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Abstract

Artificial neural networks in computer vision have yet to approach the broad performance
of human vision. Unlike humans, artificial networks can be derailed by almost imper-
ceptible perturbations, lack strong generalization capabilities beyond the training data
and still mostly require enormous amounts of data to learn novel tasks. Thus, current
applications based on neural networks are often limited to a narrow range of controlled
environments and do not transfer well across tasks.

This thesis presents four publications that address these limitations and advance visual
representation learning algorithms.

In the first publication, we aim to push the field of disentangled representation learning
towards more realistic settings. We observe that natural factors of variation describing
scenes, e.g., the position of pedestrians, have temporally sparse transitions in videos. We
leverage this sparseness as a weak form of learning signal to train neural networks for
provable disentangled visual representation learning. We achieve competitive results on
the disentanglement_lib benchmark datasets and our own contributed datasets, which in-
clude natural transitions.

The second publication investigates whether various visual representation learning ap-
proaches generalize along partially observed factors of variation. In contrast to prior
robustness benchmarks that add unseen types of perturbations during test time, we com-
pose, interpolate, or extrapolate the factors observed during training. We find that the
tested models mostly struggle to generalize to our proposed benchmark. Instead of pre-
dicting the correct factors, models tend to predict values in previously observed ranges.
This behavior is quite common across models. Despite their limited out-of-distribution
performances, the models can be fairly modular as, even though some factors are out-of-
distribution, other in-distribution factors are still mostly inferred correctly.

The third publication presents an adversarial noise training method for neural networks
inspired by the local correlation structure of common corruptions caused by rain, blur, or
noise. On the ImageNet-C classification benchmark, we show that networks trained with
our method are less susceptible to common corruptions than those trained with existing
methods.

Finally, the fourth publication introduces a generative approach that outperforms existing
approaches according to multiple robustness metrics on the MNIST digit classification
benchmark. Perceptually, our generative model is more aligned with human vision com-
pared to previous approaches, as images of digits at our model’s decision boundary can



Abstract

also appear ambiguous to humans.

In a nutshell, this work investigates ways of improving adversarial and corruption ro-
bustness, and disentanglement in visual representation learning algorithms. Thus, we
alleviate some limitations in machine learning and narrow the gap towards human capa-
bilities.
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Kurzfassung

Die kiinstlichen neuronalen Netze des computergesteuerten Sehens kénnen mit den viel-
faltigen Fihigkeiten des menschlichen Sehens noch lange nicht mithalten. Im Gegen-
satz zum Menschen konnen kiinstliche neuronale Netze durch kaum wahrnehmbare St6-
rungen durcheinandergebracht werden, es mangelt ihnen an Generalisierungsfihigkeiten
iber ihre Trainingsdaten hinaus und sie bendtigen meist noch enorme Datenmengen fiir
das Erlernen neuer Aufgaben. Somit sind auf neuronalen Netzen basierende Anwendun-
gen hiufig auf kleine Bereiche oder kontrollierte Umgebungen beschrinkt und lassen
sich schlecht auf andere Aufgaben iibertragen.

In dieser Dissertation, werden vier Veroffentlichungen besprochen, die sich mit diesen
Einschrinkungen auseinandersetzen und Algorithmen im Bereich des visuellen Repri-
sentationslernens weiterentwickeln.

In der ersten Veroffentlichung befassen wir uns mit dem Erlernen der unabhéngigen Fak-
toren, die zum Beispiel eine Szenerie beschreiben. Im Gegensatz zu vorherigen Arbei-
ten in diesem Forschungsfeld verwenden wir hierbei jedoch weniger kiinstliche, sondern
natiirlichere Datensitze. Dabei beobachten wir, dass die zeitlichen Anderungen von Sze-
nerien beschreibenden, natiirlichen Faktoren (z.B. die Positionen von Personen in einer
Fuigingerzone) einer verallgemeinerten Laplace-Verteilung folgen. Wir nutzen die ver-
allgemeinerte Laplace-Verteilung als schwaches Lernsignal, um neuronale Netze fiir ma-
thematisch beweisbares Reprisentationslernen unabhéngiger Faktoren zu trainieren. Wir
erzielen in den disentanglement_lib Wettbewerbsdatensitzen vergleichbare oder bessere
Ergebnisse als vorherige Arbeiten — dies gilt auch fiir die von uns beigesteuerten Daten-
sitze, welche natiirliche Faktoren beinhalten.

Die zweite Veroffentlichung untersucht, ob verschiedene neuronale Netze bereits be-
obachtete, eine Szenerie beschreibende Faktoren generalisieren konnen. In den mei-
sten bisherigen Generalisierungswettbewerben werden erst wihrend der Testphase neue
Storungsfaktoren hinzugefiigt - wir hingegen garantieren, dass die fiir die Testphase re-
levanten Variationsfaktoren bereits wihrend der Trainingsphase teilweise vorkommen.
Wir stellen fest, dass die getesteten neuronalen Netze meist Schwierigkeiten haben, die
beschreibenden Faktoren zu generalisieren. Anstatt die richtigen Werte der Faktoren zu
bestimmen, neigen die Netze dazu, Werte in zuvor beobachteten Bereichen vorherzusa-
gen. Dieses Verhalten ist bei allen untersuchten neuronalen Netzen recht dhnlich. Trotz
ihrer begrenzten Generalisierungsfihigkeiten, konnen die Modelle jedoch modular sein:
Obwohl sich einige Faktoren wéhrend der Trainingsphase in einem zuvor ungesehenen
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Kurzfassung

Wertebereich befinden, konnen andere Faktoren aus einem bereits bekannten Wertebe-
reich groBtenteils dennoch korrekt bestimmt werden.

Die dritte Verdffentlichung prisentiert ein adversielles Trainingsverfahren fiir neuronale
Netze. Das Verfahren ist inspiriert durch lokale Korrelationsstrukturen hiufiger Bildarte-
fakte, die z.B. durch Regen, Unschirfe oder Rauschen entstehen konnen. Im Klassifizie-
rungswettbewerb ImageNet-C zeigen wir, dass mit unserer Methode trainierte Netzwer-
ke weniger anfillig fiir hdufige Stdrungen sind als einige, die mit bestehenden Methoden
trainiert wurden.

SchlieBlich stellt die vierte Veroffentlichung einen generativen Ansatz vor, der bestehen-
de Ansitze gemill mehrerer Robustheitsmetriken beim MNIST Ziffernklassifizierungs-
wettbewerb iibertrifft. Perzeptiv scheint unser generatives Modell im Vergleich zu frii-
heren Ansitzen stirker auf das menschliche Sehen abgestimmt zu sein, da Bilder von
Ziffern, die fiir unser generatives Modell mehrdeutig sind, auch fiir den Menschen mehr-
deutig erscheinen konnen.

Diese Arbeit liefert also Moglichkeiten zur Verbesserung der adversiellen Robustheit und
der Storungstoleranz sowie Erweiterungen im Bereich des visuellen Reprisentationsler-
nens. Somit ndhern wir uns im Bereich des maschinellen Lernens weiter der Vielfalt
menschlicher Fahigkeiten an.

viii



Contents

1 Introduction

2

1.1
1.2

1.3
1.4

Limited generalization in machine learning . . . . . . ... ... ...
Inductive biases for generalization . . . . ... ... ... .......
1.2.1  Definition and examples of inductive biases . . . . . . . .. ..
1.2.2 A brief history of structure in deep learning . . . . .. ... ..
1.2.3 Common inductive biases . . . . . . ... .. .. .. ... ..
1.2.4  Evaluation of inductive biases in the context of generalization

Goalof thisthesis . . . . . .. .. ... ..o
Outline . . . . . . . . .

Main contributions

2.1

2.2

2.3

24

Towards nonlinear disentanglement in natural data with temporal sparse
coding . . . . . ..
2.1.1 Problem: disentanglementintoydata . . ... ... ... ...
2.1.2  Approach: temporal sparse coding . . . . .. ... ... ....
2.1.3 Discussionandoutlook . . . . . ... ... L oL

Visual representation learning does not generalize strongly within the
samedomain . . . . ... ..o
2.2.1 Problem: in-domain generalization . . . . ... ... ... ..
2.2.2 Benchmark of visual representation learning approaches . . . .
223 Discussionandoutlook . . . . . ... oL Lo

A simple way to make neural networks robust against diverse image cor-
TUPLIONS . . . . o o e e e e e e e e e e e

2.3.1 Problem: common corruptions . . . . . .. .. .. .. ... ..
2.3.2 Approach: adversarial noise training . . . . . . ... ... ...
2.3.3 Discussionandoutlook . . . . .. ... L Lo
Towards the first adversarially robust neural network model on MNIST .
2.4.1 Problem: adversarial examples . . . . . . ... .. ... ....
2.4.2 Approach: analysis by synthesis . . . . .. ... ... ... ..
2.4.3 Evaluation of adversarial robustness . . . . . . ... ... ...
244 Discussionandoutlook . . . . .. ... L Lo

AN DN B~ B =

10

12

15

16
16
18
21

24
24
26
30

X



Contents

3 Transfer and combination of our inductive biases 47
3.1 Do our investigated inductive biases learn the intended solution? . . . . 47
3.1.1  Analysis by synthesis with a Gaussian likelithood . . . . . . .. 49

3.1.2 Disentanglement in visual representation learning . . . . . . . . 51

3.1.3 Adversarial noise training . . . . . .. ... ... ... ... 51

314 Summary . . .. ... 52

3.2 On the combination of inductive biases . . . . . . . ... ... .. ... 53
3.2.1 Disentanglement, ABS, and moredata . . . . . ... ... ... 54

3.2.2 Dataaugmentation . . . . .. ... ... ... 55

323 Summary . . . ... 55

4 Outlook 57
Acknowledgments 61
Bibliography 63

A Publication 1: Towards nonlinear disentanglement in natural data with
temporal sparse coding 77

B Publication 2: Visual representation learning does not generalize strongly
within the same domain 129

C Publication 3: A simple way to make neural networks robust against di-
verse image corruptions 165

D Publication 4: Towards the first adversarially robust neural network model
on MNIST 197



Chapter 1

Introduction

1.1 Limited generalization in machine learning

Clever Hans was a horse owned by Wilhelm von Osten in the early 20th
century. It was claimed that it could solve mathematical problems such
as subtraction, addition, and others by tapping its hoof on the ground to
demonstrate the solution. For instance, “four plus two” would result in six
taps. However, after raising scientific interest, it was later shown in several
ablation studies that the horse does not solve math problems. It merely re-
lied on the unconscious but anticipative facial expression of its questioner
to determine when to stop tapping its hoof (Johnson, 1911).

The story of the Clever Hans horse reveals the difficulty of assuring that even a straight-
forward task such as performing simple additions is learned as intended. It further
demonstrates the limitations of shortcut solutions: As the horse relied on the uninten-
tional expressions of its questioner, it was unable to answer the mathematical questions
on its own or if the questioner did not know the solution. Thus, the applicability of
the horse’s feigned mathematical skills was limited to the demonstration with the visi-
ble presence of its questioner (Prinz, 2006). Nonetheless, von Osten happily continued
showcasing the abilities of his horse in defiance of being scientifically disproven.

Machine learning has also been showcased to demonstrate astonishing abilities in vari-
ous tasks such as playing the combinatorially challenging board game Go (Silver et al.,
2016), protein folding (Jumper et al., 2021), competing in the question answering Show
Jeopardy! (Ferrucci et al., 2013), in the strategy game StarCraft II (Vinyals et al., 2019),
and visual pattern recognition (Ciresan et al., 2011). With the increased abilities, our
lives become more reliant on machine learning systems such as virtual assistants in
phones (e.g., Siri, Alexa, Google Assistant), image processing in autonomous driving,
traffic light recognition apps for the blind or to track herds of livestock. Thus, a more
thorough understanding of machine learning and its possible downsides is crucial.
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With the showcasing of revolutionary capabilities of neural networks, several limitations
come to light. Failure cases or unintended solutions of machine learning have been ob-
served in various disciplines. In reinforcement learning, reward hacking describes an
agent following an unintended strategy but still achieving high reward. For instance, a
robot rewarded to achieve an environment free of messes might simply disable its vision
to seemingly remove the mess (Amodei et al., 2016). In medical imaging, unplanned be-
havior has been shown by models picking up unintended signals in the data. For example,
a neural network designed to aid diagnosing dermoscopic images strongly relies on sur-
gical ink markings present in the data (Winkler et al., 2019) . Also, neural networks lack
robustness. In image-based tasks, they are easily confused by common corruptions such
as rain, blur, or compression artifacts. In a more extreme case, adversarially crafted per-
turbations that are humanly almost imperceptible, can derail a neural network (Szegedy
et al., 2014; Biggio et al., 2013). For instance, an image of a “pig” can be slightly per-
turbed to be classified as an “airliner” by a neural network (Madry and Schmidt, 2018).
For an undefended neural network, such adversarial perturbations exist for practically
every input. Even though such adversarial perturbations are unlikely to occur in nature,
methods have been developed to apply them in the physical world. A universal sticker
can be put on or next to objects such that they are recognized as a toaster (Brown et al.,
2017). Notably, this sticker only remotely resembles a toaster. Thus, despite their re-
markable capabilities, common machine learning algorithms show unintended behavior.
Small shifts in the application domain can reveal such shortcomings.

It has been proposed that these failure cases can be related to the fact that neural networks
do not learn the intended solutions, but rather rely on spurious features (Ilyas ez al., 2019)
or shortcut learning (Geirhos et al., 2020). To provide an intuitive example, we consider
a cow in front of an atypical scene such as a sandy beach instead of a usual green pasture.
Here, it can happen that the cow on the beach is no longer recognized by a neural network
(Beery et al., 2018). It seems the green pasture background itself is usually already quite
predictive and might be sufficient to recognize cows in certain tasks. Thus, the network
might actually never learn the underlying concept of a cow, but still be able to recognize it
in images with suiting backgrounds. Surprisingly, such shortcuts are almost omnipresent
in high dimensional problems: They are quite predictive in various settings and learning
algorithms often seem to prefer shortcuts over a principled solution (Brendel and Bethge,
2019; Ilyas et al., 2019; Wilson et al., 2017; Bartlett et al., 2020; Arjovsky et al., 2020;
Bruna et al., 2015; Geirhos et al., 2019).

Similarly to Geirhos et al. (2020) and given the previous examples, we define shortcut
solutions as solutions that perform well on domains that are identically distributed to
their training domain but do not generalize to other scenarios. We define the intended
solution for neural networks as solutions that not only perform well on tasks similar to
their training domain, but also generalize to various out-of-distribution scenarios similar
to humans. We rely on humans as a proxy for generalization because a) they generalize
much better than neural networks (Geirhos ef al., 2018), and b) it is desired that neural
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networks are aligned with our intuitions as we want them to be useful for humans.!

Another possible explanation why neural networks often do not learn the intended so-
lution is that they are often highly underspecified. Well-performing models on images
have tens or hundreds of millions of tuneable parameters. Here, the number of tune-
able parameters often even surpasses the number of images. When combining this high
flexibility of neural networks with the ubiquitous presence of shortcuts, we can get a mul-
titude of different models that perform well on the training and similar test data (Barker
and Achinstein, 1955; Choromanska et al., 2015; Draxler et al., 2018). However, on
out-of-distribution tasks, these models vary in performance, even if they only differ by
the random seed during the initialization (D’ Amour et al., 2020). Thus, the common
strategy of simply providing a training domain with labelled images is often insufficient
to properly specify a network. A possible remedy could be provided by inductive biases
that specify our models and guide them towards learning the intended solution.

Avoiding shortcuts and achieving generalization is imperative for further improvement
of machine learning systems acting in our complex world. In image-based learning
tasks, generalizations beyond the training domain are omnipresent. For instance, weather
changes like rain, snow, hail, or fog alone can lead to small domain shifts. Backgrounds
can change due to different seasons, e.g., leaves can turn from green over yellow to
brown. Moreover, lighting conditions of an image can change due to clouds or even
in laboratory settings due to a different light bulb or a different camera angle. This
myriad of possible variations in the world results in a “heavy-tailed distribution™ and it
is almost infeasible to account for all possible scenarios during the development of a
learning algorithm. Thus, we require additional tools to assure safer behavior and foster
generalization.

All in all, we highlight the necessity for generalization in machine learning. We propose
shortcuts and underspecification to be core underlying problems of the limited gener-
alization capabilities of machine learning algorithms observed in many tasks. For more
trustworthy machine learning solutions and a broader set of applications, it is desired that
networks actually learn concepts that transfer more reliably across tasks and domains. To
learn a solution closer to the intended one, we propose to incorporate additional induc-
tive biases. The overall reasoning of this section is also depicted in Fig. 1.1. In the next
section, we provide an overview of common inductive biases to further specify neural
networks to foster generalization.

I'We refer to Sholarin ez al. (2015) for a more philosophical discussion of relying on humans as a measure.
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Common deep learning Shortcut solutions are
models are highly almost ubiquitous in
underspecified. learning tasks.

\ We require additional A/

inductive biases for
generalization.

Most vision tasks require Shortcut learning is a
generalization beyond the possible cause of limited
training domain. generalization.

Figure 1.1: Necessity for inductive biases for generalization in machine learning.

1.2 Inductive biases for generalization®

In the previous section, we argue for the necessity of additional specifications (induc-
tive biases) for machine learning models to achieve intended generalizations. Here, we
delve into various proposed inductive biases from the research literature. The section is
structured as follows: First, we provide a formal definition of inductive biases and give a
prototypical example. Second, we present a brief historical account of structure in deep
learning. Third, we introduce a coarse categorization of inductive biases into groups.
Lastly, we discuss inductive biases in the context of human-like generalization.

1.2.1 Definition and examples of inductive biases

We informally define inductive biases as characteristics of learning algorithms that in-
fluence their generalization behavior beyond the training domain (Mitchell, 1997; Abnar
et al., 2020).> Our broad definition of inductive biases covers all explicit and implicit
assumptions while implementing a learning algorithm similar to the definition of Hiiller-
meier et al. (2013). In contrast to statistical learning theory that focuses on generaliza-
tions to test data that stems from the same distribution as the training data (Vapnik, 2013;
Vapnik and Chervonenkis, 1982), we concentrate on generalizations beyond the training
domain (also referred to as out-of-distribution generalization) and use humans as a proxy
to determine what types of generalization should be achievable. To limit the scope, we
further focus on inductive biases that have been previously considered in the context of
generalization in the computer vision literature.

A prototypical example of an inductive bias in vision are convolutional neural networks
(CNNs) (LeCun et al., 1999; Fukushima, 1988). They leverage translational symmetries
in our world. Especially, low-level image features, like edges or textures, can appear in

2This section is partially adapted from our paper (Schott et al., 2021).

3In contrast to Abnar er al. (2020), who explicitly define inductive biases independent of the data, we
also consider data used to initialize an algorithm as a possible inductive bias as, e.g., pretraining on
large image datasets is a common approach in out of distribution generalization.
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arbitrary positions in images. CNNs share learned parameters and use them to compute
abstractions across the image. For instance, if the concept of edges is learned at a specific
location of the image, it can also be extracted at other positions. When combining this
translational symmetry with a pooling operation, we gain a spatial invariance. E.g., for
simple object recognition in front of a plain background, the exact position of an object
is not relevant for a classification. Compared to fully connected neural networks, con-
volutional networks drastically reduce the number of model parameters, are more data
efficient, and outperform previous approaches on various benchmarks (Yin ez al., 2013;
Stallkamp et al., 2011; Arganda-Carreras et al., 2015).

1.2.2 A brief history of structure in deep learning

Historically, incorporating structure in algorithms versus flexibility varied. In the first
wave of deep learning in around 1950, low computational power and small datasets lim-
ited learning to small models such as the perceptron (McCulloch and Pitts, 1943; Rosen-
blatt, 1958). No training algorithms were available to efficiently train stacked percep-
trons in practice, and limiting them to problems that are linearly separable (Minsky and
Papert, 1969). Therefore, most systems and research focussed on rule-based algorithms
and domain experts. The second wave of deep learning around 1980/90, laid out the
algorithmic foundation for later achievements. Here, tools like backpropagation enable
the training of deep and flexible network architectures consisting of multiple, stacked
perceptrons (Rumelhart ez al., 1986). Also, more data efficient algorithms for time se-
ries or images like shift invariant neural networks were developed (LeCun et al., 1989;
Fukushima, 1988).

In the early 21st century, powerful GPUs allowed for more computations and the rise of
a digital age led to abundant amounts of data. Larger models could be trained mostly
by leveraging the techniques proposed in the second wave. These models significantly
outperformed previous handcrafted approaches (e.g., (Stallkamp ez al., 2011; Yin et al.,
2013; Kiimmerer et al., 2014)). Thus, a shift from hand-crafted feature engineering to
highly flexible architectures occurred. With the mantra of “end-to-end learning”, as little
as possible should be specified beforehand and everything inferred from the data. This
can be summarized in an exaggerated way by an alleged quote of Frederick Jelinek who
worked on automated speech recognition: “Every time I fire a linguist, the performance
of the speech recognizer goes up.** Also, limitations of too specific structures were
pointed out, e.g., the thought of recognizing cats in images by fitting geometric forms like
a triangle to the nose and ears has complex dependencies on the viewpoint, occlusions
and lighting (Li, 2015). Thus, most rule-based systems are not suited to cover the vast
range of variations present in the world.

Paradoxically, with the rising success of large networks, also voices raised the point that

“4The specific phrasing and time of the quote is unclear (Wikiquote, 2021)
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from the perspective of theoretical non-convex optimization, the success of such over-
parameterized models should not be possible (Sejnowski, 2020). Later work partially
explained the unreasonable success of deep learning and attributed it to implicit proper-
ties of the optimizer (Roberts, 2021), high dimensional spaces and of the architectures
(Kawaguchi, 2016). Those could be seen as revealing implicit biases in the deep learning
pipeline.

From today’s perspective, in a recent debate in 2018, key figures Yann LeCun and
Christopher Manning discussed “What innate priors should we build into the architecture
of deep learning systems” (LeCun and Manning, 2018). Here, LeCun called structure a
“necessary evil” but hopes to relax structures by leveraging more data and more evolved
unsupervised learning techniques in the future. He underlines this by stating that even
the structural benefits of CNNs should not be necessary if enough data is available. Chris
Manning, in contrast, stated incorporating structure as a “necessary good”. He used hu-
mans as role models of good learners with high sample efficiency that he attributes to
priors. He further stated that massive amounts of compute and data have sent the re-
search field “off track”, as one “can do a lot of stuff with a very simple learning device”.
However, we should strive for “good learners” similar to humans that, compared to ma-
chines, need little data to learn certain tasks.

In the context of this thesis, we also acknowledge the necessity of inductive biases and
try to find a middle ground. We aim to develop inductive biases that incorporate structure
to help on certain out-of-distribution scenarios, but are yet flexible enough to not lower
the performance. We closely investigate inductive biases and their effect on other out-of-
distribution scenarios to check whether there are possible trade-offs.

1.2.3 Common inductive biases

Incorporating Regularization Obtimizer Risk minimization (Adaptive)
symmetries methods ptimize paradigms / augmentation
Network .
Learning method Data

architecture

— N~ = ]

Direction of Representational Other Additional

Gradient flow . . .
information flow format environments data

Figure 1.2: Examples of inductive biases. A list of common inductive biases consid-
ered for generalization in machine learning. Bold inductive biases correspond to biases
studied in this thesis.

We coarsely categorize inductive biases of neural networks in visual representation learn-
ing into network architecture, learning method, and data. We focus on promising direc-



1.2 Inductive biases for generalization

tions for generalizations beyond the training domain, and on literature relevant in this
thesis. For a broader spectrum of inductive biases, we refer to Battaglia et al. (2018) and
Craven (1996).

Network architecture

Incorporating symmetries: Our physical world is governed by symmetries that are con-
nected to conservation laws (Noether, 1915). Discovering and leveraging such symme-
tries has lead to tremendous advances in physics. E.g., spatial translational symmetry
leads to the conservation of momentum or the time translational symmetry leads to a
conservation of energy. In the previous example of the CNN, we also observed bene-
fits of leveraging spatial symmetries in neural networks. Among others, this has further
been generalized to rotations (Marcos et al., 2016; Fasel and Gatica-Perez, 2006), scales
(Xu et al., 2014) and group operations by so-called G-Convolutions (Cohen and Welling,
2016). Other methods also introduce invariances in the processing on the level of indi-
vidual pixels by leveraging set based and coordinate-based representations (Achlioptas
et al., 2018; Zhang et al., 2019b). To implement these symmetries, the individual net-
work layers leverage a high degree of weight sharing, which facilitates the generalization
along the considered symmetry.

Biases of common network architectures: Implicitly, the network architecture also has
a large influence on how information is processed. CNNs, for instance, often focus on
local relations common in textures (Brendel and Bethge, 2019; Geirhos et al., 2019).
In contrast, Long-Short-Term-Memory (LSTM) or Gated Recurrent Units (GRU) net-
works introduce a specific cell structure that allows for non-vanishing gradient updates
during learning to input points with arbitrary distances (Hochreiter and Schmidhuber,
1997; Cho et al., 2014). Thus, very distant inputs can be related more easily. Simi-
larly, transformers (Vaswani et al., 2017), which treat the input as a set and rely on an
attention mechanism, have been shown to leverage distant relations in images (Carion
et al., 2020). Thus, in contrast to convolutional networks that rely on texture for object
classifications, transformers can be trained to rely on shape similar to humans and show
promising out-of-distribution generalization results (Geirhos et al., 2021). While trans-
formers, LSTMs and GRUs allow for distant spatial dependencies, Residual Networks
(ResNets) (He et al., 2016), DenseNets (Huang et al., 2017) and UNets (Ronneberger
et al., 2015) facilitate the learning across different hierarchies of information processing
in neural networks. They enable direct relations of low-level concepts like edges ex-
tracted in the shallow layer of neural networks with more abstract object properties that
can be found in deeper layers. Respectively, these networks have shown high accuracies
on image-based benchmarks like ImageNet, CIFAR, and segmentation tasks. Their high
reliability and flexibility renders these networks as a common backbone for further de-
velopments in generalization methods such as Geirhos ef al. (2019); Rusak et al. (2020)
or Hendrycks et al. (2020b).
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Learning method

In this section, we use the term learning method as an umbrella for design choices re-
garding different types of risk minimization objectives, representational format, regular-
ization methods, and the direction in which information is processed.

Risk minimization paradigms: Normally, we do not have access to the full data distri-
bution for a certain task, but instead have to rely on a limited set of training samples
with a corresponding label. Additionally, we often rely on a proxy loss function that
defines how close our model predictions for given samples are to the true label. Given a
loss function and a set of labelled examples from a training distribution, empirical risk
is defined as the average loss over all training samples. Empirical risk minimization,
finds a hypothesis from the hypothesis class that minimizes the average loss. However,
often there exists a multitude of different strategies to achieve low or even zero empirical
risk. To further narrow the space of possible solutions, Arjovsky et al. (2020) introduce
invariant risk minimization. They assume additional access to multiple environments
and aim for a solution that extract features that are invariant across environments. For
instance, to distinguish cows from camels it is often quite predictive whether the back-
ground is a green pasture or a sandy desert. Assuming additional access to a few images
of cows on a sandy background and leveraging invariant risk minimization, shifts the fo-
cus to the desired object (cow or camel). Note that assuming additional environments is
also leveraged by Hyvérinen and Morioka (2016) for provably identifiable representation
learning.

Direction of information flow: In visual representation learning, the direction in which
we compute representations, e.g., from images to labels or, vice versa, from labels to
images can have a high influence on the generalization properties of a model. In the
standard deep learning setup in visual representation learning tasks such as object recog-
nition, we train a network end-to-end with full supervision to learn a mapping from
images to labels (feedforward) on the training data, which consists of pairs of images
and their corresponding labels. It has been shown that this approach can rely on single
predictive features that are sufficient to classify an object (Brendel and Bethge, 2019;
Ilyas et al., 2019; Jacobsen et al., 2019; Geirhos et al., 2019). For instance, to distin-
guish cats from ships, looking at local texture patterns can be sufficient. In contrast, in
the principle of analysis by synthesis (de Cordemoy, 1973; Von Humboldt et al., 1999),
we learn a mapping from labels to images. For a classification of images, we synthesize
images from a model to find the likelihood for each sample p(x|c) for a class ¢. Next,
based on maximum likelihood, we can infer the class (Schott et al., 2019). Thus, due to
this reconstruction, all features have to be matched correctly for a likely classification.
However, this method is computationally much more demanding compared to feedfor-
ward network architectures. For a more in-depth evaluation, we refer to Mackowiak et al.
(2021).



1.2 Inductive biases for generalization

Regularization methods: A common philosophical principle to choose one hypothesis
over another about the same prediction is Occam’s razor. Analogously, in neural net-
works, the concept of regularization is used to incentive solutions with lower capacity.
Common candidates for regularization are weight decay, L1 regularization, or early stop-
ping. This can also be seen in the context of the bias-variance trade-off (Kohavi et al.,
1996). Here, a lower regularization can lead to more flexible models, but they are more
prone to overfitting and can have high variances.

Representational format: The representation of high-dimensional data has a significant
impact on the generalization performance of the downstream model (Bengio et al., 2013).
A principled method in visual representation learning is based on (nonlinear) indepen-
dent component analysis (ICA) (Comon, 1994; Bell and Sejnowski, 1995), also referred
to as disentanglement. Corresponding methods assume a set of independent latent vari-
ables that give rise to the observed data. Common methods to recover the latent factors,
such as the Variational Autoencoder (VAE) (Kingma and Welling, 2014) and variants
thereof (Kumar et al., 2018; Chen et al., 2018), rely on a bottleneck and maximize a
lower bound to the marginal likelihood of the data (also referred to as evidence). How-
ever, in most cases, the unknown latent variables cannot be guaranteed to be identified
correctly (Hyvirinen and Pajunen, 1999; Locatello et al., 2019a). Given some additional
weak assumptions about these latent factors, it was shown that they can be inferred up
to some unavoidable transformations (Hyvirinen and Morioka, 2016; Locatello et al.,
2020b; Klindt et al., 2021). Subsequent studies on downstream tasks have shown that
this method can facilitate the generalization capabilities of a neural network. Further-
more, this allows mimicking the ground truth generative model behind a scene on the
training data. This property could be helpful to learn principled models.

As these disentanglement models only require weak or no explicit supervision, they can
be used to harness large quantities of unlabeled data, which is available in abundance.
Here, models pretrained using contrastive learning, a method highly connected to dis-
entanglement (Zimmermann et al., 2021), are currently among the state-of-the-art ap-
proaches on the ImageNet classification benchmark (Chen et al., 2020a).

Activity matching: Another approach relies on mimicking brain activities of animals
or humans for certain inputs, and thus guiding models to learn similar strategies (Fong
et al., 2018). Given similar processing patterns, one could expect to overcome limita-
tions in machine learning, such as limited out-of-distribution generalization. Empiri-
cally, by matching the neural activities in mouse brains, the robustness of artificial neural
networks towards Gaussian noise and adversarial perturbations could be increased (Li
et al., 2019b) . However, a gap in robustness remains between the true and artificial
neural models.



Chapter 1 Introduction

Data

Augmenting the input data: Another way to boost the out-of-distribution performance of
a neural network is to augment in the input data. For instance, simply adding Gaussian
noise to the input of ImageNet classifiers can substantially improve their out of distri-
bution performance (Rusak et al., 2020) and is related to regularization (Bishop, 1995).
Other approaches artificially create input variations, e.g., shearing or rotating the input,
or by adding synthesized common corruptions such as rain, blur or compression artifacts.
More adaptive methods like adversarial training iteratively compute worst-case pertur-
bations for a given classifier and add them to its training data (Madry et al., 2018). Com-
bined with a carefully constrained search space of allowed perturbations, such methods
show state-of-the-art results on common out-of-distribution tasks (Kireev et al., 2021;
Calian et al., 2021).

Leveraging additional data: Powerful pre-trained methods based on contrastive learn-
ing or other un-/ weakly supervised representation learning methods (Xie et al., 2020)
allow harvesting enormous amounts of (weakly annotated) datasets (Sun et al., 2017,
Kolesnikov et al., 2020). Surprisingly, often using more data and relying on an end-to-
end learnable architecture, can outperform sophisticated baselines, which is also referred
to as Sutton’s bitter lesson (Sutton, 2019).

1.2.4 Evaluation of inductive biases in the context of generalization

Naively incorporating inductive biases into a model should be treated with care. The
no free lunch theorem, states that the introduction of a certain inductive bias to improve
the performance on one task is guaranteed to worsen the performance on another task
(Wolpert and Macready, 1997). However, as defined in the previous section, we strive
for a robustness similar to humans. Thus, we postulate the existence of a solution with
human-like robustness and accept trade-offs in other domains. We think this is a reason-
able goal, as there is still a large gap in terms of out-of-distribution performance between
humans and machines.

To quantify our progress, we consider various out-of-distribution scenarios that seem
easy for humans. Here, previously introduced inductive biases often help neural net-
works to generalize and have enabled machine learning applications on previously un-
reachable domains. Nonetheless, a large gap towards human like generalization remains.
Thus, finding better generalizing inductive biases is an open research question.
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1.3 Goal of this thesis

1.3 Goal of this thesis

The goal of this thesis is to provide a condensed overview of our published work on
inductive biases for visual representation learning. For each contribution, we highlight
the previous state as well as its impact. Our contributions are the following:

* We first introduce a principled method for unsupervised disentanglement in nat-
ural videos. Based on temporal properties of natural transitions and other weak
assumptions, we can provably identify the factors of variation behind a dataset.
We also provide two practical implementations based on a VAE (named Slow-
VAE) and based on flows. On common disentanglement datasets and two intro-
duced natural datasets, we further show competitive or superior results on various
disentanglement metrics. Thus, we advance the field of provable disentanglement
towards more natural data.

Second, we further test whether not only the corresponding underlying factors of
datasets are learned, but also the generative model behind each factor. This test
relies on introducing systematic out-of-distribution data splits along known factors
of variation, such as size. E.g., if small and medium-sized objects are recognized
during training, the model is required to recognize large objects during testing.
Based on a large-scaled benchmark of 17 representation learning algorithms on
four different datasets with various out-of-distribution scenarios, we conclude that
the generalization towards novel configurations of present factors from the data is
limited.

Third, we introduce adversarial noise training (ANT). This is a model adaptive
data augmentation method that mimics certain properties of common corruptions.
We show that our proposed training scheme can increase the corruption robustness
on ImageNet-C and MNIST-C. We further show that additive Gaussian noise is
already a competitive baseline if it is properly scaled.

In the fourth and last contribution, we introduce a model that relies on the principle
of analysis by synthesis (ABS). Our model achieves high or even state-of-the-art
adversarial robustness on various L,-norms on the MNIST digit classification task.
It further leads to adversarials that appear to be at the human decision boundary.
Furthermore, it shows robustness towards distal adversarials, meaning that confi-
dently predicted images resemble humanly plausible images of digits.

Next, we discuss the research question do our investigated inductive biases learn the
intended solution? To answer this question, we test our proposed inductive biases across
multiple out-of-distribution scenarios. This is in contrast to the individual contributions
sections, in which we always consider a specific inductive bias for one out-of-distribution
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Chapter 1 Introduction

scenario and not across multiple>. We propose this procedure to estimate our progress
towards human-like robustness. The more out-of-distribution settings a proposed induc-
tive bias successfully transfers to, the smaller the gap towards human-like robustness and
the intended solution. More concretely, the out-of-distribution scenarios we focus on are
common corruptions, adversarial examples, and novel configurations of known factors
of variation. Our considered inductive biases are implemented by the models ABS, ANT
and SlowVAE. We find that our inductive biases are mostly orthogonal. While they in-
crease the performance on the individually considered out-of-distribution scenarios, they
have nearly no effect on other out-of-distribution scenarios.

The second research question investigates how well our proposed inductive biases can
be combined? To evaluate, whether our inductive biases can be combined in a symbiotic
manner, we consider preliminary results and other literature. We find that the combina-
tion of our inductive biases is often mutually beneficial. Thus, it points out promising
future research directions.

1.4 Outline

In the introduction in Section 1.1, we highlight the necessity of inductive biases and in
Section 1.2 introduce related candidates relevant for this thesis.

In the subsequent contribution sections in Chapter 2, we introduce inductive biases. Here,
the individual contributions are ordered by the intricacy of the considered generalization
scenario and provide a high-level description of a corresponding publication in the Ap-
pendices A to D. Furthermore, each contribution section is coarsely structured by intro-
ducing the problem, shortly describing our proposed inductive bias and discussing the
contribution in the context of the relevant literature.

In Transfer and combination of our inductive biases in Chapter 3, we provide a bigger
picture and discuss our proposed inductive biases across all individually considered gen-
eralization scenarios. In the second part of this discussion, we examine the combination
of our proposed inductive biases.

In the outlook in Chapter 4, we hypothesize about future directions in the research of
inductive biases for generalization in machine learning.

In the appendix, we add our publications on which this thesis is based on. The overall
outline is depicted in Fig. 1.3

>This separation of inductive biases and a corresponding out-of-distribution scenario is performed to give
a clear structure to this thesis. The results to support this discussion among multiple scenarios are also
mostly taken from the publications in the appendix and complement by results from the literature.
When no suiting results were available, novel experiments were performed.
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Figure 1.3: Outline of this thesis.
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Chapter 2

Main contributions

In this chapter, we provide an intuitive and high-level description of our contributions.
Each contribution consists of providing an example of limited generalization and, sub-
sequently, presenting approaches to overcome those limitations. We arrange our contri-
butions by the intricacy of the examined generalization types. We start with a simple
scenario in which the training data distribution is equivalent to the test distribution, but
no direct supervision signal is given. In the subsequent chapters, we gradually move to
more intricate out-of-distribution scenarios and allow for full supervision. Here, we first
consider a combinatorial generalization along factors of variation present in the data,
such as having small and medium-sized objects during training but requiring the model
to recognize large objects during testing. Next, we consider common corruptions such as
rain, blur, or compression artifacts. In contrast to the previous section, these artifacts are
introduced at test time and not necessarily present during training. Lastly, we consider
adversarial examples, which are maliciously crafted samples to maximally change the
classification of a learning model.

Each section also corresponds to an individual paper presented in the Appendix. The
individual papers contain an encapsulated and much more detailed description, with a
focus on the specific contribution.
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Chapter 2 Main contributions

2.1 Towards nonlinear disentanglement in natural data
with temporal sparse coding

David Klindt*, Lukas Schott*, Yash Sharma*, Ivan Ustyuzhaninov, Wieland
Brendel, Matthias Bethge®, Dylan Paiton®.
Published as a conference paper and as an oral at the ICLR 2021.

*Joint first authors / equal contribution, °joint senior authors

Author contributions M.B. proposed the idea of temporal sparse cod-
ing with deep networks repeatedly to the lab; D.A.K. conceived the
idea of the model with input from L.S. and D.P.; D.A.K., L.S. and
Y.S. performed the main experiments; L.S. and Y.S. respectively de-
signed the simplified natural dataset KITTI-Masks and NaturalSprites
with input from D.A.K., D.P. and W.B.; D.A.K., Y.S. and L.S. ana-
lyzed the statistics of the natural datasets; L.S. performed an in-depth
assessment of how latents are encoded in figures 4., 5. and multiple ap-
pendix figures with input from D.A.K., Y.S. and D.P.; M.B. structured
and supervised the theoretical analysis of the paper.; 1.U., D.A K. and
W.B. proved theorem 1; D.A.K. derived the objective function for the
SlowVAE with input from [.U.; L.S. derived the objective function for
the SlowFlow with input from D.P.; L.S. and Y.S. performed an in-
depth comparison to PCL in appendix B; D.P. compared the metrics in
appendix B; Y.S. performed the permutation experiments in appendix
G; D.AK.,, D.P, Y.S. and L.S. wrote the manuscript with input from
W.B., .LU. and M.B.

All section and figure references are w.r.t. to the publication in Ap-
pendix A.

We provide a model to learn a disentangled representation of the world based on video
data. Here, we alleviate current limitations in unsupervised representation learning ap-
proaches, such as the restriction to artificial or heavily controlled environments. In con-
trast to previous methods that introduce artificial inductive biases to learn a provable
disentangled latent representation, we rely on properties observed in temporal data as a
first principle to develop our model.

2.1.1 Problem: disentanglement in toy data

A principled approach for visual representation learning can be derived from the inde-
pendent component analysis (ICA) and disentanglement literature (Jutten and Herault,
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2.1 Towards nonlinear disentanglement in natural data with temporal sparse coding

1991; Comon, 1994; Hyvirinen and Morioka, 2017). Here, intuitively, we assume that
observations in the world are rendered by a generative model that receives certain fac-
tors of variation as input. It is assumed that these factors of variation are not observed
directly and provide an abstract description of a scene. They could, for instance, specify
an object and its properties such as position in space, color, or others. A generator model
or computer graphics engine then draws an observable image corresponding to the speci-
fied factors. The goal of disentanglement is to recover the latent factors of variation from
observations.

Disentangled representations can be useful for generalization to novel scenarios (Higgins
et al., 2017b), fairness (Locatello et al., 2019b), increased interpretability (Adel et al.,
2018; Higgins et al., 2017a), predictive performance (Locatello et al., 2019a) and sample
efficiency (van Steenkiste et al., 2019; Locatello et al., 2020a).

One limitation in disentanglement learning approaches is that we do not have guarantees
on identifying non-linearly mixed latent factors solely based on independent and identi-
cally distributed observations without additional assumptions (Hyvirinen and Pajunen,
1999; Locatello et al., 2019a). For instance, a factor could be learned such that it simul-
taneously controls the shape and size when varied, but according to the true model, those
should be two separate factors. Locatello et al. (2019a) showed that this empirically
affects the commonly used latent variables models, such as the variational autoencoder
(Kingma and Welling, 2014) and its extensions (Kim and Mnih, 2018; Higgins et al.,
2017a; Chen et al., 2018; Kumar et al., 2018). To overcome this limitation, methods
rely on additional types of supervision signals that enable a provable identification of the
latent distribution. Minimal but sufficient types of supervision rely on receiving pairs
of images as input that only differ in a few factors (Locatello et al., 2020b; Hyvirinen
and Morioka, 2017), or by conditioning on additional variables (Hyvérinen and Morioka,
2016; Khemakhem et al., 2020b,a). However, so far, these types of weak supervision are
often created artificially and might not exist in nature. Thus, current methods for disen-
tanglement mostly rely on artificial datasets (Kim and Mnih, 2018; Matthey et al., 2017;
LeCun et al., 2004) or highly controlled environments (Gondal et al., 2019). It remains
unclear whether these required additional assumptions for identifiability are present in
unstructured, real-world environments. In the next section, we address this limitation
and present a possible remedy to help to transfer to more natural settings.

Another limiting assumption required for provable identifiability is that all possible data
points are observed. This might be practically infeasible in most cases, as the number of
data points scales exponentially with the number of factors, or to infinity for continuous
factors. This is further discussed in Section 2.2.
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Figure 2.1: Sparse natural transitions. We depict the histogram of differences of fac-
tors of variation from neighboring time frames in videos. The orange lines correspond to
a fit of generalized Laplacian distribution. On the left side, we consider masked pedes-
trians from KITTI-MOTS. On the right side, we show the same for various objects from
YouTube-VOS. Figure adapted from our paper (Klindt ez al., 2021) / Appendix A.

2.1.2 Approach: temporal sparse coding

As highlighted in the previous section, to provably identify the latent factors given ob-
servations from natural data, we require additional assumptions or inductive biases to
inform our model.

To find a suitable inductive bias for identifying latent factors, we analyze fully annotated
data from natural videos in YouTube-VOS (Xu et al., 2018) and of pedestrians from
an autonomous driving dataset (Geiger et al., 2012; Voigtlaender et al., 2019a; Milan
et al., 2016). We extract object masks and analyze their behavior over time. E.g., the
X-position, y-position, and scale of a walking pedestrian, as shown in Fig. 2.3. We find
that the transitions of these measured factors all follow a sparse generalized Laplace
distribution, as shown in Fig. 2.1 (Sinz et al., 2009). This observation is motivated by and
in accordance with previous measured transition behaviors (Simoncelli and Olshausen,
2001; Olshausen, 2003; Hyvirinen et al., 2003).

We leverage the observed sparse temporal transitions to inform a model with neighboring
time frames of videos and, under mild assumptions, provide a proof for identifiability.
Our proof allows us to identify factors of variation of up to just permutations and sign
flips, which is a more extensive type of identification compared to previous approaches
that additionally require linear transformations (Hyvérinen and Morioka, 2016) or point-
wise nonlinearities (Locatello et al., 2020b; Hyvérinen and Morioka, 2017). To the best
of the authors’ knowledge, this is the first approach connecting the presence of sparse
transitions in natural data to provable disentanglement!.

Empirically, we compare our model to previous methods on various datasets and metrics.
As baselines, we consider the identifiable models Ada-GVAE (Locatello et al., 2020b)
and PCL (Hyvérinen and Morioka, 2017). For brevity, we here disregard the inferior

ISimilar to our work, Hyvirinen and Morioka (2017) assume a generalized exponential distribution,
which is theoretically not directly applicable to our observed leptokurtic sparseness, but empirically
performs close to our model. For more details, we refer to a direct comparison in our paper (Klindt
et al., 2021) in Appendix A.
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Figure 2.2: Disentanglement per-
formances. @ We show average
ranks over all metrics and datasets
including dSprites (LAP & UNI),
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Figure 2.3: KITTI-Masks dataset. We show sam-
ples from masked pedestrians from the KITTI-
Masks dataset. Each image corresponds to a time
frame from KITTI. We further cropped individual
pedestrians. The measured factors of variation are
size (number of pixels in the mask) and x/y-position
(center of mass of the mask). Figure adapted from

pendix B. Significance tests based our paper (Klindt ez al., 2021) / Appendix A.
on 100k sample permutation tests,
* p <0.05, ** p < 0.001, non-

significant (n.s.), i.e., p > 0.05.

performing non-identifiable models, such as the 3-VAE and its variants. To briefly com-
pare models, we here aggregate across several metrics (Higgins et al., 2017a; Kim and
Mnih, 2018; Ridgeway and Mozer, 2018; Chen et al., 2018; Kim and Mnih, 2018; Ku-
mar et al., 2018), This is done for brevity and as evaluating disentanglement is still an
unsolved research problem. Individual results are shown in Appendix A.

We evaluate our model on the datasets from the DisLib, such as dSprites (Matthey et al.,
2017), Shapes3D (Kim and Mnih, 2018), SmallNorb (LeCun et al., 2004) and MPI3D
(Gondal et al., 2019). Here, to train the models, we sample pairs of images correspond-
ing to Laplacian (LAP) transitions that match our model assumptions and with uniform
(UNI]) transitions as an ablation. In both cases, our model shows superior or competi-
tive results compared to previous baselines. Furthermore, we evaluate our model on our
contributed datasets with natural transitions, namely, Natural Sprites (based on YouTube-
VOS (Xu et al., 2018)) and KITTI-Masks (based on KITTI (Geiger et al., 2012; Voigt-
laender et al., 2019b)). Again, our model performs better on average. The overall aggre-
gated results including various ablations are depicted in Fig. 2.2.

For a qualitative assessment, we show that our models learn latent representations, which
demonstrate a clear correspondence between the learned and ground truth latent repre-
sentation. This can, for instance, be seen clearly for our model on the factors x- and
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Figure 2.4: Corresponding latents over ground truth. For the dSprites dataset (3 sam-
ples on the right), we pick the best performing models and visualize the latent spaces
over the ground truth. To match latents embeddings and the ground truth, we calcu-
late the Mathews correlation coefficient (MCC) between all latents and the ground truth.
Subsequently, we perform Kuhn-Munkres algorithm for a non-greedy matching of la-
tent variables to ground truth factors. Next, we scatter-plot the embedded latent values
(y-axis) over the corresponding ground truth values (x-axis) for various samples. We
further color-code by the ground truth shape variable, as depicted on the right. In case
of an optimal embedding up to permutations and sign flips, all plots should be diagonal.
Figure adapted from our paper (Klindt ez al., 2021) / Appendix A.

y-position in Fig. 2.4. We also see some limitations for implementing categorical vari-
ables in the top row, as no diagonal structure is visible. However, for categorical variables
such as shape, there is no order. Thus, a monotonic embedding cannot be expected. Ad-
ditionally, the shape variable is not fully disentangled from the scale. Lastly, rotations
seem to be very difficult for the models. We discuss this further in the next section.

