
Offloading SCION Packet Forwarding to XDP BPF
Lars-Christian Schulz and David Hausheer

Networks and Distributed Systems Lab
Otto-von-Guericke-University

Magdeburg, Germany
{lschulz, hausheer}@ovgu.de

Abstract—Existing fixed-function packet processing hardware
does not support novel protocols like the next-generation Internet
architecture SCION. While SCION routers have previously been
accelerated using DPDK and Tofino ASICs, we present an alter-
native lightweight but feature-complete approach based on the
eXpress data path (XDP). We discuss implementation challenges
and opportunities unique to the XDP BPF environment and
demonstrate a first prototype capable of forwarding at least
0.676 million packets per second per CPU core.

I. INTRODUCTION

As highlighted by DDoS attacks, BGP route hijacking
attacks and countless other security incidents in recent years,
security and reliability guarantees are hard to come by in
today’s Internet. In response to the shortcomings of the current
Internet, a number of next-generation Internet architectures
have been proposed. A particularly promising candidate with
an existing real-world deployment is SCION. SCION is a
path-aware inter-domain routing architecture founded on the
principles of transparency and isolation of trust [1].

Since SCION is a clean-slate approach, no fixed-function
switching ASICs are compatible with it. Consequently, most
SCION traffic is switched in software, which makes de-
ployment in high-speed networks difficult. In this work, we
describe our approach to accelerating SCION routers by means
of the eXpress Data Path (XDP) available in the Linux kernel.
XDP bypasses the kernel’s network stack by attaching BPF
programs directly to the network driver [2]. For every packet
entering the system, XDP programs have the opportunity to
manipulate the packet before the full network stack is invoked.

In addition to the early packet processing capability, XDP
offers another kernel-bypass mechanism that forwards packets
from the driver directly to a userspace application through
a special AF XDP socket. While the AF XDP mechanism
is a promising alternative to DPDK, this work focuses on
processing SCION packets entirely in kernel space.

II. RELATED WORK

The reference SCION border router is implemented in
Go and performs all network I/O through the BSD socket
interface. Its main focus is not on performance. The Swiss
company Anapaya internally employs a DPDK-based SCION
border router, which is not publicly available.

There are two noteworthy implementations of the SCION
data plane in P4. The first targets the NetFPGA SUME plat-
form through the use of a special P4 to hardware description

compiler [3]. It achieves 10 Gbit/s line rate forwarding, but
is based on an older version of the SCION specification and
is not actively maintained. The second implementation targets
the Intel Tofino ASIC [4]. Since Tofino does not offer the
cryptographic primitives required by the SCION data plane,
any SCION implementation on Tofino is limited to offloading
cryptographic packet verification to the control plane. This is
possible for the standard SCION protocol, but some advanced
protocols built on top of SCION require cryptographic verifica-
tion of every single packet, rendering workarounds ineffective.

The aim of our work is to explore a middle ground
between conventional software implementations of SCION
and P4-programmable hardware. XDP programs bypass the
kernel as DPDK does, but can – if necessary – run without
explicit driver support. Moreover, SmartNICs capable of XDP-
hardware offload exist.

III. DESIGN

Our XDP program (available at https://github.com/
netsys-lab/scion-xdp-br) is designed to work in conjunction
with the regular SCION border router in userspace. The XDP
router decides whether a packet can be processed directly in
BPF, or whether it has to be forwarded to the conventional
router. In this way, we can implement a fast path for common
cases and leave uncommon types of packets or packets that
require special processing to the userspace border router.

Forwarding SCION packets is simplified by the fact that
the entire end-to-end path at the AS level is encoded in the
SCION header, a concept known as packet-carried forwarding
state (PCFS). In concrete terms, the SCION header contains
a list of so-called hop fields. Each hop field is protected
by a Message Authentication Code (MAC) based on the
AES-CMAC algorithm. Hop fields within a path segment
are chained together via an updatable header field SegID,
which is included in the MAC computation. From a high level
perspective, a SCION border router has to (1) identify the
current hop field, (2) verify the hop field, (3) update header
fields to point to the next hop field, and (4) forward the
packet to the AS egress port indicated in the current hop field.
Figure 1 shows the packet processing flow in BPF.

Since XDP programs operate on the raw packet buffers,
the first processing step is parsing the outer Ethernet, IP and
UDP headers SCION is encapsulated in. If the packet does
not contain a valid SCION header it is passed to the regular
network stack. When we identify a supported SCION packet, a

https://github.com/netsys-lab/scion-xdp-br
https://github.com/netsys-lab/scion-xdp-br


number of processing steps must be performed on the SCION
header, depending on whether the packet reached the system
from an external interface (AS ingress) and whether the next-
hop router is inside another AS (external) or the same AS
(internal). The active hop field in the SCION header indicates
the logical interface ID towards which we have to forward
the packet. We employ a combination of lookups in SCION
specific BPF-maps populated from userspace and a lookup in
the kernel’s forwarding information base (FIB) to determine
which physical interface the packet has to be redirected to and
what source/destination UDP ports, IP and MAC addresses
have to be used.

