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Summary

The superordinate aim of my work towards this thesis was a better understanding

of the relationship between mental models and the underlying principles that lead

to the self-organization of neuronal circuitry. The thesis consists of four individual

publications, which approach this goal from differing perspectives.

While the formation of sparse coding representations in neuronal substrate has

been investigated extensively, many research questions on how sparse coding may

be exploited for higher cognitive processing are still open. The first two studies,

included as chapter 2 and chapter 3, asked to what extend representations obtained

with sparse coding match mental models. We identified the following selectivities

in sparse coding representations: with stereo images as input, the representation

was selective for the disparity of image structures, which can be used to infer

the distance of structures to the observer. Furthermore, it was selective to the

predominant orientation in textures, which can be used to infer the orientation of

surfaces. With optic flow from egomotion as input, the representation was selective

to the direction of egomotion in 6 degrees of freedom. Due to the direct relation

between selectivity and physical properties, these representations, obtained with

sparse coding, can serve as early sensory models of the environment.

The cognitive processes behind spatial knowledge rest on mental models that

represent the environment. We presented a topological model for wayfinding in

the third study, included as chapter 4. It describes a dual population code, where

the first population code encodes places by means of place fields, and the second

population code encodes motion instructions based on links between place fields.

We did not focus on an implementation in biological substrate or on an exact fit to

physiological findings. The model is a biologically plausible, parsimonious method

for wayfinding, which may be close to an intermediate step of emergent skills in

an evolutionary navigational hierarchy.

Our automated testing for visual performance in mice, included in chapter 5,
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is an example of behavioral testing in the perception-action cycle. The goal of

this study was to quantify the optokinetic reflex. Due to the rich behavioral

repertoire of mice, quantification required many elaborate steps of computational

analyses. Animals and humans are embodied living systems, and therefore com-

posed of strongly enmeshed modules or entities, which are also enmeshed with the

environment. In order to study living systems as a whole, it is necessary to test

hypothesis, for example on the nature of mental models, in the perception-action

cycle.

In summary, the studies included in this thesis extend our view on the char-

acter of early sensory representations as mental models, as well as on high-level

mental models for spatial navigation. Additionally it contains an example for the

evaluation of hypotheses in the perception-action cycle.
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Zusammenfassung

Das übergeordnete Ziel meiner Arbeit an dieser Dissertation war ein besseres

Verständnis des Zusammenhangs von mentalen Modellen und den zugrundeliegen-

den Prinzipien, die zur Selbstorganisation neuronaler Verschaltung führen. Die

Dissertation besteht aus vier individuellen Publikationen, die dieses Ziel aus un-

terschiedlichen Perspektiven angehen.

Während die Selbstorganisation von Sparse-Coding-Repräsentationen in neu-

ronalem Substrat bereits ausgiebig untersucht worden ist, sind viele Forschungs-

fragen dazu, wie Sparse-Coding für höhere, kognitive Prozesse genutzt werden

könnte noch offen. Die ersten zwei Studien, die in Kapitel 2 und Kapitel 3 en-

thalten sind, behandeln die Frage, inwieweit Repräsentationen, die mit Sparse-

Coding entstehen, mentalen Modellen entsprechen. Wir haben folgende Selek-

tivitäten in Sparse-Coding-Repräsentationen identifiziert: mit Stereo-Bildern als

Eingangsdaten war die Repräsentation selektiv für die Disparitäten von Bildstruk-

turen, welche für das Abschätzen der Entfernung der Strukturen zum Beobachter

genutzt werden können. Außerdem war die Repräsentation selektiv für die die

vorherrschende Orientierung in Texturen, was für das Abschätzen der Neigung

von Oberflächen genutzt werden kann. Mit optischem Fluss von Eigenbewegung

als Eingangsdaten war die Repräsentation selektiv für die Richtung der Eigenbe-

wegung in den sechs Freiheitsgraden. Wegen des direkten Zusammenhangs der

Selektivitäten mit physikalischen Eigenschaften können Repräsentationen, die mit

Sparse-Coding entstehen, als frühe sensorische Modelle der Umgebung dienen.

Die kognitiven Prozesse hinter räumlichem Wissen ruhen auf mentalen Mod-

ellen, welche die Umgebung representieren. Wir haben in der dritten Studie, welche

in Kapitel 4 enthalten ist, ein topologisches Modell zur Navigation präsentiert, Es

beschreibt einen dualen Populations-Code, bei dem der erste Populations-Code

Orte anhand von Orts-Feldern (Place-Fields) kodiert und der zweite Populations-

Code Bewegungs-Instruktionen, basierend auf der Verknüpfung von Orts-Feldern,

11



kodiert. Der Fokus lag nicht auf der Implementation in biologischem Substrat oder

auf einer exakten Modellierung physiologischer Ergebnisse. Das Modell ist eine

biologisch plausible, einfache Methode zur Navigation, welche sich an einen Zwis-

chenschritt emergenter Navigations-Fähigkeiten in einer evolutiven Navigations-

Hierarchie annähert.

Unser automatisierter Test der Sehleistungen von Mäusen, welcher in Kapi-

tel 5 beschrieben wird, ist ein Beispiel von Verhaltens-Tests im Wahrnehmungs-

Handlungs-Zyklus (Perception-Action-Cycle). Das Ziel dieser Studie war die Quan-

tifizierung des optokinetischen Reflexes. Wegen des reichhaltigen Verhaltensreper-

toires von Mäusen sind für die Quantifizierung viele umfangreiche Analyseschritte

erforderlich. Tiere und Menschen sind verkörperte (embodied) lebende Systeme

und daher aus stark miteinander verwobenen Modulen oder Entitäten zusam-

mengesetzt, welche außerdem auch mit der Umgebung verwoben sind. Um lebende

Systeme als Ganzes zu studieren ist es notwendig Hypothesen, zum Beispiel zur

Natur mentaler Modelle, im Wahrnehmungs-Handlungs-Zyklus zu testen.

Zusammengefasst erweitern die Studien dieser Dissertation unser Verständnis

des Charakters früher sensorischer Repräsentationen als mentale Modelle, sowie

unser Verständnis höherer, mentalen Modellen für die räumliche Navigation. Dar-

über hinaus enthält es ein Beispiel für das Evaluieren von Hypothesn im Wahr-

nehmungs-Handlungs-Zyklus.
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Chapter 1

Introduction

The brain has frequently been called the most complex structure in the universe.

Its function has been assessed with countless approaches and from so many per-

spectives that it seems hard to find a common ground. Fields of study include,

but are not limited to, neuroanatomy, cellular biology, genetics, neuronal circuitry,

control theory, perception, cognitive neuroscience, ethology, psychology, and phi-

losophy. All fields interact with each other and describe aspects of the brain as a

whole. If it is the goal to gain an understanding of the complex structure of the

brain that is as comprehensive as possible, it is challenging, yet crucial, to identify

the interplay between all these aspects.

This thesis results from my work at the cognitive neuroscience lab at the Uni-

versity of Tübingen. Cognitive neuroscience studies the biological processes that

underlie cognition (Gazzaniga, 2009). With my thesis, I want to shed light on

the relationship between mental models and the simple neuronal coding princi-

ples from which they emerge. Emergence, a term from systems theory, describes

properties that only arise due to the interaction between the individual parts of a

system. The brain is such a system, because cognitive operations can only rest on

local rules between individual neurons. In the following, I shortly introduce some

associated concepts: living systems, emergence and mental models.

1.1 Living systems

The definition of the term system is quite simple. Miller (1973) defines a system as

“[. . .] a set of interacting units with relationships among them”. However, many

phenomena fall into this definition, so that systems constitute a very wide field

13



CHAPTER 1. INTRODUCTION

of study. Ludwig von Bertalanffy established the “general systems theory”, which

integrates general properties common to all kinds of systems (Von Bertalanffy,

1956). These include concepts like entity boundaries, homeostasis and adaptation.

The study of living systems is an important and large subfield of these studies.

Miller (1973) described living systems as composed of a hierarchy of nested sub-

systems. He classified the entities as: the cell, the organ, the organism, the group,

the organization, the society and the supranational system.

The interaction between the entities of living systems is manifold. Cybernetics

examines systems subject to control and communication, in the animal and in

the machine (N. Wiener, 1948). One of the most important concepts in cyber-

netics is the feedback loop. It can be followed back to Jakob von Uexküll, who

described the “Funktionskreis” (functional circuit) between “Wirkwelt” (world of

effects) and “Merkwelt” (world of realization). Uexküll coined these elements the

basis elements of controlled interaction between an animal and its environment

(von Uexküll, 1928). In today’s theories, the “Funktionskreis” lives on as the

“perception-action cycle” (Fuster, 2004). The feedback principle constitutes mul-

tiple, recurrent interactions between the environment and the living system, or

more accurately, between the environment and all nested manifestations of the

subsystems. The whole of these interactions constitutes a complex, adaptive sys-

tem with emergent properties (Ahmed et al., 2005).

Interactions at any level can influence any other level, which can be denoted

as upward causation and downward causation. Evolutionary forces have evolved

living systems, so that they interact with a complex world and survive in it. There-

fore, we can expect that the brain as a system is thoroughly enmeshed with the

body, as well as with the surrounding world, at any level of the living system hierar-

chy; a concept which has been termed “embodiment” (Thompson & Varela, 2001)

If we want to acquire an understanding of neuronal functioning, it is therefore

crucial to establish a holistic perspective on the various aspects of the system.

1.2 Emergence

Systems are subject to emergent properties, which describes the phenomenon that

“regularities in system behavior [. . .] are not revealed by direct inspection of the

laws satisfied by the components”. Typically, systems with emergent properties

14



1.2. EMERGENCE

“are composed of copies of a relatively small number of components that obey

simple laws” (Holland, 2000).

Examples of systems with emergent behavior are manifold. The ant colony may

serve as an example for emergent system behavior. Hofstadter (1979) used ants

in his book Gödel, Escher, Bach, to illustrate emergence of cognition. Single ants

follow quite simple, reflex driven rules. For example, they follow pheromone trails

and visual or chemical gradients, a behavior which can be reproduced with the

very simplistic circuitry of “Braitenberg vehicles” (Braitenberg, 1986). Another

example is nest homing, which relies on path integration. Desert ants (Cataglyphis

fortis) follow a straight route back to their nest after a period of exploration of

their environment. The homing vector can simply be calculated by counting steps,

weighted by the direction of locomotion with respect to the compass direction (M.

Muller & Wehner, 1988). With independent and similar agents that only differ

by a small number of variants—e.g. workers, soldiers, drones, queens—the colony

adjusts to external events in a very specific and organized manner.

The minimalist setting of cellular automata makes emergence of complex sys-

tem properties from simple rules most apparent. A cellular automaton consist of

uniform cells which carry states; these states have defined dynamic impact on the

states of cells in a local neighborhood. The complexity that emerges from such

simple settings motivated Stephen Wolfram to postulate a “new kind of science”

(Wolfram, 2002). The most famous cellular automaton is Conway’s Game of Life

(Gardner, 1970), in which cells on a two dimensional checkerboard only accept

one of two states at a time: being alive or being empty. Furthermore, the state

of each cell, from one generation to the next, only depends on the state of the

eight cells in direct neighborhood. If two or three cells in the neighborhood of

a living cell are alive, the cell survives. If four or more cells are alive, the cell

dies from overpopulation; if one or none cell is alive, the cell dies from isolation.

Only if exactly three cells in the neighborhood of an empty cell are alive, the cell

is a birth cell. These few rules are sufficient for the emergence of regularities of

various degrees, like patterns that are stable in time, oscillating patterns, moving

patterns, and self replicating patterns. The Game of Life is turing complete, and

implementations of turing machines in the game exist (Rendell, 2016).

Similarly, neurons in the brain constitute a system, with a finite number of
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CHAPTER 1. INTRODUCTION

neuron types that follow simple rules and interact locally1. Governed by signals

from their surrounding, neuron predecessor cells migrate along glial scaffolds, or-

ganizing themselves into the ordered, layered architecture of the cortex. They

differentiate into a set of types, like the Pyramidal or the Purkinje type. Neurites

grow out to connect neurons, guided locally by extracellular cues of attraction and

repellence, emitted by other cells. The basic layout is refined with learning, which

again can only be based on local rules of interaction between cells. For example,

neurons alter the strength of their interconnection following Hebb’s associative

rule: if a neuron repeatedly takes part in exciting another neuron, the connection,

and therefore the efficiency in exciting the neuron, will be strengthened (Hebb,

1949).

The simple rules give rise to the emergence of the cognitive processes at various

levels of granularity. Research on the link between cognition and the interaction

between neurons is called connectionism. The earliest examples of connectionism

approaches go back to Frank Rosenblatt, who invented the perceptron, a simplified

model of neuronal circuitry, which was able to perform classification tasks (Rosen-

blatt, 1958). Connectionism is often discussed in contrast to symbol manipulation

approaches, which were long thought to be the strongest candidates for the root

of intelligent action (Newell & Simon, 1976). Especially in language processing,

symbol manipulation capabilities in human cognition are evident. However, due

to the principle of emergence, connectionism has strong advantages explaining the

evolution of cognition. Both approaches are still a matter of debate and there

are also attempts to reconcile both approaches (Marcus, 2001). Further exam-

ple of research topics include memory, inference, discrimination and identification,

knowledge representation, and even consciousness (Clark & Lutz, 2012). Recently,

connectionism approaches have gained scientific attention, due to advances in ar-

tificial intelligence, following Alex Krizhevsky’s perceptron-like neural network for

image classification (Krizhevsky et al., 2012).

1For a good overview, see Kandel (2009), part VIII: development and the emergence of be-
havior.
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1.3. MENTAL MODELS

1.3 Mental models

Characteristics of mental models

Kenneth Craik expressed the concept of mental models as a thought process that

represents the surrounding world (Craik, 1943). He reasoned that a “small-scale

model” of how the world works might be used to try out alternatives of action and

to conclude which is the best of them. The mental models of the brain do not

necessarily mirror the complexity of the external events they represent, but are

often rather simplistic and heuristic in nature. They are constructed by means of

perception and characterized as being context dependent, constantly evolving and

adapting to the experiences of the individual (N. A. Jones et al., 2011).

It is compelling how humans translate their experiences of physical relations

into simplistic models, which are often referred to as “näıve physics”. One common

scheme is to infer explanations for phenomena from analogy, especially in the case

that the domain is unfamiliar for a person (Collins & Gentner, 1987). Analogies

are often drawn in an anthropomorphic manner. For example, the increased motor

speed of a vacuum cleaner with blocked nozzle may be explained with increased

efforts to work against the resistance, while in fact the motor spins faster due to

reduced resistance (DiSessa, 1983). DiSessa identified the common experience of

an “impetus”, or effort, that a person needs to apply against resistance of various

degree in order to achieve a desired result, as the deeper, underlying explanatory

cognitive pattern. An extension to the “näıve impetus theory” of motion accounts

for errors people make when predicting trajectories. It assumes a qualitative dif-

ference between objects in motion and objects at rest, so that a permanent force

is needed to maintain the motion of an object (McCloskey, 1983).

While the false assumption of an impetus leads to wrong assumptions about the

trajectories of moving objects, it still accounts for many phenomena experienced

in everyday life, like the common slow deceleration of moving objects (which is due

to friction in classical mechanics), or the forces experienced when an object hits

another object (which is due to the momentum of the moving object in classical

mechanics). It is common that mental models fail to explain phenomena of the

surrounding world accurately but suit their purpose in everyday life. Limitations

become apparent in stereotyped thinking, when models contain reduced, arbitrary
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categories that fall short in adequately modelling rich relationships.

Neuronal representations of mental models

Mental models are often described system-like, as associations and networks of

mental objects. For example, the motion of an object can be described as a

network of qualitatively different types of motion, linked by descriptions of object

states before and after the motion (Forbus, 1983). Such mental modeling must

somehow be accomplished by the set of local rules between the individual neurons

of the brain.

Exploring the relation between mental models and individual neurons, H. Bar-

low (1987) observed that the structure of the cerebral cortex is similar throughout,

even though it accomplishes a vast variety of very diverse tasks. He therefore con-

cluded that the cortex performs uniform operation everywhere. Barlow proposed

that this basic operation is the detection of “suspicious coincidences” of features

from the environment. If features frequently occur at the same time, more often

than on chance level, it is likely that they are causally related. Finding these rela-

tions in hyperdimensional sensory space is a challenging combinatorial task, which

might be mitigated by the genetically determined connectivity between cortical

areas. Signals that are prone for causal relationships are often layed out in prox-

imity, which is most apparent in the topological maps of early sensory processing.

In visual processing for example, close-by receptors receive correlated signals, as

chances are high that they stem from the same object in space (Srinivasan et al.,

1982).

In Barlow’s view, individual nerve cells or small populations of nerve cells serve

as incidence detectors and therefore represent a hypothesis about the associative

structure in its inputs. These hypotheses are then constantly tested by means of

inductive inference; that is, hypotheses are confronted by facts in order to find

out whether they are violated. Since cortical areas feed other cortical areas in a

sequential manner, each area discovers valid hypotheses of this kind on varying

levels of granularity. The repeated operation of finding suspicious coincidences

leads to hierarchically organized, integrated representations of the sensory world.

Thagard (2010) built upon this notion and extended it with the proposal that

mental models explain the cause for effects by means of abduction. Abductive

reasoning starts from observations and searches for causes from which the ob-
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servations would follow. intuitively, it follows the scheme “If p then q; why q?

Maybe p” (Pierce, 1958). This notion supports the observation that people might

be satisfied with a given explanation as long as it fits the result reasonably well.

The concepts p that humans create could be described by the term “embodied

abduction”. They reflect sensations or patterns of visual-motor neuronal activity

that cluster with similar experiences, which is reminiscent to the analogy thinking

described in the previous subsection. Thagard proposed that new models are de-

veloped by creative conceptual combination, therefore creating more sophisticated,

more abstract and more general mental models over time. In neuronal notion, this

could be accomplished by the convolution of a number of neuronal ensembles that

partially fit the sensation for which the brain seeks an explanation.

The approaches to neuronal representations of mental models are strongly re-

lated to the predictive coding principle. Inspired by telecommunication signal

transmission techniques, Srinivasan et al. (1982) applied this efficient coding tech-

nique to image data. The processing only transmits statistically unexpected de-

viations from the sensory input. Optimizing for this objective, Srinivasan found

a local center-surround organization of weights that fits physiological findings for

retinal processing. Applying this principle to the hierarchical organization of the

brain, each area contains a model of the expected errors it receives from previous

areas and transmits unexpected errors to the next area. Higher level areas then

send back suppressive signals to lower areas, trying to explain away prediction

errors (Friston, 2008, 2010).

Recently, computational models with the premise of predictive coding have

proven very successful. A predictive autoencoder can build representations that

can be used as a pre-processing step for inference tasks; for example for speech

recognition (Baevski et al., 2020; Schneider et al., 2019). Such studies reveal

interesting aspects of underlying mental models. For example, a comprehensive

computational model of the visual stream reproduced many physiological find-

ings, including high-level invariant object representations and top-down effects

that complete original full patterns (O’Reilly et al., 2017). Another study com-

bined a predictive model network with a reinforcement control network to solve

spatial computer games. The model could then be used to “dream” or “halluci-

nate” the games in order to further train the control network (Ha & Schmidhuber,

2018). A very interesting example of spatial cognition is the generative query net-
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work, which is capable of scene representation and rendering, with the position

and orientation of an agent as input parameters (Eslami et al., 2018). It was

trained by comparing input images of a scene with predictions calculated from

images taken from other perspectives. The errors from the predictions served as

the learning signals for scene rendering from arbitrary positions. Interestingly, the

representation could be used to render semantic aspects of a scene that were never

presented to the network in that combination, like the particular combination of

object shape and color as well as lighting conditions. It was also possible to retrieve

an accurate top-down view map of the maze from the scene. The generative query

network is an impressive demonstration of a neural network which establishes a

general model of the environment solely learned from sensory example inputs by

means of predictive coding.

1.4 Aim of the thesis

Throughout my thesis, I have approached the understanding of neuronal func-

tioning at the level of neural coding principles. However, approaches from very

different perspectives have contributed to a better understanding of the brain. One

is the notion of the cortex as a model builder: Craik (1943) first hypothesized, that

humans translate external events into mental models. With a representation of

the surrounding world, the brain can make predictions about behavioral outcomes,

therefore guiding decision making in a complex world.

How are models of the surrounding world represented at the level of neural

coding? It is astonishing how we can assign meaning to individual cell activity, like

edge detectors in the visual cortex (Hubel & Wiesel, 1959), face detectors in medial

temporal lobe (Quiroga et al., 2005), or place cells in the hippocampus (O’Keefe,

1976). It appears that neural codes are, mostly, constituted by a population code,

with cardinal cells of intermediate selectivity, which hold aspects of the stimulus

they represent (H. B. Barlow, 1972). However, “meaning” is nothing that is clearly

defined, but some measure of categorization that might reflect our models of the

world that surrounds us.

Which neural coding principles account for the formation of mental models?

The premise for biologically plausible models of learning is plasticity, based on

information available at the synapse, like Hebbian learning (Hebb, 1949) or spike-
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timing-dependent plasticity (Taylor, 1973). Meaningful pattern selectivity of single

cells can emerge from such simple learning rules. For example, H. Barlow (1987)

hypothesized, that the brain builds working models of the environment by forming

associations between suspicious coincidences, a motif which could manifest by

Hebbian plasticity.

The superordinate aim of my studies was to gain a better understanding on

the relationship between the codes that serve as models of the environment and

the simple rules for the formation of the neural connectivity. I compiled this thesis

from four individual studies that are included in the following chapters:

� In the first study, the representation obtained from sparse coding of stereo

visual input constituted a model for spatial layout and shape.

� In the second study, the representation obtained from sparse coding of optic

flow input constituted a model for egomotion.

� The characterization of a novel dual population coding scheme was the focus

of the third study. The population code served as a model of the environment

for spacial cognition.

� The fourth study was an automated system for testing visual performance in

mice. It is an example for the quantification of behavior in the perception-

action cycle.
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Authorship

Exploitation of image statistics with sparse coding

in the case of stereo vision2

Literature research and the concept of the study was my contribution, under the

influence of discussions with lab colleagues and under the supervision of Professor

Mallot. Most of the data analysis was carried out on my own, with the following

exceptions. The generation of the stereo image data base was carried out within

the scope of a Bachelor thesis by Kevin Reich under my supervision (Binokulare

Bildstatistik mit virtueller Vergenz, 2017). The data analysis on tuning maps of

surface orientation, was derived from a Master thesis by Harald M. Papp under

my supervision (A likelihood approach for first order depth estimation from sparse

stereo-representation, 2018). The article was written by my own, influenced by

valuable feedback from colleagues from the lab and especially from Professor Mal-

lot. The work of many Bachelor- and Master students was an important source for

my understanding of the sparse coding algorithm, and in that sense incorporated

into this publication.

2Ecke, G. A., Papp, H. M., & Mallot, H. A. (2021). Exploitation of image statistics with
sparse coding in the case of stereo vision. Neural Networks, 135, 158–176. Available from:
http://dx.doi.org/10.1016/j.neunet.2020.12.016
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Sparse coding predicts optic flow specificities of

zebrafish pretectal neurons3

The concept of the study was developed by Professor Mallot and by Professor

Arrenberg, who also supported us with valuable input of background regarding

zebrafish larvae. The virtual fish tank, the projection to a virtual retina, and the

extraction of optic flow, as well as a fist comparison to the physiological reference

data, was carried out within the scope of the Bachelor thesis from Fabian Mikulasch

under my supervision (Self-organization of motion-sensitive receptive fields in the

zebrafish optokinetic system, 2017). The analysis of optic flow selectivity with

feed-forward networks, trained with backpropagation, was carried out within the

scope of the Bachelor thesis from Sebastian Bruijns under my supervision (Self-

motion estimation from optic flow with neural networks in simulated zebrafish,

2017). The analysis of ego-motion selectivity of the sparse representation was

carried out within the scope of the Bachelor thesis from Johannes Hölscher under

my supervision (A sparse coding model of zebrafish ego-motion detection from

optic flow, 2018). Thede Witschel reanalyzed and improved the extraction of

optic flow. I contributed with the supervision of the students and reanalysis and

consolidation of the data, with focus on the LCA sparse coding. The article was

written to equal parts by Professor Mallot and me. The work of many Bachelor-

and Master students was an important source for my understanding of the sparse

coding algorithm, and in that sense incorporated into this publication.

3Ecke, G. A., Bruijns, S. A., Hölscher, J., Mikulasch, F. A., Witschel, T., Arrenberg, A.
B., & Mallot, H. A. (2019). Sparse coding predicts optic flow specificities of zebrafish pretectal
neurons. Neural Computing and Applications, 32(11), 6745–6754. Available from: http://dx.
doi.org/10.1007/s00521-019-04500-6
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Dual population coding for topological navigation:

Combining discrete state-action-graphs with dis-

tributed spatial knowledge4

The basic idea of the algorithm was jointly invented in the lab seminar. The con-

cept of the study was developed to equal parts by me, Professor Mallot and Tristan

Baumann, within the scope of Tristan Baumann’s Bachelor- and Master theses.

Software development and data analysis was carried out by Tristan Baumann un-

der my supervision. The article was written to equal parts by Tristan Baumann

and Professor Mallot. Note that the chapter included in this thesis is an extended

version of the publication. It contains an additional landmark replacement exper-

iment.

Characterizing visual performance in mice: An

objective and automated system based on the op-

tokinetic reflex5

The setup was developed within the scope of Boris Benkner’s PhD thesis, under the

supervision of Thomas Münch. My contribution was the collaborative development

and implementation of algorithms and other software functions. I contributed to

the software development of the presentation of stripe patterns, the mouse tracking

method, the behavioral scoring method, and the graphical user interface.

4Mallot, H. A., Ecke, G. A., & Baumann, T. (2020). Dual Population Coding for Path Plan-
ning in Graphs with Overlapping Place Representations. Spatial Cognition XII, 3–17. Available
from: http://dx.doi.org/10.1007/978-3-030-57983-8 1

5Benkner, B., Mutter, M., Ecke, G., & Münch, T. A. (2013). Characterizing visual perfor-
mance in mice: An objective and automated system based on the optokinetic reflex. Behavioral
Neuroscience, 127(5), 788–796. Available from: http://dx.doi.org/10.1037/a0033944
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Contributions of this thesis

This chapter contains a summary of the contributions of the individual publications

from which I compiled this thesis.

Exploitation of image statistics with sparse coding

in the case of stereo vision6

We started from the assumption, that the brain uses sparse coding to exploit

statistical properties of the sensory stream. With the hypothesis that a set of

some patterns from the external world is embedded in a representation obtained

with sparse coding, we assumed that these patterns can be retrieved with simple

readout. We assessed our hypothesis with stereo visual data, using the Locally

Competitive Algorithm (LCA, Rozell et al. (2008)), followed by a naive Bayes

classifier for simple readout.

We examined individual LCA units for their selectivity to stereo disparity

and surface orientation, as well as for statistical properties of their receptive field

shapes. These findings were then compared to physiological findings of neurons

from the visual cortex. We evaluated how the error of inference depends on the

parameters overcompleteness and sparsity, and found that the size of the set of de-

tectable patterns grows with expanded, redundant representations. Furthermore,

we found a correlation between the inference error and the number of active LCA

units, a relation that can be used to predict the inference error.

6Ecke, G. A., Papp, H. M., & Mallot, H. A. (2021). Exploitation of image statistics with
sparse coding in the case of stereo vision. Neural Networks, 135, 158–176. Available from:
http://dx.doi.org/10.1016/j.neunet.2020.12.016
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Sparse coding predicts optic flow specificities of

zebrafish pretectal neurons7

In this study (Ecke et al., 2020), we hypothesized that specificities of zebrafish

pretectal neurons reflect the input statistics of natural optic flow. The assumption

was tested with a virtual reality setup of a fish tank, from which we generated

visual input akin to the wide-field visual system of zebrafish larvae. Optic flow

was extracted using Flownet 2.0 (Ilg et al., 2017), followed by the formation of a

sparse representation with the locally competitive algorithm (LCA, Rozell et al.

(2008)).

Individual LCA units were assessed for their receptive field shapes and for

their selectivity to egomotion (rotation and translation). We revealed substantial

differences between learned units with and without preliminary whitening of the

optic flow input. We carried out experiments according to the protocol of Kubo

et al. (2014), who examined the egomotion selectivity of zebrafish pretectal neu-

rons. Results from the LCA model, from the whitened LCA model, and from an

additional simple feed forward network, were compared against the results from

Kubo et al. (2014). Results from the LCA model were in good general agreement

with the fish data, therefore indicating that sparse coding is a good candidate for

formation of neural circuitry in zebrafish pretectal neurons.

Dual population coding for topological navigation:

Combining discrete state-action-graphs with dis-

tributed spatial knowledge8

We developed a new topological navigation scheme that can be classified as a view-

graph model of topological navigation (e.g. Franz et al. (1998c)). In these models,

7Ecke, G. A., Bruijns, S. A., Hölscher, J., Mikulasch, F. A., Witschel, T., Arrenberg, A.
B., & Mallot, H. A. (2019). Sparse coding predicts optic flow specificities of zebrafish pretectal
neurons. Neural Computing and Applications, 32(11), 6745–6754. Available from: http://dx.
doi.org/10.1007/s00521-019-04500-6

8Mallot, H. A., Ecke, G. A., & Baumann, T. (2020). Dual Population Coding for Path Plan-
ning in Graphs with Overlapping Place Representations. Spatial Cognition XII, 3–17. Available
from: http://dx.doi.org/10.1007/978-3-030-57983-8 1
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agents reach their goal by the association of a recognized place with a movement

command towards the next place. In our model, a large set of overlapping place

fields (first population code) were constituted using SURF-features (Bay et al.,

2008b). Place fields were associated with movement commands from one place

field to the next (second population code). The commands were recorded as the

directions of movement of the agent, when it first crossed the boundary between

the two place fields. For navigation towards a goal position, the agent performed

a graph search from all place fields at the current position to all place fields at

the goal position. The movement direction was then calculated by voting over the

directions from the first edges of all graph searches.

The model performed well with an agent in a virtual environment, it is there-

fore a good starting point for new, realistic models of spatial cognition. Our results

show that recognition-response based navigation is possible with vague position

information and with simple image processing. Furthermore, population coding

with a distributed and quasi-continuous representation of space avoids the problem

to select optimal snapshot positions. We also showed that our model can partially

reproduce results from a human psychophysical navigation experiment reported

by H. A. Mallot and Gillner (2000b) (Results not published, but included in chap-

ter 4).

Characterizing visual performance in mice: An

objective and automated system based on the op-

tokinetic reflex9

With our setup (Benkner et al., 2013) it is possible to characterize acuity and

contrast sensitivity of the mice visual system. The setup consists of four monitors,

placed around a platform. Mice receive stimulation with a moving stripe pattern,

which triggers the optokinetic reflex: a head movement that follows the movement

of the stripe pattern. The process is completely automated, including the adap-

tation of the stripe pattern relative to the head of the mouse, and including an

automated scoring procedure that rates the tracking behavior.

9Benkner, B., Mutter, M., Ecke, G., & Münch, T. A. (2013). Characterizing visual perfor-
mance in mice: An objective and automated system based on the optokinetic reflex. Behavioral
Neuroscience, 127(5), 788–796. Available from: http://dx.doi.org/10.1037/a0033944
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Due to the strong focus on automatization, visual performance of mice can be

assessed with high throughput. The development of the setup was the basis for

the a startup company, which makes it commercially available as OptoDrum10.
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Chapter 2

Exploitation of image statistics with sparse cod-

ing in the case of stereo vision1

Abstract

The sparse coding algorithm has served as a model for early processing in mam-

malian vision. It has been assumed that the brain uses sparse coding to exploit

statistical properties of the sensory stream. We hypothesize that sparse coding dis-

covers patterns from the data set, which can be used to estimate a set of stimulus

parameters by simple readout. In this study, we chose a model of stereo vision to

test our hypothesis. We used the Locally Competitive Algorithm (LCA), followed

by a näıve Bayes classifier, to infer stereo disparity. From the results we report

three observations. First, disparity inference was successful with this naturalis-

tic processing pipeline. Second, an expanded, highly redundant representation is

required to robustly identify the input patterns. Third, the inference error can

be predicted from the number of active coefficients in the LCA representation.

We conclude that sparse coding can generate a suitable general representation for

subsequent inference tasks.

1Ecke, G. A., Papp, H. M., & Mallot, H. A. (2021). Exploitation of image statistics with
sparse coding in the case of stereo vision. Neural Networks, 135, 158–176. Available from:
http://dx.doi.org/10.1016/j.neunet.2020.12.016
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CHAPTER 2. EXPLOITATION OF IMAGE STATISTICS WITH SPARSE CODING

2.1 Introduction

Among neural coding principles that have been proposed over time, sparse coding

has a long-standing and successful history in explaining properties of neuronal

circuitry. The firing rates of visual cortical neurons follow a sparse regime (R.

