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Abstract

Human interaction increasingly relies on telecommunication as an addition to or replace-
ment for immediate contact. The direct interaction with smart devices, beyond the use
of classical input devices such as the keyboard, has become common practice. Remote
participation in conferences, sporting events, or concerts is more common than ever, and
with current global restrictions on in-person contact, this has become an inevitable part
of many people’s reality. The work presented here aims at improving these encounters by
enhancing the auditory experience. Augmenting fidelity and intelligibility can increase
the perceived quality and enjoyability of such actions and potentially raise acceptance
for modern forms of remote experiences. Two approaches to automatic source localiza-
tion and multichannel signal enhancement are investigated for applications ranging from
small conferences to large arenas.

Three first-order microphones of fixed relative position and orientation are used to create
a compact, reactive tracking and beamforming algorithm, capable of producing pristine
audio signals in small and mid-sized acoustic environments. With inaudible beam steer-
ing and a highly linear frequency response, this system aims at providing an alternative
to manually operated shotgun microphones or sets of individual spot microphones, appli-
cable in broadcast, live events, and teleconferencing or for human-computer interaction.
The array design and choice of capsules are discussed, as well as the challenges of pre-
venting coloration for moving signals. The developed algorithm, based on Energy-Based
Source Localization, is discussed and the performance is analyzed. Objective results on
synthesized audio, as well as on real recordings, are presented. Results of multiple lis-
tening tests are presented and real-time considerations are highlighted.

Multiple microphones with unknown spatial distribution are combined to create a large-
aperture array using an end-to-end Deep Learning approach. This method combines
state-of-the-art single-channel signal separation networks with adaptive, domain-specific
channel alignment. The Neural Beamformer is capable of learning to extract detailed
spatial relations of channels with respect to a learned signal type, such as speech, and
to apply appropriate corrections in order to align the signals. This creates an adaptive
beamformer for microphones spaced on the order of up to 100 m. The developed mod-
ules are analyzed in detail and multiple configurations are considered for different use
cases. Signal processing inside the Neural Network is interpreted and objective results
are presented on simulated and semi-simulated datasets.
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Zusammenfassung

Zwischenmenschliche Interaktion stützt sich zunehmend auf die Telekommunikation als
Ergänzung oder Ersatz des unmittelbaren Kontaktes. Die Teilnahme an Konferenzen,
Sportveranstaltungen oder Konzerten aus der Ferne ist angesichts der derzeitigen glo-
balen Einschränkungen ein unvermeidlicher Bestandteil der Lebensrealität vieler Men-
schen geworden. Diese Arbeit zielt darauf ab, derartige Erfahrungen aufzuwerten. Die
Verbesserung von Klangqualität und Verständlichkeit kann die wahrgenommene Qua-
lität und den Spaß an solchen Events steigern und möglicherweise die Akzeptanz für
moderne Formen von Fernerlebnissen erhöhen. Zwei Ansätze zur automatischen Signal-
quellenortung und die daraus resultierende Signalverarbeitung werden untersucht. Der
Anwendungsbereich reicht von kleinen Konferenzen bis zu Großveranstaltungen.

Drei Mikrofone mit fester relativer Ausrichtung werden zu einem kompakten Array
kombiniert, welches in kleinen und mittleren Räumen Audiosignale höchster Qualität
erzeugen kann. Mit der artefaktfreien Steuerung eines virtuellen Richtmikrofons und
einem hochlinearen Frequenzgang soll dieses System eine Alternative zu manuell betrie-
benen Richtrohrmikrofonen oder Einzelmikrofonie bieten, welche für Rundfunk, Live-
Events, Telefonkonferenzen oder für moderne Mensch-Maschine-Interaktionen geeignet
sind. Das Array-Design und die Auswahl der Kapseln werden ebenso diskutiert wie die
Herausforderungen eines richtungsunabhängigen Frequenzgangs. Der entwickelte Algo-
rithmus, welcher auf einer energiebasierten Schallquellenortung basiert, wird diskutiert
und die Leistung analysiert. Es werden objektive Ergebnisse zu synthetischen Audiosze-
nen, sowie zu realen Aufnahmen vorgestellt. Die Ergebnisse detaillierter Hörtests werden
vorgestellt und Überlegungen zur Echtzeitfähigkeit ausgeführt.

Mehrere Mikrofone unbekannter räumlicher Verteilung werden zu einem Ar-
ray mit enorm großer Apertur kombiniert und mit neuronalen Netzen in end-
to-end-Konfiguration betrieben. Dieses Verfahren kombiniert moderne Einkanal-
Signaltrennungsnetze mit adaptiver, domänenspezifischer Kanalsynchronisation. Der
Neural Beamformer kann lernen, räumliche Beziehungen von Kanälen, bezogen auf
einen gelernten Signaltyp wie Sprache, zu extrahieren und geeignete Korrekturen anzu-
wenden. Hieraus entsteht ein adaptiver Beamformer für Mikrofone mit einem Abstand
in der Größenordnung von 100 m. Die entwickelten Module werden detailliert analysiert
und mehrere Konfigurationen für verschiedene Anwendungsfälle werden betrachtet. Die
Signalverarbeitung innerhalb des neuronalen Netzes wird analysiert und objektive Er-
gebnisse werden für simulierte und halbsimulierte Datensätze präsentiert.
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2.1 A Neural Beamforming Frontend for Distributed
Microphone Arrays (2021)

In this paper, the adaptive beamformer described in section 2.2 is used as a front-end
for state-of-the-art time-domain signal separation networks. The resulting end-to-end
network is capable of processing large-aperture microphone arrays and outperforms all
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2.4 Acoustic Source Localization and High Quality
Beamforming Using Coincident Microphone Arrays
(2020)

This publication presents the second of the two main research ideas of this dissertation.
Using three high-quality microphone capsules and a real-time algorithmic signal
processing chain, speech signals are tracked and a first-order beam is synthesized.
Compared to other approaches, this produces an audio signal with no audible coloration
or processing artifacts, making uses within pro-audio applications feasible.

Author
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Wittek (Schoeps Mikrofone)

• planning of the development process, including research assistants and student
theses

• preparation of custom hardware components for microphone measurements (70 %)

• measurement of microphone characteristics (50 %)

• preparation of virtual conference based on supervised student thesis [15] and
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• methodology for subjective listening tests (10 %)

Contribution of co-authors:

• Hendrik Paukert

– listening tests on subjective noise disturbance characterization for develop-
ment prioritization (see 2.10)

– preparation of custom hardware components for microphone measurements
(30 %)

– measurement of microphone characteristics (50 %)

– preparation of virtual conference and recording of evaluation data (50 %)

– listening tests for subjective performance evaluation and comparison with
adaptive filtering approaches (see 2.6)

• Andreas Koch - project management

• Andreas Schilling - guidance on research direction

2.5 Speech Classification for Acoustic Source
Localization and Tracking Applications using
Convolutional Neural Networks (2018)

Based on the broader research topic described in 2.4, this work focuses on a subsection
of the processing chain and presents an initial investigation of the use of Convolutional
Neural Networks (CNNs) for Voice Activity Detection (VAD) within an Acoustic Source
Localization (ASL) algorithm. A multitude of audio buffers is stored and VAD is per-
formed on a Time-Frequency (TF) representation of the signal.

Author
Author Scientific Data Analysis & Paper
position ideas % generation % interpretation writing %

Jonathan Ziegler 1 85 100 100 95
Andreas Koch 2 5 0 0 5

Andreas Schilling 3 10 0 0 0
status published

Table 2.5: Author contribution for: Speech Classification for Acoustic Source Localiza-
tion and Tracking Applications using Convolutional Neural Networks

Personal contribution:
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• research idea

• implementation of pre-processing algorithms

• Deep Neural Network (DNN) architecture design and training

• incorporation of module into ASL algorithm

• performance evaluation

Contribution of co-authors:

• Andreas Koch - project management

• Andreas Schilling - guidance on research direction

2.6 Hörversuche zur Entwicklung eines neuartigen
Mehrkapsel-Mikrofons (2018)

Based on 2.10, a larger set of listening tests was performed using the results of the
developed algorithms presented in 2.4 and 2.5. The goal was to determine subjective
preferences between different methods of speech enhancement and beamforming. Next
to anchor and reference signals required for the selected test method, the supercardioid
beam created by the developed algorithm was compared with a static, omnidirectional
signal and various adaptive filters, some commercially available, some currently under
development [32, 34].

Author
Author Scientific Data Analysis & Paper
position ideas % generation % interpretation writing %

Hendrik Paukert 1 50 60 80 85
Jonathan Ziegler 2 45 40 20 10

Andreas Koch 3 5 0 0 5
status published

Table 2.6: Author contribution for: Hörversuche zur Entwicklung eines neuartigen
Mehrkapsel-Mikrofons

Contribution of Hendrik Paukert (main author):

• conception, implementation, execution and evaluation of listening tests

• execution of virtual conference scenario (50 %)

• recording of test signals for and generated by the virtual conference (25 %)
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Personal contributions are:

• research idea

• conception and realization of reproducible loudspeaker scenario (virtual confer-
ence) as test system based on [15]

• execution of virtual conference scenario 50 %

• recording of test signals for and generated by the virtual conference 75 %

Contribution of co-authors:

• Andreas Koch - project management

2.7 The Fundamental Problem of the Spectral
Subtraction (2018)

During the development of adaptive filtering methods used in one of the compared beam-
forming algorithms in the work described in section 2.6, basic questions of frequency-
domain audio filtering arose. In this publication, spectral subtraction is analyzed on a
theoretical basis in order to assess potential shortcomings of the approach, compared to
time-domain Finite Impulse Response (FIR)-filtering.

Author
Author Scientific Data Analysis & Paper
position ideas % generation % interpretation writing %

Bernfried Runow 1 85 100 80 85
Jonathan Ziegler 2 0 0 10 10
Hendrik Paukert 3 0 0 0 5

Andreas Schilling 4 10 0 5 0
Oliver Curdt 5 5 0 5 0

status published

Table 2.7: Author contribution for: The Fundamental Problem of the Spectral Subtrac-
tion

Contribution of Bernfried Runow (main author):

• research idea

• theoretical base

• conception, implementation and execution of experiments

Personal contributions to this publication are:
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• assistance with theoretical work

• partial translation and editorial work

Contribution of co-authors:

• Hendrik Paukert - writing assistance

• Andreas Schilling - guidance on research direction and theoretical base

• Oliver Curdt: - guidance on research direction and theoretical base

2.8 Interpolation and Display of Microphone Directivity
Measurements using higher-order Spherical
Harmonics (2017)

While developing the application presented in 2.9, questions arose about different in-
terpolation and smoothing methods for microphone polar plots. This work explores the
advantages of using Spherical Harmonics (SH) as a set of base functions that match the
behaviour of Differential Microphone Arrays (DMAs) and expands the work presented
in 2.9 into three dimensions.

Author
Author Scientific Data Analysis & Paper
position ideas % generation % interpretation writing %

Jonathan Ziegler 1 85 100 90 75
Mark Rau 2 0 0 10 20

Andreas Koch 3 5 0 0 5
Andreas Schilling 4 10 0 0 0

status published

Table 2.8: Author contribution for: Interpolation and Display of Microphone Directivity
Measurements using higher-order Spherical Harmonics

The personal contribution spans:

• research idea

• conception of experiment

• theoretical basis (90 %)

• implementation of Spherical Harmonics Transform (SHT) algorithms

• complete development of the application
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2.9 Interactive Display of Polarity Patterns with non-fixed Frequency Point (2017)

Contribution of co-authors:

• Mark Rau - assistance in theoretical foundation of spherical harmonics (10 %)

• Andreas Koch - project management

• Andreas Schilling - guidance on research direction

2.9 Interactive Display of Microphone Polarity Patterns
with non-fixed Frequency Point (2017)

During initial experiments with different methods of ASL, exact information about the
frequency-dependent directivity of the individual microphone capsules and synthesized
beams was essential. Manufacturers generally supply smoothed graphs, either as stacked
frequency-response plots with several Angles of Incidence (AOIs) or as stacked polar
plots. Even in close collaboration with a microphone manufacturer, no detailed informa-
tion was attainable. For this reason, frequency measurements were performed in an ISO
3745 Precision Class 1 anechoic chamber and processed to accurately display directivity
patterns of individual microphones or entire arrays at any desired frequency set by the
user [16].

Author
Author Scientific Data Analysis & Paper
position ideas % generation % interpretation writing %

Jonathan Ziegler 1 90 60 80 90
Hendrik Paukert 2 10 40 0 10

Bernfried Runow 3 0 0 20 0
status published

Table 2.9: Author contribution for: Interactive Display of Microphone Polarity Patterns
with non-fixed Frequency Point

The personal contribution within this work covers:

• research idea

• conception of the experiment

• design of custom microphone mounting hardware

• construction of custom microphone hardware (30 %)

• recording of the test signals in cooperation with Hendrik Paukert and the research
assistants at the Fraunhofer IDMT in Ilmenau (45 %)

• post processing and smoothing to extract the Room Impulse Responses (RIRs)
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• complete development of the final user application

Contribution of co-authors:

• Hendrik Paukert

– construction of custom microphone hardware (70 %)

– recording of the test signals (45 %)

• Bernfried Runow - theoretical base for microphone directivity plots

2.10 Listening Tests in the Process of Microphone
Development (2016)

This publication focuses on listening tests prior to the development of the application
and algorithms described in publications 2.4 and 2.5. The tests were performed to assess
subjective reactions to various types of noise in order to prioritize during the development
process.

Author
Author Scientific Data Analysis & Paper
position ideas % generation % interpretation writing %

Hendrik Paukert 1 60 100 80 70
Jonathan Ziegler 2 40 0 20 30

status published

Table 2.10: Author contribution for: Listening Tests in the Process of Microphone De-
velopment

Contribution of Hendrik Paukert (main author):

• research idea

• conception, implementation, execution, and evaluation of listening tests

Personal contributions to this publication are:

• programming assistance for listening test

• assistance with selection of test methods

• translation and editorial work
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Chapter 3

Introduction

Beamforming is the process of manipulating and combining the output signals of multi-
ple sensors within an array. The objective of this process is generating an enhanced array
output signal with respect to the spatial relations of the sensors and the desired signal
components [40]. In audio signal processing, both additive and subtractive methods are
applied. The specific approaches chosen within the scope of this dissertation are outlined
in the following sections. The discrete time and frequency indices [t] and [ f ] are omitted
for improved clarity of the equations, except for cases in which the variable is relevant
to the performed operations.

3.1 Differential Microphone Arrays

1st order
output

1st order
output

2nd order
output

Figure 3.1: Signal processing of a second-order Differential Microphone Array.

Differential Microphone Arrays are sensitive to the sound pressure gradient, or the spatial
derivative of the sound pressure field. This response can be implemented by subtracting

13



Chapter 3 Introduction

the signals of two closely spaced omnidirectional, sound pressure-sensitive microphones,
resulting in a first-order DMA. Higher orders N are achieved by subtracting two differ-
ential arrays of order N-1. Figure 3.1 shows a basic linear microphone array, with the
output signals processed to create a second-order DMA.

For a first-order DMA, the angular response magnitude can be approximated to [2]:

P(θ) = cosθ , (3.1)

with phase inversions at ±90°. This response is shown in Figure 3.2. Sound pickup of
pressure gradient sensors is inherently frequency dependent. With the pressure gradient
expressed as

∇eiωt = iωeiωt , (3.2)

a linear dependency with the angular velocity ω becomes apparent [10]. Equation (3.2)
translates into an attenuation of 6 dB/octave and a phase shift of 90° with respect to
the sound pressure. In practice, the frequency and phase response are compensated by
electrical equalization circuits to linearize the microphone output. Figure 3.3 shows the
initial and corrected frequency responses of a figure-of-eight pressure gradient micro-
phone. Besides the linear slope, nulls at high frequencies can be observed. These nulls
correspond to frequencies where the distance d matches the wavelength λ . In order to
push the first null to higher frequencies, small distances d are required. This restriction
poses the challenge of diminishing pressure gradients, requiring significant amplifica-
tion. Diffraction and resonance effects can be utilized to increase the spacing d slightly,
thus increasing the Signal-to-Noise Ratio (SNR) of the output [10].
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Figure 3.2: Polar response of microphone or microphone array with a dipole, or figure-
of-eight pickup pattern.
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Figure 3.3: Frequency response of figure-of-eight microphone, before and after ideal
correction filters are applied. The dotted line indicates the actual frequency for on-axis
incidence due to diffraction and resonance effects, reproduced from [10].

3.1.1 Gradient Synthesis
The most basic sound pressure gradient sensor can be realized without multiple trans-
ducers. By openly mounting a single diaphragm without a sealed backing chamber, the
excitation of the diaphragm becomes pressure gradient-sensitive. As current transducer
technology relies on two-dimensional diaphragms, for instance as one side of a capacitor
or in a moving coil or ribbon configuration, sound pressure gradients can be efficiently
detected only in one dimension, resulting in the anisotropic sensitivity shown in Figure
3.2 and described in Eq. (3.1) [10]. The signals of closely spaced omnidirectional and
bidirectional microphones W and Y can be combined to create variable pickup patterns,
parameterized by the pickup parameter p [10, 33]:

Mp = pW +(1− p)Y. (3.3)

Reconstructions of the most common microphone pickup patterns are shown in Figure
3.4. By mixing the signals X and Y of two stacked, orthogonal figure-of-eight micro-
phones, the signal Ŷ of a virtual figure-of-eight capsule can be synthesized. The orienta-
tion θ of this virtual capsule can be variably set by combining the signals using

Ŷθ = X cosθ +Y sinθ . (3.4)

By combining (3.3) and (3.4), any first-order virtual pickup pattern can be pointed at any
angle on the plane constructed by the axes of X and Y using

Mθ ,p = pW +(1− p)(X cosθ +Y sinθ). (3.5)

Equation (3.5) represents the basic approach to beamforming used in [51, 52] to cre-
ate both the first-order output signal and the steered beam described in the following
section.
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Figure 3.4: Variable polar pickup pattern when mixing omnidirectional and bidirectional
microphone signals according to Equation (3.3) under variation of the mixing parameter
p. Different values for p represent known pickup patterns.

3.1.2 Energy-Based Acoustic Source Localization

In order to make better use of the array described in Section 3.1.1, an ASL algorithm
must be implemented. The localization algorithm outputs the desired direction of accen-
tuation. For moving sources and arrays, this algorithm must be adaptive and, optimally,
provide sufficiently short processing times to be used in a real-time environment. A
popular approach to ASL is the Steered Response Power (SRP) algorithm [9, 24]. In
the chosen time-domain approach, a virtual microphone beam is generated using Eq.
(3.5) and steered across the entire range of possible AOIs before returning the direction
with the highest sound pressure level. When using a synthesized set of cardioid signals
Mθ ,p=0.5, spanning the entire space of possible angles θ ,

M= {Mθ ∀ θ = 0,1, . . . ,359} , (3.6)

the energy of the discrete signals of length L corresponding to the directions can be
computed via Root Mean Square (RMS):

M=





√
1
L

L

∑
t

Mθ
2 ∀ θ = 0,1, . . . ,359



 . (3.7)

The signal corresponding to the angle with the highest signal energy then represents the
approximated Direction of Arrival (DOA) of the current audio frame:

θDOA = max
θ

(
M
)
. (3.8)
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Within the scope of this dissertation, multiple enhancements to the basic ASL algorithm
are introduced to generate a stable and reactive beam from a coincident microphone
array [51, 52]. The basis of these stabilization algorithms is the process of exponential
smoothing, in which the output of the smoothing algorithm is composed partly of the
output of the previous time step and partly of the current estimation for θDOA:

θ 0
s = θ 0

DOA (3.9)

θ t
s = α θ t

DOA +(1−α)θ t−1
s . (3.10)

By changing α for each audio buffer dynamically, depending on a set of quality metrics
discussed in Section 5.1.2, the filtered DOA output θs greatly improves upon the simple
maximization described above and provides sufficiently stable directional information
for first-order beamforming as described in Equation (3.5).

3.2 Additive Beamforming with Distributed Arrays

3.2.1 Signal Mixture Model

The mixtures of I signals si and J noises n j at multiple positions in an acoustic environ-
ment recorded by microphones mν can be expressed as:

mν =
I

∑
i=1

s̃ν
i +

J

∑
j=1

ñν
j . (3.11)

Every signal s̃ν
i and noise ñν

j consist of the corresponding signal and noise sources si
and n j, propagated from their respective source positions to the transducer mν . The
propagation transformations are expressed as convolutions with corresponding impulse
responses h [4, 53]:

s̃ν
i = si ∗hν

si
, ñν

j = n j ∗hν
n j
, (3.12)

resulting in

mν =
I

∑
i=1

(
si ∗hν

si

)
+

J

∑
j=1

(
n j ∗hν

n j

)
. (3.13)

Equation (3.13) is visualized in Figure 3.5. The arrows represent propagation paths,
expressed with the corresponding impulse responses hν

x .
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si(t)

n j(t)

m1(t)

m2(t)

A

D

C B

Figure 3.5: Visualization of signal and noise propagation to multiple transducers.

3.2.2 Beamforming with Known Positions
Delay-and-Sum beamformers utilize spaced arrays with transducer spacings starting at
a few centimeters. As displayed in Figure 3.6, the Time Difference of Arrival (TDOA)
between individual microphone pairs can be directly computed from the AOI θ , the
microphone spacing d, and the speed of sound c.

By appropriately delaying the individual microphones by the calculated TDOA prior to
summation, sound arriving from the angle θ is favored in the output signal. The array
output mν of microphone ν with respect to the desired signal s and the diffuse noise n at
time step t can be expressed similarly to (3.11) as:

mν(t) = s(t− τν)+n(t), ν = 1, . . . ,M, (3.14)

with τν describing the relative time delay between microphones 1 and ν [2]. For the
linear array shown in Figure 3.6, τ can be computed using the speed of sound c and the
AOI θ as

τν =
(ν−1)d cosθ

c
. (3.15)

Following McCowan [23], and assuming an odd number N, equally spaced transducers
with identical frequency responses, the horizontal, frequency-dependent directivity pat-
tern D for the array shown in Figure 3.6 can be expressed using the complex frequency-
dependent weights wn as

D
(

f ,θ ,φ =
π
2

)
=

N−1
2

∑
−N−1

2

wn( f )e i 2π f
c nd cosθ . (3.16)
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Figure 3.6: Signal processing for a Delay-and-Sum beamformer with optional Finite Im-
pulse Response filters H for Filter-and-Sum beamforming, reconstructed from [2].

Figure 3.7 a shows the directivity pattern for such arrays under variation of the micro-
phone spacing d. While the main lobe is sharpened for larger inter-transducer distances,
the number and relative sensitivity of the side lobes increases. Figure 3.7 b compares
the directivity patterns of multiple arrays of the same geometric proportions under the
variation of the number of transducers. Additional transducers attenuate the side lobe
without affecting the position of nulls.

As the described method exhibits fundamental restrictions, such as frequency-dependent
directivity patterns shown in Figure 3.8, sub-band and Filter-and-Sum (FS) beamformers
were proposed [3, 11]. Within the scope of this dissertation, a data-driven approach was
chosen to implicitly estimate time shifts δ and filters H for FS beamforming [48, 53, 54].
This method is detailed in Section 3.3.
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Figure 3.7: Relative directivity pattern for linear microphone arrays under variation of
spatial sampling. Linear scale used.
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Figure 3.8: Linear microphone array: polar visualization of relative directivity for multi-
ple frequencies. Linear scale used.
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3.2.3 Acoustic Source Localization for Ad Hoc Arrays

For situations with known transducer and source positions, solving for τm is a geometri-
cal problem. Unknown transducer distributions or source positions require alternative
approaches to find the correct TDOA. One such approach uses the cross-correlation
between signal pairs as an indicator for the correct delay between the two micro-
phones.

Considering two real-valued input vectors mx[t], the discrete correlation, represented
with the ? operator, can be expressed as

CCm1,m2[t] := (m1 ?m2) [t] =
∞

∑
τ=−∞

m1[τ] ·m2[τ + t]. (3.17)

In the absence of interference and reverberation and for a single source x, the main peak
of the CC vector indicates the TDOA of the source with respect to the two input chan-
nels:

δ 1,2 = argmax [CCm1,m2[t]] . (3.18)

Unfortunately, this method becomes unstable for reverberant or noisy environments. One
attempt to improve the stability of such algorithms is to apply weighting filters to the
individual signals prior to the computation of the cross-correlation vector. Using the
convolution theorem, (3.17) can be expressed as

(m1 ?m2) = F−1
{
F{m1} ·F{m2}

}
, (3.19)

with F{ } representing the Fourier transform and [ ] the complex conjugation. Ap-
plying Phase Transform weighting leads to the computation of the GCC-PHAT:

GCC-PHATm1,m2 = F−1




F{m1} ·F{m2}∣∣∣F{m1} ·F{m2}

∣∣∣



 . (3.20)

This Generalized Cross Correlation (GCC) provides an increased robustness to noise but
still becomes quite unstable in reverberant environments.
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3.3 End-to-End Neural Networks for Multichannel
Audio Processing

With machine learning helping to advance the state of the art in many areas of audio
signal processing, Neural Beamforming remains a challenging research subject. The
approach pursued in this dissertation aims at combining knowledge of the physical sys-
tems with data-driven, adaptive models for filtering and masking of time-domain audio
signals.

3.3.1 Time-Domain Neural Networks

Time-domain processing with DNNs is a relatively new approach, with dilated Tempo-
ral Convolutional Networks (TCNs) currently producing among the best results. This
approach was proposed for audio as the WaveNet by Oord et al. [27]. The architecture
utilizes dilated causal convolutional layers with exponentially increased dilation rates.
Dilated convolutions insert empty positions into the convolution kernels, hence increas-
ing the receptive field without increasing the number of computations. WaveNet uses
causal convolutions, making the model capable of operating at per-sample resolution.
Alternatively, block processing with sufficiently large blocks can be applied [21]. Addi-
tionally, gated activation units are implemented as proposed in [26]. This method com-
bines the output of two dilated convolutions Wf ∗ x and Wg ∗ x at layer k, applied to the
same input x, using the tanh and the sigmoid activation functions and an element-wise
multiplication

⊗
, so that

z = tanh
(
Wf ,k ∗ x

)⊗
σ
(
Wg,k ∗ x

)
. (3.21)

A pointwise convolution and a residual connection with the input complete the gated
activation block. The entire module is shown in Figure 3.9.

tanh

Dilated 
Convolution

Pointwise 
Convolution

x z

Figure 3.9: Gated Activation Unit with skip connections, reconstructed from [27].

Oord et al. additionally introduced Conditional WaveNets in which a latent global con-
text vector h or context time series y can be used to condition the generative output by
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expanding (3.21) with the linear projections V∗,k to

z = tanh
(

Wf ,k ∗ x+V T
f ,kh
)⊗

σ
(

Wg,k ∗ x+V T
g,kh
)

(3.22)

and

z = tanh
(
Wf ,k ∗ x+Vf ,k ∗ y

)⊗
σ
(
Wg,k ∗ x+Vg,k ∗ y

)
. (3.23)

3.3.2 Mask Estimation Networks

The most effective and popular method of Deep Learning (DL)-based time-domain au-
dio signal separation currently is mask estimation. Comparable to a mask for an image,
per-sample amplitude masks are generated by the DNN. This mask is then multiplied
element-wise with the audio signal to remove unwanted components. Luo and Mes-
garani use stacked convolutional blocks as shown in Figure 3.10 for mask estimation
in the TasNet architecture [21]. Analogous to the previously described WaveNet archi-
tecture, these convolutional blocks are stacked M times with dilation rates increasing
exponentially from 20 to 2M−1. This stack is then repeated R times to create the full
model.

PReLUPointwise 
Convolution

Batch 
Norm

Depthwise 
Convolution PReLU Batch 

Norm
Pointwise 

Convolution

Input Output

Figure 3.10: Convolutional Block in TasNet architecture, reconstructed from [21].

An alternative approach uses Recurrent Neural Networks (RNNs) for time-domain mask
estimation. The Dual-Path Recurrent Neural Network (DPRNN) architecture segments
the input buffers into volumes of smaller, overlapping sections, or chunks, which are then
processed individually by Bidirectional Long Short-Term Memory (Bi-LSTM) layers.
During intra-chunk processing, visualized as the first block in Figure 3.11, the recurrent
units, a dense layer, and LayerNorm normalization are applied to the time axis of the in-
dividual chunks. Subsequent inter-chunk processing, shown in the second block, applies
the same steps along the chunk axis of the input tensor.
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Bidirectional 
LSTM

Dense

LayerNorm

Bidirectional 
LSTM

Dense

LayerNorm

Figure 3.11: Basic configuration of a Dual-Path RNN block. The input volume of seg-
mented, overlapping time series is processed along the time axis and the chunk axis
independently, using Bidirectional RNN units [22].

3.3.3 Adaptive Front-Ends

Mask estimation is often combined with an adaptive front-end. This module learns de-
compositions into a higher-dimensional feature space and the corresponding recombina-
tions of the signal, facilitating signal separation [43]. Examples of algorithmic analoga
are TF representations such as the Discrete Wavelet Transform (DWT) and the Short
Time Fourier Transform (STFT) [1, 5, 37]. This decomposition can easily be imple-
mented using linear, one-dimensional convolutional layers, with the recombination con-
sisting of one-dimensional, transposed convolutional layers. The large advantage of in-
corporating the encoding into the network architecture is the ability to learn domain-
specific representations. While the algorithmic approaches are theoretically capable of
accounting for domain-specific features such as restricted frequency ranges or nonlinear
frequency bin spacing, fine-tuning this manually requires precise knowledge of the entire
space of possible input signals. As the parameter space of a linear encoder architecture
is comparatively small, the time consumed by this task of manual fine-tuning is in no re-
lation to the negligible gain in processing time. A hybrid approach has been proposed by
Ravanelli and Bengio in which the kernels of the convolutional layer are fixed to discrete
sinc functions, functioning as band-pass filters [31]. The only learnable parameters are
the lower and upper cutoff frequency for each band. This approach functions as expected;
an actual advantage over learning the entire filters can only be shown for extremely small
datasets. Limited data are not a restriction for the pursued application.
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3.3.4 Multichannel Networks

In order to apply the described methods to microphone array signals, some form of cross-
channel dependency is required within the network. For small TDOA and fixed array
geometries, a CNN is capable of learning to implicitly compensate time delays using one-
dimensional convolutional kernels. For ad hoc, large-aperture arrays, this is not possible,
as the convolutional kernels are orders-of-magnitude smaller than the required time shift.
The use of dilated convolutions can mitigate this issue, although the reduced resolution
of such operations makes accurate, large-scale shifts impossible. Multiple approaches
to solving the task of Time Difference of Arrival estimation using DNNs are possible.
A relatively small Neural Network (NN) can be used to estimate time delays from the
cross-correlation matrix of the entire array or individual microphone pairs. This delay
can then be applied algorithmically prior to channel summation, resulting in a neural
Delay-and-Sum (DS) beamformer with increased tracking accuracy.

