p. 463 [footnote]). Therefore it is important that the rule of

Immediate Inference includes the case where Γ is empty.



8

independent set of axioms? If S can be axiomatized, can axioms be chosen in such

a way that they are strongest with respect to the ordering generated by Immediate

Inference / Weakening? Can a finite set of axioms be found? In which way do results

depend on whether the domain of atoms considered is finite or (denumerably) infinite?

Which results are obtained if only systems with linear sentences (i.e., sentences of the

form A → B) are considered?

Some of the results achieved are highly interesting, particularly from the point

of view of inductive logic programming, where one aims at finding programs (i.e.,

a kind of axiomatization by means of clauses) for facts and clauses given as data.16

Here we are interested in Hertz’s and Gentzen’s normal form and completeness results

which establish fundamental properties of their standard systems. For both Hertz and

Gentzen, these results played an auxiliary role in their treatment of axiomatizability.

From a more modern point of view they contain fundamental conceptual insights.

In this section where we describe Hetz’s results, we assume that a domain E of

elements and a set of sentences S over E, called the axioms, are fixed. Axiom is here

synonymous with assumption in modern terminology. By a proof we mean a proof from

the given axioms using tautological sentences and the rules of Immediate Inference and

Syllogism.

Hertz calls a proof an Aristotelian normal proof if each non-tautological major

sentence of a syllogism is an axiom. A proof is called a Goclenian normal proof if each

non-tautological minor sentence of a syllogism is an axiom. This terminology is based

on the traditional distinction between Aristotelian and Goclenian17 chain syllogisms,

which lead to Hertz’s normal forms when decomposing them into binary proof steps.

For example, an Aristotelian chain inference with four premisses

A → B
B → C
C → D
D → E
A → E

leads to the Aristotelian normal proof

A → B B → C
A → C C → D

A → D D → E
A → E ,

16See Nienhuys-Cheng & Wolf (1997).

17“Goclenian” after the German logician Rudolph Goclenius [Göckel] (1547–1628).
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whereas the Goclenian chain inference

D → E
C → D
B → C
A → B
A → E

leads to the Goclenian normal proof

A → B
B → C

C → D D → E
C → E

B → E
A → E .

Obviously, Goclenian chain inferences represent the form of reasoning inherent in SLD-

derivations.

Then Hertz obtains the following results, which we formulate as explicit theorems:

Theorem 1. Any proof can be transformed into an Aristotelian normal proof.

Theorem 2. Any proof can be transformed into a Goclenian normal proof.

Theorem 3. It is decidable whether a sentence S is provable from S, if S is finite.

For Theorem 1, Hertz (1923) gives a purely syntactic proof which is highly signif-

icant as it uses for the first time the proof-theoretic method of reducing a proof by a

syntactic manipulation of inferences, and of justifying the termination of this reduction

by an assignment of ordinal numbers. It is obvious that Hertz’s proof could provide

considerable inspiration to Gentzen, who later made extensive usage of such methods.

For Theorems 1 and 2, Hertz (1929) gives proofs in terms of certain fixed point

considerations (in modern terminology), which anticipate ideas now standard in logic

programming. The fact that a fixed point is reached after finitely many steps is then

used to prove Theorem 3.

In the following, we present Hertz’s proofs in more modern terminology and sym-

bolics.

Hertz’s Syntactic Proof of Theorem 1 (Hertz 1923, pp. 88-93)

This proof is given by Hertz for a modified system with

Γ1 → A1 . . . Γn → An A1, . . . , An → A

Γ1, . . . ,Γn → A
(Pure Syllogism)

(“reiner Syllogismus”) as a primitive rule instead of Syllogism, i.e., Syllogism without

accessory elements. Obviously, by adding tautologies as minor sentences, any syllogism



10

can be tranformed into a pure syllogism, so the systems based on Syllogism and Pure

Syllogism are equivalent (p. 83).

In order to transform a proof into an Aristotelian normal proof, subproofs ending

with

{∆j → Bj}1≤j≤m

{Γi → Ai}1≤i≤n A1, . . . , An → B

Γ1, . . . ,Γn → B

∆1, . . . ,∆m → B ,

where Γ1, . . . ,Γn represents the same set of atoms as B1, . . . , Bm, are transformed in

such a way that the critical major sentence Γ1, . . . ,Γn → B disappears and the resulting

proof is more elementary, where more elementary is measured by an assignment of

ordinals to proofs (Case 1).