In a nutshell, we advance the field of disentanglement towards more natural data by
relying on sparse transitions. We would like to highlight that the sparse transitions are
naturally present in the considered video datasets. Thus, our model can be considered
unsupervised as no annotation is required to infer the underlying latent factors (according
to definition of unsupervised learning in Goodfellow et al. (2016), p. 105).
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Figure 2.5: Permuted and natural transitions. In blue, we show differences in factors
for transitions (neighboring frames in video) for pairs of factors. The top row corre-
sponds to KITTI-MOTS and the bottom row to YouTube-VOS. In orange, we randomly
permute the pairs to enforce independence. Figure adapted from our paper (Klindt et al.,
2021) / Appendix A.

2.1.3 Discussion and outlook

We propose a novel method for provable disentanglement of the underlying latent rep-
resentation, up to just permutations and sign flips. Here, our method is built on sparse
temporal transitions which are present in the data. However, some underlying assump-
tions are not necessarily true in nature. Here, we discuss those assumptions and propose
possible alleviations.

One common assumption in disentanglement that is most probably not true, is that the
underlying factors are assumed to be independent. To investigate this, we empirically
compare the naturally joint distributions over the transitions in KITTI-Masks and Natural
Sprites across the measured factors. As a control with enforced independent factors, we
also randomly permute time pairs for individual factors (e.g., combining the y-transitions
with x-transitions from another random frame). When comparing the scatter plots of the
natural and controlled (=independent) distribution in Fig. 2.5, we clearly see a depen-
dence of the measured natural factors. Surprisingly, in a control experiment on Natural
Sprites, our SlowVAE model has a higher performance on the correlated data. All in all,
this shows some empirical evidence that our model might not be too reliant upon this
independence assumption. On the other hand, a dependence of factors has been shown
to be reflected in the latent structure (Triduble er al., 2021). Models that relax the inde-
pendence assumptions are considered by Khemakhem ef al. (2020a); Yang et al. (2021).

Second, we assume an injective mapping from factors to images and that factors have

21



Chapter 2 Main contributions

non-periodic boundary conditions. These assumptions are, for instance, violated in
dSprites (Matthey et al., 2017). Here, three objects are rotated around 360° and have
different rotational symmetries: a heart with no rotation symmetry, an ellipse with a 2-
fold symmetry, and a square with a 4-fold symmetry, e.g., Fig. 2.4 on the right. Thus,
for the square and ellipsis, there is a one-to-many (non-injective) mapping. To relax the
injectivity, one way to extend the theory of disentanglement is to allow for such one-to-
many mappings is to use probabilistic models. Another approach relies on introducing
different definitions of disentanglement. The common definition of disentanglement is
based on a one-to-one correspondence of latent factor dimensions to model factor di-
mensions (Ridgeway and Mozer, 2018; Eastwood and Williams, 2018), is violated in
dSprites as the factor of rotation is connected to the object shape through different sym-
metries. Thus, alternative definitions rely on group representation theory (Bouchacourt
et al., 2021; Higgins et al., 2018). We propose that this problem is less relevant in prac-
tice, as for more realistic datasets such perfect symmetries are rare. For instance, a small
spot or dent on a round object would remove the rotational symmetry. Nonetheless,
our SlowVAE still achieves comparably high disentanglement scores and visually shows
clear disentanglement for the other factors.

The third assumption that is not covered by our method are factors that do not change.
For instance, categorical variables such as the shape of a rigid object like a car are un-
likely to change (unless one is watching a transformer movie). Thus, we cannot expect to
observe the Laplace shaped transitions that our theory requires for such variables. Nev-
ertheless, we see that our SlowVAE model can separate categorical factors that do not
change over time, such as different object shapes in dSprites. However, future work could
further inspect this property of fixed factor values from a more theoretical perspective.

Lastly, the common assumption of observing the whole data distribution during training
(test=train) is most likely not true for more realistic datasets, as the number of possible
combinations of factors scales exponentially with the number of factors. For continuous
factors, this would require an infinitive number of samples and is practically infeasible.
However, we observe that our SlowVAE shows good empirical results on disentangling
almost continuous? latent factors on KITTI-Masks. We further investigate more system-
atic test/train splits in the next section.

In summary, even though some properties of natural data are not covered by our theory,
we show that our model performs well empirically. In future work, one could try to
expand our theory to cover the violated assumptions described above. From an empiri-
cal perspective, we could move towards more unstructured datasets like YouTube-VOS.
Here, one could also directly input the raw data instead of the object masks. More-
over, the commonly used neural network architecture in disentanglement is too sim-
plistic. Here, pioneer works by Dittadi e al. (2021) showed improvements by simply

ZWe are ignoring pixel artifacts, which make the factors discrete but with ~ 4000+ steps s.t. it is almost
continuous.
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using deeper network architectures. Likewise, with the success of contrastive learning
approaches, works combining the scalable contrastive learning-based methods with dis-
entanglement seem promising (Zimmermann et al., 2021).

23



Chapter 2 Main contributions

2.2 Visual representation learning does not generalize
strongly within the same domain

Lukas Schott, Julius von Kiigelgen, Frederik Trauble, Peter Gehler, Chris
Russell, Matthias Bethge, Bernhard Schélkopf, Francesco Locatello,
Wieland Brendel.

Published as a conference paper and as a poster at the ICLR 2022.

Author contributions L.S. conceived the idea for the benchmark with
inputs from W.B., J.v.K., M.B., B.S., P.G. and C.R.; L.S. designed, im-
plemented and performed all experiments with input from J.v.K., ET.,,
W.B., M.B. and B.S.; ET. and L.S. wrote the publicly released evalu-
ation code; W.B. had the idea for a novel dataset based on a generative
model, based on this L.S. designed and created the dataset; J.v.K. and
L.S. wrote the problem setting (section 3) and inductive bias section;
W.B., EL. and L.S. wrote the introduction; E.T. and L.S. wrote the ex-
perimental setup section (section 4); L.S. wrote the experiments and
results (section 5), related work (section 6), and conclusion and discus-
sion (section 7) with input from F.L. and W.B.; W.B. and F.L. helped
with the overall story and revised the paper; F.T. and P.G. performed
extensive code reviews.

All section and figure references are w.r.t. to the publication in Ap-
pendix B.

2.2.1 Problem: in-domain generalization

In the previous section, we considered a setup in which a world is defined by a few, not
directly observed latent factors of variation, which are rendered into observable images
by a generative process. Some examples of considered factors of variation are scale,
color, rotation, or object type. To provably recover these latent factors, we further as-
sumed that all possible combinations of factors of variation are present in the data and
could be inferred from rendered images. In this section, we also view the world as being
created by a fixed generative model and aim to recover the latent factors but systemati-
cally violate the assumption that all factors are present in the training data by explicitly
testing on unseen configurations of factors of variation.

In contrast to other previous out-of-distribution benchmarks, we assure that the corre-
sponding factors are present in the data. For instance, common corruption benchmarks
introduce novel corruptions such as snow, blur, or compression artifacts at test time (Hen-

24



2.2 Visual representation learning does not generalize strongly within the same domain

drycks and Dietterich, 2019; Michaelis et al., 2019; Mu and Gilmer, 2019). However,
we assure that each factor is partially observed during training. For instance, for an ex-
trapolation of sizes, hearts from small to medium are observed during training, and large
hearts during test time. Thus, in our benchmark, the model is only required to generalize
along the axis of present factors of variation. Furthermore, despite having disjoint test
and train data splits along factors, we assume a fixed generative process behind our data.
In other words, the generative process is the same during training and test time just with
different inputs. Given this assured partial presence of factors in the data and a fixed
generative process, we refer to our setup as in-domain generalization benchmark.

Our setup is motivated by the fact that it is generally unfeasible to assume that all con-
figurations of factors are realized in the data, as the number of possible combinations
scales exponentially with the number of factors. Furthermore, humans can seemingly
recognize or imagine novel configurations such as a pink elephant, even though they
have never observed it in the world. Moreover, in children’s books or mythologies, it
is common to stimulate such imaginations by tales of dwarfs and giants (extrapolation),
mermaids (interpolation/ composition of fish + human) or a Minotaur (head and tail of
a bull and the body of a man). Thus, humans can sometimes make “infinite use of finite
means”’ by abstracting individual concepts and mechanism from the world and reapply
them in novel settings (Von Humboldt ez al., 1999; Chomsky, 2014). We hypothesize
that the procedure of learning to mimic the true mechanism of a factor can greatly help
in terms of efficiency and generalization.

Closest to our work, Montero et al. (2021) study very similar dataset splits. However,
they focus on reconstructions (the decoder), whereas we focus on representation learning
(the encoder). Furthermore, they only consider non-identifiable models and one super-
vised decoder. We extend the model classes to identifiable models, a wide variety of
network architectures, and different learning objectives such as un-, weakly-, fully- su-
pervised and transfer learning approaches. Overall, Montero et al. (2021) show that the
model generalization of the unsupervised generators is limited. We extend this to dis-
criminative models listed above and provide an in-depth analysis of ~ow models behave
on out-of-distribution data.

In the context of shortcuts and similarly to Funke e al. (2021); Zhang et al. (2019a,
2018), we propose a correct generalization to our benchmark as a necessary condition
towards ensuring that our model has learned the generative mechanism behind the data.
For example, simple memorization or patter matching, e.g., a nearest neighbor model, is
not feasible and would also not scale gently with the number of factors in most cases.
However, a possible solution could rely on learning the true generative mechanism be-
hind the data, as the same underlying model is used to generate the test and training data.
In general, our setup should favor models that learn individual mechanisms behind each
factor of variation. On the one hand, this would enable models to extract the factors in
a modular fashion. Thus, even if some factors are out of distribution, other factors could
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Figure 2.6: CelebGlow Dataset. The CelebGlow dataset is created by performing traver-
sals along annotated directions in the latent space of a pretrained Glow network and
rendering all possible combinations (Kingma and Dhariwal, 2018). As directions, we
consider the common factors blondness, smiling, and age from the CelebA dataset (Liu
et al., 2018b). As starting points, we consider random samples from a Gaussian with
low standard deviation (o = 0.3) to avoid too much prior variation in the factors. Figure
adapted from our paper (Schott et al., 2021) / Appendix B.

still be inferred correctly. On the other hand, this also enables models to generalize
beyond the current values for a given factor.

Despite the seeming ease for humans, our proposed benchmark is theoretically not solv-
able only based on the training data. There exist infinitive possible models that correctly
fit the training data but would behave differently on the test domain. Thus, we propose
certain inductive biases to choose a model and facilitate a correct generalization.

2.2.2 Benchmark of visual representation learning approaches

In this section, we introduce our in-domain generalization benchmark and evaluate vari-
ous proposed visual representation learning approaches. In particular, we are interested
in certain inductive biases which facilitate a generalization beyond the training data. We
briefly re-iterate the considered inductive biases from the literature and present their per-
formance on our proposed benchmark.

To create our benchmark, we consider datasets in which all possible factors are avail-
able, such as dSprites (Matthey et al., 2017), Shapes3D (Kim and Mnih, 2018), MPI3D
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Random Composition Interpolation

Figure 2.7: Dataset splits. We depict the systematic splits random, composition, inter-
polation and extrapolation for two factors of variations (x-and and y-axis). Red dots
correspond to test samples and black dots to training samples. Examples of correspond-
ing observations are shown on the right. Figure adapted from our paper (Schott et al.,
2021) / Appendix B.

(Geirhos et al., 2018) and our contributed dataset CelebGlow, which is based on CelebA
(Liu et al., 2018b) and the Glow network (Kingma and Dhariwal, 2018). The dataset
is depicted and described in Fig. 2.6. The goal is to infer all factors of variation given
an image, even though they only have been partially observed during training. For all
datasets, we consider four different types of splits along the factors of variation behind
the data. The first type consists of a random test-train split, which is frequently used
in various computer vision datasets. The other types are more systematic and referred
to as interpolation (e.g. train= small and large objects — test= medium-sized objects),
extrapolation (small and medium-sized objects — large objects), and composition (big
hearts and small squares — big squares and small hearts). This procedure is depicted in
Fig. 2.7.

The first considered inductive bias is different representational formats from disentan-
glement algorithms. For instance, certain weakly supervised algorithms rely on pairs of
images with a certain conditional structure and provably allow for an identification of
latent factors up to some unavoidable ambiguities. Depending on the model, the identi-
fication can range from pointwise nonlinearities or linear transformation up to just per-
mutations and sign flips. However, those guarantees only hold for the training set, and it
remains unclear whether they can generalize to a disjoint test set. More concretely, we
test B-VAE (Higgins et al., 2017a), PCL (Hyvirinen and Morioka, 2017), Ada-GVAE
(Locatello er al., 2020b) and our SlowVAE model (Klindt et al., 2021). Here, each net-
work is trained as proposed by the authors to match the corresponding assumptions.

The second inductive bias we investigate are various architectural designs, which mostly
rely on incorporating certain symmetries that are present in the world (Noether, 1915;
Higgins et al., 2018). In machine learning, for instance, convolutional neural networks
(CNNs) naturally incorporate equivariance to shifts in the image. Here, relying on lo-
cal and reusable filters to extract reoccurring patterns such as edges has tremendously
boosted neural network performances on image-based tasks such as classification per-
formances (LeCun et al., 1999). Similar implementations can be found for rotation and
scale equivariance (Fasel and Gatica-Perez, 2006; Xu et al., 2014) or pixel/coordinate
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permutations (Achlioptas et al., 2018; Zhang et al., 2019b). Additionally, the network
architecture can be used to facilitate the learning of abstract and low-level concepts in
images (Huang et al., 2017; He et al., 2016). While powerful theoretically, in practice
these invariances often have to be known beforehand to be incorporated into the network
architecture. Furthermore, for certain invariances such as a rotation in 3D projected onto
2D, it is not possible to “hard-code” the transformation before seeing the data, i.e., as
the back of an object is unknown. In our study, we consider MLPs, CNNs, CoordConv
(Liu et al., 2018a), Rotationally-Equivariant (Rotation-EQ) CNNs (Cohen and Welling,
2016), Spatial Transformers (STN) (Jaderberg et al., 2015), ResNet (RN) 50 and 101
(He et al., 2016), and DenseNet (Huang et al., 2017). All networks are trained to directly
predict the FoVs y = f(x) in a fully supervised fashion.

The third and last inductive bias that we consider simply relies on leveraging transferable
structures from other tasks. In computer vision, large image corpora, consisting of more
than 14 million (Deng et al., 2009) or even more than 300 million (Sun et al., 2017)
labelled images, are used to pretrain neural networks. Subsequently, the neural networks
are then “fine-tuned” on a particular task. This procedure has turned out to be quite
effective in various settings (Chen et al., 2020a; Xie et al., 2020), often even outperform-
ing task-specific designed architectures (Sutton, 2019). Here, we fine-tune a DenseNet
pretrained on ImageNet-1k, and a Renset50 and 101 pretrained on ImageNet-21k.

We train multiple random seeds for each architecture described above on each test-train
split (random, composition, interpolation, and extrapolation). On the random test-train
split, we see that almost all approaches perform well. The R2-scores are depicted in
Fig. 2.8. One exception are smaller models on the complex CelebGlow dataset that has
1000 categorical variables and might require large capacity networks like the RN50 and
bigger. For systematic splits, in which a model is required to interpolate, extrapolate, or
compose factors of variation, we observe large drops in performances. Overall, no tested
model can achieve high scores on all systematic splits, regardless of the architecture and
supervision signal. Especially, for extrapolation, we observe the lowest performances.
We conclude that models struggle to learn the underlying mechanisms behind the data
and seem to rely on mechanisms that do not generalize well. This effect is most pro-
nounced on MPI3D.

One notable exception are the good model performances on the Shapes3D interpolation
and composition setting. In Shapes3D, the factors of variation mostly consist of colors
for different objects. Thus, for interpolation, we hypothesize that most models generalize
well, as they use ReLU activation functions that are linear for positive inputs. Thus,
might help to correctly interpolate colors. Also, the dataset is fairly modular in the sense
that specific factors can be inferred from fixed positions in the images. E.g., the factor
“wall color” could be inferred from the same background pixels across different images.

We also tested the modularity of the models by measuring the performances on in-
distribution (seen during training) factors while other factors are out-of-distribution. For
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Figure 2.8: R>-score on various test splits. On the OOD splits composition, interpo-
lation, and extrapolation, we observe large drops in performance compared to the in-
distribution random splits. Figure adapted from our paper (Schott et al., 2021) / Ap-
pendix B.

instance, we require models to infer previously observed object orientations at unseen
scales. In contrast to common criticisms of deep neural networks (Csordas et al., 2021;
Greff et al., 2020; Lake and Baroni, 2018), we find that the models are fairly modular, as
in-distribution factors are still inferred well even if other factors are out-of-distribution.
This can be seen by comparing the random performances with the ID factors in Fig. 2.9.
By the procedure of exclusion and by observing the low out-of-distribution (OOD fac-
tors) performances in Fig. 2.9, we can conclude that the errors are mostly due to incor-
rectly inferred OOD factors. Thus, we further investigate the behavior of the models on
the OOD factors.

Despite using variously different inductive biases and observing limited generalization
capabilities, we found that the models still make surprisingly similar mistakes. To
show this, we measured the Pearson correlations between different models on out-of-
distribution factor predictions. We find that the models have high positive correlations
on MPI3D, Shapes3D, and dSprites (all Pearson p > 0.57) but negatively correlate with
the ground-truth (all Pearson p < —0.48). One exception is the CelebGlow dataset.
Here some positive correlations with the ground truth model are observed (all Pearson
p <0.50), but are nonetheless still far from extrapolating correctly. To further quantify
the generalization behavior on the out-of-distribution factors, we aggregated the predic-
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Figure 2.9: Extrapolation and modularity, R>-score on subsets. To investigate the root
of the extrapolation errors in Fig. 2.8, we split the performance along individual factors
and distinguish between factors that have been observed during training (ID factors) and
the ones that have not been observed (OOD factors). Note that because this is still based
on the test set, the joint of different factors have not been observed during training. We
refer to the text for further details. Figure adapted from our paper (Schott ez al., 2021) /
Appendix B.

tions on the test set and found that models tend to predict values in previously observed
ranges. For more details, we refer to the paper in Appendix B.

We conclude that our proposed out-of-distribution task is still mostly unsolved, and cur-
rent models pursue strategies which do not generalize systematically. Finding inductive
biases suited to this type of generalization remain, to the best knowledge of the author,
still an open research question.

2.2.3 Discussion and outlook

In this section, we first discuss our benchmark in a broader context and subsequently the
implications of our benchmark results on future model development.

Limitations and positioning of our Benchmark

We introduce a computer vision benchmark that requires neural networks to recombine,
interpolate, or extrapolate existing factors from the training data. This contrasts with
previous works that introduce novel factors such as artificial rain or blur at test time
(Hendrycks and Dietterich, 2019; Mu and Gilmer, 2019; Michaelis et al., 2019). Thus,
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our work could be seen as an intermediate and more principled milestone on the path
towards universal out-of-distribution generalization in visual representation learning.

Our benchmark requires models to learn all possible configurations of factors. However,
in the real world, this might not necessarily be a desired property. In safety critical
environments (Leike et al., 2017) such as traffic datasets (Cordts et al., 2016), not all
factor combinations are valid. For instance, in a one-way street, a car pointing in the
wrong direction should not necessarily be allowed. We argue, however, that for humans
it is possible to imagine driving in the wrong direction or even thinking of a pink elephant
on the road. Thus, such a scenario could be present in a model, but one should definitely
be aware of the fact that such a scenario is most likely imaginary or not allowed.

As our benchmark relies on simple datasets (dSprites, Shapes3D, MPI3D, CelebGlow),
a possible extension could introduce more unstructured real-world scenarios. Here, we
require a larger labelled dataset where multiple factors are annotated along each axis.

Furthermore, on an abstract level, it remains unclear which factors can and should be
extrapolated. Even for humans, certain concepts are very difficult to grasp and extra-
polate. For instance, the concept of dimensionality is simple to visualize for 1D with a
stick, for 2D with a sheet of paper, and 3D with our world. However, 4D and higher di-
mensions are very difficult to visualize. Even, the concept of numbers is not necessarily
reflected in languages. For instance, 139 Aboriginal Australian languages have an upper
limit at “three” or “four” and “several” or “many” to refer to higher quantities (Barras,
2021; Bowern and Zentz, 2012). It has been further claimed that the Piraha people of the
Brazilian Amazon might not use numbers at all (Everett, 2005).

Implications of our benchmarks for further model research

We reveal strong limitations in various visual representation learning networks to gen-
eralize factors even if they are present in the data. On the other hand, we observe that
most of our tested models are quite modular in the sense that even if one factor is out-of-
distribution, other in-distribution factors are still inferred correctly.

Our benchmark points in the research direction of independent (causal) mechanisms.
We hypothesize that learning the underlying mechanism of a dataset should allow for a
scalable generalization to our benchmark. Thus, the true mechanism should be able to ex-
trapolate certain factors and the independence should allow for a scalable recombination
of arbitrary factors. We note that such an independence can only be achieved approxi-
mately. For instance, the scaling of an object also depends on the object itself. E.g., when
considering an elephant that should be scaled up, more specific fine-grained structures
such as hairs or skin structures are revealed and have to be known by the model.

Another possible approach to perform well in our benchmark is to engineer network
architectures that by design encode certain transformations such as rotation, shifts, or
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scales. However, as the number of factors of variation is almost infinitive in the real
world, approaches that hard-code the type of transformation might not scale to more
realistic scenarios in which more factors, such as varying lighting conditions, are present.
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2.3.1 Problem: common corruptions

So far, we considered settings that assume all factors of variation are fully (Section 2.1)
or partially (section 2.2) presented in the training data. In this section, we allow for
variations that have not necessarily been observed during training. More concretely, we
consider common corruptions that are introduced during test time.

Common corruptions in computer vision often refer to digital artifacts or weather con-
ditions. Typical weather conditions are rain, snow, or fog. Usual artifacts in digital
systems are blur, Gaussian noise, or compression artifacts such as pixelating. Current
machine learning algorithms are quite brittle and not robust w.r.t. corruptions added at
test time. This has been shown for common datasets with corruptions (denoted by -C)
such as ImageNet-C, CIFAR-C, MNIST-C, Cityscapes-C, ... (Hendrycks and Dietterich,
2019; Mu and Gilmer, 2019; Michaelis et al., 2019). This can have tremendous implica-
tions on the reliability of many camera-based systems in the real world based on machine
learning, especially for safety-critical systems. For example, as those corruptions are dif-
ficult to account for during development, lacking robustness might be one of the reasons
why Waymo, one of the leading companies in autonomous driving, launched their ser-
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vices in the weather-friendly Phoenix, Arizona (Davies, 2017). In general, it is desired
to develop machine learning algorithms that are robust to common corruptions. Thus,
we are trying to find suitable inductive biases to foster the generalization capabilities of
neural networks.

Here, we study the effect of common corruptions on machine learning systems in the
context of simple image classification tasks. The goal is to learn a mapping from an
image to a corresponding label on clean data which consists of many images and their
corresponding labels. After training, a classifier should be able to classify objects, i.e.,
a bird, despite common corruptions added to the image. In contrast to the previous
sections, here, the classifier has not necessarily seen these corruptions during training.
It should be robust and reliable despite never having seen such a corruption. This is not
the case for standard neural network classifiers, which can drop to half of their original
accuracy (Hendrycks and Dietterich, 2019).

In terms of shortcuts, it has been hypothesized that standard neural networks rely on
spurious features or correlations in high dimensional data (Ilyas et al., 2019; Geirhos
et al., 2020). Here, we further conjecture that these shortcuts are quite brittle and easily
broken by common corruptions. Next, we are trying to develop a principled method that
iteratively detects and removes such shortcuts in neural networks until it ends up relying
on more robust strategies.

Common previous approaches rely on augmenting the input data with pre-computed im-
ages that should help the network transfer to common corruptions. For instance, Geirhos
et al. (2019) stylize images to remove texture cues, pushing a network to rely more on
shape cues. Similarly, Hendrycks et al. (2020b) rely on a set of pre-computed augmenta-
tions to train a more robust neural network. Both methods have been shown to increase
common corruption robustness. Adversarial training methods, on the other hand, adap-
tively compute the worst-case perturbations for a given classifier (Madry et al., 2018).
Here, the considered types of perturbations are much more complex and usually much
smaller in magnitude. Our approach is in between these listed approaches: We constrain
the search space of possible corruptions and compute our perturbations adaptively.

2.3.2 Approach: adversarial noise training

One way to tackle common corruptions is by simply adding them to the training data.
However, this might not scale well, as a network trained on one corruption might not nec-
essarily be robust to other types of corruptions. For instance, training on rainy images
does not generally improve the robustness to snow, fog, or very light rain. Surprisingly,
this transfer might not even work for two types of corruptions, which are visually al-
most indistinguishable (Geirhos ef al., 2018). As the list of possible artifacts is almost
limitless, we try to find a more principled approach.
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Figure 2.10: Overview of our approach. In A, we show how various noises added onto
an image can derail a classifier. Notably, our learned noise is much smaller in magnitude.
In B, we depict our architectural setup, in which we jointly train a noise generator and a
classifier. After training the classifier should be robust w.r.t. the generated noises. Finally,
in C, we see an improvement over previous methods even on non-noise categories on the
ImageNet-C dataset. Figure adapted from our paper (Rusak et al., 2020) / Appendix C.

To introduce our approach, we investigate properties of common corruptions. Common
corruptions can, in general, be fairly structured. Snowflakes, for instance, are individ-
ually quite unique but share many common attributes in structure across snowflakes.
Roughly spoken, they are only locally dependent, e.g., as snowflakes are quite symmet-
ric, knowing one half of a snowflake could be quite informative about the second half.
However, one snowflake might not be too informative for the position or exact structure
of other snowflakes. Thus, abstractly, snowflakes could be viewed as different samples
from a local, shared distribution. We mimic this structure by augmenting images in the
training data with noise sampled from a learned distribution that is constrained to only
allow for local correlations.

Practically, we implement this learned local noise distribution by transforming a Gaus-
sian distribution with a convolutional neural network architecture that only has small or
Ix1 kernel sizes. We refer to this network as the noise generator. In the next step, this
noise is added to an image. To make this procedure more adaptive to the classifier, we
adversarially train the noise generator, s.t. the noise is most severe for a given classifier.
We further constrain the noise to be small in magnitude to avoid trivial strategies such
as simply masking the whole input. We refer to this noise as adversarial noise. Subse-
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quently, in adversarial noise training (ANT), we alternate between training the classifier
and training the noise generator as inspired by Goodfellow et al. (2014); Schmidhuber
(1992). To stabilize this min-max optimization procedure, we further leverage common
training procedures like experience replay (Mnih et al., 2015). The overall procedure is
visualized in Fig. 2.10.

Intuitively, from the perspective of shortcuts, the noise generator detects and masks the
current shortcuts used by the neural network by learning the most adversarial noise. In
the subsequent network update step, the network tends towards leveraging a different
strategy. Upon convergence of this alternating training scheme, the network should no
longer rely on shortcuts that can be masked by small locally correlated noise. Sub-
sequently, it should be more robust w.r.t. to common corruptions that are also locally
correlated and small in magnitude.

We carefully evaluate our proposed adversarial noise training. First, we show that our
learned noise is significantly more severe compared to other noise distributions. When
added to an image, it can change a ResNet50 classifier decision by adding noise that is
significantly smaller (1/2 or less) in magnitude than Gaussian or uniform noise. Second,
we evaluate on 15 common corruptions with five different severities from the MNIST-C
and ImageNet-C dataset. As a baseline, we additionally train on images augmented with
Gaussian noise with several magnitudes. We find that this simple baseline is already
quite effective and outperforms previous methods relying on patch-based noise training.
Lastly, we find that our proposed adversarial noise training scheme further increases the
performance on the noise as well as on the non-noise corruptions. As our method solely
relies on adaptive augmenting of the input, it can be combined with other methods. When
combining our method with training on stylized images (Geirhos et al., 2019), which
makes neural networks more reliant on shape queues and less reliant on textures, we
achieve at-the-time state-of-the-art performance.

2.3.3 Discussion and outlook

We propose a principled method to make an image classification neural network robust
w.r.t. to locally correlated noise distributions. We further show a successful transfer to
the common corruption dataset of ImageNet-C. Here, we discuss possible extensions and
limitations of our approach.

A possible extension of our approach is to further empower our noise generator. So far,
we only considered locally correlated additive noise that is independent of the image.
We observe that our proposed approach is not state-of-the art on image-dependent cor-
ruptions such as defocus, motion, and blur corruptions. Thus, we could also input local
patches of the images to the noise generator. This could enable the noise generator to
also mimic the image-dependent corruptions.
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Another extension is to further allow the generator to produce perturbations in the fre-
quency space. This could enable it to better model low-frequency perturbations that
have been shown to be very effective in derailing various neural networks (Sharma et al.,
2019). An alternative way to allow for more general perturbations introduced by Calian
et al. (2021), is to use pertained image-to-Image transfer networks to generate adversar-
ial perturbations. To avoid a trivial solution that sets all pixels to zero, they bound the
parameters of their image-to-image transfer network. However, so far, a direct compar-
ison with our approach is not possible as they only consider a downscaled version of
ImageNet.

A general limitation of common corruption benchmarks like ImageNet-C is that they
only provide results for a subset of corruptions. Hence, it remains unclear whether the
measured accuracies on the artificially corrupted images are representative for other cor-
ruptions. Even for the rain corruption, it is not guaranteed that the accuracies on artificial
rain from ImageNet-C are predictive for the network performance for real rain. Support-
ing evidence for such doubts shows that neural networks can have highly varying per-
formances on corruptions that look almost indistinguishable to humans (Geirhos et al.,
2018). Here, further research on validating the ImageNet-C results as an indicator of a
network’s out-of-distribution performance is required.
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2.4 Towards the first adversarially robust neural
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W.B., L..S. and J.R. wrote the manuscript with input from M.B.

All section and figure references are w.r.t. to the publication in Ap-
pendix D.

2.4.1 Problem: adversarial examples

So far, we always restricted the types of generalizations along factors that partially
present in the training data, or to common corruptions. Now, we consider a broader
scenario and focus on maliciously crafted perturbations, also called adversarial exam-
ples, that change the predictions of a neural network.

In computer vision, adversarial examples are images with small, but almost impercep-
tible perturbations that can severely sabotage the output of a neural network (Szegedy
et al., 2014). For instance, only a few pixels need to be changed such that a classifier
can no longer correctly detect handwritten digits (Schott et al., 2019). Finding the most
malicious perturbations for a classifier can be quite difficult and is a research field of its
own (Carlini et al., 2019; Wiyatno et al., 2019). Nevertheless, for an undefended net-
work, such examples are almost omnipresent: For nearly every input image, there exists a
perceptually close image that is misclassified. As neural networks have often been com-
pared to the human visual system, which seems to be robust w.r.t. adversarial examples?,
the vulnerability of artificial neural networks undermines our current understanding.

3In a recent publication Elsayed ef al. (2018) find adversarial examples that fool neural networks and
time-constrained humans. However, they also conclude that adversarial examples have bigger effects
on artificial neural networks than humans.
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2.4 Towards the first adversarially robust neural network model on MNIST

Despite tremendous research efforts and various publications, so far, there is still a large
gap in robustness. For instance, on the more complex ImageNet dataset, the robust-
ness guarantees are still weak and mostly restricted to predefined perturbations bounds
such as specific norms. Here, we argue that even the simple MNIST digit classifica-
tion benchmark is not solved from the viewpoint of human visual robustness, even for
state-of-the-art robustness classifiers.

It has been shown by Ilyas et al. (2019) that adversarial examples leverage spurious fea-
tures (shortcuts) used by neural networks and can actually represent predictive features.
To show this, the Ilyas et al. propose a setup with three stages. First, they create a dataset
that only consists of adversarial images that fool a pretrained network into predicting
another class. For each adversarial image, they store the corresponding network pre-
dictions as new labels, which —as adversarial examples are almost imperceptible— are
different from what a human observer would predict. In a second step, they train a sec-
ond neural network from scratch, only on adversarial examples that fooled the previous
network with the seemingly wrong labels. For instance, an adversarial image of a dog
that is perturbed s.t. a network labels it as a cat is now passed into the second network but,
counterintuitively, labeled as cat. In the last step, this newly trained classifier is tested
on new clean, unperturbed images. Now, despite only being trained on seemingly misla-
beled images, it can correctly classify clean images with high accuracy, mostly agreeing
with human annotators. Thus, the authors literally conclude “adversarial examples are
not bugs, they are features” meaning that neural networks rely on non-robust but highly
predictive features that are present in the data.

In the next section, we try to develop a method that avoids such shortcuts and learns a
more robust solution.

2.4.2 Approach: analysis by synthesis

One suggested inductive bias to stimulate a model to avoid shortcuts and learn a diverse
set of features is based on the principle of ABS. Here, novel images are classified if
they are synthesized —a mapping from labels to images— correctly and matched. By
requiring the model to generate whole images, shortcuts should be avoided. For instance,
to recognize an image of a cat, multiple visible properties such as the eyes, ears, and tail
have to be synthesized for a likely match. This contrasts with typical feedforward neural
network architectures that learn a mapping from images to labels, which could rely on
shortcuts. For instance, in the example with the cat, it could be sufficient to recognize a
cat solely by considering the eyes and ignoring other features like the ears. Thus, such a
network would not be robust if the cat eyes are not visible anymore during test time. In
this scenario, the ABS-based classifier could still rely on other features such as the ears
as it is trained to synthesize whole images.

To implement and evaluate the proposed inductive bias of ABS (de Cordemoy, 1973;
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I. Optimize latent distribution p(z|x) in each digit model Il. Decide based on most likely class
to find likelihood of sample x under each model.
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Figure 2.11: Overview of our approach. We first train one VAE for MNIST digit class
and only keep the generators. To classify a sample digit, we perform a gradient guided
search in the latent of each space to find the most likely match, as shown in I. Next, in II,
we scale the likelihoods with a scalar to account for class imbalances to get logits similar
to a standard classifier. Lastly, to determine the label and the posterior probability, we
pass the logits through a confidence calibrated softmax function and take the argmax.
Figure adapted from our paper (Schott et al., 2019) / Appendix D.

Von Humboldt et al., 1999), we consider the simple and commonly used MNIST digit
classification task. As a model, we rely on VAE (Kingma and Welling, 2014), which
allow us to do approximate posterior inference by estimating the evidence lower bound
(ELBO). We split the training dataset into images corresponding to each class and train
one VAE per class ¢ to approximate the likelihood under each model p(x|c). After train-
ing, we disregard the encoder and only keep the ten generators, one per digit class from
0-9. To classify a new test image, we perform a gradient guided search in the latent space
of each generator to find the closest match (in terms of likelihood). Thus, given a test
image, for each class, we get one proposal for the likeliest corresponding image and its
likelihood. Additionally, we discriminatively learn a scalar to scale the class conditional
likelihood of each model. We pass each weighted likelihood to a calibrated softmax
function (we refer to our paper for details, Appendix D) to receive an approximate pos-
terior p(c|x). Now, the digit model corresponding to the highest probability refers to the
class. This is also depicted in Fig. 2.11

We consider various baselines to compare our approach to. Other established methods
designed to be robust to adversarial examples mostly rely on randomization (Cohen et al.,
2019), using the Lipschitz constant (Hein and Andriushchenko, 2017; Lecuyer et al.,
2019) or adversarial training (Madry et al., 2018). Some of these methods allow for
mathematically provable claims about the robustness of a model in a certain vicinity
of its input. Currently, adversarial training is one of the most prominent methods (Xie
et al.,2019). Here, we alternate between estimating adversarial examples for a classifier
and training the classifier to be robust w.r.t. the adversarial images. If carefully tuned,
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Binary Nearest Madry Binary ABS Binary Nearest Madry Binary
CNN Neighbor et al. ABS

CNN Neighbor et al. ABS

Figure 2.12: Adversarial examples. Here, we show the lowest found L, perturbation
for random samples for each model. The adversarial examples for our ABS model can
appear close to the perceptual boundary of humans. More random samples on different
L, norms and sampling strategies are shown in Appendix D. Figure adapted from our
paper (Schott et al., 2019) / Appendix D.

this procedure can be quite effective and provides high robustness on the considered
norm for the attacks. We use the model of Madry et al.* trained on the L..-norm as a
baseline to compare our model with. Other baselines we consider are a standard (vanilla)
convolutional neural network with and without input binarization. The input binarization
simply thresholds input pixels above 0.5 to 1 and the rest to 0 (we preprocess images to
be in the range [0, 1]). Thresholding does not change the image too much, as MNIST
is almost binary. Lastly, to provide an elementary baseline, we also provide a nearest
neighbor classifier.

We show empirical robustness results on MNIST on the Ly,L; and L. norm. We go
to great lengths in using multiple attacks to provide a precise estimate of the model ro-
bustness (more details regarding the attacks are provided in the next section). Our ABS
model performs favorably over a vanilla CNN on all considered L, norms, and even pro-
vides state-of-the-art results on the L, norm, despite never having seen any perturbed
images during training (see Figs. 2.12 and 2.14 for quantitative and qualitative results).
Our results show that the at-the-time state-of-the-art defense of Madry et al. (2018) does
not solve MNIST from a general viewpoint of robustness.’ Despite having high robust-
ness in terms of L., their model performs worse compared to a vanilla CNN in terms of
Ly robustness, as shown in Fig. 2.14 on the right. Furthermore, we observe that the L.
results of Madry et al. can partially be reproduced by simply binarizing the input of a

4 At the time of publication, this was the acknowledged state-of-the-art adversarially robust neural net-
work on MNIST

>We would like to emphasize that Madry et al. do not make any claims on the robustness beyond L... We
evaluate it on other norms to investigate the overall robustness on MNIST and explore side effects.
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Nearest
Neighbor ABS

Figure 2.13: Distal adversarials. We perform gradient ascent on the pixels of a random
noise input image until p(c = 1|x) > 0.9 is true for each model. For the CNN and the ad-
versarially trained model of Madry et al., these images are not recognizable. The nearest
neighbor, simply walks to the nearest digit, whereas our model shows a prototypical rep-
resentative of the class. Figure adapted from our paper (Schott et al., 2019) / Appendix
D.
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Figure 2.14: Adversarial distortion curves. Accuracy over the allowed perturbation
budget for each Lj,-norm. Figure adapted from our paper (Schott ez al., 2019) / Appendix
D.

vanilla convolutional neural network.® Lastly, humanly unrecognizable images, referred

to as distal adversarials, are classified as a certain digit with high confidence by the
tested feedforward architectures, as demonstrated in Fig. 2.13 on the left.

To motivate our results on lower-bounding’ the robustness, we would like to highlight
that our likelihood function in pixel space given the latents z of a model p(x|z) is a
Gaussian, which in our case is the most predominant term in the evidence lower bound
(ELBO) of Kingma and Welling (2014). Crucially, this Gaussian likelihood only changes

®Madry et al., concurrently updated their paper and show that their model learns a threshold operation in
the first layer of their model.

7Our conservative estimate includes an optimization problem in a low-dimensional space. We sample
extensively and provide multiple steps of gradient descent to solve this low-dimensional optimization
problem. We also do multiple random restarts and show that this procedure works very reliably. Nev-
ertheless, we have not guaranteed for the exactness of the result, and, thus, avoid the term provable.
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slowly if we have small (in terms of L2 distance) changes in the image. This is a desired
property of our model, as the class of a digit is also unlikely to change if we minimally
change the image. We follow this principle and mathematically derive a computable
lower bound for the robustness which, at-the-time, was comparable to several provable
robustness claims (Hein and Andriushchenko, 2017). Now, such provable claims are
close to empirical claims on MNIST (Li et al., 2019a).

In a nutshell, we show on MNIST that L., robust models can have severe drawbacks. We
show that our proposed ABS model is robust to multiple threat scenarios compared to
a vanilla feedforward network and leads to state-of-the-art robustness on the L, norm.
Also, compared with other tested methods, ABS has plausible distal adversarials.

2.4.3 Evaluation of adversarial robustness

As evaluating robustness empirically has many pitfalls (Athalye et al., 2018; Carlini
et al., 2019; Croce and Hein, 2020), we consider a large variety of proposed attacks
and introduce novel attacks to fill gaps in the attack literature. Common pitfalls are
masked or obfuscated gradients, or to simple attack models. Hence, to properly evaluate
a model, a diverse set of attacks should be considered. From the literature, we consider
gradient-based, gradient-estimating, score-based and decision-based attacks to evaluate
the adversarial robustness of our models. Furthermore, as we strive for models that are
robust across multiple threat models, we examine a variety of different norms, namely
Lo, Ly, and L. As, at the time, no reliable L attacks existed and few specific attacks for
class-conditional generative models were available, we develop two novel attacks: the
Pointwise Attack and the Latent Descent Attack.

Pointwise Attack: Due to the discrete nature of Ly, most previous attacks are not ap-
plicable to this norm. Thus, we introduce a novel decision-based attack that greedily
minimizes the Lo norm. Our attack starts by adding salt-and-pepper noise to an image
until it is misclassified. Subsequently, it simply iterates over all pixels and tries to reset
the perturbed values to the original values. If the image is still misclassified, the pixel is
set to the original value, otherwise the pixel is kept perturbed. Finally, if no more pixels
can be reset, the attack ends and returns the adversarial image. To achieve optimal results,
we re-run our attack with 10 random initializations, which can be computed in parallel.
Compared to simply adding salt-and-pepper noise, our attack is 3x — 10x more effective
in achieving a minimal median Ly-perturbations in our experiments (for details, we refer
to Table 1 in Appendix D). Now, there are more effective attacks available (Croce et al.,
2020). However, as they rely on gradients, the Pointwise Attack remains useful as it is
applicable to models that only output decisions, and it is also not affected by obfuscated
(misleading) gradients.

Latent Descent Attack: Class-conditional generative models often do not provide ana-
lytic gradients. As an alternative, we exploit the structure of the ABS architecture, which
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provides an image for the most likely candidate under each model for a given image.
We select the generated image corresponding to the most likely wrong class. Given this
image and the input image, we perform a binary search by linearly interpolating be-
tween the two images to find an adversarial image. As the ELBO is dominated by the
reconstruction loss, this procedure works reliably in practice. We show in our paper that
our latent descent attack performs almost on par with the most successful attacks for
our model, namely the Boundary Attack (Brendel ef al., 2018) and the DeepFool attack
(Moosavi-Dezfooli et al., 2016) with gradient estimation. Especially, our attack performs
preferably on different samples than other attacks. Hence, we can combine both attacks
to find a tighter upper bound on the true robustness of a model.

2.4.4 Discussion and outlook

Here, we highlight and discuss our main contributions in a broader context. Thereby, we
focus on the importance of our used Gaussian likelihood and the difficulty of properly
evaluating the robustness of a model.

We claim that MNIST might not be solved from a point of human-like robustness. We
support this claim by showing limitations in transferring the L..-robust model of Madry
et al. (2018), which is a widely accepted defense method, to other norms. Relying on
the principle of Analysis by Synthesis (ABS), we provide a model that is more robust
than a vanilla network across multiple norms and even shows a widely acknowledged
state-of-the-art performance on L, (Jacobsen et al., 2019; Ju and Wagner, 2020). We
further provide some qualitative evidence that the decision boundaries of our model are
perceptually close to the humans. This claim has been substantiated by Golan et al.
(2020), who quantitatively show that controversial stimuli for our model and humans
have higher agreement compared to other models.

Since our publication, further progress on provable robustness and adversarial training
led to models that are also robust across multiple norms (Tramer and Boneh, 2019; Croce
and Hein, 2021). Now, developments in provable robustness can even provide provable
bounds on MNIST on the robustness that are close to the empirical values we show
(Li et al., 2019a). Nevertheless, our model remains a competitive L2 baseline and with
other desired properties such as interpretable decision boundaries and reasonable distal
adversarials. Furthermore, to the best knowledge of the author, still no model exists
that allows for human like robustness on MNIST. For instance, the MNIST-C dataset,
which introduces common corruptions on MNIST, still poses a challenge, especially for
adversarially trained networks (Mu and Gilmer, 2019; Rusak et al., 2020).

A property that is often overlooked in our ABS model is the importance of the Gaus-
sian likelihood term that we use in the ELBO. Preliminary (unpublished) experiments
of replacing this term with a Bernoulli distribution revealed a strong decreased in the
robustness. Technically, a Bernoulli-based model can become too certain on background
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pixels in MNIST that are mostly 0. Thus, the individual models have exorbitant confi-
dences on the background pixels. Therefore, changing a background pixel can result in a
large change in likelihood and flipping the class label. In contrast, as we use a Gaussian
likelihood with fixed width, we avoid such overconfident dependencies on single pixels.

In our work, we focus on a model with an information bottleneck by using an eight-
dimensional latent space. This is to guarantee that our latent space is trained properly.
For a high dimensional latent space, it can happen that not all latents have been trained
to map to an image due to the curse of dimensionality and a limited number of training
iterations. In an ablation study, Chen et al. (2020b) also find lower robustness results for
an analysis-by-synthesis approach with a 32-dimensional latent space.

A downside of our conceptual Gaussian and VAE based ABS implementation is that our
model does not scale well out of the box. However, an extension by Ju and Wagner
(2020) introduces several improvements such as a discriminative loss to scale the infer-
ence towards real-world datasets such as SVHN (Netzer ef al., 2011) and a traffic sign
dataset (Houben et al., 2013) while remaining high robustness. To further scale ABS to
the larger ImageNet datasets, we could process the large images in a patch-based fashion
with a sliding window approach similar to BagNets (Brendel and Bethge, 2019), who
showed that local patches are sufficient to achieve performances better than AlexNet.
BagNets could also be used to create a training dataset for the individual patches to train
our ABS model.

Our work also greatly substantiates the difficulty of evaluating the empirical robustness
of models. We show that it is necessary to consider various attacks and thread models,
as the scores do not only vary across different L, metrics for a model but also across
multiple attacks, which influence future evaluations (Lim et al., 2020). We further show
that the commonly presented accuracy at a certain max L, norm threshold € can be
misleading, as could lead to vastly different results. For instance, our binary CNN is
worse on L. at € = 0.3 compared to Madry er al. (2018), but performs favorably for
€ < 0.1 or € > 0.4, as shown in Fig. 2.14. Thus, we recommend plotting the model
accuracy over the distortion and reporting the median perturbation size required to fool
a model.

In a nutshell, we introduce an implementation of ABS with Gaussian likelihood term and
show that it is a good inductive bias for L, norm robustness on MNIST. Our work has
been substantial proof of concept to revive promising investigation on leveraging ABS.
Lastly, our thorough evaluation procedure has inspired future work.
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Chapter 3

Transfer and combination of our
inductive biases

In the previous chapter, we considered individual inductive biases in the context of a
specific out-of-distribution scenario. In this chapter, we discuss the presented inductive
biases across multiple out-of-distribution scenarios. We use this as a proxy to evaluate
whether our proposed inductive biases help us to learn human-like generalization capa-
bilities. Thus, the first question we tackle is: Do our investigated inductive biases learn
the intended solution? Next, we investigate whether our proposed inductive biases can
be combined beneficially or whether they are mutually exclusive.

Here, the discussion is mostly based on the experiments presented in the appendices of
our publications and related works. If no suiting results are available, we performed
novel experiments.

3.1 Do our investigated inductive biases learn the
intended solution?

Given a typical deep learning setup, we intend to learn a solution that not only solves
the training set, but also generalizes beyond it. In practice, there are almost countless
different out-of-distribution types. For instance, in autonomous driving just for snow
alone, there are numerous variations depending on the temperature and humidity, not
even mentioning the fact that ordinary snowflakes have hundreds of branches of ribs,
which could vary across snowflakes in a combinatorial fashion (Palmer, 2011). Hence,
alone for snow, it is impossible to consider all variations during model development.
How can we tackle the vast variety of different types of perturbations, artifacts, and other
variations present in our world?

One hopeful observation is that humans, in contrast to machines, seem fairly robust. For
instance, a person from the Black Forest who is on his first vacation close to the equator
on a Caribbean island will most likely be able to drive a car with some sand on his
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Figure 3.1: Transfer of inductive biases. Instead of considering an inductive bias on a
specific out-of-distribution scenario, we here consider the effect on multiple scenarios.
Here, we depict possible outcomes and distinguish three cases. First, the inductive bias
is transferable if it increases the performance on all scenarios (all green). Second, it
is specific if it improves the performance on the scenario it was designed for but has
no effect on others (one green, others gray). Lastly, we refer to an inductive bias as
overfitting if it performs well on a single scenario but worsens the performance on others
(one green, others red). In this section, we use these scenarios as a proxy to reason about
novel scenarios (depicted by ’?’).

windshield and palm tree background, despite never having seen this before in real life.
Analogously, Neil Armstrong had no apparent visual problems during his first steps on
the moon (NASA, 1969). In contrast, such a scenario could completely derail a naively
trained machine learning algorithm.

