Aus der Radiologischen Universitätsklinik Tübingen Abteilung Diagnostische und Interventionelle Neuroradiologie

Alterseffekte von Größe und Signalintensität der Basalganglien in der MR-Bildgebung

Inaugural-Dissertation zur Erlangung des Doktorgrades der Medizin

der Medizinischen Fakultät der Eberhard Karls Universität zu Tübingen

vorgelegt von

Prots, Iryna

2021

Dekan: Professor Dr. B. Pichler

1. Berichterstatter: Professor Dr. U. Klose

2. Berichterstatter: Professor Dr. Dr. H.-O. Karnath

Tag der Disputation: 08.12.2021

Inhaltverzeichnis

Al	bkürzungsverzeichnis	1
II	Einleitung	2
	1. Basalganglien	2
	1.1. Definition, Einteilung und Funktionen der Basalganglien	2
	1.2. Pathologische Veränderungen der Basalganglien bei neurologischen und	
	psychiatrischen Krankheiten	4
	2. Stand des Wissens	7
	2.1. Altersabhängige Atrophie der Basalganglien bei gesunden Probanden	7
	2.2. Geschlechtsabhängige Unterschiede der Basalkernverringerung	8
	2.3. Asymmetrie der Volumina von subkortikalen Strukturen	9
	2.4. Intensitätsänderung der Basalganglien mit dem Alter	9
	3. Magnetresonanztomografie	. 10
	4. Segmentierungsverfahren und Bildverarbeitung	. 13
	5. Studie zur Erstellung eines Normkollektivs für die Untersuchung altersabhängig	ger
	Effekte in der gesunden Normalbevölkerung mittels MR-Bildgebung (UKT)	. 15
	6. Zielsetzung der vorliegenden Arbeit	. 16
II	Probanden und Methoden	. 18
	1. Probanden	. 18
	1.1 Studienpopulation	. 18
	1.2. Rekrutierung der Probanden	. 19
	1.3. Einschlusskriterien der Studie; Ausschlusskriterien, Risiken und	
	Nebenwirkungen bei der MRT-Durchführung	. 19
	1.4. Ethikantrag	. 19
	2. Untersuchungsdurchführung	. 20
	2.1. Aufklärungsgespräch und Anamnese	. 20
	2.2. Klinische Untersuchung der Probanden	. 20

2.3. "DemTect"	
2.4. Magnetresonanztomograf und Untersuchungsprotokoll	21
3. Datenverarbeitung, Beurteilung der Aufnahmen und Vorbereitung der M	R-Daten
zur weiteren Analyse	
4. Manuelle Segmentierung der Basalganglien mit 3D Slicer	
4.1. 3D Slicer	
4.2. Segmentierungsprozess	23
4.3. Beurteilung der Segmentierungsqualität	
4.4. Auswertung der Volumina und Intensitäten der Basalganglien in 3D	Slicer26
5. Automatische Segmentierung der Basalganglien mittels FreeSurfer und S	PM 26
6. Statistische Methoden	27
III Ergebnisse	
1. Handsegmentierte Basalganglienvolumina	
2. Automatisch ausgewertete Volumina der subkortikalen Strukturen	
3. Korrelation zwischen handsegmentierten Basalganglienvolumina und der	n Alter 31
3.1. Nucleus caudatus	
3.2. Putamen	
3.3. Pallidum	
4. Korrelation zwischen automatisch ausgewerteten Basalganglienvolumen	und dem
Alter, Vergleich mit Korrelationen aus den handsegmentierten Daten	
4.1. Nucleus caudatus	
4.2. Putamen	
4.3. Pallidum	
5. Differenz zwischen manueller und automatischer Segmentierungsmittelv	olumina
5.1. Nucleus caudatus	
5.2. Putamen	

5.3. Pallidum	
6. Vergleich der Atrophie subkortikaler Gehirnstrukturen bei weiblichen ur männlichen Prohanden	nd 46
7 Agreen atria dan Dagalaan alian in han daagmantiantan Datan	
7. Asymmetrie der Basargangnen in nandsegmentierten Daten	
8. Intensität der Basalkerne und Zusammenhang mit dem Alter in handsegr Daten	mentierten 51
8.1. Auswertung der Korrelationen der Intensitäten des jeweiligen Basall	kernes und
Alter	51
8.1.1.Nucleus caudatus: T1, T2, FLAIR	51
8.1.2. Putamen: T1, T2, FLAIR	
8.1.3. Pallidum: T1, T2, FLAIR	
8.2. Visueller Vergleich	
IV Diskussion	
1. Altersbedingte Effekte der handsegmentierten Basalganglienvolumina in Normalkollektiv	n 62
2. Vergleich der automatischen und manuellen Segmentierung	64
2.1. Vergleich der altersbedingten Atrophie	64
2.2. Vergleich der Basalganglienvolumen	
3. Geschlechtsunterschiede der Basalganglienatrophie	
4. Asymmetrie der Basalganglienvolumen	70
5. Normale altersabhängige Unterschiede der Intensität der subkortikalen S	trukturen
	71
6. Störfaktoren, Schwachpunkte und Fehlermöglichkeiten der Studie	74
V Zusammenfassung	77
Liste der Tabellen	79
Liste der Abbildungen	
Literatur	

Erklärung zum Eigenanteil	90
Danksagung	91
Lebenslauf	
Anhänge	

Abkürzungsverzeichnis

3D-SPGR - 3D spoiled gradient-recalled echo sequence ADHS - Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung DIR – dual inversion recovery FIRST – FMRIB's Integrated Registration & Segmentation Tool FLAIR - Fluid Attenuated Inversion Recovery FSL – FMRIB Software Library GE – Sequenzen – Gradient-Echo Sequenzen IR-Sequenzen - Inversion-Recovery-Sequenzen LDDMM – large deformation diffeomorphic metric mapping MAGeT - Multiple Automatically Generated Templates MCI – mild cognitive impairment (leichte kognitive Einschränkung) MIST – multimodal image segmentation tool MR – Magnetresonanz MRI – magnetic resonance imaging MRT – Magnetresonanztomographie MSNs - medium spiny neurons (striatale output-Neurone) $N_{.}$ – Nucleus NBIA - Neurodegeneration with Brain Iron Accumulation PD – Protonendichte r - Korrelationskoeffizient nach Pearson SE-Sequenzen – Spin-Echo Sequenzen SPSS - Statistical Package for the Social Sciences STIR – Short-T1 Inversion Recovery TE – echo time (Echozeit) TIV - total intracranial volume (intrakranielles Gesamtvolumen) TPMs – tissue probability maps TR – repetition time (Repetitionszeit) UKT – Universitätsklinikum Tübingen VBM - Voxelbasierte Morphometrie ZNS – Zentralnervensystem

I Einleitung

1. Basalganglien

1.1. Definition, Einteilung und Funktionen der Basalganglien

Definition

Unter dem Begriff "Nuclei basales" (Basalkerne oder Basalganglien) werden die subkortikal gelegenen Kerne der grauen Substanz verstanden, die bilateral in der Tiefe des Großhirns in der Nähe des Thalamus bzw. Hypothalamus liegen. Sie sind an der Basis des Telencephalons an der Grenze zum Diencephalon lokalisiert, wodurch sich der Name "basales" ergibt. Die offiziell "Nuclei basales telencephalie" (Basalganglien) und "Nuclei basales thalami" (Thalamuskerne) genannten Kerngebiete des Zwischenhirns sollten streng voneinander getrennt werden (Schünke et al., 2015).

Einteilung der Basalganglien

Morphologisch gehören drei paarige große Kernmassen zu den Basalganglien: Nucleus caudatus oder einfach Caudatus, Putamen und Pallidum oder Globus pallidus (Abb. 1). Die anatomisch getrennten Strukturen Nucleus caudatus und Putamen werden in ein einheitliches System mit dem Begriff Corpus striatum oder kurz Striatum (Streifenkörper) zusammengefasst. Der Name ist durch die streifenförmige Erscheinung der Verbindung zwischen N. (Nucleus) caudatus und Putamen entstanden, die durch die Fasern der Capsula interna an manchen Stellen unterbrochen wird. Der medial gelegene Globus pallidus bildet zusammen mit dem Putamen den Nucleus lentiformis oder N. lenticularis. Dieser Kern sieht eher wie ein Kegel aus: lateral mit dem Putamen als Kegelbasis und medial mit dem Pallidum als Kegelspitze. Das Pallidum kann noch weiter in einen inneren Globus pallidus medialis (Pars interna) und einen äußeren Globus pallidus lateralis (Pars externa) gegliedert werden (Schünke et al., 2015, Preilowski et al., 2009).

Physiologisch werden andere Kerngebiete, wie die Substantia nigra, der Nucleus ruber, der Nucleus subthalamicus oder der Nucleus accumbens auch dem Begriff Basalganglien zugerechnet. Jedoch beruht diese Einteilung ausschließlich auf der gemeinsamen motorischen Funktion (Schmidt et al., 2010, Schünke et al., 2015). Manche Autoren rechnen auch die Amygdala zu den Basalkernen. Allerdings ist diese Einteilung sowohl aus experimenteller als auch aus klinischer Sicht unpraktisch (Alheid et al., 1990). Im Rahmen dieser Arbeit bezieht sich der Begriff Basalganglien deshalb auf die streng anatomisch definierten Kerne (N. caudatus, Putamen, Pallidum).

Abb. 1: Basalganglien auf der axialen T2-gewichteten MRT-Sequenz: 1 – Nucleus caudatus, 2 – Putamen, 3 – Pallidum, 4 – Corpus striatum, 5 – Nucleus lentiformis.

Funktionen

Eine der wichtigsten Funktionen der Basalganglien ist die Steuerung der Motorik: Programmerstellung, Planung, Initiierung, Ausführung und Kontrolle von Bewegungen (Alheid et al., 1990, Alexander et al., 1986). Im "okulomotorischen" Funktionskreis nehmen Teile der Basalganglien an der Kontrolle von Augenbewegungen und spontanen Sakkaden teil (Alexander et al., 1986, Schmidt et al., 2010). Zusätzlich haben die Basalganglien einen Einfluss auf die kognitiven und limbischen Prozesse. Sie sind am Arbeitsgedächtnis und an regelbasiertem prozeduralem Lernen beteiligt. Umfangreiche Evidenz deutet darauf hin, dass Ausgänge der Basalganglien Zugang zum präfrontalen Kortex haben und durch die Basalganglien-Thalamokortikalen-Schaltkreise eine wesentliche Rolle bei der Modulation des gesamten Frontallappens spielen. Damit modulieren sie zum Beispiel Aufrechterhalten, Wechseln und Planung von Verhaltensweisen (Middleton and Strick, 1994, Packard and Knowlton, 2002, Alexander et al., 1991). Außerdem ist das Neostriatum durch die cingulostriatalen Projektionen an belohnungsbezogenen Prozessen beteiligt (Calabresi et al., 1997).

1.2. Pathologische Veränderungen der Basalganglien bei neurologischen und psychiatrischen Krankheiten

Pathologien der Nuclei basales sind, korrelierend mit den oben genannten Funktionen, mit motorischen, kognitiven und emotionalen Störungen assoziiert. Die Basalganglien sind bei einer Vielzahl neurodegenerativer Erkrankungen betroffen, wie z.B. dem Morbus Alzheimer, der Parkinsonkrankheit und Chorea Huntington. Veränderungen in den Basalganglien finden sich jedoch auch bei anderen neurologischen Krankheitsbildern, so zum Beispiel bei Epilepsien oder Stoffwechselerkrankungen wie dem Morbus Wilson. Auch bei verschiedenen psychiatrischen Erkrankungen, wie etwa Depression, Schizophrenie und ADHS (Aufmerksamkeitsdefizit-

/Hyperaktivitätsstörung) sind Veränderungen in diesen subkortikalen Strukturen beschrieben.

Bei den Patienten mit Alzheimerkrankheit zeigt sich im Vergleich zu gesunden Probanden und Patienten mit Morbus Parkinson ein signifikant reduziertes Gehirn- und Caudatusvolumen (Almeida et al., 2003, Jiji et al., 2013). Auch die Atrophierate ist bei Patienten mit Alzheimerkrankheit insbesondere im Bereich der Basalganglien deutlich höher, als bei Probanden mit leichter kognitiver Einschränkung (engl. - mild cognitive impairment, MCI). Diese weisen wiederum eine höhere Atrophierate als gesunde Kontrollen ohne kognitive Einschränkungen auf (Meijerman et al., 2018). Im Vergleich zur Alzheimerkrankheit haben Patienten mit Lewy-Körper-Demenz eine selektive spinodendritische Degeneration der striatalen output-Nervenzellen (engl. - medium spiny neurons, MSNs) im Nucleus caudatus, die eine erhöhte exekutive Dysfunktion bei diesen Patienten erklären kann (Zaja-Milatovic et al., 2006).

Im Allgemeinen besteht der biochemische Defekt bei Morbus Parkinson in einem Verlust des Dopamins in vielen zerebralen Strukturen, inklusive im Striatum. Bei den Patienten sowohl mit idiopatischer Parkinson-Erkrankung ohne begleitende Demenz als auch bei Parkinson-Patienten mit Multisystematrophie, kommt es zum Verlust von Nervenzellen sowie Gliose in den Basalganglien (Cornford et al., 1995). In einer neueren Studie werden Volumenunterschiede im Putamen und Formunterschiede im Putamen und im Nucleus caudatus bei Patienten mit idiopathischem Parkinson-Syndrom gefunden. Eine Korrelation zwischen der Form der Basalganglien und motorischen Symptomen ist ebenso belegt (Nemmi et al., 2015). In der Spätphase der Parkinsonkrankheit werden verkürzte Dendriten bei den striatalen Output-Neuronen (MSNs) in vier Regionen des Neostriatums und eine signifikant reduzierte Anzahl von MSNs im Putamen beobachtet. Diese Störungen bilden die Grundlage für die motorischen Spätkomplikationen der Parkinsonkrankheit und können auch die abnehmende Wirksamkeit der chronischen DOPA-Ersatztherapie bei fortgeschrittenem Erkrankungsstadium erklären (Zaja-Milatovic et al., 2005, McNeill et al., 1988).

Bei der Chorea Huntington wird eine Degeneration der striatalen Neuronen beobachtet, die im medialen Nucleus caudatus beginnt und zu choreiformen Bewegungen führt (Calabresi et al., 1997). Bei dieser Erkrankung kommt es zu einer ausgeprägten Atrophie im Putamen, einer milden Atrophie im Nucleus caudatus (Harris et al., 1992) sowie zum größten Verlust von Cannabinoidrezeptoren an striatalen Nervenenden, vor allem im Pallidum (Richfield and Herkenham, 1994).

Bei Patienten mit Temporallappenepilepsie wurden, meist ipsilateral zum epileptogenen Fokus, geringere Striatumvolumen beschrieben (Dreifuss et al., 2001).

Relativ isolierte Veränderungen im Pallidum werden bei einigen anderen Erkrankungen beobachtet. Bei der Wilson-Krankheit kommt es aufgrund eines genetischen Defektes im Kupfer-Ionentransporter zu Kupferablagerungen in diesem Basalkern (Cornford et al., 1995).

Bei der NBIA (Neurodegeneration with Brain Iron Accumulation) kommt es zu Eisenablagerungen in verschiedenen Kerngebieten, wobei der Globullus pallidus am häufigsten mitbetroffen ist. In der MRT-Untersuchung kommt es bei der Kupferspeicherkrankheit oder bei der NBIA in den betroffenen Kerngebieten zu Signalveränderungen. So zeigen sich die Bereiche mit Eisenüberladung in den T2gewichteten Sequenzen hypointens, wobei dies in der T2 *-Wichtung (GE-Sequenz) zunehmend ist. Eine Krankheit aus der NBIA-Liste, nämlich Pantothenatkinaseassoziierte Neurodegeneration oder Hallervorden-Spatz-Syndrom, hat ein fast pathognomonisches "Eye-of-the-tiger"-Zeichen mit einem T2-gewichteten hypointensen Signal im Globus pallidus mit zentraler Hyperintensität (Kruer et al., 2012, Gregory and Hayflick, 2013).

Bei depressiven Patienten ist das Volumen des Nucleus caudatus auf beiden Seiten im Vergleich zu gesunden Probanden vermindert (Krishnan et al., 1992).

Anders als bei Gesunden zeigen sich im Rahmen von Gruppenvergleichen bei Patienten mit bipolaren Störungen kleinere Volumina von Putamen und Globus pallidus pars externus und bei Patienten mit Depression isoliert ein vermindertes Volumen des Globus pallidus pars externus (Bielau et al., 2005).

In einer Studie konnte gezeigt werden, dass links hemisphärische subkortikale Läsionen im Caudatuskopf und -körper mit einer post-stroke-Depression assoziiert sind. Die Ergebnisse deuten darauf hin, dass asymmetrische subkortikale Mechanismen bei der Stimmungsregulation beteiligt sein können (Starkstein et al., 1987).

In einer neueren Studie wurde gezeigt, dass alle Basalganglien bei Patienten mit dem ersten Auftreten einer Psychose signifikant größer als bei den Kontrollprobanden sind (Makowski et al., 2018). Eine weitere Studie belegt, dass die Volumina des bilateralen Globus pallidus und des linken Putamens bei Patienten mit Migräne mit Aura signifikant kleiner als bei Gesunden sind (Petrusic et al., 2019).

Patienten mit ADHS haben im Seitenvergleich häufiger ein kleineres linkes Putamen, während es sich bei der Kontrollgruppe genau umgekehrt verhält (Wellington et al., 2006). Es wurde festgestellt, dass Patienten mit ADHS mit Blick auf die Fläche einen größeren rechten Caudatus (Mataró et al., 1997), jedoch bezogen auf das Volumen einen kleineren linken Caudatus als die gesunden Probanden haben (Filipek et al., 1997).

Bei behandelten Schizophrenie-Patienten wird eine signifikant positive Korrelation zwischen der hohen Dosierungen eines typischen Neuroleptikums und dem Volumen des bilateralen Nucleus caudatus sowie des linken Putamens gefunden, was für eine medikamenteninduzierte Hypertrophie dieser Basalganglien spricht (Gur et al., 1998).

2. Stand des Wissens

2.1. Altersabhängige Atrophie der Basalganglien bei gesunden Probanden

Es gibt zahlreiche Studien aus den letzten 30 Jahren, die sich mit der Fragestellung der altersabhängigen Basalganglienatrophie bei gesunden Probanden beschäftigen. Die Anzahl der gesunden Teilnehmer in der Literatur variiert zwischen 27 und 1100, das Alter liegt zwischen 16 und 99 Jahren. Die meisten Studien beschränkten sich dabei nicht auf einen speziellen Altersbereich. Ausnahmen davon sind zum Beispiel die Arbeit von Péran et al., 2009, in der Probanden zwischen 20 und 41 Jahren eingeschlossen wurden, während in der Studie von Murphy et al., 1992 zwei Gruppen mit Jüngeren (unter 35 Jahren) und Älteren (über 60 Jahren) teilnahmen. Die Auswertungen der meisten Studien basiert hauptsächlich auf T1-Sequenzen. Eine genaue Auflistung bezüglich Anzahl der Teilnehmer, abgedeckter Altersspanne, verwendeter Sequenzen und Methoden der Basalgangliensegmentierung aus den zitierten Studien finden sich im Anhang 1.

Insgesamt wird häufig ein beschleunigter altersbedingter Verlust des Gehirnvolumens, einschließlich der Basalganglien, beschrieben (Abe et al., 2008, Taki et al., 2004). Viele Publikationen belegen die Volumenverringerung des N. caudatus und/oder Putamens mit zunehmendem Alter, jedoch wird keine besondere oder signifikante Alterswirkung auf das Pallidum bei gesunden Probanden beobachtet (Cherubini et al., 2009, Walhovd et al., 2005, Serbruyns et al., 2015). Ruben C. Gur et al. präsentieren ähnliche Resultate mit dem Unterschied, dass die altersabhängige Schrumpfung nicht im ganzen Caudatus, sondern nur im Caputbereich stattfindet (Ruben C. Gur et al., 2002).

Im Kontrast zu anderen belegen manche Autoren die Verkleinerung aller Basalganglien, einschließlich des Pallidums (Gunning-Dixon et al., 1998, Goodro et al., 2012, Li et al., 2014, Walhovd et al., 2011, Lorio et al., 2016, Raz et al., 2003).

In einigen Studien werden signifikant negative Alter-Volumen-Korrelationen nur in jeweils einem von drei Kernen beschrieben: Im Caudatus (Jernigan et al., 2001), im Putamen (Péran et al., 2009) oder im Pallidum (Tullo et al., 2019).

Vier Studien segmentieren die Basalganglien nicht automatisch, sondern manuell (Hasan et al., 2008, Gunning-Dixon et al., 1998, Raz et al., 2003, Raz et al., 2005). Ein Vergleich der Basalganglienatrophie bezogen auf manuelle und automatisierte Ergebnisse wird von keiner Studie durchgeführt. In zwei Untersuchungen mit manueller Segmentierung werden Atrophien des Putamens und Pallidums nicht bestimmt (Hasan et al., 2008) oder nicht explizit erwähnt (Raz et al., 2005). Die zwei anderen haben keine oder nur eine geringe Atrophie im Pallidum gefunden und unterscheiden sich damit von den automatisierten Messungen (Gunning-Dixon et al., 1998, Raz et al., 2003).

Die Forschungsergebnisse zur Basalganglienatrophie stammen hauptsächlich aus Querschnittsstudien (Murphy et al., 1992, Krishnan et al., 1990, Gunning-Dixon et al., 1998, Jernigan et al., 2001, Walhovd et al., 2005, Hasan et al., 2008, Raz et al., 2004). Auch Längsschnittstudien spielen eine große Rolle und leisten einen wichtigen Beitrag zu den Forschungsergebnissen des Basalganglienalterns (Raz et al., 2003, Raz et al., 2005, Fjell et al., 2013, Meijerman et al., 2018). Die Untersuchung aus dem Jahr 2005 beschreibt die individuellen Variationen der Längsveränderungen im Erwachsenenalter (Raz et al., 2005). Die Abnahmeraten des Striatumvolumens sind in der longitudinalen Untersuchung von Raz et al. wesentlich höher als in der früheren Querschnittuntersuchung aus dem Jahr 2003 (Raz et al., 2003). Im Gegensatz hierzu zeigen Fjell et al. erhebliche Überlappungen der Altersverhältnisse zwischen Quer- und Längsschnittstudien für alle untersuchten Gehirnstrukturen, mit Ausnahme des Caudatusvolumens (Fjell et al., 2013). Der Anhang 2 enthält die detaillierten Ergebnisse aus den genannten Literaturquellen.

2.2. Geschlechtsabhängige Unterschiede der Basalkernverringerung

Die Ergebnisse von Studien, welche sich mit Geschlechtseffekten der Basalganglienatrophie beschäftigen, widersprechen sich zum Teil. Es wird häufig beschrieben, dass die Atrophierate in unterschiedlichen Regionen bei Männern höher ist als bei Frauen, und zwar im N. caudatus (Raz et al., 1995), im Striatum (Király et al., 2016), im rechten Putamen und im rechten Pallidum (Wang et al., 2019). Andere Autoren sehen eine altersabhängige Volumenverringerung nur bei Männern in den bilateralen (Murphy et al., 1992) oder linksseitigen Basalganglien (Xu et al., 2000), isoliert im Putamen (Raz et al., 1995) oder im Pallidum (Gunning-Dixon et al., 1998). Dagegen beobachten zwei Studien eine Korrelation nur bei weiblichen Probanden. So wird eine signifikante Atrophie in allen Basalkernen (Li et al., 2014), beziehungsweise eine deutliche Zunahme der Atrophie im Caudatus in der Längsschnittbeobachtung (Raz et al., 2005) nur für Studienteilnehmerinnen gezeigt.

Andere Publikationen beschreiben dagegen keinen signifikanten Einfluss des Geschlechts (Hasan et al., 2008, Krishnan et al., 1990, Raz et al., 2003, Tullo et al., 2019, Peterson et al., 1993).

2.3. Asymmetrie der Volumina von subkortikalen Strukturen

Auch zu Seitendifferenzen bei den Basalganglienvolumen sind die Ergebnisse der bisherigen Forschung nicht einheitlich. So zeigen einige Studien ein größeres Volumen rechts gegenüber links im N. caudatus (Ifthikharuddin et al., 2000, Peterson et al., 1993, Szabo' et al., 2003) oder im Putamen (Gunning-Dixon et al., 1998), im Striatum (Raz et al., 1995), oder in allen drei Basalganglienpaaren (Raz et al., 2003). Andere Arbeitsgruppen finden hingegen ein größeres Volumen links gegenüber rechts im N. caudatus (Gunning-Dixon et al., 1998), Putamen (Ahsan et al., 2007), Pallidum (Kooistra and Heilman, 1988) und Nucleus lentiformis (Peterson et al., 1993). Einzelne Gruppen sehen auch keine signifikanten Unterschiede zwischen links und rechts in allen Basalganglien (Tullo et al., 2019) oder allein im Caudatus (Krishnan et al., 1990).

2.4. Intensitätsänderung der Basalganglien mit dem Alter

Im Vergleich zu der Volumenänderung wird die altersbedingte Änderung der T1-, T2oder FLAIR-Intensitäten in den Basalganglien selten in der Literatur beschrieben. Häufiger wurden aber die T2*-Relaxationszeiten oder ihren inversen R2*-Werte (ausgedruckt in sec-1) bestimmt, wobei der R2* Wert durch zunehmende Metallablagerungen, in erster Linie Eisen, bedingt ist. Hierbei besteht zwischen R2* und dem Eisengehalt eine positive Korrelation (Aquino et al., 2009). Aufgrund magnetischer Suszeptibilitätseffekte und Feldheterogenitäten sind die Eisenablagerungen auf T2- und T2 * -gewichteten Gradientenechosequenzen als hypointense Areale erkennbar (Drayer et al., 1986).

Es besteht eine ähnliche Tendenz der Volumenabnahme sowohl beim N. caudatus als auch beim Putamen. Jedoch unterscheidet sich die Änderung der Intensitätswerte in diesen beiden Basalkernen. Hierbei zeigt sich, dass die positive Korrelation zwischen der T2*-Relaxationszeit bzw. R2 im Putamen im Vergleich zum Caudatus stärker ist (Cherubini et al., 2009, Péran et al., 2009). Laut Cherubini et. al ist der R2*-Wert des Putamens einer der besten Prädiktoren für das Altern, sogar besser als die Volumenverminderung der Basalganglien.

Obwohl das Pallidum die eisenreichste Struktur aller Basalganglien ist, weist es den am wenigsten ausgeprägten Zusammenhang zwischen R2*-Werten und dem Alter auf (Cherubini et al., 2009, Péran et al., 2009). Der Grund dafür ist, dass das Pallidum hohe Eisenkonzentrationen schon im frühen Erwachsenenalter zeigt (Aquino et al., 2009). Die Zunahme der Eisenablagerung in den Basalganglien führt häufig zu den fehlerhaften Abgrenzungen der Ganglienränder, besonders im Pallidumbereich (Lindig et al., 2018, Lorio et al., 2016).

Es zeigen sich auch Läsionen oder Areale mit T2-hohen Signalintensitäten im Striatum (Kasahara et al., 1995), sowie im Nuclues lentiformis (Jernigan et al., 2001). Diese wurden deutlich häufiger bei älteren als bei jüngeren gesunden Studienteilnehmern gefunden.

Die hypointensen Flecken in den T1-Sequenzen ohne Nachweis eines hyperintensen Korrelates in den T2-Sequenzen fallen manchmal in allen Basalkernen auf, insbesondere im Pallidum. Mit zunehmendem Alter sind diese Areale häufiger zu sehen und außerdem nehmen sie an die Größe zu (Gunning-Dixon et al., 1998, Raz et al., 2003). Diese hypointensen Bereiche wurden von Raz et al als nicht-neuronale Einschlüsse bezeichnet (Raz et al., 2003).

3. Magnetresonanztomografie

Grundsätzlich verwendet die MRT zur Ermöglichung der Bildgebung die Atomkerne des zu untersuchenden Gewebes, welche ein magnetisches Kernmoment μ haben, und zwar die Atomkerne mit ungerader Nukleonenzahl. Da Wasserstoffatome (Protonen, H⁺) als Teil von Wasser und organischen Molekülen 75-80 % der menschlichen Körper ausmachen, werden sie häufig zur Bildgebung verwendet. Die Protonen rotierten um die eigenen Achsen und induzieren kleine magnetische Felder, die im menschlichen Körper zufällig ausgerichtet sind (Chaos-Prinzip). Durch Einwirkung eines starken von außen einwirkenden Magnetfeldes kommt es zum geordneten Zustand der Protonen: parallel oder antiparallel zum äußeren Magnetfeld. Der aufsummierende Effekt aller magnetischen Momente der Protonen resultiert als Gesamtmagnetisierungsvektor. Bei Anregung der Protonen im Körper durch Einstrahlung eines Hochfrequenzfeldes dreht der Gesamtmagnetisierungsvektor um einen bestimmten Winkel. Dabei entstehen zwei Magnetisierungsvektorkomponenten: Längsmagnetisierung und Quermagnetisierung. Bei der Einwirkung des Hochfrequenzfeldes nimmt die Längsmagnetisierung ab und eine neue Quermagnetisierung wird erzeugt. Nach Abschalten des Hochfrequenzfeldes wird eine T1- oder Spin-Gitter-Relaxation beobachtet, bei der die Longitudinalmagnetisierung zunimmt und die aufgenommene Energie an die Umgebung abgegeben wird. Bei gleichzeitiger T2- oder Spin-Spin-Relaxation nimmt langsam die transversale Magnetisierung aufgrund der Wechselwirkung zwischen den sich drehenden Kernen ab. Dabei entsteht keine Energieabgabe an die Umgebung, sondern ein Energieaustausch der Spins untereinander. Gemäß dem Faradayschen Induktionsgesetz induziert die Quermagnetisierung einen Strom in der Empfängerspule. Dieser Strom wird zum MR-Signal und für die Bilderzeugung verwendet (Bitar et al., 2006, Kauffmann et al., 2011, McRobbie et al., 2006, Weishaupt et al., 2014, Reiser and Semmler, 2002).

Wichtige Eigenschaften von Geweben und Erstellungsparametern, die den Kontrast des MR-Bildes bestimmen, sind die Protonendichte, Echozeit (time echo oder kurz TE), Repetitionszeit (repetition time oder kurz TR), T1-Zeit und T2-Zeit. Die Protonendichte (PD) ist ein Maß, das sich auf die Anzahl von Wasserstoffprotonen in einem bestimmten Volumen bezieht. Flüssigkeiten haben einen höheren PD-Wert als Gewebe des Stütz- und Bewegungsapparates. Echozeit (TE) ist die Zeit in Millisekunden zwischen dem Anlegen eines Hochfrequenzimpulses und der detektierten Spitze des Signals. Repetitionszeit (TR) ist die Zeit in Millisekunden zwischen
Hochfrequenzsignalen, die nacheinander folgen. T1-Zeit ist eine Zeitkonstante, die bestimmt, wie schnell die Spins relaxieren und erneut anzuregen sind. Das Fettgewebe relaxiert schneller und hat eine deutlich kürzere T1-Zeit im Vergleich zum Wasser. Die T2-Zeit eines Gewebes beschreibt, wie rasch die Spins nach einer Anregung dephasieren. Flüssigkeiten haben ein relativ langes T2 im Gegensatz zum Fettgewebe (McRobbie et al., 2006, Weishaupt et al., 2014, Bitar et al., 2006, Kauffmann et al., 2011).

11

Grundsätzlich werden zwei Hauptarten von MR-Sequenzen in der Klinik verwendet: Spin-Echo (SE)-Sequenzen und Gradient-Echo (GE)-Sequenzen.

Spin-Echo (SE)-Sequenzen

SE-Sequenzen erzeugen das Echo durch Anwendung der 90°- und 180°-Anregungsimpulse. Generell ist die Bildqualität der SE-Sequenzen besser als die der GE-Sequenzen. Der Nachteil ist eine relativ lange Erzeugungsdauer. Je nach Auswahl von TR und TE kann SE verschiedene Wichtungen erzeugen.

T1-gewichtete Bilder sind durch kurze TR und TE gekennzeichnet, zum Beispiel TR von 340 und TE von 13 ms. Das Gewebe auf Wasserbasis ist mittelgrau und die Flüssigkeiten sind sehr dunkel. Das fettreiche Körpergewebe erscheint deutlich heller im Vergleich zum umliegenden fettarmen Gewebe. Sie liefern eine sehr gute Darstellung von anatomischen Strukturen.

Um T2-gewichtete Bilder zu erzeugen, werden relativ lange TR und TE ausgewählt, z. B. TR von 3500 und TE von 120 ms. Die Flüssigkeiten sind hyperintens, während die wasser- und fetthaltigen Gewebe mittlere Intensität haben. T2-Bilder werden oft als "pathologische" Scans bezeichnet, weil die meisten Gewebe in den betroffenen Bereichen einen höheren Wassergehalt als normal haben und signalreich erscheinen. Protonengewichtete Bilder weisen Charakteristika von T1- und T2-Kontrast auf und haben folgende typische Parameter: langes TR (zum Beispiel von 2000 ms) und kurzes TE (zum Beispiel von 15 ms). Bei solchen Parametern gibt es keine T1- und T2bedingten Kontrastbildungen. Der Kontrast wird nur durch die Protonendichte der Spins in dem angeregten Ort bestimmt. In der Klinik sind die PD-Sequenzen besonders hilfreich für MRT-Bildgebung von Gehirn, muskuloskelettalem System und Wirbelsäule.

Inversion-Recovery (IR)-Sequenzen stellen eine Sonderform der SE-Sequenzen dar, bei denen zuerst ein 180°-Impuls ausgesandt wird. Zu einer bestimmten Inversionszeit kann das Signal von einigen Geweben oder Substanzen stark reduziert werden. Zum Beispiel bei STIR (Short-T1 Inversion Recovery) erfolgt die Fettsuppression mit einer kurzen Inversionszeit, während bei FLAIR (Fluid Attenuated Inversion Recovery) wird das zerebrospinale Liquorsignal bei der Verwendung der langen Inversionszeiten unterdrückt.

Gradient-Echo (GE)-Sequenzen

Bei den GE-Sequenzen wird ein Hochfrequenzimpuls ohne 180°-Anregungsimpuls zur Erzeugung des Signals verwendet. Mit GE-Sequenzen kann man Bilder mit T1-, T2*oder PD-Gewichtung erzeugen. Generell haben sie viel kürzere TR- als SE-Sequenzen. Deswegen ermöglichen GE-Sequenzen Zeitersparnis durch schnelle und kurze Messungen zum Beispiel in Atemanhaltetechnik. Sie sind jedoch gegen Inhomogenität des Hauptmagnetfeldes deutlich empfindlicher und haben stärker ausgeprägte Suszeptibilitätsartefakte (Weishaupt et al., 2014, McRobbie et al., 2006, Bitar et al., 2006, Kauffmann et al., 2011).

4. Segmentierungsverfahren und Bildverarbeitung

Die Mehrzahl ältere Studien verwendet manuelle oder computergestützte bzw. halbautomatisierte Methoden, um die Basalganglien abzugrenzen (Krishnan et al., 1990, Courchesne et al., 2000, Gunning-Dixon et al., 1998, Jernigan et al., 2001, Raz et al., 1995, Raz et al., 2003, Raz et al., 2004, Raz et al., 2005, Hasan et al., 2008, Xu et al., 2000, Ifthikharuddin et al., 2000, Ahsan et al., 2007, Peterson et al., 1993, Khan et al., 2005, Jiji et al., 2013). Eine semiautomatische Methode, welche sich auf diffeomorphe Abbildung bzw. dem so genannten LDDMM-Algorithmus (large deformation diffeomorphic metric mapping) gründet, wurde speziell für die Segmentierung des N. caudatus bei Patienten mit prä- und post-symptomatischer Huntington-Krankheit entwickelt. Sie ist im Vergleich zur manuellen und automatischen Methode ausreichend zuverlässig (Khan et al., 2005).

Obwohl die manuelle Segmentierung verlässlich ist und von vielen Autoren als Goldstandard beschrieben wird, hat sie einige Nachteile. So erfordert die Handsegmentierung gute neuroanatomische Kenntnisse und ist zeitaufwendig und arbeitsintensiv. Sie ist deshalb für Studien mit sehr vielen Datensätzen nicht geeignet. Da die manuelle Segmentierung subjektiv ist, sind die Ergebnisse in der Regel von einer höheren Variabilität untereinander gekennzeichnet. Dies ist unabhängig davon, ob mehrere Beobachter die gleiche Stelle untersuchen oder ob ein Beobachter einen Bereich mehrfach segmentiert (McCarthy et al., 2015, Zhou and Rajapakse, 2005). Deshalb basieren die meisten neueren Analysen auf voll automatisierten Segmentierungstechniken. Die Vorteile sind Zeiteffizienz, Objektivität, problemlose Wiederholbarkeit und Verringerung der Untersuchungszeit bei geschulten Bedienern (Raz et al., 2004). Voll automatisierte Segmentierungsmethoden sichern Einheitlichkeit bei der Verarbeitung und sind damit ideal für Studien mit großen Probandenzahlen geeignet (Fischl et al., 2002). Dafür spricht auch ihre einfache Konfiguration und hohe Reproduzierbarkeit (Fischl et al., 2002, Tae et al., 2008).