Building on this approach, the estimated delays can be applied to the signals by way of
Spatial Transformer Networks (STN) [17]. This presents the advantage of differentiabil-
ity, hence enabling further processing of the signals post-alignment within an end-to-end
system. To implement a STN module, a localization network component floc(U) is ded-
icated to outputting the correct transformation parameters θ for the transformation Tθ
from the cross-correlation feature map U . Depending on the desired transformation T
and the dimensionality of U , the size of θ can vary. The set of two-dimensional affine
transformations from U ∈ RH×W×C, for example, requires θ ∈ R6. The less complex
problem of extracting a subsection L′ of a one-dimensional time-series of length L, ex-
panded to C feature channels, expressed with the feature map U ∈ RL×C, requires only
a single value for θ . A sampler is used to obtain the output feature map V . This pro-
cess requires the transformation T (G), applied to a regular grid G, and the input feature
map U. Any differentiable sampling can be utilized. With the parameters Φt of a generic
sampling kernel k(), this can be expressed for the source time steps xs

i as

V c
i =

L

∑
t

Uc
t k(xs

i − t;Φt) ∀i ∈ [1 . . .L′] ∀c ∈ [1 . . .C]. (3.24)

The common linear interpolation can be expressed as

V c
i =

L

∑
t

Uc
t max(0,1−|xs

i − t|). (3.25)

A more powerful approach is that of impulse response estimation, proposed and pre-
sented as the Neural Beamformer within this dissertation. Creating a DNN that not only
estimates the TDOA, but the entire associated impulse response, enables the network to
perform more sophisticated alignment of the individual array channels. Frequency cor-

25



Chapter 3 Introduction

rections, as well as echo cancellation and the suppression of reverberation, can be learned
and applied through the convolution with a single, albeit relatively long, kernel. Starting
with the recorded signals mν from (3.13), additional impulse responses hν can be found
that maximize the signal components si in the sum over ν :

ςi = maxsi

{
∑
ν

mν ∗hν i
}
. (3.26)

Additional beams can be synthesized for subtractive noise reduction, resulting in

ςi = maxsi

{
∑
ν , j

mν ∗hν i j

}
. (3.27)

Using the distributive properties of convolutions

f ∗g+ f ∗h = f ∗ (g+h), (3.28)

Equation (3.27) can be modified in a way that only one filter is required per target i
and microphone ν . The noise components are implicitly combined into a single filter h̃,
resulting in

ςi = maxsi

{
∑
ν

mν ∗ h̃ν i
}
. (3.29)

Lastly, this fully differentiable Neural Beamformer can be combined with sophisticated
single-channel mask estimation networks to produce state-of-the-art results.
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Research Objective

The goal of the research presented in this dissertation is high quality beamforming in
challenging acoustic environments that is accessible to pro-audio use. In order to suc-
cessfully apply signal enhancement in a pro-audio setting, two main constraints have to
be considered, namely processing time and fidelity.

For most uses, real-time processing is essential. The definition of real-time can vary be-
tween the lowest possible processing latency of one sample to the threshold of human
disturbance. Multiple studies outlined in [14] show that, for speakers without hearing
loss, time delays of over 10 ms to 30 ms are experienced as bothersome. In broadcast-
ing and telecommunication, real-time capability faces additional technical restrictions.
For broadcasting, a time delay of less than one video frame, equivalent to 25 ms, can
be considered acceptable. For telecommunication, network delays of well over 100 ms
mask potential audio delays [46]. To achieve such low processing times, the audio must
be processed in blocks shorter than the upper bound on sample delays. Additionally,
processing cannot utilize backward passes through the signal. Lastly, computation cost
is important, as processing times must be shorter than the block lengths. This requires
efficient processing methods optimized for the deployment hardware.

While many audio signal separation tasks are performed on reduced-bandwidth signals to
meet the requirements of telecommunication, pro-audio applications require full band-
width signals ranging at least from 20 Hz to 20000 Hz. Accurate high-frequency pro-
cessing can be challenging, especially for DL-based approaches. The sampling rate fs of
the signal processing chain must be chosen according to the sampling theorem to be at
least twice the highest frequency present in the signal [44].

Apart from bandwidth, high fidelity signifies reducing distortion to a minimum, or pre-
venting it completely. Distortion can affect the frequency response, causing coloration
of the sound. Dynamic distortion can occur when introducing nonlinear processing.
This can lead to effects ranging from amplitude modulation to the introduction of un-
wanted frequencies into the output signal. When using generative approaches such as
the presented DNN, unwanted signal components can be generated and introduced into
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the signal. Lastly, discontinuities at the borders of the processing blocks can cause peri-
odic artifacts such as clicking or ringing, depending on the block size. Throughout the
dissertation, the Signal-to-Distortion Ratio (SDR) is chosen as a quality metric for signal
separation and fidelity retention, combining characteristics of the Signal-to-Interference
Ratio (SIR) and Signal-to-Distortion Ratio (SDR) metrics [18].

To match the defined requirements, two approaches were researched. Algorithmic pro-
cessing of coincident microphone array signals was developed for applications in which
a predefined array can be used in comparatively simple acoustic environments. Sim-
ple acoustic environments are defined by small room dimensions, microphone-to-source
distances in the order of 10−1 m to 101 m, and a high Signal-to-Noise Ratio (SNR). One
main challenge for this method lies in accurately localizing and tracking the target source
in order to synthesize a microphone beam in the correct direction. Rapid, erroneous
jumps can cause two forms of distortion. Strong discontinuities between the processing
blocks are not sufficiently masked by the window function used prior to recombina-
tion, causing clicks and pops. Jumps at the block level can additionally cause amplitude
modulation effects. Hence, the second requirement is stabilizing the tracking algorithm
sufficiently to prevent audible artifacts caused by rapid jumps in the synthesized beam
direction.

Algorithmic processing becomes increasingly unstable for large, randomly distributed
microphone arrays with large room dimensions and microphone-to-source distances in
the order of 101 m to 102 m. Due to this instability, the output signal fidelity does not meet
the requirements of pro-audio applications. For this reason, an approach using DL-based
signal processing was chosen. The main constraints of full bandwidth and real-time pro-
cessing present more significant challenges for such models. Many existing models and
datasets for signal separation use sampling rates of 16 kHz, setting the upper bound of
the frequency range for the audio material at 8kHz. This frequency range is sufficient for
telecommunication and speech-to-text applications but not for professional audio uses.
Curating datasets of the desired fidelity can be challenging and time consuming. The
higher sampling rate creates an additional strain on computation as the time complexity
scales with O(L logL) with respect to the number of samples L per input buffer [7, 41].
Complexity-optimized model architectures and advanced optimization techniques, such
as model quantization, are required to provide real-time capabilities. Additionally, gen-
erative models are far more likely to introduce new, unwanted content into the audio
stream, producing disturbing artifacts. For these reasons, a physics-informed Neural
Beamformer approach was investigated, utilizing both the content and the spatial rela-
tion of multiple audio signals. This approach requires precise attention to the desired
range of applications and the resulting requirements set for the training dataset. A high
variance in spatial and spectral information is required for the model to generalize well
over a large range of signals and noises.
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Results and Discussion

5.1 Algorithmic Beamforming using Coincident
Microphone Arrays

Within the scope of this dissertation, a coincident, 3-capsule differential microphone
array was used to develop an accurate and stable tracking algorithm. Using the estimated
DOA, first-order beams can be directly synthesized using gradient synthesis, as described
in section 3.1.1. More elaborate adaptive filtering algorithms, as proposed by Runow
et al., can be combined with the presented algorithm to create adaptive beamformers with
higher Directivity Indices (DIs), capable of tracking a tight beam across 360° [32, 34].
This chapter aims to cover the entire research project, while providing an aggregation
of results presented in the corresponding publications, and, in some cases, more detailed
and current results. Section 5.1.1 details the design process of the microphone arrays
chosen for the application, Section 5.1.2 focuses on the detailed algorithm design, and
Section 5.1.3 presents an analysis of the ASL and beamforming performance, including
novel and improved results that differ from the corresponding publication. In Section
5.1.4, an analysis of the effect of overlapping windows is presented.

5.1.1 Choice of Array Configuration
One consideration during the initial development process was the array configuration.
As this microphone array is intended for teleconferencing and live speech amplification,
a one-dimensional tracker, as described in Section 3.1.1, is sufficient. Equation (3.5) de-
scribes a method of gradient synthesis using two figure-of-eight and one omnidirectional
microphone. There are multiple alternative configurations that can be transformed onto
this base of SH, also known as the planar Ambisonics B-Format [12, 13]. Multiple con-
figurations were examined (publications referenced in 2.4 [52] and 2.5 [51]), as shown
in Figure 5.1. Configuration a consists of three cardioid capsules equally spaced at 120°,
configuration c uses the same microphone distribution with three supercardioid capsules.
Configuration b, also known as the Schoeps Double-M/S (DMS), uses two opposing
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cardioid capsules and a figure-of-eight capsule rotated at 90° [45]. Additionally, an Am-
bisonics A-Format tetrahedral configuration, consisting of four cardioid capsules inside
a 3D-printed mount was tested [20]. In order to maintain accuracy and reproducibility
during the testing of microphone setups, a custom mounting ring as seen in Figure 5.1 a
and c was designed and fabricated. A commercially available shockmount was chosen
for the DMS setup. Test recordings of actual acoustic scenes, as well as high-resolution
anechoic recordings of the capsules’ Impulse Responses (IRs), were performed.

(a) 3 Schoeps MK4 cardioid

(b)
2 Schoeps CCM 4V cardioid
1 Schoeps CCM 8 figure-of-eight (c) 3 Schoeps CCM 41 supercardioid

Figure 5.1: Test setup for different capsule configurations.

In order to accurately monitor the frequency-dependent directivity of the tested capsules,
the application detailed in publication 2.9 [49] was developed. This program is used to
process the recorded IRs dynamically in order to gauge individual capsule responses and
full array performance. Using the interface as shown in Figure 5.3, array configurations
can be inspected with respect to the individual capsule’s frequency-dependent directivity
and the quality of the resulting synthesized beams. Using three identical microphones as
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in the configurations shown in Figures 5.1 a and c offers the advantage of identical fre-
quency responses of the individual capsules, eliminating the need for individual capsule
correction filters. If the individual capsules differ in their frequency response, noticeable
coloration of the output signal while tracking moving targets could occur. On the other
hand, the larger custom mounting hardware created significant distortion of the polar
patterns at frequencies as low as 6 kHz over the entire range of possible DOA. Consider-
ing the well documented and precisely measured frequency responses of the individual
capsules and the exceptionally high linearity and levels of constant directivity of the
chosen microphones, the ease of use with the DMS setup was favored during algorithm
development. Additionally, the asymmetric mounting hardware of the Double-M/S ar-
ray provides relatively low levels of distortion over a wide range of DOA. Figure 5.2
shows the measured polar sensitivity plots of the three microphone capsules, mounted
in the DMS configuration. As the front-facing cardioid and the figure-of-eight capsules
reject sound coming from the direction of the mount, their sensitivity remains relatively
stable over a much larger frequency range than the rear-facing cardioid. Although the de-
velopment process was performed using the DMS array, the developed algorithm can be
transferred to any other first-order Ambisonics (FOA)-compatible configuration with a
linear transformation. The dependency between the arrays and the linear transformation
are detailed in Appendix A. For a production prototype with custom hardware, a config-
uration consisting of three cardioid capsules in a shared housing is most suitable. The
MK4 capsule can be produced with remarkably low tolerances and provides excellent
constant directivity. A common housing could be tuned to prevent unwanted diffraction
and reflections, making the resulting beam more stable over a wider range of frequencies
and angles.

5.1.2 Algorithm Design

Building on the principle of Energy-Based Source Localization (EBSL) described in Sec-
tion 3.1.2, a multi-stage algorithm was developed to create a more stable ASL algorithm,
while maintaining a high level of reactivity. As detailed in publication 2.4 [52], the ap-
proach combines multiple processing blocks, each producing a confidence score used to
score the directional information of the currently processed time frame. Equation (3.8) is
used to determine the angle θDOA with the highest energy for the current audio buffer. As
reverberation, noise, and interference can influence the estimated angle, smoothing must
be applied, using Equation (3.10). When using a fixed smoothing factor α , the resulting
output would either be too reactive (α too large) or too slow to perform jumps between
different sources (α too small). By assigning α dynamically for each buffer based on
the audio content, the level of directivity in the sound field and previously detected po-
sitions, stable and reactive tracking can be performed. The Confidence Indices (CIs)
used to determine the smoothing factor are directivity-weighting, long-term weighting,
level-weighting and, optionally, speech-weighting.
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Figure 5.2: Angular sensitivity for Schoeps Double-M/S microphone array consisting of
two CCM 4V cardioid microphones and one CCM 8 figure-of-eight microphone.
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(a) All responses in DMS configuration (b) Response of sythesized Supercardioid

Figure 5.3: Developed application for the evaluation of capsule configurations with re-
spect to the polar response of individual capsules and synthesized beams.

Directivity-weighting provides an initial angle estimation θ f ast of relatively high preci-
sion, without requiring any information on previous audio buffers. This method com-
pares the energy of the detected sound field with the ideal energy pickup of a single
source.

In Figure 5.4, examples of buffers with different levels of directivity are shown. The cor-
responding CI is obtained through the mean distance between the detected, normalized
energy distribution and the unidirectional level distribution U :

Ui = 0.5+0.5cos(θi−θDOA) (5.1)

C =
1

nM

nM

∑
i=1

(
Ui−Mi (W,X ,Y,θi)

)
. (5.2)

Scaling to the interval (0,1] is performed with

Cd = 10(νC), (5.3)
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with ν > 0 representing a parameter controlling the reactivity of the tracker. For the
results presented in Chapter 5.1.3, ν was set to 6.8. Figure 5.5 b shows the effect of
directivity-weighting compared to the raw DOA data shown in Figure 5.5 a.
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Figure 5.4: The energy of virtual cardioid signals, synthesized over 2π , represents the
detected, one-dimensional sound field. The closer this distribution is to the optimal,
unidirectional distribution U , the higher the confidence index Cd . The marking indicates
the smoothed DOA output θ f ast for the displayed buffer. As Cd is large for the buffer on
the left, θ f ast ≈ θDOA. For the buffer on the right, a large portion of θ f ast is contributed
by θ f ast of the previous buffer, and not by θDOA.

Level-weighting, associated with the Confidence Index Cl defines a hard threshold Lmin
for the minimum energy of an audio buffer needed in order to be considered for ASL.
This prevents prolonged silence from deteriorating the processing performed by later
weighting methods and stabilizes the tracker output during relative silence, reducing the
number of artifacts occurring due to erratic tracker movement. Cl is computed as

Cl =

{
1 for W ≥ Lmin

0 for W < Lmin
. (5.4)

Long-term weighting makes use of the semi-static nature of sound sources. When track-
ing speech, sources may move gradually, or the beam must jump between multiple
sources. Both scenarios adhere to a fairly well-defined statistical distribution of posi-
tions. Motivated by this fact, the smoothed output directions θ f ast of previous buffers
are stored under the condition that Cl = 1. An average position over multiple buffers is
is quantized to 5° and stored as a point score. The total number of points is limited to
72, resulting in a uniform distribution over all bins as the initial state. When awarding
a point to the most recent position, a point is deducted from the least recent angle. This
method results in a form of long-term memory for the algorithm. With the parameters
presented in [52], the system can adapt to a new static source in 1.5 s to 3 s and forgets

34



5.1 Algorithmic Beamforming using Coincident Microphone Arrays

an audio event after 19.2 s. The associated confidence index Clt corresponds directly to
the relative score of the quantized angle and its effect can be seen in Figure 5.5 c.
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Figure 5.5: Performance analysis of confidence-weighting components. (a): Direct DOA
estimate θDOA. (b): Smoothed DOA with added directivity-weighting θ f ast . (c): Ad-
ditional level-dependent weighting reduces jumps during pauses. Long-term weighting
further improves the accuracy and stability of the tracker output θ . Solid lines represent
labeled reference positions. The data were down-sampled by a factor of 4 for increased
clarity.

In [51], a small CNN was presented for additional confidence-weighting based on Voice
Activity Detection (VAD). The network uses mel-scale spectrograms of 24 concatenated
audio buffers as an input and functions as a soft classifier for the presence of speech in
the 128 ms time frame. The output probability of the classifier directly corresponds to
the respective Confidence Index Cs. Figure 5.6 shows the implemented model architec-
ture.

1824

FC8 FC2
Input

(75x11x1)
CONV +

MAXPOOL
(38x6x8)

CONV +
MAXPOOL
(19x3x16)

CONV
(19x3x32)

Figure 5.6: Model architecture used for speech weighting. Upon spectral analysis, a
spectrogram of the last 24 audio buffers is passed to the CNN as a gray-scale image
of 75x11 pixels. The final fully-connected layer with softmax activation differentiates
between audio buffers that contain speech and no speech.
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Figure 5.7: Signal flow through the tracking algorithm. After compensating for different
frequency responses of the microphones and filtering the incoming signals, the synthesis
of virtual cardioids over 2π and RMS-maximization of the signals results in initial DOA
estimations. Various weighting algorithms in combination with a variable exponential
smoothing process create a stable and reactive tracker.

Figure 5.7 shows the final configuration of the processing blocks as used in [52]. The
input signals of the DMS microphone array are passed through individual capsule cor-
rection filters to further linearize the frequency response of the capsules. An additional
detection filter is applied to attenuate signals not in the frequency range relevant for the
target signal. In the case of speech, a fourth-order band-pass filter between 200 Hz and
2 kHz produced the best results. The filtered microphone signals, namely the two oppos-
ing cardioids (C1 and C2) and the figure-of-eight (F8), are then transformed according
to the relations detailed in Appendix A into one omnidirectional (W) and two orthogonal
figure-of-eight (X,Y) signals:

W =C1+C2 (5.5)
X = F8 (5.6)
Y =C1−C2. (5.7)

From this new set of signals, 360 virtual cardioidsM = {Mi ∀i = 1, . . . ,360} are syn-
thesized over 2π , resulting in a 1° resolution over the entire horizontal plane. From
these synthesized signals, the direction containing the highest signal energy, computed
by means of RMS, is determined. This initial estimation θDOA, combined with the sig-
nal energy vectorM, is used to compute Cd with Equations (5.2) and (5.3). Applying
Eq. (3.10) with α = Cd produces the smoothed position estimation θ f ast . The level-
dependent Cl is computed using the RMS of the virtual omnidirectional signal W . This
CI, combined with θ f ast , is passed to the long-term weighting module, which produces
Clt . All computed weighting scores are combined to the final CI using the mixing pa-
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rameter κ and

CI =(κ Cd +(1−κ)Cd Clt)Cl . (5.8)

This score is passed to Eq. (3.10) together with the initial θdoa to create the final direc-
tional estimate θ .

Strict performance criteria must be met, as the developed algorithm is intended to work
in live as well as in teleconferencing environments. Restrictions for live applications are
tighter and more specific; thus, meeting the live standards fulfills the requirements for
broadcasting and teleconferencing.

In order to operate in a live environment, extremely low processing latency is critical.
The chosen buffer size of 256 samples at 48 kHz sampling rate introduces a lower bound
of 5.3 ms on processing delay, which meets the defined specification. The algorithm itself
performs very few cost-intensive calculations, so that the actual processing time needed
falls significantly below the bound defined by the buffer size. Current non-optimized
development scripts output the DOA and beamformed signal after approximately 412 µs
on a modern laptop computer.

All intended applications require highest quality audio. In addition to a full frequency
response spanning the entire auditory spectrum, processing artifacts must be strictly pre-
vented, while suppressing interference and reverberation to the highest possible degree.
In order to quantify the results, the performance of the ASL algorithm was monitored
separately from the Signal-to-Distortion Ratio Improvement (SDRi) of a first-order beam
compared to a virtual omnidirectional microphone that was synthesized from the array
signals.

5.1.3 Tracking Accuracy and Signal Separation
As detailed in publication 2.4 [52] and [15], both synthetic and real data were used for
evaluation of the developed algorithm. Synthetic data were generated using [8]. Virtual
rooms were uniformly sampled from sizes spanning 3 m to 8 m with heights between
2.5 m and 4 m. Array, source and noise positions were randomly sampled for each room.
Acoustic scenes were synthesized with RT60 reverberation times that spanned from 50 ms
to 1500 ms in three categories:

• anechoic: RT60 ≤ 50 ms

• mild reverb: RT60 = 400 ms to 600 ms

• strong reverb: RT60 = 600 ms to 1500 ms

For each category, a speech-only signal and a mixture of speech and noise were gener-
ated. Each synthetic recording consists of fifteen 4 s samples with changing array and
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source positions. The audio material for the synthesis was randomly chosen from the
VCTK and the ESC50 corpora [30, 42].

Speech-weighting provides additional stability at the cost of reduced accuracy, especially
in noisy environments. As shown in Table 5.1, this addition provided only marginal
improvements and significantly increased the processing complexity. For this reason, all
results detailed in this section were generated without speech-weighting.

S1 S1noise S2 S2noise
accuracy gain −1.2 % −1.8 % −0.4 % −6.6 %
stability gain 1.2 % 5.4 % 2.4 % 4.2 %

Table 5.1: Performance gain using speech-weighting as part of the stabilization process,
based on two recorded scenarios.

Compared to the published results referenced in [52], minor changes of the mixing values
of the individual CI improved the tracker accuracy by up to 29.7 % at the cost of a slight
reduction in the reactivity. Table 5.2 also shows the SDRi of the beamformer, using
the tracker output, compared with the upper-bound based on the known oracle source
positions. Although the SDRi are not as large as the results presented for the system
described in Section 5.2, it is worth noting that the average difference between using the
developed tracking algorithm and a first-order oracle beamformer is only 0.78 dB. As
a main goal of this algorithm is minimal processing artifacts, using first-order gradient
synthesis is the best choice.

RT60 SNR DRR θerr ∆θerr SDRi SDRi oracle

clean <0.05 s 10.98 dB 2.80° 0.59° −0.18 dB −0.11 dB

noisy <0.05 s 6.06 dB 28.49° 1.68° 0.51 dB 1.80 dB

clean 0.4 s to 0.6 s −7.20 dB 21.53° 0.79° 3.57 dB 3.98 dB

noisy 0.4 s to 0.6 s 5.96 dB 26.57° 0.67° 3.52 dB 4.02 dB

clean 0.6 s to 1.5 s −9.37 dB 35.86° 0.69° 3.15 dB 4.27 dB

noisy 0.6 s to 1.5 s 6.05 dB 37.76° 0.59° 3.16 dB 4.46 dB

Table 5.2: ASL and beamforming performance analysis on synthetic data. The Direct-
to-Reverberant Ratio (DRR) is computed using the virtual omnidirectional signal and
the target speech in the clean scenarios. For noisy scenes, the mixture SNR is given,
comparing the target and noise components in the virtual omnidirectional microphone
signal.

The accurate tracking achieved by the ASL algorithm makes more elaborate beamform-
ing and adaptive filtering methods possible as well. Runow et al. present an adaptive-
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filtering method based on a DMS microphone array [34]. Impressive signal separation
with high audio quality can be achieved by combining ASL with this adaptive beam-
former.

virtual omni beamformers

Speech Intelligibility 0.23±0.12 0.61±0.16

Noise Suppression 0.16±0.12 0.52±0.19

Subjective Quality 0.19±0.12 0.65±0.22

Table 5.3: Compressed listening test results. In all categories the beamformed signal is
preferred over the omnidirectional baseline. Relative scores between zero and one.

The published listening tests performed on 59 test subjects and referenced in 2.6 [29]
show that both amateurs and test subjects active in audio engineering prefer the results
of the beamformed signal over the virtual omnidirectional microphone signal. As seen
in Table 5.3, noise suppression, speech intelligibility, and overall subjective quality all
scored considerably higher. In Figure 5.8, the mean results of listening tests based on
German and English dialog scenarios are visualized. The best results were obtained using
the tracker in combination with an adaptive filtering algorithm developed by Runow
et al. [34]. Multiple single-channel and multichannel adaptive filtering algorithms were
compared. Additionally, the signal of a commercially available high-end spaced array
with proprietary signal processing was included in the comparison [6].

5.1.4 Influence of Hop Size on Tracker and Beamformer
Performance

Many components in the developed ASL algorithm require a buffer length L� 1. The
energy of a sound buffer, computed via RMS, is essential for the SRP method. Even
longer buffers are stored for the long-term smoothing [52] and the CNN-based speech
detection [51]. With the hop size H and a pre-roll of L−H samples, combined with
higher processing frequencies, the algorithm is capable of running at significantly lower
processing delays, down to 41.6 µs. Table 5.4 and the corresponding Figure 5.9 show the
results of an investigation into different hop sizes for the algorithm, averaged over a total
of twenty 4 s excerpts of mild reverb and strong reverb categories, as detailed in Table
5.2. Performance changes were investigated with hop sizes H = 2h, with h = 1,2, . . . ,8.
For all hop sizes < 256, a Hann-windowed overlap of 0.5H was implemented to prevent
artifacts due to periodic discontinuities [39]. Additionally to the absolute error (abs
error), the angular correction error (∆ error) and the SDRi for algorithm output and oracle
positions, the individual standard deviations µ are supplied.
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Figure 5.8: Results of MUSHRA listening test, comparing multiple signals generated
using the tracked source position, together with the DMS array output and commercial or
experimental adaptive filtering algorithms. Additionally, a commercial teleconferencing
microphone array with proprietary signal processing was evaluated.

hop
abs error

in deg
µ

∆ error

in deg
µ

SDRi

in dB
µ

SDRi oracle

in dB
µ

256 57.78 5.62 0.21 7.78 ·10−3 2.90 0.47 4.47 0.67

128 53.80 6.59 0.28 6.67 ·10−3 3.11 0.42

64 47.44 6.35 0.35 1.31 ·10−2 3.42 0.43

32 40.86 6.51 0.43 3.01 ·10−2 3.67 0.39

16 32.57 3.49 0.51 5.03 ·10−2 3.95 0.37

8 31.52 7.18 0.63 6.99 ·10−2 3.80 0.26

4 30.43 9.20 0.70 9.26 ·10−2 3.46 0.59

2 39.45 15.52 0.66 9.36 ·10−2 3.09 0.82

Table 5.4: Results of modifying the hop-size H for the DOA computation and beam
synthesis.

While the long-term weighting can easily be adapted for more frequent processing steps,
the exponential average filtering involved in the smoothing process is not directly pro-
portional to the run count, thus resulting in less stable directional outputs for shorter hop
sizes. This behavior can be clearly observed in the excerpt displayed in Figure 5.10.
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Nevertheless, smaller hop sizes produce more consistent results of higher SDRi.

As the increase of processing frequency increases the computational cost significantly,
the amount of overlap is a question of quality requirements and processing capabilities
and can be varied depending on the desired application. For less complex scenarios with
less noise and reverberation, larger hop sizes of 128 samples produce satisfactory results
that provide SDRi reaching 91 % of the oracle beamformer.
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Figure 5.9: Analysis of tracking and signal-enhancement performance with respect to the
chosen hop size. A hop size of 16 samples produces the best results.
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Figure 5.10: Computed DOA using the same algorithm operating with different hop
sizes. Results computed at higher processing frequencies were downsampled for read-
ability of the plot.
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5.2 Neural Beamforming using Large-Aperture
Microphone Arrays

This chapter covers the development of advanced beamforming and signal enhancement
methods for ad hoc microphone arrays of unknown spatial distribution. Using Deep
Learning models and knowledge of the physical properties of the system, a hybrid end-
to-end model architecture is developed, capable of producing state-of-the-art signal sep-
aration results in challenging environments. Section 5.2.1 presents the details of the
model architecture, Section 5.2.2 presents a detailed analysis of the signal separation ca-
pabilities of multiple model configurations and 5.2.3 details the multichannel aspects of
the models.

5.2.1 Model Design

The principal approach to single-channel DL-based signal separation most commonly
used is that of mask estimation. As described in Section 3.3, a DNN architecture is
used to estimate amplitude masks for the audio signal to attenuate noise components
in the signal. In certain professional applications, such as live broadcasting and post-
processing, a large number of audio channels are available, many containing valuable
context information for signal enhancement. The approach pursued in this dissertation
uses this context information to expand state-of-the-art methods with the capability of
spatial beamforming and generating context vectors for the network to use during signal
enhancement.

The end-to-end Neural Network can be decomposed into Aligner, Encoder, Mask Esti-
mator, and Decoder, as shown in Figure 5.11. These components will be discussed in
detail in the following paragraphs.

Aligner

A large part of the research efforts during this project were applied to the development
of a network architecture capable of aligning multiple channels of audio with respect
to a desired target source. This process consists of accurate ASL and the subsequent
alignment of the individual channels with respect to a reference channel. Equations
(3.18) and (3.20) can be used to determine the TDOA between two microphone signals.
As desribed in Section 3.2.3, accurate and dependable ASL can be difficult in challenging
acoustic environments. This network architecture introduces learnable preprocessing
filters prior to the computation of the GCC-PHAT in order to accentuate the energy of
the desired sound source and more consistently extract the correct time delays.
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Figure 5.11: Transition from single-channel signal enhancement to multichannel beam-
forming and mask estimation.

These filters use three main components to adaptively generate FIR filters and amplitude
masks. First the audio signal is encoded into a latent representation using a configu-
ration named EncodeWaveform, shown in Figure 5.12 a. This approach uses two one-
dimensional convolution blocks called activation and gate. Analogous to the WaveNet
processing described in Equation (3.21), the activation block is passed through a tanh
nonlinearity and the gate block is passed through a sigmoid nonlinearity. The out-
puts are multiplied and normalized before being downsampled by a strided, linear one-
dimensional convolution. Residual connections are in place to stabilize the gradient
during training. This encoding process, as displayed in the gray block of Figure 5.12 a,
is repeated multiple times, until the desired latent size is reached.

Second, this latent representation is used by the GenerateWaveform block, seen in Figure
5.12 b, to generate spatial and spectral filters, as well as amplitude masks. By prepend-
ing a transposed one-dimensional convolution prior to the activation and gate layers and
removing the strided convolution, this block is capable of upsampling latent vectors to
time-domain sequences. As with the EncodeWaveform, residual connections and multi-
ple processing loops are employed to reach the desired signal length and model stabil-
ity.
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Figure 5.12: Downsampling and upsampling systems, using two convolutional layers for
nonlinear transformation and down-/upsampling.

Third, multiple GenerateWaveform architectures are combined to a FilterBlock, which
accepts a latent vector describing both input channels and a signal. Within the Fil-
terBlock, both FIR filtering and per-sample masking is performed. This block is shown
in Figure 5.13.

Once the domain-specific spatial information is extracted via cross- and auto-correlation,
additional EncodeWaveform blocks are used to generate a combined latent vector, that
consists of spectral and spatial information. From this latent vector, an impulse re-
sponse according to Equation (3.29) is estimated by means of dedicated GenerateWave-
form blocks and applied via correlation. This process is encapsulated in additional Fil-
terBlocks. The full Aligner can be seen in Figure 5.14.
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Figure 5.13: FilterBlock used to apply both FIR filtering and per-sample masking to a
time-domain signal using a supplied latent vector for context information.
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Figure 5.14: Aligner model architecture used to align individual input channels with
respect to a desired target source.
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(a) Subtractive model with a filter length of 127 samples, trained on speech and crowd noise.
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(b) Additive model with a filter length of 20 samples, trained as a multipurpose speech enhancer.

Figure 5.15: Sorted Power Spectral Density distributions of trained Encoder layers. Z-
axis represents relative magnitude (dark to light).