Given the almost infinitive number of out-of-distribution scenarios and the technical lim-
itation of only testing on a finite set, it remains unclear whether this will ever lead towards
human-like generalization capabilities.

To investigate whether we are making progress, we consider our proposed inductive
biases and test them across multiple other out-of-distribution scenarios. A desired induc-
tive bias should not overfit to a single out-of-distribution scenario, but help to generalize
across many scenarios. We suggest the procedure of evaluating a proposed inductive
bias across many out-of-distribution scenarios as a proxy for human-like generalization
capabilities by selecting scenarios that pose no larger difficulties to humans. This princi-
ple is visualized in Fig. 3.1. Here, the intended solution corresponds to inductive biases
that would transfer to all out-of-distribution scenarios. In contrast, an overfitting induc-
tive bias learns an unintended solution that reduces the performance on certain out-of-
distribution scenarios.

This is also closely related to the no-free lunch theorem (Wolpert and Macready, 1997).
In our context, it implies that there is always a fundamental trade-off: an increase in per-
formance on one out-of-distribution scenario will lead to a decrease in another one. How-
ever, as human generalization capabilities outmatch machine learning algorithms, we
pose human-like generalization as an achievable goal with acceptable trade-offs. Such
trade-offs for humans have been shown by Dubey et al. (2018), who demonstrate that
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the speed of solving games is heavily affected if textures are modified counterintuitively,
e.g., switching the textures of a climbable ladder with background textures. However,
their proposed modifications are mostly not applicable in the real world. Besides the hu-
man generalization capabilities, machine learning algorithms that are more aligned with
our understanding should be more intuitive to understand and develop.

An example of a limited inductive bias that can worsen the generalization across multiple
out-of-distribution scenarios is L. adversarial training on MNIST (Madry et al., 2018;
Schott et al., 2019). As claimed, this method does indeed improve the robustness with
respect to L., perturbations. However, this inductive bias has unintended side effects, as
it leads to a lower L robustness compared to a vanilla network. To further investigate
the shortcomings of L., adversarial training, we show that a good defense strategy for Lo
robustness is to binarize the input with a thresholding operation and to focus on bright
pixels that are not affected by thresholding, as MNIST is almost binary. Now, in terms
of L., we need to change the relevant pixels quite a bit in to be flipped past the input
binarization. In an updated version of their publication, Madry et al. (2018) also ana-
lyzed their network weights and found thresholding filters in the first layer. Thus, plain
L., adversarial training on MNIST can be more vulnerable to Ly attacks compared to a
cross-entropy trained neural network. In Fig. 3.1, this would correspond to an overfit-
ting inductive bias. Note that this overfitting only applies to MNIST and the effect of
adversarial training on other datasets and the magnitude of the perturbations has further
been studied by Kireev ef al. (2021), who evaluate of L., adversarial training on common
corruptions in natural images.

To evaluate the success of our proposed inductive biases of disentanglement, adversar-
ial noise training, and analysis by synthesis with a Gaussian likelihood, we consider the
out-of-distribution scenarios of common corruptions, adversarial examples and general-
ization along factors of variation present in the data.

3.1.1 Analysis by synthesis with a Gaussian likelihood

In Section 2.4 and Schott et al. (2019), we propose an implementation for analysis by
synthesis and show that it is fairly robust to various L, and distal adversarial examples on
MNIST. Note that during model development, we chose specifically to tackle adversarial
robustness. Now, we study a threat scenario not considered during the development
and test the performance of ABS in terms of common corruptions and our in-domain
generalization benchmark.

On the common corruptions benchmark, MNIST-C, Mu and Gilmer (2019) show that
our ABS model performs worse compared to a vanilla CNN. However, when repeat-
ing their experiment with the CNN architecture considered by Madry et al. (2018) but
without adversarial training, we found the opposite to be true. In our experiments, our
ABS model performs ~10% better compared to a standard CNN. Similarly, adversarial
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training seems to be better than a normally trained architectural twin. This might be
due to the fact that Mu and Gilmer (2019) used dropout, different network architectures,
and a slightly different optimization procedure during training. We presume that the
MNIST-C network performances are dependent on small variations in the network archi-
tecture, and a more thorough comparison is required. Given the current observations, we
conclude that neither ABS nor adversarial training are transferable inductive biases for
out-of-distribution generalization. Both, on average, perform similar to a vanilla neural
network. However, an important benefit of our ABS model is that the predictions on
MNIST-C samples have low confidence (p(c|x) < 0.2 for almost all x). For our trained
CNN model and others, we observe overconfident wrong predictions.! To explain why
ABS is adversarially robust but roughly on par with a vanilla network on common cor-
ruptions, we hypothesize that the common corruption samples are too far away from the
training data distribution. Thus, our ABS model performs poorly, as it is only trained on
clean samples and the Gaussian likelihood might only be helpful for reliably generalizing
to samples near the learned distributions. The suggested far distance between corrupted
images to the data manifold defined by the VAEs would also be in accordance with the
low confidence predictions of our ABS model.

We further measured the performance of our VAE-based ABS model on our proposed in-
domain generalization benchmark from section 2.2. This is motivated by the suggested
benefits of causal models in terms of generalization (Scholkopf, 2019). To compare the
causal ABS inference with an anti-causal feedforward method?, we used our SlowVAE
model. For the feedforward part, we used the encoder. For ABS, we solely relied on
the decoder and used gradient descent in the latent space for inference. Preliminary re-
sults® on disentanglement scores on our systematic test splits show no improvements
when using ABS-based inference instead of the encoder. A related observation is made
by Montero et al. (2021) who trained a generative model on dSprites that mapped fac-
tors of variations to images. Similar to our findings on feedforward networks in Section
2.2, they show that the tested generative models are unable to properly reconstruct novel
configurations of factors. Even though our focus here is on ABS-based representation
learning and theirs lays on image generation, both results point towards similar limita-
tions of generative models.

In conclusion, ABS with a Gaussian likelihood is an effective inductive bias on MNIST
covering various L, norms and often aligning with humans on controversial stimuli
(Golan et al., 2020). However, it is specific (see Fig. 3.1) to adversarial scenarios, as
it does not affect the classification of strongly perturbed digits, nor the generalization to
novel combinations of factors. In contrast to Madry et al. (2018)’s model, we observe no
large drops on Ly norm (Schott et al., 2019).

Iresults not published.

21t is currently an ongoing debate whether the MNIST digit classification task is causal or anti-causal
(Arjovsky et al., 2020).

3results not published.
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3.1 Do our investigated inductive biases learn the intended solution?

3.1.2 Disentanglement in visual representation learning

Disentanglement is a promising direction for unsupervised representation learning and
generalization. It has been shown to improve downstream generalization (Locatello
et al., 2020b; Peters et al., 2017). Yet, as discussed in the literature (Trauble et al., 2021;
Montero et al., 2021) and by us (Schott et al., 2021), we found no increase in robust-
ness along factors of variation present in the data. Analogously to the previous section,
we now discuss the effect of disentanglement on adversarial and common corruption
robustness.

The connection between adversarial examples in disentanglement has explicitly been
tested for the B-VAE and B-TCVAE. Here, Willetts et al. (2019) show in their experi-
ments that there is no obvious connection between the degree of disentanglement of a
learned representation and the adversarial robustness of a model. However, they find that
the objectives used in disentanglement, such as a high regularization in the latent space
of a VAE, are connected to robustness. They hypothesize that higher regularization in a
VAE leads to a higher overlap in the encoder posterior, leading to a less lookup-table like
representation and a more structural model.

We do not have any direct results for disentanglement methods and their performance
on common corruptions. However, Willetts ez al. (2019) also investigate Gaussian noise
robustness and find that for B-VAEs with a 8 > 1 on the chairs dataset can lead to slightly
increased robustness. More generally, weakly-supervised pertaining such as contrastive
learning* enables us to leverage large amounts of unlabeled datasets. The combination
of those two inductive biases (large amounts of data and self supervised representation
learning), can greatly improve the performance in various settings (Kotar et al., 2021;
Geirhos et al., 2021).

We conclude that disentanglement does not automatically lead to robustness or general-
ization. However, the objectives for disentanglement are closely related to methods that
allow to use large amounts of data and increase model generalization capabilities. Thus,
disentanglement and generalization seem to be mutually achievable.

3.1.3 Adversarial noise training

We tried to design an adversarial noise training that increases the robustness on common
corruptions. To investigate the effect on other out-of-distribution scenarios, we evaluate
the adversarial robustness of our adversarial noise training (Rusak et al., 2020).

Based on the evaluation of our proposed ANT model on the L, and L., norms, we find that
our method slightly increases the robustness compared to a vanilla model. However, the

“a connection between contrastive learning methods and disentanglement has been shown by Zimmer-

mann et al. (2021)
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Chapter 3 Transfer and combination of our inductive biases

robustness improvements are only marginal compared to specifically designed methods
for adversarial robustness on ImageNet, such as adversarial training (Xie et al., 2019).
Surprisingly, the other direction, testing adversarial robust networks on common corrup-
tions can lead to large drops in performance (Rusak et al., 2020; Gilmer et al., 2019).
Especially on the fog category, we observed a >10x drop for three tested networks de-
signed for adversarial robustness. Recently, Kireev et al. (2021) further investigated this
connection and found that relaxing the considered distance metrics used in adversarial
training can revert this effect and actually improve the performance of adversarial train-
ing on ImageNet-C. However, a significant drop on the fog category remains.

We did not empirically investigate the performance of adversarial training on our in-
domain generalization benchmark and leave this to future work.

3.1.4 Summary

We observed that our investigated inductive biases ANT, ABS, and disentanglement are
mostly specific and do not have high effects on other considered out-of-distribution sce-
narios (see Fig. 3.1). This contrasts with inductive biases such as L., adversarial training
on MNIST that can lead to a decrease in performance on other norms. However, the fact
that our inductive biases seem to be specific and have no side effects is not as surprising
as it might seem. (Geirhos et al., 2018) show that a network can have state-of-the-art per-
formance when trained on one noise, but simultaneously have chance level performance
on similar noise that look visually almost indistinguishable to humans. Also, D’ Amour
et al. (2020) vary random seeds in neural networks and show that there is almost no
correlation of the performances on different out-of-distribution scenarios.

Finally, to answer the question Do our proposed inductive biases help learning the in-
tended solution?, we defined the intended solution as a generalization to various out-of-
distribution scenarios. As we cannot test all possible out-of-distribution scenarios, we
consider only a subset as a proxy. Here, on the one hand, our inductive biases show
robustness w.r.t. various out-of-distribution scenarios, e.g., ANT improves the accuracy
on all ImageNet-C corruptions and ABS is robust w.r.t. multiple L, norms. On the other
hand, when cross-evaluating our methods on ImageNet-C, adversarial examples, or our
in-domain generalization benchmark, we found no effect. In terms of the no free lunch
theorem, we observed no drops while cross validating on other out-of distribution sets.
Thus, we do find inductive biases that help us move forward, but a gap towards the in-
tended solution with human-like robustness on multiple domains still remains.

We acknowledge that the statement of moving forward towards human-like robustness is
limited, as we only consider a few out-of-distribution scenarios out of almost infinitely
many. This general principle has been paraphrased by Hubert L Dreyfus who stated, “It
was like claiming that the first monkey that climbed a tree was making progress towards
landing on the moon" (Mitchell, 2021). However, small generalization improvements
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3.2 On the combination of inductive biases

could already have an impact on current applications. Moreover, our inductive biases
show robustness to broad threat scenarios. ABS allows for out-of-the-box robustness
towards multiple /p norms, and ANT increases the robustness towards multiple pertur-
bations.

3.2 On the combination of inductive biases

Out-of-distribution scenarios
(a)

Inductlve Inductlve
et O+ D 5 ——
Other OOD
scenario

. Improves performance (c)

Does not affect performance \ - -
@ Worsens the performance
O Performance unclear -
Figure 3.2: Combination of inductive biases. We propose three different options for
combining inductive biases. (a) The combination is symbiotic and therefore bigger than
its parts. (b) The inductive biases are orthogonal, and combining them results in a
solution that performs well on the individually considered out-of-distribution scenarios.

¢) The inductive biases are exclusive, and combining them worsens the performance -
even on the out-of-distribution scenarios they were designed for.

In the previous section, we investigated individual inductive biases across one or multiple
out-of-distribution scenarios. They can be either transferable across multiple domains,
overfit and decrease the performances on other domains, or be specific and have no ef-
fect on other domains. We observed that our proposed inductive biases are specific to
their out-of-distribution scenario and have mostly no effect on others. Naturally, the
question arises whether different inductive biases can be combined to achieve further
out-of-distribution generalization in multiple scenarios. Such a combination could either
be beneficial or even harmful. We visualize the possible outcomes in Fig. 3.2. Again, we
mostly focus on the inductive biases considered in this thesis and the related work. More
concretely, we repeat the combination of ABS and a Gaussian likelihood and we discuss
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Chapter 3 Transfer and combination of our inductive biases

the combination of contrastive learning, our sparse transition prior, and ABS. Lastly, we
discuss ANT and data augmentation methods in the context of ABS and disentanglement.

A prototypical example of a symbiotic combination of inductive biases is ABS with
a Gaussian likelihood (Schott et al., 2019). Plain ABS as proposed concurrently by
Kilbertus et al. (2018) could, for instance, rely on a computer graphics model to render
objects for recognition. Here, an object needs to be rendered and matched perfectly.
Otherwise, no classification is possible, and the sample is rejected. In practice, it is
not feasible to assume a rendering machine that has the capacity to render all variations
in the world. Furthermore, simply rejecting unknown inputs is insufficient in common
applications like autonomous vehicle driving. To generalize beyond the manifold defined
by the generative model, e.g., the rendering engine, we leverage the Gaussian likelihood
commonly used in VAEs to extend the plain ABS. On MNIST, we show empirically and
theoretically that this combination can lead to an adversarially robust classification and
properly calibrated predictions in the whole input space. Therefore, we generalized the
plain ABS principle to the whole input space.

Analogous to the considered example of ABS with a Gaussian likelihood, we next hy-
pothesize about possible combinations of our considered inductive biases to further im-
prove the generalization capabilities.

3.2.1 Disentanglement, ABS, and more data

In the literature, a notable combination uses contrastive learning as weakly supervised
pertaining to leverage large amounts of data (Chen et al., 2020a). Simply using more
data has been shown again and again to improve results and beat sophisticated base-
lines (Sutton, 2019). Intuitively, more data can be used to train large models and avoid
overfitting. Methods relying on large datasets are currently state-of-the-art in various ro-
bustness benchmarks, and is a reliable go-to option for applications to take a pre-trained
network from a large dataset and fine-tune it on a specific task (Kolesnikov et al., 2020).
To extend this, we hypothesize that our method to leverage the sparse transition priors
observed in YouTube-VOS and KITTI-Masks could be used as a further type of signal
to not only leverage image data but also video data similarly to Qian et al. (2021). Thus,
allowing to use more data could further improve generalization performances.

In principle, it is also possible to further combine representation learning methods with
ABS for more trustworthy models. Under certain assumptions, the sparse transition prior
enables us to identify the true latent space up to some ambiguities. Thus, after successful
training of a feedforward model (e.g., PCL, or our SlowVAE), we should be able to
identify all latents corresponding to each image or video frame. Subsequently, we could
use these image-latent pairs to train a generative model conditioned on various latents
(for SlowVAE, we get this generative model for free as we train a decoder jointly with
the encoder). After training the generative model, we could use it to verify whether
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3.2 On the combination of inductive biases

the latent representation has been inferred robustly by synthesizing the corresponding
latents and checking whether they match with the input image, similarly to Ghosh et al.
(2019) and Lamb et al. (2018). Given a mismatch, to restore the correct class, we could
perform gradient descent inference in the latent space of the generative model (Schott
et al., 2019). In this way, we would bypass the vulnerable encoder. Lastly, given this
trustworthy latent space of model latents often only requires a linear readout to apply
to a specific task. Such a latent space could for instance be used in combination with
invariant risk minimization (IRM) that has shown to be produce optimal results for a
linear classifier in multiple environments (Arjovsky et al., 2020).

All in all, the proposed combination of identifiable representation learning techniques
with ABS and an IRM based readout principle could be promising in terms of scalable
and trustworthy machine learning. However, this also hinges on other problems, e.g.,
achieving a scalable and robust perceptual loss for the ABS on natural images.

3.2.2 Data augmentation

In Section 2.3, we show that our proposed ANT could be combined with a model trained
on stylized images, which encourages models to focus on shape rather than texture, to
further improve the common corruption robustness. This has been combined by Kireev
et al. (2021) with an adapted version of adversarial training that improved the results
even further.

Not only for feedforward methods, we see many benefits of data augmentations for
common corruptions, but also for generative classifiers. For a scaled implementation
of ABS implemented by a score SDE based generative model, we observe improvements
on CIFAR-10-C°. Those improvements could be further combined by leveraging data
augmentation methods such as AugMix (Hendrycks et al., 2020a).

3.2.3 Summary

All in all, we observed that the inductive biases presented in this thesis are orthogonal to
each other and could be combined in a modular fashion. This could help to further close
the gap to human-like robustness. In Reinforcement learning, it has been shown that
combining inductive biases can lead to large improvements (Hessel et al., 2018). We
thus propose a large-scale study implementing and combining strong inductive biases
presented in the literature.

Jongoing work.
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Chapter 4

Outlook

Current deep learning methods have been shown to achieve super-human performance in
cases where the training distribution is identical to the test distribution (He ef al., 2015).
In the next era of deep learning, we hope to see similar achievements on scenarios in
which the test distribution differs slightly from the training distribution.

We have a clear set of milestones ahead and various scenarios to quantify our progress.
To measure our progress towards on out-of-distribution settings, various benchmarks
have been proposed. Some examples are common corruptions and perturbations (Hen-
drycks and Dietterich, 2019), images without texture cues (Geirhos et al., 2019), our
in-domain benchmark (Schott ef al., 2021) and many more (Funke et al., 2018; Mon-
tero et al., 2021). In an extreme case, one can also use adversarial examples to find the
worst case distributional shift. Similarly, we could also tackle more complex goals that
automatically require generalization properties, such as simultaneous localization and
mapping (SLAM) in the wild.

So far, there exists no general solution to the proposed out-of-distribution benchmarks
or “in the wild” applications but we are making progress. Despite an almost exponen-
tially growing number of research publications focussing on this topic and increasing
of research funds, novel scenarios still require human engineering work and additional
task-specific assumptions. There is no simple plug-and-play solution that works reliably
on all proposed benchmarks. While we have not achieved general out-of-distribution
robustness, the progress itself has not stagnated. For instance, the ImageNet-C error has
deceased from 76.7% mCE (Hendrycks and Dietterich, 2019) of a standard ResNet to
53.6% mCE (Hendrycks et al., 2020b) since the release of the benchmark 2019. Even
further, current methods with additional assumptions that allow access to more data and
the test images (but not the test labels!), even decreased the error down to 22.0% (Rusak
etal.,2021).

In terms of Sutton’s bitter lesson, in which simply more data and compute power im-
proves the results (Sutton, 2019), this trend is likely to continue. For instance, despite
already having large image copra to train our models, we still observe further advance-
ments simply through larger datasets and bigger models (Sun et al., 2017). Given ter-
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abytes of daily data uploads and semi-automatic labeling tools, this trend will most likely
continue. Moreover, novel generations of processing units like TPUs, GPUs, and in-
creased dataset center sizes will most likely further advance this trend. At the end, break-
throughs in quantum computing might even increase the pace of current progress that is
often already displayed on logarithmic scales.

Similarly to more data and compute, incorporating structure into learning models still
regularly increases the performance of learning algorithms in various benchmarks. E.g.,
architectural improvements from fully-connected neural networks over convolutional
networks, and lately visual transformers successively resulted in novel state-of-the-art
performances on the ImageNet and other benchmarks (PapersWithCode, 2021). Given
the vast structure of our world and our physical understanding of it and that has not yet
been incorporated into models, we suspect that further inductive biases will follow.

Overall, the current best performing architectures are often a combination of novel induc-
tive biases, large amounts of data, and models with many parameters. E.g., the current
best performing ImageNet model is trained on the largest dataset but also relies on visual
transformers and other inductive biases (Zhai et al., 2021; Mao et al., 2021).

Nevertheless, we find the improvements through incorporated structure more revealing.
Simply adding more data and larger models does often increase the performance, but
does not necessarily help us with our understanding of algorithms and the world. In con-
trast, novel inductive biases underlined by their success can point out important features
of scene understanding. For instance, seminal work of Vaswani et al. (2017) highlights
the concept of attention in language processing tasks. Building on this, Carion et al.
(2020) show that visual transformers can combine distant features like an elephant’s
trunk and tail by treating image representations as a set and subsequently removing the
locality bias of convolutions and revealing the importance of wide context. Subsequently,
such models could also be used to provide the highest shape bias, narrowing the gap to-
wards humans. Similarly, Golan et al. (2020) showed that our proposed analysis by
synthesis model has the highest alignment with humans on controversial stimuli, thus
highlighting the importance of generative classifiers.

Incorporating structure also has other benefits and has probably also not reached its full
potential. Implementing the right structure can enable machines to learn tasks much
faster, with fewer data samples and fewer parameters. Naively estimating the number of
different images a child sees in its first three years! results in roughly 50 million images.
This is less than current datasets, which have up to 300 million images and more than
a billion labels (Sun et al., 2017). Nonetheless, there is still a gap between human and
machine vision capabilities (Kiihl et al., 2020), that future inductive biases could narrow
without requiring more data.

' Assuming 3 years of vision and 1 new image per second and a 12hour wake period. Note that we
are ignoring effects of evolution here, as they are hard-wired into the brain and could therefore also
(debatably) be considered as prior structure.
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At the core of incorporating structure and finding novel inductive biases, we expect to
build vision models to better leverage video or interactive datasets. In the example from
the previous paragraph, we naively compared common image datasets with the naturally
available data during childhood, but ignored the temporal and its interactive nature. An
example of a first “small step” towards leveraging such structure is using sparse tem-
poral transitions of pairs of images for provable disentanglement (Klindt et al., 2021).
Other similar methods rely on predicting future frames of videos or other auxiliary tasks
(Jaderberg et al., 2016). Analogously, in simple environments, models have been trained
to learn a 3D aware structure of the environments by predicting novel viewpoints of a
scene (Kosiorek ef al., 2021). Moreover, directly controlling for 3D properties of scenes
allows manipulating scenes in a controllable manner (Niemeyer and Geiger, 2021) and
provides much more control compared to standard generative adversarial networks with
less incorporated physical prior knowledge.

Furthermore, the amount of used data could be further reduced by building curiosity-
driven systems with a sense of boredom (Schmidhuber, 1991). For instance, interactive
data queries could be used to actively query points that have the highest learning poten-
tial for the algorithm. Such a system could make predictions about the back of objects
by using certain symmetry assumptions and later using interactive properties of the en-
vironment to verify this prediction.

Lastly, more adaptive processing schemes might be crucial. Current neural networks in
image processing are fixed during deployment or testing. Moreover, the computational
budget for processing each image is usually the same and independent of its complex-
ity. Novel approaches that can adaptively adjust the amount of required compute could
be more powerful. For instance, models that are based on differential equation solvers
have been shown to improve the likelihood of images over methods with a fixed budged
(Song et al., 2020). Analogously, simply adapting the batch-norm parameters on the
test set (without accessing the test labels) can improve the performance on ImageNet-C
(Schneider et al., 2020). Thus, more adaptive architectures could further drive the next
wave of machine learning research.

In a nutshell, we hope to extend towards inductive biases that incorporate structures of
our visual world and are adaptive in terms of leveraging data and compute. By quantify-
ing the usefulness, we hopefully also gain a better understanding for the importance of
certain ingredients required for a human-like scene understanding.
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ABSTRACT

Disentangling the underlying generative factors from data has so far been limited
to carefully constructed scenarios. We propose a path towards natural data by
first showing that the statistics of natural data provide enough structure to enable
disentanglement, both theoretically and empirically. Specifically, we provide
evidence that objects in natural movies undergo transitions that are typically small
in magnitude with occasional large jumps, which is characteristic of a temporally
sparse distribution. Leveraging this finding we provide a novel proof that relies
on a sparse prior on temporally adjacent observations to recover the true latent
variables up to permutations and sign flips, providing a stronger result than previous
work. We show that equipping practical estimation methods with our prior often
surpasses the current state-of-the-art on several established benchmark datasets
without any impractical assumptions, such as knowledge of the number of changing
generative factors. Furthermore, we contribute two new benchmarks, Natural
Sprites and KITTI Masks, which integrate the measured natural dynamics to enable
disentanglement evaluation with more realistic datasets. We test our theory on these
benchmarks and demonstrate improved performance. We also identify non-obvious
challenges for current methods in scaling to more natural domains. Taken together
our work addresses key issues in disentanglement research for moving towards
more natural settings.

1 INTRODUCTION

Natural scene understanding can be achieved by decomposing the signal into its underlying factors of
variation. An intuitive approach for this problem assumes that a visual representation of the world
can be constructed via a generative process that receives factors as input and produces natural signals
as output (Bengio et al., 2013). This analogy is justified by the fact that our world is composed of
distinct entities that can vary independently, but with regularity imposed by physics. What makes the
approach appealing is that it formalizes representation learning by directly comparing representations
to underlying ground-truth states, as opposed to the indirect evaluation of benchmarking against
heuristic downstream tasks (e.g. object recognition). However, the core issue with this approach is
non-identifiability, which means a set of possible solutions may all appear equally valid to the model,
while only one identifies the true generative factors.

Our work is motivated by the question of whether the statistics of natural data will allow for the
formulation of an identifiable model. Our core observation that enables us to make progress in

*iEqual contribution. Code: https://github.com/bethgelab/slow_disentanglement
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addressing this question is that generative factors of natural data have sparse transitions. To estimate
these generative factors, we compute statistics on measured transitions of area and position for
object masks from large-scale, natural, unstructured videos. Specifically, we extracted over 300,000
object segmentation mask transitions from YouTube-VOS (Xu et al., 2018; Yang et al., 2019) and
KITTI-MOTS (Voigtlaender et al., 2019; Geiger et al., 2012; Milan et al., 2016) (discussed in detail in
Appendix D). We fit generalized Laplace distributions to the collected data (Eq. 2), which we indicate
with orange lines in Fig. 1. We see empirically that all marginal distributions of temporal transitions
are highly sparse and that there exist complex dependencies between natural factors (e.g. motion
typically affects both position and apparent size). In this study, we focus on the sparse marginals,
which we believe constitutes an important advance that sets the stage for solving further issues and
eventually applying the technology to real-world problems. With this information at hand, we are
able to provide a stronger proof for capturing the underlying generative factors of the data up to
permutations and sign flips that is not covered by previous work (Hyvirinen and Morioka, 2016;
2017; Khemakhem et al., 2020a). Thus, we present the first work, to the best of our knowledge,
which proposes a theoretically grounded solution that covers the statistics observed in real videos.

Our contributions are: With measurements from
unstructured natural video annotations we pro-

vide evidence that natural generative factors un-

dergo sparse changes across time. We provide
a proof of identifiability that relies on the ob-
served sparse innovations to identify nonlinearly
mixed sources up to a permutation and sign-flips,
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Figure 1: Statistics of Natural Transitions. The

which we then validate with practical estima-
tion methods for empirical comparisons. We
leverage the natural scene information to cre-
ate novel datasets where the latent transitions
between frames follow natural statistics. These
datasets provide a benchmark to evaluate how
well models can uncover the true latent genera-
tive factors in the presence of realistic dynamics.
We demonstrate improved disentanglement over

histograms show distributions over transitions of
segmented object masks from natural videos for
horizontal and vertical position as well as object
size. The red lines indicate fits of generalized
Laplace distributions (Eq. 2) with shape value
«. Data shown is for object masks extracted
from YouTube videos. See Appendix G for 2D
marginals and corresponding analysis from the

previous models on existing datasets and our KITTI self-driving car dataset.

contributed ones with quantitative metrics from both the disentanglement (Locatello et al., 2018) and
the nonlinear ICA community (Hyvérinen and Morioka, 2016). We show via numerous visualization
techniques that the learned representations for competing models have important differences, even
when quantitative metrics suggest that they are performing equally well.

2 RELATED WORK — DISENTANGLEMENT AND NONLINEAR ICA

Disentangled representation learning has its roots in blind source separation (Cardoso, 1989; Jutten
and Herault, 1991) and shares goals with fields such as inverse graphics (Kulkarni et al., 2015;
Yildirim et al., 2020; Barron and Malik, 2012) and developing models of invariant neural computation
(Hyvérinen and Hoyer, 2000; Wiskott and Sejnowski, 2002; Sohl-Dickstein et al., 2010) (see Bengio
et al., 2013, for a review). A disentangled representation would be valuable for a wide variety of
machine learning applications, including sample efficiency for downstream tasks (Locatello et al.,
2018; Gao et al., 2019), fairness (Locatello et al., 2019; Creager et al., 2019) and interpretability
(Bengio et al., 2013; Higgins et al., 2017; Adel et al., 2018). Since there is no agreed upon definition
of disentanglement in the literature, we adopt two common measurable criteria: i) each encoding
element represents a single generative factor and ii) the values of generative factors are trivially
decodable from the encoding (Ridgeway and Mozer, 2018; Eastwood and Williams, 2018).

Uncovering the underlying factors of variation has been a long-standing goal in independent com-
ponent analysis (ICA) (Comon, 1994; Bell and Sejnowski, 1995), which provides an identifiable
solution for disentangling data mixed via an invertible linear generator receiving at most one Gaussian
factor as input. Recent unsupervised approaches for nonlinear generators have largely been based
on Variational Autoencoders (VAEs) (Kingma and Welling, 2013) and have assumed that the data is
independent and identically distributed (i.i.d.) (Locatello et al., 2018), even though nonlinear methods
that make this i.i.d. assumption have been proven to be non-identifiable (Hyvérinen and Pajunen,
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1999; Locatello et al., 2018). Nonetheless, the bottom-up approach of starting with a nonlinear
generator that produces well-controlled data has led to considerable achievements in understanding
nonlinear disentanglement in VAEs (Higgins et al., 2017; Burgess et al., 2018; Rolinek et al., 2019;
Chen et al., 2018), consolidating ideas from neural computation and machine learning (Khemakhem
et al., 2020a), and seeking a principled definition of disentanglement (Ridgeway, 2016; Higgins et al.,
2018; Eastwood and Williams, 2018).

Recently, Hyvirinen and colleagues (Hyvérinen and Morioka, 2016; 2017; Hyvérinen et al., 2018)
showed that a solution to identifiable nonlinear ICA can be found by assuming that generative
factors are conditioned on an additional observed variable, such as past states or the time index itself.
This contribution was generalized by Khemakhem et al. (2020a) past the nonlinear ICA domain
to any consistent parameter estimation method for deep latent-variable models, including the VAE
framework. However, the theoretical assumptions underlying this branch of work do not account
for the sparse transitions we observe in the statistics of natural scenes, which we discuss in further
detail in appendix F.1.1. Another branch of work requires some form of supervision to demonstrate
disentanglement (Szab¢ et al., 2017; Shu et al., 2019; Locatello et al., 2020). We select two of the
above approaches, that are both different in their formulation and state-of-the-art in their respective
empirical settings, Hyvirinen and Morioka (2017) and Locatello et al. (2020), for our experiments
below. The motivation of our method and dataset contributions is to address the limitations of previous
approaches and to enable unsupervised disentanglement learning in more naturalistic scenarios.’

The fact that physical processes bind generative factors in temporally adjacent natural video segments
has been thoroughly explored for learning in neural networks (Hinton, 1990; Foldidk, 1991; Mitchison,
1991; Wiskott and Sejnowski, 2002; Denton and Birodkar, 2017). We propose a method that uses
time information in the form of an L;-sparse temporal prior, which is motivated by the natural
scene measurements presented above as well as by previous work (Simoncelli and Olshausen,
2001; Olshausen, 2003; Hyvirinen et al., 2003; Cadieu and Olshausen, 2012). Such a prior would
intuitively allow for sharp changes in some latent factors, while most other factors remain unchanged
between adjacent time-points. Almost all similar methods are variants of slow feature analysis (SFA,
Wiskott and Sejnowski, 2002), which measure slowness in terms of the Euclidean (i.e. Lo, or log
Gaussian) distance between temporally adjacent encodings. Related to our approach, a probabilistic
interpretation of SFA has been previously proposed (Turner and Sahani, 2007), as well as extensions
to variational inference (Grathwohl and Wilson, 2016). Additionally, Hashimoto (2003) suggested
that a sparse (Cauchy) slowness prior improves correspondence to biological complex cells over the
Lo slowness prior in a two-layer model. However, to the best of our knowledge, an L, temporal prior
has previously only been used in deep auto-encoder frameworks when applied to semi-supervised
tasks (Mobabhi et al., 2009; Zou et al., 2012), and was mentioned in Cadieu and Olshausen (2012),
who used an Lo prior, but claimed that an L, prior performed similarly on their task. Similar to
Hyvirinen et al. (Hyvarinen and Morioka, 2016; Hyvérinen et al., 2018), we only assume that the
latent factors are temporally dependent, thus avoiding assuming knowledge of the number of factors
where the two observations differ (Shu et al., 2019; Locatello et al., 2020).

Most of the standard datasets for disentanglement (dSprites (Matthey et al., 2017), Cars3D (Reed
etal., 2015), SmalINORB (LeCun et al., 2004), Shapes3D (Kim and Mnih, 2018), MPI3D (Gondal
et al., 2019)) have been compiled into a disentanglement library (DisLib) by Locatello et al. (2018).
However, all of the DisLib datasets are limited in that the data generating process is independent and
identically distributed (i.i.d.) and all generative factors are assumed to be discrete. In a follow-up
study, Locatello et al. (2020) proposed combining pairs of images such that only k factors change, as
this matches their modeling assumptions required to prove identifiability. Here, & € U{1, D — 1} and
D denotes the number of ground-truth factors, which are then sampled uniformly. We additionally
use the measurements from Fig. 1 to construct datasets for evaluating disentanglement that have time
transitions which directly correspond to natural dynamics.

'As in slow feature analysis, we consider learning from videos without labels as unsupervised.
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3 THEORY

3.1 GENERATIVE MODEL

We have provided evidence to support the hypothesis that generative factors of natural videos have
sparse temporal transitions (see Fig. 1). To model this process, we assume temporally adjacent input
pairs (x;_1,X;) coming from a nonlinear generator that maps factors to images x = g(z), where
generative factors are dependent over time:

P(Zt,2t-1) = p(2¢|2e—1)p(Zt-1)- (1)
Assume the observed data (x¢,x;—1) comes from the following generative process, where different
latent factors are assumed to be independent (cf. Appendix F.2):
d d o\
x=g(z), p(zi-1)= il:[lp(zt—1,1:)7 p(z¢|zi-1) = }j[l m exp —(Mzei — ze-1.4%), (2)
where ) is the distribution rate, p(z;_1) is a factorized Gaussian prior N'(0,I) (as in Kingma and
Welling, 2013) and p(z:|z;—1) is a factorized generalized Laplace distribution (Subbotin, 1923)
with shape parameter «, which determines the shape and especially the kurtosis of the function.?
Intuitively, smaller « implies larger kurtosis and sparser temporal transitions of the generative factors
(special cases are Gaussian, « = 2, and Laplacian, a = 1). Critically, for our proof we assume
« < 2 to ensure that temporal transitions are sparse. The novelty of our approach lies in our explicit
modeling of sparse transitions that cover the statistics of natural data, which results in a stronger
identifiability proof than previously achieved (see Appendix F.1.1 for a more detailed comparison
with Hyvérinen and Morioka, 2017; Khemakhem et al., 2020a).

3.2 IDENTIFIABILITY PROOF

Theorem 1 For a ground-truth (g*, \*, o*) and a learned (g, \, &) model as defined in Eq. (2), if
the functions g* and g are injective and differentiable almost everywhere, \* = \, o = a < 2 (i.e.
there is no model misspecification) and the distributions of pairs of images generated from the priors
z* ~ p*(z) and z ~ p(z) generated as (¢*(z;_1), g% (z})) and (g(z:i-1), g(2z:)), respectively, are
matched almost everywhere, then g = g* o g, where o is composed of a permutation and sign flips.

The formal proof is provided in Appendix A.l. Similar to
linear ICA, but in the temporal domain, we have to assume
that the transitions of generative factors across time be
non-Gaussian. Specifically, if the temporal changes of
ground-truth factors are sparse, then the only generator
consistent with the observations is the ground-truth one (up
to a permutation and sign flips). The main idea behind the
proof is to represent g as g* o h and note that if h were not
a permutation, then the distributions ((g* o h)(z¢—1), (g% o
h)(z:)) and (g*(2z;_;), g*(z})) would not match, due to
the injectivity of g*. Whether or not these distributions are
the same is equivalent to whether or not the distributions
of pairs (z¢_1, z¢) and (h(z¢—1), h(z¢)) are the same. For
these distributions to be the same, the function 2 must Figure 2: Proof Intuition. Latent repre-
preserve the Gaussian marginal for the first time step as  sentation and example generated image
well as the joint distribution, implying that it must preserve  pairs for ground-truth (blue) and entan-
both the vector lengths and distances in the latent space. gled (red) model. See text below for
As we argue in the extended proof, this can only be the details.

case if h is a composition of permutations and sign flips.

*
Xiq Xy X Xy

Intuition Fig. 2 illustrates, by contradiction, why the model defined in Eq. (2) is identifiable. We
consider temporal pairs of latents represented by connected points. A sparse transition prior encour-
ages axis-alignment, as can be seen from the Laplace transition prior in the third image of Fig. 3.

For a stationary stochastic process, p(z;—1) represents the instantaneous marginal distribution and
p(zt\zt,l) the transition distribution. In case of an autoregressive process with non-Gaussian innovations
with finite variance, it follows from the central limit theorem that the marginal distribution converges to a
Gaussian in the limit of large .
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This results in lines that are parallel with the axes in both the ground truth (left, blue, z*) and learned
model (right, red, z). In this example, z; corresponds to horizontal position, while z] corresponds to
vertical position. The learned model must satisfy two criteria: (1) the latent factors should match the
sparse prior (axis-aligned) and (2) the generated image pairs should match the ground-truth image
pairs. If the learned latent factors were mismatched, for example by rotation, then the image pair
distributions would not be matched. In this example, the ground truth model would produce image
pairs with typically vertical or horizontal transitions, while the learned model pairs result in mostly
diagonal transitions. Thus, the learned model cannot satisfy both criteria without aligning the latent
axes with the ground-truth axes.

3.3 SLOW VARIATIONAL AUTOENCODER

In order to validate our proof, we must choose a probabilistic latent variable model for estimating the
data density. We chose to build upon the framework of VAEs because of their efficiency in estimating
a variational approximation to the ground truth posterior of a deep latent variable model (Kingma and
Welling, 2013). We will refer to this model as SlIowVAE. In Appendix B we note shortcomings of
such an approach and test an alternative flow-based model.

The standard VAE objective assumes i.i.d. data and a standard normal prior with diagonal covariance
on the learned latent representations z ~ N(0,I). To extend this to sequences, we assume the
same functional form for our model prior as in Eq. (1) and Eq. (2). The posterior of our model is
independent across time steps. Specifically,

d
Q(2e, Ze—1|%e, Xe-1) = q(ze[x¢) q(2e-1x2-1),  q(zx) = HN(M(X)>U1:2(X))7 3)
i=1
where p;(x) and o?(x) are the input-dependent mean and variance of our model’s posterior. We
visualize this combination of priors and posteriors in Fig. 3. For a given pair of inputs (x;, X;—1), the
full evidence lower bound (ELBO, which we derive in Appendix A.2) can be written as

L(x¢,X¢-1) = Eq(zt,zt,l\xt,xt,l)[logp(xt,Xt71|Zt,Zt71)] — Drr(q(ze—1|x¢-1)|p(z¢-1))

4
A Eyay ey D (@ %) [p(zel 1), @

where + is a regularization term for the sparsity prior, analogous to 3 in 5-VAEs (Higgins et al.,
2017) (technically, Eq. 4 is only an ELBO with y < 1). The first term on the right-hand side is the
log-likelihood (i.e. the negative reconstruction error, with p(x;, X;—1|2¢, z;—1 ) parameterized by the
decoder of the VAE), the second term is the KL to a normal prior as in the standard VAE and the
last term is an expectation of the KL between the posterior at time step ¢ and the conditional prior
p(z¢|z1—1). The expectation in the last term is taken over samples from the posterior at the previous
time step ¢(z;—1|x¢—1). We observed empirically that taking the mean, p(x;_1), as a single sample
produces good results, analogous to the log-likelihood that is typically evaluated at a single sample
from the posterior (see Blei et al. (2017) for context).

In practice, we need to choose «, A, and . For the

latter two, we can perform a random search for hyper- Rod ‘ -
parameters, as we discuss below. For the former, any

«a < 2 would break the general rotation symmetry by

having an optimum for axis-aligned representations,

which theorem 1 includes as a requirement for iden- Figure 3: SlowVAE illustration. The prior
tifiability. As can be seen in Figs. 1 and 11, o = 0.5 and posterior for a two-dimensional latent
provides the best fit to the ground-truth marginals. space. Left to right: Normal prior for ¢ — 1,
However, we used av = 1 as a parsimonious choice posterior for ¢ — 1, conditional Laplace prior
for SlowVAE, since the Laplace is a well-understood for ¢, and posterior for t. The blue cross in
distribution that allows us to derive a simple closed- the right three plots indicates the mean of the
form solution for the ELBO in Eq. 4, which we derive posterior for ¢ — 1.

in Appendix A.2.

3.4 TOWARDS AN APPROXIMATE THEORY OF DISENTANGLEMENT

A number of our theoretical assumptions are violated in practice: After non-convex optimization,
on a finite data sample, the distributions p(x;,x;—1) and p*(x¢,x:—1) are probably not perfectly
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matched. In addition, the model assumptions on p(z;, z;_1) likely do not fully match the distribution
of the ground truth factors. For example, the model may be misspecified such that « # a* or
A # X*, or the chosen family of distributions may be incorrect altogether. In the following section
we will present results on several datasets where the marginal distributions p(z;—_1) are drawn from
a Uniform (not Normal) distribution, and some of them are over unordered sets (categories) or
bounded periodic spaces (rotation). Also, in practice the model latent space is usually chosen to
have more dimensions than the ground truth generative model. On real data, factors of variation may
be dependent (Trauble et al., 2020; Yang et al., 2020). We show this is the case on YouTube-VOS
and KITTI-MOTS in Appendix G and we provide evidence that breaking these dependencies has no
clear consequence on disentanglement in Appendix F.2. A more formal treatment of dependence is
done by Khemakhem et al. (2020b) who relax the independence assumption of ICA to Independently
Modulated Components Analysis IMCA) and introduce a family of conditional energy-based models
that are identifiable up to simple transformations. Furthermore, the hypothesis class G of learnable
functions in the VAE architecture may not contain the invertible ground truth generator g* ¢ G,
if it exists at all (e.g. occlusions may already lead to non-invertibility). Despite these violations,
we consider it a strength of our method that the practical implementation still achieves improved
disentanglement over previous approaches. However, we note understanding the impact of these
violations as an important focus area for continued progress towards developing a practical yet
theoretically supported method for disentanglement on natural scenes.

4 DATASETS WITH NATURAL TRANSITIONS

While the standard datasets compiled by DisLib are an important step towards real-world applications,
they still assume the data is i.i.d.. As described in section 2, Locatello et al. (2020) proposed uniformly
sampling the number of factors to be changed, ¥ = Rnd, and changing said factors by uniformly
sampling over the possible set of values. What we refer to as “UNI” is a dataset variant modeled after
the described scheme (Locatello et al., 2020) (further details in Appendix D). Considering our natural
data analysis presented in Figure 1, such transitions are certainly unnatural. Given the current state of
evaluation, we provide a set of incrementally more natural datasets which are otherwise comparable
to existing work. We propose that said datasets should be included in the standard benchmark suite to
provide a step towards disentanglement in natural data.

(1) Laplace Transitions (LAP) is a procedure for constructing image pairs from DisLib datasets by
sampling from a sparse conditional distribution. For each ground-truth factor, the first value in the
pair is chosen i.i.d. from the dataset and the second is chosen by weighting nearby factor values using
Laplace distributed probabilities. LAP is a step towards natural data that closely resembles previous
extensions of DisLib datasets to the time domain, but in a way that matches the marginal distribution
of natural transitions (see Appendix D.2 for more details).

(2) Natural Sprites consists of pairs of rendered sprite images with generative factors sampled from
real YouTube-VOS transitions. For a given image pair, the position and scale of the sprites are set
using measured values from adjacent time points in YouTube-VOS. The sprite shapes and orientations
are simple, like dSprites, and are fixed for a given pair. While fixing shape follows the natural
transitions of objects, it is unclear how to accurately estimate object orientation from the masks,
and thus we fixed the factor to avoid introducing artificial transitions. We additionally consider a
version that is discretized to the same number of object states as dSprites, which i) allows us to use
the standard DisLib evaluation metrics and ii) helps isolate the effect of including natural transitions
from the effect of increasing data complexity (see Appendix D.4 for more details).

(3) KITTI Masks is composed of pedestrian segmentation masks from the autonomous driving
vision benchmark KITTI-MOTS, thus with natural shapes and continuous natural transitions in all
underlying factors. We consider adjacent frames which correspond to mean(At) = 0.05s in physical
time (we report the mean because of variable sampling rates in the original data); as well as frames
with a larger temporal gap of mean(At) = 0.15s, which corresponds to samples of pairs that are
at most 5 frames apart. We show in Appendix G.3 that SlowVAE disentanglement performance
increases and then plateaus as we continue to increase mean(At).

In summary, we construct datasets with (1) imposed sparse transitions, (2) augmented with natural
continuous generative factors using measurements from unstructured natural videos, as well as (3)
data from unstructured natural videos themselves, but provided as segmentation masks to ensure
visual complexity is manageable for current methods. For the provided datasets, the object categories
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Model Data BetaVAE  FactorVAE MIG MCC DCI  Modularity SAP

PCL dSprites (Uniform)  80.1 (0.4)  62.1(0.9) 16.0(7.4) 41.6(1.5) 424(12) 99.7(0.6) 6.0(2.7)
Ada-GVAE  dSprites (Uniform)  88.0 (2.7)  73.1(3.9) 173(4.7) 46.0(4.8) 323(4.6) 933(1.8) 6.6(2.0)
SIowVAE  dSprites (Uniform)  87.0(5.1) 75.2(11.1) 283(11.5) 58.8(8.9) 47.7(85  86.9(2.8) 4.4(2.0)

PCL dSprites (Laplace) ~ 99.9 (0.1) 947 (3.1) 192(3.1) 67.9(33) 52035 932(0.9) 8.1(L.6)
Ada-GVAE  dSprites (Laplace) ~ 91.4(1.6)  83.0(5.9) 21.8(4.9) 569(42) 39.0(42) 87.6(1.8) 7.2(0.3)
SIowVAE  dSprites (Laplace)  100.0 (0.0)  97.5(3.0) 29.5(9.3) 69.8(23) 654(3.6) 965(1.6) 8.1(3.0)

PCL Natural (Discrete) ~ 82.4 (6.7)  68.3(8.0)  7.8(28) 502(42) 143(3.0) 889(3.1) 2.5(l.1)
Ada-GVAE Natural (Discrete) 834 (1.1) 748 (4.4) 145(3.2) 51.6(25) 21.8(29) 87.8(25) 53(14)
SIowVAE  Natural (Discrete) ~ 82.6 (2.2) 762 (4.8) 11.7(5.0) 52.6(4.1) 18.9(55) 88.1(3.6) 4.4(2.3)

Table 1: Mean and standard deviation (s.d.) metric scores across 10 random seeds. PCL is a scaled-up
implementation of the method described by Hyvirinen and Morioka (2017), leveraging the encoding
architecture and training hyperparameters specified in appendix E. Ada-GVAE is the leading method
proposed by Locatello et al. (2020). Bold indicates statistical significance above the next highest
score (independent T-test, p < 0.05). Red indicates statistical significance below the next lowest
score. Results for additional datasets and models are in Table 2 and Appendix G.

never change across transitions — reflecting natural object permanence. Finally, as (2) and (3) use
factor transitions measured from natural videos, they exhibit any natural statistical structure present
for those factors, such as natural dependencies (further discussion is in Appendix F.2).