Häufig verwendete Segmentierungstools sind das oberflächenbasierte FreeSurfer (Fischl et al., 2002, Han and Fischl, 2007, Fjell et al., 2013, Meijerman et al., 2018, Jovicich et al., 2009, Li et al., 2014, Walhovd et al., 2005) und das FSL-FIRST (Goodro et al., 2012, Cherubini et al., 2009, Meijerman et al., 2018, Nemmi et al., 2015, Király et al., 2016, Serbruyns et al., 2015). Weitere Verfahren basieren z. B. auf Fuzzy-Vorlagen (Zhou and Rajapakse, 2005). Bei einer neuen multimodalen Segmentierungsmethode der Basalganglien (MIST - multimodal image segmentation tool) werden nicht nur die üblichen T1-gewichteten Volumina genutzt, sondern auch die Informationen aus mehreren Volumina mit unterschiedlichen Kontrasten. Außerdem kann die MIST-Methode auch aus nicht-segmentierten Trainingsdaten lernen. Das ist besonders hilfreich für die Pallidum-Segmentierung (Visser et al., 2016).

Trotz der Praktikabilität und vieler weiterer Vorteile haben automatische Segmentierungsmethoden auch Nachteile, indem es zur fehlerhaften Klassifizierung von Pixeln oder Strukturen kommen kann. Ursachen dafür sind ein pathologischer Bildkontrast, grobe morphologische Abweichungen, hohe Rauschpegel oder eine hohe räumliche Signalvorspannung (Helms, 2016).

Die Bildanalysemethoden können die Ergebnisse der Untersuchung insbesondere bei älteren Personen negativ beeinflussen. Dies wird bedingt durch einen altersursächlichen Anstieg der Eisenkonzentration, eine Maskierung von Teilen der grauen Substanz (vor allem subkortikalen Strukturen), indem sie aufgrund einer Signalabsenkung als weiße Substanz dargestellt wird, sowie einer altersabhängigen Änderung der T1-

Relaxationszeiten mit unterschiedlicher Ausprägung in verschieden Gehirnregionen (Raz et al., 1990, Raz et al., 2004, Gelman et al., 2001). Ein anderer Grund dafür kann sein, dass stark myelinisierte Regionen der weißen Substanz fälschlicherweise als graue Substanz bezeichnet werden (Jernigan et al., 2001).

Diese Problematik ist häufig bei der Segmentierung der Basalganglien zu finden.

Darüber hinaus sind ältere Teilnehmer unruhiger während der MRT-Messung, was bei dieser Gruppe im Verlauf einer Basalgangliensegmentierung zu größeren Bewegungsartefakten und Reproduzierbarkeitsfehlern als bei Jüngeren führt (Jovicich et al., 2009).

Vergleicht man zwischen den handsegmentierten und den mittels FreeSurfer automatisch segmentierten Volumina der subkortikalen Strukturen, belegen zahlreiche Publikationen eine gute Korrelationen zwischen den beiden Methoden (Tae et al., 2008, Cherbuin et al., 2009, Shen et al., 2009, Lehmann et al., 2010, Grimm et al., 2015). Bei den Basalganglien zeigt die automatische Segmentierung in Bezug auf die Volumina eine gute Übereinstimmung mit den manuell definierten Ergebnissen im N. caudatus und Putamen, jedoch nicht im Pallidum, wo ausgeprägte Unterschiede beobachtet wurden (Makowski et al., 2018).

Trotzdem ist die Segmentierung unter Verwendung der FreeSurfer-Software noch nicht exzellent. Die mittels FreeSurfer berechneten Volumina von subkortikalen Strukturen waren im Vergleich zur manuellen Abgrenzung in vielen Studien signifikant größer (Tae et al., 2008, Cherbuin et al., 2009, Makowski et al., 2018) oder zeigten zumindest große Unterschiede (Lehmann et al., 2010, Grimm et al., 2015). Laut Guenette et al. kann in einigen Fällen sogar noch eine manuelle Verbesserung notwendig sein (Guenette et al., 2018). Im Gegensatz dazu zeigen McCarthy et al., dass diese Nachsegmentierung das Endresultat nicht wesentlich beeinflusst (McCarthy et al., 2015).

5. Studie zur Erstellung eines Normkollektivs für die Untersuchung altersabhängiger Effekte in der gesunden Normalbevölkerung mittels MR-Bildgebung (UKT)

Aufgrund des demografischen Wandels und der Alterung der Bevölkerung steigt die Inzidenz und Prävalenz von Demenzerkrankungen. Da Demenzen erst in späteren Stadien neuroradiologisch auffällige Atrophiemuster kortikaler und subkortikaler Strukturen zeigen, ist die Vorhersage einer Demenzentwicklung oder die Differenzierung unterschiedlicher Demenzformen in der klinischen Frühphase häufig schwierig. Für die Erforschung spezifischer Atrophiemuster in den frühen Stadien muss zunächst ein gesundes Normkollektiv verfügbar sein, welches den Altersbereich von Interesse abdeckt und möglichst geschlechtsspezifisch ist. Für dieses Ziel wird am Universitätsklinikum Tübingen (UKT) im Rahmen einer prospektiven Studie ein Kollektiv gesunder Probanden untersucht. Ziel dieser Studie ist es, eine Kohorte von 240 gesunden Freiwilligen zwischen 20 und 80 Jahren zu rekrutierten und immer am gleichen 3T MR-Scanner (Siemens Skyra) nach dem selben Protokoll zu messen und zusätzlich klinische Daten zu erheben. Nach klinischer und neuroradiologischer Evaluation werden die gemessenen MRT-Daten in das Normkollektiv eingeschlossen. Mit dieser Kohorte soll die normale altersabhängige Hirnatrophie untersucht werden. Sie dient in der Zukunft als Basis, die signifikante Abweichung von Hirnstrukturen von der Norm in individuellen Patienten zu detektieren. Zusätzlich dient das Normkollektiv neben der verbesserten Demenzdiagnostik auch der Epilepsiediagnostik oder der Erstellung von Probandenkontrollgruppen für weitere Forschungsprojekte.

6. Zielsetzung der vorliegenden Arbeit

In den vorausgegangenen Abschnitten wird beschrieben, dass die Basalganglien bei der Bewegungsplanung und Durchführung eine wichtige Rolle spielen und dass verschiedene Erkrankungen aus dem Formenkreis der Bewegungsstörungen mit einer Volumenminderung derselben einhergehen. Insbesondere die individuelle Früherkennung ist aber nur möglich, wenn zuverlässige Referenzwerte zur Verfügung stehen. Die bisherigen Daten zu altersabhängigen Effekten zeigen zum Teil heterogene Ergebnisse.

Die normale Entwicklung der Atrophie und der Signalintensität soll in einem Kollektiv von Gesunden untersucht werden. Es wird vermutet, dass Nucleus caudatus und Putamen eine signifikante altersbedingte Atrophie zeigen werden. Da es unterschiedliche Ergebnisse bezüglich des Pallidums in der Literatur gibt, kann zu diesem Zeitpunkt der Untersuchungen keine sichere Hypothese aufgestellt werden. Aufgrund der in der Literatur beschriebenen Ergebnisse sind die altersbedingten Intensitätsänderungen der Basalganglien eher in der T2-Wichtung (T2- und FLAIR-Sequenzen) zu erwarten als in der T1-Sequenz.

Geschlechtsabhängige Unterschiede der Basalkernenverringerung und Asymmetrien der Volumina von subkortikalen Strukturen sollen ebenfalls mitberücksichtigt, untersucht und mit Ergebnissen aus der Literatur verglichen werden. Im Alter zunehmende Eisenablagerungen mit entsprechender Veränderung der Signalintensität führen bei automatischen Segmentierungsverfahren möglicherweise zu systematischen Abweichungen. Ziel dieser Arbeit ist es auch, diese Wissenslücke zu schließen und durch den Vergleich von manueller und automatischer Segmentierung zu überprüfen, ob es zu systematischen Abweichungen zwischen den Verfahren kommt. Dafür sollen die manuell und automatisch segmentierten Volumina, deren Korrelationskoeffizienten sowie altersbedingte Atrophien miteinander verglichen werden.

II Probanden und Methoden

1. Probanden

1.1 Studienpopulation

Vom Mai 2013 bis Februar 2017 wurden im Rahmen der "Studie zur Erstellung eines Normalkollektivs für die Untersuchung altersabhängiger Effekte in der gesunden Normalbevölkerung mittels MR-Bildgebung" bereits 138 neurologisch und psychiatrisch gesunde Probanden im Alter zwischen 19 und 85 Jahren rekrutiert und nach einem Screening auf Ausschlusskriterien in die Untersuchung eingeschlossen. Momentan läuft die Studie weiter bis zum Erreichen der der geplanten Kohorte von etwa 240 Probanden.

Für die vorliegende retrospektive Analyse, die sich ausschließlich mit Basalganglien beschäftigt, wurden die MRT-Bilddaten von insgesamt 30 Probanden ausgewählt. Es wird angenommen, dass die Stichprobe von 30 Probanden groß genug ist, weil signifikante Ergebnisse in den Literaturquellen auch in den kleineren Kohorten beschrieben werden, zum Beispiel in der Arbeit von Murphy et al. mit einer Fallzahl von 27 Probanden (Murphy et al., 1992).

Es wurde auf eine gleichmäßige Verteilung von Geschlecht und Alter geachtet, wobei unter den verfügbaren Datensätzen zufällig ausgewählt wurde. Von den 30 Probanden ist genau die Hälfte weiblich. Die Altersspanne liegt bei 21 bis 66 Jahren, das Durchschnittsalter beträgt 44,6 Jahre. Das Kollektiv verteilt sich auf fünf Altersgruppen mit je 6 Probanden pro Jahrzehnt (3. bis 7. Dekade), bestehend aus jeweils 3 Männern und 3 Frauen (Tabelle 1). Damit lässt sich ein optimierter Überblick über die Atrophieverteilung der Basalganglien über die Altersverteilung in einem Normkollektiv erreichen.

Jahrzehnt	Altersspanne	Anzahl insgesamt (Männer /Frauen)	Minimales Alter im Jahrzehnt	Maximales Alter im Jahrzehnt	Medianalter im Jahrzehnt
3.	20-29	6 (3/3)	21	29	25
4.	30-39	6 (3/3)	31	38	34,8
5.	40-49	6 (3/3)	42	49	44,7
6.	50-59	6 (3/3)	52	58	54,8
7.	60-69	6 (3/3)	61	66	63,5

Tabelle 1: Überblick über fünf Altersgruppen der Probanden.

1.2. Rekrutierung der Probanden

Neurologisch und psychiatrisch gesunde Probanden wurden durch Aushänge und eine von der Universitätsleitung genehmigten Rundmail rekrutiert. Zahlreiche Teilnehmer kommen aus dem Umfeld der Universitätsklinik. Dazu zählen bereits registrierte und Studien-erfahrene Probanden aus der Abteilung Diagnostische und Interventionelle Neuroradiologie und zwar Mitarbeiter, Studenten, Angehörige, Freunde und Bekannte.

1.3. Einschlusskriterien der Studie; Ausschlusskriterien, Risiken und Nebenwirkungen bei der MRT-Durchführung

In die Untersuchung werden alle deutschsprachigen Probanden im Alter zwischen 18 und 80 Jahren eingeschlossen, die keine neurologische oder psychiatrische Erkrankung in der Anamnese haben oder hatten. Darüber hinaus dürfen sie keine Medikamente mit einer ZNS-Gängigkeit einnehmen und es dürfen keine fokal-neurologischen Ausfälle in der klinischen Untersuchung auftreten (siehe Kap. II.2.2). Außerdem soll der durchgeführte "DemTect" mit dem Grenzwert >12 Punkte unauffällig sein (siehe Kap. II.2.3).

Die allgemein bekannten Ausschlusskriterien, Risiken und Nebenwirkungen bei einer MRT-Durchführung sind der Einverständniserklärung zur Untersuchung (Anhang 3) zu entnehmen.

1.4. Ethikantrag

Die Durchführung der "Studie zur Erstellung eines Normalkollektivs für die Untersuchung altersabhängiger Effekte in der gesunden Normalbevölkerung mittels MR-Bildgebung" nach dem Protokoll vom 15.11.2014 wurde ebenso wie die Rekrutierung von Patienten durch die Ethikkommission der medizinischen Fakultät der Eberhard Karls Universität Tübingen zugelassen. Das Ethikvotum hat die Nummer 115/2013BO2.

2. Untersuchungsdurchführung

2.1. Aufklärungsgespräch und Anamnese

Vor der MRT-Untersuchung wurden alle Probanden über die vorgesehenen Messungen einschließlich der Durchführung routinemäßig aufgeklärt. Ebenso fand zur Vermeidung akuter Schädigungen mit jedem einzelnen Probanden ein ausführliches Aufklärungsgespräch über möglicherweise vorhandene Kontraindikationen statt. Personen mit Kontraindikationen wurden ausgeschlossen, alle Teilnehmer erhielten eine Aufklärung über mögliche Nebenwirkungen und Risiken. Schließlich wurde bei jeder Versuchsperson zur Erfüllung der Einschlusskriterien eine Anamnese zur neurologischen und psychiatrischen Gesundheit erhoben. Abschließend wurden die Probanden gebeten, eine Einverständniserklärung zur Untersuchung und zur Studie (siehe Anhang 3, 4) zu unterschreiben. Die Teilnahme war ausschließlich freiwillig und die Probanden hatten jederzeit die Möglichkeit, ohne Angabe von Gründen die Untersuchung abzubrechen.

2.2. Klinische Untersuchung der Probanden

Bei allen Probanden wurde eine orientierende neurologische Körperuntersuchung durchgeführt, um ein fokal-neurologisches Defizit vor der MRT-Durchführung und vor dem Einschluss ins Normkollektiv auszuschließen. Die klinische Untersuchung bestand aus folgenden Teilen: Beurteilung der Vigilanz, Orientierung und Sprache; Überprüfung der Koordination; Untersuchung der zwölf Hirnnervenpaare; Auslösung und Beurteilung der Muskeleigenreflexe beidseits; Schätzung der Muskelkraft und Sensibilität.

Der Befund der körperlichen Untersuchung wurde für jeden Probanden schriftlich dokumentiert (siehe Anhang 5).

2.3. "DemTect"

Bei allen Patienten wurde ein "DemTect"-Test vor dem MRT durchgeführt. Der DemTect (siehe Anhang 6) ist ein kurzer und von Alter und Bildung unabhängiger kognitiver Test. Er dient zur Detektion einer leichten kognitiven Einschränkung, einer so genannten MCI (engl. - mild cognitive impairment, 9 bis 12 Punkte), und einer Demenz (\leq 8 Punkte). Ergebnisse von 13 bis 18 Punkten können als normal oder als für das Alter angemessen interpretiert werden (Kalbe et al., 2004). Die Durchführungsdauer des Testes im Rahmen der Studie betrug etwa 10 Minuten und er bestand aus folgenden fünf Aufgaben: zweimalige Wiedergabe einer Wortliste, schriftliches Umwandeln von Zahlen, Wortfluss ("Supermarktaufgabe"), Zahlenfolge rückwärts und erneute Wiedergabe der Wortliste (Kalbe et al., 2004).

2.4. Magnetresonanztomograf und Untersuchungsprotokoll

Nach Aufklärungsgespräch, Anamnese, klinischer Untersuchung und Fragebogenerfassung nahmen die Probanden in Rückenlage auf dem MRT-Untersuchungstisch Platz. Diese Schritte nahmen ca. 45 Minuten in Anspruch. Die MR-Untersuchungen von allen 30 Probanden erfolgten an einem Ganzkörper-3T-MR-Tomografen mit derselben 32-Kanal-Kopfspule (Siemens Skyra, Erlangen) unter Verwendung einer Feldstärke von 3 Tesla (T) an der Universitätsklinik Tübingen. Das Sequenzenprotokoll wurde während der Studie unverändert beibehalten. Für die Analyse in der vorliegenden Arbeit werden nur die 3D T1, 3D T2 und 3D FLAIR Ergebnisse verwendet (Tabelle 2).

Sequenzart	3D	3D SPACE	3D IR-
-	MPRAGE	(T2)	SPACE
	(T1)		(FLAIR)
Repetitionszeit (TR), ms	2300	3100	5000
Echozeit (TE), ms	2,32	408	387
Inversionszeit (TI), ms	900	-	1800
Flipwinkel (α), °	8	120*	120*
Kippung	Sagittal	Sagittal	Sagittal
Dauer (ca.)	5 Minuten	6 Minuten	6 Minuten
Voxelgröße	0,9 x 0,9 x	0,9 x 0,9 x	0,9 x 0,9 x
	0,9 mm ³	0,9 mm ³	0,9 mm ³
Schichtanzahl	192	192	192

Tabelle 2: Sequenzparameter

*) variabler Flipwinkel, angegeben ist der effektive Flipwinkel

3. Datenverarbeitung, Beurteilung der Aufnahmen und Vorbereitung der MR-Daten zur weiteren Analyse

Nach Abschluss der Messungen wurden alle erhobenen Sequenzdaten von einem Arzt (Dr. Tobias Lindig oder Dr. Benjamin Bender) neuroradiologisch evaluiert. Damit konnten auch offensichtlich pathologische ZNS-Zustände, wie Hirntumor, Schlaganfall, fortgeschrittene Mikroangiopathie, Gefäßmalformation, Gyrierungs- oder Migrationsstörungen ausgeschlossen werden.

Alle Datensätze wurden auch auf Vollständigkeit und auf das Vorhandensein möglicher Bewegungsartefakte geprüft.

Bei den 30 Probanden, die für diese Arbeit ausgewählt wurden, konnten keine ZNS-Erkrankungen (Zufallsbefunde) nachgewiesen werden. Eine Mikroangiopathie wurde nicht als pathologischer Befund betrachtet, sofern sie innerhalb einer bestimmten Altersspanne typischerweise auftritt. Die Datensätze der 30 Probanden waren abschließend vollständig und ohne Bewegungsartefakte.

Aus Gründen des Datenschutzes erfolgte für alle Bilddaten eine Pseudonymisierung mit einem Codenamen vor der Speicherung, Bearbeitung und Auswertung.

Die Datensätze wurden in der Forschungsdatenbank der Neuroradiologie am Universitätsklinikum Tübingen gespeichert.

Anschließend wurden die MR-Daten für die weitere Analyse vorbereitet. Für die manuelle Segmentierung erfolgte eine Konvertierung der Daten in ein für die Software 3D Slicer passendes NifTI-Format (.nii). Dies geschah mit Hilfe der MATLAB -Plattform (The MathWorks, Inc.).

4. Manuelle Segmentierung der Basalganglien mit 3D Slicer

4.1. 3D Slicer

Für die manuelle Segmentierung in dieser Arbeit wurde die Software 3D Slicer in der Version 4.8.0 verwendet (https://www.slicer.org/).

3D Slicer ist eine frei verfügbare Software für medizinische Bildverarbeitung und Bildinformatik. Diese Plattform unterstützt vielseitige Visualisierungen und bietet erweiterte Funktionen, wie manuelle Segmentierung und Registrierung für eine Vielzahl von Anwendungsdomänen. 3D Slicer erfordert keine spezielle Ausstattung und ist relativ einfach zu bedienen (Fedorov et al., 2012).

Auf der Basis der konvertierten Bilddatei in einem NifTI-Format (.nii) wurde die Segmentierungsmaske in einem "-label.nrrd"-Format in 3D Slicer erstellt. Für die Segmentierung des Nucleus caudatus und Putamen wurde die T1-Sequenz verwendet und für das Pallidum zusätzlich die FLAIR-Sequenz. Dabei wurde jeder anatomischen Struktur ein eindeutiges Label zugeordnet (1 – Nucleus caudatus links, 2 -Putamen links, 3 - Pallidum links, 4 - Nucleus caudatus rechts, 5 - Putamen rechts, 9 -Pallidum rechts, 7 - Splenium).

4.2. Segmentierungsprozess

Um eine möglichst genaue und identische Segmentierung zu erhalten, wurde ein festgelegtes Protokoll bei der Handsegmentierung befolgt, das im Folgenden beschrieben ist.

Eine erste grobe Segmentierung von Basalganglien erfolgte auf den Transversalschnitten (Abb. 2). Sie begann auf der Mitte, wo die Fläche von Stammganglien transversal deutlich dargestellt ist. Dann ging die Segmentierung in zwei Richtungen: nach kranial und dann nach kaudal bis zu dem Schnittbild, wo die Kerne noch sichtbar sind. Danach wurde eine Feinkorrektur der Basalgangliengrenzen in der Koronarebene durchgeführt (Abb. 2). Zuerst wieder von der Mitte anfangend, lief die Feinsegmentierung auf Koronarebene nach rostral und dann in die okzipitale Richtung bis zu dem Schnittbild, wo die segmentierte Struktur nicht mehr sichtbar war.

Abb. 2: Beispiel der Segmentierung auf der Transversalebene (im Bild links) und auf der Koronarebene (rechts). 1- Nucleus caudatus links; 2 - Putamen links; 3 - Pallidum links; 4 - Nucleus caudatus rechts; 5 - Putamen rechts, 6 - Pallidum rechts.

Nucleus caudatus

Der Nucleus caudatus wurde auf transversalen und koronaren T1-Schichtungen beidseits segmentiert. Erster und zweiter Hirnventrikel bilden die medialen Wände für den entsprechenden linken bzw. rechten Nucleus caudatus. Der vordere Schenkel der Capsula interna, das Crus anterius, grenzt an den Nucleus caudatus lateral und die weiße Substanz dorsal. Aufgrund seiner starken Krümmung erscheint der Nucleus caudatus auf einigen Transversal- und Koronarschnitten zweimal: rostral am äußeren Rand des Seitenventrikels und okzipital oberhalb des Unterhorns im Temporallappen. In kaudalen Bildern zieht der Nucleus caudatus in der Form eines dünner werdenden Schwanzes nach ventral in den Temporallappen und dann nach anterior in Richtung Amygdala.

Putamen

Die Segmentierung des Putamen wurde auf axialen und frontalen T1-Bildschnitten durchgeführt. Das Putamen wird durch die Capsula externa vom lateral liegenden Claustrum abgegrenzt. Auf den rostralen Bildern berührt das Putamen den Nucleus caudatus mit streifenförmigen Fasern. Die mediale Grenze des rostralen Putamens ist die Capsula interna bis ungefähr zu der Stelle, an der die Commissura anterior erreicht wird. Danach grenzt das Putamen medial an den Globus pallidus. Dorsal umgibt die weiße Gehirnsubstanz das Putamen.

Globus pallidus

Aufgrund der Hypointensität des Globus pallidus in T1-Bildern und einer fast unmöglichen Abgrenzung zwischen dem Pallidum und der weißen Substanz wurde nur eine grobe Segmentierung auf den T1-Schichtungen durchgeführt. Zur Verfeinerung der Segmentierung wurden in diesem Fall die FLAIR-Sequenzen verwendet. Medial umgibt das Putamen schalenförmig den Globus pallidus. Die weiße Substanz vom Genu und Crus posterius der Capsula interna wird vom Globus pallidus lateral zum Thalamus hin abgegrenzt. Kaudal berührt das Pallidum die Commissura anterior, den Nucleus basalis und den Tractus opticus. Auf den Bildern war es unmöglich, den inneren Globus pallidus vom äußeren Globus pallidus zu differenzieren.

Splenium

Das Splenium, das den hinteren Teil des Corpus callosum bildet, war anders als andere Strukturen nicht vollständig segmentiert. Die Segmentierung erfolgte nur kreisförmig in der Mitte vom Splenium auf einem einzigen Schnittbild der Sagittalebene und auf einem der Transversalebene (Abb. 3). Bei der Auswertung diente der Graustufenmittelwert des Spleniums als Kontrollwert für die Graustufen der Basalganglien.

Abb. 3: Teilsegmentierung des Spleniums auf einem Schnittbild der Sagittalebene (im Bild links) und der Transversalebene (rechts).

4.3. Beurteilung der Segmentierungsqualität

Anschließend wurde die Qualität der Segmentierung der Aufnahmen aller 30 Probanden von einem erfahrenen Neuroradiologen der Abteilung Diagnostische und Interventionelle Neuroradiologie (Dr. Tobias Lindig) beurteilt. Die Segmentierungsmasken wurden bei ungenauer Darstellung der Basalgangliengrenzen manuell optimiert.

4.4. Auswertung der Volumina und Intensitäten der Basalganglien in3D Slicer

Die Berechnung der Volumina und Intensitätswerte aus den segmentierten Basalganglienmasken wurde automatisch mit 3D Slicer durchgeführt (https://www.slicer.org/). Dazu verfügt 3D Slicer über eine "Quantification"-Funktion. Damit werden das Volumen in mm³, die mittlere Signalintensität und die Standardabweichung der Signalintensität für jeden Probanden und jede anatomische Struktur bestimmt.

5. Automatische Segmentierung der Basalganglien mittels FreeSurfer und SPM

Die automatische Segmentierung und volumetrische Analyse von Hirnstrukturen der 30 Probanden aus T1-gewichteten MRT-Daten erfolgte mit der Software FreeSurfer 6.0 (https://surfer.nmr.mgh.harvard.edu/).

FreeSurfer ist ein vollautomatisches Segmentierungstool, das für die Forschungsgemeinschaft im Internet zum Download frei verfügbar und im Bereich des Neuroimagings weit verbreitet ist. Es handelt sich um eine ursprünglich im Jahr 2002 eingeführte, Atlas-basierte Segmentierungstechnik, die schon bei einer Reihe von Studien zur Anwendung kam (Fischl et al., 2002). Im Verlauf erreichte die Technik mehrere wichtige Verbesserungen (Fischl et al., 2004, Han et al., 2006, Han and Fischl, 2007).

Da FreeSurfer eine Oberflächen-basierte (surface-based) Methode ist, werden die morphometrischen Messungen aus geometrischen Modellen der kortikalen Oberfläche abgeleitet. Das Software-Tool ermöglicht die gesamte Hirnsegmentierung, die kortikale Parzellierung und die Erstellung einer Vielzahl von Oberflächen-Darstellungen der Großhirnrinde, aus denen die kortikale Dicke, das neuroanatomische Volumen von Regionen von Interesse (ROIs) und von Oberflächen gemessen werden können. Diese Methode markiert automatisch jedes Voxel im Gehirn als eine von 40 entsprechenden Strukturen, einschließlich Caudatus, Putamen und Pallidum. Das Zuweisen einer neuroanatomischen Markierung zu jedem Voxel in einem MRI-Volumen basiert auf einem probabilistischen Atlas, der automatisch anhand eines manuell gekennzeichneten Trainingssatzes entstanden ist (Fischl et al., 2002). Es gibt drei Standard-Bildverarbeitungsschritte:

- 1) Schädel-Stripping, Intensitätsnormierung und Bewegungsartefakt-Korrektur,
- 2) Segmentierung der grauweißen Materie,
- Segmentierung der kortikalen und subkortikalen Hirnregionen basierend auf anatomischen Orientierungspunkten.

Die technischen Details und Prozessschritte dieser Verfahren sind ausführlich in früheren Veröffentlichungen beschrieben (Fischl et al., 2002, Fischl et al., 2004). In dieser Arbeit wird die komplette FreeSurfer-Pipeline ohne manuellen Eingriff unter Linux durchgeführt.

Für die Voxel-basierte morphometrische Analyse der Daten kommt Statistical Parametric Mapping (https://www.fil.ion.ucl.ac.uk/spm/) zum Einsatz. Aus den SPM12-Ergebnissen wird nur TIV für Berechnung der Relation "manuelle Segmentierung/TIV" weiterverwendet.

6. Statistische Methoden

Die Berechnungen von Mittelwerten, Standardabweichungen, Korrelationen nach Pearson, statistischer Signifikanz und statistischen Tests erfolgte ausschließlich mit SPSS (Statistical Package for the Social Sciences, IBM SPSS Statistics 25). Alle Grafiken, wie einfache und gruppierte Steuerdiagramme mit Korrelationen, Boxplots und Histogramme wurden mit Hilfe des gleichen Programms erstellt.

Zum Vergleich der Seitendifferenz der Basalganglien sowie zur Untersuchung des Unterschieds zwischen den Mittelvolumina in der automatischen und manuellen Segmentierung wurde der t-Test bei abhängigen Stichproben mit normaler Verteilung und der Vorzeichentest mit nicht-parametrischer Verteilung ausgewählt. Gründe dafür sind:

- 1) die Probanden waren immer gleich,
- 2) die Möglichkeit eines paarweisen Vergleichs (2 Stichproben und nicht mehr),
- 3) die metrische Skalierung.

Ein Signifikanzniveau von mindestens 0,05 diente als Grundlage bei allen Tests und Korrelationen zur Erkennung signifikanter Unterschiede oder Zusammenhänge. Folgende Berechnungen und Vergleiche wurden für die Basalganglienvolumina aus den handsegmentierten und automatisch segmentierten Daten durchgeführt:

- 1) Korrelationen zwischen Alter und Volumen,
- Vergleich der handsegmentierten und automatisch generierten durchschnittlichen Volumina,
- Korrelationen zwischen Volumina manueller und automatischer Segmentierung.

Außerdem für die Volumina nur aus den handsegmentierten Daten wurden folgende statistische Tests berechnet:

- Vergleich der Atrophie der Basalganglien bei männlichen und weiblichen Probanden,
- 2) Vergleich der Seitendifferenzen.

Somit würde für jede handsegmentierte Struktur fünf Tests und für jede automatisch segmentierte Struktur drei Tests berechnet. Da die multiplen Berechnungen wiederholt an exakt denselben Datenmaterialen durchgeführt wurden, ist eine statistische Korrektur aufgrund der Alphafehler-Kumulierung erforderlich. Aus diesem Grund wurde eine Bonferroni-Korrektur durchgeführt, nach welcher das Signifikanzniveau im Fall der handsegmentierten Datensätze von $\alpha = 0,05$ auf 0,01 und bei den automatisch segmentierten auf 0,017 sinkt. Beim Vergleich zwischen zwei Methoden wurde dann das niedrigere Signifikanzniveau von $\alpha = 0,01$ gewählt. Das unkorrigierte und nach Bonferroni korrigierte Signifikanzniveau werden in den Tabellen im Ergebnisteil (Kapitel III) explizit für jeden Fall angegeben.

Im Fall der Korrelationen zwischen den Intensitätsmittelwerten und dem Alter bleibt das Signifikanzniveau von 0,05.

Die signifikanten Werte werden mit Sternchen markiert:

 $0,01 \le p < 0,05$: * "signifikant" bei den Korrelationen zwischen den

Intensitätsmittelwerten und dem Alter, bei allen Berechnungen mit Volumina sind diese Werte nach Bonferroni-Korrektur nicht signifikant,

 $0{,}001{\,\leq\,}p{\,<\,}0{,}01{:}$ ** "sehr signifikant",

p < 0,001: *** "höchst signifikant".

III Ergebnisse

1. Handsegmentierte Basalganglienvolumina

Zur Berechnung der handsegmentierten Basalganglienvolumina wurden die aus der 3D Slicer-Software ausgewerteten Volumina durch "total intracranial volume" (TIV, intrakranielles Gesamtvolumen) dividiert. Der TIV-Wert ergab sich aus den automatisch ausgewerteten SPM- Daten der jeweiligen Probanden. Hintergrund ist, dass nicht die absoluten Volumenwerte der jeweiligen subkortikalen Strukturen später miteinander verglichen werden sollen, sondern die relativen Werte im Verhältnis zum intrakraniellen Gesamtvolumen. Die Relation wurde mit 100 multipliziert, um darzustellen, welchen prozentualen Anteil die Ganglien vom intrakraniellen Volumen besitzen. Die ermittelten Werte für jeden Probanden finden sich in den Anhängen 7 (Nucl. caudatus links), 8 (Nucl. caudatus rechts), 9 (Putamen links), 10 (Putamen rechts), 11 (Pallidum links) und 12 (Pallidum rechts), die Mittelwerte sind in der Tabelle 3 dargestellt.

Tabelle 3: Mittelwerte der Basalganglienvolumen aus den handsegmentierten Daten. Vol, cm³ - durchschnittliches Volumen des Basalganglions aus 3D Slicer in cm³, SPM-TIV, cm³ - durchschnittliches intrakranielles Gesamtvolumen aus den SPM-Daten in cm³, (Vol, cm³/ SPM-TIV, cm³) x100% - durchschnittlicher prozentualen Volumenanteil des jeweiligen Basalganglions am intrakraniellen Gesamtvolumen.

Bubulgunghons um matunationen Gesanner oranien.						
	Durchschnitts-			(Vol, cm ³ /		
Basalganglien	alter	Vol, cm ³	SPM-TIV cm ³	SPM-TIV, cm ³) x100%		
Nucl caudatus links		13	51 W 11, 011	0.27%		
Nucl. caudatus liliks		4,5		0,2770		
Nucl. caudatus rechts		4,4		0,27%		
Putamen links	45	4,9	1598.6	0,30%		
Putamen rechts		4,8	1576,6	0,30%		
Pallidum links		1,9		0,12%		
Pallidum rechts		1,9		0,12%		

2. Automatisch ausgewertete Volumina der subkortikalen Strukturen

Um den prozentualen Volumenanteil des jeweiligen Basalkerngebietes am intrakraniellen Gesamtvolumen mit Hilfe der automatisch ausgewerteten Daten zu
erhalten, wurde ebenfalls wie bei den handsegmentierten Volumina (Kap. III-1) die Relation "Basalkernvolumen/TIV-Volumen" berechnet. Im Gegensatz zur Handsegmentierung kam hier sowohl der absoluten Volumenwert des Nucleus als auch der TIV-Wert (intrakranielles Gesamtvolumen) aus FreeSurfer-Daten zur Anwendung. Die Anhänge 13 (Nucl. caudatus links), 14 (Nucl. caudatus rechts), 15 (Putamen links), 16 (Putamen rechts), 17 (Pallidum links) und 18 (Pallidum rechts) beinhalten die ermittelten Werte für jeden Probanden. Die Mittelwerte sind in Tabelle 4 zu finden.

Tabelle 4: Mittelwerte der Basalganglienvolumen aus den FreeSurfer-Daten. Vol, cm³ durchschnittliches Volumen des Basalganglions aus den FreeSurfer-Daten, in cm³, FreeSurfer-TIV, - durchschnittliches intrakranielles Gesamtvolumen aus den FreeSurfer-Daten in cm³, (Vol, cm³/ SPM-TIV, cm³) x100% - durchschnittlicher prozentualen Volumenanteil des jeweiligen Basalganglions am intrakraniellen Gesamtvolumen.

	Durchschnitts-			(Vol, cm ³ / FreeSurfer-
Basalganglien	alter	Vol, cm ³	TIV, cm ³	11V, cm ³) x100%
Nucl. caudatus links		3,4		0,22%
Nucl. caudatus rechts		3,5		0,23%
Putamen links	45	4,9	1541.2	0,32%
Putamen rechts		4,9		0,32%
Pallidum links		2,1		0,13%
Pallidum rechts		2,0		0,13%

3. Korrelation zwischen handsegmentierten

Basalganglienvolumina und dem Alter

3.1. Nucleus caudatus

Für den beidseitigen Nucleus caudatus bestehen mittlere negative lineare Korrelationen zwischen Alter und Volumen. Die Korrelation ergibt für den linken Nucleus caudatus einen Koeffizienten nach Pearson von -0,497. Der Korrelationskoeffizient des Nucleus caudatus rechts ist mit -0,595 höher. Die Signifikanz ist bei jeder Korrelation unterhalb des festgelegten statistischen Signifikanzniveaus. Die Ergebnisse sind in der Tabelle 5 sowie grafisch in den Abbildungen 4 und 5 dargestellt.

3.2. Putamen

Wie der Abbildung 6 und 7 sowie der Tabelle 6 zu entnehmen ist, zeigen sich stark negative lineare Korrelationen der handsegmentierten Volumina des Putamens beidseits bezogen auf das Alter. Allerdings ist der Korrelationskoeffizient nach Pearson von - 0,6 für das rechte Putamen etwas weniger ausgeprägt, als die des linken Putamens mit -0,625. Dabei sind alle Ergebnisse signifikant.

3.3. Pallidum

Für das rechte sowie das linke Pallidum ergeben sich keine signifikanten Zusammenhänge zwischen Volumen und Alter (Abb. 8, 9 und Tabelle 7).

4. Korrelation zwischen automatisch ausgewerteten Basalganglienvolumen und dem Alter, Vergleich mit Korrelationen aus den handsegmentierten Daten

4.1. Nucleus caudatus

Die Korrelation des handsegmentierten Volumens des rechten Nucleus caudatus nach Pearson ist mit zunehmendem Alter etwas größer, auch ist die entsprechende Anpassungslinie im Streudiagramm etwas steiler als die des FreeSurfer-segmentierten Volumens.

Im linken Nucleus caudatus zeigt sich eine ungefähr gleiche Korrelation nach Pearson in beiden Segmentierungstypen, wobei auch hier ein etwas stärkerer Abfall bei den Handsegmentierungen mit zunehmendem Alter auffällt (Tabelle 5, Abb. 4 und 5). Die 95%-Konfidenzintervalle für Regressionskoeffizienten der Steigung (Atrophierate) ist bei der Hand- und FreeSurfer-Segmentierungen nicht signifikant unterschiedlich, während die der Offset (systematische Verschiebung der Volumina) sich etwas unterscheidet (Tabelle 5), was für eine Volumenunterschätzung der automatischen Segmentierung spricht. Die mit beiden Methoden gemessene Volumenabnahme beträgt beidseits jeweils 0,1 % für jedes weiter Lebensjahr.

Tabelle 5: Vergleichende Tabelle der Korrelationen zwischen hand- bzw. FreeSurfersegmentierten Volumen des Nucleus caudatus beidseits und dem Alter, sowie jeweilige jährliche Abnahme aus den Anpassungslinien. Unkorrigiertes Signifikanzniveau von 0,05; Signifikanzniveau nach Bonferroni-Korrektur für handsegmentierte Daten von 0,01 und für automatisch segmentierten Daten (in FreeSurfer) von 0,017. Die signifikanten Werte werden mit Sternchen markiert: ** 0,001 $\leq p < 0,01$; ***p < 0,001.

