Analyses Of TALE-induced Resistance And Putative Susceptibility Genes In Tomato

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Kyrylo Schenstnyi aus Zaporizhzhia / Ukraine

Tübingen

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation:
Dekan:

1. Berichterstatter:
2. Berichterstatter:
05.11.2021

Prof. Dr. Thilo Stehle
Prof. Dr. Thomas Lahaye
Prof. Dr. Rosa Lozano-Duran

Wer kennt die Welt? Wer sich selbst kennt.
(Novalis, Schriften)

CONTENTS

CONTENTS VII
LIST OF PUBLICATIONS XI
LIST OF FIGURES XIII
LIST OF TABLES XVII
ABBREVIATIONS XIX
ABSTRACT 1
ZUSAMMENFASSUNG 3
1 INTRODUCTION 5
1.1 TALEs manipulate expression of host genes 5
1.1.1 TALEs upregulate host genes to promote disease symptoms. 6
1.1.2 Transcriptionally activated by TALEs executor resistance genes cause cell death and restrict growth of biotrophic pathogens 8
1.1.3 TALE-induced immunity is a separate case of the effector-triggered immunity 9
1.2 S. Iycopersicum - X. euvesicatoria is a suitable system for a comparison of NLR- and executor-mediated cell death and immunity pathways. 10
1.2.1 Tomato as a playground to decipher executor-mediated pathways 10
1.2.2 An EIP and dTALE enable pathogen-free and pathogen-dependent transcriptional activation of the executor R genes 12
1.2.3 CRISPR/Cas9 system is a fast and reliable tool for gene knockout 14
1.3 Aims of this work. 15
2 RESULTS 17
2.1 CC-Bs4, a Bs4 null mutant, enables the comparison of NLR- and executor-mediated pathways 17
2.1.1 $\operatorname{SpBs} 4$ is a reduced function orthologue of $S I B s 4$ 17
2.1.2 CRISPR/Cas9-engineered $B s 4$ is a null mutant 19
2.2 Bs3, an executor protein from pepper, is functional in tomato. 27
2.2.1 Estradiol-inducible executor R genes cause cell death in N. benthamiana. 27
2.2.2 Estradiol-mediated transcriptional activation of $B s 3$ causes cell death in tomato 29
2.2.3 dTALE34 transcriptionally activates not estradiol-inducible Bs3 in CC-Bs4 background 32
2.2.4 Bs4 has no detectable impact on dTALE34-dependent transcriptional activation of the Bs3 transgene 35
2.2.5 Bs4 mediates recognition of dTALEs with 35 aa-long repeats in tomato. 36
2.2.6 Bs3 confers resistance to Xe 85-10 dTALE34 in tomato 38
2.3 Does Bs3 exploit canonical NLR-mediated immunity pathways? 40
2.3.1 Trans-generational heritability of Cas9 ${ }^{\text {EDS1 }}$ activity facilitates CC-EDS1 CC-Bs4 Bs3 line development 40
2.3.2 CC-EDS1 does not abolish Bs3-mediated cell death in tomato. 48
2.4 AvrBs3 manipulates the expression of tomato host genes 50
2.4.1 Bs4 is epistatic to disease symptoms induced by AvrBs3 and AvrHah1 in tomato 50
2.4.2 Putative Bs4-mediated resistance to $\mathrm{Xe} 85-10$ avrBs4 was not quantified in the leaflet infiltration assay 51
2.4.3 AvrBs3 upregulates transcription of bHLHO22 to cause hypotrophy and water soaking in tomato 53
2.4.4 The UPA box targeted by AvrBs3 and AvrHah1 and its flanking sequences are conserved within the 5^{\prime} UTRs of bHLHO22-like genes from solanaceous spp. 61
3 DISCUSSION 65
3.1 Bs4 should play a crucial role in immunity of Solanum spp 65
3.2 Does AvrBs4 transcriptionally upregulate tomato host genes? 67
3.3 AvrHah1 and AvrBs3 target a putative cis-regulatory element within 5'UTR of $\mathrm{bHLHO22}$-like genes 69
3.4 AvrHah1- and AvrBs3-induced disease symptoms may abolish Bs4-mediated cell death 71
3.5 β-estradiol inducible system does not provide a tight control over a transgene 73
3.6 Bs3-mediated pathways are preserved within solanaceous species 74
3.7 Bs3 does not mediate cell death via EDS1 75
3.8 Combination of Bs3 and Bs4 as a source of resistance against Xanthomonas species 77
3.9 Conclusions 79
4 MATERIALS AND METHODS 83
4.1 Bacterial strains, media and antibiotics 83
4.2 Plant methods 83
4.2.1 Plant species and genotypes 83
4.2.2 Assembly of vectors for CRISPR/Cas9-mediated mutagenesis of tomato genes 84
4.2.3 Assembly of the constructs containing executor R genes under control of the EIP for stable tomato transformation 85
4.2.4 Cloning of SIBs4, SpBs4, and CC-Bs4 86
4.2.5 Transient expression in N. benthamiana 86
4.2.6 Stable tomato transformations and event characterisation 87
4.2.7 Identification of number of inserted Bs3 transgene copies and their genomic location in stable tomato lines 88
4.2.8 Cloning of dTALEs and TALEs for X. euvesicatoria -mediated tomato infections 90
4.2.9 Phenotyping of plants with the liquid estradiol and mock treatments. 91
4.2.10 Phenotyping of tomato and pepper plants using X. euvesicatoria 91
4.2.11 Bacterial in planta growth assay 91
4.2.12 In silico analysis of putative AvrBs4, AvrBs3, and AvrHah1 EBEs in tomato genome 92
4.2.13 TALE and $B s 3 p-E B E^{G e n e l D}: G U S$ reporter assay 92
4.2.14 TALE-mediated tomato target gene upregulation assays in tomato. 94
4.2.15 RT-PCR and qRT-PCR 94
4.2.16 Mining of plant genomes for tomato bHLHO 22 orthologues and alignment of sequences 96
4.3 Quantification and statistical analyses. 96
REFERENCES 97
SUPPLEMENTARY FIGURES 109

CONTENTS

SUPPLEMENTARY INFORMATION 115
5.1 Genomic locations of the integrated EIP:Bs3-3xFLAG-T2A-GFP transgene copies within the chromosome 7 of the J8 (Bs4 Bs3) line 115
5.2 Genomic sequences of bHLHO22-like genes and their upstream genomic sequences identified within the genomes of solanaceous species 117
5.3 UPA box containing transcribed RNA sequences identified in solanaceous species 132
ACKNOWLEDGEMENTS 135

LIST OF PUBLICATIONS

From the work presented in this thesis the following manuscript is in preparation:

Tomato CRISPR/Cas mutants lacking the TALE-sensing resistance (R) protein Bs4: a novel plant platform for discovery of TALE-induced disease phenotypes and genetic dissection of executor R genes

Kyrylo Schenstnyi, Annett Strauß, Angela Dressel, Robert Morbitzer, Markus Wunderlich, Ana Gabriela Andrade, Caterina Brancato, Kenneth Wayne Berendzen, Thomas Lahaye

LIST OF FIGURES

Figure 1. AvrBs3-like TALEs consist of four main structural elements 5
Figure 2. AvrBs3 transcriptionally upregulates UPA2O via interaction with the EBE UPA2O located upstream of UPA2O to promote disease symptoms. 7
Figure 3. AvrBs3-mediated transcriptional activation of $B s 3$ leads to cell death and immunity via unknown pathways 8
Figure 4. Bs4 mediates recognition of TALEs, their truncated derivatives, and dTALEs 11
Figure 5. The estradiol-inducible promoter provides a controlled expression of genes with detrimental or even lethal effects, such as executor R genes. 12
Figure 6. dTALE-mediated transcriptional activation of the executor transgene in the Bs4 background leads to cross-activation of Bs4-mediated and executor-mediated cell death and immunity pathways 13
Figure 7. TALEs and truncTALEs cause cell death in SIBs4 and SpBs4 backgrounds 18
Figure 8. $S p B s 4$ is a functional orthologue of $S I B s 4$ 18
Figure 9. Functional Bs4 is abundant within Solanum species 20
Figure 10. Five sgRNAs are used for CRISPR/Cas9-mediated Bs4 mutagenesis 21
Figure 11. CRISPR/Cas9-mediated Bs4 mutagenesis yields numerous null alleles (CC-Bs4). 22
Figure 12. CC-Bs4 alleles do not mediate AvrBs4 and AvrBs $4 \Delta 227$ recognition and cell death signalling 23
Figure 13. The loss of the cell death reaction to AvrBs4 and AvrBs4D227 in BC2 generation correlates with the homozygosity of the CC-Bs4 allele. 25
Figure 14. CC-Bs4 allele from the H 11 line does not mediate recognition of AvrBs4 in N. benthamiana leaves 26
Figure 15. Structural modules of the assembled EIP:Executor-3xFLAG-GFP constructs 27
Figure 16. Estradiol-inducible Bs3, Bs $4 C, X a 10$, and $X a 23$ cause cell death in N. benthamiana leaves 28
Figure 17. Estradiol-mediated transcriptional activation of Bs3 causes cell death in tomato 31
Figure 18. Delivery of dTALE34, but not AvrBs4 causes cell death in CC-Bs4 Bs3 tomato. 33
Figure 19. dTALE34 transcriptionally activates not estradiol-inducible Bs3 transgene in CC-Bs4 background. 34
Figure 20. dTALE34 activates transcription of Bs3 in the CC-Bs4 and Bs4 backgrounds...... 35

LIST OF FIGURES

Figure 21. Bs4 mediates recognition of dTALEs with 34 and 35 amino acid-long repeats 37
Figure 22. Bs3 confers resistance to Xe 85-10 dTALE34 in tomato 7 dpi 39
Figure 23. sgRNA designed for CRISPR/Cas9-mediated EDS1, SGT1a, and SGT1b mutagenesis in tomato 41
Figure 24. A cross between Cas9 ${ }^{E D S 1}$-containing TO CC-EDS1 Bs4 plant and EDS1 CC-Bs4 Bs3 line facilitates F2 CC-EDS1 CC-Bs4 Bs3 line development. 42
Figure 25. CRISPR/Cas9-mediated EDS1 mutagenesis and gene models of T0 CC-EDS1 mutants 43
Figure 26. CRISPR/Cas9-mediated SGT1a and SGT1b mutagenesis and gene models of TO CC-SGT1a and TO CC-SGT1b mutants. 46
Figure 27. CRISPR/Cas9-mediated EDS1 mutagenesis and gene models of four CC-EDS1 alleles identified in F1 generation 47
Figure 28. CC-EDS1 does not abolish Bs3-mediated cell death 49
Figure 29. AvrBs3 and AvrHah1 cause severe hypertrophy and water-soaking in the CC-Bs4 background 51
Figure 30. Bs4 does not confer resistance to Xe 85-10 avrBs4 in tomato 9 dpi 52
Figure 31. Xe 85-10 discard their pDSK602 avrBs4 and pDSK602 EV plasmids in planta 53
Figure 32. RVD composition of AvrBs4, AvrBs3, and AvrHah1 TALEs and sequence logos of their top 100 predicted targets in the tomato genome 54
Figure 33. AvrBs4, AvrBs3, and AvrHah1 interact with the respective EBEs of their predicted tomato target genes in planta 57
Figure 34. AvrBs3 transcriptionally upregulates all three tomato genes predicted as its putative targets 58
Figure 35. AvrBs3 and AvrHah1 transcriptionally upregulate bHLHO22 and PL in Bs4 and CC-Bs4 backgrounds 60
Figure 36. The UPA box targeted by AvrBs3 and AvrHah1 is a part of the 63 bp -long sequence which is conserved within the genomes of solanaceous species. 61
Figure 37. The mismatch at position " 1 " may prevent AvrBs4 binding to EBE ${ }^{\text {bHLHO73 }}$ 69
Figure 38. AvrBs3 and AvrHah1 target EBE ${ }^{\text {bHLHO22 }}$ to upregulate transcription of tomato bHLH022, an orthologue of pepper UPA20 72
Figure S1. Gene models and CRISPR/Cas9-generated mutations within 13 CC-EDS1 alleles identified in Casg ${ }^{E D S 1}$-free plants from F2 generation 109
Figure S2. Alignment of sequence fragments upstream of start codons of bHLHO22-like genes from genomes of solanaceous species112

LIST OF TABLES

Table 1. Summary of stable tomato transformations with the constructs containing the executor R genes under the control of the EIP 29
Table 2. Summary of the characterisation process of stable transgenic tomato lines containing Bs3 under the control of the EIP 30
Table 3. Known and selected putative AvrBs4, AvrBs3, and AvrHah1 targets with corresponding EBE sequences 55
Table 4. Original Xanthomonas strains and TALE-encoding genes isolated from them 68
Table 5. Bacterial strains 83
Table 6. Antibiotics and fungicides 83
Table 7. Media and buffers. 83
Table 8. List of plant species and genotypes used in this study 84
Table 9. Selected sgRNA sequences and their target sites 85
Table 10. Primer pairs used for genotyping of putative TO tomato lines 87
Table 11. Primer sequences used for identification of number of inserted transgene copies and their genomic location 89
Table 12. Primer sequences used for integration of $E B E^{G e n e l D}$ sequences into $\mathrm{pGWB} 3 *$ vector containing the native pepper $B s 3$ promoter 93
Table 13. Primer pairs used for RT-PCR. 94
Table 14. Primer pairs used for qRT-PCR. 95

ABBREVIATIONS

35s
aa
AAD
AP
At
A. tumefaciens

Avr
AvrHah1
BC
BCP
bHLH
bp
Bs3
Bs3p
Bs4
Bs4C
$C a$
Cas9
CC
cDNA
CDS
CFU
cm
CNL(s)
Cp
CRISPR
Cs
CS-domain
cV.

DSB
DNA

Cauliflower mosaic virus 35s
amino acid
Acidic activation domain
Aspartic proteinase
Arabidopsis thaliana
Agrobacterium tumefaciens
Avirulence
Avr protein homologous to AvrBs3 and Hax2 No. 1
Backcross
Blue copper protein
basic helix-loop-helix
basepair(s)
Bacterial spot disease R protein 3
Native Bs3 promoter
Bacterial spot disease resistance protein 4
Bacterial spot disease resistance protein 4 from $C p$
Capsicum annuum
CRISPR-associated protein 9
CRISPR/Cas9-engineered
complementary DNA
Coding sequence
Colony-forming units
centimetre
Coiled-coil domain-containing NLR(s)
Capsicum pubescens
Clustered regularly interspaced short palindromic repeats
Citrus sinensis
CHORD-SGT1-domain
cultivar
Double-strand break
Deoxyribonucleic acid

ABBREVIATIONS

dpi	days post-infiltration
dTALE	designer TALE
e.g.	exempli gratia
EBE(s)	Effector-binding element(s)
ECW	Early Calwonder
EDS1	Enhanced disease susceptibility 1
EF1 α	Elongation Factor 1α
EIP	Estradiol-inducible promoter
EP-domain	EDS1-PAD4-domain
ETI	Effector-triggered immunity
EtOH	Ethanol
EV	Empty vector
E. coli	Escherichia coli
F	Filial
FDR	False discovery rate
FMO	Flavin-containing monooxygenase
gDNA	genomic DNA
GFP	Green fluorescent protein
GOI	Gene-of-interest
GUS	β-glucuronidase
Hax	Homolog of AvrBs3 in Xanthomonas
HDR	Homology-directed repair
hpi	hours post-infiltration
HR	Hypersensitive response
HSP90	Heat shock protein 90
i.e.	id est
ICS1	Isochorismate Synthase 1
Indel	Insertion or deletion
iTALE(s)	interference TALE(s)
mRNA	messenger RNA
LB	Lysogeny Broth
LOB1	Lateral Organ Boundary 1

LRR	Leucine rich repeat
mGFP5	monomeric GFP5
MIB	Minimal Infiltration Buffer
MLA1	Mildew resistance locus a 1
MM	S. Iycopersicum cv. Moneymaker
MtU6	Medicago truncatula U6
n	Numbers of independent biological replicates
NADPH	Nicotinamide adenine dinucleotide phosphate
Nb	Nicotiana benthamiana
NB	Nucleotide-binding
NDR1	Non-race specific disease resistance 1
NHEJ	Non-homologous end joining
NHP	N -hydroxypipecolic acid
NLR(s)	NB and LRR domains-containing protein(s)
NLS(s)	Nuclear localisation signal(s)
NOSp	Nopaline synthase promoter
NOS-t	Nopaline synthase terminator
NPTII	Neomycin phosphotransferase II
NYG	Nutrient Yeast Glycerol
OD 600	Optical density measured at 600 nanometres
Os	Oryza sativa
PBS3	AvrPphB susceptible 3
PCR	Polymerase chain reaction
PE	Pectinesterase
Pip	Pipecolic acid
PL	Pectate lyase
PR	Pathogenesis-related Protein
pv.	pathovar
qRT-PCR	quantitative real-time PCR
R	Resistance
RACE	Rapid amplification of cDNA-ends
RAR1	Required for Mla12 resistance 1

ABBREVIATIONS

RbcS
RING
RNA
RNA-seq
RT-PCR
RVDs
RXO1
S
SA
SAR
sgRNA(s)
SGS-domain
SGT1
S. lycopersicum

SNP(s)
Sp
spp.
StUbi3
sun
SWEET(s)
TAF
TALE(s)
T-DNA
TIP41-Like
TIR
TNL(s)
TPR
truncTALE(s)
TTSS
UNS1
UP
UPA

Ribulose-1,5-bisphosphate carboxylase/oxygenase Subunit
Really interesting new gene
Ribonucleic acid
RNA sequencing
Reverse transcription PCR
Repeat variable di-residue(s)
Resistance to Xanthomonas oryzae 1
Susceptibility
Salicylic acid
Systemic acquired resistance
single guide RNA(s)
SGT1-specific-domain
Suppressor of the G2 allele of skp1
Solanum lycopersicum
Single-nucleotide polymorphism(s)
Solanum pennellii
species
Solanum tuberosum Ubiquitin 3
Suppressor of N
Sugars Will Eventually be Exported Transporter(s)
Transactivation function
Transcription activator-like effector(s)
Transfer DNA
TAP42 Interacting Protein of 41 kDA-Like
Toll-interleukin1-receptor
TIR domain-containing NLR(s)
Tetratricopeptide repeat
truncated TALE(s)
Type III secretion system
Unique nucleotide sequence 1
Unknown protein
Upregulated by AvrBs3

UTR	Untranslated region
VIGS	Virus-induced gene silencing
WT	Wild-type
Xa	Xanthomonas R protein
Xcc	Xanthomonas citri pv. citri
Xca	Xanthomonas campestris pv. armoraciae
Xe	Xanthomonas euvesicatoria
Xg	Xanthomonas gardneri
Xoo	Xanthomonas oryzae pv. oryzae
Xp	Xanthomonas perforans
XVE	Fusion protein LexA-VP16-ER
YEB	Yeast Extract Broth
zfBED	zinc-finger BED

ABSTRACT

Transcription activator-like effectors (TALEs) from Xanthomonas spp. interact with effectorbinding elements (EBEs) in the promoter regions of their target genes to upregulate host susceptibility (S) genes for virulence enhancement. To counteract the pathogen, pepper and rice species have evolved so-called executor resistance (R) genes, which upon transcriptional activation by TALEs lead to immediate cell death and restrict bacterial growth. Additionally, plants have evolved nucleotide-binding domain leucine rich repeat-containing proteins (NLRs) that are capable of TALE recognition and mediation of cell death. While NLR-mediated immunity pathways are well-studies, executor-mediated pathway components are unknown.

Bacterial spot 3 (Bs3), an executor R gene from pepper, causes cell death upon transcriptional activation by the corresponding TALE from Xanthomonas euvesicatoria, i.e. AvrBs3, while tomato Bacterial spot 4 (Bs4) NLR protein mediates recognition of numerous TALEs. As pepper is not amenable to transformation, the genetic dissection of Bs3-mediated pathways in pepper is not straightforward. Therefore, the main aim of this work was to generate Bs3 transgenic tomato lines lacking Bs4 as a tool to decipher Bs3-mediated pathways.