Baddeley et al., 1997; Froudarakis et al., 2014; Rolls & Tovee, 1995) and several

algorithms that model this premise predict receptive fields of visual cortex neurons

quite accurately (see Hunter and Hibbard (2015), Hyvärinen et al. (1998), B. A.

Olshausen and Field (1996), Rehn and Sommer (2007), and Ringach (2002)).

It is not straight forward to understand why sparse representations evolved

in the brain. A possible explanation is based on the assumption that the neu-

ronal code exploits statistical properties of the sensory input (H. Barlow, 2001;

Simoncelli & Olshausen, 2001). Sparse coding represents the sensory input with

a low number of specialized units that make the higher order, redundant compo-

nents of a signal explicit (Bethge, 2006; Eichhorn et al., 2009; Field, 1987). This

specialization is reminiscent of Barlow’s concept of specialist units, or cardinal

cells, with a selectivity intermediate between that of concrete pontifical neurons or

grandmother cells and that of a typical distributed representation (H. B. Barlow,

1972, 2001). Cardinal cells could represent faces, objects, or, as Barlow puts it, “a

pattern of external events of the order of complexity of the events symbolized by a

word” (H. B. Barlow, 1972).

The sensory visual stream contains evidence for external events of various de-

grees of abstraction that are relevant for an animal to detect. Examples are the

occurrence of a specific texture, an object that can be assigned to a category, or

subtle cues, like signs of social interaction. We hypothesize that sparse coding sup-

ports the exploitation of sensory statistics by the formation of cardinal cells that

make a subset of these external events accessible with a simple readout method.

Sparse coding transforms the sensory stream x into a representation h = H(x).

h is the vector of activities of a set of cardinal cells, with an intermediate selectivity

to external events {yi}. We further assume that the selectivity of cardinal cells

allows us to detect the occurrence of elements of {yi} with a simple processing

step ŷ = Y (h). For this simple readout we chose a näıve Bayes classifier

ŷ = argmax
i

P (yi)
K∏
k=1

P (hk | yi) (2.1)
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with uniform prior P (yi). It selects the external event yi that most likely occurred

in the sensory stream, based on evidence from the K elements hk in h.

The readout Y (h) assumes independence of the elements of h. Sparse coding

belongs to the class of independent component analysis algorithms (ICA) that aim

to extract basis vectors which are statistically independent (Hyvärinen & Oja,

2000). Note that, in the case of image data, the independence of basis vectors

obtained by standard ICA algorithms is known to be strongly violated (Bethge,

2006; Eichhorn et al., 2009). Interestingly, classifiers that assume independence

often yield surprisingly good results, even though existing dependencies between

variables are omitted (Hand & Yu, 2001; Kuncheva, 2006; Kupervasser, 2014;

Zhang, 2005).

It is unclear how to identify the set of external events that is accessible with this

simple readout. However, assuming that the striate cortex forms a representation

akin to sparse coding, we can use physiological evidence to identify candidates.

For our evaluation we therefore adopt stereo vision, which is an early detection

task. Indeed, we can compare our results with a large body of literature that is

concerned with stereo vision in biological systems.

The contributions of this paper are: (i.) a characterization of stereo kernels

learned with the Locally Competitive Algorithm (LCA), and their associated tun-

ing to disparity and surface orientation in comparison to physiological findings,

(ii.) an evaluation of disparity inference with simple readout from the LCA rep-

resentation, subject to sparsity load and overcompleteness, (iii.) a method to

predict the inference error, based on the number of active coefficients in the LCA

representation.

2.2 Related work

2.2.1 Compact vs. expanded codes

Barlow reasoned in his efficient coding hypothesis that an efficient code, stripped

by its redundancies, makes information more accessible, just as reducing the size

of a haystack simplifies the task of finding needles (H. B. Barlow, 1959). He later

extended this view by arguing that, in such a compact representation, interference

between several, simultaneously occurring events might impair their separability
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(H. B. Barlow, 2001). Gardner-Medwin and Barlow (2001) hypothesized that

event retrieval from a population code is optimal when overlap between the neu-

rons that correspond to each event is minimal. They tested their assumption by

linking each of a number of hypothetical events to a fixed, random subset of bi-

nary neurons within a population. Overlap then was subject to two degrees of

freedom: the number of neurons that, on average, corresponded to an event, and

the total number of neurons in the population. Results indicated minor (but evi-

dent) impact of mean neural activity, but strong impact of population size on the

readout error. Their findings suggest that an expanded, exceedingly redundant

representation provides an optimal basis for event retrieval. An encoding with

the sparse coding algorithm transforms the sensory stream into such an expanded,

redundant representation (Field, 1994). Moreover, Gardner-Medwin and Barlow

varied mean activity and population size, which are also parameters of the sparse

coding algorithm. The population size corresponds to the dimensionality, which is

usually several times overcomplete, and activity can be adjusted by the sparsity

load of the optimization. We report how varying these parameters effects disparity

inference in Sec. 2.5.2 and Sec. 2.5.2.

2.2.2 Sparse coding and pattern recognition

Rigamonti et al. (2011) examined the sparse coding algorithm as the first process-

ing step in an image classification pipeline. They found that the features extracted

by sparse coding were superior to handcrafted features even when they were used

as a simple convolutional filter bank. They also evaluated the classification error

as a function of sparsity penalty. No substantial improvement over convolutional

processing was found. Better classification performance was monotonically linked

to lower sparsity penalty. Bhatt and Ganguly (2018) found the opposite: bet-

ter classification performance with larger sparsity penalty, however with the very

specialized MNIST dataset. Also employing the MNIST dataset for evaluation,

Lopez-Hazas et al. (2018) imposed sparsity on a perceptron-like feed forward net-

work by adjusting neural thresholds, and similarly obtained a positive correlation

between high sparsity penalty and classification performance.
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2.2.3 Sparse coding and stereo vision

A considerable amount of work on stereo vision with unsupervised learning meth-

ods was carried out in the context of independent component analysis (ICA). Hoyer

and Hyvärinen (2000) applied ICA to color- and stereo images and received dis-

parity tuned Gabor-like basis vectors. Left and right basis vectors were similar,

but varied in position and phase, as well as in the the degree of ocular dominance.

Hunter and Hibbard (2015) performed a thorough analysis of ICA stereo basis

vectors, obtained from a database carefully adjusted to the human visual system.

The most notable difference to physiological data was two modes in the difference

of phase between left and right basis vectors. The two modes were at zero and

at π radians phase-shift, i.e., with opposite polarity. This finding might be re-

lated to a model from Li and Atick (1994), who derived kernels for correlated and

anticorrelated left and right stereo half-images.

Lonini et al. (2013) found that a sparse representation can be learned altogether

with vergence control. They reasoned that the angular orientation of both eyes has

significant impact on achievable optimality of the representation. In their model,

vergence control was a function of the global distribution of disparities. This is in

line with psychophysical experiments with humans, which fits a population coding

model that minimizes overall disparity energy in the two half-images (H. A. Mallot

et al., 1996).

Lundquist et al. (2017), Lundquist et al. (2016) used stereo sparse coding, fol-

lowed by a classifier, for depth inference, as well as for object detection. Their

model outperformed others in the case of limited labeled training data. They con-

cluded that the competition inherent in sparse coding requires elements to match

associated contextual cues. Timofte and Van Gool (2015) tackled the associated

problem of optic flow detection with a model which performed competitive to state

of the art algorithms.

2.2.4 Stereo vision in biological systems

In the visual cortex of mammals, most cells in foveal striate and prestriate cortex

show binocular interaction (Guillemot et al., 1993; Hubel & Wiesel, 1970; Hubel &

Wiesel, 1962; Hubel et al., 2015; Levay et al., 1978; G. F. Poggio & Fischer, 1977;

Tanabe et al., 2011). Binocular simple cells are similar to kernels obtained with
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sparse coding or ICA. They best respond to Gabor-like binocular stimuli, with

slight differences in position and phase (Anzai et al., 1999). V1 receptive fields

are, however, more variant, with a tendency to appear more blob-like, with fewer

sinusoidal sub-fields (Ringach, 2002). Binocular complex cells are more generally

tuned to disparity than binocular simple cells, irrespective of position and polarity

of the stimulus within the receptive field. In the standard model, complex cells are

driven by a quadrature pair of Gabor-like monocular simple cells (Ohzawa et al.,

1990).

Robust disparity inference requires further processing. Two constraints are

crucial for the recovery of depth. First, each location in one stereo half-image

corresponds to at most one location in the other half-image. Second, depth varies

smoothly in general Marr and Poggio (1976, 1979). The constraints hold well,

with the exception of strong local violation at the edges of objects. Optimization

for both constraints yields the disparity of corresponding image locations. With

epipolar geometry and with known distance of the eyes, disparity can be used

to calculate depth (Hartley & Zisserman, 2004). Read and Cumming (2007) pre-

sented a model which relates the correspondence problem to differences in position-

and phase of the receptive fields of binocular simple cells. Equally shaped Gabor

filters that only vary in position are the best match for the corresponding struc-

tures in both half-images, whereas phase-shift Gabor filters carry the information

to detect false matches. Goncalves and Welchman (2017) showed that a simple

readout of disparity from simple cells incorporates this information.

We assume that a representation built by sparse coding provides a generaliz-

ing, yet limited basis for a range of pattern detection tasks. In order to test this

assumption, we experimented with the detection of other characteristics of spatial

layout than disparity. Psychophysical findings indicate that many more cues than

point disparities contribute to a complete understanding of spatial layout. Ex-

amples include orientations of lines, light intensity differences, disparate specular

highlights, and monocular occlusions. For an overview of geometrical and global

aspects of stereopsis see H. A. Mallot (1999). Neurons in caudal intraparietal area

were shown to be selective for first order depth, i.e., for specific surface tilt- and

slant angles, and neurons in the temporal sulcus were shown to be selective for sec-

ond order depth, i.e., for concave and convex curvature (Orban, 2011). Responses

of such neurons were highly specific and robust against texturing and other orders
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of depth. We therefore decided to test the sparse coding representation for first

order depth selectivity. For an overview of physiological aspects of higher order

visual processing of 3D-shape in the brain see Orban (2008).

2.3 Databases

Analyses of this paper rely on four databases. The virtual vergence database

was used for LCA optimization, the disparity database and the naturalistic scene

database for disparity inference, and the surface orientation database was used to

characterize LCA selectivity to surface orientation.

2.3.1 Virtual vergence database

We captured images around Tübingen, Germany, with a ZED stereo camera2.

The camera was equipped with two 1/3 ′′ sensors, fixed at 120mm distance, with

parallel principal axes. The fields of view covered 76◦(H) × 47◦(V), with a reso-

lution of 2208 × 1242 px. With fx/y = 1400 px, the central angular resolution was

∼0.04 degrees. Note that the angular resolution of the final images we used in

the subsequent processing steps was ∼0.08 degrees, as described in detail below.

Image data were stored lossless as 24 bit png-files after automated brightness and

gamma correction. In total, 1081 pairs of pictures were taken, from which 222

were captured inside rooms, 480 showed man made outdoors structures and the

remaining 379 comprised natural scenes.

2https://www.stereolabs.com/

Figure 2.1. The virtual vergence database was created from images captured with a
ZED stereo camera with parallel principal axes. a) Example image (view cross-eyed).
b) Corresponding image points (SURF features) in the left and right half-images (red
and green respectively, anaglyph image) were automatically matched and selected.
c) Example stereo image with virtual vergence, created from a by correcting for radial
distortion and applying homography transformation. Red frames indicate the extend
of the final database images.
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In order to obtain a database with vergence towards corresponding locations,

images with several virtual fixations were created from each captured stereo image

(see Fig. 2.1). SURF-features (Bay et al., 2008b) from left and right half-images

were brute-force matched by the metric distance between the feature vectors. Only

sufficiently similar matches below a threshold were selected and outliers with re-

spect to the epipolar constraint were excluded.

For a given stereo image pair, a virtual fixation of any point in the image can be

calculated by homographic transformation (Hartley & Zisserman, 2004). Because

the transformation assumes a pinhole camera, the images were first corrected for

radial distortion. The pixel positions x of these rectified images were then shifted

to their new positions x′. Assuming a rotation around the camera nodal point,

the shift of each pixel was calculated with

x′ = KRK−1x , (2.2)

where K is the camera matrix and R is the matrix that describes the rotation of

the camera. We used the camera calibration app from the MATLAB computer

vision toolbox to estimate the camera matrix K. The virtual rotation of each

camera was determined, according to Listing’s law, as a rotation around the axis

u that is parallel to the image plane and perpendicular to the vector s−p between

the matched SURF-feature location s and the principle point of the camera p in

the image. Therefore, the rotation axis was calculated as

u =

−(sx − px)

sy − py

0

 . (2.3)

The value of the rotation angle was calculated as

Θ = arctan
∥s− p∥
fx/y

. (2.4)

With the normalized vector û = u/∥u∥, the rotation matrix was then obtained
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Figure 2.2. Distribution of horizontal and vertical disparities in the virtual vergence
database. The histograms show the distribution of 3.3 × 108 randomly drawn data
points (bin widths 0.8 px). Disparities were clustered around zero with high kurtosis
(kx = 29.9, ky = 118.1).

by calculating

R =

cosΘ+û2
x(1−cosΘ) ûxûy(1−cosΘ) ûy sinΘ

ûxûy(1−cosΘ) cosΘ+û2
y(1−cosΘ) −ûx sinΘ

−ûy sinΘ ûx sinΘ cosΘ

. (2.5)

In order to keep local image statistics intact, we discarded images in which the

virtual camera rotation angles exceeded 20 degrees. Pixel values were mapped to

the new pixel raster and downscaled to half the original resolution with bicubic

interpolation. The angular resolution of the final images was therefore ∼0.08 de-

grees. They were cropped to 256 × 256 px, centered at the respective principal

points. In total, the virtual vergence database consisted of 72 991 images. We ex-

tracted the distribution of disparities contained in the database with FlowNet 2.0

(Ilg et al., 2017); results are shown in Fig. 2.2.

2.3.2 Disparity database

The disparity database contained stereo images, where each right stereo half-image

was a shifted version of the left half-image. Images were collected from the same set

that was used to create the virtual vergence database. It consisted of disparities in

the range of dx, dy = −6, . . . , 6 px, rasterized by 0.5 px in both dimensions. These

were processed by cropping out 512 × 512 px sized pairs, randomly positioned in
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the original images, with 2 dx and 2 dy px left-to-right offset. Next, they were

downscaled to half the original resolution with bilinear filtering. We obtained

500× 25× 25 image pairs, each with a resolution of 256× 256 px. From these 500

images per stimulus, 490 were used for training and the remaining 10 were used for

testing. We used convolutional LCA from Schultz et al. (2014) and accumulated

data points over the feature maps (see Sec. 2.4.2 and Sec. 2.4.3). After discarding

the margins, each feature map yielded 784 data points, which amounts to a total

number of 384 160 data points per disparity and kernel for training and a total

number of 7840 data points per disparity and kernel for testing.

2.3.3 Naturalistic scene database

We used the publicly available Genua Pesto database (Canessa et al., 2017), which

contains two rendered 3d-scenes with vergence towards common fixation points.

We used one of these scenes, the ground truth disparity and the right half-image

of which are shown in Fig. 2.13a and b.

2.3.4 Surface orientation database

The surface orientation database contained stereo images of surfaces, textured with

images from the same set that was used to create the virtual vergence database.

With Blender3, two virtual cameras, with a 11.8◦ field of view, were placed 7 cm

apart and oriented towards the surface. The distance from the mid point between

the two camera nodes to the central point of the surface was 1m. The cameras

were oriented so that the principal axes pierced the center of the surface, mimicking

ocular vergence. We created stereo half-images for every combination of 36 tilt

angles φ and 6 slant angles α with respect to a fronto-parallel plane. Tilt angles φ

were equally spaced by 10◦, and slant angles were set to α = 6◦, 24.3◦, 38.2◦, 48.2◦,

55.2◦. They were chosen so that each step increased disparity of a horizontally

slanted surface by 1 px, assessed at 10 px horizontal distance from the center. We

additionally included the images with a fronto-parallel plane α = 0◦. Per stimulus,

we generated a training set with L = 10050 images, and an additional test set with

1000 images, both with 256× 256 px resolution.

3https://blender.org
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2.4 Modeling the visual processing pipeline

We built a simplified, naturalistic processing pipeline that mimics the mammalian

visual system. For an illustration, see Fig. 2.3. Processing started from two hor-

izontally separated eyes, with vergence towards a common fixation point. Visual

sensory data underwent retinal pre-processing and were propagated to the model’s

sub-unit resembling V1, where a sparse representation was established. Finally, a

näıve Bayes classifier was used for simple readout. If not acknowledged otherwise,

implementation was carried out in MATLAB4. The retina model and the LCA

sparse coding were implemented in PetaVision5.

2.4.1 Retinal processing

Retinal processing was modeled in two steps. First, each image was smoothed

by Gaussian filtering (σ = 0.5 px). Then, mimicking receptive fields with center-

surround organization, images were convolved with a difference-of-Gaussians filter

(DoG, inner Gaussian: σ = 1px, outer Gaussian: σ = 5.5) px. For each Gaus-

sian kernel, weights were normalized so that the integral was equal to 1. Before

propagation to the LCA sparse coding layer, each image was mean-centered and

rescaled to a common ℓ2-norm.

2.4.2 Establishing a sparse representation

In order to model V1, we used the locally competitive algorithm (LCA), introduced

by Rozell et al. (2008), extended to convolutional LCA by Schultz et al. (2014)

(see also Zeiler et al. (2010) and Lundquist et al. (2016)). Here, we provide a short

summary of the algorithm. Sparse coding is the optimization of an error function

that consists of two terms: a reconstruction term for reversibility, and a penalty

which encourages sparsity (B. A. Olshausen & Field, 1996). In the case of stereo

sparse coding, where the inputs were left and right stereo half-images IL and IR,

reconstruction was approximated by the convolutions

IL ≈
K∑
k=1

ΦL,k ∗Ak and IR ≈
K∑
k=1

ΦR,k ∗Ak . (2.6)

4MATLAB Release 2018a, The MathWorks, Inc., Natick, Massachusetts, United States.
5https://petavision.github.io/
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Figure 2.3. Schematic processing pipeline. Left and right half-images from the
virtual vergence database were first pre-processed by a convolution with a Gaussian
and subsequent difference-of-Gaussians filtering. In neural network notion, processing
with the Locally Competitive Algorithm (LCA) is equivalent to a recurrent network. It
is driven by excitatory feed forward connections, with learned weights that are usually
Gabor-like (labeled a), competition through mutual lateral inhibition, with connection
strengths proportional to the pairwise similarity of the feed-forward weights (b) and
self inhibition or leaky integration (c). A näıve Bayes classifier was used for simple
readout. It is equivalent to a simple feed-forward network, with weights proportional
to the LCA neurons’ log-probability of being active in the presence of a stimulus, and
an additional winner-take-all mechanism.

ΦL = {ΦL,k}Kk=1 and ΦR = {ΦR,k}Kk=1 were sets of left and right half-kernels. Both

half-kernels were convolved with a common corresponding feature map from the

set A = {Ak}Kk=1, so that the reconstruction of the left and the right stereo half-

image was coupled. We jointly normalized the left and right half-image by their

ℓ2-norm, which enabled learning of monocular dominant kernels. The particular

error function for stereo sparse coding was

E =
1

2

(∥∥R(IL,ΦL, A)
∥∥2
2
+
∥∥R(IR,ΦR, A)

∥∥2
2

)
+ S(A) , (2.7)

with the reconstruction term

R(IL/R,ΦL/R, A) = IL/R −
K∑
k=1

ΦL/R,k ∗Ak . (2.8)

For standard sparse coding, the sparsity penalty S(A) is the ℓ1-norm of the coeffi-

cients of A (B. A. Olshausen & Field, 1996; Tibshirani, 1996). The LCA penalizes

the number of super-threshold coefficients, given a threshold λ. With convolutional

feature map dimensions M × N , and with coefficients ak,m,n of Ak, the sparsity
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penalty was

S(A) =
∑
k,m,n

H(ak,m,n − λ) , (2.9)

where H(x) = 1 if x > 0 and H(x) = 0 otherwise. Note that this formulation

requires the activity to be restricted to ak,m,n ≥ 0, which is convenient in neural

network notion. Optimization of Eq. 2.7 for kernels ΦL/R, as well as activity in A,

was obtained by the gradient descent procedure described by Rozell et al. (2008)

and Schultz et al. (2014).

We set the kernel size to 16 × 16 px and the stride of the convolutions to

8 px, so that k × 2 × 2 elements k, m, n contributed to the reconstruction of

single image pixels. We obtained five sets with K = 85, 128, 384, 1024 and 2048

kernels respectively, which constituted 0.66, 1, 3, 8 and 16 times overcomplete

representations. λ was set to 0.1 for all models at learning time and was only

varied at test time.

2.4.3 Simple readout

The readout was based on representations obtained by running the LCA procedure

on stereo images, but with learning of ΦL/R turned off. The kernels were obtained

from the previous LCA optimization on the virtual vergence database. An example

of disparity readout is visualized in Fig. 2.4. With each image presentation, the

set of feature maps A was used for inference. After settled optimization, the

coefficients ak,m,n of all feature maps Ak were set to binary states by applying

H(ak,m,n), with H(x) = 1 if x > 0 and H(x) = 0 otherwise. Disparity was inferred

based on the 2×2 coefficients ak,m′,n′ of feature maps Ak, which is the extend of all

coefficients that include a single pixel in their receptive fields. Surface orientation

tuning was examined based on a larger 7 × 7 region around the central fixation

point.

Each category yi in y is represented by a unique two-dimensional parameter

combination: horizontal and vertical disparity dx and dy, and surface tilt- and

slant angles φ and α. At each image location, they can be estimated by selecting

ŷ = yi for some i that is most probable. Assuming independence of the coefficients,
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Figure 2.4. Example of disparity inference with the näıve Bayes classifier from a
single image presentation with disparity dx = −2.5 px, dy = −4 px. LCA optimization
results in a sparse set of active coefficients. Each binocular kernel ΦL/R,k (grayscale)
is associated with a tuning map (arbitrary units). The tuning maps display the prob-
ability of the corresponding coefficient ak,m′,n′ to be in an active state, as a function
of the evaluated range of x- and y-disparities. Bottom row: disparity likelihood /
log-likelihood (prior omitted). The likelihood map is the Hadamard product of all 8
tuning maps associated with active coefficients, and all inverted tuning maps of non-
active units (accumulated, outmost right). The true disparity is indicated by a red
circle and the mode of the distribution is indicated by a red cross.

estimates were calculated by applying a näıve Bayes classifier with6

ŷ = argmax
i

P (yi)
∏

k,m′,n′

P (H(ak,m′,n′) | yi) . (2.10)

We omitted the priors P (yi), even though a strongly non-uniform distribution of

disparities is apparent in natural image data, as can be seen in Fig. 2.2.

Because elements H(ak,m′,n′) were restricted to two states, the probabilities of

being in one of these states, P (H(ak,m′,n′) = 1 | yi) and 1 − P (H(ak,m′,n′) = 1 | yi)
were determined experimentally by calculating the arithmetic mean. In the case

of stereo disparity, we assumed that the probabilities were linked to each of the

kernels ΦL/R,k and invariant with respect to image feature location. Therefore,

probes were accumulated over the feature maps of size M ×N , as well as over the

6In practice, inference was calculated equivalently with the logarithmic form ŷ =
argmaxi logP (yi) +

∑
k,m′,n′ log P (H(ak,m′,n′) | yi) .
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whole training set of size L by calculating

P (H(ak,m′,n′) = 1 | yi) ≈
1

LMN

∑
l

∑
m,n

(H(ak,m,n))l . (2.11)

For inference with Eq. 2.10, the same probability estimate of one kernel was used

for all 2× 2 locations m′, n′.

In contrast, we assumed that probabilities differ with respect to image location

in the case of surface orientation. We reasoned that kernels are mainly disparity

tuned and that the orientation of a surface may be detected by the pattern of

disparities within a local range. We therefore calculated probability estimates

independently for all 7× 7 locations m,n with

P (H(ak,m,n) = 1 | yi) ≈
1

L

∑
l

(H(ak,m,n))l . (2.12)

Probability estimates vary smoothly with respect to the parameter combina-

tions dx and dy as well as for φ and α and therefore constitute “tuning maps”. In

the case of surface orientation estimation we exploited this local continuity and

smoothed out noise with two dimensional Savitzky-Golay filtering (Savitzky & Go-

lay, 1964), with a polynomial of degree 3, and with 5 px width in both dimensions.

2.4.4 Linking the processing pipeline to biological vision

With this study, we hope to contribute to a better understanding of biological

vision. We chose the aspects of our processing model so that we could study our

hypothesis adequately. Here, we motivate some aspects of the simplified natural-

istic processing stream, both with respect to biological findings, as well as to their

functional role.

Vergence. As a first processing step, we incorporated vergence in our model,

the rotation of the two eyes towards each other. The visual system controls gaze,

so that the image of objects or any structure of interest is moved to the fovea,

the location on the retina with the best spatial resolution. Vergence is not used

in common technical solutions. State-of-the-art algorithms work with images ob-

tained with parallel camera axes. They calculate depth by applying epipolar stereo

geometry to corresponding locations in both half-images (Hartley & Zisserman,

2004). However, if the goal is to understand vision based on statistical processing,
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vergence has crucial impact.

Sparse coding is an optimization that builds on statistical regularities of the

underlying data. As a first approximation of stereo vision, each half-image is a

locally shifted version of the other. The extend of these image shifts, or disparities,

differs broadly over the whole scene. In contrast, if both eyes are oriented towards

the same location, the distribution of disparities in the vicinity of the fixation point

is very narrowly distributed around zero, as shown in Fig. 2.2. This finding is due

to the local smoothness of disparities, disrupted only by discontinuities at object

boundaries. Only through vergence the sparse coding algorithm can find statistical

dependencies between the two half-images, because corresponding image locations

are close-by. Statistical dependencies then manifest in similarly shaped left and

right half-kernels, which are often slightly shifted versions of one another. Indeed,

Hunt et al. (2013) have shown that sparse coding with simulated strabismus only

extracts monocular dominant kernels.

Retinal pre-processing. Receptive fields of the retina are characterized by a

center surround organization, with weights in central location that are opposed

in polarity to the weights around the center. They are often modeled with the

Mexican hat shaped Laplacian of a Gaussian, or the simpler approximation with

the difference of two Gaussians, like in our case. Reasons discussed for this kind

of retinal processing include mechanisms of efficient coding, compression, response

equalization, sparseness and others (Graham et al., 2006). Convolving the visual

input with a difference-of-Gaussians decorrelates the overall pink-noise spectrum

of natural scenes, transforming it into a representation with equalized power spec-

trum (Atick & Redlich, 1992). Removing these first order correlations, also called

whitening, is a common pre-processing step before applying an ICA procedure,

because it affects the algorithms’ search for higher order statistical dependencies

(Hyvärinen & Oja, 2000).

Sparse coding in biological substrate. The sparse coding algorithm serves as a

model for the formation of neuronal circuitry in V1. It has been proposed that

the gradient descent on the error function, with respect to the coefficients, could

be implemented directly in neural network topology (B. A. Olshausen, 2003; B. A.

Olshausen & Field, 1997; Rozell et al., 2008). In the following, we consider single

neurons for simplicity. The gradient descent on coefficients a, which is the activity

of the neurons in neural network notion, follows a differential equation. In each
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time step, the activity a of a neuron k changes proportionally to the sum of three

terms (see also Fig. 2.3): (i.) a feed forward term φ⊺
kx, where the vectorized

kernels {φk}Kk=1 serve as receptive fields for the input x, (ii.) a competition term

−
∑

c ̸=k φ
⊺
kφc ac that introduces lateral inhibition proportional to the activity ac

from all other neurons of the LCA layer, with weights proportional to the similarity

of the receptive fields, and (iii.) a self-inhibition term −ak. In LCA optimization,

the sparse coding algorithm is extended by deriving a “leaky integrator” neuron

(see Abbott (1999)). The main difference is the introduction of an inner state u,

which is coupled to the output of the neuron with a thresholding function a = T (u).

The three terms stay the same with LCA sparse coding, except that they drive

the inner state u of the neuron and that the self inhibition in term iii. is replaced

by −u, the leak of the neuron.

This network is reminiscent to the Hopfield network (Hopfield, 1982; Hopfield,

1984; Little, 1974). With equivalent topology, the weights of networks derived from

the Hopfield network are in many cases trained by applying biologically more plau-

sible learning rules that rely on information available at the synapse. For example,

Földiak presented an artificial neural network in which feed-forward weights were

learned by Hebb’s rule and lateral inhibition was subject to anti-Hebbian learning.

Anti-Hebbian learning means that inhibitory connections between neurons were

enhanced if they were active at the same time (Földiák, 1990). Therefore, the net-

work learned competition between neurons that were driven by similar patterns,

akin to term ii. It was shown that a network with these learning rules, applied to

natural images, developes Gabor-like kernels (Falconbridge et al., 2006). Applying

the same Hebbian, anti-Hebbian learning to spiking neural networks yields similar

results, drawing even closer to a biologically accurate model (King et al., 2013;

Zylberberg et al., 2011). Chauhan et al. (2018) applied such a network to stereo

images and reported successful disparity readout of the neural population with a

simple classifier. Physiological studies indeed provide evidence for lateral inhibi-

tion between neurons with similar receptive fields in V1: orientation selectivity of

neurons might benefit from lateral inhibition between neurons with similar orien-

tation tuning (Blakemore & Tobin, 1972) or from other types of cross-orientation

inhibition (Ringach, 2003; Shapley et al., 2003).

Probabilistic inference. Hypotheses on properties of the world are subject to

uncertainty. Bayesian inference provides a framework that allows to account for
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ambiguity and a broad range of brain functions, like multimodal perception, deci-

sion making or motor control, have been modeled following Bayesian approaches

(Doya et al., 2006; Knill & Pouget, 2004). Training a perceptron-like neural net-

work with backpropagation is linked to probabilistic inference. With respect to

stereo vision, Goncalves and Welchman (2017) analyzed the relationship between

a binocular likelihood model and a two layer feed-forward neural network. The

first layer represented simple cells, preset with Gabor-like receptive fields, and the

second layer represented complex cells tuned for disparities. The weights of both

layers were trained with back-propagation. The learned weights from simple to

complex cells werer proportional to the log-probability of the simple cell being

active, given the preferred disparity represented by the complex cell. Because

neural networks of this kind compute the weighed sum of the individual units’

activities, each complex cell calculated the log-likelihood of its preferred disparity.

This is equivalent to the näıve Bayes classifier we used for inferring disparity, the

logarithmic form of which can be implemented similarly in a neural network.

2.5 Results

Our analysis of the stereo-vision processing pipeline followed the main hypothesis

of this paper: that patterns from the external world can be accessed with simple

readout from a representation obtained with sparse coding. We chose disparity

and surface orientation as candidates for such patterns. In Sec. 2.5.1, we first

describe qualitative and quantitative properties of the learned LCA representation.

Sec. 2.5.2 addresses the main hypothesis of the paper by evaluating the errors of

simple readout of stereo disparity. In Sec. 2.5.2 and 2.5.2 we discuss the extend

of errors subject to overcompleteness and sparsity of the LCA representation.

The findings are expanded with Sec. 2.5.2, where we describe how the accuracy

of the inference can be predicted by the overall activity in the LCA layer. The

mechanism holds implications for possible attention mechanisms. Results from

these subsections culminate in the evaluation of disparity maps of naturalistic

scenes in Sec. 2.5.2. In Sec. 2.5.3 we then evaluate the orientation tuning of

Kernels obtained by LCA optimization.
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2.5.1 Characteristics of the LCA representation

In the following, we focus on results specific to disparity selectivity and compare

them to physiological findings. As outlined in Sec. 2.2.3, the kernels obtained by

applying ICA methods to stereo image data have been well described elsewhere.

We therefore limit our report to results specific to LCA sparse coding.

Selectivity for disparity

For simple probabilistic readout, individual neurons need to exhibit some degree of

specificity for the pattern of interest. Indeed, all tuning maps of kernels obtained

with Eq. 2.11 yielded clear, smoothly varying selectivity as a function of disparity.

This was true throughout all kernels obtained by optimizing Eq. 2.7, irrespective

of the level of overcompleteness. Therefore, all kernels potentially contribute to

disparity inference with the simple readout scheme. For representative examples,

see Figs. 2.4, 2.5 and 2.7. We include all learned kernels in the supplementary

material, Figs. S01–S05. The shape of the kernels was in most cases well described

by the Gabor function (see Sec. 2.5.1 and Fig. 2.8a, c). Kernels which were not

Gabor-shaped, and which were therefore not classical in terms of physiologically

described receptive fields, did only emerge with higher levels of overcompleteness.