In a similar way, subproofs ending with

{∆j → Aj}1≤j≤n≤m

A1, . . . , An → B

A1, . . . , An, . . . , Am → B

∆1, . . . ,∆m → B

have to be reduced such that the critical major sentence A1, . . . , An, . . . , Am → B dis-

appears.

In order to avoid the heavy use of multiple indices Hertz has to make, we present

special examples from which the general method can easily be inferred.

Case 1 Given a subproof of the form

Π4

D → C

Π1 Π2

C → A1 C → A2

Π3

A1, A2 → B

C → B
D → B ,

where Π1,Π2,Π3 and Π4 indicate the subproofs with the respective conclusions

C → A1, C → A2, A1, A2 → B and D → C. Then this subproof is transformed into

the following subproof:

Π4

D → C

Π1

C → A1

D → A1

Π4

D → C

Π2

C → A2

D → A2

Π3

A1, A2 → B

D → B ,

which means that the applications of Pure Syllogism are permuted. The proof com-

plexity is reduced with respect to a certain complexity measure. Hertz defines the

ordinal number (“Ordnungszahl”) of an occurrence of a sentence in a proof as follows:
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The ordinal number of a top sentence is 0.

If the premiss of an immediate inference has ordinal number n, then the ordi-

nal number of its conclusion is n + 1. If the premisses of a syllogism have ordi-

nal numbers k1, . . . , kn+1, respectively, then the ordinal number of its conclusion is

(max1≤i≤n+1ki) + 1

Now the ordinal numbers of major sentences in the subproofs can be computed. If

k1, k2, k3 and k4 are the ordinal numbers of th conclusions of Π1,Π2,Π3 and Π4, respec-

tively, we have for the original subproof the following assignments:

ordinal number of major sentence A1, A2 → B: k3

ordinal number of major sentence C → B: max(k1, k2, k3) + 1

For the modified subproof we obtain the following assignments:

ordinal number of major sentence A1, A2 → B: k3

ordinal number of major sentence C → A1: k1.

ordinal number of major sentence C → A2: k2.

Hertz argues that “the ordinal number of a major sentence is replaced with a set of

lower ordinal numbers of major sentences” (1923, p. 92). In the present example the

ordinal number max(k1, k2, k3)+1 is replaced with the set of ordinal numbers {k1, k2}.

Case 2 A subproof of the form

Π2 Π3

D → C E → B

Π1

C → A
C,B → A

D,E → A

is transformed into

Π2

D → C

Π1

C → A
D → A

D,E → A ,

again permuting the two inferences. Hertz argues once more that, if the ordinal number

of C,B → A is k, one sentence with the ordinal number k disappears.

Induction argument

Now Hertz proceeds as follows (p. 93). If we start with a subproof such that C → B

(Case 1) or C,B → A (Case 2) has k as the maximal ordinal number of major sentences

occurring in the proof, then after finitely many reductions of the sort indicated we reach

a proof with a maximal ordinal number of major sentences less then k. Iterating this

procedure finitely many times we reach a proof with all major sentences being of ordinal
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number 0, i.e. an Aristotelian normal proof. In more modern terminology, Hertz is

using ω2-induction on the pair 〈α(Π), β(Π)〉, where α(Π) is the maximal ordinal number

of a major sentence in Π and β(Π) is the number of major sentences with that ordinal

number.

In a footnote in his 1929 paper (p. 474) he remarks that for this procedure to work

one has to choose a lowermost subproof of the form considered. Otherwise the ordinal

number of D → B (Case 1) or of D,E → A (Case 2) and of sentences below them can

increase, which is critical if major sentences are among them. This means that the

branch starting from D → B (Case 1) or D,E → A (Case 2) and proceeding down to

the final conclusion of the proof must not pass through major sentences.

Using the terminology coined by Prawitz 1965 for the area of natural deduction,

Hertz’s normal form demonstration can be described as follows: Call a sentence maxi-

mal in a proof if it is the conclusion of an application of Immediate Inference or Pure

Syllogism and at the same time the major sentence of an application of Pure Syllogism.

Call a proof normal if it does not contain maximal sentences. Then any proof can be

normalized by the procedure described.