Encoder

The Encoder performs the operation of transforming time-domain audio onto a new,
higher-dimensional base. The proposed architecture contains a linear encoder consist-
ing of a single one-dimensional convolutional layer, transforming each input channel
equally onto a base of 128 feature channels with the same sample resolution as the input
signals. This can be understood as 128 channels of the same input audio, each processed
with individual, learned FIR filters. Figure 5.15 shows a set of encoder filters extracted
from a model trained for speech separation. Preliminary experiments using fixed DWT
front-ends as described in Section 3.3.3 proved to be possible; however, the final signal
separation quality did not reach the same level as when using the trainable Encoder.
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Mask Estimator

Many high-performing network architectures have been developed to generate Time-
Frequency or amplitude masks over the last few years. Initially, the architecture was
planned to be implemented as described in [53]. This requires the final GenerateWave-
form in the final FilterBlock to perform the entire mask estimation for the system, result-
ing in a strong imbalance of network capability. To perform acceptably, large latent sizes
of 1024 samples were required, resulting in large, inefficient networks. For this reason,
manuscript 2.2 [53] was not submitted for publication and the approach was expanded by
splitting the alignment and the mask estimation, resulting in publication 2.1 [54].

This modification allows for more elaborate mask estimation architectures and much
higher SDRi. The DPRNN, a currently popular architecture by Luo et al., was chosen
as the mask estimation architecture [22]. This DNN splits the input buffer into smaller
chunks. These chunks are then individually processed by one Bi-LSTM layer along the
sample axis and one Bi-LSTM along the chunk axis.

As the last component of the Mask Estimator, all processed channels are combined by
means of summation.

Decoder

The single-channel Decoder is constructed to match the Encoder architecture and is com-
posed from a single, linear 1D transposed convolution layer. This layer reconstructs the
channel from the abstract feature-space and produces time-domain audio signals.

5.2.2 Signal Separation

The Neural Beamformer (NBF) can be used directly as an end-to-end signal separation
network. In this case, the multiplicative GenerateWaveform (shown in Figure 5.13) of
the last FilterBlock in the Aligner (shown in Figure 5.14) is responsible for generating
the amplitude mask. This presents two challenges. First, the mask estimation takes a
compressed representation, namely the combined latent vector, as an input. Second,
the allocated complexity for the module does not differ from similar components in the
aligner, even though the task requires a considerably higher level of modeling complex-
ity. The advantages of this approach are a comparatively light-weight model and more
subtle processing, resulting in potentially fewer artifacts. The performance of this model
was analyzed in the manuscript detailed in 2.1 [54]. Training and evaluation data were
synthesized from the same datasets as in Section 5.1.3, namely the VCTK and ESC50
corpora [30, 42]. Synthesis was performed using the tools developed by Scheibler et al.
[36]. The model was trained using the Mean Square Error (MSE) loss L comparing the
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target signal recorded by the reference channel and the model output ς :

L=
1
T

T

∑
t=1

(
s̃0[t]− ς [t]

)
. (5.9)

Optimization was performed using the Ranger algorithm [19, 47]. The performance of
the system was compared with algorithmic beamformers using oracle and GCC-PHAT
TDOAs. An evaluation of the SDRi of the proposed method using five channels under
varying conditions is detailed in Table 5.5.

max mic SNR GCC BF oracle BF NBF DPRNN
dist (m) (dB) SDRi (dB) SDRi (dB) SDRi (dB) SDRi (dB)

-6 -0.85 ± 2.17 4.13 ± 0.82 6.26 ± 2.18 11.14 ± 1.95
24.9 0 0.09 ± 1.78 4.15 ± 0.82 5.05 ± 1.65 9.64 ± 1.38

6 0.09 ± 1.62 4.15 ± 0.8 1.72 ± 1.75 6.45 ± 1.35

-6 -0.95 ± 2.28 4.19 ± 0.86 6.53 ± 1.87 11.24 ± 1.8
55.8 0 0.07 ± 1.83 4.16 ± 0.89 4.78 ± 1.93 9.63 ± 1.25

6 -0.04 ± 1.43 4.03 ± 1.01 0.81 ± 2.23 6.47 ± 1.18

-6 -1.11 ± 1.82 3.68 ± 0.9 6.42 ± 1.82 11.31 ± 1.67
97.0 0 -0.36 ± 1.4 3.55 ± 1.0 4.98 ± 1.56 9.57 ± 1.18

6 -0.69 ± 1.06 3.09 ± 1.38 1.42 ± 1.89 6.26 ± 1.17

-6 -0.81 ± 1.68 3.05 ± 0.99 6.39 ± 1.82 11.16 ± 1.61
139.4 0 -0.29 ± 1.25 2.79 ± 1.16 4.51 ± 1.88 9.28 ± 1.22

6 -1.07 ± 1.12 2.0 ± 1.72 0.52 ± 2.25 5.84 ± 1.25

Table 5.5: Performance comparison of the Neural Beamformer with oracle and GCC-
PHAT beamformers and a single-channel DPRNN.

The methods were compared on ten 40 s room simulations per configuration. Audio
material, room dimensions, and both microphone and source positions were randomly
sampled for each iteration. Each excerpt was converted into blocks of 4096 + 12288
samples with 50 % overlap and processed individually. The resulting model output was
Hann-windowed and recombined for evaluation [39]. The advantages of the prefiltering
prior to TDOA estimation are especially apparent in scenes with low or negative SNR.
Additionally, the adaptive masking and filtering capabilities provide results superior to
classic DS beamforming, even when using oracle positions. This is especially apparent
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in situations with larger amounts of reverberation. Most examined scenes prove to be
overly complex for GCC-PHAT-based beamforming, resulting in low to negative SDRi.
Overall, the NBF cannot match the signal separation capabilities of a single-channel
mask estimation network of similar complexity. A DPRNN trained on the same dataset
produces considerably better results with less variance over the entire space of exam-
ined signal configurations. Although the more subtle processing of the NBF results in
fewer artifacts, this advantage becomes negligible when mixing the input signal with the
processed DPRNN signal. By mixing the input with the output, a variable level of sig-
nal separation can be achieved, thus gaining control over the artifacts versus SDRi trade
off.

To make better use of the NBF’s capability of producing alignment filters, an additional
mask estimation network is incorporated into the end-to-end system. This prevents the
GenerateWaveform blocks from producing aggressive amplitude masks and allocates
sufficient model complexity in the DPRNN part of the network for this task. Train-
ing was performed using the Ranger optimizer and the MSE loss comparing the mask
approximator output ŷ with the target signal recorded by the reference channel.

A shortcoming of this approach remains the real-time capability for large microphone
distances. Although all models process relatively short buffers with preceding context
windows, geometrical restraints prevent optimal operation. In order for a channel to pro-
vide useful information for the summed result, the desired signal component must have
arrived at the microphone before it arrived at the reference microphone. Only then can
the signal be shifted to match the reference microphone. In reality, the microphone cho-
sen as the reference generally provides the best starting point for a desired target signal
and is often closest to the desired source. A simple solution to this challenge is to re-
verse the processing. The beamformer then aims to accurately model the noise in the
reference channel and subtract the sum of processed channels from the input. By chang-
ing the processing chain in this very simple way, the auxiliary channels can contribute
significantly more information to the resulting output. Table 5.6 shows a comparison of
different algorithmic and DL based approaches. Next to oracle and GCC-based beam-
forming algorithms, a single-channel DPRNN, a DPRNN fed with the outputs of oracle
and GCC-PHAT beamformes, and an end-to-end combination of NBF and DPRNN were
examined. The NBF + DPRNN network outperforms the baseline for every configura-
tion. The upper bound of the combination of Oracle beamforming and DPRNN masking
architecture shows that further improved signal synchronization can provide a significant
increase in overall model performance and thus validates the intuition of the proposed
multichannel architecture.

An additional proprietary dataset of approximately 15 hours of real multitrack recordings
of large-venue crowds was mixed with VCTK data and studio recordings of sports com-
mentators. Sporting arenas provided high quality recordings of massively distributed mi-
crophone arrays and presented a fitting application for the developed model. In addition
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SNR SDRi in dB
in dB 28m 63m 110m 159m

-6 -3.11 ± 2.31 -3.03 ± 2.40 -2.79 ± 2.81 -2.28 ± 2.84
GCC 0 -0.95 ± 1.51 -1.38 ± 1.98 -1.94 ± 2.37 -2.04 ± 2.48

6 -1.3 ± 1.10 -0.56 ± 1.62 -0.86 ± 2.12 -1.41 ± 1.98

-6 6.56 ± 1.14 6.25 ± 0.91 6.1 ± 1.41 5.67 ± 1.61
Oracle 0 6.65 ± 1.13 6.34 ± 1.18 5.25 ± 1.87 4.15 ± 2.41

6 6.57 ± 1.06 6.04 ± 1.77 4.75 ± 2.81 3.36 ± 3.56

GCC -6 4.24 ± 3.26 4.19 ± 3.46 4.14 ± 3.92 4.69 ± 3.55
— 0 4.84 ± 1.85 4.15 ± 2.17 3.8 ± 2.26 3.96 ± 2.51

DPRNN 6 0.28 ± 1.82 1.06 ± 1.70 1.32 ± 1.94 1.66 ± 1.57

SC -6 9.75 ± 1.00 9.72 ± 0.82 9.44 ± 0.80 9.48 ± 0.93
— 0 11.05 ± 1.88 11.08 ± 1.88 10.94 ± 1.86 10.86 ± 1.82

DPRNN 6 6.50 ± 1.32 6.46 ± 1.29 6.39 ± 1.26 6.13 ± 1.29

NBF -6 10.19 ± 1.15 10.19 ± 1.13 9.96 ± 1.24 9.87 ± 1.18
— 0 11.58 ± 2.16 11.70 ± 2.00 11.59 ± 1.99 11.48 ± 2.12

DPRNN 6 7.12 ± 1.39 7.21 ± 1.27 7.14 ± 1.22 6.91 ± 1.35

Oracle -6 14.66 ± 1.97 14.64 ± 1.95 14.27 ± 1.74 13.92 ± 2.07
— 0 14.78 ± 1.90 14.34 ± 1.57 13.42 ± 1.83 12.73 ± 2.07

DPRNN 6 8.77 ± 1.42 8.37 ± 1.56 7.75 ± 1.70 7.18 ± 1.72

Table 5.6: Performance comparison of beamforming algorithms and mask estimation
networks with and without the Neural Beamforming front-end. The distance shown rep-
resents the maximum microphone distance of the respective room configuration.

to a dedicated evaluation portion of the used datasets, the subtractive model was tested
on real recordings of sports commentators of unseen soccer games. As no ground truth
is available for this portion of the data, only qualitative evaluation is possible. Table 5.7
shows the signal separation in dB SDRi for ten 30 s mixtures with random mixture levels
and SNR at the reference receiver. The combination of NBF and DPRNN is compared
to two single-channel DPRNN baselines, trained on the same dataset. DPRNN+CONV
differs from DPRNN in the way that two convolutional layers of kernel size 5, stride
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one, and activated with tanh nonlinearities are added to the encoded signal prior to mask
estimation and to the mask prior to its application.

SNR NBF-DPRNN DPRNN DPRNN+CONV
in dB SDRi in dB SDRi in dB SDRi in dB
0.37 9.6 2.07 3.23
0.75 8.56 1.01 2.16
0.81 10.55 2.34 3.46
4.97 11.45 1.37 2.45
5.32 9.35 1.33 2.38
6.53 9.54 2.49 4.02
7.17 9.48 1.53 2.25
7.84 8.99 1.52 2.84
9.71 9.39 1.53 2.81

16.47 7.1 1.75 2.94
mean 9.4 1.69 2.85
std 1.08 0.45 0.56

Table 5.7: Signal separation in dB SDRi for subtractive DPRNN architectures.

5.2.3 Analysis of Multichannel Processing
Further analysis of the model described in publication 2.1 provides insights into the ap-
proach applied by the converged model. Modifying a pretrained model is possible, as all
weights are shared over the channel axis. When comparing the signal separation capabil-
ities of the network over varying channel counts, some requirements for the source and
microphone distributions are made clear. The causal (real-time capable) configuration
described in the corresponding publications provides additional context from past sam-
ples only. This restricts the capability of the network to shift signals forward in time. In
other words, signals picked up by transducers that are further away from the source than
the reference channel can often not be included in the beamforming. When using an ad-
ditive configuration analogous to FS beamforming for large-aperture arrays, the channel
with the latest time of arrival should be chosen for the reference channel.

The subtractive approach provides exceptional results, especially for low and negative
SNR and makes better use of the multichannel information available. The performance
gain for mixtures with low SNR can be partly explained by the fact that the model is
trained to estimate the noise. Smaller Signal-to-Noise Ratios inversely signify a higher
ratio of noise to signal. Figures 5.16 a and 5.16 b show the performance of the described
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architecture over a variety of input channels in two different configurations. The model
outputting the results shown in Figure 5.16 b uses its entire processing capability to mod-
ify the reference channel. No additional performance gain can be observed with higher
channel counts. Figure 5.16 a shows the channel-dependent performance of a model ap-
plied in a subtractive configuration. A clear degradation of performance can be observed
when reducing the number of auxiliary channels. The absolute values of SDRi in the
two cases cannot be compared, as the datasets and source configurations differ signifi-
cantly.
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(a) Subtractive model performance depending on number of auxiliary channels.
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(b) Additive model performance depending on number of auxiliary channels.

Figure 5.16: Comparison of different implementations of the developed Neural Beam-
former. As the reference channel was chosen to be closest to the source, additive beam-
forming is not capable of compensating the TDOA and the model reverts to single-
channel processing. As the subtractive model utilizes the information in every channel,
a drop in performance can be observed when reducing the available channel count. Ab-
solute SDRi of the models do not compare, as different data and source positioning are
used.
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Conclusion

Within the scope of this work, two approaches to multichannel signal enhancement were
examined. Building on the principles of Differential Microphone Arrays and Delay-and-
Sum Beamforming, two fundamentally different approaches were investigated.

Using three coincident capsules with first-order directivity and fixed relative orienta-
tion, an Acoustic Source Localization algorithm was designed, aimed at providing high
quality audio in relatively simple acoustic environments. The automatic orientation of
a first-order beam, combined with the possibility of advanced, adaptive beamforming,
create a versatile tool for professional audio applications and high-end teleconferencing.
Quantitative analysis was performed on simulated data and real recordings to verify the
tracker accuracy and stability, as well as the audio quality of a first-order beam. In simple
environments, the tracker operates at approximately 90 % accuracy, with correction er-
rors of less than one degree. The signal enhancement of the resulting first-order beam is
0.45 dB below oracle results. A listening test with 59 test subjects displayed a clear pref-
erence of amateurs and professional audio engineers towards the beamformed signals.
Specifically, a combination of the developed tracker with an adaptive filter developed
for the Double-M/S array was rated highest in all examined categories, namely speech
intelligibility, noise suppression, and subjective quality.

An ad hoc, spaced microphone array was used as the input for an end-to-end, time-
domain neural network for signal enhancement. The developed model architecture com-
bines the state-of-the-art signal separation capabilities of single-channel mask estimation
networks with a novel Neural Beamformer architecture capable of extracting domain-
specific spatial relations of microphones with distances of up to 110 m. The combined
network outperforms algorithmic and DL baselines and provides audio fidelity fit for
professional audio applications, such as live amplification and broadcasting. For beam-
forming on synthesized general-purpose speech extraction scenes, the combination of
Neural Beamformer and Dual-Path Recurrent Neural Network outperforms the single-
channel counterpart by 0.60 dB; for beamforming on semi-synthetic data of large scale
sporting events, the combined beamformer outperformed the single-channel equivalent
by 6.55 dB.
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A Proof of Spherical Harmonic Base Equivalence

Base functions are:

W (θ) = 1 (1)
X(θ) = sin(θ) (2)
Y (θ) = cos(θ). (3)

A DMS configuration consisting of two opposing cardioids and one orthogonal figure-
of-eight:

C1 = 0.5+0.5cos(θ) (4)
C2 = 0.5+0.5cos(θ −π) (5)
F8 = sin(θ) (6)

can be transformed using the angle addition theorem [25]

cos(α±β ) = cos(α)cos(β )∓ sin(α)sin(β ) (7)

to W, X and Y:

C1+C2 = 0.5+0.5cos(θ)+0.5+0.5cos(θ −π) (8)
= 1+0.5cos(θ)+0.5cos(θ)cos(−π)︸ ︷︷ ︸

=−0.5cos(θ)

−0.5sin(θ)sin(−π)︸ ︷︷ ︸
=0

(9)

= 1 = W (10)
C1−C2 = 0.5+0.5cos(θ)−0.5−0.5cos(θ −π) (11)

= 0.5cos(θ)−0.5cos(θ −π) (12)
= 0.5cos(θ)+0.5cos(θ) (13)
= Y (14)

F8 = sin(θ) = X. (15)

Three identical capsules rotated by 120° can be generalized using Eq. (3.3) to:

T 1 = p+(1− p)cos(θ) (16)

T 2 = p+(1− p)cos
(

θ − 2π
3

)
(17)

T 3 = p+(1− p)cos
(

θ +
2π
3

)
. (18)
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Using Eq. (7) and γ = (1− p)cos(θ), we can easily solve

T 1+T 2+T 3 = 3p+ γ +(1− p)cos
(

θ − 2π
3

)
+(1− p)cos

(
θ +

2π
3

)
(19)

= 3p+ γ + γ cos
(

2π
3

)

︸ ︷︷ ︸
=−0.5

+(1− p)sin(θ)sin
(

2π
3

)
+ γ cos

(
2π
3

)
(20)

− (1− p)sin(θ)sin
(

2π
3

)

= 3p+ γ−0.5γ−0.5γ (21)
= 3p ∝ W (22)

W =
T 1+T 2+T 3

3
(23)

T 2−T 3 = p+(1− p)cos
(

θ − 2π
3

)
− p− (1− p)cos

(
θ +

2π
3

)
(24)

= γ cos
(

2π
3

)
+(1− p)sin(θ)sin

(
2π
3

)
− γ cos

(
2π
3

)
(25)

+(1− p)sin(θ)sin
(

2π
3

)

= 2(1− p)sin(θ)sin
(

2π
3

)
=
√

3(1− p)sin(θ) ∝ X (26)

X =
T 2−T 3√
3(1− p)

(27)

2T 1−T 2−T 3 = 2p+2γ− p− (1− p)cos
(

θ − 2π
3

)
− p (28)

− (1− p)cos
(

θ +
2π
3

)

= 2γ− γ cos
(

2π
3

)
− (1− p)sin(θ)sin

(
2π
3

)
− γ cos

(
2π
3

)
(29)

+(1− p)sin
(

2π
3

)

= 3γ = 3(1− p)cos(θ) ∝ Y (30)

Y =
2T 1−T 2−T 3

3(1− p)
(31)
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ABSTRACT

Robust real-time audio signal enhancement increasingly relies on multichannel microphone arrays for signal 
acquisition. Sophisticated beamforming algorithms have been developed to maximize the benefit of multiple 
microphones. With the recent success of deep learning models created for audio signal processing, the task of 
Neural Beamforming remains an open research topic. This paper presents a Neural Beamformer architecture 
capable of performing spatial beamforming with microphones randomly distributed over very large areas, even 
in negative signal-to-noise ratio environments with multiple noise sources and reverberation. The proposed 
method combines adaptive, nonlinear filtering and the computation of spatial relations with state-of-the-art mask 
estimation networks. The resulting End-to-End network architecture is fully differentiable and provides excellent 
signal separation performance. Combining a small number of principal building blocks, the method is capable of 
low-latency, domain-specific signal enhancement even in challenging environments.

1 Introduction

High-quality, noise-free audio has become of ever
greater importance with increases in human-computer
interaction, telecommunication, web conferencing, and
modern pro-audio applications. Ease of communica-
tion without personal contact has become a vital part
of modern society. The enhancement of signals with re-
spect to specific signal components such as speech can
be performed with a wide variety of methods [1]. By
time-aligning and filtering a set of microphone signals
with respect to a defined signal source, surrounding
noise and reverberation can be attenuated in the output
signal. One of the largest challenges for such beam-
formers is the determination of the correct Time Dif-
ference of Arrival (TDOA), especially for spontaneous,

large aperture microphone arrays of unknown configu-
ration [2]. In recent years, machine learning has had a
large impact on audio signal processing, redefining the
state of the art in many topics. The task of source sepa-
ration can be approached in numerous ways, with adap-
tive, nonlinear filtering on individual audio channels
being the most prominent and easily available to date.
Recently, multichannel, deep-learning based array pro-
cessing has become increasingly relevant. The ability
for Neural Beamforming networks to detect correla-
tions of domain-specific signal components robustly
and to generate the appropriate spatial filters is of great
value. Current systems can generally be categorized
into two approaches, in which the spatial information is
either precomputed analytically and fed into the beam-
forming network [3, 4], or multiple neural networks
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are used independently to achieve source separation
[5, 6, 7]. Although investigations into End-to-End ap-
proaches have been remarkably successful [8, 9, 10],
some basic limitations remain. Both referenced ap-
proaches directly use convolutions as beamforming
filters. While Sainath et al. use dedicated convolu-
tional layers to generate static spatial filters resulting
in learnable “look-directions”, Luo et al. use Temporal
Convolutional Networks [11] or Dual-Path RNN [12]
for the adaptive estimation of filters based on a pre-
processed reference channel, raw auxiliary channels
and the cosine similarity. While other approaches seem
promising [13, 14], no performance data on arbitrary
or large-aperture arrays are available for reference. The
method introduced in the following sections circum-
vents the aforementioned limitations by using iterative
downsampling and upsampling elements to adaptively
produce long beamforming filters. The architecture
presents an efficient End-to-End Neural Beamformer
for large-aperture arrays and is capable of processing
array signals for microphone distances of over 110 m
in real time, outperforming the examined baseline ap-
proaches.

2 Neural Beamforming

The approach to Neural Beamforming described in the
following sections tackles the task of generating ap-
propriate spatial beamforming filters via the encoding
of audio signals and spatial information into a shared
latent space from which the beamforming filters are
generated. Additionally, adaptive filtering of the audio
channels prior to the computation of spatial relations
is incorporated to enable the system to filter the input
signals specifically for the task of spatial analysis. The
use of learnable filter elements prior to the computation
of pairwise cross correlations creates the ability to com-
pute domain-specific spatial filters, which can greatly
increase the beamformer’s robustness to noise and re-
verberation. In section 2.1, an appropriate signal model
is presented, sections 2.2 and 3 describe the method
and implemented network architectures in detail.

2.1 Problem Definition

Spatial beamforming can be achieved using M audio
channels mν recorded by M ≥ 2 transducers. The dis-
crete, time-domain channels consist of I signal and J

noise components:

mν [t] =
I

∑
i=1

s̃ν
i [t]+

J

∑
j=1

ñν
j [t]. (1)

Every signal s̃ν
i [t] and noise ñν

j [t] consist of the cor-
responding signal and noise sources si[t − δ ν

i ] and
n j[t−δ ν

j ], propagated from their respective source po-
sition i or j to the transducer ν . The propagation trans-
formations introduce time-delays δ and are expressed
as convolutions with corresponding impulse responses
hν

si
and hν

n j
[15]:

s̃ν
i [t] =

(
si ∗hν

si

)
[t], ñν

j [t] =
(

n j ∗hν
n j

)
[t], (2)

resulting in

mν [t] =
I

∑
i=1

(
si ∗hν

si

)
[t]+

J

∑
j=1

(
n j ∗hν

n j

)
[t]. (3)

In this case, the goal is to find additional hν
i that maxi-

mize si in the summed combination ςi of all mν :

ςi[t] =
M

∑
ν=1

(mν ∗hν
i ) [t]. (4)

Finding optimal hν
i is difficult and computationally

expensive. For a simplified approach, hν
i can be ap-

proximated by a time shift δ ν
i and a Finite Impulse

Response (FIR) filter h̃ν
i of relatively short length.

2.2 Differentiable Adaptive Generalized Cross
Correlation

For microphone arrays of known spatial distribution,
finding the correct time shifts δ ν

i can be solved either
geometrically, if the desired beam direction is known,
or by means of a localization method, such as Steered-
Response Power Phase Transform (SRP-PHAT) [16].
For arrays of unknown spatial distribution, pairwise
time delay estimation can be performed by means of
the cross correlation φ , expressed with the ? operator
[17]:

φm1,m2 [τ] = (m1 ?m2) [τ] (5)

=
∞

∑
t=−∞

m1[t]m2[t + τ], (6)
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with [ ] describing the complex conjugation operation.
Using the convolution theorem, (6) can be expressed as

φm1,m2 [τ] = F−1
{
F{m1} ·F{m2}

}
[τ], (7)

with F{ } representing the Fourier transform and
F−1{ } representing the inverse Fourier transform.
Applying Phase Transform weighting leads to the com-
putation of the Generalized Cross Correlation with
Phase Transform weights (GCC-PHAT) [18]:

φ g
m1,m2

[τ] = F−1





F{m1} ·F{m2}∣∣∣F{m1} ·F{m2}
∣∣∣



 [τ]. (8)

In the absence of interference and reverberation and
for a single source s, the main peak of φ g indicates
the TDOA of the source with respect to the two input
channels:

δ ν = arg max
τ

{
φ g

m0,mν [τ]
}
. (9)

In real-world scenarios with multiple target and noise
sources, TDOA estimation becomes unreliable, espe-
cially when using short audio buffers required for real-
time applications. Addressing this problem from a
data-driven perspective can improve the performance
with domain knowledge.

Performing time alignment of the individual micro-
phone signals within a neural network is a nontrivial
task. As (9) is not differentiable, it cannot be incor-
porated into an End-to-End network architecture. In-
stead, spatial filters hν

i are internally generated by the
model, using latent representations of the input signals
and the respective φ g vectors. The generated filters
are then applied to the microphone signals. While
the process of Delay-and-Sum (DS) beamforming can
be implemented in a strictly analytical way, adaptive
pre-filtering and nonlinear pattern enhancement greatly
improve performance over conventional methods. Ad-
ditionally, the spatial relations for domain-specific sig-
nal classes can be computed, while (9) strictly extracts
the correlation of the signal source with the highest
sound pressure level found in the recorded signals.

3 Network Architecture

The main principle of the proposed architecture is to
filter and synchronize multiple channels prior to multi-
channel mask estimation. GCC on adaptively filtered

DPRNN

output

Aligner

Aligner

Aligner

Neural Beamformer

Masking Network

C
on

v 
1D

Tr
an

sp
os

ed
 

C
on

v 
1D

Fig. 1: Multiple audio channels are passed through the
Neural Beamformer for synchronization. After
spatial filtering, a linear encoder transforms the
time-domain audio into a higher-dimensional
feature vector. Then, a DPRNN mask approxi-
mation network generates channel-specific, per-
sample feature-space amplitude masks, which
are applied to the respective channels of en-
coded audio. After decoding the output to
time-domain audio signals and summing the
result, the model outputs a single-channel time-
domain audio signal with the same buffer length
as the reference input channel.

input signals is internally used by the network to ex-
tract feature-dependent, domain-specific spatial rela-
tions between channel pairs. Figure 1 shows the top-
level model architecture, developed using the Tensor-
Flow and Keras frameworks. A total of M microphones,
with one defined reference channel m0 are processed.
Prior to multichannel mask estimation, every pair of
signals m0 and mν is passed to an Aligner block which
is discussed in detail in section 3.1 and can be seen in
Figure 2. In the following sections, the individual com-
ponents and the motivation behind the design choices
are discussed.

3.1 Channel Synchronization - Aligner

One important requirement for the proposed method
is the ability to extract the spatial relations of domain-
specific signal components. Signal classes, for exam-
ple speech, are to be enhanced in the signal prior to
the computation of spatial relations. This enables the
model to better make use of beamforming capabilities
in environments that contain high levels of interference
and noise. To achieve this, adaptive, nonlinear filtering
of the input signals is implemented. The signals are en-
coded using EncodeWaveform blocks (subsection 3.3)
and passed to FilterBlocks (subsection 3.2) for mask-
ing and filtering. The filtered signals are correlated
to extract the spatial relation of the channels with re-
spect to the desired signal components. The correlation

AES 151st Convention, Online, 2021 October 
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Concat

Concat

prefiltering
alignm

ent

transformed 
aux

FilterBlockFilterBlock

FilterBlock

auto
correlation

auto
correlation

EncodeWaveform EncodeWaveform

ref inputaux input

EncodeWaveform

Fig. 2: Aligner architecture: Individual auxiliary and
reference microphone pairs are processed with
respect to the reference microphone. Adap-
tive FilterBlocks learn domain-specific signal
components which are enhanced before spatial
relations are computed for the filtered signals
via cross- and autocorrelations. The encoded
spatial vector is then used to generate multi-
plicative and convolutional filters in the final
FilterBlock.

vectors are then encoded and concatenated with the
latent vectors of both input channels. This expanded
latent vector is then passed to an additional FilterBlock
in combination with the original auxiliary input. In
this block, channel synchronization and masking are
performed to generate the transformed auxiliary signal.

3.2 Filtering and Masking - FilterBlock

The FilterBlock, shown in Figure 3, combines two
main filtering approaches, namely convolutive filters
and per-sample filter masks. Two individual Gener-
ateWaveform blocks are used to generate filter vectors

GenerateWaveform

GenerateWaveform

signal input
combined 

latent vector

processed 
signal

Fig. 3: The FilterBlock uses two GenerateWaveform
blocks to generate FIR filters and amplitude
masks and applies them to an input signal.

from the latent vector input. The filters are then ap-
plied via convolution and element-wise multiplication
to the input signal. This flexible architecture provides
capabilities for masking, FIR-filtering, scaling, and any
desired combination of the aforementioned methods.
For the configuration used to generate the results pre-
sented in this paper, the prefiltering blocks within the
Aligner only use the masking components. The align-
ment filter generation exclusively relies on convolutive
filtering to compensate spatial propagation and enhance
the signal’s spectral content.

3.3 Encoder - EncodeWaveform

To accommodate variable signal lengths with the same
general architecture, the EncodeWaveform blocks,
shown in Figure 4, are constructed using an iterative
core, highlighted in gray. After normalization to zero
mean and unit variance, activations (abbreviated with
Act in the corresponding visualizations) and a multi-
plicative gate are created using convolutional layers
feature space[19]. After passing through Layer Nor-
malization, the output and the previous input are con-
catenated and passed to a convolutional downsampling
layer, which serves as the input of the next iteration
[20]. Once the required number of iterations has been
performed, a final dense layer transforms the activa-
tions into the latent vector, which is then concatenated
with the standard deviation and the mean of the input
signal.

3.4 Decoder - GenerateWaveform

The GenerateWaveform blocks, shown in Figure 5,
present the inverse operation of the EncodeWaveform.

AES 151st Convention, Online, 2021 October 
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Fig. 4: The EncodeWaveform block uses gated and strided convolutions to perform encoding of signals to a defined
latent size. Downsampling is performed by the strided convolutions and indicated by DS.
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Fig. 5: The GenerateWaveform block uses gated and transposed convolutions to generate filters and amplitude
masks from latent signal representations. Upsampling is performed by the transposed convolutions as
indicated with US.

Such blocks can be used to create filter masks and
spatial filters. Although the general architecture is iden-
tical for all applications, the iterative core enables a
variable definition of the desired output size.

3.5 Mask Estimator - Dual-Path RNN

The Dual-Path RNN (DPRNN) architecture by Luo
et al. generates state-of-the-art signal separation re-
sults for single-channel applications [12]. The ap-
proach splits the time-domain input buffers into smaller
chunks, which are stacked to create input volumes.
These volumes are then processed with separate bidi-
rectional LSTM layers operating on the time and chunk
axes. Additional linear convolution and transposed
convolution layers encase the model and provide a
learnable, time-domain base for the signal separation
process. As shown in Figure 1, the synchronized array
channels are individually processed by a DPRNN sub-
network and the resulting amplitude masks are applied
to the signals prior to summation.