				95%-		95%-	
				Konfidenzintervalle		Konfidenzintervalle	
				fi	ür	fi	ür
				Regressio	nskoeffizi	Regressio	nskoeffizi
		Signifika	Jährliche	enten (Offset)	enten (S	teigung)
	r nach	nz (2-	Abnahm	Untergre	Obergren	Untergre	Obergren
	Pearson	seitig)	e, %	nze	ze	nze	ze
Caudatus links							
(Handseg.)	-0,497**	0,005	0,1**	0,284	0,363	-0,002	0,000
Caudatus links							
(FreeSurfer)	-0,501**	0,005	0,1**	0,230	0,282	-0,001	0,000
Caudatus rechts							
(Handseg.)	-0,595**	0,001	0,1**	0,302	0,372	-0,002	-0,001
Caudatus rechts							
(FreeSurfer)	-0,524**	0,003	0,1**	0,238	0,286	-0,001	0,000

Abb. 4: Gruppiertes Streudiagramm mit vergleichender Darstellung der altersbedingten Atrophie von prozentuellen hand- und FreeSurfer-segmentierten Volumen im linken Nucleus caudatus.

Abb. 5: Gruppiertes Streudiagramm mit vergleichender Darstellung der altersbedingten Atrophie von prozentuellen hand- und FreeSurfer-segmentierten Volumen im rechten Nucleus caudatus.

4.2. Putamen

Ein deutlicher Unterschied zwischen beiden Segmentierungsverfahren wird im linken Putamen beobachtet. Die Korrelation zwischen Volumenschrumpfung und Alter ist in der FreeSurfer-Segmentierung mit -0,394 nach Pearson deutlich weniger ausgeprägt als die Gegenseite des Putamens mit -0,567 und als die unilaterale Seite in der Handsegmentierung mit -0,625. Außerdem ist die Korrelation des automatisch segmentierten Putamen linksseitig nach Bonferroni-Korrektur nicht signifikant. Wenn man die Ergebnisse zwischen manueller und automatischer Technik im rechten Putamen vergleicht, ergeben sich relativ homogene Zusammenhänge in beiden Methoden (Tabelle 6, Abb. 6 und 7). Die jährliche Abnahme der handsegmentierten Volumina beträgt beidseits signifikante 0,2 % / Jahr, dagegen in automatisch segmentierten Volumina 0,1 % / Jahr. Da aber sich die 95%-Konfidenzintervalle von Hand- und FreeSurfer-Segmentierungen des bilateralen Putamens überschneiden, sind die Unterschiede nicht wesentlich. Tabelle 6: Vergleichende Tabelle der Korrelationen zwischen hand- bzw. FreeSurfersegmentierten Volumen des Putamens beidseits und dem Alter, sowie jeweilige jährliche Abnahme aus den Anpassungslinien und 95%-Konfidenzintervalle für

Regressionskoeffizienten. Unkorrigiertes Signifikanzniveau von 0,05; Signifikanzniveau nach Bonferroni-Korrektur für handsegmentierte Daten von 0,01 und für automatisch segmentierten Daten (in FreeSurfer) von 0,017. Die signifikanten Werte werden mit Sternchen markiert: ** $0,001 \le p < 0,01$; ***p < 0,001. Die Werte mit 0,01 $\le p < 0,05$ nach Korrektur nicht mehr signifikant.

				95%-		95%-	
				Konfidenz	zintervalle	Konfidenzintervalle	
				fi	ür	fi	ir
			Jährlich	Regressio	nskoeffizi	Regression	nskoeffizie
			e	enten (Offset)	nten (St	teigung)
	r nach	Signifikan	Abnah	Untergre	Obergren	Untergre	Obergren
	Pearson	z (2-seitig)	me, %	nze	ze	nze	ze
Putamen links							
(Handseg.)	-0,625***	< 0,001	0,2***	0,342	0,420	-0,003	-0,001
Putamen links							
(FreeSurfer)	-0,394	0,031	0,1	0,319	0,408	-0,002	0,000
Putamen rechts							
(Handseg.)	-0,6***	< 0,001	0,2***	0,335	0,414	-0,002	-0,001
Putamen rechts							
(FreeSurfer)	-0,567**	0,001	0,1**	0,344	0,413	-0,002	-0,001

Abb. 6: Gruppiertes Streudiagramm mit vergleichender Darstellung der altersbedingten Atrophie von prozentuellen hand- und FreeSurfer-segmentierten Volumen im linken Putamen.

Abb. 7: Gruppiertes Streudiagramm mit vergleichender Darstellung der altersbedingten Atrophie von prozentuellen hand- und FreeSurfer-segmentierten Volumen im rechten Putamen.

4.3. Pallidum

Wie bei den manuell segmentierten Daten ergeben sich auch in den automatisch segmentierten Basalganglien keine signifikanten Ergebnisse bezüglich altersbedingter Atrophie im bilateralen Pallidum (Tabelle 7, Abb. 8 und 9).

Tabelle 7: Vergleichende Tabelle der Korrelationen zwischen hand- bzw. FreeSurfersegmentierten Volumen des Pallidums beidseits und dem Alter, sowie jeweilige jährliche Abnahme aus den Anpassungslinien und 95%-Konfidenzintervalle für Regressionskoeffizienten. Unkorrigiertes Signifikanzniveau von 0,05; Signifikanzniveau nach Bonferroni-Korrektur für handsegmentierte Daten von 0,01 und für automatisch segmentierten Daten (in FreeSurfer) von 0.017. Keine signifikanten Ergebnisse vorhanden.

=							
				95%-		95%-	
				Konfidenzintervalle		Konfidenzintervalle	
				fi	ir	fi	ür
				Regression	nskoeffizie	Regression	nskoeffizie
		Signifika	Jährliche	nten (0	Offset)	nten (St	teigung)
	r nach	nz (2-	Abnahme	Untergre	Obergren	Untergre	Obergren
	Pearson	seitig)	, %	nze	ze	nze	ze
Pallidum links							
(Handseg.)	0,015	0,939	+/-0,000	0,097	0,137	0,000	0,000
Pallidum links							
(FreeSurfer)	0,119	0,531	0,000	0,109	0,147	0,000	0,001
Pallidum rechts							
(Handseg.)	0,086	0,652	0,000	0,093	0,141	0,000	0,001
Pallidum rechts							
(FreeSurfer)	0,012	0,949	+/-0,000	0,109	0,146	0,000	0,000

Abb. 8: Gruppiertes Streudiagramm mit vergleichender Darstellung der altersbedingten Atrophie von prozentuellen hand- und FreeSurfer-segmentierten Volumen im linken Pallidum.

Abb. 9: Gruppiertes Streudiagramm mit vergleichender Darstellung der altersbedingten Atrophie von prozentuellen hand- und FreeSurfer-segmentierten Volumen im rechten Pallidum.

5. Differenz zwischen manueller und automatischer

Segmentierungsmittelvolumina

5.1. Nucleus caudatus

Der Mittelwert für das handsegmentierte Volumen des Nucleus caudatus beidseits beträgt 0,27 %. Mit der FreeSurfer-Segmentierung wird das relative Mittelvolumen

links mit 0,22 % sowie rechts mit 0,23 % berechnet (Abb. 10 bis 13). Alle Volumenwerte sind in beiden Segmentierungen und beidseits normal verteilt. Dies wird mit Unterstützung des Shapiro-Wilk-Tests überprüft (handsegmentiert links W(30) =0,93, p = 0,057 und rechts W(30) = 0,97, p = 0,495; automatisch segmentiert links von W(30) = 0,96, p = 0,271 und rechts W(30) = 0,95, p = 0,211) und in den Abbildungen 11 und 13 grafisch dargestellt.

Abb. 10: Boxplot mit dem handsegmentierten und automatisch-segmentierten Volumen vom linken Caudatus in %.

Abb. 11: Histogramm der Volumina vom <u>linken</u> Caudatus in %: links handsegmentiert (grenzwertige Normalverteilung mit Signifikanz von 0,057 nach Shapiro-Wilk-Test), recht automatisch-segmentiert (normalverteilt).

Abb. 12: Boxplot mit dem handsegmentierten und automatisch-segmentierten Volumen vom rechten Caudatus in %.

Abb. 13: Histogramm der Volumina vom <u>rechten</u> Caudatus in %: links handsegmentiert (normalverteilt), recht automatisch-segmentiert (normalverteilt).

Beim Vergleich im t-Test fällt auf, dass das relatives Mittelvolumen des handsegmentierten Caudatus um 0,049 % links und um 0,047 % rechts größer ist, als das durchschnittliche Volumen in der automatischen Segmentierung (Tabelle 8). Die hand- und automatisiert segmentierten Volumina korrelieren stark positiv miteinander (Tabelle 9). Alle Ergebnisse sind beidseits hoch signifikant.

Tabelle 8: t-Test bei gepaarten Stichproben: Handsegmentierung vs. FreeSurfer-Segmentierung für Caudatus beidseits. *Unkorrigiertes Signifikanzniveau von 0,05; Signifikanzniveau nach Bonferroni-Korrektur von 0,01. Die signifikanten Werte werden mit Sternchen markiert:* ** $0,001 \le p < 0,01$; ***p < 0,001.

	Gepaar				
Hand vs.	Mittelwert,	Std	Standartfehler r		
FreeSurfer	%	Abweichung	des Mittelwertes	Т	Sig. (2-seitig)
Caudatus					
links	0,049	0,01925	0,00351	13,847***	< 0,001
Caudatus					
rechts	0,047	0,1841	0,00336	13,982***	< 0,001

Tabelle 9: Korrelationen zwischen der Volumina manueller und FreeSurfer-Segmentierung des Nucleus caudatus beidseits. *Unkorrigiertes Signifikanzniveau von 0,05; Signifikanzniveau nach Bonferroni-Korrektur von 0,01. Die signifikanten Werte werden mit Sternchen markiert:* ** $0,001 \le p < 0,01$; ***p < 0,001.

	r nach Pearson	Signifikanz (2-seitig)
Caudatus links	0,867***	< 0,001
Caudatus rechts	0,877***	< 0,001

5.2. Putamen

Bei der Handsegmentierung des bilateralen Putamens beträgt das Medianvolumen

0,30 % und bei der FreeSurfer-Segmentierung 0,32 % (Abb. 14 bis 17).

Die normale oder "grenzwertig normale" Verteilung wird im rechten sowie im linken Putamen mit beiden Methoden der Segmentierung beobachtet. Neben einer grafischen Darstellung erfolgt die zusätzliche Überprüfung auch hier mit Hilfe des Shapiro-Wilk-Tests (handsegmentiert links W(30) = 0,96, p = 0,357 und rechts W(30) = 0,95, p = 0,218; automatisch segmentiert links von W(30) = 0,94, p = 0,108 und rechts W(30) =0,93, p = 0,056; Abb. 15 und 17).

Abb. 14: Boxplot mit dem handsegmentierten und automatisch-segmentierten Volumen vom <u>linken</u> Putamen in %.

Abb. 15: Histogramm der Volumina vom <u>linken</u> Putamen in %: links handsegmentiert (normalverteilt), recht automatisch-segmentiert (normalverteilt).

Abb. 16: Boxplot mit dem handsegmentierten und automatisch-segmentierten Volumen vom rechten Putamen in %.

Abb. 17: Histogramm der Volumina vom <u>rechten</u> Putamen in %: links handsegmentiert (normalverteilt), recht automatisch-segmentiert (grenzwertige Normalverteilung mit Signifikanz von 0,056 nach Shapiro-Wilk-Test).

Nach der Durchführung des t-Testes ergeben sich folgende Ergebnisse: Die Differenz zwischen den relativen Mittelvolumina bei der Handsegmentierung und der FreeSurferSegmentierung liegt im Fall des Putamens links bei -0,012 % und rechts bei -0,018 % (Tabelle 10). Das bedeutet, dass FreeSurfer im Vergleich zur Handesegmentierung das bilaterale Putamen gering größer ausmisst, wobei die Differenz links mit einem p-Wert von 0,013 und einem korrigierten Signifikanzniveau von 0,01 nicht mehr signifikant ist. Trotz dieser Volumenunterschiede zeigen beide Segmentierungsmethoden jeweils eine hochsignifikante positive Korrelation beidseits (Tabelle 11).

Tabelle 10: t-Test bei gepaarten Stichproben: Handsegmentierung vs. FreeSurfer-Segmentierung für Putamen beidseits. *Unkorrigiertes Signifikanzniveau von 0,05;* Signifikanzniveau nach Bonferroni-Korrektur von 0,01. Die signifikanten Werte werden mit Sternchen markiert: ** 0,001 $\leq p < 0,01$; ***p < 0,001. Die Werte mit 0,01 $\leq p < 0,05$ nach Korrektur nicht mehr signifikant.

Gepaarte Differenzen					
			Standartfehler r		
Hand vs.	Mittelwert,		des		Sig. (2-
FreeSurfer	%	StdAbweichung	Mittelwertes	Т	seitig)
Putamen links	-0,0123	0,02555	0,00467	-2,644	0,013
Putamen rechts	-0,0183	0,01984	0,00362	-5,061***	< 0,001

Tabelle 11: Korrelationen zwischen der Volumina manueller und FreeSurfer-Segmentierung des Putamens beidseits. *Unkorrigiertes Signifikanzniveau von 0,05; Signifikanzniveau nach Bonferroni-Korrektur von 0,01. Die signifikanten Werte werden mit Sternchen markiert:* ** $0,001 \le p < 0,01$; ***p < 0,001.

	r nach Pearson	Signifikanz (2-seitig)
Putamen links	0,780***	< 0,001
Putamen rechts	0,857***	< 0,001

5.3. Pallidum

Der Mittelwert des Pallidumvolumens rechts und links beträgt bei der

Handsegmentierung 0,12 % und bei der automatischen Segmentierung 0,13 %. Den Shapiro-Wilk-Tests (handsegmentiert links W(30) = 0,95, p = 0,198 und rechts W(30) = 0,88, p = 0,003; automatisch segmentiert links von W(30) = 0,92, p = 0,021 und rechts W(30) = 0,94, p = 0,111), den Boxplots (Abb. 18 und 20) und den Histogrammen (Abb. 19 und 21) für jeweils beide Seiten ist zu entnehmen, dass die handsegmentierten Volumina des rechten Pallidums sowie die automatisch-segmentierten Volumina des linken Pallidums keine normale Verteilung haben.

Deswegen werden sowohl der t-Test als auch der Vorzeichentest verwendet, um zu bestimmen, ob sich die Handsegmentierung und die FreeSurfer-Segmentierung des

Putamens statistisch signifikant unterscheiden oder nicht.

Abb. 18: Boxplot mit dem handsegmentierten und automatisch-segmentierten Volumen vom <u>linken</u> Pallidum in %. Extremer Ausreißer im FreeSurfer-Volumen mit einem Wert von 0,9 % (Fall № 16).

Abb. 19: Histogramm der Volumina vom <u>linken</u> Pallidum in %: links handsegmentiert (normalverteilt), recht automatisch-segmentiert (nicht normale Verteilung mit Signifikanz von 0,021 nach Shapiro-Wilk-Test).

Abb. 20: Boxplot mit dem handsegmentierten und automatisch-segmentierten Volumen vom rechten Pallidum in %.

Abb.21: Histogramm der Volumina vom <u>rechten</u> Pallidum in %: links handsegmentiert (keine normale Verteilung mit Signifikanz von 0,003 nach Shapiro-Wilk-Test), recht automatischsegmentiert (normalverteilt).

Mit Hilfe des t-Tests kann man ermitteln, ob die Differenz zwischen Hand- und FreeSurfer-Segmentierung des linken Pallidum-Mittelvolumens -0,016 % (relatives Volumen) beträgt und zweiseitig signifikant ist. Das heißt, dass das mit der Handsegmentierung ermittelte Volumen kleiner ist, als das Volumen aus der automatischen Segmentierung. Im Gegensatz dazu ist die gleiche Differenz des rechten Pallidums nicht signifikant (Tabelle 12).

Tabelle 12: t-Test bei gepaarten Stichproben: Handsegmentierung vs. FreeSurfer-Segmentierung für Pallidum beidseits. *Unkorrigiertes Signifikanzniveau von 0,05; Signifikanzniveau nach Bonferroni-Korrektur von 0,01. Die signifikanten Werte werden mit Sternchen markiert:* ** 0,001 $\leq p < 0,01$; ***p < 0,001.

Gepaarte Differenzen					
Hand vs.	Mittelwert,	Mittelwert, Standartfehler r			Sig. (2-
FreeSurfer	%	StdAbweichung	des Mittelwertes	Т	seitig)
Pallidum links	-0,016	0,02283	0,00417	-3,838**	0,001
Pallidum rechts	-0,006	0,02343	0,00428	-1,403	0,171

Laut Vorzeichentest ist die Nullhypothese bei verbundenen Stichproben im Fall des linken Pallidums abzulehnen, weil der Differenzeffekt in Mittelwerten mit einer Signifikanz von 0,001 bei einem Signifikanzniveau von 0,05 nicht zufällig ist. Die Alternativhypothese behauptet, dass der Medianwert der Differenzen zwischen den relativen Volumina bei der Handsegmentierung und automatischer Segmentierung des linken Pallidums -0,016 % beträgt (Tabelle 12 und 13). Das stimmt mit dem t-Test überein.

Tabelle 13: Nichtparametrischer t-Test – Vorzeichentest: Handsegmentierung vs. FreeSurfer-Segmentierung für Pallidum <u>links</u>. *Unkorrigiertes Signifikanzniveau von 0,05;* Signifikanzniveau nach Bonferroni-Korrektur von 0,01. Die signifikanten Werte werden mit Sternchen markiert: ** 0,001 $\leq p < 0,01$; ***p < 0,001.

	Häufigkoiton			
	Haungkenten		Statistik für	[•] Vorzeichentest
FreeSurfer-Vol	Negative Differenz ^a	5		Frage Courfer Wal
Pallidum li in % –	Positive Differenz ^b	23		FreeSurier-Vol
		25		Pallidum li in % –
Hand-Vol	Bindungen [°]	2		Hand-Vol Pallidum
Pallidum li in %	Gesamt	30		
o ErooQur	for V_{0} Dollidum line $0/1$	Iand Val		li in %
a. FreeSur	1er-voi Paindum II In % < 1	Hand-Vol	Z	-3.213**
Pallidur	n li in %		Agymptoticabo	0.001
h FreeSur	fer-Vol Pallidum li in $\% > 1$	Hand-Vol	Asymptotische	0,001
U. TICCSUI			Signifikanz	
Pallidur	n li in %		(2-seitig)	
c. FreeSur	fer-Vol Pallidum li in % = 1	Hand-Vol	(2-50112)	
Pallidur	n li in %			

Die Nullhypothese im Fall des Pallidums rechts lautet: Der Medianwert der Differenzen zwischen den mittleren handsegmentierten und automatischsegmentierten Volumina des rechten Pallidums ist gleich 0. Diese Hypothese soll dem Vorzeichentest aufgrund einer hohen Irrtumswahrscheinlichkeit der Alternativhypothese von 0,152 bei einem Signifikanzniveau von 0,05 beibehalten werden (Tabelle 12 und 14).

Tabelle 14: Nichtparametrischer t-Test – Vorzeichentest: Handsegmentierung vs. FreeSurfer-
Segmentierung für Pallidum rechts. Unkorrigiertes Signifikanzniveau von 0,05;
Signifikanzniveau nach Bonferroni-Korrektur von 0,01. Kein signifikantes Ergebnis vorhanden.

	Häufigkeiten			
FreeSurfer-Vol	Negative Differenz ^a	8	r	
Pallidum re in % –	Positive Differenz ^b	16	Statistik für	r Vorzeichentest
Hand-Vol	Bindungen ^c	6		FreeSurfer-Vol
Pallidum re in %	Gesamt	30		Pallidum re in % –
a FreeSurfer-Vol Pallidum re in % < Hand-Vol				Hand-Vol
Pallidur	n re in %			Pallidum re in %
b. FreeSur	fer-Vol Pallidum re in %>	Hand-Vol	Exakte	-0,152 ^a
Pallidur	n re in %		Signifikanz	
c. FreeSur	fer-Vol Pallidum re in % =	Hand-Vol	(2-seitig)	
Pallidur	n re in %		a – verwendete	Binomialverteilung

Es wurden keine signifikanten Korrelationen zwischen den manuell und den automatisiert segmentierten Volumina festgestellt (Tabelle 15).

Tabelle 15: Korrelationen zwischen der Volumina manueller und FreeSurfer-Segmentierung des Pallidums beidseits. *Unkorrigiertes Signifikanzniveau von 0,05; Signifikanzniveau nach Bonferroni-Korrektur von 0,01. Keine signifikanten Ergebnisse vorhanden.*

	r nach Pearson	Signifikanz (2-seitig)
Pallidum links	-0,112	0,556
Pallidum rechts	0,028	0,885

6. Vergleich der Atrophie subkortikaler Gehirnstrukturen bei weiblichen und männlichen Probanden

Bei den Auswertungen der Korrelationen zwischen Alter und der Ganglienvolumina, getrennt nach Geschlechtern, wird eine ausgeprägtere Atrophie des Nucleus caudatus sowie des Putamens beidseits bei den männlichen Probanden beobachtet. Für eine detaillierte Übersicht sind die Werte in den Tabellen 16 und 17 ausgeführt sowie in den Abbildungen 22 bis 24 grafisch veranschaulicht.

Der Korrelationskoeffizient nach Pearson beträgt bei Männern -0,58 für den linken Nucleus caudatus und -0,69 für den rechten. Bei Frauen ist die Korrelation für den linken Nucleus caudatus mit -0,42 und für die rechte Seite mit -0,52 deutlich kleiner. Die Volumenabnahme erreicht bei Männern 0,2 % / Jahr, während sie bei Frauen nur 0,1 % / Jahr beträgt. Auf Grund der Stichprobengröße bleibt die Korrelation nur für den rechten Nucleus caudatus bei Männern signifikant. Das Volumen des beidseitigen Putamens korreliert bei den Männern stark negativ mit den Korrelationskoeffizienten über dem Niveau von -0,67. Der Effekt ist größer als bei Frauen, bei denen der r-Wert nach Pearson beim rechten Putamen -0,61 und beim linken Putamen -0,57 beträgt. Obwohl sich die Korrelationen bei beiden Geschlechtern unterscheiden, betragen die jährlichen Volumenabnahmen sowohl bei Männern als auch bei Frauen bilateral 0,1 % pro Jahr. Der etwas geringere Korrelationskoeffizient verfehlte bei Frauen das Signifikanzniveau.

Für Pallidum zeigen sich weiterhin keine wesentlichen und signifikanten Zusammenhänge zwischen Volumen und Alter.

Abb. 22: Gruppiertes Streudiagramm mit Zusammenhang zwischen handsegmentiertem Volumen des Nucleus caudatus beidseits in % und dem Alter in Jahren - getrennt nach Geschlecht.

Abb. 23: Gruppiertes Streudiagramm mit Zusammenhang zwischen handsegmentiertem Volumen des Putamens beidseits in % und dem Alter in Jahren - getrennt nach Geschlecht.

Abb. 24: Gruppiertes Streudiagramm mit Zusammenhang zwischen handsegmentiertem Volumen des Pallidums beidseits in % und dem Alter in Jahren - getrennt nach Geschlecht.

Tabelle 16: Korrelation zwischen Volumen der Basalganglien und dem Alter bei männlichen Probanden, sowie jeweilige jährliche Abnahme aus den Anpassungslinien. Unkorrigiertes Signifikanzniveau von 0,05; Signifikanzniveau nach Bonferroni-Korrektur von 0,01. Die signifikanten Werte werden mit Sternchen markiert: ** 0,001 $\leq p < 0,01$; ***p < 0,001. Die Werte mit 0,01 $\leq p < 0,05$ nach Korrektur nicht mehr signifikant.

Basalganglien (♂)	r nach Pearson	Signifikanz (2-seitig)	Jährliche Abnahme, %
Caudatus links	-0,584	0,022	-0,2
Caudatus rechts	-0,685**	0,005	-0,2**
Putamen links	-0,678**	0,005	-0,2**
Putamen rechts	-0,675**	0,006	-0,2**
Pallidum links	0,157	0,577	0,0
Pallidum rechts	0,067	0,813	0,0

Tabelle 17: Korrelation zwischen Volumen der Basalganglien und dem Alter bei weiblichen Probanden, sowie jeweilige jährliche Abnahme aus den Anpassungslinien. *Unkorrigiertes Signifikanzniveau von 0,05; Signifikanzniveau nach Bonferroni-Korrektur von 0,01. Die signifikanten Werte werden mit Sternchen markiert:* ** 0,001 $\leq p < 0,01$; ***p < 0,001. *Die Werte mit 0,01* $\leq p < 0,05$ nach Korrektur nicht mehr signifikant.

Basalganglien $(\bigcirc$ +	r nach Pearson	Signifikanz (2-seitig)	Jährliche Abnahme, %
Caudatus links	-0,415	0,124	-0,1
Caudatus rechts	-0,517	0,048	-0,1
Putamen links	-0,611	0,016	-0,2
Putamen rechts	-0,567	0,028	-0,2
Pallidum links	-0,146	0,604	0,0
Pallidum rechts	0,101	0,721	0,0

7. Asymmetrie der Basalganglien in handsegmentierten Daten

Die Seitendifferenz aller untersuchten Basalganglien ist zum orientierenden Vergleich in einem Boxplot (Abb. 25) dargestellt.

Caudatus li Caudatus re Putamen li Putamen re Pallidum li Pallidum re Abb. 25: Boxplot zur Darstellung der handsegmentierten Basalganglienvolumen. Zum näheren Vergleich der Seitendifferenz wird der t-Test bei gepaarten Stichproben durchgeführt (Tabelle 18 und 19).

Wie im Kapitel III 5 näher beschrieben und grafisch dargestellt wird, zeigen die relativen Volumina des Putamens beidseits sowie die des rechten Nucleus caudatus und des linken Pallidums eine Normalverteilung. Die Volumina des linken Nucleus caudatus zeigen eine grenzwertige Normalverteilung. Alle oben genannten Ganglien besitzen auch nach Shapiro-Wilk-Test Signifikanzen über 0,05, was ebenfalls einer Normalverteilung entspricht (Abb. 11, 13, 15, 17, 19 – Kapitel III 5). Nur im Fall des rechten Pallidums sind die Volumenwerte mit einer Signifikanz von 0,003 im Shapiro-Wilk-Test nicht normal verteilt (Abb. 21, Kapitel III 5). Aus diesem Grund werden für die Volumendifferenz zwischen linkem und rechtem Pallidum nicht nur der t-Test, sondern auch der nicht-parametrische t-Test oder Vorzeichentest

durchgeführt (Tabelle 18 bis 20).

Der rechte Nucleus caudatus ist um 0,005 % größer als der linke mit einem p-Wert von 0,041, der nach Bonferroni-Korrektur das Signifikanznveau verfehlte (Tabelle 18 und 19).

Die Differenz zwischen den Volumenmittelwerten des linken und des rechten Putamens beträgt 0,002 %. Die beidseitige Signifikanz liegt jedoch oberhalb von 0,05 (Tabelle 18 und 19).

Im t-Test liegt die mittlere Differenz zwischen dem linken und rechten Pallidum bei -0,004 mit einer Signifikanz von 0,063 (Tabelle 18 bis 19). Die Nullhypothese laut Vorzeichentest besagt, dass der Medianwert der Differenz zwischen linkem und rechtem Pallidum gleich 0 ist und soll mit der exakten 2-seitigen Signifikanz von 0,078 bei dem Signifikanzniveau 0,05 beibehalten werden (Tabelle 20).

Dusuigungnenvolum	U 11.		
			Standartfehler r des
Paaren	Mittelwert, %	StdAbweichung	Mittelwertes
Caudatus links	0,268	0,0357	0,0065
Caudatus rechts	0,273	0,0343	0,0063
Putamen links	0,304	0,0391	0,0071
Putamen rechts	0,302	0,0385	0,0070
Pallidum links	0,118	0,0156	0,0029
Pallidum rechts	0,122	0,0186	0,0034

Tabelle 18: Statistik bei gepaarten Stichproben: Mittelwert der beidseitigen Basalganglienvolumen.

Tabelle 19: t-Test bei gepaarten Stichproben für beidseitigen Basalganglienpaaren. Unkorrigiertes Signifikanzniveau von 0,05; Signifikanzniveau nach Bonferroni-Korrektur von 0,01. Der Wert mit 0,01 $\leq p < 0,05$ nach Korrektur nicht mehr signifikant.

Gepaarte Differenzen					
	Mittelwert,		Standartfehler r des		Sig. (2-
Paaren	%	StdAbweichung	Mittelwertes	Т	seitig)
Caudatus li -					
Caudatus re	-0,005	0,0128	0,00234	-2,14	0,041
Putamen li -					
Putamen re	0,002	0,01031	0,00188	1,063	0,297
Pallidum li -					
Pallidum re	-0,004	0,01133	0,00207	-1,934	0,063

Tabelle 20: Nichtparametrischer T-Test – Vorzeichentest: Seitendifferenz zwischen rechtem und linkem Pallidum. *Unkorrigiertes Signifikanzniveau von 0,05; Signifikanzniveau nach Bonferroni-Korrektur von 0,01. Kein signifikantes Ergebnis vorhanden.*

	Häufigkeiten		Statistik fü	r Vorzeichentest
Pallidum re –	Negative Differenzen ^a	6		Pallidum re –
Pallidum li	Positive Differenzen ^b	15		Pallidum li
	Bindungen ^c	9	Exakte	0,078 ^a
	Gesamt	30	Signifikanz	
a. Pallidum re < Pallidum li			(2-seitig)	
b. Pallidum re > Pallidum li		a – verwendete	Binomialverteilung	
c. Pallidum re = Pallidum li				

8. Intensität der Basalkerne und Zusammenhang mit dem Alter in handsegmentierten Daten

Um etwas "standardisiertere" relative Intensitätsmittelwerte jedes Basalkernes zu bekommen, wurden die "rohen" absoluten Intensitätsmittelwerte durch den Graustufenmittelwert des Spleniums als Kontrollwert für die Graustufen der Basalganglien dividiert.

Die Intensitätmittelwert-Alter-Korrelationen wurden sowohl für die absoluten als auch für die relativen Intensitätsmittelwerte ausgewertet.

Die absoluten Werte (Mean) des jeweiligen Basalkerns und des Spleniums sowie die ausgewerteten relativen Werte (Mean/Mean des Spleniums) in T1, T2 und FLAIR der 30 Probanden sind im Anhang 19 bis 24 zu finden.

8.1. Auswertung der Korrelationen der Intensitäten des jeweiligen Basalkernes und Alter

8.1.1.Nucleus caudatus: T1, T2, FLAIR

Absolute Intensitätsmittelwerte

Die signifikante lineare sowie mittlere negative Korrelation wird relativ symmetrisch im Nucleus caudatus beidseits in FLAIR-Sequenz beobachtet: rechts mit einem Korrelationskoeffizienten nach Pearson von -0,379 und links von -0,409. In anderen Sequenzen werden keine signifikanten Zusammenhänge gefunden (Abb. 26 bis 28, Tabelle 21).

Abb. 26: Zusammenhang zwischen Alter und absoluten Intensitätsmittelwerten des linken bzw. rechten Nucleus caudatus in der T1-Sequenz.

Abb. 27: Zusammenhang zwischen Alter und absoluten Intensitätsmittelwerten des linken bzw. rechten Nucleus caudatus in der T2-Sequenz.

Abb. 28: Zusammenhang zwischen Alter und absoluten Intensitätsmittelwerten des linken bzw. rechten Nucleus caudatus in der FLAIR-Sequenz.

Tabelle 21: Korrelationen zwischen Alter und absolutem Intensitätsmittelwert des Caudatus bilateral in der jeweiligen Sequenz. *Signifikanzniveau von 0,05. Die signifikanten Werte werden mit Sternchen markiert:* * $0,01 \le p < 0,05$; ** $0,001 \le p < 0,01$; ***p < 0,001.

	r nach Pearson	Signifikanz (2-seitig)
Caudatus links T1	0,103	0,586
Caudatus rechts T1	-0,141	0,456
Caudatus links T2	-0,049	0,799
Caudatus rechts T2	0,059	0,758
Caudatus links FLAIR	-0,379*	0,039
Caudatus rechts FLAIR	-0,409*	0,025

Relative Intensitätsmittelwerte

Eine einzelne signifikante und mittlere positive Korrelation zwischen dem Alter und dem relativen Intensitätsmittelwert wird im rechten Nucleus caudatus in der T2-Sequenz beobachtet: ein Korrelationskoeffizient nach Pearson von 0,397 mit der 2-seitigen Signifikanz von 0,03. Alle anderen relativen Intensitätsmittelwerte des beidseitigen Nucleus caudatus zeigen keine Korrelationen in den verschiedenen Sequenzen (Abb. 29 bis 31, Tabelle 22).

Abb. 29: Zusammenhang zwischen Alter und Relation vom Intensitätsmittelwert des linken bzw. rechten Nucleus caudatus zum Intensitätsmittelwert des Spleniums in der T1-Sequenz.

Abb. 30: Zusammenhang zwischen Alter und Relation vom Intensitätsmittelwert des linken bzw. rechten Nucleus caudatus zum Intensitätsmittelwert des Spleniums in der T2-Sequenz.

Abb. 31: Zusammenhang zwischen Alter und Relation vom Intensitätsmittelwert des linken bzw. rechten Nucleus caudatus zum Intensitätsmittelwert des Spleniums in der FLAIR-Sequenz.

Tabelle 22: Korrelation zwischen Alter und relativem Intensitätsmittelwert des Caudatus bilateral in der jeweiligen Sequenz. *Signifikanzniveau von 0,05. Die signifikanten Werte werden mit Sternchen markiert:* * $0,01 \le p < 0,05$; ** $0,001 \le p < 0,01$; ***p < 0,001.

	r nach Pearson	Signifikanz (2-seitig)
Caudatus links T1	0,115	0,545
Caudatus rechts T1	0,014	0,941
Caudatus links T2	0,302	0,105
Caudatus rechts T2	0,397*	0,030
Caudatus links FLAIR	0,037	0,845
Caudatus rechts FLAIR	0,015	0,938

8.1.2. Putamen: T1, T2, FLAIR

Absolute Intensitätsmittelwerte

Wie im N. caudatus bilateral gezeigt wurde, ergibt sich auch in beiden Putamen ein negativer Zusammenhang zwischen absoluten Intensitätswerten und Alter in der FLAIR-Sequenz: rechts r nach Pearson von -0,419, sowie links von -0,371. Zusätzlich ergeben sich signifikante Ergebnisse in der T2-Sequenz mit r von -0,490 rechts und -0,411 links. Der Effekt ist in beiden Sequenzen rechts größer als links. Die Korrelationen in der T1-Sequenz sind wieder nicht signifikant (Abb. 32 bis 34,

Tabelle 23).

Abb. 32: Zusammenhang zwischen Alter und absoluten Intensitätsmittelwerten des linken bzw. rechten Putamens in der T1-Sequenz.

Abb. 33: Zusammenhang zwischen Alter und absoluten Intensitätsmittelwerten des linken bzw. rechten Putamens in der T2-Sequenz.

Abb. 34: Zusammenhang zwischen Alter und absoluten Intensitätsmittelwerten des linken bzw. rechten Putamens in der FLAIR-Sequenz.

Tabelle 23: Korrelationen zwischen Alter und absolutem Intensitätsmittelwert des Putamens bilateral in der jeweiligen Sequenz. Signifikanzniveau von 0,05. Die signifikanten Werte werden mit Sternchen markiert: * 0,01 $\le p < 0,05$; ** 0,001 $\le p < 0,01$; ***p < 0,001.

	r nach Pearson	Signifikanz (2-seitig)
Putamen links T1	-0,158	0,404
Putamen rechts T1	-0,191	0,312
Putamen links T2	-0,411*	0,024
Putamen rechts T2	-0,490**	0,006
Putamen links FLAIR	-0,371*	0,044
Putamen rechts FLAIR	-0,419*	0,021

Relative Intensitätsmittelwerte

Es wird kein signifikanter Zusammenhang zwischen Alter und relativem

Intensitätsmittelwert in beiden Seiten des Putamens in den T1-, T2- oder FLAIR-

Sequenzen gefunden (Abb. 35 bis 37, Tabelle 24).

Abb. 35: Zusammenhang zwischen Alter und Relation vom Intensitätsmittelwert des linken bzw. rechten Putamens zum Intensitätsmittelwert des Spleniums in der T1-Sequenz.

Abb. 36: Zusammenhang zwischen Alter und Relation vom Intensitätsmittelwert des linken bzw. rechten Putamens zum Intensitätsmittelwert des Spleniums in der T2-Sequenz.

Abb. 37: Zusammenhang zwischen Alter und Relation vom Intensitätsmittelwert des linken bzw. rechten Putamens zum Intensitätsmittelwert des Spleniums in der FLAIR-Sequenz.

	r nach Pearson	Signifikanz (2-seitig)
Putamen links T1	-0,101	0,597
Putamen rechts T1	-0,098	0,605
Putamen links T2	-0,012	0,95
Putamen rechts T2	-0,096	0,614
Putamen links FLAIR	-0,025	0,895
Putamen rechts FLAIR	-0,077	0,686

Tabelle 24: Korrelation zwischen Alter und relativem Intensitätsmittelwert des Putamens bilateral in der jeweiligen Sequenz. *Signifikanzniveau von 0,05. Keine signifikanten Ergebnisse vorhanden.*

8.1.3. Pallidum: T1, T2, FLAIR

Absolute Intensitätsmittelwerte

Für das Pallidum zeigen sich keine signifikanten Korrelationen zwischen den absoluten Graustufenmittelwerten und dem Alter (Abb. 38 bis 40, Tabelle 25).