Packet Ingress

Parse Headers

AS Ingress?

Ingress Processing

Next Hop?

Egress Processing

Rewrite Packet

Verify Hop Field(s)

Redirect Packet

External

FIB Lookup

HF Valid? Drop
Internal

Yes

No

Yes

No

Fig. 1. Simplified XDP packet processing flow.

Modification of the packet buffer is delayed until we can
be sure the packet will not have to be passed to user space to
avoid corrupting packets.

IV. IMPLEMENTATION

To allow safe execution of user-provided code in kernel
space BPF imposes many restrictions on the programs. For
instance, all loops must be bounded and all memory accesses
have to be guarded by bounds checks. External function calls
are limited to a small set of helper functions. BPF-to-BPF
function calls are possible, but limited by the small stack
size of only 512 bytes as of kernel 5.13. Furthermore, the
validator enforcing the rules imposes additional restrictions
on the complexity of the code, e.g., the maximum number of
branches and the operations permitted on pointers.

The most computationally demanding step of SCION for-
warding is the computation of MACs using the AES-CMAC
algorithm. Usually, the SCION border router can rely on
hardware-acceleration for AES, but this is not possible in BPF.
Therefore, we include an implementation of AES in the XDP
router. Since the combined program is fairly large, care must
be taken to pass the BPF validation. A valuable feature to that
end are BPF-to-BPF function calls, because BPF functions are
validated independently, effectively resetting the “budget” for
each function. However, in many cases it is still preferable to

inline functions as not to exhaust the small stack. Moreover,
since the validation is reset between function calls, passing
pointers between non-inlined functions is difficult.

Many decisions on the structure of our program were
dictated by the BPF validator. For example, we check hop field
validity last so we can free up stack space used by temporary
variables and pointers into the packet buffer before the AES
subroutines are invoked, which requires a large amount of
stack space. Another well known technique we employ is
statically allocating space for large structures in BPF maps
which can be arbitrarily large.

In future work, we will explore the possibility of imple-
menting an AES helper function natively in the kernel. Such
a function would free us from having to calculate MACs
in the BPF VM directly, which could drastically improve
performance. Another issue is the inability to rely on receive
side scaling (RSS) to distribute work over multiple CPU cores
caused by the SCION underlay using a fixed five-tuple per
AS-link. By distributing flows using XDP we will be able to
harness multiple CPU cores per border router interface.

V. PRELIMINARY EVALUATION

To verify whether the XDP border router delivers sensible
performance without hardware-accelerated AES, we have cre-
ated a testbench consisting of two virtual ethernet pairs [5]
(veths) bridged by the XDP router. We use tcpreplay to
inject synthetic SCION traffic into the border router, which for-
wards the packets to a second virtual interface. The receiving
veth pair is configured to count and drop all packets. On an
AMD Ryzen 3700X processor running Ubuntu 21.10 inside
a VM we have observed a throughput of 0.676 Mpps with
AES and of 0.895 Mpps if we disable hop field verification.
Additional details are available in our source repository.

VI. PRELIMINARY CONCLUSIONS

We presented our approach to accelerate SCION packet
processing using XDP and discussed the implementation
challenges presented by the BPF runtime environment. Our
border router demonstrates the suitability of XDP for rapid
prototyping of novel network protocols in the Linux kernel,
but we are not yet able to determine whether competitive
performance with comparable approaches such as DPDK is
achievable.

REFERENCES

[1] D. Barrera, L. Chuat, A. Perrig, R. M. Reischuk, and P. Szalachowski,
“The SCION internet architecture,” in Communications of the ACM,
vol. 60, no. 6, 2017, pp. 56–65.

[2] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Her-
bert, D. Ahern, and D. Miller, “The express data path: Fast programmable
packet processing in the operating system kernel,” in CoNEXT, 2018, p.
54–66.

[3] K. Součková, “FPGA-based line-rate packet forwarding for the SCION
future internet architecture,” Master’s thesis, ETH Zürich, 2019.

[4] J. de Ruiter and C. Schutijser, “Next-generation internet at terabit speed:
SCION in p4,” in CoNEXT. New York, NY, USA: Association for
Computing Machinery, 2021, p. 119–125.

[5] T. Makita and W. Tu, “Veth XDP: XDP for containers,” 2019, netdev
0x13. [Online]. Available: https://legacy.netdevconf.info/0x13/session.
html?talk-veth-xdp

https://legacy.netdevconf.info/0x13/session.html?talk-veth-xdp
https://legacy.netdevconf.info/0x13/session.html?talk-veth-xdp

	Introduction
	Related Work
	Design
	Implementation
	Preliminary Evaluation
	Preliminary Conclusions
	References