CRISPR/Cas9-mediated Bs4 mutagenesis yielded null alleles containing mutations within Bs4 coding sequence ($C C-B s 4$). Phenotyping experiments revealed that tomato lines containing CC-Bs4 alleles no longer showed TALE-dependent cell death. As the next step, transgenic tomato line containing estradiol-inducible Bs3 was generated. Upon transcriptional activation by estradiol in this line, Bs3 led to the cell death suggesting that Bs3-mediated pathway components are conserved between tomato and pepper. In addition, a designer TALE (dTALE) was engineered to bind the estradiol-inducible promoter upstream of the Bs3 CDS. When delivered by X. euvesicatoria, this dTALE activated transcription of the Bs3 transgene and led to a cell death phenotype. Analysis of bacterial growth showed that transcriptional activation of Bs3 correlated with reduced in planta growth of dTALE-containing X. euvesicatoria strain. In summary, the engineered Bs4 knockout line carrying the Bs3 transgene provide a basis for genetic dissection of the Bs3-mediated cell death and immunity pathway.

In addition, it was tested if the knockout of Bs4 affects TALE-dependent host gene activation. Even though Bs4 had no impact on TALE-dependent transcriptional activation of studied host genes, Bs4 was found to be epistatic to TALE-induced disease symptoms.

ZUSAMMENFASSUNG

Transkriptionsfaktor-ähnliche Effektoren (Transcription activator-like effectors, TALEs) aus Xanthomonas spp. binden an Effektorbindeelemente (EBEs) in den Promoterregionen pflanzlicher Zielgene (Suszeptibilitätsgene, S-Gene) und induzieren deren Transkription. Dadurch wird die bakterielle Virulenz begünstigt. Um dem entgegenzuwirken, haben Paprikaund Reis-Linien sogenannte Exekutor-Resistenzgene (R-Gene) evolviert, die nach TALEinduzierter transkriptioneller Aktivierung Zelltodreaktionen einleiten und damit das bakterielle Wachstum begrenzen. TAL-Effektoren können aber auch von nucleotide-binding domain leucine-rich repeat-Proteinen (NLRs) erkannt werden, wodurch ebenfalls Zelltodreaktionen ausgelöst werden. Während NLR-vermittelte Immunantworten bereits gut untersucht sind, sind die Signalwegkomponenten der Exekutor-vermittelten Abwehr noch unbekannt.

Bs3 (bacterial spot disease resistance gene no. 3) ist ein Exekutor- R-Gen aus Paprika, welches nach transkriptioneller Aktivierung durch den TAL-Effektor AvrBs3 aus Xanthomonas euvesicatoria Zelltodreaktionen auslöst. Bs4 (bacterial spot disease resistance gene no. 4) aus Tomate ist ein NLR-Protein, dass die Erkennung zahlreicher TALEs vermittelt. Da Paprikapflanzen für stabile Transformationen nicht einfach zugänglich sind, ist die genetische Aufklärung des Bs3-vermittelten Signalweges in Paprika schwierig. Ziel der vorliegenden Arbeit war es daher Bs3-transgene, Bs4 knock out-Tomaten als Werkzeug zur Analyse des Bs3vermittelten Signalwegs zu erstellen.

Mittels CRISPR/Cas9-Technologie konnten Tomatenpflanzen mit Mutationen in der Bs4 kodierenden Sequenz (knock out, CC-Bs4) generiert werden. In phänotypischen Analysen zeigten Tomatenpflanzen mit CC-Bs4 keinen TALE-abhängigen Zelltod mehr. CC-Bs4-Linien dienten als Basis zur Erstellung transgener Tomaten mit Estradiol-induzierbarem Bs3. Die transkriptionelle Aktivierung von Bs3 durch Estradiol resultierte in diesen Linien in einer Zelltodreaktion, was nahelegt, dass die Bs3-Signalwegkomponenten in Paprika und Tomate konserviert sind. Des Weiteren wurde ein designer TALE (dTALE) kloniert, der an den Estradiolinduzierbaren Promoter upstream der Bs3 kodierende Sequenz bindet. Nach X. euvesicatoriaInfektion aktiviert dieser dTALE die Transkription des Bs3-Transgens, was in einer Zelltodreaktion resultiert. Analysen des bakteriellen Wachstums zeigten, dass die transkriptionelle Aktivierung von Bs3 mit einem reduzierten Wachstum des dTALE-
enthaltenen X. euvesicatoria-Stamms korrelierte. Damit bilden die erstellten Bs3-transgenen, Bs4 knock out-Tomatenlinien die Basis zur genetischen Analyse der Bs3-vermittelten Immunantwort.

Zusätzlich wurde untersucht, ob der knock out von Bs4 die TALE-abhängigen Aktivierungen von Wirtsgenen beeinflusst. Obwohl Bs4 keinen Einfluss auf die TALE-induzierte transkriptionelle Aktivierung der untersuchten Wirtsgene hatte, zeigte sich, dass Bs4 epistatisch über TALE-induzierte Krankheitssymptome ist.

1 INTRODUCTION

1.1 TALEs manipulate expression of host genes.

Xanthomonas euvesicatoria (Xe) is a common bacterial pathogen of pepper, tomato, and other solanaceous species causing defoliation and necrotic lesions on fruits (R. Cox et al., 1956; J. B. Jones et al., 1998; Stall et al., 2009). Development of such symptoms happens in highly humid conditions after rainfalls and thus, is common within tropical and subtropical regions (R. Cox, 1966). Bacteria invade plants through storm-caused wounds, stomata, and hydathodes (Cerutti et al., 2017; Stall, 1995). Successful colonisation of the intercellular space requires bacteria to inject a cocktail of so-called "effectors", pathogen-associated virulent molecules (Roux et al., 2015; Toruño et al., 2016), via type III secretion system (TTSS; Blocker et al., 2001; Galán and Wolf-Watz, 2006; Salmond and Reeves, 1993) to promote virulence (Kay and Bonas, 2009; Qin et al., 2018; L. Tan et al., 2014) and to suppress host defence (J.D.G. Jones and Dangl, 2006; Schulze et al., 2012; Üstün et al., 2013; Üstün and Börnke, 2014).

Transcription activator-like effectors (TALEs) are a family of unique type III effectors, which manipulate host gene expression by acting like transcription factors (Boch and Bonas, 2010; K.L. Cox et al., 2017; Kay et al., 2007; Schornack et al., 2008). TALEs contain C-terminal nuclear localisation signals (NLSs) for translocation to the host nucleus (Figure 1; Boch and Bonas,

Figure 1. AvrBs3-like TALEs consist of four main structural elements. A TALE contains an N-terminal type III secretion signal for secretion via the TTSS. The C-terminal end of the TALE protein contains multiple NLSs for translocation to the nucleus and AAD for a transcriptional activation of a target gene. The central part of the TALE protein is a repeat region, which consists of an array of typically 34 aa-long tandemly arranged repeats that mediate DNA binding. AvrBs3 consists of 17,5 repeats. The individual repeats contain only a few polymorphisms. RVDs, i.e. two variable residues at positions 12 and 13 of each repeat, mediate base-specific interaction of the TALE with the EBE in the promoter region of a host target gene. The figure is adapted from Boch et al., 2009.

INTRODUCTION

2010). The hallmark of TALEs is the central repeat region, which consists of predominantly 34 amino acid (aa)-long repeats and mediates binding to the deoxyribonucleic acid (DNA; Figure 1; Boch and Bonas, 2010). The aa composition within the repeats is almost identical except for two variable residues at positions 12 and 13 of each repeat (Figure 1; Boch and Bonas, 2010). These repeat variable di-residues (RVDs) mediate base-specific interaction of TALEs with effector-binding elements (EBEs) in the promoter regions of host target genes (Figure 1; Boch et al., 2009; Mak et al., 2012; Moscou and Bogdanove, 2009). Host gene expression is manipulated via C-terminal acidic activation domain (AAD; Figure 1; Boch and Bonas, 2010).

Through knowing the TALE RVD sequence, i.e. the TALE-code, it is possible to identify potential EBEs within the promoters of annotated genes (Richter et al., 2014; Richter et al., 2016). Numerous software tools have been developed for the identification of EBEs within the promoter of putative target genes using TALE-code (Doyle et al., 2012; Grau et al., 2013; Pérez-Quintero et al., 2013).

1.1.1 TALEs upregulate host genes to promote disease symptoms.

The first discovered TALE is AvrBs3 from X. euvesicatoria (Bonas et al., 1989). AvrBs3 consists of 17.5 tandem 34 aa-long repeats and is known to induce Upregulated by AvrBs3 No. 20 (UPA20), a gene encoding a basic helix-loop-helix (bHLH) transcription factor in Capsicum annuum (Ca; Figure 2; Kay and Bonas, 2009; Kay et al., 2007). AvrBs3-upregulated UPA20 causes cell hypertrophy which is hypothesised to benefit bacterial multiplication and spread into new tissue (Figure 2; Kay et al., 2007; Marois et al., 2002).

AvrBs4 from X. euvesicatoria is another well-studied representative of AvrBs3-like TALEs (Ballvora, Schornack, et al., 2001; Schornack et al., 2004), which consists of 17.5 tandem 34 aa-long repeats. However, no AvrBs4-induced susceptibility targets have been reported so far (Ballvora, Schornack, et al., 2001; Schornack et al., 2004; Strauß et al., 2012).

AvrHah1 (Avr protein homologous to AvrBs3 and Hax2 No. 1) is an AvrBs3-like TALE from Xanthomonas gardneri (Xg ; Schornack et al., 2008). AvrHah1 consists of 13.5 repeat units, which have a unique architecture (Schornack et al., 2008; Schwartz et al., 2017). While majority of AvrBs3-like proteins consist from 34 aa-long repeats, AvrHah1 is composed of both 35 aa-long (units 1-6 and units 10-12) and 34 aa-long repeat units (units 7-9 and 13). 35 aalong repeats of AvrHah1 contain a proline at the position 33 (Schornack et al., 2008), which is
absent in 34 aa-long repeats of conventional AvrBs3-like TALEs (Ballvora, Pierre, et al., 2001; Gu et al., 2005; Morbitzer et al., 2011; Richter et al., 2014). AvrHah1 was also reported to upregulate UPA2O in C. annuum (Schornack et al., 2008), as well as bHLHO22 (Solyc03g097820), a UPA20 orthologue from Solanum lycopersicum (Schwartz et al., 2017). Interestingly, AvrHah1 and AvrBs3 target the same EBE within the promoter of UPA20, also known as UPA box (Schornack et al., 2008). It was demonstrated that AvrHah1-mediated upregulation of bHLHO22 induces PL (SolycO5gO14000), a gene encoding a pectate lyase (Schwartz et al., 2017), which acts as a promoter of hypertrophy in tomato and therefore, PL was recognised a secondary target of AvrHah1 (Schwartz et al., 2017).

Similar virulence effects were reported for other TALEs from numerous Xanthomonas spp. For example, PthA4, a TALE from Xanthomonas citri pathovar (pv.) citri (Xcc), is known to upregulate Citrus sinensis (Cs) Lateral Organ Boundary 1 (LOB1) to promote citrus canker disease symptoms (Y. Hu et al., 2016; Y. Hu et al., 2014). Numerous TALEs from Xanthomonas oryzae pv. oryzae (Xoo) upregulate expression of Oryza sativa (Os) Sugars Will Eventually be Exported Transporter (SWEET) genes: PthXo1 upregulates OsSWEET11 (Yang et al., 2006), PthXo2 targets SWEET13 (Zhou et al., 2015), while AvrXa7, PthXo3, TaIC, and TalF upregulate SWEET14 (Antony et al., 2010; Streubel et al., 2013; Yang and White, 2004; Yu et al., 2011).

Figure 2. AvrBs3 transcriptionally upregulates UPA2O via interaction with the EBE UPA2O located upstream of UPA20 to promote disease symptoms. RVDs within the repeat region of AvrBs3 bind to the basepairs of the EBE ${ }^{\text {UPA20 }}$ in a one-to-one fashion. Therefore, the EBE of the host target gene UPA2O is specified by the RVD composition of AvrBs3 central repeat domain. The RVD "NI" has a high affinity towards adenine ("A"; green), "HD" to cytosine ("C"; blue), "NG" to thymine (" T "; red), and "NS" has no strong base preference (grey). Additionally, TALEs contain N -terminal non-canonical repeats which require thymine at the position " 0 " of any EBE for an efficient interaction. A compatible AvrBs3 - EBEUPA2O interaction results in transcriptional activation of the downstream host gene, i.e. UPA20 (Kay et al., 2007). UPA20 is known to cause hypertrophy of leaf tissue and these disease symptoms are hypothesised to benefit bacterial virulence and, thereby increasing host susceptibility (Kay et al., 2007). The figure is adapted from Boch et al., 2009.

INTRODUCTION

1.1.2 Transcriptionally activated by TALEs executor resistance genes cause cell death and restrict growth of biotrophic pathogens.

Although TALEs promote virulence, they can also be avirulent factors in some hosts. TALEs are known to activate transcription of executor resistance (R) genes, which lead to cell death via unknown pathways (Römer et al., 2007; Strauß et al., 2012; Tian et al., 2014; Chunlian Wang et al., 2015). Promoter regions of executor R genes contain EBEs and serve as receptor traps of corresponding TALEs and therefore, executor R genes are expressed and execute cell death in the presence of their corresponding TALEs (Bogdanove et al., 2010).

So far, all identified executor R genes have been found in Capsicum (Römer et al., 2007; Strauß et al., 2012) and Oryza spp. (Tian et al., 2014; Chunlian Wang et al., 2015). Bacterial spot disease 3 ($B s 3$) from $C a$, a gene encoding a flavin-containing monooxygenase (FMO), is the most well-studied executor R gene (Figure 3; Krönauer et al., 2019; Römer et al., 2007). The Bs3 promoter contains a DNA motif of high similarity to the UPA box (Figure 3; Römer et al., 2007). Thus, when AvrBs3 and AvrHah1 activate transcription of Bs3, a functional cytoplasm and nuclear-localised Bs3 protein causes rapid cell death via unknown pathways in Capsicum and Nicotiana spp. (Figure 3; Krönauer et al., 2019; Römer et al., 2007; Schornack et al., 2008). Similarly, AvrBs4 was found to activate transcription of Bacterial spot 4 from Capsicum pubescens (Bs4C; (Strauß et al., 2012). AvrXa10 and AvrXa23, two TALEs from rice pathogen Xoo, transcriptionally activate their corresponding executor R genes, i.e. Xanthomonas R proteins 10 (Xa10; Tian et al., 2014) and 23 (Xa23; Chunlian Wang et al., 2015).

Figure 3. AvrBs3-mediated transcriptional activation of Bs3 leads to cell death and immunity via unknown pathways. RVDs within the repeat region of AvrBs3 bind to the base pairs of $E B E^{853}$ in a one-to-one fashion. Even though there are three single nucleotide polymorphisms (SNPs) between EBE UPA2O and EBE ${ }^{B S 3}$ (positions 11, 15, and 17.5), these SNPs are tolerated by AvrBs3 RVDs. The RVD "NI" has a high affinity towards adenine ("A"; green), "HD" to cytosine ("C"; blue), "NG" to thymine (" T "; red), and "NS" has no strong base preference (grey). Additionally, TALEs contain N-terminal non-canonical repeats which require thymine at the position " 0 " of any EBE for an efficient interaction. AvrBs3 - EBE ${ }^{B 53}$ interaction results in transcriptional activation of $B s 3$ (Römer et al., 2007). Bs3 is an FMO, which leads to cell death of leaf tissue and immunity via unknown pathways (Krönauer et al., 2019). The figure is adapted from Römer et al., 2007.

1.1.3 TALE-induced immunity is a separate case of the effector-triggered immunity.

TALE-dependent transcriptional activation of executor R genes is a distinct type of effectortriggered immunity (ETI). In a canonical ETI, cytosol-localised sensor nucleotide-binding (NB) domain leucine rich repeat (LRR) containing proteins (NLRs) mediate recognition of avirulence (Avr) factors, while executor R genes are directly transcriptionally activated by bacterial TALEs.

Commonly, NLRs are divided into two subclasses based on the differences in their N -terminal domains: toll-interleukin1-receptor (TIR) domain-containing NLRs (TNLs) and coiled-coil domain-containing NLRs (CNLs; Burdett et al., 2019; J.D.G. Jones et al., 2016; X. Zhang et al., 2017). Both NLR types trigger transcriptional acceleration and amplification of defence pathways that lead to a hypersensitive response (HR), i.e. death of host cells at the infection site, restricting growth of biotrophic pathogens (Bartsch et al., 2006; Jacob et al., 2018; J.D.G. Jones et al., 2016; Mine et al., 2018).

TNLs genetically require Enhanced disease susceptibility 1 (EDS1) protein for transcriptional induction of salicylic acid (SA)-dependent and SA-independent basal defence pathways (Bartsch et al., 2006; Cui et al., 2018; Lapin et al., 2020). CNLs generally signal via Non-race specific disease resistance 1 (NDR1), which is hypothesised to play a broad role in electrolyte release upon infection, as well as in plasma membrane - cell wall junction maintenance (Aarts et al., 1998; Knepper et al., 2011).

Plant immunity activation also requires the Heat shock protein 90 (HSP90) chaperone with its co-chaperones, i.e. Suppressor of the G2 allele of skp1 (SGT1b) and Required for Mla12 resistance 1 (RAR1), which play a key role in ETI (Hubert et al., 2003; Y. Liu et al., 2004; Takahashi et al., 2003). It is hypothesised that these chaperones contribute to the assembly of NLR activation complexes and affect NLR homeostasis (Azevedo et al., 2006; van Wersch et al., 2020).

As TALE-dependent transcriptional activation of executor R genes is a unique case of ETI, it could be hypothesised that the executor proteins use canonical pathways to execute cell death and immunity. A recent study in Nicotiana benthamiana revealed that Bs3-dependent cell death coincides with accumulation of salicylic acid (SA) and pipecolic acid (Pip; Krönauer et al., 2019). SA plays a major role in ETI and together with Pip-derived N -hydroxypipecolic acid (NHP) is the main regulator of the systemic acquired resistance (SAR;

INTRODUCTION

Bernsdorff et al., 2016; Hartmann and Zeier, 2019; Hartmann et al., 2018). FMO1 from Arabidopsis thaliana (At) is known to catalyse Pip into NHP (Hartmann et al., 2018). Since Bs3 is an FMO, one can hypothesise that Bs3 might catalyse Pip into NHP (Krönauer, 2020). However, a biochemical study revealed that Bs3 does not catalyse Pip (Krönauer, 2020). This biochemical assay was reinforced with virus-induced gene silencing (VIGS) of ETI-mediating pathway components in N. benthamiana with consecutive overexpression of Bs3 (Krönauer, 2020). VIGS of NbEDS1 did not abolish Bs3-mediated cell death, while silencing of NbSGT1b and NbRAR1 abolished Bs3-mediated cell death (Krönauer, 2020). However, gene silencing efficiency was not quantified and assumption of silencing was based on changes in leaf morphology (Krönauer, 2020). Since VIGS may be incomplete (E. Liu and Page, 2008), only a knockout of these master regulators of NLR-mediated cell death and immunity would reveal their role in Bs3- and executor-mediated cell death and immunity.

1.2 S. Iycopersicum - X. euvesicatoria is a suitable system for a comparison of NLR-and executor-mediated cell death and immunity pathways.

Since executor R genes were discovered in different species, a study of executor-mediated immunity pathways and comparison with NLR-mediated immunity pathways should be made within a model species that satisfies the following criteria: 1) to be a solanaceous or poaceous species, i.e. a suitable background for executor protein functionality (Krönauer et al., 2019; Römer et al., 2007; Strauß et al., 2012; Tian et al., 2014; Chunlian Wang et al., 2015); 2) to be compliant with genetic transformation in order to engineer executor R gene expressing stable lines via transgenesis (Forestier et al., 2021; Heidmann et al., 2011; Kothari et al., 2010; Sahoo et al., 2011; Wittmann et al., 2016); 3) to contain TNLs and / or CNLs that are able to cause cell death upon delivery of TALEs or TALE-like proteins (Read, Hutin, et al., 2020; Read, Moscou, et al., 2020; Schornack et al., 2004); and 4) to be natural hosts of Xanthomonas spp. (Potnis et al., 2015; Timilsina et al., 2020).