Abb. 38: Zusammenhang zwischen Alter und absoluten Intensitätsmittelwerten des linken bzw. rechten Pallidums in der T1-Sequenz.

Abb. 39: Zusammenhang zwischen Alter und absoluten Intensitätsmittelwerten des linken bzw. rechten Pallidums in der T2-Sequenz.

Abb. 40: Zusammenhang zwischen Alter und absoluten Intensitätsmittelwerten des linken bzw. rechten Pallidums in der FLAIR-Sequenz.

Tabelle 25: Korrelationen zwischen Alter und absolutem Intensitätsmittelwert des Pallidums bilateral in der jeweiligen Sequenz. *Signifikanzniveau von 0,05. Keine signifikanten Ergebnisse vorhanden.*

	r nach Pearson	Signifikanz (2-seitig)
Pallidum links T1	-0,160	0,398
Pallidum rechts T1	-0,207	0,271
Pallidum links T2	-0,308	0,098
Pallidum rechts T2	-0,334	0,071
Pallidum links FLAIR	-0,294	0,114
Pallidum rechts FLAIR	-0,319	0,086

Relative Intensitätsmittelwerte

Für das rechte Pallidum zeigte sich in der T1-Sequenz ein Zusammenhang zwischen Alter und relativem Graustufenmittelwert: r nach Pearson von -0,371 mit einer Irrtumswahrscheinlichkeit von 0,044 (signifikant bei Niveau von 0,05). Ansonsten gibt es keine Zusammenhänge zwischen Alter und Relation des Intensitätsmittelwertes des linken bzw. rechten Pallidums mit dem Intensitätsmittelwert des Spleniums in allen gemessenen Sequenzen (Abb. 41 bis 43, Tabelle 26).

Abb. 41: Zusammenhang zwischen Alter und Relation vom Intensitätsmittelwert des linken bzw. rechten Pallidums zum Intensitätsmittelwert des Spleniums in der T1-Sequenz.

Abb. 42: Zusammenhang zwischen Alter und Relation vom Intensitätsmittelwert des linken bzw. rechten Pallidums zum Intensitätsmittelwert des Spleniums in der T2-Sequenz.

Abb. 43: Zusammenhang zwischen Alter und Relation vom Intensitätsmittelwert des linken bzw. rechten Pallidums zum Intensitätsmittelwert des Spleniums in der FLAIR-Sequenz.

mit Sternenen marktert. 0,01 _	$p < 0,00, 0,001 _ p < 0,01,$	<i>p</i> < 0,001.
	r nach Pearson	Signifikanz (2-seitig)
Pallidum links T1	-0,179	0,343
Pallidum rechts T1	-0,371*	0,044
Pallidum links T2	0,125	0,509
Pallidum rechts T2	0,11	0,561
Pallidum links FLAIR	0,072	0,706
Pallidum rechts FLAIR	0,044	0,818

Tabelle 26: Korrelationen zwischen Alter und relativem Intensitätsmittelwert des Pallidums bilateral in der jeweiligen Sequenz. *Signifikanzniveau von 0,05. Die signifikanten Werte werden mit Sternchen markiert:* * $0,01 \le p < 0,05$; ** $0,001 \le p < 0,01$; ***p < 0,001.

8.2. Visueller Vergleich

Beim Vergleich der Basalganglienintensität von älteren und jüngeren Probanden fällt der altersbedingte Signalabfall in den FLAIR-Sequenzen auf (Abb. 44): Nucleus caudatus sowie Putamen eines 23-jährigen Studienteilnehmers haben eine deutlich höhere Intensität und sind besser von der weißen Substanz differenzierbar als bei einem 61-jährigen Probanden.

Abb. 44: Visueller Vergleich der Basalganglienintensität des älteren und jüngeren Probanden in transversaler Schnittebene (FLAIR-Sequenzen). Links – männlicher Proband 23 Jahre alt (Fall-ID: 4), rechts – männlicher Proband 61 Jahre alt (Fall-ID: 10). Cd – Nucleus caudatus, Pt – Putamen.

In der T1-Sequenz bei einem über 60 Jahre alten Studienteilnehmer zeigen sich T1hypointensen und inhomogenen Areale im Globulus pallidus, während der Globulus pallidus bei einer jüngeren Probandin beidseits homogen aussieht (Abb. 45).

Abb. 45: Visueller Vergleich des Pallidums auf den T1-Sequenzen von jüngerer Probandin (25 Jahre alt) – oben im Bild (Fall-ID: 59) und von einem älteren Probanden (66 Jahre alt) – unten im Bild (Fall-ID: 45). Links im Bild: Transversalschnitte, rechts im Bild: Sagittalschnitte. Pallidum mit Pfeilen markiert.

IV Diskussion

1. Altersbedingte Effekte der handsegmentierten Basalganglienvolumina im Normalkollektiv

In der vorliegenden Studie wird gezeigt, dass der Nucleus caudatus und das Putamen in den handsegmentierten Daten beidseits bei Probanden zwischen 21 und 66 Jahren eine signifikante altersbedingte Atrophie aufweist. Der Effekt lässt sich für beide Strukturen gut mit einer starken linearen Abnahme im untersuchten Altersbereich erklären. Der Nucleus caudatus links korreliert hierbei etwas schlechter (r = -0,497) als rechts (r = -0,595; Tabelle 5, Abb. 4 und 5).

Im Fall des Putamens ist es umgekehrt: Das linke Putamen hat eine bessere Korrelation zwischen dem Alter in Jahren und dem relativen Volumen im Vergleich zum TIV (r = -0,625) als das rechte Putamen (r = -0,6; Tabelle 6, Abb. 6 und 7).

Der Globus pallidus zeigte dagegen keine relevante Volumenänderung mit zunehmendem Alter (Tabelle 7, Abb. 8 und 9).

Die Ergebnisse aus der Literatur lassen sich grob in zwei Gruppen aufteilen. In der ersten Gruppe zeigt sich eine signifikante altersbedingte Atrophie in allen drei Basalganglien, inklusive des Pallidums (Goodro et al., 2012, Gunning-Dixon et al., 1998, Li et al., 2014, Lorio et al., 2016). Die vorliegenden Resultate stimmen gut mit den Ergebnissen aus der zweiten Gruppe der Literaturquellen überein: Es zeigen sich hier ebenfalls signifikant zunehmende Atrophien des N. caudatus und des Putamen mit dem Alter, jedoch keine signifikante Atrophie des Pallidums (Raz et al., 1995, Cherubini et al., 2009, Walhovd et al., 2005, Serbruyns et al., 2015), wobei auch für das Pallidum negative Korrelationskoeffizienten gefunden wurden.

In der Arbeit von Serbruyns wurde im Gegensatz zu den vorliegenden Ergebnissen eine ausgeprägtere Volumenverkleinerung des N. caudatus links und des Putamens rechts beobachtet.

Dabei variieren die Korrelationskoeffizienten in verschiedenen Literaturquellen für den Caudatus zwischen -0,48 bis -0,69 und für das Putamen zwischen -0,51 bis -0,62 (Raz et al., 1995, Walhovd et al., 2005, Serbruyns et al., 2015, Hasan et al., 2008, Krishnan et al., 1990). Die Ergebnisse der vorliegenden Studie liegen damit genau im erwarteten Bereich und können somit als repräsentativ angesehen werden. Für das Pallidum wurde ein nicht signifikanter negativer Alterstrend beobachtet (Walhovd et al., 2005, Serbruyns et al., 2015, Péran et al., 2009), im hier beschriebenen Kollektiv fand sich ebenfalls kein signifikanter Alterseffekt, wobei der Korrelationswert fast bei 0 lag. In einer Analyse wurde für den Kopf und den Körper des N. caudatus getrennte Korrelationen ausgewertet. Dabei hatte das Alter einen Einfluss auf das Volumen des Putamens und des Caudatus im Caputbereich, jedoch keinen Einfluss auf das Volumen des Pallidums oder des Caudatus im Corpusareal (Ruben C. Gur et al., 2002). Die Studie von Raz et al. zeigt ähnliche Ergebnisse wie die vorliegende Arbeit, mit altersbedingter Schrumpfung des Striatums, jedoch mit einem in der Größe konstant bleibenden Pallidum. Allerdings wird in der Longitudinalstudie nach 5 Jahren zusätzlich eine signifikante Volumensreduktion des Pallidums beschrieben, welche in der früheren Querschnittstudie nicht beobachtet werden konnte (Raz et al., 2003).

Der N. caudatus ist laut der Longitudinaluntersuchung aus dem Jahr 2005 neben einigen anderen kortikalen Regionen eine der am schnellsten schrumpfenden Strukturen im menschlichen Gehirn (Raz et al., 2005). Eine andere relativ neue Längsschnittstudie bewies wiederum bei gesunden Probanden nach einer bestimmten Zeit eine altersabhängige Atrophie in allen drei in dieser Arbeit untersuchten Strukturen. Es zeigt sich im Vergleich zur Patientenpopulation mit leichter kognitiver Einschränkung, beziehungsweise diagnostiziertem Morbus Alzheimer, zwar eine Reduktion der Volumina, jedoch wie erwartet in einem deutlich geringeren Ausmaß (Meijerman et al., 2018).

In den meisten Studien, so auch in der vorliegenden, werden lineare Korrelationsmodelle gewählt. Denn es hat sich gezeigt, dass die untersuchten Volumen-Alter-Zusammenhänge lediglich lineare Komponenten beinhalten (Cherubini et al., 2009, Raz et al., 2003, Hasan et al., 2008, Wang et al., 2019). Im Allgemeinen entsprechen die vorliegenden Resultate bezüglich der Atrophie der Basalganglien den Ergebnissen früherer Studien.

2. Vergleich der automatischen und manuellen Segmentierung

2.1. Vergleich der altersbedingten Atrophie

Die Korrelationen zwischen dem Alter in Jahren und den relativen Volumina wurde sowohl für die manuellen als auch für die automatisch segmentierten Basalganglien berechnet.

Im rechten FreeSurfer-segmentierten Nucleus caudaus zeigt sich die Korrelation nach Pearson etwas weniger ausgeprägt und die entsprechende Anpassungslinie im Steuerdiagramm etwas flacher als die des handsegmentierten Nucleus caudatus (Tabelle 5, Abb. 4 und 5). Die automatische Segmentierung unterschätzt systematisch das Volumen. Allerdings sind die Ergebnisse des bilateralen Nucleus caudatus in beiden Methoden vergleichbar, da eine Volumenabnahme von 0.2 % / Jahr sowohl in der Handsegmentierung als auch in der automatisieren Segmentierung festgestellt wurde. Die größte Abweichung der Korrelationen zwischen den beiden Methoden wurde im linken Putamen beobachtet: Während die Korrelation nach Pearson in der Handsegmentierung mit dem Ergebnis von -0,625 relativ gleich zur Gegenseite ist (-0,6), korreliert das FreeSurfer-segmentierte Volumen des linken Putamens deutlich schwächer mit dem Koeffizienten von -0,394 und asymmetrisch zur gegenüberliegenden Seite (-0,567). Außerdem ist dieser Koeffizient des linken Putamens von -0,394 nach Bonferroni-Korrektur nicht signifikant. Ein Unterschied der jährlichen Volumenabnahme des Putamens zwischen den Methoden wurde festgestellt: Während die Volumenabnahme des manuell segmentierten Putamens beidseits 0,2 % / Jahr beträgt, zeigt sich in der automatischen Segmentierung beidseits eine Atrophie von nur 0,1 % / Jahr. Jedoch bei den überlappenden 95 %-Konfidenzintervallen von Handund FreeSurfer-Segmentierungen sind die Unterschiede nicht wesentlich (Tabelle 6, Abb. 6 und 7).

Die in der vorliegenden Arbeit beobachteten Abweichungen bei der automatischen Segmentierung, insbesondere im linken Putamen, sind durch frühere Arbeiten nachvollziehbar. So zeigen viele Untersuchungen, dass die automatische Segmentierung Auswirkungen auf die Messergebnisse, insbesondere bei älteren Probanden, haben kann (Jernigan et al., 2001, Gelman et al., 2001, Raz et al., 1990, Raz et al., 2004). Deswegen sind die Resultate sehr vorsichtig zu interpretieren, wenn ältere Personen bei automatisierten Segmentierungsmethoden einbezogen werden (Jernigan et al., 2001). Einige myelinisierte Bereiche der weißen Substanz führen zu Signaländerungen, welche mit den Signaleigenschaften der grauen Substanz ähnlich oder sogar gleich sind. Solche Bereiche werden in den automatisierten Segmentierungsmethoden innerhalb der weißen Substanz häufig als graue Substanz erkannt. Daraus resultiert, dass der Kortexverlust unterschätzt und der Verlust der weißen Substanz überschätzt werden (Jernigan et al., 2001).

Die in dieser Studie beobachtete Unterschätzung der altersbedingten Atrophie der Basalganglien, insbesondere des Putamens, lässt sich auf den mit dem Alter veränderten Intensitätskontrast beziehungsweise einer Signaländerung der Basalganglien und der daraus folgenden schlechteren Abgrenzbarkeit zurückführen. Die mit dem Alter zunehmende Eisenkonzentration in den subkortikalen Strukturen macht das Signal in der T1-Sequenz kaum unterscheidbar vom Signal der weißen Substanz (Gelman et al., 2001). Die altersbedingten Änderungen der T1-Relaxationszeiten, die den Bildkontrast festlegen, sind relevant für automatisierte Methoden wie FreeSurfer, die auf T1-Sequenzen basieren. Die oben genannten altersbedingten Unterschiede werden aber nicht homogen für das gesamte Gehirn beobachtet, sondern variieren von Region zur Region (Raz et al., 1990, Raz et al., 2004). Dies ist eine mögliche Erklärung dafür, warum es in den von FreeSurfer segmentierten Gebieten zu Abweichungen im Vergleich zur manuellen Segmentierung kommt.

Jovicich et al. führten Nachuntersuchungen für die Segmentierung sowie die Volumenmessung der subkortikalen Strukturen durch, um die Reproduzierbarkeit der FreeSurfer-Methode zu überprüfen. Dabei wurden die Ergebnisse in gleicher Weise mit der manuellen Methode verglichen, wie die FreeSurfer-Erfinder Fischl et al. es taten (Fischl et al., 2002). Im Nucleus caudatus und Putamen ergaben sich Reproduzierbarkeitsfehler bis 4,3 % bei den älteren Teilnehmern und bis 2,3 % bei den jüngeren Probanden. Laut dieser Studie ist der Unterschied der Reproduzierbarkeitsfehler auf vermehrte Bewegungsartefakte bei der Messung der älteren Studienteilnehmern zurückzuführen (Jovicich et al., 2009). Im vorliegenden Fall spielt dies jedoch eher eine untergeordnete Rolle, da alle erhobenen Sequenzdaten während und nach jeder MRT-Messung bezüglich ihrer Qualität evaluiert wurden, und keine relevanten Bewegungsartefakte vorhanden waren.

Zweifellos ist es so, dass die Interpretation der automatisiert segmentieren Ergebnisse des altersbedingten Unterschiedes von subkortikalen Strukturen, insbesondere in den Längsschnittuntersuchungen, immer sehr vorsichtig sein sollten (Meijerman et al., 2018). Die Handsegmentierung gilt weiterhin als Goldstandard (Tae et al., 2008).

2.2. Vergleich der Basalganglienvolumen

In der vorliegenden Arbeit wurde die Segmentierung der Basalganglien sowohl manuell mit Hilfe des Computerprogramms 3D Slicer als auch mit der Software FreeSurfer automatisch durchgeführt. Die Basalganglienvolumen wurden aus den Segmentierungen beider Methoden berechnet und miteinander verglichen.

Nach Durchführung der t- und Vorzeichentests wurde festgestellt, dass:

- die durchschnittlichen relativen Volumina des Nucleus caudatus in der automatischen Segmentierung um 0,049% links und um 0,047% rechts signifikant <u>kleiner</u> sind, als die aus 3D Slicer berechneten Volumen (Abb. 10 – 13, Tabelle 8),
- die Volumina des Putamens, die aus den automatischen Daten genommen wurden, im Mittel um 0,012 % links (nach statistischer Korrektur knapp oberhalb des Signifikanzniveau) und um -0,018 % rechts signifikant größer als die handsegmentierten Volumina sind (Abb. 14 – 17, Tabelle 10),
- das Mittelvolumen des linken Pallidums, das in FreeSurfer berechnet wurde, um 0,016 % signifikant größer ist, als das Volumen des manuell segmentierten Pallidums (Abb. 18 und 19, Tabelle 12 und 13),
- 4) die Differenz im rechten Pallidum nicht signifikant ist (Abb. 20 und 21, Tabelle 12 und 14).

Die jüngere Studie vom Makowski et al. ist bislang die einzige publizierte Arbeit, in der von Basalganglien manuelle und automatische Segmentierungen in FreeSurfer verglichen werden. Sonst gibt es eine Vielzahl von Arbeiten, in denen mit anderen Programmen verglichen wurde und/oder andere Strukturen des Gehirns analysiert wurden (Cherbuin et al., 2009, Tae et al., 2008, Lehmann et al., 2010, Grimm et al., 2015, Guenette et al., 2018).
In der oben erwähnten Studie wurden die Basalganglien von 15 gesunden Probanden sowie 15 Patienten mit Psychosen manuell sowie automatisiert in FreeSurfer, MAGeT (Multiple Automatically Generated Templates) und FSL (FSL – FMRIB Software Library) segmentiert. Dabei wurde festgestellt, dass alle automatischen Methoden die Basalganglien im Vergleich zur Handsegmentierung zu groß bewerteten (Makowski et al., 2018). Dies stimmt mit den vorliegenden Ergebnissen im bilateralen Putamen und linkem Pallidum überein.

Viele Forschungsgruppen stellten die handsegmentierten und die in FreeSurfer automatisch segmentierten Volumina des Hippocampus gegenüber, wobei sich gute Korrelationen zwischen den Methoden ergaben. Jedoch wurde das Volumen für den Hippocampus in der automatisierten Methode um 23 - 29 % (Cherbuin et al., 2009), in anderer Quelle um 35 % (Tae et al., 2008) signifikant größer bewertet, als in der Handsegmentierung.

Kleinere Strukturen, wie zum Beispiel das Pallidum, haben höhere Reproduzierbarkeitsfehler der Volumina (Jovicich et al., 2009). Eine jüngere longitudinale Arbeit, die die Reproduzierbarkeit der Atrophie von verschiedenen Gehirnregionen mit der Hilfe von FreeSurfer analysiert, zeigt eine allgemeine Tendenz der Reproduzierbarkeitsfehler, die sich von den Ergebnissen der oben erwähnten Studie von Jovicich et al. unterscheidet. Kleinere Strukturen der grauen Substanz weisen im Vergleich zu größeren Strukturen kleinere Fehler für Volumenänderungen auf, aber größere Fehler für prozentuale Volumenänderungen (Meijerman et al., 2018). Die Korrelationen zwischen automatischer und manueller Segmentierung sind in der vorliegenden Studie mit r nach Pearson von 0,78 bis 0,88 stark und hoch signifikant für den bilateralen Nucleus caudatus und das Putamen (Tabelle 9 und 11). Die hier vorgestellten Ergebnisse sind etwas eindeutiger als die von Makowski et al., welche eine moderate bis starke Korrelation mit einem r von 0,44-0,86 zeigen. Im Vergleich zu anderen Untersuchungen, welche jedoch andere Gehirnstrukturen wie Hippocampus und Amygdala betrachten, korrelieren die hier gezeigten Ergebnisse etwas besser, als die von der Arbeit von Grimm et al. mit einem Korrelationskoeffizienten zwischen 0,45 und 0,76 (Grimm et al., 2015) und sind vergleichbar mit den Ergebnissen von Lehmann et al. mit einem r über 0,8 (Lehmann et al., 2010).

Wie auch hier gezeigt wird, können trotz guter Korrelationskoeffizienten zwischen Hand- und FreeSurfer-Segmentierung immer noch große Unterschiede im absoluten Volumen von mehreren kortikalen und subkortikalen Strukturen beobachtet werden (Lehmann et al., 2010, Grimm et al., 2015).

Darüber hinaus zeigt das Amygdala-Hippocampus-Komplexvolumen deutliche bessere Zusammenhänge zwischen manuellen und automatisierten Segmentierung (r nach Pearson von 0,72), als getrennt abgegrenzte Volumina von Amygdala (r von -0,13) und Hippocampus (r von 0,59) (Guenette et al., 2018). Bei diesen Ergebnissen ist laut Guenette et al. eine automatisierte FreeSurfer-Segmentierung des Amygdala-Hippocampus-Komplexes für die Analyse ohne manuelle Korrektur geeignet, wobei eine FreeSurfer-Segmentierungen nur von der Amygdala, oder alleine vom Hippocampus, eine weitere manuelle Korrektur benötigen (Guenette et al., 2018). Daher ist davon auszugehen, dass, obwohl die manuelle Segmentierung Goldstandard ist und obwohl es einige Unterschiede zwischen hand- und automatisiert segmentierten Volumina des Nucleus caudatus und des Putamens gibt, bei Korrelationen über 0,8 bezogen auf die zwei Methoden keine Nachsegmentierung der automatisierten Begrenzungen nötig ist.

McCarthy et al. belegen dies, indem die untersuchten Regionen im Anschluß an eine FreeSurfer-Segmentierung manuell nachbearbeitet wurden. Dabei wurden die mittleren Größen der untersuchten Bereiche nach Bearbeitung mit Rohdaten aus FreeSurfer verglichen. Diese Nachsegmentierung, die zusätzliche Zeit und Kosten erfordert, steigert zwar die Präzision und Qualität, hat aber keinen wesentlichen Einfluss auf das endgültige Ergebnis (McCarthy et al., 2015).

3. Geschlechtsunterschiede der Basalganglienatrophie

In der vorliegenden Untersuchung wurden die Alter-Volumen-Zusammenhänge separat für weibliche und männliche Probanden ausgewertet.

Insgesamt sind die Korrelationskoeffizienten für die bilateralen Caudatus und Putamen bei der männlichen Kohorte größer als bei der weiblichen, außerdem sind sie größer als die Koeffizienten ohne Trennung nach Geschlecht. Allerdings ist die jährliche Volumenabnahme des Nucleus caudatus beidseits bei den Männern mit 0,2 % / Jahr größer als bei den Frauen mit 0,1 % / Jahr, während die jährliche Volumenabnahme des Putamens geschlechtsunabhängig ist und 0,2 % / Jahr beträgt. Außerdem ist bei den Frauen der Korrelationskoeffizient nach Pearson, inklusive jährlicher Volumenabnahme für den linken N. caudatus auch vor Korrektur nicht signifikant (Tabelle 16 und 17, Abb. 22 bis 24). Nach der Korrektur sind alle Korrelationen des N. caudatus und Putamens bei Frauen und des linken N. caudatus bei Männern nicht mehr signifikant.

Die Asymmetrie der Striatumsatrophie ändert sich in der nach Geschlecht getrennten Betrachtung vergleichbar wie bei einer Auswertung mit beiden Geschlechtern: Das Volumen des rechten Caudatus nimmt mit dem Alter schneller ab als das des linken, beim Putamen ist es genau umgekehrt.

Der Globus pallidus bleibt intakt und zeigt keine signifikanten Unterschiede bei beiden Geschlechtern.

Insgesamt entsprechen die hier vorgestellten Ergebnisse denen zahlreicher früherer Publikationen, die eine beschleunigte Atrophie bei Männern beschreiben. Eine steilere altersbedingte Volumenverringerung des N. caudatus (Raz et al., 1995) oder des Striatums (Király et al., 2016) bei beiden Geschlechtern wurde in früheren Artikeln gezeigt. In den beiden genannten Arbeiten wird wie auch in der vorliegenden Studie beobachtet, dass die Alter-Volumen-Korrelationen bei Männern signifikant und bei Frauen nicht signifikant waren (Raz et al., 1995, Király et al., 2016). Bei den männlichen, jedoch nicht bei weiblichen Versuchspersonen, zeigt sich mit zunehmendem Lebensalter eine Verkleinerung der bilateralen Ganglien (Murphy et al., 1992) beziehungsweise der linksseitigen Basalganglien (Xu et al., 2000). In anderen Studien werden die negativen Zusammenhänge zwischen Alter und Volumen des Putamens (Raz et al., 1995) oder des Pallidums (Gunning-Dixon et al., 1998) nur bei Männern festgestellt.

Bei Männern findet sich im linken Caudatus ein etwas schnellerer Verlust des Volumens als im rechten, während es bei Frauen genau umgekehrt ist. Bei beiden Geschlechtern zeigt sich der Alterungseffekt im rechten Putamen deutlicher als im linken (Gunning-Dixon et al., 1998). Das wird in dieser Studie anders dargestellt, da der rechte N. caudatus und das linke Putamen stärker mit zunehmendem Alter bei beiden Geschlechtern schrumpfen. Einige Studien beschreiben einen geschlechtsunabhängigen absoluten und relativen Volumenverlust des N. caudatus (Hasan et al., 2008, Krishnan et al., 1990) oder des Striatums (Raz et al., 2003). In anderen Arbeiten werden keine signifikanten Geschlechtsunterschiede bei der Atrophie aller drei untersuchten-Basalganglien gefunden (Tullo et al., 2019, Peterson et al., 1993).

Die altersbedingte Schrumpfung des rechten Putamens sowie des rechten Pallidums findet bei Männern schneller statt als bei Frauen. Zu diesem Ergebnis kommt eine jüngere Studie aus dem Jahr 2019, die eine Theorie diesbezüglich postulierte: Der stärkere Arbeitsdruck bei Männern mittleren Alters und der niedrige Testosteronspiegel bei älteren Erwachsenen kann ein möglicher Grund der beschleunigten alters- und geschlechtsabhängigen Atrophie der Basalganglien sein (Wang et al., 2019). Zusammenfassend kann man sagen, dass in der Literatur eine beschleunigte Basalganglienatrophie meistens bei Männern (wie in der vorliegenden Arbeit) oder geschlechtsunabhängig beschrieben wird.

Nur wenige Studien zeigen differente Ergebnisse. In einer Längsschnittstudie aus dem Jahr 2005 wurde die zeitliche Zunahme des Ausmaßes der altersbedingten Caudatusveränderung nur bei Frauen beobachtet. Dabei waren aber alle Probanden zusätzlich mit der Diagnose "Bluthochdruck" assoziiert (Raz et al., 2005). In einer weiteren Studie wurden die signifikanten negativen Volumen-Alter-Zusammenhänge der relativen Volumen von allen Basalganglien bei weiblichen, jedoch nicht bei männlichen Probanden gefunden (Li et al., 2014).

4. Asymmetrie der Basalganglienvolumen

Der Nucleus caudatus der rechten Hemisphäre ist in den vorliegenden Untersuchungen im Vergleich zur linken Hemisphäre größer, jedoch ist diese Differenz nach statistischer Korrektur nicht signifikant. Ansonsten haben Putamen und Pallidum keine signifikante, seitenabhängige mittlere Volumendifferenz (Abb. 25, Tabelle 18 bis 20). Ähnlich wie in dieser Arbeit, belegen viele Publikationen eine rechtsseitige Asymmetrie: Nur im N. caudatus (Ifthikharuddin et al., 2000), im Kopf des N. caudatus (Szabo' et al., 2003), im N. caudatus und schwächer im Putamen (Raz et al., 1995) oder in allen Basalganglien (Raz et al., 2003). Der linke Nucleus caudatus sowie das rechte Putamen waren in der Studie von Gunning-Dixon et al. im Unterschied zu den hier gezeigten Resultaten größer als die entsprechende gegenüberliegende Seite. Zusätzlich konnte im Pallidum keine Asymmetrie beobachtet werden (Gunning-Dixon et al., 1998).

In einem älteren Artikel wurde eine Asymmetrie des Pallidums beschrieben, wobei das rechte Pallidum signifikant kleiner als das linke war (Kooistra and Heilman, 1988). Peterson et al. stellten fest, dass das Putamen und der Globus pallidus signifikant größer und der N. caudatus links signifikant kleiner als auf der Gegenseite sind (Peterson et al., 1993).

Die linksseitige Asymmetrie im unbearbeiteten nicht normalisierten Datensatz (mit absoluten Volumenwerten) wurde für das Striatum und nach Volumennormalisierung in Relation auf Hemisphärengröße (relative Volumenwerte) nur für das Putamen in der Studie aus dem Jahr 2007 bestätigt (Ahsan et al., 2007).

In anderen Studien wurden alle Basalganglien (Tullo et al., 2019) oder N. caudatus allein (Krishnan et al., 1990) relativ symmetrisch dargestellt.

5. Normale altersabhängige Unterschiede der Intensität der subkortikalen Strukturen

In der vorliegenden Arbeit werden die Korrelationen zwischen dem Alter und den Intensitätswerten der Basalkerne ausgewertet. Dabei werden die

Korrelationskoeffizienten für die absoluten (Mean) und relativen (Mean/Mean Spleniums) Intensitätsmittelwerte berechnet.

Bei der Gruppe mit absoluten Werten ergeben sich signifikante, negative, schwache bis mittelstarke Korrelationen zwischen zunehmendem Alter und den Intesitätsmittelwerten des N. caudatus und Putamens in der FLAIR-Sequenz. In der T2-Sequenz konnte dies nur für das Putamen gezeigt werden. Beide Effekte manifestieren sich beidseits: Beim Caudatus relativ symmetrisch, beim Putamen rechts etwas ausgeprägter (Abb. 26-28, 32-34, 38-40, Tabelle 21, 23, 25).

In der Gruppe der relativen Werte werden bis auf den rechten Nucleus caudatus in der T2-Sequenz und das rechte Pallidum in der T1-Sequenz keine signifikanten Korrelationen gefunden. In diesem Fall sind die oben genannten Effekte nur unilateral (Abb. 29-31, 35-37, 41-43, Tabelle 22, 24, 26). Wie in dieser Studie gezeigt wird, macht es mehr Sinn, für zukünftige Studien besser die absoluten Intensitätsmittelwerte der Basalganglien als die relativen zu verwenden. Man kann davon ausgehen, dass die FLAIR-Sequenz zur Untersuchung der altersbedingten Intensitätsminderungen von Striatum und zusätzlich die T2-Sequenz für das Putamen geeignet sind. Diese altersabhängige Graustufenminderung auf den FLAIR-Sequenzen wird bei einem einfachen visuellen Vergleich der Basalganglien zwischen älteren und jüngeren Probanden veranschaulicht (Abb. 44), wobei der Nucleus caudatus und das Putamen bei den älteren Probanden von niedrigere Signalintensität sind und daher schlechter von der weißen Substanz abgegrenzt werden können als bei den jüngeren Probanden.

Bislang wurden in der Literatur keine zur diesen Arbeit direkt vergleichbaren Veränderungen beschrieben, hauptsächlich aus dem Grund, dass viele Studien im Gegensatz zur vorliegenden Arbeit die Relaxationszeit T2* oder ihr inverses R2* (ausgedruckt in sec-1) aus T2*-Wichtung in verschiedenen Altersgruppen miteinander verglichen haben.

Die Studie von Aquino et al. erwähnt die altersbedingte Intensitätsminderungen in der T1-Sequenz im Globulus pallidus sowie im Putamen, welche ähnlich zum allmählich abnehmenden Muster von R2 *-Werten in der T2*-Wichtung ist (Aquino et al., 2009). R2 * -Messungen können verwendet werden, um die Eisenakkumulation im Gehirn zu quantifizieren (Aquino et al., 2009). Die Intensitätsminderung in den T2*-Wichtung beruht somit auf der seit längerem bekannten, mit dem Alter zunehmenden Eisenkonzentration in den Basalganglien (Aquino et al., 2009, Péran et al., 2009). Die Ursache dafür ist eine Störung der Eisenhomöostase als Folge des Alterns. Es wird vermutet, dass es aufgrund dessen zu einer oxidativen Zellschädigung kommen kann (Acosta-Cabronero et al., 2016).

In der Metaanalyse von 20 Studien aus dem Jahr 2013 wurde eine positive Korrelation zwischen dem Alter und dem R2*-Wert bzw. Eisengehalt in allen Basalganglien beobachtet, wobei sich die größte Korrelation beim Putamen und die kleinste beim Globulus pallidum zeigte (Daugherty and Raz, 2013). Die Ergebnisse von Daugherty und Raz sind gut mit den vorliegenden Daten vergleichbar. Unter der Berücksichtigung, dass Eisenablagerungen bei stärker T2-Gewichtung (Flair < T2-Sequenz) hypointenser erscheinen, sind die Ergebnisse dieser Untersuchung bezüglich der Intensitäten nachvollziehbar: Aufgrund des hohen Eisengehaltes wird die altersbedingte Abnahme der absoluten Intensitätswerte des Putamens in der T2- sowie FLAIR-Sequenz beobachtet, wobei diese in der T2 ausgeprägter als in der FLAIR-Sequenz ist. Im etwas weniger eisenreichen N. caudatus manifestiert sich die negative Korrelation zwischen der Intensität und dem Alter nur in der T2-Sequenz.

Da im Pallidum die Eisenakkumulation sehr früh beginnt und schon im frühen Erwachsenenalter eine hohe Konzentration bzw. der Höchststand erreicht wird, spielt die Zunahme des Eisens im Pallidum während der restlichen Lebensdauer kaum noch eine Rolle. Aus diesem Grund ist die Korrelation zwischen Alter und R2*-Wert bzw. Eisengehalt im Globulus pallidum weniger ausgeprägt (Aquino et al., 2009). In dieser Analyse werden auch keine relevanten Zusammenhänge zwischen Alter und Intensitätsmittelwerten des Pallidums in allen gemessenen Sequenzen gefunden. Die altersabhängige Abnahme der T2- und FLAIR-Intensitäten im Pallidumbereich wird in der Arbeit von Lindig et. al erwähnt und als signifikanter Störfaktor bei der Klassifikation des Pallidums beschrieben (Lindig et al., 2018). Dies ist wiederum mit der großen Eisenakkumulation begründbar und führt zur ungenauen Segmentierung des Pallidums (Lorio et al., 2016).

In früheren Arbeiten wird beschrieben, dass Läsionen mit hoher Signalintensität in den Basalganglien in der T2-Sequenz eher bei älteren als bei jüngeren Probanden auffallen (Kasahara et al., 1995, Jernigan et al., 2001).

Bei der Segmentierung der T1-Sequenzen werden in allen Basalganglien gelegentlich hypointense Areale ohne Nachweis der Hyperintensitäten auf den T2-gewichteten Bildern beobachtet, insbesondere aber im Pallidum. Diese Hypointensitäten können mit dem zunehmenden Alter vermehrt auftreten oder an Volumen zunehmen (Gunning-Dixon et al., 1998, Raz et al., 2003).

In der vorliegenden Studie fallen die T1-hypointensen inhomogenen Bereiche ebenfalls im Globulus pallidus bei älteren Studienteilnehmern über 60 Jahren auf (Abb. 45). Dies bestätigt die Daten der Untersuchung von Raz et al.: Solche Pallidumareale bei älteren Probanden entstehen aufgrund nicht-neuronaler Einschlüsse, wie Eisenablagerungen, Verkalkungen sowie vergrößerter Virchow-Robin-Räume. Wobei die Stärke der Ausprägung laut der Studie signifikant mit dem Alter korreliert (Raz et al., 2003).

6. Störfaktoren, Schwachpunkte und Fehlermöglichkeiten der Studie

Ein Schwachpunkt der Studie liegt in der Durchführung der manuellen Segmentation nur durch eine Person. Eine Segmentation von mehreren Personen würde zu einem noch genaueren Ergebnis führen. Die Qualität aller Segmentierung wurde aber von einem erfahrenen Neuroradiologen (Dr. Tobias Lindig) begutachtet, deshalb können systematische manuelle Fehlsegmentierungen ausgeschlossen werden.

Die Zeit für eine Handsegmentation betrug pro Datensatz mindestens einen Arbeitstag. Trotz Vorliegens einer wesentlichen größeren Datenstichprobe, musste aufgrund des sehr hohen Zeitaufwandes für eine saubere manuelle Segmentation die Anzahl der Fälle auf 30 limitiert werden, wobei bei der Planung der Stichprobe auf Erfahrungen aus der Literatur zurückgegriffen wurde.

Die Fallzahl hatte auch einen Einfluss auf die Signifikanz der Ergebnisse. Aufgrund der Durchführung der multiplen Berechnungen wiederholt an exakt denselben Datenmaterialen und der Alphafehler-Kumulierung war eine statistische Korrektur erforderlich. Folgende ursprünglich signifikante Ergebnisse waren nach Korrektur nicht mehr signifikant:

- 1) Volumen-Alter-Korrelation des automatisch segmentierten Putamen links,
- Differenz zwischen Mittelvolumina des manuell und automatisch segmentierten Putamen links,
- Volumen-Alter-Korrelation des linken N. caudatus bei den männlichen Probanden,
- Volumen-Alter-Korrelationen des rechten N. caudatus und des bilateralen Putamens bei den weiblichen Probanden,
- 5) Differenz des rechten und linken Nucleus caudatus.

Bis auf die in den anderen Quellen beschriebenen nicht signifikanten Basalganglienatrophie bei Frauen, gibt es in der Literatur für die restlichen Fälle relativ eindeutige Resultate, welche in größeren Kohorten signifikant waren. Somit ist die Wahrscheinlichkeit, dass es sich um einen alpha-Fehler gehandelt hat, aber gering und die Wahrscheinlichkeit, dass durch die Korrektur für multiples Testen ein falsch negatives Ergebnis raus kam, höher. Eine Validierung in einer größeren Kohorte, oder eine Bewertung im Rahmen einer Metaanalyse wäre also aus mehreren Gründen anzustreben.