5 EXPERIMENTS

5.1 EMPIRICAL STUDIES

We evaluate models using the DisLib implementation for the following supervised metrics: Be-
taVAE (Higgins et al., 2017); FactorVAE (Kim and Mnih, 2018); Mutual Information Gap
(MIG; Chen et al., 2018); Disentanglement, Compactness, and Informativeness (DCI / Disen-
tanglement; Eastwood and Williams, 2018); Modularity (Ridgeway and Mozer, 2018); and Separated
Attribute Predictability (SAP; Kumar et al., 2018) (see Appendix C for metric details). None of the
DisLib metrics support ground-truth labels with continuous variation, which is required for evaluation
on the continuous Natural Sprites and KITTI Masks datasets. To reconcile this, we measure the Mean
Correlation Coefficient (MCC), a standard metric in the ICA literature that is applicable to continuous
variables. We report mean and standard deviation across 10 random seeds.

In order to select the conditional prior regularization and the prior rate in an unsupervised manner,
we perform a random search over v € [1,16] and A € [1, 10] and compute the recently proposed
unsupervised disentanglement ranking (UDR) scores (Duan et al., 2020). We notice that the optimal
values are close to v = 10 and A = 6 on most datasets, and thus use these values for all experiments.
We leave finding optimal values for specific datasets to future work, but note that it is a strong
advantage of our approach that it works well with the same model specification across 13 datasets
(counting LAP and UNI for DisLib and optional discretization for Natural Sprites), addressing a
concern posed in (Locatello et al., 2018). Additional details on model selection and training can
be found in Appendix E. Although we train on image pairs, our model does not need paired data
points at test time. For all visualizations, we pick the models with the highest average score across
the DisLib metrics.

To compare our model fairly against other methods that also take image pairs as inputs, we also
present performance for Permutation-Contrastive Learning from nonlinear ICA (PCL, Hyvérinen
and Morioka, 2017) and Ada-GVAE, the leading method in the study by (Locatello et al., 2020).
We scaled up the implementation of PCL for evaluation on our high-dimensional pixel inputs,
and note this method does not have any hyperparameters. For Ada-GVAE, following the paper’s
recommendations, we select 3 (per dataset) using the considered parameter set [1, 2, 4,6, 8, 16], and
use the reconstruction loss as the unsupervised model selection criterion (Locatello et al., 2020).
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Figure 4: KITTI Masks (mean(At) = 0.15s). (Left) MCC correlation matrix of the top 3 latents
corresponding to y-position, x-position and scale. (Right) Images produced by varying the SlowVAE
latent unit that corresponds to the corresponding row in the MCC matrix.

Latents

5.2 RESULTS ON DISLIB AND NEW BENCHMARKS

In Table 1 we demonstrate favorable performance compared to PCL and Ada-GVAE across all
applicable metrics for discrete ground-truth variable datasets. The relative improvement on UNI is
particularly surprising given the drastic mismatch between UNI and SlowVAE’s assumptions. In
Appendix G, we report results for the remaining DisLib datasets, where the observed dSprites results
largely transfer. We also outperform PCL with a (flow-based) exact likelihood implementation of our
slow transition prior in Appendix F.1.1. In Appendix F.3, we show that a model with an L transition
(av = 2) prior performs much worse, supporting our theoretical prediction.

On the KITTI Masks dataset, one source of variation

. he d is th 1 . ithi Model Data MCC

n .t € a_ta 1s the average temporal separation w1_t n PCL Nataral (Continuons) 51760)
pairs of images mean(At). We present two settings  Ada-GVAE Natural (Continuous) 184 (4.8)
(mean(At) = 0.05s, mean(At) = 0.15s) and observe ~ SlowVAE  Natural (Continuous) 49.1 (4.0)
a comparative increase in MCC for the latter (Table 2).  PCL Kitti (mean(At) = 0.05s)  52.6 (5.1)

Namely, the increase in performance for larger time gap ‘SAliz\;gX‘EE 112:2 ggig I

(At) =0.05s)  62.6(7.5)
is more pronounced with SlowVAE than the baselines, — (
PCL Kitti (mean(
(
(

0.05s)  66.1 (4.5)
=0.15s) 58.5(3.3)
=0.155) 67.6(6.7)
=0.15s) 79.6 (5.8)

resulting in a statistically significant MCC gain. We pro-  Ad,.GVAE  Kitti (mean
vide details on the settings and ablate over the mean(A?)  SlowVAE  Kitti (mean
parameter in Appendix G.3, where we observe a positive ) )
trend between mean(At) and MCC (reflecting Table 2, Table 2: Continuous ground-truth variable
in Oord et al., 2018). Finally, we also verify that the datasets. See Table 1 for details.
transition distributions remain sparse despite the increase in this parameter (Appendix G.3). In
Fig. 4, we can see that SlowVAE has learned latent dimensions which have correspondence with the
estimated ground truth factors of x/y-position and scale.

t) =
)=
At)
At)
At)

Locatello et al. (2018) showed that all i.i.d. models performed similarly across the DisLib datasets
and metrics when testing was carefully controlled. However, in Fig. 5 we observe that the different
modeling assumptions result in differences in representation quality. To construct the visuals, we first
compute the sorted correlation matrix between the latents (rows) and generative factors (columns),
which we visualize as a correlation matrices. The matrices are sorted via linear sum assignment
such that each ground-truth factor is non-greedily associated with the latent variable with highest
correlation (Hyvarinen and Morioka, 2016). Below the matrices are scatter plots that reveal the
decodability of the assigned latent factors. In each scatter plot, the horizontal axis indicates the
ground truth value, the vertical axis indicates the corresponding latent value, and the colors indicate
object shape. The models displayed are those with the maximum average score across evaluated
metrics.

The latent space visualizations use the known ground-truth factors to aid in understanding how each
factor is encoded in a way that is more informative than exclusively visualizing latent traversals or
embeddings of pairs of latent units (Cheung et al., 2014; Chen et al., 2016; Szabd et al., 2017; Ma
etal., 2018). For example, in the third row, we observe that several models have a sinusoidal variation
with frequencies ~ w, 2w, and 4w, which correspond to the three distinct rotational symmetries of
the shapes: heart, ellipse and square. This directly impacts MCC performance (third row in the MCC
matrix), which measures rank correlation between the matching latent factor (an angular variable)
and the ground truth, which encodes the angles with monotonically increasing indices. Furthermore,
the square has a four-fold rotational symmetry and repeats after 90°, but it is represented in a full
360° rotation in the DisLib ground truth encoding format, resulting in different ground truth labels
for identical input images.
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Figure 5: DSprites Latent Representations: (Top) shows absolute MCC between generative and
model factors (rows are rearranged for maximal correlation on the main diagonal). The columns
correspond to generative factors (shape, scale, rotation, x/y-position) and the values correspond to
percent correlation. A more diagonal structure in the upper half corresponds to a better one-to-one
mapping between generative and latent factors. (Bottom) shows individual latent dimensions (y-axis)
over the matched generative factors (x-axis). Colors encode shapes: heart/yellow, ellipse/turquoise,
and square/purple.

A similar observation can be made with respect to the categorical factors, which are also represented
as ordinal ground truth variables. For example, the PCL correlation score (top left element in the PCL
MCC matrix) is quite high, while the corresponding shape correlation score for SlowVAE is quite
low. However, if we consider the shape scatter plots, we clearly see that SlowVAE separates the three
shapes more distinctively than PCL, only in an order that differs from the ground truth. One solution
is to modify MCC to report the maximum correlation over all permutations of the ground truth
assignments, although brute force methods for this would scale poorly with the number of categories.
We also note that datasets where we see small performance differences among models (e.g., Cars3D)
have significantly more discrete categories (e.g., 183) than the other datasets (3 — 6). This could
also explain why all models considered in Table 1 and 2 perform comparably on the Natural Sprites
datasets, where unlike KITTI Masks the ground truth evaluation includes categorical and angular
variables. We note that properly evaluating disentanglement is an ongoing area of research (Duan
et al., 2020), with notable preliminary results in recent work (Higgins et al., 2018; Bouchacourt et al.,
2021; Tonnaer et al., 2020).

6 CONCLUSION

We provide evidence to support the hypothesis that natural scenes exhibit highly sparse marginal
transition probabilities. Leveraging this finding, we contribute a novel nonlinear ICA framework
that is provably identifiable up to permutations and sign-flips — a stronger result than has been
achieved previously. With the SlowVAE model we provide a parsimonious implementation that is
inspired by a long history of learning visual representations from temporal data (Sutton, 1988; Hinton,
1990; Foldidk, 1991). We apply this model to current metric-based disentanglement benchmarks to
demonstrate that it outperforms existing approaches (Locatello et al., 2020; Hyvérinen and Morioka,
2017) on aggregate without any tuning of hyperparameters to individual datasets. We also provide
novel video dataset benchmarks to guide disentanglement research towards more natural domains.
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We observe that these datasets have complex dependencies that our theory will have to be extended
to account for, although we demonstrate with empirical comparisons the efficacy of our approach.
In addition to Natural Sprites and KITTI Masks, we suggest that YouTube-VOS will be valuable as
a large-scale dataset that is unconstrained by object type and scenario for more advanced models.
Variance in such categorical factors is problematic for evaluation due to the cited drawbacks of
existing quantitative metrics, which should be addressed in tandem with scaling to natural data. Taken
together, our dataset and model proposals set the stage for utilizing knowledge of natural scene
statistics to advance unsupervised disentangled representation learning.

In our experiments we see that approximate identification as measured by the different disentan-
glement metrics increases despite violations of theoretical assumptions, which is in line with prior
studies (Shu et al., 2019; Khemakhem et al., 2020a; Locatello et al., 2020). Nevertheless, future
work should address gaining a better understanding of the theoretical and empirical consequences of
such model misspecifications, in order to make the theory of disentanglement more predictive about
empirically found solutions.
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BROADER IMPACT

Representation learning is at the heart of model building for cognition. Our specific contribution is
focused on core methods for modeling natural videos and the datasets used are more simplistic than
real-world examples. However, foundational research on unsupervised representation learning has
potentially large impact on Al for advancing the power of self-learning systems.

The broader field of representation learning has a large number of focused research directions that
span machine learning and computational neuroscience. As such, the application space for this work
is vast. For example, applications in unsupervised analysis of complicated and unintuitive data,
such as medical imaging and gene expression information, have great potential to solve fundamental
problems in health sciences. A future iteration of our disentangling approach could be used to encode
such complicated data into a lower-dimensional and more understandable space that might reveal
important factors of variation to medical researchers. Another important and complex modeling
space that could potentially be improved by this line of research is in environmental sciences and
combating global climate change.

Nonetheless, we acknowledge that any machine learning method can be used for nefarious purposes,
which can be mitigated via effective, scientifically informed communication, outreach, and policy
direction. We unconditionally denounce the use of derivatives of our work for weaponized or wartime
applications. Additionally, due to the lack of interpretability generally found in modern deep learning
approaches, it is possible for practitioners to inadvertently introduce harmful biases or errors in
machine learning applications. Although we certainly do not solve this problem, our focus on
providing identifiable solutions to representation learning is likely beneficial for both interpretability
and fairness in machine learning.
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A FORMAL METHODS

Function / variable  Description

g Generator

o Prior shape

A Prior rate

p(z) Prior

z ~ p(z) Latent variables

x = g(z) Generated images
q(z|x) Variational posterior

Table 3: Glossary of terms. We use a * (i.e. g*) when necessary to highlight that we are referring to
the ground truth model.

A.1 PROOF OF IDENTIFIABILITY

To study disentanglement, we assume that the generative factors z € R” are mapped to images
x € RV (usually D < N, but see section B) by a nonlinear ground-truth generator g* : z  x.

Theorem 1 Let (g%, \*, a*) and (g, A, ) respectively be ground-truth and learned generative mod-
els as defined in Eq. (2). If the following conditions are satisfied:

(i) The generators g* and g are defined everywhere in the latent space. Moreover, they are
injective and differentiable almost everywhere,

(ii) There is no model misspecification i.e. & = o and A\ = \*, so z ~ p(z) = p*(z),

(iii) Pairs of images are generated as (xi_1,x}) = (9*(z:_1),9%(2z¢)) and
(xt—1,%¢) = (9(z¢-1),9(21)),

(iv) The distributions of (x;_1,Xx} ) and (X¢—1,X¢) are the same (i.e. the corresponding densities
are equal almost everywhere: p* (X¢—1,%¢) = p(X¢—1,X¢),

then g = g* o g, where o is a composition of a permutation and sign flips.

Proof. Since x = g(z) can be written as x = (g* o (¢*) ™! o g)(z), we can assume that g = g* o h
for some function h on the latent space.

We first show that the function & is a bijection on the latent space. It is injective, since both g
and g* are injective. Because of continuity of h, if it were not surjective, there would be some
neighborhood Uj; of z that would not have a pre-image under h. This would mean that images
generated by ¢g* from Uj; would have zero density under the distribution of images generated by
g (i.e. p(¢*(Uz)) = 0). This density would be non-zero under the distribution of images directly
generated by the ground-truth generator g* (i.e. p*(¢*(Usz)) # 0), which contradicts the assumption
that these distributions are equal. It follows that £ is bijective.

In the next step, we show that the distribution of latent space pairs (h(z:—1), h(z:)) matches the
latent space prior distribution (i.e. h preserves the prior distribution in the latent space). Indeed, using
the assumption that the distributions of (¢*(z¢—1), g*(z;)) and ((g* o h)(z;—1), (g% o h)(z;)) are the
same, we can write the following equality using the change of variables formula:

b1 = (0 s, 7)) e (200
“lio)

where p and py, are densities of (z;_1,z:) and (h(z¢—1), h(2z¢)). Since the determinants above cancel,
these densities are equal at the pre-image of any pair of images (x;—_1,X;). Because g* is defined

= pu((g") 7 (xe-1), (97) 7" (x2))

= p(Xt—la Xt)7
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everywhere in the latent space, p and pj, are equal for any pair of latent space points. Applying the
change of variables formula again, we obtain the following equation:

dh~!
_ =p(h Y (z4_1),h! det | ——
plan1,22) = ), ) faet ()
_ _ _ dh=(z_ dh~(z (6)
— p(h o) p(h ) | 1 () [t (L) e (A C2)
dzhl dzt
= p(zt—1) p(zt | Ze—1).
Note that the probability measure p is the same before and after the change of variables, since we

showed that the prior distribution in the latent space must be invariant under the function h. The same
condition for the marginal p(z;_1) is as follows:

dh=(z,—
p(zi—1) = p(h ™ (zs_1)) |det (d(tl)) ' . 7
Zi—1
Solving for the determinant of the Jacobian in (7) and plugging it into (6), we obtain
) =n(h} h~ Yz, ﬂ
P(ze |2e-1) = p(h™ (ze) [ W™ (ze 1))p(h_1(zt)) ®)

Taking logs of both sides, we arrive at the following equation:

A(llze — ze-allg = [|h7H(2e) — B~ (ze-0)[2) = Bllzel3 — |27 (ze)]13), ©
where A and B are the constants appearing in the exponentials in p(z;—1) and p(z¢ | z:—1). The logs
of normalization constants cancel out.

For any z; we can choose z;_; = z; making the left hand side in (9) equal to zero. This implies that

l|z¢||3 = ||h~1(z¢)||3 for any z, i.e. function h~! preserves the 2-norm. Moreover, the preservation
of the 2-norm implies that p(z;_1) = p(h~'(z;_1)) and therefore it follows from (7) that for any z
dn™!
‘det ((Z)N —1. (10)
dz

Thus, the left hand side of (9) can be re-written as
|z — ze—1 |5 — IR () — W™ (ze—)llo = 0. (11)

This means that h~! preserves the a-distances between points. Moreover, because £ is bijective, the
Mazur-Ulam theorem (Mazur and Ulam, 1932) tells us that 2 must be an affine transform.

In the next step, to prove that i must be a permutation and sign flip, let us choose an arbitrary point
zi_1andz; =2z, +ce, = (211,..., %1k + &,...,21,p). Using (11) and performing a Taylor
expansion around z;_1, we obtain the following:

e = ||ze — z-1]l
= [[h" (ze—1 +eex) —h™H(z-)llo
_ HE ) <8h1_1(zt_1) 8h51(zt_1)

.
0zt—1, 0zt—1,

o 12)

) +0(e2)

(o3

The higher-order terms O(e?) are zero since h is affine, therefore dividing both sides of the above
equation by £ we find that

—1. (13)

H(ahl Zi1) 3hD1(Zt—1))

.
0211,k 0z1—1,k

[e3
The vectors of k-th partial derivatives of components of »~! are columns of the Jacobian matrix

(dh;ii(z)) . Using the fact that the determinant of that matrix is equal to one and applying Hadamard’s
inequality, we obtain that

e ()<

(14)

<6h11(zt_1) 8h51(zt1)>

N
0%—1 k 0%—1k

2
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Since @ < 2, for any vector v it holds that ||v||2 < ||v]|s, With equality only if at most one
component of v is non-zero. This inequality implies that both (13) and (14) hold at the same time if
and only if

H <8h1 A 1 ath(Zt_1)>

e
0zt—1. 0zt—1,k

(8h1_1(zt_1) 8hD1(zt_1)) -1 (15)

N
0zt—1,k 02t—1,

2 ‘ a
meaning that only one element of these vectors of k-th partial derivatives is non-zero, and it is equal
to 1 or -1. Thus, the function h is a composition of a permutation and sign flips at every point.
Potentially, this permutation might be input-dependent, but we argued above that & is affine, therefore

the permutation must be the same for all points. (I

A.2 KULLBACK LEIBLER DIVERGENCE OF SLOW VARIATIONAL AUTOENCODER

The VAE learns a variational approximation to the true posterior by maximizing a lower bound on
the log-likelihood of the empirical data distribution D
Ext—l ,x¢~D [log p(thla Xt)] >

Ext,l,xtND[Eq(zt,zt,l |x¢,%Xt—1) [Ing(Xt—lv Xty Zt—1, Zt) - IOg Q(Zt7 Zi—1 |Xt7 Xt—l)“~

(16)

For this, we need to compute the Kullback-Leibler divergence (KL) between the posterior
q(2z+, Z¢—1|x¢, X¢—1) and the prior p(z¢, z:—1). Since all of these distributions are per design factorial,
we will, for simplicity, derive the KL below for scalar variables (log-probabilities will simply have to
be summed to obtain the full expression). Recall that the model prior and posterior factorize like

p(zt, ze-1) = p(zt|ze-1) P(21-1)
Q(Zt, 2t71|Xt,Xt71) = Q(Zt|Xt) Q(Zt71|xt71)-

7

Then, given a pair of inputs (x;—_1, X;), the KL can be written

q(ze]xe) g(ze—1 Xt—l)}

DKL (q(Zt, Zt—1 |Xt7 Xt—l)‘p(zt7 Zt—l)) = EZt,Zt71~q(Zt,Zt71 xt,xt,l) |:10g p(Zt‘Zt_l) p(Zt_l)

q(zt_llxt_1)] [ q(ze|x¢) }

= Ezt, ~q(ze—1|xe— lo + Ezt ze—1~vq( 2, 20— 1 |Xe X — lo

i—1~q(ze—1|x¢—1) |: g p(zi-1) 2t —1~q(2e, 201X, X —1) gp(zt|2t—1)

= Dir(q(ze-11xe-1)Ip(2e-1)) — H(q(ze|%t)) + E.,_ q(zerixe—) [H(@(2e]%t), p(2¢]26-1))]

(18)

Where we use the fact that KL divergences decompose like Dy, (X,Y) = H(X,Y) — H(X) into
(differential) cross-entropy H (X, Y") and entropy H (X). The first term of the last line in (18) is the
same KL divergence as in the standard VAE, namely between a Gaussian distribution ¢(z:—1|x¢—1)
with some p(x;—1) and o(x;—1) and a standard Normal distribution p(z;—1). The solution of the
KL is given by Dgr(q(ze—1]x¢—1)lq(zi-1)) = —logo(xe—1) + 5(p(xi—1)* + o(x¢—1)* — 1)
(Bishop, 2006). The second term on the RHS, i.e. the entropy of a Gaussian is simply given by

(q(ze|xt)) = log(o(x¢)v/2me).

To compute the last term on the RHS, let us recall the Laplace form of the conditional prior

A
p(zt|ze—1) = §exp Azt — ze—1]. (19)

Thus the cross-entropy becomes

H(q(ze|x¢),p(2|2e-1)) = _Eztrvq(zt|xt) [Ing(thztfl)]

A (20)
—log <2) + AE., gz xo) 126 — 2e-1]]-
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Now, if some random variable X ~ N(u, 02), then Y = | X| follows a folded normal distribution,
for which the mean is defined as

Ellz|] —aﬁexp (;;) fu(172q>(§)), @1

where @ is the cumulative distribution function of a standard normal distribution (mean zero and
variance one). Thus, denoting u(x;) and o(x;) the mean and variance of g(z;|x;), and defining
(X, ze—1) = p(xt) — z:—1, we can rewrite further

H(q(zt]xt), p(2t]20-1)) =

o () 5]

(22)
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(a) SlowVAE performance.
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(b) SlowFlow performance.

Figure 6: VAE failure modes. Rows respectively indicate x = 0.2,0.4, 0.6, 0.8, 1.0 from Eq. (24).
The left five columns show values for 100 randomly chosen examples, while the i and o columns
show values for the full training set. Columns in the sets (z*, z), (Az*, Az), (x*, x) all have the
same (arbitrary) scale factors the axes. Lines indicate trajectories from time-point ¢ to ¢t 4+ 1, and
color indicates the angle of the trajectory vector with respect to the canonical variable axes. The p
axes is scaled from —4 to 4, and ¢ axes are scaled from 0 to 1, where individual dots represent latent
encoding values from test images. The rightmost plots show a shift in the relationship between the
mean correlation coefficient (MCC) (black, higher is better) and training loss (red, lower is better) as
one increases k.
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B CHOOSING A LATENT VARIABLE MODEL

Our proposed method for disentanglement can be implemented in conjunction with different proba-
bilistic latent variable models. In this section, we compare VAEs and normalizing flows as possible
candidates.

Variational Autoencoders (VAEs) (Kingma and Welling, 2013) are a widely used probabilistic latent
variable model. Despite their simple structure and empirical success, VAEs can converge to a
pathological solution called posterior collapse (Lucas et al., 2019; Bowman et al., 2016; He et al.,
2019). This solution results in the encoder’s variational posterior approximation matching the prior,
which is typically chosen to be a multivariate standard normal ¢(z|x) = p(z) = N(0,I). This
disconnects the encoder from the decoder, making them approximately independent, i.e. p(x|z) ~
p(x). The failure mode is often observed when the decoder architecture is overly expressive, i.e. with
autoregressive models, or when the likelihood p(x) is easy to estimate. Approaches that alleviate
this problem rely on modifying the ELBO training objective (Bowman et al., 2016; Kingma et al.,
2016) or restricting the decoder structure (Dieng et al., 2019; Maalge et al., 2019). However, these
approaches come with various drawbacks, including optimization issues (Lucas et al., 2019).

Another approach to estimate latent variables are normalizing flows which describe a sequence of
invertible mappings by iteratively applying the change of variables rule (Dinh et al., 2017b). Unlike
VAEs, flow based latent variable models allow for a direct optimization of the likelihood (Dinh et al.,
2017b). Most normalizing flow models rely on a fast and reliable calculation of the determinant
of the Jacobian of the outputs with respect to the inputs, which constrains the architectural design
and limits the capacity of the network (Tabak et al., 2010; Tabak and Turner, 2013; Dinh et al.,
2017b). Thus, competitive flows require very deep architectures in practice (Kingma and Dhariwal,
2018). Furthermore, flows are not directly suited for a scenario where the observation space is
higher dimensional than the generating latent factors, dim(z) < dim(x), as the computation of the
determinant requires a square Jacobian matrix. We tried setting dim(z) = dim(x) > dim(z*), but
observed instability while optimizing the objective defined below.

It is straightforward to derive a flow-based objective based on the assumptions in Eq. (2). We consider
a normalizing flow with with K blocks f(x) = fx o ... o f1 : x — z. The coupling blocks can refer
to nonlinear mixing similar to Kingma and Dhariwal (2018), or in the linear case (X = 1) to an
invertible de-mixing matrix. This leads to the following estimation of the likelihood

K

p(xt—1,%t) = p(f(xe—1)) p(f(xe)|f(xt-1)) H

k=1

-1 K

[1

k=1

-1

O fr

0Zj—1,4—1

O f

det
0Zk—1,

det

(23)
Note that p(f(x:—1)) is Gaussian and p(f(x;)|f(x¢—1)) is a Laplacian, similar to Eq. (2). During
optimization we take the — log of both sides and minimize w.r.t. the parameters of f. We refer to
this estimator as SlowFlow. Our SlowFlow model is very similar to the flow described in (Pineau
et al., 2020), who use a Gaussian transition prior and therefore would have weaker identifiability
guarantees. Next, we compare SlowFlow and SlowVAE in the context of disentanglement.

To demonstrate the posterior collapse in VAEs, we generate data points (x:,x:—1) according to
Eq. (2) with a two dimensional latent space dim(z*) = 2. We consider a trivial linear mixing of
x* = W*z* = g*(z*) with

W* = diag(1, x) (24)

and k € [0.1,1]. As can be seen by looking at the o and p outputs of the encoder in Fig 6a, for
k < 0.4, the encoder for the minor axis collapses to the prior. The decoder then tries to minimize
the reconstruction loss by solely covering the first principal component of the data, which is also
described in Rolinek et al. (2019). Despite the collapse and decrease in MCC, the SlowVAE loss
from Eq. (4) still improves during training. On the other hand, a simple linear SlowFlow model
f(x) = Wx, which directly optimizes the likelihood, recovers the latents consistently as seen by the
MCC measure (Fig 6b).

To show the strength of the VAE model we increase the complexity of the data-distribution by using
a non-linear expanding decoder such that dim(x) > dim(z*). In Fig. 7 we observe that increasing
the input dimensionality is sufficient for SlowVAE to find the corresponding latents and achieve high
MCC with low loss.
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Figure 7: VAEs perform better when data dimensionality exceeds the latent dimensionality.
VAE:s prefer data dimensions to be greater than latent dimensions. Individual subplots are as described
in Fig. 6. For all data in this experiment we used a 20-dimensional latent space, dim(z*) = 20.
Each row corresponds to the dimensionality of the x*, with values of 20, 200, and 2000. The first
two dimensions of z* are plotted as well as the two dimensions of z with the highest corresponding
mean correlation coefficient (MCC). The x* and x data are projected onto their first two principal
component axes before plotting. A two-layer mixing matrix was used to transform data from Z to
Xgi. As one increases the data dimensionality, the Slow VAE network performs increasingly better in
terms of MCC, although worse in terms of total training loss.

Each estimation method is practically useful in different experimental settings. In the case when the
mixing operation is trivially defined (Eq. (24), or when the number of dimensions in z* match those
in x*), the VAE estimator tends to learn a pathological solution. On the other hand, the normalizing
flow estimator does not scale well to high dimensional data due to the requirement of computing the
network Jacobian. Additionally, the framework for constructing normalizing flow estimators assumes
the latent dimensionality is equal to the data dimensionality to allow for an invertible transform.
Together these results lead us to choose an estimator based on the nature of the problem. For our
contributed datasets and the DisLib experiments we adopt the VAE framework. However, if one aims
to perform simplified experiments such as those typically conducted in the nonlinear ICA literature,
it will often make practical sense to switch to a flow-based estimator.

C DISENTANGLEMENT METRICS

Several recent studies have brought to light shortcomings in a number of proposed disentanglement
metrics (Kim and Mnih, 2018; Eastwood and Williams, 2018; Chen et al., 2018; Higgins et al., 2018;
Mathieu et al., 2019), many of which have been compiled in the DisLib benchmark. In addition to
the concerns they raise, it is important to note that none of the supervised metrics implemented in
DisLib allow for continuous ground-truth factors, which is necessary for evaluating with the Natural
Sprites and KITTI Masks datasets, as factors such as position and scale are effectively continuous
in reality. To rectify this issue without introducing novel metrics, we include the Mean Correlation
Coefficient (MCC) in our evaluations, using the implementation of Hyvérinen and Morioka (2016),
which is described below.

We measure all metrics presented below between 10, 000 samples of latent factors z and the cor-
responding encoded means of our model p(g*(z)). We increase this sample size to 100,000 for
Modularity and MIG to stabilize the entropy estimates.
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C.1 MEAN CORRELATION COEFFICIENT

In addition to the DisLib metrics, we also compute the Mean Correlation Coefficient (MCC) in
order to perform quantitative evaluation with continuous variables. Because of Theorem 1, perfect
disentanglement in the noiseless case should always lead to a correlation coefficient of 1 or —1,
although note that we report 100 times the absolute value of the correlation coefficient. In our
experiments, MCC is used without modification from the authors’ open-sourced code (Morioka,
2018). The method first measures correlation between the ground-truth factors and the encoded latent
variables. The initial correlation matrix is then used to match each latent unit with a preferred ground-
truth factor. This is an assignment problem that can be solved in polynomial time via the Munkres
algorithm, as described in the code release from Morioka (2018). After solving the assignment
problem, the correlation coefficients are computed again for the vector of ground-truth factors and the
resulting permuted vector of latent encodings, where the output is a matrix of correlation coefficients
with D columns for each ground-truth factor and D’ rows for each latent variable. We use the
(absolute value of the) Spearman coefficient as our correlation measure which assumes a monotonic
relationship between the ground-truth factors and latent encodings but tolerates deviations from a
strictly linear correspondence.

In the existing implementation for MCC, the ground truth factors, latent encodings, and mixed signal
inputs are assumed to have the same dimensionality, i.e. D = D’ = N. However, in our case, the
ground-truth generating factors are much lower dimensional than the signal, N < D, and the latent
encoding is higher dimensional than the ground-truth factors D’ > D (see Appendix E for details).
To resolve this discrepancy, we add D’ — D standard Gaussian noise channels to the ground-truth
factors. To compute the MCC score, we take the mean of the absolute value of the upper diagonal of
the correlation matrix. The upper diagonal is the diagonal of the square matrix of D ground-truth
factors by the top D most correlated latent dimensions after sorting. In this way, we obtain an MCC
estimate which averages only over the D correlation coefficients of the D ground truth factors with
their corresponding best matching latent factors.

C.2 DisLIB METRICS

BetaVAE (Higgins et al., 2017)

The BetaVAE metric uses a biased estimator with tunable hyperparameters, although we follow the
convention established in (Locatello et al., 2018) of using the scikit-learn defaults. For a sample
in a batch, a pair of images, (x1,x3), is generated by fixing the value of one of the data generative
factors while uniformly sampling the rest. The absolute value of the difference between the latent
codes produced from the image pairs is then taken, zgir = |21 — 2Z2|. A logistic classifier is fit with
batches of zg; variables and the corresponding index of the fixed ground-truth factor serves as the
label. Once the classifier is trained, the metric itself is the mean classifier accuracy on a batch of
held-out test data. The training minimizes the following loss:

1 n
L= 5wTw + Z log(exp(—yi(zg;fmw +¢)+1), (25)
i=1

where w and c are the learnable weight matrix and bias, respectively, and y is the index of the
fixed ground-truth factor for the batch. The network is trained using the 1bfgs optimizer (Byrd
et al., 1995), which is implemented via the scikit-learn Python package (Pedregosa et al., 2011)
in the Disentanglement Library (DisLib, Locatello et al., 2018). In the original work, the authors
argue that their metric improves over a correlation metric such as the mean correlation coefficient
by additionally measuring interpretability. However, the linear operation of zg;ff’iw + c can perform
demixing, which means the measure gives no direct indication of identifiability and thus does not
guarantee that the latent encodings are interpretable, especially in the case of dependent factors.
Additionally, as noted by Kim and Mnih (2018), BetaVAE can report perfect accuracy when all
but one of the ground-truth factors are disentangled, since the classifier can trivially attribute the
remaining factor to the remaining latents.

FactorVAE (Kim and Mnih, 2018)

For the FactorVAE metric, the variance of the latent encodings is computed for a large (10,000 in
DisLib) batch of data where all factors could possibly be changing. Latent dimensions with variance
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below some threshold (0.05 in DisLib) are rejected and not considered further. Next, the encoding
variance is computed again on a smaller batch (64 in DisLib) of data where one factor is fixed during
sampling. The quotient of these two quantities (with the larger batch variance as the denominator) is
then taken to obtain a normalized variance estimate per latent factor. Finally, a majority-vote classifier
is trained to predict the index of the ground-truth factor with the latent unit that has the lowest
normalized variance. The FactorVAE score is the classification accuracy for a batch of held-out data.

Mutual Information Gap (Chen et al., 2018)

The Mutual Information Gap (MIG) metric was introduced as an alternative to the classifier-based
metrics. It provides a normalized measure of the mean difference in mutual information between
each ground truth factor and the two latent codes that have the highest mutual information with the
given ground truth factor. As it is implemented in DisLib, MIG measures entropy by discretizing
the model’s latent code using a histogram with 20 bins equally spaced between the representation
minimum and maximum. It then computes the discrete mutual information between the ground-
truth values and the discretized latents using the scikit-learn metrics.mutual_info_score
function (Pedregosa et al., 2011). For the normalization it divides this difference by the entropy of
the discretized ground truth factors.

Modularity (Ridgeway and Mozer, 2018)

Ridgeway and Mozer (2018) measure disentanglement in terms of three factors: modularity, com-
pactness, and explicitness. For modularity, they first measure the mutual information between the
discretized latents and ground-truth factors using the same histogram procedure that was used for
the MIG, resulting in a matrix, M € RP'%D with entries for each mutual information pair. Their
measure of modularity is then

3 (1 X M - maX(M’2)> : (26)

modularity = 57 >, © max(M7)(D ~ 1)
i=1 i

where max(M?) returns the maximum of the vector of squared mutual information measurements
between ground truth ¢ and each latent factor. Additionally, © is a selection function that returns zero
for any i where max(M?) = 0 and otherwise acts as the identity function.

DCI Disentanglement (Eastwood and Williams, 2018)

The DCI scores measure disentanglement, completeness, and informativeness, which have intu-
itive correspondence to the modularity, compactness, and explicitness of (Ridgeway and Mozer,
2018), respectively. To measure DCI Disentanglement, D regressors are trained to predict
each ground truth factor state given the latent encoding. The DisLib implementation uses the
ensemble.GradientBoostingClassifier function from scikit-learn with default param-
eters, which trains D gradient boosted logistic regression tree classifiers. Importance is assigned
to each latent factor using the built-in feature_importance_ property of the classifier, which
computes the normalized total reduction of the classifier criterion loss contributed by each latent.
Disentanglement is then measured as

> D(1— H(L))I;, 27)

where H is the entropy computed with the st at s . ent ropy function from scikit-learn, I € RP*P '
is a matrix of the absolute value of the feature importance between each factor and each ground truth,

and [ is a normalized version of the matrix
D/
i Z j=1 I 2%

D D
Zk:l Zj:l Iy ;

SAP Score (Kumar et al., 2018)

To compute the SAP score, Kumar et al. (2018) first train a linear support vector classifier with
squared hinge loss and Ly penalty to predict each ground truth factor from each latent variable.
In DisLib this is implemented with the svm.LinearSVC function with default parameters from

scikit-learn. They construct a score matrix S € RP "D where each entry in the matrix is the
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Figure 8: Number of changing factors in LAP dataset. For each dataset we sample 10,000
transitions and record the number of changing factors. These are indicated in the histograms. A\ = 1,
see Appendix D.

batch-mean classifier accuracy for predicting each ground truth given each individual latent encoding.
For each generative factor, they compute the difference between the top two most predictive latent
dimensions, which are the two highest scores in a given column of S. The mean (across ground-truth
factors) of these differences is the SAP score.

D NATURAL DATASETS

We introduce several datasets to investigate disentanglement in more natural scenarios. Here, we
provide an overview on the motivation and design of each dataset.

We have chosen to work with pairs of inputs as minimal sequences because we are interested in the
first temporal derivative, more specifically in the sparsity of the transitions between pairs of images.
Other methods that look at the second temporal derivative, such as work from Hénaff et al. (2019)
on straightening, would require triplets as minimal sequences. Extending our approach beyond this
minimal requirement would be simple in terms of the resulting ELBO (which would still factorise
like in Eq. 4 because of the Markov property). The only additional complexity would be in the data
and loss handling.

An issue with evaluating disentanglement on natural datasets is the fact that the existing disentangle-
ment metrics require knowledge of the underlying generative process of the given data. Although we
can observe that the world is composed of distinct entities that vary according to rules imposed by
physics, we are unable to determine the appropriate “factors” that generate such scenes. To mitigate
this problem, we compile object measurements by calculating the = and y coordinates of the center
of mass as well as the area of object masks in natural video frames. We use these measurements to
a) inform new disentanglement benchmarks with natural transitions that have similar complexity to
existing benchmarks (Natural Sprites) and b) evaluate the ability of algorithms to decode intrinsic
object properties (KITTI Masks). We additionally propose a simple extension to the existing DisLib
datasets in the form of collecting images into pairs that exhibit sparse (i.e. Laplace) transition
probabilities.

D.1 UNIFORM TRANSITIONS (UNI)

The UNI extension is based on the description given by Locatello et al. (2020), where the number of
changing factors is determined using draws from a uniform distribution. The key differences between
our implementation and theirs is: (i) their code?® randomly (with 50% probability) sets k& = 1 even
in the £ = Rnd setting, and (ii) we ensure that exactly k factors change. Though we consider these
discrepancies minor, we nonetheless label all results reported directly from Locatello et al. (2020)
with “LOC”, as opposed to “UNI”, for clarity.
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D.2 LAPLACE TRANSITIONS (LAP)

For each of the datasets in DisLib, we collect pairs of images. For each ground-truth factor, the
first value in the pair is chosen from a uniform distribution across all possible values in latent space,
while the second is chosen by weighting nearby values in latent space using Laplace distributed
probabilities (see Eq. 2). We reject samples that would push a factor outside of the preset range
provided by the dataset. We call this the LAP DisLib extension. Although the sparse prior indicates
that any individual factor is more likely to remain constant, the number of factors that change in
a given transition is still typically greater than one. To show this in Fig. 8, we sampled 10,000
transitions from each DisLib dataset with LAP transitions and computed the number of factors that
had changed within a pair. This extension of the DisLib datasets provides a bridge from i.i.d. data
to natural data by explicitly modeling the observed sparse marginal transition distributions. When
training models on the LAP dataset it is possible to reject samples without transitions (i.e. all factors
remain constant) since the pair would not result in any temporal learning signal. However, it would
arguably be more natural to leave these samples as they would more accurately reflect occurrences of
stationary objects in real data. We report the rejection setting in the main text, but found no significant
difference between the two settings (see Appendix G).

This dataset also introduces a hyper-parameter A that controls the rate of the Laplace sampling
distribution, while the location is set by the initial factor value. Effectively, when this rate is A = 1
most of the factors change most of the time, whereas for a rate of A = 10 most of the factors will
not change most of the time. Note that this means A (inversely) changes the scale, which results in
larger or smaller movements, but does not affect the distribution itself. In other words, the sparsity is
unchanged, as the sparsity is controlled by the shape . We fix A = 1, which yields multiple changes,
thus making this dataset fundamentally different both in spirit and in practice, from the UNI dataset.

D.3 YOUTUBE-VOS

For the YouTube dataset, we download annotations from the 2019 version of the video instance
segmentation (Youtube-VIS) dataset (Yang et al., 2019)*, which is built on top of the video object
segmentation (Youtube-VOS) dataset (Xu et al., 2018). The dataset has multi-object annotations for
every five frames in a 30fps video, which results in a 6fps sampling rate. The authors state that the
temporal correlation between five consecutive frames is sufficiently strong that annotations can be
omitted for intermediate frames to reduce the annotation efforts. Such a skip-frame annotation strategy
enables scaling up the number of videos and objects annotated under the same budget, yielding
131,000 annotations for 2,883 videos, with 4,883 unique video object instances. Although we do
not evaluate against YouTube-VOS in this study, we see it as the logical next step in transitioning to
natural data. The large scale, lack of environmental constraints, and abundance of object types makes
it the most challenging of the datasets considered herein.

The original image size of the YouTube-VOS dataset is 720 x 1280. In order to preserve the statistics
of the transitions, we choose not to directly downsample to 64 x 64, but instead preserve the aspect
ratio by downsampling to 64 x 128. In order to minimize the bias yielded by the extraction method,
noting the center bias typically present in human videos, we extract three overlapping, equally spaced
64 x 64 pixel windows with a stride of 32. For each resulting 64 x 64 x T" sequence, where 1" denotes
the number of time steps in the sequence, we filter out all pairs where the given object instance is not
present in adjacent frames, resulting in 234,652 pairs.

D.4 NATURAL SPRITES

The benchmark is available at https://zenodo.org/record/39480609.

Without a metric for disentanglement that can be applied to unknown data generating processes, we
are limited to synthetic datasets with known ground-truth factors. Let us take dSprites (Matthey et al.,
2017) as an example. The dataset consists of all combinations of a set of latent factor values, namely,

e Color: white

3https ://github.com/google-research/disentanglement_lib/blob/master/
disentanglement_lib/methods/weak/train_weak_lib.py#L48
*https://competitions.codalab.org/competitions/20127
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Config \ Scale X Y (R, G, B) Shape Orientation
Continuous \ YT [2375] YT [197342] YT [187112] (1.0,1.0,1.0) (square, triangle, star_4, spoke_4) (0.9,...,342,351)
Discrete \ YT [6] YT [32] YT [32] (1.0, 1.0, 1.0)  (square, triangle, star_4, spoke_4) (0,9.,...,342,351)

Table 4: Natural Sprite Configs. Values in brackets refer to the number of unique values. Shapes
presented are predefined in Spriteworld (Watters et al., 2019).

Shape: square, ellipse, heart

Scale: 6 values linearly spaced in [0.5, 1]

Orientation: 40 values in [0, 27]
Position X: 32 values in [0, 1]
Position Y': 32 values in [0, 1]

Given the limited set of discrete values each factor can take on, all possible samples can be described
by a tractable dataset, compiled and released to the public. But, in reality, all of these factors should
be continuous: a spectrum of possible colors, shapes, scales, orientations, and positions exist. We
address this by constructing a dataset that is augmented with natural and continuous ground truth
factors, using the mask properties measured from the YouTube dataset described in Appendix D.3.

We can choose the complexity of the dataset by discretizing the 234,652 transition pairs of position
and scale into an arbitrary number of bins. In this study, we discretize to match the number of possible
object states as dSprites, which we present in Table 4. This helps isolate the effect of including
natural transitions from the effect of increasing data complexity. We produce a pair by fixing the
color, shape, and orientation, but updating the position and scale with transitions sampled from the
YouTube measurements. We motivate fixing shape and color by noting that this is consistent with
object permanence in the real world. We decided to fix the orientation because we do not currently
have a way to approximate it from object masks and we did not want to introduce artificial transition
probabilities. To minimize the effect of extreme outliers, we filter out 10% of the data by removing
frames if the mask area falls below the 5% or above the 95% quantiles, which reduces the number
of pairs to 207,794. Finally, we use the Spriteworld (Watters et al., 2019) renderer to generate the
images. Spriteworld allows us to render entirely new sprite objects at the precise position and scale
as was measured from YouTube. For example, if one would want to apply YouTube-VOS transitions
to MPI3D (Gondal et al., 2019), this option is unavailable without the associated renderer.

In relation to the Laplace transitions described in section D.2, this update i) produces pairs that
correspond to transitions observed in real data, ii) allows for smooth transitions by defining the data
generation process as opposed to being limited by the given collected dataset (e.g. dSprites), and iii)
includes complex dependencies among factors that are present in natural data. We generate the data
online, thus training the model to fit the underlying distribution as opposed to a sampled finite dataset.

However, as noted previously, all supervised metrics aggregated in DisLib are inapplicable to
continuous factors, which is problematic as the generating distribution is effectively continuous
with respect to a subset of the factors. Therefore, we limit our quantitative evaluation to MCC for
continuous datasets. However, we are able to evaluate disentanglement with the standard metrics on
the discretized version.

D.5 KITTI MOTS PEDESTRIAN MASKS (KITTI MASKS)

The benchmark is available at https://zenodo.org/record/3931823.

While Natural Sprites enables evaluation of disentanglement with natural transitions, we note that any
disentanglement framework that requires knowledge of the underlying generative factors is unrealistic
for real-world data. Measurements such as scale and position correspond to object properties that are
ecologically relevant to the observer and can serve as suitable alternatives to the typical generative
factors. We directly test this using our KITTI Masks dataset.

To create the dataset, we download annotations from the Multi-Object Tracking and Segmentation
(MOTS) Evaluation Benchmark (Voigtlaender et al., 2019; Geiger et al., 2012; Milan et al., 2016),

29



Published as a conference paper at ICLR 2021

x57.2 x581 x57.7 x57.7 x573 x574 x57.1 x56.6 x56.2 x56.0 x557 x56.0 x56.7 x57.8 x584
y36.0 y341 y326 y323 y314 y309 y3l4 y322 y326 y329 y328 y335 y329 y3l8 y320
ar77 ar153 ar209 ar231 ar240 ar256 ar269 ar292 ar346 ar393 ar450 ar497 ar525 ar505 ar490

‘
d i f
x 33.7 x33.4 x34.2 x34.0 x34.7 x 33.8 x28.5 x 30.2 x32.0 x33.8 x352 x37.9 x51.8 x52.0 x 52.2

y18.0 y182 y205 y225 y26.7 y279 y3l7 y308 y308 y3l4 y3l5 y329 y3l7 y3l3 y3l7
ar 4l ar 55 ar 61 ar 55 ar 45 ar 39 ar 34 ar 38 ar 39 ar 44 ar 47 ar43 ar 35 ar 44 ar 42

IIIIIIIIII!IIIIIIIIIIIiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

x 0.6 x1.1 x 1.7 x2.8 x 4.2 x 5.5 x 6.9 x 8.2 x9.4 x10.7 x121 x135 x147 x161 x17.7
y374 y372 y382 y387 y387 y382 y380 y379 y373 y384 y383 y381 y37.8 y389 y393
ar 34 ar 53 ar 81 ar 85 ar 89 ar 88 ar 89 ar 96 ar 96 ar 99 ar99 arl102 arl1l00 arll0 arll3

HEEENNE NN

x7.1 x 8.0 x 9.0 x10.5 x121 x141 x16.3 x19.1 x225 x259 x29.8 x340 x39.0 x444 x508
y354 y362 y360 y36.0 y361 y362 y358 y365 y369 y37.4 y383 y39.1 y394 y394 y40.1
ar 31 ar 36 ar 43 ar 41 ar 42 ar 55 ar 56 ar 66 ar 74 ar 85 ar94 ar1l05 arl137 arl59 ar201

HEEEEEEEEERnnNy

x 1.0 x 1.7 x2.7 x 3.8 x5.3 x 6.7 x 8.3 x10.2 x11.8 x13.7 x158 x181 x20.6 x239 x275
y36.6 y364 y36.7 y37.2 y384 y39.1 y40.0 y40.1 y40.2 y40.1 y404 y403 y4l4 y425 y441l
ar 45 ar 52 ar 63 ar74 ar 81 ar 95 ar86 arl1l00 arll3 arll2 arllé arl27 arl44 arl69 ar206

HEEEEREEEEENENN

Figure 9: KITTI Masks. Each row corresponds to sequential frames from random sequences in
the KITTI Mssks dataset. Above each image we denote measured object properties where x, y
correspond the center of mass position and ar corresponds to the area.

which is split into KITTI MOTS and MOTSChallenge>. Both datasets contain sequences of pedestri-
ans with their positions densely annotated in the time and pixel domains. For simplicity, we only
consider the instance segmentation masks for pedestrians and do not use the raw data.

The resulting KITTI Masks dataset consists of 2,120 sequences of individual pedestrians with lengths
between 2 and 710 frames each, resulting in a total of 84,626 individual frames. As we did with
YouTube-VOS, we estimate ground truth factors by calculating the x and y coordinates of the center
of mass of each pedestrian mask in each frame. We define the object size as the area of the mask, i.e.
the total number of pixels. We consider the disentanglement performance for different mean time
gaps between image pairs in table 2 and Appendix G.3. For samples and the corresponding ground
truth factors see Fig. 9.

The original KITTI image sizes are 1080 x 1920 or 480 x 640 resolution for MOTSChallenge and
between 370 and 374 pixels tall by 1224 and 1242 pixels wide for KITTI MOTS. The frame rates of
the videos vary from 14 to 30 fps, which can be seen in Table 2 of Milan et al. (2016). We use nearest
neighbor down-sampling for each frame such that the height was 64 pixels and the width is set to
conserve the aspect ratio. After down-sampling, we use a horizontal sliding window approach to
extract six equally spaced windows of size 64 x 64 (with overlap) for each sequence in both datasets.
This results in a 64 x 64 x T" sequence, where T' denotes the number of time steps in the sequence.
Note that here we make reasonable assumptions on horizontal translation and scale invariance of the
dataset. We justify the assumed scale invariance by observing that the data is collected from a camera
mounted onto a car which has varying distance to pedestrians. To confirm the translation invariance,
we performed an ablation study on the number of horizontal images. Instead of six horizontal,
equally spaced sliding windows, we only use two which leads to differently placed windows. We
do not observe significant changes in the reported data statistics (e.g. the kurtosis of the fit stays
within +10% of the previous value for Az transitions). The values of Ay and Aarea do not change
significantly compared to Table 7.

