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Summary
The human microbiome has been recognized as an important cornerstone of human

physiology and immunity, situated at the interplay between health and disease.

Consequently, comparative metagenomic studies have identified potential microbial

biomarkers for common diseases with initial promising results for colorectal cancer,

amongst others. Assessing biomarker robustness and generalization across populations,

however, is complicated by widespread technical heterogeneity and biological confounding,

which is further compounded by a lack of standardized methodology for statistical

analyses.

In my doctoral research, I aimed to develop and evaluate methodology for the statistical

and machine learning analysis of clinical metagenomic data, with a special focus on

colorectal cancer.

In the first part, I developed a simulation framework for the benchmarking of differential

abundance testing methods based on implanting signals into real data, enabling more

realistic benchmarks than previous efforts. Most methods failed to control the false

discovery rate, especially under confounded conditions, but the Wilcoxon test and linear

models as well as their confounder-corrected varieties showed best performance in this

benchmark.

The second part describes the SIAMCAT R package as a user-friendly toolbox which

provides machine learning workflows for the analysis of metagenomic data. The publication

includes an example for how SIAMCAT can detect confounding and illustrates common

machine learning pitfalls.

The third section describes a colorectal cancer meta-analysis, which was able to establish

robust, globally predictive, and disease-specific taxonomic and functional microbial

biomarkers for colorectal cancer based on eight available shotgun metagenomic datasets

from three different continents. More recent analyses, extending the original results and

including different data types, have identified bacteria consistently and reliably associated

with colorectal cancer, representing the starting point for future mechanistic studies.

Going beyond colorectal cancer, I explored the cross-study application of

microbiome-based machine learning models in a meta-analysis encompassing various

diseases. I uncovered substantial challenges for the naive transfer of models across
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datasets and proposed a strategy to address those based on augmentation with external

controls.

The outcome of my doctoral research therefore consists of empirical recommendations for

differential abundance testing and machine learning model transfer in microbiome data, a

software package for statistical and machine learning workflows, and a set of globally

predictive microbial biomarkers for colorectal cancer.
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Zusammenfassung
Das menschliche Mikrobiom wird zunehmend als Eckpfeiler für die humane Physiologie

erkannte, insbesondere bei der Entwicklung von Krankheiten. Verschiedene vergleichende

metagenomische Studien versuchten daher, potenzielle mikrobielle Biomarker für häufige

Krankheiten zu finden, mit ersten vielversprechenden Ergebnissen unter anderem für

Darmkrebs. Die Identifikation von robusten und allgemein prädiktiven Biomarkers wird aber

durch technische Heterogenität und biologische Störfaktoren erschwert. Eine weitere

Komplikation ergibt sich durch den Mangel an standardisierter Methodik für statistische

Analysen.

Das zentrale Ziel meiner Doktorarbeit war die Entwicklung und Bewertung von Methodik für

statistische Analysen und maschinelles Lernen im Rahmen von klinischen

metagenomischen Studien, mit besonderem Augenmerk auf Darmkrebs.

Im ersten Teil entwickelte ich einen Ansatz für die realistische Simulation von

metagenomischen Daten durch die Implantierung von Signalen in reale Daten. Die meisten

Methoden verzeichneten erhöhte Falscherkennungsraten, insbesondere dann, wenn auch

Störfaktoren in den Simulationen abgebildet waren, doch der Wilcoxon test und lineare

Modelle (sowie deren Störfaktor-korrigierten Variationen) zeigten die beste Leistung in

dieser Benchmark.

Der zweite Teil beschreibt das SIAMCAT R-Paket, eine benutzerfreundliche und validierte

Software, die Workflows für das maschinelle Lernen in Mikrobiomdaten bereitstellt. Die

Publikation enthält ein Fallbeispiel dafür, wie SIAMCAT Störfaktoren entdecken kann, sowie

Illustrationen von häufigen Fehlerquellen bei dem Design von Workflows für maschinellen

Lernen.

Der dritte Abschnitt beschreibt eine Meta-Analyse zu Darmkrebs, die auf der Grundlage von

acht verfügbaren metagenomischen Datensätzen aus drei Kontinenten robuste, global

prädiktive und spezifische taxonomische und funktionelle mikrobielle Biomarker für

Darmkrebs ermitteln konnte. Neuere Analysen, die über die ursprünglichen Ergebnissen

hinausgehen, identifizierten konsistent mit Darmkrebs assoziierte Bakterien, was den

Ausgangspunkt für künftige mechanistische Studien zu der Rolle des Mikrobioms bei

Darmkrebs bilden kann.
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Über Darmkrebs hinausgehen untersuchte ich in einer Meta-Analyse mit verschiedenen

Krankheiten, wie Modelle des maschinellen Lernens über verschiedene Studien hinweg

angewendet werden können. Die naive Übertragung von Modellen auf andere Datensätze

bringt erhebliche Herausforderungen mit sich, welche durch eine Strategie, die auf der

Erweiterung von Datensätzen mit externen Kontrollen beruht, bewältigt werden konnten.

Das Ergebnisse meiner Doktorarbeit bestehen daher aus konkreten Empfehlungen für das

Testen von differenzieller Abundanz und für die Übertragung von Modellen des

maschinellen Lernens in Mikrobiomdaten, einer Software für die statistischen Analyse und

maschinelles Lernen, sowie in global prädiktiven mikrobiellen Biomarkern für Darmkrebs.

4



List of Publications and
Personal Contributions
Accepted publications

1. Wirbel*, J., Pyl*, P.T., Kartal, E. et al. Meta-analysis of fecal metagenomes reveals

global microbial signatures that are specific for colorectal cancer. Nat Med 25,

679–689 (2019). https://doi.org/10.1038/s41591-019-0406-6

Personal contribution: I helped to develop the workflows for and performed the

statistical analyses, which were the basis for all but three panels of the main and

extended data figures. Additionally, I helped to write the original manuscript draft

and to address the reviewer and editorial comments.

2. Wirbel, J., Zych, K., Essex, M. et al. Microbiome meta-analysis and cross- disease

comparison enabled by the SIAMCAT machine learning toolbox. Genome Biol 22, 93

(2021). https://doi.org/10.1186/s13059-021-02306-1

Personal contribution: I helped to develop the software discussed in this article.

Furthermore, I collected all data and performed most of the statistical analyses

presented in the main and supplemental figures. Lastly, I helped to write the original

manuscript draft and to address the reviewer and editorial comments.

Not yet submitted manuscripts

1. Wirbel*, J., Essex*, M., et al. Evaluation of microbiome association models under

realistic and confounded conditions. (see Appendix)

Personal contribution: I helped to develop the software and perform the statistical

analyses presented in this manuscript. Additionally, I helped to write the original

draft of the manuscript.

An updated version of this manuscript is now available on bioRxiv:

https://doi.org/10.1101/2022.05.09.491139

* These authors contributed equally

5

https://doi.org/10.1038/s41591-019-0406-6
https://doi.org/10.1186/s13059-021-02306-1
https://doi.org/10.1101/2022.05.09.491139


6



Introduction

The study of microbial communities through metagenomic sequencing

Microorganisms are the most ancient form of life on earth and have dominated the majority

of the evolutionary history of the planet. Virtually all environmental niches on earth have

been colonized by microbes, including habitats with extreme physical conditions such as

deep-sea hydrothermal vents or hypersaline lakes (Merino et al., 2019). In particular,

microbes can be found on the surfaces and in the cavities of all living animals and plants,

where they interact with their respective host in different ways (Casadevall and Pirofski,

2000): microbial symbionts enter a mutually beneficial relationship with their host, whereas

pathogens exploit and damage the host, leading to disease. Commensal microbes persist

on and within the host without a clear mutualistic relationship or apparent pathogenicity.

Typically, microbes do not colonize an available environment individually. Rather, they form

communities with complex interdependencies and dynamics. The entirety of all microbial

species within a specific ecological niche has been referred to as ‘microbiome’ or

alternatively ‘microbiota’. The human skin microbiome, for example, encompasses the

community of microbes living on the human skin.

The study of microbial communities was initially restricted to individual microbes that could

be grown in a laboratory setting, which is a laborious and time-consuming process and

restricted to culturable microbes. With the wider availability of DNA sequencing, Carl Woese

and colleagues pioneered culture-independent approaches for the study of microbes based

on sequencing the 16S ribosomal RNA (rRNA) gene as a phylogenetic marker gene, leading

for example to the discovery of the kingdom of Archaea (Woese and Fox, 1977). Even today,

targeted sequencing of regions within the 16S rRNA gene (Caporaso et al., 2011) is a widely

used method for the identification of microbial species from environmental samples

(referred to as 16S amplicon sequencing from here on). Due to the historical choice of the

16S rRNA marker gene, large databases exist for the taxonomic annotation of 16S amplicon

data (Bolyen et al., 2019; Matias Rodrigues et al., 2017; Quast et al., 2013).

The development of next-generation sequencing technologies made it more affordable to

sequence all available DNA in a given environmental sample, allowing not only for the

identification of microbes but also for the quantification of microbial functions (HMP
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Consortium, 2012; Qin et al., 2010). This approach, called shotgun metagenomic

sequencing, allows for more accurate and more highly resolved taxonomic characterization

of microbiome samples, including species without reference genomes (Milanese et al.,

2019). Additionally, shotgun metagenomic sequencing data enabled researchers inter alia

to analyze the global distribution of microbial sub-species (Costea et al., 2017a; Karcher et

al., 2020) or to create large catalogs of unexplored microbial diversity through

metagenomic assembly (Almeida et al., 2019; Nayfach et al., 2019; Pasolli et al., 2019).

Interestingly, even in the human gut microbiome, one of the best-studied environments,

around 70% percent of putative microbial species currently lack a cultured representative

(Almeida et al., 2020), highlighting the power of culture-independent methods, with recent

efforts trying to close this gap (Poyet et al., 2019).

The human microbiome at the fulcrum of health and disease

The human-associated microbiota has long been the focus of researchers due to its

emergence as a determinant of health and disease (Lynch and Pedersen, 2016). In a

healthy state, the microbiome fulfills a crucial physiological role by training and calibrating

the human immune system, which in turn shapes and controls the microbiome (Belkaid and

Hand, 2014). When this intricate interplay is dysregulated, diseases, especially

non-communicable diseases with an immune system component, can potentially develop

(Belkaid and Hand, 2014). In this context, the human gut microbiome is of particular

interest, since it contains the highest density and the largest diversity of microbial

organisms in the human body (Cani, 2017).

A common approach to uncover changes in microbiome composition between healthy and

diseased individuals are metagenome-wide association studies (MWAS), in which every

component of the microbiome is tested for a cross-sectional association with the

physiological state of interest by case-control group comparisons. This way, the human gut

microbiome was found to be associated with a wide array of diseases, ranging from

inflammatory bowel disease (IBD) (Gevers et al., 2014; Schirmer et al., 2018) over liver

disease (Hoyles et al., 2018; Loomba et al., 2017; Qin et al., 2014) to rheumatoid arthritis

(Zhang et al., 2015) or type 2 diabetes (Karlsson et al., 2013; Qin et al., 2012), to name just

a few.
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A bit more surprisingly, changes in the gut microbiome have also been linked to

neurological disorders, possibly mediated through a `gut-brain axis` (Rhee et al., 2009).

For example, patients with Parkinson’s disease show differences in their gut microbiome

compared to age-matched healthy controls (Bedarf et al., 2017; Scheperjans et al., 2015).

One of the earliest cases of clear disease-associated gut microbiome changes was

colorectal cancer (CRC): two seminal publications identified Fusobacterium nucleatum to be

enriched in CRC tissue using 16S amplicon and total RNA sequencing (Castellarin et al.,

2012; Kostic et al., 2012). These findings were followed by mechanistic studies showing

that F. nucleatum can adhere to and invade colon epithelial cells and activate

pro-inflammatory responses (Kostic et al., 2013; Rubinstein et al., 2013). Additionally,

other microbial species such as enterotoxigenic Bacteroides fragilis or genotoxic

Escherichia coli were hypothesized to play a role in CRC carcinogenesis (Sears and Garrett,

2014). A metagenome-wide association study then uncovered a clear signal for CRC in the

composition of the human gut microbiome, including enrichments not only for F. nucleatum

but also for Porphyromonas and Peptostreptococcus species (Zeller et al., 2014). In the

following years, more and more microbiome association studies for CRC have been

published, both based on 16S amplicon (Baxter et al., 2016; Flemer et al., 2018; Zackular

et al., 2014) as well as on shotgun metagenomic sequencing (Feng et al., 2015; Vogtmann

et al., 2016; Yu et al., 2017).

For other cancer entities, the link between the gut microbiome and carcinogenesis is less

well studied. However, recent studies have shown an association between microbial signals

and cancer progression. Several studies could correlate specific microbes with response to

immune checkpoint inhibition (ICI) therapy in melanoma, kidney, and lung cancer patients

(Gopalakrishnan et al., 2018; Matson et al., 2018; Routy et al., 2018). The mechanism of

action for this observation is not yet fully understood, but tumor antigens resembling

microbial peptides (Fluckiger et al., 2020) and microbial metabolites (Mager et al., 2020)

were proposed as possible explanations. Similarly, the outcome of chemotherapy treatment

in pancreatic cancer has been reported to depend on microbes. However, these microbes

were not assessed in the intestine , but rather directly within the tumor (Geller et al., 2017).

This ‘tumor microbiome’ was also linked to survival in pancreatic cancer in another study

(Riquelme et al., 2019). These and other initial results have fueled interest in intratumoral

microbes, which were found in a wide range of cancer entities in a large-scale survey using
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16S amplicon sequencing (Nejman et al., 2020). Interestingly, microbial reads could also

be detected in human-focused ‘omics surveys, for example in whole-exome,

whole-genome, or total RNA sequencing experiments from The Cancer Genome Atlas

(TCGA) (Dohlman et al., 2021; Poore et al., 2020; TCGA Research Network et al., 2013).

Potential for clinical applications of microbiome research

These and other results highlight the potential for microbiome-centered clinical

applications, either as diagnostic tools or for therapeutic interventions. The most prominent

example of a clinical application arising from microbiome research is arguably the

treatment of recurrent Clostridioides difficile infection (rCDI), which can lead to severe and

potentially life-threatening diarrhea and is often unresponsive to antibiotic treatment. A

healthy gut microbiome is believed to be protective against rCDI (Ananthakrishnan, 2011)

and therefore, restoration of the gut microbiome through fecal microbiota transplant (FMT)

from healthy donors has been explored as a treatment for rCDI (van Nood et al., 2013). FMT

was found to be highly effective to cure rCDI, which led to the exploration of FMT-based

treatment also for other diseases, for example for inflammatory bowel disease (Colman and

Rubin, 2014). Similarly, the emerging impact of a diverse gut microbiome on the response

to immune checkpoint inhibition has led to clinical trials exploring the efficacy of FMT in

metastatic cancer patients: stool of patients with a good response to ICI was transplanted

into melanoma patients before treatment with ICI, leading to favorable clinical outcomes in

a subset of patients (Baruch et al., 2021; Davar et al., 2021).

For colorectal cancer, both diagnostic and therapeutic avenues have been suggested. In

Zeller et al., the authors propose a diagnostic microbial signature for CRC based on

microbial marker species quantified in feces. The most commonly used non-invasive CRC

diagnostic test is the fecal occult blood test, which aims to improve compliance of

population screening programs for colorectal cancer. Its findings are to be confirmed by the

more invasive colonoscopy, as it has limited sensitivity and specificity (Allison et al., 1990).

Hence a more accurate non-invasive screening procedure could potentially transform CRC

diagnosis. In their publication, the authors showed that a combination of microbial

biomarkers and the fecal occult blood test could theoretically improve the sensitivity for

CRC detection by over 45% compared to the fecal occult blood test alone, at least in the

analyzed cohort (Zeller et al., 2014). Regarding therapeutic intervention, a study focused on
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the persistence of Fusobacterium nucleatum in CRC-derived metastases also showed that

treatment with the antibiotic metronidazole reduced F. nucleatum load as well as tumor

growth in a mouse xenograft model (Bullman et al., 2017). Although not yet validated in

humans, these results could be of relevance for the treatment of CRC patients, since F.

nucleatum presence has been associated with a more aggressive phenotype and worse

prognosis (Mima et al., 2016). Alternatively, researchers have started to develop vaccines

against F. nucleatum, originally in the context of oral disease (Liu et al., 2009), but more

recently also with a focus on CRC prevention (Brennan and Garrett, 2019; Guo et al., 2017).

Challenges for microbiome data analysis

As the findings of microbiome research are starting to move towards clinical applications,

robust analysis methodology is important in order to obtain reliable results. However,

several issues with statistical microbiome analyses that have the potential to lead to

spurious associations are frequently encountered in the scientific literature, hence

presenting serious challenges for a necessary consolidation of microbiome data analysis.

First, key data characteristics complicate the statistical analysis of microbiome data, since

common assumptions about underlying distributions are often not met. For example,

microbiome data are compositional by the nature of data generation through sequencing.

This means that large shifts in highly abundant microbial taxa will by definition have

influences on the measured abundances of all other taxa. This issue cannot be addressed

without cumbersome protocol modifications (Vandeputte et al., 2017), but its importance

for subsequent data analysis is still discussed in the literature (Tsilimigras and Fodor,

2016). Furthermore, large inter-individual variation (Voigt et al., 2015) reduces the power of

statistical tests and leads to zero inflation in taxonomic profiles, meaning that many

microbial species are not present in most of the samples, which in turn necessitates large

sample sizes to detect differences in rare taxa. Additionally, the experimental process, for

example the DNA extraction or 16S amplification step, is biased towards specific taxa over

others, which can distort microbiome composition estimates and is often unaccounted for

(McLaren et al., 2019).

Second, study effects - differences between studies in large parts attributable to technical

factors - have been shown to strongly affect microbiome cohorts. For example, in the first

meta-analysis of 16S-based microbiome studies published, the variation associated with
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the study covariate outweighed the association with biologically meaningful factors, such as

antibiotics treatment (Lozupone et al., 2013). Two large-scale efforts to assess data

reproducibility across different laboratories and analysis pipelines reported that the

amount of variance attributable to DNA extraction method or bioinformatic processing is

comparable to or larger than biologically meaningful inter-individual differences, both for

16S amplicon (Sinha et al., 2017) as well as for shotgun metagenomics data (Costea et al.,

2017b). Especially for 16S data, the largest fraction of variation can often be attributed to

the choice of primers or the region in the 16S gene targeted for sequencing, as apparent in

a meta-analysis of fecal 16S amplicon sequencing studies for CRC (Shah et al., 2018).

Lastly, some studies have shown that the gut microbiome composition can be subject to

considerable confounding, that is when meta-variables (also called covariates) which are

not the main variable of interest are strongly associated with differences in the gut

microbiome. For the case of type 2 diabetes, two studies reported a strong diabetes signal

in the gut microbiome composition but showed little overlap in significantly associated

microbial taxa (Karlsson et al., 2013; Qin et al., 2012). A third study incorporating the two

previous datasets later concluded that the majority of the reported type 2 diabetes signal

could be explained by treatment with metformin prescribed to some of the type 2 diabetes

patients in these studies (Forslund et al., 2015). Indeed, follow-up studies refined our

understanding of how metformin leads to alterations in the gut microbiome, which might

actually contribute to its efficacy against type 2 diabetes (Wu et al., 2017). Another

example is the impact of proton-pump inhibitor medication on several microbial taxa

(Imhann et al., 2016; Jackson et al., 2016), which could similarly confound microbiome

association studies. In general, human-targeted drugs seem to be widely metabolized by

commensal gut microbes (Zimmermann et al., 2019) and have likewise broad impacts on

their viability (Maier et al., 2018), so that medication overall is of prime concern as a

potential confounder in microbiome association studies. Other sources of confounding are

linked to diet or lifestyle (Schmidt et al., 2018). For example, a recent study using the large

American Gut Project dataset (McDonald et al., 2018) found differences in alcohol

consumption, diet, and host physiological measurements to have a large impact on

association statistics in case-control settings (Vujkovic-Cvijin et al., 2020).
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The current state of microbiome analysis methodology

Faced with these challenges, the analysis methodology in microbiome research has to be

rigorous and robust in order to lead to reliable biological insights and maximize the

potential for clinical applications of microbiome-based findings. Although method

development for microbiome data is an area of active interdisciplinary research, the design

of evaluation frameworks and benchmarks is complex and existing attempts often suffer

from a lack of realism leading to over-optimistic conclusions (Buchka et al., 2021).

One fundamental question currently discussed in the microbiome literature is which

statistical test would be the most appropriate for the detection of differentially abundant

taxa in metagenomic case-control studies. Some researchers emphasize the compositional

nature of microbiome data and proposed methods that take this into account, such as

ANCOM (Lin and Peddada, 2020; Mandal et al., 2015) or testing of ratios against reference

frames (Morton et al., 2019). Another method, metagenomeSeq, tries to model a

zero-inflated distribution for each microbial taxon to account for the observed sparsity of

microbial sequencing count data (Paulson et al., 2013). Several benchmarking efforts

applied those newly developed and other, more traditional methods to simulated data, but

no consensus concerning the best statistical tool has emerged yet (Hawinkel et al., 2019;

McMurdie and Holmes, 2014; Weiss et al., 2017), partly due to the employed simulation

frameworks making different assumptions about the underlying distributions.

Another open question is how confounding variables should be taken into account when

performing differential abundance tests. In a recent publication (Vujkovic-Cvijin et al.,

2020), the authors argue to extensively match for possible confounders when performing

MWAS, based on an exploration of the large dataset from the American Gut Project

(McDonald et al., 2018). However, this strategy might not be feasible in each case,

especially since datasets large enough for comprehensive matching are not commonly

available. A special case of this consideration is the methodology for metagenomic

meta-analyses, in which technical (various DNA extraction or sample handling protocol) as

well as biological (diet or lifestyle) differences between studies need to be accounted for

and are typically modeled using a study identifier as a covariate. Also here, a clear

consensus about best practices has not been reached in the research community.

Individual microbial biomarkers for diseases can be at a high risk of confounding and

usually carry limited signal. Therefore, combining signals across multiple associated
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microbial taxa will often result in more robust disease signatures. In this context,

multivariable statistical modeling through machine learning is a crucial tool for the

identification and validation of potential biomarkers. Machine learning models can make

predictions on external samples, thereby assessing the robustness of the biological signal

and generalization of the signature. In most cases, a truly external dataset is not available,

but the estimation of a model’s accuracy is possible through cross-validation. Here, a part

of the available data is set aside prior to model training, and the trained model is then

evaluated on the left-out portion of the data.

In a setting with a binary outcome, such as case-control studies, the evaluation of a

machine learning model is usually done via the receiver operating characteristic (ROC)

analysis. The true-positive rate (TPR or sensitivity, defined as the fraction of correctly

recognized instances among all positive ones) is plotted against the false positive rate (FPR,

defined as the fraction of instances incorrectly labeled as positive among all truly negative

ones, sometimes also denoted as 1 - specificity) at different prediction thresholds. The area

under the ROC curve (AUC) subsequently serves as an aggregate estimate of the

performance of the model, with an AUC of 1 corresponding to perfect classification

accuracy and an AUC of 0.5 to a class assignment no better than random.

Although machine learning is widely used in the microbiome literature (Bang et al., 2019;

Duvallet et al., 2017; Knights et al., 2011a, 2011b; Le Goallec et al., 2020; Pasolli et al.,

2016; Wang et al., 2018), a user-friendly machine learning toolkit tailored towards the

specifics of metagenomic data has not been published. This is particularly pressing since

setting up machine learning workflows is a complex task for many researchers and some

commonly made mistakes can lead to over-optimistic performance evaluations (He et al.,

2018; Quinn, 2021).

14



Aims of this Work

Despite promises for biological insights and clinical applications, analysis of microbiome

association studies using statistical tests and ML models is complicated by several

fundamental challenges, ranging from complex data distributions to study effects and

confounding. Additionally, over-optimistic performance evaluation and biased

benchmarking studies are prevalent in the literature, which makes it difficult to choose the

appropriate methodology for microbiome data analysis.

The goal of my doctoral research was to develop methods for the comparative analysis of

data from clinical microbiome studies, with a special focus on colorectal cancer. My work

can be separated into three parts: an unbiased evaluation benchmark for association tests

under realistic and confounded conditions, the development of a machine learning toolbox

for microbiome data, and a meta-analysis of metagenomic CRC studies.

For the benchmarking of microbiome association tests, I aimed to develop a new

simulation framework that can produce data which recapitulates key characteristics

observed in real metagenomics data. Additionally, the aim was to include confounding

factors into this simulation framework. In a second step, the performance of different

association tests was to be benchmarked in this new framework.

For the machine learning toolbox, my aim was to develop a user-friendly R package for the

statistical and machine learning analysis of microbiome datasets. Additionally, I wanted to

validate the package in a large machine learning meta-analysis, which presented the

perfect setting to systematically explore the cross-study application and generalization of

machine learning models.

For the CRC meta-analysis, my aim was to establish robust taxonomic and functional

microbial CRC biomarkers using both univariate association tests as well as machine

learning classifiers. These models were based on eight available shotgun metagenomic

datasets from seven different countries to assess their global cross-study generalization

and disease specificity for noninvasive detection of CRC.
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Results and Discussion
Association testing for microbiome data

The benchmarking study (see Appendix) aimed to answer the question which statistical test

would be most appropriate for identifying differentially abundant taxa in case-control

microbiome studies. Although a fundamental question, a consensus has not emerged yet,

as different benchmarking efforts reached widely different conclusions (Calgaro et al.,

2020; Hawinkel et al., 2019; McMurdie and Holmes, 2014; Weiss et al., 2017). Additionally,

the question of how confounding in microbiome studies can best be addressed with

statistical models remains unanswered, which is ever more pressing as confounding is

more and more recognized as a potential problem for inference in microbiome studies

(Forslund et al., 2015; Schmidt et al., 2018).

Empirical assessment of realism for simulated metagenomic data

A common approach to evaluate methods in any benchmarking effort is to simulate data

that include a ground truth of differentially abundant features and then to apply the

methods to the simulated dataset, assessing how well the ground truth features are

identified. Previous benchmarking efforts in the microbiome field used different models for

the simulation of metagenomic profiles, based amongst others on multinomial,

beta-binomial, or Dirichlet distributions (Hawinkel et al., 2019; McMurdie and Holmes,

2014). Data generated using those models, however, fails to capture key characteristics

observed in real microbiome datasets (see Fig. 1a), particularly when considering feature

variance -- a defining characteristic of microbiome data is the overdispersion not observed

to the same extent in other sequencing data types, such as RNA sequencing. Machine

learning models, commonly used in metagenomic association studies to detect biomarkers,

are able to reveal even subtle differences between groups and exhibit larger sensitivity than

ordination-based analyses (see also next section). Accordingly, machine learning models

trained to distinguish between real and simulated data points could do so with almost

perfect accuracy in most cases.

Since all evaluated parametric methods for simulation failed to generate realistic datasets

for benchmarking, we developed an alternative method making no distributional

assumptions, based on implanting differentially abundant features into a real dataset. This
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way, essentially replacing parametric modeling by sampling, the original dataset is modified

as little as possible and therefore, key data characteristics such as sparsity or feature

variance are preserved (see Fig. 1a). The advantage of this method is that it combines

realism with a ground truth: It can faithfully reproduce the challenges inherent to real data

into which differentially abundant features with known effect sizes are then implanted in a

controlled manner. As baseline dataset, we used the taxonomic profiles of a study

investigating healthy adults (Zeevi et al., 2015), into which features with differential

abundance were randomly implanted using repeated random splits of the dataset. Machine

learning models, although extremely sensitive, can not distinguish between real and

“simulated” data points in this setting, affirming the realism of the framework.