We identified three main types of kernel shapes: “Matched Gabor”, “Tuned In-

hibitory” and “Blob-like”. A significant number of the “Matched Gabor” and the

“Tuned Inhibitory” type were evident at all levels of overcompleteness. However,

the share of the “Tuned Inhibitory” type was decreasing the lscarger the overcom-

pleteness of the model. The “Blob-like” type only emerged in models which were

Matched Gabor Blob-likeTuned Inhibitory

6

0

-6
-6 0 6 ......
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x
]

Figure 2.5. Typical kernels obtained by LCA optimization. Matched Gabor left and
right half-kernels were very similarly shaped, but shifted in position. Tuned Inhibitory
kernels were selective for large disparity values. They were mostly ocular dominant
and left vs. right half-kernels were shifted in phase by about π radians. Blob-like
kernels’ weights consisted of a central spot and an outer lobe with opposed polarity.
Disparity selectivity was more localized than for the other types.
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Figure 2.6. Proportion of the three ker-
nel types on the total number of kernels,
plotted for each of the five trained val-
ues of overcompleteness. “Matched Ga-
bor” and “Tuned Inhibitory” types were
evident on all levels of overcompleteness,
with a decreasing fraction of “Tuned In-
hibitory” types for larger models. “Blob-
like” kernels only emerged in the models
that were at least 3× overcomplete.
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at least 3× overcomplete, with increasing share the larger the overcompleteness

of the model. When presented with natural stereo images, the average number of

kernels from each type that contributed to the reconstruction of the stimulus was

proportional to their share in the set of kernels. This finding was slightly violated

if the sparsity penalty λ was very high. In these cases, “Matched Gabor” kernels

had an up to 10% larger share on the number of active kernels than on average.

The three types will be described in more detail in the following paragraphs. For

examples of each type see Fig. 2.5, for the share of each type on the total number

of kernels see Fig. 2.6.

Matched Gabor The majority of kernels were Gabor-like, with very similar left

and right shapes. Differences between the two half-kernels were best described by

a shift in position and almost no shift in phase. Tsao et al. (2003) reported that

most receptive field shapes in V1 are also characterized by only a small amount of

phase-shifts. Such kernels are well suited to represent corresponding (or matching)

structures in the two half-images that originate from the same object in the world

(see also Sec. 2.2.4). Conversely, the mode of the tuning maps was equal to the

position-shift of the two half-kernels. Note that the mode was sharply peaked

perpendicular to the orientation of the kernel shape, but wide in direction of the

orientation. These kernels were therefore only selective for disparity perpendicular

to their orientation.

Tuned Inhibitory The probability of these kernels being active increased with

the absolute value of disparity. Typically, they were monocular or monocular dom-

inant, i.e., most of the weight energy was in either the left or the right half-kernel.
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If they were binocular, the lobes were usually shifted by about π/2 or by about

π radians (see also Sec. 2.5.1). Such kernels were also reported by Hunter and

Hibbard (2015), see Sec. 2.2.3. Note that phase-shift kernels might serve as “what

not”-detectors when used for stereo inference, as described in Sec. 2.2.4 (Goncalves

& Welchman, 2017; Read & Cumming, 2007). The weights of monocular kernels

process information from only one stereo half-image. An explanation for the dis-

parity selectivity based on feed forward processing is therefore unlikely. With

sparse optimization on the other hand, matching structures can be reconstructed

more sparsely with a single binocular kernel, where otherwise two monocular ker-

nels would be needed. In neural network notion, monocular and binocular kernels

compete against each other through lateral inhibition. The probability that a

binocular kernel exists that can jointly represent both half-images decreases with

larger disparities (see Fig. 2.10). Therefore, the likelihood that monocular kernels

are active increases with disparity.

Blob-like The shapes of this type were not Gabor-like, but had in common a

center-surround organization with a central spot of one polarity and a surrounding

structure with opposed polarity. The surrounding lobe, however, varied in its

extend, not always completely enclosing the central spot. The resulting shapes

described a continuum, with a partial opening resembling an end-stopped ridge,

an opening of approximately half extend matching a corner and an even further

opening describing slightly curved edges. Kernels of this type were selective for

disparity in both dimensions, as opposed to Gabor-like kernels, which were prone

to the aperture problem: the displacement of an oriented structure can only be

measured perpendicular to its orientation. Our results reflect image statistics and

therefore show that natural images consist of a substantial amount of structures,

which are best described as corners, ridges and blobs. Such elements may be used

to reconstruct two-dimensionally displaced structures directly rather than with a

combination of local spatial frequency elements, i.e. Gabor-like kernels. Note that

Ringach (2002) reported a substantial amount of blob-like receptive field shapes

in V1.

The kernel shapes we obtained with LCA sparse coding fit well to physiolog-

ical findings. G. F. Poggio et al. (1988) recorded neuron responses from rhesus

macaque monkey visual cortex and classified disparity tuned cells in six categories.
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Figure 2.7. Comparison of example representatives from our data that match the
six disparity response types defined by G. F. Poggio et al. (1988). Each column shows
a single Kernel, its disparity tuning map and its horizontal cross section along the red
line (horizontal disparity tuning). They fit the examples from the bottom row, which
consists of the disparity tuning curves of physiological single neuron recordings from
monkey visual cortex. All examples were drawn from the 16× overcomplete model,
λ = 0.04. For details see Sec. 2.5.1.

Three of these, “Tuned Near”, “Tuned Zero” and “Tuned Far” neurons, were char-

acterized by sharply peaked response curves, tuned to negative, zero or positive

horizontal disparities. The two categories “Near” and “Far” contained neurons

that were similarly selective for negative or positive disparities. However, these

neurons’ responses were not as peaked as the responses of the “Tuned” neurons but

rather broadly tuned. The last category was referred to as “Tuned inhibitory” and

contained neurons that were more likely to fire the larger the disparity, irrespective

of its sign. We can reproduce the physiological examples of all six categories with

our kernel sets and present them in Fig. 2.7.

The three “Tuned” types describe the same response as our “Matched Gabor”

kernels. They were sharply tuned to disparity, but only perpendicular to their

orientation. If oriented vertically, they were therefore sharply tuned to horizontal

disparity. In some cases they were tuned to more than one disparity, like in the

second “Matched Gabor” example of Fig. 2.5. This was due to the repetitions

of the sinusoids. However, most of our kernels had a single sinusoid lobe, like

in the “Tuned Zero” and “Tuned Far” examples of Fig. 2.7, which resulted in a
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single, elongated peak in the tuning maps. It seems that single lobed kernels are

a specialty of LCA sparse coding, as compared to standard sparse coding. This

finding will be discussed in more detail in Sec. 2.5.1 (see also Fig. 2.8h).

We also found tuning maps which reproduce the “Near”- and “Far” types.

Oblique “Matched Gabor” kernels were more broadly tuned to horizontal dispar-

ity, which was due to the kernels’ elongated response peaks in two-dimensional

disparity space. However, we reproduced the horizontal tuning curves with shifted

images, which was a very stable stimulus. We assume that horizontal disparity

tuning of oblique kernels is very sensitive to small changes of vertical disparity. In

addition, G. F. Poggio and Fischer (1977) found that most “Near”- and “Far” cells

received unbalanced inputs from the two eyes, which is not true for our “Matched

Gabor” kernels.

The “Tuned Inhibitory” type matches our own classification. In the respective

paragraph we have offered an explanation for how the lateral inhibition of the

sparse optimization leads to tuned inhibitory units. This finding has physiological

support. G. F. Poggio and Fischer (1977) and G. F. Poggio and Talbot (1981)

reported that “Tuned Inhibitory” neurons often showed “strong excitatory dom-

inance of one eye (ocular unbalance), the ‘silent’ eye exercising only inhibitory

functions and only over a restricted disparity range”. They also reported bidirec-

tional cells, “with balanced ocularity, from which stimulation of either eye alone

evoked excitatory responses that of the two eyes together evident response suppres-

sion”. These bidirectional cell’s responses were similar to the response of kernels

with about π radians shifted sinusoid. Further physiological evidence supports

that suppressive mechanisms of this kind help to solve the stereo correspondence

problem (Henriksen et al., 2016; Tanabe et al., 2011; Tanabe & Cumming, 2014).

To the best of our knowledge, tuned inhibitory units in stereo vision have not been

described in the context of sparse coding in the literature, yet.

Statistical analyses of the kernels

In order to characterize quantitative properties of the kernels from the LCA opti-

mization, we fitted the Gabor-function

g(a, b, ϕ, x, y, θ, σx, σy) = a+ b exp (c) cos (d) (2.13)
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Figure 2.8. Statistics of the learned kernels ΦL/R, for details see Sec. 2.5.1. Diagrams
a, b contain data from the 1× overcomplete model (128 kernels), c–h contain data
from the 16× overcomplete model (2048 kernels). a, c) Histogram of coefficients of
determination as a measure for goodness of fit. b, d) Ocular dominance types on
7 point scale: 4 is binocular; 1 and 7 are left/right monocular, respectively. Row
e-h is restricted to data with coefficient of determination r2 > 0.93, in order to re-
ject non-classical receptive field shapes. e, f) Distribution of orientation and phase.
g) Interdependence between difference in position and phase of left vs. right Gabor fit.
position-shift is expressed perpendicular to the orientation of the Gabor function and
normalized by spacial frequency, calculated with f ∥(∆x,∆y)⊺∥ cosϕ. The red line
marks zero-disparity. h) Relationship nx/y = f σx/y, with spatial frequency f and the
width of the Gaussian envelope σx/σy (perpendicular/along orientation). Blue: our
data. Black circles/crosses: data from macaque V1, reported by Ringach (2002)/J. P.
Jones and Palmer (1987).

to each half-kernel ΦL/R,k, with offset a, scale b, an elliptical Gaussian envelope

exp (c) = exp (αx′ 2 + 2βx′y′ + γy′ 2) and a sinusoid cos (d) = cos (2πfx′ + κ) along

x′, with spatial frequency f and phase-shift κ. Orientation ϕ and position x, y in

image space were free, with

x′ = (x− x0) cos(ϕ) + (y − y0) sin(ϕ) ,

y′ = −(x− x0) sin(ϕ) + (y − y0) cos(ϕ) .
(2.14)
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The elliptical envelope, with widths σx and σy, was allowed to rotate freely by the

angle θ, relative to the orientation of the sinusoid, with

α =
cos(θ)2

2σ2
x

+
sin(θ)2

2σ2
y

,

β = −sin(2θ)
4σ2

x

+
sin(2θ)

4σ2
y

,

γ =
sin(θ)2

2σ2
x

+
cos(θ)2

2σ2
y

.

(2.15)

We used a custom implementation in MATLAB, which we made publicly avail-

able7.

Most kernels were well described by the Gabor function, with the coefficient

of determination r2 close to 1 (Fig. 2.8a, c). Some of the lower values can be

attributed to monocular kernels, in which the half-kernel with less weight energy

has a lower signal-to-noise ratio. With higher levels of overcompleteness, more non-

Gabor-like kernel shapes appeared, which is apparent with the heavy tail in the

distribution of the 16× overcomplete model (2048 kernels) in Fig. 2.8c, as opposed

to the distribution of the 1× overcomplete model (128 kernels) in Fig. 2.8a.

We analyzed the ocular dominance of the kernels by adapting the 7 point scale

from Hubel and Wiesel (Hubel & Wiesel, 1962). They were calculated with

arctan

(
∥ΦL,k∥
∥ΦR,k∥

)
, (2.16)

with values in the range [0, π/2] plotted in a histogram with 7 equally spaced

bins. Kernels which were left or right monocular fell into category 1 and 7, respec-

tively. If weight energy was equally distributed, kernels fell into category 4, the

other categories were left or right dominant, respectively. We show the results in

Fig. 2.8b and d. The majority of kernels were in category 4, i.e., binocular with

balanced weight energy (see Fig. 2.8b, d). A substantial fraction of kernels was

purely monocular (category 1 or 7). Only a small fraction was in the intermediate

categories and the proportion of intermediate kernels was even lower with higher

levels of overcompleteness. The shape of these kernels was usually characterized

by a phase-shift of about π radians. Kernels that did not fall into category 4 were

7https://www.mathworks.com/matlabcentral/fileexchange/60700-fit2dgabor-data-options

63

https://www.mathworks.com/matlabcentral/fileexchange/60700-fit2dgabor-data-options


CHAPTER 2. EXPLOITATION OF IMAGE STATISTICS WITH SPARSE CODING

usually of the “Tuned Inhibitory” type, described in Sec. 2.5.1. In physiological

experiments, a similar three-mode distribution of weight energy between left and

right receptive fields was also found in ferrets, albeit not as distinctly peaked as

in our results. (Kalberlah et al., 2009). Other physiological studies on various

animals report rather flat distributions (Guillemot et al., 1993; Hubel & Wiesel,

1962; Hubel et al., 2015; Levay et al., 1978; Schiller et al., 1976).

The following analyses were based on the 16× overcomplete model. Fits with

a coefficient of determination of r2 < 0.93 were excluded in order to exclude non-

classical receptive field shapes. The distribution of orientations (Fig. 2.8e) had

two peaks at 0 degrees and at ±90 degrees. Two possible explanations have been

offered in the literature for this bias: the rasterization of the input images and

the prevalence of orientations in human made structures (Hunt et al., 2013). The

distribution of phases (Fig. 2.8f) had distinct peeks at 0 degrees, at ±90 degrees

and at ±180 degrees, i.e., the kernel shapes were, in most cases, either sine-like or

cosine-like. Ringach (2002) reported that physiological receptive fields similarly

cluster in such even- and odd-symmetric shapes. Opposed to our findings with

LCA sparse coding, he also reported that, with standard sparse coding, there is a

tendency towards odd-symmetric receptive fields, but not towards even-symmetric

receptive fields.

As described in Sec. 2.2.4, binocular Gabor-filters that are shifted in position

from left to right half-kernel can serve as matched filters for corresponding image

structures, whereas Gabor-filters shifted in phase can serve as “what not”-detectors

for false matches (Goncalves & Welchman, 2017; Read & Cumming, 2007). We

were therefore interested in the interrelationship between the shift in position and

the shift in phase of the kernels in our data. Results are displayed in Fig.2.8g.

Because the tuning maps were characterized by elongated peaks, we expressed

the position-shift relative to the most sharply tuned axis. It was therefore calcu-

lated as the difference in horizontal and vertical position, projected on the axis

perpendicular to the orientation of the Gabor function. For better comparability

between position-shift and phase-shift, we also normalized the position-shift by

the spatial frequency of the sinusoid. The position-shift was therefore calculated

as f ∥(∆x,∆y)⊺∥ cosϕ. Our data showed a transient separation between position-

shift and phase-shift kernels. If a kernel had both, a substantial position- and

phase-shift, they counteracted each other, so that almost all data points fell into
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quadrant ii and iv. Lobes of the sinusoid match when data points are on the red

line. The majority of the kernels was mainly shifted in position and therefore

match the “Matched Gabor” type from Sec. 2.5.1.

Ringach (2002) reported that Gabor-like receptive field shapes of macaque V1

were more variable and often more blob-like than kernels from sparse coding and

basis vectors from ICA. In his study, he related the spatial frequency f of the si-

nusoid to the extend of the Gaussian envelope σx, perpendicular to the orientation

of the sinusoid, and σy, along the orientation of the sinusoid. The relationship

nx/y = f σx/y was lower on average in physiologically measured receptive fields. In

Fig. 2.8h, we show an overlay of the data adapted from Ringach (2002) (macaque

V1, black circles), and from J. P. Jones and Palmer (1987) (cat V1, black crosses),

with our data (blue dots). In this case, we fit the Gabor-functions with the orien-

tation of the elliptical Gaussian envelope fixed at θ = 0 degrees. While standard

sparse coding and ICA results in values nx/y > 0.5 for the majority of kernels /

basis vectors, many kernels from convolutional LCA sparse coding were charac-

terized by lower values. Note that we bound the fitting procedure to nx/y ≥ 0.25

and did therefore not allow blob-like fits, so that these kernels do not appear in

the panel. The plot also shows that physiological receptive fields, as well as the

LCA kernels, had a tendency for ny > nx, which was not true for standard sparse

coding and ICA, as reported by Ringach. Kernels with small values for nx, i.e.,

with a small extend of the Gaussian envelope perpendicular to their orientation,

are better suited for disparity inference. If the kernel shape consisted of only

one sinusoidal lobe (nx = 0.25), the associated tuning map had a single elon-

gated peak, as opposed to kernels with more than one sinusoidal lobe, which had

multiple, parallel, elongated peaks. The disparity they represented was therefore

not ambiguous. Indeed, we observed aliasing effects in the disparity inference if

image structures were represented by multi-lobe kernels. For examples, see both

“Matched Gabor”-kernels from Fig. 2.5.

2.5.2 Evaluation of disparity inference

In this subsection we evaluate whether disparities can successfully be obtained

with simple readout from the LCA representation. We explored the limitations by

means of the error of the estimates. Inference of disparity was carried out with

the full processing pipeline, subject to overcompleteness and sparsity penalty in
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Figure 2.11. Top row panels show dependency of the mean inference error of disparity
on overcompleteness (ordinate) and on sparsity load λ (abscissa). Bottom row panels
show the same data but with λ mapped to the mean number of active coefficients.
The three columns contain evaluations for three different disparities dx,y. See Fig. 2.9
for the dependency of the mean error on disparity. Circles indicate evaluations of
the mean absolute error (MAE) subject to overcompleteness o and sparsity load λ.
Contours show the data fits of the error, with MAE = a (λ+∆λ) + b (ln o+∆o) + c
(top row) and MAE = a/(n+∆n) + b (ln o + ∆o) + c (bottom row). Close to zero
disparity, overcompleteness has little impact, but it becomes increasingly important
for larger disparities. The error generally declines with decreasing lambda. See the
same data as line plots in supplementary Figs. S01–S06.

the LCA optimization as described in Sec. 2.4.2, and with probabilistic readout

as described in Sec. 2.4.3. The mean absolute errors (MAE) of the estimates were

calculated with

MAE =
1

n

n∑
j=1

∥yj − ŷj∥ , (2.17)

where yj and ŷj were the ground truth and the the estimate, respectively. In

Sec. 2.5.2–2.5.2, we report the MAE of the disparity estimates ŷj = (d̂x d̂y)
⊺
.

Inference was carried out on the test set from the disparity database with shifted

images, described in detail in Sec. 2.3.2. In Sec. 2.5.2 we report results on inference

of horizontal disparity in naturalistic stereo images.
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Higher dimensionality extends the set of detectable patterns

An increase of overcompleteness generally resulted in a decrease of disparity infer-

ence errors. The best parameter combination from our evaluation (16× overcom-

plete, λ = 0.04) allowed for a mean disparity error below 0.5 px, measured within

the range of ∼2–3 px ground truth absolute disparity (Fig. 2.9, right panel). In-

ference was better for small disparities than for large disparities. The same model

performed with an error of ∼1.5 px for disparity of dx = 4px horizontally and

dy = 4px vertically. The bias was generally small (data not shown) and apparent

only at large disparities close to the cut-off at 6 px.

Overcompleteness had its main impact on the range of disparities for which

the model performed well. With small overcompleteness, the error increased much

more rapidly with the value of disparity. For example, the 1× overcomplete model

with λ = 0.04 evaluated with an error below 1 px within the range of ±1 px dispar-

ity but with an error ∼6 px at dx,y = 4px horizontal and vertical disparity (Fig. 2.9,

left panel). We show all parameter combinations we tested in the overview in

Fig. 2.11. The same data is shown as line plots in supplementary Figs. S01–S06.

For low levels of overcompleteness (dx,y = 0px, left-hand column of the plot), error

dependency on overcompleteness is negligible, whereas for large overcompleteness

(dx,y = 4px, right-hand column), overcompleteness has a substantial effect.

This finding was due to qualitative differences in the sets of learned kernels.

With larger overcompleteness, more kernels existed with larger position-shift, i.e.,

with the differences in position between left and right half-kernel (Fig. 2.10). The

distribution of the kernels’ disparity was roughly similar to the distribution of

disparities in stereo images (see Fig. 2.2), with many kernels that represent small

disparities and few kernels that represent large disparities. We conclude that,

with more overcompleteness, sparse coding extends the set of patterns that are

represented explicitly, ordered by the frequency of their occurrence.

Less sparsity results in lower errors

The sparsity load λ was generally linked to better inference the lower its value. Up

to a limit of very low values for λ, this is true for all levels of overcompleteness and

for all ground truth values of disparity, as can be seen in the top row of Fig. 2.11.

Our results are in line with the results from Rigamonti et al. (2011) and from

Gardner-Medwin and Barlow (2001) (see Sec. 2.2). The bottom row of Fig. 2.11
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Figure 2.12. Data from 3× overcomplete model. The error of the inference is related
to the mean number of active LCA coefficients. Data points represent the errors
of single disparity inferences against the number of active coefficients. To counteract
rasterization, they were displaced randomly by a small amount. The heat-map overlay
is a density histogram (arbitrary units). Red lines: median and 75th percentile of error,
calculated on bins of the number of active coefficients (at least 103 data points per bin).
Left : With low sparsity penalty λ = 0.02, mid-range activity predicts the lowest error,
as opposed to a small, or a large number of active coefficients. Right : With increased
sparsity load λ = 0.3, a larger number of active neurons is no longer associated with
poor performance. Note that overall activity is substantially reduced.

contains the same data as the top row, but with the sparsity load λ mapped to

the mean number of active coefficients. Activity was roughly linked by a negative

exponential to the range of λ we tested.

In all models except the 16× overcomplete model, we observed slightly increas-

ing errors if sparsity load was very low. For most combinations of overcompleteness

and disparity that we evaluated, the lowest mean error was measured at λ ≈ 0.04.

The error was below λ = 0.1 in all cases but one—the 0.66× overcomplete model,

measured at 4 px horizontal disparity and 0 px vertical disparity. The minima can

be examined in detail in the supplementary Figs. S01–S06. We therefore reject

the hypothesis that inference is optimal if the sparsity penalty used during testing

matches that used during training. A possible explanation is based on the fact

that a binary multi channel code carries most information if the probability of

the coefficients to be in one of both states is p = 0.5 and independent of other

dimensions. (Shannon, 1948). Therefore, assuming that the coefficients were in-

dependent, the code carried most information if half of the coefficients were in an

active state on average (42.5 for 0.6× overcomplete, 64 for 1× overcomplete, and

69



CHAPTER 2. EXPLOITATION OF IMAGE STATISTICS WITH SPARSE CODING

0

0.75

1.5

2.25

3

P
re

d
ic

te
d
 E

rr
o
r 

[p
x
/s

]

0

6

12

18

24

x
-D

is
p
a
ri

ty
 [

p
x
]

0 1.5 3
0

6

12

18

24

Predicted Error [px/s]

x
-D

is
p

a
ri

ty
 [

p
x
]

0 1.5 3
0

3

6

9

12

Predicted Error [px/s]

E
rr

o
r 

[p
x
/s

]

a.

b.

c. e.

d. f.

Figure 2.13. Disparity inference of a naturalistic scene from the Genua Pesto
database (Canessa et al., 2017). a) Ground truth map of horizontal disparity. Values
outside the range [−24, 24] px were excluded. b) Right stereo half-image. c) Inference
of horizontal disparity with the 16× overcomplete, λ = 0.04 processing pipeline. Due
to the scale space approach, resolution is better the closer objects are to the horopter.
d) Errors predicted by the number of active coefficients ak,m′,n′ , relative to scale s = 1,
0.75, 0.5, 0.25 in subplots d–f. e) Overlay of disparity map c and predicted error
d. f) Error of inference vs. predicted error. Both values are strongly correlated with
r = 0.58 for predicted errors > 1 px.

192 for 3× overcomplete). Inference was best slightly below these numbers, which

shows in the bottom row of Fig. 2.11. It was not possible to confirm this finding

for larger overcompleteness or larger values of λ, because very high sparsity load

was computationally prohibitive.

The reasoning that Shannon information is the limiting factor is ambivalent.

On the one hand, imposing less weight on sparsity in Eq. 2.7 in turn imposes more

weight on the reconstruction constraint, and therefore the preservation of informa-

tion. On the other hand, information of an overcomplete representation is highly

redundant. It is opposed to a compressed code that maximizes Shannon entropy

(Field, 1994). However, we binarized the output of the LCA sparse coding before

inference, which removed much information from each dimension. Therefore, in-

formation content was strongly limited if only a few coefficients were in an active

state.

The number of active LCA coefficients predicts the accuracy of inference

We encountered a strong relation between the success of disparity inference and

the number of active coefficients. We assessed this relation by sorting responses

to examples from the disparity database test set, ordered by the number of active
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LCA coefficients ak,m′,n′ . The data were binned with a window size of at least 103

data points. Note that the bin size was unequal, due to this constraint. Finally, we

calculated percentiles of the MAE of disparity inference. Resulting histograms are

shown as the red lines in Fig. 2.12. The data points of the disparity inference error

are plotted in the same diagram, with a heatmap overlay that displays density

where the point cloud is very dense (arbitrary units).

The median error as a function of the number of active coefficients was u-

shaped. Therefore, inference was best when an average number of coefficients was

in an active state. A low number, as well as a large number of active coefficients

was a predictor for large errors (Fig. 2.12, left panel). With a large value of sparsity

load λ, the number of active coefficients was greatly reduced (right panel). In this

case, the median error was monotonically decreasing as a function of the number

of active coefficients.

We assume that a low number of active coefficients was associated to large er-

rors because the few tuning maps did not contain enough information for accurate

inference. The finding could simply account for the absence of structure in the im-

age. An explanation for the association of a large number of active coefficients with

large errors is not so straight forward. We hypothesize that the sparse optimiza-

tion was not able to settle on a good representation and therefore reconstructed

the input with much more kernels than on average. These kernels were not well

suited for the given image structures and therefore only active due to the lack of

better representatives. Our perspective is linked to a study from Froudarakis et al.

(2014). They report that the stimulation with phase scrambled movies activates

mouse V1 more strongly than the stimulation with natural movies. Simultaneous

recordings from a large population of cells were analyzed for discriminability of the

presented movies with a linear classifier. Similar to our finding, strong activation

was a predictor for bad classification performance.

Disparity map of a naturalistic scene

In addition to inference with constant disparity, i.e., with shifted images, we evalu-

ated our visual processing pipeline with a naturalistic scene from the Genua Pesto

database (Canessa et al., 2017). We present results from one of the scenes in

Fig. 2.13. It consists of disparities in the interval [−76.7, 77.1] px, as opposed to

our model, which is limited to inference in the interval [−6, 6] px. We faced the
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limitation of the model with a scale-space approach, by downsampling the input

image to 80%, 60%, 40% and 20%. Inference was then only evaluated within the

interval [−6, 6] px at each of these four scales, and with the best available spatial

resolution at each location. Image locations outside the interval were excluded be-

forehand. All experiments were carried out with the 16× overcomplete, λ = 0.04

model.

Disparity was inferred well within the aforementioned limitations. The dispar-

ity map we obtained is shown in Fig. 2.13c (compare to ground truth disparity map

in Fig. 2.13a). Note that the map is an overlay of the four scales, with best spatial

resolution close to the horopter. We chose to plot the predicted error (Fig. 2.13d)

as the 80th percentile of the error as a function of the number of active coefficients,

as described in Sec. 2.5.2. Errors in subplots d–f are relative to the scale s = 1,

0.75, 0.5, and 0.25. Fig. 2.13e is an overlay of the disparity map with the pre-

dicted error. The prediction corresponds to clearly identifiable structures in the

image. Large errors were predicted for the loudspeakers, for the table texture, and

for uniformly colored locations on the monitor. Low errors were predicted for the

telephone, for the bags on the right, and for the icons on the monitor. Fig. 2.13f

visualizes the predicted error and the actual error with respect to ground truth

disparity in one plot. If prediction failed, this was mostly due to occlusion bound-

aries. Note that occlusion boundaries were not part of the training, so this type of

error can not be attributed to the lack of representation in the LCA optimization.

2.5.3 Tuning maps of surface orientation

We showed that a representation formed by LCA sparse coding forms a suitable

basis to infer stereo disparity. However, we hypothesized that sparse coding fulfills

the requirement for simple readout of a much larger set of patterns. As a second

example, we examined tuning maps for tilt- and slant angles φ and α of a tex-

tured surface (see Sec. 2.2.4). Results were based on the test set from the surface

orientation database, described in detail in Sec. 2.3.2.

We created tuning maps, not only for each kernel ΦL/R,k, but for each of 7 ×
7 entries from the convolutional feature maps with central fixation point. This

decision was based on the expectation that the tuning maps were affected by the

disparity tuning of the kernels. We reasoned that surface orientation could be

inferred from a set of disparity measurements at positions relative to the fixation
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Figure 2.14. Tuning maps for tilt- and slant angles φ and α of textured surfaces.
All maps correspond to a single kernel ΦL/R,k (grayscale) but with receptive fields at
varying feature map locations w.r.t. the central fixation point. Feature map locations
of the four tuning maps are indicated with red crosses in the illustration. Data from
1× overcomplete model, with λ = 0.12.

point. In Fig. 2.14 we show that kernels were tuned for surface tilt- and slant

angles. Indeed, the tuning maps of the kernels differed, depending on the position

at which it was evaluated. The peak of the tuning maps was the sharper the larger

the slant angle of the surface. In tilt-/slant space, the peak described a skewed

band, which was expected if disparity tuning was the underlying principle.

Coefficients in the center of the tuning maps, which corresponded to the fixa-

tion point, were also clearly tuned for the surface tilt angle (see central tuning map

of Fig. 2.14 for an example). They could not be affected by disparity because dis-

parity is zero at the fixation point, irrespective of the surface orientation. Instead,

the mode of the tuning for the tilt angle φ was strongly related to the kernels’ ori-

entation ϕ, with a circular-circular correlation coefficient ρcc = −0.981 (calculated

following Jammalamadaka and SenGupta (2001), using CircStat (Berens, 2009)).

A scatterplot of ϕ against φ is displayed in Fig. 2.15. Fleming et al. (2004) showed

that a set of Gabor-filters can be used to infer surface orientation in monocular

images. In images of slanted, textured surfaces, spatial frequencies that are ori-

ented perpendicular to the tilt angle of the surface are overrepresented. This is

due to the homographic projection on the retina, which causes an anisotropic com-

pression of surface textures. The finding qualitatively extends the set of patterns

that can be inferred from the LCA representation. It adds information to the

inference of surface orientation that is different from the inference based on the

local distribution of disparities.
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Figure 2.15. The tuning maps’ mode of the tilt angle φ against the orientation ϕ of
kernels ΦL/R,k. All tuning maps were evaluated at the central fixation point with zero
disparity. Orientation of the Gabor-like kernels accounts for surface tilt tuning, with
very strong circular-circular correlation ρcc = −0.981.

2.6 Discussion

We add evidence to an existent body of literature, which shows that Gabor-like,

disparity tuned, phase- and position-shifted receptive fields are a good basis for

stereo algorithms (see Sec. 2.2.3 and 2.2.4). Simple readout of disparity was pos-

sible, due to some degree of selectivity to the stimulus of units from the LCA

representation. These units therefore resembled Barlow’s cardinal cells, with in-

termediate selectivity for the stimulus. Indeed, we did not observe a single kernel

that was not tuned for disparity or surface orientation. At the same time, they

represented a variety of other stimulus aspects, like spatial frequency, orientation,

or blob-like structures. In combination, the kernels represented the input space

well and allowed for accurate inference.

2.6.1 Dimensionality of representations

Larger dimensionality of a representation extended the range of disparities that

could be inferred with simple readout. We offer an intuitive explanation for this

finding. Local structure in both half-images that originate from the same location

in the world can either be represented by one binocular kernel with similar left and

right shape; or it can be represented by two kernels: a left and a right monocular
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kernel. If binocular kernels are available, sparsity can increase substantially, by

activation of only half the number of units that would be needed for reconstruction

with monocular kernels. However, a representation that contains binocular kernels

requires a much larger dimensionality.

Lets assume that we want to create a new binocular representation from 2n

monocular kernels, which consists of copies of the same set of n monocular half-

kernels for each eye. We generate binocular kernels from all monocular kernels,

so that the left half-kernels are shifted versions of the right half-kernels. If we

assume equally spaced horizontal and vertical shifts in the range ∥∆dx,y∥, the new
representation has ∼ n c π/4 ∥∆dx,y∥2 kernels, with factor c that determines the

resolution. Because occlusions are characterized by the lack of corresponding struc-

ture, we would have to add the original monocular kernels to the representation, so

that the total number of kernels would be ∼ n (2 + c π/4 ∥∆dx,y∥2). With either

set of kernels, the optimization can reconstruct the image equally well, but much

more sparsely with the larger set. Obviously, the amount of information is the

same in both representations, because the information preservation constraint of

the optimization is not affected. However, the larger representation is much more

redundant. Interestingly, it is exactly this redundancy that allows for inference,

because binocular kernels that fit corresponding features are tuned for disparities.