In einer größeren Kohorte könnte man außerdem getrennt die Korrelationen für Altersuntergruppen zum Beispiel zwischen 20 und 35, 35 und 45 sowie 45 und 60 Jahren berechnen und eventuell andere Korrelationskoeffizienten für 3 Altersuntergruppen erhalten, wie in einer früheren Studie gezeigt wurde (Goodro et al., 2012). Die älteste Probandengruppe war in der vorliegenden Studie mit einer Altersspanne zwischen 60 und 69 Jahren relativ jung. Ansonsten könnten die Volumen-Alter-Korrelationen noch ausgeprägter sein. Wir stimmen mit Waldhovd et al. überein, dass die Ergebnisse insgesamt sehr von der untersuchten Altersspanne abhängen und deswegen zwischen vielen Autoren variieren (Walhovd et al., 2005). Die Endergebnisse können von der Qualität der Bilder beeinflusst sein (Walhovd et al., 2005). Die Artefakte aufgrund von Intensitätsinhomogenität, reduziertem Signal-Rausch-Verhältnis und Bewegungen während der MRT-Messung beeinflussen erheblich die Qualität der Scans. (McCarthy et al., 2015). Wie Jovicich et al. beschrieben, bewegen sich die älteren Probanden deutlich mehr während der Untersuchung, als die jüngeren Teilnehmer. Diese Bewegungsartefakte können eine unpräzise Segmentierung verursachen (Tullo et al., 2019) und zusätzlich den sowieso mit dem Alter zunehmend schlechten Kontrast verschlechtern (Jovicich et al., 2009). In der vorliegenden Studie wurden alle Datensätze auf die groben Bewegungsartefakte oder sonstigen Artefakte von einem der zwei Neuroradiologen geprüft. Idealerweise sollte sich die Erforschung der Alterseffekte auf die Basalganglien nicht nur auf Unterschiede zwischen Probanden unterschiedlichen Alters gründen, sondern auch zeitliche Veränderungen bei einzelnen Probanden verfolgen. Kurz gesagt ist es sinnvoll nicht nur Querschnittstudien durchzuführen, sondern auch Längsschnittstudien. Diese sind aber aufgrund von zeitlichen und organisatorischen Gründen meist, wie auch im vorliegenden Fall, kaum durchführbar (Abe et al., 2008, Cherubini et al., 2009). Für diese Studie wurden absichtlich nur gesunde Freiwillige ausgewählt. Die Probanden sind hoch motiviert und gut ausgebildet. Solche Stichproben sind laut Raz et al. hochselektiv, was die Endergebnisse nicht für die ganze Gesellschaft repräsentativ macht (Raz et al., 2003). In unserem Fall war die Ursache dafür, dass die Probanden vor allem über Aushänge gesucht wurden. Außerdem gibt es häufig ein Mangel an älteren

Probanden, was an Kontraindikationen für die MRT oder Studie (in unserem Fall keine neurologischen oder psychiatrischen Erkrankungen in der Anamnese) lag. Eine mögliche Verbesserung für die Folgestudien diesbezüglich wäre, bei der Auswahl der Probanden gezielt bestimmte oder ältere Bevölkerungsgruppen anzusprechen. Die Schwierigkeiten bei der Segmentierung und Volumenmessung des Globus pallidus sind ein gut bekanntes Problem. Während die striatalen Kerne auf den T1-Bildern deutlich sichtbar sind, ist das Pallidum kaum oder nicht sichtbar, somit ist die Unterteilung in seine äußeren und inneren Segmente auch unmöglich. Die Gründe dafür sind schlechter Kontrast, eine unscharfe Begrenzung zum umgebenden Parenchym sowie altersbedingte Eisenakkumulationen (Lindig et al., 2018, Gunning-Dixon et al., 1998, Visser et al., 2016). Da in FreeSurfer nur T1-gewichtete Daten verwendet werden, kann dies zu Ungenauigkeiten im Segmentierungsprozess und nachfolgend bei Volumenmessungen des Pallidums führen (Visser et al., 2016). Aufgrund der oben genannten Gründe wurde die Handsegmentierung in der vorliegenden Arbeit nicht nur mit den T1-, sondern auch mit den FLAIR-Sequenzen zur Verfeinerung des Resultates durchgeführt, was auch für solche zukünftigen Studien empfohlen wird. Eine weitere Einschränkung ergibt sich aus den Schwierigkeiten bei der manuellen Abgrenzung der untersten Anteile des Striatums, was anatomisch bedingt ist. Standardisierte Segmentierungsprotokolle können dabei helfen, die Varianz zu erniedrigen. Ein Vergleich der Segmentierung multipler Rater kann ebenfalls hilfreich sein, um zu zeigen, ob es tatsächlich zu den relevanten Unterschieden zwischen Rater führt.

V Zusammenfassung

Im Rahmen der Studie zur Erstellung eines UKT-spezifischen, gesunden Normkollektives, wurden 30 Probanden zwischen 20 und 70 Jahren, mit gleichem Anteil von Frauen und Männern, rekrutiert. Nach klinischer Untersuchung des Gesundheitszustandes wurden die Probanden am 3T-MRT-Scanner gemessen. Die MRT-Daten wurden von zwei Ärzten auf Vorhandensein von Gehirnkrankheiten oder anomalien neuroradiologisch überprüft. Danach wurden die Basalganglien per Hand mithilfe 3D Slicer sowie automatisiert im FreeSurfer-Programm segmentiert. Bei beiden Methoden wurde das absolute sowie relative Volumen als Prozentsatz des Gehirnvolumens für jeden einzelnen Basalkern berechnet.

Wie auch in vielen anderen Studien konnte bestätigt werden, dass ein negativer, mittelstarker linearer Zusammenhang zwischen dem Alter und dem Volumen des N. caudatus sowie des Putamens besteht. Das Alter zeigte im Rahmen dieser Untersuchung keinen signifikanten Einfluss auf das Pallidumvolumen. In der Literatur wird für das Pallidum eine geringere Atrophierate mit großer Varianz beschrieben, so dass hier vermutlich nur in Längsschnittstudien und in großen Querschnittsstudien Alterseffekte gezeigt werden können. Die altersbedingte Schrumpfung des Striatums findet bei Männern schneller statt als bei Frauen, wobei die Volumen-Alter-Korrelationen bei Frauen nicht signifikant sind. Insgesamt stimmen die Ergebnisse gut mit anderen Querund Längsschnittstudien überein.

Die Korrelationen zwischen dem Alter und den absoluten sowie relativen Intensitätswerten der Basalkerne wurden jeweils in den T1-, T2- und FLAIR-Sequenzen ausgewertet. Die relativen Intensitätswerte (als Relation vom Intensitätsmittelwert des jeweiligen Kernes zum Intensitätsmittelwert des Spleniums als Kontrollwert) zeigten keine relevanten Korrelationen im Gegensatz zu den absoluten Werten. Trotz großer Streubreite der Werte wurde jedoch bilateral in der FLAIR-Sequenz eine signifikante, altersbedingte Intensitätsminderung beim Nucleus caudatus und beim Putamen und in der T2-Sequenz beim Putamens beobachtet.

Wenn man die Mittelvolumina der Basalganglien aus den in 3D Slicer handsegmentierten und in FreeSurfer automatisiert segmentierten Ergebnissen vergleicht, wird in der automatisierten Methode das Volumen des beidseitigen Nucleus caudatus kleiner, das des rechten Putamens und des linken Pallidums signifikant größer berechnet als in der manuellen Methode. Trotz dieser Volumenunterschiede sind die positiven Korrelationen zwischen automatischer und manueller Segmentierung stark und hoch signifikant für den bilateralen Nucleus caudatus und das Putamen. Obwohl beide Methoden gut miteinander korrelieren und die automatisierte Segmentierungstechnik insbesondere wegen der Zeitersparnis interessanter für die Forschung erscheint, bleibt die Handsegmentierung weiterhin der Goldstandard. Die Alterungseffekte wurden auch in den automatisch abgegrenzten Basalganglien ausgewertet und mit handsegmentierten Resultaten verglichen. Insbesondere mit zunehmendem Alter laufen die Ergebnisse der Handsegmentierung und der automatischen Segmentierung auseinander, was sich in einer geringen Volumenunterschätzung im bilateralen Caudatus bei der automatischen Segmentierung und einer stärkeren jährlichen Volumenabnahme im bilateralen Putamen bei Durchführung der Handsegmentierung äußert. Diese Ergebnisse korrelieren gut mit anderen Studien. Eine mögliche Erklärung für diesen Effekt ist die gezeigte Intensitätsentwicklung mit dem Alter: Durch die zunehmende Intensitätsänderung kommt es für entsprechende Algorithmen zu einer schlechteren Abgrenzbarkeit oder Erkennbarkeit. Andere Erklärungen wie vermehrte Bewegung im Alter sind im vorliegenden Kollektiv nicht zu erwarten.

Für zukünftige Studien zum Volumen der Basalganglien wird daher empfohlen, die Veränderung der Intensitätswerte und die dadurch eventuell bedingte systematische Abweichung bei der automatischen Segmentierung zu berücksichtigen.

78

Liste der Tabellen

Tabelle 1: Überblick über fünf Altersgruppen der Probanden. Tabelle 2: Sequenzparameter. Tabelle 3: Mittelwerte der Basalganglienvolumen aus den handsegmentierten Daten. Tabelle 4: Mittelwerte der Basalganglienvolumen aus den FreeSurfer-Daten. Tabelle 5: Vergleichende Tabelle der Korrelationen zwischen hand- bzw. FreeSurfersegmentierten Volumen des Nucleus caudatus beidseits und dem Alter. Tabelle 6: Vergleichende Tabelle der Korrelationen zwischen hand- bzw. FreeSurfersegmentierten Volumen des Putamens beidseits und dem Alter. Tabelle 7: Vergleichende Tabelle der Korrelationen zwischen hand- bzw. FreeSurfersegmentierten Volumen des Pallidums beidseits und dem Alter. Tabelle 8: t-Test bei gepaarten Stichproben: Handsegmentierung vs. FreeSurfer-Segmentierung für Caudatus beidseits. Tabelle 9: Korrelationen zwischen der Volumina manueller und FreeSurfer-Segmentierung des Nucleus caudatus beidseits. Tabelle 10: t-Test bei gepaarten Stichproben: Handsegmentierung vs. FreeSurfer-Segmentierung für Putamen beidseits. Tabelle 11: Korrelationen zwischen der Volumina manueller und FreeSurfer-Segmentierung des Putamens beidseits. Tabelle 12: t-Test bei gepaarten Stichproben: Handsegmentierung vs. FreeSurfer-Segmentierung für Pallidum beidseits. Tabelle 13: Nichtparametrischer t-Test – Vorzeichentest: Handsegmentierung vs. FreeSurfer-Segmentierung für Pallidum links. Tabelle 14: Nichtparametrischer t-Test – Vorzeichentest: Handsegmentierung vs. FreeSurfer-Segmentierung für Pallidum rechts. Tabelle 15: Korrelationen zwischen der Volumina manueller und FreeSurfer-Segmentierung des Pallidums beidseits. Tabelle 16: Korrelation zwischen Volumen der Basalganglien und dem Alter bei männlichen Probanden Tabelle 17: Korrelation zwischen Volumen der Basalganglien und dem Alter bei weiblichen Probanden. Tabelle 18: Statistik bei gepaarten Stichproben: Mittelwert der beidseitigen Basalganglienvolumen. Tabelle 19: t-Test bei gepaarten Stichproben für beidseitigen Basalganglienpaaren. Tabelle 20: Nichtparametrischer T-Test – Vorzeichentest: Seitendifferenz zwischen rechtem und linkem Pallidum. Tabelle 21: Korrelationen zwischen Alter und absolutem Intensitätsmittelwert des Caudatus bilateral in der jeweiligen Sequenz. Tabelle 22: Korrelation zwischen Alter und relativem Intensitätsmittelwert des Caudatus bilateral in der jeweiligen Sequenz. Tabelle 23: Korrelationen zwischen Alter und absolutem Intensitätsmittelwert des Putamens bilateral in der jeweiligen Sequenz. Tabelle 24: Korrelation zwischen Alter und relativem Intensitätsmittelwert des Putamens bilateral in der jeweiligen Sequenz. Tabelle 25: Korrelationen zwischen Alter und absolutem Intensitätsmittelwert des Pallidums bilateral in der jeweiligen Sequenz. Tabelle 26: Korrelationen zwischen Alter und relativem Intensitätsmittelwert des Pallidums bilateral in der jeweiligen Sequenz.

Liste der Abbildungen

Abb. 1: Basalganglien auf der axialen T2-gewichteten MRT-Sequenz.

Abb. 2: Beispiel der Segmentierung auf der Transversalebene und auf der Koronarebene. Abb. 3: Teilsegmentierung des Spleniums auf einem Schnittbild der Sagittalebene und der Transversalebene.

Abb. 4: Gruppiertes Streudiagramm mit vergleichender Darstellung der altersbedingten Atrophie von prozentuellen hand- und FreeSurfer-segmentierten Volumen im linken Nucleus caudatus.

Abb. 5: Gruppiertes Streudiagramm mit vergleichender Darstellung der altersbedingten Atrophie von prozentuellen hand- und FreeSurfer-segmentierten Volumen im rechten Nucleus caudatus.

Abb. 6: Gruppiertes Streudiagramm mit vergleichender Darstellung der altersbedingten Atrophie von prozentuellen hand- und FreeSurfer-segmentierten Volumen im linken Putamen. Abb. 7: Gruppiertes Streudiagramm mit vergleichender Darstellung der altersbedingten Atrophie von prozentuellen hand- und FreeSurfer-segmentierten Volumen im rechten Putamen. Abb. 8: Gruppiertes Streudiagramm mit vergleichender Darstellung der altersbedingten Atrophie von prozentuellen hand- und FreeSurfer-segmentierten Volumen im linken Pallidum. Abb. 9: Gruppiertes Streudiagramm mit vergleichender Darstellung der altersbedingten

Atrophie von prozentuellen hand- und FreeSurfer-segmentierten Volumen im rechten Pallidum. Abb. 10: Boxplot mit dem handsegmentierten und automatisch-segmentierten Volumen vom linken Caudatus in %.

Abb. 11: Histogramm der Volumina vom linken Caudatus in %: handsegmentiert und automatisch-segmentiert.

Abb. 12: Boxplot mit dem handsegmentierten und automatisch-segmentierten Volumen vom rechten Caudatus in %.

Abb. 13: Histogramm der Volumina vom rechten Caudatus in %: handsegmentiert und automatisch-segmentiert.

Abb. 14: Boxplot mit dem handsegmentierten und automatisch-segmentierten Volumen vom linken Putamen in %.

Abb. 15: Histogramm der Volumina vom linken Putamen in %: handsegmentiert und automatisch-segmentiert.

Abb. 16: Boxplot mit dem handsegmentierten und automatisch-segmentierten Volumen vom rechten Putamen in %.

Abb. 17: Histogramm der Volumina vom rechten Putamen in %: handsegmentiert und automatisch-segmentiert.

Abb. 18: Boxplot mit dem handsegmentierten und automatisch-segmentierten Volumen vom linken Pallidum in %.

Abb. 19: Histogramm der Volumina vom linken Pallidum in %: handsegmentiert und automatisch-segmentiert.

Abb. 20: Boxplot mit dem handsegmentierten und automatisch-segmentierten Volumen vom rechten Pallidum in %.

Abb. 21: Histogramm der Volumina vom rechten Pallidum in %: handsegmentiert und automatisch-segmentiert.

Abb. 22: Gruppiertes Streudiagramm mit Zusammenhang zwischen handsegmentiertem Volumen des Nucleus caudatus beidseits in % und dem Alter in Jahren - getrennt nach Geschlecht.

Abb. 23: Gruppiertes Streudiagramm mit Zusammenhang zwischen handsegmentiertem Volumen des Putamens beidseits in % und dem Alter in Jahren - getrennt nach Geschlecht. Abb. 24: Gruppiertes Streudiagramm mit Zusammenhang zwischen handsegmentiertem Volumen des Pallidums beidseits in % und dem Alter in Jahren - getrennt nach Geschlecht. Abb. 25: Boxplot zur Darstellung der handsegmentierten Basalganglienvolumen.

Abb. 26: Zusammenhang zwischen Alter und absoluten Intensitätsmittelwerten des linken bzw. rechten Nucleus caudatus in der T1-Sequenz.

Abb. 27: Zusammenhang zwischen Alter und absoluten Intensitätsmittelwerten des linken bzw. rechten Nucleus caudatus in der T2-Sequenz.

Abb. 28: Zusammenhang zwischen Alter und absoluten Intensitätsmittelwerten des linken bzw. rechten Nucleus caudatus in der FLAIR-Sequenz.

Abb. 29: Zusammenhang zwischen Alter und Relation vom Intensitätsmittelwert des linken bzw. rechten Nucleus caudatus zum Intensitätsmittelwert des Spleniums in der T1-Sequenz. Abb. 30: Zusammenhang zwischen Alter und Relation vom Intensitätsmittelwert des linken

bzw. rechten Nucleus caudatus zum Intensitätsmittelwert des Spleniums in der T2-Sequenz. Abb. 31: Zusammenhang zwischen Alter und Relation vom Intensitätsmittelwert des linken

bzw. rechten Nucleus caudatus zum Intensitätsmittelwert des Spleniums in der FLAIR-Sequenz. Abb. 32: Zusammenhang zwischen Alter und absoluten Intensitätsmittelwerten des linken bzw. rechten Putamens in der T1-Sequenz.

Abb. 33: Zusammenhang zwischen Alter und absoluten Intensitätsmittelwerten des linken bzw. rechten Putamens in der T2-Sequenz.

Abb. 34: Zusammenhang zwischen Alter und absoluten Intensitätsmittelwerten des linken bzw. rechten Putamens in der FLAIR-Sequenz.

Abb. 35: Zusammenhang zwischen Alter und Relation vom Intensitätsmittelwert des linken bzw. rechten Putamens zum Intensitätsmittelwert des Spleniums in der T1-Sequenz.

Abb. 36: Zusammenhang zwischen Alter und Relation vom Intensitätsmittelwert des linken bzw. rechten Putamens zum Intensitätsmittelwert des Spleniums in der T2-Sequenz.

Abb. 37: Zusammenhang zwischen Alter und Relation vom Intensitätsmittelwert des linken bzw. rechten Putamens zum Intensitätsmittelwert des Spleniums in der FLAIR-Sequenz.

Abb. 38: Zusammenhang zwischen Alter und absoluten Intensitätsmittelwerten des linken bzw. rechten Pallidums in der T1-Sequenz.

Abb. 39: Zusammenhang zwischen Alter und absoluten Intensitätsmittelwerten des linken bzw. rechten Pallidums in der T2-Sequenz.

Abb. 40: Zusammenhang zwischen Alter und absoluten Intensitätsmittelwerten des linken bzw. rechten Pallidums in der FLAIR-Sequenz.

Abb. 41: Zusammenhang zwischen Alter und Relation vom Intensitätsmittelwert des linken bzw. rechten Pallidums zum Intensitätsmittelwert des Spleniums in der T1-Sequenz.

Abb. 42: Zusammenhang zwischen Alter und Relation vom Intensitätsmittelwert des linken bzw. rechten Pallidums zum Intensitätsmittelwert des Spleniums in der T2-Sequenz.

Abb. 43: Zusammenhang zwischen Alter und Relation vom Intensitätsmittelwert des linken bzw. rechten Pallidums zum Intensitätsmittelwert des Spleniums in der FLAIR-Sequenz.

Abb. 44: Visueller Vergleich der Basalganglienintensität des älteren und jüngeren Probanden in transversaler Schnittebene (FLAIR-Sequenzen).

Abb. 45: Visueller Vergleich des Pallidums auf den T1-Sequenzen von jüngerer Probandin und von einem älteren Probanden.

Literatur

- ABE, O., YAMASUE, H., AOKI, S., SUGA, M., YAMADA, H., KASAI, K., MASUTANI, Y., KATO, N., KATO, N. & OHTOMO, K. 2008. Aging in the CNS: comparison of gray/white matter volume and diffusion tensor data. *Neurobiology of Aging*, 29, 102-116.
- ACOSTA-CABRONERO, J., BETTS, M. J., CARDENAS-BLANCO, A., YANG, S. & NESTOR, P. J. 2016. In Vivo MRI Mapping of Brain Iron Deposition across the Adult Lifespan. *The Journal of Neuroscience*, 36, 364 –374.
- AHSAN, R. L., ALLOM, R., GOUSIAS, I. S., HABIB, H., TURKHEIMER, F. E., FREE, S., LEMIEUX, L., MYERS, R., DUNCAN, J. S., BROOKS, D. J., KOEPP, M. J. & HAMMERS, A. 2007. Volumes, spatial extents and a probabilistic atlas of the human basal ganglia and thalamus. *Neuroimage*, 38, 261-270.
- ALEXANDER, G. E., CRUTCHER, M. D. & DELONG, M. R. 1991. Basal gangliathalamocortical circuits: Parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. *Progress in Brain Research*, 85, 119-146.
- ALEXANDER, G. E., DELONG, M. R. & STRICK, P. L. 1986. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. *Annual Review of Neuroscience*, 9, 357-381.
- ALHEID, G. F., SWITZER-III, R. C. & HEIMER, L. 1990. Basal ganglia. *In:* PAXINOS, G. (ed.) *The Human Nervous System*. San Diego: Academic Press.
- ALMEIDA, O. P., BURTON, E. J., MCKEITH, I., GHOLKAR, A., BURN, D. & O'BRIEN, J. T. 2003. MRI Study of Caudate Nucleus Volume in Parkinson's Disease with and without Dementia with Lewy Bodies and Alzheimer's Disease. Dementia and Geriatric Cognitive Disorders, 16, 57–63.
- AQUINO, D., BIZZI, A., GRISOLI, M., GARAVAGLIA, B., BRUZZONE, M. G., NARDOCCI, N., SAVOIARDO, M. & CHIAPPARINI, L. 2009. Age-related Iron Deposition in the Basal Ganglia: Quantitative Analysis in Healthy Subjects. *Radiology*, 252, 165-172.
- BIELAU, H., TRÜBNER, K., KRELL, D., AGELINK, M. W., BERNSTEIN, H. G., STAUCH, R., MAWRIN, C., DANOS, P., GERHARD, L. & BOGERTS, B. 2005. Volume deficits of subcortical nuclei in mood disorders. *European Archives of Psychiatry and Clinical Neuroscience*, 255, 401-412.
- BITAR, R., LEUNG, G., PERNG, R., TADROS, S., MOODY, A. R., SARRAZIN, J., MCGREGOR, C., CHRISTAKIS, M., SYMONS, S., NELSON, A. & ROBERTS, T. P. 2006. MR Pulse Sequences: What Every Radiologist Wants to Know but Is Afraid to Ask. *RadioGraphics*, Volume 26 513–537.
- CALABRESI, P., MURTAS, M. D. & BERNARDI, G. 1997. The neostriatum beyond the motor function: experimental and clinical evidence. *Neuroscience* 78, 39-60.
- CHERBUIN, N., ANSTEY, K. J., REGLADE-MESLIN, C. & SACHDEV, P. S. 2009. In vivo hippocampal measurement and memory: a comparison of manual tracing and automated segmentation in a large community-based sample. *PLoS One,* 4, e5265.
- CHERUBINI, A., PERAN, P., CALTAGIRONE, C., SABATINI, U. & SPALLETTA, G. 2009. Aging of subcortical nuclei: microstructural, mineralization and atrophy modifications measured in vivo using MRI. *Neuroimage*, 48, 29-36.

- CORNFORD, M. E., CHANG, L. & MILLER, B. L. 1995. The neuropathology of parkinsonism: an overview. *Brain and Cognition*, 28, 321-341.
- COURCHESNE, E., CHISUM, H. J., TOWNSEND, J., COWLES, A., COVINGTON, J., EGAAS, B., HARWOOD, M., HINDS, S. & PRESS, G. A. 2000. Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. *Radiology*, 216, 672-682.
- DAUGHERTY, A. & RAZ, N. 2013. Age-related differences in iron content of subcortical nuclei observed in vivo: A meta-analysis. *NeuroImage*, 70, 113-121.
- DRAYER, B., BURGER, P., DARWIN, R., RIEDERER, S., HERFKENS, R. & JOHNSON, G. A. 1986. MRI of brain iron. *American Journal of Roentgenology*, 147, 103-110.
- DREIFUSS, S., VINGERHOETS, F. J. G., LAZEYRAS, F., GONZALES ANDINO, S., SPINELLI, L., DELAVELLE, J. & SEECK, M. 2001. Volumetric measurements of subcortical nuclei in patients with temporal lobe epilepsy. *Neurology*, 57, 1636-1641.
- FEDOROV, A., BEICHEL, R., KALPATHY-CRAMER, J., FINET, J., FILLION-ROBIN, J.-C., PUJOL, S., BAUER, C., DOMINIQUE JENNINGS, FENNESSY, F., SONKA, M., BUATTI, J., AYLWARD, S., MILLER, J. V., PIEPER, S. & KIKINIS, R. 2012. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. *Magnetic Resonance Imaging*, 30, 1323– 1341.
- FILIPEK, P. A., SEMRUD-CLIKEMAN, M., STEINGARD, R. J., RENSHAW, P. F., KENNEDY, D. N. & BIEDERMAN, J. 1997. Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. *Neurology*, 48, 589-601
- FISCHL, B., SALAT, D. H., BUSA, E., ALBERT, M., DIETERICH, M., HASELGROVE, C., VAN DER KOUWE, A., KILLIANY, R., KENNEDY, D., KLAVENESS, S., MONTILLO, A., MAKRIS, N., ROSEN, B. & DALE, A. M. 2002. Whole Brain Segmentation: Neurotechnique Automated Labeling of Neuroanatomical Structures in the Human Brain. *Neuron*, 33, 341–355.
- FISCHL, B., SALAT, D. H., VAN DER KOUWE, A. J., MAKRIS, N., SEGONNE, F., QUINN, B. T. & DALE, A. M. 2004. Sequence-independent segmentation of magnetic resonance images. *Neuroimage*, 23 69-84.
- FJELL, A. M., WESTLYE, L. T., GRYDELAND, H., AMLIEN, I., ESPESETH, T., REINVANG, I., RAZ, N., HOLLAND, D., DALE, A. M., WALHOVD, K. B. & ALZHEIMER DISEASE NEUROIMAGING, I. 2013. Critical ages in the life course of the adult brain: nonlinear subcortical aging. *Neurobiology of Aging*, 34, 2239-2247.
- GELMAN, N., EWING, J. R., GORELL, J. M., SPICKLER, E. M. & SOLOMON, E. G. 2001. Interregional Variation of Longitudinal Relaxation Rates in Human Brain at 3.0 T: Relation to Estimated Iron and Water Contents. *Magnetic Resonance in Medicine*, 45.
- GOODRO, M., SAMETI, M., PATENAUDE, B. & FEIN, G. 2012. Age effect on subcortical structures in healthy adults. *Psychiatry Research: Neuroimaging*, 203, 38-45.
- GREGORY, A. & HAYFLICK, S. 2013. Neurodegeneration with Brain Iron Accumulation Disorders Overview. *GeneReviews*.

- GRIMM, O., POHLACK, S., CACCIAGLIA, R., WINKELMANN, T., PLICHTA, M. M., DEMIRAKCA, T. & FLOR, H. 2015. Amygdalar and hippocampal volume: A comparison between manual segmentation, Freesurfer and VBM. *Journal of Neuroscience Methods* 253, 254–261.
- GUENETTE, J. P., STERN, R. A., TRIPODIS, Y., CHUA, A. S., SCHULTZ, V.,
 SYDNOR, V. J., SOMES, N., KARMACHARYA, S., LEPAGE, C., WROBEL,
 P., ALOSCO, M. L., MARTIN, B. M., CHAISSON, C. E., COLEMAN, M. J.,
 LIN, A. P., PASTERNAK, O., MAKRIS, N., SHENTON, M. E. & KOERTE, I.
 K. 2018. Automated versus manual segmentation of brain region volumes in
 former football players. *NeuroImage: Clinical* 18, 888–896.
- GUNNING-DIXON, F. M., HEAD, D., MCQUAIN, J., ACKER, J. D. & RAZ, N. 1998. Differential Aging of the Human Striatum: A Prospective MR Imaging Study. *AJNR Am J Neuroradiol*, 19, 1501–1507.
- GUR, R. E., MAANY, V., MOZLEY, P. D., SWANSON, C., BILKER, W. & GUR, R.
 C. 1998. Subcortical MRI Volumes in Neuroleptic-Naive and Treated Patients With Schizophrenia. *American Journal of Psychiatry*, 155, 1711-1717.
- HAN, X. & FISCHL, B. 2007. Atlas renormalization for improved brain MR image segmentation across scanner platforms. *IEEE Transactions on Medical Imaging* 26, 479-486.
- HAN, X., JOVICICH, J., SALAT, D., KOUWE, A. V. D., QUINN, B., CZANNER, S., BUSA, E., PACHECO, J., ALBERT, M., KILLIANY, R., MAGUIRE, P., ROSAS, D., MAKRIS, N., DALE, A. M., DICKERSON, B. & FISCHL, B. 2006. Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. *NeuroImage*, 32, 180-194.
- HARRIS, G. J., PEARLSON, G. D., PEYSER, C. E., AYLWARD, E. H., ROBERTS, J., BARTA, P. E., CHASE, G. A. & FOLSTEIN, S. E. 1992. Putamen volume reduction on magnetic resonance imaging exceeds caudate changes in mild Huntington's disease. *Annals of Neurology*, 31, 69-75.
- HASAN, K. M., HALPHEN, C., BOSKA, M. D. & NARAYANA, P. A. 2008.
 Diffusion tensor metrics, T2 relaxation, and volumetry of the naturally aging human caudate nuclei in healthy young and middle-aged adults: possible implications for the neurobiology of human brain aging and disease. *Magnetic Resonance in Medicine*, 59, 7-13.
- HELMS, G. 2016. Segmentation of human brain using structural MRI. *Magnetic Resonance Materials in Physics, Biology and Medicine,* 29, 111–124.
- HTTPS://SURFER.NMR.MGH.HARVARD.EDU/. FreeSurfer [Online]. [Accessed 18.07.2018].
- HTTPS://WWW.FIL.ION.UCL.AC.UK/SPM/. Statistical Parametric Mapping [Online]. London, UK: Wellcome Trust Centre for Neuroimaging. [Accessed 18.07.2018].
- HTTPS://WWW.SLICER.ORG/. 3D Slicer [Online]. [Accessed 17.07.2018].
- IFTHIKHARUDDIN, S. F., SHRIER, D. A., NUMAGUCHI, Y., TANG, X., NING, R., SHIBATA, D. K. & KURLAN, R. 2000. MR volumetric analysis of the human basal ganglia: Normative data. *Academic Radiology*, 7, 627-634.
- JERNIGAN, T. L., ARCHIBALDB, S. L., FENNEMA-NOTESTINEB, C., GAMSTC, A. C., STOUTD, J. C., BONNERE, J. & HESSELINKA, J. R. 2001. Effects of

age on tissues and regions of the cerebrum and cerebellum. *Neurobiology of Aging*, 22, 581–594.

- JIJI, S., SMITHA, K. A., GUPTA, A. K., PILLAI, V. P. M. & JAYASREE, R. S. 2013. Segmentation and volumetric analysis of the caudate nucleus in Alzheimer's disease. *European Journal of Radiology*, 82, 1525-1530.
- JOVICICH, J., CZANNER, S., HAN, X., SALAT, D., KOUWE, A. V. D., QUINN, B., PACHECO, J., ALBERT, M., KILLIANY, R., BLACKER, D., MAGUIRE, P., ROSAS, D., MAKRIS, N., GOLLUB, R., DALE, A., DICKERSON, B. C. & FISCHL, B. 2009. MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. *NeuroImage*, 46, 177–192.
- KALBE, E., KESSLER, J., CALABRESE, P., SMITH, R., PASSMORE, A. P., BRAND, M. & BULLOCK, R. 2004. DemTect: a new, sensitive cognitive screening test to support diagnosis of mild cognitive impairment and early dementia. *International Journal of Geriatric Psychiatry*, 19, 136–143.
- KASAHARA, H., YAMADA, H., TANNO, M., KOBAYASHI, M., KARASAWA, A., ENDO, K. & USHIJIMA, S. 1995. Magnetic resonance imaging study of the brain in aged volunteers: T2 high intensity lesions and higher order cortical function. *Psychiatry and Clinical Neurosciences*, 49, 273-279.
- KAUFFMANN, G., SAUER, R. & WEBER, W. 2011. Radiologie : bildgebende Verfahren, Strahlentherapie, Nuklearmedizin und Strahlenschutz München: Urban & Fischer Verlag/Elsevier GmbH.
- KHAN, A., AYLWARD, E., BARTA, P., MILLER, M. & BEG, M. F. 2005. Semiautomated Basal Ganglia Segmentation Using Large Deformation Diffeomorphic Metric Mapping. *MICCAI*, LNCS 3749, 238–245.
- KIRÁLY, A., SZABÓ, N., TÓTH, E., CSETE, G., FARAGÓ, P., KOCSIS, K., MUST, A., VÉCSEI, L. & KINCSES, Z. T. 2016. Male brain ages faster the age and gender dependence of subcortical volumes. *Brain Imaging and Behavior* 10, 901-910.
- KOOISTRA, C. A. & HEILMAN, K. M. 1988. Motor dominance and lateral asymmetry of the globus pallidus. *Neurology*, 38, 388-388.
- KRISHNAN, K. R., HUSAIN, M. M., MCDONALD, W. M., DORAISWAMY, P. M., FIGIEL, G. S., BOYKO, O. B., ELLINWOOD, E. H. & NEMEROFF, C. B. 1990. In vivo stereological assessment of caudate volume in man: Effect of normal aging *Life Sciences*, 47, 1325-1329.
- KRISHNAN, K. R. R., MCDONALD, W. M., ESCALONA, P. R., DORAISWAMY,
 P. M., C. NA, HUSAIN, M. M., FIGIEL, G. S., BOYKO, O. B., ELLINWOOD,
 E. H. & NEMEROFF, C. B. 1992. Magnetic Resonance Imaging of the Caudate Nuclei in Depression. Preliminary observations. *Archives of General Psychiatry*, 49, 553-557.
- KRUER, M. C., BODDAERT, N., SCHNEIDER, S. A., HOULDEN, H., BHATIA, K. P., GREGORY, A., ANDERSON, J. C., ROONEY, W. D., HOGARTH, P. & HAYFLICK, S. J. 2012. Neuroimaging Features of Neurodegeneration with Brain Iron Accumulation. *American Journal of Neuroradiology*, 407–414.
- LEHMANN, M., DOUIRI, A., KIM, L. G., MODAT, M., CHAN, D., OURSELIN, S., BARNES, J. & FOX, N. C. 2010. Atrophy patterns in Alzheimer's disease and

semantic dementia: A comparison of FreeSurfer and manual volumetric measurements. *NeuroImage* 49, 2264–2274.

- LI, W., TOL, M.-J. V., LI, M., MIAO, W., JIAO, Y., HEINZE, H.-J., BOGERTS, B., HE, H. & WALTER, M. 2014. Regional Specificity of Sex Effects on Subcortical Volumes Across the Lifespan in Healthy Aging. *Human Brain Mapping*, 35, 238–247.
- LINDIG, T., KOTIKALAPUDI, R., SCHWEIKARDT, D., MARTIN, P., BENDER, F., KLOSE, U., ERNEMANN, U., FOCKE, N. K. & BENDER, B. 2018. Evaluation of multimodal segmentation based on 3D T1-, T2- and FLAIRweighted images – the difficulty of choosing. *NeuroImage*, 170 210–221.
- LORIO, S., FRESARD, S., ADASZEWSKI, S., KHERIF, F., CHOWDHURY, R., FRACKOWIAK, R. S., ASHBURNER, J., HELMS, G., WEISKOPF, N., LUTTI, A. & DRAGANSKI, B. 2016. New tissue priors for improved automated classification of subcortical brain structures on MRI. *NeuroImage*, 130, 157–166.
- MAKOWSKI, C., BÉLAND, S., KOSTOPOULOS, P., BHAGWAT, N., DEVENYI, G.
 A., MALLA, A. K., JOOBER, R., LEPAGE, M. & CHAKRAVARTY, M. M.
 2018. Evaluating accuracy of striatal, pallidal, and thalamic segmentation methods: Comparing automated approaches to manual delineation. *NeuroImage*, 170, 182-198.
- MATARÓ, M., GARCÍA-SÁNCHEZ, C., JUNQUÉ, C., ESTÉVEZ-GONZÁLEZ, A. & PUJOL, J. 1997. Magnetic Resonance Imaging Measurement of the Caudate Nucleus in Adolescents With Attention-Deficit Hyperactivity Disorder and Its Relationship With Neuropsychological and Behavioral Measures. Archives of Neurology, 54, 963-968.
- MCCARTHY, C. S., RAMPRASHAD, A., THOMPSON, C., BOTTI, J. A., COMAN, I. L. & KATES, W. R. 2015. A comparison of FreeSurfer-generated data with and without manual intervention. *Front Neurosci*, *9*, 379.
- MCNEILL, T. H., BROWN, S. A., RAFOLS, J. A. & SHOULSON, I. 1988. Atrophy of medium spiny I striatal dendrites in advanced Parkinson's disease. *Brain Research*, 455, 148-152.
- MCROBBIE, D. W., MOORE, E. A., AND, M. J. G. & PRINCE, M. R. 2006. MRI from picture to proton. Cambridge, UK; New York: Cambridge University Press.
- MEIJERMAN, A., AMIRI, H., STEENWIJK, M. D., JONKER, M. A., VAN SCHIJNDEL, R. A., COVER, K. S., VRENKEN, H. & ALZHEIMER'S DISEASE NEUROIMAGING, I. 2018. Reproducibility of Deep Gray Matter Atrophy Rate Measurement in a Large Multicenter Dataset. AJNR Am J Neuroradiol, 39, 46-53.
- MIDDLETON, F. A. & STRICK, P. L. 1994. Anatomical Evidence for Cerebellar and Basal Ganglia Involvement in Higher Cognitive Function. *Science*, 266, 458-461.
- MURPHY, D. G. M., DECARLI, C., SCHAPIRO, M. B., RAPOPORT, S. I. & HORWITZ, B. 1992. Age-Related Differences in Volumes of Subcortical Nuclei, Brain Matter, and Cerebrospinal Fluid in Healthy Men as Measured With Magnetic Resonance Imaging. *Archives of Neurology*, 49, 839-845.