Hertz’s Fixed Point Proof of Theorem 1 (Hertz 1929, Section 3 = pp. 475–477)

The non-syntactic proofs in Hertz (1929) of Theorem 1 proceed as follows. We assume

that the set of axioms is finite. We start with a finite subset E0 of the domain of

elements E. The elements in E are called distinguished (“ausgezeichnet”) at level 0. An

element A is distinguished at level n+ 1 (with respect to E0) if A is not distinguished

at any level ≤ n (with respect to E0) and if there is an axiom Γ → A such that

each element in Γ is distinguished at some level ≤ n (with respect to E0). An atom

A is distinguished with respect to E0, if for some n, A is distinguished at level n

(with respect to E0). Loosely speaking, A is distinguished with respect to E0, if A

can be “generated” stepwise from E0 by means of axioms (considered as production

rules). With this definition Hertz anticipates the definition of the monotonic operator

associated with program rules in logic programming (often called TP ) and offers some

sort of fixed point semantics.

Based on this definition he proves what we formulate as a Lemma.

Lemma 1 (1) If a sentence Γ → A is provable from the axioms, then A is distinguished

with respect to Γ.

(2) If Γ → A, A is distinguished with respect to Γ, then there is an Aristotelian normal

proof of Γ → A from the axioms.

Hertz emphasizes (1929, p. 475) that this Lemma holds for arbitrary, possibly infinite

systems of sentences, whereas the decidability result concluded from it (Theorem 3
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below) holds only for the finite case.

Theorem 1 is an immediate consequence of Lemma 1.

Proof of Lemma 1

(1) Suppose Γ → A is provable from the axioms. Define the following property of

sentences ∆ → B:

(α) If each element of ∆ is distinguished with respect to Γ, then so is B.

It is obvious that any axiom or tautological sentence has the property α. Furthermore,

it is easy to see that property α carries over from the premisses to the conclusion of

Syllogism and of Immediate Inference. Therefore Γ → A has property α, which implies

that A is distinguished with respect to Γ (because Γ is distinguished with respect to

itself).18

(2) We proceed by induction on the level at which A is distinguished with respect to Γ.

If A is distinguished at level 0 with respect to Γ, then A is in Γ. If A is distinguished

at level 1 with respect to Γ, then there is an axiom Γ′ → A such that Γ′ ⊆ Γ. In

both cases Γ→A can be obtained from a tautological sentence by Immediate Inference.

Suppose A is distinguished at level k + 1 with respect to Γ for k ≥ 1. Then there is

an axiom A1, . . . , Am → A such that each A1, . . . , Am is distinguished at level k with

respect to Γ. The A1, . . . , Am must be different from A. By the induction hypothesis,

for each i (1 ≤ i ≤ m) there is an Aristotelian normal proof of Γ → Ai, from which, by

application of Syllogism with A1, . . . , Am → A as the major sentence, an Aristotelian

normal proof of Γ → A is obtained.

Two remarks are appropriate.

1. If we skip the rule of Immediate Inference and instead allow a proof to start

with trivial sentences of the form Γ, A → A, then in the Aristotelian normal proof

constructed all minor sentences of syllogisms as well as the end sentence have the same

antecedent Γ.19

2. It is essential for the construction of the Aristotelian normal form that Syllogism

(Multicut) is used. If we decompose a single multicut into several cuts, then new major

sentences arise which are conclusions of Cut.20

Hertz’s Fixed Point Proof of Theorem 2 (Hertz 1929, Section 4 = pp. 478–479)

As for Theorem 1, Hertz assumes a finite set of axioms over a domain of elements E

to be given. Starting with an an element A in E, a finite set of elements Γ is called

18In Hertz’s own presentation this argument proceeds indirectly. Hertz shows that the negation of

α (which he himself calls α) is carried back from the conclusion of inferences to their premisses.

19According to Hertz (1928, p. 277) this observation is due to Bernays.

20This was observed by Gentzen (see footnote 23 below).
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distinguished at level 0 (with respect to A) if Γ contains A. Γ is called distinguished at

level n+ 1 (with respect to A) if Γ is not distinguished at any level ≤ n (with respect

to A), and if there are axioms Γ1 → A1, . . . ,Γm → Am such that the following holds:

(i) ∆′ ∪ {A1, . . . , Am} is distinguished at some level ≤ n (with respect to A)

for some ∆′

(ii) Γ = ∆ ∪∆′ ∪ Γ1 ∪ . . . ∪ Γm for some ∆.