1.2.1 Tomato as a playground to decipher executor-mediated pathways.

Tomato can be considered as a suitable species for comparison of NLR- and executormediated cell death and immunity pathways since it satisfies all afore mentioned criteria. Firstly, tomato is a solanaceous species and thus, executor proteins should remain functional in this genetic background (Krönauer et al., 2019; Römer et al., 2007; Strauß et al., 2012).

Secondly, tomato is not recalcitrant to genetic transformation (T. Li et al., 2018; Wittmann et al., 2016). Thirdly, the tomato genome contains Bacterial spot 4 (Bs4) gene encoding a TNL protein that mediates recognition of TALE-like proteins (Schornack et al., 2004; Schornack et al., 2005; Schwartz et al., 2017). Bs4 was identified as a mediator of AvrBs4 recognition via genetic mapping approach based on differential reaction of the two parental lines, S. lycopersicum cv. Moneymaker (MM) and Solanum pennellii (Sp) LA2963 (Ballvora, Pierre, et al., 2001; Ballvora, Schornack, et al., 2001; Schornack et al., 2004). Bs4 causes cell death not only after delivery of AvrBs4 and its derivatives (Schornack et al., 2004) or other TALEs, including AvrBs3, homologs of AvrBs3 in Xanthomonas No. 3 (Hax3) and 4 (Hax4; Kay et al., 2005; Schornack et al., 2005), but also after delivery of designer TALEs (dTALEs), i.e. TALEs customised to activate transcription of a specific gene-of-interest (GOI; Figure 4). In addition, Bs4 uses canonical ETI pathways; VIGS experiments in N. benthamiana demonstrated that Bs4-mediated cell death is EDS1- and SGT1-dependent (Schornack et al., 2004).

The fourth reason to use tomato for the elucidation of executor-mediated pathways is that tomato is a natural host of X. euvesicatoria (Klein-Gordon et al., 2020; Timilsina et al., 2016; Timilsina et al., 2015) and thus, establishment of the S. lycopersicum - X. euvesicatoria

Figure 4. Bs4 mediates recognition of TALEs, their truncated derivatives, and dTALEs. A) Inocula of Xe 85-10 avrBs4 (left top), Xe 85-10 avrBs4D227 (left bottom), and Xe 85-10 empty vector (EV ; right) with the optical density at $600 \mathrm{~nm}\left(\mathrm{OD}_{600}\right)$ equal to 0.4 were infiltrated into MM tomato leaflets. AvrBs4 4227 is the AvrBs4 derivative lacking central repeats 5,5-17,5, NLS, and AAD. B) Xe 85-10 avrBs4 (left top), Xe 85-10 dTALE (left bottom), and Xe $85-10 \mathrm{EV}$ (right) were infiltrated into MM tomato leaflets ($O_{600}=0.4$). Xe $85-10 \mathrm{EV}$ served as a negative control. Phenotypes were observed 2 days post-infiltration (dpi). Leaflets were destained in 80% ethanol (EtOH) to visualise cell death. Dashed lines mark the infiltrated area.

INTRODUCTION

pathosystem makes it possible to quantify executor-mediated resistance. Therefore, stable tomato transformation with the executor R genes should result in a set of transgenic lines that can be used for comparison of TNL- and executor-mediated immunity pathways and cell death signalling via reverse genetics. Identified putative pathway components should also be knocked out in the stable lines to test their impact of a knock out on NLR- and executormediated cell death and immunity.

1.2.2 An EIP and dTALE enable pathogen-free and pathogen-dependent transcriptional activation of the executor R genes.

Development of the executor R gene expressing stable tomato lines would require establishment of two methods for executor transgene activation. The first method, i.e. transgene activation with a chemical inducer, will enable the study of executor-mediated cell death in the absence of the X. euvesicatoria pathogen, thereby eliminating any pathogendependent virulence effect. Inducible promoters allow expression of detrimental or even lethal transgenes in a controllable fashion (Zuo et al., 2000). The essential requirements for a reliable inducible system are 1) high inducibility of the transgene; 2) specificity of a transgene activation; 3) tight control over the transgene and response only to the specific inducer; and 4) absence of undesirable physiological effects on the host (Borghi, 2010; Zuo et al., 2000).

The estradiol-inducible promoter (EIP) meets all afore mentioned criteria (Kubo et al., 2013; Zuo et al., 2000) and consists of the three modules (Figure 5; Kubo et al., 2013; Zuo et al., 2000). The first unit is a strong constitutive promoter G10-90 and pea Ribulose-1,5bisphosphate carboxylase/ oxygenase Subunit E9 terminator (RbcS E9-t) that control expression of the XVE fusion gene (Figure 5; Ishige et al., 1999; Zuo et al., 2000). XVE is a

Figure 5. The estradiol-inducible promoter (EIP) provides a controlled expression of genes with detrimental or even lethal effects, such as executor R genes. The EIP consists of the three modules. The constitutive promoter G10-90 and pea Ribulose-1,5-bisphosphate carboxylase/oxygenase Subunit E9 terminator (RbcS E9-t) control expression of the XVE fusion gene, which encodes a transcription activator fused to human oestrogen receptor (Ishige et al., 1999; Zuo et al., 2000). In the presence of β-estradiol, the XVE transcription activator binds to the XVE-inducible element to induce the downstream GOI (Zuo et al., 2000). RbcS 3 A terminator (RbcS 3A-t) stops transcription of GOI (Zuo et al., 2000). Finally, the EIP contains Neomycin Phosphotransferase II (NPTII) used as a selection marker for a stable transformation (Zuo et al., 2000). Nopaline synthase promoter (NOSp) and terminator (NOS-t) from A. tumefaciens are regulatory elements for NTPII. The figure is adapted from Zuo et al., 2000.
chimeric transcription activator, which is composed of the DNA-binding domain of the bacterial repressor LexA, the AAD of VP16, and the human oestrogen receptor (Figure 5; Zuo et al., 2000). The latter includes a binding site for oestrogen hormone and the transactivation function 2 (TAF2) domain (Zuo et al., 2000). The second unit of the EIP is the LexA operator fused to the cauliflower mosaic virus minimal 35 s promoter, i.e. XVE-inducible element (Figure 5; Zuo et al., 2000). In the presence of β-estradiol, the XVE chimeric transcription activator binds to the LexA operator and recruits ribonucleic acid (RNA) polymerase II to activate transcription of the downstream GOI (Figure 5; Zuo et al., 2000). RbcS $3 A$ terminator (RbcS 3A-t) stops transcription of GOI (Zuo et al., 2000). The third unit is Neomycin Phosphotransferase II (NPTII) used as a selection marker for a stable transformation (Zuo et al., 2000). Nopaline synthase promoter (NOSp) and terminator (NOS-t) from A. tumefaciens are regulatory

Figure 6. dTALE-mediated transcriptional activation of the executor transgene in the Bs4 background leads to cross-activation of Bs4-mediated and executor-mediated cell death and immunity pathways. The dTALE is injected via the TTSS into the cytoplasm, where it is sensed by the cytoplasmically-localised Bs4. Bs4 will mediate signalling via known cell death and immunity pathways (straight green arrows) upon recognition of the dTALE. However, in some cells the dTALE might be translocated into the nucleus to transcriptionally activate the executor transgene. Such dTALE-triggered transcriptional activation will result in the production of a functional executor protein as well as executor-mediated cell death and immunity via unknown pathways (orange arrows with gaps). Such cross-activation of Bs4 and the executor transgene might complicate the deciphering and comparison of pathways exploited by two proteins.

INTRODUCTION

elements for NTPII. This unit separates XVE fusion gene and XVE-inducible element units (Figure 5; Zuo et al., 2000).

The second method for the executor transgene induction requires the development of a TALElike structure, capable of binding to a user-defined sequence in the XVE inducible element unit, i.e. a dTALE (Figure 6; de Lange et al., 2017; Morbitzer et al., 2011). dTALE-dependent transcriptional activation of a transgene will help to study executor-mediated resistance to the Xe pathogen (Kim and Hartmann, 1985; Tian et al., 2014; Chunlian Wang et al., 2015; J. Wang et al., 2018). Since Bs4 is capable of causing cell death upon delivery of TALEs and TALE-like structures (Figure 4; Schornack et al., 2004; Schornack et al., 2005), the dTALE will act as an activator of Bs4 and the executor transgenes (Figures 4 and 6; Bultmann et al., 2012; de Lange et al., 2017). Therefore, the Bs4 null allele background should be used for integration of the executor transgenes to avoid dTALE-caused cross-activation of Bs4 and the executor transgene (Figure 6; Ballvora, Pierre, et al., 2001; Ballvora, Schornack, et al., 2001; Schornack et al., 2004).

1.2.3 CRISPR/Cas9 system is a fast and reliable tool for gene knockout.

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has revolutionised the field of genome editing (Doudna and Charpentier, 2014; Jinek et al., 2012; D. Zhang et al., 2021). This system is a fast, simple, and efficient method for DNA alteration and gene functional studies (Khadempar et al., 2019). Gene knockout and knockdown are the main applications of CRISPR/Cas9-mediated genome editing in numerous plant species (Jacobs et al., 2015; T. Li et al., 2018; H.-J. Liu et al., 2020; Peng et al., 2017; R. Wu et al., 2018; Z. Zhang et al., 2019; Zsögön et al., 2018).

The CRISPR/Cas9 system includes a nuclear-localised Cas9 protein with two nuclease domains and a single guide RNA (sgRNA; Jinek et al., 2012). This sgRNA is a synthetic RNA molecule consisting of a 20 nucleotide-long targeting site and a hairpin structure that interacts with Cas9 (Jinek et al., 2012). The Cas9/sgRNA complex scans genome for DNA sequences that complement the sgRNA target site (Jinek et al., 2012). Upon successful identification of such sequences, the Cas9/sgRNA complex introduces double-strand break (DSB) to the DNA (Jinek et al., 2012). The DSB is primarily followed by an imprecise reparation process known as nonhomologous end joining (NHEJ; Mladenov and Iliakis, 2011). NHEJ can lead to insertion or
deletion (indel) mutations at the breakage site, which usually result in frameshifts (Mladenov and Iliakis, 2011). Therefore, the CRISPR/Cas9 system is a simple method to knock out individual genes to study their impact on TNL- and executor-mediated cell death signalling and immunity pathways.

1.3 Aims of this work.

This thesis is a compilation of two projects. The first project aimed to develop a set of tools for further comparison of TNL- and executor-mediated cell death and immunity pathways, since the events that follow transcriptional activation of the executor R genes and lead to cell death remain elusive (Krönauer, 2020; Krönauer et al., 2019). The main focus was kept on TNL protein from Solanum spp. mediating recognition of TALEs and dTALEs, i.e. Bs4 (Figure 4; Schornack et al., 2004), two executor proteins from Capsicum spp., i.e. Bs3 and Bs4C (Krönauer et al., 2019; Römer et al., 2007; Strauß et al., 2012), as well as two executor proteins from Oryza spp., i.e. Xa10 and Xa23 (Tian et al., 2014; Chunlian Wang et al., 2015).

Due to the complexity of this project it was divided into numerous task blocks. The first block of tasks focused on screening Solanum germplasm for a Bs4 null allele and generation of such a mutation via CRISPR/Cas9-mediated Bs4 mutagenesis. In the second stage, a stable transformation of tomato with the executor R genes under the control of the EIP (Figure 5) and subsequent characterisation of stable transgenic lines exhibiting cell death upon treatment with the chemical inducer, i.e. liquid estradiol, had to be performed. In the third stage of the project, a combination of the Bs4 null allele and executor transgene by crossing, followed by the selection of homozygous lines containing both traits, was planned. The forth task was to apply the dTALE technology for transcriptional activation of executor transgenes under the control of the EIP and to quantify putative executor-mediated resistance to X. euvesicatoria. In the later stages, it was planned to use the developed lines for knockouts of ETI master regulators, such as EDS1 and SGT1, via CRISPR/Cas9-mediated mutagenesis and to test impact of these knockouts on Bs4- and executor-mediated cell death and immunity.

The second project aimed to identify tomato genes, which are upregulated by TALEs from tomato pathogenic Xanthomonas spp. It was planned to initially test if the Bs4 null allele background is beneficial for the development of TALE-induced disease symptoms. Additionally, it was planned to use a set of bioinformatic tools to predict putative EBEs in

INTRODUCTION

promoter regions of the annotated tomato genes (Grau et al., 2013; Pérez-Quintero et al., 2013). Upon the selection process, the interaction of AvrBs3-like proteins with the predicted EBEs was planned to be tested in planta (Mücke et al., 2019; Römer et al., 2010; D. Wu et al., 2019). Finally, it was intended to check if AvrBs4, AvrBs3, and AvrHah1 upregulate the predicted target genes in tomato via quantitative real-time (qRT)-PCR (Mücke et al., 2019; D. Wu et al., 2019).

Identification of TALE-induced genes makes it possible to correlate disease progression with the expression levels of these target genes. Since AvrBs4-induced host genes with a putative susceptibility effect have not yet been reported (Strauß et al., 2012), they are of an immense interest. Putative AvrBs4 targeted genes might unravel yet unknown disease scenarios. Additionally, it would be desirable to identify putative targets of AvrBs3 in tomato and to check if the same genes are also upregulated by AvrHah1 (Schwartz et al., 2017).

2 RESULTS

2.1 CC-Bs4, a Bs4 null mutant, enables the comparison of NLR- and executor-mediated pathways.

S. lycopersicum is a suitable species for comparison of NLR- and executor-mediated immunity pathways (Introduction, chapter 1.2.1). This chapter describes the first steps in the establishment of the S. lycopersicum - X. euvesicatoria pathosystem for comparison of NLR and executor-mediated cell death and immunity pathways, i.e. the screen of Solanum germplasm for Bs4 null allele and CRISPR/Cas9-mediated Bs4 mutagenesis.

2.1.1 $S p B s 4$ is a reduced function orthologue of SlBs4.

Previously Bs4 was identified as a mediator of AvrBs4 recognition via genetic mapping approach based on differential reactions between the two parental lines, S. lycopersicum cv. MM and S. pennellii LA2963 (Schornack et al., 2004). The differences between the two plant species are well observed 2 dpi , when X. euvesicatoria-derived AvrBs4 and its derivative lacking central repeats $5,5-17,5$, NLS, and $A A D$, i.e. AvrBs $4 \Delta 227$, cause a strong cell death reaction in S. lycopersicum cv. MM, but not in S. pennellii LA2963 line (Figure 7A). Such a contrasting reaction led to hypothesis that SpBs4, a Bs4 allele from S. pennellii LA2963 line, is a null mutant. However, LA2963 line exhibits a delayed cell death reaction to AvrBs4 and AvrBs4 42276 dpi (Figure 7B), suggesting that SpBs4 may be a reduced-function orthologue of SIBs4.

In order to clarify if $\operatorname{SpBs} 4$ has a reduced function or is a null allele, an experiment was initiated with a focus to study mediation of AvrBs4 recognition by genomic versions of SIBs4 (SIBs4 ${ }^{\text {gDNA }}$) and $\operatorname{SpBs} 4\left(S p B s 4^{g D N A}\right)$ in N. benthamiana leaves. 35 s promoter-driven SIBs4 ${ }^{g D N A}$ and $S p B s 4^{g D N A}$ were co-expressed with 35s promoter-driven avrBs4 or Green fluorescent protein (GFP) via Agrobacterium-mediated transfer DNA (T-DNA) delivery system. Combinations of SIBs4 ${ }^{g D N A} / a v r B s 4$ and $S p B s 4^{g D N A} / a v r B s 4$ resulted in a cell death phenotype (Figure 8 A). While combinations of $S I B s 4^{g D N A} / G F P, S p B s 4^{g D N A} / G F P$, and $a v r B s 4 / G F P$, i.e. the negative controls, did not cause the cell death phenotype (Figure 8A). Thus, AvrBs4 does not trigger cell death on its own, but only when co-expressed with SIBs $4^{g D N A}$ or $S p B s 4^{g D N A}$. These results demonstrate that SpBs4 mediates recognition of AvrBs4.

RESULTS

Figure 7. TALEs and truncTALEs cause cell death in SIBs4 and SpBs4 backgrounds. Xe 85-10 avrBs4 (left top; black), Xe 85-10 avrBs4D227 (left bottom; red), and Xe 85-10 EV (right; green) were infiltrated into S. Iycopersicum cv. MM and S. pennellii LA2963 ($\mathrm{OD}_{600}=0.4$). AvrBs4 4227 is the AvrBs4 derivative lacking central repeats $5,5-17,5$, NLS , and AAD. Xe $85-10 \mathrm{EV}$ served as a negative control. Phenotypes were observed A) 2 dpi and B) 6 dpi. All leaflets were destained in 80% EtOH to visualise cell death. Dashed lines mark the infiltrated area.

Figure 8. SpBs4 is a functional orthologue of SIBs4. A) 35s-driven N-terminus-GFP-labelled genomic versions of SIBs4 (SIBs $\left.4^{g D N A}\right)$ and SpBs4 (SpBs4 ${ }^{g D N A}$) were co-infiltrated with 35sdriven avrBs4 (left side) or GFP (right side) in N. benthamiana leaves $\left(O_{600}=0.8\right)$. Co-infiltrations with $35 s$-driven GFP were used as negative controls. Phenotypes were observed 2 dpi . All leaves were destained in $80 \% \mathrm{EtOH}$. Dashed lines mark the infiltrated area. B) Major sequence polymorphisms within coding sequence (CDS) versions of SIBs4 (SIBs4 ${ }^{C D S}$), $S p B s 4^{a}\left(S p B s 4^{C D S-\alpha}\right)$, and $\operatorname{SpBs} 4^{B}\left(S p B s 4^{C D S-6}\right)$. C) $35 s$-driven N-terminus-GFP-labelled CDS versions $S / B s 4^{C D S}, S p B s 4^{C D S-\alpha}$, and $S p B s 4^{C D s-b}$ were co-infiltrated with 35 s-driven avrBs4 (left side) or GFP (right side) in N. benthamiana ($\mathrm{OD}_{600}=0.8$). Co-infiltrations with 35 s-driven GFP were used as negative controls. Phenotypes were observed 2 dpi. All leaves were destained in $80 \% \mathrm{EtOH}$. Dashed lines mark the infiltrated area.

SpBs4 was previously found to be transcribed into different splice variants (Schornack et al., 2004). Two splice variants, namely SpBs $4^{C D S-\alpha}$ and $\operatorname{SpBs} 4^{C D S-\beta}$ (Figure 8B), were re-created for a study of their functional relevance. When compared to $\operatorname{SIBs} 4^{C D S}, S p B s 4^{C D S-\alpha}$ contains the SNP mutation G1873A and includes four consequent nucleotides, i.e. GTAA (1874-1877), which are annotated as a part of the second intron of $\operatorname{SpBs} 4^{g D N A}$, therefore, these additional nucleotides create a frame-shift (Figure 8B). On the other hand, $\operatorname{SpBs} 4^{C D S-\beta}$ contains only G1873A mutation (Figure 8 B). 35s promoter-driven $S p B s 4^{C D S-\alpha}, S p B s 4^{C D S-\beta}$, and $S I B s 4^{C D S}$, i.e. a positive control, were co-expressed with 35 s promoter-driven avrBs4 or GFP via Agrobacterium-mediated T-DNA delivery in N. benthamiana leaves. The combination SpBs4 ${ }^{\text {CDS- } \alpha / a v r B s 4 ~ d i d ~ n o t ~ c a u s e ~}$ the cell death reaction, while the combinations $S p B s 4^{C D S-\beta} / a v r B s 4$ and $S I B s 4^{C D S} / a v r B s 4$, i.e. the positive control, resulted in the cell death phenotype (Figure 8C). None of the afore mentioned SpBs4 splice variants caused cell death upon co-expression with GFP (Figure 8C). These results indicate that $\operatorname{SpBs} 4^{C D S}-\beta$ is able to produce a protein capable of AvrBs4 recognition, while $S p B s 4^{C D S-\alpha}$ does not. Therefore, $S p B s 4$ is a reduced-function allele, not a null allele.