NEMMI, F., SABATINI, U., RASCOL, O. & PÉRAN, P. 2015. Parkinson's disease and local atrophy in subcortical nuclei: insight from shape analysis. *Neurobiology of Aging*, 36, 424-433.

PACKARD, M. G. & KNOWLTON, B. J. 2002. Learning and Memory Functions of the Basal Ganglia. *Annual Review of Neuroscience*, 25, 563-593.

- PÉRAN, P., CHERUBINI, A., LUCCICHENTI, G., HAGBERG, G., DÉMONET, J.-F. O., RASCOL, O., CELSIS, P., CALTAGIRONE, C., SPALLETTA, G. & SABATINI, U. 2009. Volume and Iron Content in Basal Ganglia and Thalamus. *Human Brain Mapping* 30, 2667–2675.
- PETERSON, B. S., RIDDLE, M. A., COHEN, D. J., KATZ, L. D., SMITH, J. C. & LECKMAN, J. F. 1993. Human basal ganglia volume asymmetries on magnetic resonance images. 11, 493-498.
- PETRUSIC, I., DAKOVIC, M. & ZIDVERC-TRAJKOVIC, J. 2019. Subcortical Volume Changes in Migraine with Aura. *Journal of Clinical Neurology*, 15, 448-453.
- PREILOWSKI, B., PAULIG, M. & PROSIEGEL, M. 2009. Strukturelle und funktionelle Anatomie des Zentralnervensystems. *In:* STURM, W., HERRMANN, M. & MÜNTE, T. F. (eds.) *Lehrbuch der Klinischen Neuropsychologie. Grundlagen, Methoden, Diagnostik, Therapie.* Heidelberg: Springer Spektrum.
- RAZ, N., GUNNING-DIXON, F., HEAD, D., RODRIGUE, K. M., WILLIAMSON, A. & ACKER, J. D. 2004. Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. *Neurobiology of Aging*, 25, 377-396.
- RAZ, N., LINDENBERGER, U., RODRIGUE, K. M., KENNEDY, K. M., HEAD, D., WILLIAMSON, A., DAHLE, C., GERSTORF, D. & ACKER, J. D. 2005. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. *Cerebral Cortex*, 15, 1676-1689.
- RAZ, N., MILLMAN, D. & SARPEL, G. 1990. Cerebral correlates of cognitive aging: Gray-white-matter differentiation in the medial temporal lobes, and fluid versus crystallized abilities. *Psychobiology*, 18, 475-481.
- RAZ, N., RODRIGUE, K. M., KENNEDY, K. M., HEAD, D., GUNNING-DIXON, F. & ACKER, J. D. 2003. Differential Aging of the Human Striatum: Longitudinal Evidence. *AJNR Am J Neuroradiol*, 24, 1849–1856.
- RAZ, N., TORRES, I. J. & ACKER, J. D. 1995. Age, Gender, and Hemispheric Differences in Human Striatum: A Quantitative Review and New Data from in Vivo MRI Morphometry. *Neurobiology of Learning and Memory*, 63, 133-142.
- REISER, M. F. & SEMMLER, W. 2002. Magnetresonanztomographie, 3. vollst. überarb. u. aktualisierte Auflage, Springer.
- RICHFIELD, E. K. & HERKENHAM, M. 1994. Selective vulnerability in Huntington's disease: Preferential loss of cannabinoid receptors in lateral globus pallidus. *Annals of Neurology*, 36, 577-584.
- RUBEN C. GUR, P. D., FAITH M. GUNNING-DIXON, PH.D., BRUCE I.
 TURETSKY, M. D., WARREN B. BILKER, PH.D. & RAQUEL E. GUR, M.
 D., PH.D. 2002. Brain Region and Sex Differences in Age Association With Brain Volume. A Quantitative MRI Study of Healthy Young Adults. *Am J Geriatr Psychiatry*, 10, 72–80.

- SCHMIDT, R. F., LANG, F. & HECKMANN, M. 2010. Physiologie des Menschen mit Pathophysiologie. Heidelberg: Springer Medizin Verlag.
- SCHÜNKE, M., SCHULTE, E. & SCHUMACHER, U. 2015. PROMETHEUS LernAtlas der Anatomie: Kopf, Hals und Neuroanatomie. Stuttgart, New York: Georg Thieme Verlag.
- SERBRUYNS, L., LEUNISSEN, I., HUYSMANS, T., CUYPERS, K., MEESEN, R. L., RUITENBEEK, P. V., SIJBERS, J. & SWINNEN, S. P. 2015. Subcortical volumetric changes across the adult lifespan: Subregional thalamic atrophy accounts for age-related sensorimotor performance declines. *Cortex* 65, 128-138.
- SHEN, L., FIRPI, H. A., SAYKIN, A. J. & WEST, J. D. 2009. Parametric surface modeling and registration for comparison of manual and automated segmentation of the hippocampus. *Hippocampus*, 19, 588-595.
- STARKSTEIN, S. E., ROBINSON, R. G. & PRICE, T. R. 1987. Comparison of cortical and subcortical lesions in the production of post-stroke mood disorders. *Brain*, 110, 1045-1059.
- SZABO', C. A. K., LANCASTER, J. L., XIONG, J., COOK, C. & FOX, P. 2003. MR Imaging Volumetry of Subcortical Structures and Cerebellar Hemispheres in Normal Persons. *AJNR Am J Neuroradiol*, 24, 644-647.
- TAE, W. S., KIM, S. S., LEE, K. U., NAM, E. C. & KIM, K. W. 2008. Validation of hippocampal volumes measured using a manual method and two automated methods (FreeSurfer and IBASPM) in chronic major depressive disorder. *Neuroradiology*, 50, 569-581.
- TAKI, Y., GOTO, R., EVANS, A., ZIJDENBOS, A., NEELIN, P., LERCH, J., SATO, K., ONO, S., KINOMURA, S., NAKAGAWA, M., SUGIURA, M., WATANABE, J., KAWASHIMA, R. & FUKUDA, H. 2004. Voxel-based morphometry of human brain with age and cerebrovascular risk factors. *Neurobiol Aging*, 25, 455-463.
- TULLO, S., PATEL, R., A., D. G., SALACIAK, A., BEDFORD, S. A., FARZIN, S., WLODARSKI, N., TARDIF, C. L., GROUP, P.-A. R., BREITNER, J. C. S. & CHAKRAVARTY, M. M. 2019. MR-based age-related effects on the striatum, globus pallidus, and thalamus in healthy individuals across the adult lifespan. *Human Brain Mapping*, 40, 5269–5288.
- VISSER, E., KEUKEN, M. C., DOUAUD, G., GAURA, V., BACHOUD-LEVI, A. C., REMY, P., FORSTMANN, B. U. & JENKINSON, M. 2016. Automatic segmentation of the striatum and globus pallidus using MIST: Multimodal Image Segmentation Tool. *Neuroimage*, 125, 479-497.
- WALHOVD, K. B., FJELL, A. M., REINVANG, I., LUNDERVOLD, A., DALE, A. M., EILERTSEN, D. E., QUINN, B. T., SALAT, D., MAKRIS, N. & FISCHL, B. 2005. Effects of age on volumes of cortex, white matter and subcortical structures. *Neurobiology of Aging*, 26, 1261-1270.
- WALHOVD, K. B., WESTLYE, L. T., AMLIEN, I., ESPESETH, T., REINVANG, I., RAZC, N., AGARTZ, I., SALAT, D. H., GREVE, D. N., FISCHL, B., DALE, A. M. & FJELL, A. M. 2011. Consistent neuroanatomical age-related volume differences acrossmultiple samples. *Neurobiology of Aging* 32, 916-932.
- WANG, Y., XU, Q., LUO, J., HU, M. & ZUO, C. 2019. Effects of Age and Sex on Subcortical Volumes. *Frontiers in Aging Neuroscience*, 11.

- WEISHAUPT, D., KÖCHLI, V. D. & MARINCEK, B. 2014. Wie funktioniert MRI? Eine Einführung in Physik und Funktionsweise der Magnetresonanzbildgebung. Berlin, Heidelberg: Springer.
- WELLINGTON, T. M., SEMRUD-CLIKEMAN, M., GREGORY, A. L., MURPHY, J. M. & LANCASTER, J. L. 2006. Magnetic Resonance Imaging Volumetric Analysis of the Putamen in Children With ADHD: Combined Type Versus Control. *Journal of Attention Disorders*, 10, 171-180.
- XU, J., KOBAYASHI, S., YAMAGUCHI, S., IIJIMA, K.-I., OKADA, K. & YAMASHITA, K. 2000. Gender Effects on Age-Related Changes in Brain Structure. *American Journal of Neuroradiology*, 21, 112-118.
- ZAJA-MILATOVIC, S., KEENE, C. D., MONTINE, K. S., LEVERENZ, J. B., TSUANG, D. & MONTINE, T. J. 2006. Selective dendritic degeneration of medium spiny neurons in dementia with Lewy bodies. *Neurology*, 66, 1591-1593.
- ZAJA-MILATOVIC, S., MILATOVIC, D., SCHANTZ, A. M., ZHANG, J., MONTINE, K. S., SAMII, A., DEUTCH, A. Y. & MONTINE, T. J. 2005. Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease. *Neurology*, 64, 545-547.
- ZHOU, J. & RAJAPAKSE, J. C. 2005. Segmentation of subcortical brain structures using fuzzy templates. *Neuroimage*, 28, 915-924.

Erklärung zum Eigenanteil

Die vorliegende Arbeit wurde im Rahmen der "Studie zur Erstellung eines Normalkollektives für die Untersuchung altersabhängiger Effekte in der gesunden Normalbevölkerung mittels MR-Bildgebung" in der Abteilung Diagnostische und Interventionelle Neuroradiologie an der Radiologischen Universitätsklinik des Universitätsklinikums Tübingen durchgeführt. Die Studienleiter Dr. med. Benjamin Bender und Dr. med. Tobias Lindig (Oberärzte der Abteilung Diagnostische und Interventionelle Neuroradiologie) organisierten den Ablauf, formulierten den Ethikantrag und führten MRT-Messungen an ersten 84 gesunden Probanden noch vor meiner Teilnahme an der Forschung durch. Für die Rekrutierung, die Durchführung des Aufklärungsgesprächs, die Anamnese, den DemTect-Test und die körperliche Untersuchung sowie die MRT-Messung nach dem Untersuchungsprotokoll von 54 Probanden (№ 85 - 138) war ich verantwortlich. Die neuroradiologische Evaluierung der MRT-Bilder erfolgte von Dr. med. Benjamin Bender und Dr. med. Tobias Lindig. Aus den vorhandenen MRT-Daten der 135 Freiwilligen wurden 30 (6 Altersgruppen mit jeweils 3 Männern und 3 Frauen) ausgewählt, die in diese Arbeit eingegangen sind. Die Arbeit wurde von mir unter Betreuung von Prof. Dr. Uwe Klose (MR-Forschung, Abteilung für Diagnostische und Interventionelle Neuroradiologie, UKT), Dr. med. Benjamin Bender und Dr. med. Tobias Lindig durchgeführt. Die automatisierte Segmentierung der Basalganglien in FreeSurfer sowie SPM-12 erfolgte durch Dr. Tobias Lindig. Die übrigen methodischen Anteile (manuelle Segmentierung, Auswertungen, Statistik, Literatursuche) wurden, unterstützt durch Beratung vom Dr. Bender und Dr. Lindig, von mir selbstständig durchgeführt. Ich versichere, dass ich das Manuskript selbstständig verfasst habe. Ich habe ein Lektorat "Mentorium" genutzt, um die Dissertation auf Grammatik, Punktation und Rechtschreibung zu prüfen. Mentorium wurde vom TÜV NORD (DIN ISO 29990:2010) zertifiziert.

Danksagung

An erster Stelle geht mein großer Dank an meine Mentoren Dr. med. Benjamin Bender und Dr. med. Tobias Lindig, für die jederzeit verfügbare freundliche Unterstützung, Beratung und Lehre. Ich möchte mich auch für die Möglichkeit bedanken, die Arbeit im Rahmen ihrer Studie zu verfassen und in der Abteilung Diagnostische und Interventionelle Neuroradiologie als Doktorandin und studentische Hilfskraft arbeiten zu können.

Bedanken möchte ich mich bei Prof. Dr. Uwe Klose für die Betreuung meiner Arbeit. Schließlich möchte ich meinem Ehemann, meiner Schwester und meinen Eltern dafür danken, dass sie mich in allen Phasen dieser Forschungsarbeit unterstützen und motivierten.

Lebenslauf

Persönliche Daten	l		
Name, Vorname	Prots, Iryna		
Geburtsdatum	11.03.1992		
Geburtsort	Iwano-Frankiwsk, Ukraine		
Schulbildung			
	Iwano-Frankiwsker spezialisierte Schule der IIII. Stufen №5 mit		
09.1999 -	erweitertem Deutschunterricht (Ukraine),		
06.2009	Mittelschulabschluss (11 Klassen)		
Studium			
09.2009 -	Iwano-Frankiwsker Nationale Medizinische Universität, Iwano-		
09.2012	Frankiwsk, Ukraine. Fachrichtung: medizinische Fakultät		
10.2012 -			
12.2018	Medizinische Fakultät, Eberhard-Karls-Universität Tübingen		
27.08.2014	1. Abschnitt der Ärztlichen Prüfung		
12.10.2017	2. Abschnitt der Ärztlichen Prüfung		
04.12.2018	3. Abschnitt der Ärztlichen Prüfung		
Berufliche Laufbahn			
	Ärztin in Basisausbildung an SALK (Gemeinnützige Salzburger		
03.2019-12.2019:	Landeskliniken Betriebsgesellschaft)		
• 03 05.2019	Allgemeine Chirurgie an der Landesklinik Tamsweg		
• 06 09.2019	Innere Medizin an der Landesklinik Tamsweg		
• 10 12.2019	Radiologie im Universitätsinstitut für Radiologie, LKH Salzburg		
	Assistenzärztin zur Fachärztin im Universitätsinstitut für		
Ab 01.01.2020	Radiologie Landeskrankenhaus, Salzburg		
Sprachkenntnisse			
Ukrainisch, Russis	ch, Deutsch, Englisch		

Anhänge

				Bildanalyse/ Segmentierung der
				Basalganglien und
	Anzahl der	Altersspanne,	Verwendete	Bestimmung deren
Studie	Teilnehmer	in Jahren	Sequenzen	Volumen
Raz et al.,	1) 29 gesunde	1)18 - 78	1) TT-Sequenz	Computer-
1995	1 eilnenmer	2)18 - 75	2) PD-	gestutzt/semiautomati
	2) 55 Patienten mit		Double echo	SIGHT IIIILLEIS JAVA
	Symptomatik und		Sequenz	
	ohne morphologische		Bequeinz	
	Auffälligkeiten in der			
	MRT			
Cherubini et	100 gesunde	20 - 70	T1-Sequenz	Automatisiert mittlels
al., 2009	Teilnehmer			FIRST
Walhovd et	73 gesunde	20 - 88	T1-Sequenz	Automatisiert mittlels
al., 2005	Teilnehmer			FreeSurfer
Serbruyns et	91gesunde	20 – 79	T1-Sequenz	Automatisiert mittlels
al., 2015	Teilnehmer	10 50	DID G	FIRST
Hasan et al., 2008	33 Teilnehmer	19 – 59	DIR- Sequenz	Manuell mittels MRIcro
Krishnan et	39 gesunde	24 – 79	T2-Sequenz	Berechnung mittels
al., 1990	Teilnehmer			Cavalieri-Theorem
				der systematischen
				Probenanme
				(stereologische Methode)
Ruben C.	116 gesunde	18 - 49	T1-Sequenz	manuelle
Gur et al.,	Teilnehmer	10 17		Segmentierung mit
2002				k-Means-Algorithmus
Abe et al.,	73 gesunde weibliche	22 - 70	Auf die	VBM
2008	Probanden		angepasste T1-	
			Vorlage	
			normalisierte	
			3D-SPGK- Bilder	
Taki et al	769 normale	16 - 79	T1-Sequenz	VBM SPM
2004	Probanden, auch mit	10 / 2	11 Sequenz	
	zerebrovaskulären			
	Risikofaktoren			
Gunning-	148 gesunde	18 – 77	T1 3D SPGR-	Manuelle
Dixon et al.,	Erwachsene		Sequenzen	Segmentierung mit
1998				Digitalisiertablett,
				mittels JAVA

Anhang 1. Allgemeine Informationen aus den Literaturquellen. * - die Longitudinalstudien sind mit Sternchen markiert.

Goodro et al., 2012	226 Kontrollpersonen	19 – 85	T1-Sequenz	Automatisiert mittlels FIRST
Li et al., 2014	76 gesunde Teilnehmer	19 – 70	T1-Sequenz	Automatisiert mittlels FreeSurfer
Walhovd et al., 2011	883 gesunde Teilnehmer	18 - 93	T1-Sequenz	Automatisiert mittlels FreeSurfer
Lorio et al., 2016	96 gesunde Erwachsene	21 - 88	T1-Sequenz	Erstellung von den neuen "tissue probability maps" (TPMs), welche aus der manuellen Segmentierungen abgeleitet wurden (aus früheren Studien)
Raz et al., 2003* (zwei Messungen im Abstand von 5 Jahren)	53 gesunde Erwachsene	20 – 77	T1 3D SPGR- Sequenzen	Manuell mittels National Institutes of Health (NIH) Image software
Jernigan et al., 2001	78 gesunde Erwachsene	30 - 99	GE (SPGR) T1-Sequenz. 2 fast spin- echo (FSE)- Sequenzen: TR = 3000 ms, TE = 17 ms, und TR = 3800 ms, TE = 102 ms,	semiautomatische Algorithmen
Péran et al., 2009	30 gesunde Erwachsene	20-41	T1-Sequenz	FSL-FIRST
Tullo et al., 2019	253 gesunde Probanden	18 - 83	T1-Sequenz	mittels MAGeT- tool
Murphy et al., 1992	27 gesunde Probanden	Junge Gruppe: <35 Ältere Gruppe: >60	Keine Angaben	

Raz et al., 2005* (mit dem durchschnitt lichen Intervall zwischen 2 Messungen von 5,3 \pm 0,3 Jahren)	72 gesunde Probanden	20 – 77	T1 3D SPGR- Sequenzen	Manuell mittels National Institutes of Health (NIH) Image software
Fjell et al., 2013* (zwei Messungen im Abstand von 1 Jahr)	Querschnittsstudie: 1100 gesunde Probanden Longitudinalstudie: 142 gesunde ältere Teilnehmer	Querschnittsstu die: 18 – 94 Longitudinalst udie: 60 – 90	T1-Sequenzen	Querschnittsstudie: Automatisiert mittlels Freesurfer Londitudinalstudie: mittels Quarc
Meijerman et al., 2018* (zwei Messungen im Abstand von 1 Jahr)	562 Probanden: 171 gesunde Probanden, 277 Probande mit leichter kognitiver Einschränkung (MCI), 114 AD,	55 – 90	2 aufeinanderfol gende 3D-T1- gewichtete MPRAGE- Scans	Automatisiert mittlels Freesurfer und FIRST

Anhang 2. Altersabhängige Atrophie der Basalganglien bei gesunden Probanden. Ergebnisse aus den Literaturquellen.

Abkürzungen/Bezeichnungen: K. – Korrelation, n. s. – nicht signifikant, r -Korrelationskoeffizient nach Pearson, "–" wurde nicht untersucht/wurde nicht explizit erwähnt, * - longitudinale Studie.

	Alterbedingte Atrophie/Korrelation zwischen Alter und Basalganglien		
Studio	Nuclaus condatus	Pallidum	
Raz et al 1995	r = -0.48	r = -0.51	
Cherubini et al 2009	Starke negative K	Starke negative K	Keine K
Walhovd et al., 2005	Starke U-/J-formige	Kurvilineare negative	marginalle nicht
	negative K.	K.	signifikante negative K.
Serbruyns et al., 2015	r = -0.51	r = -0,62	r = -0.2 (n.s.)
Hasan et al., 2008	r = -0.59	-	-
Krishnan et al., 1990	r = -0.69	-	-
Ruben C. Gur et al., 2002	mäßige altersbedingte Atrophie des Caputanteiles, keine wesentliche des Corpusanteiles	mäßige altersbedingte Atrophie	Keine wesentliche
Abe et al., 2008	-	Lineare K.	Sowohl lineare als auch quadratische K.
Taki et al., 2004	signifikante negative K	Korrelation von Basalgang	lien mit dem Alter
Gunning-Dixon et al., 1998	signifikante negative K	milde negative K. nur bei Männern	
Goodro et al., 2012	konsequente Atrophie	Atrophie, jedoch weniger ausgeprägt	
Li et al., 2014	Signifikante altersbedi Basalganglienvolumen	Signifikante altersbedingte Verminderung aller a Basalganglienvolumen, bis auf das relative Caud	
Walhovd et al., 2011	Schwache, eher nicht Starke lineare K.		Mittlere lineare K.
Lorio et al., 2016	Signifikante Atrophie		Es wurden größere Volumenverluste im ventralen Pallidum beobachtet, wenn Volumenmessung auf den neuen TPMs in der VBM durchgeführt wurde. Dabei wurde das Pallidum als Struktur der grauen Substanz klassifiziert
Raz et al., 2003* (zwei Messungen im Abstand von 5 Jahren)	Ertse und zweite Messung: altersbedingte Atrophie		Ertse Messung: keine K.; zweite Messung: signifikante Atrophie nach 5 Jahren
Jernigan et al., 2001	r = -0,35	keine signifikante Atrop	hie im Nucleus Pallidum)
Péran et al., 2009	negative K., n.s.	Signifikante negative	negative K., n.s.
Tullo et al., 2019	Quadratische negative	K. für das Corpus	Signifikante negative

	striatum, jedoch n.s. lineare K.		lineare K.
Murphy et al., 1992	Signifikant kleiner in	Nucleus lentiformis (Putamen + Pallidum):	
	der älteren Gruppe	Signifikant kleiner in der älteren Gruppe als in d	
	als in der jungeren	jungeren	
Raz et al., 2005*	Negative signifikante	_	_
(Init deni duncha chaittlich an			
Jurensennittlichen	Eine von wenigen		
Intervall zwischen 2	Genirnstrukturen mit		
Messungen von $5,3 \pm$	großter mittlerer		
0,3 Jahren)	Schrumpfung (effect		
	size $d = 1.06$)		
Fjell et al., 2013*	Querschnittsstudie:	Querschnittsstudie:	Querschnittsstudie :
(zwei Messungen im	U-förmige Kurve der	Lineare K.	Steile, nichtlineare K.:
Abstand von 1 Jahr)	K stimmt mit	r = -0,69;	Pallidum zeigte 2
	Longitudinalergebnis	(Längsschnittvalidieru	kritische Alter;
	sen nicht überein,	ng: Schrumpfungsrate	(Längsschnittvalidierun
	kein Grund zu der	- 0,43%)	g: Schrumpfungsrate -
	Annahme eines		0,40%)
	Volumenanstiegs im		
	letzten Teil der		
	Lebensdauer.		
	(Längsschnittvalidier		
	ung:		
	Schrumpfungsrate -		
	0,24%)		
Meijerman et al., 2018*	Atrophierate:		
(zwei Messungen im	gesunde Kontrollproba	nden ohne kognitive Eins	chränkungen <<
Abstand von 1 Jahr)	Probanden mit leichter kognitiver Einschränkung (MCI) << Patienten mit		
, , , , , , , , , , , , , , , , , , ,	Alzheimerkrankheit.		

Anhang 3. Einverständniserklärung zur Untersuchung

Klinikeindruck/Stempel

Patientendaten/Anfkleber Universitätsklinikum Tübingen

Klinikum

R20 DE

Dokumentierte Patientenaufklärung Basisinformation zum Aufklärungsgespräch

Kernspintomographie

(Magnet-Resonanz-Tomographie; MRT/ MRA/ MRS)

- mit Kontrastmittel
- ohne Kontrastmittel

Zu untersuchende Körperregion:

Sehr geehrte Patientin, sehr geehrter Patient, sehr geehrte Eltern,

Ihnen/Ihrem Kind wurde eine Kernspintomographie (MRT) vorgeschlagen, um damit eine Erkrankung genauer diagnostizieren oder ausschließen zu kömmen. Dieser Aufklärungsbogen soll das bevorstehende Aufklärungsgespräch mit der Ärztin/dem Arzt (im Folgenden nur Arzt) vorbereiten und die aufklärungsrelevanten Punkte dokumentieren. Bitte lesen Sie ihn aufmerksam durch und füllen Sie den Fragebogen gewissenhaft aus.

Was ist eine Kernspintomographie?

Bei der Kernspintomographie (MRT) werden mit Hilfe eines Magnetfeldes Radiowellen erzeugt, auf bestimmte Körperbereiche geschickt und die entstehenden Echosignale gemessen. Ein Computer erstellt daraus Querschnittsbilder der untersuchten Körperregion. So können krankhafte Veränderungen (z.B. ein Bandscheibenvorfall, Brusttumor, Gehirnveränderungen, Gefäßerkrankungen u.a.) exakt nachgewiesen werden, ohne Röntgenstrahlen zu benutzen. Die MRT kann ggf. sogar eine Gewebeentnahme oder Operation ersparen und sie erlaubt eine Verlaufskontrolle nach einer Operation, Strahlenbehandlung oder Chemotherapie.

Die Magnet-Resonanz-Angiographie (MRA) ermöglicht die Untersuchung von Blutgefäßen, die Magnet-Resonanz-Spektroskopie (MRS) Stoffwechselprodukte zu analysieren und mengenmäßig zu erfassen. Beide Untersuchungen erfolgen mit dem gleichen Gerät wie die MRT, spezielle Computerprogramme ermöglichen die Darstellung dieser Körperstrukturen. Bei der Magnet-Resonanz-Spektroskopie (MRS) werden allerdings keine Bilder aufgenommen sondern sogenannte Spektren, die in Form von Zacken die Verteilung bestimmter Stoffe im Körper wiederspiegeln.

Wie erfolgt die Untersuchung? Je nach Gerätetyp und Untersuchungsziel werden Sie

in der Regel im Liegen langsam in eine ca. 60 bis 80 cm große Öffnung des röhrenförmigen Magneten (Kernspintomographen) hineinbewegt (s. Abb.). Bitte bleiben Sie in der Ihnen angewiesenen Stellung und verschränken (überkreuzen) Sie Arme und Beine nicht (durch künstliche "Induktionsschleifen" kann es sonst u.U. zu lokalen Hautverbrennungen kommen)! Bei Untersuchungen von Kopf und Halswirbelsäule schließen Sie bitte während der Einstellprozedur die Augen, damit diese nicht vom Positionslaser des Kernspin-Gerätes getroffen werden. Während der Untersuchung bitte vollkommen ruhig bleiben und gleichmäßig atmen (besonders bei Untersuchungen im Brustbereich). Über Monitore besteht Sichtkontakt mit dem medizinischen Personal. Auch können Sie jederzeit signalisieren, wenn es Ihnen nicht gut gehen sollte. U.U. wird in besonderen Fällen am Finger schmerzfrei eine Messsonde befestigt, um während der Untersuchung zuverlässig die Sauerstoffsättigung im Blut und die Pulsfrequenz zu überwachen (Pulsoximetrie).

Ihr Arzt wird Sie informieren, welche Untersuchung geplant ist.

Laute Klopfgeräusche während der Untersuchung rühren von den elektromagnetischen Schaltungen her und sind völlig normal. In der Regel erhalten Sie Ohrstöpsel und/oder

 Dokumentierte Patientenaufklärung
 Herausgeber: proCompliance in Thieme Compliance GubH. Fachgebietshrsg.: Prof. Dr. med. V. Barth. - Autor:
 Red. 06/2014v2

 Pof. Dr. med. V. Barth. - Juristische Beratung: RA Dr. jur. A. Schwerdtfeger. - Wiss. Illustration: Alle Rechte bei Thieme Compliance GubH. 91058
 Erlangen. - Nachdruck. - auch. auszugweisse. - und. Fotokopieren verboten.
 Red. 106/2014v2

 Bestell-Adresse: Thieme Compliance GubH, Am Weichselgarten 30, 91058
 Frlangen. Tel. 09131 93406-40, Fax 93406-70. - www.prcCompliance de
 Bestell-Nr: DE 621242

proCompliance

Kopfhörer, ggf. mit Musikuntermalung, über die Sie Atemkommandos (z.B. "einatmen", "ausatmen") erhalten.

Bei Neigung zu Platzangst oder Panikattacken kann vorab ein Beruhigungsmittel verabreicht werden. Da die geringste Bewegung Bildstörungen verursacht und die genaue Beurteilbarkeit der Bilder einschränkt, kann die Untersuchung – auch insbesondere bei (Klein-)Kindern – ggf. auch in Narkose erfolgen. Es gibt auch "offene" Kernspintomographen und Geräte, die einen erweiterten Zugang und kürzere Magnetröhren haben. Über die Vor- und Nachteile und die lokale Verfügbarkeit wird Sie Ihr Arzt gerne informieren.

Die durchschnittliche Untersuchungszeit liegt bei etwa 20 bis 40 Minuten.

In manchen Fällen ist es notwendig, spezielle Kontrastmittel (z.B. Gadolinium) zu verabreichen (oral oder intravenös), um bestimmte Strukturen besser beurteilen zu können.

Alternativ oder ergänzend zur Kernspintomographie können auch Untersuchungen mit Röntgenstrahlen (z.B. Röntgenuntersuchung, Angiographie, Computertomographie), Ultraschall (Sonographie), Radioisotopen-Untersuchung (Szintigramm) oder eine Spiegelung (Endoskopie) in Frage kommen. Ihr Arzt wird Sie über die Alternativen informieren, falls diese für Sie geeignet sind und Ihnen erläutern, warum er in Ihrem Fall die Kernspintomographie empfiehlt.

Ist mit Komplikationen zu rechnen?

Die Kernspintomographie ist ein sehr risikoarmes Untersuchungsverfahren. Dennoch können in Einzelfällen Komplikationen auftreten, die eine weitere Behandlung erforderlich machen. Vorerkrankungen und individuelle Besonderheiten können die Häufigkeit von Komplikationen beeinflussen. Die Häufigkeitsangaben sind daher nur eine allgemeine Einschätzung. Zu nennen sind:

 sehr selten im geschlossenen Kernspintomographen erstmals Auftreten einer noch unerkannten Furcht vor engen Räumen (Klaustrophobie) und/oder Panik-Attacken, die fortan u.U. immer wieder auftreten;

- Haut-/Gewebe-/Nervenschäden durch eingriffsbegleitende Maßnahmen (z.B. intravenöse Injektionen) sind selten. Mögliche, u.U. dauerhafte Folgen: Schmerzen, Entzündung, Absterben von Gewebe, Narben sowie Empfindungs-, Funktionsstörungen, Lähmungen;
- Allergie/Unverträglichkeit (z.B. auf Beruhigungs-/ Kontrastmittel) führt sehr selten zu akutem Kreislaufschock, der intensivmedizinische Maßnahmen erfordert. Äußerst selten sind schwerwiegende, u.U. bleibende Schäden (z.B. Organversagen, Hirnschädigung, Lähmungen);
- extrem selten kann es bei Patienten mit gestörter Nieren- oder Leberfunktion zu einer schwerwiegenden, nicht behandelbaren Bindegewebserkrankung (nephrogene systemische Fibrose; NSF) durch das MRT-Kontrastmittel (Gadolinium) kommen. In der Folge können auch die inneren Organe geschädigt werden, die Gelenke an Beweglichkeit verlieren und die Krankheit u.U. tödlich verlaufen. Falls Sie ein Nieren- oder Leberleiden haben oder bei Ihnen bereits eine Nierenoder Lebertransplantation durchgeführt wurde, teilen Sie dies deshalb unbedingt dem Arzt mit;
- Hautreizungen, Schwellungen oder Wärmegefühl durch metallhaltige Farbstoffe in (Permanent)Make-up oder Tätowierungen;
- extrem selten Ohrgeräusche (Tinnitus), die in der Regel nach der Untersuchung wieder verschwinden, extrem selten aber auch bleiben können.

Im Falle einer Schwangerschaft besteht im Frühstadium das Risiko einer Schädigung des ungeborenen Kindes. Deshalb sollte eine Kernspintomographie in den ersten 3 Monaten einer Schwangerschaft möglichst nicht erfolgen.

Melden Sie plötzliches Unwohlsein (z.B. Juckreiz, Niesreiz, Schwindel, Herz-Rhythmusstörungen, Kopfschmerzen, Übelkeit, Atembeschwerden, Durchfall, Schmerzen) während/nach der Untersuchung oder in den Tagen danach bitte sofort dem Arzt!

Worauf ist zu achten?

Vor der Untersuchung:

Wenn vom Arzt nicht anders mitgeteilt, lassen Sie vor einer ambulanten Untersuchung wegen der evtl. Gabe von gadoliniumhaltigem Kontrastmittel in jedem Fall bei Ihrem Arzt (Hausarzt, Internist) den Kreatininwert bestimmen und bringen diesen bitte zur Untersuchung mit. Die Kernspinuntersuchung der Brustdrüse (MRM) muss bei Frauen im gebärfähigen Alter zwischen dem 7. und 12. Zyklustag (1. Zyklustag = 1. Tag der Monatsblutung) durchgeführt werden, um falsche Untersuchungsergebnisse möglichst zu vermeiden.

Beachten Sie die Anordnungen des Arztes genau, v.a. in Bezug auf die Einnahme von Medikamenten und Hormonen (z.B. Hormonersatz in der Menopause).

Ist eine Narkose vorgesehen, werden Sie über deren Vorbereitung, Durchführung und Risiken gesondert informiert.

proCompliance

Informieren Sie den Arzt bzw. das medizinische Personal unbedingt, wenn Sie Permanent-Make-up, Tätowierungen oder ein transdermales Pflaster am Körper tragen oder Träger eines magnetisch befestigten Zahnersatzes oder anderer metallischen oder magnetischen Implantate sind.

Für die Untersuchung:

Metallteile, die in das Magnetfeld gelangen, können zu Verletzungen und Bildfehlern (Artefakten) führen! Legen Sie deshalb alle metallenen oder magnetischen Gegenstände vor dem Betreten des Untersuchungsraumes ab:

- Uhr, Brille, Schlüssel, (Piercing-)Schmuck, Haarnadeh/-spangen, Kugelschreiber usw,
- Geldbeutel, lose Geldmünzen, Brieftasche inkl. Scheckkarten (Magnetstreifen werden gelöscht!);
- Metallteile an der Kleidung (z.B. Gürtelschnallen), Kleidungsstücke mit einem Reißverschluss, Metallknöpfen oder Ähnlichem (z.B. Metallverschluss am BH) aber auch Make-up dürfen nicht getragen werden;
- herausnehmbarer Zahnersatz, Zahnspangen;
- Akupunkturnadeln, Hörhilfe; Cochlea-Implantate im Innenohr können durch die Kernspintomographie beschädigt werden.

Nach der Untersuchung:

Wurde Ihnen ein Kontrastmittel verabreicht, trinken Sie viel (z.B. Tee, Mineralwasser), um die Ausscheidung des Kontrastmittels zu unterstützen.

Falls Sie ein Beruhigungsmittel erhalten haben, lassen Sie sich bitte unbedingt von einer erwachsenen Person abholen. Aufgrund der vorübergehenden Einschränkung der Straßenverkehrstauglichkeit dürfen Sie in den nächsten 24 Stunden kein Fahrzeug steuern, keine gefährlichen Tätigkeiten (z.B. an gefährlichen Maschinen, Arbeiten ohne sicheren Halt) verrichten, keinen Alkohol trinken und sollten keine schwerwiegenden Entscheidungen treffen.

Die Sicherheit einer MRT-Untersuchung von Patienten mit medizinischen Implantaten oder metallischen Fremdkörpern ist umso höher, je geringer die Feldstärke des Geräts ist. Für moderne MRT-Geräte mit höheren Feldstärken sind einige Implantate wie z.B. IUP ("Spirale"; Kupfer-T zur Empfängnisverhütung) nicht generell vom Hersteller freigegeben. Ob in Folge der Durchführung der MRT eine Dislokation (Verrutschen) der Spirale (IUP) und daher eine Beemträchtigung der antikonzeptionellen Wirkung möglich ist, so dass eine Überprüfung der korrekten Lage der Spirale (IUP) nötig ist, wird der Arzt mit Ihnen bereden; sprechen Sie ihn ggf. darauf an.

Wichtige Fragen,

07.201

later

06/2014

R.20 -

die Sie sorgfältig beantworten sollten, damit der Arzt Gefahrenquellen rechtzeitig erkennen und spezielle Risiken in Ihrem Fall besser abschätzen kann:

Alter:	Jahre	Größe:	cm	Gewicht:	kg
Geschlecht:				T 1	

n = nein j = ja

 Besteht eine Allergie (z.B. Asthma, Heuschnupfen) oder eine Überempfindlichkeit (z.B. gegen Medikamente [v.a. Jod, Penicillin], Pflaster, Latex, Nahrungsmittel, [MRT-]Kontrastmittel/Gadolinium, örtliche Betäubungsmittel)?