Loosely speaking, Γ is distinguished with respect to A, if, starting with A, Γ can be

reached by looking step by step for conditions sufficient to “generate” A by means of

axioms taken as production rules. Whereas in “A is distinguished with respect to Γ”

(Lemma 1) we were looking for A as a consequence of Γ (forward reasoning), in “Γ is

distinguished with respect to A” we are looking for Γ as a condition of A (backward

reasoning). Formally, this can be described as the construction of a fixed point operator

on the power set of E, which, starting with {A}, associates with each set of elements

Γ those sets of elements ∆ from which Γ can be generated using axioms.

Based on this definition Hertz proves the following:

Lemma 2 (1) If a sentence Γ → A is provable from the axioms, then Γ is distinguished

with respect to A.

(2) If for a sentence Γ → A, Γ is distinguished with respect to A, then there is a

Goclenian normal proof of Γ → A from the axioms.

Theorem 2 is an immediate consequence of Lemma 1.

Proof of Lemma 2

(1) Suppose Γ → A is provable from the axioms. Define the following property of

sentences ∆ → B:

(β) For any ∆′, if ∆′ ∪ {B} is distinguished with respect to A, then so is ∆′ ∪∆.

It is obvious that any axiom or tautological sentence has the property β. Furthermore,

it is easy to see that property β carries over from the premisses to the conclusion of

Syllogism and of Immediate Inference. Therefore Γ → A has property β, which implies

that Γ is distinguished with respect to A (because A is distinguished with respect to

itself).21

(2) We proceed by induction on the level at which Γ is distinguished with respect

to A. If Γ is distinguished at level 0 with respect to A, then A is in Γ. If Γ is

distinguished at level 1 with respect to A, then, since Γ is not distinguished at level 0

with respect to A, there is an axiom Γ′ → A such that Γ′ ⊆ Γ. In both cases Γ→A

21As for Lemma 1, Hertz’s own argument is indirect, showing that the negation of β (which he

himself calls β) is carried back from the conclusion of inferences to their premisses.
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can be obtained from a tautological sentence by Immediate Inference. Suppose Γ is

distinguished at level k + 1 with respect to A for k ≥ 1. Then by definition there are

axioms Γ1 → A1, . . . ,Γm → Am and a set of elements ∆′ such that the following holds:

(i’) ∆′ ∪ {A1, . . . , Am} is distinguished at some level ≤ n with respect to A

(ii’) Γ = ∆ ∪∆′ ∪ Γ1 ∪ . . . ∪ Γm for some ∆.

By induction hypothesis, from (i’) we obtain a Goclenian normal proof Π of

∆′, A1, . . . , Am → A. Using Syllogism and Immediate Inference we obtain

{Γi → Ai}1≤i≤m

Π
∆′, A1, . . . , Am → A

∆′,Γ1, . . . ,Γm → A

Γ → A ,

which is again a Goclenian normal proof.

The Goclenian normal proof constructed in Lemma 2 is related to an SLD-derivation

in so far as all minor sentences which are used as “input” to antecedents of major

sentences are axioms. However, it is not exactly the same. A minor difference is

that multiple input in one step (multicut) is possible. The major difference is that

Immediate Inference (Thinning) may be used in between two applications of Syllogism

and not only as the last step of the proof. This is changed in Gentzen (1933).

Hertz’s Proof of Decidability (Theorem 3)

For decidability Hertz (1929) gives two proofs, each for a finite system S of sentences.

The first one (pp. 474 seq.) argues that the lengths of proofs needed to obtain all

sentences of the system is bounded, so that we just have to check all possible proofs

from the given axioms step by step. The second one uses the fixed point construction

introduced for Lemma 1. To check whether Γ → A belongs to S, we generate, for each

n, the elements distinguished with respect to Γ at level n, and determine whether A is

among them.

Although these results are trivial from the modern point of view, the way of proving

them is original in its proof-theoretic setting. In particular, it is highly significant that

in Lemma 1 Hertz relates the idea of atoms being generated from other atoms by

means of sentences (clauses) with the idea of proofs of sentences of a certain form.

This means that in principle he is aware of the close relationship betwen proving A

from Γ by means of axioms (understood as some sort of inference or production rules)

and a formal proof in a sequent style system of Γ → A from the axioms (see Hertz

1929, middle of p. 476). Today this idea is the basis of relating natural deduction and

the sequent calculus with each other. With respect to reasoning with atoms, this sort

of reasoning is also basic for logic programming. There a smallest fixed point of an
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operator defined in terms of clauses can be described by an SLD-derivation using these

claues as axioms. Hertz’s derivation do not have exactly that form, but in Gentzen

(1933), who heavily relies on Hertz, we find what is today called the completeness of

SLD-resolution (see section 5 below).