Other benchmarking efforts had already relied on real data, but analyzed case-control

datasets without clearly defined differentially abundant features or varying effect sizes. In

one case, a consensus vote across methods was used to identify differentially abundant

features (Hawinkel et al., 2019), which can easily be biased by methods with extreme

results or the selection of methods to be included, since methods with similar distributional

assumptions can be expected to make similar errors. Two other studies evaluated

concordance between methods across different datasets (Calgaro et al., 2020; Nearing et

al., 2021), again without a ground truth of differentially abundant features.

Evaluation of differential abundance testing methods

To test the performance of statistical methods for the identification of differentially

abundant features, several methods were applied to the data with implanted effects. As the

main evaluation metrics, false discovery rate (FDR) as well as AUC (as a measure for the

enrichment of true effects among those with a low P value) were recorded across the

different repeats. Most methods, especially those developed for RNAseq data analysis

(DESeq2 (Love et al., 2014) and edgeR (Robinson et al., 2010)), failed to control the FDR at

the nominal 5% level, with the extreme case of metagenomeSeq (mgs) (Paulson et al.,

2013) recording an FDR of ~80% (see Fig. 1b). This issue was more pronounced at smaller

sample sizes (N<100), with 8 of 11 methods showing FDRs above twice the nominal level.
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Figure 1: Summary of the benchmarking study
a) Principal coordinate analysis shows that the data simulated using parametric methods fail to reproduce key
characteristics of microbiome data. The alternative approach, feature implantation, preserves general data
distributions while at the same time allowing for control of differentially abundant features. Importantly,
implantation -- in contrast to the parametric simulation methods -- reproduces realistic feature variances. b)
False discovery rate (FDR) and AUC for the detection of implanted features (using taxon-wise P values as
predictor) over different sample sizes are shown across all repetitions of the simulations shown in a). c) Using
the implantation framework, differentially abundant features were implanted into two datasets using study as
artificial confounding factor. On the left, the effect size associated with the implanted features is contrasted with
the study effect size. For the methods with reasonable performance in b), the naive results are compared to the
results after confounder adjustment at a fixed effect and sample size, given a strong study confounding.

A theoretical explanation for these results could be that the P values of these methods are

poorly calibrated, that is, that a more appropriate cutoff for detection would reduce false

detections while still identifying truly differentially abundant features. However, most

methods exhibiting an elevated FDR also recorded relatively low AUC values for detection of
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differentially abundant features, implying more general issues with the distinction between

implanted and background features. Interestingly, even the methods that are specifically

tailored towards microbiome data (ANCOM, ANCOM-BC, corncob, and mgs) exhibited

inadequate performance. Lastly, the evaluation benchmark indicates that the Wilcoxon test,

linear models, or limma (Ritchie et al., 2015) show the best performance for the detection

of differentially abundant features in microbiome data, controlling both the FDR and

exhibiting better statistical power than the other methods evaluated here.

The finding that most methods fail to control the FDR is in line with previous reports

(Hawinkel et al., 2019). However, the same publication did also report elevated FDRs for

the methods with reasonable performance in this benchmark, indicating that the choice of

simulation framework is crucial for the resulting evaluation. Similarly, other benchmarks

based on multinomial data (McMurdie and Holmes, 2014; Weiss et al., 2017) suggested

using ANCOM (Mandal et al., 2015) or DESeq2 (Love et al., 2014), which showed poor

performance in this more realistic benchmark.

Confounding poses additional challenges for differential abundance testing methods

To test how confounding factors can be addressed in differential abundance testing, we

specifically simulated confounding through differences between studies (Costea et al.,

2017b; Sinha et al., 2017) by combining data from two different publications in the

implantation framework (Xie et al., 2016; Zeevi et al., 2015). Here, the propensity of a

sample to be selected for one of the groups in the repeated random splits of the datasets

was contingent on the study affiliation. In this setup, the degree of study confounding can

be modulated by sampling one group from one dataset and the other group from the other

dataset with different proportions. When these proportions are equal, data sets with

minimal confounding are created.

Only methods with satisfactory performance (mean FDR across effect sizes not exceeding

10% for sample sizes 50 to 200) in the unconfounded benchmark were included,

additionally requiring that the method could be adjusted for putative confounders through

the inclusion of the corresponding covariate (‘study’ in our case) in the test formula. These

conditions limited the exploration to the blocked Wilcoxon test, linear mixed effect (LME)

models (instead of simple linear models), limma, and ANCOM-BC (Lin and Peddada, 2020).
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The results from this evaluation show that applying naive testing strategies in the presence

of confounding will lead to an excess of spurious associations (mean FDR between 24 and

31% for all methods except limma), even for confounders of moderate effect size (see Fig.

1c), since many features artificially show a strong association with the label. Explicitly

modeling the covariate in the testing methods can rescue the performance of both the

Wilcoxon test and linear models, resulting in mean FDRs close to the nominal level (5% vs

27% for the Wilcoxon and 5% versus 24% for the linear models at moderate study

confounding) and comparable AUC values as observed for non-confounded simulations.

While ANCOM-BC can control the FDR after confounder-adjustment, the resulting AUC for

the detection of implanted features is still lower compared to the other three methods. For

limma, the inclusion of the covariate in the model does reduce the FDR, but to a level that is

still markedly above the nominal level (mean FDR of 28% with  strong study confounding).

In summary, accounting for confounding factors with LME models or the blocked Wilcoxon

test seems to be a promising approach to minimize spurious associations in confounded

microbiome studies, although further exploration of other confounding factors are

warranted. For example, a recent study highlighted alcohol consumption as an impactful

dietary covariate that could confound disease associations (Vujkovic-Cvijin et al., 2020).

This meta-variable was measured as different frequencies, representing therefore an

ordinal variable instead of a binary one as evaluated in the presented benchmark.

As the findings of microbiome research are increasingly moving towards clinical application,

consolidation of the statistical methodology is urgently needed. In other fields, this process

has been aided by community-driven benchmarking projects, such as the critical

assessment of protein structure prediction (CASP) (Kryshtafovych et al., 2019) or the

critical assessment of metagenome interpretation (CAMI) for taxonomic profiling and

assembly (Sczyrba et al., 2017). Similarly, several DREAM challenges have been organized

to crowdsource challenges such as the inference of signaling networks (Prill et al., 2011).

Although the presented benchmark currently represents the effort of only two research

groups, we designed our benchmarking software to facilitate the addition of methods and

the exploration of different baseline datasets to name just two possible extensions. In the

future, a critical assessment project for the identification of DA features in metagenomic

data might further accelerate our efforts to promote consolidation of statistical

methodology in microbiome research.
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Machine learning workflows for microbiome data

My second publication (Wirbel et al., 2021) describes the SIAMCAT R package as a toolbox

for statistical and machine learning analysis of microbiome data. Machine learning is a

crucial tool for the identification and validation of microbial biomarkers, since machine

learning models can be applied to truly independent datasets for an unbiased evaluation of

their prediction accuracy, thereby extending beyond simple differential abundance testing.

Additionally, the combination of different biomarkers can lead to more robust classifiers.

However, setting up machine learning workflows can be challenging for non-experts,

especially when more advanced cross-validation procedures are needed. Machine learning

has been used in more and more microbiome publications (Bang et al., 2019; Duvallet et

al., 2017; Knights et al., 2011a, 2011b; Le Goallec et al., 2020; Pasolli et al., 2016; Wang et

al., 2018), but the employed software is usually not made public as an easy-to-use package

that can readily be applied to other datasets. Therefore, a flexible and user-friendly toolbox

for the comparative analysis of clinical microbiome data with validated and rigorous

machine learning workflows was still missing before I started my doctoral studies.

The SIAMCAT R package

The SIAMCAT package is implemented in the R programming language and available

through the Bioconductor framework (Huber et al., 2015). The standard pipeline (see Fig.

2a) is based on the analyses performed in a case-control study exploring associations

between the fecal microbiome composition and colorectal cancer (Zeller et al., 2014). It

includes steps to filter and normalize the data, perform differential abundance testing using

a Wilcoxon test, split the samples into cross-validation folds and then train and evaluate a

machine learning model. The functions are tailored towards microbiome data and its

specific characteristics, e.g. filtering can be performed to specify a minimum prevalence or

abundance of the taxa to be retained in the analysis. Individual steps of the pipeline can be

flexibly omitted or combined, allowing more advanced users to build more complicated

workflows. The input for SIAMCAT consists of relative abundances of microbial species or

functional groups and a binary label describing the group membership for each sample (e.g.

cancer versus tumor-free in the mentioned example). Optionally, meta-variables can be

supplied as well, which can then be tested as potential confounding factors.
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Figure 2: Summary of the SIAMCAT publication
a) Each step (green boxes) in the standard pipeline of a SIAMCAT analysis is implemented as a modular
function. Workflow steps that produce visual outputs are shown on the left in the red boxes. Additionally, the
pipeline to transfer machine learning models to external data is shown on the right. Lastly, the steps where
SIAMCAT safeguards against common machine learning pitfalls are indicated by caution signs. b) To illustrate
confounding in real datasets, the data from (Nielsen et al., 2014) was analyzed with SIAMCAT. Study was
flagged as a potential confounder, since there is a strong association with the label (Fisher’s test P value:
4.47E-33). As a result, machine learning model performance is affected: A model trained with all data (red line)
performs better than a model based only on the Spanish samples (blue line), since there is an apparent
difference between Spanish and Danish control samples (black line). Panels c) and d) illustrate two common
pitfalls for machine learning workflows: in c), the cross-validation performance is higher for the incorrect feature
selection than for the correct strategy. However, the models resulting from the incorrect procedure fail to
generalize to external data compared to the correct one. Similar results are shown in panel d) for the naive and
blocked cross-validation procedure given repeated samples for the same individual. Figure adapted from

(Wirbel et al., 2021).

The main outputs for a SIAMCAT pipeline are visualizations for the results of the differential

abundance testing, the confounder analysis, and the machine learning model. For the

model, the package produces both an evaluation plot (showing ROC and precision-recall

curves) and an interpretation plot that allows for model introspection by displaying the

weights assigned to the different features, i.e. microbial taxa or functions. As of now, the

SIAMCAT R package is limited to a case-control setting with a binary classification task.
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Other types of machine learning tasks such as regression analysis are planned to be

implemented in the future. For multi-class classification, SIAMCAT can be employed after

converting the task into binary classification problems and ongoing developments will

include convenience functions to make this easier for users.

Illustration of confounding via SIAMCAT

The SIAMCAT R package includes a step to check the supplied meta-variables for potential

sources of confounding, since it has been demonstrated that medication, study effects, or

other biological or technical variables can dramatically impact microbiome composition

(Schmidt et al., 2018), potentially leading to spurious associations (Forslund et al., 2015;

Imhann et al., 2016; Jackson et al., 2016). In the check.confounder function,

meta-variables are checked for an association with the label using either a Wilcoxon or a

Fisher’s test for continuous or categorical variables, respectively. Additionally, the amount

of variance explained by the meta-variable is contrasted with the variance explained by the

label, for each feature independently.

As a demonstration of the dramatic effects confounding can have, the dataset from (Nielsen

et al., 2014), containing samples from ulcerative colitis (UC) patients and controls, was

analyzed using a naive SIAMCAT workflow (see Fig. 2b). In this dataset, control samples

were taken from both Spanish and Danish subjects, while UC samples were obtained only

from Spanish individuals. Here, the country variable can be seen as a proxy for other

difficult-to-measure factors, such as diet or lifestyle, while it captures at the same time

technical differences within the same study. SIAMCAT can help to identify this type of

confounding by indicating which measured meta-variables have an association with the

label. In this dataset, the study confounder does lead to spurious associations when

features are naively tested for differentially abundance. Additionally, the results from

machine learning models can also be confounded: A model to distinguish between UC

cases and controls performs seemingly better when the Danish samples are included, since

the strong differences between Spanish and Danish control samples are exploited by the

model.

SIAMCAT can indicate when meta-variables are potential confounders that could lead to

spurious associations or inflated machine learning model performance estimates. The

problem remains that sources of confounding are often unknown or unmeasured and can
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therefore not be tested. Additionally, SIAMCAT in its current implementation will only

identify a potential confounder. Planned future developments will then allow it to

incorporate the confounder information into differential abundance testing, using the

blocked Wilcoxon test (Hothorn et al., 2006) or LME models as discussed in the previous

section. In machine learning, however, confounding can lead to over-optimistic

performance estimates, which can not be corrected in a similar way. Here, removal of data

according to the confounder information (as done in the example discussed above) seems

to be the easiest way to account for confounding. Alternatively, a strategy of adjusting the

data for potential confounders before machine learning, for example through modeling the

confounder effect in principal coordinate space (Price et al., 2006), has been employed

previously (Qin et al., 2012). As this issue is prevalent outside the microbiome field as well,

the hope is that future developments in confounder-aware machine learning (Zhao et al.,

2020) might be applicable to microbiome studies.

Illustration of machine learning pitfalls via SIAMCAT

Machine learning models are often used in microbiome publications for the identification of

biomarkers and to assess the generalizability of a microbial signature. For this task, it is

important that the model is evaluated on an independent test set so that its performance

on new data can be estimated. If no truly external dataset is available, researchers usually

resort to cross-validation, in which a part of the data is excluded from training and reserved

for testing. However, setting up the cross-validation workflow incorrectly can lead to

over-optimistic estimates for the performance of the model, which is unfortunately

commonly seen in microbiome literature. In the SIAMCAT publication (Wirbel et al., 2021),

two well-described (Roberts et al., 2017; Smialowski et al., 2010) machine learning pitfalls

are illustrated using real datasets.

The first pitfall occurs when label-aware (or supervised) feature selection is performed on

the complete dataset before splitting the data into cross-validation folds (Smialowski et al.,

2010). In this case, the label information of all samples is taken into account for feature

selection, for example through differential abundance testing. When this is combined with a

naive cross-validation to train and test a model on the retained features, the label

information from the test set has leaked into the model, resulting in performance estimates

that can be overly optimistic (also called overfitting), especially for sample sizes that are
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small relative to the number of features. On the other hand, supervised feature selection is

sometimes needed, for example when functional data with tens of thousand functional

groups are used as input. To correctly incorporate supervised feature selection into a

machine learning workflow, the selection step needs to be folded into the cross-validation,

that is, only the information of the training data can be used for feature selection,

separately in each cross-validation fold.

In the worst case, this pitfall can lead to the incorrect biological interpretation of results

(see Additional Figure 1): In a recent publication, the authors claim that

microbiome-based machine learning models for the detection of common diseases might

be accurate within a region but fail to extrapolate across different regions in China (He et

al., 2018). They come to this conclusion because they observe good model performance in

cross-validation within a region and a stark performance drop when the models are applied

to different regions. However, in their machine learning workflow, supervised feature

selection was performed incorrectly before cross-validation within a region, thereby leading

to inflated within-region performance estimates. With the correct workflow (Additional

Figure 1), the original conclusion is not supported anymore, since disease models do not

show a strong and consistent drop in performance when applied across regions, partly

because the initial within-region models do not show such a high (that is, inflated)

performance. To raise awareness of this commonly encountered issue, the SIAMCAT

publication included an illustration of this behaviour using two CRC datasets (see Fig. 2c).

The second issue arises when samples are not independent from each other. This can occur

when multiple samples from the same individual are analyzed, which tend to be more

similar to each other than across individuals (Voigt et al., 2015). Likewise, geographical

structure from environmental samples need to be taken into account for cross-validation in

some instances (Roberts et al., 2017). If repeated samples from the same individual (or

geographical region) are naively split in cross-validation, so that some end up in training

folds, others in the test fold, the cross-validation accuracy effectively measures how well

the model can generalize across time points rather than across individuals (or across short

spatial distances rather than globally). To counter this pitfall, the cross-validation needs to

be blocked so that the samples from the same individual or from the same region are

always kept in the same fold and are not split across training and test fold (see Fig. 2d). As

an example with the correct cross-validation setup, a study investigating the relationship
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between surface temperature and ocean microbiome composition kept samples from the

same ocean basin together in cross-validation (Sunagawa et al., 2015).

Avoiding common pitfalls in machine learning can be challenging for non-experts and

therefore, problems are found in many publications (Quinn, 2021). SIAMCAT tries to

safeguard against the most common pitfalls in the design of machine learning workflows by

allowing for nested supervised feature selection and blocked cross-validation.
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The human gut microbiome in colorectal cancer

The CRC meta-analysis publication (Wirbel et al., 2019) focuses on the in-depth

characterisation of the fecal microbiome in colorectal cancer patients and healthy controls.

Several metagenome-wide association studies for CRC had been published before (Feng et

al., 2015; Vogtmann et al., 2016; Yu et al., 2017; Zeller et al., 2014), but it was unclear to

what extent reported associations were consistent across studies, given large differences in

biological as well as technical characteristics between individual studies. Additionally, we

had gained access to a so-far unpublished cohort recruited at the DKFZ in Heidelberg,

presenting an ideal setting for a meta-analysis.

Microbiome-centered meta-analyses for CRC had been published before but suffered from

certain limitations: one meta-analysis that investigated 16S studies was restricted by the

taxonomic resolution of targeted 16S amplicon sequencing and additionally reported

extreme technical differences between studies, leading to low effect sizes for disease

associations (Shah et al., 2018). Another study, investigating the four publicly available

shotgun metagenomic datasets mentioned above, employed Kraken for taxonomic profiling,

which is known to produce many false positive taxonomic assignments (Milanese et al.,

2019), and thus reported results that were in part biologically implausible (Dai et al., 2018).

Additionally, training and test sets were not strictly separated for feature selection, causing

over-optimistic performance estimates as discussed above.

The aim of the shotgun metagenomic meta-analysis for CRC was to test the robustness of

microbial biomarkers in the face of biological and technical cross-study heterogeneity and

to assess how well a machine learning-based CRC signature trained with rigorous

methodology would be able to generalize across studies. Additionally, the functional

potential of CRC metagenomes was to be explored to identify bacterial functions enriched

in cancer, possibly uncovering bacterial contributions to carcinogenesis.

Study effects and confounders

To assess the influence of study effects across CRC studies and other confounders, two

analyses were performed: To gain a global view, principal coordinate analysis was

performed on taxonomic profiles. Study effects generally outweighed the disease signal in

principle coordinate space and the dataset from Feng et al. presented itself as an outlier.

However, the severity of study effects was not comparable to what had been observed for
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16S amplicon sequencing data (Shah et al., 2018). To refine this analysis towards individual

taxa, the amount of variance attributable to available meta-variables, including study

affiliation, was calculated for each microbial taxon and contrasted to the amount of

variance that could be explained by cancer status. As expected, the strongest effects could

be observed for the study variable, which is a proxy for both biological (for example

different genetic predisposition or environmental exposures) and technical (such as

differences in sample handling or DNA extraction protocols) heterogeneity. Other

meta-variables generally had a smaller influence on most taxa, with the exception of the

variable indicating if the sample was collected before or after colonoscopy. Therefore, all

subsequent analyses were corrected for both the study as well as sampling relative to

colonoscopy, using the blocked Wilcoxon test. Generally, the taxa most strongly affected by

confounders were not strongly associated with the disease label and vice versa (see Fig.

3a), indicating that there is a consistent signal for CRC in a subset of microbial taxa.

Although several covariates were investigated as potential confounders, this analysis was

limited by the availability of metadata consistently recorded across the studies. For

example, diet information (vegetarian or non-vegetarian) or smoking status was available in

only two of the included studies. Other potential confounding factors, for example exposure

to drugs or antibiotics, were either not recorded in the original studies or had not been

made publicly available. Therefore, the potential for confounding from unmeasured sources

exists and more extensive characterization of cancer samples will be needed in future

studies (Ogino et al., 2018), especially since older populations (as investigated in these

studies) often present with several co-morbidities and regular drug intake. However, in

contrast to the prominent example of confounding through metformin treatment in type 2

diabetes (Forslund et al., 2015), all samples in this meta-analysis had been collected prior

to cancer diagnosis and treatment, rendering systematic confounding through anticancer

medication unlikely.

Univariate association testing

To identify differentially abundant microbial taxa while at the same time accounting for the

confounders described above, a blocked Wilcoxon test was used, which found more than 90

microbial species and 32 genera to be differentially abundant at a conservative false

discovery rate of 0.005, with a core set of 29 microbial species showing an FDR of less than
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1E-05 (see Fig. 3b). In general, our meta-analysis results were concordant with other 

publications, especially concerning the enrichment of Fusobacterium, Peptostreptococcus, 

or Parvimonas species (Feng et al., 2015; Yu et al., 2017; Zeller et al., 2014). Additional 

CRC-associated microbial species detected by this uniquely powered meta-analysis, 

especially from the Clostridiales order or species without a genomic reference (Milanese et 

al., 2019) were not previously associated with CRC. Notably, all 29 differentially abundant 

species were enriched in CRC samples and often undetected in control samples, which 

would support a model for the role of the gut microbiome in CRC in which specific, 

predominantly oral microbes either benefit from or contribute to the process of 

carcinogenesis (Flynn et al., 2016). fill fill fill fill fill fill fill fill fill fill fill fill fill fill fill fill fill  

A companion publication (Thomas et al., 2019) analyzed a partly overlapping set of data and 

two additional cohorts from Italy in a complementary CRC meta-analysis. Although the 

method of taxonomic profiling, MetaPhlAn2 (Truong et al., 2015) versus mOTUs2 (Milanese 

et al., 2019), and the test for differential abundance (LME models versus the blocked 

Wilcoxon test) were different between the two publications, the results of the differential 

abundance testing were similar, with 13 of 17 CRC-enriched microbial taxa replicated in our 

studies, further highlighting the robustness of CRC associations for these microbial species.

Machine learning model transfer

To test the capacity of the fecal microbiome for the prediction of colorectal cancer, machine 

learning models were trained for each study individually using a ten times repeated ten-fold 

cross-validation scheme implemented in the SIAMCAT toolbox (Wirbel et al., 2021). To 

avoid potential leakage of label information from the training to the test set, machine 

learning model training was independent of the differential abundance analysis described 

above. Instead, feature selection was performed through training least absolute shrinkage 

and selection operator (LASSO) logistic regression models, which internally select 

informative features (Tibshirani, 1996).

In study transfer, single-study machine learning models generally retained similar accuracy, 

indicating again that the CRC signal is largely consistent across different geographies and 

experimental pipelines. A notable exception is the model trained on the dataset from Feng 

et al., which showed lower generalization to other datasets, in agreement with the 

confounder analysis performed before. The study from Vogtmann et al. generally exhibited
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a lower signal than the other studies, most probably since fecal samples had been stored at

-80°C for over 20 years before processing (Vogtmann et al., 2016).

To further improve the accuracy of the machine learning models, data were pooled across

four of the five studies for training and evaluated on the left-out study (leave-one-study-out

or LOSO validation). The availability of more training data markedly improved the accuracy

of classifiers on the test set, with AUC values of >0.8 in most cases (see Fig. 3c). These

results could also be replicated on three completely external datasets that became

available during the revision process (Thomas et al., 2019; Yachida et al., 2019). Overall,

these results suggest that more diverse training data can lead to improved performance of

machine learning models (see also the next section) and that the fecal microbiome might

be the basis for the development of a diagnostic test for the detection of colorectal cancer,

again supported by similar results derived with a different methodology (LASSO versus

random Forest models) in the companion publication (Thomas et al., 2019).

Functional profiles were also explored as input for the machine learning pipeline. Classifiers

based on the KEGG (Kanehisa et al., 2014) or eggNOG (Huerta-Cepas et al., 2016)

database showed very similar or slightly improved accuracies compared to those based on

taxonomic profiles. Since the number of input features was much higher for functional

profiles, feature selection had to be performed before model training, which was folded into

the cross-validation procedure (as described above). However, many of the predictive gene

groups are of unknown function, hampering the interpretation of these models.

Two previous machine learning meta-analyses had highlighted that several different

diseases shared a general signal of dysbiosis (Duvallet et al., 2017; Pasolli et al., 2016). To

test this expectation in our CRC machine learning meta-analysis, disease specificity of the

CRC models was assessed using datasets from other diseases, including type 2 diabetes

(Karlsson et al., 2013; Qin et al., 2012), inflammatory bowel disease (Qin et al., 2010;

Schirmer et al., 2018), and Parkinson’s disease (Bedarf et al., 2017). Single-study models

did indeed show elevated predictions for other diseases, but LOSO models made much

more disease-specific predictions in the tested datasets (see Fig. 3c in the CRC

meta-analysis publication, Appendix). Overall, pooling of data improved both transfer

accuracy and disease specificity of the machine learning models.
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Figure 3: Summary of the CRC meta-analysis
a) An initial confounder analysis revealed that a subset of features vary more by disease status than by study. b)
The results of the blocked Wilcoxon test for differential abundance analysis are shown as a volcano plot. The
core set of microbial species with a strong association with CRC (FDR<1E-05) are labeled, highlighting
previously reported species (e.g. Fusobacterium or Peptostreptococcus species) as well as others, some of which
are without genomic reference. c) ROC-curves from the LOSO machine learning models show that in most cases,
an AUC of >0.8 is possible. Similar results could be obtained for the truly external datasets from (Thomas et al.,
2019; Yachida et al., 2019). Studies are labeled by the country where the main study population was recruited
(see the manuscript in the Appendix for a legend). d) Targeted functional analysis of metagenomes reveals
strong enrichment of virulence factors in CRC metagenomes. Figure adapted from (Wirbel et al., 2019).
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Targeted exploration of functional CRC signals

Shotgun metagenomic sequencing allows not only for the taxonomic but also for the

functional characterization of proteins encoded in a microbial community. However,

databases such as KEGG or eggNOG are usually focussed on human or eukaryotic

organisms and thus contain many (prokaryotic) gene groups without clearly defined

functional annotation, impeding the interpretation of enriched gene groups. To overcome

these limitations, functional data was mined in a targeted way for potential enrichments,

resorting to metabolic modules and previously described virulence factors.

First, the metabolic potential of the gut microbiome was assessed using the gut metabolic

module (GMM) framework developed in (Vieira-Silva et al., 2016). In CRC metagenomes,

modules encoding for the degradation of amino acids, organic acids, or glycoproteins such

as mucin were enriched, whereas carbohydrate utilization modules showed a higher

abundance in controls. These associations have to be interpreted with caution, as

metagenomic enrichments are only proxies for actual functional differences, such as

differences in protein level or activity. However, the observed enrichments largely agree

with studies finding increased amino acid concentrations in CRC feces (Goedert et al.,

2014; Weir et al., 2013; Yachida et al., 2019) or tissue (Denkert et al., 2008; Hirayama et

al., 2009; Mal et al., 2012) and with well-established dietary risk factors for CRC such as

low fiber intake or increased red meat consumption (WCRFI, 2018).