4 Experimental Setup

4.1 Training Data

Test and training data were created by simulating vir-
tual acoustic environments [21, 22]. Room geometries
were synthesized ranging from 8 m to 115 m per di-
mension, focusing on direct propagation and early re-
flections by restricting room simulation to third-order
processing. One signal, a random number from three
to seven noise sources, and a fixed number of micro-
phones depending on the network configuration were
randomly placed in the synthetic virtual environment.
For training, 550000 multichannel buffers were ran-
domly sampled from 550000 virtual recordings. Each
buffer contains a reference channel, spanning 4096
samples and M-1 additional microphone signals of the
same length, preceded by a context window of 12288
samples. The validation set contains 55000 buffers sam-
pled correspondingly, using previously unseen source
data. For the signal class, speech recordings from the
VCTK corpus were used. Noise samples were extracted
from the ESC50 corpus [23, 24]. All data are sampled
at 48 kHz.
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Conv Conv Kernel LSTM Chunk DPRNN Buffer Size

Chanels Size Features Size Blocks (Samples)

128 20 128 128 6 4096

Table 1: Parameters of the DPRNN Sub-Network.

Latent US & DS US & DS Gated Conv Aligner Filter

Size Stride Kernel Size Kernel Size Length

32 8 8 5 16384

Table 2: Parameters of the Neural Beamformer Sub-
Network.

4.2 Training Process

The model was trained using a MSE loss comparing
the target signal recorded by the reference channel and
the model output. Optimization was performed using
the Ranger optimization algorithm [25, 26]. Standard
Adam and Lookahead parameters were used, combined
with a learning rate of 10−3, a warm-up period of 500
steps and a learning rate decay of 4500 steps to reach
the final rate of 10−4. The training process was en-
hanced with channel dropout in which individual input
channels were randomly set to 0 or filled with uncorre-
lated audio of the same signal statistics. The motivation
of this dropout was to force the network to learn to com-
pletely reject individual input channels if necessary.

4.3 Model Configuration

Detailed information on the configuration chosen for
the individual elements of the network can be refer-
enced in Tables 1 and 2. Using this setup, the single-
channel DPRNN contains approximately 1.4M param-
eters. The conversion to a multi-channel separation
network using the Neural Beamformer front-end adds
347000 parameters, thus introducing an increase in
model size of 25 % to 1.75M. Although the increase in
model complexity is fairly modest, processing multi-
ple channels with this shared architecture significantly
increases the model runtime. When comparing the
five-channel combination of Neural Beamformer and
DPRNN with a single-channel DPRNN, the inference

time of the model for a 85 ms buffer1 increased from
32 ms to 80 ms on a single GPU.

5 Results

As a baseline, single- and multichannel versions of the
same DPRNN architecture as used in the Neural Beam-
former were trained (SC-DPRNN and MC-DPRNN).
Additionally, Oracle and GCC-PHAT-based Delay-
and-Sum beamforming, and combinations of GCC-
PHAT and Oracle beamforming with the single channel
DPRNN are referenced (Oracle, GCC-PHAT, GCC-
DPRNN, Oracle-DPRNN). Overall separation perfor-
mance is monitored by means of SDRi, the improve-
ment of the Signal-to-Distortion Ratio, compared to the
reference receiver, using [27]. In Table 3, an evaluation
of the SDRi of the proposed method using five channels
is presented under varying conditions, compared to the
baseline approaches. The methods were compared on
ten 20 s room simulations per configuration, resulting
in a total of 40 min of audio used for evaluation. Audio
material, room dimensions, and both microphone and
source positions were randomly sampled for each itera-
tion. During inference, each 20 s example is converted
to blocks of 4096 + 12288 samples with 50 % overlap
and passed to the individual processors. The resulting
signals are (time-domain) Hann-windowed and recom-
bined for evaluation. Even though the single-channel
version of the DPRNN performs exceptionally well,
applying the approach to multiple channels without spa-
tial alignment results in negative SDRi (MC-DPRNN
not shown in Table 3). As the Beamformer is trained in
an End-to-End fashion, extracting this model compo-
nent and evaluating the signal separation performance
without the masking network would be misleading and
thus has been omitted. Although the NBF-DPRNN
model provides a relatively modest improvement in
SDRi over the single-channel approach, the subjec-
tive reduction of artifacts and low-frequency residual
noise is quite noticeable. The combination of Oracle
beamforming with the DPRNN masking architecture
shows that improved signal synchronization can pro-
vide a significant increase in overall model performance
and future work will investigate improvements in the
ability of the Beamformer components. Audio exam-
ples can be found at https://zieglerj.home.
hdm-stuttgart.de/nbf.html.

1This time refers to the 4096 samples at 48 kHz sampling rate
without the 12288 samples context provided to the network in the
case of the Neural Beamformer.
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SNR SDRi in dB
in dB 28m 63m 110m 159m

-6 -3.11 ± 2.31 -3.03 ± 2.40 -2.79 ± 2.81 -2.28 ± 2.84
GCC 0 -0.95 ± 1.51 -1.38 ± 1.98 -1.94 ± 2.37 -2.04 ± 2.48

6 -1.3 ± 1.10 -0.56 ± 1.62 -0.86 ± 2.12 -1.41 ± 1.98

-6 6.56 ± 1.14 6.25 ± 0.91 6.1 ± 1.41 5.67 ± 1.61
Oracle 0 6.65 ± 1.13 6.34 ± 1.18 5.25 ± 1.87 4.15 ± 2.41

6 6.57 ± 1.06 6.04 ± 1.77 4.75 ± 2.81 3.36 ± 3.56

GCC -6 4.24 ± 3.26 4.19 ± 3.46 4.14 ± 3.92 4.69 ± 3.55
− 0 4.84 ± 1.85 4.15 ± 2.17 3.8 ± 2.26 3.96 ± 2.51

DPRNN 6 0.28 ± 1.82 1.06 ± 1.70 1.32 ± 1.94 1.66 ± 1.57

SC -6 9.75 ± 1.00 9.72 ± 0.82 9.44 ± 0.80 9.48 ± 0.93
− 0 11.05 ± 1.88 11.08 ± 1.88 10.94 ± 1.86 10.86 ± 1.82

DPRNN 6 6.50 ± 1.32 6.46 ± 1.29 6.39 ± 1.26 6.13 ± 1.29

NBF -6 10.19 ± 1.15 10.19 ± 1.13 9.96 ± 1.24 9.87 ± 1.18
− 0 11.58 ± 2.16 11.70 ± 2.00 11.59 ± 1.99 11.48 ± 2.12

DPRNN 6 7.12 ± 1.39 7.21 ± 1.27 7.14 ± 1.22 6.91 ± 1.35

Oracle -6 14.66 ± 1.97 14.64 ± 1.95 14.27 ± 1.74 13.92 ± 2.07
− 0 14.78 ± 1.90 14.34 ± 1.57 13.42 ± 1.83 12.73 ± 2.07

DPRNN 6 8.77 ± 1.42 8.37 ± 1.56 7.75 ± 1.70 7.18 ± 1.72

Table 3: Performance Comparison of the Neural Beamformer in dB SDRi under variation of maximum microphone
distance and mixture SNR at the reference channel.

6 Discussion

6.1 Processing of Large Time Delays

In order to operate in real time, buffers of 4096 samples
were chosen. This presents a fundamental challenge for
time-delays of over 85 ms, or distances of over 29 m.
By inverting the application of the described model
and focusing on noise modeling at the reference mi-
crophone instead of signal enhancement, the context
vector of 12288 samples can be used more effectively.
Beamforming is performed on the noise, which is more
probable to have been recorded by other microphones

before reaching the reference receiver and thus is cap-
tured in the context buffers. Signal enhancement is
then performed by subtracting the modelled noise from
the reference microphone signal. In this configuration,
the possible delay compensation is only restricted by
the microphone configuration and the chosen length
of the context vector, which in this case contains a
total of 16384 samples, resulting in a possible delay
compensation of 341 ms, or 116 m. Even though the
largest maximum microphone distance in Table 3 is
159 m, most examples are within the required distance
as room dimensions, as well as microphone and source
positions are uniformly sampled.

AES 151st Convention, Online, 2021 October 
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6.2 Training with Simplified Simulated Data

As mentioned in sections 4.1, data simulation was per-
formed without diffuse reverberation. As previously
stated, the exact inference of optimal impulse responses
hν

i is extremely complex, preventing reliable training
convergence of the proposed model. Concentrating
on the main contributing factors during training and
excluding the task of explicit dereverberation presents
an option for efficient and reliable training of Neural
Beamformers. Inference experiments were performed
showing that models trained with reduced simulation
complexity are capable of performing well on data that
contains a wide range of reverberation levels.

7 Conclusion

This paper presents a physics-informed and fully dif-
ferentiable front-end for multichannel array process-
ing, aimed at extracting domain-specific signals from a
noisy mixture. Combined with mask estimation mod-
els, the high accuracy and short inference times enable
the system to be used in real time applications. The pro-
posed method outperforms the examined baseline ap-
proaches and provides a fully End-to-End neural beam-
forming network architecture, capable of processing
microphone array signals with microphone distances
of over 110 m.
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ABSTRACT

This paper presents an application-oriented approach to Acoustic Source Localization using a coincident microphone
array. Multiple processing blocks are presented to generate a reactive, yet stable Direction of Arrival estimation
tuned toward speaker tracking. Building on an energy based scanning method, individual characteristics, such as
sound field directivity and static sound source positions are used for adaptive smoothing of the detected angle. The
methods and resulting performance gain are discussed for the individual components of the algorithm. Objective
performance is evaluated using simulated and recorded data. Audio quality is assessed using listening tests, which
show a significant increase in subjective sound quality, noise suppression, and speech intelligibility when combining
the tracker with a beamforming algorithm for coincident microphone arrays.

1 Introduction

With beamformers in mobile and smart-home devices
gaining relevance, many applications focus on low-cost
linear and circular arrays for Acoustic Source Localiza-
tion (ASL) and tracking [1]. Advances in spherical ar-
ray beamforming have enabled the creation of versatile,
robust beamformers in three dimensions, often using
spherical harmonics as an orthonormal base for beam-
forming [2–7]. Beamforming for professional high
quality audio is still uncommon, as the large number of
transducers needed for higher-order beams prevents the
use of professional quality microphones [8]. Combi-
nations of shotgun microphones and adaptive spectral
beamformers have proven effective and can generate
high quality audio [9]. The downside of such micro-
phones is the need for manual, mechanical source track-
ing. Producing an audio signal of consistently high

quality is difficult and requires skilled personnel. Re-
cent research has shown that a first-order beamformer
using a coincident microphone array can produce beam
patterns similar to shotgun microphones - with a more
linear frequency response for off angle sound incidence
[10–12]. The combination of such beamformers with
an effective algorithm for ASL can produce high qual-
ity audio signals of moving sources with Directivity
Indices beyond the possibilities of classical first-order
microphones [13]. This paper presents an application-
oriented algorithm for real-time ASL using a coincident
microphone array consisting of three high-end micro-
phone capsules. The array configuration represents
a simple setup that can be transformed onto a spheri-
cal harmonic base in two dimensions and create any
beampattern expressible with spherical harmonics of
O(1) [14]. The configuration of the capsules allows
for first-order beamforming on the horizontal plane,
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presenting an acceptable and well researched solution
for many applications [15, 16]. A Steered Response
Power (SRP) approach is chosen for initial Direction
of Arrival (DOA) estimation, using virtual cardioid
microphones as a scanning beam [17].

Details about the chosen microphone configuration, the
resulting virtual microphone synthesis, and the ASL
algorithm can be found in sections 2.1 and 2.2. A
variable exponential smoothing algorithm increases the
algorithm’s angular stability, while maintaining high
sensitivity for directional changes. The basic concept
and the individual weighting factors are discussed in
section 3. Performance is evaluated using objective
error analysis and listening tests based on a set of sub-
jective quality metrics. The experimental set up is dis-
cussed in section 4 and results are presented in section
5.

2 Acoustic Source Localization

2.1 Microphone Configuration

The described system uses a microphone configuration
consisting of three high-end professional microphones.
This guarantees a known and consistent frequency re-
sponse of the individual capsules for on-axis as well as
for off-axis pick up of audio events. Uniform frequency
response for all angles is a critical requirement for high
quality broadband beamforming [18]. To optimize co-
incidence relative to the horizontal plane, the capsules
are stacked vertically, with a spacing of ≤ 30mm. The
capsules are mounted in a double-M/S configuration,
with one cardioid capsule F facing 0◦, a second car-
dioid R facing 180◦, and a bidirectional figure-of-eight
capsule B facing ±90◦. Capsule correction filters Hx
are applied for further linearization of the signals. This
step improves tracking and the beamformer’s isotropic
frequency response.

2.2 Steered Response Power ASL

Prior to ASL processing, a detection filter Hd is applied
to the linearized microphone signals. This filter is
designed to reject non-speech signals. The corrected
and filtered microphone signals can be transformed
onto the base of horizontal b-format Ambisonics [14]:

W = Flin,d +Rlin,d (1)
X = Flin,d−Rlin,d (2)
Y = Blin,d (3)

As W, X and Y represent a two-dimensional, orthonor-
mal basis, any arbitrary first-order microphone pattern
M(θ , p) can be synthesized on the horizontal plane,
using the WXY-decoded signals and

M(W,X ,Y,θ , p) = pW +(1− p)(X cosθ +Y sinθ) ,
(4)

with p representing the polar pattern shape and θ the
orientation on the horizontal plane [4, 19, 20]. The fac-
tor p can be statically set or dynamically manipulated
in a range between 0, which results in the polar pattern
of a dipole, and 1, which results in an omnidirectional
polar pattern. The most commonly used values for p in
this paper are p = 0.5, resulting in the unidirectional
polar pattern of a virtual cardioid and p = 1

3 , creating a
virtual supercardioid.

Using (4) with p = 0.5, any number nM of virtual car-
dioid microphone signals can be synthesized. The vir-
tual microphone with the highest relative Root Mean
Square (RMS) value indicates the Direction of Arrival
of the sound source:

θDOA = argmax
θi

(
M(W,X ,Y,θi)

)
, (5)

with M representing Root Mean Square of M.

3 Tracker Stabilization

The described real-time setup uses audio buffers of
256 samples, sampled at 48 kHz. Figure 5a shows the
raw directional information θDOA. The large amount of
noise in the angle detection requires additional filtering,
since beamformers using θDOA as beam orientation
perform poorly and produce strong audible artifacts.
Filtering is performed using exponential smoothing
[21]:

θ t
s =α θ t

DOA +(1−α)θ t−1
s , (6)

with θ t
DOA and θ t

s representing the input and smoothed
output angle for time frame t and α ∈ (0,1] as the reac-
tivity factor. Circular continuity of the angle is ensured
within a separate function. If α is set dynamically, a
smoothing effect can be achieved that is directly con-
nected to a set of signal characteristics. In the following
paragraphs, these factors will be called Confidence In-
dices (CI) and the smoothing process will be defined
as Confidence Weighting. Figure 1 shows three charac-
teristics contributing to two stages of smoothing. The
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Fig. 1: Signal flow through the tracking algorithm. After compensating for nonlinear frequency responses of
the microphones and filtering the incoming signals to a range of 200 Hz to 2000 Hz, the synthesis of
virtual cardioids over 2π and RMS-maximization of the signals results in initial DOA estimations. Various
weighting algorithms in combination with a variable exponential smoothing process create a more stable,
yet reactive tracker.

initial filtering is performed using directivity weight-
ing, a process that analyzes the level of directivity in
the detected one-dimensional sound field. The output
angle of this process θ f ast is passed on to the two fol-
lowing Confidence Weighting algorithms. A buffer
is filled with multiple cycles of θ f ast to compare the
detection angle with known source positions, which
are dynamically learned and forgotten. Aditionally,
a level weighting algorithm compares the omnidirec-
tional level of the current buffer with the average level
during speech. The Confidence Weighting processes
create a combined CI, which is in turn used for a second
filtering operation to compute the final tracker output θ .
The algorithms are described in detail in the following
sections.

3.1 Directivity Weighting

Directivity weighting uses the level of directivity within
the recorded sound field as an indicator as to whether a
given buffer contains an actual audio event. Figure 2
shows examples of buffers with high directivity (left)
and low directivity (right). The Confidence Index Cd is
obtained using the mean distance between the detected
sound field, which is normalized, so that max(Mi) = 1,
and the unidirectional level distribution U :

Ui = (0.5+0.5cos(θi−θDOA)) , (7)

C =
1

nM

nM

∑
i=1

(
Ui−Mi (W,X ,Y,θi)

)
. (8)
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Fig. 2: Directivity of two audio buffers. The levels
of 360 virtual cardioid microphones arranged
with 1◦ spacing represent the detected, one-
dimensional sound field. The closer the level
distribution is to the optimal unidirectional dis-
tribution U , the higher the confidence index Cd .
Left: Buffer with high level of directivity, Right:
Buffer with low directivity. The marking indi-
cates θ f ast for the displayed buffer. As Cd is
large for the buffer on the left, θ f ast ≈ θDOA.
For the buffer on the right, a large portion of
θ f ast is contributed by θ f ast of the previous
buffer, and not by θDOA.

AES 148th Convention, Online, 2020 June 2-5
Page 3 of 10



Ziegler, Paukert, Koch, and Schilling ASL & Beamforming using Coincident Microphone Arrays

Scaling to the interval (0,1] is performed with

Cd = 10(νC), (9)

with ν > 0 representing a parameter controlling the
reactivity of the tracker. Considering that for most
cases

Mi ≥Ui , (10)

it is clear, that

C ≤ 0 and 0 <Cd ≤ 1. (11)

Using (6) and setting α = Cd , an initial direction of
arrival θ f ast can be computed. Figure 5b shows the
effect of directivity weighting compared to the raw
DOA data shown in Figure 5a.

3.2 Level Weighting

Level weighting analyzes the level of the current audio
buffer and compares it to a threshold L. The signal
used for level weighting is W . The confidence index
associated with level weighting Cl interacts directly
with long-term weighting, as shown in Figure 1. Cl is
computed as

Cl =

{
1 for W ≥ L
0 for W < L

. (12)

3.3 Long-Term Weighting

In many acoustic scenarios the speaker positions re-
main quasi-static. Participants of a meeting mostly
stay seated, a driver will remain in the driver’s seat,
etc. Long-term weighting makes use of this fact by
assessing the sound field over a longer period of time.
The initial DOA estimation θ f ast is stored in a buffer
under the condition that the level confidence index Cl is
set to 1. If Cl 6= 1, θDOA of the previous buffer is used.
An average over 50 buffers is passed to the long-term
weighting algorithm. The directional information is
then classified using a point system. Every incoming
angle is quantized with a resolution of 5◦ and results
in a point for the associated bin. The total number of
points is limited to 72, resulting in one point per 5◦

bin in the initial state. For a point to be awarded to the
most recent position, a point must be deducted from

90
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330

300

270

240

210
180

150

120

3

6

9

12

15

Fig. 3: Visualization of long-term confidence. The av-
erage detected angle θ f ast over the most current
267 ms, rounded to 5◦, results in a point for the
associated segment. As the total point count is
limited, a point is deducted from the segment
with the least recent position detection. With
72 available points, the algorithm learns a static
position within 1.5 s to 3 s and forgets an audio
event within 19 s. The point score is normalized
to 1.

the least recent DOA. This procedure creates a type of
long-term memory for the algorithm. With the param-
eters presented in this paper, the system "forgets" an
audio event after 19.2 s and can adapt to a new static
source in 1.5 s to 3 s. Figure 3 shows the point score
after processing an excerpt of Scenario I, described in
section 4. All five speaker positions listed in Table 1 are
clearly discernible. For the determination of the associ-
ated confidence index Clt , θDOA is quantized to 5◦ and
the point distribution is normalized to 1. The relative
point value at the quantized angle corresponds directly
to Clt . This comparison is performed every cycle of
the algorithm. If θDOA is within ±1◦ of a peak in the
long-term angle distribution, an additional confidence
bonus is awarded (snap-to process).

3.4 Confidence Mixing

Confidence mixing describes the process of combining
all previously described Confidence Indices in the most
effective way. Given (9), the final Confidence Index
CI can be computed using Cd ,Cl ,Clt and the mixing
parameter κ:

CI =(κ Cd +(1−κ)Cd Clt)Cl . (13)
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Fig. 4: Loudspeaker distribution for the test setup. Ten
studio monitors are placed at four distances and
varying angles around the microphone array.
The configuration is used to record dialog, noise
and ambiance for beamformer evaluation.

4 Experimental Setup

Both synthetic data and real recordings were used dur-
ing development. The subjective results in section 5.2.1
are exclusively presented using real recordings of the
setup described in subsection 4.2. Objective results are
presented using synthetic and real data.

4.1 Synthetic Data

Convolving audio data with appropriate room impulse
responses (RIR) can generate accurate simulations of
auditory scenes [22]. The synthetic data used for the re-
sults in section 5 are generated using [23]. The speech
data were randomly selected from the VCTK speech
corpus, consisting of short passages read by 109 dif-
ferent speakers [24]. Optional noise interference was
selected from the ESC50 corpus, consisting of 2000
recordings of environmental sounds [25]. The acoustic
environment was randomly sampled with room geome-
tries ranging from 3 m to 8 m and room heights of 2.5 m
to 4 m. Absorption coefficients and RT60 reverberation
times were uniformly sampled in different ranges, as
described along with the results in table 3.

4.2 Virtual Conference

ASL and tracking were evaluated on real recordings
using a reproducible multi-channel loudspeaker setup

Table 1: Speaker Positions, Scenario I

1 2 3 4 5

Angle 60 150 220 270 330

Distance 1.5 m 1.5 m 4 m 1.5 m 1.5 m

Sum Duration 7.1 s 9.0 s 4.0 s 16.0 s 8.9 s

Table 2: Speaker Positions, Scenario II

1 2 3 4

Angle 60 150 270 330

Distance 1.5 m 1.5 m 1.5 m 1.5 m

Sum Duration 24.7 s 1.0 s 22.3 s 9.1 s

consisting of eight identical Genelec 1029A loudspeak-
ers, arranged on two concentric rings around the mi-
crophone array, combined with a far-range and a close-
range loudspeaker. The microphone array was con-
structed using two Schoeps CCM 4V and one Schoeps
CCM 8, mounted within a dedicated double-M/S shock
mount. The results described in the following sections
were gathered using a RME Fireface UFX.

The angular positioning of the virtual sources is shown
in Figure 4. The audio material played back was based
on [26] and consisted of near-anechoic recordings of
male and female speech in German and English, record-
ings of office and household noise sources such as cell
phones, moving chairs, doors, etc. and multi-channel
recordings of traffic and construction noise with open
and closed windows. Three scenarios were recorded,
each with and without interference of background and
object noise. The room used for the results of this pa-
per was 8.3 m by 8.2 m, with a total height of 3.8 m.
No acoustic treatment or furniture was present, which
resulted in an RT60 of 2.31 s, averaged over the 500 Hz
and 1000 Hz frequency bands.

4.3 Listening Tests

Listening tests were performed to evaluate the impact
of different types of signal degradation prior to the
tracker design. The results are presented in [27] and
were used to prioritize during the development pro-
cess. In addition, a larger listening test was performed
using the tracker output with various beamforming al-
gorithms. A short summary of the listening test can
be seen in Table 5, detailed methods and results can

AES 148th Convention, Online, 2020 June 2-5 
Page 5 of 10



Ziegler, Paukert, Koch, and Schilling ASL & Beamforming using Coincident Microphone Arrays

be found in [28]. For the test, 59 test subjects were
asked to grade various sound recordings which were
recorded using the test setup described in section 4 and
processed with the tracking algorithm and a selection of
3-, 2-, and 1-channel beamformers, both commercially
available and currently under development.

5 Results

The following sections will present both subjective and
objective evaluations of the system’s performance. Ob-
jective results are presented using synthetic and real
audio data. It is important to mention that the results
are only partially comparable as the synthetic data con-
tains no speech pauses, which prevents error accumu-
lation due to Cl-driven static positions at unfavorable
angles between speech sections. Additionally, the simu-
lated data cannot make use of the long-term Confidence
Weighting as every position is randomly sampled on a
Cartesian grid.

Objective error analysis is performed using two con-
nected error metrics, θerr and ∆θerr. The angular error
θerr is computed using the circular distance between
the reference angles θ t

r and the detected angles θ t , av-
eraged over all time bins t:

θ t
err =

{
|θ t −θ t

r | for |θ t −θ t
r | ≤ 180◦

360−|θ t −θ t
r | for |θ t −θ t

r |> 180◦
. (14)

The gradient is calculated using (14) and a two-point
calculation:

dθ t =
θ t+1−θ t−1

2
(15)

dθ t
r =

θ t+1
r −θ t−1

r

2
(16)

∆θ t
err =

{
|dθ t −dθ t

r | for | · | ≤ 180
360−|dθ t −dθ t

r | otherwise
(17)

Table 4 shows the mean errors over all nT time bins:

θerr =
1

nT

nT

∑
t=1

θ t
err (18)

∆θerr =
1

nT

nT

∑
t=1

∆θ t
err . (19)

The error calculations shown in Table 4 are performed
on reference information which was manually labeled
using the session file of the digital audio workstation

used for the playback and recording of the test sce-
narios. The results presented in Table 3 are calculated
using the geometric parameters of every individual sim-
ulation.

Both θerr and ∆θerr represent important quality metrics
for the tracking algorithm. While accurate localiza-
tion of an acoustic source is important, stable tracking
of sources while maintaining high reactivity during
change of speakers equally influences the system’s real-
world usefulness.

Subjective quality assessments are presented using lis-
tening tests, performed on recorded audio1. The test
subjects were asked to grade the recordings with respect
to speech intelligibility, noise suppression and subjec-
tive quality for German and English test scenarios us-
ing a MUSHRA test [29]. Speech intelligibility was
additionally analyzed using the Short Time Objective
Intelligibility Index proposed in [30]. STOI compares
clean speech with processed versions of the same audio.
In this case, the clean studio recordings of the speech
used for the virtual scenarios were compared to the
recorded multi-channel playback.

5.1 Simulated Data

RT60 SNR DRR θerr ∆θerr

C <0.05 s 10.98 dB 3.17◦ 0.53◦

N <0.05 s 6.06 dB 33.65◦ 1.21◦

C 0.4 s to 0.6 s −7.20 dB 21.15◦ 0.68◦

N 0.4 s to 0.6 s 5.96 dB 31.41◦ 0.59◦

C 0.6 s to 1.5 s −9.37 dB 37.75◦ 0.63◦

N 0.6 s to 1.5 s 6.05 dB 50.92◦ 0.56◦

Table 3: ASL performance analysis on synthetic data.
Reverberation and additional noise both have
strong negative effects on ASL.

ASL performance is evaluated on six one-minute sets
of synthetic data, each containing 15 scenes of 4 s. The
six sets can be categorized into three subsets, each
containing a clean (C) and a noisy (N) simulation of the
same scenario. Within the clean sets, only speech and
the corresponding reverberation are present, the noisy

1Audio examples can be found at zieglerj.home.hdm-
stuttgart.de/aslt-companion.html.

AES 148th Convention, Online, 2020 June 2-5 
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Fig. 5: Performance analysis of Confidence Weighting components. (a): Direct DOA estimate θDOA. (b): Added
directivity weighting results in considerably less noise in the output θ f ast . (c): Additional level-dependent
weighting reduces jumps during pauses. Long-term weighting further improves the accuracy and stability
of the tracker output θ . Solid lines represent labeled reference. The values on display were down-sampled
by a factor of 4 for increased clarity.

sets contain three additional noise sources randomly
placed within the same area as the speaker. The three
sets differ in their level of reverberation, which is given
as Direct to Reverberant Ratio (DRR) and span RT60
reverberation times from≈ 0 ms up to 1500 ms. Within
the noisy sets, the signal to noise ratio is given for the
virtual omnidirectional microphones.

Table 3 shows the results for the simulated audio data.
ASL on clean speech in near-anechoic environments
produces a mean error of 3.17◦ or approximately 1.8 %.
An additional noise source within the simulated sce-
nario increases the error by a factor of 10, mild reverber-
ation causes a similar degradation of ASL performance.
Furthermore, a clear correlation between the DRR and
the localization error can be observed.

5.2 Recorded Data

The results shown in Table 4 were created using two dif-
ferent speech scenarios. Scenario I is a 45 s office scene
in German, with one female and three different male
speakers, located at five positions around the micro-
phone. Scenario II is a 57 s dialog in English, between
a female and a male speaker, with additional comments
from two less prominently featured positions by the
same speakers. Speaker positions and speech duration
can be found in Tables 1 and 22. Pauses and overlaps

2Some sources shown in figure 4 only contained interference and
ambiance, hence they are not listed in tables 1 and 2.

were intentionally added to simulate more realistic con-
versations. Two versions of each scene were recorded.
The first version contains desired speech only. The
second version contains interference consisting of of-
fice noises, such as cell phones, ripping paper, coffee
cups and shifting chairs, being played back at 0.6 m
to 1.5 m, whispered side-conversations being played
back at 1.5 m and quadraphonic ambient recordings,
such as traffic and construction noise, played back on a
quadraphonic playback system, positioned at a radius
of 2.5 m.

Figure 5 shows a 15 s extract from Scenario I at vari-
ous steps of the signal processing chain, compared to
the reference position. Figure 5a shows θDOA, the raw
output of the virtual cardioid maximization process.
Figure 5b shows θ f ast , the fast position estimation ob-
tained using the variable exponential smoothing and
only one Confidence Index, Cd , associated with direc-
tivity weighting. It can be seen that this step greatly
reduces θerr and ∆θerr. For this reason, θ f ast is used
throughout the processing chain as a good initial guess
for θ . Figure 5c shows the additional improvement
realized through the use of the algorithms described in
section 3. While the values for θerr are large, it is worth
noting that the calculation is performed over the entire
recording. Pauses between words and phrases were
not removed during evaluation. This operation would
require a subjective threshold of pauses and seemed

AES 148th Online Convention,  2020 June 2-5  
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German German (noisy) English English (noisy)
θerr ∆θerr θerr ∆θerr θerr ∆θerr θerr ∆θerr

θDOA 46.18 24.67 52.59 23.86 46.24 23.19 45.44 22.73
+Cd 13.53 1.96 22.25 1.88 14.97 2.07 15.02 1.95
+Clt 11.20 0.97 17.84 0.96 11.55 1.24 12.27 1.20
+Cl 12.08 0.84 17.90 0.93 11.54 1.23 12.30 1.19

+snap 12.41 0.85 18.00 0.93 11.58 1.23 12.29 1.19
∆SC −0.08 dB −0.16 dB −0.07 dB −0.08 dB

Table 4: Tracker Performance Analysis on recorded audio. Adding Confidence Weighting components improves
the performance. While Cd globally improves stability and accuracy, other Confidence Indices show a
more situation-dependent behavior.

omni beamformers
Speech

Intelligibility 0.23±0.12 0.61±0.16

Noise
Suppression 0.16±0.12 0.52±0.19

Subjective
Quality 0.19±0.12 0.65±0.22

Table 5: Listening Test Results. In all categories
the beamformed signal is preferred over the
omnidirectional baseline. The mean result
and pooled standard deviation over all tested
beamformers are presented.

arbitrary and situation-dependent3. For the calculation
of ∆θerr, the pauses between labeled clips were addi-
tionally filled with the last available reference position
of the preceding audio clip. This reflects the fact that a
passive behavior of the tracker is desired during speech
pauses.