With large dimensionality, it was possible to infer disparity with binary clas-

sification, even though the binarization discards information (compare Bobrowski

(2011)). Burge and Geisler presented an opposed approach to disparity inference,

with very low dimensionality (Burge & Geisler, 2014). They asked which filter

shapes were optimal to infer disparity and showed that inference was possible with

the two most informative kernels. In their model, the activity ratio of these de-

tectors was the crucial parameter for inference. Information was not distributed

over many binary dimensions but encoded in the value of a few dimensions.

In biological systems, the value may be encoded in the firing rates of neurons.

Fine grained discriminability between neural activities, i.e., large channel capacity,

requires high firing rates. Indeed, there are many examples where neurons encode

sensory information with high firing rates. Examples include medial superior oli-

vary neurons, which lock precisely to the phase of pure tones (Brand et al., 2002),

and the T-units in Gymnotiforms (weakly electric fish), which lock to the phase

of electrical signals with up to almost 1000 Hz (Scheich et al., 1973). Although
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cortical neurons operate at low mean firing rates of about 4 Hz (R. Baddeley et al.,

1997), action potential bursts are known candidates to encode information in firing

rates. For a current review on neural coding with bursts see (Zeldenrust et al.,

2018).

2.6.2 The trade-off between accuracy and energy efficiency

An alternative explanation for the finding that cortical neurons exhibit sparse

activity is energy efficiency. The energetic cost of a neuronal population has two

major contributions: the maintenance of neurons, which limits population size,

and neuronal activity, measured by the average rate of action potentials (Attwell

& Laughlin, 2001; Lennie, 2003). Because neuronal activity is relatively costly, an

optimization that takes energy efficiency into account results in reduced activity

(Levy & Baxter, 1996).

Indeed, the two terms of the sparse coding optimization Eq. 2.7 are the preser-

vation of information and the sparsity of the representation, weighted against each

other with the sparsity load λ. We have shown that the mean inference error also

depends on λ. We therefore hypothesize that sparsity in the brain is optimized

for the trade-off between the accuracy of upstream processing tasks and energy

consumption. This optimization could even occur dynamically and locally, as an

attention mechanism that adjusts the error subject to the current task. Such a

mechanism could interact with the error prediction we have shown, which relies

on counting the number of active coefficients.

The realization in biological substrate is plausible. In neural notion of the LCA

sparse coding, the sparsity load corresponds to a shift in the thresholds of neurons

(see Sec. 2.4.4). Indeed, physiological studies show that attentional mechanisms

involve changes in the excitability of neurons. McAdams and Maunsell (1999)

have shown that attention modulates the response of orientation-tuned neurons

in V4 multiplicatively. Similarly, tuning maps of LCA kernels were qualitatively

indifferent with respect to λ. Therefore, an interesting question for future research

is whether inference with variable LCA thresholds and static weights for readout

is feasible.
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2.6.3 Model-specific issues

Applying our processing pipeline to the naturalistic scene, image locations with dis-

parities larger or smaller than the disparities included in the training set yielded

random results. We are confident that an additional category that includes all

of the disparities beyond the included range could successfully be added to the

training set. The category could rely on activity of coefficients of the “Tuned In-

hibitory” type and on lack of activity of the “Matched Gabor” type. Occluded

image regions are similarly characterized by the lack of corresponding image struc-

ture and might be represented by the same kernel types. Whether it is possible

to distinguish between a large-disparity category and an occlusion category is an

interesting question for future research.

The resolution of the disparity maps was limited in this study. We used a

stride of 8 px for the convolutional LCA sparse coding, which was therefore also

the downsampling factor for the disparity map. With the same level of overcom-

pleteness, a larger stride corresponds to a larger number of kernels (Schultz et al.,

2014). We assume that a large number of kernels is mandatory in order to repre-

sent a large number of disparities. However, we expect that the resolution of the

disparity estimates does not depend on the stride. Tuning maps of coefficients in

a single column of the feature maps most likely vary with respect to the position

of the image structure in their receptive fields. We may explore the limits of the

spatial resolution in future research.

We have presented a naturalistic processing pipeline for disparity inference.

Our aim was not to find a method which has the lowest inference error, but to

learn more about inference based on sparse representations in general. However,

we had reasonable success of inferring disparities in a naturalistic scene. With

recent progress on neuromorphic hardware, as well as progress on efficient imple-

mentations of the spiking LCA algorithm (Tang et al., 2017; Watkins et al., 2019;

Zylberberg et al., 2011), research on the hardware implementation of our biolog-

ically inspired stereo vision processing stream would be promising and is within

reach.
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2.6.4 Sparse coding and supervision

Because more overcompleteness extends the set of patterns that can be inferred,

the set of patterns that is ecologically relevant may predict the extend of the

neuronal population in animals. Patterns, too rare to be represented, subject to

the cost of neuronal maintenance, should be omitted. The likelihood that sparse

coding represents patterns explicitly may depend on the frequency of their occur-

rence. The distribution might be divergent from the relevance of the patterns an

animal needs to detect. Common patterns may be irrelevant while rare patterns,

like cues that reveal the attack of a lurking predator, are essential for survival.

In the case of depth inference, a uniform accuracy over the whole disparity range

might be optimal. An advantageous learning strategy could profit from the gener-

ality of feature extraction based on sensory statistics and augment learning with

mild supervision in order to gently shift the representation towards a distribution

optimized for behavioral gain. In multi-layered networks, later stages might also

benefit from incorporating sparsity constraints, by aiding the clustering towards

conceptional representations. Current research supports this assumption. E. Kim

et al. (2018) have shown that a standard autoencoder, augmented with lateral

inhibition and top-down feedback, develops joined representations of multimodal

input data. Hale Berry Neurons were responsive for textual, as well as for visual

input. The representation was easily separable and robust for classification tasks.

2.6.5 The link between image statistics and inference

It remains an open question why a method that extracts statistical properties

from natural images yields good features for inference. The original perspective on

the independent component analysis (ICA), a class of algorithms to which sparse

coding belongs, might point towards a possible explanation. The reasoning behind

ICA was that data from sensor arrays are in some cases the weighted superposition

of a number of individual, independent source signals (Hyvärinen & Oja, 2000). If

the superposition is linear, source signals can be reconstructed by multiplying the

vector of sensory data with the inverse of the weight matrix. The aim of ICA is

to find this inverse matrix.

Clearly, the assumption that sensory data are the weighted sum of source sig-

nals is not true for the formation of two-dimensional images on the retina. Images
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originate from light rays scattered by objects within a physical, three-dimensional

world. The components obtained by ICA are in fact not independent of each other

(Bethge, 2006; Eichhorn et al., 2009). They are not the building blocks of an

image and the task of inferring depth is not readily solved by extracting these

components. However, they seem to coincide with physical causes. The distance

of objects manifests in the shift of corresponding image structure, occlusions mani-

fest in the lack of corresponding image structure, and surface orientation manifests

in anisotropically compressed texture. Obviously, even though the feature dimen-

sions are not the original components of the image, they are closely linked to the

geometrical layout of the scene and therefore allow to infer properties of the exter-

nal world. They might pose the basis for a heuristic mental model of the external

world, established by the clustering of “suspicious coincidences” (H. Barlow, 1987;

Földiák, 1990).

We believe that the selectivity for patterns that are linked to physical causes

is a general property of sparse representations of sensory data. For example, we

have recently shown that applying sparse coding to optic flow data yields rather

unexpected kernel shapes, which are tuned to directions of egomotion (Ecke et al.,

2020). Screening for such selectivities can be a starting point for identifying the

cues that are at the core of inference and it can yield predictions for properties of

processing in diverse biological systems.

2.7 Conclusion

With this study, we have extended the knowledge about similarities and differences

between representations learned with stereo sparse coding and the visual cortex.

We have also shown that statistical properties of the visual sensory stream can be

exploited with the sparse coding algorithm and consecutive simple readout of depth

parameters. Disparity can be inferred reasonably well, with very good accuracy

for low disparities but with increasing error the larger the disparity. The range of

disparities that can be inferred with good accuracy grows with overcompleteness.

More sparsity reduces the accuracy of inference. Since neuronal activity is directly

associated with energy consumption, attentional mechanisms could optimize the

trade-off between energy efficiency and the accuracy needed for the task an animal

faces. In addition, we have shown that accuracy of the inference can be inferred
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from the number of active LCA coefficients itself. The estimate could be used as

a feedback parameter to adjust the sparsity of the optimization.

We hypothesized that sparse coding transforms the sensory stream such that

an unknown subset of patterns from the external world can be inferred by subse-

quent, simple readout. After a thorough analysis of disparity inference, we have

shown that the representation also carries information that allows to infer surface

orientation. Selectivity for this subset of patterns is qualitatively different from

disparity tuning because it depends on the orientation of the Gabor-like kernels

shapes. We believe that sparse coding generalizes properties from the external

world and can be used to infer a much broader range of patterns that are cues for

physical causes.

References

Abbott, L. F. (1999). Lapicque’s introduction of the integrate-and-fire model neu-

ron (1907) [Publisher: Elsevier BV]. Brain Research Bulletin, 50 (5-6), 303–

304. https://doi.org/10.1016/s0361-9230(99)00161-6

Anzai, A., Ohzawa, I., & Freeman, R. D. (1999). Neural mechanisms for encod-

ing binocular disparity: Receptive field position versus phase. Journal of

Neurophysiology, 82 (2), 874–890. https://doi.org/10.1152/jn.1999.82.2.874

Atick, J. J., & Redlich, A. N. (1992). What does the retina know about natural

scenes? [Number: 2 Reporter: Neural computation]. Neural computation,

4 (2), 196–210. https://doi.org/10.1162/neco.1992.4.2.196

Attwell, D., & Laughlin, S. B. (2001). An Energy Budget for Signaling in the Grey

Matter of the Brain [Publisher: SAGE Publications]. Journal of Cerebral

Blood Flow & Metabolism, 21 (10), 1133–1145. https://doi.org/10.1097/

00004647-200110000-00001

Baddeley, R., Abbott, L. F., Booth, M. C. A., Sengpiel, F., Freeman, T., Wakeman,

E. A., & Rolls, E. T. (1997). Responses of neurons in primary and inferior

temporal visual cortices to natural scenes. Proceedings of the Royal Society

of London. Series B: Biological Sciences, 264 (1389), 1775–1783. https://

doi.org/10.1098/rspb.1997.0246

Barlow, H. (1987). Cerebral Cortex as Model Builder [Reporter: Matters of Intel-

ligence: Conceptual Structures in Cognitive Neuroscience]. In L. M. Vaina

80

https://doi.org/10.1016/s0361-9230(99)00161-6
https://doi.org/10.1152/jn.1999.82.2.874
https://doi.org/10.1162/neco.1992.4.2.196
https://doi.org/10.1097/00004647-200110000-00001
https://doi.org/10.1097/00004647-200110000-00001
https://doi.org/10.1098/rspb.1997.0246
https://doi.org/10.1098/rspb.1997.0246


REFERENCES

(Ed.), Matters of Intelligence: Conceptual Structures in Cognitive Neuro-

science (pp. 395–406). Springer Netherlands. https://doi.org/10.1007/978-

94-009-3833-5 18

Barlow, H. (2001). The exploitation of regularities in the environment by the

brain [Number: 04 Reporter: Behavioral and Brain Sciences]. Behavioral

and Brain Sciences, 24 (04). https://doi.org/10.1017/S0140525X01000024

Barlow, H. B. (1959). Sensory mechanisms, the reduction of redundancy and intelli-

gence. National Physical Laboratory Symposium No. 10, The Mechanisation

of Thought Processes. Her Majesty’s Stationery Office, London.

Barlow, H. B. (1972). Single Units and Sensation: A Neuron Doctrine for Per-

ceptual Psychology? [Number: 4 Reporter: Perception]. Perception, 1 (4),

371–394. https://doi.org/10.1068/p010371

Barlow, H. B. (2001). Redundancy reduction revisited [Publisher: Informa UK

Limited]. Network: Computation in Neural Systems, 12 (3), 241–253. https:

//doi.org/10.1080/net.12.3.241.253

Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008b). Speeded-up robust

features (SURF). Computer vision and image understanding, 110 (3), 346–

359. https://doi.org/10.1016/j.cviu.2007.09.014

Berens, P. (2009). CircStat: AMATLABToolbox for Circular Statistics [Publisher:

Foundation for Open Access Statistic]. Journal of Statistical Software,

31 (10). https://doi.org/10.18637/jss.v031.i10

Bethge, M. (2006). Factorial coding of natural images: How effective are linear

models in removing higher-order dependencies? [Publisher: The Optical

Society]. Journal of the Optical Society of America A, 23 (6), 1253. https:

//doi.org/10.1364/josaa.23.001253

Bhatt, V., & Ganguly, U. (2018). Sparsity Enables Data and Energy Efficient Spik-

ing Convolutional Neural Networks. In V. Kůrková, Y. Manolopoulos, B.
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tem. In V. Kůrková, Y. Manolopoulos, B. Hammer, L. Iliadis, & I. Maglo-

giannis (Eds.), Artificial Neural Networks and Machine Learning – ICANN

2018 (pp. 468–475). Springer International Publishing. https://doi.org/10.

1007/978-3-030-01418-6 46

Lundquist, S. Y., Mitchell, M., & Kenyon, G. T. (2017). Sparse Coding on Stereo

Video for Object Detection. arXiv preprint arXiv:1705.07144.

Lundquist, S. Y., Paiton, D. M., Schultz, P. F., & Kenyon, G. T. (2016). Sparse

encoding of binocular images for depth inference. 2016 IEEE Southwest

Symposium on Image Analysis and Interpretation (SSIAI). https ://doi .

org/10.1109/ssiai.2016.7459190

Mallot, H. A. (1999). Stereopsis: Geometrical and global aspects. Handbook of com-

puter vision and applications Vol. 2: Signal processing and pattern recogni-

tion (pp. 485–502). San Diego: Academic Press.

Mallot, H. A., Roll, A., & Arndt, P. A. (1996). Disparity-evoked Vergence is

Driven by Interocular Correlation [Publisher: Elsevier BV]. Vision Re-

search, 36 (18), 2925–2937. https://doi.org/10.1016/0042-6989(96)00011-9

Marr, D., & Poggio, T. (1976). Cooperative computation of stereo disparity. Sci-

ence, 194 (4262), 283–287. https://doi.org/10.1126/science.968482

Marr, D., & Poggio, T. (1979). A Computational Theory of Human Stereo Vision.

Proceedings of the Royal Society B: Biological Sciences, 204 (1156), 301–

328. https://doi.org/10.1098/rspb.1979.0029

McAdams, C. J., & Maunsell, J. H. R. (1999). Effects of Attention on Orientation-

Tuning Functions of Single Neurons in Macaque Cortical Area V4 [Pub-

lisher: Society for Neuroscience]. The Journal of Neuroscience, 19 (1), 431–

441. https://doi.org/10.1523/jneurosci.19-01-00431.1999

Ohzawa, I., DeAngelis, G., & Freeman, R. (1990). Stereoscopic depth discrim-

ination in the visual cortex: Neurons ideally suited as disparity detectors

[Publisher: American Association for the Advancement of Science (AAAS)].

Science, 249 (4972), 1037–1041. https://doi.org/10.1126/science.2396096

Olshausen, B. A. (2003). Principles of Image Representation in Visual Cortex. The

visual neurosciences, LM Chalupa, JS Werner, Eds (pp. 1603–1615). MIT

Press.

87

https://doi.org/10.1007/978-3-030-01418-6_46
https://doi.org/10.1007/978-3-030-01418-6_46
https://doi.org/10.1109/ssiai.2016.7459190
https://doi.org/10.1109/ssiai.2016.7459190
https://doi.org/10.1016/0042-6989(96)00011-9
https://doi.org/10.1126/science.968482
https://doi.org/10.1098/rspb.1979.0029
https://doi.org/10.1523/jneurosci.19-01-00431.1999
https://doi.org/10.1126/science.2396096


CHAPTER 2. EXPLOITATION OF IMAGE STATISTICS WITH SPARSE CODING

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field

properties by learning a sparse code for natural images [Number: 6583 Re-

porter: Nature]. Nature, 381 (6583), 607–609. https ://doi .org/10.1038/

381607a0

Olshausen, B. A., & Field, D. J. (1997). Sparse coding with an overcomplete basis

set: A strategy employed by V1? [Number: 23 Reporter: Vision Research].

Vision Research, 37 (23), 3311–3325. https : / / doi . org / 10 . 1016 / s0042 -

6989(97)00169-7

Orban, G. A. (2008). Higher Order Visual Processing in Macaque Extrastriate

Cortex. Physiological Reviews, 88 (1), 59–89. https ://doi . org/10 .1152/

physrev.00008.2007

Orban, G. A. (2011). The Extraction of 3D Shape in the Visual System of Human

and Nonhuman Primates. Annual Review of Neuroscience, 34 (1), 361–388.

https://doi.org/10.1146/annurev-neuro-061010-113819

Poggio, G. F., & Fischer, B. (1977). Binocular interaction and depth sensitivity in

striate and prestriate cortex of behaving rhesus monkey [Publisher: Amer-

ican Physiological Society]. Journal of Neurophysiology, 40 (6), 1392–1405.

https://doi.org/10.1152/jn.1977.40.6.1392

Poggio, G. F., Gonzalez, F., & Krause, F. (1988). Stereoscopic mechanisms in

monkey visual cortex: Binocular correlation and disparity selectivity. The

Journal of neuroscience, 8 (12), 4531–4550. https : / / doi . org / 10 . 1523 /

JNEUROSCI.08-12-04531.1988

Poggio, G. F., & Talbot, W. H. (1981). Mechanisms of static and dynamic stereop-

sis in foveal cortex of the rhesus monkey. The Journal of physiology, 315 (1),

469–492. https://doi.org/10.1113/jphysiol.1981.sp013759

Read, J. C. A., & Cumming, B. G. (2007). Sensors for impossible stimuli may solve

the stereo correspondence problem. Nature Neuroscience, 10 (10), 1322–

1328. https://doi.org/10.1038/nn1951

Rehn, M., & Sommer, F. T. (2007). A network that uses few active neurones

to code visual input predicts the diverse shapes of cortical receptive fields

[Number: 2 Reporter: Journal of Computational Neuroscience]. Journal of

Computational Neuroscience, 22 (2), 135–146. https://doi .org/10.1007/

s10827-006-0003-9

88

https://doi.org/10.1038/381607a0
https://doi.org/10.1038/381607a0
https://doi.org/10.1016/s0042-6989(97)00169-7
https://doi.org/10.1016/s0042-6989(97)00169-7
https://doi.org/10.1152/physrev.00008.2007
https://doi.org/10.1152/physrev.00008.2007
https://doi.org/10.1146/annurev-neuro-061010-113819
https://doi.org/10.1152/jn.1977.40.6.1392
https://doi.org/10.1523/JNEUROSCI.08-12-04531.1988
https://doi.org/10.1523/JNEUROSCI.08-12-04531.1988
https://doi.org/10.1113/jphysiol.1981.sp013759
https://doi.org/10.1038/nn1951
https://doi.org/10.1007/s10827-006-0003-9
https://doi.org/10.1007/s10827-006-0003-9


REFERENCES

Rigamonti, R., Brown, M. A., & Lepetit, V. (2011). Are sparse representations

really relevant for image classification? CVPR 2011. https://doi.org/10.

1109/cvpr.2011.5995313

Ringach, D. L. (2003). Dynamics of Orientation Tuning in Macaque V1: The Role

of Global and Tuned Suppression. Journal of Neurophysiology, 90 (1), 342–

352. https://doi.org/10.1152/jn.01018.2002

Ringach, D. L. (2002). Spatial Structure and Symmetry of Simple-Cell Receptive

Fields in Macaque Primary Visual Cortex [Publisher: American Physiolog-

ical Society]. Journal of Neurophysiology, 88 (1), 455–463. https://doi.org/

10.1152/jn.2002.88.1.455

Rolls, E. T., & Tovee, M. J. (1995). Sparseness of the neuronal representation of

stimuli in the primate temporal visual cortex. Journal of Neurophysiology,

73 (2), 713–726. https://doi.org/10.1152/jn.1995.73.2.713

Rozell, C. J., Johnson, D. H., Baraniuk, R. G., & Olshausen, B. A. (2008). Sparse

Coding via Thresholding and Local Competition in Neural Circuits [Num-

ber: 10 Reporter: Neural Computation]. Neural Computation, 20 (10), 2526–

2563. https://doi.org/10.1162/neco.2008.03-07-486

Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by

Simplified Least Squares Procedures. Analytical Chemistry, 36 (8), 1627–

1639. https://doi.org/10.1021/ac60214a047

Scheich, H., Bullock, T. H., & Hamstra, R. H. (1973). Coding properties of two

classes of afferent nerve fibers: High-frequency electroreceptors in the elec-

tric fish, Eigenmannia. [Publisher: American Physiological Society]. Journal

of Neurophysiology, 36 (1), 39–60. https://doi.org/10.1152/jn.1973.36.1.39

Schiller, P. H., Finlay, B. L., & Volman, S. F. (1976). Quantitative studies of single-

cell properties in monkey striate cortex. III. Spatial frequency [Publisher:

American Physiological Society]. Journal of Neurophysiology, 39 (6), 1334–

1351. https://doi.org/10.1152/jn.1976.39.6.1334

Schultz, P. F., Paiton, D. M., Lu, W., & Kenyon, G. T. (2014). Replicating

kernels with a short stride allows sparse reconstructions with fewer inde-

pendent kernels [Reporter: arXiv preprint arXiv:1406.4205]. arXiv preprint

arXiv:1406.4205.

Shannon, C. E. (1948). A Mathematical Theory of Communication [Publisher: In-

stitute of Electrical and Electronics Engineers (IEEE)]. Bell System Tech-

89

https://doi.org/10.1109/cvpr.2011.5995313
https://doi.org/10.1109/cvpr.2011.5995313
https://doi.org/10.1152/jn.01018.2002
https://doi.org/10.1152/jn.2002.88.1.455
https://doi.org/10.1152/jn.2002.88.1.455
https://doi.org/10.1152/jn.1995.73.2.713
https://doi.org/10.1162/neco.2008.03-07-486
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1152/jn.1973.36.1.39
https://doi.org/10.1152/jn.1976.39.6.1334


CHAPTER 2. EXPLOITATION OF IMAGE STATISTICS WITH SPARSE CODING

nical Journal, 27 (4), 623–656. https://doi.org/10.1002/j.1538-7305.1948.

tb00917.x

Shapley, R., Hawken, M., & Ringach, D. L. (2003). Dynamics of orientation selec-

tivity in the primary visual cortex and the importance of cortical inhibition.

Neuron, 38 (5), 689–699. https://doi.org/10.1016/S0896-6273(03)00332-5

Simoncelli, E. P., & Olshausen, B. A. (2001). Natural Image Statistics and Neu-

ral Representation [Publisher: Annual Reviews]. Annual Review of Neuro-

science, 24 (1), 1193–1216. https://doi.org/10.1146/annurev.neuro.24.1.

1193

Tanabe, S., Haefner, R. M., & Cumming, B. G. (2011). Suppressive Mechanisms in

Monkey V1 Help to Solve the Stereo Correspondence Problem. Journal of

Neuroscience, 31 (22), 8295–8305. https://doi.org/10.1523/JNEUROSCI.

5000-10.2011

Tanabe, S., & Cumming, B. G. (2014). Delayed suppression shapes disparity se-

lective responses in monkey V1. Journal of Neurophysiology, 111 (9), 1759–

1769. https://doi.org/10.1152/jn.00426.2013

Tang, P. T. P., Lin, T.-H., & Davies, M. (2017). Sparse coding by spiking neural

networks: Convergence theory and computational results. arXiv preprint

arXiv:1705.05475.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal

of the Royal Statistical Society. Series B (Methodological), 267–288. https:

//doi.org/10.1111/j.2517-6161.1996.tb02080.x

Timofte, R., & Van Gool, L. (2015). Sparse Flow: Sparse Matching for Small

to Large Displacement Optical Flow. 2015 IEEE Winter Conference on

Applications of Computer Vision, 1100–1106. https://doi .org/10.1109/

wacv.2015.151

Tsao, D. Y., Conway, B. R., & Livingstone, M. S. (2003). Receptive fields of

disparity-tuned simple cells in macaque V1. Neuron, 38 (1), 103–114. https:

//doi.org/10.1016/S0896-6273(03)00150-8

Watkins, Y., Thresher, A., Schultz, P. F., Wild, A., Sornborger, A., & Kenyon,

G. T. (2019). Unsupervised Dictionary Learning via a Spiking Locally

Competitive Algorithm [Reporter: Proceedings of the International Con-

ference on Neuromorphic Systems - ICONS \textquotesingle19]. Proceed-

90

https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1016/S0896-6273(03)00332-5
https://doi.org/10.1146/annurev.neuro.24.1.1193
https://doi.org/10.1146/annurev.neuro.24.1.1193
https://doi.org/10.1523/JNEUROSCI.5000-10.2011
https://doi.org/10.1523/JNEUROSCI.5000-10.2011
https://doi.org/10.1152/jn.00426.2013
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1109/wacv.2015.151
https://doi.org/10.1109/wacv.2015.151
https://doi.org/10.1016/S0896-6273(03)00150-8
https://doi.org/10.1016/S0896-6273(03)00150-8


REFERENCES

ings of the International Conference on Neuromorphic Systems - ICONS

\textquotesingle19. https://doi.org/10.1145/3354265.3354276
Zeiler, M. D., Krishnan, D., Taylor, G. W., & Fergus, R. (2010). Deconvolutional

networks. 2010 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition. https://doi.org/10.1109/cvpr.2010.5539957

Zeldenrust, F., Wadman, W. J., & Englitz, B. (2018). Neural Coding With

Bursts—Current State and Future Perspectives. Frontiers in Computa-

tional Neuroscience, 12. https://doi.org/10.3389/fncom.2018.00048

Zhang, H. (2005). Exploring Conditions for the Optimality of Näıve Bayes. Inter-
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Chapter 3

Sparse coding predicts optic flow specificities of

zebrafish pretectal neurons1

Abstract

Zebrafish pretectal neurons exhibit specificities for large-field optic flow patterns

associated with rotatory or translatory body motion. We investigate the hypothe-

sis that these specificities reflect the input statistics of natural optic flow. Realistic

motion sequences were generated using computer graphics simulating self-motion

in an underwater scene. Local retinal motion was estimated with a motion detec-

tor and encoded in four populations of directionally tuned retinal ganglion cells,

represented as two signed input variables. This activity was then used as input into

one of three learning networks: a sparse coding network (competitive learning),

PCA whitening with subsequent sparse coding, and a backpropagation network

(supervised learning). All simulations developed specificities for optic flow which

are comparable to those found in a neurophysiological study (Kubo et al., 2014),

but relative frequencies of the various neuronal responses were best modeled by

the sparse coding approach without whitening. We conclude that the optic flow

neurons in the zebrafish pretectum do reflect the optic flow statistics. The pre-

dicted vectorial receptive fields show typical optic flow fields but also “Gabor” and

dipole-shaped patterns that likely reflect difference fields needed for reconstruction

by linear superposition.

1Ecke, G. A., Bruijns, S. A., Hölscher, J., Mikulasch, F. A., Witschel, T., Arrenberg, A.
B., & Mallot, H. A. (2019). Sparse coding predicts optic flow specificities of zebrafish pretectal
neurons. Neural Computing and Applications, 32(11), 6745–6754. Available from: http://dx.
doi.org/10.1007/s00521-019-04500-6
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a. b. c.

0◦

45◦

90◦

Figure 3.1. a. View of the virtual fish tank with muddy water (low viewing distance).
Additional fish and plants will generate optic flow discontinuities. b. Example with
high visibility. c. Mosaic of retinal ganglion cells, used to calculate the motion input.
The figure shows 256 sampling points on a spherical cap modeling the fundus of the
eye up to an eccentricity of Θmax = 80 degrees. Approximately equidistant locations
on the sphere were calculated according to Eq. 1. The spherical cap was flattened by
stereographic projection and the circles of iso-eccentricity Θ = {20, 40, 60, 80} together
with the retinal meridians (straight lines) are shown. The same projection was used
for all kernels (receptive fields) shown in Fig. 2, 4, and 5.

3.1 Introduction

3.1.1 Optimality of visual receptive fields

In his “neuron-doctrine for perceptual psychology”, H. B. Barlow (1972) suggests

that the “nervous system is organized to achieve as complete a representation of

the sensory stimulus as possible with the minimum number of active neurons”.

This idea also underlies a number of theoretical approaches to visual processing,

such as independent component analysis, sparse coding of predictive coding; for

an overview see Hyvärinen et al. (2009). While the general approach is widely

accepted, specific predictions about the optimal processing scheme depend on the

choice of the optimality criterion employed as well as on the information require-

ments of each species’ life-style. Empirical tests of optimal coding theories of visual

processing are therefore often limited to a qualitative level.

For the case of mammalian V1 cortex, B. A. Olshausen and Field (2005) sum-

marized the evidence and concluded that for a full understanding of the system,

simultaneous measurements of the activities of a large, unbiased set of neurons in

response to natural stimuli would be required. Two-photon calcium imaging is a

technology that allows to record activity from large populations of neurons. For
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example, simultaneous monitoring of more than 100 cells from the mushroom body

in Drosophila has provided evidence for sparse representation of odors (Honegger

et al., 2011). Similarly, dense coding of odors found in the locust antennal lobe

is transformed into a sparse code in the next processing stage, i.e. the mushroom

body, by means of a wide field normalizing feedback (Papadopoulou et al., 2011).

We attempt an analysis of this type for the area pretectalis (APT) of the ze-

brafish, for which the response of thousands of neurons indeed was recorded while

the fish was presented with optic flow stimuli (Kubo et al., 2014). Experimen-

tally found response properties from a large, representative sample of neurons was

compared to responses predicted from receptive fields of nodes in artificial neural

networks. The networks were trained with optic flow patterns that were gener-

ated by simulating observer movement in a virtual fish tank. The receptive field

predictions were based on three theoretical approaches, (i ) sparse coding of optic

flow patterns (unsupervised), (ii ) PCA whitening with subsequent sparse coding

(unsupervised), and (iii ) backpropagation learning of ego-motion parameters from

the same optic flow patterns (supervised).

3.1.2 Optic flow

Like many other animals, zebrafish larvae generate optokinetic responses of the

eyes (OKR) and optomotor responses of the body (OMR) when exposed to visual

stimuli simulating egomotion of the fish (Bak-Coleman et al., 2015; Kubo et al.,

2014). Both eye- and body movements generate on the retina space-variant pat-

terns of local motion vectors that have to be analyzed by subsequent processing

stages. Neural algorithms suggested for optic flow analysis usually consist of at

least two components: a local motion detector and a subsequent set of templates

or motion models. These templates are used for identifying typical patterns relat-

ing to ego-motion maneuvers or encounters with obstacles and self-moving objects

such as prey or predator (Franz et al., 2004; Perrone, 1992). Local motion detec-

tion can take place in the retina itself, as is generally the case in lower vertebrates,

or in early areas of visual cortex. Higher brain areas analyzing optic flow patterns

such as the focus of expansion, rotational vertices and left or right yaw rotations

were identified in mammalian MST cortex (Orban, 2008) or in the zebrafish area

pretectalis, APT (Kubo et al., 2014). Thus, neurons processing optic flow fields

seem to represent typical, realizable flow patterns directly, rather than providing
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components from which they might be reconstructed by linear combination. This

is in line with the idea of sparse coding, where model neurons tend to respond

to input patterns in their entirety. For the realizability of two-dimensional vector

fields as optic flow see Verri et al. (1989).

Egomotion estimation from optic flow is possible with a large variety of estab-

lished approaches derived from geometric considerations in the “inverse optics”

approach (Marr, 1982; Raudies & Neumann, 2012). More recently, convolutional

neural networks (CNNs) were shown to exhibit remarkable learning abilities to

recover depth, motion fields, and camera motion simultaneously from image se-

quences in an unsupervised fashion (Vijayanarasimhan et al., 2017; Zhou et al.,

2017). For the recovery of two-dimensional motion fields, algorithms based on

deep learning (Dosovitskiy et al., 2015; Ilg et al., 2017) and template matching

(Timofte & Van Gool, 2015; Wulff et al., 2012) were developed.

In our model, local visual motion was encoded in the direction-specific tuning

curves of retinal ganglion cells. The motion signals themselves were calculated

using Flownet 2.0 (Ilg et al., 2017) which uses the same encoding. Output from

the retinal ganglion cells was then fed into a layer of simulated APT-neurons which

developed optic flow analyzers.

3.1.3 Zebrafish visual system

Zebrafish retinal ganglion cells (RGCs), as well as pretectal cells, exhibit clear

tuning to the direction and orientation of drifting gratings (Antinucci et al., 2016).