Wenn ja, welche?

Bitte ggf. den Allergiepass vorlegen!

2. Besteht eine akute oder chronische Infekti- □ n □ j onskrankheit (z.B. Hepatitis, Tuberkulose, HIV-Infektion/AIDS)?

Wenn ja, welche?_

3. Bestehen Angina pectoris-Beschwerden, □ n □ j Vorhofflimmern, andere Herzrhythmusstörungen oder frischer Herzinfarkt?

Wenn ja, welche?.

 Achtung: Die MRT darf bei bestimmten Arten von Metall im Körper nicht durchgeführt werden. Informieren Sie bitte unbedingt den Arzt. Er wird entscheiden, ob Sie zu dieser Risikogruppe zählen.

Befinden sich magnetische oder metallische Teile im Körper (z.B. Gefäß- oder chirurgische Clips, Gelenkprothese, Gefäßprothese [stent], Metallstifte, Hautchips, Zahnspange/ Implantate, Granat- oder sonstige Metallsplitter, Spirale [Intrauterinpessar], Akupunkturnadeln, Insulin- oder Schmerzmittelpumpe, Neurostimulator, Gehörimplantat [z.B Cochlea-Implantat], Intraport, Tätowierungen, Permanent-Make-up)?

Wenn ja, welche?____

Wenn ja, in folgender Körperregion ____ Bitte bei Metall-Implantaten jedweder Art möglichst die Firmenbeschreibung mitbringen, soweit vorhanden. 5. Tragen Sie ein Pflaster auf der Haut, das \Box n \Box j Medikamente freisetzt (transdermales Pflaster)? Wenn ja, welches Pflaster?_ 6. War schon einmal eine Operation am Her-zen oder am Kopf notwendig? 7. Befindet sich ein Herzschrittmacher, Defi- \Box n \Box j brillator oder eine künstliche Herzklappe im Körper? 8. Wurde bereits eine Operation in der jetzt zu untersuchenden Körperregion durchgeführt? Wenn ja, welche?_

1

proCompliance

9. Liegt eine Nieren- oder Lebererkrankung \Box n \Box j vor oder wurde bereits eine Transplantation durchgeführt? 10. Wurde schon einmal eine Kernspinunter- $\Box n \Box j$ suchung, Computertomographie oder Röntgenuntersuchung, insbesondere der

jetzt zu untersuchenden Körperregion, durchgeführt?

Wenn ja, bitte Körperregion/Organ, Art der Untersuchung und Jahr, in dem sie stattfand, eintragen:

Bitte ggf. Voraufnahmen jeder Art (Röntgenbilder, Ke Computertomogramme, Mammogramme), Röntgenpa	rnspin√ ss mitbrir	igen!
Wenn ja, erfölgte die Untersuchung mit Kontrastmittelgabe?	🗅 n	j
Wenn ja, traten bei Kontrastmittelgabe Probleme auf (z.B. Kreislaufreaktionen , Schock , Hautausschlag o.Ä)?	🗆 n	j
Wenn ja, welche?		
11. Bestehen Ohrgeräusche (Tinnitus)?	🗅 n	٥j
 Liegt eine Neigung zur Klaustrophobie (Angst vor engen oder geschlossenen Räu- men) bzw. sog. Panikattacken vor? 	l n	١j
13. Zusatzfragen bei Frauen im gebärfähigen	Alter:	
Könnten Sie schwanger sein?	🗆 n	цj
Wenn ja, welche Schwangerschaftswoche?_		
Wann war Ihre letzte Regelblutung?		
Stillen Sie?	🖸 n	□j
Arztanmerkungen zum Aufklärung	sgespr	äch
(z.B. individuelle Risiken und damit verbundene me kationen, spezifische Nebenwirkungen des Kontrastmit	sgliche Ko ttels, mög	mpli- gliche

b Nachteile im Falle einer Ablehnung/Verschiebung der Untersuchung, Be-4/4 (copy 1) schränkung der Einwilligung z.B. hinsichtlich Kontrastmittelgabe, Gründe des Patienten für die Ablehnung, Feststellung der Einsichtsfähigkeit Minderjähriger, gesetzliche Vertretung, Betreuungsfall, Bevollmächtigter)

Nur im Falle einer Ablehnung der Untersuchung:

Die vorgeschlagene Untersuchung wurde nach ausführlicher Aufklärung abgelehnt. Über die sich daraus ergebenden möglichen Nachteile (z.B. Nichterkennen von Krankheiten in ihrem Schweregrad und Verlauf, keine exakte Lokalisierung von Krankheitsherden) wurde nachdrücklich informiert.

Ort, Datum, Ulu zeit	Patientin/Patient/Eltern*
ggf Zeuge	Acztin/Aczt

Einwilligungserklärung

Über die geplante Untersuchung, Art und Durchführung, spezielle Risiken und mögliche Komplikationen, Neben- und Folgemaßnahmen und ihre Risiken sowie alternative Untersuchungsmethoden wurde ich in einem Aufklärungsgespräch mit

der Ärztin/dem Arzt

ausführlich informiert. Dabei konnte ich alle mir wichtig erscheinenden Fragen stellen. Ich habe keine weiteren Fragen, fühle mich genügend informiert und willige hiermit nach ausreichender Bedenkzeit in die geplante Untersuchung ein. Mit während der Untersuchung erfordrlichen Neben- und Folgemaßnahmen bin ich ebenfälls einverstanden.

Ort Datum Uhrzeit Patientin/Patient/Eltern* Arztin Arzt

Einwilligungserklärung zur Datenverwendung

Soweit medizinisch erförderlich, bin ich mit einer Fernübertragung der personenbezogenen Daten zur Befunderhebung (Teleradiologie), insbesondere zum Nachweis oder Auschluss eines Krankheitsherdes, zur Operationsindikation, Planung weiteres therapeutischen Vorgehens, an

einverstanden. (bitte z B Krankenhaus/Praxis/Labor eintragen)

Ort Datum Uhrzeit

Patientin/Patient/Eltern*

* Unterschreibt ein Elternteil allein, erklärt er mit seiner Unterschrift zugleich, dass ihm das Sorgerecht allein zusteht oder dass er im Ein-verständnis mit dem anderen Elternteil handelt. Bei schwereren Eingriffen sollten grundsätzlich beide Eltern unterschreiben.

Anhang 4. Einverständniserklärung zur Studie

Radiologische Klinik Abteilung Diagnostische und Interventionelle Neuroradiologie Ärztliche Direktorin: Prof. Dr. med. U. Ernemann

Arztiche Direktonn: Prof. Dr. med. U. Ernemann Hoppe-Seyler-Str. 3, D-72076 Tübingen Ansprechpartner: Dr. Benjamin Bender, Dr. Tobias Lindig Telefon 07071/29 - 86024

Probanden-Einverständniserklärung zur Studie

Studie zur Erstellung eines Normalkollektives für die Untersuchung altersabhängiger Effekte in der gesunden Normalbevölkerung mittels der MR-Bildgebung

Über den Zweck und den Ablauf der Studie, sowie die aus meiner Teilnahme an dieser Studie resultierenden Rechte und Pflichten bin ich informiert worden. Ich bin insbesondere auch über Wesen, Bedeutung und Tragweite sowie über mögliche Risiken und Nachteile aufgeklärt worden. Ich habe eine schriftliche Patienteninformation erhalten und konnte in einem Gespräch meine Fragen klären. Alle mich interessierenden Fragen wurden in für mich verständlicher Weise beantwortet.

Ich wurde darüber aufgeklärt, dass die Teilnahme freiwillig ist und ich meine Einwilligung zur Untersuchung jederzeit ohne Angabe von Gründen ohne Nachteile für mich zurückziehen kann. Ich wurde darüber informiert, dass sämtliche erhobenen personenbezogenen Daten vertraulich behandelt und pseudonymisiert ausgewertet werden.

Eine Kopie der schriftlichen Probandeninformation und dieser Einverständniserklärung habe ich erhalten.

Datenschutzerklärung: Ich bin damit einverstanden, dass im Rahmen der Studie auch medizinische Daten ausgewertet werden. Ich weiß, dass die während der Studie gewonnenen Daten dem Datenschutzgesetz unterliegen. Ich bin aber damit einverstanden, dass die Daten in pseudonymisierter Form elektronisch verarbeitet und anonymisiert veröffentlicht werden. Alle Daten werden ohne Namensangaben unter Verwendung der Code-Nummer elektronisch verarbeitet. In Berichten über die Studie erscheinen keine persönlichen Daten.

Tübingen, den

Name, Vorname des/r Probanden/in

Unterschrift

Tübingen, den

Name der aufklärenden Person

Unterschrift

- O Im unwahrscheinlichen Fall eines Zufallsbefundes möchte ich darüber informiert werden.
- O Ich bin damit einverstanden, nach 2 und nach 5 Jahren telefonisch kontaktiert zu werden, um nach meinem dann aktuellen Gesundheitszustand befragt zu werden.

(Anschrift)	(Telefonnr.)
Tübingen, den	

Unterschrift

Name des/r Proband/in
Anhang 5. Befund der körperlichen Untersuchung.

Radiologische Klinik Abteilung Diagnostische und Interventionelle Neuroradiologie Ärztliche Direktorin: Prof. Dr. med. U. Ernemann Hoppe-Seyler-Str. 3, D-72076 Tübingen Studie zur Erstellung eines Normalkollektives für die Untersuchung altersabhängiger Effekte in der gesunden Normalbevölkerung mittels MR-Bildgebung

Befund der körperlichen Untersuchung

Proba	and:		Datum:			Untersucher:			
			•			•			
Aussch	nlusskrite	erien					trifft zu	trifft nicht zu	
Erl	krankung	gen der Ner	ven oder de	es Gehin	ns, aktuell od	ler in der Vergange	nheit		
Ps	ychiatris	che Erkrank	kung, Deme	enz, Dep	ression				
Ein	nnahme	von Medika							
An	igeboren	es Fehlen v							
Alle	gemeine	MRT-Auss	chlusskriter	rien					
				o.p.B.					
Allgeme	eines								
Vig	gilanz								
Ori	ientierun	ig							
Sp	rache								
Koordin	nation								
Ga	angbild								
Ro	omberg								
Fin	nger-Nas	e-Versuch							
Dia	adochoki	inese							
Fei	inmotori	k							
Himner	rven								
Ge	eruch + G	Geschmack							
Vis	sus + Ge	sichtsfeld							
Au	igenmoto	orik							
Pu	ipillen								
Tri	igeminus								
Fa	cialis								
Ge	ehör								
Ac	cessoriu	s							
Zu	inge + G	aumensege							

Muskelkraft + Reflexe + Sensibilität	
Muskeleigenreflexe:	
BSR	
TSR	\cap
PSR	\cup
ASR	
Babinski-Zeichen	
Muskelkraft:	
Schulter	
Ellenbogen	
Finger	
Hüfte	
Knie	
 Sprunggelenk 	
Sensibilität:	
 epikritisch 	
 protopathisch 	
Bilder	
T1 + T2 + Flair	
Diffusion	
DTI	
ep2d	
Spinal T1	
Spinal ep2d	
falls auffällig: weiteres Vorgehen	

Anhang 6. Demtect

hreibung: Demtect				<u>(</u>);	Patientendaten
d: 3.2009	Autor/Ansprechpart Melms/Haarmeier	ner:	Gültig für: Neurologische	Klinik	
risiert von (ÄD/PDL): Dr. A. Melms	Autorisiert am: 03.03.2009		Gültig bis: 31.12.2010		
Demt	ect nach i k	essler II P C	alabrese 2000		3
	e e e naciro. i		aldorese, 2000		
1. Wortliste	(1. Zeile vorles	en – Wiederga	abe – 2. Zeile – W	/iedergabe)	
Teller 🗆 🛛 Hu	ind 🗆 Lampe 🗆	Brief 🗆 🛛 A	pfel 🗆 Hose 🗆	Tisch 🗆	Wiese 🗆 Glas 🗆 Baum 🗆
Teller 🗆 🛛 Hu	ind 🗆 Lampe 🗆	Brief 🗆 🛛 A	pfel 🗆 Hose 🗆	Tisch 🗆	Wiese 🗆 Glas 🗆 Baum 🗆
			Rich	ntig erinner	te Begr <mark>i</mark> ffe (max. 20)
2. Zahlen U	mwandeln (s. h	nten)		Rich	tige Umwandlungen 📃
3. Superma	<mark>rktaufgabe</mark> (In 1	Minute mögl	lichst viele Dinge	nennen, die	e es dort zu kaufen gibt)
					🗆 🗖 Genannte Begriffe
					🗆 🗆 (max. 20)
4. Zahlenfo	lge rückwärts (F	roband wiede	erholt Zahlenfolge	en rückwärt	ts, jeweils 2. Versuch möglic
1. Versuch	7-2 4-7-9	5-4-9-6	2-7-5-3-6	8-1-3-5-4-2	2 Längste richtig rückw.
2. Versuch	8-6 3-1-5	1-9-7-4	1-3-5-4-8	4-1-2-7-9-5	5 wiederholte Folge
		□ 4	□ 5	□ 6	(max. 6)
5. Erneute /	Abfrage der Wo	rtliste			
Teller 🗆 Hu	ind 🗆 Lampe 🗆	Brief 🗆 🛛 A	pfel 🗆 Hose 🗆	Tisch □	Wiese 🗆 Glas 🗆 Baum 🗆
			Ric	ntig erinner	te Begriffe (max. 10)

	Aufgabe	Erg.				über 60 J.			unter 60 J.				J.	Punkte	
1. Wortliste			ab:	7	9	11			ab:	8	11	13			İ
2. Zahlen-Um		ab:	1	3	4			ab:	1	3	4				
3. Supermarktaufgabe			ab:	6	10		16		ab:	13	16		20		
4. Zahlenfolge rückw.				2	3	4			ab:	2	4	5			
5. Erneute Wortliste				1	3			5	ab:	1	4				
	Punl	ktzahl:		1	2	3	4	5		1	2	3	4		
Punktzahl	Diagnose					Handlungsempfehlung						-			
13 – 18 P.	altersgem	. kog. l	eist	ung	J	na	ch 1:	2 Mo	on. bz	zw. b	ei Pr	oble	men	neu	testen
9 - 12 P.	leichte ko	g. Beeii	nträc	hti	gung	na	ch 6	Mor	n. neu	u test	en -	Verla	auf b	eob	achten
= 8 P. Demenzverdacht						We	eitere	diag	gnost	ische	Abk	däru	ng - '	Ther	apie
erkungen:						-									
-	Datum: ausgefüllt von:														

Patientendaten

2. Zahlen umwandeln

Beispiel: $5 \rightarrow f \ddot{u} n f$; drei $\rightarrow 3$

209 = _____

4054 = _____

sechshunderteinundachtzig = _____

zweitausendsiebenundzwanzig = _____

Anhang 7: Volumen des Nucleus caudatus links aus den handsegmentierten Daten Geschlecht: weiblich = 0, männlich = 1, Vol, cm³ - Volumen des linken Nucleus caudatus aus 3D Slicer in cm³, SPM-TIV, cm³ - intrakranielles Gesamtvolumen aus den SPM-Daten in cm³, Vol, cm³/ SPM-TIV, cm³ - Volumenanteil des linken Nucleus caudatus am intrakraniellen Gesamtvolumen, (Vol, cm³/ SPM-TIV, cm³)x100% - prozentualer Volumenanteil des linken Nucleus caudatus am intrakraniellen Gesamtvolumen.

					SPM-TIV,	Vol, cm³/	(Vol, cm³/ SPM-TIV,
N⁰	ID	Geschlecht	Alter	Vol, cm ³	cm ³	SPM-TIV, cm ³	cm ³) x100%
1	4	1	23	5,812	1628,142	0,0036	0,36%
2	5	1	27	5,991	1899,581	0,0032	0,32%
3	8	0	65	4,359	1543,866	0,0028	0,28%
4	9	0	56	3,842	1388,412	0,0028	0,28%
5	10	1	61	4,081	1985,442	0,0021	0,21%
6	11	0	29	4,213	1587,038	0,0027	0,27%
7	12	0	21	5,350	1544,473	0,0035	0,35%
8	37	0	62	3,769	1638,552	0,0023	0,23%
9	38	1	57	4,153	1670,719	0,0025	0,25%
10	39	0	58	3,933	1357,382	0,0029	0,29%
11	40	1	54	5,460	1711,183	0,0032	0,32%
12	27	1	44	4,265	1655,993	0,0026	0,26%
13	36	0	42	3,741	1548,590	0,0024	0,24%
14	42	0	49	3,818	1531,321	0,0025	0,25%
15	43	0	37	3,621	1292,670	0,0028	0,28%
16	44	1	43	3,749	1685,461	0,0022	0,22%
17	45	1	66	3,495	1559,514	0,0022	0,22%
18	46	1	32	4,626	1714,745	0,0027	0,27%
19	48	1	46	4,158	1653,099	0,0025	0,25%
20	50	0	52	3,119	1319,018	0,0024	0,24%
21	59	0	25	3,843	1459,101	0,0026	0,26%
22	60	1	25	4,735	1667,847	0,0028	0,28%
23	77	1	63	4,273	1722,914	0,0025	0,25%
24	81	0	31	3,985	1423,482	0,0028	0,28%
25	82	0	36	4,604	1589,297	0,0029	0,29%
26	91	1	38	3,963	1709,964	0,0023	0,23%
27	94	1	35	4,467	1754,553	0,0025	0,25%
28	95	0	44	4,000	1450,428	0,0028	0,28%
29	113	1	52	4,277	1692,151	0,0025	0,25%
30	135	0	64	4,197	1573,869	0,0027	0,27%

Anhang 8: Volumen des Nucleus caudatus rechts aus den handsegmentierten Daten Geschlecht: weiblich = 0, männlich = 1, Vol, cm³ - Volumen des rechten Nucleus caudatus aus 3D Slicer in cm³, SPM-TIV, cm³ - intrakranielles Gesamtvolumen aus den SPM-Daten in cm³, Vol, cm³/ SPM-TIV, cm³ - Volumenanteil des rechten Nucleus caudatus am intrakraniellen Gesamtvolumen, (Vol, cm³/ SPM-TIV, cm³)x100% - prozentualer Volumenanteil des rechten Nucleus caudatus am intrakraniellen Gesamtvolumen.

	ID				SPM-TIV,	Vol, cm ³ /	(Vol, cm ³ / SPM-TIV,
Nº	ID	Geschlecht	Alter	Vol, cm ³	cm ³	SPM-11V, cm ³	cm ³) x100%
1	4	1	23	5,697	1628,142	0,0035	0,35%
2	5	1	27	6,058	1899,581	0,0032	0,32%
3	8	0	65	4,211	1543,866	0,0027	0,27%
4	9	0	56	3,693	1388,412	0,0027	0,27%
5	10	1	61	4,474	1985,442	0,0023	0,23%
6	11	0	29	4,429	1587,038	0,0028	0,28%
7	12	0	21	5,281	1544,473	0,0034	0,34%
8	37	0	62	3,523	1638,552	0,0022	0,22%
9	38	1	57	4,170	1670,719	0,0025	0,25%
10	39	0	58	4,059	1357,382	0,0030	0,30%
11	40	1	54	5,063	1711,183	0,0030	0,30%
12	27	1	44	4,481	1655,993	0,0027	0,27%
13	36	0	42	3,824	1548,590	0,0025	0,25%
14	42	0	49	3,897	1531,321	0,0025	0,25%
15	43	0	37	3,629	1292,670	0,0028	0,28%
16	44	1	43	3,706	1685,461	0,0022	0,22%
17	45	1	66	3,333	1559,514	0,0021	0,21%
18	46	1	32	4,688	1714,745	0,0027	0,27%
19	48	1	46	3,945	1653,099	0,0024	0,24%
20	50	0	52	3,281	1319,018	0,0025	0,25%
21	59	0	25	3,977	1459,101	0,0027	0,27%
22	60	1	25	5,243	1667,847	0,0031	0,31%
23	77	1	63	4,726	1722,914	0,0027	0,27%
24	81	0	31	4,267	1423,482	0,0030	0,30%
25	82	0	36	4,929	1589,297	0,0031	0,31%
26	91	1	38	4,238	1709,964	0,0025	0,25%
27	94	1	35	4,770	1754,553	0,0027	0,27%
28	95	0	44	4,369	1450,428	0,0030	0,30%
29	113	1	52	4,180	1692,151	0,0025	0,25%
30	135	0	64	4,461	1573,869	0,0028	0,28%

Anhang 9: Volumen des Putamens links aus den handsegmentierten Daten

Geschlecht: weiblich = 0, männlich = 1, Vol, cm³ - Volumen des linken Putamens aus 3D Slicer in cm³, SPM-TIV, cm³ - intrakranielles Gesamtvolumen aus den SPM-Daten in cm³, Vol, cm³/ SPM-TIV, cm³ - Volumenanteil des linken Putamens am intrakraniellen Gesamtvolumen, (Vol, cm³/ SPM-TIV, cm³)x100% - prozentualer Volumenanteil des linken Putamens am intrakraniellen Gesamtvolumen.

No	ID	Casablaabt	Alton	Vol. am ³	SPM-TIV,	Vol, cm ³ /	(Vol, cm ³ / SPM-TIV, cm ³) x1009/
J¶⊻ 1			23 Alter	6 224	1628 142	$\frac{\text{SFWI-TTV},\text{CIII}}{0.0038}$	0.38%
2	5	1	23	7.066	1800 581	0,0037	0,38%
2	8	0	65	1,000	15/2 866	0,0037	0,3770
	0 0	0	56	3,874	1388 /12	0,0030	0,30%
5	10	1	61	1 / 02	1985 //2	0,0023	0,23%
6	10	0	20	5 838	1587.038	0,0023	0,23%
7	12	0	29	6.028	1544 473	0,0037	0,37%
8	37	0	62	3 903	1638 552	0,0035	0.24%
9	38	1	57	4 555	1670 719	0,0027	0,24%
10	39	0	58	4 201	1357 382	0.0031	0.31%
11	40	1	54	4 452	1711 183	0,0026	0.26%
12	27	1	44	4 394	1655 993	0.0027	0 27%
13	36	0	42	4,744	1548.590	0.0031	0.31%
14	42	0	49	4,876	1531,321	0,0032	0,32%
15	43	0	37	3,476	1292,670	0,0027	0,27%
16	44	1	43	4,933	1685,461	0,0029	0,29%
17	45	1	66	4,119	1559,514	0,0026	0,26%
18	46	1	32	4,723	1714,745	0,0028	0,28%
19	48	1	46	4,953	1653,099	0,0030	0,30%
20	50	0	52	3,968	1319,018	0,0030	0,30%
21	59	0	25	4,490	1459,101	0,0031	0,31%
22	60	1	25	5,023	1667,847	0,0030	0,30%
23	77	1	63	5,069	1722,914	0,0029	0,29%
24	81	0	31	4,474	1423,482	0,0031	0,31%
25	82	0	36	5,348	1589,297	0,0034	0,34%
26	91	1	38	5,558	1709,964	0,0033	0,33%
27	94	1	35	4,991	1754,553	0,0028	0,28%
28	95	0	44	4,744	1450,428	0,0033	0,33%
29	113	1	52	5,453	1692,151	0,0032	0,32%
30	135	0	64	4,954	1573,869	0,0031	0,31%

Anhang 10: Volumen des Putamens rechts aus den handsegmentierten Daten

Geschlecht: weiblich = 0, männlich = 1, Vol, cm³ - Volumen des rechten Putamens aus 3D Slicer in cm³, SPM-TIV, cm³ - intrakranielles Gesamtvolumen aus den SPM-Daten in cm³, Vol, cm³/ SPM-TIV, cm³ - Volumenanteil des rechten Putamens am intrakraniellen Gesamtvolumen, (Vol, cm³/ SPM-TIV, cm³)x100% - prozentualer Volumenanteil des rechten Putamens am intrakraniellen Gesamtvolumen.

					SPM-	Vol, cm ³ / SPM-	(Vol, cm³/ SPM-TIV,
N⁰	ID	Geschlecht	Alter	Vol, cm ³	TIV, cm ³	TIV, cm ³	cm ³) x100%
1	4	1	23	6,160	1628,142	0,0038	0,38%
2	5	1	27	6,637	1899,581	0,0035	0,35%
3	8	0	65	4,433	1543,866	0,0029	0,29%
4	9	0	56	3,874	1388,412	0,0028	0,28%
5	10	1	61	4,498	1985,442	0,0023	0,23%
6	11	0	29	5,967	1587,038	0,0038	0,38%
7	12	0	21	5,863	1544,473	0,0038	0,38%
8	37	0	62	3,961	1638,552	0,0024	0,24%
9	38	1	57	4,168	1670,719	0,0025	0,25%
10	39	0	58	4,202	1357,382	0,0031	0,31%
11	40	1	54	4,602	1711,183	0,0027	0,27%
12	27	1	44	4,591	1655,993	0,0028	0,28%
13	36	0	42	4,782	1548,590	0,0031	0,31%
14	42	0	49	5,104	1531,321	0,0033	0,33%
15	43	0	37	3,284	1292,670	0,0025	0,25%
16	44	1	43	4,865	1685,461	0,0029	0,29%
17	45	1	66	4,106	1559,514	0,0026	0,26%
18	46	1	32	4,858	1714,745	0,0028	0,28%
19	48	1	46	5,111	1653,099	0,0031	0,31%
20	50	0	52	3,978	1319,018	0,0030	0,30%
21	59	0	25	4,449	1459,101	0,0030	0,30%
22	60	1	25	5,046	1667,847	0,0030	0,30%
23	77	1	63	5,090	1722,914	0,0030	0,30%
24	81	0	31	4,636	1423,482	0,0033	0,33%
25	82	0	36	5,225	1589,297	0,0033	0,33%
26	91	1	38	5,359	1709,964	0,0031	0,31%
27	94	1	35	4,983	1754,553	0,0028	0,28%
28	95	0	44	4,634	1450,428	0,0032	0,32%
29	113	1	52	5,305	1692,151	0,0031	0,31%
30	135	0	64	4,887	1573,869	0,0031	0.31%

Anhang 11: Volumen des Pallidums links aus den handsegmentierten Daten

Geschlecht: weiblich = 0, männlich = 1, Vol, cm³ - Volumen des linken Pallidums aus 3D Slicer in cm³, SPM-TIV, cm³ - intrakranielles Gesamtvolumen aus den SPM-Daten in cm³, Vol, cm³/ SPM-TIV, cm³ - Volumenanteil des linken Pallidums am intrakraniellen Gesamtvolumen, (Vol, cm³/ SPM-TIV, cm³)x100% - prozentualer Volumenanteil des linken Pallidums am intrakraniellen Gesamtvolumen.

					SPM-TIV,	Vol, cm³/	(Vol, cm³/ SPM-TIV,
N⁰	ID	Geschlecht	Alter	Vol, cm ³	cm ³	SPM-TIV, cm ³	cm ³) x100%
1	4	1	23	1,483	1628,142	0,0009	0,09%
2	5	1	27	1,803	1899,581	0,0009	0,09%
3	8	0	65	1,736	1543,866	0,0011	0,11%
4	9	0	56	1,502	1388,412	0,0011	0,11%
5	10	1	61	2,006	1985,442	0,0010	0,10%
6	11	0	29	1,904	1587,038	0,0012	0,12%
7	12	0	21	1,894	1544,473	0,0012	0,12%
8	37	0	62	1,561	1638,552	0,0010	0,10%
9	38	1	57	1,865	1670,719	0,0011	0,11%
10	39	0	58	1,333	1357,382	0,0010	0,10%
11	40	1	54	1,781	1711,183	0,0010	0,10%
12	27	1	44	2,082	1655,993	0,0013	0,13%
13	36	0	42	2,201	1548,590	0,0014	0,14%
14	42	0	49	1,926	1531,321	0,0013	0,13%
15	43	0	37	1,454	1292,670	0,0011	0,11%
16	44	1	43	1,909	1685,461	0,0011	0,11%
17	45	1	66	2,005	1559,514	0,0013	0,13%
18	46	1	32	2,019	1714,745	0,0012	0,12%
19	48	1	46	2,305	1653,099	0,0014	0,14%
20	50	0	52	1,603	1319,018	0,0012	0,12%
21	59	0	25	1,813	1459,101	0,0012	0,12%
22	60	1	25	2,317	1667,847	0,0014	0,14%
23	77	1	63	2,078	1722,914	0,0012	0,12%
24	81	0	31	1,794	1423,482	0,0013	0,13%
25	82	0	36	1,862	1589,297	0,0012	0,12%
26	91	1	38	1,645	1709,964	0,0010	0,10%
27	94	1	35	2,039	1754,553	0,0012	0,12%
28	95	0	44	2,028	1450,428	0,0014	0,14%
29	113	1	52	2,057	1692,151	0,0012	0,12%
30	135	0	64	2,342	1573,869	0,0015	0,15%

Anhang 12: Volumen des Pallidums rechts aus den handsegmentierten Daten

Geschlecht: weiblich = 0, männlich = 1, Vol, cm³ - Volumen des rechten Pallidums aus 3D Slicer in cm³, SPM-TIV, cm³ - intrakranielles Gesamtvolumen aus den SPM-Daten in cm³, Vol, cm³/ SPM-TIV, cm³ - Volumenanteil des rechten Pallidums am intrakraniellen Gesamtvolumen, (Vol, cm³/ SPM-TIV, cm³)x100% - prozentualer Volumenanteil des rechten Pallidums am intrakraniellen Gesamtvolumen.

					SPM-TIV,	Vol, cm³/	(Vol, cm³/ SPM-TIV,
N⁰	ID	Geschlecht	Alter	Vol, cm ³	cm ³	SPM-TIV, cm ³	cm ³) x100%
1	4	1	23	1,634	1628,142	0,0010	0,10%
2	5	1	27	1,935	1899,581	0,0010	0,10%
3	8	0	65	2,017	1543,866	0,0013	0,13%
4	9	0	56	1,510	1388,412	0,0011	0,11%
5	10	1	61	1,928	1985,442	0,0010	0,10%
6	11	0	29	1,806	1587,038	0,0011	0,11%
7	12	0	21	1,991	1544,473	0,0013	0,13%
8	37	0	62	1,644	1638,552	0,0010	0,10%
9	38	1	57	1,842	1670,719	0,0011	0,11%
10	39	0	58	1,337	1357,382	0,0010	0,10%
11	40	1	54	1,854	1711,183	0,0011	0,11%
12	27	1	44	2,304	1655,993	0,0014	0,14%
13	36	0	42	2,321	1548,590	0,0015	0,15%
14	42	0	49	2,023	1531,321	0,0013	0,13%
15	43	0	37	1,526	1292,670	0,0012	0,12%
16	44	1	43	1,812	1685,461	0,0011	0,11%
17	45	1	66	1,747	1559,514	0,0011	0,11%
18	46	1	32	1,883	1714,745	0,0011	0,11%
19	48	1	46	2,452	1653,099	0,0015	0,15%
20	50	0	52	2,081	1319,018	0,0016	0,16%
21	59	0	25	1,664	1459,101	0,0011	0,11%
22	60	1	25	2,292	1667,847	0,0014	0,14%
23	77	1	63	2,154	1722,914	0,0013	0,13%
24	81	0	31	1,972	1423,482	0,0014	0,14%
25	82	0	36	1,819	1589,297	0,0011	0,11%
26	91	1	38	1,893	1709,964	0,0011	0,11%
27	94	1	35	1,908	1754,553	0,0011	0,11%
28	95	0	44	2,100	1450,428	0,0014	0,14%
29	113	1	52	2,160	1692,151	0,0013	0,13%
30	135	0	64	2,548	1573,869	0,0016	0,16%

Anhang 13: Volumen des Nucleus caudatus links aus den FreeSurfer-Daten

Geschlecht: weiblich = 0, männlich = 1, Vol, cm³ - Volumen des linken Nucleus caudatus aus den FreeSurfer-Daten, in cm³, FreeSurfer-TIV, cm³ - intrakranielles Gesamtvolumen aus den FreeSurfer-Daten in cm³, Vol, cm³/ FreeSurfer-TIV, cm³ - Volumenanteil des linken Nucleus caudatus am intrakraniellen Gesamtvolumen, (Vol, cm³/ SPM-TIV, cm³)x100% - prozentualer Volumenanteil des linken Nucleus caudatus am intrakraniellen Gesamtvolumen.

Nº	ID	Geschlecht	Alter	Vol, cm³	FreeSurfer- TIV, cm ³	Vol, cm³/ FreeSurfer- TIV, cm³	(Vol, cm ³ / FreeSurfer- TIV, cm ³) x100%
1	4	1	23	4,235	1583,317	0,0027	0,27%
2	5	1	27	4,515	1807,529	0,0025	0,25%
3	8	0	65	3,404	1475,464	0,0023	0,23%
4	9	0	56	3,025	1327,286	0,0023	0,23%
5	10	1	61	3,477	1928,112	0,0018	0,18%
6	11	0	29	3,210	1568,254	0,0020	0,20%
7	12	0	21	3,912	1523,701	0,0026	0,26%
8	37	0	62	2,712	1427,776	0,0019	0,19%
9	38	1	57	3,076	1465,587	0,0021	0,21%
10	39	0	58	2,836	1277,558	0,0022	0,22%
11	40	1	54	3,831	1548,933	0,0025	0,25%
12	27	1	44	3,756	1587,296	0,0024	0,24%
13	36	0	42	2,966	1565,763	0,0019	0,19%
14	42	0	49	2,807	1436,959	0,0020	0,20%
15	43	0	37	2,636	1291,407	0,0020	0,20%
16	44	1	43	3,205	1571,858	0,0020	0,20%
17	45	1	66	2,866	1476,615	0,0019	0,19%
18	46	1	32	3,950	1668,967	0,0024	0,24%
19	48	1	46	3,704	1624,917	0,0023	0,23%
20	50	0	52	2,585	1354,393	0,0019	0,19%
21	59	0	25	3,174	1438,747	0,0022	0,22%
22	60	1	25	3,902	1642,570	0,0024	0,24%
23	77	1	63	3,420	1642,997	0,0021	0,21%
24	81	0	31	3,344	1440,799	0,0023	0,23%
25	82	0	36	3,849	1586,826	0,0024	0,24%
26	91	1	38	3,133	1641,293	0,0019	0,19%
27	94	1	35	3,756	1734,165	0,0022	0,22%
28	95	0	44	3,184	1402,991	0,0023	0,23%
29	113	1	52	3,335	1625,948	0,0021	0,21%
30	135	0	64	3,371	1568,139	0,0021	0,21%

Anhang 14: Volumen des Nucleus caudatus rechts aus den FreeSurfer-Daten

Geschlecht: weiblich = 0, männlich = 1, Vol, cm³ - Volumen des rechten Nucleus caudatus aus den FreeSurfer-Daten, in cm³, FreeSurfer-TIV, cm³ - intrakranielles Gesamtvolumen aus den FreeSurfer-Daten in cm³, Vol, cm³/ FreeSurfer-TIV, cm³ - Volumenanteil des rechten Nucleus caudatus am intrakraniellen Gesamtvolumen, (Vol, cm³/ SPM-TIV, cm³)x100% - prozentualer Volumenanteil des rechten Nucleus caudatus am intrakraniellen Gesamtvolumen.

Nº	ID	Geschlecht	Alter	Vol, cm³	FreeSurfer- TIV, cm ³	Vol, cm³/ FreeSurfer- TIV, cm³	(Vol, cm ³ / FreeSurfer- TIV, cm ³) x100%
1	4	1	23	4,264	1583,317	0,0027	0,27%
2	5	1	27	4,666	1807,529	0,0026	0,26%
3	8	0	65	3,333	1475,464	0,0023	0,23%
4	9	0	56	3,096	1327,286	0,0023	0,23%
5	10	1	61	3,710	1928,112	0,0019	0,19%
6	11	0	29	3,442	1568,254	0,0022	0,22%
7	12	0	21	3,900	1523,701	0,0026	0,26%
8	37	0	62	2,792	1427,776	0,0020	0,20%
9	38	1	57	3,126	1465,587	0,0021	0,21%
10	39	0	58	3,082	1277,558	0,0024	0,24%
11	40	1	54	3,757	1548,933	0,0024	0,24%
12	27	1	44	3,814	1587,296	0,0024	0,24%
13	36	0	42	3,034	1565,763	0,0019	0,19%
14	42	0	49	3,069	1436,959	0,0021	0,21%
15	43	0	37	2,752	1291,407	0,0021	0,21%
16	44	1	43	3,212	1571,858	0,0020	0,20%
17	45	1	66	3,099	1476,615	0,0021	0,21%
18	46	1	32	4,030	1668,967	0,0024	0,24%
19	48	1	46	3,461	1624,917	0,0021	0,21%
20	50	0	52	2,780	1354,393	0,0021	0,21%
21	59	0	25	3,263	1438,747	0,0023	0,23%
22	60	1	25	4,139	1642,570	0,0025	0,25%
23	77	1	63	3,584	1642,997	0,0022	0,22%
24	81	0	31	3,570	1440,799	0,0025	0,25%
25	82	0	36	4,085	1586,826	0,0026	0,26%
26	91	1	38	3,331	1641,293	0,0020	0,20%
27	94	1	35	3,995	1734,165	0,0023	0,23%
28	95	0	44	3,100	1402,991	0,0022	0,22%
29	113	1	52	3,362	1625,948	0,0021	0,21%
30	135	0	64	3,638	1568,139	0,0023	0,23%

Anhang 15: Volumen des Putamens links aus den FreeSurfer-Daten

Geschlecht: weiblich = 0, männlich = 1, Vol, cm³ - Volumen des linken Putamens aus den FreeSurfer-Daten, in cm³, FreeSurfer-TIV, cm³ - intrakranielles Gesamtvolumen aus den FreeSurfer-Daten in cm³, Vol, cm³/ FreeSurfer-TIV, cm³ - Volumenanteil des linken Putamens am intrakraniellen Gesamtvolumen, (Vol, cm³/ SPM-TIV, cm³)x100% - prozentualer Volumenanteil des linken Putamens am intrakraniellen Gesamtvolumen.