5.2.1 Listening Tests

Regardless which beamformer is used, the signal
outperforms that of a virtual omnidirectional micro-
phone Flin +Rlin. Even a simple gradient synthesis
beamformer creating a virtual supercardioid facing the
tracked direction θ provides improved intelligibility,
noise reduction and subjective quality, compared to the
omnidirectional signal. Once confidence weighting is
applied, the tracked supercardioid performs without

3Ex: calculating the error for θDOA +Cd in Scenario I (German)
using only buffers with an rms larger than 20 % of the mean rms of
the recording results in an error θerr of 10.06◦. This equals a perfor-
mance increase of 24.8 % when only examining frames subjectively
deemed relevant.

any audible artifacts.

Table 5 shows the summarized results of a lis-
tening test performed with 59 test subjects. Possible
scores in the categories Speech Intelligibility, Noise
Suppression, and Subjective Quality range from zero
to one. On average, the use of the tracking algorithm
in combination with a beamformer improves Speech
Intelligibility by 170 %, Noise Suppression by 225 %
and Subjective Quality by 256 %, compared to the
signal of a static omnidirectional microphone of equal
quality. Detailed results can be found in [28].

5.2.2 Speech Intelligibility

The Short Term Objective Intelligibility was calculated
by comparing the dry voice recordings from the test
scenarios with the signal of a virtual omnidirectional
microphone and of a virtual supercardioid microphone
synthesized towards the tracked angle θ , combined
with various beamforming algorithms. The use of a vir-
tual omnidirectional microphone results in an average
STOI of 0.593, while a virtual, tracked supercardioid
produces a STOI of 0.744 and all beamformers used
in the test produce a mean STOI of 0.745, a 26 % im-
provement to the virtual omnidirectional signal.

6 Discussion

The overall effect of the various Confidence Indices
depends on the application scenario. While directiv-
ity weighting universally improves ASL performance,
long term smoothing and position snapping improve
performance in static environments such as meetings.
The results in Table 4 reflect the mean errors in the four
described scenarios. The last row of data provides in-
sight into the performance of a first-order supercardioid

AES 148th Convention, Online, 2020 June 2-5 
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beamformer driven with the tracker output. On average,
the level of the target signal deviates by 0.1 dB from the
reference value. This is well below the threshold of just-
noticeable amplitude difference measured by Zwicker
and Fastl for common SPL [31]. The STOI measure-
ments presented in section 5.2.2 show that the objective
difference between a static omnidirectional signal and
a simple first-order beamformer is significantly larger
than the improvement gained by the introduction of
more complex beamforming algorithms. This is, in
part, due to the focus of STOI. For further investiga-
tions, a testing algorithm with stronger focus on high
quality audio will be selected.

7 Conclusion

The described system for acoustic source localization
and tracking provides real-time Direction of Arrival
information for coincident beamforming. A set of pro-
cessing blocks is introduced to provide application-
specific improvement over the direct output of energy
based scanning methods, resulting in a more accu-
rate and stable DOA-detection. Listening tests show
a strong increase in speech intelligibility, noise sup-
pression and subjective quality, when comparing the
combination of tracker and beamformer with static mi-
crophone signals. When using a simple synthesized
supercardioid driven by the tracker, the resulting signal
is not subjectively discernible from a signal based on
the reference position as input. The algorithm gener-
ates artifact-free audio and makes the system suitable
for professional audio production applications as well
as high-end conferencing and on-set recording.
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ABSTRACT

Acoustic Source Localization and Speaker Tracking are continuously gaining importance in fields such as human
computer interaction, hands-free operation of smart home devices and telecommunication. A set-up using a Steered
Response Power approach in combination with high-end professional microphone capsules is described, and the
initial processing stages for detection angle stabilization are outlined. The resulting localization and tracking
can be improved in terms of reactivity and angular stability by introducing a Convolutional Neural Network for
signal/noise discrimination tuned to speech detection. Training data augmentation and network architecture are
discussed, classification accuracy and the resulting performance boost of the entire system are analyzed.

1 Introduction

For the scenario discussed in this paper, a Steered Re-
sponse Power (SRP) algorithm, combined with a co-
incident microphone array is used to track speakers
in a conference environment. As SRP is an energy-
based detection algorithm, no distinction between a
desired signal (i.e. human speech) and undesired inter-
ference (i.e. office or traffic noise) can be made. Some
improvement in direction of arrival (DOA) estimation
can be achieved by applying detection filters1 prior to
the SRP processing, thus only registering energy in a
frequency range relevant to human speech. This ap-
proach is relatively limited, as many types of noise

1The results presented in this paper were obtained using a band-
pass detection filter in the range of 200 Hz to 4000 Hz.

show a wide frequency range, often overlapping that of
speech signals. A more sophisticated sound source dis-
crimination is described using a Convolutional Neural
Network (CNN) for sound source classification. Spec-
tral and temporal information is processed by the CNN,
using spectrograms of buffers spanning 128 ms and 75
frequency bands, in a frequency range of 200 Hz to
8000 Hz.

2 Methods

2.1 Microphone Array Configuration

The task of Acoustic Source Localization and tracking
of a moving acoustical source can be approached in
many different ways, the use of linear or circular spaced
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arrays being favored in many consumer-grade applica-
tions [1]. For audio capturing, the disadvantage of
conventional spaced arrays, compared to coincident mi-
crophone configurations, is the inferior audio quality of
the created beam. Spaced arrays are prone to distorted
frequency responses, due to the fact that the created
beam patterns are frequency-dependent [2]. Some re-
cent advances have been made, although satisfactory
results require an upper frequency limit of 8 kHz [3].
The audio quality of beams created by coincident mi-
crophone arrays solely depends on the quality of the mi-
crophone capsules used, thus resulting in a more linear
frequency response, even with respect to moving beams
required for source tracking. However, higher-order
beams can not be achieved using first-order coincident
arrays [4]. For Machine Listening applications, the re-
quirements regarding audio quality are often relatively
low and are defined by the algorithms used. Often a
frequency range of 100 Hz to 8000 Hz is chosen. In
other cases the bandwidth of telephone conversations
(5 Hz to 3700 Hz) is sufficient [5]. Because the array
described in this paper is used for audio capturing in
conference environments, optimal sound quality is re-
quired. Therefore, a configuration consisting of three
high-end microphone capsules is chosen. Due to hard-
ware considerations, a Double-M/S configuration is
used, consisting of two Schoeps CCM-4 cardioid cap-
sules and a Schoeps CCM-8 figure-of-eight capsule.
One cardioid c f faces 0◦, while the other cardioid cr
faces 180◦ and the figure-of-eight f8 is positioned fac-
ing ±90◦.

2.2 Acoustic Source Localization

From the Double-M/S configuration, a horizontal Am-
bisonics B-format can be decoded [6]:

W = c f + cr (1)
X = c f − cr (2)
Y = f8 (3)

Using the WXY-decoded signals, any arbitrary first-
order microphone pattern M(θ , p) can be synthesized
on the horizontal plane [7, 8]:

M(θ , p) = pW +(1− p)(X cosθ +Y sinθ) , (4)

with p representing the polar pattern shape between
p = 0 (figure-of-eight) and p = 1 (omnidirectional),

and θ describing the orientation on the horizontal
plane.

Using (4), nM virtual cardioid microphone sig-
nals2 can be synthesized. The virtual microphone with
the highest relative RMS level indicates the Direction
of Arrival of the sound source θDOA:

θDOA = argmax
θi

(
M(θi, p = 0.5)

)
, i = 1, ...,nM. (5)

Under certain conditions reflected sound can surpass
the original source in sonic energy. Currently no sce-
narios have been recorded in which a significant per-
formance decrease could be attributed to false DOA
detection due to reflections.

2.3 Confidence Weighting

Building on the SRP maximization described in section
2.2, additional angular stabilization is applied. This is
achieved using exponential smoothing [9]:

st =α xt +(1−α) st−1, (6)

with xt and st representing the input and smoothed
output angle for time frame t. 2π-wrapping of the
angle is addressed in a separate function.

Using the smoothing factor α ∈ [0,1] creates a
static smoothing effect which does not reflect any
characteristics of the processed signal buffer. To
achieve variable smoothing, the coefficient α is
dynamically assigned, depending on a set of signal
quality metrics. In the following paragraphs, this will
be called confidence weighting, which consists of four
types of confidence indeces C:

• Directivity weighting Cd – the level of anisotropy
of the detected sound indicates whether an actual
sound event is detected.

• Level weighting Cl – if a buffer contains a low
relative sound level, no relevant sound events are
expected.

• Long-term weighting Clt – if sound events have
frequently been detected from a direction, a quasi-
static sound source such as a speaker at a table
can be assumed.

2 p = 0.5
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Fig. 1: Comparison of tracker output with and without
angular stabilization. The average error can be
reduced from 25.68% to 6.46% when using a
dynamic smoothing coefficient α . Solid lines
represent reference position.

• Speech detection Cs– if a buffer is not classified
as speech, no relevant sound events are expected.

The last contribution to the confidence index is deter-
mined using a Convolutional Neural Network (CNN),
trained to discriminate between speech and non-speech.

The confidence indeces are combined to create the dy-
namic weighting factor α:

α =
(
κ Cd +(1−κ)Cd Clt C2

s
)

Cl , (7)

using the empirically determined mixing factor κ .

Angular stabilization is essential for this type of acous-
tic source localization. Figure 1 shows a comparison
of the tracker output with and without stabilization.

2.4 Mel-Scale Spectral Analysis

Convolutional Neural Networks provide excellent pro-
cessing capabilities on two-dimensional arrays, such
as images. For training and classification, the audio
stream is processed via Fourier Transform to Log-Mel-
scale spectrograms, using the feature extraction tool-
box provided by the University of Oldenburg [10]. The
Mel scale is used, since it closely resembles human
perception of sound and has proven effective in com-
bination with Neural Networks for audio classification
and speech detection [11, 12]. Buffers of 2048 samples
are analyzed at Fs = 16kHz sampling rate3, resulting
in 128 ms of audio per buffer. The spectral transform is
performed using a window size of 28 ms, which is suc-
cessively shifted by 10 ms. The processed frequency
range is between 200 Hz and 8 kHz, divided into 75
Mel-bands. Examples of extracted spectrograms can
be seen in Figure 3.

2.5 Neural Network Architecture

As the entire signal processing chain was created in
MATLAB, the use of MATLAB’s Neural Network
Toolbox for the speech detector ensures a seamless
integration and easy fine-tuning of the processing.

The processing steps presented in section 2.3
and 2.4 output Log-Mel-scale spectrograms of the
dimension 75x11x1. These define the dimensions
of the input layer of the CNN. Two-dimensional
convolution is applied, using 8 5x5 filter matrices and
zero-padding to maintain the input layer dimension
("same" padding) [13, 14]. The convolution output
is then shrunk by choosing the maximum value of
every 2x2 subset. This operation is called Max-pooling
with a pool size of 2 and a stride of 2, and is used to
transform the matrix to a dimension of 38x6x84. The
next convolution operation uses 16 3x3 filters and same
padding. Combined with a max-pooling operation
with a pooling size and stride of 2, the dimensions are
transformed to 19x3x16. The last convolution uses
32 3x3 filters and same padding, resulting in 1824
inputs for the first fully connected layer, which outputs

3The entire tracking algorithm runs at 48 kHz. The decision to
down-sample by a factor of 3 is the result of the data set used for
augmentation, as described in section 2.6, and the chosen frequency
range with an upper limit of 8 kHz.

4To achieve the desired output dimensions, max-pooling is
padded with pbottom = 1 and pright = 1. Details are discussed in
section 2.7.
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Fig. 2: Architecture of the neural network used as speech detector. The input Mel spectrogram measures 75x11x1
pixels. Using three convolution layers, two max-pool layers and two fully connected layers, validation
accuracy is 91.23 %.

Fig. 3: Log-Mel-scale spectra created for training and
classification using a CNN. 128 ms of audio
are processed using 75 Mel-bands, spanning
200 Hz to 8000 Hz. The resulting spectrograms
are displayed as gray-scale images of 75x11
pixels. Left: spectrograms of audio buffers con-
taining speech. Right: spectrograms of buffers
without speech.

8 activations for the final layer. This layer, using a
softmax activation function, discriminates between
speech and non-speech. An Adam optimization
algorithm was used to train the network [15].

2.6 Training Data and Augmentation

The network was trained using 30866 speech spectra
and 29360 noise spectra. The validation set consisted
of 2×2822 labeled samples. Lacking sufficient train-
ing data, the dataset was augmented using the Musan
dataset [16]. Within the dataset, the Librivox speech
files and the Free-Sound noise samples were used. To
create training data more similar to the test data, the
relatively direct recordings of the dataset needed to
be placed in virtual rooms. Room impulse responses
(RIR) were created using the image method described

by Allen and Berkley [17], implemented in the RIR-
generator, provided by the International Audio Labo-
ratories Erlangen [18]. To prevent the Neural Network
from overfitting to a specific room dimension, random
room dimensions were chosen to create impulse re-
sponses of virtual rooms similar in size to a potential
application environment. For every audio file of the
dataset, room dimensions were varied from 2 m to 7 m.
Within these randomly chosen room dimensions, the
sound-source and sound-detector were randomly po-
sitioned. Once the RIR was created, a convolution
with the audio file from the dataset created a rever-
berant version of the file. This reverberant audio was
then divided into frames of 2048 samples and trans-
formed into the Log-Mel-spectrograms described in
section 2.4. The validation set consisted of 2822 spec-
trograms for speech and non-speech, respectively. The
spectrograms labeled speech in the validation set were
obtained from recordings of the virtual conference de-
scribed in section 3, using speech-only scenarios. To
obtain the maximum possible number of spectrograms
from the recordings, all individual microphone streams,
as well as the combined omnidirectional and virtual
cardioid signals, were analyzed individually and used
for training and cross validation.

2.7 Real-Time Classification

The spectral analysis described in section 2.4 requires
128 ms of audio per spectrogram. With the main track-
ing algorithm running at 48 kHz, this is equivalent to
6144 samples. To maintain the low-latency operation of
the tracking algorithm, which runs at 256 samples, clas-
sification is performed on the current audio buffer, in
combination with the 23 previous buffers. To give the
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Fig. 4: Results of the decomposed test files. Left: Only
analyzing the clean speech file results in 298
speech classifications and 53 non-speech clas-
sifications. Right: Analyzing the noise com-
ponents returns 317 non-speech classifications
and 34 speech classifications. The overall accu-
racy in this test case is 87.61 %.
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Fig. 5: Probability of a buffer containing speech, ana-
lyzed over the entire test file. As in Figure 4, the
file was decomposed in speech and non-speech
components which were analyzed individually.

current buffer a higher weight, the first max-pooling
layer is padded only on the right, thus reducing the
importance of the left-most (oldest) part of the spectro-
gram. The choice of audio stream for the classification
operation is still under investigation. The most promis-
ing choices are a virtual omnidirectional microphone

So =W (8)

and a virtual supercardioid microphone signal Sρ (p =
0.34), aimed at the detected direction of the previous
buffer θDOA:

Sρ = 0.34 ·W +0.66 · (X cosθDOA +Y sinθDOA) . (9)

The results presented in section 3 were gathered using
So. Current measurements show no performance gain5

when using the computationally more expensive Sρ .

3 Results

The tracker performance was evaluated using a multi-
channel playback system, reproducing a virtual confer-
ence scenario. The set-up was placed within a large,
acoustically untreated room6 with 8 loudspeakers ar-
ranged in two concentric rings of 1.5 m and 2.5 m
around the microphone array. One additional loud-
speaker was placed at 0.5 m distance from the array,
another at 4 m. Microphone and loudspeaker hight
were chosen to realistically match a real-world sce-
nario. While the microphone and close-range loud-
speaker were placed at the hight of a table-top (800 mm
and 700 mm, respectively), the loudspeakers placed at
1.5 m and 2.5 m distance were set to the height of the
mouth of a seated person (1240 mm and 1390 mm, re-
spectively). The distant loudspeaker was placed at the
approximate height of the mouth of a standing speaker
(1700 mm). All heights were measured from the cen-
ter of the tweeter. A prepared scenario was played
back7, consisting of male and female speech in Ger-
man and English. Additionally, a variety of non-speech
signals were played back, such as cell phone ring-tones,
moving chairs, et cetera, combined with recordings of
construction sites and office noise. The recording and
playback format of the multichannel noise recordings
were chosen to be identical. Two scenarios were played
back, once exclusively using speech signals, once con-
taining additional noise. The introduction of speech

5Measured performance gain was < 0.1%.
68.3m×8.2m×3.8m, RT 60≈ 2.3s.
7Recording and playback format: 48 kHz, 24 Bit.
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S1 S1noise S2 S2noise
accuracy gain −1.2 % −1.8 % −0.4 % −6.6 %
stability gain 1.2 % 5.4 % 2.4 % 4.2 %

Table 1: Measured performance gain when using
speech classification as part of the angular
stabilization process.

detection decreased the average accuracy by 2.5 % and
increased the angular stability by 3.3 %. Table 1 shows
increased smoothing especially in noisy environments.
To further evaluate the classifier performance, the mul-
tichannel scenario was split into speech and non-speech
components and rendered to mono-files. The classifica-
tions throughout the speech and non-speech files can be
seen in Figures 4 and 5. The sum test accuracy in this
case is 84.61 %. Because the split was performed on
the near-anechoic scenario without being played back
in the virtual conference environment, the comparison
is skewed, with both real-time application and training
being performed on reverberant signals. Additional
testing is described in section 4. Within the tracking
scenario, the addition of the CNN classifier results in
a performance boost. Increased angular stability dur-
ing speech, combined with less erratic movement in
periods without speech, improve the audio quality of
beamforming algorithms being driven by the tracked
position data. A beamformer tuned to the signals of the
array in use is described by Runow et al. [19]. Figure 6
shows the classifier-induced performance boost for a
virtual conference recording. Close sources with a high
signal to noise ratio can be tracked well without the
need of speech classification. During the second half
of the recording, the sources are played back on the
mid-range8 and far-range9 loudspeakers, with a larger
amount of ambient noise. Here, the discrimination
between speech and non-speech (desired signal and
noise) increases tracking stability. Since this test was
designed for general tracking performance evaluation,
and not for speech classification evaluation, additional
testing will be required to better assess the added con-
fidence factor. In real-time tests, a clear improvement
of speaker tracking can be observed, with office and
traffic noise, as well as structural vibration being re-
jected well beyond the level achieved when using only
the detection filter described in section 1.

8r = 2.5m
9r = 4m

4 Discussion

Because the available test data were not recorded for
the specific purpose of evaluating speech detection, ad-
ditional testing is needed to assess the full benefit of
the added confidence weighting. Initial real-time tests
indicate a considerable performance boost; quantitative
measurements are the next step. With the small amount
of training data requiring additional synthetic data, the
training and validation sets do not come from the same
data distribution. This is not ideal, but could not be pre-
vented without recording and labeling large amounts
of additional data. To ensure satisfactory generaliza-
tion of the trained net within the intended application,
most of the recorded data was used for cross valida-
tion. Initial training of the CNN indicated overfitting,
which has been countered with the use of stronger L2-
regularization [20]. This suggests that test accuracy
will profit from additional training data recorded in en-
vironments more similar to the final application. The
test environment used for evaluation was considerably
larger than the virtual rooms used for data augmenta-
tion, which were chosen to be closer to the final appli-
cation environment. A performance gain is expected
when using more realistic surroundings for further test-
ing. If the desired increase in performance is not ob-
served, additional training rounds will contain a larger
variety of virtual spaces.

5 Summary

A system for Acoustic Source Localization and Track-
ing is described, which is capable of locating and track-
ing speech sources in real-time. The main system is
set up using an algorithmic approach, with Steered Re-
sponse Power maximization as the direction-of-arrival
estimator and a series of weighting factors for variable
exponential smoothing of the detected angle. Addi-
tionally, a Convolutional Neural Network is used for
speech detection. Discrimination between speech and
non-speech events enables the system to effectively re-
ject sound sources which are not of relevance for the the
application of speaker tracking, increasing the perfor-
mance beyond that of the purely algorithmic approach.
Initial tests show high classification accuracy within
the final application, and additional data promise still
higher accuracy.
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Fig. 6: Output of tracking algorithm with and without CNN speech detection. The first half of the test file is played
back at a distance of r = 1.5m around the microphone array. At this distance, confidence weighting works
well and the speech detection has a negligible impact on performance. Towards the end of the sample,
playback distance is increased to a distance of 2.5 m to 4 m around the microphone array and the SNR is
reduced. The increased levels of non-directional reverberation and noise components considerably reduce
the tracker’s performance. Using the speech detector, a higher level of stability can be maintained.
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ABSTRACT

The accurate display of frequency dependent polar response data of microphones has largely relied on the use of a
defined set of test frequencies and a simple overlay of two-dimensional plots. In recent work, a novel approach
to digital displays without fixed frequency points was introduced. Building on this, an enhanced interpolation
algorithm is presented, using higher-order spherical harmonics for angular interpolation. The presented approach
is compared to conventional interpolation methods in terms of computational cost and accuracy. In addition, a
three-dimensional data processing prototype for the creation of interactive, frequency-dependent, three-dimensional
microphone directivity plots is presented.

1 Introduction

Traditional displays of directional microphone sen-
sitivity provide a limited insight into the frequency-
dependent directivity characteristics. The use of de-
fined test frequencies, multiple measurement over-
lays, and the restriction to two dimensions reduces the
amount of information that can be obtained from such
figures. As an improvement, the authors suggested
a software-based display with a non-fixed frequency
point. Using this, an interactive display of the direc-
tivity properties of microphones and coincident arrays
can be created [1]. One crucial element of data pro-
cessing for this application is the angular interpolation.
This paper focuses on the use of spherical harmonic

interpolation (SHI) for this task. Both speed and ac-
curacy are compared to the performance of traditional
3rd- order spline interpolation. In an evaluation using
measured data, depending on the order of SHI, the inter-
polation speed and accuracy outperformed traditional
spline interpolation. In addition, the simplicity of adap-
tation to three-dimensional measurements is shown on
simulated measurement data.

2 Methods

2.1 Cubic Spline Interpolation

The angular resolution of measurement data can be in-
creased by creating virtual measurement points. This
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Fig. 1: Spherical harmonics with n ≤ 4. Only com-
ponents relevant to the xy plane are used for
two-dimensional interpolation.

was formerly achieved using cubic spline interpolation,
which uses third order polynomials within every inter-
val between measurement points [Si(ν) , Si+1(ν)] with
i = 0, 1 . . . [2, 3].

Considering the ith spline interval Si, the interpolation
function takes the form:

Si(τ) = ai +bi τ + ci τ2 +di τ3 (1)

with 0 ≤ τ ≤ 1. By defining a set of boundary condi-
tions appropriate to the system’s physical behavior, it
is possible to solve for all variables ai, bi, ci and di in
every interval i and at all frequencies ν .

2.2 Spherical Harmonic Interpolation (SHI)

A more elegant approach uses spherical harmonics for
this task. This set of orthogonal base functions defined
on the surface of a sphere can be expressed as

Y m
n (θ ,φ) =

√
2n+1

4π
(n−m)!
(n+m)!

Pm
n (cosθ)eimφ , (2)

where Pm
n (·) are the associated Legendre functions, m

is an integer representing the function degree, and n
is a natural number representing the function order
[4]. The associated Legendre functions are derived by

Fig. 2: Comparison of spherical harmonic interpola-
tion computed with order limits of 2 and 8.
While n ≤ 2 provides a smoother angular re-
sponse, n ≤ 8 retains a higher level of detail.
Measurement data: Schoeps MK8 at 10 kHz

differentiating the Legendre polynomials and are given
as

Pm
n (x) = (−1)m(1− x2)m/2 dm

dxm Pn(x), x ∈ [−1,1],

(3)

with Pn(x) representing the Legendre polynomials
which arise when m = 0. They are defined as

Pn(x) =
1

2nn!
dn

dxn (x
2−1)n. (4)

Spherical harmonics have the useful property that any
arbitrary function on a sphere f (θ ,φ) can be be repre-
sented as

f (θ ,φ) =
∞

∑
n=0

n

∑
m=−n

fnmY m
n (θ ,φ), (5)

with fnm being the function weights defined as

fnm =
∫ 2π

0

∫ π

0
f (θ ,φ)[Y m

n (θ ,φ)]∗ sinθdθdφ . (6)

The weights form what is known as the spherical
Fourier transform, while equation (5) is the inverse
spherical Fourier transform [4, 5].

Using equations 5 and 6, a spherical harmonic data
interpolation method can be devised. Measurement
data are transformed via spherical Fourier transform
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Fig. 3: Comparison of algorithm accuracy. Interpolated measurement points from a down-sampled dataset are
compared to high-resolution measurements. The error is computed as the sum of absolute errors over 72
points on 360◦. Due to the small change in error over a large range of SHI orders, a logarithmic display is
chosen. At the indicated minima, SHI outperforms cubic spline interpolation by approximately 0.25 dB for
the Schoeps CCM4 cardioid capsule and by approximately 0.5 dB for the Schoeps MK8 figure-of-eight
capsule used for the measurements.

onto a base of spherical harmonic functions Y m
n (θ j,φk),

sampled on a grid of dimension j× k, matching the
resolution of the measurement data. Later, an inverse
spherical Fourier transform onto a grid with a higher
spatial resolution results in the desired discrete angu-
lar interpolation. Since the spherical harmonic base
functions are continuous, the discrete resolution of the
interpolated data depends on the grid for the inverse
spherical Fourier transform and therefore can be varied.

3 Results

The use of spherical Fourier transforms for data in-
terpolation creates an effective approach to angular
smoothing within the application described in section 4.
Lower-order transforms provide the capability to re-
trieve the basic microphone directivity characteristics
with computational efficiency, while higher-order trans-
forms outperform the traditional spline methods in
terms of accuracy.

All basic microphone polar patterns inherent to pressure
sensors and pressure-gradient sensors can be described
using an omnidirectional sphere and a bidirectional
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Fig. 4: Computational cost of interpolation algorithms.
24 Measurement points with 20000 frequency
bins each were processed. Up to n = 8, spheri-
cal harmonic interpolation is faster than spline
interpolation.
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figure-of-eight [6, chapter 5]. Hence, combinations of
spherical harmonics with n≤ 1 are sufficient. Adding
higher order spherical harmonics subsequently adds
additional information about the measured microphone
response. Figure 1 shows the first 5 orders of spheri-
cal harmonics (0≤ n≤ 4). It is apparent that n = 0 is
analogous to omnidirectional microphone characteris-
tics, while n = 1 produces functions in clear relation to
figure-of-eight microphone polar patterns with orthog-
onal spatial orientation.

Figure 2 shows data interpolation using spherical har-
monics with n≤ 2 and n≤ 8. The measurements were
performed on a Schoeps MK8 figure-of-eight capsule
sampled at 37 points between 0◦ and 180◦ along the
horizontal plane, resulting in an angular resolution of
5◦. For ease of display and assuming rotational symme-
try in the MK8’s polar pattern, the 180◦ measurement
was expanded to a full circle.

3.1 Performance

The proposed algorithms are currently computed within
Mathworks’ Matlab R©, using the AKtools toolbox [7].
With this setup, the processing time for data interpola-
tion was inspected on a dataset with 24 measurement
points (∆θ = 15◦) and 20000 frequency bins. Figure 4
shows that for the presented case, spherical harmonic
interpolation provides faster results than spline interpo-
lation up to an order of n = 8.

3.2 Accuracy

To compare the quality of interpolated data, a set of
measurements was down-sampled by a factor of 3, go-
ing from ∆θ = 5◦ to ∆θ = 15◦. After data interpola-
tion, the difference between interpolated data points
and actual omitted measurement points was calculated.
Figure 3 shows the resulting error values for different
orders of spherical harmonic interpolation, compared
to the error of spline interpolation. Both cardioid and
figure-of-eight characteristics can be interpolated to a
high level of accuracy with surprisingly low orders of
interpolation. Taking the logarithmic nature of Figure 3
into account, acceptable results are achieved with or-
ders as low as 3. This is in part due to the very rough
sampling of only 24 points. Figures 2 and 5 show
that with higher measurement resolution, higher order
interpolation is advisable. Figure 3 also shows that, as-
suming maximum-order SHI as defined in section 3.3,
cubic spline interpolation is outperformed by spherical

Fig. 5: Comparison of higher-order (n≤ 18) spherical
harmonic interpolation and cubic spline inter-
polation.

harmonic interpolation. For the CCM4 capsule, SHI
at 10 kHz results in approximately 0.25dB less total
error, for the MK8 capsule, the difference amounts to
approximately 0.5 dB.

3.3 Aliasing

There are multiple ways to sample points on a sphere
but the choice is often dependent on the measurement
apparatus. Two common methods are Equal Angle
Sampling which samples a sphere at uniformly-spaced
angular positions, and Gaussian Sampling which sam-
ples the sphere with evenly spaced angles along the
sphere [4]. Equal Angle Sampling requires 4(n+1)2

samples, where n is the desired order of spherical
harmonics, while Gaussian Sampling only requires
2(n+ 1)2 samples. This study uses equal sampling
along the azimuthal angle, so Gaussian sampling is
used and 2(n+ 1) equal-angle samples are required
along the azimuthal angle. Originally, measurements
were taken at 5◦ along the azimuth. After extrapolation
to 360◦ and the removal of duplicate measurement lo-
cations at 0◦ / 360◦ and 180◦, 72 measurement points
remain, resulting in a maximum spherical harmonic
order of n = 35. When the data are down-sampled
to 15◦ angles for verification, the maximum spherical
harmonic order becomes n = 11. If interpolation is
performed at a higher order than the maximum order
defined by the sampling rate, aliasing can occur. An
example of possible aliasing is shown in Figure 6.
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Fig. 6: Aliasing effects due to interpolation above the
sampling limit. Left: Dataset with 72 measure-
ment points in 360◦, interpolated with n≤ 23.
Right: Dataset with 24 measurement points in
360◦, interpolated with n≤ 23. Choosing inter-
polation orders above the sampling limit intro-
duces unwanted oscillations in the interpolated
data. The higher the order, the more drastic the
oscillations.

4 Application

Currently the primary use for the developed approach is
within a software prototype for the interactive display
of frequency dependent microphone polar patterns [1].
Building on this prototype, spherical harmonic interpo-
lation enables the user to adjust the amount of angular
smoothing applied to the data. Figure 7 shows measure-
ment data of a Schoeps CCM4 cardioid capsule being
displayed at 1000 Hz with an interpolation order of
11. The original measurements were gathered with an
angular resolution of 15◦, therefore n≤ 11 is the high-
est order of interpolation below the aliasing threshold.
Expanding the software to three-dimensional balloon
plots is easily achieved by expanding the grids for the
spherical Fourier transform and the inverse transform
to a 3-D system. This is discussed in the following
section. The multidimensional display of transducer
measurement data is common practice for loudspeaker
measurements and can be achieved using various ap-
proaches, with contour and balloon plots being the
most prominent [8, 9]. In the context of microphone
characterization, this is less common.
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Fig. 7: Example application for SHI methods. Soft-
ware prototype interactively displaying fre-
quency dependent microphone polar data with
variable angular smoothing.