As SIBs4 and SpBs4 are functional alleles, screening of a collection of S. lycopersicum accessions for the presence of a SIBs4 null allele was carried out (Peter, 2002). Phenotyping with Xe 85-10 strains expressing avrBs4 and its truncated version avrBs $4 \Delta 227$ resulted in a cell death reaction in all tested cultivars (Figure 9). Leaflet parts treated with Xe 85-10 containing an empty vector (EV), a negative control, had no cell death reaction. This observation shows that all tested S. lycopersicum accessions contain functional Bs4 alleles and, therefore, Bs4 alleles are broadly conserved across S. lycopersicum accessions.

2.1.2 CRISPR/Cas9-engineered Bs4 is a null mutant.

Study of executor-mediated cell death and resistance to X. euvesicatoria in tomato should be made in Bs4 null allele background to avoid cross-activation of the executor transgenes and Bs4 by dTALE-expressing X. euvesicatoria (Figure 6; Ballvora, Pierre, et al., 2001; Ballvora, Schornack, et al., 2001; Schornack et al., 2004). Due to the absence of a naturally occurring Bs4 null allele in the screened S. Iycopersicum germplasm, a null mutation in S. Iycopersicum cv. MM background using CRISPR/Cas9 was engineered and designated as CC-Bs4 (CRISPR/Cas9-engineered Bs4). It is common to see a failure of individual sgRNAs to produce

RESULTS

even small indel mutations (Yuen et al., 2017), that is why multiple sgRNAs are generally used to secure the chances of obtaining null mutants (Jacobs et al., 2015; Peng et al., 2017; H. Zhang et al., 2014; Z. Zhang et al., 2019). Therefore, multiple sgRNAs, each targeting distinct regions of Bs4 genomic sequence, namely TIR-domain and NB-LRR-domain encoding sequences, were used. Such a strategy maximised the chances of generating large sequence deletions between sgRNA target sites or small indels causing frameshifts.

CC-TOP software (Stemmer et al., 2015) was used to design sgRNAs for CRISPR/Cas9-mediated mutagenesis of Bs4 and to predict their specificity and efficiency in silico. sgRNA1 and sgRNA2 were designed to target Bs4 sequence encoding TIR-domain (Figure 10A), while sgRNA3, sgRNA4, and sgRNA5 were designed to target Bs4 sequence encoding NB- and LRR-domains (Figure 10A). Selected sgRNAs were assembled into two separate constructs (Figure 10B). sgRNA1 and sgRNA2 were combined in the first construct (Figure 10B), while the remaining sgRNA3, sgRNA4, and sgRNA5 were combined in the second construct (Figure 10B). These constructs were used for two stable S. lycopersicum cv. MM transformations.

Figure 9. Functional Bs4 is abundant within Solanum species. Phenotyping of S. Iycopersicum accessions from different geographic origins with Xe 85-10 avrBs4 (left top; black), Xe 85-10 avrBs $4 \Delta 227$ (left bottom; red), and Xe $85-10$ EV (right; green). AvrBs $4 \Delta 227$ is the AvrBs 4 derivative lacking central repeats 5,5-17,5, NLS, and AAD. Xe 85-10 EV served as a negative control. Phenotypes were observed 2 dpi. All leaflets were destained in $80 \% \mathrm{EtOH}$. Dashed lines mark the infiltrated area.

44 T0 plants representing 22 calli from the first transformation (sgRNA1 and sgRNA2) and 48 TO plants representing 34 calli from the second transformation (sgRNA3, sgRNA4, and sgRNA5) survived stable transformation, in vitro propagation, and adaptation to greenhouse conditions. Putative mutants from TO generation were genotyped for mutations in Bs4 TIR-domain or NB-LRR-domain encoding sequences (Figure 11A). Polymerase chain reaction (PCR)-amplified genomic fragments were purified, cloned, and sequenced to reveal putative mutations introduced by sgRNAs.

Analysis of sequenced amplicons revealed the TO plant " C " from the first transformation containing bi-allelic heterozygous mutations in the Bs4 TIR-domain encoding sequence (Figures 11A and 11B). The CC-Bs4 allele from the T0 plant "C", designated as C18, had a 419 basepair (bp)-long deletion spanning the Bs4 minimal promoter, 5^{\prime} untranslated region (UTR), and TIR-domain encoding sequence (Figure 11B). Since this allele lacks its N -terminus, it is unlikely to be functional. Another CC-Bs4 allele from the TO plant " C ", designated as C39, had a 1 bp deletion (T48) within TIR-domain encoding sequence that was predicted to cause a frameshift and, therefore, a truncated protein (Figure 11B). Since these mutations are located within the target site of sgRNA1, it can be concluded that they were introduced by sgRNA1, while sgRNA2 failed to induce mutations (Figure 11B).

Figure 10. Five sgRNAs are used for CRISPR/Cas9-mediated Bs4 mutagenesis. A) Bs4 gene model and sgRNA target sites. Grey arrow represents Bs4 minimal promoter (Schornack et al., 2005). Green blocks represent sequence regions encoding TIR-, NB-, and LRR-domains. Angled lines represent introns. Black star represents the location of the annotated stop codon. sgRNA1 and sgRNA2 targeted TIR-domain encoding sequence, while sgRNA3, sgRNA4, and sgRNA5 targeted NB-, and LRR-domain-encoding sequence of Bs4. B) Assembled constructs for Bs4 knockout. sgRNAs and scaffolds (orange and grey blocks) are driven by Medicago truncatula U6 (MtU6) promoters (grey arrows). Unique nucleotide sequence 1 (UNS1; dark grey blocks) is used as a spacer between sgRNAs (Jacobs et al., 2015). Cas9 (blue blocks) is driven by double 35 s promoter from the cauliflower mosaic virus (grey arrows). NOS-t from A. tumefaciens (grey blocks) stops Cas9 transcription. Nptll from Escherichia coli (E. coli; light green blocks) is in planta selection marker. Npt/l is driven by Solanum tuberosum Ubiquitin 3 (StUbi3) promoter (grey arrows). StUbi3 terminator (StUbi3-t; grey blocks) stops Nptll transcription.

RESULTS

Figure 11. CRISPR/Cas9-mediated Bs4 mutagenesis yields numerous null alleles (CC-Bs4). A) Genotyping of TO plants for putative mutations in Bs4 sequence. gDNA from the wild-type (WT) plant and $\mathrm{H}_{2} \mathrm{O}$ served as negative and non-template controls, respectively. The TO Plant "C" from the first transformation contained two mutated alleles, namely C18 (shorter fragment) and C39 (longer fragment), which were separated in the T1 generation. B) Bs4 gene model and sgRNA target sites. Grey arrows represent the Bs4 minimal promoter. Green blocks represent sequence regions encoding TIR-, NB-, and LRR-domains. Angled lines represent introns. Black and red stars represent the locations of native and premature stop codons, respectively. sgRNA1 and sgRNA2 targeted TIR-domain encoding sequence, while sgRNA3, sgRNA4, and sgRNA5 targeted NB-, and LRR-domain encoding sequence of Bs4. Black triangles and vertical dashed lines indicate sgRNA target sites. Blue triangles represent primers used for genotyping of putative CC-Bs4 mutations in the TO generation. WT Bs4 genomic and protein sequences impacted by mutations are highlighted with bold black font. CC-Bs4 mutations within genomic and protein sequences are marked with bold red font.

In addition, eight T0 plants from the second transformation were identified to contain large deletions within Bs4 NB-LRR-domain encoding sequence (Figure 11A). Two of these T0 plants, namely D12 and H11, had bi-allelic homozygous mutations (Figure 11B). Both CC-Bs4 alleles from the D12 line had identical 581 bp-long in-frame deletions located between the target sites of sgRNA3 and sgRNA4 (Figure 11B). However, no mutations were identified in the Bs4 sequence targeted by sgRNA5 in this line. In the case of the H 11 line, both CC-Bs4 alleles had identical 569 bp-long in-frame deletions located between the target sites of sgRNA3 and sgRNA4 and one basepair insertions (3159 A 3160) within LRR-domain encoding sequence targeted by sgRNA5 (Figure 11B). These one basepair insertions (3159 A 3160) were predicted to cause a frameshift and, therefore, a truncated protein (Figure 11B).

Figure 12. CC-Bs4 alleles do not mediate AvrBs4 and AvrBs4D227 recognition and cell death signalling. A) Example of selected Cas9 ${ }^{\text {B54 }}$-free $C C$-Bs4 homozygous plants from the T1 generation (H11 segregating population) via genotyping for CC-Bs4 mutation and CasgBs4 absence. TO H 11 gDNA served as a positive control for $\mathrm{CC}-\mathrm{Bs} 4$ and $\operatorname{Cas} 9^{854}$ amplification. gDNA from the WT plant and $\mathrm{H}_{2} \mathrm{O}$ served as negative and non-template controls for CC-Bs4 and Cas9 ${ }^{854}$ amplification, respectively. B) Phenotyping of WT, i.e. a positive control, and Cas9 ${ }^{\text {B54- }}$ free CC-Bs4 homozygous lines C18, C39, D12, and H11 for recognition of Xe 85-10 avrBs4 (left top; black), Xe 85-10 avrBs $4 \Delta 227$ (left bottom; red), and Xe 85-10 EV (right; green). AvrBs $4 \Delta 227$ is the AvrBs4 derivative lacking central repeats $5,5-17,5$, NLS, and AAD. Xe 85-10 EV served as a negative control. Phenotypes were observed 2 dpi . All leaflets were destained in 80% EtOH. Dashed lines mark the infiltrated area.

RESULTS

To confirm that the identified mutations are in the germline, the plants from the next generation (T1) were analysed for the presence of CC-Bs4 mutations and the absence of Cas9 ${ }^{854}$ transgene. In the case of $\mathrm{C} 18, \mathrm{C} 39$, and H 11 lines, 20 plants per segregating population were genotyped to identify Cas9 ${ }^{\text {B54 }}$-free and CC-Bs4 homozygous plants (Figure 12A). The Cas9 ${ }^{\text {B54 }}$ transgene followed 3:1 segregation in each segregating population, which is consistent with the presence of one Casg ${ }^{B 54}$ transgene copy within the genomes of each TO plant. However, within the D12 segregating population, the Casg ${ }^{854}$ transgene followed 63:1 segregation, which is consistent with the presence of three Cas9 ${ }^{B 54}$ transgene copies within the genome of the T0 D12 plant. 142 T1 plants from the D12 segregating population were genotyped and two Cas9 ${ }^{854}$-free CC-Bs4 homozygous plants were identified. As homozygous CC-Bs4 were identified in the T1 generation in the absence of Cas9 ${ }^{B 54}$ transgene in all four lines (C18, C39, D12, and H11), these CC-Bs4 mutations were considered to be in the germline and could therefore be propagated to further generations.

The next planned step was to determine whether or not the mutations in the identified CC-Bs4 alleles would correlate with a loss of AvrBs4-dependent cell death in these plants. Thus, selected Cas9 ${ }^{854}$-free CC-Bs4 homozygous plants were phenotyped with Xe 85-10 strains expressing avrBs4, its truncated version avrBs $4 \Delta 227$, and containing the EV, i.e. the negative control. All four mutant lines, namely C18, C39, D12, and H11, did not have cell death following delivery of AvrBs4, AvrBs4 4227 , and EV (Figure 12B). However, in the positive control, i.e. WT, Bs4 conferred recognition of AvrBs4 and AvrBs4D227, but not the EV (Figure 12B). These phenotyping results demonstrate that CC-Bs4 alleles from the C18, C39, D12, and H11 lines are indeed loss-of-function null alleles.

In order to check if the loss of AvrBs4 and AvrBs4 4227 recognition in these lines is due to the mutations in Bs4, but not in other putative off-target genes, one of the mutant lines was backcrossed to WT. Correlation between the loss-of-function phenotype and the CRISPR/Cas9-induced mutation in Bs4 was analysed in the second backcross (BC2) generation. Since the H 11 line contains the CC-Bs4 allele with the largest (569 bp -long) in-frame sequence deletion and one bp insertion (3159 A 3160) leading to the frameshift (Figure 11B), it was selected to be backcrossed to WT (Figure 13A). 40 BC2 plants segregating for Bs4 and CC-Bs4 were genotyped (Figure 14B). 12 homozygous Bs4 plants, 20 heterozygous Bs4/CC-Bs4 plants, and eight homozygous $C C$-Bs4 plants were identified within this $B C 2$ population. The
genotypic data suggest that CC-Bs4 follows 3:1 segregation ($\chi^{2}=0.5348 ; p$-value $=0.4652$). In addition, all 40 BC2 plants and the parental lines (WT and H11) were phenotyped with $X e$ 85-10 strains containing avrBs4, avrBs4 $\triangle 227$, and the EV control (Figure 13C). All 32 plants

Figure 13. The loss of the cell death reaction to AvrBs4 and AvrBs4 4227 in $B C 2$ generation correlates with the homozygosity of the CC-Bs4 allele. A) Schema of BC2 CC-Bs4 line development. A Cas9 ${ }^{B 54}$-free homozygous H 11 plant from the T1 generation was backcrossed to a WT plant. Green arrows emphasise the genotypes selected for selfing and seed multiplication. \times and \otimes symbols represent crossing and selfing, respectively. Blue ring indicates that a plant is homozygous for CC-Bs4. B) Genotyping of BC2 population segregating for Bs4 and CC-Bs4. WT and H11 gDNA served as positive controls of Bs4 and CC-Bs4 alleles amplification in homozygous plants, respectively. gDNA from heterozygous $B C 1$ plant served as a positive control of $B s 4$ and $C C-B s 4$ alleles amplification in heterozygous plants. $\mathrm{H}_{2} \mathrm{O}$ served as a non-template control. Presence of absence of HR reactions in each BC2 plant is indicated below the picture (HR, -). C) Phenotyping of WT, i.e. a positive control, H11, i.e. a negative control, and BC2 population for recognition of Xe 85-10 avrBs4 (left top; black), Xe 85-10 avrBs $4 \Delta 227$ (left bottom; red), and Xe $85-10$ EV (right; green). AvrBs $4 \Delta 227$ is the AvrBs 4 derivative lacking central repeats 5,5-17,5, NLS, and AAD. Xe 85-10 EV served as a negative control. Phenotypes were observed 2 dpi. All leaflets were destained in $80 \% \mathrm{EtOH}$. Dashed lines mark the infiltrated area.

RESULTS

that were homozygous or heterozygous for Bs4 had a cell death phenotype after infiltration with Xe 85-10 strains containing avrBs4 and avrBs $4 \Delta 227$, but not the EV control. However, homozygous CC-Bs4 plants in BC2 generation did not have a cell death reaction upon infiltration of Xe 85-10 strains containing avrBs4, avrBs4 4227 , or the EV control. The positive control, parental WT line, also showed cell death phenotype upon delivery of AvrBs4 and AvrBs $4 \Delta 227$, but not the EV. The negative control, i.e. the parental H 11 line, had no cell death reaction to any of the three infiltrated strains. The phenotypic data demonstrates that the absence of a cell death reaction to Xe 85-10 avrBs4 or Xe 85-10 avrBs4 4227 also follows 3:1 segregation ($\chi^{2}=0.5348 ; p$-value $=0.4652$). Since the loss of AvrBs4- and AvrBs4 4227 dependent cell death correlates with the homozygous CC-Bs4 allele, it is conclusive that the loss of AvrBs4- and AvrBs4D227-dependent cell death is caused only by the mutation in Bs4. An additional experiment was conducted to determine if $C C-B s 4$ is a null or a reduced-function allele. 35 s promoter-driven CDS version of the CC-Bs4 allele from the H 11 line, designated as $C C-B s 4^{C D S}$, was co-expressed with 35 s promoter-driven avrBs4 or GFP via Agrobacteriummediated T-DNA delivery in N. benthamiana leaves (Figure 14). $S / B s 4^{C D S}$ was used as a positive control for mediation of AvrBs4 recognition and cell death (Figure 14). Co-infiltration of $C C-B s 4^{C D S}$ and avrBs4 did not cause a cell death phenotype, while co-infiltration of SIBs $4^{C D S}$ and avrBs4, serving as a positive control, did cause a cell death reaction (Figure 14). The negative controls, i.e. combinations SIBs $4^{C D S} / G F P, C C-B s 4^{C D S} / G F P$, and $a v r B s 4 / G F P$ did not lead to a cell death reaction. These results indicate that CC-Bs4 allele from the H 11 line is a true null allele. Thus, CC-Bs4 background could be used for integration of executor transgenes for further study of executor-mediated cell death and immunity pathways.

Figure 14. CC-Bs4 allele from the H 11 line does not mediate recognition of AvrBs4 in \boldsymbol{N}. benthamiana leaves. 35 s-driven N -terminus-GFP-labelled CDS versions of SIBs4 (SIBs4 ${ }^{\text {CDS }}$) from WT or CC-Bs4 (CC-Bs4 ${ }^{C D S}$) from the H 11 line were co-infiltrated with avrBs4 (left side) or GFP (right side) in N. benthamiana leaves $\left(\mathrm{OD}_{600}=0.8\right)$. Co-infiltrations with 35 s-driven GFP were used as negative controls. Phenotypes were observed 2 dpi. All leaves were destained in 80% EtOH. Dashed lines mark the infiltrated area.

2.2 Bs3, an executor protein from pepper, is functional in tomato.

The main focus of the project was to study $B s 3, B s 4 C, X a 10$, and $X a 23$, collectively referred to as the executor R genes (Introduction, chapter 1.1.2), in a tomato background using two methods for their activation. The first method, i.e. transcriptional activation with liquid estradiol (Introduction, chapter 1.2.2), was intended to study executor-mediated cell death in the absence of the X. euvesicatoria pathogen. The second method, i.e. dTALE-mediated transcriptional activation (Introduction, chapter 1.2.3), was proposed to study executormediated resistance to the X. euvesicatoria pathogen.

2.2.1 Estradiol-inducible executor R genes cause cell death in N. benthamiana.

The CDSs of the executor R genes were transcriptionally fused to the EIP (Figure 15; Introduction, chapter 1.1.2). The CDSs of the executor R genes were translationally fused to a C-terminal triple FLAG epitope tag followed by the T2A sequence, and a GFP fluorophore (Figure 15; Material and Methods, chapter 4.2.3).

Prior to a tomato transformation, it was necessary to test inducibility of the executor R genes with the chemical agent, i.e. liquid estradiol. EIP-driven Bs3, Bs4C, Xa10, Xa23, and GFP, used as a negative control, were expressed via Agrobacterium-mediated T-DNA delivery in N. benthamiana leaves. Liquid estradiol ($20 \mathrm{mM} \beta$-Estradiol dissolved in DMSO and diluted 1:1000 in water) or mock (DMSO diluted 1:1000 in water) treatments were applied to previously infiltrated areas of N. benthamiana leaves 24 hours post-infection and phenotyping was made 48 hours post-treatment. All four executor R genes caused cell death upon treatment with liquid estradiol (Figure 16A), while estradiol-induced GFP did not cause a cell death reaction (Figure 16A). These results demonstrated that the assembled constructs were functional and responsive to estradiol treatment in N. benthamiana

Figure 15. Structural modules of the assembled EIP:Executor-3xFLAG-GFP constructs. The CDSs of the executor R genes were transcriptionally fused to the XVE-inducible element, referred to as the EIP. The CDSs of the executor R genes were translationally fused to a C-terminal triple FLAG epitope tag followed by the T2A sequence and a GFP fluorophore. Address the Introduction (chapter 1.1.2) and the Material and Methods (chapter 4.2.3) for a detailed information about other modules of the EIP (Zuo et al., 2000).

RESULTS

leaves. However, Bs3, Xa10, and Xa23 also triggered cell death of various intensity upon mock treatment (Figure 16B), while Bs4C did not cause cell death upon mock treatment (Figure 16B). No cell death reaction was triggered by the GFP, i.e. the negative control, following mock treatment (Figure 16B). Collectively these results suggest that in the transient assay the EIP was leaky, thus, it was able to cause expression of the executor R genes in the absence of the chemical inducer.