Movement direction is not covered homogeneously, but clustered around three or

four major visual field directions (Nikolaou et al., 2012). The larval zebrafish retina

contains some 4000 ganglion cells with an average angular separation of about 2.5

degrees of visual angle.

RGCs project to APT, among other targets. The response characteristics of

APT neurons were analyzed with visual stripe patterns (drifting gratings) moving

either forward or backward and presented to the left, right, or both eyes (Kubo et

al., 2014). Activity of monocular neurons depends only on the stimulus delivered

to one eye and can therefore be considered to be directly driven from this eye’s

RGCs. In contrast, binocular neurons combine input from both eyes to generate

specificities to forward or backward translation as well as to clockwise and counter-

clockwise rotation in the horizontal plane.
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3.1.4 Aim of this study

With this study, we aim to establish a link between statistical learning theory,

visual neuroscience, and visual ecology using the zebrafish as a model system:

What are the informational needs of this species, how does computation proceed in

its visual system, and how does this compare to optimal procedures from statistical

learning theory? The goal is to make predictions about the detailed visual field

organization of the fish and to identify mechanisms by which this organization can

arise from adaptive and evolutionary processes.

3.2 Visual front end

Realistic optic flow stimuli were generated from a virtual reality simulation of

observer motion in a fish tank, programmed in Blender (https://www.blender.org).

The head of the fish was modeled by two cameras rigidly moving together with

a rotation center somewhat behind the eyes. The field of view was 160 by 160

degrees with a binocular overlap of 45 degrees (see Kubo et al. (2014)). This

resulted in central viewing directions of ±57.5 degrees for the left and right eye.

The virtual fish tank contained objects at various distances from the observer

as well as objects in mid-water (floating plants and other fish) generating optic flow

discontinuities in translational egomotion (Fig. 3.1a,b). Note that translatory op-

tic flow depends on object distance whereas rotatory optic flow does not. Visibility

was set either low (muddy water, Fig. 3.1a) or high (clear water, Fig. 3.1b). Over-

all, the scenery was built to resemble the natural habitat of zebrafish as described

in Spence et al. (2007).

Virtual fish were placed randomly in the environment and accelerated by a

short, random impulse both for translation and rotation. Acceleration for all six

degrees of freedom (DoF) were drawn independently from a uniform, zero mean

distribution. For rotatory Dofs, we introduced an additional scaling factor in

order to equalize the average flow vector lengths of rotatory and translatory flow

components. After the acceleration impulse, the motion declined exponentially

and a two-frame motion sequence was recorded from the later (slower) parts of

this relaxation.

The fish retina was modeled as a spherical cap covering 2Θmax = 160 degrees in

which 256 roughly equidistant sampling points were placed using a simple repel-
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lence algorithm (Fig. 3.1c). For this, we first observed that the cap covers a fraction

(1 − cosΘ)/2 = 41.3 % of the total sphere. We therefore placed 256/0.413 ≈ 620

points ri randomly on the unit sphere. Repellence was realized as the iteration

rt+1
i =

(
rt
i + λ

256∑
j=1,j ̸=i

rt
i − rt

j

∥rt
i − rt

j∥3

)∧

, (3.1)

where λ is a small constant set to 0.05 and the ∧-operator denotes normal-

ization, i.e. projection to the unit sphere. The iteration was terminated when∑
i ∥r

t+1
i − rt

i∥ dropped below 10−5. Of these points, we used the 256 points clos-

est to the pole of the sphere. The pole itself was chosen as the origin of the retinal

coordinate system.

Planar camera images were warped by stereographic projection and sampled

at these points. For each retinal sampling point i the corresponding local motion

vector (ui, vi) was represented by two signed variables modeling the activity of

pairs of RGCs tuned to opposite motion directions (right/left, and up/down).

3.3 Neural network modelling

3.3.1 LCA sparse coding

For unsupervised learning, we used the locally competitive algorithm (LCA) (B. A.

Olshausen & Field, 1996; Rozell et al., 2008) which can be summarized as follows.

Let x = {xn}Nn=1 denote the input signal, i.e. the output of ganglion cells that

encode local retinal motion. In sparse coding, the goal is to reconstruct x as a linear

combination x ≈
∑K

k=1 akφk with dictionary elements {φk}Kk=1, and activation

coefficients {ak}Kk=1, for which sparsity is required (B. A. Olshausen & Field, 1996).

The φk are vector fields from which the input vector field can be reconstructed as

a linear combination. According to B. A. Olshausen and Field (1997) and Rozell

et al. (2008), each φk can also be considered as the receptive field of the k-th

output neuron, if a specific activation function with lateral feedback is assumed.

In our application, the dictionary elements model the receptive fields of K APT

neurons. The vector a = {ak} contains the coefficients needed to reconstruct a

given input pattern from the receptive fields. In our simulations, we require ak ≥ 0

at all times. If we write the φk as columns of a N ×K matrix Φ we obtain the
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Figure 3.2. Sample binocular receptive fields from the sparse coding network. Each
kernel is shown as a pair of vector fields. The red dotted lines mark the margin of
binocular overlap. a. Rotation selective, b. translation selective kernel. c. Neuron
selective for both, rotation and translation. d. Gabor-like kernel with poor selectivity.
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error function E(a,Φ) = 1
2
∥x−Φa∥22 + S(a), in which the first term penalizes

reconstruction errors and S(a) penalizes non-sparse vectors a. While the original

algorithm (B. A. Olshausen & Field, 1996) is based on the ℓ1-norm, i.e. the total

activity of a, the locally competitive algorithm (LCA) seeks to minimize the ℓ0-

norm, i.e. the number of non-zero a-values or the number of active units (Rozell

et al., 2008). Since ak ≥ 0, this amounts to choosing S(a) =
∑K

k=1 λ H(ak − λ)

where λ = 0.015 is a threshold and H(x) = 0 if x < 0 and H(x) = 1 if x ≥ 0.

For the optimization algorithm see B. A. Olshausen and Field (1996) and Rozell

et al. (2008). The algorithm was run in Petavision (https://petavision.github.io,

(Schultz et al., 2014)) with K = 512 APT-neurons and 77, 076 motion fields each

sampled at 256 retinal points for each eye. Since each motion vector is encoded in

two (signed) units, this results in N = 1024 input units. Examples of the resulting

φk are displayed as vector fields in Fig. 3.2. I.e. for each retinal sampling point i,

the components indexed 2i− 1 and 2i are plotted as a vector at location i.

3.3.2 PCA whitening

In this approach we used a PCA of the input set and subsequent whitening as pre-

processing. Let us denote the centered matrix of input data X, their covaraiance

matrix C, the eigenvectors U , and the diagonal matrix of PCA eigenvalues as

Λ; we then have 1
N
X ′X = C = UΛU ′. The PCA whitening is achieved by

calculating Y = Λ− 1
2U ′X. As a result, Y is spherical with zero covariance.

The eigenvalues of the first 64 principal components of X appear in Fig. 3.3.

Examples of components are shown in Fig. 3.4. The major part of the variance

occurs in six principal components, corresponding to the six degrees of freedom

of fish motion. Higher components might capture properties such as unreliable or

missing optical flow due to the varying distribution of feature points in the visual

field or variation of the translatory components of optic flow by the distance of

the feature points from the observer (depth). Periodic or repetitive components of

increasing spatial frequency were also reported by Wulff et al. (2012) for optic flow

and by B. A. Olshausen and Field (1996) for static images. We therefore assume

that they result from general statistic properties of image sequences rather than

from egomotion specific origins.

In our simulation, we included the first 64 principal components, covering

99.83% of the total variance. By whitening, the input variance of the first com-
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Figure 3.3. Variance explained
of the first 64 PCA components
calculated on the fish tank mo-
tion field database. For whitened
sparse coding, the motion fields
were projected on these compo-
nents and subsequently rescaled
to unit variance. Note the loga-
rithmic scale of the ordinate that
is needed to visualize the quickly
diminishing share of higher com-
ponents.

ponents that capture the prototypical 6 degrees of freedom on fish motion was

decreased while variance from subsequent dimensions was increased. The sparse

coding step was then applied to the whitened and dimensionality reduced variable

Y , as described above. We expect that whitening, as well as the redundancy reduc-

tion, aids the gradient decent on sparse and independent components (Hyvärinen

& Oja, 2000).

3.3.3 Motion selectivity analysis

Tuning maps were calculated by probing each kernel with all motion fields from

the fish-tank data base. Reusing the data base is unproblematic because learning

was based on the reconstruction of the motion fields and not subject to motion se-

lectivity. Egomotion was analyzed in just four degrees of freedom, i.e. the direction

of translation as a unit vector T and the oriented axis of rotation as a unit vector

R. Speeds are assumed to be non-negative, but are not differentiated otherwise.

Thus, translation is always in the direction of T and rotations are counterclock-

wise about R. Therefore, clockwise and counterclockwise rotation about the same

axis R are represented by the oriented axes R and −R, respectively. All motion
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Figure 3.4. Example PCA components (PCs). a. PC 2: The first three components
are rotation flowfields. b. PC 4: Components 3 to 6 represent translational charac-
teristics. c. PC 25: Higher components (> 6) reflect structures of the environment
such as depth variations and feature distribution. d. PC 64 is the last component
included in the database transformation. Components with rank ≳ 250 do no more
contain local structure. For a full list of PCs, see supplementary material.

fields used for probing were combinations of translations and rotations, i.e. linear

superpositions of the respective pure translatory and rotatory fields. The starting

pose of simulated movements was also randomized. Altogether, 77, 076 sets of four

motion parameters (Ts, Rs), s = 1, . . . , 77, 076 were used for the calculation of the

tuning curves.

For the calculation of the translation tuning maps, we defined 75 equally spaced

standard directions T ∗
i using the same repellence algorithm as before (Eq. 3.1).

The stimuli were binned by the distance of their translation component Ts from

the standard directions. Let Si be the set of stimuli falling into the i-th bin; the

average response value for a unit φk and direction of translation T ∗
i is then given

by

τT,k(i) =
1

|Si|
∑
s∈Si

ak|s, (3.2)

where ak|s is the coefficient of kernel φk when representing stimulus s. An anal-

ogous procedure was used for the rotation maps τR,k(i). For display, the tuning

maps were smoothed and transformed to a Robinson projection of the unit sphere.
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Figure 3.5. Sample binocular receptive fields from the whitened sparse coding net-
work. a. Rotation selective and b. translation selective kernels. c. Monocular and d.
binocular neuron selective for both, rotational and translational movement directions.
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3.3.4 Backpropagation

For comparison, we also implemented a supervised learning version of the model

that used the same retinal encoding scheme and input data described above. Mo-

tion sequences were labeled for egomotion by seven continuous variables, three for

the unit-vector of heading (translation), three for the unit vector of the axis of ro-

tation and a non-negative one for rotational speed. Note that translational speed

cannot be recovered from optic flow, so we did not attempt to teach this to the

network. The network contained three hidden layers with 1000, 600, and 200 units

and an output layer with seven units with the above encoding. Implementation

was carried out in TensorFlow (https://www.tensorflow.org/).

The network was able to recover the heading direction with a mean angular

error of about 15 degrees and the axis of rotation with a mean angular error of

about 19 degrees.

3.4 Results

The simulations produced two types of data, i.e. models of vectorial receptive fields,

and neuronal responses to optic flow stimuli. We only discuss receptive fields for

the two sparse coding networks since no obvious interpretation was found for the

backpropagation case.

3.4.1 Kernels and tuning maps

Fig. 3.2 shows four typical examples out of the set of 512 φk fields for the sparse

coding case without whitening. Kernels were ranked according to the average value

of the corresponding coefficient over the complete input set.

Fig. 3.2a (rank 18 out of 512) shows a clear specificity for a counterclockwise

rotation about a right, downward axis. This is also visible in the vector field for

the right eye. In contrast, the left eye shows a center surround organization which

might reflect motion parallax of a near object in front of a distant background;

however, no clear translation specificity is found. Specificity for translation can be

seen in Fig. 3.2b (rank 53). The vector fields do not show a well defined focus of

expansion but show a roughly polar pattern. We also find combined specificities

for rotation and translation (Fig. 3.2c, rank 52) which result from spiral patterns
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in the vector fields. Fig. 3.2d (rank 86) shows a field with lower contribution to

the reconstruction which is representative of a large number of fields. It is monoc-

ular with clearly delineated lobes of motion preferences in opposite directions,

resembling Gabor functions for the horizontal and vertical motion components.

Overall, individual vector fields are often not realizable as optic flow fields in

a rigid environment. This is in contrast to the findings in the whitened sparse

coding approach where clearly realizable motion fields were obtained. Fig. 3.5

shows example fields for rotation (Fig. 3.5a), translation (Fig. 3.5b) and combined

translation and rotation in a monocular and binocular case (Fig. 3.5c,d). The

ranks for these kernels were 328, 416, 508, and 127, respectively. It is important

to note, however, that kernel usage in reconstruction is much more homogeneous

in the whitening case than in plain sparse coding such that the ranks are of minor

relevance.

3.4.2 Comparison with physiological results

Binocular receptive fields obtained from either learning scheme were further an-

alyzed by calculating their response to spherical rotating or translating grating

stimuli as were used for receptive field mapping in the zebrafish study by (Kubo

et al., 2014). Gratings moved either forward or backward and were presented

either to the left, the right, or both eyes. Altogether, four monocular and four

binocular stimulus types were to be distinguished, see Fig. 3.5. Each neuron or

model neuron was classified for its reaction to each of the eight stimulus types,

resulting in 28 = 256 response types. Of these, 27 optic-flow-related cases are

shown in Fig. 3.5, both for the zebrafish recordings (upper histogram) and for the

three network simulations (lower histograms). There is also a substantial number

of cells not classified into one of the illustrated 27 response types.

The response-type group “direction selective monocular” is most frequent in

the fish as well as in the sparse coding network, but is missing in the whitened

sparse coding network and underrepresented in the backpropagation network. It

includes neurons that react to the stimulation of one eye, but ignore the stimulus of

the other eye. On their own, such neurons cannot analyze egomotion because they

cannot distinguish between forward translation and rotation to the contralateral

side. However, in the reconstruction approach of sparse coding, they do seem to

play an important role in describing the binocular motion fields as well.
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The next most frequent response type groups comprise binocular neurons re-

acting to specific types of binocular optic flow such as translation or rotation. The

specificity of these responses is established by integrating directional information

across both eyes. Again, the sparse coding network seems to fit the data better

than the other two approaches.

One conspicuous property of the whitened sparse coding network is its lack of

kernels responding to non-egomotion related flow patterns. In a sense, this network

seems to interpret all test patterns in terms of the egomotion it was trained with.

This may be related to the fact that the kernels in the whitened sparse coding

tend to reproduce characteristic pattens of egomotion.

Expected symmetries in the dataset are not generally found. For example,

consider the response type “left and binocular forward” (10000010; first column in

box “forward translational”) and the response type “right and binocular forward”

(00010010; second column in box “forward translational”). In the animal data,

these response types are about equally frequent which is not reflected in the sparse

coding networks. We do not think, however, that this is a reliable result of our

simulation.

Figure 3.5 (next page). Summary of neuron response characteristics. The top two
panels are redrawn from (Kubo et al., 2014). On the left of the “Response type”
panel, the little arrows symbolize optic flow stimulation when the fish is heading to-
wards the left, i.e. the first row shows forward optic flow stimulation to the left eye,
the second row backwards stimulation to the left eye and so on. The response types
are indicated by the columns of black squares. E.g., the first column refers to neu-
rons responding whenever there is forward stimulation to the left eye, irrespective of
the stimulus delivered to the other eye, and so on. The histogram on top (“Origi-
nal data”) shows the frequency per fish of neurons of a given response type found
in a sample of 3015 cells from six zebrafish larva APT. Most neurons are monocular
direction selective (first block). Also, a substantial fraction of neurons specifically re-
sponding to global optic flow fields (e.g., forward translation) was found. The third
panel (“Sparse Coding”) shows the results of the present study which are in good
general agreement with the fish data, as opposed to “Whitened Sparse Coding”
which yields neurons for higher level egomotion patterns. The “Backpropagation”
block shows the responses of the 1,800 units from all three hidden layers of the su-
pervised learning network, which had been trained to classify optic flow patterns for
egomotion.
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3.5 Conclusion

Our results allow three major conclusions. First, receptive fields of zebrafish APT

neurons are clearly related to the statistics of environmental stimuli as extracted

by the plain sparse coding network. The whitened sparse coding approach yields

interesting results in terms of egomotion recovery but does not reflect the properties

of zebrafish APT neurons. Still, it may model properties of higher level neurons

in other animals or other areas of the brain.

Second, the statistical analyses of the optic flow stimuli reveal that the repre-

sentation of the stimulus set requires vectorial receptive fields (kernels) that do not

correspond to realizable flow fields such as simple foci or vertices. Examples are

directionally opponent center-surround patterns (Fig. 3.2a) or spiral patterns as in

Fig. 3.2c. This result is in conflict with template-based models of optic flow pro-

cessing (Franz et al., 2004; Perrone, 1992) which predict realizable flow patterns

as vectorial receptive fields.

The third conclusion is that the objective function of statistical learning ap-

proaches plays an important role in biological modeling. Kernels that are optimal

for reconstructing retinal motion fields (as are generated by sparse coding) need

not be the best for estimating egomotion. Indeed, the backpropagation approach

in which egomotion was used as a teacher signal led to a response type pattern

which is quite different from the animal data and the other simulations. The ques-

tion of what exactly is a complete stimulus representation in the sense of H. B.

Barlow (1972) needs to be re-considered in the light of the animal’s lifestyle.
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Chapter 4

Dual population coding for topological navigation:

Combining discrete state-action-graphs with dis-

tributed spatial knowledge1

Abstract

Topological schemes for navigation from visual snapshots have been based on

graphs of panoramic images and action links allowing the transition from one

snapshot point to the next; see, for example, Cartwright and Collett (1987a) or

Franz et al. (1998a). These algorithms can only work if at each step a unique

snapshot is recognized to which a motion decision is associated. Here, we present

a population coding approach in which place is encoded by a population of rec-

ognized “micro-snapshots” (i.e. features), each with an associated action. Robot

motion is then computed by a voting scheme over all activated associations. The

algorithm was tested in a large virtual environment (Virtual Tübingen (van Veen

et al., 1998)) and shows biologically plausible navigational abilities.

1Mallot, H. A., Ecke, G. A., & Baumann, T. (2020). Dual Population Coding for Path Plan-
ning in Graphs with Overlapping Place Representations. Spatial Cognition XII, 3–17. Available
from: http://dx.doi.org/10.1007/978-3-030-57983-8 1
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CHAPTER 4. DUAL POPULATION CODING FOR TOPOLOGICAL NAVIGATION

4.1 Introduction

4.1.1 An evolutionary view of spatial representation

The evolution of spatial cognition is generally thought to have started from sim-

ple stimulus-response behaviors such as stimulus-driven orienting reactions and

to proceed further by a number of innovations that include (i) mechanisms for

egomotion perception and path integration, (ii) the memorization of stimulus-

response (or state-action) pairs composed of a distinguishable landmark and a

navigational action (“recognition-triggered response”), (iii) the concatenation of

such recognition-triggered responses into chains or routes, and (iv) the linking-up

of multiple recognition-triggered responses into networks or graphs in which novel

routes can be inferred by the combination of known route segments (Madl et al.,

2015; H. A. Mallot & Basten, 2009; Trullier et al., 1997; J. M. Wiener et al., 2011).

In addition, mechanisms for invariant landmark and place recognition, strategic

selection of way- or anchor-points, metric embedding of place-graphs, or hierarchi-

cal graph structures may improve navigational performance and are thus likely to

play a role.

Since many different models can be build on these elements, it is interesting

to ask for a minimal or most parsimonious model supporting a given level of

behavioral flexibility. In this paper, we address this question for the case of the

minimal cognitive architecture supporting way-finding behavior. By a minimal

model, we mean a model meeting the following requirements:

1. A minimal model should be close to the evolutionary starting point of stim-

ulus-response, or state-action schemata;

2. it should require only a small amount of visual invariance in object recogni-

tion and therefore work with the rawest possible image information;

3. it should use simple decision processes in path-planning such as recognition-

triggered response; and

4. it should not rely on explicit metric information which is hard to obtain.

With these constraints in mind, we present a model for graph-based navigation

that marks a lower bound of cognitive complexity required for way-finding and that

can be used to study further improvements by additional evolutionary innovations.
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4.1. INTRODUCTION

Figure 4.1. Graph-navigation in single-unit and population coding. A.
In standard topological navigation, every place is represented by a unique node and
route segments are given by the graph-links. The desired trajectory shown in blue is
therefore a graph path. B. In dual population coding, a bundle of paths is constructed
for a given navigation problem. Three such paths without common nodes (except
start and goal) are shown in the figure. T he desired trajectory is then calculated by a
voting scheme over the currently visible nodes of all paths. It is generally not a path
of the graph.

4.1.2 Dual population coding

Two basic elements of spatial representations are (i) state-action associations such

as Tolman’s (Tolman, 1932) means-ends-relations, Keefe & Nadel’s O’Keefe and

Nadel (1978) taxon system, Kuipers’ (Kuipers, 1978) control laws, or the place

recognition-triggered response of Trullier et al. (Trullier et al., 1997), and (ii)

the representations of places and place relations such as Cartwright & Collett’s

(Cartwright & Collett, 1982) snapshot-codes for places or O’Keefe & Nadel’s

(O’Keefe & Nadel, 1978) locale system. The two systems are connected by the role

of place recognition as activator of a state in the state-action schemata involved.

In most models, it is assumed that each place is represented by just one node

of a graph (Franz et al., 1998a; Kuipers, 1978, 2000; R. U. Muller et al., 1996)

such that a unique state-action schema will control each navigational step. If

place recognition fails, navigation will go wrong. Robustness of navigation there-

fore depends foremost on the robustness and invariance of place recognition as

a prerequisite. Here, we argue that in an evolutionary view of navigation, ro-

bust way-finding should be possible even with rudimentary place recognition and
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CHAPTER 4. DUAL POPULATION CODING FOR TOPOLOGICAL NAVIGATION

distributed place representations.

Our model differs from standard models of topological navigation (Franz et al.,

1998a; Kuipers, 1978, 2000; R. U. Muller et al., 1996) in two major respects that

can be summarized as “dual population coding”: first, at any instant in time, many

nodes of the graph are activated and encode the agent’s position in a population

scheme. This avoids costly selection processes of strategic anchor points and has

the additional advantage that the visual cues and recognition processes can be

kept simple. Of course, population coding of space is well in line with empirical

findings in the place-cell literature (Wilson & McNaughton, 1993). Second, as a

consequence of population coding of space, route selection has to be based on many

interacting recognition-triggered response schemata, one for each active unit in the

population code. This is implemented by a voting scheme where the suggested

motion decisions from all active schemata are averaged. The idea of view voting

has been suggested earlier for behavioral data by H. A. Mallot and Gillner (2000a).

In insect navigation, a similar scheme has been suggested for route following with

multiple snapshots by B. Baddeley et al. (2012) and Smith et al. (2007), but unlike

our model, this model does not allow for alternative route decisions from a given

position. As a result of dual population coding, the trajectory eventually found by

the algorithm is not a path of the graph, but a metric average of bundles of many

paths connecting individual nodes in the population codes for start and goal.

4.1.3 Elements of topological navigation

Graph nodes. Graph models of spatial representations have used various types

of nodes. As mentioned above, the standard models (Cartwright & Collett, 1987a;

Franz et al., 1998a; Kuipers, 1978, 2000; R. U. Muller et al., 1996) use place-graphs

where nodes represent places defined as visual areas from which the corresponding

landmark cues are recognized. The places are not geometrical points but have

an extension, also called a “confusion area” (Franz et al., 1998a; Hübner & Mal-

lot, 2007a), within which the cue is always recognized and further distinctions

of location are therefore impossible. This idea of place representation is well in

line with the snapshot mechanism in insect vision, where raw panoramic images

are used as place cues (Cartwright & Collett, 1982; Fleer & Möller, 2017; Franz

et al., 1998b; Möller & Vardy, 2006). Note, however, that more complete models

of place recognition will also include information about three-dimensional layout
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4.1. INTRODUCTION

and place neighborhoods (Epstein & Kanwisher, 1998; Lowry et al., 2016; H. A.

Mallot & Lancier, 2018; Wilson & McNaughton, 1993). A more general view on

the content represented by the graph nodes has been suggested by Tolman (1932)

in his means-ends-network. Here the “nodes” are inner states of the agent or in-

termediate goals (the “ends”) that can be achieved. Of course, such goals could

be places to reach, but Tolman’s view of a cognitive map can easily be extended to

non-spatial problem solving as in Arbib & Lieblich’s world graph approach (Arbib

& Lieblich, 1977). Another idea of spatial graphs assumes that nodes do not rep-

resent place or observer position, but are also specific for viewing direction. The

result is a graph of views, each specific for an observer pose (position plus orienta-

tion) (Gaussier et al., 2002; Röhrich et al., 2014; Schölkopf & Mallot, 1995). This

idea is taken to an extreme in the current approach: graph nodes are now specific

for small image features or “micro-snapshots” that are visible from within certain

“place fields”, but these place fields are vague, largely overlapping and subject

to aliasing. In the implementation discussed here, micro-snapshots are realized

as SURF-features (Bay et al., 2008a). For features that can be recognized with a

higher level of invariance, see for example the “bag-of-words” algorithm for object-

and scene recognition (Sivic & Zisserman, 2003a).

Population code for space. Neural models of place recognition are generally

based on distributed representations such as the ensemble code for space found in

the hippocampal place cell system (O’Keefe & Dostrovsky, 1971; Wilson & Mc-

Naughton, 1993). Places are then represented by activity peaks (“attractors”) on a

layer of places cells (Bicanski & Burgess, 2018; Byrne et al., 2007; McNaughton et

al., 2006; Sheynikhovich et al., 2009) in which many place cells are simultaneously

active. The attractor model assumes that cell connectivity reflects spatial nearness

of each cell’s place field, although the hippocampus does not show a topographic

organization. Connectivity is local (when plotted in the coordinates of the firing

fields) and this locality is required for the formation of a stable attractor (Amari,

1977). Attractor models nicely explain egocentric working memory processes such

as spatial updating, approaches to a goal or mental imagery, but are not easily

generalized to large-scale representations in longterm memory and to way-finding

in scarcely connected graphs.
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Arbitration. In their distinction between route and map memories, O’Keefe

and Nadel (1978) emphasize the fact that in a route, the last element is the goal,

whereas in a map, every node can become the goal. This implies that a path-

planning mechanism must exist that allows to generate a route from the current

starting point to an arbitrary goal. In simple graph models, the required compu-

tation is the solution of a shortest-path problem such as the well-known Dijkstra

algorithm (Dijkstra, 1959). Shortest-path algorithms are commonly used in mod-

els of topological navigation (Kuipers, 2000; R. U. Muller et al., 1996; Schölkopf

& Mallot, 1995; J. M. Wiener & Mallot, 2003). The resulting route is a path in

the graph, i.e. a sequence of graph nodes connected by graph links that contain

information of the required action for each step. Shortest path algorithms require

a full planning cycle before the onset of navigation, which is probably not the case

in animals and humans where planning depth is limited to a few steps (Cramer &

Gallistel, 1997; Huys et al., 2015; J. M. Wiener et al., 2009). Complete start-to-

goal planning with a small number of steps can however be achieved in hierarchical

representations (Botvinick, 2008; J. M. Wiener & Mallot, 2003).

If places are represented by a population of graph nodes, each associated with a

suggested action, a mechanism for decision-making is required. In our approach, all

possible actions can be expressed as angular heading changes, which can simply

be averaged in a voting scheme. If possible choices cannot be superimposed or

averaged, non-linear interaction schemes are needed as have been studied e.g. by

Arbib and Lieblich (1977).

Metric information. Topological navigation is possible without the use of any

metric information whatsoever. This would be the case if action links are specified

as guidances, i.e. by the next landmark cue to reach, and each node is within

the catchment area of all its connected neighbors (Cartwright & Collett, 1987a;

Franz et al., 1998a). This approach requires large catchment areas and therefore

elaborate place recognition, which is not available in the micro-snapshot approach.

Rather, actions need to be represented by associating a movement direction to

each micro-snapshot. These movements are carried out “ballistically”, i.e. without

further control.

Directional action information could be stored in a purely egocentric way, i.e.

relative to the current bearing of each micro-snapshot (feature). Initial experi-
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ments with this encoding, however, failed, probably because each feature can be

detected under a wide range of viewing directions but should always code for the

same action. For example, if the agent passes a feature in a narrow alley and

the associated motion direction is straight ahead, the angle between the feature

bearing and the required movement direction could vary almost between 0 and 180

degrees.

In this study, we therefore decided to store an allocentric reference direction

and express both heading and action angles relative to this reference. Compared

to true north, this allocentric reference direction is subject to errors. However, it

will be shown to be stable over repeated visits of a given position and to drift only

continuously between different positions in the maze. Estimates of an allocentric

reference direction seem to be computational requirement in path integration as

well (Cheung & Vickerstaff, 2010; Vickerstaff & Cheung, 2010). In biological

systems, the reference direction is represented by the head direction system (Seelig

& Jayaraman, 2015; Taube et al., 1990; Taube, 2007).

In the present approach, odometry is used only implicitly by keeping a fixed

distance of travel between subsequent feature recordings. Graph links therefore

contain local metric information, i.e. the fixed distance and the required turn as

has been used also in the graph approaches by Foo et al. (2005), Schölkopf and

Mallot (1995), and Warren (2019). Global metric embedding of the graph should

be possible, but is not attempted in this study.

The model was implemented, tested, and evaluated in in two virtual environments,

one modeled after the downtown area of Tübingen, Germany (van Veen et al.,

1998), which the algorithm learned by random walk exploration, and an iterated

Y-maze called Hexatown, inspired by a study by H. A. Mallot and Gillner (2000a).

The algorithm was able to guide an agent to any known location in the virtual

environments; its ability to find good routes for navigation was confirmed exper-

imentally by comparing the algorithm’s routes to optimal length, with the result

being routes that were only 10% - 20% longer than the optimum on average. Eval-

uations were performed on a customary home computer, achieving good real-time

performance.
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Table 4.1. List of variables.

variable description

fi feature stored in graph
di descriptor (64-dimensional description vector of feature fi)
ϑS similarity threshold for feature recognition
F, Ft set of all features fi in the graph and subset visible at time t
N(i) neighborhood set of all features co-visible with fi.
ϑN neighborhood threshold for feature recognition
ψi place field (region of visibility) of feature fi
t time step (frame) in multiples of 1/15th of a second
l learning step occuring every 15 frames during exploration
aij directional graph edge leading from feature fi to fj.
ν,ν reference direction as angle or unit-vector
βi current perceived bearing of feature fi relative to ν.

β̂i stored bearing label of feature fi
ηt,ηt heading angle of the agent at time step t, relative to ν, expressed

as angle or unit vector
αij,αij stored heading label for aij as angle or unit vector (interpreted

relative to ν)
λ, κ weights for updating of ν and η
n random error drawn from normal distribution, for ν updating.
c counter used for calculating iterative means
p, P Dijkstra path and path bundle (set of multiple non-overlapping

Dijkstra paths)
Ep, Fp edge and node sets of a Dijkstra path p.
Jt set of currently visible features contained in paths of bundle P .
αt movement consensus at time step t, obtained from features in Jt.

4.2 Navigation algorithm

4.2.1 Feature detection

Micro-snapshots are defined by as “upright speeded-up robust features” (U-SURF)

as implemented in the OpenCV computer vision library (Bay et al., 2008a; Brad-

ski, 2000). SURF finds interest points as intensity blobs by searching local maxima

of the determinant of the image Hessian; color information is ignored. Scale in-

variance is achieved by considering each feature point at its optimal scale. In a

second step, a 64-dimensional vector (“descriptor”) is associated with each blob,

containing information about image intensity gradients in a small patch around
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4.2. NAVIGATION ALGORITHM

the interest point. The descriptor is used to compare and match features with each

other. In U-SURF, it is assigned a unique orientation and is therefore not rotation

invariant. Rotation invariance is not required in our algorithm since the agent is

confined to movements in the plane. The number of scale levels was limited to

two octaves with two layers each since information about the viewing distance of

a feature should not be completely ignored.

The features of a frame were ranked according to the value of the determinant

of the local Hessian, i.e. their contrast. Up to 30 features from each frame were

used for further analysis. We denote the features as fi and their descriptors as di;

and F = {fi | i = 1, . . . , n} is the set of all features stored in the system.

4.2.2 Feature matching

Whenever a feature is detected by the U-SURF procedure, it is checked for identity

with all stored features in F using two criteria. First, the root mean squared

difference between the descriptors of the compared features should be below a

threshold ϑS. Second, to avoid aliasing in large sets of features, we require that

the features share a context of at least ϑN other features. To this end, we store for

each feature fi the set Ni of simultaneously visible other features. Two features

fi, fj are thus identified with each other, if ∥di − dj∥2 < ϑS and |Ni ∩ Nj| ≥ ϑN .