For each resulting 64 x 64 x T' sequence, where T" denotes the number of time steps in the sequence,
we extract all individual pedestrian masks based on their object instance identity and create a new
sequence for each pedestrian such that each resulting sequence only contains a single pedestrian. We
ignore images with masks that have less than 30 pixels as they are too far away or occluded and were

Shttps://www.vision.rwth-aachen.de/page/mots
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Figure 10: KITTI Masks At. Boxes indicate correspondence to physical time for different
max(Aframes) in the KITTI Masks datasets. The orange line denotes the median and the green line
the mean. The whiskers cover the 5th and 95th percentile of data.

not recognizable by the authors. We keep all sequences of two or more frames, as the algorithm only
requires pairs of frames for training.

We leave the maximum distance between time frames within a pair, max(Aframes), as a hyper-
parameter. For a given max(Aframes), we report the mean change in physical time in seconds
(denoted by mean(At)). We test adjacent frames (max(Aframes) = 1), which corresponds to a
mean(A¢ = 0.05) and max(Aframes) = 5, which corresponds to a mean(At = 0.15). This pro-
cedure is motivated by the fact that different sequences were recorded with different frame rates
and reporting the mean(At) in seconds allows for a physical interpretation. The relationship be-
tween max (Aframes) and mean(At) is in Fig. 10. We show results for testing additional values of
mean(At) in Appendix G.3.

During training, we augment the data by applying horizontal and vertical translations of +5 pixels
and rotations of +2° degree. We apply the exact same data augmentation to both images within a
pair to not change any transition statistics.

We note that both YouTube-VOS (Xu et al., 2018; Yang et al., 2019) and KITTI-MOTS (Voigtlaender
et al., 2019; Geiger et al., 2012; Milan et al., 2016) are multi-object datasets, although we consider
each unique object (mask) separately. Multi-object representation learning and disentanglement are
highly connected, in fact they have recently begun to be used interchangeably (Wulfmeier et al.,
2020).

To briefly comment on possible extensions in this direction, we see no reason why our prior would
not be beneficial to multi-object methods such as MONet (Burgess et al., 2019) and IODINE (Greff
et al., 2019), or video extensions such as VIMON (Weis et al., 2020) and OP3 (Veerapaneni et al.,
2019).

E MODEL TRAINING AND SELECTION

We train all models on all datasets provided in DisLib with the UNI and LAP variants.

All models are implemented in PyTorch (Paszke et al., 2019). To facilitate comparison, the training
parameters, e.g. optimizer, batch size, number of training steps, as well as the VAE encoder and
decoder architecture are identical to those reported in (Locatello et al., 2018; 2020). We use this
architecture for all datasets, only adjusting the number of input channels (greyscale for dSprites,
smallNORB, and KITTI Masks; three color channels for all other datasets).

The model formulation is agnostic to the direction of time. Therefore, to increase the temporal
training signal at a fixed computational cost for each batch of input pairs (xg, X1 ), we optimize the
model in both directions i.e. optimizing the model objective for both {5 = 0, t; = 1 as well as
to=1,1t =0.

31



Published as a conference paper at ICLR 2021

F EXTENDED COMPARISONS AND CONTROLS

F.1 COMPARISON TO NONLINEAR ICA

F.1.1 THEORETICAL COMPARISON

Nonlinear ICA has recently been advanced significantly by several papers from Hyvirinen and
colleagues. Of these studies, the two that are most comparable to our work is Hyvirinen and Morioka
(2017), which uses an unsupervised contrastive loss for nonlinear demixing and Khemakhem et al.
(2020a), which extends the nonlinear ICA framework to include variational autoencoders (VAEs).
However, our theory covers an important class of transitions relevant for natural data that is not
covered by the identifiability proofs of either of the aforementioned studies.

As a specific comparison to the first paper, the non-Gaussian autoregressive model that their identifia-
bility proof rests upon (Eq. 8 in Hyvérinen and Morioka, 2017) assumes that the second derivative of
the innovation probability density function is less than zero to satisfy uniform dependence, which is
only met for o > 1 for generalized Laplace transition distributions. While they denote (footnote 3)
that Laplace distributions (cv = 1) are not covered by their theory, they offer a suggestion for a smooth
approximation. However, they do not demonstrate that this approximation is useful in practice, or
offer a solution to a general class of sparse distributions for & < 1. We chose a generalized Laplacian
to fit our data and for our model assumption as it allows for simple parameterization of fits to data
(e.g. a = 0.5 for natural movie transitions), but is simultaneously quite expressive (Sinz et al., 2009).
Though we use a = 1 in practice for our estimation method, we prove identifiability up to permuta-
tions and sign flips for any o < 2, covering all sparse distributions under the expressive generalized
Laplacian model. In addition, we assume a Gaussian marginal distribution that allows us to derive a
fundamentally stronger proof of identifiability — where we identify up to permutation and sign-flips.
Hyvirinen and Morioka (2017) only identify the sources up to arbitrary non-linear element-wise
transformations. Thus they require a subsequent step of ICA (under the typical assumption that at
most one marginal source distribution is Gaussian) to recover the signal up to permutations and sign
flips for a class of distributions where it is unclear whether they account for temporal sparsity.

The work of Khemakhem et al. (2020a) has a couple of differences from our own, most notable of
which is the form of the conditional prior, p(z;|z;—_1). They assume that the conditional posterior
is part of the exponential family, which does not include Laplacian conditionals. Though the
exponential family contains the Laplace distribution with fixed mean as its member, it does not
allow their approach to model sparse transitions. They assume that the natural parameters of the
exponential family distribution are conditioned on z;_;, meaning that only the scale but not the mean
of the Laplace prior for z; can be modulated by the previous time step, thus not allowing for sparse
transition probabilities. Additionally, their implementation requires the number of classes (i.e. states
of the conditioning variable) to equal the number of stationary segments, which is impractical for the
datasets we consider.

Thus, we provide a closer match to natural data transitions, with a stronger identifiability result. We
provide validation by performing an extensive evaluation leveraging our contributed datasets as well
as the models, metrics, and datasets provided by the Disentanglement Library (DisLib, discussed
in section 4). We consider methods from the disentanglement literature (Locatello et al., 2020) as
well as nonlinear ICA (Hyvérinen and Morioka, 2017), that are functionally capable of processing
transitions.

F.1.2 EMPIRICAL COMPARISON

Hyvirinen and Morioka (2017) conducted a simulation where the sources in the nonlinear ICA
model come from a linear autoregressive (AR) model with non-Gaussian innovations. Specifi-
cally, temporally dependent 20-dimensional source signals were randomly generated according to
log p(s(t)|s(t — 1)) = —|s(t) — 0.7s(t — 1)|. Though this generative process was noted to not be
covered by the theory presented in (Hyvérinen and Morioka, 2017), the authors demonstrated that
PCL could reconstruct the source signals reasonably well even for the nonlinear mixture case. Given
our practical use of a Laplacian conditional, we found it a valuable comparison to evaluate our theory
in this artificial setting.
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Method L=1 L=2 L=3 L=4 L=5
PCL 0.998 0.960 0950 0917 0.902
PCL (NF) 0946 00918 0918 0917 0.876
SlowFlow 0.997 0987 0.982 0.975 0.975

Table 5: MCC using linear correlation where L denotes the number of mixing layers.

Given the discussion in Appendix B, we use SlowFlow for these experiments. For computational
tractability in demixing highly nonlinear transformations, we consider normalizing flows (Dinh et al.,
2017a;b; Kingma and Dhariwal, 2018), namely volume-preserving flows (Sorrenson et al., 2017), as
we find constraining the Jacobian determinant stabilizes learning. To ensure sufficient expressivity,
we consider 6 coupling blocks, each containing a 2-layer MLP with 500 hidden units and ReLU
nonlinearities. We compare to the PCL implementation presented in (Hyvérinen and Morioka, 2017),
where an MLP with the same number of hidden layers as the mixing MLP was adopted. We use
100 hidden units as we did not find increasing the value improved performance. To account for the
architectural difference serving as a possible confounder, we use the same normalizing flow encoder
for optimizing the PCL objective, which we term “PCL (NF)”.

While (Hyvérinen and Morioka, 2017) used leaky ReLU nonlinearities to make the mixing invertible,
said mixing is non-differentiable. This is problematic for SlowFlow, as it involves gradient optimiza-
tion of the Jacobian term, and more importantly, unlike PCL, aims to explicitly recover the mixing
process. We thus use a a smooth version of the leaky-ReLLU activation function with a hyperparameter
« (Gresele et al., 2020),

sp.(z) = az + (1 — a)log(1 4 €%). (29)

By ensuring the mixing process is smooth, we find that SlowFlow performs favorably relative to
PCL (Table 5) when evaluated in the same setting, converging to a better optimum at higher levels of
mixing.

F.2 JOINT FACTOR DEPENDENCE EVALUATION

In order to consider joint dependencies among natural generative factors, we leverage Natural Sprites
to construct modified datasets where time-pairs of factors are shuffled per-factor (e.g. combining the
X transition from one clip with the y transition from a different clip). This destroys dependencies
between the factors, while maintaining the sparse marginal distributions. In Fig. 11 (right), we show
2D marginals before (blue) and after (orange) this shuffling. The additional density on the diagonals
in the unshuffled data reveals dependencies between pairs of factors on both datasets. As mentioned
in section 3.4, the observed dependency is mismatched from the theoretical assumptions of our model.

We test how robust SIowVAE is to such a mismatch by training it on the permuted data and re-
evaluating disentanglement. In Table 22, we highlight that the improvement of SlowVAE on the
permuted (i.e. independent) continuous Natural Sprites is not significant. In Table 21, we surprisingly
find an overall improved score with non-permuted transitions (i.e. with dependencies), with three out
of seven metrics showing a significant improvement. This is in line with Fig. 1f in Khemakhem et al.
(2020b), where, at least for simple mixing, a model (Khemakhem et al., 2020a) that does not account
for dependencies performs as well as one that does (Khemakhem et al., 2020b). We conclude that
these preliminary results do not support the hypothesis that SlowVAE’s disentanglement is reliant
upon the model assumption that the factors are independent, but do acknowledge that the empirical
effect of statistical dependence in natural video warrants further exploration (Trduble et al., 2020;
Yang et al., 2020).

F.3 TRANSITION PRIOR ABLATION

We consider an ablated model which minimizes a KL-divergence term between the posteriors at
time-step ¢ and time-step ¢ — 1. This encourages the model to match the posteriors of both time points
as closely as possible, and resembles a probabilistic variant of Slow Feature Analysis (Turner and
Sahani, 2007). Specifically, we set p(z:|z;—1) = q(z¢—1|x:—1), replacing the Laplace prior with the
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posterior of the previous time step. This is equivalent to a Gaussian (o = 2) transition prior, where
the mean and variance are specified by the previous time step. We ablate over the regularization
parameter v and provide results in Tables 14 and 15, although we note that we still use the same
hyperparameter values for SlowVAE as in all other experiments. As predicted by our theoretical
result, « = 2 leads to entangled representations in aggregate across evaluated datasets and metrics,
even when considering a spectrum of ~y values, resulting in a drastic reduction in scores, particularly
on dSprites and Natural Sprites.

G ADDITIONAL RESULTS

G.1 EXTENDED DATA ANALYSIS
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Figure 11: Statistics of Natural Transitions. Left) Distribution over transitions for horizontal (Ax)
and vertical (Ay) position as well as mask/object size (Aarea) for both datasets. Orange lines
indicate fits of generalized Laplace distributions (Eq. 2). Right) 2D marginal distribution over pairs
of factor transitions (blue) and permuted pairs (orange) that indicate the marginal distributions when
made independent.

dataset N Aarea Ax Ay
KITTI-MOTS 82506 045 0.59 0.69
YouTube-VOS 234652 044 052 0.55

Table 6: Shape parameters («) of the fitted generalized Laplace distributions in Fig. 11.

We report the empirical estimates of Kurtosis in Table 7. We report the log-likelihood scores for
the A area, A x, A y statistics in Tables 8, 9, and 10, respectively for a Normal, a Laplace and a
generalized Laplace/Normal distribution. For these distributions, we also report the fit parameters
for the A area, A x, Ay statistics in Tables 11, 12, and 13, respectively, where the shape parameter
o of the generalized Laplacian is in bold face. As a higher likelihood indicates a better fit, we can
see further evidence that natural transitions are highly leptokurtic; a Laplace distribution (o = 1) is
a better fit than a Gaussian (o = 2), while the generalized Laplacian yields the highest likelihood
consistently with o =~ 0.5 for all measurements, as indicated in the main paper. For the plots in Figs.
1 and 11, we set the standard deviation of each component to 1 and clipped the minimum (—5) and
maximum (5) values.

We note that while the marginal transitions appear sparse in metrics computed from the given object
masks, our analysis considers 2D projections of objects instead of the transition statistics in their 3D
environment. Understanding the relationship between 3D and 2D transition statistics is a compelling
question from a broader perspective of visual processing, but unfortunately, the KITTI-MOTS
masks (Voigtlaender et al., 2019; Geiger et al., 2012; Milan et al., 2016) lack the associated depth
data required to answer it. Nonetheless, the natural scene statistics we compute are relevant, given
that most computer vision models and vision-based animals see the 3D world as projected onto their
2D receptor arrays.
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dataset N A area A x Ay
KITTI 82506 68.92 3850 65.39
YouTube 234652 7649 39.98 35.59

Table 7: Empirical estimates of Kurtosis for mask transitions per metric for each dataset.

dataset N genlaplace normal laplace
KITTI 82506 -3.21e+05 -3.79e+05 -3.35e+05
YouTube 234652 -1.29e+06 -1.45e+06 -1.33e+06

Table 8: Maximum likelihood scores for the considered distributions on A area for each dataset.

dataset N genlaplace normal laplace
KITTI 82506 -8.72e+04  -1.20e+05 -9.25e+04
YouTube 234652 -4.50e+05 -5.64e+05 -4.74e+05

Table 9: Maximum likelihood scores for the considered distributions on Az for each dataset.

dataset N genlaplace normal laplace
KITTI 82506 -7.59e+04  -1.07e+05 -7.86e+04
YouTube 234652 -4.40e+05 -5.45e+05 -4.60e+05

Table 10: Maximum likelihood scores for the considered distributions on Ay for each dataset.

dataset N genlaplace normal laplace

KITTI 82506  [4.55e-01, 1.00e+00, 1.01e+00] [4.53e-01, 2.39e+01]  [1.00e+00, 1.07e+01]

YouTube 234652 [4.44e-01, 1.47e-16, 5.04e+00] [2.25e-01, 1.16e+02]  [7.73e-09, 5.28e+01]

Table 11: Parameter fits for the considered distributions on A area for each dataset. The parameters
are (alpha, location, scale) for generalized Laplace/Normal, (location, scale) for the other two
distributions.

dataset N genlaplace normal laplace
KITTI 82506  [5.87e-01,4.76e-02, 1.69e-01] [5.34e-02, 1.04e+00]  [5.49e-02, 5.64e-01]
YouTube 234652 [5.15e-01, 1.15e-14, 2.57e-01] [2.32¢-03, 2.68e+00] [7.54e-09, 1.38e+00]

Table 12: Parameter fits for the considered distributions on A x for each dataset. The parameters
are (alpha, location, scale) for generalized Laplace/Normal, (location, scale) for the other two
distributions.

dataset N genlaplace normal laplace
KITTI 82506  [6.94e-01, 1.02e-02,2.32e-01]  [3.84e-02, 8.86e-01]  [1.71e-02, 4.77e-01]
YouTube 234652 [5.48e-01, 2.93e-13, 3.08e-01] [8.81e-03, 2.47e+00]  [9.15e-04, 1.30e+00]

Table 13: Parameter fits for the considered distributions on A y for each dataset. The parameters
are (alpha, location, scale) for generalized Laplace/Normal, (location, scale) for the other two
distributions.
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Figure 12: KITTI Masks Latent Representations. We show axis latent traversals along each
dimension for the 5-VAE (top) and SlowVAE (bottom). Here, the latents z; are sorted from top
to bottom in ascending order according to the mean variance output of the encoder. With MCC
correlation (see e.g. Fig. 20) the known ground truth factors are matched as following: 3-VAE:
scale~ z9, X-position~ z; and y-position~ z3; SIowVAE: scale~ zy, x-position~ z; and y-
position~ z3. With these latent visualizations alone, there is no significant difference visible between
B-VAE and SlowVAE. However, we see a quantitative difference with the MCC score (see Table 2)
and a qualitative difference when directly observing latent embeddings (see Fig. 20).
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Figure 13: Ablation over mean(At) for SlowVAE. Mean and standard deviation (s.d.) MCC scores

Model Data BetaVAE  FactorVAE MIG MCC DCI  Modularity SAP

SlowVAE dSprites (Laplace) 100.0 (0.0)  97.5(3.0) 29.5(9.3) 69.8(2.3) 654(3.6) 96.5(1.6) 8.1 (3.0)
PM-VAE (16) dSprites (Laplace)  64.1 (7.0) 44.8(13.0) 52(2.3) 450(5.5) 59(3.9) 935(19) 1.7(0.8)
PM-VAE (10) dSprites (Laplace) ~ 78.8 (7.5) 59.4(11.2) 59(1.8) 492(4.3) 13.6(5.6) 92.7(3.0) 3.9(1.7)
PM-VAE (8)  dSprites (Laplace) ~ 82.9 (2.8) 612(5.7) 7.1(2.6) 49.6(3.3) 145(3.5) 91.6(3.0) 4.3 (1.6
PM-VAE (4)  dSprites (Laplace) ~ 86.6 (2.7)  64.1(7.2) 11.6(5.0) 52.0(3.8) 229(3.7) 90.9(2.7) 5.7(2.8)
PM-VAE (2)  dSprites (Laplace)  86.3 (24) 62.9(7.7) 109(32) 50.0(3.5) 212(53) 923(19) 5.5(2.0)
PM-VAE (1)  dSprites (Laplace)  82.5(54) 584 (6.0) 7.6(3.6) 459(4.9) 144(5.1) 92.1(40) 4.0(2.0)

SlowVAE Natural (Discrete) ~ 82.6(2.2) 762 (4.8) 11.7(5.0) 52.6(4.1) 189(5.5) 88.1(3.6) 4.4(2.3)
PM-VAE (16) Natural (Discrete) ~ 72.7 (2.8) 492(3.7) 28(1.2) 383(32) 69(1.8) 853(1.8) 1.2(0.7)
PM-VAE (10) Natural (Discrete) ~ 76.6 (3.6)  52.0(4.9) 3.8(22) 39.0(3.9) 73(1.8) 87.0(22) 2.0(L.0)
PM-VAE (8) Natural (Discrete) ~ 74.6 (3.4) 493 (4.4) 3.1(1.8) 389(32) 7.1(1.8) 87.8(1.7) 1.6(1.0)
PM-VAE (4)  Natural (Discrete) ~ 73.8 (3.8) 48.8(5.3) 2.7(1.5) 357(3.5) 67(2.0) 87422 1.6(0.9)
PM-VAE (2)  Natural (Discrete) ~ 73.4 (3.1)  47.0(5.3) 22(l.1) 368(24) 62(1.5) 874(1.9) 1.1(0.6)
PM-VAE (1)  Natural (Discrete) ~ 73.5(3.3) 49.7(5.4) 3.1(1.6) 369(32) 69(1.8) 869(22) 1.8(0.7)

Table 14: Mean and standard deviation (s.d.) metric scores across 10 random seeds. PM-VAE (v)
refers to replacing the Laplace prior with a KL-divergence term between the (Gaussian) posteriors at
time-step ¢ and time-step ¢ — 1, with conditional prior regularization, +.

G.2 ALL DIsSLIB RESULTS

We include results on all DisLib datasets, dSprites (Matthey et al., 2017), Cars3D (Reed et al., 2015),
SmallNORB (LeCun et al., 2004), Shapes3D (Kim and Mnih, 2018), MPI3D (Gondal et al., 2019), in
Tables 16, 17, 18, 19, and 20, respectively. We report both median (a.d.) to compare to the previous
median scores reported in (Locatello et al., 2020), as well as the the more common mean (s.d.) scores
for future comparisons and straightforward statistical estimates of significant differences between
models. We also consider allowing for static transitions, which we denote with “NC”, e.g. “LAP-NC”,
in the tabular results. As mentioned in Section 5, we use the same parameter settings for SlowVAE in
all experiments, while model selection was performed not only per dataset, but per seed, for results
from (Locatello et al., 2020).

G.3 KITTI MASKS At ABLATION

As seen in the main text, considering image pairs separated further apart in time appears bene-
ficial. Here we evaluate a wider range by taking frames which are further apart in a sequence.
max(Aframes) = N indicates that all pairs differ by at most N frames. We chose an upper bound
of N, rather than sampling pairs with a fixed separation, to account for the variable frame rates
and sequence lengths in the original dataset (Milan et al., 2016) without introducing a confounding
factor of varying dataset size. We report in Fig. 10 how the max(Aframes) criterion corresponds
to the mean time gap between image pairs (mean(At)) in seconds. For further details, we refer to
Appendix D.5.

In Fig. 13 we visualize an ablation over mean(At). We find that model performance increased initially
with larger temporal separation between data points, then plateaued. We also observe in Fig. 14
that the measured factor marginals remain sparse, with o < 1, for all tested settings of mean(At).
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Model Data MCC

SlowVAE Natural (Continuous) 49.1 (4.0)
PM-VAE (16) Natural (Continuous) 35.2(3.7)
PM-VAE (10) Natural (Continuous) 332 (2.1
PM-VAE (8) Natural (Continuous) 32.7 (3.1)
PM-VAE (4) Natural (Continuous) 33.7(2.3)
PM-VAE (2) Natural (Continuous) 32.4(3.2)
PM-VAE (1) Natural (Continuous) 342 (3.4)
SlowVAE Kitti (mean(At) = 0.05s)  66.1 (4.5)
PM-VAE (16) Kitti (mean(At) = 0.05s)  63.1(9.3)
PM-VAE (10) Kitti (mean(At) = 0.05s)  57.4 (8.5)
PM-VAE (8) Kitti (mean(At) = 0.05s)  59.0 (5.6)
PM-VAE (4) Kitti (mean(At) = 0.05s) 51.8(9.2)
PM-VAE (2) Kitti (mean(At) = 0.05s)  50.3 (7.4)
PM-VAE (1)  Kitti (mean(At) = 0.05s)  38.4 (6.8)
SlowVAE Kitti (mean(At) = 0.15s)  79.6 (5.8)
PM-VAE (16) Kitti (mean(At) = 0.155)  69.6 (5.9)
PM-VAE (10) Kitti (mean(At) = 0.15s)  78.2 (6.0)
PM-VAE (8) Kitti (mean(At) = 0.155)  73.8 (10.0)
PM-VAE (4) Kitti (mean(At) = 0.15s)  67.9 (10.4)
PM-VAE (2) Kitti (mean(At) = 0.15s)  60.7 (8.8)
PM-VAE (1)  Kitti (mean(At) = 0.15s)  60.9 (9.1)

Table 15: Continuous ground-truth variable datasets. See Table 14 for details.

Model (Data) BetaVAE FactorVAE MIG DCI Modularity SAP
B-VAE (i.i.d.) 82.3 66.0 10.2 18.6 82.2 4.9
Ada-ML-VAE (LOC) 89.6 70.1 11.5 294 89.7 3.6
Ada-GVAE (LOC) 92.3 84.7 26.6 47.9 91.3 7.4
SlowVAE (UNI) 89.7 (3.8) 81.4 (8.4) 34.5 (9.6) 50.0 (6.9) 87.1(2.0) 5.1(1.5)
SlowVAE (LAP) 100.0 (0.0) 99.2 (2.3) 28.2 (8.2) 65.53.1) 96.8(1.4) 6.0 (2.4)
SlowVAE (LAP-NC) 100.0 (0.2) 97.4 (4.4) 29.1 (7.1 62.0(4.2) 97.4(1.6) 8.2 (2.9)
SlowVAE (UNI) 87.0 (5.1) 752 (11.1) 28.3(11.5) 47.7(8.5) 86.9(2.8) 4.4 (2.0
SlowVAE (LAP) 100.0 (0.0) 97.5 (3.0) 29.5(9.3) 65.4 (3.6) 96.5(1.6) 8.1 (3.0)
SlowVAE (LAP-NC)  99.8 (0.6) 95.2 (6.0) 27.6 (8.6) 61.5(5.3) 96.8(1.8) 8.4(34)

Table 16: dSprites. Median and absolute deviation (a.d.) metric scores across 10 random seeds (first
three rows are from (Locatello et al., 2020)). The bottom three rows give mean and standard deviation
(s.d.) for the models presented in this paper.

Increasing mean(At) leads to increased diversity, and thus more information in the learning signal.
However, it is worth noting that since SlowVAE assumes « = 1 in the transitions, an increase in «
from increasing the temporal gap leads to a reduction in mismatch.

Our results on increasing the temporal difference within pairs of inputs is in agreement with recent
work by Oord et al. (2018, Table 2), who show increased performance in representation learning for
larger separation between positive samples in a contrastive objective function. Additional related work
from Tschannen et al. (2019) shows that temporal separation between frame embeddings influences
the representation that is learned from videos.

G.4 LATENT SPACE VISUALIZATIONS

We visualize differences in learned latent representations using image embedding in Figures 15- 28.
We show four different plots for each dataset considered and include all available models. Each figure
corresponds to a different dataset.
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Model (Data) BetaVAE FactorVAE MIG DCI Modularity SAP
[-VAE (i.i.d.) 100.0 87.9 8.8 22.5 90.2 1.0
Ada-ML-VAE (LOC) 100.0 87.4 14.7 45.6 94.6 2.8
Ada-GVAE (LOC) 100.0 90.2 15.0 54.0 93.9 9.4
SlowVAE (UNI) 100.0 (0.0) 90.4 (0.4) 157 (1.5) 489(1.7) 95.7(1.0) 1.6 (0.4)
SlowVAE (LAP) 100.0 (0.0) 91.0 (2.5) 9.7 (1.1) 51.0(2.2) 94.4(1.1) 1.7 (0.9)
SlowVAE (LAP-NC) 100.0 (0.0) 90.8 (1.1) 9.3(1.1) 50.0 (2.0) 94.6 (0.9) 0.9 (0.9)
SlowVAE (UNI) 100.0 (0.0) 90.4 (0.5) 1542.2) 48.0(2.4) 954 (1.5) 1.6 (0.5)
SlowVAE (LAP) 100.0 (0.0) 90.2 (3.5) 104 (1.8) 509 (22.7) 94.1(1.2) 2.0 (1.1)
SlowVAE (LAP-NC) 100.0 (0.0) 90.9(1.2) 9.5(1.4) 50.2(2.7) 95.0(1.2) 1.7 (1.4)

Table 17: Cars3D. Median and absolute deviation (a.d.) metric scores across 10 random seeds (first
three rows are from (Locatello et al., 2020)). The bottom three rows give mean and standard deviation
(s.d.) for the models presented in this paper.

Model (Data) BetaVAE  FactorVAE MIG DCI Modularity SAP
B-VAE (i.i.d.) 74.0 49.5 21.4 28.0 89.5 9.8
Ada-ML-VAE (LOC) 91.0 72.1 31.1 34.1 86.1 15.3
Ada-GVAE (LOC) 87.9 55.5 25.6 33.8 78.8 10.6
SlowVAE (UNI) 78.8 (2.1) 46.2(1.9) 23.7(1.3) 28.8(0.6) 92.1(1.6) 7.8 (1.0)
SlowVAE (LAP) 86.0(0.2) 72.9(0.7) 25.8(0.5) 42.7(0.9) 97.7(0.3) 6.5 (0.4)
SlowVAE (LAP-NC) 86.1(0.7) 73.7 (0.6) 26.3(0.5) 42.5(0.6) 97.6(0.3) 6.5 (0.9)
SlowVAE (UNI) 78.2(3.8) 47.0Q.9) 23.8(1.8) 28.7(0.7) 90.9 (2.1) 7.8 (1.1)
SlowVAE (LAP) 85.9(0.3) 73.1(0.9) 25.7(0.6) 42.6(0.9) 97.5(0.3) 6.8 (0.5)

SlowVAE (LAP-NC)  85.7(1.0) 73.3(0.8) 26.2(0.7) 42.6(0.8) 97.6(0.5) 6.6(1.3)

Table 18: SmalINORB. Median and absolute deviation (a.d.) metric scores across 10 random seeds
(first three rows are from (Locatello et al., 2020)). The bottom three rows give mean and standard
deviation (s.d.) for the models presented in this paper.

In Figures 15- 21 we display the mean correlation coefficient matrix and the latent representations for
each ground-truth, as described in the main text for Fig. 5.

The top row is the sorted absolute correlation coefficient matrix between the latents (rows) and
the ground truth generating factors (columns). The latent dimensions are permuted such that the
sum on the diagonal is maximal. This is achieved by an optimal, non-greedy matching process for
each ground truth factor with its corresponding latent, as described in appendix C. As such, a more
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Figure 14: KITTI Masks Sparseness. We show the sparseness over time of the transitions for
horizontal (Ax), vertical (Ay) as well as mask/object size (Aarea) in KITTI Masks by plotting the «
of a generalized Laplace fit for different mean(At) (top). To display the quality of the fits, we show
two exemplary fits at mean(At) = 0.63 (bottom-left) and mean(At) = 1.02 (bottom-right).

39



Published as a conference paper at ICLR 2021

Model (Data) BetaVAE FactorVAE MIG DCI Modularity SAP
B-VAE (i.i.d.) 98.6 83.9 22.0 58.8 93.8 6.2
Ada-ML-VAE (LOC) 100.0 100.0 50.9 94.0 98.8 12.7
Ada-GVAE (LOC) 100.0 100.0 56.2 94.6 97.5 15.3
SlowVAE (UNI) 100.0 (0.1) 97.3 (4.0) 64.4(84) 82644 955(1.6) 5.8(0.9)
SlowVAE (LAP) 100.0 (0.0) 95.9 (2.6) 62.5(3.1) 85.6(4.0) 98.1(0.6) 8.2 (1.7)
SlowVAE (LAP-NC) 100.0 (1.6) 97.0 (2.0) 63.6(54) 86.7(4.1) 98.4(1.4) 7.0 (2.1
SlowVAE (UNI) 99.9(0.3) 954(5.2) 58.8(13.0) 82.3(54) 95.2(2.0) 5.7 (1.4)
SlowVAE (LAP) 100.0 (0.0) 95.0 (3.2) 61.54.5) 8504.7) 98.3(0.8) 8.9 (2.6)
SlowVAE (LAP-NC) 98.4(4.9) 974 (24) 61.6 (10.6) 86.1(5.2) 98.2(1.6) 8.2 (2.6)

Table 19: Shapes3D. Median and absolute deviation (a.d.) metric scores across 10 random seeds
(first three rows are from (Locatello et al., 2020)). The bottom three rows give mean and standard
deviation (s.d.) for the models presented in this paper.

Model (Data) BetaVAE  FactorVAE MIG DCI Modularity SAP
B-VAE (i.i.d.) 54.6 32.2 7.2 19.5 87.4 3.7
Ada-ML-VAE (LOC) 72.6 47.6 24.1 28.5 87.5 7.4
Ada-GVAE (LOC) 78.9 62.1 28.4 40.1 91.6 21.5
SlowVAE (UNI) 58.5(0.9) 38.6(2.3) 32.2(1.0) 29.9(1.3) 89.2(2.0) 8.8 (0.8)
SlowVAE (LAP) 67.6 (6.1) 42.4(6.1) 32.0(1.8) 359(2.2) 89.5(1.5) 9.7 (0.8)
SlowVAE (LAP-NC) 60.1 (2.7) 39.2(1.7) 30.6 (0.7) 34.3(0.7) 859(1.1) 9.3(0.9)
SlowVAE (UNI) 58.6 (1.1) 38.5(3.2) 32.2(1.2) 30.1(1.6) 89.4(2.6) 8.7 (1.0)
SlowVAE (LAP) 66.6 (6.9) 45.5(8.3) 329(2.6) 3552.7) 89.2(1.9) 9.7 (1.2)
SlowVAE (LAP-NC) 61.0(3.6) 40.3(2.5) 30.4 (0.8) 34.2(1.0) 86.6(1.7) 9.3 (1.0)

Table 20: MPI3D. Median and absolute deviation (a.d.) metric scores across 10 random seeds (first
three rows are from (Locatello et al., 2020)). The bottom three rows give mean and standard deviation
(s.d.) for comparison with other tables.

prevalent diagonal structure corresponds to a better mapping between the ground-truth factors and
latent encoding.

The middle set of plots are latent embeddings of random training data samples. The x-axis denotes
the ground truth generating factor and the y-axis denotes the corresponding latent factor as matched
according to the main diagonal of the correlation matrix. For each dataset, we further color-code the
latents by a categorical variable as denoted in each figure.

The bottom set of plots show the ground truth encoding compared to the second best latent as opposed
to the diagonally matched latent. This plot can be used to judge how much the correspondence
between latents is one-to-one or rather one-to-many.

To further investigate the latent representations, we show a scatter plot over the best and second best
latents in figures 22-28. Here, the color-coding is matched by the ground truth factor denoted in each
row.

When comparing the correlation matrix with the corresponding scatter plots, one can see that
embeddings with sinusoidal curves have low correlation, which illustrates a shortcoming of the
metric. Another limitation is that categorical variables which have no natural ordering have an
order-dependent MCC score, indicating the permutation variance of MCC. With SlowVAE, we can
infer three different types of embeddings. First, we have simple ordered ground truth factors with non-
circular boundary conditions. Here, SlowVAE models often show a clear one-to-one correspondence

Model v A Data Permuted? BetaVAE FactorVAE MIG MCC DCI  Modularity SAP
SlowVAE 10 6 Natural (Discrete) Yes 776 (41)  69.7(6.5 85(44) 499(35) 176(28) 89.8(32) 1.8(0.9)
SlowVAE 10 6 Natural (Discrete) No 82.6(22) 762(4.8) 11.7(5.00 526(4.1) 189(55)  88.1(3.6) 4.4(2.3)

Table 21: Impact of removing natural dependence on Discrete Natural Sprites.
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Model v A Data Permuted? MCC
SlowVAE 10 6 Natural (Continuous) Yes 52.9 (4.2)
SlowVAE 10 6 Natural (Continuous) No 49.1 (4.0)

Table 22: Impact of removing natural dependence on Continuous Natural Sprites.

(e.g. Fig 22 scale, x-position and y-position; Fig 25 #-rotation; Fig 26 ®-rotation). Second, we
observe circular embeddings due to boundary conditions for certain factors (e.g. Fig 15, 22 3rd row;
Fig 16, 23 2nd row). Note that not all datasets with orientations exhibit full rotations and thus do not
have circular boundary conditions, e.g. smalINORB. Finally, we have categorical variables, where no
order exists (e.g. Fig. 16, 23 top row, Fig 17, 24 top row, Fig 18, 25 top row) resulting in separated
but not necessarily ordered clusters.
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Figure 15: DSprites Latent Representations. Top, MCC correlation matrices. Middle five rows,
model latent over highest correlating ground truth factor. Bottom five rows, model latent over second
highest correlating ground truth factor. The color-coding corresponds to the shapes: heart/yellow,
ellipse/turquoise and square/purple.
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Figure 16: Cars3D Latent Representations. Top, MCC correlation matrices. Middle three rows,
model latent over highest correlating ground truth factor. Bottom three rows, model latent over second
highest correlating ground truth factor. The color-coding corresponds to the 183 different car types
(GT Types) in the dataset.
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Figure 17: SmallNorb Latent Representations. Top, MCC correlation matrices. Middle four rows,
model latent over highest correlating ground truth factor. Bottom four rows, model latent over
second highest correlating ground truth factor. The color-coding corresponds to the five different GT
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Figure 25: Shapes3D Latent Representations. Best two latents selected from Fig 18. Color-coded

by ground truth.

Figure 26: MPI3DReal Latent Representations. Best two latents selected from Fig 19. Color-coded

by ground truth.
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ABSTRACT

An important component for generalization in machine learning is to uncover un-
derlying latent factors of variation as well as the mechanism through which each
factor acts in the world. In this paper, we test whether 17 unsupervised, weakly su-
pervised, and fully supervised representation learning approaches correctly infer
the generative factors of variation in simple datasets (dSprites, Shapes3D, MPI3D)
from controlled environments, and on our contributed CelebGlow dataset. In con-
trast to prior robustness work that introduces novel factors of variation during
test time, such as blur or other (un)structured noise, we here recompose, inter-
polate, or extrapolate only existing factors of variation from the training data set
(e.g., small and medium-sized objects during training and large objects during
testing). Models that learn the correct mechanism should be able to generalize to
this benchmark. In total, we train and test 2000+ models and observe that all of
them struggle to learn the underlying mechanism regardless of supervision sig-
nal and architectural bias. Moreover, the generalization capabilities of all tested
models drop significantly as we move from artificial datasets towards more realis-
tic real-world datasets. Despite their inability to identify the correct mechanism,
the models are quite modular as their ability to infer other in-distribution factors
remains fairly stable, providing only a single factor is out-of-distribution. These
results point to an important yet understudied problem of learning mechanistic
models of observations that can facilitate generalization.

1 INTRODUCTION

Humans excel at learning underlying physical mechanisms or inner workings of a system from ob-
servations (Funke et al., 2021; Barrett et al., 2018; Santoro et al., 2017; Villalobos et al., 2020;
Spelke, 1990), which helps them generalize quickly to new situations and to learn efficiently from
little data (Battaglia et al., 2013; Dehaene, 2020; Lake et al., 2017; Téglas et al., 2011). In con-
trast, machine learning systems typically require large amounts of curated data and still mostly fail
to generalize to out-of-distribution (OOD) scenarios (Scholkopf et al., 2021; Hendrycks & Diet-
terich, 2019; Karahan et al., 2016; Michaelis et al., 2019; Roy et al., 2018; Azulay & Weiss, 2019;
Barbu et al., 2019). It has been hypothesized that this failure of machine learning systems is due to
shortcut learning (Kilbertus* et al., 2018; Ilyas et al., 2019; Geirhos et al., 2020; Scholkopf et al.,
2021). In essence, machines seemingly learn to solve the tasks they have been trained on using
auxiliary and spurious statistical relationships in the data, rather than true mechanistic relationships.
Pragmatically, models relying on statistical relationships tend to fail if tested outside their train-
ing distribution, while models relying on (approximately) the true underlying mechanisms tend to
generalize well to novel scenarios (Barrett et al., 2018; Funke et al., 2021; Wu et al., 2019; Zhang
et al., 2018; Parascandolo et al., 2018; Scholkopf et al., 2021; Locatello et al., 2020a;b). To learn
effective statistical relationships, the training data needs to cover most combinations of factors of
variation (like shape, size, color, viewpoint, etc.). Unfortunately, the number of combinations scales
exponentially with the number of factors. In contrast, learning the underlying mechanisms behind
the factors of variation should greatly reduce the need for training data and scale more gently with
the number of factors (Scholkopf et al., 2021; Peters et al., 2017; Besserve et al., 2021).

Benchmark: Our goal is to quantify how well machine learning models already learn the mecha-
nisms underlying a data generative process. To this end, we consider four image data sets where
each image is described by a small number of independently controllable factors of variation such
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as scale, color, or size. We split the training and test data such that models that learned the under-
lying mechanisms should generalize to the test data. More precisely, we propose several systematic
out-of-distribution (OOD) test splits like composition (e.g., train = small hearts, large squares —
test = small squares, large hearts), interpolation (e.g., small hearts, large hearts — medium hearts)
and extrapolation (e.g., small hearts, medium hearts — large hearts). While the factors of variation
are independently controllable (e.g., there may exist large and small hearts), the observations may
exhibit spurious statistical dependencies (e.g., observed hearts are typically small, but size may not
be predictive at test time). Based on this setup, we benchmark 17 representation learning approaches
and study their inductive biases. The considered approaches stem from un-/weakly supervised dis-
entanglement, supervised learning, and the transfer learning literature.

Results: Our benchmark results indicate that the tested models mostly struggle to learn the under-
lying mechanisms regardless of supervision signal and architecture. As soon as a factor of variation
is outside the training distribution, models consistently tend to predict a value in the previously ob-
served range. On the other hand, these models can be fairly modular in the sense that predictions
of in-distribution factors remain accurate, which is in part against common criticisms of deep neural
networks (Greff et al., 2020; Csordas et al., 2021; Marcus, 2018; Lake & Baroni, 2018).

New Dataset: Previous datasets with independent controllable factors such as dSprites, Shapes3D,
and MPI3D (Matthey et al., 2017; Kim & Mnih, 2018; Gondal et al., 2019) stem from highly struc-
tured environments. For these datasets, common factors of variations are scaling, rotation and simple
geometrical shapes. We introduce a dataset derived from celebrity faces, named CelebGlow, with
factors of variations such as smiling, age and hair-color. It also contains all possible factor com-
binations. It is based on latent traversals of a pretrained Glow network provided by Kingma et al.
(Kingma & Dhariwal, 2018) and the Celeb-HQ dataset (Liu et al., 2015).

We hope that this benchmark can guide future efforts to find machine learning models capable of
understanding the true underlying mechanisms in the data. To this end, all data sets and evaluation

scripts are released alongside a leaderboard on GitHub. ! @ ‘ @
Y
Assume that we render each observation or image x € R? using a é’ «e
“computer graphic model” which takes as input a set of indepen-
dently controllable factors of variation (FOYS) y € R” like size or Figure 1: Assumed graphical
color. More formally, we assume a generative process of the form model connecting the factors
x = g(y), where g : R" — R is an injective and smooth function. of variations y = (y1, ..., yn)
In the standard independently and identically distributed (IID) setting, to observations x = g(y). The
we would generate the training and test data in the same way, i.e., we selection variable s € {tr,te}
would draw y from the same prior distribution p(y) and then gener- leads to different train and test
ate the corresponding images x according to g(-). Instead, we here SPits pf(y)’ thereby inducing
consider an OOD setting where the prior distribution p,(y) during correlation between the FoVs.
training is different from the prior distribution pi(y) during testing.
In fact, in all settings of our benchmark, the training and test distributions are completely disjoint,
meaning that each point can only have non-zero probability mass in either py,(y) or pie(y). Cru-
cially, however, the function g which maps between FoVs and observations is shared between train-
ing and testing, which is why we refer to it as an invariant mechanism. As shown in the causal
graphical model in Fig. 1, the factors of variations y are independently controllable to begin with,
but the binary split variable s introduces spurious correlations between the FoVs that are different
at training and test time as a result of selection bias (Storkey, 2009; Bareinboim & Pearl, 2012). In
particular, we consider Random, Composition, Interpolation, and Extrapolation splits as illustrated
in Fig. 2. We refer to §4.2 for details on the implementation of these splits.

2 PROBLEM SETTING

The task for our machine learning models f is to estimate the factors of variations y that generated
the sample x on both the training and test data. In other words, we want that (ideally) f = g~ .
The main challenge is that, during training, we only observe data from py, but wish to general-
ize to pie. Hence, the learned function f should not only invert g locally on the training domain
supp(pi.(y)) € R™ but ideally globally. In practice, let Dy, = {(y*,x*)} be the test data with y;
drawn from pi.(y) and let f : R? s R™ be the model. Now, the goal is to design and optimize the

"https://github.com/bethgelab/InDomainGeneralizationBenchmark
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Random Composition Interpolation

Figure 2: Systematic test and train splits for two factors of variation. Black dots correspond to the training
and red dots to the test distribution. Examples of the corresponding observations are shown on the right.

model f on the training set Dy, such that it achieves a minimal R-squared distance between y* and
f(x*) on the test set D.

During training, models are allowed to sample the data from all non-zero probability regions
supp(pt:(y)) in whatever way is optimal for its learning algorithm. This general formulation cov-
ers different scenarios and learning methods that could prove valuable for learning independent
mechanisms. For example, supervised methods will sample an IID data set D, = {(y*,x*)}
with y* ~ pi.(y), while self-supervised methods might sample a data set of unlabeled image pairs
Dy = {(x*,%*)}. We aim to understand what inductive biases help on these OOD settings and
how to best leverage the training data to learn representations that generalize.

3 INDUCTIVE BIASES FOR GENERALIZATION IN VISUAL REPRESENTATION
LEARNING

We now explore different types of assumptions, or inductive biases, on the representational for-
mat (§3.1), architecture (§3.2), and dataset (§3.3) which have been proposed and used in the past
to facilitate generalization. Inductive inference and the generalization of empirical findings is a
fundamental problem of science that has a long-standing history in many disciplines. Notable ex-
amples include Occam’s razor, Solomonoff’s inductive inference (Solomonoff, 1964), Kolmogorov
complexity (Kolmogorov, 1998), the bias-variance-tradeoff (Kohavi et al., 1996; Von Luxburg &
Scholkopf, 2011), and the no free lunch theorem (Wolpert, 1996; Wolpert & Macready, 1997). In
the context of statistical learning, Vapnik and Chervonenkis (Vapnik & Chervonenkis, 1982; Vapnik,
1995) showed that generalizing from a sample to its population (i.e., IID generalization) requires re-
stricting the capacity of the class of candidate functions—a type of inductive bias. Since shifts
between train and test distributions violate the IID assumption, however, statistical learning theory
does not directly apply to our types of OOD generalization.

OOD generalization across different (e.g., observational and experimental) conditions also bears
connections to causal inference (Pearl, 2009; Peters et al., 2017; Herndn & Robins, 2020). Typically,
a causal graph encodes assumptions about the relation between different distributions and is used to
decide how to “transport” a learned model (Pearl & Bareinboim, 2011; Pearl et al., 2014; Bareinboim
& Pearl, 2016; von Kiigelgen et al., 2019). Other approaches aim to learn a model which leads to
invariant prediction across multiple environments (Scholkopf et al., 2012; Peters et al., 2016; Heinze-
Deml et al., 2018; Rojas-Carulla et al., 2018; Arjovsky et al., 2019; Lu et al., 2021). However,
these methods either consider a small number of causally meaningful variables in combination with
domain knowledge, or assume access to data from multiple environments. In our setting, on the
other hand, we aim to learn from higher-dimensional observations and to generalize from a single
training set to a different test environment.

Our work focuses on OOD generalization in the context of visual representation learning, where
deep learning has excelled over traditional learning approaches (Krizhevsky et al., 2012; LeCun
etal., 2015; Schmidhuber, 2015; Goodfellow et al., 2016). In the following, we therefore concentrate
on inductive biases specific to deep neural networks (Goyal & Bengio, 2020) on visual data. For
details regarding specific objective functions, architectures, and training, we refer to the supplement.

3.1 INDUCTIVE BIAS 1: REPRESENTATIONAL FORMAT

Learning useful representations of high-dimensional data is clearly important for the downstream
performance of machine learning models (Bengio et al., 2013). The first type of inductive bias we
consider is therefore the representational format. A common approach to representation learning
is to postulate independent latent variables which give rise to the data, and try to infer these in
an unsupervised fashion. This is the idea behind independent component analysis (ICA) (Comon,
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1994; Hyvirinen & Oja, 2000) and has also been studied under the term disentanglement (Bengio
et al., 2013). Most recent approaches learn a deep generative model based on the variational auto-
encoder (VAE) framework (Kingma & Welling, 2013; Rezende et al., 2014), typically by adding
regularization terms to the objective which further encourage independence between latents (Higgins
et al., 2017; Kim & Mnih, 2018; Chen et al., 2018; Kumar et al., 2018; Burgess et al., 2018).

It is well known that ICA/disentanglement is theoretically non-identifiable without additional as-
sumptions or supervision (Hyvirinen & Pajunen, 1999; Locatello et al., 2018). Recent work has
thus focused on weakly supervised approaches which can provably identify the true independent la-
tent factors (Hyvirinen & Morioka, 2016; Hyvarinen & Morioka, 2017; Shu et al., 2019; Locatello
etal., 2020a; Klindt et al., 2020; Khemakhem et al., 2020; Roeder et al., 2020). The general idea is to
leverage additional information in the form of paired observations (x?,%?) where X? is typically an
auxiliary variable (e.g., an environment indicator or time-stamp) or a second view, i.e., X’ = g(y*)
with §¢ ~ p(¥|y*), where y* are the FoVs of x* and p(¥|y) depends on the method. We remark that
such identifiability guarantees only hold for the training distribution (and given infinite data), and
thus may break down once we move to a different distribution for testing. In practice, however, we
hope that the identifiability of the representation translates to learning mechanisms that generalize.