However, transient assays do not reflect a situation in stable transgenic lines, since in a transient assay each cell has a unique transgene integration point (Kapila et al., 1997). By contrast, in a stable transgenic line all cells are clonal (Müller et al., 1996). Therefore, if a transgene is integrated into an appropriate genomic context, which eliminates leakiness of the promoter (van Leeuwen et al., 2001; Wilson et al., 1990), it is possible to select stable lines with a tight control over expression of the executor R genes in the absence of the chemical inducer (Holmes et al., 2020).

Figure 16. Estradiol-inducible Bs3, Bs4C, Xa10, and Xa23 cause cell death in N. benthamiana leaves. The executor R genes under the control of EIP were expressed via Agrobacteriummediated T-DNA delivery $\left(O_{600}=0.4\right)$ in N. benthamiana leaves and treated with (A) liquid estradiol or (B) mock solution 24 hours post-infiltration (hpi) of the bacterial strains. EIP-driven GFP served as a negative control of the cell death phenotype after treatment with liquid estradiol. Mock treatment was used to determine if the EIP-driven executor R genes cause cell death phenotypes in the absence of the chemical inducer. Phenotypes were observed 2 days post-treatment. All leaves were destained in $80 \% \mathrm{EtOH}$. Dashed lines mark the infiltrated area.

2.2.2 Estradiol-mediated transcriptional activation of Bs3 causes cell death in tomato.

In order to clarify if any of the estradiol-inducible executor R gene constructs, namely Bs3, Bs4C, Xa10, and Xa23 cause cell death and confer resistance to X. euvesicatoria in tomato (Figure 16A), four stable tomato transformations of S. lycopersicum cv. MM (Bs4 background) were initiated (Table 1). Putative TO plants from each transformation were genotyped for the presence of the corresponding transgene and among them 32 were positive for Bs3, 25 for Bs4C, 24 for Xa10, and 31 for Xa23 transgenes (Table 1). All transgene-positive plants were phenotyped via syringe infiltration of liquid estradiol or mock solutions into leaf tissue to identify TO plants with cell death reaction to liquid estradiol treatment (Table 1). However, none of the T0 Bs $4 C$, Xa10, and Xa23 plants had a cell death reaction upon phenotyping with liquid estradiol and mock treatments (Table 1). Thus, all developed TO Bs $4 C$, Xa10, and Xa23 plants are not estradiol-inducible.

Even though TO Bs4C, Xa10, and Xa23 plants showed no cell death reactions upon estradiol treatment, four TO Bs3 lines, designated as J8, K30, L196, and N61, showed a consistent cell death reaction to the estradiol treatment, but not to the mock treatment (Table 1). These results indicate that even though the EIP was leaky in the transient assay (Figure 16B), it was possible to generate stable lines with a tight control over expression of $B s 3$ transgene in the absence of the chemical inducer (Table 1). The consistent cell death reaction to liquid estradiol treatment of the four TO Bs3 plants demonstrated that Bs3 is functional in tomato and that Bs3-mediated cell death pathways between Capsicum and Solanum spp. are preserved.

Table 1. Summary of stable tomato transformations with the constructs containing the executor R genes under the control of the EIP.

Executor R gene	Number of transformed shoot-producing calli	Total number of identified transgene-positive plants	Number of transgene- positive plants showing cell death upon estradiol treatment
Bs3	15 out of 200	32	4
Bs4C	16 out of 200	25	0
Xa10	15 out of 200	24	0
Xa23	20 out of 200	31	0

RESULTS

To clarify if $B s 3$ transgene remained functional in the next generation (T1) and to identify the number of transgene copies in each T0 line, 100 T1 generation plants for each line were phenotyped via syringe infiltration of liquid estradiol or mock solutions into leaf tissue. If the T1 plants from a certain line showed a cell death reaction to the estradiol treatment, all plants from this line were additionally genotyped for the transgene. In the J8 line, the cell death phenotype upon estradiol treatment did not follow a perfect 3:1 segregation based on the phenotype ($\chi^{2}=0.9623 ; p$-value $=0.03767$; Table 2), however the transgene followed $3: 1$ segregation ($\chi^{2}=0.1826 ; p$-value $=0.8174$; Table 2), indicating presence of potentially one functional Bs3 copy. K30, L196, and N61 lines were also analysed in the same manner, but were neglected for further use due to the integration of numerous Bs3 copies, some of which were not estradiol-inducible (Table 2).

Genome Walking, a PCR-based method for identification of unknown genomic sequences flanking known sequence (Cottage et al., 2001; Shapter and Waters, 2014), was used to determine the insertion site of the Bs3 transgene in the TO J8 line. According to this approach (Materials and methods, chapter 4.2.7), the gDNA from the TO J8 line was digested by numerous restriction enzymes that leave blunt ends and a double-strand DNA cassette, i.e. an adaptor, was ligated to each batch of the digested gDNA. Consequently, two PCRs were performed using the primers specific to the adaptor and to T-DNA borders. Query sequences of the purified and cloned amplicons were aligned to the $S / 3.0$ genome. All sequences were mapped to the chromosome 07 in two distinct groups. Each group was approximately one million bp away from each other, indicating the possible presence of two co-segregating

Table 2. Summary of the characterisation process of stable transgenic tomato lines containing Bs3 under the control of the EIP.

T0 Line designation	Number of genotyped and phenotyped T1 plants	Number of T1 plants showing cell death upon estradiol treatment	Number of transgene-positive T1 plants
J8 100	66	76	
K30	100	66	93
L196	100	12	N/A
N61	100	48	93

transgene copies (Figure 17A). The number and genomic location of both co-segregating Bs3 copies were confirmed using PCR with primer pairs specific to chromosome 07 and the right or left borders of the transgene, and consecutive sequencing of PCR-amplified fragments.

The J8 plants reliably responded to estradiol treatment with a cell death reaction throughout all generations tested so far, i.e. T0 to T4 (Figure 17B). Transcriptional activation of Bs3 copies 12 hours post-infiltration (hpi) with liquid estradiol was measured by quantitative real-time PCR (qRT-PCR; Figure 17C). At this timepoint Bs3 expression upon estradiol treatment was equal to 30% of the house-keeping gene TAP42 Interacting Protein of 41 kDA-Like (TIP41-Like; Solyc10g049850) expression level (Figure 17C), which was significantly higher than Bs3 expression (0%) in mock-treated samples (p -value $=0.00078<0.001$). These results indicate a correlation between the cell death phenotype and the transcriptional activation of $B s 3$ upon estradiol treatment.

Figure 17. Estradiol-mediated transcriptional activation of $B s 3$ causes cell death in tomato. A) In the J8 (Bs4 Bs3) line, two Bs3 copies are integrated into chromosome 07. B) Phenotypic analysis of WT, i.e. a negative control, and T2 J8 leaflets with liquid estradiol (left; red) and mock (right; black) treatments. Mock treatment served as a negative control of Bs3-mediated cell death. Phenotypes were observed 2 days post-treatment. All leaflets were destained in 80% EtOH. Dashed lines mark the infiltrated area. C) Bs3 expression in T3 J8 line 12 hpi of liquid estradiol and mock solution. Mock treatment served as a negative control of estradioldependent transcriptional activation of Bs3. Bs3 and TAP42 Interacting Protein of 41 kDA-Like (TIP41-Like; Solyc10g049850) expression levels were quantified by quantitative real-time PCR (q RT-PCR). $n=8, n$ numbers of independent biological replicates. Unpaired Two-Samples Wilcoxon Test was used to calculate significant differences between groups. ${ }^{* * *}, p \leq 0.001$.

RESULTS

2.2.3 dTALE34 transcriptionally activates not estradiol-inducible Bs3 in CC-Bs4 background.

One of the project goals was to clarify if the transcriptional activation of $B s 3$ in tomato will result into Bs3-mediated resistance to X. euvesicatoria (Introduction, chapter 1.2.3). This goal could be achieved via deployment of dTALEs to mimic the native situation where AvrBs3 delivered by xanthomonas bacteria transcriptionally activates Bs3 (Morbitzer et al., 2011; Römer et al., 2007). Utilisation of dTALEs required Bs3 integration into tomato mutant lacking a functional copy of the Bs4 to eliminate interference by the dTALE-activated tomato Bs4. (Figures 4 and 6; Bultmann et al., 2012; de Lange et al., 2017; Schornack et al., 2004; Schornack et al., 2005).

The tomato genotype containing the functionally-validated $B s 3$ transgene, i.e. the J8 line (Figure 17), was crossed to the Bs4 knockout line, i.e. the H11 line (Figure 12B), to identify descendants containing a functional Bs3 transgene and a homozygous Bs4 null allele (Figure 18A). Filial plants from the first generation (F1) which had a cell death reaction following syringe infiltrated liquid estradiol were kept for selfing (Figure 18A). In the F2 generation, homozygous Bs4 and CC-Bs4 plants lacking or containing Bs3 transgene were selected by genotyping to test the ability of a dTALE to transcriptionally activate Bs3 (Figure 18A). It was hypothesised that the CC-Bs4 Bs3 line would show cell death reaction only upon X. euvesicatoria-mediated delivery of the EIP-targeting dTALE, but not AvrBs4.
dTALE34, consisting of 17,5 tandemly arranged 34 aa-long repeats, was engineered to target a 19 bp-long effector-binding element (EBE ${ }^{\text {dTALE34 }}$) within the XVE inducible element of the EIP (Figure 18B). All genotypes from the F2 generation were infiltrated with Xe 85-10 strains containing avrBs4, dTALE34, and EV (Figure 18C). Parental H11 (CC-Bs4) and J8 (Bs4 Bs3) lines were used as the negative and positive controls, respectively (Figure 18C). F2 CC-Bs4 genotype did not show a cell death reaction to AvrBs4, dTALE34 or the EV (Figure 18C), which is consistent with the reaction of the parental H11 line (Figure 18C). Infiltration of AvrBs4 and dTALE34, but not the EV, into F2 Bs4 and F2 Bs4 Bs3 caused the cell death phenotype (Figure 18 C), which is consistent with the reaction of the parental J 8 line (Figure 18C). This cell death is associated with the Bs4-mediated recognition of AvrBs4 and dTALE34. F2 CC-Bs4 Bs3 plants, hereinafter referred to as the HJ1 line, did not show a cell death reaction to AvrBs4 or EV (Figure 18C) but had a cell death phenotype upon infiltration with Xe 85-10 dTALE34 (Figure

18C). Since CC-Bs4 in the HJ1 line is a null allele, the cell death in the HJ1 line was caused by the transcriptional activation of $B s 3$ by dTALE34 (Figure 18C).

To compare the efficiency of dTALE34-mediated versus liquid estradiol-mediated transcriptional activation of the Bs3 transgene in the HJ1 (CC-Bs4 Bs3) line, the Bs3 transcript

Figure 18. Delivery of dTALE34, but not AvrBs4 causes cell death in CC-Bs4 Bs3 tomato. A) Schema of F2 CC-Bs4 Bs3 (HJ1) line development. A Cas9 ${ }^{854}$-free homozygous CC-Bs4 (H11) plant was crossed to a heterozygous Bs4 Bs3 (J8) plant from the T1 generation. F1 plants which had a cell death reaction after liquid estradiol infiltration were kept for selfing. Green arrows emphasise the genotypes selected for selfing and seed multiplication. \times and \otimes symbols represent crossing and selfing, respectively. Homozygous CC-Bs4 Bs3 plants (HJ1 line) were selected in the F2 generation by genotyping. Coloured rings indicate traits: blue - homozygous $C C-B s 4$ and orange - presence of Bs3. B) dTALE34 targets EBE ${ }^{\text {dTALE34 }}$ within the EIP to activate transcription of $B s 3 . C$) Phenotyping of $F 2$ lines segregating for $B s 4 / C C-B s 4$, and $B s 3$ with Xe 85-10 avrBs4 (left top; black), Xe 85-10 dTALE34 (left bottom; red), and Xe 85-10 EV (right side; green). The parental J8 and H 11 lines served as positive and negative controls of the Bs4-mediated cell death upon AvrBs4 and dTALE34 delivery, respectively. Xe 85-10 avrBs4 served as a positive control of the Bs4-mediated cell death and as a negative control of the Bs3-mediated cell death. Xe 85-10 EV served as a negative control of the AvrBs4- or dTALE34induced cell death. Phenotypes were observed 2 dpi. All leaflets were destained in $80 \% \mathrm{EtOH}$. Dashed lines mark the infiltrated area.

RESULTS

abundance was quantified by qRT-PCR 12 hpi with Xe 85-10 dTALE34, Xe 85-10 EV, liquid estradiol, and mock treatment. Bs3 expression upon estradiol treatment was approximately 8\% compared to the level of the house-keeping gene TIP41-Like expression (Figure 19), which was significantly higher than Bs3 expression (0%) in mock treated samples (p-value $=0.00019$ < 0.001; Figure 19). Moreover, Bs3 expression in Xe 85-10 dTALE34-treated leaflets was on average 880% compared to the level of the house-keeping gene TIP41-Like expression (Figure 19), which was significantly higher than Bs3 expression (0\%) in Xe 85-10 EV-treated samples (p-value $=0.00019<0.001$; Figure 19). These data indicate that the dTALE34 transcriptionally activates $B s 3$ transgene strongly, while the same transgene is barely activated by the liquid estradiol treatment. In addition, this experiment shows that the dTALE34-dependent transcriptional activation of the $B s 3$ transgene correlates with the cell death phenotype in the HJ1 line (Figure 18C).

Figure 19. dTALE34 transcriptionally activates not estradiol-inducible Bs3 transgene in CC-Bs4 background. HJ1 (CC-Bs4 Bs3) leaflets were syringe infiltrated with Xe 85-10 dTALE34 $\left(\mathrm{OD}_{600}=0.4\right)$, Xe 85-10 EV $\left(\mathrm{OD}_{600}=0.4\right)$, liquid estradiol, and mock solutions. Infiltrations with Xe 85-10 EV and mock solutions served as negative controls of dTALE34- and estradioldependent transcriptional activation of Bs3, respectively. Samples were collected 12 hpi . Bs 3 and TIP41-Like expression levels were quantified by qRT-PCR. $\mathrm{n}=8, n$ numbers of independent biological replicates. Pairwise Wilcoxon Rank Sum Test and false discovery rate (FDR) p-value adjustment method for multiple comparisons were used to calculate significant differences between groups. ${ }^{* * *}, p \leq 0.001$.

2.2.4 Bs4 has no detectable impact on dTALE34-dependent transcriptional activation of the Bs3 transgene.

Since dTALE34 transcriptionally activated not estradiol-inducible Bs3 transgene in the HJ1 (CC-Bs4 Bs3) line, it might be able to activate transcription of other not estradiol-inducible executor transgenes, namely Bs $4 C, X a 10$, and Xa23, in the Bs4 background (Table 1). To clarify if Bs4-mediated dTALE34 recognition would affect dTALE34-mediated transcriptional activation of the Bs 3 transgene, leaflets of the J 8 (Bs 4 Bs 3) and $\mathrm{HJ1}$ (CC-Bs4 Bs3) plants were infiltrated with Xe 85-10 dTALE34 and Xe 85-10 EV. Samples were collected 24 hpi and the Bs3 transcript abundance was quantified by qRT-PCR. Bs3 transcript abundance upon dTALE34mediated transcriptional activation of the Bs3 transgene in the CC-Bs4 background was equal to 630% of the transcript abundance level of the house-keeping gene TIP41-Like (Figure 20), which was significantly higher than the Bs3 transcript abundance in EV-treated samples (0\%; p-value $=0.0065<0.01$; Figure 20). Meanwhile, Bs3 transcript abundance upon dTALE34-

Figure 20. dTALE34 activates transcription of Bs3 in the CC-Bs4 and Bs4 backgrounds. HJ1 (CC-Bs4 Bs3) and J8 (Bs4 Bs3) leaflets were syringe infiltrated with Xe 85-10 dTALE34 and Xe 85-10 EV ($\mathrm{OD}_{600}=0.4$). Infiltrations of HJ1 and J8 leaflets with Xe $85-10 \mathrm{EV}$ served as negative controls of dTALE34- dependent transcriptional activation of Bs3. Samples were collected 24 hpi. Bs3 and TIP41-Like expression levels were quantified by qRT-PCR. $\mathrm{n}=6$, n numbers of independent biological replicates. Pairwise Wilcoxon Rank Sum Test and FDR p-value adjustment method for multiple comparisons were used to calculate significant differences between groups. ${ }^{* *}, p \leq 0.01$.

Abstract

RESULTS mediated transcriptional activation of the Bs3 transgene in the Bs4 background was equal to 130% of the transcript abundance level of the house-keeping gene TIP41-Like (Figure 20), which was significantly higher than the Bs3 transcript abundance in EV-treated samples (0\%; p-value $=0.0087<0.01$; Figure 20). Even though there was a difference in the Bs3 transcript abundance levels upon dTALE34-mediated transcriptional activation of the Bs3 transgene between Bs4 and CC-Bs4 backgrounds, this difference was not statistically significant (p-value $=0.0779>0.05$; Figure 20). As the Bs4-mediated dTALE34 recognition did not affect dTALE34mediated transcriptional activation of the Bs3 transgene (Figure 20), dTALE34 could therefore be used for the transcriptional activation of the Bs4C, Xa10, and Xa23 transgenes in the T0 lines, which did not show cell death reaction upon liquid estradiol treatment (Table 1).

2.2.5 Bs4 mediates recognition of dTALEs with 35 aa-long repeats in tomato.

Even though dTALE34-mediated transcriptional activation of the executor transgenes in the Bs4 background (generated TO lines; Table 1) may be measured with qRT-PCR, Bs4-mediated recognition of dTALE34 and the resulting cell death masks any executor protein-caused phenotypes. To avoid laborious and time-consuming introduction of executor transgenes to CC-Bs4 background via crossing (Figure 18A), it was hypothesised that modifications to the dTALE architecture would prevent Bs4-mediated dTALE recognition and the resulting cell death reaction and therefore, would uncover executor protein-caused phenotypes upon transcriptional activation by a modified dTALE.

Previous studies demonstrated that AvrHah1 and Hax2, i.e. TALEs from X. gardneri and X. campestris pv. armoraciae ($X c a$), overcome Bs4-mediated recognition and cell death (Kay et al., 2005; Schwartz et al., 2017). It was hypothesised that these TALEs avoid Bs4-mediated recognition due to their unique architecture (Schwartz et al., 2017), i.e. presence of proline at the position 33 in 35 aa-long repeats (Schornack et al., 2008), while majority of AvrBs3-like proteins and dTALEs consist from 34 aa-long repeats, which do not contain proline at the position 33 (Ballvora, Pierre, et al., 2001; Gu et al., 2005; Morbitzer et al., 2011; Richter et al., 2014). In order to determine if Bs4 mediates recognition of dTALEs with 35 aa-long repeats, dTALE35, consisting of 17,5 tandemly arranged 35 aa-long repeats, was engineered to bind a 19 bp-long effector-binding element (EBE ${ }^{d T A L E 355}$) within XVE inducible element of the EIP (Figure 21A).

The WT, H11 (CC-Bs4), and HJ1 (CC-Bs4 Bs3) lines were infected with Xe 85-10 strains containing dTALE34, dTALE35, avrBs4, or EV. Phenotyping of infected leaflets was made 3 dpi . This experiment revealed that Xe 85-10-mediated delivery of dTALE34 and dTALE35 into HJ1 line resulted in the cell death reaction (Figure 21B), while Xe 85-10 avrBs4 and Xe 85-10 EV infection in the same background did not cause the cell death (Figure 21B). These results show that both dTALE34 and dTALE35 retained their full-length structure and architecture necessary for transcriptional activation of the Bs3 transgene and its transcriptional activation resulted in a Bs3-mediated cell death reaction. Consequently, when Xe 85-10 strains containing dTALE34, dTALE35, avrBs4, and EV were infiltrated into the leaflets of the H11 plants, no cell death reaction was observed (Figure 21B). This is due to absence of the Bs3

Figure 21. Bs4 mediates recognition of dTALEs with 34 and 35 amino acid-long repeats. A) Schematic location of EBEs targeted by dTALE34 and dTALE35 within the EIP of Bs3. B) Phenotyping of WT, H11 (CC-Bs4), and HJ1 (CC-Bs4 Bs3) lines with Xe 85-10 avrBs4 (left top; black), Xe 85-10 dTALE34 (left bottom; red), Xe 85-10 dTALE35 (right bottom; blue), and Xe $85-10 \mathrm{EV}$ (right top; green) at $\mathrm{OD}_{600}=0.4$. The H 11 line served as a negative control of the Bs4mediated cell death upon AvrBs4, dTALE34, and dTALE35 delivery. The HJ1 line was used to test functionality of dTALE34 and dTALE35. Xe 85-10 EV served as a negative control of the triggered cell death. Phenotypes were observed 3 dpi. All leaflets were destained in $80 \% \mathrm{EtOH}$. Dashed lines mark the infiltrated area.