5 Outlook

As described by Angus and Evans [10], SHI can be
used to interpolate three dimensional measurements of
transducer behavior. Lacking sufficient measurement
data, the two-dimensional set used for Figures 2, 5,
and 6 was extrapolated to a three-dimensional system.
Added noise was applied to create a dataset with im-
perfect rotational symmetry. Figure 8 shows the raw
data, alongside interpolations using n≤ 7 and n≤ 17.
Future investigations will be focused on the acquisi-
tion and processing of three dimensional microphone
characteristics.

6 Summary

In the context of an interactive method for the
frequency-dependent display of microphone directiv-
ity measurements, spherical harmonic interpolation
is introduced. The computational cost of the opera-
tion is compared to that of the more traditional and
less application-specific approach of cubic spline in-
terpolation. Within the used environment, SHI can be
shown to be the faster processing method when inter-
polating at lower orders. In addition, the accuracy of
the mentioned interpolation methods are compared by
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Fig. 8: Three-dimensional SHI demonstrated on simulated measurement data. The planar measurement of a
Schoeps MK8 figure-of-eight capsule is expanded, making use of the inherent rotational symmetry of such
microphones. Later, this symmetry is partially broken by randomly scaling some of the impulse responses
using a normal distribution with µ = 1,σ = 0.5. This synthesized dataset is interpolated using SHI7 and
SHI17.

omitting data from a measurement and comparing the
algorithmically synthesized data with actual measure-
ments. Based on this comparison, it is possible to show
that SHI outperforms cubic spline interpolation when
the interpolation order is chosen close to the aliasing
limit described in section 3.3. As a proof of princi-
ple, three-dimensional SHI for microphone patterns is
demonstrated on a semi-synthesized dataset consisting
of planar measurement data and noise.
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ABSTRACT

With the development of bidirectional and unidirectional microphones dating back to the 1930’s, the parameter of
directivity has been an integral aspect of microphone construction for nearly 100 years [1]. This characteristic is
commonly visualized with the microphone’s sensitivity displayed as a radius r over a 360 - degree span within a
polar coordinate system. Measured directivity is generally shown as an overlay of well-defined frequencies [2].
Although this is common practice, in-depth analysis of the actual performance of a microphone is difficult. In this
paper, a novel approach to displaying the directional characteristics of a microphone is presented, providing an
interactive display of the angular sensitivity at any frequency. Furthermore, the application within microphone
array development is discussed.

1 Introduction

The directional sensitivity of a microphone is tradi-
tionally displayed as a theoretical plot within a polar
coordinate system (polar plot). As shown in Figure 1,
more information can be extracted from measurement
data, which is generally given at a few select frequen-
cies defined by IEC60268 [3]. This method provides
minimal insight into the actual frequency-dependent
angular sensitivity of the microphone. Moreover, us-
ing a more prominent line type for lower frequencies
or showing plots of non-IEC60269 frequencies may
cause misperceptions. Frequencies below 2 kHz gener-
ally show near optimal angular sensitivity. This paper
proposes a method for providing frequency-dependent
directivity information. A prototype application is in-
troduced and data interpolation and smoothing for dif-
ferent applications are presented.

Below 2 kHz

4 kHz

8 kHz

16 kHz

Fig. 1: Traditional display of directive microphone sen-
sitivity at frequencies defined by IEC60268 [2].
The overlapping plots make exact observations
about the frequency-dependent angular sensi-
tivity difficult.
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2 Methods

2.1 Data Acquisition

To acquire all necessary information to describe the
angle- and frequency-dependent microphone sensitiv-
ity S(θ ,ν) impulse responses (IR’s) were gathered:
In an anechoic chamber meeting ISO 3745 Precision
Class 1 standards [4], sine sweep test tones of 3 s were
played back using a high quality studio monitor at ap-
proximately 4 m distance from the microphone. The
test tone was recorded at n = 24 rotation positions of
the microphone, set via a motorized rotation device con-
nected to the microphone stand and monitored with the
appropriate software. The resulting recordings, repre-
senting an angular resolution of 15◦, were deconvolved
with the sweep signal to aquire the impulse responses.
These were later treated to reduce the influence of loud-
speaker imperfections by deconvolving the signals with
an impulse response of the speaker, recorded with a
high quality measurement microphone prior to the IR-
recordings. The microphone’s power spectrum at the
angle (n−1) ·15◦ can be accessed via Discrete Fourier
Transform (DFT) [5].

The resulting power spectra can be seen in Figure 2.
The observed irregularities at higher frequencies are
largely due to the fact that multiple microphone cap-
sules were combined in a shock-mount during record-
ing of the impulse responses. This causes reflections,
leading to interference effects which can drastically in-
crease or decrease sound pressure at arbitrary locations
and frequencies.

2.2 Frequency Smoothing

Many applications require a certain degree of data
smoothing. For the power spectra shown in Figure 2,
1
N - octave smoothing with N = 12 was applied. Some
marketing brochures show data smoothed with up to
N = 3. Figure 3 shows an IEC61260-compliant 1

N -
filter bank with N = 3 [6].

2.3 Angle Interpolation

To get from 24 steps, represented by Si(ν), to full 360◦

resolution as shown in Figure 4, described with S(θ ,ν),
cubic spline data interpolation is applied. Cubic spline
interpolation is achieved by constructing third-order
polynomials within every interval [Si(ν) , Si+1(ν)] with
i = 0, . . . ,n−2.
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Fig. 2: Power spectra of measured microphone cap-
sule in 15◦- steps around a full rotation. Data
smoothing with 1

12 - octave filterbank is applied.
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Fig. 3: Magnitude response of IEC61260 - compliant
1
3 - octave filter bank used to smooth frequency
responses [6]. The filters shown result in strong
smoothing, whereas more accurate data can be
retained by applying filter banks with narrower
bands.
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(a) Before interpolation. The 24 data points for the given
frequency bin are simply connected with lines.
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(b) After interpolation the polar graph shows great resem-
blance to the theoretical curve for cardioid directivity.

Fig. 4: Interpolation process of angular sensitivity plot. Figure 4a shows the contours of a polarity plot with
measured data simply connected by lines. This creates a rough and improbable graph. Figure 4b shows a
version which has been interpolated with an angular resolution of 1◦ using cubic splines.

Considering the ith part of the spline Yi we get ([7, 8]):

Yi(τ) = ai +bi τ + ci τ2 +di τ3 (1)

where τ is a parameter between 0 and 1. This results in

Yi(0) = Si = ai (2)
Yi(1) = Si+1 = ai +bi + ci +di (3)

The derivatives of Yi with respect to τ at the points Si
then are

Y ′i(0) = bi (4)
Y ′i(1) = bi +2ci +3di (5)

Required boundary conditions are matching splines in
all measurement points, as well as matching first- and
second-order derivatives. Therefore we get

Yi−1(1) = Si (6)
Yi(0) = Si (7)

Y ′i−1(1) = Y ′i(0) (8)
Y ′′i−1(1) = Y ′′i(0) (9)

Additionally, to guarantee a sufficient number of bound-
ary conditions to be able to solve the 4(n−1) un-
knowns, the second derivative of the endpoints is set to
zero.

Y ′′0(0) = 0 (10)
Y ′′n−2(1) = 0 (11)

The conditions for a correct interpolation of the direc-
tivity patterns discussed in this paper are the demand
for 360◦- 0◦ continuity and a continuous derivative in
the mentioned interval. As cubic spline interpolation
guarantees both conditions (see equations 2, 3, and 8),
simple data wrapping between 360◦ and 0◦ suffices for
these conditions to be met. Therefore we set

S24 := S0 (12)

and solve for all 4n variables ai, bi, ci and di at all
frequencies ν .

With certain directivities, such as hypercardioid and
figure-of-eight, transitions into areas of negative sensi-
tivity have to be addressed. Figure 5a shows an exam-
ple, where the transition between positive and negative
sensitivity was not taken into account in the interpola-
tion process. Figure 5b shows the corrected version.

3 Results

The resulting application prototype is capable of con-
verting a dataset of m×n impulse responses of m micro-
phones, recorded at n angles, sampled at up to 192 kHz,
into an interactive polar plot. Current research has fo-
cussed on capsules with cardioid and figure-of-eight
directivity characteristics, although any arbitrary direc-
tivity is possible. As the processing relies on simple

AES 142nd Convention, Berlin, Germany, 2017 May 20–23
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Fig. 5: Interpolation errors occurring in the transition area between positive and negative sensitivities. Not taking
this into account can lead to distorted directivity plots, especially at high frequencies, where the measured
angular sensitivity shows more deviation from the theoretical curve.

impulse responses, the software is not restricted to
single-capsule setups. Monophonic coincident arrays
of any type can be evaluated as well (see Figure 6).
Smoothing and normalization guarantee a seamless ex-
perience when sweeping through the frequencies. Fig-
ure 6 shows a screenshot of the prototype, displaying
the measurements of a Schoeps double-M/S setup at ap-
proximately 1kHz. The angle of the array towards the
loudspeaker during IR-capturing was slightly off-axis,
resulting in an offset of θ . As the setup was mounted
in a common shock-mount, the same offset applies to
all three capsules. For the potential use as a marketing
instrument, offset correction can be applied.

4 Discussion

Through the use of interactive frequency-dependent
angular sensitivity displays, the performance of a given
microphone can be assessed in greater detail than with
traditional polar plots. This can be advantageous when
used as marketing material for high-performing mi-
crophones, or to help engineers find weaknesses in
current hardware design. A promising aspect of the
presented application is the evaluation of the perfor-
mance of beamforming arrays. Figure 7 shows the
polar response of a synthesized supercardioid, created
with the double-M/S configuration shown in Figure 6,

Fig. 6: Application prototype displaying measure-
ments of a Schoeps double-M/S setup consist-
ing of two CCM 4 cardioid capsules and one
CCM 8 figure-of-eight capsule at ≈ 1kHz [2].

AES 142nd Convention, Berlin, Germany, 2017 May 20–23
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using the synthesis models shown in equations 13 to
16 [10]. The use of this application for continuous
performance monitoring of beamforming algorithms
can be a useful aid for DSP development and quality
assessment.

Using the microphone configuration shown in Figure 6,
an arbitrary 1st order directivity pattern can be synthe-
sized, oriented towards any desired angle.

The signal from pressure sensors p(θ , t) and pressure
gradient sensors g(θ , t) can be combined using:

S(θ , t) = α p(θ , t)+(1−α) g(θ , t) (13)

For this example, using a double-M/S setup, the pres-
sure sensor (omnidirectional signal) is synthesized us-
ing the front- and rear-facing cardioids:

p(θ , t) = S f rontC(θ , t)+SrearC(θ , t) (14)

For the desired supercardioid we set ([9]):

α =
√

2−1 (15)

Using equations 13 - 15 we can compute a supercar-
dioid as shown in Figure 7, using:

SSC(θ , t) = (
√

2−1)
(
S f rontC(θ , t)+SrearC(θ , t)

)

+(2−
√

2)S f ig8(θ , t)
(16)

Although current parameters show promising results
and good performance, further research is required to
determine optimal frequency-smoothing for different
applications. Also, interpolation using nth degree spher-
ical harmonics instead of cubic splines could lead to
better results for areas with changing sensitivity po-
larity as found in figure-of-eight directivity patterns,
and for areas with a large angular derivative of the sig-
nal

(∣∣∣ dS(θ ,ν)
d(θ)

∣∣∣� 0
)

. As the IR recording took place
with three microphones simultaneously, an obvious
amount of interference can be observed. The rear-
facing cardioid microphone shows dramatic distortion
of directivity characteristics at frequencies as low as
5 kHz, while the front-facing cardioid capsule of the
same model shows relative frequency invariance up to
14 kHz. For more valid results additional IR recordings
are needed without the reflective surfaces of elaborate
shock-mounts and other capsules.

Fig. 7: A synthesized supercardioid response created
using signals from the Schoeps double-M/S
configuration shown in Figure 6.

5 Summary

A method to capture and interactively display the
frequency-dependent angular sensitivity of micro-
phones is introduced. Data capturing via the recording
of impulse responses in an anechoic environment is
described. Subsequently, signal processing in the form
of deconvolution, smoothing, and interpolation are dis-
cussed and examples are shown in Figures 4 and 5.
A functioning application prototype is introduced and
application examples are provided:

• Display of single capsules to assess the quality of
frequency invariance of a given directivity pattern
(Figure 5b).

• Display of multi-capsule setups to examine the
effect of inter-capsule-reflections and microphone
mounting (Figure 6).

• Display of synthesized directive signals to assess
the quality of beamforming algorithms (Figure 7).

Furthermore, future improvements in data acquisition
and processing are discussed.

AES 142nd Convention, Berlin, Germany, 2017 May 20–23
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Abstract
Für die Entwicklung eines neuartigen digital prozessierten Mikrofonarrays, haben wir im Vorfeld einen Hörversuch 
zur Untersuchung verschiedener Störgeräusche vorgestellt [1]. Diese dienten dem besseren Verständnis, welchen 
Faktoren bei der Entwicklung der Algorithmen die größte Beachtung geschenkt werden muss. In diesem Teil werden 
die Hörversuche, deren Audiodatengenerierung sowie die Ergebnisse zur Einschätzung und Abgrenzung verschiedener 
Fremd- und Eigenalgorithmen zur Entwicklung des Mehrkapsel-Mikrofonarrays im Haupteinsatzgebiet der Sprache 
vorgestellt. Hierzu wird das 2] für die menschliche-, sowie die STOI-Methode [3] für 
die algorithmische Bewertung genutzt.

1.
Der vorausgegangene Hörversuch zur Untersuchung von 
Störgeräuschen wurde komplett in Max/MSP [2]
programmiert und von den Teilnehmern offline an einem 
Laptop bearbeitet. Um den aktuellen Test nun schneller 
aufbauen und auch online einer größeren Anzahl an 
Teilnehmern anbieten zu können, sollte das frei zugängliche 

- 3] genutzt 
werden. Dieses Tool bietet u.a. die Möglichkeit, einen den 
ITU-R BS.1534-Empfehlungen [4] entsprechenden Test
erstellen zu können. Im Detail kann damit eine zufällige
Prüfdatenausgabe, unterschiedliche Skalenbeschriftungen 
automatische Lautstärkennormalisierung, die Einbindung von 
Kommentarfeldern, versteckter Anker- und Referenzdatei
und das Prüfen auf versehentlich doppelt eingebundene 
Dateien umgesetzt werden. Auch können weitere Daten wie 
z.B. Bearbeitungsdauer, Anzahl der Abspielwiederholungen
gespeichert und der Hörversuch den Teilnehmern von einem 
php-fähigen Server browserbasiert angeboten werden. 

Auf Grund der zu erwartenden großen Datenmengen, sollte 
außerdem eine zeitsparende und weitgehend automatisierte 
Auswerteroutine möglich sein und, um Überbeanspruchung 
der Probanden zu vermeiden, die Bearbeitungsdauer von 30 
min. im Mittel nicht überschritten werden.

1.1 Vor- und Nachteile von Online
Hörversuchen

Durch online zugängliche Hörversuche kann eine große 
Anzahl an möglichen Teilnehmern erreicht werden. Diese 
können den Bearbeitungszeitpunkt außerdem frei wählen und 
den Test bequem an einem beliebigen Ort bearbeiten. Auch 
für den Versuchsdurchführenden reduziert sich der Aufwand 
für Auf- und Abbau der Testumgebungen an einem 
spezifischen Ort, ebenso reduziert sich der
Organisationsaufwand. 

Nachteile sind jedoch die indirekten Hilfe- bzw. 
Assistenzmöglichkeiten bei auftretenden Fragen und 
Problemen, sowie die schlechte Kontrollmöglichkeit des 
verwendeten Equipments. Ein Online-Versuch sollte also 
möglichst übersichtlich und selbsterklärend aufgebaut und die 

Aufgabenstellung dem entsprechend geeignet sein. Durch die 
in diesem Zusammenhang teilweise geringen Unterschiede 
unserer Testdaten in Bezug auf Nachhallzeit, 
Klangveränderung und Bildung von Artefakten, bat sich 
generell die Nutzung von Kopfhörern an. Auch erwies sich 
uns die Nutzung einer eingemessenen Abhöre in akustischen 
optimierter Umgebung als wenig relevant, da in diesem 
Hörversuch keine frequenz-vollumfänglichen Musik
bearbeitungen, sondern Sprache abgefragt wird. Weiterhin 
kann davon ausgegangen werden, dass der jeweilige 
Proband für die Bearbeitung des Hörversuches nur einen 
Kopfhörer nutzt und somit die Bewertung der Audiodaten 
zueinander stimmig ist. Die Typenbezeichnung der 
Kopfhörer fragten wir aus Interesse zusätzlich ab. 

2.
Haupteinsatzgebiet des neu entwickelten Mikrofonarrays 
werden Konferenzen sein. Hierzu wurde an der Hochschule 
der Medien ein Tracking-Algorithmus zur Detektion und 
Verfolgung jeweiliger Sprecher entwickelt [5], [6]. Eine aus 
drei Mikrofonkapseln synthetisierte Nieren- oder 
Supernierencharakteristik, kann in Echtzeit ein aktuelles 
Sprachereignis erfassen, verfolgen und so von unerwünschten 
Schallereignissen besser freistellen.

Um diesen Freistellungseffekt weiter erhöhen zu können, 
soll zusätzlich ein Beamformer- bzw. Dereverb-Algorithmus 
implementiert werden. Hierzu stand prozessiertes 
Audiomaterial des Beamformers von Bernfried Runow [7],
[8], zwei Dereverb-Plug-Ins und ein Spaced-Array-
Konferenz-Komplett-System zur Verfügung. Durch die fixe 
Architektur der verschiedenen Algorithmen, konnte jedoch 
nur Runows Beamformer alle drei Mikrofonsignale des 
neuen Mehrkapselmikrofons nutzen und verfügte somit 
theoretisch über das größte Potential. Ein Plug-In konnte so
nur das Summen-Trackingsignal, das ndere nur zwei
Signale des Mikrofons nutzen. Eine weiterhin geprüfte 
Spaced-Array-Konferenzanlage, verfügt über ihr eigenes 
räumliches Arraymikrofon mit 24 Kapseln und dient dem 
direkten Vergleich zu einem auf dem Markt bereits 
erhältlichen System.
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Nach Möglichkeit wurden die verschiedenen Algorithmen 
auch in verschiedenen Stärkeeinstellungen abgeprüft. 
Inklusive der Ankerdatei, dem bewusst verschlechterten 
Signal, und der Referenzdatei, dem optimalen Signal,
umfasste der Hörversuch 9, jeweils in zwei Sprachen zu 
bewertende Audiofiles. Angesichts der gesetzten 
Bearbeitungsobergrenze von 30 Minuten, erwies sich diese 
Anzahl bei mehreren Vorversuchen bereits als ausreichend.

Bezeichnung Beschreibung

Anker

Ankerdatei mit 3,5kHz-Lowpass und einer 
der Kategorie entsprechenden 
Degradierung durch hohe Nebengeräusche, 
Rauschen oder hohen Hallanteil. Dieses 
Signal muss vom 
bewertet werden.

Referenz

Nach Möglichkeit optimales Signal 
(trockene Studiosprachaufnahme), ohne 
Hall, Nebengeräusche oder Rauschen. 

werden.
Kugel Kugelsignal des Prototypenmikrofons

Runow 50% 

B. Runows-Beamforming-Algorithmus in
mittlerer Stärke, gespeist mit den drei 
einzelnen Kapselsignalen und der vom 
Tracker ermittelten Richtungsinformation.

Runow 100%

B. Runows-Beamforming-Algorithmus in 
voller Stärke, gespeist mit den drei 
einzelnen Kapselsignalen und der vom 
Tracker ermittelten Richtungsinformation.

Plug-In Nr.1
50%

DAW-Plug-In in mittlerer Stärke, gespeist 
mit zwei geführten Mono-Signalen.

Spaced-Array

Gesamtsystem mit eigenem räumlichen 
Mikrofonarray und schwacher Einstellung 
des produkteigenen Algorithmus. Stärkere 
Einstellungswerte verschlechterten das 
Signal enorm und mussten daher vom Test 
ausgeschlossen werden.

Plug-In Nr.2
50%

DAW-Plug-In in mittlerer Stärke, gespeist 
mit geführtem Mono-Signal.

Plug-In Nr.2
stark

DAW-Plug-In in starker Einstellung, 
gespeist mit geführtem Mono-Signal. Noch 
stärkere bzw. maximale Einstellung 
verschlechterten in unserem Fall die 
Signalqualität sehr stark.

Tab. 1: Übersicht der genutzten Signale

3.
Zur Generierung der Audiodaten nutzten wir den neu 
entwickelten Aufbau einer reproduzierbaren 
Konferenzumgebung: über mehrere Iterationen hinweg 
konnten wir hier, auch durch die detaillierte BA von Robin 
Hirt [9 gestalten. Mit diesem 
Mikrofonteststand kann über ein Lautsprechersetup mit 
definierten Abständen und Zuspielszenarien die 
Wirkungsweise der verschiedenen Algorithmen bzw. 
Algorithmen-Revisionen geprüft werden. 

Insgesamt werden 10 Lautsprecher in zwei Ringen bzw. 
Radienabständen vom zu prüfenden Mikrofon aufgebaut. 

Über die vier Lautsprecher des inneren Rings werden die 
nahezu reflexionsfreien Sprachdateien mehrerer Personen 
getrennt und auch parallel ausgegeben. Die Lautsprecher des 
äußeren Rings erzeugen ein- und mehrkanalige 
Atmogeräusche wie z.B. Straßenlärm oder das Öffnen und 
Schließen einer Tür. Weiterhin befindet sich, nahe am 
Mikrofon, ein einzelner Lautsprecher, welcher z.B. Papier-,
Tassen- und Stiftgeräusche ausgibt, sowie in 4 Metern 
Abstand ein weiterer Lautsprecher zur Generierung von sehr 
indirekten und räumlichen Signalen. Zur Simulation von 
Körperschall, z.B. verursacht durch Vibrationen eines 
Laptops oder Smartphones, kann zur Simulation optional ein 
kleiner E-Motor am Tisch befestigt werden. Durch eine 
elastische Aufhängung des Mikrofons ist hier allerdings 
schon von einer guten Körperschallentkopplung auszugehen. 

Zur Nutzung im Hörversuch wurde letztendlich ein 3s kurzer 
Zeitabschnitt der Aufnahmen in deutscher und englischer 
Sprache ausgesucht. Längere Abschnitte machten aus 
Gründen der Vergleichbarkeitsschwäche der menschlichen 
Klangwahrnehmung und der dadurch folgenden Erhöhung der 
Versuchsdauer keinen Sinn.

Abb. 1: Aufbauskizze der virtuellen Konferenz [10]: Zu sehen sind 
die beiden konzentrischen Lautsprecherringe, ergänzende Nah- und 
Fernlautsprecher, das kleine Prototypenmikrofon in der Mitte sowie 
das Konferenzsystems in Deckenmontage.

Abb. 2: 360°-Aufnahme des Genelec 1029A [11]-Lausprechersetups
der virtuellen Konferenz: Die Raummaßen betragen 8,3x8,2x3,8m,
die RT60 2,31s im Bereich von 500-1000Hz 2,31s (leerer und 
akustisch unbehandelter Raum).      

4.
Das WAET stellt verschiedene Interface-Arten wie z.B. AB-,
ABX- und Checkbox-Verfahren zur Verfügung. Anstatt des 
klassischen Mehrfachschieberegler-Interface der klassischen 



30th TONMEISTERTAGUNG VDT INTERNATIONAL CONVENTION, November 2018

MUSHRA-Methode (Abb. 3), fiel die Entscheidung zu 
Gunsten der APE-Variante (Audio Perceptual Evaluation)
[12]. Wie in Abb. 4 ersichtlich, wird hierbei nur eine Achse 
genutzt, auf der alle Soundfiles als Schiebebalken
repräsentiert sortiert werden müssen. Das Interface ist 
dadurch kompakter und lässt pro Prüfabschnitt mehr Platz für 
Kommentarfelder oder andere Zusatzoptionen. Außerdem 
schien uns der einachsige Aufbau die Relation der Soundfiles 
zueinander mehr in den Vordergrund zu stellen, als dies bei 
getrennten Achsen der Fall wäre [Vgl. 13]. Durch die 
Textfelder konnten die Probanden auch möglicherweise gar 
nicht abgefragte, ihnen aber als wichtig erscheinende 
Informationen weitergeben. Um ein mögliches Biasing bzw. 

bewussten oder unterbewussten Manipulationen 
entgegenzuwirken, wurden die Audiodaten pro Abschnitt 
außerdem zufallsverteilt ausgeben. 

Auf Grund des weiten Wertebereichs des einachsigen 
Aufbaus jedoch, kann bei nicht vollständiger Nutzung der 
Skala eine Verzerrung der Standardabweichung auftreten:
ein Proband könnte seine Daten z.B. nur in der unteren Hälfe 
der Skala anordnen, ein anderer jedoch in der oberen Hälfte. 
Durch diesen Offset würde die aller Daten nun 
fälschlicherweise ansteigen. Das WAET bietet hier an, 
gewünschte Soundfiles in einstellbaren (Toleranz-)Bereichen 
an den Skalenenden anordnen zu müssen. Das nachträgliche 
Normalisieren der vielen Ergebniswerte kann so vermeiden 
werden. In unserem Falle musste also die Ankerdatei, welche
vom Probanden definitiv als schlechteste Datei erkannt 
werden muss, am linken Rand, und die Referenzdatei, am 
rechten Rand angeordnet werden. Diese Maßnahme stellt 
auch sicher, dass jeder Teilnehmer den Test aktiv und 
aufmerksam durchführt und ihn bis zum Erkennen und dem 
korrekten Einordnen der Dateien nicht fortführen kann. Die 
restlichen Sprachdateien können nun zwischen beiden Werten 
verteilt werden. Leider konnte die angezeigte Fehlermeldung 
bei Nichterkennen nicht zu einem verständlichen Hinweis 
umformuliert werden. 

Weiterhin erlaubt die WAET-Testumgebung eine
Überprüfung ob jedes Audiodatei komplett abgespielt und 
bewegt worden ist. Das ist wichtig, da die Dateien, abgesehen 
von Anker- und Referenzdatei, sonst an ihren 
zufallsgenerierten Startpositionen stehen bleiben können. 

5.

5.1.

Zu Beginn des Hörversuches wurde eine einleitende 
Beschreibung angezeigt und die verwendeten Kopfhörer, das 
Alter der Teilnehmer sowie die audiospezifischen 
Erfahrungsbereiche abgefragt. Wie in Abb. 5 erkennbar, 
gaben die meisten Teilnehmer an, ein oder mehrere 
Instrumente zu spielen und sich mit dem Aufnehmen und 
Bearbeiten von Musik, Foleys oder Sprache zu befassen. Ein 
weiterer großer Teil gab an, Musikliebhaber und Konsument 
von höherwertiger Audiotechnik zu sein. Da auch 
Mehrfachnennungen möglich waren, wurden oft zwei oder 
drei Kategorien parallel genannt, siehe Abb. 6.

Bei den genutzten Kopfhörern wurden die Marke 
Beyerdynamic [14], gefolgt von Sennheiser [15] und AKG
[16], am meisten genannt (Abb. 7). Die vielen
Einzelmeldungen unterschiedlicher Marken wurde unter 

Durchschnittsalter aller 59 Teilnehmer betrug 39 Jahre, 
allerdings mit einer hohen Streuung. Jüngster war 19 und 
ältester Teilnehmer 63 Jahre jung. Auch die durchschnittliche 
Bearbeitungsdauer schwankte stark, lag im Mittel allerdings 
bei knapp 22 Minuten.

Abb. 3: Mehrfachschieberegler-Interface des Web Audio 
Evaluation Tool: jedes der fünf angebotenen Signal verfügt über 
einen eigenen Schieberegler

Abb. 4: einachsiges Hörversuchsinterface mit dem Web Audio 
Evaluation Tool: Jeder der grünen Balken repräsentiert eine auf der 
Skala zu positionierende Sprachdatei. Weitere Auffälligkeiten 
können anhand der Kommentarfelder weitergegeben werden.
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Abb. 5: Erfahrungsbereiche der Teilnehmer: am meisten kennen
sich die Versuchsteilnehmer bei Audioproduktionen aus und spielen
ein oder mehreren Instrumente.

Abb. 6: Mehrfachnennungen der Teilnehmer: 67% nannten max. 3 
Erfahrungsbereiche parallel.

Abb. 7: Genutzte Kopfhörer der Teilnehmer: die größte Blöcke 
bilden mit insg. 62% Beyerdynamic, Sennheiser und AKG.

Die nachfolgenden Diagramme setzen sich aus den 
Bewertungen der abgeprüften Sprachdateien anhand von 
blauen Balken, sowie deren Standardabweichung anhand 
von roten Balken zusammen. Der Wert 0,0 steht für eine sehr 

schlechte und der Wert 1.0 für eine sehr gute Bewertung. 
Niedrige Werte der roten Balken zeigen eine niedrige auf. 
In diesem Zusammenhang liegen die -Werte der Anker- und 
Referenzdatei generell und trotz des Toleranzbereichs für die 
Zwangspositionierung an den Skalenenden auf einem sehr 
niedrigen Niveau. Für den 
steht die 1,0 für eine als sehr hallig empfundenen Bewertung.

Damit sich die Teilnehmer an die Testumgebung gewöhnen 
konnten, wurde ein vom Prüfumfang reduzierter 
Trainingsmodus implementiert. Anstatt 9 wurden nur 6 
Soundfiles in einer Sprache, Deutsch oder Englisch, 
abgefragt. Auch wenn das Training dadurch nicht voll 
bewertet werden kann, können die Daten auf Grund der 
Menge der Teilnehmer und der abgefragten Eigenschaft 

Abschätzung genutzt werden. Grundsätzlich stellt das 
Kugelsignal das unbearbeitete und räumlichste Realsignal dar 
und wird nur von der künstlich verhallten Ankerdatei
übertroffen (3s Nachhallzeit). Nachfolgend zur nachhalllosen
Referenzdatei, wurde B. Runows Beamformer als sehr 
trocken bewertet.

Abb. 8: Ergebnis :
Runows Beamformer wird mit geringster und Halligkeit bewertet.

Eine Haupteigenschaft für (Konferenz-)Mikrofone ist die 
Verständlichkeit der Sprache. Hierzu wurden nun alle im 
Versuch vorkommenden Sprachdateien in deutscher und 
englischer Sprache abgefragt. 

Bei beiden Durchläufen wurde B. Runows Beamformer im 
Maximaleinstellung als bestes bewertet, dicht gefolgt von 
Plug-In Nr.2. Deutlicher Verlierer ist hier das Spaced-Array-
Konferenzsystem, dessen Sprachverständlichkeit deutlich 
unter einer übermäßigen Signalverschlechterung durch das 
interne Processing leiden musste.
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Abb. 9: Ergebnis 

Abb. 10: Ergebnis 

In diesem Abschnitt fragten wir die Sprachdateien mit Fokus 
auf die Störgeräuschunterdrückung ab. Das vorher weit 
abgeschlagene Konferenzsystem konnte hier deutlich 
aufholen. Sein starkes Processing versteht es,
Nebengeräusche wirksam zu unterdrücken, im Vergleich zur 
Konkurrenz litt dadurch aber auch erheblich die Qualität,
womit die erhöhte zusammenhängen könnte. Abgesehen 
von der störgeräuschsfreien Referenzdatei, führt B. Runows 
Algorithmus in Maximaleinstellung erneut die Auswertung
an.