Hertz’s Semantics and Completeness Result

Before we turn to Gentzen, we look at Hertz’s semantic completeness result which goes

beyond Theorems 1 and 2. The notions of being distinguished used in the proofs of

Lemmas 1 and 2 are not considered a real semantics but rather a technical device.

In his 1928 paper (written after Hertz 1929) he explicitly provides such a semantics.

Motivated by personal remarks by Bernays (see Hertz 1928, p. 272) he then proves the

completeness of his rules with respect to this semantics.

Suppose a finite universal domain (“Grundbereich”) G of elements is given. A subset

(domain, “Bereich”) B of G satisfies (“genügt”) a sentence Γ → A, if either A is in

B or not every element of Γ is in B, i.e., if Γ ⊆ B, then A ∈ B.

This definition of a domain B satisfying a sentence Γ → A can be read as a classical

truth definition for a sentence under a valuation (represented by the domain B) as well

as a constructive interpretation of Γ → A as a production rule under which B is closed.

Hertz presents several philosophical interpretations of Γ → A, which we do not want

to discuss here in detail. It is interesting that he mentions the possibility of identifying

a sentence with the set of the domains satisfying it (p. 27322), which corresponds to

identifying a proposition with the set of worlds in which it is valid, again anticipating

a modern idea.

According to Hertz, a finite set of sentences S implies (“impliziert”) a sentence S,

if any domain B satisfying all sentences of S satisfies S as well. If we write B |= S

for “B satisfies S”, B |= S for “B satisfies every element of S” and S |= S for “S

implies S”, this can be expressed as

S |= S iff for every B, if B |= S then B |= S .

The completeness result Hertz proves, can then be formulated as follows:

Theorem 4 A sentence S is provable from a finite set S of axioms iff S |= S.

The validity of the soundness direction is obvious. Due to the definition of S |=
Γ → A, satisfaction of a sentence is carried over from the premisses to the conclusion

of Syllogism and Immediate Inference.

For the completeness direction Hertz relies on Lemma 1 (2) which says that the

fact that A is distinguished with respect to Γ is sufficient for the provability of Γ → A

22See also 1929a, p. 188
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from the axioms. It remains to show that S |= Γ → A implies that A is distinguished

with respect to Γ given the elements of S as axioms.

In order to establish this fact, Hertz considers the domain Γ∗, which consists of all

elements distinguished with respect to Γ. This means that Γ∗ is the closure of Γ under

the sentences of S (taken as production rules). By definition, Γ∗ satisfies all sentences

of S, formally Γ∗ |= S. By the assumption S |= Γ → A, this implies Γ∗ |= Γ → A.

Since Γ ⊆ Γ∗, this means that A ∈ Γ∗, i.e., A is distinguished with respect to Γ.

This is exactly as a modern proof would proceed. However, for applications such as logic

programming, an Aristotelian normal proof is not as relevant as a special Goclenian

one with single input (Cut) and Immediate Inference (Thinning) only at the end of

the proof. Results for this system were achieved by Gentzen (1933).

5. Gentzen’s Normal Form and Completeness Proofs

After presenting his system (see section 3 above), Gentzen (1933, pp. 333 seqq. [Szabo-

transl., pp. 33 seqq.]) provides the same semantics as Hertz (1928). So we can use the

notation introduced at the end of the previous section. We shall write S1, . . . , Sn |= S, if

{S1, . . . , Sn} implies S. Terminologically differing from Hertz, Gentzen prefers to speak

of S as a consequence (“Folgerung”) of S1, . . . , Sn, if S1, . . . , Sn |= S. In the present

section, we adopt this terminology. Furthermore, Gentzen makes it explicitly clear

that, when considering the question of whether S1, . . . , Sn |= S holds, the underlying

domain of elements comprises just the elements occurring in S1, . . . , Sn, S. In the

terminology of logic programming, this corresponds to considering the (propositional)

Herbrand universe as a basis.

Gentzen first proves soundness with respect to this semantics.

Theorem 5 If there is a proof of S from S1, . . . , Sn, then S is a consequence of

S1, . . . , Sn.

Gentzen (p. 333 seq. [Szabo-transl., p. 33 seq.]) first shows that tautological sentences

are consequences of any sentence and that the conclusions of Cut and Thinning are

consequences of their respective premisses. Therefore, if a sentence is obtained from

consequences of S1, . . . , Sn by means of Cut or Thinning, it is itself a consequence of

S1, . . . , Sn. Hence, since all tautological sentences as well as S1, . . . , Sn are consequences

of S1, . . . , Sn, the sentence S is a consequence of S1, . . . , Sn. The last step implicitly

contains the induction argument.