If an encountered feature is found to be novel, it is included into F .

The value for ϑN depends on the total number of features detected in each

image. In our simulations, the value was set to ϑN = 4 at up to 30 different fea-

tures per frame. Note that aliasing still occurred occasionally even with expanded

feature-neighbor matching (see Fig 4.4 below). In practice, the algorithm is ro-

bust against a small amount of outliers and can find and navigate routes even with

faulty map data. See section “Pathfinding and voting” below for more details.

Fig. 4.2 shows two features in the respective images from the “Virtual Tübin-

gen” dataset. In the second row, the position from which each feature was first

defined and added to F is marked by a cross. For all positions in open space,

color indicates the similarity of the most similar visible feature with the stored

one. The third row of Fig. 4.2 shows the area from which the feature is detected

using the two-step comparison procedure with similarity of descriptors and feature

context. It will be called the place field of the feature and roughly corresponds to

the catchment areas in snapshot homing or the firing fields of a neuron tuned to
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the feature.

Figure 4.2. Place fields. Top row: two views from a scene with detected features
(a window and a letter from a company nameplate). Middle row: local maps of the
environment superimposed with the “feature distance” of the reference feature to the
most similar feature detected from each position. (Feature distance is mink ∥dref−dk∥2
where k numbers all features visible from each location.) The black × marks the
position where the reference feature was first detected. Third row: map of locations
where one feature was identified with the reference feature, based on both the similarity
criterion and the consensus criterion. Note that the set of locations is not connected.
Also in the larger open space (left column: Market place), the place fields tend to be
larger than in smaller places (right column: Street crossing “Krumme Brücke”).
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Figure 4.3. Graph edge learning. Left: Dotted line is the trajectory of agent
with time steps (small dots) and learning steps (bold dots). Two features fi and f2
have already been encountered and added to the feature set; the circles indicate their
place-fields. The agent is currently moving with heading η in the place-field of feature
f1, but outside of the place-field of feature f2. Right: The agent has now passed the
overlap zone where both features are detected. At the next learning step, feature f2 is
again detected but feature f1 has moved out of sight. In this situation, a bidirectional
pair of edges aij , aji is added to the graph and the edges are labeled with the current
heading and its inverse, ±η.

4.2.3 Graph edge formation

If a feature that was previously visible gets out of sight, the agent must have

traveled a path out of the place field of this feature to some point inside the place

fields of other features that remain or have become visible. This is the basic idea

of learning graph edges in the algorithm. In order to avoid too high densities of

graph links, new edges can be stored not at every time step, but only at a slower

pace.

The basic time step of the algorithm is the frame, i.e. the recording of one

image; we denote frames by the index t. The frame rate used in the graphics

simulations below is 15 frames per second. Graph learning does not occur at every

time step, but only once in a while, when the agent has moved sufficiently far away

from the last learning event. Learning steps are counted by a second counter l.

In the simulations below, the distance that the agent must have traveled before

a new learning step occurs was set to about two simulated meters, or 15 frames.

Note that we use the position ground truth of the VR simulation for stepping l.

This can easily be relaxed by some simple path integration algorithm which was,
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Figure 4.4. Full graph of the testing environment “Virtual Tübingen”. For visual-
ization, the view graph is embedded into a map by placing each feature at the agent’s
position from where it was first detected, and drawing the edges between them (blue
lines). The shown graph completely maps the virtual environment and consists of
222,433 nodes and 3,492,096 edges. The blue lines crossing empty white space result
from aliasing.

however, not implemented. The time steps at with learning counter l is stepped,

are denoted by t(l).

Let F1 and F2 be the sets of features visible at two subsequent learning steps l

and l+1, respectively. Assume fj ∈ F1 and fj ̸∈ F2. We then add a pair of directed

edges ajk, akj (forward and backward) between fj and up to three randomly chosen

features fk ∈ F2 to the graph. The edges are labeled with the current heading

or its inverse, respectively (see Fig 4.3 and next paragraph). The number of

edges created per vanishing feature was limited to three to avoid exceedingly high

computation costs in later graph search. For the same reason, the upper limit of

a node’s degree after repeated visits is set to 100. A depiction of the full graph

appears in Fig 4.4.

4.2.4 Edge labeling and reference direction

During the entire travel, the agent is estimating and maintaining an allocentric

reference direction ν which is initialized to the value ν = 0 at frame 1 (see Fig 4.5).

All other angles are expressed relative to this reference direction, i.e. in an allocen-

tric scheme similar to the head direction in allocentric path integration (Cheung

& Vickerstaff, 2010; Taube, 2007; Vickerstaff & Cheung, 2010). The dependent

angles are (i) the current heading angle ηt, (ii) the feature bearings β̂i stored with

each feature fi upon definition of the feature, and (iii) the directional labels of the

edges aij, aji which are initialized with or against the current heading angle, i.e.
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Figure 4.5. Head-direction system. Left: During the entire simulation, the system
is maintaining a reference direction ν with is initialized to the movement direction in
the first frame. Heading angle η and feature bearings βi are always expressed relative
to ν. The “true north” direction is known to the virtual reality simulation, but not to
the agent. Right: If a feature is detected, its stored bearing label β̂i is compared to
the actual bearing in the current image, βi and the reference direction is updated so as
to reduce the difference between β̂i and βi. Of course, this is done for many features
simultaneously, as described in Eq. 4.1.

αij = ηt and αji = ηt + π, respectively.

The reference direction is constantly affected by a noise process n and up-

dated according to the the available landmark cues, i.e. the bearings of known

features. Let Ft denote the set of known features visible at frame t and β̂i be their

stored bearings. The agent then compares the current feature bearings with the

stored ones and computes the average deviation as a circular mean. The reference

direction is then updated as

νt+1 = νt +
λ

|Ft|
cmean
{i|fi∈Ft}

(
β̂t,i − βt,i

)
+ n, (4.1)

where λ is set to 0.05 and the standard deviation of n is set to σ = 0.025 rad. The

circular mean of a set of angles {γi | i ∈ A} is defined as

cmean
A

(γi) := atan2

(∑
i∈A

cos γi,
∑
i∈A

sin γi

)
. (4.2)

This updating rule attributes the average bearing error to the reference direction.
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Figure 4.6. Compass direction drift over a large explored area. The ν
estimate deviates substantially (over 90°) from its starting value, but remains locally
consistent.

It can compensate for the noise, but introduces a new type of error if the features

are unequally distributed in the image. Assume, for example, that the agent relies

only on features on its left. As it moves forward, these features will move further to

the left, leading to positive deviations β̂i−βi. The algorithm will then assume that

the reference direction has turned to the left. As a result, the reference direction

in a large environments drifts with the agent’s position, as is illustrated in Fig. 4.6.

However, in prolonged exploration, the assumed reference directions convergence

to a stable, locally consistent distribution over explored space.

In addition, the stored bearings for each feature, β̂i are updated at each learning

step at which the feature i is re-detected by the iterative mean:

β̂t(l+1),i =
ci

ci + 1
β̂t(l),i +

1

ci + 1
βt(l+1),i, (4.3)

where ci is a counter stepped at each update and βt(l),i is measured relative to the

current compass direction νt.

Finally, a link aij may be rediscovered upon a later visit of the same location.

In this case the associated direction label αij is updated as

αnew
ij =

cij
cij + 1

αold
ij +

1

cij + 1
ηt. (4.4)
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Figure 4.7. Route examples. Two different examples of path bundles (orange)
from the agent’s current position (black cross) to a goal locations (set of green dots).
The blue background shows the edges of the view graph, as described in Fig 4.4

.

Again, this can happen only when the slow learning counter l is stepped. As for

the bearings, cij is a counter stepped at every update and ηt is measured relative

to the current reference direction ν. Note that the counters ci and cij in Eqs. 4.3

and 4.4 can be avoided by replacing the bearing and heading angles by unit vectors

and storing sums of these unit vectors as labels. From the accumulated vectors,

the angles can than simply be obtained by the atan2 function.

4.2.5 Pathfinding and voting

In path-finding, the goal location is defined by a set of known features, and can for

example be provided by an image depicting the goal. The algorithm then calculates

multiple non-overlapping paths from features at the agent’s current position to the

set of goal features, and uses a voting scheme to obtain navigable trajectories the

agent can follow towards the goal location (Fig 4.7).

In each pathfinding event, for one currently visible feature, the shortest path

is found to one of the features in the goal set with Dijkstra’s algorithm (Dijkstra,

1959). Then, the nodes and edges of that path are temporarily removed from the

graph, except for the first and last nodes, and the search is repeated for another

randomly selected pair of nodes. Due to the node removal, each path will have

zero overlap with all previous paths. Still, when represented in a metric map, path

trajectories will be similar due to overlapping place fields.

The search terminates when the pair of randomly selected start and goal nodes
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Figure 4.8. Direction voting. A. 360° panorama frame with detected SURF
features (black and orange circles with vertical stripe). During path-finding, movement
is derived from features that are also part of the path bundle (orange circles): The thick
lines originating from the orange features show their respective movement direction
vote relative to the reference direction ν (thin vertical stripe). B. The histogram shows
the votes sorted into 10°-bins and the resultant mean direction αt.

is unconnected in the graph lacking the temporarily removed nodes or when an up-

per limit has been reached. For example, in the tests detailed in the “Evaluation”

section below, we used up to 30 successive Dijkstra searches, but the algorithm

regularly found a lower number of routes, depending on the amount of exploration.

Note that all edges are considered to have the same length, i.e., Dijkstra paths only

differ in the number of edges they traverse.

Once a bundle of paths has been obtained, at the starting location, we could

use the initial edge labels αij to determine the current movement direction. Later

however, it is not clear which step of each path applies at each position along

the overall travel. Therefore, at each position, we determine the set of currently

visible features also included in the present bundle. From each such feature we

take the next edge along the respective path and thus obtain a set of movement

votes (Fig 4.8).

Each Dijkstra path p in the bundle P has an ordered set of edges Ep =
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{aij, ajk, akl,...} and set of nodes Fp = {fi, fj, fk, fl, ...}. At navigation time, the

set of visible features is Ft. We now consider the indices of all outgoing edges of

currently visible features contained in a path of the bundle, Jt = {(i, j) | fi ∈
Ft ∧ aij ∈

⋃
p∈P Ep}. The set of locally applicable motion directions is then given

by {αij | (i, j) ∈ Jt}. From these we obtain the movement consensus as

αt = cmean
Jt

αij, (4.5)

where cmean is the circular mean as defined in Eq. 4.2.

The final heading vector ηt+1 is calculated with stiffness κ ∈ [0, 1] as

ηt+1 = κηt + (1− κ)(cosαt, sinαt)
⊤. (4.6)

This results in a smoothing of the trajectory to reduce sway and corner-cutting

behavior; κ was set to 0.7.

Moving into the direction of ηt+1 ideally leads the agent along a route specified

by the bundle of paths, where it will continue to encounter labeled nodes. To

facilitate this process the number of features detected in each frame is doubled

during path following. If the number of usable nodes, |Jt|, drops below a threshold

of two, we assume that the agent has diverged from the path. In this case, a new

bundle of Dijkstra paths is calculated with the current feature set Ft as a starting

point. If the agent hits a wall, we simply use the Unity obstacle avoidance function

which results in wall following in the direction closest to the current heading η.

The algorithm determines if the goal is reached by comparing the set of cur-

rently visible features, Ft, to the set of goal features, Fg, and considers the goal to

be reached if |Ft ∩ Fg| / |Fg| ≥ 0.35. Note that there may be some offset between

the agent’s final position and exact goal location since there is no optimization or

“homing” step in our ballistic procedure.

Relying on the average of a set of movement instructions partially solves the

problem of wrong edges introduced into the graph due to aliasing, if enough alias-

free paths are present. Such aliases are formed occasionally since feature matching

relies on visual similarity only, and tend to be shorter than navigable connections

(see Fig 4.4). In the Virtual Tübingen environment, identical texture files are

occasionally used at different places, leading to an increased number of aliases.

However, as long as a sufficient number of correct edges corresponding to navigable
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trajectories exist, the votes of the erroneous connections will not cause navigation

to fail.

Finally, if the agent is unable to move during navigation, for example due to

obstacles or being stuck in a corner, or if no consensus can be found in the set

of movement instructions, the bundle of paths is recalculated, which has always

solved the problem in our simulation. If the agent ever gets lost, for example

because no known features are recognized, it may return to exploration behavior

for a short while (e.g., random walk).

4.3 Experiments

4.3.1 Experiment 1: Virtual Tübingen

The algorithm was tested and evaluated in a virtual environment of the downtown

area of Tübingen, Germany (3D model based on van Veen et al. (1998)), rendered

in the Unity engine (Unity Technologies, 2018). The agent in the virtual envi-

ronment was equipped with a 360° horizontal FoV and 60° vertical FoV camera

projecting to a 1280 × 240 pixel image. Depending on location, the SURF feature

detector would detect some 20 to 350 features per image, ranked by contrast. Of

these, up to 30 were used during exploration and up to 60 during path following.

The environment was explored with a random walk heuristic, i.e., the heading

η was rotated every 5 to 10 frames by a random angle drawn from a uniform

distribution between ±20 degree. Obstacle avoidance in the exploration phase

was realized as a reflection from the obstacle surface.

A first test concerned to continuity of the estimated reference direction ν in

loop-closing (Fig 4.9) which is important for consistent movement voting over

nearby locations. Fig 4.6 already shows this continuity for the standard version of

the algorithm. Here, the noise term n in the update rule for ν (Eq 4.1) was given

a fixed bias of 0.3 degree left, leading to a spatially continuous, but large, compass

drift. If the agent closes a loop, the ν estimate will therefore change discontin-

uously. Fig 4.9A shows this situation shortly before the actual loop closing. If

the agent now proceeds further, the starting point is recognized, and ν is updated

from the current feature bearings according to Eq 4.1. Since this happens at each

time step t, the original ν estimate is quickly recovered (Fig 4.9B). If the loops
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Figure 4.9. Reference direction during loop closing. A: Compass drift accu-
mulates during exploration (effect overdone for demonstration purposes). The agent
starts at point S and starts a counter-clockwise loop. B: When a loop is closed, the ν
estimate changes discontinuously. Since movement is performed relative to the current
ν estimate, sharp angle changes need to be avoided to ensure smooth movement. C:
ν estimates are smoothed over repeated visits of the loop closure point.

are repeated, or if the agent travels back and forth across the loop closing point

(Fig 4.9C), the ν estimates are spatially smoothed.

In a second test, exploration was continued until the agent had explored every

street at least once, resulting in the built-up of a full graph as in Fig 4.4. Five path-

finding tasks were defined as pairs of start and goal views. Each task was repeated

20 times, and the traveled distance was measured and compared to that of the

shortest possible route (Fig 4.10A). The agent solves each task by first selecting

features from the start view and estimating the reference direction ν from the

features’ bearings. Next, 30 Dijkstra paths are calculated, and from these, the

overall trajectory is generated by movement voting as described above.

The trajectories found for a single task may greatly differ between repetitions

due to many stochastic influences, such as node selection for start and goal nodes

and the noise added to the reference direction update. Further variation is in-

troduced by numerical effects in collision detection and the latency between con-

current components of the programs running the algorithm and simulation. The

algorithm may even guide the agent along different roads over multiple trials if

they are close in length to the optimal route (see Fig 4.10C,D).

The algorithm managed to guide the agent in a steady directional movement

from start to goal in all trials. On average, the agent’s routes were only 10% to

20% longer than the optimal routes (Fig 4.10B). The agent performed better, i.e.,

the routes were shorter, when they were leading mostly through roads and alleys

rather than traversing large open spaces such as the market square. The algorithm

was able to guide the agent even with large drift in the reference direction ν of
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Figure 4.10. Performance in Virtual Tübingen. A: Map depicting the eval-
uation routes. B: Results of the evaluation. The boxplot shows route length above
an optimal trajectory, as depicted in A. Performance is somewhat worse for route 2,
because it traverses a wide open area containing lots of distant landmarks, which are
worse for exact navigation. C - E: Ten repetitions of each of the routes 2, 3 and 4. C:
repetitions of route 2 show larger variations in open spaces. D: repetitions of route 3
show occasional choice of route alternatives as well as directional sway within single
repetitions. E: repetitions of route 4 show the lowest variability among the evaluation
routes

over 90° offset from the starting ν (see Fig 4.6).

The difference in length between routes through alleys and routes through large

open spaces can be ascribed to two factors:

1. Trajectories are not straight lines but reflect the steps of the random walk

exploration they were built from. The variation in trajectory directions is lower in

narrow alleys since the close walls force the agent to move along the alley in both

exploration and path following.

2. Roads, and especially alleys, contain more features with small place fields

due to natural occlusion. In wider spaces, features’ place fields are larger and
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the agent’s movement may be influenced by distant features containing movement

instructions which are relevant only to a part of the feature’s place field.

4.3.2 Experiment 2: Landmark replacement

In a behavioral experiment, H. A. Mallot and Gillner (2000a) studied recognition-

triggered response in human subjects by exchanging landmark positions after learn-

ing. They found that navigation is impaired if cue exchange leads to inconsistent

movement votes whereas normal performance is found for replacements preserving

the movement consensus. Navigational decisions thus seem to be based on move-

ment votes associated not with entire snapshots but with smaller image structures

such as landmark views. Indeed, votes based on micro-snapshots, although not

tested by H. A. Mallot and Gillner (2000a), would lead to the same predictions.

In order to test this behavior in the algorithm, we generated a virtual environ-

ment, similar to the one used by H. A. Mallot and Gillner (2000a), consisting of

an iterated Y-maze with three junctions (A,B,C), nine object models (landmarks

L1 − L9) placed in the 120° angles between roads, and a start and a goal loca-

tion (S,G, Fig 4.11). Each place (junction) with its landmarks was surrounded

by an opaque cylinder that could be permeated by the agent but prevented it

from seeing within-junction features from a distance. Thus, decisions had to be

based solely on the features of the current place and new Dijkstra searches were

generally initiated when reaching a new junction during path-finding. In addition,

environmental features were provided along the streets between junctions.

During learning, the agent explored all places of the environment in an exper-

perimenter-controlled scheme. When entering or leaving a place, it learned graph

edges and movement labels between features within the place and environmental

features. In the test phase, the route from start to goal had to be found in one of

four conditions:

1. Control: No landmarks were exchanged.

2. Consistent-across: Landmark replacement was across junctions but with the

same associated movement directions, realized by replacing landmarks L4

and L6 with copies of L9 and L8. In a path to the goal, these landmarks all

encode a left turn.
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Figure 4.11. Hexatown. A: Left: Original Hexatown setup by H. A. Mallot and
Gillner (2000a). Subjects had to learn the route from the starting point S to a turning
point T and back to the start. During exploration, they could also visit the unnum-
bered places. Right: Our Hexatown setup, consisting of three junctions with three
landmarks each. The algorithm had to repeatedly guide an agent from the start S
to the goal G. Junction B was modified in the different conditions. B: The actual
3D environment. The junctions were connected by short roads lined with buildings to
provide guidance outside of the junctions. The landmarks at the crossroads are free
assets from the Unity Asset Store (https://assetstore.unity.com/).

3. Inconsistent-across: Landmark replacement was across junctions but with

inconsistent associated movement directions, realized by replacing L4 and L6

with copies of landmarks L1 and L3. In paths towards the goal, Landmarks

L1, L3 encode a right turn.

4. Within-junction: The lateral landmarks at junction B, L4 and L6, were

swapped. In this case, the landmarks’ features are consistent, but not their

position and associated reference direction. In this condition, we expected

conflict as well.

The replacing landmarks were rotated to retain their original facing towards the

center of the junction, such that many of the features exposed to the agent were

also visible after replacement. Note that complete agreement is not possible in

the within-junction condition, since the landmarks were only rotated, but not

mirrored. Each condition was tested ten times by having the algorithm find a

route from start to goal repeatedly; these routes will differ subject to the random

elements of the algorithm (e.g., random start and goal selection in path-finding,

see section ”Pathfinding and voting” above). The evaluation was repeated with

five different permutations of the landmark placements, for a total of 200 runs for

all four conditions. The algorithm had to learn the environment again for each

permutation of the landmark placements. A run was considered a failure if the
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Table 4.2. Results of Experiment 2 for each landmark permutation P1 − P5.
p-vales are for paired t-test against control.

number of successful searches (out of 10)

control cons. incons. within

P1 10 10 0 0

P2 10 10 9 0

P3 10 10 0 9

P4 10 10 0 0

P5 10 10 0 0

total 50 50 9 9

p – n.s. 0.0019** 0.0019**

algorithm chose the wrong road at the junction B.

The logic of this experiment requires that the goal is reached by left and

right turns on different occasions. In the Mallot and Gillner experiment, this

was achieved by using one route in forward and backward direction; subjects were

not instructed to move towards a specific goal but to proceed in the same direc-

tion as during training. Since the algorithm needs an explicit goal specification,

we added a third junction C such that the goal has to be reached either by a left

or a right turn (see Fig 4.11A).

The results of this experiment appear in Table 4.2. In the control condition,

as well as the consistent-across condition, the goal was always reached in all five

landmark configurations. The procedure failed in the inconsistent and within con-

ditions. Path length was increased by 5.4% in the consistent condition as compared

to control. In the inconsistent-across and in the within-junction conditions where

the agent succeeded to reach the goal, excess path lengths were 30.4% and 26.8%,

respectively.

The variable performance of the algorithm for different landmark configurations

results from the feature selection process as described in section ”Pathfinding and

voting” above. If many salient features happen to be found on a non-replaced

landmark, performance will be high whereas errors are more likely if features from

the replacing landmarks are used. The same effect applies to the estimation of the

compass direction ν. In addition, ν will also be influenced by the changed land-

mark bearings of the replacing landmarks(β in Eq 4.1). This leads to occasional
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backward turns of the agent at junction B.

Our findings match the results of Mallot and Gillner in the control, consistent-

across and inconsistent-across conditions. In the within-junction condition where

the algorithm fails, human data show no effect. This may be due to the fact that

in the within replacements, novel views of each landmark become visible which

look completely different to the algorithm but seem to contain similarities for the

human observer. Indeed, humans can easily recognize a church building, say, from

different viewing directions even if the visible features differ. They thus seem to

use more abstract landmark information than our algorithm.

4.4 Discussion

The aim of this study was twofold: first, to reconcile the ideas of spatial population

coding and state-action representations via a voting scheme, and second, to identify

a lower bound for the amount of image processing and invariance needed in a

topological navigation algorithm. The results show that state-action navigation is

possible with vaguely defined position information and that the voting scheme is

an efficient way of decision making.

The sought minimality of the algorithm can clearly be claimed for the feature

extraction part. Image features are arguably the smallest element of visual input

carrying spatial information. The algorithm might even run with still simpler

feature types such as Gabor patches or Haar features (see, for example, B. Baddeley

et al. (2012), Sheynikhovich et al. (2009), and Smith et al. (2007)), but this was

not tested in the present study.

The situation is less clear for the total storage and processing needed to memo-

rize the graph. The Virtual Tübingen experiment was implemented on a standard

PC and ran in real time. Typical graphs had 2× 105 features each represented by

its 64-dimensional descriptor plus a bearing angle, which results in some 1.3× 107

floating point numbers or 52 MB. In addition, 3× 106 graph links were stored as

a list for which 3× 106 × log2(2× 105)2 ≈ 108 bits or 13 MB are required. Finally,

the heading labels attached to the links take another 12 MB. Thus the map of

Virtual Tübingen took some 77 MB which is not much in technical terms (e.g.,

the equivalent of three high resolution images fetched with a custom camera) but

may be beyond the storage capacity at least of small brains.
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It should be noted, however, that we did not systematically optimize the algo-

rithm for storage reduction. The dimension of the feature descriptors (64), their

resolution (single precision float), the maximum number of new features stored per

learning step (30), the maximum number of links added per observed feature tran-

sition (3), and the learning rate (every 15 time frames) were chosen freely to get a

working version. In order to reliably judge the biological plausibility of the storage

requirements of the algorithm, these parameters would have to be optimized and

neural encoding schemes would have to be applied.

The algorithm requires comparison operations between each newly detected

feature and all stored ones. This is a costly procedure in serial computers but can

easily be parallelized in a neural network. Moreover, since the agent is moving in

the environment with finite speed (about two simulated meters per second or 13 cm

per frame), there is indeed plenty of time for performing these operations. This

is in line with the general idea that way-finding in human navigators accounts for

just a minor part of the cognitive load of navigation (Spiers & Maguire, 2008). The

cost of feature comparisons can also be reduced by hierarchical representations in

which the total graph is subdivided into regions and search can then be restricted

to one region at a time.

The algorithm makes no use of path integration although some improvement

could likely be obtained by way of local metric (Foo et al., 2005; Warren, 2019)

or metric embedding (Hübner & Mallot, 2007a). This is mainly a design decision

taken in order to test the graph approach in isolation. It turned out, however,

that the representation and maintenance of a global reference direction is neces-

sary in order to obtain good results. The reason for this is that the interpretation

of feature bearing angles and the directional labels of the graph links must be

consistent under parallactic movements of the features in the image of the moving

agent. The reference direction used in the algorithm is equivalent to the “point

zero” of the ring-attractors used in many models of head-direction cells and path

integration (Hartmann & Wehner, 1995; McNaughton et al., 1996; Seelig & Ja-

yaraman, 2015; Taube, 2007). In our implementation, the agent does not actually

perform turns, but simply moves in arbitrary directions while the viewing direction

(retinal coordinate system) remains fixed relative to the world coordinate system

(“true north” in Figure 4.5 ). If it moves straight, the estimated heading direction

might still change, since it is measured relative to the reference direction with in
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turn is subject to noise. Overall, the system of reference direction, heading and

bearing angles is functionally equivalent to the head direction system. Note that

the advantage of an “allocentric” reference direction, even if it is maintained with

direct measurements, has also been demonstrated for path integration (Cheung &

Vickerstaff, 2010; Vickerstaff & Cheung, 2010).

Path planning is based on multiple Dijsktra searches and the subsequent voting

scheme as described in Eq. 4.5. As a result, the path eventually found by the agent

is not a chain of features or place fields visited one after the other, but a semi-metric

average of the trajectories that each Dijkstra-path results in (cf. Figure 4.1). This

is reminiscent of Tolman’s (Tolman, 1948) notion of the route as a “strip map”,

which has a non-zero extension to the sides. Finite-width strip maps should allow

smoother navigation than simple place-action chains.

The Dijkstra algorithm was chosen for computational efficiency only and could

easily be replaced by biologically more plausible procedures such as the decre-

mented back-propagation of a signal from the goal, as suggested for example by

Voicu and Schmajuk (2002). In this case, the bundle of Dijkstra paths would be

replaced by a wave of activation sweeping over the feature set and activating the

relevant action links. Let gi denote the value of the decremented back-propagation

process for a feature i, i.e. its nearness to the goal. The eventual movement di-

rection would then be calculated as the weighted circular average of movement

directions suggested by the links between the currently visible features and all

connected features with larger nearness,

ᾱt = atan2

∑
i∈Ft

∑
(i,j)∈E

max(0, gj − gi)

(
cosαij

sinαij

) (4.7)

where Ft is the set of features visible at frame t and E is the edge set of the graph.

Our algorithm does not employ an explicit homing procedure (Cartwright &

Collett, 1982; Franz et al., 1998b; Möller & Vardy, 2006). Of course, the graph

does contain three-way associations of the “state–action–next state” type and these

association are used in generating the Dijkstra paths during the planning process.

However, since we do not search for specific features as subgoals along the route,

the information about the next state does not play a role in actual navigation.

Indeed, we would not be able to say, which of the many possible next “subgoals”

in the Dijkstra bundle should be approached. Navigation is therefore “ballistic”,
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i.e. it relies only on the two-way associations of states to actions, without using

predictions about further states. The reason for this is that we consider homing

and search as additional mechanisms that a minimalist model should be able to

do without. In richer models, or models using backward causal planning, they are

likely to play an important role.

The algorithm has not been developed as a model of a particular biological

system. However, on a computational level, we think that its elements are biolog-

ically plausible both in terms of possible implementations in neural networks and

mechanisms identified in the brain. If the features (micro-snapshots) and their

detectors are considered as “cells” with their respective place fields (Figure 4.2),

they share some obvious properties with hippocampal place cells in rodents, but at

the same time are much simpler. Most notably, our feature cells rely exclusively

on visual input and do not depend on path integration, which is absent in our

algorithm.

The memory acquired by the proposed algorithm allows to find novel routes

and shortcuts by recombination of segments of previously learned routes. It thus

qualifies as a cognitive map in the sense of Tolman (1948), O’Keefe and Nadel

(1978) or Kuipers (1978). However, it does not build a full metric map in the sense

of Gallistel (1990) or the robotic SLAM (simultaneous localization and mapping)

literature (see, for example, Durrant-Whyte and Bailey (2006) and Thrun and

Leonard (2008)).

4.5 Conclusion

Dual population coding is a novel scheme to combine population coding of places

or navigational states with a state-action representation of spatial knowledge by

means of action voting (the second population step). The results presented in

this paper demonstrate the functionality of the scheme in knowledge acquisition

and way-finding. They pave the way for models of the evolution of spatial cog-

nition from vague representations of places and recognition-triggered responses to

full-fledged cognitive maps. The model requires the additional representation of

an “allocentric” reference direction but no other metric components. Future ver-

sions will need to include path integration and spatial hierarchies addressing the

granularity of cognitive space.
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Chapter 5

Characterizing visual performance in mice: An

objective and automated system based on the op-

tokinetic reflex1

Abstract

Testing optokinetic head or eye movements is an established method to determine

visual performance of laboratory animals, including chickens, guinea pigs, mice, or

fish. It is based on the optokinetic reflex which causes the animals to track a drift-

ing stripe pattern with eye and head movements. We have developed an improved

version of the optomotor test with better control over the stimulus parameters, as

well as a high degree of automation. The stripe pattern is presented on computer

monitors surrounding the animal. By tracking the head position of freely mov-

ing animals in real time, the visual angle under which the stripes of the pattern

appeared was kept constant even for changing head positions. Furthermore, an

algorithm was developed for automated evaluation of the tracking performance of

the animal. Comparing the automatically determined behavioral score with man-

ual assessment of the animals’ tracking behavior confirmed the reliability of our

methodology. As an example, we reproduced the known contrast sensitivity func-

tion of wild type mice. Furthermore, the progressive decline in visual performance

of a mouse model of retinal degeneration, rd10, was demonstrated.

Supplemental materials : http://dx.doi.org/10.1037/a0033944.supp

1Benkner, B., Mutter, M., Ecke, G., & Münch, T. A. (2013). Characterizing visual perfor-
mance in mice: An objective and automated system based on the optokinetic reflex. Behavioral
Neuroscience, 127(5), 788–796. Available from: http://dx.doi.org/10.1037/a0033944
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5.1 Introduction

Visual impairment, and even more those diseases which lead to complete blind-

ness, represent the most devastating restrictions on quality of life. Most of such

diseases originate already in the retina where they may cause a loss of functional

light sensitive cells (Hartong et al., 2006). Until now, there is still no satisfactory

treatment of inherited photoreceptor degenerations. Numerous studies are per-

formed in mouse models which were genetically altered (K. H. Kim et al., 2008)

to simulate human retinal degenerations (Huber et al., 2009). Despite the growing

use of mice in vision research, little basic information is available on their spatial

vision and how it might be affected by targeted mutations affecting the visual

system (Douglas et al., 2005). Behavioral testing of visual performance offers the

opportunity to characterize phenotypes and time courses of their development.

Furthermore, the interpretation of behavioral tests can help to draw conclusions

on integrated brain function (Abdeljalil et al., 2005).

Visual function in mice can be assessed in many ways. Retinal dysfunction is

often associated with morphological alterations, which can be examined by histo-

logical approaches, or in vivo examination of the fundus (Ball et al., 2003). To

evaluate the functions of the different cell types in the retina, electrophysiological

approaches are the method of choice. The a-wave of the luminance electroretino-

gram provides information on photoreceptor function, the b-wave about bipolar

cells and amacrine cells (Pinto et al., 2007). To assess the transfer of visual infor-

mation to the brain and visual integration, visually evoked potentials (VEP) are

useful (Porciatti et al., 1999). In addition to these approaches, behavioral mea-

surements are necessary to assess the impact of genetic and morphologic changes

on visual performance. So far, there is only little basic information available on

spatial vision of mice (Prusky et al., 2004). A possible reason is that, for a long

time, only few behavioral techniques were available to test mouse vision. Most of

the previously described experiments are based on reinforcement visual discrimina-

tion tasks. Because mice are only moderately adaptive to solve behavioral tasks,

the design of such tasks is difficult (Whishaw, 1995) and requires a substantial

investment of time to generate valid psychophysical thresholds (Busse et al., 2011;

Prusky et al., 2004).