Abstract

RESULTS transgene and presence of the CC-Bs4 allele in the H 11 line. Nevertheless, Xe 85 -10-mediated delivery of dTALE34, dTALE35, and AvrBs4 in the WT plants led to an observable cell death reaction (Figure 21B). Since there is no $B s 3$ transgene in the WT, cell death reaction on leaflets areas infected with Xe 85-10 dTALE34, Xe 85-10 dTALE35, and Xe 85-10 avrBs4 was mediated by Bs4. Collectively, these results demonstrate that delivery of AvrBs4, i.e. a TALE with 34 aalong repeats, dTALE34, i.e. a dTALE with 34 aa-long repeats, and dTALE35, i.e. a dTALE with 35 aa-long repeats, triggered Bs4-mediated cell death reaction. Thus, extended length of repeats and the presence of a proline at the position 33 within the 35 aa-long repeats did not allow dTALE35 to overcome Bs4-mediated recognition and cell death. Therefore, CC-Bs4 background is indeed preferred for integration of not estradiol-inducible executor transgenes and consequently, their dTALE-mediated transcriptional activation, since CC-Bs4 will not mask executor protein-caused phenotypes upon transcriptional activation by a dTALE.

2.2.6 Bs3 confers resistance to $\mathrm{Xe} \mathbf{8 5 - 1 0}$ dTALE34 in tomato.

Previous experiments demonstrated that the transcriptionally activated Bs3 is able to cause cell death in tomato (Figures 17B and 18C), however, the effect of Bs3 expression on bacterial growth had not been studied. In order to test if transcriptional activation of $B s 3$ has an impact on bacterial growth in planta, tomato CC-Bs4 lines that either contained Bs3 (HJ1) or lacked Bs3 (H11) were infiltrated with a set of isogenic Xe 85-10 strains containing or lacking dTALE34 targeting XVE element within the EIP of the Bs3 transgene. Phenotypic inspection at 7 dpi revealed necrotic reactions of inoculated tissue only with the combination of $B s 3$-transgenic plants and Xe 85-10 expressing dTALE34 (Figure 22A). This observation suggests that the occurrence of the cell death reaction in tomato leaflets depends on both, presence of the Bs3 transgene in the given plant and presence of the dTALE34 in the Xe 85-10 strain.

Following the phenotypic results, growth of Xe 85-10 dTALE34 and Xe 85-10 EV strains in tomato CC-Bs4 lines that either contained Bs3 (HJ1) or lacked Bs3 (H11) was quantified 7 dpi . Significantly less Xe 85-10 dTALE34 colony-forming units per square centimetre (CFUs/cm ${ }^{2}$) were detected within HJ1 line in comparison to Xe 85-10 EV (p-value $=0.000051<0.0001$; Figure 22B). There were also significant differences between Xe 85-10 dTALE34 growth in HJ1 and H 11 lines (p-value $=0.000051<0.0001$; Figure 22B). These results show that the reduced in planta growth of Xe 85-10 dTALE34 correlates with the increased Bs3 transcript levels.

This thesis describes the first transgenesis of Bs3, an executor R gene from Capsicum spp., to Solanum spp. Bs3 under the control of the EIP was transcriptionally activated in different genetic backgrounds (Bs4 and CC-Bs4) using two methods, namely activation with the liquid estradiol and with the dTALE targeting the XVE element within the EIP (Figures 17C, 19, and 20). Transcriptional activation of the Bs3 transgene correlated with the cell death reaction (Figures 17B and 18C) and the reduced in planta growth of Xe 85-10 dTALE34. Collectively, engineered transgenic lines and bacterial strains represent a pathosystem that enables further dissection of the Bs3-mediated immunity pathways. Liquid estradiol-mediated transcriptional activation of the Bs3 transgene allows for the study of Bs3-mediated cell death in absence of pathogen-associated virulence effects in the J8 (Bs4 Bs3) line. dTALE34-mediated

Figure 22. Bs3 confers resistance to $\mathrm{Xe} \mathbf{8 5 - 1 0}$ dTALE34 in tomato $\mathbf{7} \mathbf{d p i}$. A) Phenotyping of H11 (CC-Bs4; top) and HJ1 (CC-Bs4 Bs3; bottom) lines with Xe 85-10 dTALE34 (left; red) and Xe 85-10 EV (right; green) strains $7 \mathrm{dpi}\left(\mathrm{OD}_{600}=4 \times 10^{-5}\right)$. The H 11 line served as a negative control of Bs3-mediated cell death. Xe 85-10 EV served as a negative control of the dTALE34mediated transcriptional activation of Bs3. All leaflets were destained in 80% EtOH. Dashed lines mark the infiltrated area. B) Quantification of Xe 85-10 dTALE34 and Xe 85-10 EV growth in the H 11 ($C C-B s 4$) and $\mathrm{HJ1}$ ($C C-B s 4 B s 3$) lines. The H 11 line served as a negative control of Bs3-mediated resistance. Xe 85-10 EV served as a negative control of the dTALE34-mediated transcriptional activation of $B s 3 . \mathrm{n}=12$, n numbers of independent biological replicates. Colony-forming units per square centimetre (CFUs/ cm^{2}) were counted 0,4 , and 7 dpi and $\log _{10} \mathrm{CFUs} / \mathrm{cm}^{2}$ scores were used for the boxplot and statistical analysis. Pairwise Wilcoxon Rank Sum Test and FDR p-value adjustment method for multiple comparisons were used to calculate significant differences between groups. ${ }^{*}, p \leq 0.05 ;{ }^{* *}, p \leq 0.01 ;{ }^{* * * *}, p \leq 0.0001$.

Abstract

RESULTS transcriptional activation of the Bs3 transgene in the HJ1 (CC-Bs4 Bs3) line allows the use of the established S. lycopersicum - X. euvesicatoria pathosystem to study Bs3-mediated resistance and the impact of putative Bs3-mediated pathway component knockouts on resistance. The afore described results are not only valuable for further discoveries in fundamental biology, but also have an applied value in agriculture. Since dTALE34-mediated transcriptional activation of the Bs3 transgene restricts Xe 85-10 growth in planta (Figure 22B), Bs3 under the control of a native or a synthetic promoter with EBE traps matching RVDs of the most common TALEs from Xanthomonas strains that are pathogenic on tomato can be a reliable source of resistance against Xanthomonas spp. in field conditions.

2.3 Does Bs3 exploit canonical NLR-mediated immunity pathways?

The engineered tomato CC-Bs4 lines that either contained Bs3 (HJ1) or lacked Bs3 (H11) and Xe 85-10 strains containing avrBs4, dTALE34, and EV were used to decipher if Bs3 exploits canonical pathways to trigger a cell death reaction. As Bs3-mediated cell death and resistance are separate cases of effector-triggered immunity (Römer et al., 2007), the involvement of ETI master regulators, e.g. EDS1 and SGT1 (Lapin et al., 2020; Shirasu, 2009), into Bs3-mediated cell death was studied. Additionally, Bs3 overexpression in N. benthamiana was reported to coincide with increased levels of SA and Pip (Krönauer et al., 2019), suggesting putative exploitation of established immune pathways. Since Bs4 acts via EDS1 and SGT1 to mediate cell death signalling (Schornack et al., 2004), the Bs4 background was ideal for CRISPR/Cas9mediated mutagenesis of EDS1 and SGT1 and further validation that CC-EDS1 and CC-SGT1 are in fact null alleles. Consecutive crosses to the HJ1 (CC-Bs4 Bs3) line and selection of homozygous CC-EDS1 CC-Bs4 Bs3 and CC-SGT1 CC-Bs4 Bs3 lines were conducted to unravel putative roles of EDS1 and SGT1 in the Bs3-mediated cell death and immunity.

2.3.1 Trans-generational heritability of Cas9 ${ }^{\text {EDS1 }}$ activity facilitates CC-EDS1 CC-Bs4 Bs3 line development.

There are two loci in tomato genome S/3.0 annotated as "EDS1", namely Solyc02g069400 and Solyc06g071280. However, only tomato Suppressor of N 1-1 (sun1-1), a mutation in Solyc06g071280, was described to be defective in N-mediated resistance, SA accumulation and SAR (G. Hu et al., 2005). Thus, a CRISPR/Cas9-mediated null mutation in Solyc06g071280, designated as CC-EDS1, was hypothesised to abort Bs4-mediated signalling. Since a functional

EDS1-PAD4 (EP) domain is required for AtEDS1-mediated cell death (Falk et al., 1999; Parker et al., 1996), SIEDS1 ${ }^{\text {AEP }}$ mutant was preferred. Therefore, sgRNA6 and sgRNA7 were designed to target SIEDS1 genomic sequence upstream from the encoded structural EP domain (Figure 23).

In addition to EDS1, testing the involvement of SGT1b, an NLR co-chaperone that positively regulates ETI (Austin et al., 2002; Azevedo et al., 2006), in Bs3-mediated cell death and immunity was also important. Mining for AtSGT1a (At4g23570) and AtSGT1b (At4g11260) homologous protein sequences in tomato revealed SISGT1a (Solyc06g036410) and SISGT1b (Solyc03g007670). Percent identity matrix generated with Clustal 2.1 Omega algorithm revealed that SISGT1a shared 64,47\% homology with AtSGT1a and 63.31% with AtSGT1b at the protein level, while SISGT1b shared $68,1 \%$ homology with AtSGT1a and 68.17% with AtSGT1b at the protein level. As either any of these two tomato SGT1 proteins could be involved into Bs4-mediated cell death, both were knocked out independently. Thus, three sgRNAs, namely sgRNA8, sgRNA9, and sgRNA10, were designed to target the SGT1a genomic sequence upstream of the encoded CHORD-SGT1 (CS) and SGT1-specific (SGS) domains (Figure 23). Three other sgRNAs, namely sgRNA11, sgRNA12, and sgRNA13, were designed to target the SGT1b genomic sequence upstream of the encoded tetratricopeptide repeat (TPR) and SGS domains (Figure 23).

Figure 23. sgRNA designed for CRISPR/Cas9-mediated EDS1, SGT1a, and SGT1b mutagenesis in tomato. Black triangles indicate sgRNA target sites. Green blocks represent sequence regions encoding functional domains. Black stars represent the location of annotated stop codons. Blue triangles represent primers used for genotyping of putative mutants in the TO generation.

Figure 24. A cross between Cas9 ${ }^{\text {EDS1 }}$-containing T0 CC-EDS1 Bs4 plant and EDS1 CC-Bs4 Bs3 line facilitates F2 CC-EDS1 CC-Bs4 Bs3 line development. A) Conventional breeding scheme for multiple trait combination includes stable transformation, TO CC-EDS1 Bs4 identification, selection of Cas9 ${ }^{\text {EDS1-free homozygous CC-EDS1 Bs4 plant, cross to CC-Bs4 and Bs3 donor line, }}$ selection of F1 EDS1/CC-EDS1 Bs4/CC-Bs4 Bs3 plants, selection and phenotyping of homozygous F2 CC-EDS1 CC-Bs4 Bs3 plants. B) Fast breeding scheme for multiple trait combination includes transformation, CasgEDS1-positive TO CC-EDS1 Bs4 identification and cross to CC-Bs4 and Bs3 donor line, selection of F1 EDS1/CC-EDS1 Bs4/CC-Bs4 Bs3 plants, selection and phenotyping of homozygous F2 CC-EDS1 CC-Bs4 Bs3 plants. Coloured rings indicate traits: purple - homozygous CC-EDS1, blue - homozygous CC-Bs4, and orange presence of Bs3. Green coloured arrows and text emphasise the genotypes selected for selfing and seed multiplication. \times and \otimes symbols represent crossing and selfing, respectively.

However, the conventional process of CRISPR/Cas9-mediated mutant line development and combination of the mutant trait with other traits by crossing is laborious and time consuming (Figure 24A). For example, stable Agrobacterium-mediated transformation of MM tomato calli for EDS1 mutagenesis, identification and characterisation of T0 mutants, selection of Cas9 ${ }^{\text {EDS1 }}$ free homozygous CC-EDS1 Bs4 mutant plants in the T1 generation, CC-EDS1 allele combination with CC-Bs4 allele and Bs3 transgene by crossing, and consecutive selection of CC-EDS1 CCBs4 Bs3 genotype in F2 generation was estimated to take four generations. As this conventional process requires so much time, a shortcut for CC-EDS1 CC-Bs4 Bs3 line development was used. The step involving Cas9 ${ }^{\text {EDS1 }}$-free T1 CC-EDS1 Bs4 line development was skipped and Cas9 ${ }^{\text {EDS1 }}$-positive TO CC-EDS1 Bs4 plant was crossed with the CC-Bs4 and Bs3 donor line (Figure 24B; Rodríguez-Leal et al., 2017). This approach, hereinafter referred to as the fast breeding scheme, was based on trans-generational heritability of Cas9 ${ }^{E D S 1}$ activity and

Figure 25. CRISPR/Cas9-mediated EDS1 mutagenesis and gene models of TO CC-EDS1 mutants. Green blocks represent sequence regions encoding functional domains. Black triangles and vertical dashed lines indicate the sgRNA6 and sgRNA7 target sites. Blue triangles represent primers used for genotyping. WT EDS1 genomic and protein sequences impacted by mutations are highlighted with bold black font. CC-EDS1 mutations within genomic and protein sequences are marked with bold red font. Black and red stars represent the locations of native and premature stop codons, respectively.

RESULTS

was intended to save one generation in F2 CC-EDS1 CC-Bs4 Bs3 line development (Figure 24B; Rodríguez-Leal et al., 2017). However, the fast breeding scheme was expected to require extensive selection for the CC-EDS1 and CC-Bs4 alleles and the Bs3 transgene in F1 and F2 generations.

Individual stable transformations of WT tomato were performed to knock out EDS1, SGT1a, and SGT1b for further testing for an impact of such mutations on Bs3-mediated cell death and immunity. Two TO lines were identified to contain CC-EDS1 alleles with large sequence deletions between LP-domain-encoding and EP-domain-encoding sequences (Figure 25). CC-EDS1-1 allele had an 867 bp-long sequence deletion, while CC-EDS1-2 allele had an 861 bp-long sequence deletion (Figure 25). Both mutations were predicted to cause frameshifts and therefore, truncated proteins lacking C-terminal EP-domains, namely CC-EDS1-1 and CC-EDS1-2 (Figure 25).

In addition to aforementioned TO CC-EDS1 lines, two TO lines containing CC-SGT1a alleles with large genomic sequence deletions were identified (Figure 26). CC-SGT1a-1 allele had a 744 bp-long sequence deletion between TPR-domain-encoding and SGS-domain-encoding sequences, while CC-SGT1a-2 allele had a 165 bp-long sequence deletion between TPR-domain-encoding and CS-domain-encoding sequences (Figure 26). Both mutations were predicted to cause frameshifts and therefore, truncated CC-SGT1a-1 and CC-SGT1b-2 proteins lacking C-terminal domains (Figure 26).

In the case of the SGT1b knockout, identification of putative TO lines containing mutations in SGT1b was complicated due to low transformation rates or, probably, by lethality of SGT1b knock out. Consequently, only one TO line containing a CC-SGT1b allele with a 246 bp-long genomic sequence deletion between CS-domain-encoding and SGS-domain-encoding sequences was identified and this allele was named CC-SGT1b-1 (Figure 26). However, this mutation did not introduce frameshifts and did not affect any sequences encoding functional domains and therefore, CC-SGT1b-1 protein is likely to be functional (Figure 26).

Following the fast breeding scheme (Figure 24B; Rodríguez-Leal et al., 2017), the CC-Bs4 allele and the Bs3 transgene-containing line was crossed to Cas9-positive TO CC-EDS1-1, CC-SGT1a-2, and CC-SGT1b-1 lines and F1 seeds were collected. The selection process prioritised only CC-EDS1 CC-Bs4 Bs3 line development due to time limitations. In the F1
generation, only one plant heterozygous for the Bs4 and CC-Bs4 alleles and hemizygous for the Bs3 transgene was identified. In addition, this F1 plant was also Cas9 ${ }^{\text {EDS1 - positive. To clarify }}$ if the selected F1 plant contained EDS1 and CC-EDS1-1 alleles from its parental plants, the EDS1 genomic sequence targeted by sgRNA6 and sgRNA7 was PCR-amplified, purified, cloned, and sequenced (Figure 27). Analysis of Sanger sequencing reads failed to detect neither EDS1 nor CC-EDS1-1 alleles from the parental plants, however, four unique and previously unidentified CC-EDS1 alleles, namely CC-EDS1-3, CC-EDS1-4, CC-EDS1-5, and CC-EDS1-6, were found (Figure 27). Each of these CC-EDS1 alleles had sequence deletions of various length between LP-domain-encoding and EP-domain-encoding sequences (Figure 27). All of these mutations were predicted to cause frameshifts and therefore, truncated EDS1 proteins lacking C-terminal EP-domains (Figure 27).

The selected F1 plant was kept for selfing and seed multiplication. In the F2 generation all plants were genotyped for the $\operatorname{Cas} 9^{E D S 1}$ transgene. All Cas9 ${ }^{\text {EDS1 }}$-free plants were further genotyped for Bs4 and CC-Bs4 alleles and for the Bs3 transgene. To clarify if the Cas9 ${ }^{\text {EDS1 }}$-free F2 plants contained EDS1 and previously identified CC-EDS1 alleles, the EDS1 genomic sequence targeted by sgRNA6 and sgRNA7 was PCR-amplified, purified, cloned, and sequenced (Figure S1). Analysis of Sanger sequencing reads revealed EDS1 WT allele, as well as 13 unique CC-EDS1 alleles (Figure S1). Only one of these 13 unique CC-EDS1 alleles, namely CC-EDS1-4, was previously identified in the parental F1 plant (Figure 27; Figure S1). Majority of the newly identified CC-EDS1 alleles had sequence deletions of various length between LP-domain-encoding and EP-domain-encoding sequences (Figure S1). These mutations were predicted to cause frameshifts and therefore, truncated EDS1 proteins lacking C-terminal EP-domains (Figure S1). Only CC-EDS1-14 allele had a three bp-long deletion within the target site of the sgRNA6 and this mutation was predicted not to cause a frameshift. Therefore, CC-EDS1-14 protein likely was functional (Figure S1).

As CC-EDS1 alleles were cloned from Casg ${ }^{\text {EDS1 }}$-free F2 plants, all identified CC-EDS1 mutations must have been present already in the Cas9 ${ }^{E D S 1}$-positive parental F1 plant. In this case, the CC-EDS1 allele from the CasgEDS1-positive TO CC-EDS1 Bs4 parent could have been used as a template for the homology-directed DNA repair (HDR) upon Cas9 ${ }^{\text {EDS1 }}$-caused double-stranded break in the EDS1 allele inherited from the CC-Bs4 and Bs3 donor parent (Figure 24B). Thus,

RESULTS

the fast breeding scheme stimulated the production of new CC-EDS1 alleles in planta by CRISPR/Cas9-mediated mutagenesis of EDS1 allele present in the F1 plant (Figure S1). This simple approach is based on trans-generational heritability of Casg ${ }^{\text {EDS1 }}$ activity and provides a possibility to create new mutant alleles without the need to repeat laborious transformation and tissue culture (Hunter, 2021; Rodríguez-Leal et al., 2017). Additionally, it might be applied for efficiency improvement of precise CRISPR/Cas9-mediated knock-ins of GOI via HDR (Movahedi et al., 2021; M. Wang et al., 2017; J.-P. Zhang et al., 2017).