For completeness, Gentzen proves a stronger result which yields a normal form

theorem at the same time. He explicitly refers to Hertz, mentioning that he is aiming
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at normal proofs different from those considered by Hertz.23

Call a sentence of the form Γ, A → A trivial24. A normal proof (“Normalbeweis”)

of a non-trivial sentence S from the sentences S1, . . . , Sn is defined as a proof of the

following form:

Rm−1

R1

R0 Q0 Cut
Q1 Cut

...
Qm−1

Cut
Qm Thinning
S ,

where m ≥ 0, and the Ri and Qi are sentences such that the following holds:

(i) All initial sentences (“Anfangssätze”) Q0, R0, . . . , Rm−1 occur among S1, . . . , Sn.

(ii) No trivial sentence occurs in the proof.

Then the completeness theorem is formulated by Gentzen as follows (p. 336 [Szabo-

transl., p. 36]):

Theorem 6 If a non-trivial sentence S is a consequence of S1, . . . , Sn, then there is a

normal proof of S from S1, . . . , Sn.

Gentzen does not explicitly define the notion of a normal proof for trivial sentences.

Of course, this would be just a proof of the form

A → A

Γ, A → A
Thinning .

It is obvious that a normal proof is an SLD-derivation in the sense of section 2. There-

fore the proof of Theorem 6 establishes the completeness of SLD-resolution. Due to

condition (ii), a normal proof is slightly more restricted than SLD-derivations in gen-

eral, so Theorem 6 proves more than needed for the completeness of SLD-resolution. In

an SLD-derivation of a non-trivial sentence we would admit trivial clauses as assump-

tions, if they belong to the program considered. We would also admit trivial clauses if

23See Gentzen 1933, p. 334 (footnote) and p. 335 (footnote) [Szabo-transl., p. 312, notes 6 and 7].

Gentzen remarks that his own normal proofs are related to Hertz’s Goclenian normal proofs, because

the minor premiss of each application of Cut is a sentence of S1, . . . , Sn (an axiom in Hertz’s termi-

nology). Gentzen also gives the following simple counterexample showing that there is no analogue to

Hertz’s Aristotelian normal proofs in his system based on Cut rather than Multicut :

E → A

D → B A,B → C

A,D → C

E,D → C

24This term (“trivialer Satz”) is due to Hertz. See his 1929, p. 463.
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they happen to occur as conclusions of Cut (e.g., the trivial clause A → A as a conse-

quence of the non-trivial clauses A → B and B → A). As an immediate consequence

of Theorems 5 and 6 Gentzen obtains the following normal form theorem.

Theorem 7 If a non-trivial sentence S is provable from S1, . . . , Sn, then there is a

normal proof of S from S1, . . . , Sn.

Gentzen remarks that a direct syntactic proof of Theorem 7 is possible, but that he

prefers the deviation via the soundness and completeness theorems, as they present

important additional insights into the system.25

Proof of Theorem 6 (Gentzen 1933, pp. 336 seqq. [Szabo-transl., pp. 36 seqq.])

Due to the specific requirements of the normal form, this proof differs from the argu-

ment by Hertz discussed in the previous section. However, as in Hertz, it uses the fixed

point construction which is now standard in the theory of logic programming.

Let S be non-trivial. Suppose there is no normal proof of S from S1, . . . , Sn.

Gentzen shows that S is not a consequence of S1, . . . , Sn by constructing a domain

Γ∗ of elements such that

Γ∗ |= Si for all i (1 ≤ i ≤ n), but Γ∗ 6|= S.

Suppose S has the form Γ → A. Then Γ∗ is constructed (nondeterministically) by

expanding Γ step by step as follows.

Γ1 = Γ

Γj+1 = Γj ∪ {Bj} if ∆j → Bj belongs to S1, . . . , Sn

such that Γj 6|= ∆j → Bj

(i.e., ∆j ⊆ Γj, but Bj 6∈ Γj ).

If there is no such ∆j → Bj, then the procedure terminates with Γj, and Γ∗ is set as

Γj. So we obtain a sequence of domains, for which the following holds:

Γ = Γ1 ( . . . ( Γm = Γ∗ .