Abb. 11: Ergebnis 
Sprache

Abb. 12: Ergebnis 
Sprache

Das Gehör reagiert sehr empfindlich auf Veränderungen des 
Klangs der Sprache und schon geringe Nuancen werden 
wahrgenommen. Als weiterer wichtige abzuprüfende 
Eigenschaft galt daher die empfundene Qualität der 
bearbeiteten Sprachdateien. Hierbei liegt das Spaced-Array
nur knapp über der bewusst mit Rauschen und 
Bandpassfilterung degradierten Ankerdatei. Trotz hoher 
Sprachverständlichkeit und Störgeräuschunterdrückung kann 
B. Runows Beamformer auch hier den ersten Platz behaupten. 
Da gute Qualität ein individuelles Maß ist, vermieden das 
Einbinden einer vermeintlich hochwertigen Referenzdatei. 
Auch in diesem Prüfabschnitt wichen die Ergebnisse in 
deutscher und englischer Sprache nur gering voneinander ab.
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Abb. 13: Ergebnis 

Abb. 14: Ergebnis 

Zu besseren Übersicht werden hier nochmal die 
zusammenfassenden Ergebnisse beider Sprachen in Summe 
dargestellt.

Abb. 15: Gesamtergebnis 

Abb. 16: Gesamtergebnis 

Abb. 17: Gesamtergebnis 

Zum automatischen Bewerten der Sprachverständlichkeit 
17] an. 

STOI steht für Short Time Objective Intelligibility
Messurement und wurde von C.H. Taal et al an der Delft 
University of Technology in Holland entwickelt. Das Skript 
vergleicht in unserem Fall die trockene Studioaufnahme 
(Referenzdatei) mit denen, über das in der virtuellen 
Konferenz mit dem Prototypenmikrofon aufgenommen und 
Dateien. Hohe Ergebniswerte bedeuten eine hohe 
Sprachverständlichkeit, so dass auch beim Vergleich zweier 
gleicher Dateien stets eine 1.0 herauskommt. Wir konnten so 
unsere Sprachdateien erneut abprüfen, gespannt darauf, in wie 
fern sich die Ergebnisse des Prüfalgorithmus mit unseren 
bisherigen Ergebnissen decken würden. 

Grundsätzlich liegen die Ergebnisse näher beieinander, als bei 
der durch den Menschen durchgeführten Bewertung. Dadurch 
sollte den Nachkommastellen mehr Beachtung geschenkt 
werden. Interessant ist, dass beide Sprachdateien des Spaced-
Arrays schlechter als die Ankerdatei bewertet wurde. Wie bei 
der Ankerdatei sind die Daten des Spaced-Arrays im
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Frequenzband stark beschnitten - für den Bewertungs-
Algorithmus wahrscheinlich zu stark und in einem als wichtig 
bewertetem Bereich. Auch das indirekte Kugelsignal wird in 
beiden Fällen erkannt und in Summe nicht viel besser 
bewertet als das räumliche Kugelsignal. Interessanterweise 
schneidet das Tracking Signal bei der STOI-Bewertung auf 
ähnlich hohem Niveau ab, wie mit kombiniertem Beamformer 
bzw. Dereverb. Grund dafür könnte die interne 
Korrelationsmessung bis nur 5000Hz sein, welche a) das 
Processing der höheren Frequenzen unbewertet lässt und b) 
die Artefaktbildung korrelationsbedingt höher bewertet als 
der Mensch, der hier teilweise deutliche Unterschiede hören 
kann.

Die weiteren Sprachdateien bzw. Algorithmen liegen relativ 
nahe beieinander, allerdings zeichnet sich auch in diesen 
geringen Bereich das Führen des Beamformer von B. Runow 
ab. Deutlich erkennbar ist auch, dass das Plug-In Nr. 1 in 
dieser Bewertungsrunde stark aufholen kann. Zur Ergänzung 
wurden zwei weitere Einstellungen des Plug-Ins ausprobiert.

Bezeichnung Beschreibung

Ankerdatei

Ankerdatei mit 3,5kHz-Lowpass und einer 
Degradierung durch hohe Nebengeräusche 
und Rauschen. Dieses Signal muss als 

.

Referenz

Sie diente im STOI-Versuch als 
Vergleichssignal (Wert 1.0). Aus 
Übersichtsgründen wird dieses Signal daher 
im Chart nicht dargestellt.

Kugel Kugelsignal des Prototypenmikrofons

Tracking
Sprachverfolgungs-Algorithmus 
Hochschule der Medien Stuttgart mit 
synthetisierter Niere bis Superniere.

Runow 50%

B. Runows-Beamforming-Algorithmus in
mittlerer Stärke, gespeist mit den drei 
einzelnen Kapselsignalen und der vom 
Tracker ermittelten Richtungsinformation.

Runow 100%

B. Runows-Beamforming-Algorithmus in
maximaler Stärke, gespeist mit den drei 
einzelnen Kapselsignalen und der vom 
Tracker ermittelten Richtungsinformation.

Plug-In Nr.1 
~25%

DAW-Plug-In in schwacher Einstellung,
gespeist mit zwei geführten Mono-
Signalen.

Plug-In Nr.1 
~50%

DAW-Plug-In in mittlerer Einstellung,
gespeist mit zwei geführten Mono-
Signalen.

Plug-In Nr.1 
100%

DAW-Plug-In in maximaler Stärke,
gespeist mit zwei geführten Mono-
Signalen.

Spaced-Array
Gesamtsystem mit eigenem räumlichen 
Mikrofonarray und schwacher Einstellung 
des produkteigenen Algorithmus. 

Plug-In Nr.1
50%

DAW-Plug-In in mittlerer Stärke, gespeist 
mit geführtem Mono-Signal.

Plug-In Nr.2
stark

DAW-Plug-In in starker Einstellung,
gespeist mit geführtem Mono-Signal.

Tab. 2: Übersicht der ergänzten Signale für die 
Sprachverständlichkeitsanalyse STOI

Abb. 18: Ergebnis 
deutscher Sprache

Abb. 19: in 
englischer Sprache

Abb. 20:
beider Sprachen
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6.
Pro Teilnehmer standen über 70, insgesamt über 4000 Werte 
zur Auswertung bereit. Zur zügigen Verarbeitung der Daten 
musste beim Erstellen des Hörversuches jedoch beachtet 
werden, dass WAET die zufällige Reihenfolge der 
ausgegeben Sprachdateien genauso in der Ergebnisdatei 
abspeichert. Daher müssen die jeweiligen Sprachdateien bei 
der Programmierung des Hörversuchs mit Indizes versehen 
werden um sie nachträglich sortieren zu können. 
Anschließend konnten die sortierten Datenblöcke in eine 
Sammelliste übertragen und ausgewertet werden.

7.
Durch das Web Audio Evaluation Tool konnte ein 
individuell programmierbarer und den ITU-Empfehlungen 
folgende  Hörversuch eine  großen Teilnehmerkreis online
zugänglich gemacht werden. 

Insgesamt wurde die Kombination des Trackingalgorithmus 
mit B. Runows Beamformer in Maximaleinstellung als bestes 
bewertet. Dieser Beamformer konnte allerdings auch alle drei 
Kapselsignale nutzen, so dass auch die anderen Algorithmen 
theoretisch Optimierungspotential besitzen. Plug-In Nr.1 lag 
mit seinen Ergebnissen oft knapp hinter denen des Plug-Ins
Nr.2 und konnte vor allem bei den Ergebnissen der 
automatischen Sprachverständlichkeitsanalyse STOI deutlich 
aufholen. Das eigenständige Konferenzsystem wurde von 
allen prozessierten Dateien in allen Kategorien als 
schlechtestes bewertet und konnte nur im Bereich der 
Störgeräuschunterdrückung einigermaßen überzeugen.

Weiterhin können die gesammelten Daten zur fortführenden
Mikrofonentwicklung genutzt werden und die Grundlage zur
Implementierungen eines Beamformers und dessen 
Stärkeeistellungen bilden.
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Abstract
Spectral Subtraction is often used for noise reduction and speech enhancement. It is an important tool of digital audio
signal processing. Since its introduction in 1979, several problems like Phase Errors, Cross-time Errors and 
Magnitude Errors cause rather disappointing results. Beyond these errors, there is a fundamental problem within the 
basic principles of Spectral Subtraction, which is documented in this publication.

1. Introduction
Spectral Subtraction is a widespread method to dynamically 
process the spectrum of a digital audio signal. It gives you 
the possibility to edit a signal in a specific spectral range. 
The basis for this procedure is the discrete Fourier transform 
(DFT), which converts a time-series signal into the 
frequency domain and makes frequency analysis possible. In 
the spectral domain it is possible to edit individual spectral 
components, the so-called spectral coefficients. This makes 
it possible to subtract information from a specific frequency 
component. Finally, the processed signal can be 
resynthesized by means of an inverse discrete Fourier 
transform (iDFT). Therefore, the edited signal is available in 
the time domain once again.

The crucial advantage of the Spectral Subtraction is given by 
the short-time Fourier transform (STFT). With the STFT, it 
is possible to decompose a continuous stochastic signal and 
transform each time segment into the spectral domain. 
There, the time segments can be edited one after another. 
After the inverse transformation, the time segments can be 
recomposed into a continuous signal.

Because of the segmental processing, it is possible to edit
each segment individually. This means, we can create an 
adaptive, real-time signal processing algorithm with a short 
latency. This is the reason for the importance of the Spectral 
Subtraction in the last decades. A multitude of applications 
use this technique, like noise reduction and speech 
enhancement.

2. Fundamentals
2.1. Windowing of a Signal

The segmentation of a continuous input signal can be 
achieved with a window function , as we can see in 
Fig. 1.

Each segment is multiplied with the window function :

(1)

where is the discrete time index and 
the length of the segments. The variable defines the
first sample of the current segment. 

Fig. 1: Windowing of a continuous input signal using the von-Hann 
window function with an overlap of 50%.

An overlap of the segments is possible. Depending on the 
length of overlap, a compatible window function has to be 
chosen. The sum of the successive window functions always 
has to be one. This restriction is given in order to prevent a 
distortion of the signal within the resynthesis process, more 
precisely through the multiplication with the window 
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function. This means that the windowing must result in a
constant amplification of 1.

rectangular window:

(2)

with .

If we want an overlap of 50%, we can, for example, choose 
the von-Hann window function:

(3)

with .

In Fig. 2 you can see the von-Hann window functions for the 
segmentation of an input signal. Any window function can 
be used as long as the constraint of constant amplification is 
met.

Because of the use of a window function, a segment is also 
called window.

Fig. 2: Von-Hann window functions with a length of 2048 samples 
and their sum.

2.2. Short-Time Fourier Transform

After the segmentation of the input signal, the short-time 
Fourier transform (STFT) uses the Discrete Fourier 
transform to transport each window into the frequency 
domain. We obtain the DFT-coefficients using [4][8]:

(4)

where is the discrete frequency index.

Each DFT coefficient represents a constant oscillation with 
the dedicated frequency :

(5)

where represents the sampling frequency which was used
for the sampling during the digitalisation of the input signal. 
The absolute value of the DFT coefficient is the amplitude 

of the oscillation and describes the
corresponding phase angle.

By means of the inverse discrete Fourier transform we can 
transport the spectral signal back into the time
domain [4][8]:

(6)

with . Thus, the two signal sequences 
and are a transform pair.

Finally, the processed signal segments can be recombined
according to the defined overlap.

2.3. Characteristics of the STFT

The Short-time Fourier transform has a number of 
characteristics which are accurately described in the relevant 
literature [2][4][8][9]. Two of these characteristics are 
especially important for Spectral Subtraction: the periodicity 
and the resolution of time and frequency.

2.3.1. Periodicity

The exponential function behaves in a periodic
fashion depending on . This results the periodicity of the 
DFT and consequently of the STFT [4][8]:

(7)

and

(8)

2.3.2. Time Resolution and Frequency Resolution

By using a clever analogy to the Heisenberg uncertainty 
principle, Küpfmüller points out that it is not possible to
simultaneously achieve both a high resolution in time and in
frequency within the spectral domain [7].

The background of this principle is the identical length of 
the transform pair consisting of the time-domain signal

and the signal in the frequency domain . To
get a high frequency resolution, we need a preferably long 
signal length. Contrarily we achieve a high time resolution 
using a short window in the time domain as this enables us 
to compute an individual spectrum for each short time 
segment.

Fig. 3-5 make this uncertainty principle clear. We can see 
several spectra over time. The test signal, which is a sine 
wave changing its frequency every second, was transformed 
into the spectral domain by means of STFT. The charts 
differ in the window lengths which were used for the STFT.
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Fig. 3: Spectrogram of a sine wave changing its frequency every 
second. Analysed using STFT with a window length of 64 samples 
and a sampling frequency of 48kHz.

Fig. 4: Spectrogram of a sine wave changing its frequency every 
second. Analysed using STFT with a window length of 512 
samples and a sampling frequency of 48kHz.

Fig. 5: Spectrogram of a sine wave changing its frequency every 
second. Analysed using STFT with a window length of 8192 
samples and a sampling frequency of 48kHz.

We can solve this conflict with the help of a process called

short time segment we can add a number of zeros at the end 
of the windowed time signal:

(9)

where and represents the number 
of the added zeros. Thus, it is possible to simultaneously 
achieve a high time resolution and a high frequency 
resolution within the STFT.

2.4. Spectral Subtraction

During Spectral Subtraction the amplitudes of two spectral 
signals are subtracted from each other. If is the
minuend and is the subtrahend, we obtain the
difference [3]:

(10)

where is a real weighting factor which regulates the 
subtrahend , so that cannot assume
negative values:  

(11)

The real factor defines the intensity of the Spectral 
Subtraction. If , there is no subtraction. If , the 
subtraction is maximal. The quotient of and

prevents that can become negative if the
absolute value of is larger than the absolute value of

.

he amplitudes, but the power,
equation (10) is modified to produce :

(12)

A more general form can be written as:

(13)

This is often named parametric spectral subtraction [5] and 
sets a variable exponent. With we obtain the spectral 
subtraction from (10) and with we obtain the spectral 
subtraction of the power from (12).

Combined with the phase of the input signal 
, the output signal can be computed with:

(14)

To an extent, this operating sequence is a makeshift method.
It is to be expected that after the subtraction, the correct 
phase of is not identical to the phase of the input
signal . Jens Groh asserts that the correct phase often 
cannot be derived [6]. Thus, in many cases, the correct phase 
of the output signal is simply unknown. Studies have shown, 
that phase corruption in the spectral domain is considerably 
less perceptible than a corruption of the amplitude in this 
domain [10].
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Finally, the output signal can be transformed back into the 
time domain by using the iDFT:

(15)

Thereby the output signal is as long as the input signal and 
consists of samples.

3. Spectral Subtraction as a
Time-Variant System

The Spectral Subtraction can be considered as a time-variant 
system with a varying processing and parameters that can 
change from window to window.

Hence, we are able to write the subtraction in the spectral 
domain from (13) as a multiplication:

(16)

Then the amplitude response of this system is:

(17)

and the frequency response of each window is:

(18)

Assuming , the equations (17) and (18)
leads us to:

(19)

Like the input signal , the frequency response
consists of DFT-coefficients. Thus, the spectral output 
signal can be computed as a product of the spectral
input signal and the frequency response :

(20)

A multiplication in the spectral domain corresponds to a
convolution of the equivalent signals in the time domain [2]:

(21)

where describes the impulse response of the system
and is the length of this impulse response.

4. The Fundamental Problem
4.1. The Length of the Output Signal

The length of the output signal of a convolution is [2]:

(22)

where is the length of the input signal, is the
length of the impulse response and is the length of the
convolved signal.

Considering the convolution in (21), both the input signal 
and the impulse response are of length . Therefore, the 
output signal consists of samples.

This means, that the output signal computed using convolution
in the time domain is nearly twice as long as the output 
signal which is computed using Spectral Subtraction in the 
spectral domain and which has samples. Thus, the output 
signal in (21) cannot be the same as the output
signal in (15) with (13) and (14), as we can see in Fig. 6.

The reason for this is the static signal length in the spectral 
domain and the periodicity of the DFT. The periodicity
presupposes a continuous repetition of the finite output 
signal. The modifications of the DFT coefficients cause an 
extension of the signal when transformed back into the time 
domain. The part of the processed signal after the th
sample will be continued at the beginning of the window.
Since the STFT does not take this repetition at the 
recombination of the windows into account, an error 
inevitably occurs. We receive an overlap with a signal part, 
which is inserted at the wrong time position. This error 
becomes apparent when the signal is compared directly with 
the output signal, which is computed by convolution in the 
time domain. In Fig. 6 we can see the differences between 
the output signal of the Spectral Subtraction and the output 
signal of the convolution.

4.2. Zero Padding is no Solution

By using zero padding, we can reduce the effective length of 
the input signal in relation to the length of the window 

. Consequently, the length of the frequency
response increases and for this reason the length of 
the impulse response will increase up to the 
extended window length of samples.

The constraint that the output signal fits into the window
without an overlap is only fulfilled in the case of :

(23)

This case is unusable for Fourier analysis.
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4.3. An Example to Illustrate

To illustrate the behaviour of the DFT in combination with 
Spectral Subtraction we generate a window of a synthetic 
input signal:

(24)

with and . The result is the 
black graph in Fig. 6. We multiply this input signal with the 
von-Hann window function from (3):

(25)

To get a better frequency resolution we add 16 zeros:

(26)

We receive the windowed input signal with zero padding, as 
illustrated by the blue graph of Fig. 6.
As an example, we reduce the third, fifth and ninth DFT 

coefficients by about 70%, using Spectral Subtraction and
(4), (10) and (14). The result is the output signal of the 
Spectral Subtraction, shown as the orange graph. Now we 
compare this result with the equivalent processing using
convolution in the time domain. By means of (19) with 
and (21), we receive the green graph. The difference of these 
two output signals (red graph) shows the wrongly inserted 
part of the signal, occurring due to the periodicity of the 
DFT.

5. Analysis of the Impulse Response
If we look to the impulse response of the Spectral
Subtraction, which is the inverse Fourier transform of 

:

(27)

it becomes apparent, that the maximum of the impulse response
is located at the first sample , as we can see in Fig. 7.

Fig. 6: Comparison of Spectral Subtraction using STFT and the equivalent processing with a convolution in the time domain. A windowed 
test signal of 16 samples is processed with Spectral Subtraction in the spectral domain and with a convolution in the time domain. The last 
diagram shows the signal part which is at the wrong position in the output signal when processed with the Spectral Subtraction.
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Fig.7: Impulse response of the Spectral Subtraction, computed with (10)
and (14). The third, fifth and ninth DFT coefficients are reduced by ~70%.

Fig. 8: Phase response of the Spectral Subtraction, computed with (10)
and (14). The third, fifth and ninth DFT coefficients are reduced by ~70%.

Fig. 9: Group delay response of the Spectral Subtraction, computed 
with (10) and (14). The third, fifth and ninth DFT coefficients are reduced 
by ~70%.

Furthermore, the samples to are axis-
symmetric to . This impulse response behaves as if 
multiplied with the Heaviside step function:

(28)

and shows a nonlinear phase shift, as we can see in Fig. 8 
and a strong varying group delay depending on frequency, as 
we can see in Fig. 9. We obtain the strongest group delay at 
the three processed DFT coefficients.

To prevent nonlinear phase shifting and an inconstant group 
delay, we must shift the phase within the processing in the 
spectral domain, depending on frequency. The phase of the 
DFT coefficients representing high frequencies with a short 
wavelength have to be shifted more than the phase of DFT
coefficients representing low frequencies. For an impulse 
response with an even length and an even symmetry we 
obtain the phase difference [2][9]:

(29)

where is the normalized complex angular frequency.
If we include this phase difference in (14), we receive:

(30)

Subtraction.

In Fig. 10 12 we can see the symmetric impulse response, 
the linear phase response and the constant group delay of the 
Advanced Spectral Subtraction using (10) and (30).

Fig. 10: Impulse response of the Spectral Subtraction, computed with 
(10) and (30). The third, fifth and ninth DFT coefficients are reduced by 
~70%.
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Fig. 11: Phase response of the Spectral Subtraction, computed with (10)
and (30). The third, fifth and ninth DFT coefficients are reduced by ~70%.

Fig. 12: Group delay response of the Spectral Subtraction, computed 
with (10) and (30). The third, fifth and ninth DFT coefficients are reduced 
by ~70%.

As we can see in Fig. 12, the Advanced Spectral Subtraction 
results in a constant group delay, which also means that the 
processing has a latency of one half window length.

Finally, we can take a look at the two magnitude responses, 
computed by Spectral Subtraction using (10) and (14) and by 
the Advanced Spectral Subtraction using (10) and (30).

The two magnitude responses show strong similarity. We 
can see the three attenuations, with the red one providing a
slightly narrower band width. It also becomes apparent that 
the Spectral Subtraction with linear phase has a low-pass 
behaviour at very high frequencies. This is the result of an 
impulse response with an even length and an even symmetry 
[2][9]. In the vast majority of cases, this behaviour is of little 
to no consequence. For example, in digital audio signal 
processing with a sampling frequency of , the
cut off is located above the upper limit of human perception.

Fig. 13: Magnitude response of the Spectral Subtraction. The blue 
graph is computed with (10) and (30) and the red graph is computed 
with (10) and (14). The third, fifth and ninth DFT coefficients are reduced 
by ~70% within the processing.

6. Conclusion
We can state that processing in the frequency domain makes 
the signal longer. The signal part by which the output signal
is longer than the input signal corresponds to the transient 
effect and decay process of the impulse response. The 
crucial point is to arrange the transient and decay parts at the 
correct time position in the output signal.
If we do the processing in the spectral domain via STFT, 
because of the periodicity, we receive an overlap in the 
output signal during resynthesis. This means, that we have a 
signal part at the wrong time position. Since the STFT does 
not take this repetition into account, an error inevitably 
occurs.

The subjective perception of this error is relatively small.
Furthermore, it is not the reason of the artefact called 

Presumably, the resulting error is covered 
by stronger artefacts like the aforementioned

can occur because of a dynamic processing in 
the spectral domain, too.

Irrespective of this, it is recommended to work around this 
error. For example, the resulting amplitude response can be 
smoothed. This approach minimizes the error, but it does not 
completely prevent it. To obtain the correct output signal, 
the frequency response can be generated. By means of the 
iFFT, we receive the impulse response of the processing. 
Now it is possible to compute the output signal with 
convolution of the windowed input signal and the impulse 
response in the time domain. This means, that the algorithm 
has more calculating steps and needs more time for the 
processing. However, with the fast convolution we have a 
fast-acting tool, which uses the fast Fourier Transform FFT.

The question arises as to why the fast convolution can 
compute the output signal without an error while still using 
the DFT. When we use the fast convolution, we have the 
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windowed input signal and the complete processing 

generate the frequency response in the spectral domain. The 
fast convolution fills up the windowed input signal and the 
impulse response with enough zeros to fit the entire output 
signal into the window.
This is still not possible if we generate the frequency response
of the Fourier transformed window with the input signal in 
the spectral domain, like the Spectral Subtraction does. In 
this case, the frequency response and for this reason the 
impulse response are always as long as the transformed
window. Therefore, the output signal does never fit into the 
window.

We can conclude that Spectral Subtraction has a fundamental
problem within its approach. But it is possible to work 
around this weak spot and prevent the occurring error.
Furthermore, we can use a phase shift within the processing, 

Subtraction does not have 
any nonlinear phase response or inconstant group delay.
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Abstract

Preliminary listening tests play a key role in the development of  novel types of digitally enhanced microphone
arrays. The assessment of different types of noise and signal degradation can lead to a better understanding of which
factors need the most attention in future development of signal processing algorithms. Along with the results, the
principles of the listening test will be discussed, as well as the creation of suitable sound files.

1. Preparation
The entire listening test was programmed using Max/MSP, 
an object oriented programming environment created by 
Cycling'74  [1]. This was chosen for its powerful and 
straightforward  audio  manipulation  capabilities  and  the 
ability to quickly design a GUI for the test subjects. The test 
was  comprised  of  pair  comparisons [2],  rankings [3]  and 
active evaluations. To match the DSP algorithms for which 
the listening test was devised, the selected noise sources are 
jitter,  compression  artifacts  and  various  colors  of  random 
noise.  The creation of degraded speech signals  took place 
using band pass filters, gates, limiters and audio clipping. All 
test  subjects experienced the test  on the same laptop with 
Beyerdynamic DT770 headphones [4] and data was acquired 
automatically.  The  set  of  test  subjects  consisted  of  audio 
professionals between 28 and 55 years of age. Special thanks 
go  to  Johanna  Zehendner  and  Jo  Jung  for  the  generous 
contribution of speech samples [5-7].

2. Synthesis of noise samples
White and pink noise were created using the noise generators
integrated  in  Max/MSP.  In  addition,  a  type  of  noise  was
introduced to the test, which matches the spectral sensitivity
of human hearing and thus should be more tolerable to an
average listener. This was achieved by modeling white noise 

with appropriate equalization. As seen in Image 1, gray 
noise has a strong attenuation around 2000 Hz, which 
matches the heightened sensitivity of human hearing at this 
frequency  [8].
Jitter was captured by recording the signal of a damaged 
Toslink optical ADAT cable connecting a digital console to a 
recording interface. Compression artifacts were created 
using a specifically designed Max/MSP patch. Peak and 
RMS levels of the signals were analyzed using Audacity [9].

Img. 1: Overlay of white, pink and gray noise. White noise shows
an  even  energy  distribution  over  the  entire  audible  spectrum,
whereas pink and gray noise have specific spectral attributes. 

Img. 2: Spectral energy distribution of the speech samples used in 
tests 3-6.

Img.  3: Spectral  analysis of compression artifacts and jitter. The
compression artifacts contain little energy above 5000  Hz.
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3. Execution of listening tests
The program in use consists of 6 separate experiments and
returns a total of 52 parameters for each test subject. Before
the test is started, the subject is reminded that the listening
test  is  devised  for  a  speech-specific  microphone  and  that
therefore a focus should be placed on sound quality in regard
to such signals.

Test 1: “Identical Disturbance Level”

Initially the test subject is asked to start a calibration signal
to  set  the  listening  volume  to  a  comfortable  level.  This
process ensures that every listener is evaluating the signals
within his or her own listening comfort zone. 
Due to a variety of sonic differences in the noise samples, a
direct comparison is not possible. A recording of white noise
will be perceived to be louder than, for example, jitter at the
same peak level. Therefore, every subject is asked to set the
noise samples to a subjectively identical  level. These gain
values  are  consequently  incorporated  into  the  pair
comparison tests.

Test 2: “Pair Comparison”

All noise signals are evaluated in pairs and the signal with a
higher disturbance potential is chosen. Due to the fact that
the  test  subject  previously  matched  all  signals  to  a
subjectively identical  level,  the decision is based more on
spectral and temporal energy distribution than on a general
difference in volume between the signals. 

Test 3: “Perception Threshold”

The  signals  are  now  examined  based  on  an  individual
threshold of perception. In addition to the noise samples, a
vocal sample is played back. Both male and female speech
are used in order to examine a difference in signal masking.
The user interface is similar to the one used in test 1.

Test 4: “Disturbance Threshold”

The  disturbance  threshold  for  each  signal  is  determined
using the same methodology as in the previous test.

Img. 6: "Identical Disturbance Level." The test subject is asked to
set the noise signals to identical levels using the provided faders
and on/off buttons.

Img.  5: RMS values of used signals. While jitter and white noise
have  similar  peak  levels,  the  difference  in  mean  energy  is
significant. 

Img. 4: Peak values of all signals used in the listening tests. Before
evaluation  of  the  results  individual  gain  matching  was  applied.
‘Speech female’,  ‘Speech male’,  ‘Male band passed’ and ‘Male
gated’ have 0dB peak level.
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Test 5: “Ranking”

The male speech sample is now played back in a variety of
modifications,  created  with  a  gate,  a  band  pass  filter,  a
limiter and a clipper. All signals were modified to a similar
degree. This insures that the character of a modification is
perceived rather than its  intensity.  The subject  is  asked to
rank  the  sound  samples  according  to  perceived  signal
quality. This test contains a blind reference.

Test 6: “Clipping”

In this test the amplitude of the audio samples of male and
female  speech  are  clipped.  The  subject  is  asked  to  set  a
tolerable level of clipping using a number box, as shown in
Image  9.  To  prevent  habits  of  audio  professionals  from
influencing their decisions, no level meters are supplied.  
The factor is converted to decibels for the evaluation process
and can be compared to the fixed clipping from test 5.

4. Results
All  results  are  gain-corrected  using  the  peak  level  offsets
shown in Image 4. By compensating for differences in peak
and  RMS  levels,  a  uniform  evaluation  of  all  tests  is
achieved. The depicted results are gathered using averages of
all test subjects.

Test 1: “Identical Disturbance Level”

Image 10 makes it quite clear that gray noise and jitter have
a very high disturbance threshold. Thus, much higher peak
levels can be tolerated than, for example, with white noise.
The test subjects set pink noise and compression artifacts to
similar  peak  levels.  This  could  very  likely be  due  to  the
spectral  similarity of  the two signals.  RMS values  for the
chosen levels show more similarity. This can be observed in
Image  11.  The only exception is  gray noise,  where  much
higher RMS values are chosen due to reduced signal energy
in the frequency bands most sensitive in human perception.
The average standard deviation is 7.31 dB. 

Img. 7: “Pair Comparison.” The test subject is asked to determine
the more bothersome signal within a pair.

Img.  8:  “Ranking.”  The  subject  compares  the  modified  speech
signals by clicking the tiles A-E and assigning a numerical rank to
each sample.

Img. 9: “Clipping.” Test subjects set a tolerable level of clipping in
male and female voice samples using a number box.
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Test 2: “Pair Comparison”

Pair comparison tests are run using the resulting disturbance
levels from test 1, thus a consistent level of audible noise is
achieved.  Each  noise  sample  is  compared  to  every  other
noise sample, resulting in 10 choices per test subject. During
evaluation the number of losing pair decisions is calculated
per sample, determining the most disturbing source. As seen
in Image  12, white noise clearly leads the list, followed by
compression artifacts and gray noise.  Pink noise and jitter
were perceived to be the least bothersome.      

Test 3: “Perception Threshold” - Part I

The  perception  thresholds  of  jitter  and  gray  noise  are
highest,  followed by compression artifacts and pink noise.
White noise, on the other hand, can already be heard at very
low signal levels. The average standard deviation is 9.1 dB.
Pink  noise  shows  the  lowest,  and  gray  noise  the  highest
standard deviation of the tested signals. This could be due to
hearing  capability of  the test  subjects.  Gray noise has  the
highest  spectral  energy in low and high frequency ranges.
The  high  frequency  sensitivity  of  human  hearing  is
decreased  with  age  and  over-exposition  to  high  sound
pressure  levels.  This  can  cause  a  higher  fluctuation  in
perceived noise levels.

Img. 10: Results of “Identical Disturbance Level Peak.” Jitter is set
to the highest, white noise is set to the lowest peak level with a
difference of approximately 20  dB.
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Img. 11: Results of “Identical Disturbance Level RMS.” Compared
to  peak  levels  in  Image  5,  RMS  levels  show  much  higher
correlation.
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Img. 12: Results of “Pair Comparison.” The list of most disturbing
noise sources is clearly led by white noise. Pink noise and jitter
were perceived as the least disturbing.
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Img.  13:  Results  of  “Perception  Threshold  Peak.”  Jitter  can  be
added at  the highest peak level without disturbance, while white
noise can be detected at very low levels.
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Test 3: “Perception Threshold in Female
Speech” - Part II

In  contrast  to  the  previous  test,  the  order  of  the  noise
samples is changed: compression artifacts trade places with
pink  noise.  The  average  standard  deviation  is  8.3 dB.  As
shown in Image  20,  the perception threshold of  the  noise
samples in female speech is on average slightly below the
results in male speech. This can be attributed to a 2 dB higher
RMS level of the male speech sample.