Secondly, since a diverse set of bacterial virulence factors have been hypothesized to play a

role in CRC (Sears and Garrett, 2014), we identified and quantified them using Hidden

Markov models (see Fig. 3d). One virulence factor enriched in CRC metagenomes was the

fadA adhesin of Fusobacterium nucleatum, which has been shown to be crucial for binding

and subsequent invasion of colonic epithelial cells (Rubinstein et al., 2013). This functional

enrichment is in agreement with taxonomic enrichment of Fusobacterium species in CRC

microbiomes. The bft gene from specific Bacteroides fragilis strains had previously been

implicated in CRC carcinogenesis as a potential genotoxin in mice (Wu et al., 2009).

Furthermore, co-associations of the bft gene with the pks genomic island from Escherichia

coli (which encodes for colibactin, a genotoxin inducing DNA double strand breaks

(Nougayrède et al., 2006)) had been observed in patients with genetic risk factors for CRC

(Dejea et al., 2018). In the meta-analysis, the bft gene showed no differential abundance

and lower prevalence overall in CRC metagenomes, whereas B. fragilis was strongly
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CRC-enrichmed in the taxonomic analyses (P=2E-5), just barely not being included in the

core set of 29 marker species. The taxonomic profiles are currently unable to distinguish

between strains that either carry the toxin or not, so that it is unclear whether the gene was

truly not present or not well detectable with our Hidden Markov model-based approach.

The pks operon, on the other hand, was found to be strongly enriched in CRC

metagenomes. Interestingly, pks-positive E. coli strains were later shown to induce a

specific mutational signature in human-derived colonic organoids (Pleguezuelos-Manzano

et al., 2020) which is consistent with a proposed mechanism for how colibactin damages

DNA through alkylation (Wilson et al., 2019). The last factor investigated was the bai

operon present in some Clostridium species, which encodes for enzymes that metabolize

bile acids via 7𝛼-dehydroxylation (Ridlon et al., 2016). The resulting microbiome-derived

secondary bile acids, deoxycholate and lithocholate, had been associated with liver cancer

before (Yoshimoto et al., 2013), potentially through the induction of oxidative stress (Payne

et al., 2007). Interestingly, the bai operon was consistently enriched in CRC metagenomes

across all five studies, which was validated for one gene in the operon through quantitative

PCR in a subset of the in-house processed samples, additionally revealing elevated

transcript levels in CRC. In the companion publication from Thomas et al., the authors

investigated the microbial cutC gene, which is required for the production of

trimethylamine, a potential cancer-inducing metabolite (Oellgaard et al., 2017), and

likewise found a consistent enrichment in CRC metagenomes.

Overall, the targeted analysis of the functional potential of the CRC metagenome confirmed

previously reported pathways and revealed novel ones by which microbes might

functionally contribute to CRC development. However, this targeted analysis was largely

based on the limited mechanistic knowledge of host-microbe interactions revealed by

hypothesis-driven experimental work. Therefore, a more comprehensive and broader

exploration of potential virulence factors, including also bacterial functions not previously

associated with CRC, could be expected to uncover even more relevant associations.

A broader view on the microbiome and CRC

The presented CRC meta-analysis focuses on the fecal microbiome, analyzed using shotgun

metagenomic sequencing. The results indicate that a stool-based diagnostic application for

CRC might be feasible, since the microbial biomarkers were found to be globally
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generalizable, predictive, and generally disease-specific. However, the analyzed fecal

metagenomic data represent a single view on the relationship between the microbiome and

CRC, which has been analyzed under different aspects in other studies.

First, the fecal microbiome in CRC has also been investigated via 16S amplicon sequencing.

The taxonomic enrichments reported in those studies largely agree with the results from

our meta-analysis, but a thorough comparison has not been performed yet. Integrating

these two types of data is challenging, however, since 16S amplicon sequencing provides

limited taxonomic resolution, usually up to the level of genera, and since study effects

appear to be more prominent in 16S amplicon data (Shah et al., 2018).

Secondly, several studies have subjected CRC tissue biopsies to 16S amplicon sequencing

in order to get a better understanding of which microbes are adhering to or invading CRC

tissue. In this setting, shotgun metagenomic experiments for the detection of microbes are

made impractical by the large amount of human DNA in the sample, as typically more than

99% of reads are of human origin. In contrast to fecal samples, these tissue-derived

datasets are not collected to explore potential microbiome-based diagnostic applications

for CRC. Instead, they might more directly reflect biological processes linking the gut

microbiome and colonic tumors. Additionally, a recent study searched for prognostic

microbial biomarkers in CRC tissue and found Fusobacterium presence linked to shorter

survival (Mima et al., 2016).

Lastly, human-targeted sequencing projects were recently found to contain microbial reads

as well (Dohlman et al., 2021; Poore et al., 2020). In both publications, the authors

analyzed data from the Cancer Genome Atlas (TCGA) project, which contains tumor

samples from several hundred CRC cases (TCGA Research Network et al., 2013). Since the

microbial reads represent a tiny fraction of all reads in a human-targeted sequencing

sample, contamination and sequencing artifacts present substantial challenges for the

identification of microbial taxa. Nonetheless, those analyses offer an alternative avenue to

investigate the CRC microbiome and the newly developed microbial profiling methodology

could therefore dramatically expand the scope of potential samples, especially when

considering the scale of human-focussed sequencing projects such as TCGA (TCGA

Research Network et al., 2013).

To gain a broader view of the role of the microbiome in CRC, I calculated statistical

significance and effect sizes for enrichments of microbial genera in CRC using all of the data
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types described above (see Additional Methods), effectively representing four

meta-analyses encompassing 2.864 samples and 21 studies. All associations were

calculated using LME models as a more versatile alternative for the blocked Wilcoxon test,

since some data had to be adjusted not only for the study confounder but also for

participant ID in studies with matched cancer and control tissue. The taxonomic profiles

from (Poore et al., 2020) were excluded, since the calculated enrichments included many

biologically implausible results, likely from contaminations or bioinformatic

mis-annotations, highlighting again the challenges to identify microbial signals in

human-centered sequencing projects (see Additional Figure 2).

Figure 4: Different data types show similar bacterial enrichments for CRC
Volcano plots show the meta-analysis significance (FDR-adjusted P value) and effect sizes from linear mixed
effect (LME) models on the basis of different data types (see Additional Methods for details). The top 15 genera
(mean ranking across data types and CRC-enriched in at least two data types) are highlighted in green.

Overall, I found a striking similarity between the enrichment results in the remaining data

types, with the most strongly CRC-associated genera being consistently enriched in all of

the data types (see Fig. 4). Since both biological and technical variation between the
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different data types is considerable, it could have been expected to obscure true biological

signals as seen in the previously mentioned 16S meta-analysis (Shah et al., 2018).

Nevertheless, the enrichments calculated here on different data types result in very similar

rankings for the CRC-enriched genera, with only a few genera appearing as strongly

CRC-enriched in a single data type. Differences between the enrichments seem to most

strongly relate to the analyzed material: For example, stronger enrichments for the

Campylobacter or the Selenomonas genus are found in both tissue-based analyses,

whereas Peptostreptococcus is more strongly enriched in feces, independent of the

sequencing approach. On the other hand, Fusobacterium, Parvimonas, and Gemella are

strongly enriched across all sequenced materials and analytical methods.

The observed effect sizes and significance of these associations warrants further

investigations of the biological role of bacteria in CRC: the most strongly CRC-enriched

bacteria might serve as the basis for diagnostic tests and additionally, their role at the

interface between tumor and gut microbiome needs to be explored in more detail to

uncover causal relationships and additional biological processes involved in CRC

carcinogenesis. For a subset of CRC-associated bacteria, for example Fusobacterium or

pks-positive Escherichia coli, mechanistic studies have shed light on their specific biological

role in CRC. For the majority of genera found in this meta-analysis, however, the

mechanisms by which they might contribute to CRC is not well understood at all. Therefore,

mechanistic studies, for example investigating Gemella or Parvimonas species, have the

potential to uncover new biological processes and significantly expand our understanding

of how bacteria interact with the host to promote carcinogenesis.

Recent technological developments have the potential to transform how we can study the

interface between microbes and cancer. New multiplexed imaging technologies (Gyllborg et

al., 2020; Sheth et al., 2019; Shi et al., 2020) will enable comprehensive mapping of the

spatial organization of the microbe-host interface, providing important information about

which bacteria adhere to or invade colonic epithelial cells. On the other hand, the study of

both host gene expression or genomic alterations in the tumor and at the same time

bacterial presence will be made possible either through cross-species RNA sequencing

approaches (Westermann and Vogel, 2021) or through in-depth analysis of bacterial

components in human-targeted sequencing projects (Dohlman et al., 2021; Poore et al.,

2020).
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Cross-study application of machine learning models in microbiome research

As part of the SIAMCAT publication (Wirbel et al., 2021), a machine learning meta-analysis

was performed to gain insights into the performance of different machine learning

algorithms and the influence of preprocessing steps on the results of the workflow. In a

second step, the application of disease models across datasets was to be explored, since

cross-study application of models, although crucial to establish validity, had not been

evaluated systematically in a larger set of studies yet.

Machine learning meta-analysis

Previous studies had made recommendations regarding machine learning algorithms and

data preprocessing, but were limited by the small number of analyzed datasets (Pasolli et

al., 2016) or by focussing only on data generated using a single pipeline (Duvallet et al.,

2017). In the SIAMCAT publication, over 130 classification tasks derived from 50

metagenomic studies were included in a machine learning meta-analysis (see Fig. 5a). The

raw data had been profiled with technically heterogeneous pipelines, including the RDP

classifier (Wang et al., 2007) for 16S rRNA data, mOTUs2 (Milanese et al., 2019) and

MetaPhlAn2 (Truong et al., 2015) for the taxonomic and eggNOG4.5 (Huerta-Cepas et al.,

2016) and HUMAnN2 (Franzosa et al., 2018) for the functional profiling of shotgun

metagenomic studies. For each classification task, over 7000 distinct parameter

combinations were explored for the machine learning workflow, including variations in the

learning algorithm, the normalization method, and filtering parameters.

Other than biological differences between diseases, the learning algorithm and the choice

of normalization method had the biggest influence on the resulting model performance.

However, when comparing the best-performing parameter settings, the three included

machine learning algorithms, LASSO (Tibshirani, 1996), Elastic Net (Zou and Hastie, 2005),

and random forest (Tin Kam Ho, 1995), showed overall similar performance, with the

LASSO and the Elastic Net having a slight edge over the random forest. This edge was only

realized, however, when data were appropriately normalized.

In summary, the results suggest using the Elastic Net algorithm in combination with a

suitable normalization method (total sum scaling followed by z-scoring) for optimal

performance. Since a large number of technically heterogeneous datasets were included in

this meta-analysis, the recommendations derived from it are expected to be more robust
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than previous efforts that had advised using the random forest algorithm (Pasolli et al.,

2016).

Figure 5: Machine learning meta-analysis and cross-study application of models
a) As part of the SIAMCAT publication, a large set of case-control metagenomic studies were collected for a
machine learning meta-analysis. The figure shows the AUC values derived with the best-performing parameter
set for datasets that were profiled taxonomically with mOTUs2 and functionally with eggNOG4.5. b) Using the
datasets from the machine learning meta-analysis, cross-study application of models was explored
systematically, revealing low accuracy and disease-specificity for naively transferred models. In contrast to that,
control-augmented models (see text for explanation) showed uniform improvements in both measures. Figure
adapted from (Wirbel et al., 2021).

Extensive loss of accuracy and disease-specificity in cross-study application

A critical advantage of machine learning models is that they can be applied to completely

external data to make predictions, including datasets investigating a different disease. For

example, the single-study models in the CRC meta-analysis could be applied to datasets

from IBD and type 2 diabetes, showing elevated false positive detections for those other

diseases, which was alleviated in the LOSO setting. Although these types of analyses are

important to evaluate the validity of biomarkers across different populations and technical
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heterogeneity, cross-study application of machine learning models is not routinely

investigated in the microbiome literature.

The machine learning meta-analysis included in the SIAMCAT publication presented the

ideal setting to systematically study how models behave in cross-study application. To do

so, models trained with the best-performing parameter sets were applied to all other

datasets in the meta-analysis and the predictions were recorded. In contrast to

same-disease analyses (as in the CRC meta-analysis, for example), the evaluation of

cross-study application is not straightforward across different diseases, since true positives

are lacking for a ROC analysis, because the classifiers were trained to recognize another

disease (positive class) than is present in the other studies. Therefore, two measures were

calculated to answer different questions. First, the cross-study portability asks if a model

can be applied to another dataset and retain its accuracy by evaluating the separation

between cases from the data set the classifier was cross-validated on and controls from the

external data set. The second measure is the prediction rate for other diseases and

effectively measures the disease-specificity of the classifier.

The evaluations show an extensive loss of accuracy and low disease specificity in almost all

analyzed models (see Fig. 5b), manifesting in low cross-study portability scores and high

prediction rates for other diseases. In the most extreme case of the model for ankylosing

spondylitis, a median of 90% false positive predictions for the diseased cases from other

datasets was recorded. These results suggest that machine learning model transfer across

different datasets is extremely challenging, which motivated modifications of the machine

learning workflows.

One reason for these observations could be that technical differences between studies

dominate most, and therefore also predictive, features, precluding the naive transfer of

machine learning models. Correction techniques aiming to normalize out some of the

observed study differences, for example based on quantile normalization, might be

applicable here, but they are not well explored for microbiome data. Moreover, these

procedures often use the label information for correction to avoid normalizing out the

disease signal as well (Gibbons et al., 2018; Leek and Storey, 2007), which again opens up

the possibility for overfitting across datasets and thus complicates their evaluations.

Additionally, studies might differ in terms of the study population, for example, age

structure of the participants, and other life-style, co-morbidity or medication-related
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covariates, which would represent real biological differences. Lastly, other sources of

heterogeneity might be how studies define diseased and healthy participants (Thompson,

1994), further impeding model transfer due to  label noise.

Control-augmentation as strategy to improve cross-study application

These results indicate that the naive transfer of machine learning models across studies is

extremely challenging, if not impossible. However, the machine learning exploration in the

CRC meta-analysis had shown that pooling of data improved both disease specificity as well

as model accuracy. These results therefore motivated the hypothesis that inclusion of data

from multiple, technically heterogeneous studies would enable the classifiers to learn more

robust and broadly applicable models, which in turn minimizes overfitting and improves

disease specificity; similar observations have been made in other research fields as well

(Zhang et al., 2021). In the general setting of cross-study application, data pooling across

studies is not always possible, since sometimes only a single dataset is available for a given

disease, which makes it impossible to pool the cases from multiple studies. Therefore,

augmentation with external controls was explored as a strategy to improve cross-study

transfer of machine learning models. Again the idea here being that such a classifier could

learn a more precise disease representation to be discriminated from a larger, more

heterogeneous pool of control samples in the training set.

For the control-augmentation, external controls from several cohort studies without

disease signal (such as (Schirmer et al., 2016; Xie et al., 2016; Zeevi et al., 2015)) were

randomly added during model training within the cross-validation. Indeed,

control-augmented models were found to have greatly improved cross-study portability as

well as disease-specificity, uniformly improving both measures across all investigated

models (see Fig. 5b).

The control-augmentation strategy is a first attempt to alleviate the problems with

cross-study applications that were uncovered in this meta-analysis. The best parameters

for control-augmentation need to be explored in more detail, e.g. how many external

studies are needed for robust improvements. Additionally, since the definition of “control”

samples can vary dramatically across studies (Thompson, 1994), control-augmentation has

the potential to bias the resulting models, for example by introducing label noise. However,
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in the presented study, measures for cross-study applications improved consistently --

independent of the choice of datasets used for the control-augmentation.

Other microbiome meta-analyses highlighted a general dysbiosis signal that was common

to multiple diseases (Duvallet et al., 2017) and even devised a classifier for a “healthy” and

“diseased” microbiome (Gupta et al., 2020). While naive models also showed a high level of

cross-disease classification in the presented study, control-augmented models were

generally rather disease-specific, indicating that different diseases can be associated with

distinct microbial biomarkers.

In summary, the control-augmentation strategy greatly improves both accuracy and

disease specificity of machine learning models in cross-study application, allowing for the

investigation of microbial biomarkers specific to a single disease as opposed to ones that

are more unspecific and shared across different diseases.
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Concluding Remarks
The goal of my doctoral studies was to advance the methodology for comparative statistical

analysis in clinical microbiome studies and apply these tools to investigate the fecal

microbiome in colorectal cancer in depth. The key outcomes can be summarized as follows.

I first developed the necessary statistical methods for comparative metagenomic studies,

and made them available to the community in the form of the SIAMCAT R package as a

user-friendly toolbox for statistical and machine learning analysis of microbiome data. To

guide the choice of microbiome analytics methods, I broadly validated differential

abundance testing methods through an unbiased and realistic benchmark that could mirror

study confounding; I furthermore extensively validated the machine learning workflows and

their parameter settings and made them robust against commonly encountered statistical

flaws in their design and evaluation.

I then applied those methods to fecal shotgun metagenomic studies of CRC for an in-depth

characterization of microbiome alterations in this common cancer type, revealing

taxonomic and functional biomarkers as well as globally predictive and disease-specific

CRC signatures. I additionally explored virulence factors that might contribute to

carcinogenesis, such as bile acid conversion enzymes. Following up on these findings

through meta-analyses with other data types, I established a solid foundation for ongoing

and future explorations of the microbiome-host interface in CRC.

Lastly, I broadened the focus of machine learning applications in a meta-analysis

encompassing not a single but multiple diseases, uncovering substantial challenges for

naive cross-study application of microbiome-based machine learning models. Motivated by

the observations from the CRC meta-analysis, I empirically validated a novel strategy of

dataset augmentation with external control samples as an effective means to improve

model transfer across studies effectively reducing their propensity to make false-positive

predictions due to between-study differences (of both technical and biological nature) and

substantially improving their disease specificity.
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Appendix
Additional Methods & Figures

Methods for the CRC meta-analysis using different data types

To investigate the link between CRC and the gut microbiome in different data types,

taxonomic profiles were generated from different studies. The data from fecal shotgun

metagenomic studies were processed as described in (Wirbel et al., 2019) and

taxonomically profiled with mOTUs2.5 (Milanese et al., 2019). Data from fecal and tissue

16S studies were processed with DADA2 (Callahan et al., 2016) and the resulting amplicon

sequence variants were taxonomically annotated with MAPseq v1.2.6 (Matias Rodrigues et

al., 2017). Taxonomic profiles generated from TCGA whole exome sequencing (WXS) and

total RNA-seq data were downloaded from the supplementary material from (Dohlman et

al., 2021) and (Poore et al., 2020), respectively. The taxonomic profiles from mOTUs2 and

DADA2 were combined at genus level according to the mOTUs2 taxonomy table and

MAPSeq annotations. All data were converted first into relative and then into log-relative

abundances, with a pseudocount of 1E-05.

After prevalence filtering (prevalence of at least 5% in at least two studies, except for the

TCGA data), all remaining bacterial genera were tested for significant differences between

controls and CRC samples using a linear mixed effect model implemented in the lmerTest

package (Kuznetsova et al., 2017), adjusting for the study as random effect. For the tissue

16S studies, some studies included matched normal tissue and tumor biopsies and in this

case, the LME model was additionally adjusted for the Participant ID as a random effect.

The following studies were included in this meta-analysis:

- Shotgun fecal studies (Feng et al., 2015; Thomas et al., 2019; Vogtmann et al.,

2016; Wirbel et al., 2019; Yachida et al., 2019; Yu et al., 2017; Zeller et al., 2014)

- 16S fecal studies (Baxter et al., 2016; Flemer et al., 2018; Zackular et al., 2014;

Zeller et al., 2014)

- 16S tissue studies (Bullman et al., 2017; Burns et al., 2015; Flemer et al., 2018;

Kostic et al., 2012; Nakatsu et al., 2015; Purcell et al., 2017; Zeller et al., 2014)

- TCGA (TCGA Research Network et al., 2013) projects COAD and READ, as profiled in

(Dohlman et al., 2021) and (Poore et al., 2020)
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Additional Figure 1: Incorrect feature selection procedure can lead to inaccurate conclusions
The upper row shows the AUC values for the cross-validation (CV) of random forest machine learning models
within regions and when applied across regions, trained using the incorrect feature selection procedure as
described in (He et al., 2018). All models were trained with SIAMCAT and yield very similar results to those
reported in the original publication. The lower row shows the same setting, but using the correct feature
selection procedure, nested into the cross-validation. The differences between CV and application to other
regions is not significant anymore in most cases or the effect size is very small. In general, the AUC values for
the CV setting are lower for the correct feature selection, highlighting the inflated performance through the
incorrect procedure. Black diamonds show the mean for each group.

Additional Figure 2: Contamination and bioinformatic mis-annotations can lead to biologically implausible
enrichments for CRC TCGA samples
Meta-analysis significance (FDR-adjusted P value) and LME model effect size for the microbial profiles from
(Poore et al., 2020), derived from TCGA total RNA-seq samples. The top-enriched genera are in the majority of
cases not human-associated and likely represent contaminations or mis-annotations from the Kraken2 pipeline
(see also (Milanese et al., 2019)). The top 15 CRC-enriched genera (identified from the other data types, see
Figure 4) are highlighted again in green, with Campylobacter and Peptostreptococcus showing enrichment in
control samples -- contrary to the results obtained from other data types.
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Abstract
Association studies have linked microbiome alterations with many human diseases.

However, they have not always reported consistent results, thereby necessitating

cross-study comparisons. Here, a meta-analysis of eight geographically and technically

diverse fecal shotgun metagenomic studies of colorectal cancer (CRC, n = 768), which was

controlled for several confounders, identified a core set of 29 species significantly enriched

in CRC metagenomes (false discovery rate (FDR) < 1 × 10−5). CRC signatures derived from

single studies maintained their accuracy in other studies. By training on multiple studies,

we improved detection accuracy and disease specificity for CRC. Functional analysis of CRC

metagenomes revealed enriched protein and mucin catabolism genes and depleted

carbohydrate degradation genes. Moreover, we inferred elevated production of secondary

bile acids from CRC metagenomes, suggesting a metabolic link between cancer-associated

gut microbes and a fat- and meat-rich diet. Through extensive validations, this

meta-analysis firmly establishes globally generalizable, predictive taxonomic and functional

microbiome CRC signatures as a basis for future diagnostics.
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Main

Metagenomic sequencing technologies have enabled the study of microbial communities

that colonize the human body in a culture-independent manner1. They have yielded

glimpses into the complex, yet incompletely understood, interactions between the gut

microbiome—the microbial ecosystem residing primarily in the large intestine—and its

host2. To explore microbiome–host interactions within a disease context,

metagenome-wide association studies (MWAS) have begun to map gut microbiome

alterations in diabetes, inflammatory bowel disease, CRC, and many other conditions3–12.

However, due to the many biological factors that may influence gut microbiome

composition in addition to the condition studied, a current challenge for MWAS are

confounders, which can cause false associations13,14. This issue is further aggravated by a

lack of standards in metagenomic data generation and processing, making it difficult to

disentangle technical from biological effects15.

The robustness of microbiome disease associations can be assessed through comparisons

across multiple metagenomic case-control studies, that is, meta-analyses. The aim of

meta-analyses is to identify associations that are consistent across studies and thus less

likely to be attributable to biological or technical confounders. Most informative are

meta-analyses of populations from diverse geographic and cultural regions. Previous

microbiome meta-analyses based on 16S ribosomal RNA (rRNA) gene amplicon data found

stark technical differences between studies; the reported taxonomic disease associations

were either of low effect size or not well resolved16–18. In contrast, shotgun metagenomics

have enabled analyses with higher taxonomic resolution as well as analyses of gene

functions, which have improved the statistical power needed to fine-map

disease-associated strains and aid in the interpretation of host-microbial co-metabolism.

However, thus far, the meta-analyses of shotgun metagenomic data have either reported on

the features of general dysbiosis in comparisons across multiple diseases19, or have left it

unclear how well microbiome signatures generalize across studies of the same disease

when data are rigorously separated to avoid overoptimistic evaluations of their prediction

accuracy20.
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In this study, we present a meta-analysis of eight studies of CRC, including fecal

metagenomic data from 386 cancer cases and 392 tumor-free controls (CTRLs). After

consistent data reprocessing, we examined an initial set of five studies for CRC-associated

changes in the gut microbiome. First, we investigated potential confounders; then, we

identified (univariate) microbial species associations, and inferred species co-occurrence

patterns in CRC. Second, we trained multivariable classification models to recognize CRC

status, from both taxonomic and functional microbiome profiles, and tested how accurately

these models generalized to data from studies not used for training. Moreover, we

evaluated the performance improvements achieved by pooling data across studies and the

disease specificity of the resulting classification models. Third, the targeted investigation of

virulence and toxicity genes as candidate functional biomarkers for CRC revealed several of

these to be enriched in CRC metagenomes, which is indicative of their prevalence and

potential relevance in CRC patients. Three additional, more recent studies were finally used

to independently validate these taxonomic and functional CRC signatures.

Results

Consistent processing of published and new data for the meta-analysis of CRC metagenomes

In this meta-analysis, we included four published studies that used fecal shotgun

metagenomics to characterize CRC patients compared to healthy CTRLs (see Table M1.1,

Supplementary Table 1, and Methods for the inclusion criteria). For an additional fifth

study population, we generated new fecal metagenomic data from samples collected in

Germany; a subset of samples from this patient collective were published previously (see

Table M1.1 and Methods8). These five studies were conducted on three continents and

differed in sampling procedures, sample storage, and DNA extraction protocols. Notably,

the fecal specimens of the United States study were freeze-dried and stored at −80 °C for

more than 25 years before DNA extraction and sequencing10. However, in all studies,

samples were collected before treatment, thus excluding cancer therapy as a potential

confounding effect14,21. Most samples were taken before bowel preparation for

colonoscopy, with some exceptions in the Germany, China, and United States studies

(Supplementary Table 2). To ensure consistency in the bioinformatic analyses, all raw

sequencing data were reprocessed using the mOTUs2 tool for taxonomic profiling22 and

MOCAT2 (metagenomic analysis toolkit) for functional profiling23.
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Table M1.1: Fecal metagenomic studies of CRC included in this meta-analysis
See the Methods for the inclusion criteria and Supplementary Table 2 for the extended metadata. For a detailed
description of patient recruitment and data generation for the German study, see the Methods. The data for 38
samples from the German study has been published previously as part of an independent validation cohort in8.

Country code Reference No. of cases No. of controls

France 8 53 61

Austria 9 46 63

China 11 74 54

United States 10 52 52

Germany The current study 60 60

External validation cohorts

Italy 1 24 29 24

Italy 2 24 32 28

Japan Courtesy of T. Yamada et al. 40 40

Univariate meta-analysis of species associated with CRC

The first aim of the meta-analysis was to determine the gut microbial species that are

enriched or depleted in CRC metagenomes in a consistent manner across the five study

populations. However, since these studies differed from one another in many biological and

technical aspects, we first quantified the effect of study-associated heterogeneity on

microbiome composition. We contrasted this with other potential confounders (patient age,

body mass index (BMI), sex, sampling after colonoscopy, and library size; additionally,

smoking status, type 2 diabetes comorbidity, and vegetarian diet where available;

Extended Data Fig. 1 and Supplementary Table 3). This analysis revealed the factor

‘study’ to have a predominant impact on species composition, which is supported by a

recent comparison of DNA extraction protocols, since these typically differ between

studies15. An analysis of microbial alpha and beta diversity showed that study heterogeneity

also had a larger effect on overall microbiome composition than CRC in our data (Extended

Data Fig. 2).