Figure 26. CRISPR/Cas9-mediated SGT1a and SGT1b mutagenesis and gene models of TO CC-SGT1a and TO CC-SGT1b mutants. Green blocks represent sequence regions encoding TPR, CS, and SGS domains. Black triangles and vertical dashed lines indicate sgRNA target sites. Blue triangles represent primers used for genotyping of TO plants for putative CC-SGT1a and CC-SGT1b mutations. WT SGT1a and SGT1b genomic and protein sequences impacted by mutations are highlighted with bold black font. CC-SGT1a and CC-SGT1b mutations within genomic and protein sequences are marked with bold red font. Black and red stars represent the locations of native and premature stop codons, respectively.

Even though the fast breeding scheme saved one generation in the development of F2 CC-EDS1 CC-Bs4 Bs3 plants in comparison to the conventional breeding scheme (Figure 24B), the abundance of numerous newly evolved CC-EDS1 alleles complicated the analysis of mutations and selection of F2 plants for future phenotyping experiments.

Figure 27. CRISPR/Cas9-mediated EDS1 mutagenesis and gene models of four CC-EDS1 alleles identified in F1 generation. Green blocks represent sequence regions encoding functional domains. Black triangles and vertical dashed lines indicate the sgRNA6 and sgRNA7 target sites. Blue triangles represent primers used for genotyping. WT EDS1 genomic and protein sequences impacted by mutations are highlighted with bold black font. CC-EDS1 mutations within genomic and protein sequences are marked with bold red font. Black and red stars represent the locations of native and premature stop codons, respectively.

RESULTS

2.3.2 CC-EDS1 does not abolish Bs3-mediated cell death in tomato.

In order to clarify if knock out of EDS1 would abolish Bs3-mediated cell death, all Cas9 ${ }^{\text {EDS1 }}$-free plants in the F2 generation were split into eight classes based on the combinations of EDS1/CC-EDS1 and Bs4/CC-Bs4 with the presence or absence of the Bs3 transgene. The F2 plants representing EDS1 Bs4 Bs3, EDS1 CC-Bs4 Bs3, CC-EDS1 Bs4 Bs3, and CC-EDS1 CC-Bs4 Bs3 genotypes and the controls, namely WT (EDS1 Bs4), HJ1 (EDS1 CC-Bs4 Bs3), H11 (EDS1 CC-Bs4), and E26 (CC-EDS1-2 Bs4) lines, were used in a phenotyping experiment (Figure 28). The selected plants were infiltrated with Xe 85-10 avrBs4, Xe 85-10 dTALE34, and Xe 85-10 EV and the phenotypes were observed 2 dpi (Figure 28). Since EDS1 is required for Bs4-mediated cell death signalling (Schornack et al., 2004), the loss of AvrBs4 or dTALE34 recognition in CC-EDS1 Bs4 background would indicate that the corresponding CC-EDS1 allele is null.

Indeed, the reaction of the controls to infiltration with the Xe 85-10 strains was consistent with previous experiments. Xe 85-10 dTALE34 caused Bs3-mediated cell death in the HJ1 (EDS1 CC-Bs4 Bs3) line (Figure 28). In the WT (EDS1 Bs4) line, AvrBs4 and dTALE34 triggered Bs4-mediated cell death, which was abolished in the H 11 (EDS1 CC-Bs4) line (Figure 28). In addition, Bs4-mediated cell death upon delivery of AvrBs4 and dTALE34 was abolished in the E26 (CC-EDS1-2 Bs4) line (Figure 28), indicating that the CC-EDS1-2 allele was null. Since CC-EDS1-2 allele from the E26 (CC-EDS1-2 Bs4) line was predicted to produce a truncated protein lacking the functionally relevant EP-domain (Figure 25; Falk et al., 1999; Parker et al., 1996), other CC-EDS1 alleles with the mutations that were predicted to cause a frameshift and proteins lacking an intact EP-domain were expected to be null (Figure S1).

Additional controls, i.e. the F2 plants \#42 (EDS1 Bs4 Bs3) and \#78 (EDS1 CC-Bs4 Bs3), resembled the same phenotypes as the WT (EDS1 Bs4) and HJ1 (EDS1 CC-Bs4 Bs3) lines, respectively (Figure 28). F2 plants \#79 and \#24, representing CC-EDS1 Bs4 Bs3 and CC-EDS1-4 CC-Bs4 Bs3 genotypes, did not show a cell death reaction upon infiltration of Xe 85-10 avrBs4 (Figure 28). The loss of AvrBs4-triggered cell death reaction in the F2 plant \#79 is due to the presence of EDS1 null alleles (CC-EDS1-7 and CC-EDS1-8) which produce truncated EDS1 proteins lacking EP-domain and are therefore deficient in mediation of downstream signalling from Bs4. In case of the F2 plant \#24, it contains Bs4 and EDS1 null alleles (CC-Bs4 and CC-EDS1-4) that are deficient in mediation of AvrBs4 recognition and downstream signalling. However, these genotypes (CC-EDS1 Bs4 Bs3 and CC-EDS1-4 CC-Bs4 Bs3) showed a cell death
reaction upon infiltration of Xe 85-10 dTALE34 (Figure 28). Collectively, these results indicate that EDS1 knockout does not abolish Bs3-mediated cell death and therefore, Bs3 does not exploit EDS1-mediated signalling for the cell death execution.

Figure 28. CC-EDS1 does not abolish Bs3-mediated cell death. All F2 lines were developed via the fast breeding scheme for multiple trait combination. WT (EDS1 Bs4), HJ1 (EDS1 CC-Bs4 Bs3), H11 (EDS1 CC-Bs4), and E26 (CC-EDS1-2 Bs4) lines served as the controls of Bs4-mediated AvrBs4 and dTALE34 recognition, EDS1-mediated downstream signalling, and Bs3-mediated cell death. F2 plants \#42 and \#78 served as positive controls for Bs3-mediated cell death reaction in EDS1 background. Asterisk (*) indicates that the plant is homozygous for the given allele. All plants were infiltrated with Xe 85-10 avrBs4 (left top; black; Bs4 activator), Xe 85-10 dTALE34 (left bottom; red; Bs4 activator and Bs3 transcriptional activator), and Xe 85-10 EV (right; green; negative control) at $\mathrm{OD}_{600}=0.4$. Phenotypes were observed 2 dpi . Leaflets were destained in 80% EtOH. Dashed lines mark the infiltrated area.

RESULTS

2.4 AvrBs3 manipulates the expression of tomato host genes.

Previous experiments demonstrated that Bs4 mediates recognition of AvrBs4, its derivative AvrBs $4 \Delta 227$ lacking central repeats $5,5-17,5$, NLS, and AAD (Figure 12B), and dTALEs with different repeat architecture, namely dTALE34 and dTALE35 (Figure 21). Therefore, it was hypothesised that Bs4 could mediate recognition of native TALEs with different repeat architecture, such as AvrBs3 and AvrHah1 from Xanthomonas spp. pathogenic on tomato and pepper.

2.4.1 Bs4 is epistatic to disease symptoms induced by AvrBs3 and AvrHah1 in tomato.

In order to test if Bs4 mediates recognition of AvrBs3 and AvrHah1, leaflets of WT (Bs4) and H11 (CC-Bs4) plants were infiltrated with Xe 85-10 strains containing avrBs4, avrBs3, avrHah1, and EV . In the Bs4 background, AvrBs4 caused the cell death reaction, while AvrBs3 and AvrHah1 did not (Figure 29A). On the other hand, AvrBs3 and AvrHah1 caused mild hypertrophy in the Bs4 background (Figure 29A). AvrBs4 did not cause any cell death reaction and any disease phenotype in the CC-Bs4 background (Figure 29B), however, AvrBs3 and AvrHah1 caused severe hypertrophy and water-soaking in the CC-Bs4 background. The disease symptoms caused by AvrBs3 and AvrHah1 in the CC-Bs 4 background were much stronger than in the Bs4 background (Figures 29A and 29B). Infiltration with Xe 85-10 EV caused neither cell death reaction nor disease symptoms in both genetic background (Figures 29A and 29B). These experimental outcomes lead to the following conclusions: 1) AvrBs3 and AvrHah1 promote disease symptoms, such as hypertrophy and water-soaking in tomato; 2) Bs4 supresses disease symptoms caused of AvrBs3 and AvrHah1; 3) AvrBs4 does not promote any observable disease symptoms in tomato.

Despite the similarity of the repeat length between AvrBs4 (34 aa-long) / dTALE34 (34 aa-long) / AvrBs3 (34 aa-long) and between dTALE35 (35 aa-long) /AvrHah1 (mixed 34-long and 35 aa-long), it is unclear why in the Bs4 background AvrBs4, dTALE34, and dTALE35 trigger Bs4-mediated recognition and cause cell death (Figure 21; Schornack et al., 2004), while AvrBs3 causes cell death inconsistently (Figure 29A; Schornack et al., 2004; Schwartz et al., 2017) and AvrHah1 does not cause cell death (Figure 29A; Schwartz et al., 2017).

Figure 29. AvrBs3 and AvrHah1 cause severe hypertrophy and water-soaking in the CC-Bs4 background. A) WT (Bs4) and B) H11 (CC-Bs4) leaflets were infiltrated with Xe 85-10 avrBs4, Xe 85-10 avrBs3, Xe 85-10 avrHah1, and Xe 85-10 EV strains (OD ${ }_{600}=0.4$). Xe 85-10 EV strain served as a negative control of TALE-induced disease symptoms. Plants were kept in high humidity conditions ($\approx 96 \%$). Phenotypes were observed 3 dpi. Dashed lines mark the infiltrated area.

2.4.2 Putative Bs4-mediated resistance to $\mathrm{Xe} \mathbf{8 5 - 1 0}$ avrBs4 was not quantified in the leaflet infiltration assay.

As delivery of AvrBs4 did not cause a cell death reaction (Figure 29B) and delivery of AvrBs3 and AvrHah1 resulted in severe disease symptoms in the CC-Bs4 background (Figure 29B), it was assumed that the H 11 (CC-Bs4) line should be more susceptible to TALE-encoding genes expressing Xe 85-10 strains than the WT (Bs4) line. To test this hypothesis, growth of $X e$ 85-10 avrBs4 and Xe 85-10 EV strains in leaflets of Bs4 and CC-Bs4 plants was quantified at 0, 4, 7, and 9 dpi. At 9 dpi, there were no statistically significant differences in bacterial growth between the tested genotypes and strains ($p>0.05$; Figure 30). These data demonstrate that the H 11 (CC-Bs4) line is as susceptible to $\mathrm{Xe} 85-10$ avrBs4 as the WT (Bs4) line (Figure 30). In addition, the WT (Bs4) line did not show a Bs4-mediated resistance effect to Xe 85-10 avrBs4 (Figure 30). These results are contradictory to the expectation that Bs4-mediated AvrBs4 recognition should restrict growth of the biotrophic Xe 85-10 avrBs4 strain, therefore, these results and the experimental setting should be taken with caution.

RESULTS

The data for the aforementioned experiment were collected after growing total bacteria extracted from the tissue samples on medium containing only rifampicin, which selected for all Xe 85-10 CFUs. Therefore, there was no strict selection for pDSK602 avrBs4 or pDSK602 EV containing Xe 85-10 CFUs on rifampicin and spectinomycin. It was assumed that there might be differences in the number of Xe 85-10 CFUs grown on rifampicin-containing medium, which included or excluded spectinomycin. Upon quantification of in planta growth of Xe 85-10 avrBs4 and Xe 85-10 EV strains 9 dpi, there were 5 times fewer CFUs on rifampicin and spectinomycin-containing medium in comparison to medium containing only rifampicin (Figures 31A and 31B); these differences were statistically significant ($p \leq 0.01$; $p \leq 0.0001$). Even though this assay conditions did not reflect the natural infection scenario, its experimental outcomes indicate that not all of the Xe 85-10 CFUs propagated pDSK602 avrBs4 and pDKS602 EV plasmids during their growth in planta. The loss of pDSK602 avrBs4

Figure 30. Bs4 does not confer resistance to Xe 85-10 avrBs4 in tomato 9 dpi. Xe 85-10 avrBs4 and Xe 85-10 EV were infiltrated into WT (Bs4) and H11 (CC-Bs4) leaflets ($\mathrm{OD}_{600}=4 \times 10^{-5}$). The WT line served as a positive control of Bs4-mediated resistance. Xe $85-10 \mathrm{EV}$ served as a negative control of the AvrBs4-triggered Bs4 activation. Number of colony-forming units per square centimetre (CFUs/cm ${ }^{2}$) was quantified $0,4,7$, and 9 dpi and $\log _{10} C F U s / \mathrm{cm}^{2}$ scores were used for the boxplot and statistical analysis. $n=6, n$ numbers of independent biological replicates. Pairwise Wilcoxon Rank Sum Test and FDR p-value adjustment method for multiple comparisons were used to calculate significant differences between groups ($p>0.05$).
propagation would lead to lower rate of Bs4 activation and therefore, to impossibility to quantify Bs4-mediated resistance. Thus, a more stable vector system and infection methods mimicking the natural infection scenario, e.g. dipping of leaflets into an inoculum, should be used to enable reliable quantification of bacterial growth in planta.

Figure 31. Xe 85-10 discard their pDSK602 avrBs4 and pDSK602 EV plasmids in planta. Xe 85-10 avrBs4 and Xe 85-10 EV were infiltrated in WT (Bs4) and H11 (CC-Bs4) leaflets $\left(\mathrm{OD}_{600}=4 \times 10^{-5}\right)$. The medium containing only rifampicin was used to select total amount of Xe CFUs. The medium containing rifampicin and spectinomycin was used to select only pDSK602 plasmid carrying Xe CFUs. Bacterial growth quantification was made 0 and 9 dpi . $\mathrm{n}=12$ (6 from WT and 6 from H11), n numbers of independent biological replicates. Number of colony-forming units per square centimetre (CFUs/ cm^{2}) were counted 0 and 9 dpi and $\log _{10} \mathrm{CFUs} / \mathrm{cm}^{2}$ scores were used for the boxplots and statistical analysis. Pairwise Wilcoxon Rank Sum Test and FDR p-value adjustment method for multiple comparisons were used to calculate significant differences between groups. ${ }^{* *}, p \leq 0.01$; ${ }^{* * * *}, p \leq 0.0001$.

2.4.3 AvrBs3 upregulates transcription of bHLHO22 to cause hypotrophy and water soaking in tomato.

Even though the afore mentioned assay focusing on quantification of the bacterial growth in planta was not suitable for observation of the putative Bs4-mediated resistance in the Bs4 background (Figure 30) and a putative virulence activity of AvrBs4 in the CC-Bs4 background, differences in the phenotypes caused by AvrBs4, AvrBs3, and AvrHah1 in the Bs4 and CC-Bs4 backgrounds were remarkable (Figure 29B). It was assumed that the analysis of putative AvrBs4, AvrBs3, and AvrHah1 targets in tomato might clarify differential phenotypes caused by these TALEs.
bHLHO22 (Solyc03g097820), a gene encoding a basic helix-loop-helix transcription factor 022, was previously described to be directly upregulated by AvrHah1 in tomato (Schwartz et al., 2017). AvrHah1-mediated up-regulation of bHLHO22 was demonstrated to upregulate PL

RESULTS

(Solyc05g014000), a gene encoding a pectate lyase (Schwartz et al., 2017). Therefore, PL was recognised a secondary target of AvrHah1 (Schwartz et al., 2017). However, putative targets of AvrBs4 and AvrBs3 in tomato have not been reported so far. Tomato genome mining for the presence of putative EBEs targeted by AvrBs4 and AvrBs3 in promoter and 5' UTR regions of annotated tomato genes revealed putative TALE targets. The top 100 predicted EBEs for each TALE were processed to visualise consensus EBE sequences using sequence logos (Figure 32). In order to shortlist the potential target genes of AvrBs4 and AvrBs3, strict selection criteria were introduced to the EBE location in the promoter regions of putative targets (Boch et al., 2009; Grau et al., 2013; Pérez-Quintero et al., 2013). Firstly, an EBE of a putative target should start with " T " at position " 0 " (Boch et al., 2009). Secondly, an EBE should be in the forward orientation towards the predicted transcription start site of a putative target (Boch et al., 2009; Grau et al., 2013; Pérez-Quintero et al., 2013). Thirdly, an EBE should be located

Figure 32. RVD composition of AvrBs4, AvrBs3, and AvrHah1 TALEs and sequence logos of their top $\mathbf{1 0 0}$ predicted targets in the tomato genome. RVD composition of the TALEs, S/3.0 version of the tomato genome, and TALgetter software (Grau et al., 2013) were used for the prediction of EBEs within promoter and 5' UTR sequences of annotated genes.
approximately $50-300$ bp upstream a predicted start codon of a putative target (Grau et al., 2013; Pérez-Quintero et al., 2013).

Application of these criteria let to select four loci as putative AvrBs4 targets (Table 3), namely SolycOOg050430 (bHLHO73) encoding a basic helix-loop-helix transcription factor 073, Solyc04g018050 (UP) encoding unknown protein, Solyc10g009483 (RING) encoding E3 ligase, and Solyc11g012130 (BCP) encoding blue copper protein. Since AvrBs3 and AvrHah1 target the same EBEs of Bs3 and UPA2O in Capsicum spp. (Schornack et al., 2008), both TALEs may upregulate the same genes in tomato. Following this hypothesis, predicted putative target genes that were common for both TALEs were selected for further analysis (Table 3). The selected putative AvrBs3 and AvrHah1 targets were Solyc01g057220 (PE) encoding a pectinesterase 4-related protein, SolycO2g083450 (AP) encoding aspartic proteinase-like protein, and SolycO3g097820 (bHLHO22) encoding basic helix-loop-helix transcription factor 022.

Table 3. Known and selected putative AvrBs4, AvrBs3, and AvrHah1 targets with corresponding EBE sequences. EBE sequences in the promotor regions of the corresponding putative target genes were predicted with TALgetter (Grau et al., 2013). Red-coloured nucleotides are not preferred base pairs for the optimal binding of corresponding RVDs.

TALEs	Crop	(Predicted) EBE Sequence	Locus	Gene ID	Protein Function
AvrBs4	C. pubescens	TATAAAAAATAGTCCTCTC	AFW98885	Bs4C	Putative TM Protein
AvrBs4	S. lycopersicum	TTTAATTATTAATCCACTT	Solyc00g050430	bHLH073	Transcription Factor
AvrBs4	S. lycopersicum	TACAACTACTAATCCCCTT	Solyc04g018050	UP	Unknown Protein
AvrBs4	S. lycopersicum	TATATTTAGTACTCCTCTT	Solyc10g009483	RING	RING/U-box Protein
AvrBs4	S. lycopersicum	TATAATTATTAATTCACTT	Solyc11g012130	BCP	Blue Copper Protein
AvrBs3/AvrHah1	C. annuum	TATATAAACCTAACCATCC	Ca02g00940	Bs3	FMO-like Protein
AvrBs3/AvrHah1	C. annuum	TATATAAACCTGACCCTTT	Ca03g22700	UPA20	Transcription Factor
AvrBs3/AvrHah1	S. lycopersicum	TATGTACACCTCCCCCTCT	Solyc01g057220	PE	Pectinesterase
AvrBs3/AvrHah1	S. lycopersicum	TCTGTAAACCTAACCCAAT	Solyc02g083450	AP	Aspartic Proteinase
AvrBs3/AvrHah1	S. lycopersicum	TATATAAACCTGACCCTTT	Solyc03g097820	bHLH022	Transcription Factor

To clarify if the TALEs interact with the predicted EBEs from the shortlisted putative TALE target genes from the tomato genome in planta (Table 3), the CDS of the 8 -glucuronidase (GUS) reporter gene from E. coli was transcriptionally fused to the native pepper Bs3 promoter ($B s 3 p$) however, in this $B s 3 p$ the native pepper $E B E^{B s 3}$ was substituted with the EBEs of the predicted TALE targets from the tomato genome (Table 3). These constructs were

RESULTS

co-expressed with individual C-terminus GFP-labelled TALE-encoding genes under the transcriptional control of the 35 s promoter in N. benthamiana leaves (Figure 33A). Consecutively, infiltrated and harvested leaf disks were incubated in the 2% X-Gluc solution and destained in $80 \% \mathrm{EtOH}$ to visualise enzymatic activity of β-Glucuronidase. In this experimental setting, any interaction between a TALE and an EBE would result in the transcriptional activation of the GUS reporter and therefore, the enzymatic activity of β-Glucuronidase could be detected. If the TALE would not interact with the EBE, the GUS reporter would not be transcriptionally activated and the enzymatic activity of β-Glucuronidase could not be detected.