In our study, we consider the popular 5-VAE (Higgins et al., 2017) as an unsupervised approach, as
well as Ada-GVAE (Locatello et al., 2020a), Slow-VAE (Klindt et al., 2020) and PCL (Hyvarinen
& Morioka, 2017) as weakly supervised disentanglement methods. First, we learn a representation
z € R" given only (pairs of) observations (i.e., without access to the FoVs) using an encoder
fenc : R¢ — R™. We then freeze the encoder (and thus the learned representation z) and train a
multi-layer perceptron (MLP) fyp : R™ — R to predict the FoVs y from z in a supervised way.
The learned inverse mechanism f in this case is thus given by f = fuip © fenc.

3.2 INDUCTIVE BIAS 2: ARCHITECTURAL (SUPERVISED LEARNING)

The physical world is governed by symmetries (Nother, 1915), and enforcing appropriate task-
dependent symmetries in our function class may facilitate more efficient learning and generalization.
The second type of inductive bias we consider thus regards properties of the learned regression func-
tion, which we refer to as architectural bias. Of central importance are the concepts of invariance
(changes in input should not lead to changes in output) and equivariance (changes in input should
lead to proportional changes in output). In vision tasks, for example, object localization exhibits
equivariance to translation, whereas object classification exhibits invariance to translation. E.g.,
translating an object in an input image should lead to an equal shift in the predicted bounding box
(equivariance), but should not affect the predicted object class (invariance).

A famous example is the convolution operation which yields translation equivariance and forms the
basis of convolutional neural networks (CNNs) (Le Cun et al., 1989; LeCun et al., 1989). Combined
with a set operation such as pooling, CNNs then achieve translation invariance. More recently, the
idea of building equivariance properties into neural architectures has also been successfully applied
to more general transformations such as rotation and scale (Cohen & Welling, 2016; Cohen et al.,
2019; Weiler & Cesa, 2019) or (coordinate) permutations (Zhang et al., 2019; Achlioptas et al.,
2018). Other approaches consider affine transformations (Jaderberg et al., 2015), allow to trade
off invariance vs dependence on coordinates (Liu et al., 2018), or use residual blocks and skip
connections to promote feature re-use and facilitate more efficient gradient computation (He et al.,
2016; Huang et al., 2017). While powerful in principle, a key challenge is that relevant equivariances
for a given problem may be unknown a priori or hard to enforce architecturally. E.g., 3D rotational
equivariance is not easily captured for 2D-projected images, as for the MPI3D data set.

In our study, we consider the following architectures: standard MLPs and CNNs, CoordConv (Liu
et al., 2018) and coordinate-based (Sitzmann et al., 2020) nets, Rotationally-Equivariant (Rotation-
EQ) CNNs (Cohen & Welling, 2016), Spatial Transformers (STN) (Jaderberg et al., 2015), ResNet
(RN) 50 and 101 (He et al., 2016), and DenseNet (Huang et al., 2017). All networks f are trained
to directly predict the FoVs y ~ f(x) in a purely supervised fashion.

3.3 INDUCTIVE BIAS 3: LEVERAGING ADDITIONAL DATA (TRANSFER LEARNING)

The physical world is modular: many patterns and structures reoccur across a variety of settings.
Thus, the third and final type of inductive bias we consider is leveraging additional data through
transfer learning. Especially in vision, it has been found that low-level features such as edges or
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simple textures are consistently learned in the first layers of neural networks, which suggests their
usefulness across a wide range of tasks (Sun et al., 2017). State-of-the-art approaches therefore
often rely on pre-training on enormous image corpora prior to fine-tuning on data from the target
task (Kolesnikov et al., 2020; Mahajan et al., 2018; Xie et al., 2020). The guiding intuition is that
additional data helps to learn common features and symmetries and thus enables a more efficient use
of the (typically small amount of) labeled training data. Leveraging additional data as an inductive
bias is connected to the representational format §3.1 as they are often combined during pre-training.

In our study, we consider three pre-trained models: RN-50 and RN-101 pretrained on ImageNet-
21k (Deng et al., 2009; Kolesnikov et al., 2020) and a DenseNet pretrained on ImageNet-1k
(ILSVRC) (Russakovsky et al., 2015). We replace the last layer with a randomly initialized readout
layer chosen to match the dimension of the FoVs of a given dataset and fine-tune the whole network
for 50,000 iterations on the respective train splits.

4 EXPERIMENTAL SETUP . . !
4.1 DATASETS .u ‘ 1
— -

We consider datasets with images generated from a set of discrete Fac-

tors of Variation (FoVs) following a deterministic generative model. All b B Be
selected datasets are designed such that all possible combinations of fac- ]\, & &
tors of variation are realized in a corresponding image. dSprites (Matthey

et al., 2017), is composed of low resolution binary images of basic shapes . . .
with 5 FoVs: shape, scale, orientation, x-position, and y-position. Next,

Shapes3D (Kim & Mnih, 2018), a popular dataset with 3D shapes in a  Figure 3: Random
room with 6 FoVs: floor, color, wall color, object color, object size, object ~dataset samples from
type, and camera azimuth. Furthermore, with CelebGlow we introduce a  dSprites (1st), Shapes3D
novel dataset that has more natural factors of variations such as smiling, (2nd), CelebGlow (3rd),
hair-color and age. For more details and samples, we refer to Appendix B. and MPI3D-real (4th).
Lastly, we consider the challenging and realistic MPI3D (Gondal et al., 2019), which contains real
images of physical 3D objects attached to a robotic finger generated with 7 FoVs: color, shape, size,
height, background color, x-axis, and y-axis. For more details, we refer to Appendix H.1.

T

4.2 SPLITS

For each of the above datasets, denoted by D, we create disjoint splits of train sets Dy, and test sets
Dye. We systematically construct the splits according to the underlying factors to evaluate different
modalities of generalization, which we refer to as composition, interpolation, extrapolation, and
random. See Fig. 2 for a visual presentation of such splits regarding two factors.

Composition: We exclude all images from the train split if factors are located in a particular corner
of the FoV hyper cube given by all FoVs. This means certain systematic combinations of FoVs are
never seen during training even though the value of each factor is individually present in the train set.
The related test split then represents images of which at least two factors resemble such an unseen
composition of factor values, thus testing generalization w.r.t. composition.

Interpolation: Within the range of values of each FoV, we periodically exclude values from the
train split. The corresponding test split then represents images of which at least one factor takes one
of the unseen factor values in between, thus testing generalization w.r.t. interpolation.
Extrapolation: We exclude all combinations having factors with values above a certain label thresh-
old from the train split. The corresponding test split then represents images with one or more ex-
trapolated factor values, thus testing generalization w.r.t. extrapolation.

Random: Lastly, as a baseline to test our models performances across the full dataset in distri-
bution, we cover the case of an IID sampled train and test set split from . Compared to inter-
and extrapolation where factors are systematically excluded, here it is very likely that all individual
factor values have been observed in a some combination.

We further control all considered splits and datasets such that ~ 30% of the available data is in
the training set Dy, and the remaining ~ 70% belong to the test set Dy. Lastly, we do not split
along factors of variation if no intuitive order exists. Therefore, we do not split along the categorical
variable shape and along the axis of factors where only two values are available.
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Figure 4: R?-score on various test-train splits. Compared to the in-distribution random splits, on the out-of-
distribution (OOD) splits composition, interpolation, and extrapolation, we observe large drops in performance.

4.3 EVALUATION

To benchmark the generalization capabilities, we compute the R2-score, the coefficient of determi-
nation, on the respective test set. We define the R2-score based on the MSE score per FoV v
MSE; .
Ri=1-—35" with MSE; =Exyep, |(v; —fi(x)°], (1)

i

where o7 is the variance per factor defined on the full dataset D. Under this score, R? = 1 can
be interpreted as perfect regression and prediction under the respective test set whereas R = 0
indicates random guessing with the MSE being identical to the variance per factor. For visualization
purposes, we clip the R? to 0 if it is negative. We provide all unclipped values in the Appendix.

5 EXPERIMENTS AND RESULTS

Our goal is to investigate how different visual representation models perform on our proposed sys-
tematic out-of-distribution (OOD) test sets. We consider un-/weakly supervised, fully supervised,
and transfer learning models. We focus our conclusions on MPI3D-Real as it is the most realistic
dataset. Further results on dSprites and Shapes3D are, however, mostly consistent.

In the first subsection, §5.1, we investigate the overall model OOD performance. In Sections 5.2
and 5.3, we focus on a more in-depth error analysis by controlling the splits s.t. only a single fac-
tor is OOD during testing. Lastly, in §5.4, we investigate the connection between the degree of
disentanglement and downstream performance.

5.1 MODEL PERFORMANCE DECREASES ON OOD TEST SPLITS

In Fig. 4 and Appendix Fig. 11, we plot the performance of each model across different gener-
alization settings. Compared to the in-distribution (ID) setting (random), we observe large drops
in performance when evaluating our OOD test sets on all considered datasets. This effect is most
prominent on MPI3D-Real. Here, we further see that, on average, the performances seem to increase
as we increase the supervision signal (comparing RN50, RN101, DenseNet with and without addi-
tional data on MPI3D). On CelebGlow, models also struggle to extrapolate. However, the results on
composition and interpolation only drop slightly compared to the random split.

For Shapes3D (shown in the Appendix E), the OOD generalization is partially successful, especially
in the composition and interpolation settings. We hypothesize that this is due to the dataset specific,
fixed spatial composition of the images. For instance, with the object-centric positioning, the floor,
wall and other factors are mostly at the same position within the images. Thus, they can reliably be
inferred by only looking at a certain fixed spot in the image. In contrast, for MPI3D this is more
difficult as, e.g., the robot finger has to be found to infer its tip color. Furthermore, the factors of
variation in Shapes3D mostly consist of colors which are encoded within the same input dimensions,
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Figure 5: Extrapolation and modularity, R*-score on subsets. In the extrapolation setting, we further
differentiate between factors that have been observed during training (ID factors) and extrapolated values (OOD
factors) and measure the performances separately. As a reference, we compare to a random split. A model is
considered modular, if it still infers ID factors correctly despite other factors being OOD.

and not across pixels as, for instance, x-translation in MPI3D. For this color interpolation, the ReL.U
activation function might be a good inductive bias for generalization. However, it is not sufficient to
achieve extrapolations, as we still observe a large drop in performance here.

Conclusion: The performance generally decreases when factors are OOD regardless of the super-
vision signal and architecture. However, we also observed exceptions in Shapes3D where OOD
generalization was largely successful except for extrapolation.

5.2 ERRORS STEM FROM INFERRING OOD FACTORS

While in the previous section we observed a general decrease in R? score for the interpolation and
extrapolation splits, our evaluation does not yet show how errors are distributed among individual
factors that are in- and out-of-distribution.

In contrast to the previous section where multiple factors could be OOD distribution simultaneously,
here, we control data splits (Fig. 2) interpolation, extrapolation s.t. only a single factor is OOD. Now,
we also estimate the R2-score separately per factor, depending on whether they have individually
been observed during training (ID factor) or are exclusively in the test set (OOD factor). For instance,
if we only have images of a heart with varying scale and position, we query the model with hearts
at larger scales than observed during training (OOD factor), but at a previously observed position
(ID factor). For a formal description, see Appendix Appendix H.2. This controlled setup enables
us to investigate the modularity of the tested models, as we can separately measure the performance
on OOD and ID factors. As a reference for an approximate upper bound, we additionally report the
performance of the model on a random train/test split.

In Figs. 5 and 14, we observe significant drops in performance for the OOD factors compared to a
random test-train split. In contrast, for the ID factors, we see that the models still perform close to the
random split, although with much larger variance. For the interpolation setting (Appendix Fig. 14),
this drop is also observed for MPI3D and dSprites but not for Shapes3D. Here, OOD and ID are
almost on par with the random split. Note that our notion of modularity is based on systematic splits
of individual factors and the resulting outputs. Other works focus on the inner behavior of a model
by, e.g., investigating the clustering of neurons within the network (Filan et al., 2021). Preliminary
experiments showed no correlations between the different notions of modularity.

Conclusion: The tested models can be fairly modular, in the sense that the predictions of ID factors
remain accurate. The low OOD performances mainly stem from incorrectly extrapolated or interpo-
lated factors. Given the low inter-/extrapolation (i.e., OOD) performances on MPI3D and dSprites,
evidently no model learned to invert the ground-truth generative mechanism.

5.3 MODELS EXTRAPOLATE SIMILARLY AND TOWARDS THE MEAN

In the previous sections, we observed that our tested models specifically extrapolate poorly on OOD
factors. Here, we focus on quantifying the behavior of how different models extrapolate.

To check whether different models make similar errors, we compare the extrapolation behavior
across architectures and seeds by measuring the similarity of model predictions for the OOD fac-
tors described in the previous section. No model is compared to itself if it has the same random
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Figure 6: Extrapolation towards the mean. We calculate (2) on the extrapolated OOD factors to measure the
closeness towards the mean compared to the ground-truth. Here, the values are mostly in [0, 1]. Thus, models
tend to predict values in previously observed ranges.

seed. On MPI3D, Shapes3D and dSprites, all models strongly correlate with each other (Pearson
p > 0.57) but anti-correlate compared to the ground-truth prediction (Pearson p < —0.48), the over-
all similarity matrix is shown in Appendix Fig. 17. One notable exception is on CelebGlow. Here,
some models show low but positive correlations with the ground truth generative model (Pearson
p > 0.57). However, visually the models are still quite off as shown for the model with the highest
correlation in Fig. 18. In most cases, the highest similarity is along the diagonal, which demon-
strates the influence of the architectural bias. This result hints at all models making similar mistakes
extrapolating a factor of variation.

We find that models collectively tend towards predicting the mean for each factor in the training
distribution when extrapolating. To show this, we estimate the following ratio of distances

r= =351/ Iys - ¥, )
1

where y; = = " y} is the mean of FoV y;. If values of (2) are € [0, 1], models predict values
which are closer to the mean than the corresponding ground-truth. We show a histogram over all
supervised and transfer-based models for each dataset in Fig. 6. Models tend towards predicting the

mean as only few values are >= 1. This is shown qualitatively in Appendix Figs. 15 and 16.

Conclusion: Overall, we observe only small differences in how the tested models extrapolate, but
a strong difference compared to the ground-truth. Instead of extrapolating, all models regress the
OOD factor towards the mean in the training set. We hope that this observation can be considered
to develop more diverse future models.

5.4 ON THE RELATION BETWEEN DISENTANGLEMENT AND DOWNSTREAM PERFORMANCE

Previous works have focused on the connection between disentanglement and OOD downstream
performance (Trdauble et al., 2020; Dittadi et al., 2020; Montero et al., 2021). Similarly, for our
systematic splits, we measure the degree of disentanglement using the DCI-Disentanglement (East-
wood & Williams, 2018) score on the latent representation of the embedded test and train data.
Subsequently, we correlate it with the R?-performance of a supervised readout model which we
report in §5.1. Note that the simplicity of the readout function depends on the degree of disen-
tanglement, e.g., for a perfect disentanglement up to permutation and sign flips this would just be
an assignment problem. For the disentanglement models, we consider the un-/ weakly supervised
models 5-VAE(Higgins et al., 2017), SlowVAE (Klindt et al., 2020), Ada-GVAE(Locatello et al.,
2020a) and PCL (Hyvarinen & Morioka, 2017).

We find that the degree of downstream performance correlates positively with the degree of disen-
tanglement (Pearson p = 0.63, Spearman p = 0.67). However, the correlations vary per dataset
and split (see Appendix Fig. 7). Moreover, the overall performance of the disentanglement models
followed by a supervised readout on the OOD split is lower compared to the supervised models
(see e.g. Fig. 4). In an ablation study with an oracle embedding that disentangles the test data up to

permutations and sign flips, we found perfect generalization capabilities (R2;, > 0.99).

Conclusion: Disentanglement models show no improved performance in OOD generalization. Nev-
ertheless, we observe a mostly positive correlation between the degree of disentanglement and the
downstream performance.

6 OTHER RELATED BENCHMARK STUDIES

In this section, we focus on related benchmarks and their conclusions. For related work in the
context of inductive biases, we refer to §3.

Corruption benchmarks: Other current benchmarks focus on the performance of models when
adding common corruptions (denoted by -C) such as noise or snow to current dataset test sets,
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resulting in ImageNet-C, CIFAR-10-C, Pascal-C, Coco-C, Cityscapes-C and MNIST-C (Hendrycks
& Dietterich, 2019; Michaelis et al., 2019; Mu & Gilmer, 2019). In contrast, in our benchmark, we
assure that the factors of variations are present in the training set and merely have to be generalized
correctly. In addition, our focus lies on identifying the ground truth generative process and its
underlying factors. Depending on the task, the requirements for a model are very different. E.g., the
ImageNet-C classification benchmark requires spatial invariance, whereas regressing factors such
as, e.g., shift and shape of an object, requires in- and equivariance.

Abstract reasoning: Model performances on OOD generalizations are also intensively studied from
the perspective of abstract reasoning, visual and relational reasoning tasks (Barrett et al., 2018; Wu
etal., 2019; Santoro et al., 2017; Villalobos et al., 2020; Zhang et al., 2016; Yan & Zhou, 2017; Funke
etal., 2021; Zhang et al., 2018). Most related, (Barrett et al., 2018; Wu et al., 2019) also study similar
interpolation and extrapolation regimes. Despite using notably different tasks such as abstract or
spatial reasoning, they arrive at similar conclusions: They also observe drops in performance in the
generalization regime and that interpolation is, in general, easier than extrapolation, and also hint at
the modularity of models using distractor symbols (Barrett et al., 2018). Lastly, posing the concept
of using correct generalization as a necessary condition to check whether an underlying mechanism
has been learned has also been proposed in (Wu et al., 2019; Zhang et al., 2018; Funke et al., 2021).

Disentangled representation learning: Close to our work, Montero et al. (Montero et al., 2021)
also study generalization in the context of extrapolation, interpolation and a weak form of composi-
tion on dSprites and Shapes3D, but not the more difficult MPI3D-Dataset. They focus on reconstruc-
tions of unsupervised disentanglement algorithms and thus the decoder, a task known to be theoret-
ically impossible(Locatello et al., 2018). In their setup, they show that OOD generalization is lim-
ited. From their work, it remains unclear whether the generalization along known factors is a general
problem in visual representation learning, and how neural networks fail to generalize. We try to fill
these gaps. Moreover, we focus on representation learning approaches and thus on the encoder and
consider a broader variety of models, including theoretically identifiable approaches (Ada-GAVE,
SlowVAE, PCL), and provide a thorough in-depth analysis of how networks generalize.

Previously, Triuble et al. (2020) studied the behavior of unsupervised disentanglement models on
correlated training data. They find that despite disentanglement objectives, the learned latent spaces
mirror this correlation structure. In line with our work, the results of their supervised post-hoc
regression models on Shapes3D suggest similar generalization performances as we see in our re-
spective disentanglement models in Figs. 4 and 11. OOD generalization w.r.t. extrapolation of one
single FoV is also analyzed in (Dittadi et al., 2020). Our experimental setup in §5.4 is similar
to their ‘OOD2’ scenario. Here, our results are in accordance, as we both find that the degree of
disentanglement is lightly correlated with the downstream performance.

Others: To demonstrate shortcuts in neural networks, Eulig et al. (2021) introduce a benchmark with
factors of variations such as color on MNIST that correlate with a specified task but control for those
correlations during test-time. In the context of reinforcement learning, Packer et al. (2018) assess
models on systematic test-train splits similar to our inter-/extrapolation and show that current models
cannot solve this problem. For generative adversarial networks (GANS), it has also been shown that
their learned representations do not extrapolate beyond the training data (Jahanian et al., 2019).

7 DISCUSSION AND CONCLUSION

In this paper, we highlight the importance of learning the independent underlying mechanisms be-
hind the factors of variation present in the data to achieve generalization. However, we empirically
show that among a large variety of models, no tested model succeeds in generalizing to all our pro-
posed OOD settings (extrapolation, interpolation, composition). We conclude that the models are
limited in learning the underlying mechanism behind the data and rather rely on strategies that do
not generalize well. We further observe that while one factor is out-of-distribution, most other in-
distribution factors are inferred correctly. In this sense, the tested models are surprisingly modular.

To further foster research on this intuitively simple, yet unsolved problem, we release our code as
a benchmark. This benchmark, which allows various supervision types and systematic controls,
should promote more principled approaches and can be seen as a more tractable intermediate mile-
stone towards solving more general OOD benchmarks. In the future, a theoretical treatment identi-
fying further inductive biases of the model and the necessary requirements of the data to solve our
proposed benchmark should be further investigated.
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ETHICS STATEMENT

Our current study focuses on basic research and has no direct application or societal impact. Never-
theless, we think that the broader topic of generalization should be treated with great care. Especially
oversimplified generalization and automation without a human in the loop could have drastic conse-
quences in safety critical environments or court rulings.

Large-scale studies require a lot of compute due to multiple random seeds and exponentially growing
sets of possible hyperparameter combinations. Following claims by Strubel et al. (Strubell et al.,
2019), we tried to avoid redundant computations by orienting ourselves on current common values
in the literature and by relying on systematic test runs. In a naive attempt, we tried in to estimate the
power consumption and greenhouse gas impact based on the used cloud compute instance. However,
too many factors such as external thermal conditions, actual workload, type of power used and others
are involved (Mytton, 2020; Fahad et al., 2019). In the future, especially with the trend towards
larger network architectures, compute clusters should be required to enable options which report the
estimated environmental impact. However, it should be noted that cloud vendors are already among
the largest purchasers of renewable electricity (Mytton, 2020).

For an impact statement for the broader field of representation learning, we refer to Klindt et al.
(2020).

REPRODUCIBILITY STATEMENT

Our code is attached, and all important details to reproduce our results are repeated in Appendix H.
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Figure 7: Spearman Correlation of degree of disentanglement with downstream performances. We
measure the DCI-Disentanglement metric on the 10-dimensional representation for 8-VAE, PCL, SlowVAE
and Ada-GVAE and the corresponding R*-score on the downstream performance. All p-values are below 0.01
except for composition on Shapes3D which has p-value=0.14. Note that, we here provide Spearman’s rank
correlation instead Pearson as the p-values are slightly lower.

Data set | Modification R-squared Test | Modification R-squared Test
dSprites random 1.000 random + sign-flip 1.000
dSprites composition  1.000 composition + sign-flip ~ 1.000
dSprites interpolation  1.000 interpolation + sign-flip  1.000
dSprites extrapolation  1.000 extrapolation + sign-flip  0.999
Shapes3D random 1.000 random + sign-flip 1.000
Shapes3D composition  1.000 composition + sign-flip ~ 1.000
Shapes3D interpolation  1.000 interpolation + sign-flip  1.000
Shapes3D extrapolation 1.000 extrapolation + sign-flip  1.000
MPI3D-Real | random 1.000 random + sign-flip 1.000
MPI3D-Real | composition  1.000 composition + sign-flip ~ 0.996
MPI3D-Real | interpolation  1.000 interpolation + sign-flip  1.000
MPI3D-Real | extrapolation 0.999 extrapolation + sign-flip  0.997

Table 1: Performances of the readout-MLP on the ground-truth.

A CONNECTION BETWEEN READOUT PERFORMANCE AND
DISENTANGLEMENT OF THE REPRESENTATION

Here, we narrow down the root cause of the limited extrapolation performance of disentanglement
models in the OOD settings as observed in Figs. 4 and 11. More precisely, we investigate how
the readout-MLP would perform on a perfectly disentangled representation. Therefore, we train
our readout MLP directly on the ground-truth factors of variation for all possible test-train splits
described in Fig. 2 and measured the R2-score test error for each split. Here, the MLP only has to
learn the identity function. In a slightly more evolved setting, termed sign-flip, we switched the sign
input to train the readout-MLP on a mapping from -ground-truth to ground-truth. This mimics the
identifiability guarantees of models like SlowVAE which are up to permutation and sign flips under
certain assumptions. The R-squared for all settings in Table 1 are > .99, therefore the readout model
should not be the limitation for OOD generalization in our setting if the representation is identified
up to permutation and sign flips. Note that this experiment does not cover disentanglement up to
point-wise nonlinearities or linear/ affine transformations as required by other models.

B CELEBGLOW DATASET

The current disentanglement datasets such as dSprites, Shapes3D, MPI3D, and others are con-
structed based on highly controlled environments (Matthey et al., 2017; Kim & Mnih, 2018; Gondal
et al., 2019). Here, common factors of variations are rotations or scaling of simple geometric ob-
jects, such as a square. For a more intuitive investigation of other factors, we created the CelebGlow
dataset. Here, the factors of variations are smiling, blondness and age. Samples are shown in Fig. 8.
Note that we rely on the Glow model instead of taking a real-world dataset, as this allows for a
gradual control of individual factors of variation.
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Figure 8: CelebGlow Dataset

The CelebGlow dataset is created based on the invertible generative neural network of Kingma et
al. (Kingma & Dhariwal, 2018). We used their provided network? that is pretrained on the Celeb-HQ
dataset, and has labelled directions in the model-latent space that correspond to specific attributes of
the dataset. Based on this latent space, we created the dataset as follows:

1. In the latent space of the model, we sample from a high dimensional Gaussian with zero
mean and a low standard deviation of 0.3 to avoid too much variability.

2. Next, we perform a latent walk into the directions that correspond to "Smiling", "Age"
and "Blondness" in 1mage space. To estimate the spacing, we rely on the function ma
nipulate_range’. We perform 6 steps along each axis and all combinations (6x6x6
cube). As a scale parameter to the function, we use 0.8. Those factors were chosen s.t. the
images differ significantly, but also to stay in the valid range of the model based on visual
inspection.

3. We pass all latent coordinates through the glow network in the generative direction.

4. We further down-sample the images from 256x256x3 to 64x64x3 to match the resolution
of common disentanglement datasets.

5. Finally, we store each image and the corresponding factor combination.

This procedure is repeated for 1000 samples to get 6 * 6 * 6% 1000 = 216000 samples in total, which
is around the same size as other common datasets.

C HYPERPARAMETER TUNING ABLATION

As described in the implementation details, we use common values from the literature to train the
proposed models. Here, we investigate effects of such hyperparameters on the CNN architecture.
Due to the combinatorial complexity, we do not perform a search for other architectures. As hy-
perparameters, we varied the number or training iterations (3 different numbers of iterations), we
introduced 5 different strengths of regularization, 2 different depths for the CNN architecture [6
layers, 9 layers] and ran multiple random seeds for each combination.

The results on the extrapolation test on MPI3D set are shown in Fig. 9. Given this hyperparameter
search, we find no improvement over our reported numbers for the CNN.

>The network can be found at: https://github.com/openai/glow/blob/master/demo/
script.sh#L24
3https ://github.com/openai/glow/blob/master/demo/model .py#L219
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Figure 9: Hyperparameter search on MPI3D for a CNN.
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Figure 10: R?-score on MPI3D-Synthetic.

D REAL VERSUS SYNTHETIC DATASET

To narrow down the question “why the generalization capabilities drop on real-world dataset
MPI3D?”, we run a comparison on MPI3D dataset with real and synthetic images.

The results on the MPI3D dataset with synthetic images is shown in Fig. 10 and Table 10. Comparing
this with R-squared performances to MPI3D with real-world images (Fig. 4 and Table 9), we observe
that the results do not change significantly (most results are in a 1-2sigma range). We conclude that
the larger drops in performance on MPI3D compared to Shapes3D or dSprites, are not due to the
real images as opposed to synthetic images. Instead, we hypothesize that it is due to the more
realistic setup of the MPI3D dataset itself. For instance, it contains complex factors like rotation in
3D projected on 2D. Here, occluded parts of objects have to be guessed based on certain symmetry
assumptions.

E ABLATION ON NON-AMBIGUOUS DSPRITES

The setup of dSprites is non-injective, as different rotations map to the same image. E.g., the square
at a rotation 90° is identical to the one rotated by 180° and therefore ambiguous. Thus, the training
process is noisy. In an ablation study, we controlled for this by constraining the rotations to lie in
[0,90). We again ran all our proposed models and report the R?-Score in Fig. 11b.
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Figure 11: R*-score on various splits.

Comparing the new results with the original dSprites results shows: First, for the random test-
train split, resolving the rotational ambiguity leads to almost perfect performance (close to 100%
R-squared scores for most models). In the previous dSprites setup with rotational ambiguity, top ac-
curacies are around 70-95% R-squared scores for most models. Second, large drops in performance
can still be observed when we move towards the systematic out-of-distribution splits (composition,
interpolation, and extrapolation). Also, our insights on how models extrapolate remain the same.
Lastly, for the random split, the Rotation-EQ model shows non-perfect performance. Tracing this
error to individual factors, it turns out this is due to limited capabilities in predicting the x, y posi-
tions. We hypothesize that this is due to limitations of convolutions in propagating spatial positions,
as discussed in (Liu et al., 2018). The DenseNet performs perfectly on the train set and might be
overfitting.

We conclude that the rotational ambiguity explains the drops on the random split. However, the clear
drops in performance on the systematic splits remain nonetheless. Thus, the analysis we perform in
the paper and the conclusions we draw remain the same.

F DATA AUGMENTATIONS

We investigate the effects of data augmentation during training time on the generalization perfor-
mance in the extrapolation setting of our proposed benchmark.

As data augmentations, we applied random erasing, Gaussian Noise, small shearings, and blurring.
Note that we could not use arbitrary augmentations. For instance, shift augmentations would lead
to ambiguities with the “shift” factor in dSprites. Next, we trained CNNs with and without data
augmentations on all four datasets (dSprites, Shapes3D, MPI3D, CelebGlow) on the extrapolation
splits with multiple random seeds.

The results are visualized in Fig. 12. For the mean performance, we observe no significant improve-
ment by adding augmentations. However, the overall spread of the scores seems to decrease given
augmentations on some datasets. We explain this by the fact that the augmentations enforce cer-
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Figure 12: R?-score on data augmenations. We depict the performance on the extrapolation setting with and
without data augmentations for a CNN network with various random seeds on our considered datasets.

tain invariances, narrowing the solution space of optimal training solutions by providing a further
specification (specification in the sense of D’ Amour et al. (2020)).

G PERFORMANCE WITH RESPECT TO INDIVIDUAL FACTORS

We here try to attribute the performance losses to individual OOD factors (see §5.2). Thus, on the
extrapolation setting, we modify the test-splits such that only a single factor is out-of-distribution.
Next, we measure the overall performance across models (all fully supervised and transfer models)
to demonstrate the effect of this factor. The results are depicted for all models in Fig. 13. Overall,
factors like "height" on MPI3D that control the viewing of the camera and, subsequently, change
attributes like the absolute position in the image of other factors (e.g., the tip of the robot arm) have
a high effect.

H IMPLEMENTATION DETAILS
H.1 DATA SETS

Each dataset consists of multiple factors of variation and every possible combination of factors
generates a corresponding image. Here, we list all datasets and their corresponding factor ranges.
Note, to estimate the reported R2-score, we normalize the factors by dividing each factor y; by
|[ymax — ymin| je., all factors are in the range [0, 1]. dSprites (Matthey et al., 2017), represents
some low resolution binary images of basic shapes with the 5 FoVs shape {0, 1, 2}, scale {0, ..., 4},
orientation* [{0; ..., 39}, x-position {0, ..., 31}, and y-position {0, ..., 31}. Next, Shapes3D (Kim &
Mnih, 2018) which is a similarly popular dataset with 3D shapes in a room scenes defined by the
6 FoVs floor color {0, ..., 9}, wall color {0, ..., 9}, object color {0, ..., 9}, object size {0, ..., 7},
object type {0, ..., 3} and azimuth {0, ..., 14}. Lastly, we consider the challenging and more realistic
dataset MPI3D (Gondal et al., 2019) containing real images of physical 3D objects attached to a
robotic finger generated by 7 FoVs color {0, ..., 5}, shape {0, ..., 5}, size {0, 1}, height {0, 1, 2},
background color {0, 1, 2}, x-axis {0, ..., 39} and y-axis {0, ..., 39}.

H.2 DATA SET SPLITS

Each dataset is complete in the sense that it contains all possible combinations of factors of varia-
tion. Thus, the interpolation and extrapolation test-train splits are fully defined by specifying which
factors are exclusively in the test set. Starting from all possible combinations, if a given factor value

“Note that this dataset contains a non-injective generative model as square and ellipses have multiple rota-
tional symmetries.

dsprites shapes3d mpi3d celeb_glow
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Figure 13: R-score on in individual factors. Extrapolation performance across models when only a single
factor (x-axis) is OOD.
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is defined to be exclusively in the test set, the corresponding image is part of the test set. E.g. for the
extrapolation case in dSprites, all images containing x-positions > 24 are part of the test set and the
train set its respective complement D\ D;.,;. Composition can be defined equivalently to extrapola-
tion but with interchanged test and train sets. The details of the splits are provided in table Tables 2
and 3. The resulting train vs. test sample number ratios are roughly 30 : 70. See Table 4. We will
release the test and train splits to allow for a fair comparison and benchmarking for future work.

For the setting where only a single factor is OOD, we formally define this as
Done-ood = {(y",x*) € Die | i € Nsit. yff # y; V(y',x') € Do} 3)

Here, we used the superscript indices to refer to a sample and the subscript to denote the factor. Note
that the defined set is only nonempty in the interpolation and extrapolation settings.

H.3 TRAINING

All models are implemented using PyTorch 1.7. If not specified otherwise, the hyperparameters
correspond to the default library values.

Un-/ weakly supervised For the un-/weakly supervised models, we consider 10 random seeds per
hyperparameter setup. As hyperparameters, we optimize one parameter of the learning objective per
model similar to Table 2 from Locatello et al. (Locatello et al., 2020a). For the Slow VAE, we took the
optimal values from Klindt et al. (Klindt et al., 2020) and tuned for v € {1,5,10,15,20,25}. The
PCL model itself does not have any hyperparameters (Hyvarinen & Morioka, 2017). For simplicity,
we determine the optimal setup in a supervised manner by measuring the DCI-Disentanglement
score (Eastwood & Williams, 2018) on the training split. The PCL and SlowVAE models are
trained on pairs of images that only differ sparsely in their underlying factors of variation following a
Laplace transition distribution, the details correspond to the implementation ° of Klindt et al. (Klindt
et al., 2020). The Ada-GVAE models are trained on pairs of images that differ uniformly in a single,
randomly selected factor. Other factors are kept fixed. This matches the strongest model from Lo-
catello et al. (Locatello et al., 2020a) implemented on GitHub®. All 3-VAE models are trained in an
unsupervised manner. All un- and weakly supervised models are trained with the Adam optimizer
with a learning rate of 0.0001. We train each model for 500, 000 iterations with a batch size of
64, which for the weakly supervised models, corresponds to 64 pairs. Lastly, we train a supervised
readout model on top of the latents for 8 epochs with the Adam optimizer on the full correspond-
ing training dataset and observe convergence on the training and test datasets - no overfitting was
observed.

Fully supervised: All fully supervised models are trained with the same training scheme. We
use the Adam optimizer with a learning rate of 0.0005. The only exception is DenseNet, which is
trained with a learning rate of 0.0001, as we observe divergences on the training loss with the higher
learning rate. We train each model with three random seeds for 500, 000 iterations with a batch size
of b = 64. As a loss function, we consider the mean squared error MSE = 22:0 lly; — f;(x)||3/b
per mini-batch.

Transfer learning: The pre-trained models are fine-tuned with the same loss as the fully super-
vised models. We train for 50, 000 iterations and with a lower learning rate of 0.0001. We fine-tune
all model weights. As an ablation, we also tried only training the last layer while freezing the other
weights. In this setting, we consistently observed worse results and, therefore, do not include them
in this paper.

H.4 MODEL IMPLEMENTATIONS

Here, we shortly describe the implementation details required to reproduce our model implementa-
tion. We denote code from Python libraries in grey. If not specified otherwise, the default parameters
and nomenclature correspond to the PyTorch 1.7 library.

Shttps://github.com/bethgelab/slow_disentanglement/blob/master/scripts/
dataset.py#L94

Shttps://github.com/google-research/disentanglement_lib/blob/master/
disentanglement_lib/methods/weak/weak_vae.py#L62 and https://github.com/
google-research/disentanglement_lib/blob/master/disentanglement_lib/
methods/weak/weak_vae.py#L317
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dataset split name exclusive test factors
0  dSprites interpolation  shape {}
1 dSprites interpolation  scale {1, 4}
2 dSprites interpolation  orientation {32,2,37,7,12,17,22,27}
3 dSprites interpolation  Xx-position {2,7,11, 15, 20, 24, 29}
4 dSprites interpolation  y-position {2,7, 11, 15, 20, 24, 29}
5  dSprites extrapolation  shape {}
6  dSprites extrapolation scale {4,5}
7 dSprites extrapolation orientation {32, 33, 34, 35, 36, 37, 38, 39}
8  dSprites extrapolation  x-position {25, 26, 27, 28, 29, 30, 31}
9 dSprites extrapolation y-position {25, 26, 27, 28, 29, 30, 31}
10 Shapes3D  interpolation  floor color {2,7}
11 Shapes3D  interpolation  wall color {2,7}
12 Shapes3D  interpolation  object color {2,7}
13 Shapes3D  interpolation  object size {2,5}
14 Shapes3D  interpolation  object type {}
15  Shapes3D interpolation  azimuth {2,12,7}
16 Shapes3D  extrapolation floor color {8,9}
17 Shapes3D  extrapolation  wall color {8,9}
18 Shapes3D  extrapolation object color {8,9}
19 Shapes3D  extrapolation object size {6,7}
20 Shapes3D  extrapolation object type {}
21 Shapes3D extrapolation azimuth {12, 13, 14}
22  MPI3D interpolation  color {3}
23  MPI3D interpolation  shape {}
24  MPI3D interpolation  size {}
25 MPI3D interpolation  height {1}
26 MPI3D interpolation  background color {1}
27 MPI3D interpolation  x-axis {24, 34,5, 15}
28 MPI3D interpolation  y-axis {24, 34,5, 15}
29 MPI3D extrapolation color {5}
30 MPI3D extrapolation  shape {}
31 MPI3D extrapolation  size {}
32 MPI3D extrapolation height {2}
33 MPI3D extrapolation  background color {2}
34 MPI3D extrapolation  x-axis {36, 37, 38, 39}
35 MPI3D extrapolation  y-axis {36, 37, 38, 39}
36 CelebGlow interpolation person {}
37 CelebGlow interpolation smile {1,4}
38 CelebGlow interpolation  blond {1, 4}
39 CelebGlow interpolation age {1, 4}
40 CelebGlow extrapolation person {}
41 CelebGlow extrapolation smile {4,5}
42 CelebGlow extrapolation blond {4,5}
43  CelebGlow extrapolation age {4,5}

Table 2: Interpolation and extrapolation splits.
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dataset split name exclusive train factors

0  dSprites composition  shape {}

1 dSprites composition  scale {}

2 dSprites composition  orientation {0, 1, 2, 3}

3 dSprites composition  x-position {0, 1,2}

4 dSprites composition  y-position {0, 1,2}

5 Shapes3D  composition floor color {0}

6  Shapes3D composition wall color {0}

7  Shapes3D composition object color {0}

8 Shapes3D  composition object size {}

9  Shapes3D composition object type {}

10 Shapes3D composition azimuth {0}

11 MPI3D composition  color {}

12 MPI3D composition  shape {}

13 MPI3D composition  size {}

14  MPI3D composition  height {}

15 MPI3D composition  background color {}

16 MPI3D composition  x-axis {0,1,2,3,4,5}

17 MPI3D composition  y-axis {0,1,2,3,4,5}

Table 3: Composition splits.
dataset split % test % train  Total samples

0  dSprites random 32.6 67.4 737280
1 dSprites composition 26.1 73.9 737280
2 dSprites interpolation 32.6 67.4 737280
3 dSprites extrapolation 32.6 67.4 737280
4 Shapes3D random 30.7 69.3 480000
5 Shapes3D  composition 32.0 68.0 480000
6  Shapes3D interpolation 30.7 69.3 480000
7  Shapes3D extrapolation 30.7 69.3 480000
8 MPI3D random 30.0 70.0 1036800
9 MPI3D composition 27.8 72.2 1036800
10 MPI3D interpolation 30.0 70.0 1036800
11 MPI3D extrapolation 30.0 70.0 1036800

Table 4: Test train ratio.
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The un- and weakly supervised models 5-VAE, Ada-GVAE and SlowVAE all use the same encoder-
decoder architecture as Locatello et al. (Locatello et al., 2020a). The PCL model uses the same
architecture as the encoder as well and with the same readout structure for the contrastive loss as
used by Hyvirinen et al. (Hyvarinen & Morioka, 2017). For the supervised readout MLP, we use
the sequential model [Linear (10, 40), ReLU(), Linear (40, 40), ReLU (40, 40),
Linear (40, 40), ReLU(), Linear (40, number—-factors) ].

The MLP model consists of [Linear (64*64*number—channels, 90), ReLU (), Lin
ear (90, 90), ReLU (), Linear (90, 90), ReLU(), Linear (90, 90), ReLU(), Lin
ear (90, 45), ReLU(), Linear (22, number—factors)]. The architecture is chosen
such that it has roughly the same number of parameters and layers as the CNN.

The CNN architecture corresponds the one used by Locatello et al. (Locatello et al., 2020a). We
only adjust the number of outputs to match the corresponding datasets.

The CoordConv consists of a CoordConv2D layer following the PyTorch implementation’ with 16
output channels. It is followed by 5 ReLU-Conv layers with 16 in- and output channels each and a
MaxPool2D layer. The final readout consists of [Linear (32, 32), ReLU (), Linear (32,
number—factors) ].

The SetEncoder concatenates each input pixel with its 4, j pixel coordinates normalized to [0, 1]. All
concatenated pixels (i, j, pixel-value) are subsequently processed with the same network which con-
sists of [Linear (2+number—channels), ReLU(), Linear (40, 40), ReLU(), Lin
ear (40, 20), ReLU () ]. This is followed by a mean pooling operation per image which guar-
antees an invariance over the order of the inputs, i.e. one could shuffle all inputs and the output
would remain the same. As a readout, it follows a sequential fully connected network consisting of
[Linear (20, 20), ReLU(), Linear (20, 20), ReLU(), Linear (20, number—fac
tors)].

The rotationally equivariant network RotEQ is similar to the architecture from Locatello et al. (Lo-
catello et al., 2020a). One difference is that it uses the R2Conv module® from Weiler et al. (Weiler
& Cesa, 2019) instead of the PyTorch Conv2d with an 8-fold rotational symmetry. We thus decrease
the number of feature maps by a factor of 8, which roughly corresponds to the same computational
complexity as the CNN. We provide a second version which does not decrease the number of feature
maps and, thus, has the same number of trainable parameters as the CNN but a higher computational
complexity. We refer to this version as RotEQ-big.

To implement the spatial transformer (STN) (Wu et al., 2019), we follow the PyTorch tutorial
implementation’ which consists of two steps. In the first step, we estimate the parameters of
a (2, 3)-shaped affine matrix using a sequential neural network with the following architecture
[Conv2d (number_channels, 8, kernel_size=7), MaxPool2d (2, stride=2),
RelLU (), Conv2d (8, 10, kernel_size=5), MaxPool2d (2, stride=2), ReLU(),
Conv2d (10, 10, kernel_size=6), MaxPool2d (2, stride=2), RelLU(), Lin
ear (10%x3%3, 31), ReLU(), Linear (32, 3%2)]. In the second step, the input image is
transformed by the estimated affine matrix and subsequently processed by a CNN which has the
same architecture as the CNN described above.

For the transfer learning models ResNet50 (RN50) and ResNet101 (RN101) pretrained on
ImageNet-21k (IN-21k), we use the big-transfer (Kolesnikov et al., 2020) implementation'®. For the
RN50, we download the weights with the tag "BiT-M-R50x1", and for the RN101, we use the

tag "BiT-M-R101x3". For the DenseNet trained on ImageNet-1k (IN-1k), we used the weights
from densenet121. For all transfer learning methods, we replace the last layer of the pre-trained
models with a randomly initialized linear layer which matches the number of outputs to the number

"https://github.com/walsvid/CoordConv
$https://github.com/QUVA-Lab/e2cnn
*https://pytorch.org/tutorials/intermediate/spatial_transformer_
tutorial.html
mhttps://colab.research.google.com/github/googlefresearch/bigftransfer/
blob/master/colabs/big_transfer_pytorch.ipynb and for the weights https:
//storage.googleapis.com/bit_models/{bit_variant}.npz
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Figure 14: Interpolation / Extrapolation and modularity.

of factors in each dataset. As an ablation, we also provide a randomly initialized version for each
transfer learning model.

H.5 COMPUTE

All models are run on the NVIDIA T4 Tensor Core GPUs on the AWS g4dn.4xlarge instances with
an approximate total compute of 20 000 GPUh. To save computational cost, we gradually increased
the number of seeds until we achieved acceptable p-values of < 0.05. In the end, we have 3 random
seeds per supervised model and 10 random seeds per hyperparameter setting for the un and weakly
supervised models.