Parametric effect size measures are not well established for the identification of microbial

taxa significantly differing in abundance in CRC because microbiome data is characterized
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by non-Gaussian distributions with extreme dispersion; thus, we used a generalization of

the fold change (Extended Data Fig. 3) and non-parametric significance testing. In this

permutation test framework25 (herein referred to as blocked (univariate) Wilcoxon tests),

differential abundance in CRC can be assessed while accounting for ‘study’ as a

confounding effect that is treated as a blocking factor; additionally, motivated by our

confounder analysis, we also blocked for ‘colonoscopy’ in all analyses (Methods and

Extended Data Fig. 1). To rule out spurious associations due to the compositional nature of

microbial relative abundance data, we additionally compared the results of this test with a

method26 that employs log-ratio transformation and found highly correlated results

(Supplementary Fig. 1 and Supplementary Table 4).

At a meta-analysis FDR of 0.005, we identified 94 microbial species to be differentially

abundant in the CRC microbiome out of 849 species consistently detected across studies

(Supplementary Table 4 and Methods). Among these, we focused on a core set of the 29

most significant markers (FDR < 1 × 10−5; Fig. 1a) for further analysis. The latter included

members of several genera previously associated with CRC, such as Fusobacterium,

Porphyromonas, Parvimonas, Peptostreptococcus, Gemella, Prevotella, and Solobacterium

(Fig. 1b)8–11 and 8 additional species without genomic reference sequences

(meta-mOTUs22; see Methods) mostly from the Porphyromonas and Dialister genera and

the Clostridiales order (see Extended Data Fig. 4 and Supplementary Table 4 for

genus-level associations). Collectively, these 29 core CRC-associated species show a

previously underappreciated diversity of 11 Clostridiales species to be enriched in CRC (Fig.

1b). In contrast to the majority of species that are more strongly affected by study

heterogeneity than by CRC status, 26 out of the 29 CRC-associated species varied more

according to disease status (Fig. 1d).
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Fig. 1: Despite study differences, meta-analysis identifies a core set of gut microbes strongly associated
with CRC.
a, The meta-analysis significance of gut microbial species derived from blocked Wilcoxon tests (n = 574
independent observations) is given by the bar height (FDR = 0.005). b, Underneath, species-level significance, as
calculated with a two-sided Wilcoxon test (FDR-corrected P value), and the generalized fold change (Methods)
within individual studies are displayed as heatmaps in gray and in color, respectively (see color bars and Table 1
for details on the studies included). Species are ordered by meta-analysis significance and direction of change.
AT, Austria; CN, China; DE, Germany; FR, France; US, United States. c, For a core of highly significant species
(meta-analysis FDR = 1 × 10−5), association strength is quantified by the AUROC across individual studies
(color-coded diamonds), and the 95% confidence intervals are indicated by the gray lines. Family-level taxonomic
information is color-coded above the species names (the numbers in brackets are mOTUs2 species identifiers;
see Methods). d, Variance explained by disease status (CRC versus CTRLs) is plotted against variance explained
by study effects for individual microbial species with dot size being proportional to abundance (see Methods);
core microbial markers are highlighted in red.
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All of the core CRC-associated species were enriched in patients and were often

undetectable in metagenomes from non-neoplastic CTRLs. While previous studies were

contradictory in the reported proportion of positive versus negative associations8,9,17,20, our

meta-analysis results are more easily reconciled with a model in which—potentially

many—gut microbes contribute to or benefit from tumorigenesis than with the opposing

model where a lack of protective microbes contributes to CRC development (Fig. 1c).

Although these core taxonomic CRC associations were highly significant and consistent,

individual studies showed marked discrepancies in the species identified as significant (Fig.

1b). Retrospective examination of the precision and sensitivity with which individual studies

detected this core of CRC-associated species showed relatively low sensitivity for the

United States study (consistent with the original report10) and low precision of the Austrian

study due to associations that were not replicated in other studies (Supplementary Fig. 2).

Analyzing patient metagenomes for co-occurrences among the core set of 29 species that

are strongly enriched in the CRC microbiome revealed four species clusters with distinct

taxonomic composition (Fig. 2a and Extended Data Fig. 5; Methods). Two of them showed

strong taxonomic consistency: cluster 1 exclusively comprised Porphyromonas species and

cluster 4 only contained members of the Clostridiales order. In contrast, the other two

clusters were taxonomically more heterogeneous, with cluster 3 grouping together the

species with the highest prevalence in CRC cases (all among the ten most highly significant

markers), consistent with a co-occurrence analysis of one of the data sets included here11.

Cluster 2 contained species with intermediate prevalence.

Fig. 2 [next page]: Co-occurrence analysis of CRC-associated gut microbial species reveals four clusters
preferentially linked to specific patient subgroups.
a, For all CRC patients (n = 285 independent samples), the heatmap shows whether the respective sample is
positive for each of the core set of microbial marker species (see Methods for adjustment of positivity threshold).
Samples are ordered according to the sum of positive markers, and marker species are clustered based on the
Jaccard index of positive samples, resulting in four clusters (see Methods). b–d, The barplots in b, c, and d show
the fraction of CRC samples that are positive for marker species clusters (defined as the union of positive marker
species) broken down by patient subgroups based on differences in tumor location, sex, or CRC stage,
respectively. Statistically significant associations between CRC subgroups and marker species clusters were
identified using the Cochran–Mantel–Haenszel test blocked for ‘study’ and ‘colonoscopy’ effects and are
indicated above the bars (P<0.1). Country codes as in Fig. 1b.
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Investigating whether these four clusters were associated with different tumor

characteristics, we found the Porphyromonas cluster 1 to be significantly enriched in rectal

tumors (Fig. 2b), consistent with the presence of superoxide dismutase genes in

Porphyromonas genomes possibly conferring tolerance to a more aerobic milieu in the
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rectum (Extended Data Fig. 5). The Clostridiales cluster 4 was significantly more prevalent

in female CRC patients. All species clusters showed a slight tendency toward late-stage

CRC (that is, American Joint Committee on Cancer stages 3 and 4), but this was only

significant for cluster 3. Associations with patient age and BMI were weaker and not

significant (Extended Data Fig. 5). To rule out secondary effects due to differences in

patient characteristics among studies, all of these tests were corrected for study effects (by

blocking for ‘study’ and ‘colonoscopy’; see Methods). At the level of individual species,

significant stage-specific enrichments could not be detected, suggesting CRC-associated

microbiome changes to be less dynamic during cancer progression than previously

postulated27, although fecal material may be less suitable to address this question than

tissue samples.

Metagenomic CRC classification models

To establish metagenomic signatures for CRC detection across studies in the face of

geographic and technical heterogeneity, we developed multivariable statistical modeling

workflows with rigorous external validation to avoid prevailing issues of overfitting and

overoptimistic reports of model accuracy19. As a precaution against overoptimistic

evaluation, these workflows are independent of the differential abundance analysis

described earlier. Instead, least absolute shrinkage and selection operator (LASSO) logistic

regression classifiers were employed to select predictive microbial features and eliminate

uninformative ones (see Methods).

In a first step, we used abundance profiles from five studies including the 849 most

abundant microbial species and assessed how well classifiers trained in cross-validation on

one study generalize in evaluations on the other four studies (study-to-study transfer of

classifiers; Fig. 3a). Within-study cross-validation performance, as quantified by the area

under the receiver operating characteristics curve (AUROC), ranged between 0.69 and 0.92

and was generally maintained in study-to-study transfer (AUROC dropping by 0.07 ± 0.12

on average) with two notable exceptions. First, in line with the univariate analysis of species

associations, CRC detection accuracy in the United States study was lower than for the

other studies, both in cross-validation and in study-to-study transfer. This could potentially

be explained by the United States fecal specimens, unlike the other studies, being
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freeze-archived for > 25 years before metagenomic sequencing10. Second, classifiers

trained on the Austrian study did not generalize as well to the other studies, consistent with

low study precision seen in univariate meta-analysis (Supplementary Fig. 2). Given the

microbial co-occurrence clusters described earlier, we wondered whether species–species

interactions would provide additional information relevant for CRC recognition that is not

contained in the species abundance profiles. However, non-linear classifiers able to exploit

such interactions did not yield significantly better accuracies (Supplementary Fig. 3; see

also ref.24), suggesting that the linear model based on few biomarkers (on average 17

species accounted for more than 80% of the total classifier weights; Extended Data Fig. 6)

is near-optimal for CRC prediction.

We further assessed if including data from all but one study in model training improves

prediction on the remaining hold-out study (leave-one-study-out (LOSO) validation). The

LOSO performance of species-level models ranged between 0.71 and 0.91; when the

United States study was disregarded as an outlier, it was ≥0.83 (Fig. 3b). This corresponds

to a LOSO accuracy increase of 0.076 ± 0.03 compared to study-to-study transfer. These

results suggest that one can expect a CRC detection accuracy ≥0.8 (AUROC) for any new

CRC study using similarly generated metagenomic data. Moreover, we verified that

metagenomic CRC classification models trained on species composition were not biased for

clinical subgroups. With the exception of slightly more sensitive detection of late-stage CRC

(P=0.04, mostly originating from the United States study; Extended Data Fig. 7), we did not

observe any classification bias by patient age, sex, BMI, or tumor location. Taken together,

this suggests that these metagenomic classifiers are unlikely to be strongly confounded by

the clinical parameters recorded.
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Fig. 3: Both taxonomic and functional metagenomic classification models generalize across studies, in
particular when trained on data from multiple studies.
a–e, CRC classification accuracy resulting from cross-validation within each study (gray boxes along the diagonal)
and study-to-study model transfer (external validations off-diagonal) as measured by the AUROC for classifiers
trained on the species (a) and eggNOG gene family (d) abundance profiles. The last column depicts the average
AUROC across the external validations. Classification accuracy, as evaluated by AUROC on a hold-out study,
improves if taxonomic (b) or functional (e) data from all other studies are combined for training (LOSO validation)
relative to models trained on data from a single study (study-to-study transfer, average and s.d. shown by bar
height and error bars, respectively, n = 4). c, Combining training data across studies substantially improves CRC
specificity of the (LOSO) classification models relative to models trained on data from a single study (depicted by
bar color, as in c and d) as assessed by the FPR on fecal samples from patients with other conditions (see legend).
The bar height for study-to-study transfer corresponds to the average FPR across classifiers (n = 5) with the error
bars indicating the s.d. of the FPR values observed. T2D, type 2 diabetes; PD, Parkinson’s disease; UC, ulcerative
colitis; CD, Crohn’s disease. Country codes as in Fig. 1b.
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Several previous studies comparing microbiome changes across multiple diseases reported

primarily general dysbiotic alterations and highlighted the need to examine the disease

specificity of microbiome signatures17,19. Therefore, we assessed the false positive

predictions of our metagenomic CRC classifiers on the fecal metagenomes of type 2

diabetes4,5, Parkinson’s disease12, ulcerative colitis, and Crohn’s disease6,7 patients,

reasoning that classifiers relying on biomarkers for general dysbiosis would yield an excess

of false positives on these cohorts. However, our LOSO classification models calibrated to

have a false positive rate (FPR) of 0.1 on CRC data sets in fact maintained similarly low

FPRs on other disease data sets ranging from 0.09 to 0.13 (Fig. 3c). Interestingly, the

disease specificity of LOSO models was significantly improved over that observed for

classifiers trained on a single study, indicating that inclusion of multiple studies in the

training set of a classifier can substantially improve its specificity for a given disease.

Functional metagenomic signatures for CRC

Since shotgun metagenomics data, unlike 16S rRNA gene amplicon data, allow for a direct

analysis of the functional potential of the gut microbiome, we examined how predictive the

metabolic pathways and orthologous gene families differing in abundance between CRC

patients and CTRLs would be of CRC status. When applying the same classification

workflow as stated earlier to eggNOG (evolutionary genealogy of genes: Non-supervised

Orthologous Groups) orthologous gene family abundances28, CRC detection accuracy was

very similar to that observed for the taxonomic models (Fig. 3d,e). AUROC values ranged

from 0.70 to 0.81 for study-to-study transfer (per-study averages; see Fig. 3e) and from

0.78 to 0.89 in LOSO validation with a pattern of generalization across studies resembling

that for taxonomic classifiers. The accuracy of functional signatures did not strongly depend

on eggNOG as an annotation source, but was similar when based on other comprehensive

functional databases, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG)29

(Extended Data Fig. 8). When using individual gene abundances from metagenomic gene

catalogs as a classifier input30, we observed higher within-study cross-validation AUROC

values ≥ 0.96 in all studies, but lower generalization to other studies (AUROC between 0.60

and 0.79) (Extended Data Fig. 8).

To explore changes in the metabolic capacity of gut microbiomes from CRC patients more

broadly, we quantified gut metabolic modules (defined in ref.31) and subjected these to the
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same differential abundance analysis developed for microbial species. Gut metabolic

modules with significantly higher abundance in CRC metagenomes (FDR < 0.01, Wilcoxon

test blocked for ‘study’ and ‘colonoscopy’) predominantly belonged to pathways for the

degradation of amino acids, mucins (glycoproteins), and organic acids. This clear trend was

accompanied by a depletion of genes from carbohydrate degradation modules (Fig. 4a,b).

The differences in all four high-level categories were highly significant (P<1 × 10−6 in all

cases, blocked Wilcoxon tests) and consistent across studies (Fig. 4b). Overall, these

results establish a clear shift from dietary carbohydrate utilization in a healthy gut

microbiome to amino acid degradation in CRC that is consistent with an earlier report based

on a subset of the data8. Correlation analysis suggests that increased capacity for amino

acid degradation is mostly contributed by CRC-associated Clostridiales (compare with

cluster 4 in Fig. 2 and Supplementary Fig. 4). Approximately one half of these

metagenomic pathway enrichments are also in agreement with independent metabolomics

data, suggesting increased availability of amino acids in the epithelial cells or feces of CRC

patients (Supplementary Table 5)32–36. While the observed pathway enrichments could

potentially result from many factors, including unmeasured ones13, they are consistent with

established dietary risk factors for CRC, which include red and processed meat

consumption37 and low fiber intake38.

Fig. 4 [next page]: Meta-analysis identifies consistent functional changes in CRC metagenomes.
a, The meta-analysis significance of gut metabolic modules derived from blocked Wilcoxon tests (n = 574
independent samples) is indicated by the bar height (top panel, FDR = 0.01). Underneath, the generalized fold
change (see Methods) for gut metabolic modules31 within individual studies is displayed as a heatmap (see
color key in b). Metabolic modules are ordered by significance and direction of change. A higher-level
classification of the modules is color-coded below the heatmap for the four most common categories (colors as
in b; white indicates other classes). b, Normalized log abundances for these selected functional categories is
compared between CTRLs and CRC cases. Abundances are summarized as the geometric mean of all modules
in the respective category and statistical significance determined using blocked Wilcoxon tests (n = 574
independent samples, see Methods). c, Normalized log abundances for virulence factors and toxins compared
between metagenomes of CTRLs and CRC cases (significant differences, P < 0.05 was determined by blocked
Wilcoxon test, n = 574 independent samples; see Methods for gene identification and quantification in the
metagenomes). fadA, gene encoding F. nucleatum adhesion protein A; bft, gene encoding B. fragilis enterotoxin;
pks, genomic island in E. coli encoding enzymes for the production of genotoxic colibactin; bai, bile
acid-inducible operon present in some Clostridiales species encoding bile acid-converting enzymes.
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Fig. 4 [continued] d, The meta-analysis significance (uncorrected P value), as determined by blocked Wilcoxon
tests (n = 574 independent samples), and generalized fold change within individual studies are displayed as
bars and heatmap, respectively, for the genes contained in the bai operon. Due to high sequence similarity to
baiF, baiK was not independently detectable with our approach. e, Metagenomic quantification of baiF
(metagenomic abundance-normalized relative abundance) is plotted against qPCR quantification in gDNA
extracted from a subset of German study samples (n = 47), with Pearson correlation (r) indicated (see Methods).
f, Expression of baiF determined via qPCR on reverse-transcribed RNA from the same samples in contrast to
gDNA (as in e). The boxplots on the right of e and f show the difference between CRC and CTRL samples in the
respective qPCR quantification (the P values on top were calculated using a one-sided Wilcoxon test). All
boxplots show the interquartile ranges (IQRs) as boxes, with the median as a black horizontal line and the
whiskers extending up to the most extreme points within 1.5-fold IQR. Country codes as in Fig. 1b.
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The large metagenomic data set analyzed in this study allowed us to quantify the

prevalence of the gut microbial virulence and toxicity mechanisms thought to play a role in

colorectal carcinogenesis. Prominent examples include the Fusobacterium nucleatum

adhesion protein A (encoded by the fadA gene), the Bacteroides fragilis enterotoxin (bft

gene) and colibactin produced by some Escherichia coli strains (from the pks genomic

island)39,40. Moreover, intestinal Clostridium species are known to contribute to the

conversion of primary to secondary bile acids using several metabolic pathways including

7α-dehydroxylation, encoded in the bai operon41. The products of this 7α-dehydroxylation

pathway, deoxycholate and lithocholate, are known hepatotoxins associated with liver

cancer42 and hypothesized to also promote CRC43. Although intensely studied at a

mechanistic level, these factors are not (well)-represented in general databases that can be

used for metagenome annotation (Supplementary Fig. 5). Thus, we built a targeted

metagenome annotation workflow based on Hidden Markov Models (HMMs) to identify and

quantify the virulence factors and toxicity pathways of interest in CRC. Additionally, we used

co-abundance clustering to infer operon completeness for factors encoded by multiple

genes (see Methods, Extended Data Fig. 9, and Supplementary Fig. 5). While fadA, bft,

the pks island, and the bai operon were clearly detectable in deeply sequenced fecal

metagenomes, they varied broadly with respect to abundance, significance, and

cross-study consistency of enrichment (Fig. 4c). fadA and pks were significantly enriched in

CRC metagenomes (P=5.3 × 10−10 and 4.1 × 10−4, respectively), whereas no significant

abundance difference could be detected for bft in fecal metagenomes, despite reports on

its enrichment in the mucosa of CRC patients44, its carcinogenic effect in mouse models45,

and synergistic action with pks46. Our quantification of the bai operon showed a highly

significant enrichment in CRC metagenomes (P=1.6 × 10−9) observed across all five studies

(Fig. 4d) at an average abundance that exceeded fadA and pks copy numbers (Fig. 4c).

Metagenome analysis indicated that at least four Clostridiales species (including the well

characterized Clostridium scindens and Clostridium hylemonae)47,48 have a (near)-complete

7α-dehydroxylation pathway contributing to the observed enrichment of bai operon copies

(Extended Data Fig. 9). To validate this finding and further explore its value toward

diagnostic application, we developed a targeted quantification assay for the baiF gene

based on quantitative PCR (qPCR; see Methods). Quantification of baiF by qPCR using

genomic DNA (gDNA) from 47 fecal samples of the German study population was found to
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be similar to, yet more sensitive than by metagenomics (Fig. 4e). Gut microbial baiF copy

numbers clearly distinguished CRC patients from CTRLs (P = 0.001) at an AUROC of 0.77,

which in this subset of samples is surpassed by only a single-species marker for CRC

(Extended Data Fig. 9). Although consistent with the increased deoxycholate metabolite

levels reported for serum and stool samples of CRC patients49, this finding does not imply

7α-dehydroxylation pathway activity. Therefore, we quantified baiF expression using RNA

extracts from the same set of fecal samples, and found transcript levels to be elevated in

CRC patients also (Fig. 4f). The observed weak correlation of baiF expression with genomic

abundance (Fig. 4f) might be explained by dynamic transcriptional regulation50 and

therefore bai expression in feces might not accurately reflect the tumor environment. Taken

together, these data suggest gut microbial metabolic markers to be meaningful and highly

predictive of CRC status.

Validation of CRC signatures in independent study populations

Even though CRC classification accuracy for both species and functions were evaluated on

independent data, we nonetheless sought to confirm it using two additional study

populations from Italy (Italy 1 and Italy 2, combined N = 61 CRC, N = 62 CTRLs; see

Methods and Table 1) and one from Japan (N = 40 CRC, N = 40 CTRLs; see Methods and

Table 1). The overlap of single- species associations detected in the Italy 2 study and those

from the meta-analysis was found to vary within the range seen for the other studies,

whereas for Italy 1 and Japan, the overlap was slightly lower (compare study precision in

Supplementary Fig. 2 and Extended Data Fig. 10). Nonetheless, the AUROC of LOSO

classification models based on species ranged between 0.79 and 0.81; that for the

classifiers based on eggNOG ranged from 0.71 to 0.92 (Fig. 5a,b). We also validated CRC

enrichment of the fadA, pks, and bai genes in these three study populations (Fig. 5c).

Altogether, these results highlight consistent alterations in the gut microbiome of CRC

patients across eight study populations from seven countries in three continents.
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Fig. 5: Meta-analysis results are validated in three independent study populations.
a,b, CRC classification accuracy for independent data sets, two from Italy and one from Japan (see Table 1 and
Supplementary Table 2), is indicated by the bar height for single-study (white) and LOSO (gray) models using
either species (a) or eggNOG gene family (b) abundance profiles (see Fig. 3). Bar height for single-study models
corresponds to the average of five classifiers (the error bars indicate the s.d., n = 5). c, Normalized log abundances
for virulence factors and toxins (see Fig. 4c) compared between CTRLs and CRC cases. P values were determined
by one-sided blocked Wilcoxon tests (n = 193 independent samples). The boxes represent the IQRs with the
median as a black horizontal line and the whiskers extending up to the most extreme points within 1.5-fold IQR.
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Discussion

Through extensive and statistically rigorous validation, where data from studies used for

training is strictly separated from that for testing, our meta-analysis firmly establishes that

gut microbial signatures are highly predictive of CRC (see also24). In particular,

metagenomic classifiers trained on species profiles from multiple studies maintained an

AUROC of at least 0.8 in seven out of eight data sets and achieved an accuracy similar to

the fecal occult blood test, a standard non-invasive clinical test for CRC (Supplementary

Fig. 6; see8). Thus, these results suggest that polymicrobial CRC classifiers are globally

applicable and can overcome technical and geographical study differences, which we found

to generally impact observed microbiome composition more than the disease itself (Fig. 1c

and Extended Data Figs. 1 and 2). The generalization accuracy of classifiers across studies

seen in this study is higher than that reported in 16S rRNA gene amplicon sequencing

studies, which are characterized by even larger heterogeneity across studies16,18

(Supplementary Fig. 7).

Previous microbiome meta-analyses suggested that the majority of gut microbial taxa

differing in any given case-control study reflect general dysbiosis rather than

disease-specific alterations, thereby illustrating the difficulty of establishing

disease-specific microbiome signatures17,19. In the current study, by combining data across

studies for training (LOSO), we developed disease-specific signatures that maintained false

positive control on diabetes and inflammatory bowel disease metagenomes at a very

similar level as for CRC (Fig. 3c), despite these diseases having shared effects on the gut

microbiome17,50 and an increased comorbidity risk51.

Although for diagnostic purposes, unresolved causality between microbial and host

processes during CRC development are not a central concern, elucidating the underlying

mechanisms would greatly enhance our understanding of colorectal tumorigenesis. Toward

this goal, we developed both broad and targeted annotation workflows for functional

metagenome analysis. First, we found functional signatures based on the abundances of

orthologous groups of microbial genes to yield accuracies as high as taxonomic signatures

(Fig. 3), which raises the hope for future improvements in metagenome annotation that can

be translated into microbiome signature refinements. Second, by investigating potentially
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carcinogenic bacterial virulence and toxicity mechanisms using a targeted metagenome

annotation approach, we confirmed highly significant enrichments of the

colibactin-producing pks gene cluster and the F. nucleatum adhesin FadA in CRC

metagenomes (Fig. 4c). Our results support the clinical relevance of these factors and add

to the experimental evidence for their carcinogenic potential 46,52–54. We further examined

the bai operon, which encodes enzymes that produce secondary bile acids via

7α-dehydroxylation, as an example of toxic host-microbe co-metabolism (see 24 for another

intriguing example). While α-dehydroxylated bile acids are established liver carcinogens 42,

their contribution to CRC is less clear 43. In the current study, we have, for the first time,

shown bai to be highly enriched in stool from CRC patients (Fig. 4c,d) and confirmed this

finding at both the genomic and transcriptomic level using qPCR (Fig. 4e,f). Since bai

enrichment (and expression) is probably a consequence of a diet rich in fat and meat 55, it is

intriguing to explore whether bai could be used as a surrogate microbiome marker for such

difficult-to-measure dietary CRC risk factors.

To further unravel the molecular underpinning of dietary CRC risk factors, molecular

pathological epidemiology studies that investigate the mucosal microbiome as part of the

tumor microenvironment hold great potential 56,57. However, they will require more

comprehensive diet questionnaires, medical records, and molecular tumor

characterizations than are available for the study populations analyzed in the current study.

In this context, carcinogens possibly contained in the virome also warrant further

investigation 58,59; however, for this goal, metagenomic data need to be generated with

protocols optimized for virus enrichment 60.

Taken together, our results and those by 24, strongly support the promise of

microbiome-based CRC diagnostics. Both the taxonomic and metabolic gut microbial

marker genes established in these meta-analyses could form the basis of future diagnostic

assays that are sufficiently robust, sensitive, and cost-effective for clinical application. The

targeted qPCR-based quantification of the baiF gene is a first step in this direction. Our

metagenomic analysis of this and other virulence and toxicity markers bridge to existing

mechanistic work in preclinical models and could enable future work that aims to precisely

determine the contribution of gut microbiota to CRC development
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Methods
Study inclusion and data acquisition

We used PubMed to search for studies that published fecal shotgun metagenomic data of human CRC patients

and healthy CTRLs. The search term, all hits, and the justification for exclusion or inclusion are available in

Supplementary Table 1. Raw FASTQ files were downloaded for the four included studies from the European

Nucleotide Archive (ENA) using the following ENA identifiers: PRJEB10878 for11, PRJEB12449 for 10,

ERP008729 for 9, and ERP005534 for 8.

German study recruitment and sequencing

The German study population data consist of 60 fecal CRC metagenomes, 38 of which were sequenced and

published in 8 under ENA accession no. ERP005534. The fecal metagenomes from an additional 22 CRC

patients recruited for the same ColoCare study (German Cancer Research Center, Heidelberg 61,62) were

sequenced later as part of this work. All fecal samples were collected after colonoscopy. Sixty sex- and

age-matched participants of the PRÄVENT study run by the same clinical investigators were included as healthy

CTRLs; since these participants did not undergo colonoscopy, the presence of undiagnosed colorectal

carcinomas cannot be completely ruled out but is expected to be unlikely due to the low prevalence of

preclinical CRC in the general population 63.

Written informed consent was obtained from all additional 22 CRC patients and 60 CTRLs. The study protocol

was approved by the institutional review board (European Molecular Biology Laboratory (EMBL) Bioethics

Internal Advisory Board) and the ethics committee of the Medical Faculty at the University of Heidelberg. The

study is in agreement with the World Medical Association Declaration of Helsinki (2008) and the Department of

Health and Human Services, Belmont Report.

Genomic DNA was extracted from the fecal samples (preserved in RNALater, Sigma-Aldrich) and libraries were

prepared as described previously 8. Whole-genome shotgun sequencing was performed with the HiSeq

2000/2500/4000 systems (Illumina) at the Genomics Core Facility, EMBL, Heidelberg.