Comparative Analysis

When  comparing  perception  thresholds  of  pure  noise
samples and noise in added speech, it becomes apparent that
especially pink and gray noise can be increased in volume.
Jitter and compression artifacts are masked least.

Test 3: “Perception Threshold in Male Speech” 
- Part III

The order of the samples is analogous to part 2 of this test
and standard deviation is 7.8 dB. 

Comparative Analysis

Masking effects are least apparent with jitter. As with female
speech,  pink  and  gray  noise  show  the  strongest  masking
characteristics. Additionally, pink noise shows an increase in
masking of 1.5 dB compared to female speech. 

Test 4: “Disturbance Threshold” -  Part I

Compared to the tests concerning perception thresholds, pink
noise  shows  a  higher  disturbance  threshold  and  thus  is
slightly less bothersome. The highest levels are set for jitter,
indicating  the  lowest  relative  disturbance  among  the
compared  signals.  Compression  artifacts  and  white  noise
show the lowest tolerance level. On average, the disturbance
threshold  is  15.6 dB  above  the  perception  threshold.  The
standard deviation of 22.2 dB on average is 13.1 dB higher
than  for  the  perception  threshold.  This  could  be  due  to  a
missing  reference,  unclear  definitions  of  disturbance  or
diverging sensitivity for noise among test subjects.

Tab. 1: Results of “Perception Threshold in Female Speech.” Pink
noise profits most from masking effects and additionally shows the
smallest standard deviation.

SD

Jitter 9.9 8.6
Compression artifacts 9.9 8.7

White noise 11.0 6.7
Pink noise 12.8 6.6
Gray noise 12.4 10.9
Average 11.2 8.3

Perception threshold 
in female speech

Difference due to 
masking (dB Peak)

Tab. 2: Results of “Perception Threshold in Male Speech.” As with
female speech, pink noise shows both the most effective masking
and lowest standard deviation.

SD

Jitter 9.2 9.0
Compression artifacts 9.8 8.5

White noise 11.8 7.0
Pink noise 14.3 5.1
Gray noise 12.7 9.4
Average 11.6 7.8

Perception threshold 
in male speech

Difference due to 
masking (dB Peak)

Img.  15: Results of “Disturbance Threshold Peak.” A significant
difference is the greatly increased standard deviation.
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Img.  14: Results of “Perception Threshold RMS.” A convergence
of measured values can be detected. The highest standard deviation
is found within gray noise.
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Test 4: “Disturbance Threshold in Female 
Speech” - Part II

The  average  standard  deviation  is  reduced  through  the
introduction of a speech signal (female voice) from 22.2 dB
to 15.6 dB. This level is still 6.5 dB above those of the tests
concerning  perception  thresholds.  The  order  of  signals
remains unchanged.

Comparative Analysis

Pink noise is masked most in the hearing tests with speech 
signals while the disturbance threshold changes most for 
jitter. Also, no direct correlation between the disturbance 
threshold and the perception threshold can be detected. 

Test 4: “Disturbance Threshold in Male
Speech” - Part III

The levels set by the test subjects are up to 2.2 dB higher
than with female speech, thus confirming tendencies of the
perception  threshold  tests.  This  is  due  to  the  2 dB higher
RMS  value  of  the  male  speech  sample.  The  order  stays
unchanged and standard deviation is at 15.5 dB.

Comparative Analysis

On average, the difference in masking is increased by 1.4 dB.
In comparison to the perception threshold, masking occurs
less,  especially  for  gray  noise.  Jitter  and  compression
artifacts profit most from masking effects. 

Test 5: “Ranking”

The  unmodified  sound sample  is  ranked  highest  with  the
signal  treated with a  limiter  coming in second.  The worst
marks are given to the signals treated with clipping and band
pass filters.

Test 6: “Clipping Threshold”

Clipping  thresholds  set  by  the  test  subjects  are  nearly
identical between male and female speech with a difference
of 0.5 dB. The higher RMS of the male speech sample could
result in more noticeable clipping effects and would explain
the lower threshold. Standard deviation is 4.3 dB for  male
speech and female speech. This indicates a very individual
perception of disturbance.

Concluding Oral Survey

After completion of the test, the subjects were asked to name
the least  pleasant signal.  The results of the survey can be
seen in Image 19. 

Tab.  3:  Results  of  “Disturbance  Threshold  in  Female  Speech.”
Concerning  disturbance  thresholds,  jitter  profits  most  from
masking  effects.  The  most  notable  difference  to  the  tests
concerning  perception  thresholds  are  the  much  higher  standard
deviations.

SD

Jitter 6.5 14.1
Compression artifacts 5.2 16.2

White noise 3.4 16.7
Pink noise 4.3 16.0
Gray noise 4.8 15.1
Average 4.8 15.6

Disturbance threshold 
in female speech

Difference due to 
masking (dB Peak)

Tab.  4:  Results  of  “Disturbance  Threshold  in  Male  Speech.”
Compression artifacts and jitter profit most from masking effects
with male speech.

SD

Jitter 7.0 14.1
Compression artifacts 7.3 18.3

White noise 5.5 16.4
Pink noise 6.5 13.8
Gray noise 5.0 14.9
Average 6.2 15.5

Disturbance threshold 
in male speech

Difference due to 
masking (dB Peak)

Img. 17: Results of “Disturbance Ranking.” The original sample is
ranked highest and the signal with clipping lowest.
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Img. 16: Results of „Disturbance Threshold RMS.” As with peak 
results, a significant fluctuation within the group of test subjects is 
registered.
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Img.  20: Results of “Perception Threshold Peak.” In general, white noise has the lowest and jitter the highest perception threshold. Pink
noise profits most from masking effects by speech signals and has the lowest standard deviation.
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Img.  21: Results of “Disturbance Threshold Peak.” Jitter provides the least potential for disturbance, while white noise has the lowest
disturbance threshold. The high standard deviation shows a wide variety of sensitivity towards noise in the test subjects.

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0
-22,5 -16,0 -15,5 -25,4 -20,6 -20,4 -39,0 -33,9 -31,8 -35,8 -31,5 -29,3 -45,0 -41,7 -39,6

Disturbance Threshold Peak - General Overview

(d
B

)

Jitter
Jitter in female speech
Jitter in male speech
Gray noise
Gray noise in female speech
Gray noise in male speech
Compression artifacts
Compression artifacts in female 
speech
Compression artifacts in male 
speech
Pink noise
Pink noise in female speech
Pink noise in male speech
White noise
White noise in female speech
White noise in male speech

Img.  18:  Results  of  “Clipping  Threshold.”  Differences  between
male and female speech are below statistical relevance.
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Img.  19:  Results  of  “Oral  Survey.”  Compression  artifacts  were
perceived as the most disturbing. Of the five options, gray and pink
noise were not mentioned at all. 
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5. Conclusion
In  regard  to  peak  levels,  jitter  provides  the  highest
tolerability of all tested noise samples and can be present at
the highest  signal  to  noise  ratio  without  being considered
disturbing.  White  noise  is  detected  and  perceived  as
disturbing at much lower levels. Subjective determination of
disturbance thresholds results in a significant spread of the
results. The same occurs in perception thresholds of signals
with a high percentage of spectral energy at the upper and
lower end of human hearing.
Heavily clipped audio samples were considered to be of the
poorest  signal  quality,  while  the  unmodified  signals  were
ranked highest.  Additionally,  modifications which increase
intelligibility,  such  as  noise  gates  and  limiters  did  not
significantly reduce the perceived signal quality.

6. Outlook
The  described  listening  tests  compose  a  foundation  for
further, more complex examinations within a larger project.
The  results  will  be  used  for  prioritization  within  the
development of DSP algorithms and for the creation of more
detailed  testing  environments.  If  needed,  various
combinations of modified signals and noise sources can be
surveyed within similar listening tests. Additional focus can
be  placed  on  the  analysis  of  age  distribution  among  test
subjects.
More detailed evaluation of near-production prototypes will
take place following the suggestions of ITU-R BS.1116 [10]
and  ITU-R  BS.1534 [11].  In  addition,  listening  tests  with
hidden reference and anchor (ABC/HR or MUSHRA) will
be used. 
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Img.  22: Results of “Difference of perception and disturbance thresholds Peak.” Gray noise shows the smallest level difference between
perception and disturbance thresholds, thus being felt as disturbing relatively quickly after its perception. Pink noise has a threshold interval
of 17 dB and therefore is tolerated at levels well above the perception threshold. The pure noise samples uniformly show larger differences
between perception and disturbance. The combined standard deviations of perception and disturbance thresholds create a larger spread.
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Abstract—Robust real-time audio signal enhancement increas-
ingly relies on multichannel microphone arrays for signal acquisi-
tion. Sophisticated beamforming algorithms have been developed
to maximize the benefit of multiple microphones. With the recent
success of deep learning models created for audio signal process-
ing, the task of Neural Beamforming remains an open research
topic. This paper presents a Neural Beamformer architecture
capable of performing spatial beamforming with microphones
randomly distributed over very large areas, even in negative
signal-to-noise ratio environments with multiple noise sources
and reverberation. The proposed method combines adaptive,
nonlinear filtering and gating methods with the computation
of spatial relations within a fully differentiable End-to-End
neural network. Combining a small number of principle building
blocks, the method is capable of low-latency, domain-specific
beamforming even in challenging environments.

I. INTRODUCTION

High-quality noise-free audio has become of ever greater
importance with increases in human-computer interaction,
telecommunication, and web conferencing. Ease of commu-
nication without personal contact has become a vital part of
modern society. The enhancement of signals with respect to
specific signal components such as speech can be performed
with a wide variety of methods [1]. In addition to adaptive
filtering of microphone signals, the use of microphone arrays
is a popular approach to signal enhancement. When using
distributed arrays, a common approach to multichannel signal
processing is Delay-and-Sum (DS) or Filter-and-Sum (FS)
beamforming [2]. By time-aligning and optionally filtering
a set of microphone signals with respect to a defined signal
source, surrounding noise and reverberation can be attenuated
in the output signal. One of the largest challenges for DS
and FS beamformers is the determination of the correct Time
Delays of Arrival (TDOA), especially for spontaneous, large
aperture microphone arrays of unknown configuration [3].
Commonly, the Generalized Cross Correlation with Phase
Transform (GCC-PHAT) is used to compute the TDOA for
every microphone with respect to a defined reference mi-
crophone [4]. While applying weighting factors such as the
Phase Transform presents a nominal improvement over the
standard cross correlation, accurately computing the TDOA
of specific signals remains unstable, especially in situations
with low signal-to-noise ratios (SNR).
In recent years, machine learning has had a large impact on
audio signal processing, redefining the state of the art in many
areas. The task of source separation can be approached in

numerous ways, with adaptive, nonlinear filtering on individual
audio channels being the most prominent and easily available
to date [5, 6, 7]. Recently, multi-channel, deep-learning based
array processing has become increasingly relevant [8]. The
ability for neural beamforming networks to detect correlations
of domain-specific signal components robustly and generate
the appropriate spatial filters is of great value. Current systems
can generally be categorized into two approaches, in which the
spatial information is either precomputed analytically and fed
into the beamforming network [9, 10, 11], or multiple neural
networks are used independently to achieve source separation
[12, 13]. Although investigations into End-to-End approaches
have been remarkably successful [14, 15, 16], some basic
limitations remain. Both referenced approaches directly use
convolutions as beamforming filters. While Sainath et al. use
dedicated convolutional layers to generate static spatial filters
resulting in learnable ”look-directions”, Luo et al. use Tem-
poral Convolutional Networks [17] or Dual-Path RNN [18]
for the adaptive estimation of filters based on a pre-processed
reference channel, raw auxiliary channels and the cosine
similarity. The method introduced in the following sections
circumvents said limitations by using iterative downsampling
and upsampling elements to adaptively produce long beam-
forming filters. The architecture is capable of dynamically
processing large-aperture microphone array signals in real
time, outperforming the baseline approaches for microphone
distances up to 75m.

II. NEURAL BEAMFORMING

The approach to Neural Beamforming described in the
following sections tackles the task of generating appropriate
spatial beamforming filters via the encoding of audio signals
and spatial information into a shared latent space from which
the beamforming filters are decoded. Additionally, adaptive
filtering of the audio channels prior to the computation of
spatial relations is incorporated in order to enable the system
to filter the input signals specifically for the task of spatial
analysis. The use of learnable filter elements prior to the
computation of pairwise cross-correlations creates the capa-
bility for the computation of domain-specific spatial filters,
which can greatly increase the beamformer’s robustness to
noise and reverberation. In section II-A, an appropriate signal
model is presented, sections II-B and III describe the method
and implemented network architectures in detail. Results are
presented in section V.



A. Problem Definition

Spatial beamforming can be achieved using M audio chan-
nels mν recorded by M ≥ 2 transducers. The recorded
channels consist of I signal and J noise components:

mν =
I∑

i=1

s̃νi +
J∑

j=1

ñνj . (1)

Every signal s̃νi and noise ñνj consist of the corresponding
signal and noise sources si and nj , propagated from their
respective source position to the transducer mν . The prop-
agation transformations are expressed as convolutions with
corresponding transfer functions Hν

si and Hν
nj [2]:

s̃νi = si ∗Hν
si , ñνj = nj ∗Hν

nj , (2)

resulting in

mν =

I∑

i=1

(
si ∗Hν

si

)
+

J∑

j=1

(
nj ∗Hν

nj

)
. (3)

The goal of Filter-and-Sum beamforming is to find additional
beamforming filters Hν that maximize si in the summed
combination of all mν :

ςi = maxsi




∑

ν,i

mν ∗Hνi



 . (4)

Additional beams can be synthesized for subtractive noise
reduction, resulting in

ςi = maxsi




∑

ν,i,j

mν ∗Hνij



 . (5)

Finding optimal Hνij is difficult and computationally ex-
pensive. For the simplified FS approach, Hνij is approximated
by a time shift δνi and a FIR filter hνi of relatively short
length.

B. Differentiable Adaptive Generalized Cross Correlation

For microphone arrays of known spatial distribution, finding
the correct time shifts δνi can be solved either geometrically,
if the desired beam direction is known, or by means of a
Steered Response Power source localization method, such as
SRP-PHAT [19]. For arrays of unknown spatial distribution,
pairwise time delay estimation can be performed by means
of the cross correlation of the signals. Considering two input
vectors mx[i], the discrete correlation, represented with the ?
operator, can be expressed as

(m1 ? m2) [i] =
∞∑

j=−∞
m1[j] ·m2[j + i]. (6)

Using the convolution theorem, (6) can be expressed as

(m1 ? m2) = F−1
{
F{m1} · F{m2}

}
, (7)

with F{ } representing the Fourier transform and [ ] the
complex conjugation. Applying Phase Transform weighting
leads to the computation of GCC-PHAT:

GCC-PHATm1,m2 = F−1



F{m1} · F{m2}∣∣∣F{m1} · F{m2}

∣∣∣



 . (8)

In the absence of interference and reverberation and for a
single source s, the main peak of the GCC vector indicates
the Time Delay of Arrival of the source with respect to the
two input channels:

δν = argmax [GCCm0,mν ] . (9)

In real-world scenarios with multiple target and noise sources,
TDOA estimation becomes unreliable, especially when using
short audio buffers required for real-time applications. The use
of weighting filters such as PHAT improves performance, but
TDOA computations generally fail in reverberant and noisy
environments. Addressing this problem from a data-driven
perspective can improve the performance with domain knowl-
edge and can enable accurate, domain-specific beamforming
in noisy environments.

Performing the time alignment of the individual microphone
signals within a neural network is a non-trivial task. As (9) is
not differentiable, it cannot be incorporated into an End-to-End
network architecture. Instead, spatial filters Hνij are generated
by the model, using latent representations of the input signals
and the respective GCC vectors. The microphone signals are
then correlated1 with the generated filter. While the process of
DS beamforming can be implemented in a strictly analytical
way, adaptive prefiltering and pattern enhancement within the
spatial filter greatly improve performance over conventional
methods. Additionally, the spatial relations for domain-specific
signal classes can be computed, while GCC strictly extracts
the correlation of the signal source with the highest sound
pressure level within the recorded signals.

III. NETWORK ARCHITECTURE

The main principle of the proposed End-to-End architecture
is to filter and synchronize multiple channels in order to
maximize the signal-to-distortion ratio of the weighted sum
of the channels. Cross correlation on adaptively-filtered input
signals is used within the network to extract feature-dependent,
domain-specific spatial relations between channel pairs. Fig-
ure 1 shows the top-level model architecture. A total of M
microphones, with one defined reference channel is processed.
Every pair of signals m0 and mν is passed to an Aligner block
which is discussed in detail in section III-A and can be seen
in Figure 2. The output of the Aligner block consists of the
processed channel and a latent vector containing information
on signal shape, spatial relations, and amplitude statistics.
Upsampling blocks named GenerateWaveform, discussed in
section III-D, use the average latent vector of all Aligner

1Mathematically, convolution is the correct operation. As this requires an
additional inversion of the filters along the time axis and considering the filters
are learned by the network, the correlation operation can be used.
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Fig. 1. Model Architecture. The reference and individual auxiliary channels
are passed into Aligner blocks for processing. Once spatial filtering is applied,
the channels are combined according to the sample-wise weight vectors
estimated by the GenerateWaveform blocks.

outputs, combined with the individual latent vector of the
respective channel, to create a per-sample weight vector. These
vectors are subsequently applied to create the weighted sum
over all processed channels, resulting in the final enhanced
output of the model. In the following sections, the individual
components and the motivation behind the design choices are
discussed.

A. Channel Synchronization - Aligner

Dedicated modules are implemented to transform the aux-
iliary channels with respect to the reference channel. One
important requirement for the proposed method is the abil-
ity to extract the spatial relations of domain-specific signal
components. Signal classes, for example speech, are to be
enhanced in the signal prior to the computation of spatial
relations. This enables the model to better make use of
beamforming capabilities in environments that contain high
levels of interference and noise. To achieve this, adaptive,
nonlinear filtering of the input signals is implemented: The
signals are encoded using GenerateWaveform blocks (subsec-
tion III-C) and passed to FilterBlocks (subsection III-B) for
masking and filtering. The filtered signals are correlated to
extract the spatial relation of the channels with respect to the
desired signal components. The correlation vectors are then
encoded and concatenated to the latent vectors of both input
channels. This combined latent vector is then passed to an
additional FilterBlock in combination with the original Aux
input. Within this block, channel synchronization and masking
are performed to generate the transformed Aux signal.
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Fig. 2. This module, named Aligner, presents the core of the model.
Individual auxiliary and reference microphone pairs are processed with respect
to the reference microphone. Spatial relations are computed for the filtered
signals via cross correlation and auto correlation. Subsequently, the signal and
correlation vectors are encoded and concatenated to create the combined latent
vector. This vector is then used to generate the beamforming filter, which is
later applied to the original auxiliary microphone signal.
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Fig. 3. Filter block capable of generating convolutive filters and per-sample
masks from latent signal representations. Two individual upsampling blocks
are used for the generation of the required filter vectors.



B. Filtering and Masking - FilterBlock

The FilterBlock, shown in Figure 3, combines two main
filtering approaches, namely convolutive filters and per-sample
filter masks. Two individual decoders (GenerateWaveform,
subsection III-D) are used to generate filter vectors from
the latent vector input. The filters are then applied to the
input signal. This flexible architecture provides capabilities for
masking, deconvolution, FIR-filtering, scaling, and any desired
combination of the aforementioned methods. For the configu-
ration used to generate the results presented in this paper, the
prefiltering blocks within the Aligner only use the masking
components. The alignment filter generation exclusively relies
on convolutive filtering to compensate spatial propagation and
enhance the signal’s spectral content.
The alignment filter presents an exception from the other Fil-
terBlocks: prior to the application of the filter, it is normalized
to zero mean and unit variance. Additionally, a small multi-
layer perceptron is used to estimate the mean and variance of
desired signal components from the latent vector. These scalars
are then added to the latent vector which is later used for the
weighted average operation in the outer model structure.

C. Encoder - EncodeWaveform

To accommodate variable signal lengths with the same
general architecture, the encoders are constructed using an
iterative core, shown in Figure 4. After normalization to zero
mean and unit variance, activations and a multiplicative gate as
used in WaveNet architectures [20] are created using convolu-
tional layers. After passing through LayerNorm normalization
[21], the output and the previous input are concatenated
and passed to a convolutional down-sampling layer which
services as the input of the next iteration. Once the required
number of iterations has been performed, a final dense layer
transforms the activations into the latent vector, which is then
concatenated with the standard deviation and the mean of the
input signal prior to normalization.

D. Decoder - GenerateWaveform

The decoder blocks are designed with several purposes in
mind and present the inverse operation of the encoder. Such
blocks can be used to create filter masks, spatial filters, gating
vectors and the ensemble weight vectors. Although the general
architecture is identical for all applications, the iterative core
of the Gating block enables a variable definition of the desired
output size.

IV. EXPERIMENTAL SETUP

A. Training Data

Test and training data were created by simulating vir-
tual acoustic environments using the image method [22], as
implemented in [23]. To initially reduce the complexity of
the problem, data simulation was limited to a fairly low
order, concentrating on direct sound and early reflections and
omitting diffuse reverb tails. Details on the motivation for this
are discussed in section VI-C. As this Neural Beamformer
architecture is uniquely capable of processing large time

Conv1D Act

Concat

Conv1D Gate

LayerNorm

Upsample*

Downsample*

Fig. 4. Gating block used for up-sampling and down-sampling. Two paths
within the graph combine to a multiplicative attention mechanism. Only one
of the up-sampling/down-sampling layers are present for any Gating module,
depending on the module in which it is used.

delays, room geometries were synthesized ranging from 8m to
50m per dimension. One signal, a random number from three
to seven noise sources, and a fixed number of microphones
depending on the network configuration were randomly placed
in the synthetic virtual environment. For training, 500000
multichannel buffers were randomly sampled from 500000
virtual recordings. Each buffer contains a reference channel,
spanning 4096 samples and M microphone signals, spanning
the same 4096 samples, preceded by a context window of
12288 samples2, resulting in a total buffer length of 16384
samples. For the signal class, speech recordings from the
VCTK corpus were used, noise samples were extracted from
the ESC50 corpus [24, 25].

B. Training Process

Training was performed using standard MSE loss and the
Ranger optimization algorithm [26], representing a combina-
tion of the Rectified Adam (RAdam) optimization algorithm
[27] and Lookahead [28]. Standard Adam and Lookahead
parameters were used, combined with a learning rate of 10−4

and a warm-up period of one 1000 steps, in which the learning
rate is linearly ramped from near zero to the final learning rate.
The final five epochs were trained with a reduced learning rate
of 5 · 10−6.
The training process was enhanced with a form of channel
dropout in which individual input channels were randomly
set to 0 or filled with audio of the same signal statistics but
with no correlation to the other channels. This was simply
performed by swapping individual buffers along the batch axis.
The motivation of this dropout was to force the network to
completely reject individual input channels, if necessary.

2Considering the maximum possible distance of approximately 78m, the
given vector lengths still suffice for time alignment.



TABLE I
PERFORMANCE COMPARISON OF THE NEURAL BEAMFORMER WITH

ORACLE AND GCC-PHAT BEAMFORMERS.

max mic SNR GCC oracle BF NBF
dist in m in dB SDRi in dB SDRi in dB SDRi in dB

-6 -0.85±2.17 4.13±0.82 6.26±2.18
24.9 0 0.09±1.78 4.15±0.82 5.05±1.65

6 0.09±1.62 4.15±0.8 1.72±1.75

-6 -0.95±2.28 4.19±0.86 6.53±1.87
55.8 0 0.07±1.83 4.16±0.89 4.78±1.93

6 -0.04±1.43 4.03±1.01 0.81±2.23

-6 -1.11±1.82 3.68±0.9 6.42±1.82
97.0 0 -0.36±1.4 3.55±1.0 4.98±1.56

6 -0.69±1.06 3.09±1.38 1.42±1.89

-6 -0.81±1.68 3.05±0.99 6.39±1.82
139.4 0 -0.29±1.25 2.79±1.16 4.51±1.88

6 -1.07±1.12 2.0±1.72 0.52±2.25

C. Baseline Methods

Conventional Delay-and-Sum beamforming is referenced
to better gauge the performance of the proposed method
compared to algorithmic approaches. In most scenarios using
distributed microphone arrays of large dimensions, the exact
spatial relations between the individual microphones and noise
and target sources remain unknown. For this reason, TDOA
estimation using GCC-PHAT is implemented, using the full
length of the Aux input buffers. To compare the Neural
Beamformer with optimal DS beamforming, the results using
oracle time delays are supplied as well.

To the knowledge of the authors, no multichannel deep
learning architecture is currently capable of efficiently per-
forming beamforming on randomly distributed microphone
arrays over great distances.

V. RESULTS

Overall separation performance is monitored by means
of SDRi, the improvement of the signal-to-distortion ratio,
compared to the reference receiver. This commonly used
metric is computed using the mir eval toolbox [29]. In Table
I, an evaluation of the SDRi of the proposed method using
five channels is presented under varying conditions, compared
with two baseline approaches described in section IV-C. The
methods were compared on ten 40 s room simulations per
configuration. Audio material, room dimensions, and both
microphone and source positions were randomly sampled
for each iteration. Each example was converted to blocks
of 4096 + 12288 samples with 50% overlap and passed
to the individual processors. The resulting signals were
Hann-windowed [30] and recombined for evaluation.

Audio excerpts of the comparison can be found at
https://zieglerj.home.hdm-stuttgart.de/nbf.html.
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Fig. 5. Comparison of the proposed architecture using between one and five
input channels. After training for 20 epochs, a clear trend favoring larger
channel counts can be observed.

A. Separation Quality with Respect to Number of Microphones

To investigate the degree of beamforming applied within
the model, the same network architecture was trained for 20
epochs on a subset of 50000 training examples using one
to five input channels. Evaluation was performed on 10000
examples of unseen data synthesized as described in section
IV. Figure 5 show the epoch loss of the five models over the
training process. Both one- and two-channel models perform
badly, while training performance increases noticeably as soon
as the number of channels becomes larger than the number
of reference channels. This is the case starting at M = 3,
because the reference channel is identically present as one of
the microphone inputs with the context frame. The motivation
behind this is discussed in section VI. For larger channel
counts, the difference in performance is less pronounced but a
clear correlation between number of channels and validation
loss can be observed.

In order to evaluate if training larger models has any advan-
tage over expanding the models after training, three-channel
and five-channel models were expanded after the training
process was completed. As the Aligner blocks share weights
over every channel and the ensemble weight is computed using
only the mean latent vector and the individual latent vector of
the channel, expanding or shrinking the model after training
requires no additional training iterations. Figure 6 shows a
comparison of relative SDRi between the original models and
reconstructed models containing one to twelve channels. No
clear correlation between channel count and SDRi can be
observed for either model.

B. Separation Quality with Respect to Reverberation Level

As the signal quality of algorithmic beamformers based
on TDOA estimations computed through GCC degrades with
increasing reverberation, analyzing the effect on model per-
formance is of particular interest. Figure 7 shows separation
quality of both the Neural Beamformer and the baseline ap-
proach under variation of reverberation levels. Ten 40 s scenes
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Fig. 7. Model performance with respect to the reverberation level. For most
real-world reverberation patterns, relatively constant model performance can
be expected.

were synthesized, using fixed room dimensions and a fixed
SNR of 0 dB. Reverberation was manipulated by changing
the absorption coefficients of the virtual room, ranging from
0.02 to 0.98. The model performs well over large ranges
of reverberation levels, outperforming the baseline for every
configuration. These results are particularly notable, as the
entire training process was performed on virtual scenes in
which the diffuse reverberation components were omitted. A
detailed explanation of the motivation behind this approach is
given in the discussion in section VI.

VI. DISCUSSION

A. Use of Reference Channel

The explicit use of a reference receiver is not directly
required for the experiments presented in this paper. The first
microphone input channel could be defined as the reference

Fig. 8. Exemplary development of alignment filter generated in an Aligner
block. During the early epochs, direct propagation paths are learned. In
later epochs, early reflections are explored and increasingly included in the
processing.

receiver and the Model would perform identically. The mo-
tivation behind the nomenclature of auxiliary and reference
channel stems from the desire to optionally provide additional
information to the network. In application scenarios in which
it is possible to define that the target signal is always closest
to the reference channel, this would present vital spatial and
spectral information. As the baseline methods are not capable
of processing such additional information and a comparison
to existing methods was of key interest for this paper, the
reference microphone in the experiments above was randomly
sampled from the available microphones.

B. Evaluation of Alignment Filters

Based on the considerations in section II-A, it is expected
that the network learns to generate filters that resemble transfer
functions in the Aligner blocks. To confirm this, network acti-
vations for the output of the alignment filters were monitored
during the training of a Neural Beamformer model. Figure 8
shows the filter generated for a variety of training epochs. For
later models which produce positive SDRi, the basic structure
of a transfer function becomes evident: in addition to the
time-alignment of the direct sound, echos, early reflections,
or periodic components are either enhanced or attenuated by
means of additional peaks within the alignment filter. This
clearly demonstrates that the network applies beamforming
techniques to obtain the enhanced output signal.

C. Training with Simplified Simulated Data

As mentioned in sections IV-A and V-B, data simulation
was performed without diffuse reverberation. As previously
stated, the exact regression of optimal transfer Functions Hνij
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Fig. 9. Waveform comparison of DPRNN and NBF output, trained on the
same dataset. While the DPRNN is better equipped to remove noise, the NBF
can preserve high frequency content more effectively.

is extremely complex, preventing reliable training convergence
of the proposed model. Concentrating on the main contributing
factors for beamforming and excluding the task of dereverber-
ation presents an option for efficient and reliable training of
Neural Beamformers. Section V-B shows that such models are
capable of performing well on data that contains a wide range
of reverberation levels. Future iterations may include a multi-
step training process in which a training on full simulations
follows the current training process.

D. Subjective Versus Objective Performance

While comparable neural mask-based approaches, refer-
enced in section I, outperform the Neural Beamformer in many
tested scenarios with respect to absolute SDR improvement on
speech enhancement, the different processing approaches are
clearly audible. Directly masking the output signal results in
more noticeable processing, presenting challenges to some ap-
plications. While speech recognition and general intelligibility-
related tasks would see no detrimental effects from the mask-
based processing, using the actual audio output of the system
in recordings, broadcasting or other high-quality applications

would not be possible. The beamforming approach completely
omits direct masking of the output signal and guarantees a con-
sistent, if less processed result. Figure 9 shows two excerpts of
the audio generated during model evaluation that highlight two
main differences between the approaches. While a mask-based
model, such as a DPRNN, is capable of effectively removing
noise, preserving high-frequency content is more challenging.
The Neural Beamformer shows less overall noise reduction
but better high-frequency retention.

VII. CONCLUSION

This paper presents a physics-informed End-to-End system
for multichannel array processing, aimed at extracting domain-
specific signals from a noisy mixture. The high accuracy of
the model for short input vectors and an inference time in
the order of 10 µs on consumer-level CPU enable the system
to be used in real time applications. When comparing with
the algorithmic Delay-and-Sum beamformer, the advantage
of multiple inputs and the inherent spatial information is
apparent, even for very large microphone distances of up to
approximately 75m.
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