N⁰	ID	Geschlecht	Alter	Vol, cm³	FreeSurfer- TIV, cm ³	Vol, cm³/ FreeSurfer- TIV, cm³	(Vol, cm ³ / FreeSurfer- TIV, cm ³) x100%
1	4	1	23	6,209	1583,317	0,0039	0,39%
2	5	1	27	6,889	1807,529	0,0038	0,38%
3	8	0	65	4,768	1475,464	0,0032	0,32%
4	9	0	56	4,071	1327,286	0,0031	0,31%
5	10	1	61	4,606	1928,112	0,0024	0,24%
6	11	0	29	5,900	1568,254	0,0038	0,38%
7	12	0	21	5,768	1523,701	0,0038	0,38%
8	37	0	62	4,144	1427,776	0,0029	0,29%
9	38	1	57	4,408	1465,587	0,0030	0,30%
10	39	0	58	3,985	1277,558	0,0031	0,31%
11	40	1	54	4,464	1548,933	0,0029	0,29%
12	27	1	44	4,607	1587,296	0,0029	0,29%
13	36	0	42	4,604	1565,763	0,0029	0,29%
14	42	0	49	4,960	1436,959	0,0035	0,35%
15	43	0	37	2,858	1291,407	0,0022	0,22%
16	44	1	43	4,942	1571,858	0,0031	0,31%
17	45	1	66	4,770	1476,615	0,0032	0,32%
18	46	1	32	5,129	1668,967	0,0031	0,31%
19	48	1	46	5,333	1624,917	0,0033	0,33%
20	50	0	52	4,110	1354,393	0,0030	0,30%
21	59	0	25	4,684	1438,747	0,0033	0,33%
22	60	1	25	5,150	1642,570	0,0031	0,31%
23	77	1	63	5,295	1642,997	0,0032	0,32%
24	81	0	31	4,628	1440,799	0,0032	0,32%
25	82	0	36	5,538	1586,826	0,0035	0,35%
26	91	1	38	4,723	1641,293	0,0029	0,29%
27	94	1	35	5,311	1734,165	0,0031	0,31%
28	95	0	44	3,954	1402,991	0,0028	0,28%
29	113	1	52	5,495	1625,948	0,0034	0,34%
30	135	0	64	5,191	1568,139	0,0033	0,33%

Anhang 16: Volumen des Putamens rechts aus den FreeSurfer-Daten

Geschlecht: weiblich = 0, männlich = 1, Vol, cm³ - Volumen des rechten Putamens aus den FreeSurfer-Daten, in cm³, FreeSurfer-TIV, cm³ - intrakranielles Gesamtvolumen aus den FreeSurfer-Daten in cm³, Vol, cm³/ FreeSurfer-TIV, cm³ - Volumenanteil des rechten Putamens am intrakraniellen Gesamtvolumen, (Vol, cm³/ SPM-TIV, cm³)x100% - prozentualer Volumenanteil des rechten Putamens am intrakraniellen Gesamtvolumen.

Nº	ID	Geschlecht	Alter	Vol, cm³	FreeSurfer- TIV, cm ³	Vol, cm³/ FreeSurfer- TIV, cm³	(Vol, cm ³ / FreeSurfer- TIV, cm ³) x100%
1	4	1	23	6,039	1583,317	0,0038	0,38%
2	5	1	27	6,925	1807,529	0,0038	0,38%
3	8	0	65	4,498	1475,464	0,0030	0,30%
4	9	0	56	3,890	1327,286	0,0029	0,29%
5	10	1	61	4,479	1928,112	0,0023	0,23%
6	11	0	29	6,080 1568,254		0,0039	0,39%
7	12	0	21	5,667	1523,701	0,0037	0,37%
8	37	0	62	4,219	1427,776	0,0030	0,30%
9	38	1	57	4,381	1465,587	0,0030	0,30%
10	39	0	58	3,998	1277,558	0,0031	0,31%
11	40	1	54	4,527	1548,933	0,0029	0,29%
12	27	1	44	4,650	1587,296	0,0029	0,29%
13	36	0	42	4,846	1565,763	0,0031	0,31%
14	42	0	49	4,802	1436,959	0,0033	0,33%
15	43	0	37	3,685	1291,407	0,0029	0,29%
16	44	1	43	5,065	1571,858	0,0032	0,32%
17	45	1	66	4,727	1476,615	0,0032	0,32%
18	46	1	32	5,221	1668,967	0,0031	0,31%
19	48	1	46	5,463	1624,917	0,0034	0,34%
20	50	0	52	4,299	1354,393	0,0032	0,32%
21	59	0	25	4,722	1438,747	0,0033	0,33%
22	60	1	25	5,368	1642,570	0,0033	0,33%
23	77	1	63	5,258	1642,997	0,0032	0,32%
24	81	0	31	4,820	1440,799	0,0033	0,33%
25	82	0	36	5,576	1586,826	0,0035	0,35%
26	91	1	38	4,923	1641,293	0,0030	0,30%
27	94	1	35	5,352	1734,165	0,0031	0,31%
28	95	0	44	4,171	1402,991	0,0030	0,30%
29	113	1	52	5,496	1625,948	0,0034	0,34%
30	135	0	64	5,122	2 1568,139 0,		0,33%

Anhang 17: Volumen des Pallidums links aus den FreeSurfer-Daten

Geschlecht: weiblich = 0, männlich = 1, Vol, cm³ - Volumen des linken Pallidums aus den FreeSurfer-Daten, in cm³, FreeSurfer-TIV, cm³ - intrakranielles Gesamtvolumen aus den FreeSurfer-Daten in cm³, Vol, cm³/ FreeSurfer-TIV, cm³ - Volumenanteil des linken Pallidums am intrakraniellen Gesamtvolumen, (Vol, cm³/ SPM-TIV, cm³)x100% - prozentualer Volumenanteil des linken Pallidums am intrakraniellen Gesamtvolumen.

Nº	ID	Geschlecht	Alter	Vol, cm ³	FreeSurfer- TIV, cm ³	Vol, cm³/ FreeSurfer- TIV, cm³	(Vol, cm ³ / FreeSurfer- TIV, cm ³) x100%
1	4	1	23	2,254	1583,317	0,0014	0,14%
2	5	1	27	2,846	1807,529	0,0016	0,16%
3	8	0	65	2,166	1475,464	0,0015	0,15%
4	9	0	56	1,807	1327,286	0,0014	0,14%
5	10	1	61	2,149	1928,112	0,0011	0,11%
6	11	0	29	2,019	1568,254	0,0013	0,13%
7	12	0	21	2,300	1523,701	0,0015	0,15%
8	37	0	62	1,879	1427,776	0,0013	0,13%
9	38	1	57	2,032	1465,587	0,0014	0,14%
10	39	0	58	1,920	1277,558	0,0015	0,15%
11	40	1	54	2,283	1548,933	0,0015	0,15%
12	27	1	44	2,036	1587,296	0,0013	0,13%
13	36	0	42	2,007	1565,763	0,0013	0,13%
14	42	0	49	1,946	1436,959	0,0014	0,14%
15	43	0	37	1,104	1291,407	0,0009	0,09%
16	44	1	43	1,903	1571,858	0,0012	0,12%
17	45	1	66	2,009	1476,615	0,0014	0,14%
18	46	1	32	2,230	1668,967	0,0013	0,13%
19	48	1	46	1,984	1624,917	0,0012	0,12%
20	50	0	52	1,775	1354,393	0,0013	0,13%
21	59	0	25	1,932	1438,747	0,0013	0,13%
22	60	1	25	2,095	1642,570	0,0013	0,13%
23	77	1	63	2,230	1642,997	0,0014	0,14%
24	81	0	31	1,895	1440,799	0,0013	0,13%
25	82	0	36	2,311	1586,826	0,0015	0,15%
26	91	1	38	2,155	1641,293	0,0013	0,13%
27	94	1	35	2,260	1734,165	0,0013	0,13%
28	95	0	44	1,566	1402,991	0,0011	0,11%
29	113	1	52	2,072	1625,948	0,0013	0,13%
30	135	0	64	2,459	1568,139	0,0016	0,16%

Anhang 18: Volumen des Pallidums rechts aus den FreeSurfer-Daten

Geschlecht: weiblich = 0, männlich = 1, Vol, cm³ - Volumen des rechten Pallidums aus den FreeSurfer-Daten, in cm³, FreeSurfer-TIV, cm³ - intrakranielles Gesamtvolumen aus den FreeSurfer-Daten in cm³, Vol, cm³/ FreeSurfer-TIV, cm³ - Volumenanteil des rechten Pallidums am intrakraniellen Gesamtvolumen, (Vol, cm³/ SPM-TIV, cm³)x100% - prozentualer Volumenanteil des rechten Pallidums am intrakraniellen Gesamtvolumen.

N⁰	ID	Geschlecht	Alter	FreeSurfer- Vol, cm ³ TIV, cm ³		Vol, cm³/ FreeSurfer- TIV, cm³	(Vol, cm ³ / FreeSurfer- TIV, cm ³) x100%
1	4	1	23	2,138	1583,317	0,0014	0,14%
2	5	1	27	2,551	1807,529	0,0014	0,14%
3	8	0	65	2,106	1475,464	0,0014	0,14%
4	9	0	56	1,579	1327,286	0,0012	0,12%
5	10	1	61	1,956	1928,112	0,0010	0,10%
6	11	0	29	2,127	1568,254	0,0014	0,14%
7	12	0	21	2,147	1523,701	0,0014	0,14%
8	37	0	62	1,898	1427,776	0,0013	0,13%
9	38	1	57	1,888	1465,587	0,0013	0,13%
10	39	0	58	1,858	1277,558	0,0015	0,15%
11	40	1	54	1,972	1548,933	0,0013	0,13%
12	27	1	44	1,754	1587,296	0,0011	0,11%
13	36	0	42	2,321	1565,763	0,0015	0,15%
14	42	0	49	1,825	1436,959	0,0013	0,13%
15	43	0	37	1,318	1291,407	0,0010	0,10%
16	44	1	43	1,928	1571,858	0,0012	0,12%
17	45	1	66	1,944	1476,615	0,0013	0,13%
18	46	1	32	2,290	1668,967	0,0014	0,14%
19	48	1	46	2,058	1624,917	0,0013	0,13%
20	50	0	52	1,658	1354,393	0,0012	0,12%
21	59	0	25	1,939	1438,747	0,0013	0,13%
22	60	1	25	1,966	1642,570	0,0012	0,12%
23	77	1	63	2,181	1642,997	0,0013	0,13%
24	81	0	31	1,770	1440,799	0,0012	0,12%
25	82	0	36	2,111	1586,826	0,0013	0,13%
26	91	1	38	1,729	1641,293	0,0011	0,11%
27	94	1	35	2,289	1734,165	0,0013	0,13%
28	95	0	44	1,419	1402,991	0,0010	0,10%
29	113	1	52	2,027	1625,948	0,0012	0,12%
30	135	0	64	2,436	1568,139	0,0016	0,16%

Anhang 19.

Intensitätswerte des linken Caudatus aus den handsegmentierten Daten.

Mean T1, Mean T2, Mean FLAIR – Mittelwert der Intensitätswerte des linken Caudatus jeweils in der T1-, T2-, FLAIR-Sequenz;

Mean Splenium T1, Mean Splenium T2, Mean Splenium FLAIR - Mittelwert der Intensitäten des Spleniums jeweils in der T1-, T2-, FLAIR-Sequenz als Kontrollwert genommen;

Mean T1 / Mean Splenium T1 – Relation vom Intensitätsmittelwert des linken Caudatus zum Intensitätsmittelwert des Spleniums in der T1-Sequenz; Mean T2 / Mean Splenium T2 – Relation vom Intensitätsmittelwert des linken Caudatus zum Intensitätsmittelwert des Spleniums in der T2-Sequenz; Mean FLAIR / Mean Splenium FLAIR – Relation vom Intensitätsmittelwert des linken Caudatus zum Intensitätsmittelwert des Spleniums in der FLAIR-Sequenz.

			Mean	Mean Splenium	Mean T1/ Mean Splenium		Mean Splenium	Mean T2/Mean Splenium	Mean	Mean Splenium	Mean FLAIR/Splenium
N⁰	ID	Alter	T1	T1	T1	Mean T2	T2	T2	FLAIR	FLAIR	FLAIR
1	4	23	185,66	270,58	0,686	158,01	105,12	1,503	104,37	84,33	1,238
2	5	27	196,50	282,43	0,696	138,31	100,15	1,381	105,46	84,90	1,242
3	8	65	182,83	258,07	0,708	176,26	103,79	1,698	88,93	80,93	1,099
4	9	56	183,45	275,12	0,667	165,34	88,34	1,872	98,95	80,75	1,225
5	10	61	176,00	248,94	0,707	103,92	80,87	1,285	83,50	69,77	1,197
6	11	29	175,56	245,91	0,714	129,71	91,88	1,412	94,46	78,41	1,205
7	12	21	189,78	269,17	0,705	139,43	111,39	1,252	108,04	93,95	1,150
8	37	62	200,16	278,70	0,718	136,49	95,47	1,430	107,06	81,44	1,315
9	38	57	185,48	261,95	0,708	131,57	89,92	1,463	96,36	71,91	1,340
10	39	58	161,18	224,02	0,719	121,75	88,59	1,374	83,04	71,79	1,157
11	40	54	178,31	253,56	0,703	142,34	111,85	1,273	96,80	86,12	1,124
12	27	44	177,67	251,93	0,705	127,88	86,07	1,486	90,39	73,95	1,222
13	36	42	175,53	238,23	0,737	117,10	88,64	1,321	86,24	72,89	1,183
14	42	49	181,60	252,18	0,720	117,62	86,83	1,355	85,70	72,47	1,183
15	43	37	155,66	215,60	0,722	119,05	81,91	1,453	83,31	68,06	1,224

16	44	43	153,10	218,74	0,700	111,95	95,87	1,168	86,11	79,90	1,078
17	45	66	160,15	228,40	0,701	122,18	60,86	2,007	81,85	56,50	1,449
18	46	32	159,61	223,86	0,713	101,13	76,14	1,328	73,56	59,48	1,237
19	48	46	165,54	237,14	0,698	118,24	92,31	1,281	86,48	71,94	1,202
20	50	52	158,31	226,37	0,699	124,04	83,95	1,478	79,32	66,86	1,186
21	59	25	193,08	276,90	0,697	145,73	115,08	1,266	105,60	90,15	1,171
22	60	25	178,06	261,80	0,680	132,25	81,31	1,627	86,71	68,07	1,274
23	77	63	154,62	213,47	0,724	92,72	74,92	1,238	75,41	66,67	1,131
24	81	31	175,87	247,20	0,711	130,05	98,89	1,315	99,17	82,00	1,209
25	82	36	177,95	246,89	0,721	123,75	96,79	1,279	94,53	79,90	1,183
26	91	38	158,07	205,55	0,769	143,55	90,52	1,586	97,61	81,14	1,203
27	94	35	205,59	294,94	0,697	143,91	108,78	1,323	107,05	84,62	1,265
28	95	44	167,27	227,53	0,735	120,07	80,50	1,492	88,48	66,80	1,325
29	113	52	195,74	267,44	0,732	182,44	99,14	1,840	83,89	79,59	1,054
30	135	64	202,57	284,64	0,712	134,74	97,45	1,383	98,10	80,90	1,213

Fortsetzung des Anhangs 19.

Anhang 20.

Intensitätswerte des rechten Caudatus aus den handsegmentierten Daten.

Mean T1, Mean T2, Mean FLAIR – Mittelwert der Intensitätswerte des rechten Caudatus jeweils in der T1-, T2-, FLAIR-Sequenz;

Mean Splenium T1, Mean Splenium T2, Mean Splenium FLAIR - Mittelwert der Intensitäten des Spleniums jeweils in der T1-, T2-, FLAIR-Sequenz als Kontrollwert genommen;

Mean T1 / Mean Splenium T1 – Relation vom Intensitätsmittelwert des rechten Caudatus zum Intensitätsmittelwert des Spleniums in der T1-Sequenz; Mean T2 / Mean Splenium T2 – Relation vom Intensitätsmittelwert des rechten Caudatus zum Intensitätsmittelwert des Spleniums in der T2-Sequenz; Mean FLAIR / Mean Splenium FLAIR – Relation vom Intensitätsmittelwert des rechten Caudatus zum Intensitätsmittelwert des Spleniums in der FLAIR-Sequenz.

	ID		Mean	Mean Splenium	Mean T1/ Mean Splenium		Mean Splenium	Mean T2/Mean Splenium	Mean	Mean Splenium	Mean FLAIR/Splenium
Nº	ID	Alter	11	11	11	Mean 12	12	12	FLAIR	FLAIR	FLAIR
1	4	23	180,25	270,58	0,666	147,18	105,12	1,400	103,84	84,33	1,231
2	5	27	190,69	282,43	0,675	141,28	100,15	1,411	105,29	84,90	1,240
3	8	65	180,74	258,07	0,700	199,78	103,79	1,925	86,91	80,93	1,074
4	9	56	177,37	275,12	0,645	161,55	88,34	1,829	96,18	80,75	1,191
5	10	61	167,08	248,94	0,671	154,48	80,87	1,910	77,29	69,77	1,108
6	11	29	170,74	245,91	0,694	140,14	91,88	1,525	92,51	78,41	1,180
7	12	21	181,91	269,17	0,676	141,95	111,39	1,274	105,54	93,95	1,123
8	37	62	188,98	278,70	0,678	160,14	95,47	1,677	106,26	81,44	1,305
9	38	57	179,74	261,95	0,686	144,22	89,92	1,604	93,01	71,91	1,294
10	39	58	156,72	224,02	0,700	115,98	88,59	1,309	82,21	71,79	1,145
11	40	54	174,33	253,56	0,688	136,40	111,85	1,219	94,45	86,12	1,097
12	27	44	175,01	251,93	0,695	121,88	86,07	1,416	87,46	73,95	1,183
13	36	42	168,42	238,23	0,707	108,43	88,64	1,223	85,90	72,89	1,178
14	42	49	174,57	252,18	0,692	115,59	86,83	1,331	83,50	72,47	1,152
15	43	37	152,17	215,60	0,706	110,61	81,91	1,350	81,56	68,06	1,198

16	44	43	149,36	218,74	0,683	125,23	95,87	1,306	86,42	79,90	1,082
17	45	66	154,66	228,40	0,677	102,32	60,86	1,681	83,59	56,50	1,479
18	46	32	153,04	223,86	0,684	116,41	76,14	1,529	74,83	59,48	1,258
19	48	46	162,19	237,14	0,684	113,07	92,31	1,225	87,73	71,94	1,220
20	50	52	154,57	226,37	0,683	108,16	83,95	1,288	80,46	66,86	1,203
21	59	25	190,29	276,90	0,687	151,56	115,08	1,317	104,51	90,15	1,159
22	60	25	173,97	261,80	0,665	130,17	81,31	1,601	90,09	68,07	1,324
23	77	63	150,33	213,47	0,704	97,17	74,92	1,297	75,57	66,67	1,134
24	81	31	169,15	247,20	0,684	130,93	98,89	1,324	96,97	82,00	1,183
25	82	36	172,68	246,89	0,699	122,04	96,79	1,261	92,48	79,90	1,157
26	91	38	163,91	205,55	0,797	140,02	90,52	1,547	97,33	81,14	1,200
27	94	35	196,88	294,94	0,668	148,23	108,78	1,363	103,70	84,62	1,225
28	95	44	171,79	227,53	0,755	133,30	80,50	1,656	92,13	66,80	1,379
29	113	52	188,33	267,44	0,704	159,99	99,14	1,614	89,75	79,59	1,128
30	135	64	195,12	284,64	0,685	141,59	97,45	1,453	98,94	80,90	1,223

Fortsetzung des Anhangs 20.

Anhang 21.

Intensitätswerte des linken Putamens aus den handsegmentierten Daten.

Mean T1, Mean T2, Mean FLAIR – Mittelwert der Intensitätswerte des linken Putamens jeweils in der T1-, T2-, FLAIR-Sequenz;

Mean Splenium T1, Mean Splenium T2, Mean Splenium FLAIR - Mittelwert der Intensitäten des Spleniums jeweils in der T1-, T2-, FLAIR-Sequenz als Kontrollwert genommen;

Mean T1 / Mean Splenium T1 – Relation vom Intensitätsmittelwert des linken Putamens zum Intensitätsmittelwert des Spleniums in der T1-Sequenz; Mean T2 / Mean Splenium T2 – Relation vom Intensitätsmittelwert des linken Putamens zum Intensitätsmittelwert des Spleniums in der T2-Sequenz; Mean FLAIR / Mean Splenium FLAIR – Relation vom Intensitätsmittelwert des linken Putamens zum Intensitätsmittelwert des Spleniums in der FLAIR-Sequenz.

Na	ID	Alfor	Mean	Mean Splenium	Mean T1/ Mean Splenium	Meen T2	Mean Splenium	Mean T2/Mean Splenium T2	Mean	Mean Splenium	Mean FLAIR/Splenium
JN≌ 1	ID 4	Alter	11	11	0.7(1	Mean 12	12	12		FLAIR	
1	4	23	205,86	270,58	0,761	135,82	105,12	1,292	99,16	84,33	1,1/6
2	5	27	221,35	282,43	0,784	141,66	100,15	1,414	99,15	84,90	1,168
3	8	65	204,20	258,07	0,791	119,62	103,79	1,153	90,67	80,93	1,120
4	9	56	204,07	275,12	0,742	131,72	88,34	1,491	97,07	80,75	1,202
5	10	61	191,68	248,94	0,770	108,50	80,87	1,342	75,87	69,77	1,087
6	11	29	196,55	245,91	0,799	121,62	91,88	1,324	91,52	78,41	1,167
7	12	21	212,90	269,17	0,791	131,07	111,39	1,177	103,81	93,95	1,105
8	37	62	219,10	278,70	0,786	140,10	95,47	1,467	103,62	81,44	1,272
9	38	57	207,48	261,95	0,792	127,79	89,92	1,421	93,11	71,91	1,295
10	39	58	180,24	224,02	0,805	105,01	88,59	1,185	73,77	71,79	1,028
11	40	54	198,18	253,56	0,782	138,87	111,85	1,242	92,64	86,12	1,076
12	27	44	193,63	251,93	0,769	115,94	86,07	1,347	83,72	73,95	1,132
13	36	42	193,93	238,23	0,814	106,08	88,64	1,197	80,71	72,89	1,107
14	42	49	199,71	252,18	0,792	113,23	86,83	1,304	80,00	72,47	1,104
15	43	37	172,65	215,60	0,801	110,13	81,91	1,345	78,05	68,06	1,147

16	44	43	165,59	218,74	0,757	115,43	95,87	1,204	83,40	79,90	1,044
17	45	66	175,52	228,40	0,768	96,10	60,86	1,579	76,22	56,50	1,349
18	46	32	174,79	223,86	0,781	102,28	76,14	1,343	70,06	59,48	1,178
19	48	46	184,78	237,14	0,779	106,04	92,31	1,149	79,26	71,94	1,102
20	50	52	170,00	226,37	0,751	103,82	83,95	1,237	75,90	66,86	1,135
21	59	25	223,11	276,90	0,806	144,83	115,08	1,258	102,62	90,15	1,138
22	60	25	196,86	261,80	0,752	125,11	81,31	1,539	81,20	68,07	1,193
23	77	63	168,10	213,47	0,787	86,65	74,92	1,157	70,49	66,67	1,057
24	81	31	196,99	247,20	0,797	122,32	98,89	1,237	92,62	82,00	1,129
25	82	36	199,92	246,89	0,810	123,99	96,79	1,281	90,61	79,90	1,134
26	91	38	171,86	205,55	0,836	126,36	90,52	1,396	96,23	81,14	1,186
27	94	35	230,78	294,94	0,782	144,42	108,78	1,328	103,20	84,62	1,220
28	95	44	183,72	227,53	0,807	109,50	80,50	1,360	83,76	66,80	1,254
29	113	52	217,47	267,44	0,813	117,65	99,14	1,187	78,01	79,59	0,980
30	135	64	225,10	284,64	0,791	121,55	97,45	1,247	88,91	80,90	1,099

Fortsetzung des Anhangs 21.

Anhang 22.

Intensitätswerte des rechten Putamens aus den handsegmentierten Daten.

Mean T1, Mean T2, Mean FLAIR – Mittelwert der Intensitätswerte des rechten Putamens jeweils in der T1-, T2-, FLAIR-Sequenz; Mean Splenium T1, Mean Splenium T2, Mean Splenium FLAIR - Mittelwert der Intensitäten des Spleniums jeweils in der T1-, T2-, FLAIR-Sequenz als Kontrollwert genommen;

Mean T1 / Mean Splenium T1 – Relation vom Intensitätsmittelwert des rechten Putamens zum Intensitätsmittelwert des Spleniums in der T1-Sequenz; Mean T2 / Mean Splenium T2 – Relation vom Intensitätsmittelwert des rechten Putamens zum Intensitätsmittelwert des Spleniums in der T2-Sequenz; Mean FLAIR / Mean Splenium FLAIR – Relation vom Intensitätsmittelwert des rechten Putamens zum Intensitätsmittelwert des Spleniums in der FLAIR-Sequenz.

			Mean	Mean Splenium	Mean T1/ Mean Splenium		Mean Splenium	Mean T2/Mean Splenium	Mean	Mean Splenium	Mean FLAIR/Splenium
N⁰	ID	Alter	T1	T1	T1	Mean T2	T2	T2	FLAIR	FLAIR	FLAIR
1	4	23	202,47	270,58	0,748	134,37	105,12	1,278	98,22	84,33	1,165
2	5	27	211,46	282,43	0,749	135,25	100,15	1,350	98,98	84,90	1,166
3	8	65	198,62	258,07	0,770	113,38	103,79	1,092	87,37	80,93	1,080
4	9	56	197,60	275,12	0,718	121,99	88,34	1,381	92,35	80,75	1,144
5	10	61	181,92	248,94	0,731	99,66	80,87	1,232	70,69	69,77	1,013
6	11	29	187,62	245,91	0,763	116,22	91,88	1,265	88,81	78,41	1,133
7	12	21	201,12	269,17	0,747	127,64	111,39	1,146	98,90	93,95	1,053
8	37	62	208,67	278,70	0,749	136,20	95,47	1,427	99,18	81,44	1,218
9	38	57	195,37	261,95	0,746	122,07	89,92	1,358	88,52	71,91	1,231
10	39	58	174,51	224,02	0,779	97,44	88,59	1,100	70,52	71,79	0,982
11	40	54	191,92	253,56	0,757	130,90	111,85	1,170	91,42	86,12	1,062
12	27	44	191,92	251,93	0,762	112,57	86,07	1,308	78,02	73,95	1,055
13	36	42	185,82	238,23	0,780	103,21	88,64	1,164	78,29	72,89	1,074
14	42	49	191,61	252,18	0,760	105,91	86,83	1,220	76,19	72,47	1,051
15	43	37	166,87	215,60	0,774	104,80	81,91	1,279	76,30	68,06	1,121

16	44	43	162,71	218,74	0,744	112,92	95,87	1,178	83,79	79,90	1,049
17	45	66	170,80	228,40	0,748	93,72	60,86	1,540	77,51	56,50	1,372
18	46	32	168,71	223,86	0,754	108,27	76,14	1,422	68,67	59,48	1,154
19	48	46	180,17	237,14	0,760	108,66	92,31	1,177	79,72	71,94	1,108
20	50	52	166,69	226,37	0,736	101,16	83,95	1,205	74,19	66,86	1,110
21	59	25	214,52	276,90	0,775	139,49	115,08	1,212	100,39	90,15	1,114
22	60	25	193,62	261,80	0,740	122,82	81,31	1,511	85,54	68,07	1,257
23	77	63	164,18	213,47	0,769	86,48	74,92	1,154	70,53	66,67	1,058
24	81	31	188,76	247,20	0,764	124,55	98,89	1,260	91,57	82,00	1,117
25	82	36	191,32	246,89	0,775	121,91	96,79	1,260	87,75	79,90	1,098
26	91	38	179,58	205,55	0,874	126,82	90,52	1,401	95,29	81,14	1,174
27	94	35	217,97	294,94	0,739	135,91	108,78	1,249	99,33	84,62	1,174
28	95	44	190,58	227,53	0,838	113,89	80,50	1,415	86,95	66,80	1,302
29	113	52	204,54	267,44	0,765	116,17	99,14	1,172	84,95	79,59	1,067
30	135	64	215,60	284,64	0,757	123,70	97,45	1,269	87,79	80,90	1,085

Fortsetzung des Anhangs 22.

Anhang 23.

Intensitätswerte des linken Pallidums aus den handsegmentierten Daten.

Mean T1, Mean T2, Mean FLAIR – Mittelwert der Intensitätswerte des linken Pallidums jeweils in der T1-, T2-, FLAIR-Sequenz;

Mean Splenium T1, Mean Splenium T2, Mean Splenium FLAIR - Mittelwert der Intensitäten des Spleniums jeweils in der T1-, T2-, FLAIR-Sequenz als Kontrollwert genommen;

Mean T1 / Mean Splenium T1 – Relation vom Intensitätsmittelwert des linken Pallidums zum Intensitätsmittelwert des Spleniums in der T1-Sequenz; Mean T2 / Mean Splenium T2 – Relation vom Intensitätsmittelwert des linken Pallidums zum Intensitätsmittelwert des Spleniums in der T2-Sequenz; Mean FLAIR / Mean Splenium FLAIR – Relation vom Intensitätsmittelwert des linken Pallidums zum Intensitätsmittelwert des Spleniums in der FLAIR-Sequenz.

№	ID	Alter	Mean T1	Mean Splenium T1	Mean T1/ Mean Splenium T1	Mean T2	Mean Splenium T2	Mean T2/Mean Splenium T2	Mean FLAIR	Mean Splenium FLAIR	Mean FLAIR/Splenium FLAIR
1	4	23	253,02	270,58	0,935	95,08	105,12	0,905	74,07	84,33	0,878
2	5	27	266,46	282,43	0,943	102,77	100,15	1,026	74,41	84,90	0,876
3	8	65	246,06	258,07	0,953	90,47	103,79	0,872	68,79	80,93	0,850
4	9	56	254,30	275,12	0,924	89,41	88,34	1,012	67,96	80,75	0,842
5	10	61	225,73	248,94	0,907	84,16	80,87	1,041	61,42	69,77	0,880
6	11	29	237,39	245,91	0,965	86,76	91,88	0,944	68,88	78,41	0,878
7	12	21	254,90	269,17	0,947	93,29	111,39	0,837	79,26	93,95	0,844
8	37	62	264,83	278,70	0,950	98,20	95,47	1,029	77,57	81,44	0,953
9	38	57	252,50	261,95	0,964	87,95	89,92	0,978	64,72	71,91	0,900
10	39	58	209,77	224,02	0,936	80,93	88,59	0,913	56,38	71,79	0,785
11	40	54	243,91	253,56	0,962	99,73	111,85	0,892	71,03	86,12	0,825
12	27	44	233,19	251,93	0,926	85,75	86,07	0,996	65,78	73,95	0,890
13	36	42	230,37	238,23	0,967	76,45	88,64	0,862	60,27	72,89	0,827
14	42	49	239,34	252,18	0,949	85,56	86,83	0,985	62,44	72,47	0,862
15	43	37	208,20	215,60	0,966	80,84	81,91	0,987	57,44	68,06	0,844

16	44	43	200,66	218,74	0,917	82,57	95,87	0,861	65,00	79,90	0,813
17	45	66	204,14	228,40	0,894	69,02	60,86	1,134	52,61	56,50	0,931
18	46	32	210,83	223,86	0,942	68,45	76,14	0,899	47,55	59,48	0,800
19	48	46	227,25	237,14	0,958	78,43	92,31	0,850	56,88	71,94	0,791
20	50	52	205,68	226,37	0,909	81,01	83,95	0,965	60,16	66,86	0,900
21	59	25	268,75	276,90	0,971	114,11	115,08	0,992	81,47	90,15	0,904
22	60	25	239,52	261,80	0,915	82,64	81,31	1,016	53,39	68,07	0,784
23	77	63	200,78	213,47	0,941	59,33	74,92	0,792	53,41	66,67	0,801
24	81	31	235,84	247,20	0,954	93,61	98,89	0,947	72,99	82,00	0,890
25	82	36	243,50	246,89	0,986	94,75	96,79	0,979	69,41	79,90	0,869
26	91	38	186,34	205,55	0,907	82,62	90,52	0,913	69,09	81,14	0,852
27	94	35	282,49	294,94	0,958	104,66	108,78	0,962	77,85	84,62	0,920
28	95	44	199,45	227,53	0,877	71,04	80,50	0,883	56,33	66,80	0,843
29	113	52	259,82	267,44	0,972	91,67	99,14	0,925	60,69	79,59	0,763
30	135	64	270,49	284,64	0,950	95,49	97,45	0,980	72,46	80,90	0,896

Fortsetzung des Anhangs 23.

Anhang 24.

Intensitätswerte des rechten Pallidums aus den handsegmentierten Daten.

Mean T1, Mean T2, Mean FLAIR – Mittelwert der Intensitätswerte des rechten Pallidums jeweils in der T1-, T2-, FLAIR-Sequenz; Mean Splenium T1, Mean Splenium T2, Mean Splenium FLAIR - Mittelwert der Intensitäten des Spleniums jeweils in der T1-, T2-, FLAIR-Sequenz

als Kontrollwert genommen;

Mean T1 / Mean Splenium T1 – Relation vom Intensitätsmittelwert des rechten Pallidums zum Intensitätsmittelwert des Spleniums in der T1-Sequenz; Mean T2 / Mean Splenium T2 – Relation vom Intensitätsmittelwert des rechten Pallidums zum Intensitätsmittelwert des Spleniums in der T2-Sequenz; Mean FLAIR / Mean Splenium FLAIR – Relation vom Intensitätsmittelwert des rechten Pallidums zum Intensitätsmittelwert des Spleniums in der FLAIR-Sequenz.

			Maan	Mean	Mean T1/ Mean Splenium		Mean Splenium	Mean T2/Mean Splenium	Mean	Mean	Mean FLAIR/Splenium
№	ID	Alter	T1	T1	T1	Mean T2	T2	T2	FLAIR	FLAIR	FLAIR
1	4	23	250,95	270,58	0,927	95,53	105,12	0,909	75,21	84,33	0,892
2	5	27	259,90	282,43	0,920	97,72	100,15	0,976	74,69	84,90	0,880
3	8	65	237,86	258,07	0,922	88,81	103,79	0,856	68,09	80,93	0,841
4	9	56	246,14	275,12	0,895	81,05	88,34	0,917	66,71	80,75	0,826
5	10	61	215,86	248,94	0,867	83,44	80,87	1,032	58,21	69,77	0,834
6	11	29	229,00	245,91	0,931	85,17	91,88	0,927	68,83	78,41	0,878
7	12	21	245,94	269,17	0,914	93,22	111,39	0,837	78,24	93,95	0,833
8	37	62	253,50	278,70	0,910	105,45	95,47	1,105	78,04	81,44	0,958
9	38	57	242,24	261,95	0,925	85,15	89,92	0,947	62,62	71,91	0,871
10	39	58	204,69	224,02	0,914	74,83	88,59	0,845	56,38	71,79	0,785
11	40	54	238,19	253,56	0,939	93,07	111,85	0,832	68,36	86,12	0,794
12	27	44	232,76	251,93	0,924	86,02	86,07	0,999	62,40	73,95	0,844
13	36	42	224,88	238,23	0,944	73,70	88,64	0,831	58,74	72,89	0,806
14	42	49	233,77	252,18	0,927	79,59	86,83	0,917	59,99	72,47	0,828
15	43	37	203,65	215,60	0,945	78,93	81,91	0,964	57,93	68,06	0,851

16	44	43	200,96	218,74	0,919	86,07	95,87	0,898	65,79	79,90	0,823
17	45	66	200,88	228,40	0,880	62,61	60,86	1,029	53,78	56,50	0,952
18	46	32	206,20	223,86	0,921	72,51	76,14	0,952	47,05	59,48	0,791
19	48	46	223,59	237,14	0,943	87,69	92,31	0,950	59,26	71,94	0,824
20	50	52	206,64	226,37	0,913	78,47	83,95	0,935	59,87	66,86	0,895
21	59	25	260,96	276,90	0,942	107,99	115,08	0,938	80,41	90,15	0,892
22	60	25	238,35	261,80	0,910	79,94	81,31	0,983	57,14	68,07	0,840
23	77	63	196,55	213,47	0,921	65,91	74,92	0,880	54,93	66,67	0,824
24	81	31	230,36	247,20	0,932	94,13	98,89	0,952	72,70	82,00	0,887
25	82	36	235,73	246,89	0,955	93,61	96,79	0,967	68,59	79,90	0,858
26	91	38	192,85	205,55	0,938	87,85	90,52	0,970	70,30	81,14	0,866
27	94	35	269,52	294,94	0,914	99,36	108,78	0,913	75,81	84,62	0,896
28	95	44	206,84	227,53	0,909	73,68	80,50	0,915	58,77	66,80	0,880
29	113	52	249,33	267,44	0,932	89,91	99,14	0,907	69,02	79,59	0,867
30	135	64	265,06	284,64	0,931	94,97	97,45	0,975	73,16	80,90	0,904

Fortsetzung des Anhangs 24.