Independent validation cohorts

During the revision of this manuscript, we included three independent study populations for external validation.

Two of them were recruited in Italy (Italy 1 and Italy 2) with informed consent from all participants and ethical

approval by the ethics committees of Azienda Ospedaliera di Alessandria and the European Institute of

Oncology of Milan. Fecal shotgun metagenomic data were generated as described in 24.

The third study population was recruited in Japan with informed consent and ethical approval of the

institutional review boards of the National Cancer Center Japan— Research Institute and the Tokyo Institute of

Technology. DNA was extracted from frozen fecal samples using a Gnome DNA Isolation Kit (MP Biomedicals)

with an additional bead-beating step as described previously 64. DNA quality was assessed with an Agilent 4200

TapeStation (Agilent Technologies). After final precipitation, the DNA samples were resuspended in Tris-EDTA

buffer and stored at −80 °C before further analysis. Sequencing libraries were generated with the Nextera XT

DNA Sample Preparation Kit (Illumina). Library quality was confirmed with an Agilent 4200 TapeStation.
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Whole-genome shotgun sequencing was carried out on the HiSeq 2500 system (Illumina). All samples were

paired-end sequenced with a 150-base pair (bp) read length to a targeted data set size of 5.0 Gb.

Taxonomic profiling and data preprocessing

The metagenomic samples were quality controlled using MOCAT2’s ‘-rtf’ procedure, which is based on the

‘solexaQA’ algorithm 23. In particular, reads that map with at least a 95% sequence identity and an alignment

length of at least 45 bp to the human genome hg19 were removed. In a second step, taxonomic profiles were

generated with the mOTU profiler v.2.0.0 (refs. 22,65,66; see https://motu-tool.org/ and GitHub v.2.0.0) using the

following parameters: -l 75; -g 2; and -c. Briefly, this profiler is based on ten universal single-copy marker gene

families (COG0012, COG0016, COG0018, COG0172, COG0215, COG0495, COG0525, COG0533, COG0541, and

COG0552) 66. These marker genes were extracted from > 25,000 reference genomes and > 3,000 metagenomic

samples allowing us to profile prokaryotic species with a sequenced reference genome (ref-mOTUs) and ones

without (meta-mOTUs). The read count for a mOTU was calculated as the median of the read count of the genes

that belonged to that mOTU.

mOTU profiles were first converted to relative abundances to account for library size. Then, profiles were filtered

to focus on a set of species that were confidently detectable in multiple studies. Specifically, microbial species

that did not exceed a maximum relative abundance of 1 × 10−3 in at least three of the studies were excluded

from further analysis, together with the fraction of unmapped metagenomic reads.

Functional metagenome profiling and data preprocessing

High-quality reads, with the same quality filtering as for taxonomic profiling, were aligned against a combined

database (IGChg38 hereafter) consisting of the hg38 release of the human reference genome and the

integrated gene catalog (IGC) containing 9.9 million non-redundant microbial genes 30 using the

Burrows–Wheeler Aligner MEM algorithm 67 (v.0.7.15-r1140) with default parameters. The purpose of adding

the human genome to the reference database was to filter out reads that mapped as well as or better to some

human sequence than to any bacterial gene. Alignments were calculated separately for paired-end and

single-read libraries. (Single reads could result from read pairs where one read was filtered out in the quality

filtering procedure described earlier.) Alignments were then filtered to only retain those longer than 50 bp

with > 95% sequence identity. Then, the highest scoring alignment(s) was/were kept for each read. As IGChg38

is a database of predominantly genes and not genomes, there will be a substantial proportion of read pairs

where one end maps within the gene while the other end does not—it either maps to an adjacent gene or

remains unmapped due to intergenic regions not contained in the database. Therefore, we counted a whole read

pair aligning to a gene when (1) both ends from a read pair mapped to the same gene, (2) only one end from a

read pair mapped to the gene, or (3) a read from the single-read library mapped to the gene. We then counted

only the read pairs that mapped uniquely to one gene in the IGC, thus excluding ambiguous read pairs that

mapped with similarly high scores to multiple genes in the database. For a given metagenomic sample, we

further normalized the abundance of each IGC gene by the length of that gene. We then estimated the relative

abundance of IGC genes by dividing gene abundances by the total abundance of all genes in the IGC (excluding

the human chromosomes).
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Because the metagenomes from CRC patients were not included when the IGC was constructed, we analyzed

how well CRC-associated species as identified in this meta-analysis were represented in the IGC. Using a

phylogenetic marker gene (COG0533), which is also used by the species profiling workflow on which the

meta-analysis is based, for 24 out of the 29 core CRC-associated species, we found a match in the IGC with at

least 90% nucleotide identity, indicating that a sequence from the same species (above 93.1% identity) or a

slightly more distant relative is present in the IGC (Supplementary Fig. 8).

The relative abundance of eggNOG orthologous groups 28 was estimated by summing the relative abundances of

genes annotated to belong to the same eggNOG orthologous group as of the most recent annotations provided

by MOCAT2 23. To obtain the KEGG orthologous groups and pathway abundances, we applied the same

procedure, but using the KEGG annotations for the IGC provided by MOCAT2 29.

Overview of statistical analyses

For univariate association testing between the abundances of microbial taxa and gene functions, we used

non-parametric tests throughout; all were two-sided Wilcoxon tests except where otherwise stated. To account

for potential confounders and heterogeneity between data sets, we employed a stratified version of the

Wilcoxon test 25. Analysis of variance (ANOVA) was conducted on rank-transformed data. The significance of

binary co-occurrence patterns was assessed using (stratified) Cochran–Mantel–Haenszel tests.

Multivariable analysis was done with strict separation between training and test data. Importantly, this also

pertained to feature selection, which was either done via LASSO regression analysis 68 or by nested

cross-validation procedures to avoid overoptimistic performance assessment 69. All samples included in this

meta-analysis came from distinct individuals to ensure that generalization across participants—rather than

across time points within a given participant—is assessed.

Confounder analysis

To quantify the effect of potential confounding factors relative to that of CRC on single microbial species, we

used an ANOVA-type analysis. The total variance within the abundance of a given microbial species was

compared to the variance explained by disease status and the variance explained by the confounding factor akin

to a linear model, including both CRC status and the confounding factor as explanatory variables for species

abundance. Variance calculations were performed on ranks to account for non-Gaussian distribution of

microbiome abundance data. Potential confounders with continuous values were transformed into categorical

data either as quartiles or in the case of BMI into lean/obese/overweight according to conventional cutoffs

(lean: <25; obese: 25–30; overweight: >30).

Univariate meta-analysis for the identification of CRC-associated gut microbial species

The significance of differential abundance was tested on a per species basis using a blocked Wilcoxon test

implemented in the R ‘coin’ package 25. Informed by the results of the preceding confounder analysis, we

blocked for ‘study’ and ‘colonoscopy’ in the Chinese study. Within this framework, significance is tested against

a conditional null distribution derived from permutations of the observed data. Notably, permutations are

performed within each block to control for variations in block size and composition. To adjust for multiple

hypothesis testing, P values were adjusted using the FDR method 70.
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As non-parametric effect size measures, we used the AUROC with permutation-based confidence intervals

calculated using the ‘pROC’ package in R 71. We further developed a generalization of the (logarithmic) fold

change that is widely used for other types of read abundance data. This generalization is designed to have

better resolution for sparse microbiome profiles, where 0 entries can render median-based fold change

estimates uninformative for a large portion of species with a prevalence below 0.5. The generalized fold change

is calculated as the mean difference in a set of predefined quantiles of the logarithmic CTRL and CRC

distributions (see Extended Data Fig. 3 for further details). We used quantiles ranging from 0.1 to 0.9 in

increments of 0.1.

For the retrospective analysis of study precision and recall in detecting microbial species associations from the

meta-analysis, the true set was defined as the species that were associated at a given FDR in the meta-analysis.

Then, we checked how well this set of species would be recovered using the single-study significance as

determined by the Wilcoxon test. Study precision corresponds to the proportion of meta-analysis-significant

species among those detected as significant in a single study. Similarly, recall (or sensitivity) corresponds to the

proportion of species out of the true set of meta-analysis-significant species that were recovered in a given

study.

Species co-occurrence and cluster analysis in CRC metagenomes

For the analysis of gut bacterial species co-occurring in CRC microbiomes, the relative abundances of the core

set of associated species were discretized into binary values to determine whether a CRC (metagenomic)

sample was ‘positive’ or ‘negative’ for a given microbial marker. To normalize for differences in prevalence (and

therefore specificity) of these markers, we adjusted the threshold value above which a sample was labeled

positive based on the abundance in healthy CTRLs. For each microbial species, the 95th percentile in healthy

CTRLs was used as the threshold, which effectively results in adjusting the per marker FPR to 0.05. Based on

the binarized species-by-sample matrix, species were then clustered using the Jaccard index as implemented

in the ‘vegan’ package in R 72. Associations between species clusters and meta-variables were tested as 2-by-n

(where n is the number of categories in the meta-variable tested) contingency tables using a

Cochran–Mantel–Haenszel test with ‘study’ and ‘colonoscopy’ as blocking factors, as implemented in the R

‘coin’ package 25.

Multivariable statistical modeling workflow and model evaluation

A main goal of our work is to assess the generalization accuracy of microbiome-based CRC classifiers across

technical and geographic differences in patient populations; thus, we extensively validated classification models

across studies taking the following two approaches.

In study-to-study transfer validation, metagenomic classifiers were trained on a single study and their

performance was externally assessed on all other studies (off-diagonal cells in Fig. 3a,d). Effectively, we

implemented a nested cross-validation procedure on the training study to calculate within-study accuracy (cells

on the diagonal in Fig. 3a,d) and tune the model hyperparameters.

In LOSO validation, data from one study was set aside as an external validation set, while the data from the

remaining four studies was pooled as a training set on which we implemented the same nested cross-validation

procedure as for the study-to-study transfer (see 19 for a more detailed description of LOSO).
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Data preprocessing, model building, and model evaluation was performed using the SIAMCAT R package v.1.1.0

(https://bioconductor.org/packages/SIAMCAT).

Preprocessing of taxonomic abundance profiles for statistical modeling

Relative abundances were first filtered to remove markers with low overall abundance and no variance (an

artifact of single-study data arising from the joint data filtering described earlier), log10-transformed (after

adding a pseudo-count of 1 × 10−5 to avoid non-finite values resulting from log10(0) 73), and finally

standardized as z-scores. Data were split into training and test sets for 10 times-repeated, tenfold stratified

cross-validation (balancing class proportions across folds). For each split, an L1-regularized (LASSO) logistic

regression model 68 was trained on the training set, which was then used to predict the test set. The lambda

parameter, that is, regularization strength, was selected for each model to maximize the area under the

precision-recall curve under the constraint that the model contained at least five non-zero coefficients. Models

were then evaluated by calculating the AUROC based on the posterior probability for the CRC class.

In model transfer to a hold-out study, the hold-out data were normalized for comparability in the same way as

the training data set by using the frozen normalization function in SIAMCAT, which retains the same features

and reuses the same normalization parameters (for example, the mean of a feature for z-score standardization).

Then, all 100 models derived from the cross-validation on the training data set (10 times-repeated tenfold

cross-validation) were applied to the hold-out data set and predictions were averaged across all models.

In the LOSO setting, data from the four training studies were jointly processed as a single data set in the same

way as described earlier using ten times-repeated tenfold stratified cross-validation.

Preprocessing of functional abundance profiles

Functional profiles, such as eggNOG gene family or KEGG module abundance profiles were preprocessed as

described earlier for the species profiles, but using 1 × 10−6 as the maximum abundance cutoff and 1 × 10−9 as

a pseudo-count during log transformation. Since these abundance tables contained several thousand input

features, we implemented an additional feature selection step, which was nested properly into the

cross-validation procedures described earlier. This nested approach is crucial to avoid over-optimistically

biased performance estimates (see 74, Chapter 7.10). Specifically, features were filtered inside each training fold

(without using any label information from the test fold) by selecting the 1,600 features with the highest

single-feature AUROC values (for features depleted in CRC, 1 – AUROC was used for feature selection).

Preprocessing of gene abundance profiles

To ascertain the predictive power of a classifier based on the IGC gene abundances 30, we applied a series of

filters to the abundance tables to reduce the number of genes that would be the input of LASSO modeling.

These filters were applied once on a per study level and once in a LOSO mode, where they were applied jointly

to all studies in the training set, with the remaining one being held out for external validation.

The following filters were applied in this order: (1) all genes with 0 abundance in ≥15% of samples (regardless

of CRC status) were discarded; (2) the remaining data were discretized using the equal frequencies method

implemented in the ‘discretize’ function of the ‘sideChannelAttack’ R package (v.1.0–6) as a preparation to the

minimal-redundancy-maximal-relevance (mRMR) algorithm 75; (3) as a feature selection procedure, the mRMR
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(code version from 20 April 2009 downloaded from http://home.penglab.com/proj/mRMR/ on 3 December

2016) was run on the gene abundance table to retain the 100 top genes as output.

LASSO models were then built on log10-transformed abundances (pseudo-count of 10 × 10−9, centered and

scaled) of the sets of the 100 top genes returned by mRMR. The whole process was repeated 10 times in a

fivefold stratified cross-validation scheme to allow for an estimation of the confidence of the AUROC of the

resulting models. We used the ‘LiblineaR’ package (v.2.10–8) to build the LASSO models in R and tested a

sequence of 20 cost parameters (equivalent or the lambda parameter controlling the regularization strength)

evenly spaced from 0.0012 to 0.22. The cost parameter was selected to maximize the AUROC within the

training set.

External evaluation of disease specificity of the metagenomic classifiers

To assess how disease-specific the predictions of the CRC models were, we applied these to data from

case-control studies investigating other human diseases. Fecal metagenomic data of patients with Parkinson’s

disease 12, type 2 diabetes 4,5, and inflammatory bowel disease 6,7 were taxonomically profiled as described

earlier. The parameters for quality control with MOCAT2 and for mOTUs2 were the same as described earlier,

except for the data from 6, where we used mOTUs2 with -l 50 to set the threshold for minimum alignment length

to 50 since the read length is shorter (average read length 71) compared to the other more recently generated

Illumina shotgun metagenomic data.

Relative abundance data were treated exactly as another hold-out data set for each model, that is, by applying

the frozen normalization prediction routines as described earlier. For each CRC model applied to the external

data sets, a cutoff on its prediction output was adjusted to yield an FPR of 0.1 on the CTRLs of its respective

(CRC) training set. Subsequently, its FPR on metagenomes from patients suffering from the previously

mentioned (non-CRC) conditions was assessed to evaluate its disease specificity. The rationale behind this is

that a metagenomic classifier that recognizes the general features of dysbiosis would be expected to predict

CRC patients and those suffering from other conditions at a similar rate; thus, in the evaluation described

previously, such a classifier would display a much higher FPR than on the CTRLs of its training set. In contrast,

maintaining a low FPR in this evaluation indicates that the classification model is based on CRC-specific

features rather than the hallmarks of general dysbiosis or non-specific inflammation.

Functional profiling of gut metabolic modules

Gut metabolic modules were calculated as originally proposed 31, using the KEGG orthology profiles based on

the IGC (see Functional metagenome profiling and data preprocessing) as input. Statistical analysis and

generalized fold change calculations were performed analogously to species profiles (see earlier). Gut

metabolic modules were summarized across functional groups (for example, amino acid degradation) as the

geometric mean of all modules within the respective group.

Targeted functional analysis of virulence and toxicity pathways of potential relevance in CRC

To investigate the toxicity and virulence mechanisms that have previously been implicated in CRC 40, for each

gene belonging to the respective virulence or toxicity pathway, we constructed an HMM. Each HMM was built

from a multiple sequence alignment generated by MUSCLE (MUltiple Sequence Comparison by Log-
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Expectation) 76, containing the respective reference sequences and close homologs identified using PSI-BLAST

(Position-Specific Iterative Basic Local Alignment Search Tool) 77. Multiple sequence alignments are available

together with the code for this study (https://github.com/zellerlab/crc_meta). Then, we screened the IGC

metagenomic gene catalog 30 with each HMM using the HMMER software (v.3.1b2) 78. Genes with an e-value

below 1 × 10−10 were filtered for uniqueness since in some cases the HMMs would call different regions in the

same gene. For single-gene virulence factors (that is, fadA and bft), potential IGC hits were aligned against the

reference sequence using the Needleman–Wunsch algorithm in the European Molecular Biology Open Software

Suite package 79. Hits were then filtered based on the percentage of sequence identity (cutoff: 40%) and

sequence similarly to the species relative abundance profiles based on maximum relative abundance (cutoff:

1 × 10−7) to exclude genes with limited relevance. Statistical analysis was performed on the sum of all genes.

For virulence pathways containing more than one gene, the IGC hits of each functional group within the pathway

were aligned against the respective reference sequence and filtered for the percentage of sequence identity and

maximum abundance. Then, all hits were clustered based on the Pearson correlation of the log abundances

across all samples using the Ward algorithm as implemented in the ‘hclust’ function in R. The gene clusters

were filtered based on operon completeness (that is, how many genes of the operon were present in the cluster)

and average correlation within the cluster (Extended Data Fig. 9). For statistical analysis, the genes in the

selected gene clusters were summed within each group or all together for the overall analysis.

Quantitative PCR for baiF

Real-time qPCR to quantify the abundance and expression of baiF was performed on a subset of samples in the

German cohort (20 CTRL and 24 CRC samples; see Supplementary Table 6). For these samples, DNA and RNA

extraction was done with the Allprep PowerFecal DNA/RNA Kit (QIAGEN) with additional RNAse and DNAse

digestion steps, respectively, as described by the manufacturer. DNA and RNA concentrations were determined

using a Qubit Fluorometer (Invitrogen); quality control of all RNA samples was done using an Agilent 2100

Bioanalyzer (Agilent Technologies) in combination with the RNA 6000 Nano and Pico LabChip kits (Agilent

Technologies).

First-strand complementary DNA (cDNA) was synthesized using the SuperScript IV VILO Master Mix with the

ezDNAse enzyme and random hexamer primers (Thermo Fisher Scientific), as recommended by the

manufacturer. Reactions were performed as described in the protocol with one minor change of temperature.

The incubation for the reverse transcription step was carried out at 55 °C.

To quantify baiF relative to the total bacterial RNA/DNA in a sample, qPCR was performed in triplicates for the

16S rRNA and baiF genes using both cDNA and gDNA as templates. We used the following primers for baiF:

TTCAGYTTCTACACCTG (forward); GGTTRTCCATRCCGAACAGCG (reverse); standard primers F515 and R806 for

16S 80. Real-time PCR reactions were prepared with a final primer concentration of 0.5 μM, including 5 ng of

gDNA or 10 ng of cDNA in a 20 μl final reaction volume; reactions were performed with a SYBR Green qPCR Mix

on a StepOne Real-Time PCR system (Thermo Fisher Scientific). Cycling conditions were as follows: initial

denaturation at 95 °C for 10 min; 40 cycles of denaturation at 95 °C for 15 s; and annealing at 60 °C for 60 s

followed by melt curve analysis.
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Δ-Ct values were calculated as the difference between baiF and 16S Ct values. The significance of the

comparison between CTRL and CRC samples was tested on the Δ-Ct values using a one-sided Wilcoxon test as

confirmation of metagenomic enrichment.

Data availability

The raw sequencing data for the samples in the German study that have not been published before (see

Methods) are available from the European Nucleotide Archive under study no. PRJEB27928. The metadata for

these samples are available as Supplementary Table 6.

For the other studies included in the current study, the raw sequencing data can be found under the following

European Nucleotide Archive identifiers: PRJEB10878 for 11; PRJEB12449 for 10; ERP008729 for 9; and

ERP005534 for 8. The independent validation cohorts can be found in the Sequence Read Archive under the

identifier no. SRP136711 for 24 and in the DNA Data Bank of Japan database under identification no.

DRA006684.

The filtered taxonomic and functional profiles used as input for the statistical modeling pipeline are available in

Supplementary Data 1.

The code and all analysis results can be found under https://github.com/zellerlab/crc_meta.
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Abstract
The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers

using machine learning (ML). However, metagenomics-specific software is scarce, and

overoptimistic evaluation and limited cross-study generalization are prevailing issues. To

address these, we developed SIAMCAT, a versatile R toolbox for ML-based comparative

metagenomics. We demonstrate its capabilities in a meta-analysis of fecal metagenomic

studies (10,803 samples). When naively transferred across studies, ML models lost

accuracy and disease specificity, which could however be resolved by a novel training set

augmentation strategy. This reveals some biomarkers to be disease-specific, with others

shared across multiple conditions. SIAMCAT is freely available from siamcat.embl.de.

Introduction

The study of microbial communities through metagenomic sequencing has begun to

uncover how communities are shaped by—and interact with—their environment, including

the host organism in the case of gut microbes1,2. Especially within a disease context,

differences in human gut microbiome compositions have been linked to many common

disorders, for example, colorectal cancer3, inflammatory bowel disease4,5, or arthritis6,7. As

the microbiome is increasingly recognized as an important factor in health and disease,

many possibilities for clinical applications are emerging for diagnosis8,9, prognosis, or

prevention of disease10.

The prospect of clinical applications also comes with an urgent need for methodological

rigor in microbiome analyses in order to ensure the robustness of findings. It is necessary to
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assess the clinical value of biomarkers identified from the microbiome in an unbiased

manner—not only by their statistical significance, but more importantly also by their

prediction accuracy on independent samples (allowing for external validation). Machine

learning (ML) models—ideally interpretable and parsimonious ones—are crucial tools to

identify and validate such microbiome signatures. Setting up ML workflows however poses

difficulties for novices. In general, it is challenging to assess their performance in an

unbiased way, to apply them in cross-study comparisons, and to avoid confounding factors,

for example, when disease and treatment effects are intertwined11. For microbiome studies,

additional issues arise from key characteristics of metagenomic data such as large technical

and inter-individual variation12, experimental bias13, compositionality of relative

abundances, zero inflation, and non-Gaussian distribution, all of which necessitate data

normalization in order for ML algorithms to work well.

While several statistical analysis tools have been developed specifically for microbiome

data, they are generally limited to testing for differential abundance of microbial taxa

between groups of samples and do not allow users to evaluate their predictivity as they do

not comprise full ML workflows for biomarker discovery14–16. To overcome the limitations of

testing-based approaches, several researchers have explicitly built ML classifiers to

distinguish case and control samples17–24; however, the software resulting from these

studies is generally not easily modified or transferred to other classification tasks or data

types. To our knowledge, a powerful yet user-friendly computational ML toolkit tailored to

the characteristics of microbiome data has not yet been published.

Here, we present SIAMCAT (Statistical Inference of Associations between Microbial

Communities And host phenoTypes), a comprehensive toolbox for comparative

metagenome analysis using ML, statistical modeling, and advanced visualization

approaches. It also includes functionality to identify and visually explore confounding

factors. To demonstrate its versatile applications, we conducted a large-scale ML

meta-analysis of 130 classification tasks from 50 gut metagenomic studies (see Table 1)

that have been processed with a diverse set of taxonomic and functional profiling tools.

Based on this large-scale application, we arrive at recommendations for sensible parameter

choices for the ML algorithms and preprocessing strategies provided in SIAMCAT. Moreover,

we illustrate how several common pitfalls of ML applications can be avoided using the

statistically rigorous approaches implemented in SIAMCAT. When considering the
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cross-study application of ML models, we note prevailing problems with type I error control

(i.e., elevated false-positive rate, abbreviated as FPR) as well as disease specificity for ML

models naively transferred across datasets. To alleviate these issues, we propose a strategy

based on sampling additional external controls during cross-validation (which we call

control augmentation). This enables cross-disease comparison of gut microbial biomarkers.

Lastly, we showcase how SIAMCAT facilitates meta-analyses in an application to fecal

shotgun metagenomic data from five independent studies of Crohn’s disease. SIAMCAT is

implemented in the R programming language and freely available from siamcat.embl.de or

Bioconductor.

Table 1: Overview of diseases and datasets included in the ML meta-analysis
Disease Disease abbr. Datasets Data type
Ankylosing spondylitis AS 7 Shotgun

Rheumatoid arthritis ART
25 16S rRNA
6 Shotgun

Type 1 diabetes T1D 26 16S rRNA
Crohn’s disease CD 5,27–30 Shotgun
Ulcerative colitis UC 5,30,31 Shotgun
Inflammatory bowel disease IBD 4,32–34 16S rRNA

Colorectal cancer CRC
35–41 Shotgun
35,42–44 16S rRNA

Advanced colorectal adenoma(s) ADA 35,36,40,41 Shotgun
Atherosclerotic cardiovascular
disease ACVD

45

Shotgun

Hypertension
Pre-hypertension

HT
pHT

46

Shotgun

Clostridioides difficile infection CDI 47,48 16S rRNA
enteric diarrheal disease EDD 49 16S rRNA
HIV infection HIV 50–52 16S rRNA

Liver cirrhosis LIV
53 Shotgun
54 16S rRNA

Non-alcoholic fatty liver disease NAFLD
55,56 Shotgun
57,58 16S rRNA

Parkinsons’ disease PAR
59 Shotgun
60 16S rRNA

Autism spectrum disorder ASD 61,62 16S rRNA

Obesity OB
63 Shotgun
64–67 16S rRNA

Metabolic syndrome MS 68 Shotgun
Type 2 diabetes T2D 69,70 Shotgun
Impaired glucose tolerance IGT 69 Shotgun
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Results

Machine learning and statistical analysis workflows implemented in SIAMCAT

The SIAMCAT R package is a versatile toolbox for analyzing microbiome data from

case-control studies. The default workflows abstract from and combine many of the

complex steps that these workflows entail and that can be difficult to implement correctly

for non-experts. To increase ease of use, SIAMCAT interfaces with the popular phyloseq

package71, and design and parameter choices are carefully adapted to metagenomic data

analysis. In addition to functions for statistical testing of associations, SIAMCAT workflows

include ML procedures, also encompassing data preprocessing, model fitting, performance

evaluation, and visualization of the results and models (Fig. 1a). Core ML functionality is

based on the mlr package72. The input for SIAMCAT consists of a feature matrix

(abundances of microbial taxa, genes, or pathways across all samples), a group label

(case-control information for all samples), and optional meta-variables (such as

demographics, lifestyle, and clinical records of sample donors or technical parameters of

data acquisition).

To demonstrate the main workflow and primary outputs of the SIAMCAT package (see the

“Methods” section and SIAMCAT vignettes), we analyzed a representative dataset73

consisting of 128 fecal metagenomes from patients with ulcerative colitis (UC) and non-UC

controls (Fig. 1). UC is a subtype of inflammatory bowel disease (IBD), a chronic

inflammatory condition of the gastrointestinal tract that has been associated with dramatic

changes in the gut microbiome5,74. As input, we used species-level taxonomic profiles

available through the curatedMetagenomicsData R package75.