I ADDITIONAL RESULTS
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modification random composition interpolation extrapolation
models

BetaVAE 782+2.1 0.1+6.5 64.0+ 5.1 18.3£ 12.3
Ada-GVAE 86.6£19 -1.4£55 73.4+9.2 51.2+5.5
SlowVAE 86.7+0.2 20.7+7.3 82.8+ 1.4 66.7+ 1.7
PCL 87.0+0.1 27.1x5.5 86.4+0.9 63.0+2.5
MLP 81.1£0.2 -10.6+1.3 53.3+2.1 25.7+£5.4
CNN 823+£09 33.1+4.8 83.1£0.8 57.7£5.5
CoordConv 94.7£0.6 67.7£5.1 75.1£4.8 56.3+2.6
Coordinate Based 73.3£0.3 20.4+0.8 493+ 1.3 8.8+£20.5
Rotation-EQ 53.6+£0.1 -129+7.1 28.3+ 1.0 -23.8+4.1
Rotation-EQ-big 337+ 1.3 -8.6x1.6 327+ 0.5 -259+1.2
Spatial Transformer 89.6+2.4 33.0+9.6 84.9+ 1.3 60.8+ 2.0
RNS50 92.7£0.1 56.5+14 82.1+0.1 56.9+39
RN101 92.6£0.1 56.8+3.1 81.7+ 0.8 58.1+29
DenseNet 922+0.2 654+24 84.3£0.2 64.4+ 3.7

RN50 (ImageNet-21k) 93.6£0.2 49.7+29 82.5+£0.3 62.0+ 0.8
RN101 (ImageNet-21k)  95.7+0.5 43.0+4.8 83.5+0.6 58.3+ 1.6
DenseNet (ImageNet-1k) 68.5+5.4 60.8+5.7 57.3+17.7 38.4+19.8

Table 5: R?-score on dSprites

modification random composition interpolation extrapolation
models

BetaVAE 943+-03  43+-15 94.8+- 0.5 29.5+- 8.4
Ada-GVAE 99.8+-0.0  9.3+-43 92.9+-3.8 74.4+- 0.6
SlowVAE 99.8+-0.0  58.9+-3.7 99.5+- 0.3 77.1+- 2.7
PCL 99.7+- 0.0  453+- 144  99.6+- 0.0 77.5+ 1.1
MLP 98.1+-0.1  -8.8+-0.2 76.7+- 0.5 43.5+- 0.1
CNN 100.0+- 0.0  53.3+- 104  99.7+- 0.0 78.4+- 0.5
CoordConv 100.0+- 0.0  99.1+- 0.3 99.0+- 0.6 772+ 4.4
Coordinate Based 83.6+- 1.5 12.1+- 3.7 552+ 1.5 -11.5+-15.6
Rotation-EQ 53.0+-0.3 14.6+- 1.6 71.3+- nan -6.9+- 0.8
Rotation-EQ-big 43.9+-04  26.0+- 1.7 71.5+- 0.0 -1.9+ 1.3
Spatial Transformer 100.0+- 0.0  39.0+- 4.0 99.4+- 0.2 62.5+- 13.1
RN50 100.0+- 0.0 81.0+-2.2 98.7+- 0.4 68.6+- 0.1
RN101 100.0+- 0.0 74.0+-28.4 98.0+- 0.4 69.9+- 3.7
DenseNet 100.0+- 0.0  97.6+- 0.5 99.6+- 0.2 73.8+- 2.8

RN50 (ImageNet-21k) 100.0+- 0.0 55.8+- 1.8 98.3+- 0.3 68.2+- 3.1
RN101 (ImageNet-21k) 100.0+- 0.0 82.0+-10.7  99.6+- 0.1 77.9+- 0.4
DenseNet (ImageNet-1k)  87.0+- 182  97.6+- 0.5 99.8+- 0.1 -420.5+- 504.1

Table 6: R?-score on dSprites rotation [0, 90)
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modification random composition interpolation extrapolation
models

BetaVAE 99.9+0.1  99.6+£0.2 90.8+ 8.0 344+ 135
Ada-GVAE 99.9+0.0 99.4+04 91.1£9.2 37.6£21.6
SlowVAE 99.8+0.1 97.2+1.5 87.4+5.7 32.8+7.2
PCL 99.9+0.0 93.6£ 1.6 98.5£ 0.5 29.8+ 29.1
MLP 100.0£ 0.0 99.8+0.2 98.5+ 1.2 40.3£9.9
CNN 100.0£ 0.0 100.0£0.0  97.3%0.1 48.9+23.2
CoordConv 100.0£0.0 993+ 1.2 96.7+ 1.1 46.2+ 43
Coordinate Based 100.0£ 0.0 64.0+3.7 93.6+ 5.0 247+ 7.0
Rotation-EQ 100.0£ 0.0 98.5+2.2 96.9+ 2.7 57.2+11.7
Rotation-EQ-big 100.0£ 0.0 100.0£0.0  98.8+0.8 527 1.5
Spatial Transformer 100.0£0.0 100.0+£ 0.0 97.8+ 0.1 527+ 13.9
RN50 100.0£ 0.0 100.0£0.0  98.8+0.3 62.8+3.7
RN101 100.0+£0.0 100.0£0.0  99.1+0.1 67.8+ 1.7
DenseNet 100.0£0.0 993+ 1.2 98.9+ 0.3 48.5+ 3.0

RN50 (ImageNet-21k) 100.0+ 0.0 100.0+ 0.0 99.3+0.1 46.1+ 14.8
RN101 (ImageNet-21k) 100.0+ 0.0 100.0+ 0.0 99.4+ 0.2 34.8+ 8.3
DenseNet (ImageNet-1k) 97.1+ 3.8 100.0+ 0.0 86.8+ 17.7 5324223

Table 7: R?-score on Shapes3D

modification random composition interpolation extrapolation
models

BetaVAE 68.4+- 0.6 43.7+- 3.1 66.2+- 0.1 43.5+-0.3
Ada-GVAE 69.8+- 0.4 48.6+-2.7 68.4+- 0.6 44.5+- 0.5
SlowVAE 70.3+-0.6  53.9+-2.7 69.5+- 0.0 437+ 1.0
PCL 46.0+-0.1 -7.0+- 14 19.7+- 0.1 -48.4+- 2.6
MLP 933+ 1.7 753+-22 82.0+- 0.6 50.0+- 2.7
CNN 95.4+-0.0 759+-1.7 86.9+- 1.3 57.9+- 3.0
CoordConv 81.5+-3.0 57.7+- 1.8 74.4+-2.4 33.5+-6.7
Coordinate Based 74.8+-03 58.0+-39 68.8+- 0.5 22.7+- 1.8
Rotation-EQ 857+ 1.9 59.9+-29 82.0+- 2.1 44.1+- 5.1
Rotation-EQ-big 97.3+-0.0 81.7+-1.6 96.1+- 0.1 66.4+- 0.3
Spatial Transformer 95.8+- 0.1 76.8+-0.1 88.0+- 0.9 57.7+- 0.5
RN50 99.3+-03 79.5+-2.8 89.3+-0.2 48.6+- 1.0
RN101 99.3+-0.1 81.5+-2.0 88.6+- 0.1 49.1+- 0.7
DenseNet 99.2+-0.3 83.9+-0.6 89.1+- 0.7 49.8+- 2.1

RN50 (ImageNet-21k) 97.7+- 1.3 76.9+-0.5 86.8+- 0.7 50.1+- 0.8
RN101 (ImageNet-21k) 98.3+- 0.0 78.9+- 1.1 87.8+- 0.7 49.3+- 1.0
DenseNet (ImageNet-1k) 96.8+- 3.1 81.7+- 2.0 90.1+- 1.3 59.6+- 1.3

Table 8: R2-score on CelebGlow
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modification random composition interpolation extrapolation
models
BetaVAE 794+1.1  -62+25 10.9+ 8.9 -9.9+6.3
Ada-GVAE 64.5+0.8 -3.3+3.0 9.5+£5.7 -3.6+£9.2
SlowVAE 89.0+19 -16.6+£113 -10.9+85 -31.5£15.2
PCL 95.8£0.7 10.7£102  21.8+75 -4.1£10.3
MLP 97.0£0.5 3.5+40 -37.5£7.5 -37.5+ 12.1
CNN 99.8£0.0 34.7+14 26.3£11.3 18.3+10.0
CoordConv 98.6+£0.5 27.7£19.3 18.5+19.0 15.3+27.5
Coordinate Based 93.5£0.6 19.5£53 -50.5£48.0  -421.1+286.5
Rotation-EQ 95.3+0.6  23.6+£0.8 12.3+12.1 -44.3+ 153
Rotation-EQ-big 99.9+0.0 459+1.0 45.8+3.6 10.5+2.8
Spatial Transformer 99.8+ 0.0 16.1+2.4 31.5+12.2 9.0+ 8.8
RNS50 100.0+ 0.0 263+ 1.5 29.4+5.8 22.0£5.3
RN101 100.0£ 0.0 26.1+4.6 23.3+15.7 20.7+ 4.4
DenseNet 100.0+ 0.0 44.0+1.0 54.6+£3.3 7.0+£11.2
RN50 (ImageNet-21k) 99.8£0.0  23.8+3.3 43.6£ 6.5 54.1£ 1.9
RN101 (ImageNet-21k) ~ 99.8£0.1  37.0+34 354+ 154 41.6+ 8.5
DenseNet (ImageNet-1k) 44.0+79.0 49.0+0.7 722+ 34 389+ 19
Table 9: R?-score on MPI3D
modification random composition interpolation  extrapolation
models
BetaVAE 799+ 04  7.1+-6.1 6.9+- 2.7 1.1+ 114
Ada-GVAE 57.6+-12  1.2+-4.0 -22.4+4-2.5 5.0+-4.2
SlowVAE 71.8+-13  -5.6+ 1.7 59+ 0.2 -5.0+- 1.8
PCL 974+ 13 43+-1.8 12.7+- 2.1 -11.3+- 5.9
MLP 90.5+-0.6  3.2+-0.0 -33.2+- 0.8 -31.1+- 44
CNN 99.5+-0.0  23.0+- 0.7 18.0+- 7.0 -26.0+- 6.4
CoordConv 97.4+-18 412+ 44 30.9+-33.4 2.8+- 38.8
Coordinate Based 91.7+-2.6  9.6+-0.1 -113.1+-454  -76.7+-25.2
Rotation-EQ 94.8+-0.7  22.6+-49 15.5+- 6.6 -38.1+-9.5
Rotation-EQ-big 99.9+-0.0 47.6+ 14 45.7+- 4.8 -4.5+-13.2
Spatial Transformer 99.6+- 0.1 23.6+- 6.4 377+ 18.4 -2.2+- 0.6
RN50 99.9+-0.1  23.4+-15 40.3+ 1.3 14.9+-10.2
RN101 99.9+- 0.1 19.7+- 1.0 37.8+- 3.7 9.8+ 11.7
DenseNet 99.9+-0.0  33.2+-0.5 51.4+-3.0 4.0+- 6.5
RN50 (ImageNet-21k) 99.6+-0.1  27.7+- 1.1 48.7+ 1.2 11.2+-16.2
RN101 (ImageNet-21k) ~ 99.8+-0.1  39.2+- 3.7 39.2+- 7.6 5.6+-10.5
DenseNet (ImageNet-1k) 62.9+-51.9 41.8+- 2.6 73.7+-4.9 34.3+-0.5

Table 10: R?-score on MPI3D-Toy
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Figure 15: Shapes3D extrapolation. We show the qualitative extrapolation of a CNN model. The shape
category is excluded because no order is clear.
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Figure 16: MPI3D-Real extrapolation. We show the qualitative extrapolation of a CNN model. The shape
category is excluded because no order is clear. Size is excluded because only two values are available.
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Figure 17: Model similarity on extrapolation errors.
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Abstract. The human visual system is remarkably robust against a
wide range of naturally occurring variations and corruptions like rain or
snow. In contrast, the performance of modern image recognition models
strongly degrades when evaluated on previously unseen corruptions. Here,
we demonstrate that a simple but properly tuned training with additive
Gaussian and Speckle noise generalizes surprisingly well to unseen corrup-
tions, easily reaching the state of the art on the corruption benchmark
ImageNet-C (with ResNet50) and on MNIST-C. We build on top of
these strong baseline results and show that an adversarial training of
the recognition model against locally correlated worst-case noise distribu-
tions leads to an additional increase in performance. This regularization
can be combined with previously proposed defense methods for further
improvement.

Keywords: Image corruptions, robustness, generalization, adversarial
training

1 Introduction

While Deep Neural Networks (DNNs) have surpassed the functional performance
of humans in a range of complex cognitive tasks [12], [44], [38], [2], [30], they still
lag behind humans in numerous other aspects. One fundamental shortcoming of
machines is their lack of robustness against input perturbations. Even minimal
perturbations that are hardly noticeable for humans can derail the predictions of
high-performance neural networks.

For the purpose of this paper, we distinguish between two types of input
perturbations. One type are minimal image-dependent perturbations specifically
designed to fool a neural network with the smallest possible change to the input.
These so-called adversarial perturbations have been the subject of hundreds
of papers in the past five years, see e.g. [39], [21], [35], [11]. Another, much
less studied type are common corruptions. These perturbations occur naturally
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in many applications and include simple Gaussian or Salt and Pepper noise;
natural variations like rain, snow or fog; and compression artifacts such as those
caused by JPEG encoding. All of these corruptions do not change the semantic
content of the input, and thus, machine learning models should not change their
decision-making behavior in their presence. Nonetheless, high-performance neural
networks like ResNet50 [12] are easily confused by small deformations [1]. The
juxtaposition of adversarial examples and common corruptions was explored
in [8] where the authors discuss the relationship between both and encourage
researchers working in the field of adversarial robustness to cross-evaluate the
robustness of their models towards common corruptions.

We argue that in many practical applications, robustness to common corrup-
tions is often more relevant than robustness to artificially designed adversarial
perturbations. Autonomous cars should not change their behavior in the face of
unusual weather conditions such as hail or sand storms or small pixel defects in
their sensors. Not-Safe-For-Work filters should not fail on images with unusual
compression artifacts. Likewise, speech recognition algorithms should perform
well regardless of the background music or sounds.

Besides its practical relevance, robustness to common corruptions is also an
excellent target in its own right for researchers in the field of adversarial robustness
and domain adaptation. Common corruptions can be seen as distributional shifts
or as a weak form of adversarial examples that live in a smaller, constrained
subspace.

Despite their importance, common corruptions have received relatively little
attention so far. Only recently, a modification of the ImageNet dataset [34] to
benchmark model robustness against common corruptions and perturbations
has been published [13] and is referred to as ImageNet-C. Now, this scheme has
also been applied to other common datasets resulting in Pascal-C, Coco-C and
Cityscapes-C [25] and MNIST-C [29].

Our contributions are as follows:

— We demonstrate that data augmentation with Gaussian or Speckle noise
serves as a simple yet very strong baseline that is sufficient to surpass almost
all previously proposed defenses against common corruptions on ImageNet-C
for ResNet50. We further show that the magnitude of the additive noise is a
crucial hyper-parameter to reach optimal robustness.

— Motivated by our strong results with baseline noise augmentations, we in-
troduce a neural network-based adversarial noise generator that can learn
arbitrary uncorrelated noise distributions that maximally fool a given recog-
nition network when added to their inputs. We denote the resulting noise
patterns as adversarial noise.

— We design and validate a constrained Adversarial Noise Training (ANT)
scheme through which the recognition network learns to become robust against
adversarial i.i.d. noise. We demonstrate that our ANT reaches state-of-the-art
robustness on the corruption benchmark ImageNet-C for the commonly used
ResNet50 architecture and on MNIST-C, even surpassing the already strong
baseline noise augmentations. This result is not due to overfitting on the
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Fig. 1. Outline of our approach. A: First, we train a generative network
against a vanilla trained classifier to find the adversarial noise. B: To achieve
robustness against adversarial noise, we train the classifier and the noise
generator jointly. C: We measure the robustness against common corruptions
for a vanilla, adversarially trained (Adv. Tr.), trained on Stylized ImageNet
(SIN), trained via Gaussian data augmentation (GNT) and trained with the
means of Adversarial Noise Training (ANT). With our methods, we achieve
the highest accuracy on common corruptions, both on all and non-noise
categories.

noise categories of the respective benchmarks since we find equivalent results
on the non-noise corruptions as well.

— We extend the adversarial noise generator towards locally correlated noise
thereby enabling it to learn more diverse noise distributions. Performing ANT
with the modified noise generator, we observe an increase in robustness for
the ‘snow’ corruption which is visually similar to our learned noise.

— We demonstrate a further increase in robustness when combining ANT with
previous defense methods.

— We substantiate the claim that increased robustness against regular or uni-
versal adversarial perturbations does not imply increased robustness against
common corruptions. This is not necessarily true vice-versa: Our noise trained
recognition network has high accuracy on ImageNet-C and also slightly im-
proved accuracy on adversarial attacks on clean ImageNet compared to a
vanilla trained ResNet50.

We released our model weights along with the full training code on GitHub. *

! github.com/bethgelab /game-of-noise
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2 Related work

Robustness against common corruptions Several recent publications study
the vulnerability of DNNs to common corruptions.

Two recent studies compare humans and DNNs on recognizing corrupted
images, showing that DNN performance drops much faster than human per-
formance for increased perturbation sizes [5], [10]. Hendrycks et al. introduce
corrupted versions of standard datasets denoted as ImageNet-C, Tiny ImageNet-
C and CIFAR10-C as standardized benchmarks for machine learning models [13].
Similarly, common corruptions have been applied to and evaluated on COCO-C,
Pascal-C, Cityscapes-C [25] and MNIST-C [29].

There have been attempts to increase robustness against common corruptions.
Zhang et al. integrate an anti-aliasing module from the signal processing domain
in the ResNet50 architecture to restore the shift-equivariance which can get lost
in deep CNNs and report an increased accuracy on clean data and better gener-
alization to corrupted image samples [45]. Concurrent work to ours demonstrates
that having more training data [43], [22] or using stronger backbones [43], [25],
[18] can significantly improve model performance on common corruptions.

A popular method to decrease overfitting and help the network generalize
better to unseen data is to augment the training dataset by applying a set
of (randomized) manipulations to the images [26]. Furthermore, augmentation
methods have also been applied to make the models more robust against image
corruptions [9]. Augmentation with Gaussian [8], [19] or uniform noise [10] has
been tried to increase model robustness. Conceptually, Ford et al. is the closest
study to our work, since they also apply Gaussian noise to images to increase
corruption robustness [8]. They use a different architecture (InceptionV3 versus
our ResNet50). Also, they train a new model from scratch solely on images
perturbed by Gaussian noise whereas we fine-tune a pretrained model on a
mixture of clean and noisy images. They observe a low relative improvement in
accuracy on corrupted images whereas we were able to outperform all previous
baselines on the commonly used ResNet50 architecture.? Lopes et al. restrict
the Gaussian noise to small image patches, which improves accuracy but does
not yield state-of-the-art performance on the ResNet50 architecture [19]. Geirhos
et al. train ImageNet classifiers against a fixed set of corruptions but find no
generalized robustness against unseen corruptions [10]. However, they considered
vastly higher noise levels than us. Considering the efficacy of Gaussian or uniform
data augmentation to increase model robustness, the main difference to our work
is that other works have used either munch larger [10] or smaller [8], [19] values
for the standard deviation o. A too large o leads to an overfitting to the used
noise distribution whereas a too small o leads to noise levels that are not different
enough from the clean images. We show that taking o from the intermediate
regime works best for generalization both to other noise types and non-noise
corruptions.

2 To compare with Ford et al., we evaluate our approach for an InceptionV3 architecture,
see our results in Appendix H.
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Link between adversarial robustness and common corruptions There
is currently no agreement on whether adversarial training increases robustness
against common corruptions in the literature. Hendrycks et al. report a robust-
ness increase on common corruptions due to adversarial logit pairing on Tiny
ImageNet-C [13]. Ford et al. suggest a link between adversarial robustness and
robustness against common corruptions, claim that increasing one robustness type
should simultaneously increase the other, but report mixed results on MNIST
and CIFAR10-C [8]. Additionally, they also observe large drops in accuracy
for adversarially trained networks and networks trained with Gaussian data
augmentation compared to a vanilla classifier on certain corruptions. On the
other hand, Engstrom et al. report that increasing robustness against adversarial
/. attacks does not increase robustness against translations and rotations, but
they do not present results on noise [7]. Kang et al. study robustness transfer
between models trained against {1, ¢o, £, adversaries / elastic deformations and
JPEG artifacts [17]. They observe that adversarial training increases robustness
against elastic and JPEG corruptions on a 100-class subset of ImageNet. This
result contradicts our findings on full ImageNet as we see a slight decline in
accuracy on those two classes for the adversarially trained model from [42] and
severe drops in accuracy on other corruptions. Jordan et al. show that adversarial
robustness does not transfer easily between attack classes [16]. Trameér et al. [40]
also argue in favor of a trade-off between different robustness types. For a simple
and natural classification task, they prove that adversarial robustness towards [
perturbations does neither transfer to [y nor to input rotations and translations,
and vice versa and support their formal analysis with experiments on MNIST
and CIFARI0.

3 Methods

3.1 Training with Gaussian noise

As discussed in section 2, several researchers have tried using Gaussian noise
as a method to increase robustness towards common corruptions with mixed
results. In this work, we revisit the approach of Gaussian data augmentation and
increase its efficacy. We treat the standard deviation o of the distribution as a
hyper-parameter of the training and measure its influence on robustness.

To formally introduce the objective, let D be the data distribution over input
pairs (z,y) with x € RY and y € {1,...,k}. We train a differentiable classifier
fo(x) by minimizing the risk on a dataset with additive Gaussian noise

2B p 5B oy (e (fo(clip(@ + 8)), 9], )

where o is the standard deviation of the Gaussian noise and  + 8 is clipped to
the input range [0, 1]"V. The standard deviation is either kept fixed or is chosen
uniformly from a fixed set of standard deviations. In both cases, the possible
standard deviations are chosen from a small set of nine values inspired by the



6 E. Rusak et al.

noise variance in the ImageNet-C dataset (cf. section 3.3). To maintain high
accuracy on clean data, we only perturb 50% of the training data with Gaussian
noise within each batch.

3.2 Adversarial noise

Learning Adversarial Noise Our goal is to find a noise distribution p,(d), 8 €
RY such that noise samples added to « maximally confuse the classifier fz. More
concisely, we optimize

E E 1i
mgxmﬁyND s (5) [Lck (fo(clip(z +0)),y)], (2)

where clip is an operator that clips all values to the valid interval (i.e. clip(x+96) €
[0,1]Y) and restricts their norm ||d||z = €. ?

We follow the literature of implicit generative models [28], [4] as we do not
have to explicitly model the probability density function py(d) since optimizing
Eq. (2) only involves samples drawn from p,(8). We model the samples from
pe(6) as the output of a neural network g, : RV — RY which gets its input from
a normal distribution 8 = g, (z) where z ~ N (0, 1). We enforce the independence
property of ps(8) = [],, ps(dn) by constraining the network architecture of the
noise generator g4 to only consist of convolutions with 1x1 kernels. Lastly, the
projection onto a sphere ||d]|2 = € is achieved by scaling the generator output with
a scalar while clipping & + & to the valid range [0, 1]%V. This fixed size projection
(hyper-parameter) is motivated by the fact that Gaussian noise training with a
single, fixed o achieved the highest accuracy.

The noise generator g4 has four 1x1 convolutional layers with ReLU activations
and one residual connection from input to output. The weights of the layers are
initialized to small numbers; for this initialization, the input is passed through
the residual connection to the output. Since we use Gaussian noise as input, the
noise generator outputs Gaussian noise at initialization. During training, the
weights change and the generator learns to produce more diverse distributions.

Adversarial Noise Training To increase robustness, we now train the classifier
fo to minimize the risk under adversarial noise distributions jointly with the
noise generator

i E E li
min mg,xw’ywp S (8) [Lck (fo(clip(z +9)),y)], (3)

where again z + § € [0,1]" and ||||2 = €. For a joint adversarial training, we
alternate between an outer loop of classifier update steps and an inner loop of

3 We apply the method derived in [32] and rescale the perturbation by a factor + to
obtain the desired £2 norm; despite the clipping, the squared £2 norm is a piece-wise
linear function of 42 that can be inverted to find the correct scaling factor ~.

4 We also experimented with an adaptive sphere radius e which grows with the classifier’s
accuracy. However, we did not see any improvements and followed Occam’s razor.
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generator update steps. Note that in regular adversarial training, e.g. [21], d is
optimized directly whereas we optimize a constrained distribution over 4.

To maintain high classification accuracy on clean samples, we sample every
mini-batch so that they contain 50% clean data and perturb the rest. The current
state of the noise generator is used to perturb 30% of this data and the remaining
20% are augmented with samples chosen randomly from previous distributions.
For this, the noise generator states are saved at regular intervals. The latter
method is inspired by experience replay from reinforcement learning [27] and is
used to keep the classifier from forgetting previous adversarial noise patterns.
To prevent the noise generator from being stuck in a local minimum, we halt
the Adversarial Noise Training (ANT) at regular intervals and train a new noise
generator from scratch. This noise generator is trained against the current state
of the classifier to find a current optimum. The new noise generator replaces the
former noise generator in the ANT. This technique has been crucial to train a
robust classifier.

Learning locally correlated adversarial noise We modify the architecture
of the noise generator defined in Eq. 2 to allow for local spatial correlations and
thereby enable the generator to learn more diverse distributions. Since we seek to
increase model robustness towards image corruptions such as rain or snow that
produce locally correlated patterns, it is natural to include local patterns in the
manifold of learnable distributions. We replace the 1x1 kernels in one network
layer with 3x3 kernels limiting the maximum correlation length of the output
noise sample to 3x3 pixels. We indicate the correlation length of noise generator
used for the constrained adversarial noise training as ANT'*! or ANT3X3,

Combining Adversarial Noise Training with stylization As demonstrated
by [9], using random stylization as data augmentation increases the accuracy on
ImageNet-C due to a higher shape bias of the model. We combine our ANT and
the stylization approach to achieve robustness gains from both in the following
way: we split the samples in each batch into clean data (25%), stylized data
(30%) and clean data perturbed by the noise generator (45%).

3.3 Evaluation on corrupted images

Evaluation of noise robustness We evaluate the robustness of a model by
sampling a Gaussian noise vector d (covariance 1). We then do a line search
along the direction § starting from the original image x until it is misclassified.
We denote the resulting minimal perturbation as d,,;,. The robustness of a model
is then denoted by the median® over the test set

€* = median ||0minl|2, (4)
x,y~D

s

5 Samples for which no fs-distance allows us to manipulate the classifier’s decision
contribute a value of co to the median.
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with fo(2 + 6min) # y and T + din € [0,1]V. Note that a higher ¢* denotes
a more robust classifier. To test the robustness against adversarial noise, we
train a new noise generator at the end of the Adversarial Noise Training until
convergence and evaluate it according to Eq. (4).

ImageNet-C The ImageNet-C benchmark® [13] is a conglomerate of 15 diverse
corruption types that were applied to the validation set of ImageNet. The
corruptions are organized into four main categories: noise, blur, weather, and
digital. The MNIST-C benchmark is created similarly to ImageNet-C with
a slightly different set of corruptions [29]. We report the Top-1 and Top-5
accuracies as well as the ‘mean Corruption Error’ (mCE) on both benchmarks.
We evaluate all proposed methods for ImageNet-C on the ResNet50 architecture
for better comparability to previous methods, e.g. [9], [19], [45]. The clean
ImageNet accuracy of the used architecture highly influences the results and
could be seen as an upper bound for the accuracy on ImageNet-C. Note that our
approach is independent of the used architecture and could be applied to any
differentiable network.

4 Results

For our experiments on ImageNet, we use a classifier that was pretrained on
ImageNet. For the experiments on MNIST, we use the architecture from [21]
for comparability. All technical details, hyper-parameters and the architectures
of the noise generators can be found in Appendix A-B. We use various open
source software packages for our experiments, most notably Docker [24], scipy
and numpy [41], PyTorch [31] and torchvision [23].

(In-)Effectiveness of regular adversarial training to increase robust-
ness towards common corruptions In our first experiment, we evaluate
whether robustness against regular adversarial examples generalizes to robust-
ness against common corruptions. We display the Top-1 accuracy of vanilla and
adversarially trained models in Table 1; detailed results on individual corruptions
can be found in Appendix C. For all tested models, we find that regular ¢
adversarial training can strongly decrease the robustness towards common corrup-
tions, especially for the corruption types Fog and Contrast. Universal adversarial
training [37], on the other hand, leads to severe drops on some corruptions but
the overall accuracy on ImageNet-C is slightly increased relative to the vanilla
baseline model (AlexNet). Nonetheless, the absolute ImageNet-C accuracy of
22.2% is still very low. These results disagree with two previous studies which

S For the evaluation, we wuse the JPEG compressed images from
github.com/hendrycks/robustness as is advised by the authors to ensure re-
producibility. We note that Ford et al. report a decrease in performance when the
compressed JPEG files are used as opposed to applying the corruptions directly in
memory without compression artifacts [8].
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Table 1: Top-1 accuracy on ImageNet-C and ImageNet-C without the noise
category (higher is better). Regular adversarial training decreases robustness
towards common corruptions; universal adversarial training seems to slightly
increase it.

Model IN-C IN-C w/o noises
Vanilla RN50 39.2% 42.3%
Adv. Training [36] 29.1% 32.0%
Vanilla RN152 45.0% 47.9%
Adv. Training [42] 35.0% 35.9%
Vanilla AlexNet 21.1% 23.9%

Universal Adv. Training [37] 22.2% 23.1%

reported that (1) adversarial logit pairing” (ALP) increases robustness against
common corruptions on Tiny ImageNet-C [13], and that (2) adversarial training
can increase robustness on CIFAR10-C [8].

We evaluate adversarially trained models on MNIST-C and present the results
and their discussion in Appendix E. The results on MNIST-C show the same
tendency as on ImageNet-C: adversarially trained models have lower accuracy
on MNIST-C and thus indicate that adversarial robustness does not transfer to
robustness against common corruptions. This corroborates the results of Ford
et al. [8] on MNIST who also found that an adversarially robust model had
decreased robustness towards a set of common corruptions.

Effectiveness of Gaussian data augmentation to increase robustness
towards common corruptions We fine-tune ResNet50 classifier pretrained
on ImageNet with Gaussian data augmentation from the distribution A/(0,c21)
and vary o. We try two different settings: in one, we choose a single noise level o
while in the second, we sample o uniformly from a set of multiple possible values.
The Top-1 accuracy of the fine-tuned models on ImageNet-C in comparison to a
vanilla trained model is shown in Fig. 2. Each black point shows the performance
of one model fine-tuned with one specific o; the vanilla trained model is marked
by the point at o = 0. The horizontal lines indicate that the model is fine-tuned
with Gaussian noise where ¢ is sampled from a set for each image. For example,
for the dark green line, as indicated by the stars, we sample o from the set
{0.08,0.12,0.18,0.26,0.38} which corresponds to the Gaussian corruption of
ImageNet-C. Since Gaussian noise is part of the test set, we show both the results
on the full ImageNet-C evaluation set and the results on ImageNet-C without
noises (namely blur, weather and digital). To show how the different o-levels
manifest themselves in an image, we include example images in Appendix G.
There are three important results evident from Fig. 2:

" Note that ALP was later found to not increase adversarial robustness [6].
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ImageNet-C ImageNet-C w/o Noises
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Fig. 2. Top-1 accuracy on ImageNet-C (left) and ImageNet-C without the
noise corruptions (right) of a ResNet50 architecture fine-tuned with Gaussian
data augmentation of varying o. Each dot or green line represents one model.
We train on Gaussian noise sampled from a distribution with a single o
(black dots) and on distributions where o is sampled from different sets
(green lines with stars). We also compare to a vanilla trained model at o = 0.

1. Gaussian noise generalizes well to the non-noise corruptions of the ImageNet-
C dataset and is a powerful baseline. This is surprising as it was shown in
several recent works that training on Gaussian or uniform noise does not
generalize to other corruption types [10], [19] or that the effect is weak [§].

2. The standard deviation ¢ is a crucial hyper-parameter and has an optimal
value of about o = 0.5 for ResNet50.

3. If o is chosen well, using a single o is enough and sampling from a set of o
values is detrimental for robustness against non-noise corruptions.

In the following Results sections, we will compare Gaussian data augmentation
to our Adversarial Noise Training approach and baselines from the literature. For
this, we will use the models with the overall best-performance: The model GNg 5
that was trained with Gaussian data augmentation with a single o = 0.5 and the
model GNy,,1¢ where o was sampled from the set {0.08,0.12,0.18,0.26,0.38}.

Evaluation of the severity of adversarial noise as an attack In this section,
we focus on the question: Can we learn the most severe uncorrelated additive
noise distribution for a classifier? Following the success of simple uncorrelated
Gaussian noise data augmentation (section 4) and the ineffectiveness of regular
adversarial training (section 4) which allows for highly correlated patterns, we
restrict our learned noise distribution to be sampled independently for each pixel.

To measure the effectiveness of our adversarial noise, we report the median
perturbation size €* that is necessary for a misclassification for each image in
the test set as defined in section 3.3. We find €y = 39.0 for Gaussian noise,
en = 39.1 for uniform noise and €} = 15.7 for adversarial noise (see Fig. 1 for
samples of each noise type). Thus, we see that our AN is much more effective at
fooling the classifier compared to Gaussian and uniform noise.
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Table 2: Accuracy on clean data and robustness of differently trained models as
measured by the median perturbation size €*. A higher ¢* indicates a more robust
model. We compute standard deviations for €}y for differently initialized generator
networks. To provide an intuition for the perturbation sizes indicated by €*, we
show example images for Gaussian noise below and a larger Figure for different
noise types in Appendix I.

model clean acc.  eiy EUN EANIxl

Vanilla RN50 76.1% 39.0 39.1 15,7+ 0.6
GNTog 5 75.9% 74.8 749 318439
GNT e 76.1%  130.1 130.7  24.0 £ 2.2
ANT!L 76.0%  136.7 137.0 95.4 £5.7

=60.0

Evaluation of Adversarial Noise Training as a defense In the previous
section, we established a method for learning the most adversarial noise distri-
bution for a classifier. Now, we utilize it for a joint Adversarial Noise Training
(ANT™!) where we simultaneously train the noise generator and classifier (see
section 3.2). This leads to substantially increased robustness against Gaussian,
uniform and adversarial noise, see Table 2. The robustness of models that were
trained via Gaussian data augmentation also increases, but on average much
less compared to the model trained with ANT™*!. To evaluate the robustness
against adversarial noise, we train four noise generators with different random
seeds and measure €} y1,;- We report the mean value and the standard deviation
over the four runs. To visualize this effect, we visualize the temporal evolution of
the probability density function ps(8,) of uncorrelated noise during ANT™! in
Fig. 3A. This shows that the generator converges to different distributions and
therefore, the classifier has been trained against a rich variety of distributions.

Comparison of different methods to increase robustness towards com-
mon corruptions We now revisit common corruptions on ImageNet-C and
compare the robustness of differently trained models. Since Gaussian noise is
part of ImageNet-C, we train another baseline model with data augmentation
using the Speckle noise corruption from the ImageNet-C holdout set. We later
denote the cases where the corruptions present during training are part of the
test set by putting corresponding accuracy values in brackets. Additionally, we
compare our results with several baseline models from the literature:
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noise generator w/o correlations noise generator with local correlations

T, =
S
= e

S
SCmon et

e

Fig.3. A: Examples of learned probability densities over the grayscale
version of the noise 8,, during ANT'*! where each density corresponds to one
local minimum; B: Example images with sampled uncorrelated adversarial
noise; C: Example patches of locally correlated noise with a size of 28x28
pixels learned during ANT3*3; D: Example images with sampled correlated
adversarial noise.

1. Shift Inv: The model is modified to enhance shift-equivariance using anti-
aliasing [45].8

. Patch GN: The model was trained on Gaussian patches [19].°

. SIN+IN: The model was trained on a stylized version of ImageNet [9].1°

. AugMix: [14] trained their model using diverse augmentations.!! They use
image augmentations from AutoAugment [3] and exclude contrast, color,
brightness, sharpness, and Cutout operations to make sure that the test set
of ImageNet-C is disjoint from the training set. We would like to highlight
the difficulty in clearly distinguishing between the augmentations used during
training and testing as there might be a certain overlap. This can be seen
by the visual similarity between the Posterize operation and the JPEG
corruption (see Appendix J).

= W N

The Top-1 accuracies on the full ImageNet-C dataset and ImageNet-C without
the noise corruptions are displayed in Table 3; detailed results on individual cor-
ruptions in terms of accuracy and mCE are shown in Tables 3 and 4, Appendix D.
We also calculate the accuracy on corruptions without the noise category since we
observe that the generated noise can sometimes be close to the i.i.d. corruptions
of ImageNet-C raising concerns about overfitting. Additionally, the expressiveness
of the generated i.i.d. noise is quite limited compared to natural corruptions like
‘snow’. We hence extend the ANT™! procedure to include spatially correlated
noise over 3x3 pixels. Samples are shown in Fig. 3C and Fig. 3D.

The results on full ImageNet-C are striking (see Table 3): a very simple
baseline, namely a model trained with Speckle noise data augmentation, beats

8 Weights were taken from github.com/adobe/antialiased-cnns.

9 Since no model weights are released, we include the values reported in their paper.
10 Weights were taken from github.com/rgeirhos/texture-vs-shape.

1 Weights were taken from github.com/google-research/augmix.
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Table 3: Average accuracy on clean data, average Top-1 and Top-5 accuracies
on ImageNet-C and ImageNet-C without the noise category (higher is better);
all values in percent. We compare the results obtained by the means of Gaussian
(GNT) and Speckle noise data augmentation and with Adversarial Noise Training
(ANT) to several baselines. Gray numbers in brackets indicate scenarios where a
corruption from the test set was used during training.

IN IN-C IN-C w/o noises
model clean acc. Top-1 Top-5 Top-1 Top-5
Vanilla RN50 76.1 39.2  59.3 423 632
Shift Inv [45] 77.0 414 618 442  65.1
Patch GN [19] 76.0  (43.6) (n.a.) 43.7  na.
SIN-+IN [9] 746 452 66.6 46.6  68.2
AugMix [14] 77.5 483 69.2 504 718
Speckle 75.8 46.4 67.6 445 655
GNT s 76.1  (49.2) (70.2) 452  66.2
GNToy 5 75.9  (49.4) (70.6) 47.1  68.3
ANTIxL 76.0  (51.1) (72.2) 47.7  68.8
ANT! 4 SIN 749  (52.2) (73.6) 49.2  70.6
ANT™! w/o EP  75.7  (48.9) (70.2) 46.5  67.7
ANT3*3 76.1 50.4 715 470  68.1
ANT3*34-SIN 741  52.6 744 50.6 725

almost all previous baselines reaching an accuracy of 46.4% which is larger than
the accuracy of SIN+IN (45.2%) and close to AugMix (48.3%). The GNoyg 5
surpasses SIN+IN not only on the noise category but also on almost all other
corruptions, see a more detailed breakdown in Table 3, Appendix D.

The ANT®**3+SIN model produces the best results on ImageNet-C both with
and without noises. Thus, it is slightly superior to Gaussian data augmentation
and pure ANT3*3, Comparing ANT™! and ANT3*3, we observe that ANT3<3
performs better than ANT™! on the ‘snow’ corruption. We attribute this to
the successful modeling capabilities of locally correlated patterns resembling
snow of the 3x3 noise generator. We perform an ablation study to investigate
the necessity of experience replay and note that we lose roughly 2% without
it (ANT™ w/o EP vs ANT™*!). We also test how the classifier’s performance
changes if it is trained against adversarial noise sampled randomly from pg(dy,).
The accuracy on ImageNet-C decreases slightly compared to regular ANT*!:
51.1%/ 71.9% (Top-1/ Top-5) on full ImageNet-C and 47.3%,/ 68.3% (Top-1/
Top-5) on ImageNet-C without the noise category. We include additional results
for ANT™! with a DenseNet121 architecture [15] and for varying parameter
counts of the noise generator in Appendix K.

For MNIST, we train a model with Gaussian data augmentation and via
ANT!¥!, We achieve similar results with both approaches and report a new
state-of-the-art accuracy on MNIST-C: 92.4%, see Appendix E for details.
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Table 4: Adversarial robustness on ¢2 (¢ = 0.12) and £ (e = 0.001) compared to
a Vanilla ResNet50 on ImageNet.

clean acc. {5 acc. {+ acc.
model [%] [%] [%]
Vanilla RN50 76.1 41.1 18.1
GNTog 5 75.9 49.0 28.1
ANT 76.0 50.1 28.6
Adv. Training [36] 60.5 58.1 58.5

Robustness towards adversarial perturbations As regular adversarial
training can decrease the accuracy on common corruptions, it is also inter-
esting to check what happens vice-versa: How does a model which is robust on
common corruptions behave under adversarial attacks?

Both our ANT'™¥! and GNT models have slightly increased £, and £, robust-
ness scores compared to a vanilla trained model, see Table 4. We tested this
using the white-box attacks PGD [20] and DDN [33]. Expectedly, an adversarially
trained model has higher adversarial robustness compared to ANT**! or GNT. In
this experiment, we only verify that we do not unintentionally reduce adversarial
robustness compared to a vanilla ResNet50. For details, see Appendix E for
MNIST and Appendix F for ImageNet.

5 Conclusions

So far, attempts to use simple noise augmentations for general robustness against
common corruptions have produced mixed results, ranging from no generalization
from one noise to other noise types [10] to only marginal robustness increases [8],
[19]. In this work, we demonstrate that carefully tuned additive noise patterns
in conjunction with training on clean samples can surpass almost all current
state-of-the-art defense methods against common corruptions. By drawing in-
spiration from adversarial training and experience replay, we additionally show
that training against simple uncorrelated or locally correlated worst-case noise
patterns outperforms our already strong baseline defense, with additional gains
to be made in combination with previous defense methods like stylization [9].

There are still a few corruption types (e.g. Motion or Zoom blurs) on which our
method is not state of the art, suggesting that additional gains are possible. Future
extensions of this work may combine noise generators with varying correlation
lengths, add additional interactions between noise and image (e.g. multiplicative
interactions or local deformations) or take into account local image information
in the noise generation process to further boost robustness across many types of
image corruptions.
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Appendix to Increasing the robustness of DNNs against image
corruptions by playing the Game of Noise

A Architectures of the noise generators

The architectures of the noise generators are displayed in Tables 1 and 2. The number of color
channels is indicated by C'. The noise generator displayed in Table 1 only uses kernels with a size
of 1 and thus produces spatially uncorrelated noise. With the stride being 1 and no padding, the
spatial dimensions are preserved in each layer. The noise generator displayed in Table 2 has one
layer with 3x3 convolutions and thus produces noise samples with a correlation length of 3x3 pixels.

Layer Shape Layer Shape

Conv + ReLU 20 x 1 x 1 Conv + ReLU 20 x 1 x 1
Conv + ReLU 20 x 1 x 1 Conv + ReLU 20 x 3 x 3
Conv + ReLU 20 x 1 x 1 Conv + ReLU 20 x 1 x 1
Conv Cxlx1 Conv Cxlx1

Table 1: Architecture of the noise gen- Table 2: Architecture of the noise gener-
erator producing uncorrelated noise.  ator producing locally correlated noise.

B Implementation details and hyper-parameters

We use PyTorch [7] for all of our experiments.

Preprocessing MNIST images are preprocessed such that their pixel values lie in the range [0, 1].
Preprocessing for ImageNet is performed in the standard way for PyTorch ImageNet models from
the model zoo by subtracting the mean [0.485,0.456,0.406] and dividing by the standard deviation
[0.229,0.224,0.225]. We add Gaussian, adversarial and Speckle noise before the preprocessing step,
so the noisy images are first clipped to the range [0, 1] of the raw images and then preprocessed
before being fed into the model.

ImageNet experiments For all ImageNet experiments, we used a pretrained ResNet50 archi-
tecture from https://pytorch.org/docs/stable/torchvision/models.html. We fine-tuned the
model with SGD-M using an initial learning rate of 0.001, which corresponds to the last learning
rate of the PyTorch model training, and a momentum of 0.9. After convergence, we decayed the
learning rate once by a factor of 10 and continued the training. Decaying the learning rate was
highly beneficial for the model performance. We tried decaying the learning rate a second time,
but this did not bring any benefits in any of our experiments. For GNT, we also tried training
from scratch, i.e. starting with a large learning rate of 0.1 and random weights, and trained for 120
epochs, but we got worse results compared to merely fine-tuning the model provided by torchvision.
We used a batch size of 70 for all our experiments. We have also tried to use the batch sizes 50 and
100, but did not observe any difference.



Gaussian noise We trained the models until convergence. The total number of training epochs
varied between 30 and 90 epochs.

Speckle noise We used the Speckle noise implementation from https://github.com/hendrycks/
robustness/blob/master/ImageNet-C/create_c/make_imagenet_c.py, line 270. The model trained
with Speckle noise converged faster than with Gaussian data augmentation and therefore, we only
trained the model for 10 epochs.

Adversarial Noise Training The adversarial noise generator was trained with the Adam optimizer
with a learning rate of 0.0001. We have replaced the noise generator every 0.33 epochs. For ANT*!,
we set the e-sphere to control the size of the perturbation to 135.0 which on average corresponds
to the fo-size of a perturbation caused by additive Gaussian noise sampled from N(0,0.5% - 1). We
have trained the classifier until convergence for 80 epochs. For ANT3*3_ we set the e-sphere to 70.0
and trained the classifier for 80 epochs. We decreased the e-sphere for ANT®*3 to counteract giving
the noise generator more degrees of freedom to fool the classifier to maintain a similar training
losses and accuracies for ANT™! and ANT3*3,

MNIST experiments For the MNIST experiments, we used the same model architecture as [6]
for our ANT™! and GNT. For ANT™!, our learning rate for the generator was between 10™* and
10~°, and equal to 1073 for the classifier. We used a batch size of 300. As an optimizer, we used
SGD-M with a momentum of 0.9 for the classifier and Adam [5] for the generator. The splitting
of batches in clean, noisy and history was equivalent to the ImageNet experiments. The optimal e
hyper-parameter was determined with a line search similar to the optimal ¢ of the Gaussian noise;
we found € = 10 to be optimal. The parameters for the Gaussian noise experiments were equivalent.
Both models were trained until convergence (around 500-600 epochs). GNT and ANT!! were
performed on a pretrained network.

C Detailed results on the evaluation of corruption robustness due to regular
adversarial training

We find that standard adversarial training against minimal adversarial perturbations in general does
not increase robustness against common corruptions. While some early results on CIFAR-10 by [1]
and Tiny ImageNet-C by [3] suggest that standard adversarial training might increase robustness to
common corruptions, we here observe the opposite: Adversarially trained models have lower robust-
ness against common corruptions. An adversarially trained ResNet152 with an additional denoising
layer! from [12] has lower accuracy across almost all corruptions except Snow and Pixelations. On
some corruptions, the accuracy of the adversarially trained model decreases drastically, e.g. from
49.1% to 4.6% on Fog or 42.8% to 9.3% on Contrast. Similarly, the adversarially trained ResNet50?
from [Shafahi et al., 2019] shows a substantial decrease in performance on common corruptions
compared with a vanilla trained model.

An evaluation of a robustified version of AlexNet? [10] that was trained with the Universal
Adversarial Training scheme on ImageNet-C shows that achieving robustness against universal
adversarial perturbations does not noticeably increase robustness towards common corruptions
(22.2%) compared with a vanilla trained model (21.1%).

! Model weights from https://github.com/facebookresearch/ImageNet-Adversarial-Training
2 Model weights were kindly provided by the authors.



Noise (Compressed) Blur (Compressed)
Model All |Gaussian Shot Impulse|Defocus Glass Motion Zoom
Vanilla RN50 [39.2| 29.3 27.0 238 38.7 26.8 387 36.2
AT [9] 29.1 205 19.1 124 21.4 30.8 304 314
Vanilla RN152 [45.0| 35.7 34.3 29.6 45.1 32.8 484 40.5
AT [12] 35.0 352 344 248 221 317 309 320
Vanilla AlexNet(21.1| 11.4 10.6 7.7 18.0 174 214 20.2
UAT [10] 22.2| 20.1 19.1 16.2 13.1  21.6 19.7 19.2
Weather (Compressed) Digital (Compressed)
Model Snow Frost Fog Brightness|Contrast Elastic Pixelate JPEG
Vanilla RN50 32.5 38.1 45.8 68.0 39.1 45.2 44.8 53.4
AT [9] 244 25.6 5.8 51.1 7.8 45.4 53.4 56.3
Vanilla RN152 | 38.7 43.9 49.1  71.2 42.8 51.1  50.5  60.5
AT [12] 42.0 40.4 4.6 58.8 9.3 472 54.1  58.0
Vanilla AlexNet| 13.3 17.3 18.1 43.5 14.7 35.4 28.2 39.4
UAT [10] 13.8 18.3 4.3 36.5 4.8 36.8 42.3 47.1

Table 3: Average Top-1 accuracy over 5 severities of common corruptions on ImageNet-C in percent.
A high accuracy on a certain corruption type indicates high robustness of a classifier on this corrup-
tion type, so higher accuracy is better. Adversarial training (AT) decreases the accuracy on common
corruptions, especially on the corruptions Fog and Contrast. Universal Adversarial Training (UAT)
slightly increases the overall performance.



D Detailed ImageNet-C results

We show detailed results on individual corruptions in Table 4 in accuracy and in Table 5 in mCE

for differently trained models. In Fig. 1, we show the degradation of accuracy for different severity

levels. To avoid clutter, we only show results for a vanilla trained model, for the previous state of the

art SIN+IN [2], for several Gaussian trained models and for the overall best model ANT3*3+SIN.
The Corruption Error [3] is defined as

5 5
CE{ = (Z Ef> / (Z Eé‘,?*Ne‘), (1)
s=1 s=1

where E{’ . is the Top-1 error of a classifier f for a corruption ¢ with severity s. The mean Corruption
error (mCE) is taken by averaging over all corruptions.

Noise Blur Weather Digital
model mean|Gauss Shot Impulse[Defocus Glass Motion Zoom|Snow Frost Fog Bright|Contrast Elastic Pixel Jpeg
Vanilla RN50 39 | 29 27 24 39 27 39 36 | 33 38 46 68 39 45 45 53
Shift Inv 42 | 36 34 30 40 29 38 39 | 33 40 48 68 42 45 49 57
Patch GN 44 | 45 43 42 38 26 39 38 | 30 39 54 67 39 52 47 56
SIN+IN 45 | 41 40 37 43 32 45 36 | 41 42 47 67 43 50 56 58
AugMix 48 | 41 41 38 48 35 54 49 | 40 44 47 69 51 52 57 60
Speckle 46 | 55 58 49 43 32 40 36 | 34 41 46 68 41 47 49 58
GNT e 49 | 67 65 64 43 33 41 37 | 34 42 45 68 41 48 50 60
GNToo.5 49 | 58 59 57 47 38 43 42 | 35 44 44 68 39 50 55 62
ANT! 51 | 656 66 64 47 37 43 40 | 36 46 44 70 43 49 55 62
ANT™4+SIN 52 | 64 65 63 46 38 46 39 | 42 47 49 69 47 50 57 60
ANT™ w/o EP 49 | 59 59 57 46 37 43 40 | 34 43 43 68 39 49 55 61
ANT?3*3 50 | 65 64 64 44 36 42 38 | 39 46 44 69 41 49 55 61
ANT*34SIN 53 62 61 60 41 39 46 37 | 48 52 55 68 49 53 59 59

Table 4: Average Top-1 accuracy over 5 severities of common corruptions on ImageNet-C in percent
obtained by different models; higher is better.

E MNIST-C results

Similar to the ImageNet-C experiments, we are interested how vanilla, adversarially and noise
trained models perform on MNIST-C.