Obviously, this sequence is finite as there are only finitely many elements in the basic

domain (which is the set of elements occurring in S1, . . . , Sn, S).

Γ∗ is the closure of Γ under S1, . . . , Sn, if S1, . . . , Sn are considered as production

rules, i.e., in the terminology of logic programming, Γ∗ is the fixed point of the operator

TP characteristic of the program {S1, . . . , Sn}.
Due to the construction of Γ∗, we have Γ∗ |= Si for any i (1 ≤ i ≤ n). Furthermore,

Γ ⊆ Γ∗ means that Γ∗ |= Γ. To show that Γ∗ 6|= S we just have to show Γ∗ 6|= A, i.e.,

A 6∈ Γ∗.

25See p. 337 [Szabo-transl., p. 37 seq.]. What Gentzen obviously has in mind is the method of

shifting down Thinning by permuting applications of Cut with Thinning.
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For that purpose, Gentzen proves the following stronger assertion by induction on

the construction of Γ∗.

Lemma Let S be the set of those non-trivial sentences of the form ∆ → A, for which

there is a normal proof from S1, . . . , Sn without Thinning at the end. Then for any Γk

reached in the construction of Γ∗, we have

(1) Γk |= S, but (2) Γk 6|= A .

The proof of the Lemma proceeds as follows.

k = 1: (1) Suppose Γ 6|= ∆ → A for some ∆ → A in S. Then Γ |= ∆, i.e., ∆ ⊆ Γ.

Since Γ → A can be obtained from ∆ → A by Thinning, this would mean that there

is a normal proof of Γ → A from S1, . . . , Sn, contradicting the main assumption of the

completeness proof.

(2) We have Γ 6|= A, since Γ → A is assumed to be non-trivial.

k = j + 1: Suppose as the induction hypothesis Γj |= S and Γj 6|= A. Suppose

furthermore that Γj+1 has been obtained from Γj by adding Bj using ∆j → Bj.

(1) Suppose Γj+1 6|= S ′ for some S ′ in S. Since Γj |= S ′, S ′ must have the form

∆, Bj → A. We can assume that Bj 6∈ ∆. Now consider the following cut:

∆j → Bj ∆, Bj → A

∆,∆j → A
.

∆,∆j → A is non-trivial. Since ∆, Bj → A is in S, the sentence ∆,∆j → A must be

in S as well, as it is the conclusion of a Cut applied to an axiom as its minor sentence

and a member of S as its major sentence. However, since ∆ ⊆ Γj and ∆j ⊆ Γj, but

A 6∈ Γj, we have Γj 6|= ∆,∆j → A, which contradicts Γj |= S.

(2) We have ∆j ⊆ Γj, hence ∆j 6|= A. Since Γj 6|= ∆j → Bj and Γj |= S, Bj differs

from A. Therefore Γj+1 6|= A.

This is a full-fledged completeness proof for propositional SLD-resolution, invalidating

Γ → A by constructing the closure Γ∗ of Γ under the clauses given. The special case of

SLD-refutations as SLD-derivations of the empty clause, which is normally considered

in logic programming, can be obtained from Gentzen’s results as follows. Since the

succedent of the right premiss and of the conclusion of a Cut are identical, Gentzen

normal proofs can be written as

Rm−1

R1

R0 Γ0 → A
Cut

Γ1 → A
Cut

...
Γm−1 → A

Cut
Γm → A

Thinning
Γ → A .
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If we represent absurdity by a special atom denoted by the empty succedent, we obtain

Rm−1

R1

R0 Γ0 → Cut
Γ1 → Cut
...

Γm−1 →
Cut

Γm → Thinning
Γ → .

Clauses with empty succedent are usually called goal clauses. A Gentzen normal proof

of the empty goal would then have the form

→ B

R1

R0 Γ0 → Cut
Γ1 → Cut
...

B → Cut→
without Thinning at the end. If we know that for a set P of sentences without empty

succedents (the program),

P, Γ0 → |= →
holds, then the derivation resulting from Theorem 7 has the form required, as Γ0 →
can only occur as a major sentence of a cut.