After data preprocessing (unsupervised abundance and prevalence filtering, Fig. 1a and the

Methods section), univariate associations of single species with the disease are computed

using the non-parametric Wilcoxon test (which has been shown for metagenomic data to

reliably control the false discovery rate in contrast to many other tests proposed76), and the

results are visualized (using the check.associations function). The association plot displays

the distribution of microbial relative abundance, the significance of the association, and a

generalized fold change as a non-parametric measure of effect size39 (Fig. 1b).
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Fig. 1: Despite study differences, meta-analysis identifies a core set of gut microbes strongly associated
with CRC.
a, The meta-analysis significance of gut microbial species derived from blocked Wilcoxon tests (n = 574
independent observations) is given by the bar height (FDR = 0.005). b, Underneath, species-level significance, as
calculated with a two-sided Wilcoxon test (FDR-corrected P value), and the generalized fold change (Methods)
within individual studies are displayed as heatmaps in gray and in color, respectively (see color bars and Table 1
for details on the studies included). Species are ordered by meta-analysis significance and direction of change.
AT, Austria; CN, China; DE, Germany; FR, France; US, United States. c, For a core of highly significant species
(meta-analysis FDR = 1 × 10−5), association strength is quantified by the AUROC across individual studies
(color-coded diamonds), and the 95% confidence intervals are indicated by the gray lines. Family-level taxonomic
information is color-coded above the species names (the numbers in brackets are mOTUs2 species identifiers;
see Methods). d, Variance explained by disease status (CRC versus CTRLs) is plotted against variance explained
by study effects for individual microbial species with dot size being proportional to abundance (see Methods);
core microbial markers are highlighted in red.
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The central component of SIAMCAT consists of ML procedures, which include a selection of

normalization methods (normalize.features), functionality to set up a cross-validation

scheme (create.data.split), and interfaces to different ML algorithms, such as LASSO, Elastic

Net, and random forest (offered by the mlr package72)77–79. As part of the cross-validation

procedure, models can be trained (train.model) and applied to make predictions

(make.predictions) on samples not used for training. Based on these predictions, the

performance of the model is assessed (evaluate.predictions) using the area under the

receiver operating characteristic (ROC) curve (AUROC) (Fig. 1d). SIAMCAT also provides

diagnostic plots for the interpretation of ML models (model.interpretation.plot) which

display the importance of individual features in the classification model, normalized feature

distributions as heatmaps, next to sample meta-variables (optionally, see Fig. 1c, e).

Expert users can readily customize and flexibly recombine the individual steps in the

described workflow above. For example, filtering and normalization functions can be

combined or omitted before ML models are trained or association statistics calculated. To

demonstrate its versatility beyond the workflow presented in Fig. 1a, we used SIAMCAT to

reproduce two recent ML meta-analyses of metagenomic datasets19,20. By implementing the

same workflows as described in the respective papers, we could generate models with very

similar accuracy (within the 95% confidence interval) for all datasets analyzed (Additional

file 1: Figure S1).

Confounder analysis using SIAMCAT

As many biological and technical factors beyond the primary phenotype of interest can

influence microbiome composition1, microbiome association studies are often at a high risk

of confounding, which can lead to spurious results11,80–82. To minimize this risk, SIAMCAT

provides a function to optionally examine potential confounders among the provided

meta-variables. In the example dataset from73, control samples were obtained from both

Spanish and Danish subjects, while UC samples were only taken from Spanish individuals

(Fig. 2a). Here, the meta-variable “country” could be viewed as a surrogate variable for

other (often difficult-to-measure) factors, which can influence microbiome composition,

such as diet, lifestyle, or technical differences between studies. The strong association of

the “country” meta-variable with the disease status (SIAMCAT computes such associations
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using Fisher’s exact test or the Wilcoxon test for discrete and continuous meta-variables,

respectively; see Fig. 2a) hints at the possibility that associations computed with the full

dataset could be confounded by the country of the sample donor.

Fig. 2: Analysis of covariates that potentially confound microbiome-disease associations and classification
models.
The UC dataset73 contains fecal metagenomes from subjects enrolled in two different countries and generated
using different experimental protocols (data shown is from curatedMetagenomicData with CD cases and
additional samples per subject removed). a, Visualizations from the SIAMCAT confounder checks reveal that only
control samples were taken from Denmark suggesting that any (biological or technical) differences between
Danish and Spanish samples might confound a naive analysis for UC-associated differences in microbial
abundances. b, Analysis of variance (using ranked abundance data) shows many species differ more by country
than by disease, with several extreme cases highlighted. c, When comparing (FDR-corrected) P values obtained
from SIAMCAT’s association testing function applied to the whole dataset (y-axis) to those obtained for just the
Danish samples (x-axis), only a very weak correlation is seen and strong confounding becomes apparent for
several species including Dorea formicigenerans (highlighted). d, Relative abundance differences for Dorea
formicigenerans are significantly larger between countries than between Spanish UC cases and controls (P values
from Wilcoxon test) (see Fig. 1c for the definition of boxplots). e, Distinguishing UC patients from controls with the
same workflow is possible with lower accuracy when only samples from Spain are used compared to the full
dataset containing Danish and Spanish controls. This implies that in the latter case, the machine learning model is
confounded as it exploits the (stronger) country differences (see c and f), not only UC-associated microbiome
changes. f, This is confirmed by the result that control samples from Denmark and Spain can be very accurately
distinguished with an AUROC of 0.96 (using SIAMCAT classification workflows)
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To quantify this confounding effect on individual microbial features, SIAMCAT additionally

provides a plot for each meta-variable that shows the variance explained by the label in

comparison with the variance explained by the meta-variable for each individual feature

(Fig. 2b, implemented in the check.confounder function). In our example case, several

microbial species are strongly associated with both the disease phenotype (UC vs control)

and the country, indicating that their association with the label might simply be an effect of

technical and/or biological differences between samples taken and data processed in the

different countries.

To further investigate this confounder, we used SIAMCAT to compute statistical association

for the full dataset (including the Danish control samples) and the reduced dataset

containing only samples from Spanish individuals (using the check.association function).

The finding that P values were uncorrelated between the two datasets (Fig. 2c) directly

quantified the effect of confounding by country on the disease-association statistic. The

potential severity of this problem is highlighted by a comparison of the relative abundance

of Dorea formicigenerans across subjects: the differences between UC cases and controls

are only significant when Danish control samples are included, but not when restricted to

Spanish samples only (Fig. 2d), exemplifying how confounders can lead to spurious

associations.

Finally, confounding factors can not only bias statistical association tests, but can also

impact the performance of ML models. A model trained to distinguish UC patients from

controls seemingly performs better if the Danish samples are included (AUROC of 0.84

compared to 0.76 if only using Spanish samples), because the differences between controls

and UC samples are artificially inflated by the differences between Danish and Spanish

samples (Fig. 2e). How these overall differences between samples taken in different

countries can be exploited by ML models can also be directly quantified using SIAMCAT

workflows. The resulting model trained to distinguish between control samples from the

two countries can do so with almost perfect accuracy (AUROC of 0.96) (Fig. 2f). This

analysis demonstrates how confounding factors can lead to exaggerated performance

estimates for ML models.
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In summary, SIAMCAT can help to detect influential confounding factors that have the

potential to bias statistical associations and ML model evaluations (see Additional file 1:

Figure S2 for additional examples).

Advanced machine learning workflows

When designing more complex ML workflows involving feature selection steps or

applications to time series data, it becomes more challenging to set up cross-validation

procedures correctly. Specifically, it is important to estimate how well a trained model

would generalize to an independent test set, which is typically the main objective of

microbial biomarker discovery. An incorrect ML procedure, in which information leaks from

the test to the training set, can result in overly optimistic (i.e., overfitted) performance

estimates. Two pitfalls that can lead to overfitting and poor generalization to other datasets

(Fig. 3a) are frequently encountered in ML analyses of microbiome and other biological

data, even though the issues are well described in the statistics literature83–85. These issues,

namely supervised feature filtering and naive splitting of dependent samples, can be

exposed by testing model performance in an external validation set, which has not been

used during cross-validation at all (Fig. 3b).

The first issue arises when feature selection taking label information into account

(supervised feature selection) is naively combined with subsequent cross-validation on the

same data84. This incorrect procedure selects features that are associated with the label

(e.g., by testing for differential abundance) on the complete dataset leaving no data aside

for an unbiased test error estimation of the whole ML procedure. To avoid overfitting,

correct supervised feature selection should always be nested into cross-validation (that is,

the supervised feature selection has to be applied to each training fold of the

cross-validation separately). To illustrate the extent of overfitting resulting from the

incorrect approach, we used two datasets of colorectal cancer (CRC) patients and controls

and performed both the incorrect and correct ways of supervised feature selection. As

expected, the incorrect feature selection led to inflated performance estimates in

cross-validation but lower generalization to an external dataset, whereas the correct

procedure gave a better estimate of the performance in the external test set; the fewer

features were selected, the more the performance in the external datasets dropped (see
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Fig. 3c). SIAMCAT readily provides implementations of the correct procedure and

additionally takes care that the feature filtering and normalization of the whole dataset are

blind to the label (therefore called unsupervised), thereby preventing accidental

implementation of the incorrect procedure.

Fig 3: SIAMCAT aids in avoiding common pitfalls leading to a poor generalization of machine learning
models.
a, Incorrectly setup machine learning workflows can lead to overoptimistic accuracy estimates (overfitting): the
first issue arises from a naive combination of feature selection on the whole dataset and subsequent
cross-validation on the very same data83. The second one arises when samples that were not taken independently
(as is the case for replicates or samples taken at multiple time points from the same subject) are randomly
partitioned in cross-validation with the aim to assess the cross-subject generalization error (see the main text). b,
External validation, for which SIAMCAT offers analysis workflows, can expose these issues. The individual steps in
the workflow diagram correspond to SIAMCAT functions for fitting a machine learning model and applying it to an
external dataset to assess its external validation accuracy (see SIAMCAT vignette: holdout testing with SIAMCAT).
c, External validation shows overfitting to occur when feature selection and cross-validation are combined
incorrectly in a sequential manner, rather than correctly in a nested approach. The correct approach is
characterized by a lower (but unbiased) cross-validation accuracy, but better generalization accuracy to external
datasets (see header for datasets used). The fewer features are selected, the more pronounced the issue
becomes, and in the other extreme case (“all”), feature selection is effectively switched off. d, When dependent
observations (here by sampling the same individuals at multiple time points) are randomly assigned to
cross-validation partitions, effectively the ability of the model to generalize across time points, but not across
subjects, is assessed. To correctly estimate the generalization accuracy across subjects, repeated measurements
need to be blocked, all of them either into the training or test set. Again, the correct procedure shows lower
cross-validation accuracy, but higher external validation accuracy

The second issue tends to occur when samples are not independent85. For example,

microbiome samples taken from the same individual at different time points are usually a

lot more similar to each other than those from different individuals (see ref.12 and

Additional file 1: Figure S3). If these dependent samples are randomly split in a standard

cross-validation procedure, so that some could end up in the training set and others in the

test set, it is effectively estimated how well the model generalizes across time points (from

the same individual) rather than across individuals. To avoid this, dependent measurements

need to be blocked during cross-validation, ensuring that measurements of the same
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individual are assigned to the same test set. How much the naive procedure can

overestimate the performance in cross-validation and underperform in external validation

compared to the correctly blocked procedure is demonstrated here using the iHMP dataset,

which contains several samples per subject30. Although the cross-validation accuracy

appears dramatically lower in the correct compared to the naive procedure, generalization

to other datasets of the same disease is higher with the correctly blocked model (Fig. 3d).

SIAMCAT offers the possibility to block the cross-validation according to meta-variables by

simply providing an additional argument to the respective function call (see also SIAMCAT

vignettes).

Large-scale machine learning meta-analysis

Previous studies that applied ML to microbiome data17–20 have compared and discussed the

performance of several learning algorithms. However, their recommendations were based

on the analysis of a small number of datasets which were technically relatively

homogeneous. To overcome this limitation and to demonstrate that SIAMCAT can readily be

applied to various types of input data, we performed a large-scale ML meta-analysis of

case-control gut metagenomic datasets. We included taxonomic profiles obtained with the

RDP taxonomic classifier86 for 26 datasets based on 16S rRNA gene sequencing20;

additionally, taxonomic profiles generated from 12 and 24 shotgun metagenomic datasets

using either MetaPhlAn287 or mOTUs288, respectively, as well as functional profiles obtained

with HUMAnN289 or with eggNOG 4.590 for the same set of shotgun metagenomic data were

included (in total 130 classification tasks, see Table 1 and Additional file 2: Table S1 for

information about included datasets).

Focusing first on intra-study results, we found that given a sufficiently large input dataset

(with at least 100 samples), SIAMCAT models are generally able to distinguish reasonably

well between cases and controls: the majority (58%) of these datasets in our analysis could

be classified with an AUROC of 0.75 or higher—compared to only 36% of datasets with

fewer than 100 samples (Fig. 4a–c, Additional file 1: Figures S4 and S5 and the Methods

section). Of note, accurate ML-based classification was possible even for datasets in which

cases and controls could not easily be separated using beta-diversity analyses (Additional

file 1: Figure S6), indicating that a lack of separation in ordination analysis does not

101



SIAMCAT publication

preclude ML-based workflows to extract accurate microbiome signatures. In the datasets

for which a direct comparison of mOTUs2 and MetaPhlAn2 profiles was possible, we did not

find any consistent trend towards either profiling method (paired Wilcoxon P=0.41, see

Additional file 1: Figure S7). When comparing taxonomic and functional profiles derived

from the same dataset, we found a high correlation between AUROC values (Pearson’s

r = 0.92, P<2 × 10−16), although on average taxonomic profiles performed slightly better

than functional profiles (Additional file 1: Figure S7). Taken together, this indicates that

SIAMCAT can extract accurate microbiome signatures (model cross-validation AUROC

> 0.75 in 64 of 130 classification tasks) from a range of different input profiles commonly

used in microbiome research.

SIAMCAT provides various methods for data filtering and normalization and interfaces to

several ML algorithms through mlr72. This made it easy to explore the space of possible

workflow configurations in order to arrive at recommendations about sensible default

parameters. To test the influence of different parameter choices within the complete data

analysis pipeline, we performed an ANOVA analysis to quantify their relative importance on

the resulting classification accuracy (Fig. 4d and the Methods section). Whereas the choice

of filtering method and feature selection regime has little influence on the results, the

normalization method and ML algorithm explained more of the observed variance in

classification accuracy. Analysis of the different normalization methods shows that most of

the differences can be explained by a drop in performance for naively normalized data (only

total sum scaling and no further normalization) in combination with LASSO or Elastic Net

logistic regression (Additional file 1: Figure S8). In contrast, the random forest classifier

depended much less on optimal data normalization. Lastly, we compared the best

classification accuracy for each classification task across the different ML algorithms.

Interestingly, in contrast to a previous report19, this analysis indicates that on average

Elastic Net logistic regression outperforms LASSO and random forest classifiers when

considering the optimal choice of ML algorithm (P=0.001 comparing Elastic Net to LASSO

and P=4 × 10−14 comparing it to random forest, Fig. 4e). In summary, this large-scale

analysis demonstrates the versatility of the ML workflows provided by SIAMCAT and

validates its default parameters as well as the robustness of classification accuracy to

deviations from these.
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Fig.4: Large-scale application of the SIAMCAT machine learning workflow to human gut metagenomic
disease association studies.
a, Application of SIAMCAT machine learning workflows to taxonomic profiles generated from fecal shotgun
metagenomes using the mOTUs2 profiler. Cross-validation performance for discriminating between diseased
patients and controls quantified by the area under the ROC curve (AUROC) is indicated by diamonds (95%
confidence intervals denoted by horizontal lines) with sample size per dataset given as additional panel (cut at
N = 250 and given by numbers instead) (see Table 1 and Additional file 2: Table S1 for information about the
included datasets and key for disease abbreviations). b, Application of SIAMCAT machine learning workflows to
functional profiles generated with eggNOG 4.5 for the same datasets as in a (see Additional file 1: Figure S4, S7
for additional types of and comparison between taxonomic and functional input data). c, Cross-validation
accuracy of SIAMCAT machine learning workflows as applied to 16S rRNA gene amplicon data for human gut
microbiome case-control studies 20 (see a for definitions). d, Influence of different parameter choices on the
resulting classification accuracy. After training a linear model to predict the AUROC values for each classification
task, the variance explained by each parameter was assessed using an ANOVA (see the Methods section) (see Fig.
1 for the definition of boxplots). e, Performance comparison of machine learning algorithms on gut microbial
disease association studies. For each machine learning algorithm, the best AUROC values for each task are shown
as boxplots (defined as in d). Generally, the choice of algorithm only has a small effect on classification accuracy,
but both the Elastic Net and LASSO performance gains are statistically significant (paired Wilcoxon test: LASSO vs
Elastic Net, P = 0.001; LASSO vs random forest, P = 1e−08; Elastic Net vs random forest, P = 4e−14)
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Cross-study evaluation of microbiome signatures is crucial to establish their validity across

patient populations. However, such comparisons are potentially hindered by inter-study

differences in sample handling and data generation, with technical variation observed to

often dominate over biological factors of interest91–93. Additionally, biological and clinical

factors can contribute to inter-study differences. These not only include influences of

geography, ethnicity, demographics, and lifestyle, but also how clinical phenotypes are

defined and controls selected for each study94.

Up to now, it has not been systematically explored how well microbiome-based ML models

transfer across a range of diseases. To close this gap, we used our large-scale ML

meta-analysis and trained ML models for each task using mOTUs2 taxonomic profiles as

input (based on the previously established best-performing parameter set). We

subsequently focused on models with reasonable cross-validation accuracy (AUROC

> 0.75) and applied these to all remaining datasets to make predictions.

Cross-study application of ML models is straightforward within the same disease, since the

model predictions on external datasets can easily be evaluated by an AUROC (Additional

file 1: Figure S9, ref.39,40) under the assumption that case and control definitions are

comparable between studies. However, when applying an ML model to a dataset from

another disease, ROC analysis cannot be directly applied, since the cases the model was

originally trained to detect are from another disease than those of the evaluation dataset.

For this cross-disease application of ML models, we conducted extended evaluations,

which specifically addressed the following two questions (see Additional file 1: Figure S10

and the Methods section). First, we asked to which extent the separation between cases

and controls (in terms of prediction scores) would be maintained when control samples of a

different study are used. We therefore employed a modified ROC analysis (comparing

true-positive rates from cross-validation to external FPRs via AUROC) as a newly defined

measure of cross-study portability of an ML model. For convenience, we rescaled it to range

between 0 (indicating a complete loss of discriminatory power on external data) and 1

(meaning that the ML model could be transferred to another dataset without loss of

discrimination accuracy). Second, we asked how specific an ML model would be to the
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disease it was trained to recognize, or whether its FPR would be elevated when presented

with cases from a distinct condition. This is of interest in the context of an ongoing debate

on whether there is a general gut microbial dysbiosis or distinct compositional changes

associated with each disease19,20,95. Disease-specific classifiers would also be of clinical

relevance when applied to a general population: due to large differences in disease

prevalence, a model for CRC (a condition with low prevalence) misclassifying many type 2

diabetes (T2D) patients (high prevalence) would in the general population detect many

more (false) T2D cases than true CRC cases, and thus have very low precision. To quantify

the prediction rate for other diseases of an ML model, i.e., its disease specificity, we

assessed how many samples from a distinct disease would be mispredicted as positive for

the disease the ML model was trained on at a cutoff adjusted to maintain a FPR of 10% on

the cross-validation set.

These extended evaluations showed low cross-study portability on the majority of external

datasets (apparent also from a more than twofold increase in false positives on average) for

most models (Additional file 1: Figure S11). Similarly, (false-positive) predictions for other

diseases were elevated for most models (by a factor of 2.8 on average), with the extreme

case of the ankylosing spondylitis (AS) model predicting more than 90% of cases from

other diseases to be AS positive (median across studies, Additional file 1: Figure S12).

These evaluations indicate that naive ML model transfer is substantially impacted—if not

rendered impossible—by biological and technical study heterogeneity, apparent from loss

of general accuracy and disease specificity.

Fig. 5 [next page]: Control augmentation improves ML model disease specificity and reveals shared and
distinct predictors.
a, Schematic of the control augmentation procedure: control samples from external cohort studies are added to
the individual cross-validation folds during model training. Trained models are applied to external studies (either
of a different or the same disease) to determine cross-study portability (defined as maintenance of type I error
control on external control samples) and cross-disease predictions (i.e., false detection of samples from a
different disease). b, Cross-study portability was compared between naive and control-augmented models
showing consistent improvements due to control augmentation. c, Boxplots depicting cross-study portability (left)
and prediction rate for other diseases (right) of naive and control-augmented models (see Fig. 1 for the definition
of boxplots). d, Heatmap showing prediction rates for other diseases (red color scheme) and for the same disease
(green color scheme) for control-augmented models on all external datasets. True-positive rates of the models
from cross-validation on the original study are indicated by boxes around the tile. Prediction rates over 10% are
labeled.
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Fig. 5 [continued] e, Principal coordinate (PCo) analysis between models based on Canberra distance on model
weights. Diamonds represent the mean per dataset in PCo space across cross-validation splits, and lines show
the standard deviation. f, Visualization of the main selected model weights (predictors corresponding to mOTUs,
see the Methods section for the definition of cutoffs) by genus and disease. Absolute model weights are shown as
a dot plot on top, grouped by genus (including only genera with unambiguous NCBI taxonomy annotation). Below,
the number of selected weights per genus is shown as a bar graph, colored by disease (see e for color key). Genus
labels at the bottom include the number of mOTUs with at least one selected weight followed by the number of
mOTUs in the complete model weight matrix belonging to the respective genus.
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In order to improve the cross-study portability of ML models, we devised a strategy we call

control augmentation, in which randomly selected control samples from independent

microbiome population cohort studies96–98 are added to the training set during model fitting

(Fig. 5a, see the Methods section). This was motivated by the hypothesis that additional

variability from a greater control pool comprising heterogeneous samples from multiple

studies would enable classifiers to more specifically recognize disease signals while at the

same time minimizing overfitting on peculiarities of a single dataset. However, a theoretical

limitation of this approach is that the definition of controls can vary greatly across studies.

In spite of this, in practice, we found control augmentation to greatly enhance cross-study

portability uniformly across all ML models, both in cross-study analysis within the same

condition and across different diseases (Fig. 5b, c, Additional file 1: Figure S9, S11). At

the same time, cross-disease predictions decreased (Fig. 5c, d, Additional file 1: Figure

S12) implying that it is an effective strategy to increase disease specificity of ML models.

The control augmentation strategy did not strongly depend on the set of controls used. We

found large (> 250 samples) cohort studies to work well as a pool for control augmentation

(allowing us to add five times the amount of control samples to each dataset). However,

augmentation with fewer controls or with other datasets improved cross-study portability

and disease specificity to almost the same effect (Additional file 1: Figure S13).

With cross-study portability greatly improved, we expect the remaining cross-disease

predictions to be largely due to biological similarities between diseases rather than due to

technical influences. In support of this, we show that CRC signatures have a tendency to

cross-predict samples from patients with intestinal adenomas (ADA) or inflammatory bowel

disease (CD), both of which are risk factors for CRC development99. Similarly, UC models

cross-predict CD cases and vice versa, reflecting more general gut microbial changes, i.e.,

loss of beneficial commensal bacteria, that are shared across both types of inflammatory

bowel disease100. In summary, we demonstrate that control augmentation is an effective

strategy to broadly enable the validation of microbiome disease signatures across different

studies, since it can overcome study-specific biases, which preclude the naive transfer of

ML models.
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When comparing microbiome signatures across diseases in more detail, we also revisited

the question of whether microbiome alterations are specific to a disease, or signs of a

general dysbiotic state20. As many ML algorithms, in particular (generalized) linear models,

such as LASSO or Elastic Net logistic regression models, allow for model introspection,

microbiome biomarkers can easily be extracted and their weight in the model directly

quantified by (normalized) coefficient values. The model weights of the control-augmented

models showed a clear clustering by disease in principal coordinate space revealing broad

disease similarity patterns in terms of microbiome predictors that may reflect etiological

similarities (Fig. 5e, not apparent from naively transferred ML models, Additional file 1:

Figure S14). To obtain a more nuanced view of the gut bacterial taxa underlying these

disease similarities, we analyzed individual mOTUs (grouped by genus membership) that

were selected as predictors in disease models (Fig. 5f, to minimize bias from multiple

studies of the same disease, we used the mean model for each disease and extracted those

features whose weights accounted for more than 50% of the model, see the Methods

section for details). We found some disease-enriched predictors to be very specific for a

single disease, such as Veillonella spp. for LIV, Bifidobacteria and Neisseria mOTUs for AS,

or Gemella and Parvimonas mOTUs for CRC. In contrast, species from other genera, for

example, Lactobacillus, Bacteroides, or Fusobacteria, appear predictive of several diseases,

although species and subspecies belonging to these vary in terms of their disease

specificity (Additional file 1: Figure S15). Regarding control-enriched predictors, species

from some genera are frequently depleted across multiple diseases (Anaerostipes and

Romboutisa) while some diseases are marked by broad depletion of beneficial microbes,

e.g., CD (consistent with ref.100).

Overall, enabled by control augmentation as an effective strategy to improve cross-study

portability of ML models, our cross-disease meta-analysis reveals both shared and

disease-specific predictors as a basis for further development of microbiome-based

diagnostic biomarkers.

Meta-analysis of Crohn’s disease gut microbiome studies

Microbiome disease associations being reported at an ever-increasing pace have also

provided opportunities for comparisons across multiple studies of the same disease to

assess the robustness of associations and the generalizability of ML models19,20,39,40. To
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demonstrate SIAMCAT’s utility in single-disease meta-analyses, we analyzed five

metagenomic datasets5,28–30,73, all of which included samples from patients with Crohn’s

disease (CD) as well as controls not suffering from inflammatory bowel diseases (IBD). Raw

sequencing data were consistently processed to obtain genus abundance profiles with

mOTUs288.

Fig. 6: Meta-analysis of CD studies based on fecal shotgun metagenomic data.
a, Genus-level univariate and multivariable associations with CD across the five included metagenomic studies.
The heatmap on the left side shows the generalized fold change for genera with a single-feature AUROC higher
than 0.75 or smaller than 0.25 in at least one of the studies. Associations with a false discovery rate (FDR) below
0.1 are highlighted by a star. Statistical significance was tested using a Wilcoxon test and corrected for multiple
testing using the Benjamini-Hochberg procedure. Genera are ordered according to the mean fold change across
studies, and genera belonging to the Clostridiales order are highlighted by gray boxes. The right side displays the
median model weights for the same genera derived from Elastic Net models trained on the five different studies.
For each dataset, the top 20 features (regarding their absolute weight) are indicated by their rank. b, Variance
explained by disease status (CD vs controls) is plotted against the variance explained by differences between
studies for individual genera. The dot size is proportional to the mean abundance, and genera included in a are
highlighted in red or blue. c, Classification accuracy as measured by AUROC is shown as a heatmap for Elastic Net
models trained on genus-level abundances to distinguish controls from CD cases. The diagonal displays values
resulting from cross-validation (when the test and training set are the same), and off-diagonal boxes show the
results from the study-to-study transfer of models
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Based on SIAMCAT’s check.associations function, we identified microbial genera that are

significantly associated with CD in each study and visualized their agreement across studies

(Fig. 6a, left panel). In line with previous findings4, the gut microbiome of CD patients is

characterized by a loss of diversity and many beneficial taxa. Though our re-analysis of the

data from 30 could not identify any statistically significant genus-level associations, possibly

due to the relatively small number of individuals or the choice of control samples obtained

from patients with non-IBD gastrointestinal symptoms, the other four studies showed

remarkable consistency among the taxa lost in CD patients, in particular, for members of

the Clostridiales order.