The adversarially robust MNIST model by [11] was trained with a robust loss function and is
among the state of the art in certified adversarial robustness. The other baseline models were trained
with Adversarial Training in £2 (DDN) by [8] and ¢, (PGD) by [6]. Our GNT and ANT! trained
versions are trained as described in the main paper and Appendix B.2. The results are shown in
Table 6. Similar to ImageNet-C, the models trained with GNT and ANT!*! are significantly better
than our vanilla trained baseline. Also, regular adversarial training has severe drops and does not
lead to significant robustness improvements.

As for ImageNet and GNT, we have treated o as a hyper-parameter. The accuracy on MNIST-C
for different values of o is displayed in Fig. 2 and has a maximum around ¢ = 0.5 like for ImageNet.
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Fig. 1: Top-1 accuracy for each corruption type and severity on ImageNet-C.




Noise Blur ‘ Weather Digital
model mCE|Gauss Shot Impulse[Defocus Glass Motion Zoom|Snow Frost Fog Bright|Contrast Elastic Pixel Jpeg
Vanilla 77 80 82 83 75 8 78 80 | 78 75 66 57 71 8 77T 17
SIN 69 | 66 67 68 70 8 69 80 | 68 71 65 58 66 78 62 70
Patch GN 71| 62 63 62 75 90 78 78 | 81 74 57 59 71 T4 T4 T2
Shift Inv. 73| 73 74 76 74 8 78 7T | 7T T2 63 56 68 8 71 71
AugMix 65 | 67 66 68 64 79 59 64 |69 68 65 54 57 74 60 65
Speckle 68 | 51 47 55 70 8 77 8 | 76 71 66 57 70 82 71 69
GNT i 65 | 37 39 39 69 8 76 79 | 76 70 67 56 69 81 69 66
GNToo5 64 | 46 46 47 65 75 72 74| 75 68 69 57 71 78 63 63
ANT*! 62 ] 39 38 39 65 T T2 75 | 74 66 68 53 67 78 62 62
ANT™4SIN 61 | 40 39 40 65 76 69 76 | 67 64 62 55 63 77T 59 66
ANT™ w/o EP 65 | 46 46 47 66 76 73 75 | 76 69 70 57 72 79 63 64
ANT?3*3 63| 39 40 39 68 78 73 7T |71 66 68 55 69 79 63 64
ANT3*34SIN 61 | 43 44 43 71 74 69 79 | 60 58 55 56 59 73 57 67

Table 5: Average mean Corruption Error (mCE) obtained by different models on common corrup-
tions from ImageNet-C; lower is better.

& \& .QQ’ ég)%
fz»co ¥ 3 0 o v\?@%% \‘i"&)@ & 6\)\ S >
. Q X %) (\;Z)‘
N P FTFTE PSS N =
model F I T FTY I T T S
Vanilla 99.1 869198 96 96 94 98 95 92 88 57 88 50 97 96 86 T2
[6] 98.5 75.6 |98 55 94 94 97 88 92 27 53 40 63 96 T8 74 84
Vanilla 98.8 743198 91 96 88 95 80 89 34 45 41 23 96 96 80 63
[11] 98.2 68697 65 93 93 94 87 89 11 40 20 25 96 89 61 68
Vanilla 99.5 89.8 198 96 95 97 98 96 94 95 61 89 79 98 98 90 63
DDN Tr [8] 99.0 87.0 |99 97 96 94 98 91 93 72 55 92 64 99 98 91 66
Vanilla 99.1 869|198 96 96 94 98 95 92 88 57 88 50 97 96 86 72
GNTop 5 99.3 924199 99 98 97 98 95 93 98 56 91 91 99 99 96 T8
ANT 99.4 924199 99 98 97 98 95 93 98 55 89 91 99 99 96 80

Table 6: Accuracy in percent for the MNIST-C dataset for adversarially robust ([11], [6], DDN
[8]) and our noise trained models (GNT and ANT!*!). Vanilla always denotes the same network
architecture as its adversarially or noise trained counterpart but with standard training. Note that
we used the same network architecture as [6].
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Fig. 2: Average accuracy on MNIST-C over all severties and corruptions for different values of sigma
o of the Gaussian noise training (GNT) during training. Each point corresponds to one converged
training.



F Evaluation of adversarial robustness of models trained via GNT and ANT*!

ImageNet To evaluate adversarial robustness on ImageNet, we used PGD [6] and DDN [8]. For the
loo PGD attack, we allowed for 200 iterations with a step size of 0.0001 and a maximum sphere
size of 0.001. For the DDN /5 attack, we also allowed for 200 iterations, set the sphere adjustment
parameter v to 0.02 and the maximum epsilon to 0.125. We note that for both attacks increasing
the number of iterations from 100 to 200 did not make a significant difference in robustness of our
tested models. The results on adversarial robustness on ImageNet can be found in the main paper
in Table 4.

MNIST To evaluate adversarial robustness on MNIST, we also used PGD [6] and DDN [8]. For
the ¢, PGD attack, we allowed for 100 iterations with a step size of 0.01 and a maximum sphere
size of 0.1. For the DDN /5 attack, we also allowed for 100 iterations, set the sphere adjustment
parameter 7 to 0.05 and the maximum epsilon to 1.5. All models have the same architecture as [6].
The results on adversarial robustness on MNIST can be found in Table 7.

model  clean acc. [%] ¢2 acc. [%)] lss acc. [%)]

Vanilla 99.1 73.2 55.8
GNToo.5 99.3 89.2 73.6
ANT!! 99.4 90.4 76.3

Table 7: Adversarial robustness on MNIST on 5 (¢ = 1.5) and ¢ (e = 0.1) compared to a Vanilla
CNN.



G Example images for additive Gaussian noise

Example images with additive Gaussian noise of varying standard deviation o are displayed in
Fig. 3. The considered o-levels correspond to those studied in section 4.2. in the main paper.

clean

Fig. 3: Example images with different o-levels of additive Gaussian noise on ImageNet.
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H Comparison to Ford et al.

Ford et al. trained an InceptionV3 model from scratch both on clean data from the ImageNet
dataset and on data augmented with Gaussian noise [1]. Since we use a very similar approach,
we compare our approach to theirs directly. The results for comparison on ImageNet both for the
vanilla and the Gaussian noise trained model can be found in Table 8. Since we use a pretrained
model provided by PyTorch and fine-tune it instead of training a new one, the performance of our
vanilla trained model differs from the performance of their vanilla trained model, both on clean
data and on ImageNet-C. The accuracy on clean data is displayed in Table 9. Another difference
between our training and theirs is that we split every batch evenly in clean and data augmented by
Gaussian noise with one standard deviation whereas they sample o uniformly between 0 and one
specific value. With our training scheme, we were able to outperform their model significantly on

all corruptions except for Elastic, Fog and Brightness.

Noise (Compressed) Blur (Compressed)
model All | Gaussian Shot Impulse | Defocus Glass Motion Zoom
Vanilla InceptionV3 [1] 38.8 36.6 34.3 347 31.1 19.3 353  30.1
Gaussian (o = 0.4) [1] 427| 403 388 377 | 329 298 353 331
Vanilla InceptionV3 [ours] | 41.6 | 42.0  40.3  38.5 335 271 361 288
GNTog.4 [ours] 49.5 60.8 59.6 594 43.8 370 428 384
GNTog.5 [ours] 50.2 61.6 60.9 60.8 44.6 37.3 44.0 39.3
Weather (Compressed) Digital (Compressed)
model Snow Frost Fog Brightness | Contrast Elastic Pixelate JPEG
Vanilla InceptionV3 [1] 33.1 34.0 524 66.0 35.9 47.8 38.2 50.0
Gaussian (o = 0.4) [1] 36.6 435 52.3  67.1 358 522 470 555
Vanilla InceptionV3 [ours] | 33.5 39.6 42.2 64.2 41.0 43.5 57.4 56.9
GNToyo.4 [ours] 35.6 43.7 43.3 64.8 43.0 49.0 59.3 61.7
GNToyq.5 [ours] 37.1 44.2 43.6 64.6 43.3 49.4 59.6 61.9

Table 8: ImageNet-C accuracy for InceptionV3.

model

clean accuracy [%)

Vanilla InceptionV3 [1]
Gaussian (o = 0.4) [1]

Vanilla InceptionV3 [ours]
GNToyg.4 [ours]
GNToyg.5 [ours]

Table 9: Accuracy on clean data for differently trained models.

75.9
74.2

77.2
78.1
77.9
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I Visualization of images with different perturbation sizes

In the main paper, we measure model robustness by calculating the median perturbation size €*
and report the results in Table 2. To provide a better intuition for the noise level in an image for a
particular €*, we display example images in Fig. 4.

Gaussian Noise Uniform Noise Adversarial Noise

GNToo.5 Vanilla RN50

GNTmult

ANTlxl

136.7 137.0

€*=95.4

Fig. 4: Example images for the different perturbation sizes €* and different noise types on ImageNet
corresponding to the €* values in Table 2 in the main paper.
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J Visualization of Posterize vs JPEG

AugMix [4] uses Posterize as one of their operations for data augmentation during training. In
Fig. 5, we show the visual similarity between the Posterize operation and the JPEG corruption
from ImageNet-C.

Clean Posterize

Fig.5: Example images for the JPEG compression from ImageNet-C and the
PIL.ImageOps.Posterize operation.

K Additional results

Adversarial Noise Training with a DenseNet121 architecture To test in how far our re-
sults generalize to other backbones, we have trained a DenseNet121 model with ANT™!. The
DenseNet121 model was finetuned from the checkpoint provided by torchvision. A DenseNet121
has 7.97886 - 106 trainable parameters whereas a ResNet50 has 2.5557 - 107. Our results and a com-
parison to ANT™! with a ResNet50 model is shown in Table 10: ANT™*! increases robustness on full
ImageNet-C and ImageNet-C without noises for the DenseNet121 model, showing that adversarial
noise training generalizes to other backbones.

IN IN-C IN-C w/o noises
model clean acc. Top-1 Top-5 Top-1 Top-5
Vanilla RN50 76.1 39.2  59.3 423 63.2
ANT™ RN50  76.0  (51.1) (72.2) 47.7  68.8

Vanilla DN121 74.4 42.1 634 44.0 65.5

ANT™ DN121 743 503 71.6 46.8  68.3
Table 10: Average accuracy on clean data, average Top-1 and Top-5 accuracies on full ImageNet-C
and ImageNet-C without the noise category (higher is better); all values in percent. We compare
the results obtained by ANT!*! for a ResNet50 (RN50) architecture to a DenseNet121 (DN121)
architecture.




Results for different parameter counts of the noise generator Here, we study the effect of
different parameter counts of the adversarial noise generator on ANT™!. We provide the results in
Table 11. We indicate the depth of the noise generator with a subscript. All experiments in this
paper apart from this ablation study were performed with a default depth of 4 layers. We observe
that while depth is a tunable hyper-parameter, the performances of ANT™*! with the studied noise
generators do not differ by a lot. Only the most shallow noise generator with a depth of one layer and
only 12 trainable parameters results in a roughly 1% lower accuracy than its deeper counterparts.
We note that a GNTog 5 model has an accuracy of 49.4% on full ImageNet-C and an accuracy
of 47.1% on ImageNet-C without noises which roughly corresponds to the respective accuracies of
ANT™! with the most shallow noise generator.

Number of IN IN-C IN-C w/o noises

model parameters clean acc. Top-1 Top-1
Vanilla RN50 - 76.1 39.2 42.3
ANT™ RN50 NG, 12 75.1  (49.5) 46.6
ANT™! RN50 NGo 143 75.5  (50.8) 47.2
ANT™! RN50 NG3 563 75.3  (50.7) 47.2
ANT™! RN50 NGy 983 76.0  (51.1) 47.7
ANT™ RN50 NGj 1403 74.0  (50.7) 47.0

Table 11: Number of trainable parameters of different noise generators, average accuracy on clean
data, ImageNet-C and ImageNet-C without the noise category (higher is better); all values in
percent. We compare the results obtained by ANT*! with noise generators of different depth. Note
that a depth of 4 layers was used in all experiments in this paper apart from this ablation study.

13
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ABSTRACT

Despite much effort, deep neural networks remain highly susceptible to tiny input
perturbations and even for MNIST, one of the most common toy datasets in com-
puter vision, no neural network model exists for which adversarial perturbations
are large and make semantic sense to humans. We show that even the widely
recognized and by far most successful L., defense by Madry et al. (1) has lower
L robustness than undefended networks and is still highly susceptible to Ly per-
turbations, (2) classifies unrecognizable images with high certainty, (3) performs
not much better than simple input binarization and (4) features adversarial perturba-
tions that make little sense to humans. These results suggest that MNIST is far from
being solved in terms of adversarial robustness. We present a novel robust classifi-
cation model that performs analysis by synthesis using learned class-conditional
data distributions. We derive bounds on the robustness and go to great length to
empirically evaluate our model using maximally effective adversarial attacks by (a)
applying decision-based, score-based, gradient-based and transfer-based attacks
for several different L, norms, (b) by designing a new attack that exploits the
structure of our defended model and (c) by devising a novel decision-based attack
that seeks to minimize the number of perturbed pixels (Lg). The results suggest
that our approach yields state-of-the-art robustness on MNIST against Ly, Ly and
L, perturbations and we demonstrate that most adversarial examples are strongly
perturbed towards the perceptual boundary between the original and the adversarial
class.

1 INTRODUCTION

Deep neural networks (DNNs) are strikingly susceptible to minimal adversarial perturbations
(Szegedy et al., 2013), perturbations that are (almost) imperceptible to humans but which can switch
the class prediction of DNNSs to basically any desired target class.

One key problem in finding successful defenses is the difficulty of reliably evaluating model robust-
ness. It has been shown time and again (Athalye et al., 2018; Athalye & Carlini, 2018; Brendel &
Bethge, 2017) that basically all defenses previously proposed did not increase model robustness but
prevented existing attacks from finding minimal adversarial examples, the most common reason
being masking of the gradients on which most attacks rely. The few verifiable defenses can only
guarantee robustness within a small linear regime around the data points (Hein & Andriushchenko,
2017; Raghunathan et al., 2018).

The only defense currently considered effective (Athalye et al., 2018) is a particular type of adversarial
training (Madry et al., 2018). On MNIST, as of today this method is able to reach an accuracy of
88.79% for adversarial perturbations with an L., norm bounded by € = 0.3 (Zheng et al., 2018). In
other words, if we allow an attacker to perturb the brightness of each pixel by up to 0.3 (range [0, 1)),
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then he can only trick the model on ~ 10% of the samples. This is a great success, but does the
model really learn more causal features to classify MNIST? We here demonstrate that this is not the
case: For one, the defense by Madry et al. (SOTA on L) has lower L, robustness than undefended
networks and is still highly susceptible in the Ly metric. Second, the robustness results by Madry
et al. can also be achieved with a simple input quantization because of the binary nature of single
pixels in MNIST (which are typically either completely black or white) (Schmidt et al., 2018). Third,
it is straight-forward to find unrecognizable images that are classified as a digit with high certainty.
Finally, the minimum adversarial examples we find for the defense by Madry et al. make little to no
sense to humans.

Taken together, even MNIST cannot be considered solved with respect to adversarial robustness. By
“solved” we mean a model that reaches at least 99% accuracy (see accuracy-vs-robustness trade-off
(Tsipras et al., 2018; Bubeck et al., 2018)) and whose adversarial examples carry semantic meaning
to humans (by which we mean that they start looking like samples that could belong to either class).
Hence, despite the fact that MNIST is considered “too easy” by many and a mere toy example, finding
adversarially robust models on MNIST is still an open problem.

A potential solution we explore in this paper is inspired by unrecognizable images (Nguyen et al.,
2015) or distal adversarials. Distal adversarials are images that do not resemble images from the
training set but which typically look like noise while still being classified by the model with high
confidence. It seems difficult to prevent such images in feedforward networks as we have little control
over how inputs are classified that are far outside of the training domain. In contrast, generative
models can learn the distribution of their inputs and are thus able to gauge their confidence accordingly.
By additionally learning the image distribution within each class we can check that the classification
makes sense in terms of the image features being present in the input (e.g. an image of a bus should
contain actual bus features). Following this line of thought from an information-theoretic perspective,
one arrives at the well-known concept of Bayesian classifiers. We here introduce a fine-tuned variant
based on variational autoencoders (Kingma & Welling, 2013) that combines robustness with high
accuracy.

In summary, the contributions of this paper are as follows:

e We show that MNIST is unsolved from the point of adversarial robustness: the SOTA defense of
Madry et al. (2018) is still highly vulnerable to tiny perturbations that are meaningless to humans.

e We introduce a new robust classification model and derive instance-specific robustness guarantees.
e We develop a strong attack that leverages the generative structure of our classification model.
e We introduce a novel decision-based attack that minimizes Lg.

e We perform an extensive evaluation of our defense across many attacks to show that it surpasses
SOTA on Ly, Lo and L, and features many adversarials that carry semantic meaning to humans.

We have evaluated the proposed defense to the best of our knowledge, but we are aware of the
(currently unavoidable) limitations of evaluating robustness. We will release the model architecture
and trained weights as a friendly invitation to fellow researchers to evaluate our model independently.

2 RELATED WORK

The many defenses against adversarial attacks can roughly be subdivided into four categories:
e Adversarial training: The training data is augmented with adversarial examples to make models
more robust (Madry et al., 2018; Szegedy et al., 2013; Tramer et al., 2017; Ilyas et al., 2017).

e Manifold projections: An input sample is projected onto a learned data manifold (Samangouei
et al., 2018; Ilyas et al., 2017; Shen et al., 2017; Song et al., 2018).

e Stochasticity: Certain inputs or hidden activations are shuffled or randomized (Prakash et al.,
2018; Dhillon et al., 2018; Xie et al., 2018).

e Preprocessing: Inputs or hidden activations are quantized, projected into a different representation
or are otherwise preprocessed (Buckman et al., 2018; Guo et al., 2018; Kabilan et al., 2018).

There has been much work showing that basically all defenses suggested so far in the literature do not
substantially increase robustness over undefended neural networks (Athalye et al., 2018; Brendel &
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|. Optimize latent distribution p(z|x) in each digit model II. Decide based on most likely class
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Figure 1: Overview over model architecture. In a nutshell: I) for each sample x we compute a lower
bound on the log-likelihood (ELBO) under each class using gradient descent in the latent space. IT) A
class-dependent scalar weighting of the class-conditional ELBOs forms the final class prediction.

Bethge, 2017). The only widely accepted exception according to Athalye et al. (2018) is the defense
by Madry et al. (2018) which is based on data augmentation with adversarials found by iterative
projected gradient descent with random starting points. However, as we see in the results section,
this defense is limited to the metric it is trained on (L) and it is straight-forward to generate small
adversarial perturbations that carry little semantic meaning for humans.

Some other defenses have been based on generative models. Typically these defenses use the gener-
ative model to project onto the (learned) manifold of “natural” inputs. This includes in particular
DefenseGAN (Samangouei et al., 2018), Adversarial Perturbation Elimination GAN (Shen et al.,
2017) and Robust Manifold Defense (Ilyas et al., 2017), all of which project an image onto the mani-
fold defined by a generator network GG. The generated image is then classified by a discriminator in
the usual way. A similar idea is used by PixelDefend (Song et al., 2018) which uses an autoregressive
probabilistic method to learn the data manifold. Other ideas in similar directions include the use of
denoising autoencoders (Liao et al., 2017) as well as MagNets (Meng & Chen, 2017), which projects
or rejects inputs depending on their distance to the data manifold. All of these proposed defenses
except for the defense by Ilyas et al. (2017) have been tested by Athalye et al. (2018); Athalye &
Carlini (2018); Carlini & Wagner (2017) and others, and shown to be ineffective. It is straight-forward
to understand why: For one, many adversarials still look like normal data points to humans. Second,
the classifier on top of the projected image is as vulnerable to adversarial examples as before. Hence,
for any data set with a natural amount of variation there will almost always be a certain perturbation
against which the classifier is vulnerable and which can be induced by the right inputs.

We here follow a different approach by modeling the input distribution within each class (instead of
modeling a single distribution for the complete data), and by classifying a new sample according to
the class under which it has the highest likelihood. This approach, commonly referred to as a Bayesian
classifier, gets away without any additional and vulnerable classifier. A very different but related
approach is the work by George et al. (2017) which suggested a generative compositional model of
digits to solve cluttered digit scenes like Captchas (adversarial robustness was not evaluated).

3 MODEL DESCRIPTION

Intuitively, we want to learn a causal model of the inputs (Scholkopf, 2017). Consider a cat: we
want a model to learn that cats have four legs and two pointed ears, and then use this model to check
whether a given input can be generated with these features. This intuition can be formalized as
follows. Let (x,y) with x € RY be an input-label datum. Instead of directly learning a posterior
p(y|x) from inputs to labels we now learn generative distributions p(x|y) and classify new inputs
using Bayes formula,

p(x[y)p(y)
pPlyix) =
W=
The label distribution p(y) can be estimated from the training data. To learn the class-conditional

sample distributions p(x|y) we use variational autoencoders (VAEs) (Kingma & Welling, 2013).
VAEs estimate the log-likelihood log p(x) by learning a probabilistic generative model py(x|z)

oc p(x|y)p(y)- )]
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with latent variables z ~ p(z) and parameters 6 (see Appendix A.3 for the full derivation). For
class-conditional VAEs we can derive a lower bound on the log-likelihood log p(x|y) as

log p(x|y) > Eymq, (zix,) 108 po(X|2,y)] — D1 [q5(2]x, )| |p(2)] =: £,(x), (2)

where p(z) = N(0,1) is a simple normal prior and g4(z|x,y) is the variational posterior with
parameters ¢. The first term on the RHS is basically a reconstruction error while the second term
on the RHS is the mismatch between the variational and the true posterior. The term on the RHS is
the so-called evidence lower bound (ELBO) on the log-likelihood (Kingma & Welling, 2013). We
implement the conditional distributions py (x|z, y) and g4 (z|x, y) as normal distributions for which
the means are parametrized as DNNs (all details and hyperparameters are reported in Appendix A.7).

Our Analysis by Synthesis model (ABS) is illustrated in Figure 1. It combines several elements to
simultaneously achieve high accuracy and robustness against adversarial perturbations:

o Class-conditional distributions: For each class i we train a variational autoencoder VAE,, on
the samples of class y to learn the class-conditional distribution p(x|y). This allows us to estimate
a lower bound ¢, (x) on the log-likelihood of sample x under each class y.

e Optimization-based inference: The variational inference ¢, (z|x,y) is itself a neural network
susceptible to adversarial perturbations. We therefore only use variational inference during
training and perform “exact” inference over py(x|z, y) during evaluation. This “exact” inference
is implemented using gradient descent in the latent space (with fixed posterior width) to find the
optimal z,, which maximizes the lower bound on the log-likelihood for each class:

0 (x) = max log po(x|z,y) — Dk N (z,0,1)||N(0,1)]. 3)

Note that we replaced the expectation in equation 2 with a maximum likelihood sample to avoid
stochastic sampling and to simplify optimization. To avoid local minima we evaluate 8000 random
points in the latent space of each VAE, from which we pick the best as a starting point for a
gradient descent with 50 iterations using the Adam optimizer (Kingma & Ba, 2014).

e C(lassification and confidence: Finally, to perform the actual classification, we scale all 61*/ (x)
with a factor o, exponentiate, add an offset 7 and divide by the total evidence (like in a softmax),

p(ylx) = (2509 ) /37 (€209 13p). @)

We introduced 7 for the following reason: even on points far outside the data domain, where
all likelihoods ¢(x,y) = et () 4 7 are small, the standard softmax (7 = 0) can lead to sharp
posteriors p(y|x) with high confidence scores for one class. This behavior is in stark contrast
to humans, who would report a uniform distribution over classes for unrecognizable images.
To model this behavior we set > 0: in this case the posterior p(y|x) converges to a uniform
distribution whenever the maximum ¢(x, y) gets small relative to 77 . We chose 7 such that the
median confidence p(y|x) is 0.9 for the predicted class on clean test samples. Furthermore, for
a better comparison with cross-entropy trained networks, the scale « is trained to minimize the
cross-entropy loss. We also tested this graded softmax in standard feedforward CNNs but did not
find any improvement with respect to unrecognizable images.

¢ Binarization (Binary ABS only): The pixel intensities of MNIST images are almost binary. We
exploit this by projecting the intensity b of each pixel to 0 if b < 0.5 or 1 if b > 0.5 during testing.

e Discriminative finetuning (Binary ABS only): To improve the accuracy of the Binary ABS
model we multiply ¢; (x) with an additional class-dependent scalar +y,. The scalars are learned
discriminatively (see A.7) and reach values in the range 7, € [0.96, 1.06] for all classes y.

On important ingredient for the robustness of the ABS model is the Gaussian posterior in the

reconstruction term which ensures that small changes in the input (in terms of L2) can only entail
small changes to the posterior likelihood and thus to the model decision.

4  TIGHT ESTIMATES OF THE LOWER BOUND FOR ADVERSARIAL EXAMPLES

The decision of the model depends on the likelihood in each class, which for clean samples is mostly
dominated by the posterior likelihood p(x|z). Because we chose this posterior to be Gaussian, the
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class-conditional likelihoods can only change gracefully with changes in x, a property which allows
us to derive lower bounds on the model robustness. To see this, note that equation 3 can be written as,

" 1
le(x) = max — Dy [N(2,0,1)[|NV(0,1)] = 5~5 [ Ge(2) x[l5 +C, )
where we absorbed the normalization constants of p(x|z) into C' and G(z) is the mean of p(x|z, c).
Let y be the ground-truth class and let z, be the optimal latent for the clean sample x for class y. We
can then estimate a lower bound on /; (x + &) for a perturbation d with size ¢ = ||d]|, (see derivation

in Appendix A.4),

1 1
Cr(x+8) > £ (x) — EeHGy(z;) — x|, — ﬁe%rc. (6)

Likewise, we can derive an upper bound of £} (x + &) for all other classes ¢ # y (see Appendix A.5),

% c 2 if c >
£2(x ) < DL WO DN D]+ 0 = {a 7 Bz )
for d. = min, ||G.(z) — x||,. Now we can find ¢ for a given image x by equating (7) = (6),
: de + £(x) = D1, [N(0, 041NV (0, 1)]
€, = minmax< 0, " . (8)
cFy z(dc + ”Gy(zx) - X||2)

Note that one assumption we make is that we can find the global minimum of ||G.(z) — x||§ In
practice we generally find a very tight estimate of the global minimum (and thus the lower bound)
because we optimize in a smooth and low-dimensional space and because we perform an additional
brute-force sampling step. We provide quantitative values for € in section 7.

5 ADVERSARIAL ATTACKS

Reliably evaluating model robustness is difficult because each attack only provides an upper bound
on the size of the adversarial perturbations (Uesato et al., 2018). To make this bound as tight
as possible we apply many different attacks and choose the best one for each sample and model
combination (using the implementations in Foolbox v1.3 (Rauber et al., 2017) which often perform
internal hyperparameter optimization). We also created a novel decision-based L attack as well as a
customized attack that specifically exploits the structure of our model. Nevertheless, we cannot rule
out that more effective attacks exist and we will release the trained model for future testing.

Latent Descent attack This novel attack exploits the structure of the ABS model. Let x; be the
perturbed sample x in iteration ¢. We perform variational inference p(z|x;, y) = N (py (%), 0I) to
find the most likely class ¥ that is different from the ground-truth class. We then make a step towards
the maximum likelihood posterior p(x|z, §) of that class which we denote as X,

xe = (1 — €)x¢ + exy. 9)

We choose ¢ = 1072 and iterate until we find an adversarial. For a more precise estimate we perform
a subsequent binary search of 10 steps within the last € interval. Finally, we perform another binary
search between the adversarial and the original image to reduce the perturbation as much as possible.

Decision-based attacks We use several decision-based attacks because they do not rely on gradient
information and are thus insensitive to gradient masking or missing gradients. In particular, we
apply the Boundary Attack (Brendel et al., 2018), which is competitive with gradient-based attacks
in minimizing the Lo norm, and introduce the Pointwise Attack, a novel decision-based attack that
greedily minimizes the Ly norm. It first adds salt-and-pepper noise until the image is misclassified and
then repeatedly iterates over all perturbed pixels, resetting them to the clean image if the perturbed
image stays adversarial. The attack ends when no pixel can be reset anymore. We provide an
implementation of the attack in Foolbox (Rauber et al., 2017). Finally, we apply two simple noise
attacks, the Gaussian Noise attack and the Salt& Pepper Noise attack as baselines.
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Figure 2: Accuracy-distortion plots for each distance metric and all models. In (b) we see that a
threshold at 0.3 favors Madry et al. while a threshold of 0.35 would have favored the Binary ABS.

Transfer-based attacks Transfer attacks also don’t rely on gradients of the target model but instead
compute them on a substitute: given an input x we first compute adversarial perturbations d on the
substitute using different gradient-based attacks (Lo and L., Basic Iterative Method (BIM), Fast
Gradient Sign Method (FGSM) and Ls Fast Gradient Method) and then perform a line search to find
the smallest e for which x + €d (clipped to the range [0, 1]) is still an adversarial for the target model.

Gradient-based attacks We apply the Momentum Iterative Method (MIM) (Dong et al., 2017) that
won the NIPS 2017 adversarial attack challenge, the Basic Iterative Method (BIM) (Kurakin et al.,
2016) (also known as Projected Gradient Descent (PGD))—for both the L, and the L., norm—as
well as the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014) and its Lo variant, the Fast
Gradient Method (FGM). For models with input binarization (Binary CNN, Binary ABS), we obtain
gradients using the straight-through estimator (Bengio et al., 2013).

Score-based attacks We additionally run all attacks listed under Gradient-based attacks using
numerically estimated gradients (possible for all models). We use a simple coordinate-wise finite
difference method (NES estimates (Ilyas et al., 2018) performed comparable or worse) and repeat the
attacks with different values for the step size of the gradient estimator.

Postprocessing (binary models only) For models with input binarization (sec. 6) we postprocess
all adversarials by setting pixel intensities either to the corresponding value of the clean image or the
binarization threshold (0.5). This reduces the perturbation size without changing model decisions.

6 EXPERIMENTS

We compare our ABS model as well as two ablations—ABS with input binarization during test time
(Binary ABS) and a CNN with input binarization during train and test time (Binary CNN)—against
three other models: the SOTA L., defense (Madry et al., 2018)!, a Nearest Neighbour (NN) model
(as a somewhat robust but not accurate baseline) and a vanilla CNN (as an accurate but not robust
baseline), see Appendix A.7. We run all attacks (see sec. 5) against all applicable models.

For each model and L,, norm, we show how the accuracy of the models decreases with increasing
adversarial perturbation size (Figure 2) and report two metrics: the median adversarial distance
(Table 1, left values) and the model’s accuracy against bounded adversarial perturbations (Table 1,
right values). The median of the perturbation sizes (Table 1, left values) is robust to outliers and
summarizes most of the distributions quite well. It represents the perturbation size for which the
particular model achieves 50% accuracy and does not require the choice of a threshold. Clean samples
that are already misclassified are counted as adversarials with a perturbation size equal to 0, failed
attacks as co. The commonly reported model accuracy on bounded adversarial perturbations, on the
other hand, requires a metric-specific threshold that can bias the results. We still report it (Table 1,
right values) for completeness and set €1, = 1.5, €, = 0.3 and €, = 12 as thresholds.

"We used the trained model provided by the authors: https:/github.com/MadryLab/mnist_challenge
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Binary Nearest Madry Binary

CNN CNN  Neighbor  etal. ABS ABS
Clean 99.1% 98.5% 96.9% 98.8% 99.0% 99.0%
Lo-metric (e = 1.5)
Transfer Attacks 1.1/14%  1.4/38% 5.4/90% 3.7/94% 2.5/86% 4.6/94%
Gaussian Noise 5.2/96% 3.4/92% oo/91% 5.4/96% 5.6/89% 10.9/98%
Boundary Attack 1.2/21% 3.3/84% 29/73% 1.4/37% 6.0/91% 2.6/83%
Pointwise Attack 3.4/91% 1.9/71% 3.5/89% 1.9/71% 3.1/86% 4.6/94%
FGM 1.4/48% 1.4/50% oo/ 96%
FGM w/ GE 1.4/42% 2.8/51% 3.7/79% o00/88% 1.9/68% 3.5/89%
DeepFool 1.2/18% 1.0/11% 9.0/ 91%
DeepFool w/ GE 1.3/30% 0.9/ 5% 1.6/55% 5.1/90% 1.4/41% 2.4/83%
L2 BIM 1.1/13% 1.0/11% 4.8/ 83%
L2 BIM w/ GE 1.1/37% 0o/ 50% 1.7/62% 3.4/83% 1.6/63% 3.1/87%
Latent Descent Attack 2.6/97% 2.7/85%
All L, Attacks 1.1/ 8% 09/ 3% 15/53% 1.4/35% 1.3/39% 2.3/80%
Loo-metric (e = 0.3)
Transfer Attacks 0.08/ 0% 0.44/85% 0.42/78% 0.39/92% 0.49/88% 0.34/73%
FGSM 0.10/ 4% 0.43/77% 0.45/93%
FGSM w/ GE 0.10/21% 0.42/71% 0.38/68% 0.47/89% 0.49/85% 0.27/34%
Lo DeepFool 0.08/ 0% 0.38/74% 0.42/90%
Lo DeepFool w/ GE 0.09/ 0% 0.37/67% 0.21/26% 0.53/90% 0.46/78% 0.27/39%
BIM 0.08/ 0% 0.36/70% 0.36/90%
BIM w/ GE 0.08/37% oo/ 70% 0.25/43% 0.46/89% 0.49/86% 0.25/13%
MIM 0.08/ 0% 0.37/71% 0.34/90%
MIM w/ GE 0.09/ 36% oo/ 69% 0.19/26% 0.36/89% 0.46/85% 0.26/17%
All L., Attacks 0.08/ 0% 0.34/64% 0.19/22% 0.34/88% 0.44/77% 0.23/ 8%
Lo-metric (e = 12)
Salt&Pepper Noise 44.0/91% 44.0/88% 161.0/88% 13.5/56% 146.0/ 94% 165.0/ 94%
Pointwise Attack 10x 9.0/19% 11.0/39% 10.0/34% 4.0/ 0% 22.0/77% 16.5/69%
All Ly Attacks 9.0/19% 11.0/38% 10.0/34% 4.0/ 0% 21.5/77% 16.5/69%

Table 1: Results for different models, adversarial attacks and distance metrics. Each entry shows the
median adversarial distance across all samples (left value, black) as well as the model’s accuracy
against adversarial perturbations bounded by the thresholds e, = 1.5, €, = 0.3 and €, = 12
(right value, gray). “w/ GE” indicates attacks that use numerical gradient estimation.

7 RESULTS

Minimal Adversarials Our robustness evaluation results of all models are reported in Table 1 and
Figure 2. All models except the Nearest Neighbour classifier perform close to 99% accuracy on clean
test samples. We report results for three different norms: Lo, L, and Ly.

e For L, our ABS model outperforms all other models by a large margin.

e For L, our Binary ABS model is state-of-the-art in terms of median perturbation size. In terms
of accuracy (perturbations < 0.3), Madry et al. seems more robust. However, as revealed by the
accuracy-distortion curves in Figure 2, this is an artifact of the specific threshold (Madry et al. is
optimized for 0.3). A slightly larger one (e.g. 0.35) would strongly favor the Binary ABS model.

e For Ly, both ABS and Binary ABS are much more robust than all other models. Interestingly, the
model by Madry et al. is the least robust, even less than the baseline CNN.

In Figure 3 we show adversarial examples. For each sample we show the minimally perturbed Lo
adversarial found by any attack. Adversarials for the baseline CNN and the Binary CNN are almost
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Figure 3: Adversarial examples for the ABS models are perceptually meaningful: For each sample
(randomly chosen from each class) we show the minimally perturbed Lo adversarial found by any
attack. Our ABS models have clearly visible and often semantically meaningful adversarials. Madry
et al. requires perturbations that are clearly visible, but their semantics are less clear.

imperceptible. The Nearest Neighbour model, almost by design, exposes (some) adversarials that
interpolate between two numbers. The model by Madry et al. requires perturbations that are clearly
visible but make little semantic sense to humans. Finally, adversarials generated for the ABS models
are semantically meaningful for humans and are sitting close to the perceptual boundary between the
original and the adversarial class. For a more thorough comparison see appendix Figures 5, 6 and 7.

Lower bounds on Robustness For the ABS models and the Lo metric we estimate a lower bound
of the robustness. The lower bound for the mean perturbation? for the MNIST test set is ¢ =
0.690 £ 0.005 for the ABS and ¢ = 0.601 4 0.005 for the binary ABS. We estimated the error by
using different random seeds for our optimization procedure and standard error propagation over
10 runs. With adversarial training Hein & Andriushchenko (2017) achieve a mean Lo robustness
guarantee of € = 0.48 while reaching 99% accuracy. In the L;,, ; metric we find a median robustness
of 0.06.

Madry et al. ABS
Distal Adversarials We probe the behavior of CNN, a . ;
Madry et al. and our ABS model outside the data distri-
bution. We start from random noise images and perform
gradient ascent to maximize the output probability of
a fixed label until p(y|x) > 0.9 (as computed by the = .
modified softmax from equation (8)). The results are  Figure 4: Images of ones classified with a
visualized in Figure 4. Standard CNNs and Madry et al. probability above 90%.
provide high confidence class probabilities for unrecognizable images. Our ABS model does not
provide high confidence predictions in out-of-distribution regions.

8 DISCUSSION & CONCLUSION

In this paper we demonstrated that, despite years of work, we as a community failed to create neural
networks that can be considered robust on MNIST from the point of human perception. In particular,
we showed that even today’s best defense is susceptible to small adversarial perturbations that make
little to no semantic sense to humans. We presented a new approach based on analysis by synthesis
that seeks to explain its inference by means of the actual image features. We performed an extensive
analysis to show that minimal adversarial perturbations in this model are large across all tested L,
norms and semantically meaningful to humans. Note that our architecture derives its robustness from
its design and does not require any additionally training with adversarial examples.

We acknowledge that it is not easy to reliably evaluate a model’s adversarial robustness and most
defenses proposed in the literature have later been shown to be ineffective. In particular, the structure

The mean instead of the median is reported to allow for a comparison with (Hein & Andriushchenko, 2017).
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of the ABS model prevents the computation of gradients which might give the model an unfair
advantage. We put a lot of effort into an extensive evaluation of adversarial robustness using a large
collection of powerful attacks, including one specifically designed to be particularly effective against
the ABS model (the Latent Descent attack), and we will release the model architecture and trained
weights as a friendly invitation to fellow researchers to evaluate our model.

Looking at the results of individual attacks (Table 1) we find that there is no single attack that
works best on all models, thus highlighting the importance for a broad range of attacks. Without
the Boundary Attack, for example, Madry et al. would have looked more robust to Ly adversarials
than it is. For similar reasons Figure 6b of Madry et al. (2018) reports a median Lo perturbation size
larger than 5, compared to the 1.4 achieved by the Boundary Attack. Moreover,the combination of all
attacks of one metric (All Ly / L, / Ly Attacks) is often better than any individual attack, indicating
that different attacks are optimal on different samples.

Our conceptual implementation of the ABS model with one VAE per class neither scales efficiently
to more classes nor to more complex datasets (a preliminary experiment on CIFAR10 provided only
54% test accuracy). However, first experiments on two class CIFAR indicate that the proposed model
is also robust on CIFAR (we reach a median L2 robustness of 2.6 compared to 0.8 for a vanilla CNN,
see Appendix A.1) for details). To increase the accuracy, there are many ways in which the ABS
model can be improved, ranging from better and faster generative models (e.g. flow-based) to better
training procedures.

In a nutshell, we demonstrated that MNIST is still not solved from the point of adversarial robustness
and showed that our novel approach based on analysis by synthesis has great potential to reduce the
vulnerability against adversarial attacks and to align machine perception with human perception.
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A APPENDIX

A.1 Two CLAsSS CIFAR

We estimate the robustness of our ABS model on two class CIFAR (airplane vs. automobile). Preliminary results
suggest that our robustness is not limited to MNIST.

In order to adapt to CIFAR, we modified the ABS slightly by modifying encoder and decoder to fit (32x32x3)
CIFAR images. We also increased the number of dimensions in the latent space form 8 to 20.

Model | CNN | ABS

Accuracy 97.1% 89.7%
Median L- distance | 0.8 (with BIM) | 2.5 (with Latent Descent attack)

Table 2: Accuracy and estimated robustness on two class CIFAR.

A.2 FIGURES
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Figure 5: Lg error quantiles: We always choose the minimally perturbed L, adversarial found by
any attack for each model. For an unbiased selection, we then randomly sample images within four
error quantiles (0 — 25%, 25 — 50%, 50 — 75%, and 75 — 100%). Where 100% corresponds to the
maximal (over samples) minimum (over attacks) perturbation found for each model.
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Figure 6: Lo error quantiles: We always choose the minimally perturbed Ly adversarial found by any
attack for each model. For an unbiased selection, we then randomly sample 4 images within four
error quantiles (0 — 25%, 25 — 50%, 50 — 75%, and 75 — 100%).
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Figure 7: L error quantiles: We always choose the minimally perturbed L., adversarial found by
any attack for each model. For an unbiased selection, we then randomly sample images within four
error quantiles (0 — 25%, 25 — 50%, 50 — 75%, and 75 — 100%).
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Figure 8: Distribution of minimal adversarials for each model and distance metric. In (b) we see that
a threshold at 0.3 favors Madry et al. while a threshold of 0.35 would have favored the Binary ABS.
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A.3 DERIVATION I

Derivation of the ELBO in equation 2.

log po(x) = log / dz po (x|2)p(2),

where p(z) = N(0, 1) is a simple normal prior. Based on the idea of importance sampling using a variational

posterior g, (z|x) with parameters ¢ and using Jensen’s inequality we arrive at

~ log /d ‘”E : ;,, (x|z)p(2),

08B [Pe (xéz‘)igzq
nixapis]
)

p(z) ]
q4(2]x)
= Esng, (zlx) [log po(x]2)] — Drcr [q4(2]x)[|p(2)] -

This lower bound is commonly referred to as ELBO.

po(x[z)p
> IEzwqd,(z\x) |:10g qu(Z‘X

— IEZN%(Z‘X) {logpg (x|z) + log

A.4 DERIVATION II: LOWER BOUND FOR Ly ROBUSTNESS ESTIMATION

Derivation of equation 6. Starting from equation 3 we find that for a perturbation & with size € = ||§||,, of sample

x the lower bound £;, (x + &) can itself be bounded by,

£+ 8) = max ~Dicr [V, g DIIN(O, 1)] = 5 5 Gy (2) —x = 813+ €

* 1 *
> Dt N (2, o DIV (0, 1)] = 55 |Gy () = x = 83+ C,
where z} is the optimal latent vector for the clean sample x for class ¥,

= 669+~ 15T (Gy(2) - @—%ﬁ+a

> Ly (%) — *elle(z ) = xlly = 55€ +C.
A.5 DERIVATION III: UPPER BOUND FOR Ly ROBUSTNESS ESTIMATION
Derivation of equation 7.
L(x+06)= max —Dxkr [N(z,041)||N(0,1)] — % HGy(z) —X— 6||§ +C,
< —Dicr [N(0,0,1)[[N(0,1)] + C — min — [|Gee(2) — x = 8]f3,
< —Dir [N(0,0,1)[IN(0,1)] + C — H{l(sn 5 1Ge(2) — x — 4],

ifde > ¢
else ’

= —Dxkr [N(0,0,1)||IN(0,1)] + C — {ai?(dc —e)?

(10)

an

for de = min, ||Gc(z) — x||,. The last equation comes from the solution of the constrained optimization
problem ming(d — €)?d s.t. d > d.. Note that a tighter bound might be achieved by assuming single & for

upper and lower bound.

A.6 L., ROBUSTNESS ESTIMATION

We proceed in the same way as for L. Starting again from

60 = max — Dict [N (2,04 DIIN(0, 1)] = 5 | Ge(a) — x +C,
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let y be the predicted class and let z}; be the optimal latent for the clean sample x for class y. We can then
estimate a lower bound on £;;(x + &) for a perturbation & with size e = ||6]| __,

* 1
0y(x + 8) = max —Dxr, [N (2,0, 1) [N (0, 1)] = 55 |Gy (2) —x = 8|, + C,
* 1 *
> —Drr N (2, 04 DIIN(0, 1)] = 55 [|Gy (2) —x = 83+ ¢,
where z}, is the optimal latent for the clean sample x for class y.
* ]- * ]-
=6,(x) + P‘ST(GZ/(ZX) =x) = 5z [0l +C,

> G +C+ 55 mm(25 (G, (z )—x)—|\5\|§),

:Z*( —I—C-FiZm]n 25 x)_x}__52)
_%Hm%;Z{L(}[éj‘z)ix]im TG b <e

Similarly, we can estimate an upper bound on £; (x + &) on all other classes ¢ # y,

(x4 8) < —Dir [N(0,0,1)||N(0,1)] + C — min o HG (z) —x — 8|2,

IN

—Dkr [N(0,0,1)||IN(0,1)] + C — rilian ﬁ |Ge(z) —x — 6H§,

.1 .
—Dxkr [N(0,0,1)|IN(0,1)] + C — min 5— Xl: r%};n ([Ge(z) — x]; — (51-)2 7 "

~Dk1 [N(0,0,1)[IN(0,1)] + C
0 if [[Gy(zx) —x]i| <€

—min s ST (G (52) — X — i [Gy (55) — i > ¢
T (G2 — X+ 07 (G, (z3) — i < €

In this case there is no closed-form solution for the minimization problem on the RHS (in terms of the minimum
of ||G¢(z) — x]|,) but we can still compute the solution for each given e which allows us perform a line search
along € to find the point where equation 13 = equation 14.

A.7 MODEL & TRAINING DETAILS

Hyperparameters and training details for the ABS model The binary ABS and ABS have the same
weights and architecture: The encoder has 4 layers with kernel sizes= [5, 4, 3, 5], strides= [1, 2, 2, 1] and feature
map sizes= [32, 32, 64, 2x8]. The first 3 layers have ELU activation functions (Clevert et al., 2015), the last layer
is linear. All except the last layer use Batch Normalization (Ioffe & Szegedy, 2015). The Decoder architecture
has also 4 layers with kernel sizes= [4, 5, 5, 3], strides= [1, 2, 2, 1] and feature map sizes= [32, 16, 16, 1]. The
first 3 layers have ELU activation functions, the last layer has a sigmoid activation function, and all layers except
the last one use Batch Normalization.

We trained the VAEs with the Adam optimizer (Kingma & Ba, 2014). We tuned the dimension L of the latent
space of the class-conditional VAEs (ending up with I = 8) to achieve 99% test error; started with a high weight
for the KL-divergence term at the beginning of training (which was gradually decreased from a factor of 10 to 1
over 50 epochs); estimated the weighting v = [1,0.96,1.001, 1.06,0.98,0.96, 1.03, 1, 1, 1] of the lower bound
via a line search on the training accuracy. The parameters maximizing the test cross entropy> and providing a
median confidence of p(y|z) = 0.9 for our modified softmax (equation 8) are = 0.000039 and o = 440. For
our latent prior, we chose o, = 1 and for the posterior width we choose o = 1/+/2

Hyperparameters for the CNNs The CNN and Binary CNN share the same architecture but have dif-
ferent weights. The architecture has kernel sizes = [5,4, 3, 5], strides = [1, 2,2, 1], and feature map sizes
= [20, 70,256, 10]. All layers use ELU activation functions and all layers except the last one apply Batch
Normalization. The CNNs are both trained on the cross entropy loss with the Adam optimizer (Kingma & Ba,
2014). The parameters maximizing the test cross entropy and providing a median confidence of p(y|x) = 0.9 of
the CNN for our modified softmax (equation 8) are 7 = 143900 and v = 1.

3Note that this solely scales the probabilities and does not change the classification accuracy.

16



Published as a conference paper at ICLR 2019

Hyperparameters for Madry et al. We adapted the pre-trained model provided by Madry et al*. Basi-
cally the architecture contains two convolutional, two pooling and two fully connected layers. The network is
trained on clean and adversarial examples minimizing the cross cross-entropy loss. The parameters maximizing
the test cross entropy and providing a median confidence of p(y|z) = 0.9 for our modified softmax (equation 8)
are ) = 60 and o = 1.

Hyperparameters for the Nearest Neighbour classifier For a comparison with neural networks, we
imitate logits by replacing them with the negative minimal distance between the input and all samples within each
class. The parameters maximizing the test cross entropy and providing a median confidence of p(y|z) = 0.9 for
our modified softmax (equation 8) are = 0.000000000004 and o = 5.

*https://github.com/MadryLab/mnist_challenge
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