An alternative is to measure the optokinetic response, which manifests itself
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in an involuntary head and eye movement. Most animals compensate a global

movement of the visual environment by moving their eyes and head to stabilize

the image of the visual world on the retina. Such compensatory movements can be

triggered by presenting a drifting regular stripe pattern (Mitchiner et al., 1976).

Because this method is based on the optokinetic reflex it works without any rein-

forcement training. Thus, an optomotor testing system offers a simple and rapid

method to measure visual performance, such as acuity and contrast sensitivity of

adult and developing mice (Douglas et al., 2005). A common way to set up such a

testing apparatus is to use a mechanically driven drum covered with vertical black

and white stripes at fixed spatial frequencies.

One disadvantage of a fixed stripe pattern is that the bar width subtends dif-

ferent visual angles depending on the mouse position inside the drum. Hence,

accurate measurement of the spatial acuity is difficult with such a setup. This

disadvantage can be overcome by replacing the mechanical drum with a “virtual

reality” cylinder, as first developed by Prusky et al. (2004). This setup, consisting

of four computer monitors facing into a square, provides more flexibility in chang-

ing the parameters of the presented stripe pattern. In Prusky’s testing arena the

stimulus is manually adjusted at the beginning of each experimental trial so that

the virtual cylinder is centered over the mouse’s head. In our present study, we

advanced this method to move the center of the virtual cylinder in real time with

the freely moving animal.

A second substantial problem concerning the interpretation of published be-

havioral results is that there is no objective method for assessing the animal’s

tracking behavior. Usually, the decision whether or not an animal tracked a drift-

ing stripe pattern is based on the subjective assessment of the experimenter. Here,

we aimed to minimize the observers influence, and developed an automated and,

thus, objective algorithm to score the animal’s behavior. By automatically assess-

ing the behavior of each individual animal in real time during the experiment, we

can reduce the experimental time and the potential stress for the tested animal. In

total, the advantages of our enhanced setup comprise higher flexibility to modulate

the parameters of the presented stimuli (spatial frequency, contrast), and reduced

experimental bias due to automated and objective behavioral scoring.
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Virtual rotating drum, 
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Figure 5.1. Schematic drawing of the experimental setup. A: The “optokinetic
drum” virtual arena. Rotating stripe patterns can be flexibly adjusted (width, con-
trast, and speed). The mouse is observed from above by a camera (Viewer3, BIOB-
SERVE GmbH), to record its position. B: Stimulus adjustment for spatial resolution.
The video-controlled tracking system allows adapting the stripe pattern to the head
position in real time. This keeps the spatial frequency of the presented stimulus con-
stant by adjusting the stripe width presented on each monitor.

5.2 Method

5.2.1 Animals

Male and female mice of different age (P24 onward, see Results) were used. All

animal strains were originally obtained from Jackson Laboratory/Charles River.

Mice were group housed (2–6 animals per cage) in transparent isolated ventilated

cages (IVC), with the size 46 cm×26 cm×16 cm (l×w×h). Subjects were kept in a

12/12 light/dark cycle. Ambient temperature was standardized to 21 ◦C, at 55%

relative humidity. Food and water were supplied ad libitum. Breeding pairs were

kept together until pups were born, then the male parent was removed. Litters

were weaned at P21. Because of its wide use in laboratory studies C57BL/6 mice

were used as a standard control group. Furthermore, visually impaired mouse

strains were used to investigate their visual abilities during development. Here

we used the rd10 strain, which serves as a model for retinal degeneration. This

disorder is characterized by a juvenile onset (P16), a progressive disease course

and bilateral loss of retinal cells (Chang et al., 2007; Gargini et al., 2006). All

experimental procedures adhered to guidelines of the European Union and were

approved by the local authorities.

148



5.2. METHOD

5.2.2 Apparatus

Our virtual-reality arena for vision testing consisted of four 19 ′′ LCD monitors

(SV-1900 LED-OEM-HB Sunlight Readable LCD Monitor, Stealth, Woodbridge,

Canada) facing into a square to present the visual stimulus to the subjects (Fig-

ure 1A). An elevated platform at a height of 14.5 cm was placed in the center of

the arena. Mirrors were placed on bottom and top of the arena to increase the im-

pression of an “infinite vertical cylinder.” Holes in center of the mirrors (Ø 4.5 cm

bottom, Ø 11 cm top) provided openings for the elevated platform and a camera.

An analog high sensitivity video camera system (VIDO, Vienna, Austria), B/W

camera with Sony 1/3 ′′ super HAD CCD sensor, Model AUCB602, resolution

752×582 pixels) together with an A/D converter (ADVC55, Canopus, Kobe-City,

Japan) was placed above the platform. The camera was connected to an interac-

tive tracking system (Viewer3, Biobserve GmbH, St. Augustin, Germany) running

on a QuadCore 2.5GHz, 32 bit WinXP operating system. This provided an online

video feedback of the mouse behavior. The Viewer3 tracking-software detected the

nose, body, and tail position of the animal without the need of special markings.

Further details: The whole setup was built upon a breadboard (ThorLabs, Mu-

nich, Germany). One monitor was mounted on a pivoting arm and functions as a

door to the testing arena. We used high bright monitors offering a radiance range of

0.003 to 2W/(srm2) (photon radiance: 8.61×1015 to 5.43×1018 photons/(srm2 s).

The brightness of the four monitors was equalized with 20 kΩ potentiometers. For

the adjustment we used an USB2000+UV-VIS Spectrometer combined with a UV-

VIS polyimide fiberoptic (Ocean Optics, Filderstadt Germany) covering a wave-

length range of 200 nm to 850 nm. To keep the temperature inside the arena in

a moderate range, the upper mirror was actively cooled by four 40mm × 40mm

peltier elements (Peltron GmbH, Fürth, Germany). These were positioned on an

aluminum plate of the same size as the top mirror with passive cooling elements

made of extrusion profiles. All screens were controlled by one multi monitor graphic

card (ATI 2GB HD 5870 Eyefinity 6 from XFX, Hong Kong, China), running on

a dedicated computer system (QuadCore 2.13GHz, 32 bit Windows 7 operating

system). The four displays were set in single large surface (SLS) mode. Calcula-

tion of the visual stimulus was done in Matlab (R2011, The Mathworks, Munich,

Germany) using the Psychophysics Toolbox extensions (Brainard, 1997). For ex-

perimental trials with reduced monitor brightness, additional infrared LED light
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sources could be used. These were positioned above the animal (Winger Electron-

ics GmbH & Co.KG, Dessau-Roßlau, Germany, 940 nm, 8mW/sr, size of 5mm,

50mA, 0.1W, angle of aperture 20◦) as well as under the platform (Kingbright,

Taipei, Taiwan, 940 nm, 25mW/sr, size of 1mm, 200mA, angle of aperture 128◦).

5.2.3 Behavioral testing

General outline. Animals were placed inside the virtual optokinetic drum. Hor-

izontally drifting stripe patterns were presented which can potentially trigger the

optokinetic reflex, that is, the animal follows the stripe pattern with eye and head

movements. We monitored the head movements of the animals to determine if

the pattern triggers such a behavior. The parameters of the stripe patterns (con-

trast, spatial frequency, speed) are adjustable to determine the parameter range to

which optokinetic reflex is triggered. Mice can be tested in the optokinetic drum

within a few days after eye opening. Animals with progressive retinal degeneration

were tested at different developmental stages to characterize the progression of the

disease.

Experimental procedure: Overview. Mice were kept in the lab during the

day to get used to the new surrounding until the experiment started. For each

experiment, the subject was placed on the platform centered in the optokinetic

drum. The animal behavior was recorded by the camera system and the mouse

position was analyzed in real time.

Each experiment consisted of several trials. Within each trial, the parameters

of the visual stimulus were left unchanged. The stimulus consisted of a regular

vertical stripe pattern that rotated around the animal. Parameters were: spatial

frequency of the stripes, contrast of the stripes, and angular velocity of rotation.

A trial was started manually as soon as the animal had calmed down. The

rest of the trial proceeded without user interaction, solely based on the animal’s

behavior, which was inferred from the coordinates of the body (center of mass)

and head (nose tip) returned by the tracking software. The stimulus presentation

started as soon as the animal sat still (body coordinates changed by less than one

pixel (1 pixel = 0.03 cm) during a period of 0.25 s). The stimulus was shown for at

least 1 s and it was terminated either after at most 7.5 s, or when the animal became

restless and started walking around. This was detected by a body movement of
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more than 10 pixels in a time window of 0.25 s. We call this single presentation

of a stimulus a “phase.” One experimental trial consisted of several phases. The

next phase started as soon as the animal was sitting still again, but not earlier

than 2 s after the termination of the previous phase. In this subsequent phase, the

same stimulus was presented again, with the exception of the rotation direction:

We aimed at presenting each rotation direction (left or right) for approximately

the same amount of time during each trial. Thus, for each new phase in the trial,

the stimulus was rotated in the direction that had so far been given less total

presentation time.

The animal’s tracking behavior was evaluated automatically to obtain a so-

called “tracking score” after each phase (see section Data Analysis). Thus, we

could finish a trial as soon as the tracking score exceeded a certain threshold. The

threshold was empirically determined (see section Empirically Determined Thresh-

old). In case the optokinetic reflex could not be elicited, as for example in blind

mice, the experimental trial was stopped after a duration of 35 s “calm period,”

that is, time during the trial in which the animal was neither walking around on

the platform, nor making hectic head movements (see “potential tracking time”

in Data Analysis). The maximum time limit for a trial in which the animal is

very active was 4 minutes. Ultimately, each trial leads to a “yes” or “no” decision,

whether tracking occurred or not.

The experimental procedure started always with visual parameter settings for

which good tracking behavior was expected. Depending on the “yes” or “no” deci-

sion after each trial, the order of tested parameters were adjusted. By proceeding

in a staircaselike fashion (see section Data Analysis), we determined the limit of

the visual acuity as well as the contrast sensitivity in a fully automated way. The

whole experiment was terminated as soon as the perception thresholds for each

tested parameter were found. General information about the experimental set-

tings, the video file of the behaving mouse, and the tracked position data were

saved for record keeping and potential later offline analysis.

Stimulus presentation. At the beginning of a trial and between the phases,

the screens were set to a homogeneous gray value corresponding to the mean

brightness of the stripe pattern that was used in that trial. The stripe pattern

was presented as a projection of a virtual cylinder located at infinite distance and
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centered on the head of the animal, to keep the spatial frequency of the presented

stimulus constant despite of varying head-screen distances (Figure 1B, see also

Supplementary Video).

To examine the complete range of visual acuity, the spatial frequency of the

stimulus was varied between 0.014 and 0.5 cycles per degree (cpd), corresponding

to bar widths of 36◦ to 1◦. These stimuli were presented at different contrast levels,

namely at Weber contrasts between 0 (equal stripe color) and 641 (black and white

stripes). For the experiments described here, rotation speed of the virtual drum

was kept constant at 12 ◦/s, which is in the optimal range to elicit optokinetic

reflex in mice (Abdeljalil et al., 2005; Lagali et al., 2008; Mitchiner et al., 1976).

Further details: The center of the virtual cylinder surrounding the mouse was

set to the assumed eye positions of the mouse. The assumed eye position was

calculated based on the data returned by the tracking software by weighting the

nose-body vector by the factor 0.7. The center changed to its new position with

a sigmoidal velocity profile. Thus, irritations of the animals by jerky stimulus

movements can be avoided, even if this means a slight delay in correcting head-

screen distances. To prevent unnatural jittering of the projected stripe pattern,

small body movements up to 45 pixels did not lead to a recentering of the pattern.

5.2.4 Data analysis

The goal of the data analysis was to determine if the rotational head movements

of the animal sufficiently coincide with the rotational movements of the visual

stimulus. The analysis was performed in several stages, which are described in

detail below. Stage I: Comparison of the animal’s behavior with the stimulus.

Stage II: Assignment of a behavioral score to each time point (i.e., to each movie

frame). Stage III: Assignment of an overall behavioral score. Stage IV: Comparison

of that score with a threshold to reach a yes/no decision.

Stage I: Comparison of the animal’s behavior with the stimulus

During the experiment, the animal was tracked from above by a video camera

system. The position of head (tip of the nose), body (center of mass), and tail

were logged frame by frame. Based on this data the behavior of the animal was

analyzed by the following four steps (Figure 2).
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Figure 5.2. Step by step processing of observed angular velocities. Angular velocity of
head movement (gray line) recorded during a single trial (positive/negative amplitude
indicates left/right rotation of the head). Head angular velocity is compared with
rotation speed of the projected stripe pattern (solid black line) and to the “opposite
stimulus” (dashed line). Matching velocities are highlighted with solid and striped
rectangles, respectively.

Step 1. Calculation of the angular velocity of head movement. We measured

the angle between the two body-head vectors at two time points, separated by a

certain number of video frames (parameter “window,” see below). This yielded

a time series, representing the angular velocity of the animal’s head movement.

Positive values corresponded to leftward turns, negative values to rightward turns.

Larger absolute values corresponded to faster rotational movements of the head.

Step 2. Smoothing of the angular velocity trace. Smoothing was performed

with a Savitzky-Golay filter with a certain filter length (parameter “smoothing,”

see below).
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Figure 5.3. Mouse tracking behavior and its analysis. Top: Angular velocity of
head movement (gray line) recorded during a single trial (positive/negative amplitude
indicates left/right rotation of the head). Stimulus (black line, 0.05 cpd, Weber con-
trast 0.4) moved at 12 ◦/s either to the left or right (indicated by arrows below the
plot). “Tracking” events (highlighted in black boxes) were determined as close corre-
spondence between head and stimulus movement. Corresponding head movements in
the opposite direction are characterized as “mistracking” (highlighted in cross-hatched
boxes). Stimulus was presented when the animal was sitting still. Bottom: Assessing
tracking quality. Only times were taken into account during which the animal showed
little motion (“potential tracking time,” gray bars), to make the scoring independent
from the animal activity. Raw data (head-body angular velocity) is subjected to the
analysis described above (see also Figure 2). “Tracking quality” is the percentage of
parameter combinations during which tracking was detected (plotted as histogram).

Step 3. Preliminary tagging of video frames as “tracking,” or “mistracking.”

Each video frame was preliminarily tagged as “tracking” when the filtered angular

velocity of the head movement was sufficiently close (parameter: “threshold,” see

below) to the angular velocity of the presented rotating stimulus. Video frames

with corresponding head movements in the opposite direction were tagged as “mis-

tracking.” This was used as a control against randomly detected tracking events,

and against biases of the animal to rotate in a specific direction.
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Step 4. Final classification of “tracking” and “mistracking” events. In order

for mouse behavior to qualify as a “tracking event” (or a “mistracking event”),

we applied an additional criterion: We demanded that consecutive video frames

tagged as “(mis)tracking” exceeded a certain duration (parameter “trackduration,”

see below). This guards against events during which the head angular velocity is

randomly aligned with the stimulus angular velocity. All other video frames were

classified as “nontracking.”

Taken together, we used four parameters to analyze the animal’s tracking be-

havior (“window,” “smoothing,” ”threshold,” and “trackduration”). The param-

eter values were:

1. Parameter “window”: The angular velocity was calculated by taking the

difference of the angles over 20 or 25 frames.

2. Parameter “smoothing”: We smoothed the time series of the body-head

angular velocities with a polynomial regression filter (Savitzky-Golay-Filter).

The filter length was either 15 or 20 frames.

3. Parameter “threshold”: To be tagged as “tracking,” the animal’s angular

velocity v(a) had to be within a band around the stimulus velocity v(s) such

that (1 − k) v(s) < v(a) < (1 + k) v(s), with k (the threshold) taking on

the values 0.3, 0.6 or 0.9. If the same condition held true for −v(a), the
corresponding frame was tagged as “mistracking.”

4. Parameter “trackduration”: Too short “tracking” sequences were not con-

sidered (< 0.8 s or 1.2 s), and all frames in that sequence were set to “non-

tracking.”

Stage II: Assignment of a behavioral score to each time point

Each of our four parameters took on two or three different values, leading to 24

different parameter combinations. For each given combination, any video frame

is either classified as “tracking,” ”mistracking,” or “nontracking.” Overall, each

frame is then assigned a value corresponding to the percentage of “tracking” clas-

sifications (visualized as a histogram in Figure 3, bottom). For example, a frame

that got characterized as “tracking” in 12 out of 24 parameter combinations is

assigned a tracking-value of 0.5. This procedure rewards video frames with good
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tracking behavior. For example, a frame fulfilling the “tracking” requirements

with a strict threshold will also automatically fulfill the requirements with a more

lenient threshold, thus leading to a higher score.

Stage III: Assignment of an overall behavioral score

Finally, we converted these per-frame tracking scores into an overall tracking score

for the whole trial (Figure 3). For this quantification, we kept a record of the times

during the trial that we call “potential tracking times.” All video frames were added

to the “potential tracking time” that fulfilled the following three conditions for at

least one parameter combination:

1. The stimulus was present on the screen;

2. Angular head movements were slower than 2.5 times the rotation speed of

the presented stimulus, thereby discarding times of hectic head movements;

3. Body movements across “window” frames were smaller than 2
√
window pix-

els.

The last two criteria made sure that we only considered those times in the

trial during which the animal did not actively explore the environment. Without

excluding these times, the overall tracking score would be artificially reduced. The

tracking score T was calculated by summing the per-frame tracking scores, and

multiplying that sum by the standard deviation of all per-frame scores during the

“potential tracking times.” The same procedure was repeated for the “mistrack-

ing” events, to obtain a mistracking score M. The final behavioral score was then

obtained by

behavioral score = T
T −M

T +M
.

This score becomes negative when the animal tends to turn more in the opposite

direction as the presented stimulus, and positive otherwise. Importantly, this type

of analysis gives a score that is robust against the length of the experiment. For

example, if one concatenates the same video and analyzes this new (twice as long)

video, one obtains the same score.
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Figure 5.4. Adaptive termination score. Evolving score of 31 tested animals at a
contrast of 0 (thin lines represent the behavioral score as a function of experimental
time of 4590 trials; 559 real trials plus 4031 randomly shuffled fake trials). Thick
dashed line: 100% quantile of all analyzed trials. Thick solid line: fitted exponential
function which is used as final threshold. During the experiment, we required at least
5 s of “potential tracking time,” indicated by the vertical gray line, to characterize an
animal’s behavior as “tracking.”
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Stage IV: Comparison of that score with a threshold to reach a yes/no

decision

The behavioral score can be calculated and updated any time during the trial. At

any time point, we could therefore decide if the animal showed tracking behavior

against the presented stimulus or not. To do this, we converted the final behavioral

score into a “yes” or “no” decision. For a “yes” decision three criteria had to be

fulfilled:

1. The score exceeded an empirically determined threshold (Figure 4);

2. The score calculation is based on at least 5 s of “potential tracking time”;

3. Both rotation directions were presented nearly the same time (40% match-

ing).

The last two criteria reduce the risk of detecting false positives. The threshold is

explained in the next section.

5.2.5 Empirically determined threshold

To find a useful threshold for a “yes” decision we evaluated the behavior of a

wide range of animals. We tested the natural behavior of mice inside the setup

while presenting an invisible stripe pattern (contrast of 0, i.e., a homogeneous

gray screen) that cannot trigger the optokinetic reflex. With our algorithm, we

calculated behavioral scores against this invisible stimulus. Any positive behavioral

score is therefore attributable to chance. Several different mouse strains were used

to get results from animals with a broad genetic background (C57Bl/6, rd1, rd10,

C3H). In total we tested 31 animals with 559 trials for this analysis. To enlarge

this data set we shuffled real head and body positions with randomly generated

sequences of rotation angles of the pattern, resulting in 4031 additional trials. For

each trial, we calculated the evolution of the animals’ behavioral scores in 0.1 s

temporal resolution. As a result we obtained a distribution of scores for each time

point (Figure 4).

We took as a preliminary threshold the 100% quantile of that distribution, that

is, all trials had a score that was lower than this preliminary threshold. Finally, we

fit an exponential function to the preliminary thresholds to yield our final threshold
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function. Our empirically determined threshold thus describes the maximum score

for natural behavior which we expect of nontracking (or blind) mice. If the score

of an animal exceeds the threshold during the experiment, it can be classified as

seeing with very high chance. Note that the threshold is not a single number,

but it depends on the duration of the experiment. Earlier in the experiment, the

calculated behavioral score has to be higher in order for the animal to cross the

threshold.

5.2.6 Staircase

Each experiment started under conditions (width of stripes and contrast level)

which are normally easily recognized by mice. To reduce the required number of

trials, the experimental procedure was adapted to the individual performance of

an animal. The order of experimental conditions was determined based on the

result of the previous trials. Here we use a simplified up-down adapted staircase

method. In case the animal exceeded the threshold (“yes” decision), the difficulty

was increased in the following trial. The higher the score in the previous trial,

the more difficult was the subsequent trial. In case the animal could not reach

the threshold, the trial was repeated for a total of three times under identical

testing conditions. If this condition could still not trigger tracking behavior, the

next easier testing condition was chosen. Thus, we approach the individual limit

of perception until the score could not reach the threshold anymore. To ensure

that negative outcomes were not caused by lack of the animal’s motivation to

participate in the experiment, a final trial with an easy condition was performed.

5.2.7 Statistics

As statistical test of significance the Kruskal-Wallis one-way analysis of variance

was chosen, with level of significance of α = 0.05. Kruskal-Wallis is a nonpara-

metric test whether samples originate from the same distribution, equivalent to

the parametric one-way analysis of variance (ANOVA). When we compared three

distributions, a Bonferroni correction was made to test subgroups against each

other.
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Figure 5.5. Manual assessment versus automated scoring. Behavioral tracking score
(n = 7 mice, 321 trials). Manual assessment (vertical axis) plotted against calculated
“tracking score” (horizontal axis). Corresponding evaluations are shown as black dots.
Inconsistent results between manual assessment and automatically calculated scores
(false positives and false negatives) are marked gray.

5.3 Results

5.3.1 Evaluation of automated scoring

Most studies using the optokinetic reflex assess the animal’s behavior manually.

The experimenter decides if the animal has followed the rotating stripe pattern

or not. To assess the quality of our automated analyses, we compared the auto-

matically obtained score with a manual scoring scheme. We analyzed 1-min long

sequences of 321 experimental trials (n = 7 mice) with different stripe widths and

contrasts. Each video was analyzed by two independent observers, and classified

with a value between 0 and 5: 0 = animal was not paying attention to stripe pat-

tern during the trial (grooming, sleeping, exploring environment); 1 = no tracking;

2 = maybe tracking, not sure; 3 = certainly tracking, but not much; 4 = more

tracking; 5 = superb tracking. Figure 5 shows the results of the manual assess-

ment plotted against the automatically calculated “tracking score.” Here, we do

not show the raw score, but 2(score/threshold). In other words, values larger than

2 correspond to scores in which our automatic scoring algorithm would have led

to the conclusion that the animal tracked the rotating stripe pattern.

Compared with manual assessment, our algorithm detected six false positive

results, which corresponds to a false positive error rate of 1.9%. False negative

decisions occurred in 14 cases, or 4.4%. In 248 of 321 events (77%) the decisions
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Figure 5.6. Age dependent loss of visual performance of rd10 mice (black) in compar-
ison to the visual performance of C57Bl/6 mice (gray). Contrast sensitivity indicated
as Weber contrast (left vertical axis, logarithmic scale) is plotted against the presented
cycles per degree (horizontal axis) of adult C57Bl/6 mice (gray, n = 12, P59–63) com-
pared with two age groups of retinal degenerating mice (rd10). Young group (solid
black) contains four mice (P24–P32), old group (dashed black) contains three mice
(P86–P91). The right vertical axis shows corresponding values in Michelson con-
trast for comparison. Asterisks show significant different values (Kruskal- Wallis test,
α = 0.05) *p < 0.05. *p < .001. In addition, for C57Bl/6 mice all contrast sensitivity
values (0.05 cpd, 0.15 cpd, and 0.3 cpd) are significant different from each other with
p < 0.001 (including Bonferroni correction). The determined upper thresholds of spa-
tial resolution at two different contrast levels differ significantly as well with p < 0.001
(Kruskal- Wallis test, α = 0.05). Rd10 mice were compared old versus young and
young versus control group each at identical grating acuity. At 0.05 cpd young rd10
mice do not differ from control with p = 0.06. The comparison of the upper thresholds
at 108 contrast results in a significant difference only between old animals and control
group with p = 0.003.

matched the observer’s assessment. An additional 53 cases (16.5%) with the am-

biguous manual score “2” were sometimes recognized as tracking by the algorithm,

sometimes as nontracking.
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5.3.2 Proof of concept – characterization of C57Bl/6

Using our enhanced optokinetic drum we were able to characterize the visual per-

formance of different mouse strains in an easy and objective way. As a first proof of

concept we used the well-known C57Bl/6 mouse line. For a comprehensive charac-

terization we measured visual acuity as well as contrast sensitivity. Repeating the

experimental trials on the next day resulted in similar thresholds, which indicates

good reproducibility of these measures. As control, we tested five old rd1 mice

(>P200) at the same conditions for contrast sensitivity. At this age, known from

recent publications, these animals are blind. Only in one of 45 trials, tracking

behavior was incorrectly detected (false positive rate 2.2%, data not shown).

Figure 6 shows the visual performance of C57Bl/6 mice with a solid gray line.

The required contrast (vertical axis, logarithmic scale) is plotted against the pre-

sented cycles per degree (horizontal axis). In this experiment, 12 adult mice (P59–

63) were tested. To define a contrast sensitivity threshold for each animal, we used

three distinct stripe widths of 0.05, 0.15 and 0.3 cycles per degree (cpd) and varied

the contrast of the stripes. Contrast was reduced stepwise (see section Method:

Staircase) until no tracking behavior could be triggered. Using 10◦ wide stripes

(0.05 cpd), the mean threshold was 0.18±0.02 Weber contrast (all errors are given

as SEM). Under optimum conditions with a narrower stripe width (3.3◦, 0.15 cpd)

all animals were able to see 0.08 contrast. At 0.3 cpd (1.6◦ stripe width) the

mean contrast threshold was 0.52 ± 0.06. To identify the upper threshold of vi-

sual acuity the contrast level was kept constant at low (1.28 contrast) and high

conditions (108.9 contrast) and the stripe width was varied. If a stimulus was pre-

sented at a contrast of 1.28, the animals needed at least 1.35◦ to 1.6◦ wide stripes

(0.37 to 0.3 cpd) to trigger tracking behavior. The average resolution required was

0.34 cpd ± 0.006 cpd. A considerably higher contrast of 108.9 shifted the upper

threshold of grating acuity to between 1.4◦ and 1.25◦ stripe width (0.35 cpd to

0.4 cpd), with an average of 0.38 cpd± 0.005 cpd.

5.3.3 Characterization of retinal degeneration in rd10 mice

This setup was designed to investigate visual performance not only of wild type

animals but also for visually impaired mice. We tested the influence of age on the

visual performance of retinal degenerated mice (rd10). In comparison with the rd1
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mouse line, retinal degeneration in rd10 mice has a later onset; they are, therefore,

a better model for the time course of human retinitis pigmentosa (Bowes et al.,

1990; Chang et al., 2007; Gargini et al., 2006). Here we tested rd10 mice (n = 7)

in two different age groups. Testing procedure and parameters were the same as

described above for C57BL/6, with the exception that only the higher contrast

level (108.9) was used to define the upper threshold of visual acuity (Figure 6,

black solid and dashed lines).

Young rd10 mice (n = 4) at the age of P24–P32 show at 0.05 cpd (10◦ stripe

width) a mean contrast sensitivity threshold of 0.73± 0.48. Under optimum con-

dition at a visual acuity of 0.15 cpd (3.3◦) the mean contrast of only 0.28 ± 0.1

was necessary to trigger tracking behavior. Compared with this, a higher contrast

of 11.12± 1.56 is needed to elicit tracking at 0.3 cpd (1.6◦). The upper threshold

measured at contrast of 108.9 was identified at the range of 0.33 cpd to 0.36 cpd

(1.5◦ to 1.38◦), with an average of 0.35 cpd± 0.009 cpd.

Old rd10 mice (n = 3) at the age of P86–P91 showed significantly reduced

visual performance at all points measured. At 0.05 cpd (10◦) the animals needed a

contrast level of at least 12.67 with a mean value 19.43±3.38. Even under optimum

conditions of 0.15 cpd (3.3◦) the animals required almost the same contrast, 16.7±
3.86. At a resolution of 0.3 cpd (1.6◦) tracking could only be observed in one

animal at a very high contrast of 567.69. Under these conditions both other

animals didn’t show any tracking behavior at several measurements. The upper

threshold, measured at a contrast of 108.9 was determined at a range of 0.175 cpd

to 0.22 cpd (2.86◦ to 2.27◦) with a mean value of 0.2 cpd (2.5◦).

All curves show a similar overall shape; in all measurements the contrast sen-

sitivity was best at a grating acuity of 0.15 cpd (3.3◦). With progressive degener-

ation, vision was dramatically impaired, reflected by reduced contrast sensitivity

as well as a reduced upper threshold of visual acuity.

5.3.4 Flexibility across species

With our enhanced version of the optokinetic drum, we found several positive

effects when adapting the stimulus presentation to the animals’ head position.

By this we kept the spatial frequency of the stimulus constant despite varying

head-screen distances. To figure out the versatility of our setup we expanded our

selection of testing subjects to other species. In a couple of experimental trials
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we could show that the automated process of stimulus adaptation is very flexible.

It was also possible to trigger the reflex in fish (tested with e.g., Triplefin, family

Tripterygiidae), which could move freely in a cylindrical water tank. Even the

adaptation of the stripe width to the animals’ position works quite well. Short

movies of other species behaving in the optokinetic drum can be found in the

supplementary video.

5.4 Discussion

The goal of our study was to develop an enhanced version of an optokinetic drum.

The automated analysis offers the great opportunity to be more flexible and to

adapt the testing parameters to the individual visual performance of the animal,

necessitating fewer experimental trials. Furthermore, real-time centering of the

stimulus enhances the testing procedure as well, as we can compensate for the

animal’s movement. In addition, real-time detection of the animal’s behavior also

offers the possibility for an online assessment. In doing so, we were able to imple-

ment an automated and completely unbiased evaluation of tracking behavior. The

comparison of automated and manual assessment has shown that our algorithm

tends to be conservative, preventing false positives. Visual performance can thus

be determined effectively. This increases time efficiency and thus results in shorter

experimental times.

Our experience has shown that it is helpful to habituate mice to the setup one

day before starting experimental series. Each time, the mice were handled for a

few minutes and then put on the platform inside the drum. Another important

requirement for successful data acquisitions is to keep the temperature inside the

testing arena in a moderate range. In our case we solved this problem by cooling the

lid, which made the animal feel more comfortable and less nervous. Furthermore,

changing platforms for each different animal group helps to avoid irritation through

smells from other animals.

Our data shows that we were able to confirm contrast sensitivity and visual

acuity in C57BL/6 mice, but we are more flexible in adjusting our stimulus. In

comparison with all established methods so far, our evaluation is completely unbi-

ased from the judgment of the experimenter. Old rd1 mice were used as a control

group and validated our analysis procedure for blind animals. These animals were
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highly reliably characterized as blind test subjects.

In experiments on rd10 mice we could confirm published results on retinal

degeneration depending on the developmental stage of the animals. Older animals

reached significantly lower scores in their tracking behavior. For degenerated mice,

a higher contrast was needed to trigger tracking behavior. These results are in line

with characterizations of rd10 mice based on OCT, ERG, and other behavioral

tests (Fischer et al., 2009; Gargini et al., 2006; Pang et al., 2011; Thomas et al.,

2010).

In summary, the advantages of our enhanced virtual optokinetic drum are

higher flexibility to modulate the parameters of presented stimuli, as well as a

high degree of automation.
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Chapter 6

Discussion

The aim of this thesis is a better understanding of how mental models emerge

from neural coding principles. Chapter 2 and 3 contain examples of models that

were established by means of the sparse coding algorithm: first, a model for spatial

structure from stereo image data and second, a model for egomotion from optical

flow data. Here, I give a short summary on the sparse coding algorithm, including

an outline on how simple rules can determine the development of a neural network

that implements the sparse coding algorithm. This part extends the view on

biological plausibility in chapter 2, section 2.4.4. Based on the two studies, I

will also discuss which aspects of the representations qualifies them as emergent

models. In chapter 4, a mental model, which can be classified as a topological map,

accounts for navigation in cluttered environments. It is based on a dual population

code that is close to a plausible neuronal model. I will discuss principles that may

lead to the emergence of this model of spatial representation. Chapter 5 contains

an automated method for the evaluation of visual acuity in mice. It allows for

closed-loop testing of behavior. I will discuss the verification of hypotheses by

quantifying behavior in the perception-action cycle.

6.1 Sparse coding establishes elementary senso-

ry models

In this section, I first summarize the objective of the sparse coding algorithm.