We further investigated variation due to technical and biological differences between

studies as a potential confounder using SIAMCAT’s check.confounder function following a

previously validated approach39. For many genera, variation can largely be attributed to

heterogeneity among studies; the top five associated genera (cf. Fig. 6a), however, vary

much more with disease status, suggesting that their association with CD is only minimally

confounded by differences between studies (Fig. 6b).

Next, we systematically assessed cross-study generalization of ML models trained to

distinguish CD patients from controls using SIAMCAT workflows. To this end, we trained an

Elastic Net model for each study independently and evaluated the performance of the

trained models on the other datasets (Fig. 6c and the Methods section). Most models

maintained very high classification accuracy when applied to the other datasets for external

validation (AUROC > 0.9 in most cases); again with the exception of the model

cross-validated on the data from 30, which exhibited substantially lower accuracy in both

cross-validation and external validation.

We lastly assessed the importance of individual microbial predictors in the CD models. The

LASSO, and to some extent also the Elastic Net, are sparse models, in which the number of

influential predictors (with non-zero coefficients) is kept small. As a consequence, these ML

methods tend to omit statistically significant features when they are correlated to each

other in favor of a smaller subset of features with optimal predictive power. Nonetheless, in

our meta-analysis of CD, the feature weights derived from multivariable modeling
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corresponded well to the univariate associations, and also showed some consistency

across the four studies in which clear CD associations could be detected and an accurate

ML model trained (Fig. 6a, right panel). Taken together, these results demonstrate that

SIAMCAT could be a tool of broad utility for consolidating microbiome-disease associations

and biomarker discovery by leveraging a large amount of metagenomic data becoming

available for ML-based analyses.

Discussion

The rising interest in clinical microbiome studies and microbiome-derived diagnostic,

prognostic, and therapeutic biomarkers also calls for more robust analysis procedures. An

important step in that direction is the development of freely available, comprehensive, and

extensively validated analysis workflows that make complex ML procedures available to

non-experts, ideally while safeguarding against statistical analysis pitfalls. Designed with

these objectives in mind, SIAMCAT provides a modular analysis framework that builds on

the existing R-based microbiome analysis environment: data integration from DADA2101 or

phyloseq71 is straightforward since SIAMCAT internally uses the phyloseq object. ML

algorithms and procedures in SIAMCAT interface to the mlr package72, a general-purpose

ML library. Since the multitude of ML algorithms, workflow options, and design choices

within such a general package can make ML workflow design challenging for non-experts,

SIAMCAT mainly aims to enable users to apply robust and validated ML workflows to their

data with preprocessing and normalization options tailored to the characteristics of

microbiome data. At the same time, SIAMCAT allows advanced users to flexibly set up and

customize more complex ML procedures, including non-standard cross-validation splits for

dependent measurements and supervised feature selection methods that are properly

nested into cross-validation (Fig. 3). Further developments of the package are planned to

accommodate the rapidly changing needs of the microbiome research community, and

updates will be published in accordance with the established Bioconductor release

schedule.

To showcase the power of ML workflows implemented in SIAMCAT, we performed a

meta-analysis of human gut metagenomic studies at a considerably larger scale than

previous efforts17–22 (see Fig. 4). It importantly encompassed a large number of diseases as
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well as different taxonomic and functional profiles as input that were derived from different

metagenomic sequencing techniques (16S rRNA gene and shotgun metagenomics

sequencing) and profiling tools. Consequently, these benchmarks are expected to yield

much more robust and general results than those from previous studies17–22. In our

exploration of more than 7000 different parameter combinations per classification task

(see the Methods section), we found the Elastic Net logistic regression algorithm to yield

the highest cross-validation accuracies on average, albeit requiring the input data to be

appropriately normalized (see Fig. 4 and Additional file 1: Figure S8). Compared with the

choice of normalization method and classification algorithm, other parameters had a

considerably lower influence on the resulting classification accuracy. SIAMCAT’s

functionality to robustly fit statistical microbiome models and evaluate their performance

will enable comparison to established diagnostic biomarkers8 as an important prerequisite

for further translation of microbiome research into the clinic.

To help resolve the debate about spurious associations and reproducibility issues in

microbiome research102, meta-analyses are crucial for the validation of microbiome

biomarkers39,40. However, we found that ML models have substantial problems with type I

error control (> 2-fold increase in FPR) and disease specificity (> 2.5-fold elevated FPR)

when naively transferred across studies. We propose measures to detect these issues,

which, if more widely adopted, could help to more precisely characterize them and their

underlying causes. To address them, we introduce the control augmentation strategy, which

greatly improved the cross-study portability of ML models. Being the first attempt to

overcome study heterogeneity for improved cross-study model application, our work will

hopefully stimulate further developments, which could easily be evaluated on the provided

datasets. However, all such ML meta-analyses are limited by biological and clinical

differences between studies94, which will have to be addressed by better reporting

standards103. Within these limitations, our ML meta-analysis datasets could become a

valuable community resource for method development, systematic assessment of disease

similarities, and further exploration of globally applicable microbiome biomarkers including

validation of their disease specificity.
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Using model introspection after control augmentation, we could revisit the question if

microbiome alterations are specific to a given disease or more general hallmarks of

dysbiosis20. In general, we found depletion of beneficial bacteria to be more often shared

across several diseases (e.g., Anaerostipes or Romboutisa), in particular, in the subtypes of

IBD. Conversely, disease-enriched bacteria were more often specific to a given disease.

This could mean that some disease-specific microbiome alterations may reflect pathogens

or pathobionts acting either as etiological agents or exploiting specific disease-related

changes in the intestinal milieu. As examples of disease-specific markers, Parvimonas spp.

are predictive for colorectal cancer, which is consistent with mechanistic work

demonstrating this species to accelerate proliferation and cancer development both in vitro

and in vivo104. Similarly, a putative link between oral Veillonella spp. and liver cirrhosis

severity has been reported in the context of proton-pump inhibitor therapy105, potentially

enabled by increased transmission from the oral to the gut microbiome81. Other taxa

showing a broader disease spectrum, such as Fusobacterium spp., have been extensively

studied both in the context of CRC106 and in IBD107 using cellular and animal models.

However, firmly establishing disease specificity or disease spectra for microbial biomarkers

will be difficult to achieve in preclinical studies but require large patient cohorts.

Nonetheless, our analyses generated candidates of both shared and disease-specific gut

microbial biomarkers to guide further investigations of specific hypotheses on their

ecological roles.

Although the analyses presented here are focused on human gut metagenomic datasets

with disease prediction tasks, SIAMCAT is not restricted to these. It can also be applied to

other tasks of interest in microbiome research, e.g., for investigating the effects of

medication (see Additional file 1: Figure S2). Metagenomic or metatranscriptomic data

from environmental samples can also be analyzed using SIAMCAT, e.g., to understand the

associations between community composition and transcriptional activity of the ocean

microbiome with physicochemical environmental properties (see Additional file 1: Figure

S16 for an example108) highlighting that SIAMCAT could be of broad utility in microbiome

research.
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Methods
Implementation

SIAMCAT is implemented as an R package with a modular architecture, allowing for a flexible combination of

different functions to build ML and statistical analysis workflows (see the Code box section). The output of the

functions (for example, the feature matrix after normalization) is stored in the SIAMCAT object, which is an

extension of the phyloseq object that contains the raw feature abundances, meta-variables about the samples,

and other optional information (for example, a taxonomy table or a phylogenetic tree) 71. The label defining the

sample groups for comparison is then derived from a user-specified meta-variable or an additional vector. ML

models are trained using the mlr infrastructure as an interface to the implementations of different ML

algorithms in other R packages 72. SIAMCAT is available under the GNU General Public License, version 3.

Code box

Given two R objects called feat (relative abundance matrix) and meta (meta-variables about samples as a

dataframe, containing a column called disease which encodes the label), the entire analysis can be conducted

with a few commands (more extensive documentation can be found online in the SIAMCAT vignettes).

sc.obj <- siamcat(feat=feat, meta=meta, label='disease')

sc.obj <- filter.features(sc.obj, filter.method = 'abundance')

sc.obj <- check.associations(sc.obj,

fn.plot = 'associations_plot.pdf')) # produces Fig. 1b

check.confounders(sc.obj,

fn.plot = 'confounder_plot.pdf') # produces Fig. 1c

sc.obj <- normalize.features(sc.obj, norm.method = 'log.std')

sc.obj <- create.data.split(sc.obj)

sc.obj <- train.model(sc.obj, method='lasso')

sc.obj <- make.predictions(sc.obj)

sc.obj <- evaluate.predictions(sc.obj)

model.evaluation.plot(sc.obj,

fn.plot = 'evaluation.pdf') # produces Fig. 1d

model.interpretation.plot(sc.obj, consens.thres = 0.8,

fn.plot = 'interpretation.pdf') # produces Fig. 1e

Included datasets and microbiome profiling

In this study, we analyzed taxonomic and functional profiles derived with different profiling tools from several

metagenomic datasets (see Additional file 2: Table S1). Taxonomic profiles generated using the RDP classifier
86 on the basis of 16S rRNA gene sequencing data were downloaded from a recent meta-analysis by 20 and

summarized at the genus level. MetaPhlAn2 87 and HUMAnN2 89 taxonomic and functional profiles were

obtained from the curatedMetagenomicsData R package 75 for all human gut datasets within the package that

contained at least 20 cases and 20 controls. MetaPhlAn2 profiles were filtered to contain only species-level

microbial taxa.
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Additional datasets were profiled in-house with the following pipeline implemented in NGless 109: after

preprocessing with MOCAT2 110 and filtering for human reads, taxonomic profiles were generated using the

mOTUsv2 profiler 88, and functional profiles were calculated by first mapping reads against the integrated gene

catalog 111 and then aggregating the results by eggNOG orthologous groups 90.

Additionally, genus-level taxonomic profiles from the TARA Oceans microbiome project 108 were used for two

different classification tasks: to classify samples from polar and non-polar ocean regions and to classify

samples based on their iron concentration at a depth of 5 m (high vs low iron content).

Primary package outputs and confounder analysis

To illustrate the main outputs of SIAMCAT, we analyzed the taxonomic profiles from a metagenomic study of

IBD 73 included in the curatedMetagenomicsData R package 75. For the analyses presented in Fig. 1, we

restricted the dataset to control samples from Spain and cases with UC, since the two IBD subtypes included in

the dataset (ulcerative colitis and Crohn’s disease) are very different from one another in terms of the

associated changes in the gut microbiome composition (see the SIAMCAT vignettes for more information or the

Code box section for an outline of the basic SIAMCAT workflow.

To demonstrate how SIAMCAT can aid in confounder detection, we used the same dataset but this time

included the Danish control samples in order to explore potential confounding by differences between samples

collected and processed in these two countries. The analyses presented in Fig. 2 have all been conducted with

the respective functions of SIAMCAT (see SIAMCAT vignettes).

Machine learning hyperparameter exploration

To explore suitable hyperparameter combinations for ML workflows, we trained an ML model for each

classification task and each hyperparameter combination. By hyperparameter, we mean configuration

parameters of the workflow, such as normalization parameters, tuning parameters controlling regularization

strength, or properties of the external feature selection procedure in contrast to model parameters fitted during

the actual training of the ML algorithms. Specifically, we varied the filtering method (no data filtering; prevalence

filtering with 1%, 5%, 10% cutoffs; abundance filtering with 0.001, 0.0001, and 0.0001 as cutoffs; and a

combination of abundance and prevalence filtering), the normalization method (no normalization beyond the

total sum scaling, log-transformation with standardization, rank-transformation with standardization, and

centered log-ratio transformation), the ML algorithm (LASSO, Elastic Net, and random forest classifiers), and

feature selection regimes (no feature selection and feature selection based on generalized fold change or based

on single-feature AUROC; cutoffs were 25, 50, 100, 200, and 400 features for taxonomic profiles and 100, 500,

1000, and 2000 features for functional profiles). To cover the full hyperparameter space, we therefore trained

7488 models for taxonomic and 3168 models for functional datasets for each classification task.

To determine the optimal AUROC across input types (shown in Fig. 4), we calculated for each individual

parameter combination the mean AUROC across all classification tasks with a specific type of input. Different

feature filtering procedures could lead to cases in which the feature selection cutoffs were larger than the

number of available features after filtering, therefore terminating the ML procedure. For that reason, we only

considered those parameter combinations that did produce a result for all classification tasks with the specific

type of input data.
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To compare the importance of feature filtering, feature selection, normalization method, and ML algorithm on

classification accuracy, we trained one linear model per classification task predicting the AUROC values from

those variables. We then partitioned the variance attributable to each of these variables by calculating type III

sums of squares using the Anova function from the car package in R 112.

In order to contrast the class separation of samples in distance space with the classification performance

achieved by ML algorithms (see Additional file 1: Figure S6), we designed a distance-based measure of

separation. For each dataset, we determined the distances between all pairs of samples within a class as well

as all pairs of samples between classes and then calculated an AUROC value based on these two distributions.

This distance-based measure effectively quantifies to what extent samples are closest to other samples from

the same class (i.e., cluster together) and hence corresponds well to the visual separation of classes in

ordination space (see Additional file 1: Figure S6).

Model transfer, cross-study portability, and prediction rate for other diseases

To assess cross-study portability and prediction rate for other diseases, ML models were applied to external

datasets using the make.predictions function in SIAMCAT. In short, the function uses the normalization

parameters of the discovery dataset to normalize the external data in a comparable way and then makes

predictions by averaging the results of the application of all models of the repeated cross-validation folds to the

normalized external data.

Cross-study portability is then calculated by comparing the predictions for cases in the discovery datasets and

controls in the external dataset. First, the AUROC between these two prediction vectors is calculated, and

values below 0.5 (when the predictions on controls in the external dataset are higher than predictions on cases

in the discovery dataset) are set to 0.5. Cross-study portability is then defined as (|0.5 - AUROC|)*2 so that it

afterwards ranges from 0 (no separation between cases and external controls or higher predictions on external

controls) to 1 (perfect separation between cases and external controls).

To calculate the prediction rate for other diseases (or the same disease) on external datasets, a cutoff on the

(real-valued) predictions is chosen so that the FPR in the discovery dataset is 0.1. Based on this cutoff, the

external predictions are evaluated as positive (diseased) or negative predictions, and a detection rate

corresponding to the fraction of positive predictions is determined.

Training Elastic Net models with control augmentation

To train models with the control augmentation strategy, we used the data from cohort microbiome studies as

additional control samples 96–98. Repeated measurements for the same individual were removed in the case of
96. For each training set in the repeated cross-validation, we increased the number of control samples 5-fold by

randomly sampling the appropriate number of controls (in a balanced manner between datasets to avoid

overrepresentation of the larger external cohorts). Before addition, the additional control samples were

normalized using the normalization parameters of the discovery set. Due to the introduction of additional

variability, the control-augmented Elastic Net models were trained with a pre-set alpha value of 0.5 to ensure

the stability of the model size.

To compare the predictors across different diseases, model weights of the control-augmented models were

transformed into relative weights by dividing by the sum of absolute coefficient values. Then, models from the
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same disease were averaged. Predictors (that is, mOTUs) were selected for display in Fig. 5f, if they (i)

cumulatively contributed more than 50% of the mean relative disease model, (ii) their individual weights were

bigger than 1%, and (iii) the genus annotation had an unambiguous NCBI taxonomy.

Illustration of common pitfalls in machine learning procedures

To demonstrate how naive sequential application of supervised feature selection and cross-validation might

bias performance estimations, we trained LASSO ML models to distinguish colorectal cancer cases from

controls based on MetaPhlAn2-derived species abundance profiles using the dataset with the handle

ThomasAM_2018a 40 obtained through the curatedMetagenomicsData R package 75. For the incorrect procedure

of feature selection, single-feature AUROC values were calculated using the complete dataset (inverted for

negatively associated features). Then, the features with the highest AUROC values were selected for model

training (number depending on the cutoff). In contrast, the correct procedure implemented in SIAMCAT

excludes the data in the test fold when calculating single-feature AUROC values; instead, AUROC values are

calculated on the training fold only. To test generalization to external data, the models were then applied to

another colorectal cancer metagenomic study 8 available through the curatedMetagenomicsData R package

(also see the SIAMCAT vignette: holdout testing).

To illustrate the problem arising when combining naive cross-validation with dependent data, we used the

Crohn’s disease (CD) datasets used in the meta-analysis described below. We first subsampled the iHMP

dataset 30 to five repeated measurements per subject, as some subjects had been sampled only five times and

others more than 20 times. Then, we trained LASSO models using both a naive cross-validation and a

cross-validation procedure in which samples from the same individual were always kept together in the same

fold. External generalization was tested on the other four CD datasets described below.

Meta-analysis of Crohn’s disease metagenomic studies

For the meta-analysis of Crohn’s disease gut microbiome studies, we included five metagenomic datasets
5,28–30,73 that had been profiled with the mOTUs2 profiler 88 on the genus level. While some datasets contained

both UC and CD patients 5,30,73, other datasets contained only CD cases 28,29. Therefore, we restricted all datasets

to a comparison between only CD cases and control samples, since the two subtypes of IBD are very different

from each other.

For training of ML models, we blocked repeated measurements for the same individual when applicable 28,30,73;

specifically for the iHMP dataset 30, we also subsampled the dataset to five repeated measurements per

individual to avoid biases associated with differences in the number of samples per individual. For external

validation testing, we completely removed repeated measurements in order not to bias the estimation of

classification accuracy.

To compute association metrics and to train and evaluate ML models, each dataset was encapsulated in an

individual SIAMCAT object. To produce the plot showing the variance explained by label vs the variance

explained by study, all data were combined into a single SIAMCAT object. The code to reproduce the analysis

can be found in the SIAMCAT vignettes.
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Abstract
Background: Metagenome-wide association studies have uncovered characteristic changes

in gut microbiome composition across various diseases. The correct statistical methodology

to test for differential abundance of microbial features is however still debated, since

unbiased and realistic benchmarks are missing.

Methods: Here, we developed a framework for benchmarking differential abundance

testing methods based on implanting signals into a real baseline dataset that combines the

advantages of a ground truth with the statistical attributes of real metagenomic data. We

extensively validated the realism of the resulting samples and additionally included realistic

patterns of confounding in our benchmark.

Results: We demonstrated a dramatic issue with elevated false discovery rates for the

majority of methods with the exception of limma, linear models, and the Wilcoxon test.

Even these methods recorded an abundance of false discoveries under confounded

conditions, behavior which could be alleviated by linear mixed effect models or the blocked

Wilcoxon test.

Conclusion: The results from our benchmark show that real metagenomic data represent

major challenges for method development which have thus far been insufficiently

addressed. We provide the accompanying software to enable other researchers to more

123

https://doi.org/10.1101/2022.05.09.491139


Benchmarking manuscript

rigorously validate newly developed differential abundance testing methods, and we hope

that our results contribute to more consensus in the field.

Introduction

The human gut microbiome is increasingly understood to carry out critical roles in host

physiology and immunity, and has therefore been extensively mined for biomarkers related

to host health and disease states. The composition of gut microbial communities is highly

variable in time and between individuals1, yet clinical metagenome-wide association

studies (MWAS) strive to associate taxonomic and functional features with grouping

variables such as disease phenotypes or lifestyle factors. MWAS typically perform statistical

tests for (mean) differential abundance (DA) on each microbial feature independently,

borrowing both nomenclature and entire methods from differential gene expression

analysis. DA methods applied in MWAS loosely fall into four categories: a) methods

borrowed or adapted from RNA-Seq analysis, b) linear models, c) rank-based statistical

tests, and finally d) methods developed specifically for microbiome data. Researchers have

performed MWAS in the context of numerous diseases, including but not limited to

inflammatory bowel diseases2,3, gastrointestinal cancers4,5, and cardiometabolic diseases6,

while multi-omics and experimental validation studies have shed further light on specific

hypotheses spawned from MWAS7,8. To identify group-specific microbiome alterations,

MWAS typically perform statistical tests for (mean) differential abundance (DA) on each

microbial feature independently, borrowing both nomenclature and entire methods from

differential gene expression analysis. DA methods applied in MWAS loosely fall into four

categories: a) methods adapted from RNA-Seq analysis, b) generalized linear models, c)

rank-based statistical tests, and finally d) methods developed specifically for microbiome

data.

While significant microbiome disease associations have been reported in many studies,

some meta-analyses and cross-disease comparisons have suggested many of these

associations to be unspecific or confounded9–11. Microbiome composition varies not only

with host health and disease states, but also with myriad other host and environmental

factors (covariates) collectively estimated to explain nearly 20% of microbiome variation12.

Lifestyle and physiological covariates demonstrating the largest effects on microbial

communities include medication regimens13,14, stool quality, geography, and alcohol

consumption frequency15. Technical differences such as stool sample collection and DNA
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extraction method often outweigh biological factors of interest in terms of explained

variation and can therefore hamper meta-analyses if unaccounted for5,16,17.

Although the unique statistical challenges intrinsic to high-throughput metagenomic data

are well-described by now18–20, there is no consensus about the most appropriate DA

procedures in the literature21–28. In principle, this is the purpose of benchmarking studies,

which try to assert how methods perform under varying yet controlled conditions in order to

establish points of reference for method behavior that cannot be discerned from single

applications. To achieve such conditions, simulated data is typically generated from

parametric models, which cleanly specify the differentially abundant features required for

performance evaluation as a ground truth.

A high-level concern with benchmarking is the phenomenon of over-optimistic performance

evaluation observed in newly introduced bioinformatic methods, whereby data, results, and

competitor tools in a benchmarking study (frequently published in the same manuscript as

the new method) suffer from selection and reporting bias29. The lack of consensus on how

to simulate data in microbiome research, however, is a much more fundamental problem;

an evaluation of simulation methods on the basis of their resemblance to experimental data

and impact on downstream applications has not yet been conducted.

Here, we quantitatively assess the degree to which parametric simulations employed in

previous benchmarks lack biological realism, and show that the choice of simulation

framework can explain the divergent recommendations regarding DA methods. To address

these shortcomings, we propose a novel simulation technique using real data to implant

calibrated differential abundance between two groups (imitating a case-control MWAS),

and extend it to additionally include confounded effects. Based on these more realistic

simulations, we perform a comprehensive benchmarking study of widely used DA methods

revealing an alarmingly common inability to control the false discovery rate (FDR). Under

confounded conditions, FDR control is unattainable for all methods, but we show that some

methods can be adjusted to suffer less from these issues.

Results

Assessment of realism for parametric simulations of microbiome data

As a first step, we aimed to explicitly evaluate how data generated from previous simulation

frameworks compare with real metagenomic data. To do so, we simulated taxonomic
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profiles using the source code employed in previous benchmarks22,24,25,30, whereby

case-control datasets were repeatedly generated with differentially abundant features

introduced under varying effect sizes in order to quantify the uncertainty of the stochastic

simulation process (see Methods). Simulation parameters were estimated in each case

from the same baseline dataset of healthy adults31. We observed the data simulated with

every one of the tested parametric models to be very different from real data as visualized

by principal coordinate analysis (see Fig. 1a). Additionally, there was a large discrepancy

between the feature variance and sparsity of simulated profiles and what is observed in real

metagenomic data (see Fig. 1b and SFig. 1), with especially the multinomial method

underestimating feature variance. Finally we trained machine learning classifiers to

distinguish between real and simulated samples and could do so with almost perfect

accuracy in nearly all cases, except for data generated from sparseDOSSA30 (Fig. 1c). This

was motivated by the fact that machine learning classification, commonly employed in

MWAS to detect biomarkers, can reveal even subtle differences between groups and is

generally more sensitive than ordination-based analyses11. Overall, all of the assessed

parametric simulation frameworks failed to produce realistic metagenomic data.

Feature implantation yields realistic benchmarking datasets

To devise a simulation framework which would generate data that closely recapitulates key

characteristics of metagenomic data, we opted to manipulate real baseline data as little as

possible, by implanting a known signal with pre-defined effect size into a small number of

differentially abundant features using randomly selected groups (see Methods). As the

baseline dataset, we chose a cohort consisting of healthy adults without obvious biological

groupings, into which we repeatedly implanted DA features by multiplying the counts in one

group with a constant (abundance scaling) and/or by shuffling a certain percentage of

non-zero entries across groups (prevalence shift, see Methods). The main advantage of this

proposed signal implantation approach as a foundation for benchmarking is that it

generates a clearly defined ground truth of DA features while retaining key characteristics

of real data. In particular, feature variance and sparsity (see Fig. 1b) are preserved, which is

reflected in both the principal coordinate projection (Fig. 1a) and in the more sensitive

machine learning classification task (Fig. 1c).
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Figure 1: Feature implantation, but not parametric simulations, can reproduce key characteristics of
metagenomic data and realistic disease effects
a) Principal coordinate projections on log-Euclidean distances for real samples (from Zeevi et al.31, which served
as a baseline data set) and representative samples of data simulated in a case-control setting (group 1 and 2)
using different parametric models or feature implantation. For each method, the results from a single repetition
and a fixed effect size are shown (see Methods, abundance scaling factor of 2 and prevalence shift of 0.3, if
applicable). b) The log-transformed feature variance is shown for the real and simulated data from the same
simulated data as in a). c) The AUROC values from machine learning models to distinguish between real and
simulated samples are shown across all simulated data sets in cyan. As complementary information, the
log-transformed F values from PERMANOVA tests are shown in brown. d) The absolute generalized fold change5

and the absolute difference in prevalence across groups is shown for all features in colorectal cancer (CRC) and
Crohn’s disease (CD). As a comparison, the same values are displayed for two data sets simulated using feature
implantation (abundance scaling factor of 2, prevalence shift of 0.1), with implantations either into all features or
only low-abundance features. Well-described disease-associated features are highlighted (F = Faecalibacterium,
R=Ruminococcus) and selected bacterial taxa and simulated features are shown as percentile plot in e).
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Implanted DA features are similar to real-world disease effects

To compare implanted DA features to those observed in real MWAS data in terms of their

effect sizes, we focused on two diseases with well-established microbiome alterations,

namely colorectal cancer (CRC)4,5 and Crohn’s disease (CD)2,3. In two separate

meta-analyses (see Methods), we calculated the generalized fold change as well as the

difference in prevalence between controls and the respective cases for each microbial

feature (see Fig. 1de). The effect sizes in CRC were generally found to be much lower than

in CD, which is consistent with machine learning results in both diseases (mean AUROC for

the distinction between cases and controls: 0.92 in CD and 0.81 in CRC, see ref11). For

instance, the well-described CRC marker Fusobacterium nucleatum exhibits a rather

moderate increase in abundance in CRC, but a strongly increased prevalence. This

observation, generalizable also to many other established microbial disease biomarkers,

motivates the inclusion of the prevalence shift as an additional type of effect size for the

proposed implantation framework.

Depending on the type and strength of effect size used to implant DA features, the

simulated datasets included effects that closely resemble those observed in the CRC and

CD case-control datasets (Fig. 1ed). In particular, simulated abundance shifts with a

scaling factor between groups <=10 were the most realistic and thus used for subsequent

analyses (SFig. 2).

Performance evaluation of differential abundance testing methods

To benchmark the performance of various DA testing methods under realistic conditions,

DA tests (see Methods for a list) were applied to each feature across all simulated datasets

including repeated sampling with varying effect sizes. Different sample sizes were created

by repeatedly selecting random samples from each simulated group in a balanced manner,

and each test was applied to the exact same sets of samples (see Methods). In general, we

aimed to use the recommended data preprocessing steps for each method, but for some

tests (such as the linear model (LM) or the Wilcoxon test), different normalization

techniques were also explored (see SFig. 3).