6. Hertz’s Structural Logic with Variables

From the point of view of modern resolution theory, propositional resolution based

on the cut rule is a “trivial” discipline, as the unification of variables, which is the

basic ingredient of the resolution rule, is not involved. Although the resolution calculus

based on unification was first presented by Robinson (1963), it is interesting that Hertz

sketches a calculus with variables, which for definite clauses has the deductive power

of the resolution calculus. It is obvious and well-known that Cut together with the

substitution rule

S

S[t/x]
(Substitution),

is strong enough to replace the resolution rule26. Hertz’s system with variables, which

is developed in his 1929 paper27, contains principles corresponding to Substitution. He

even sketches a proof that, modulo substitution, his normal form theorems extend to

26but not the resolution method as a method of constructing proofs. For that purpose resolution

with unification is indispensable. (See the last paragraph of section 2 above.)

27Second Section: “Sentences with Variables”, pp. 485 – end of paper
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the case with variables, yielding a result which corresponds to the completeness of

SLD-resolution with variables.

Hertz defines atoms of the form R(x1, . . . , xn) for n-ary predicates and vari-

ables x1, . . . , xn. As before, sentences have the form A1, . . . , An → B for atoms

A1, . . . , An, B. For philosophical reasons, Hertz does not permit any mixture of vari-

ables and constants in the same sentence, not even in the same proof.28 He distin-

guishes between a macrosentence (“Makrosatz”) with variables and a microsentence

(“Mikrosatz”) with constants. So

R(x1, x2), R(x2, x3) → R(x1, x3)

is a macrosentence, whereas

R(a, b), R(b, c) → R(a, c)

is a microsentence.

In Hertz’s writings the situation is even more complicated as macrosentences are

abstracted from sets of microsentences being their instances. Thus macrosentences are

identified if they have the same set of instances, i.e. if they result from each other by

renaming of variables. In the terminology of logic programming they are variants of

each other.29

The proof system for macrosentences Hertz proposes, results from the propositional

system dealt with in Section 3 above by adding the following two inference rules:

S

S[y/x]
(Binding)

S

S ′ (Formal Inference)

(x and y variables in S) (S ′ variant of S)

Binding (“Bindung”) allows one to identify variables, i.e. to properly specialize a

clause. By Formal Inference (“Formaler Schluß”) we can change the names of vari-

ables. The term Formal Inference results from the fact that in Hertz’s framework

this inference passes from one representation of a macrosentence to another one of the

same sentence, i.e. the premiss and the conclusion of the inference denote the same

sentence. This means that for Hertz the difference between premiss and conclusion is

just a “formal” difference (a matter of symbols, not of what is symbolized).

From the modern point of view, both rules taken together have the strength of

Substitution for systems with mixed variables and constants. We just have to let certain

distinguished variables play the role of constants. Then Formal Inference accounts for

the substitution of a term which does not occur in S, whereas Binding accounts for the

28He does not even admit extra variables in the succedent of a sentence, i.e. variables not already

occurring in its antecedent (pp. 486 seq.).

29We do not follow Hertz’s construction of sentences and to his terminology in detail, as we are

mainly interested in normal forms for proofs.
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substitution of a term already occurring in S. It should be noted that, since Formal

Inference is just a matter of rewriting a clause, it can be omitted in the “official”

definition of a proof.

Hertz remarks that due to the presence of Binding, normal forms in the original

sense cannot be achieved, as the following example shows, for which there is no Aris-

totelian normal form:

P (x) → Q(x, x)

Q(x, y) → R(x, y)
Binding

Q(x, x) → R(x, x)
Syllogism

P (x) → R(x, x)

However, Hertz also remarks that both Aristotelian and Goclenian normal forms can

be obtained, when restrictions concerning normal forms are relaxed in the following

way: Instead of requiring that major or minor premisses, respectively, of Syllogism be

axioms, they may now be axioms followed by applications of Binding30.

The argument Hertz gives (1929, pp. 498 seq.) is closely connected to modern

demonstrations of the completeness of SLD-resolution with variables. He first replaces

macrosentences with corresponding microsentences, which yields propositional proofs.

Then he applies his normal form theorems for the propositional case to obtain normal

proofs containing only microsentences. Finally he observes that these normal proofs are

of such a form that normal proofs consisting of macrosentences can be extracted from

them. In modern terminology, this observation corresponds to the Lifting Lemma31,

which says that substitution and resolution can be interchanged, so that from a ground

resolution proof, a proof for clauses with variables can be obtained.

Hertz structural system with variables and his normal form theorem for this system

was not taken up by Gentzen, who never considered structural reasoning with non-

ground atoms. Inspired by Hertz’s investigations of the propositional case, Gentzen

passed on to his systems for first-order logic and arithmetic. It is the more modern

background of resolution and logic programming which enables us to fully appreciate

Hertz’s achievements.
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