The summary serves as a basis to understand possible implementations in neu-

ronal substrate. Next, I discuss how representations obtained with sparse coding
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are related to mental models. In the final part, I discuss the sparse coding stud-

ies included in this thesis with respect to properties that qualify the examined

representations as mental models.

6.1.1 The sparse coding algorithm

The sparse coding algorithm, first presented by B. A. Olshausen and Field (1996),

encodes the input vector x into a sparse vector a. Common examples apply

data from sensor arrays modeled after the retina or the cochlear. The algorithm

is an optimization that preserves information from the input, weighted against

the sparsity of the distribution of values in a. Sparsity means that only few

values deviate from zero or, as a relaxation, that the values follow a heavy-tailed

distribution. The optimization is performed by means of a gradient method that

moves along the derivative of a two-termed cost function.

With the first term,

∥x− x̂∥2 , (6.1)

the optimization preserves information by minimizing the error between the input

x and the reconstruction of the input x̂(a,Φ). The reconstruction, i.e., the reverse

mapping from a to x, is linear, with

x̂ = Φa . (6.2)

The matrix Φ consists of k row vectors {φ⊺
k}, which are called kernels or dictionary

elements. Usually, the encoding is overcomplete, which means that the number

of elements in a exceeds the number of elements in the input x. Therefore, the

vector a that maps to x is not unique. The second term is the sparsity penalty

S(a) . (6.3)

In the original formulation, the relaxed sparsity penalty (B. A. Olshausen &

Field, 1996) is the ℓ1-norm of the vector a. As an alternative, the locally compet-

itive algorithm (LCA) optimizes for an approximation of the number of non-zero

elements in a, which is sometimes called the ℓ0-norm (Rozell et al., 2008). The gra-

dient descent is then performed on the negative partial derivatives of the elements
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in a and Φ of the full cost function

E = ∥x− x̂(a,Φ)∥2 + S(a) . (6.4)

6.1.2 Sparse coding in neuronal substrate

It has early been recognized that the mathematical term of the gradient descent on

the elements {ak} in a can be translated to neural network notion (B. A. Olshausen

& Field, 1997). In mathematical terms, the optimization rule is

ȧk ∝ φ⊺
kx−

∑
c ̸=k

φ⊺
kφcac − ak . (6.5)

If we assume a neural network, in which the firing rates of neurons of an ensemble

are represented by the values {ak}, the three terms represent the rules for the

connectivity of the network. The first term is a feed forward term that weighs the

sensory input with the kernels {φk}. The kernels therefore serve as the receptive

fields of the neuron. The second term is a term of mutual competition between

two neurons. This lateral inhibition is proportional to the similarity between the

associated kernels. The last term induces self-inhibition that drives the neuron

towards zero in the absence of input.

While connectivity can be inferred straight forward from the mathematical

terms, learning and information sharing requires global information. First, learn-

ing of the values in Φ requires knowledge of the reconstruction error. Only the

first term of the cost function depends on Φ. The learning rule therefore simply

improves the error of the reconstruction with

∆φk,i ∝ ak(xi − x̂i) , (6.6)

where {φk,i} are the elements of Φ, {xi} are the elements of x and {x̂i} are the

elements of x̂. Second, the feed forward term and the lateral inhibition term

in Eq. 6.5 share the information in Φ. In addition to information sharing, the

values of every kernel need to be compared against the values of any other kernel

in order to calculate the amount of lateral inhibition. In conclusion, the network

architecture that encodes sensory input into a sparse representation can be inferred

directly from the algorithm, whereas it is unclear how to realize learning of the
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weights directly from in a biologically plausible way.

However, it was shown that the weights of such a network can be learned

by applying local rules. Földiák (1990) studied a network with similar structure

as implied by Eq. 6.5, however with learned feed forward weights qi,k and with

learned weights for lateral inhibition wc,k. The dynamics and the connectivity of

the network followed

ȧ′k = f

(∑
i

qi,kxi +
∑
c

wc,ka
′
c − tk

)
− a′k . (6.7)

The formulation differed from the sparse coding algorithm by two additional com-

ponents: the nonlinearity f(u) = 1/(1+exp(−λu)) and the thresholds {tk}. With-

out the nonlinearity, the network did not learn higher-order dependencies between

features, but found the k largest eigenvectors of the covariance matrix (Földiák,

1989). The thresholds were used to regularize activity of the neurons and were

therefore also subject to learning. They took effect each time the network had

settled, by setting ak = 1 if a′k > 0.5 and ak = 0 otherwise.

The weights were then learned by means of simple, local Hebbian rules. The

feed forward weights were learned by applying

∆qi,k ∝ ak(xi − qi,k) (6.8)

where −qi,k is an additional term that induces weight decay. Learning of the

competitive weights was subject to anti-Hebbian learning, which means that the

weights of inhibitory connections grow stronger, the more often two units are active

at the same time. The weights were therefore updated by applying

∆wc,k ∝ −(acak − p2) . (6.9)

Values were cropped to 0 if wc,k > 0 and wk,k was set to the constant value 0. p

was the specified bit probability to which thresholds were adjusted with

∆tk ∝ ak − p . (6.10)

By learning images that were composed by the superposition of simple pat-

terns—stripes of one pixel width and letters—Földiák (1990) showed that this
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network learned kernels that recovered the original patterns. Falconbridge et al.

(2006) showed that the network can learn Gabor-like kernels from natural image

data. Interestingly, a biologically more plausible activation function resulted in a

better fit to V1 receptive fields. Zylberberg et al. (2011) translated the network to

a spiking neural network. The Hebbian learning was rate based, by counting spikes

within a time window. They found that, similar to the sparse coding algorithm, the

input to the network can be recovered by linear reconstruction. They also showed

that the network accounts for the diverse shapes of V1 simple cell receptive fields.

These studies are conclusive empirical evidence that the learning of a sparse

representation is possible in biological substrate by means of simple Hebbian and

anti-Hebbian learning. They contribute to our understanding of sparse coding as

the underlying principle for sensory data processing in V1. Additional consider-

ations apply to the biological system. For example, inhibitory connections are

usually realized with inhibitory interneurons. King et al. (2013) successfully ex-

tended the spiking neural network from Zylberberg et al. (2011) with inhibitory

interneurons. They related their network to physiological findings from Haider

et al. (2010), who showed that interneurons increase sparsity in classical and non-

classical receptive fields. Furthermore, the discussed principles of network struc-

ture and learning align well with known developmental principles of the striate

cortex. The development of the general retinotopic layout is guided by molecular

gradients (McLaughlin & O’Leary, 2005). This mapping could enable a simple

mechanism to limit the amount of synaptic connections to a reasonable local ex-

tend, both for the feed forward connections and for the connections of lateral

inhibition. The Hebbian and anti-Hebbian learning rules could then refine the

synaptic strength of the existing connections.

6.1.3 Mental models in sparse representations

Categorization by competition between similar concepts

The core mechanism for the formation of a sparse representation is the competition

between units, mediated by the simple principle of lateral inhibition. Lateral

inhibition indeed is very common in neuronal processing. The most prominent

examples are early sensory networks, like in the retina or in the tactile sensory

system. However, the same principle applies to the processing of abstract concepts.
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In this case, inhibition is not topological but proportional to similarity and overlap

of the concepts. For example, it helps to avoid the confusion of similar semantic

concepts, like “astronomy” and “astrology” (Baars and Gage (2010), p70). The

sparse coding algorithm inhibits units that are lateral in this sense.

Barlow envisioned that the competition between units that respond to similar

patterns is part of the mechanism that makes the cerebral cortex a model builder

(H. Barlow, 1987). He sketched out a three-step outline of a developmental process

as follows. First, cells receive excitatory input from many afferent fibers, which is

the basis for processing suspicious coincidences by summation and thresholding1.

However, integration of the input over many neurons has a blurring effect and

many neurons will share information from the sensory input. Therefore, second, a

system of mutual inhibition causes the input to be classified into mutually exclusive

outputs. This processing step makes the differentiation between categories with

overlapping inputs possible. Third, a Hebb-like mechanism strengthens connec-

tions that have contributed to the activation of the neuron. With this mechanism,

neurons will gain selectivity to compound events—or suspicious coincidences—

that occur frequently. Barlow proposed that these nerve cells serve as incidence

detectors and therefore represent a model of the associative structure in its inputs.

Barlow’s outline is reminiscent to the realization of the sparse coding algorithm

in neuronal substrate, described in the previous subsection. Note that many un-

supervised learning algorithms rely on similar mechanisms of lateral inhibition.

Examples include the Hopkins network, which serves as a model for human asso-

ciative memory, and the Kohonen network, which explains how a stimulus con-

tinuum can be encoded into a self organizing, topological map (Hopfield, 1982;

Kohonen, 1982).

Building blocks of a simplified world model

The sparse coding algorithm belongs to the class of independent component anal-

ysis (ICA) algorithms (Simoncelli & Olshausen, 2001). ICA assumes a multi-

dimensional mixed signal, in which each dimension is the linear superposition of

independent signals. The aim is the reconstruction of the original signals by guess-

ing the inverse of the matrix that specifies the superposition. The algorithms’ foun-

1for the concept of suspicious coincidences and their relation to mental models, see the intro-
duction.
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dation is the central limit theorem, which states that the distribution of summed

independent source signals tends towards a Gaussian distribution. Therefore, un-

der the condition that the distribution of the source signals is not Gaussian, the

non-Gaussian distribution is a strong footprint in the mixed signal. The source

signals can be retrieved by finding directions in multi-dimensional signal space

in which the distribution deviates most from a Gaussian distribution. These di-

rections are the eigenvectors of the matrix that specifies the superposition of the

source signals (Hyvärinen & Oja, 2000).

The goal of sparse coding is to find directions in sensory space that are zero

most of the time. An approximation of this constraint is to find directions, in

which the distribution is heavy-tailed, i.e., in which the distribution has a large

kurtosis. These target-distributions differ strongly from a Gaussian distribution,

so that optimization for a sparse representation is at the same time an optimization

that retrieves independent source signals (B. A. Olshausen & Field, 1997). One

could näıvely conclude that the transformation recovers the original source signals

from any given sensory space. This would come as a surprise, given the complexity

of the physical world, which gives rise to the sensory input. Indeed, in the case of

visual data from natural scenes, it was shown that the most independent directions

in sensory space are still interdependent to a large extend (Bethge, 2006; Eichhorn

et al., 2009).

Applying the sparse coding algorithm to sensory data results in a representation

that is a rather crude model of its sources, compared to the actual complexity of

the sensory world. However, representations obtained with sparse coding contain

features that are related to physical causes. These features can serve as the building

blocks of a simple and heuristic mental model of the sensory world. This thesis

contains two chapters which report the relation between features obtained with

sparse coding and their physical causes. First, a model for spatial structure from

stereo image data and second, a model for egomotion from optical flow data. In

the following, I will discuss the aspects of these representations that qualify them

as mental models.
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6.1.4 Examples of sparse representations that qualify as

mental models

Sparse coding of stero images

Chapter 2 contains a study where we applied sparse coding to data from natural

stereo images with vergence. We used the convolutional locally competitive algo-

rithm (LCA) with five levels of overcompleteness: 0.6, 1, 3, 8 and 16 times the

size of the input. The kernel shapes were an overall good match for physiologi-

cal receptive fields of cells in the visual cortex, as already described in detail by

others (Hunter & Hibbard, 2015; Hyvärinen & Oja, 2000; Ringach, 2002). With-

out exception, units of these representations showed smoothly varying and clear

selectivity to stereo disparity. With a simple, probabilistic readout of the popu-

lation code it was possible to estimate disparity with low error within a range of

±6 px. The units of the representations were selective to at least one additional

element of spatial layout: the orientation of surfaces with respect to the observer.

Our study resulted in two additional outcomes: first, we found that the inference

error decreased with decreasing sparsity load. Second, we found that the inference

error can be estimated by counting the number of units that contribute to the

reconstruction of an individual image. The error is linked to the number of active

units by a u-shaped function. We have proposed that both relations could be ex-

ploited for an attention mechanism which controls for the trade off between energy

efficiency through increased sparsity and accuracy of the inference. Attention is

an important mechanism in the perception-action cycle that mediates top-down

causation between levels of the living system hierarchy (Tsotsos & Rothenstein,

2011). In neural network notion of the LCA, the sparsity load is controlled by the

threshold of neurons. Therefore, by dynamically adjusting the thresholds within

a local extend, the network could control for the inference error.

The sparse coding algorithm is a unsupervised learning method, which makes

statistic features of the input data explicit (B. Olshausen & Field, 2004). Applied

to visual stereo data, the extracted features are related to their physical cause.

They serve as representatives of the spatial layout of the scene. From disparity

and the known distance of the two stereo cameras it is possible to calculate the

distance to structures within the field of view, and surface orientation is a direct

feature of spatial layout. We expect that these features are selective to addi-
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tional elements of scenes, like for example occlusion boundaries or the curvature

of surfaces. The selectivity of features obtained with sparse coding can be a guide

towards simple categories that describe the layout of the scene. It seems like the

first steps towards more abstract concepts, like the partitioning of the scene into

objects by means of object boundaries or like categorization of objects or places by

means of their shape. Such concepts, associated with causal relationships like the

Gestalt principles, can serve as simple world models that allows an agent to make

inferences about the world. As already described in the beginning of this section,

the hierarchical formation of this kind of models on the level of the neuronal code

might be supported by mechanisms similar to the ones that induce sparsity: asso-

ciation with feed-forward hebbian learning and differentiation with anti-hebbian

learning of lateral inhibition. Obviously, the discussed mechanisms are not suffi-

cient to explain how cognitive model building emerges from simple principles of

interaction. However, they are sufficient as a first step to build a representation of

visual input in V1 and they may play a role in later stages of neuronal processing.

Sparse coding of optic flow

Chapter 3 contains a study where we applied sparse coding to optic flow data from

egomotion. Properties of this study were designed to match the visual system of

zebrafish larvae and results were compared against data from physiological exper-

iments. The two eyes of the fish covered large, circular visual fields of about 160◦

each, with 45◦ overlap to the front, so that most of the visual surrounding was

covered. The fish retina extracts optic flow information. We therefore rendered

images from the movement of virtual fish in a fish tank and extracted optic flow

fields from two consecutive images. We used the locally competitive algorithm

(LCA) for learning a sparse representation of optic flow.

Kubo et al. (2014) showed that the majority of pretectal neurons of zebrafish

respond to large, homogeneous visual motion fields. A substantial portion of these

neurons is selective to flow fields that originate from forward or backward motion

or from clockwise or counterclockwise motion of the fish. With our setup of LCA

sparse coding without whitening, we were able to partially reproduce the statistical

distribution of responses. In addition, individual units of the sparse representation

showed clear and smoothly varying selectivity to directions of translation and

rotation. In some cases, units were only selective to either translation or rotation,
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in other cases they were selective to a combination of both.

To consider the neuronal processing of zebrafish larvae in the context of mental

models might seem odd at first sight. However, with the LCA algorithm, the same

principles for the formation of a neuronal code were applied as in the previous study

to visual stereo data. Directions of translation and rotation are representatives of

a physical cause, the ego-motion of the fish in its environment. Interestingly, the

selectivity for ego-motion related flow fields was learned as a second step after

first extracting optic flow. It can be expected that a representation obtained by

applying sparse coding to the time series of images is selective to optic flow, since

the problem of detecting optic flow is similar to the stereo problem. Indeed, it

was shown that, in this case, the shapes of the spatiotemporal kernels are often

Gabor-like and translated over time (B. A. Olshausen, 2003). Therefore, it might

be worthwhile to experiment with a completely unsupervised, hierarchical process-

ing pipeline that starts with the time series of images and ends with ego-motion

selectivity to further explore how unsupervised hierarchical model building could

emerge from simple principles of neuronal interaction.

6.2 An evolutionary plausible navigation hierar-

chy accounts for the constitution of a mental

map

Chapter 4 contains a study of a biologically inspired navigation scheme with dual

population coding. Many biological entities have the ability to navigate in their en-

vironment, and neuronal correlates like place cells and the associated navigational

models reflect complex cognitive processing capacities. If we want to understand

how complex behavior like the navigation skills of animals emerges, it is instruc-

tive to follow the path of evolution. Navigational mechanisms can be classified into

methods of various complexity, where each step requires new skills on top of the

lower level skills (Franz & Mallot, 2000). They can be classified into local naviga-

tion and wayfinding. Local navigation includes search, direction following, aiming,

and guidance, which all rely on cues available as sensory information at navigation

time. Wayfinding includes recognition-triggered response, topological-, and survey

navigation, which are characterized by connecting more than one place with mech-
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anisms on top of local methods. In the following, I discuss these navigational skills,

closely following (Franz & Mallot, 2000), with a focus on the underlying neuronal

principles. I then discuss how dual population coding is positioned within the

navigational hierarchy.

6.2.1 Local navigation

Of all local navigation principles, the simplest one is search, where an agent moves

by chance until it detects its goal. The crucial cognitive competence for search

is the detection of the goal, which can also be very simple in some cases. For

example, a food source can be sensed by means of a distinctive color and a place

of shelter can be marked with a specific, detectable molecule. However, if the goal

is a unique place, it is often necessary to detect more complex patterns. One ex-

ample for such remarkable recognition capacities comes from the first experiments

on place recognition in scientific literature. Tinbergen and Kruyt (1938) described

the capabilities of a wasp, the european beewolf (Philanthus triangulum). It recog-

nizes the small entry to its nest by means of the surrounding patterns. The robust

place detection necessary for such a task relies on the detection of distinctive and

unique cues. Pattern detection is a large field of its own, with many examples of

various levels of sophistication over the animal kingdom. In the human cortex,

the inferior temporal gyrus (IT) contains cells with a strong degree of selectivity

to abstract patterns. The human object recognition performance can be predicted

from a weighted sums model of IT cell activity (Majaj et al., 2015). Interestingly,

the Dentate Gyrus performs pattern separation by means of competitive learn-

ing with sparse coding (Hanuschkin et al., 2018). In conjunction with grid-cells,

these patterns contribute to the firing of place-cells in the hippocampus (Rolls,

2013). For an outline of how pattern selectivity of this kind may emerge from

simple neuronal principles, please refer to the introduction of this thesis and to

section 6.1.3.

Direction following refers to an agent aligning its movement to a locally avail-

able directional cue. Two examples for such cues are the polarization patterns

in the sky, exploited for navigation by the desert ant Cataglyphis fortis (Müller

& Wehner, 2007), and the geographical slant, which improves navigational per-

formance in humans (Restat et al., 2004). In the case of global directional cues,

direction following requires path integration in order to estimate arrival at the goal
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location. For example, in the case of Cataglyphis fortis, path integration of a hom-

ing vector is realized by a combination of counting steps, weighted by the direction

of movement (M. Muller & Wehner, 1988). Direction following is closely related

to aiming, where the agent recognizes a beacon and moves towards it. As before,

it is not always necessary to use sophisticated mechanisms of pattern detections

to recognize a goal. A salient beacon could be a simple chemical source, which

allows to navigate by means of chemotaxis, or a source of light, which allows to

navigate by means of phototaxis. In many cases, direction following and aiming

may be realized in a surprisingly simple manner. This insight is most evident in

the impressively simple connectivity models of Braitenberg-vehicles (Braitenberg,

1986). Very elementary relationships between sensors and actuators, which may

evolve by combinatorial try and error, are sufficient to reproduce the behavior to

navigate towards a beacon, to follow a gradient, or to follow a trail.

Using the spatial configuration of landmarks to navigate towards a goal is called

guidance. It requires complex computational steps, including the detection of land-

marks and a control mechanism to move into a direction that gradually improves

the perceived spatial relation between the landmarks. Cartwright and Collett

(1983) presented empirical evidence that honey bees (Apis mellifera) searched for

food using guidance. The search location was best predicted by the matching an-

gular relative position of landmarks on an assumed 360◦ retina. In order to detect

lanmdmarks, a matching snapshot template might be sufficient in simple cases,

like in the honey bee. An example for an efficient cue is the profile of the skyline,

which is easy to detect due to the high contrast (Basten & Mallot, 2010). Addi-

tionally, the algorithm must have access to the distances between the landmarks

on the retina. From these assumptions, a simple control algorithm was proposed

by Cartwright and Collett, which was able to reproduce the homing behavior of

bees (Cartwright & Collett, 1987b). Möller et al. (1999) presented a very simple,

and only local, network which performed similarly well. How such a network could

emerge from simple neuronal principles is an interesting topic for future research.

6.2.2 Wayfinding

Of all wayfinding navigation principles, the simplest is recognition-triggered re-

sponse. It is based on local navigation towards a goal location. However, as an

additional element, the recognition of a starting position triggers the locomotion.
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With the association of starting positions with movement instructions, it is pos-

sible to chain up several waypoints and therefore follow a route. As soon as local

navigation schemes exist, this associative scheme seems to be the natural next

evolutionary step. Association is the most prominent feature of neural circuitry

formation, ubiquitous throughout synaptically local learning algorithms. Indeed,

the transition of local navigation towards navigation with recognition-triggered

response is fluent. Local methods need to be evoked or suppressed, depending

on the behavioral goal of the animal. In simple cases, these triggers may be the

need to forage, due to a deficit in nutrients, or the need to return to shelter, due

to weather events or the recognition of a natural enemy. From this, it is only a

small step to associate cues that represent one place with local navigation behavior

towards another place.

Topological navigation is closely related to the recognition-triggered response

scheme. Likewise, places are linked to each other by methods of local navigation.

However, these links are independent of the goal, by only representing transition

from one place to the other. This extension renders it possible that two routes to

independent goals pass through the same place. In order to make the crossing of

routes possible, moving instructions to more than one place have to be associated

to one place. At navigation time, the selection of one of the instructions depends on

the goal. Places are therefore not chained up, but embedded into a graph, called

a topological map. In this graph, each node represents a place and each edge

contains the instruction for an action that leads from one place to the other. This

representation serves as a mental model or a cognitive map of the environment.

In order to make use of the representation, planing capabilities are required. an

agent can calculate the path to arbitrary goal positions by means of graph search

from one place to another. On the neuronal level, places may be represented as

neurons, or they may be represented as a set of feature neurons and transitions

from one place to another may be represented by axons and synapses between

these neurons(H. Mallot et al., 1995; Scholkopf & Mallot, 1995). The planning

of routes could be realized by mental exploration. Ponulak and Hopfield (2013)

presented such a neuronal graph search algorithm. In this model, activation is

induced into the network at the goal node, propagating a wave of activity through

the network in parallel. Using spike time dependent plasticity, the wave imprints

a trace of its first path through the network, which corresponds to the shortest
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path. A readout mechanism is required to retrieve the whole trace.

Survey navigation denotes the embedding of places into a common frame of

reference. It differs largely from topological navigation by the need to be accessible

as a whole, as opposed to the isolated spatial relationship between pairs of places.

It enables an agent to find shortcuts through novel terrain or detours around

obstacles. Survey navigation has only limited prevalence in biological systems

(Franz & Mallot, 2000), but is predominant in robot navigation. State of the

art robot navigation relies on simultaneous localization and mapping (SLAM),

which is a global optimization of the metric embedding of landmarks and the

agent in a common frame of reference (Fuentes-Pacheco et al., 2015). In the

evolutionary path, survey navigation can be thought to work top of topological

navigation. The metric embedding of a view graph allows for transition between

topological and survey navigation (Hübner & Mallot, 2007b). Indeed, grid cell like

metric representations, used for the integration of odometry information, may help

to improve survey competence in the case of loop closures (Banino et al., 2018;

Milford et al., 2007).

6.2.3 Dual population coding in the navigation hierarchy

We presented a new, biologically motivated navigation method, which we coined

dual population coding. It can be classified as a relaxed topological navigation

scheme. We assume a representation based on numerous overlapping and ambigu-

ous place fields, similar to the fields represented by place cells in rats (O’Keefe &

Speakman, 1987). The movement instructions are not associated to places, but to

place fields. A route from one place to another is linked to a number of movement

instructions from all place fields that intersect with the current location to all place

fields that intersect with the goal. The decision to move in a certain direction is

solved by a voting scheme over all movement instructions towards the goal that

are linked to the place fields at the current location. The term “dual population

coding” originates from the fact that both, place and movement instruction, are

not discrete in space, but associated to several overlapping place fields.

Our model greatly simplifies the need to detect patterns associated to places.

Each node represents a pattern which is not necessarily unique for a place. Only

a set of features distinctively describes places or objects. In our model, we used

SURF features because a set of SURF or SIFT features fulfills this requirement
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(Bay et al., 2008b; Lowe, 1999; Sivic & Zisserman, 2003b). However, any mech-

anism with similar or better spatial selectivity, like for example selectivity in IT

cortex, would be sufficient. With this diffuse representation of places, the dis-

tinction between local navigation and wayfinding is vague. Close to the goal,

navigation is local, in the sense that simple stimulus-response pairs are sufficient

for homing. As described earlier, it is not unlikely that this kind of association

between recognized stimuli and a locomotion response has emerged in evolution.

Connections between adjacent place fields may also be explained based on as-

sociation of place fields firing at the same time. However, the association of places

is not sufficient. The transition between two place fields must be associated with

an appropriate movement instruction. Therefore, a mechanism for detecting the

time in point at which transition occurs is required. With neurons, the detection

of changes in firing rate can be realized with adaptation mechanisms and learning

that depends on timing can be realized with spike time dependent plasticity.

In addition, our method relies on path planning. The mental exploration of

routes is a graph search task, for which we used the Dijkstra algorithm. The

associative network of places sketched out in the paragraphs before can be used

for this purpose. The parallel nature of neural networks is an excellent fit for

this task (Ponulak & Hopfield, 2013). Inducing activity in the goal node spreads

through the network in waves. In our model, it is sufficient to detect the node

from which the wave first hits the start node. The agent could navigate to the

corresponding place close by and iterate the procedure from place to place until it

reaches the corresponding location.

With our study, the aim was to develop a minimal model, sufficient for wayfind-

ing in a naturalistic environment. It is derived from a stimulus-response scheme,

requires only a small amount of visual invariance for localization, uses a simple

decision process in path planning, and does not rely on metric information. The

embedding into the navigational hierarchy sketches out a course evolutionary path

on which spatial cognition may have emerged in succession. However, we did not

develop a detailed evolutionary path that may explain the emergence of wayfind-

ing. Moreover, we did not transform the model to an implementation with neural

networks. But our model can help to uncover the path of emergent evolution,

opening the door for many interesting future research questions. It offers a min-

imal, yet efficient and evolutionary plausible framework for wayfinding and it is
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a promising starting point for more complex and sophisticated models of spatial

cognition.

6.3 Testing entities of living systems in the per-

ception-action cycle

The perception-action cycle was described by J. Fuster as “the circular flow of

information from the environment to sensory structures, to motor structures, back

again to the environment, to sensory structures, and so on, during the process

of goal-directed behavior”. The hierarchically organized brain areas communicate

with each other, with internal and external feedback at every level, which makes

them circular. Early levels of the hierarchy in sensory areas process simple stimu-

lus responses, whereas higher levels, like association and prefrontal cortex control

more complex behavior (Fuster, 2004). Many cognitive phenomena are subject

to the perception-action cycle, like for example perception, attention, cognitive

control, decision making, conflict resolution and monitoring, knowledge represen-

tation and reasoning, learning and memory, planning and action, and consciousness

(Cutsuridis et al., 2011).

If we understand cognition as an embodied system, enmeshed at every level

with a larger ecosystem, it follows that we must test hypotheses and models in a

naturalistic feedback loop. Our experimental setup from chapter 5 is an example

of testing animals in such a behavioral feedback loop. It was designed to evoke

and characterize the optokinetic reflex (OKR) of mice in order to infer properties

of the visual system. The setup is now commercially available as “OptoDrum”2. It

is primarily used to quantify the effect of pharmaceutical treatments on the visual

system.

In some animals, or if eye movement is measured directly, the reflex is triggered

reliably and constantly, as soon as the stimulus is presented, so that automated

tracking and evaluation is feasible. In zebrafish for example, methods for tracking

the OKR are well established and software is available as open source (Scheetz et

al., 2018). However, mice have a rich repertoire of high level behavior, which often

superimposes on the low level OKR. They groom, explore or try to escape from

the platform. Instead of tracking eye movement, the aim was no-invasive tracking

2https://stria.tech/optodrum
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of head movement of freely behaving mice. Therefore, isolation and quantification

of the OKR required elaborate processing. Assessing the tracking behavior of the

animals included the detection of the animal sitting still and an analysis of the

head movement fitting the stimulus speed and direction.

The goal of our setup was to isolate a low level reflex. However, hypotheses

on cognitive models need to recognize the embodied and integrated character of

biological systems. Similar setups with visual feedback have been used to investi-

gate any level of neuronal processing, like early sensory processing of optic flow in

zebrafish (Wang et al., 2019), the influence of visual cues on navigational strate-

gies employed by freely moving ants (Murray et al., 2020) or rats (Hölscher et

al., 2005), or how language cues influence the hierarchical representation of space

(Schick et al., 2019). Such setups enable rich options for stimulus manipulation

and can generate stimuli which are impossible in real world experiences. Manip-

ulited stimuli can serve as perturbances, engineered to test hypotheses on cognitive

models. Especially in conjunction with neuroimaging methods, testing animals in

the perception-action cycle has the potential to reveal more about the relationship

between cognitive models and the neuronal principles from which they emerge.
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Chapter 7

Conclusion

The aim of this thesis is to add knowledge to our understanding of mental models

and the underlying neuronal rules that lead to the emergence of these mental

models. In the following, I summarize the conclusions from all four chapters with

respect to this aim.

Sparse coding serves as a model for the formation of neuronal circuitry, espe-

cially in the visual cortex. Models for an implementation in neuronal substrate

are mature. The essential elements are: feed forward hebbian learning of input

relations and lateral anti-hebbian learning that enables delimitation of similar in-

put. Sparse coding of sensory input is an unsupervised learning method of early

sensory models. My thesis contains two examples, in which the representations

obtained with sparse coding show a clear relationship to physical properties of the

environment and may therefore serve as a sensory model.

In the first sparse coding study, presented in chapter 2, the Locally Competitive

Algorithm (LCA), was applied to stereo image data. The units of the represen-

tation were selective to physical properties of the environment: to disparity of

image structures, the cause of which is the distance of objects to the observer; to

the absence of corresponding structures in stereo half images, the cause of which

are occlusion boundaries of objects; and to the anisotropic visual compression of

surface textures, the cause of which is the orientation of the surface with respect to

the observer. We were able to show that the population code of the representation

is sufficient for inferring a depth map from stereo images, which may serve as a

model for the spatial structure of the environment.

In the second sparse coding study, presented in chapter 3, the LCA was applied

to wide-field optic flow data, modeled after the visual system of zebrafish. It was
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applied after the extraction of optic flow. Note that, because the nature of the optic

flow problem is similar to the stereo problem—both are based on the extraction

of disparities from consecutive images—this first processing step could also be

accomplished with sparse coding. Again, the units of the representations were

selective to physical properties of the environment: to ego-motion of the animal

in six degrees of freedom. The representation may therefore serve as the basis for

a model of the spatial relationship between the animal and the environment.

Our navigation model with dual population code, presented in chapter 4, can

be classified as a topological navigation method. It therefore differs substantially

from standard survey navigation schemes for robotic applications. Our model

rests on the association of visual patterns with places and on the association of

these places with motion instructions from one place to the other. The used

information and their representation is parsimonious in our model. Places, as well

as motion instructions, are not encoded explicitly, but in a population code. Their

representation is noisy and ambiguous and individual units are not unique to the

place fields they represent. Our successful evaluation confirms that simple rules of

association, combined with a biologically plausible planning method, are sufficient

for wayfinding in larger environments. The model is a step towards the outline of

a plausible evolutionary path, which describes the emergence of navigational skills

starting with recognition triggered responses.

In order to test hypotheses on mental models or other cognitive processing

capabilities, it is important to recognize the studied subject as a living system,

which is embodied and enmeshed with the environment on every level. Therefore,

the real nature of cognitive processing can only unfold if tested in a naturalistic

perception-action cycle. An example for such a setup is our automated visual

performance testing in mice, presented in chapter 5. Because auf the manifold

of interactions in cognitive processes, quantification and isolation of individual

capabilities requires a holistic view. This was already apparent in our case, where

the task was to quantify a simple reflex, but is even more important in the case of

testing models of cognitive functions.

In summary, the first two studies contained in this thesis have contributed to

our understanding of sensory representations, obtained with sparse coding, as early

mental models of physical properties of the environment. Additionally, this thesis

contains the outline of a mental model of environmental spatial relationships for
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navigational purposes, which is parsimonious in nature and therefore a possible

intermediate step that explains the evolutionary emergence of navigational skills.

Finally, this thesis contains a study that establishes a setup to test animals in the

perception-action cycle, which is important in order to reveal the real nature of

cognitive processes in living systems.
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