The P values resulting from each of the included DA methods were adjusted for multiple

hypothesis testing with the Benjamini-Hochberg procedure to obtain false discovery rate

(FDR) estimates32. Additionally, a receiver operating characteristic (ROC) analysis was
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carried out to evaluate how accurately the returned P values could distinguish between

ground truth and background features. If P values for all ground truth features are smaller

than for any of the background features, the area under the ROC curve (AUROC) will be one;

for random P values an AUROC of 0.5 is expected.

Figure 2: Most differential abundance testing methods fail to control the false discovery rate.
a) The mean false discovery rate across all repetitions of a signal implantation simulation with a single, moderate
effect size combination (abundance scaling factor of 2, no prevalence scaling, all features eligible for
implantation) is shown as a red line, with the shaded area indicating the standard deviation. Similarly, the blue
line and shaded area denote the mean AUROC (and standard deviation) for the detection of implanted signals
based on the P values (mgs - fitZig function and mgs2 - fitFeatureModel function from the metagenomeSeq
package, LM - linear model, see also Methods). b) The mean AUROC values across the subset sizes 50, 100, and
200, all repetitions, and all effect sizes are depicted in the heatmap for the different simulation strategies. The
cell borders are colored according to the number of subsets in which the mean FDR exceeded 10%.

In this benchmark, the majority of methods failed to consistently control the FDR at the

nominal 5% level, with several methods exceeding this value manyfold (displayed for a

single representative effect size in Fig. 2a and SFig. 4 for other effect sizes). In the most

extreme case, the fitZig method from metagenomeSeq (mgs), only 20% of features

identified as significantly differentially abundant between groups were correctly predicted

(FDR of 0.8), regardless of sample size and observed consistently across many effect sizes

(see SFig. 4). Theoretically, a possible explanation for these high FDR values could be that

the methods are not well-calibrated for microbiome data and report universally low P

values, but are still able to distinguish between ground truth and background features. Such

cases could be readily diagnosed using ROC analysis, and theoretically changing the P value

cutoff for significance could alleviate the problem. However, empirically most methods with
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elevated FDRs recorded lower AUROC values when compared to other methods as well,

indicating that among these methods do not efficiently enrich true DA features in their

results. As a consequence, these DA methods cannot simply be improved by recalibration.

These findings were largely independent from the implanted effect size, with larger effect

sizes facilitating easier detection and therefore resulting in higher AUROC values on average

(see SFig. 4).

Distributional assumptions made by the simulation method have a large influence on the

performance estimates for DA testing methods and can in turn lead to biased conclusions

(see Fig. 2b and SFig. 5). For example, the benchmarking study by Weiss et al.24 proposed

using the ANCOM method for DA testing. While this method shows seemingly superior

performance when multinomial data distributions are assumed (as done in Weiss et al.24

and reproduced here), this is in stark contrast to benchmarking with the realistic feature

implantation setting, where ANCOM did not perform significantly better than random

guessing for the identification of ground truth DA features (P=0.34, one-sample t-test for

sample sizes of 50, 100, and 200). Similarly, the publication by Hawinkel et al.25 concluded

that almost all methods fail to control the FDR. Being based on the assumption that

metagenomic data follow a negative binomial distribution, these results could be faithfully

reproduced here (Fig. 2b), but are not supported by the results of benchmarking based on

more realistic simulations.

Limma, the Wilcoxon test, and the LM were found to be the only methods in the feature

implantation benchmark that consistently controlled the FDR, even at smaller sample sizes.

For sample sizes over 200, more methods (including ANCOM, ANCOM-BC, mgs2 or ZIBSeq)

exhibit acceptable FDR control. However, none of these methods resulted in AUROC values

comparable to limma, LM, or the Wilcoxon test, indicating limited sensitivity of those

methods for the detection of true DA features.

Simulating confounding through batch effects

Awareness of confounding being a prevalent issue in MWAS is increasing33. This arises

when covariates other than the main variable of interest are associated with microbial

composition or individual bacterial taxa. When not accounted for, confounding can lead to

spurious associations that do not replicate in independent datasets. For example,

associations between gut microbiome composition and type 2 diabetes from two different
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studies were later identified to be mainly caused by metformin treatment in a subset of

type 2 diabetes patients9.

To study how suitable existing DA methods are for confounder adjustment, we simulated

additional confounders in the feature implantation framework. To do so, we mainly relied on

technical variation differences between datasets, also called study or batch effects, which

are prominent in metagenomic data due to non-standardized experimental protocols34,35. To

simulate confounding by study effects, we combined the data from two baseline datasets of

healthy adults31,36 and varied the proportion of samples from each data set in the two

groups used for implantation of DA features (see Methods). In this setup, the degree of

confounding by study effects can be modulated by disproportionately sampling one group

from one data set and the other group from the other data set. This is opposed to

proportional sampling of both groups from both data sets, where there is minimal

confounding (see Fig. 3a). With increasing simulated confounder strength, study

differences will become more aligned with the DA features implanted into the two groups,

making their identification increasingly challenging (see Fig. 3b).

For this confounder benchmark, we also assessed biological realism by comparison to real

metagenomic datasets, as they would be encountered in meta-analyses of CRC and CD.

Contrasting the generalized fold changes associated with study differences and those

associated with the disease label indicated that moderate or even strong study confounding

as simulated in our benchmark does indeed reflect real effects observed in some

cross-study comparisons of relevant gastrointestinal diseases (see SFig. 6). In most

pairwise comparisons between studies, though, the experimental design resulted in roughly

equal proportions of cases and controls, thereby mitigating strong study confounding.

Performance evaluation under confounded conditions

To evaluate how DA testing methods perform under confounded conditions, we only

retained those methods which were found to control the FDR in the previous benchmark

and which could be explicitly adjusted for confounders . We found that without such an

adjustment, that is when applied naively, almost all DA tests exhibited an increased FDR,

already in the presence of moderate study confounding (median FDR around 20% for

Wilcoxon test, LM, and ANCOM-BC; see Fig. 3c); their FDR increased further to around 75%

in simulations with strong study confounding.
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We next adjusted these DA methods by including ‘study’ as a single covariate in the

respective test formula (see Methods for details). Interestingly, when confounding was

explicitly modeled, we found three out of the four included methods to perform nearly as

well as under non-confounded conditions, even in situations with strong confounding (see

Fig. 3c). One notable exception was limma, which showed a relatively high median FDR

(~30%) in the strongly confounded case, even after including the study covariate in the

model formula. Overall this result however suggests that measured confounders can be

effectively adjusted for in MWAS when explicitly modeled as such.

Figure 3: Strong confounding leads to spurious associations which can be alleviated by methods able to
model confounders.
a) Principal coordinate projections for simulated data with no, moderate, and strong study confounding
(abundance scaling factor of 2, prevalence scaling factor of 0.3, all features eligible for implantation, a single
representative repeat shown). The difference between studies is most prominent in the first principal coordinate.
On the right, the first principal coordinate values are shown across the two simulated groups. In the top row,
samples are proportionally selected from both studies, leading to a setup with minimal confounding. In contrast,
the proportion of samples of Study 1 to be selected into group2 increases in the other rows, leading to stronger
study confounding. b) Generalized fold change (gFC) calculated for the label is contrasted to the gFC calculated
for differences between studies across all bacterial taxa for the same repeat as shown in a). c) FDR and AUROC
across all repeats with the same effect sizes as shown in a) were computed for all included DA methods, for both
a naive test and one in which the study covariate was included in the test formula. The boxplots show the results
for a sample size of 200.
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Discussion

Clinical interest in the microbiome has produced myriad studies which apply differential

abundance tests to detect associations with host phenotypes, including many common

diseases. Although DA testing is a fundamental statistical task in MWAS, a surprisingly large

number of different methods have been employed in various studies27, necessitating the

empirical evaluation of their performance using simulated data in which the ground truth is

known. For simulations to generalize, it is key to assess how well the underlying models

mimic reality by comparing data they generate to real samples, which crucially was lacking

in previous benchmarks21–26,28. To address this, we propose a novel implantation framework

for the generation of simulated taxonomic profiles based on minimal modifications to real

metagenomic data. We empirically verified that our framework, but not previously

employed simulation methods based on parametric distributions, retains essential data

properties, most importantly feature sparsity and variance. This was also verified by both

PERMANOVA (P=0.743 compared to P<0.01 for all other simulations) and machine learning

analyses (median AUROC of 0.5 compared to 0.62 for sparseDOSSA and 1 for other

simulations). Yet, our framework provides the flexibility to specify effect and sample sizes

needed for an extensive evaluation, which was not the case in previous benchmarks built

upon real datasets25,26,28.

To resolve the question of which DA methods are best suited for microbiome data, we

performed an unbiased benchmarking study of widely used DA methods using the feature

implantation framework. Evaluating each DA test on nearly one million simulated data sets,

we found that the majority of methods yielded and excess of false-positives (mean FDR >

20% for 6/11 methods at a data set size of N=100), and this was generally worse for

smaller sample sizes (N<100). Notable exceptions were the well-established

non-parametric Wilcoxon test (also implemented in the LEfSe37 and SIAMCAT11 packages

that are tailored to microbiome data), limma, and LMs, all of which were found to properly

control the FDR while retaining high sensitivity across a range of sample and effect size.

These results strongly suggest that these methods should be preferred over the other tests

evaluated here. DA methods borrowed from RNA-seq analysis, with the exception of limma,

were among those with the highest FDRs. These methods were originally developed for few

replicates with much lower dispersion than what is observed for fecal metagenomes of
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different human individuals. Our conclusion that these methods are unsuitable for

microbiome data directly contradicts the results of a previous benchmark22, a discrepancy

that can be explained by the use of the multinomial simulation in that study, which strongly

underestimated the variance of real microbiome data (see Fig. 1b). Surprisingly, most

methods developed in recent years with the characteristics of metagenomic data

specifically in mind were found to have comparably low power and high false discovery

rates (with the exception of the mgs2) across the range of dataset sizes most commonly

seen in MWAS (see Fig. 2b). On a positive note, more DA tests (including both ANCOM

versions, ZIBseq and mgs2) controlled the FDR at the nominal level when applied to larger

samples (N=200 per group). Overall, however, our finding that most DA tests evaluated here

would return up to ten times more false positives than expected across sample sizes

typically seen in MWAS (N=100 per group) indicates that many of these studies reported a

substantial fraction of spurious microbiome-disease associations.

This issue is further exacerbated by confounding factors, for which awareness is growing

with the various factors revealed to shape microbiome composition9,13,15,33,38. Confounding

remains difficult to identify and address post-hoc in most clinical studies. To model

confounding in multi-center trials or meta-analyses, we extended our signal implantation

framework to take two studies as input and simulated a range of study effects (see

Methods), which can represent an impediment to combined analysis5,39. To assess DA

method performance, we selected the subset of methods that performed reasonably well in

our first benchmark (mean FDR across effect sizes not exceeding 10% for sample sizes 50,

100, and 200) and allowed inclusion of a covariate to correct for confounding (see

Methods). To our knowledge, this represents the first benchmark of DA methods under

confounded conditions. As expected, application of the unadjusted methods resulted in

strongly elevated FDRs under confounded conditions for all methods (median FDR between

23 and 30% under moderate study confounding as compared to 4 to 5% in the absence of

confounders), except for limma, which showed lower increases in FDR (1% compared to

3%). Reassuringly, inclusion of the study covariate in the DA models mostly restored

unconfounded performance. When explicitly adjusted for the covariate, the blocked

Wilcoxon test most tightly controlled the FDR while retaining high power even under strong

confounding; however, as it is limited to blocking a single discrete covariate, this test is less
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flexible than linear mixed-effect models, which can accommodate multiple covariates and

be configured to handle nested or longitudinal study designs. In many areas of biomedicine,

mixed-effect models have long been a solution to explicitly deal with study heterogeneity

in meta-analyses4,40.

In our benchmark, we opted to include a simple implementation of linear mixed-effect

models, available in the lmerTest R package41. A statistically analogous implementation is

found in MaAsLin2, a microbiome DA analysis pipeline which also includes several

count-based linear models42. Similarly, metadeconfoundR38 employs the same types of

linear models we used but applies an iterative nested model testing procedure to identify

which features are subject to confounding, which is a similar approach as recently

employed to find robust microbial biomarkers43. Both tools may include multiple covariates

in their feature models, a practice whose performance we did not assess here, but which

merits further exploration44.

In our assessment, the unsatisfactory performance from a wide range of DA methods

warrants a community effort to develop a more robust methodology, both for testing and

assessing their results. Towards this goal, both the signal implantation framework and the

benchmarking analysis are designed to be easily extensible and available as open source

code (see Methods), with the hopes of assisting researchers wishing to develop and

validate new DA methods or aiming to establish benchmarks beyond what we have

presented here. Ultimately, the consolidation of statistical methodology in the microbiome

field might be accelerated by a community-driven benchmarking project similar to DREAM

challenges crowdsourcing tasks such as the inference of signaling networks45 or the critical

assessment of metagenome interpretation (CAMI)46 project. Ideally, such efforts would be

neutral and evidence-based47 to avoid sources of biases that have contributed to the

current problem.
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Methods
The codebase for the presented results is split into two projects. The first one, an R package called SIMBA

(Simulation of Metagenomic data with Biological Accuracy), provides the modular functionality to i) simulate

metagenomic data for a benchmarking project, ii) perform reality checks on the simulated data, iii) run

differential abundance (DA) testing methods, and finally iv) evaluate the results of the tests. The second project,

BAMBI (Benchmarking Analysis of MicroBiome Inference methods), is a collection of scripts that produce the

presented analyses, consisting mostly of functions to automate and parallelize the execution of SIMBA

functions by making use of the batchtools package48. Both projects are available through Gitlab and will enable

other researchers to explore a similar benchmarking setting for other baseline datasets, other biomes, and

additional DA testing methods.

Data preprocessing

The dataset from Zeevi et al.31 was used as a baseline for the simulations in most cases. Additionally, the

TwinsUK dataset36 was included in some of the study-confounded simulations as well. Raw data were

downloaded from ENA (PRJEB11532 for Zeevi and ERP010708 and TwinsUK) and profiled using the mOTUs2

profiler, version 2.549. The resulting taxonomic profiles were filtered within SIMBA for prevalence (at least 5% in

the complete dataset) and abundance (relative abundance of at least 1e-04). In the case of repeated samples

per patient, SIMBA selects only the first time point for each patient.

Parametric methods for the simulation of metagenomic data

To simulate metagenomic data on the basis of parametric methods, the implementations employed in previous

benchmarking efforts were adapted into SIMBA. Data were simulated under multinomial distributions using

code from both McMurdie and Holmes22 and Weiss et al.24, since the functions to include differentially abundant

features differed slightly between the two benchmarks. If not indicated otherwise, results for multinomial

simulations were based on the implementation from Weiss et al., since the effect sizes were closer to real

effects (see SFig. 2). The publication from Hawinkel et al.25 included simulations based on the negative

binomial, the beta binomial, and the Dirichlet distribution, which were likewise included in SIMBA. As in the

original publication25, correlations across bacterial taxa were estimated using SPIEC-EASI19, since the

correlation structure was needed for the beta binomial and could optionally be considered for the negative

binomial simulations. Lastly, to simulate data as described in Ma et al.30, SIMBA relies on the dedicated

functions in the sparseDOSSA R package.

For each of the parametric simulation methods, the required parameters were estimated on the filtered Zeevi

dataset. A dataset of equal size was simulated to include two different groups into which differentially abundant

features were added as described in the respective original publications. For the multinomial simulations from

McMurdie and Holmes as well as for the sparseDOSSA approach, features were scaled in abundance after the

simulation was completed. In the case of the other simulation methods, the underlying parameters were

adjusted with a scaling factor before the simulation. A range of effect sizes (abundances scaled by multipliers of

1, 1.25, 1.5, 2, 5, 10, and 20) was explored and for each effect size, a total of 20 repetitions were simulated per
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simulation method. At an abundance scaling factor of 1, no effects were introduced into the data and therefore

those repeats can serve as internal negative controls.

Implantation of differentially abundant features into real data

To create benchmarking datasets through minimally adjusting the original data, differentially abundant features

were implanted into the Zeevi dataset as a baseline. In each repetition, the original samples were randomly split

into two groups, which served as the positive and negative groups. Differential abundance effects were

implanted into a set of randomly selected features both via scaling abundances (same effect sizes as the

parametric simulations) as well as by shifting prevalences (0.0, 0.1, 0.2, and 0.3).

For the abundance scaling, the count values in one group were multiplied with the scaling factor to increase the

abundance. The prevalence shifts were implemented by identifying non-zero counts in one group and

exchanging a specific percentage of those with occurrences of zero abundances in the other group (if possible),

thereby creating a difference in prevalence across the groups. The feature implantation alternated between the

two groups in order to not introduce a systematic difference in total count number across groups (inspired by

the considerations in Weiss et al.24). For each combination of effect sizes (abundance and prevalence scaling),

100 repetitions were simulated.

In each repetition, 10% of features were randomly selected for signal implantation. The set of features eligible

to be selected, however, could be varied (see SFig. 2): all - all taxa were equally likely to be selected to carry a

signal, low - only low abundance features (the 75th percentile across all samples not exceeding 0), high - only

high abundance features (the median abundance across all samples higher than 0), abundance - the probability

of a taxon to be selected is proportional to the mean abundance across all samples, and inverse_abundance -

the probability of a taxon to be selected is inversely proportional to the mean abundance. Since the effect sizes

from other schemes yielded unrealistic effect sizes, the downstream analyses were only carried out for the all

and low implantations.

Reality assessment for simulated data

To determine how well a simulated metagenomic dataset approximated real data, several metrics are

calculated by SIMBA. For each repetition of each simulation, sample sparsity and feature variance were

recorded together with differences in prevalence and the generalized fold change5 between groups. Additionally,

the separation between original and simulated samples in principal coordinate space was evaluated using

PERMANOVA as implemented in the vegan package50. As a complementary approach, a machine learning model

was trained to classify real and simulated samples using the SIAMCAT R package11 and the AUROC of the

cross-validated model was recorded.

Included DA testing methods and normalization procedures

To evaluate the performance of various DA testing methods, the R implementation of each method was

incorporated into SIMBA using the recommended preprocessing, if applicable. The following methods were

included in the benchmark (usually available through an R package of the same name): the Wilcoxon test and

linear models (available within the base R distribution), limma51, edgeR52, DESeq253, metagenomeSeq21,

ZIBSeq54, corncob55, ANCOM56, and ANCOM-BC57. For metagenomeSeq, two different models can be fitted
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within the same R package, which are included here as mgs (using the fitZig function) and mgs2 (using the

fitFeatureModel function), analogously to Weiss et al.24. For ANCOM, no dedicated R package is available from

the original publication and the standard implementation is prohibitively slow, thus the implementation

available through Lin et al.58 was used (see SFig. 7).

Most of these methods work on the raw count data and therefore no normalization was needed. For the

Wilcoxon test, the LM, and limma, different sets of normalization methods were explored, namely pass (no

normalization), clr (centered log ratio transform), rclr (robust centered log ratio transform), TSS (total sum

scaling), TSS.log (total sum scaling, followed by log10 transformation of the data), and TSS.arcsin (total sum

scaling, followed by the arcsine square root transformation).

Benchmarking of DA testing methods at different sample sizes

To simulate different cohort (sample) sizes, SIMBA randomly selected N samples out of the two groups equally

for each combination of effect size and each repetition. These samples were saved via their indices such that

each method was applied to the exact same data. Seven different sample sizes were explored (12, 24, 50, 100,

200, 400, and 800) and 50 sets of test indices were created for each. For the evaluation of a single DA method,

a total of 980,000 unique configurations were generated and used as input (7 abundance shifts x 4 prevalence

shifts x 100 simulation repeats x 7 sample sizes x 50 repeats).

Each method was applied to each bacterial taxon in succession using the previously indexed samples. The I

values across all taxa were recorded and adjusted for multiple hypothesis testing using the Benjamini-Hochberg

procedure32. Since ANCOM does not return P values, its primary outputs (W values) were converted to be

comparable to P values by transforming them to range between 0 and 1. The recommended decision threshold

for significance in ANCOM is equal to 0.7 x number of tested taxa. Therefore, the W values above this decision

threshold were transformed into ‘significant’ P values (lower than 0.05), whereas all other W values were

transformed to range between 0.05 and 1 in the P value space. The ranking of the W values was conserved in

this transformation.

To evaluate the performance of each method, SIMBA checked the P values from each testing scenario for how

well bacterial taxa with differential abundance were detected. An AUROC was calculated with the P values as a

predictor and the false discovery rate (FDR) was recorded with 0.05 serving as the decision threshold.

Confounder implantation by mixing data from different studies

To simulate a setting with a realistic confounding present, the taxonomic profiles from two different studies

were combined (Zeevi and TwinsUK studies). Study effects are known to affect a large number of bacterial taxa

and a systematic difference between the studies was indeed apparent in a PCoA (see Fig. 3a). In selecting

samples for the positive and negative groups in the different simulation repetitions, the probability of a sample

to be selected for the positive group was then contingent on the study affiliation. When this probability was

biased towards one of the studies, a systematic shift between the groups could be introduced into most taxa. At

a bias of 0.5, there is no difference between the probability for a sample of one study versus the other study to

be selected for the positive group, and at a bias of 1, only the samples from one of the studies will be selected

for the positive group. Implantation of differentially abundant features was carried out as described above. We
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created three different benchmarking simulations with a bias of 0.5 (no study confounding), 0.7 (moderate

study confounding), and 0.9 (strong study confounding).

Confounder-aware DA testing

For the confounded benchmarking, only tests with a reasonable performance in the not-confounded setting

were run through SIMBA, namely the Wilcoxon test, the LM, limma, and ANCOM-BC. All tests could also be

adjusted by the confounder covariate, usually by including the covariate into the test formula. For the Wilcoxon

test, confounder-aware testing was performed using the blocked Wilcoxon test implemented in the coin

package59 and for the LM, the confounder covariate was included as a random effect in the formula. The

significance of the original study variable was then tested by fitting the model using the lmer function within the

lmerTest package41. The evaluation procedure was otherwise unchanged compared to the benchmarking

without confounding.

Effect size assessment in real case-control datasets for colorectal cancer and inflammatory bowel disease

To compare simulated data to real case-control microbiome studies, we collected datasets for two diseases

with a well-described microbiome signal. For colorectal cancer (CRC), we included the data from five

studies5,60–63 across three continents, which were the basis for an earlier meta-analysis that identified

consistent and predictive microbial biomarkers for CRC5. For Crohn’s disease (CD), we similarly included five

case-control studies3,64–67 that had been analyzed previously11. For CD, the data were restricted to the first

measurement for each individual, whenever applicable. The data from all studies were taxonomically profiled

via mOTUs2 (version 2.5, ref49) and features were filtered for at least 5% prevalence in at least three of the

studies. Differences in prevalence across groups and the generalized fold change were calculated for each

microbial feature as previously described5 and the significance of enrichment was calculated using the blocked

Wilcoxon test from the coin package in R59.
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Supplementary Figures

SFig. 1: Sample sparsity is preserved in signal implantation, but not parametric simulations
Sample sparsity (measured as the number of zero entries per sample) was recorded for all simulated samples
across all repetitions and effect sizes. Reference indicates the real sample sparsity observed in the baseline
dataset from Zeevi (see Methods), with the shaded grey area denoting the interquartile range (darker area) and
1.5*interquartile range (lighter area) from the reference (analogous to the boxplot definition). For multinomial
simulations, the implementation from Weiss et al. was used.

SFig. 2: Implanted effect sizes vary across different simulation scheme and eligible feature sets
The absolute generalized fold change (gFC) and the absolute prevalence difference between groups was
calculated for all features across all repetitions in every simulation scheme. For each repetition, the mean gFC
and prevalence shift values were calculated for both background and ground truth differentially abundant (DA)
features. As a reference point, the real gFC and prevalence shift values observed across all features in the
Crohn’s disease meta-analysis (see Methods) are shown in the top left panel. In the bottom row, mean gFC and
prevalence shift values are shown for different signal implantation simulations that vary in which feature set
was eligible for implantation. When DA features were implanted into high abundant features, the resulting
(mean) effect sizes were too high and unrealistic.
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SFig. 3: The choice of normalization method has in general little influence on the resulting performance
AUROC for the detection of ground truth DA features and FDR are shown for a single effect size in the signal
implantation setting (same setting as Fig. 2, abundance scaling factor of 2, no prevalence scaling, all features
eligible for implantation) with varying normalization methods (see Methods). The shaded area indicates the
standard deviation across repetitions. For ZIBSeq, only no normalization (pass) and the sqrt method are
implemented. In general, the choice of normalization method has little effect on the resulting performance, with
two exceptions: Both the clr or rclr method lower the AUROC for detection of the ground truth DA features in
combination with the Wilcoxon test and limma. Additionally, the TSS.log method results in extremely low AUROC
values for limma only.

SFig. 4: Performance of differential abundance testing methods under various effect sizes
AUROC for the detection of ground truth DA features and FDR are shown across all included methods for varying
effect sizes of the same signal implantation benchmark (all features eligible for implantation). The shaded area
indicates the standard deviation across repetitions. All values were recorded for a sample size of 100. With
higher effect sizes (both prevalence shift and abundance scaling), the AUROC for the detection of ground truth
DA features generally increases. In some methods, such as edgeR, the AUROC nears a value of 1 at extreme
effect sizes, even though the FDR remains high, which indicates that the P values from edgeR can distinguish
between background and ground truth DA features but are poorly calibrated (see also Main text).
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SFig. 5: Performance of differential abundance testing methods across simulation frameworks
AUROC for the detection of ground truth DA features and FDR are shown for a single effect size (same setting as
Fig. 2, abundance scaling factor of 2, no prevalence scaling, all features eligible for implantation) from different
simulation methods. The shaded area indicates the standard deviation across repetitions. For multinomial
simulations, the implementation from Weiss et al. was used.

SFig. 6: Examples of study confounding observed in real data mirror effects from the confounded signal
implantation benchmark
For colorectal cancer (CRC, panel a) and Crohn’s disease (CD, panel b), the number of samples in each group
(control and respective case) is shown across studies as a bar plot on the left. For CRC, study design led to
generally balanced comparisons across studies, limiting the risk for strong study confounding. For CD, however,
some comparisons are very unbalanced and can therefore introduce strong study confounding (for example, in
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the comparison between Lewis et al. and Qin et al.). On the right, generalized fold change associated with the
label and with study differences are shown for selected comparisons between two studies analogously to Fig.
3b. For the comparisons in CRC, the disease effect is generally not as strong as in CD (also see Fig. 1). For some
study comparisons in CD, study and disease effects are almost perfectly aligned (Lewis et al. and Qin et al.),
mirroring the strong study confounding situation in the signal implantation benchmark (see Fig. 3).

SFig. 7: Comparison of runtime across differential abundance testing methods
Runtime was recorded on the same machine for 50 repetition of different subset sizes from a single repetition in
the same signal implantation benchmark (abundance scaling of 2, prevalence shift of 0.1, all features eligible for
implantation). Methods are annotated with the time needed to run the subset size of 800 samples. The original
ANCOM implementation was obtained from the website of the first author of the ANCOM manuscript at
https://sites.google.com/site/siddharthamandal1985/research.
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