This experiment revealed a strong enzymatic activity of β-Glucuronidase upon co-expression of avrBs4-GFP with the reporter constructs containing EBEs of $U P, R I N G$, and $B C P$ within the $B s 3 p$ (Figure 33B), while only weak enzymatic activity of β-Glucuronidase was detected upon co-expression of avrBs4-GFP with the reporter construct containing EBE ${ }^{b H L H 073}$ within the Bs3p (Figure 33B). In addition, a strong enzymatic activity of β-Glucuronidase was observed upon co-expression of $a v r B s 4-G F P$ with the $B s 3 p E B E^{B S 4 C}: G U S$ reporter construct, which served as a positive control in this assay, since EBE ${ }^{B 54 C}$ is the confirmed binding site for AvrBs4 in Capsicum spp. (Strauß et al., 2012). No enzymatic activity of β-Glucuronidase was observed upon co-expression of avrBs4-GFP with the negative controls, i.e. the reporter constructs containing EBEs of $B s 3$ and other tomato genes predicted as AvrBs3 and AvrHah1 targets, namely $P E, A P$, and bHLHO22 (Figure 33B). These data demonstrate that AvrBs4 might interact with the EBEs of its four predicted target genes from tomato genome in planta.

In case of avrBs3-GFP and avrHah1-GFP, a strong enzymatic activity of β-Glucuronidase was detected upon co-expression of each of these TALE-encoding genes with the reporter constructs under the transcriptional control of the Bs3p containing EBEs of $P E, A P$, and bHLHO22, as well as the EBE of Bs3, which served as a positive control in this assay, since EBE ${ }^{853}$ is the confirmed binding site for AvrBs3 and AvrHah1 in Capsicum spp. (Figure 33B; Römer et al., 2007; Schornack et al., 2008). No enzymatic activity of β-Glucuronidase was detected upon co-expression of avrBs3-GFP and avrHah1-GFP with the reporter constructs containing EBEs of tomato genes predicted as AvrBs4 targets (Figure 33B). These data demonstrate that AvrBs3 and AvrHah1 might interact with the EBEs of their three predicted target genes from tomato genome in planta.

The performed GUS reporter assay demonstrated that AvrBs4, AvrBs3, and AvrHah1 might interact with the EBEs of their predicted target genes from tomato genome in planta and therefore, influence enzymatic activity of β-Glucuronidase (Figure 33B), however, such interactions might not result in a transcriptional upregulation of the predicted TALE target genes in tomato. In order to test if AvrBs4, AvrBs3, and AvrHah1 cause transcriptional upregulation of their predicted target genes in tomato, C-terminus GFP-labelled TALEencoding genes under the transcriptional control of the 35 s cauliflower mosaic virus promoter were expressed via Agrobacterium-mediated T-DNA delivery in leaflets of C18 (CC-Bs4) and

Figure 33. AvrBs4, AvrBs3, and AvrHah1 interact with the respective EBEs of their predicted tomato target genes in planta. A) Schematic of the constructs that were prepared for transient co-expression in N. benthamiana leaves. TALE-encoding genes were transcriptionally fused to the 35 s cauliflower mosaic virus promoter. TALE-encoding genes were translationally fused to C-terminal GFP fluorophore. The CDS of the 8 -glucuronidase (GUS) reporter gene from E. coli was transcriptionally fused to the native pepper $B s 3$ promoter ($B s 3 p$), however, in this $B s 3 p$ the native pepper $E B E^{B s 3}$ was substituted with the EBEs of the predicted TALE targets from the tomato genome. B) A. tumefaciens GV3101 strains containing afore mentioned constructs were co-infiltrated into N. benthamiana leaves ($O_{600}=0.6$). Bs $3 p E B E^{B s 4 C}: G U S$ served as a positive control for AvrBs4-dependent reporter transcriptional activation and as a negative control for AvrBs 3 and $\mathrm{AvrHah1}$. Bs $3 p E B E^{B 53}$:GUS served as a positive control of the transcriptional activation by AvrBs3 and AvrHah1 and as a negative control by AvrBs4. 35 s promoter-driven GFP served as a negative control for TALE-dependent transcriptional activation of the GUS reporter. Samples were collected 36 hpi. Leaf disks were stained in 2% X-Gluc solution for 24 hours and destained in $80 \% \mathrm{EtOH}$ to visualise enzymatic activity of β-Glucuronidase.

RESULTS

WT（Bs4）plants．35s promoter－driven GFP was used as a negative control for TALE－dependent transcriptional upregulation of tomato genes．Samples for the semi－quantitative reverse transcription PCR（RT－PCR）analysis were harvested 48 hpi ．Analysis of the amplified cDNA fragments revealed that none of the four predicted AvrBs4 targets were transcriptionally upregulated by AvrBs4，AvrBs3，AvrHah1，and GFP 48 hpi，neither in the CC－Bs4 nor in Bs4

A）			Locus	Gene ID	Protein Function
$\begin{aligned} & \stackrel{y}{U} \\ & \grave{y} \\ & \underset{\sim}{n} \end{aligned}$		－	Solyc00g050430	bHLH073	Basic Helix－Loop－Helix Transcription Factor 073
		－	Solyc04g018050	UP	Unknown protein
			Solyc10g009483	RING	RING／U－box Protein
			Solyc11g012130	$B C P$	Blue Copper Protein
			Solyc069009970	EF1a	Elongation Factor 1 a

B）			Locus	Gene ID	Protein Function
	－		Solyc01g057220	PE	Pectinesterase
へ	－	1 ma	Solyc02g083450	$A P$	Aspartyl Protease
	$\pm \pi \mathrm{n}=0$		Solyc069009970	EF1a	Elongation Factor 1 a
$\begin{aligned} & \stackrel{y}{U} \\ & 仓 ⿹ 弋 工 \\ & o \\ & 0 \end{aligned}$	5 －	08	Solyc03g097820	bHLH022	Basic Helix－Loop－Helix Transcription Factor 022
	$\underline{m} \mathrm{~m} \times \mathrm{m}$	$\underline{\pi} \sim \mathrm{m}$	Solyc069009970	EF1a	Elongation Factor 1 a

Figure 34．AvrBs3 transcriptionally upregulates all three tomato genes predicted as its putative targets．Semi－quantitative reverse transcription PCR（RT－PCR）was used to amplify transcripts of putative A）AvrBs4 and B）AvrBs3 and AvrHah1 tomato target genes in the C18 （ $C C-B s 4$ ）and WT（Bs4）lines．Leaflets were inoculated with the indicated A ．tumefaciens strains expressing C－terminus GFP－labelled TALE－encoding genes or only GFP under the transcriptional control of the 35 s cauliflower mosaic virus promoter（ $O_{600}=0.4$ ）．AvrBs4 served as a negative control for AvrBs3－and AvrHah1－dependent transcriptional upregulation of their predicted target genes．AvrBs3 and AvrHah1 served as negative controls for AvrBs4－ dependent transcriptional upregulation of its predicted target genes．GFP served as a negative control of TALE－dependent transcriptional upregulation of any predicted target gene．Samples were collected 48 hpi．EF1 α（Elongation Factor 1α ；Solyc06g009970），a house－keeping gene， served as a positive control for amplification of transcript fragments of tomato genes．
backgrounds (Figure 34A). These results are in consent with the absence of visible AvrBs4induced disease symptoms in the CC-Bs4 background (Figure 29B). PE was exclusively upregulated by AvrBs3 in the CC-Bs4 and in Bs4 backgrounds, but not by AvrHah1, AvrBs4, and GFP (Figure 34B). AP and bHLHO22 were upregulated by both AvrBs3 and AvrHah1, but not by AvrBs4 and GFP in the CC-Bs4 and in Bs4 backgrounds (Figure 34B). These data indicate that despite high similarities within RVD composition of AvrBs3 and AvrHah1 (Schornack et al., 2008), these TALEs have individual and common targets. In addition, the experiment demonstrated that the TALE-dependent transcriptional upregulation of the tomato genes happens in the Bs4 and the CC-Bs4 backgrounds.

Since Bs4 is epistatic to disease symptoms induced by TALEs from Xanthomonas spp. (Figure 29A), it was assumed that the epistatic effect of the Bs4 background could be detected on transcriptional level and therefore, quantification of TALE-mediated upregulation of target genes and their secondary targets was made in Bs4 and CC-Bs4 backgrounds via qRT-PCR. For the purposes of this experiment, AvrBs3 was selected as an inducer, bHLHO22 as its target gene, and PL as a secondary target of AvrBs3. AvrHah1 and AvrBs4 were used as positive and negative controls, respectfully. Xe 85-10 strains expressing avrBs4, avrBs3, and avrHah1 were syringe-infiltrated into leaflets of the WT (Bs4) and H11 (CC-Bs4) lines. Abundance of bHLHO22 and PL transcripts was quantified 24 hpi via qRT-PCR. The results showed that bHLHO22 was significantly upregulated by AvrBs3 and AvrHah1 but not by AvrBs4 ($p=0.0041<0.01$; Figure $35 A)$. There were no significant differences in the levels of AvrBs3- and AvrHah1-dependent transcriptional upregulation of bHLHO22 between the Bs4 and the CC-Bs4 backgrounds ($p=0.18>0.05 ; p=0.56>0.05$; Figure $35 A$). Quantification of $P L$ transcripts revealed that this gene was significantly upregulated in the samples infiltrated with avrBs3- and avrHah1expressing Xe 85-10 strains but not in the Xe 85-10 avrBs4-treated samples ($\mathrm{p}=0.0046<0.01$; $p=0.014<0.05$; Figure 35B). Additionally, there were no significant differences in the levels of AvrBs3- and AvrHah1-dependent transcriptional upregulation of PL between the Bs4 and the CC-Bs4 backgrounds ($p=0.1981>0.05 ; p=0.8182>0.05$; Figure 35B).

These results indicate that Bs4 is epistatic only to AvrBs3- and AvrHah1-induced disease symptoms but not to the transcriptional upregulation of bHLHO22 and PL (Figures 29A, 29B, 35 A , and 35B). In addition, this data demonstrates that AvrBs3 and AvrHah1 have a common primary target not only in pepper genome (UPA20), but also in tomato (bHLHO22; Figure 35A).

RESULTS

Moreover, the EBE ${ }^{\text {bHLHO22 }}$ and EBE ${ }^{\text {UPA2O }}$ targeted by AvrBs3 and AvrHah1 are identical (Table 3) and therefore, a further study of their flanking sequences may explain why these elements are conserved.

Figure 35. AvrBs3 and AvrHah1 transcriptionally upregulate bHLHO22 and PL in Bs4 and CC-Bs4 backgrounds. Transcript abundance analysis of A) bHLHO22 and B) PL in WT (Bs4) and H 11 (CC-Bs4) leaflets infected with avrBs4, avrBs3, and avrHah1 expressing Xe 85-10 (OD ${ }_{600}=$ $0.4)$. AvrBs4 served as a negative control of TALE-dependent transcriptional upregulation of bHLHO22 and PL. AvrHah1 served as a positive control of TALE-dependent transcriptional upregulation of bHLHO22 and PL. Samples were collected $24 \mathrm{hpi} . \mathrm{n}=6$, n numbers of independent biological replicates. Pairwise Wilcoxon Rank Sum Test and FDR p-value adjustment method for multiple comparisons were used to calculate significant differences between groups. ${ }^{*}, p \leq 0.05 ;{ }^{* *}, p \leq 0.01$.

2.4.4 The UPA box targeted by AvrBs3 and AvrHah1 and its flanking sequences are conserved within the 5^{\prime} UTRs of bHLHO22-like genes from solanaceous species.

EBE ${ }^{\text {bHLHO22 }}$ and EBE ${ }^{\text {UPA2O }}$, i.e. the UPA (Upregulated by AvrBs3) boxes identified upstream of tomato bHLHO22 and pepper UPA2O start codons, were found to be identical (Table 3). Therefore, AvrBs3 and AvrHah1 could transcriptionally upregulate bHLHO22 and UPA2O in both species (Figure 35A; Gürlebeck et al., 2009; Kay et al., 2007; Schornack et al., 2008; Schwartz et al., 2017). Moreover, AvrBs3 and AvrHah1 were previously reported to cause hypertrophy not only on tomato and pepper, but also on other solanaceous species (Kay et al., 2007; Marois et al., 2002). It was assumed that the genomes of all solanaceous species might contain bHLHO22-like and UPA2O-like genes with the UPA boxes, i.e. EBEs matching RVDs of AvrBs3 and AvrHah1, upstream of their start codons.

The genomic sequence of tomato bHLHO22 (Solyc03g097820) was used as a query for mining of bHLHO22-like gene sequences within the genomes of other solanaceous species. Tomato bHLHO22 orthologues were identified in the genomes of S. tuberosum (St), S. melongena (Sm), N. benthamiana (Nb), N. tabacum (Nt), N. attenuata (Nt), P. axillaris (Pa), and P. inflata (Pi; Supplementary Information 5.2). Alignment of the sequence fragments located 300 upstream of the predicted or annotated start codons of $\mathrm{bHLHO22}$-like genes revealed presence of the 63 bp-long sequence which was highly-conserved among the genomes of all afore mentioned

Figure 36. The UPA box targeted by AvrBs3 and AvrHah1 is a part of the 63 bp-long sequence which is conserved within the genomes of solanaceous species. Alignment of sequence fragments upstream of start codon of bHLHO22-like genes from genomes of solanaceous species, namely S. lycopersicum (SI), S. tuberosum (St), S. melongena (Sm), C. annuum (Ca), N. benthamiana (Nb), N. tabacum (Nt), N. attenuata (Nt), P. axillaris (Pa), P. inflata (Pi). 303 bp-long sequences (300 bp upstream and 3 bp representing the start codon) were aligned using the Multiple Sequence Comparison by Log-Expectation (MUSCLE) algorithm (Edgar, 2004). The most conserved nucleotides were annotated with the BoxShade algorithm. Shaded (black and grey) nucleotides represent the most conserved sequence fragments.

RESULTS

species including S. Iycopersicum and C. annuum (Figure 36; Figure S2). Moreover, this 63 bplong fragment contained the UPA box, i.e. 19 bp-long sequence which was identical to EBE ${ }^{\text {bHLHO22 }}$ and EBE ${ }^{\text {UPA2O (Figure 36; Figure S2). These results indicate that the UPA box is highly }}$ conserved within sequence regions located upstream of the predicted or annotated start codons of bHLHO22-like genes within the genomes of the inspected solanaceous species.

Such level of conservation of the UPA box and its flanking sequences suggested their putative role as cis-regulatory elements of bHLHO22-like genes. Further mining of transcriptome reference sequences of solanaceous species revealed that the identified 63 bp-long sequence fragment containing the UPA box is a part of the transcribed RNA in Nicotiana, Petunia, and Capsicum spp. (Supplementary Information 5.3; Kay et al., 2007). These results suggest that the identified sequence fragment containing the UPA box, i.e. EBE for AvrBs3 and AvrHah1, is a part of 5^{\prime} UTR and might be important for regulation of translation of $\mathrm{bHLHO22}$-like genes. Therefore, AvrBs3 and AvrHah1 exploit a conserved element upstream of bHLHO22-like genes to transcriptionally upregulate them and to promote disease symptoms in numerous solanaceous species.

In summary, tomato genes that might be upregulated by AvrBs4 were not identified in this study (Figure 34A), however, AvrBs3 and AvrHah1 were found to transcriptionally upregulate bHLHO22 in a direct manner and PL in an indirect manner (Figures 35A and 35B). Transcriptional upregulation of tomato bHLHO22 and PL by AvrBs3 and AvrHah1 was found to correlate with the AvrBs3- and AvrHah1-caused disease symptoms, i.e. hypertrophy and watersoaking (Figure 29B). In addition, the EBE ${ }^{\text {bHLHO22 }}$ was found to be identical to the EBE UPA2O (Table 3; Figure 36). Moreover, these UPA boxes and their flanking sequences are conserved within the upstream sequences of $\mathrm{bHLHO22}$-like genes from numerous solanaceous species suggesting their putative role as cis-regulatory elements of bHLHO22-like genes (Figure 36; Supplementary Information 5.2). These results provide an explanation to why AvrBs3 and AvrHah1 cause similar disease symptoms in numerous solanaceous species.

In addition to the afore mentioned results, Bs4 was found to be epistatic to TALE-caused disease phenotypes in tomato (Figure 29A), however, Bs4 had no detectable impact on AvrBs3- and AvrHah1-dependent transcriptional upregulation of bHLHO22 and PL (Figures 35A and 35B). It is still unknown if the transcriptional upregulation of bHLHO 22 and PL by AvrBs3 and AvrHah1 might affect bacterial growth in planta. Therefore, a modification to the
pDSK602 plasmid system for TALE-encoding gene expression or a genomic integration of TALEencoding genes to the Xe 85-10 strain as well as deployment of assays mimicking the natural infection scenario, e.g. dipping of leaflets into an inoculum, should be used to enable reliable quantification of bacterial growth in planta and testing of assumptions regarding TALE-caused disease symptoms and their putative effect on bacterial growth in planta.

3 DISCUSSION

3.1 Bs4 should play a crucial role in immunity of Solanum spp.

Previous investigations identified two S. pennellii accessions, namely LA2963 and LA1282, which had no cell death reaction 2 dpi with avrBs4 expressing X. euvesicatoria strain (Ballvora, Pierre, et al., 2001). However, testing of Xe 85-10 avrBs4 recognition in LA2963 line revealed visible cell death reaction 6 dpi suggesting presence of a protein that mediates AvrBs4 recognition (Figure 7B). Co-expression of $\operatorname{SpBs} 4^{g D N A}$ and $a v r B s 4$, as well as $S p B s 4^{C D s-\beta}$ and avrBs4 under the control of the 35 s promoter in N. benthamiana resulted in a cell death phenotype (Figures 8 A and 8 C), indicating that $\operatorname{SpBs} 4$ is not a null allele, but rather a reduced function allele and is capable of TALE, truncated TALE (truncTALE), and dTALE recognition in the S. pennellii accession LA2963 and S. Iycopersicum MM ${ }^{\text {SPBS4-BC4 line. }}$

The reduced functionality of SpBs4 might be caused by one or more of 74 identified nucleotide polymorphisms when compared to SIBs4 (Schornack et al., 2004). These evolutionary changes in SpBs4 could have been influenced by ecologic adaptation of S. pennellii to growth in arid areas in the Andes mountains (Correll, 1958; Hardon, 1967). These extreme environmental conditions are not favourable for in planta growth of Xanthomonas spp. Thus, there is no evolutionary pressure on S. pennellii plants to maintain a fully functional orthologue of SIBs4.

In order to identify a Bs4 null allele, numerous S. lycopersicum accessions from different geographic origins were screened, however functional Bs4 alleles were found in all of them (Figure 9; Peter, 2002). Moreover, Bs4 orthologues were reported to be found within the genomes of other Solanum spp., namely S. demissum and S. tuberosum (Schornack et al., 2005). Prevalence of Bs 4 orthologues within the genomes of so many Solanum spp. suggests that it has an important biological function. Therefore, Bs4 might provide solanaceous plants with a basic defence against Xanthomonas spp. with rapidly evolving TALEs and their derivatives. Bs4 was described to mediate recognition of Hax3, Hax4 (Kay et al., 2005), AvrBs3 (Schwartz et al., 2017), AvrBs4 and its numerous C-terminus truncated versions ranging from AvrBs $4 \Delta 215$ lacking NLS and AAD to AvrBs $4 \Delta 230$ lacking central repeats 3,5-17,5, NLS and AAD (Schornack et al., 2004), consequently, Bs4-mediated cell death should restrict growth of the biotrophic pathogen. However, quantification of the bacterial growth in Bs4 and CC-Bs4 backgrounds did not demonstrate the Bs4-mediated resistance to the Xe 85-10 avrBs4 strain
(Figure 30). Similar results were previously reported by Bonas et al. (1993). This study demonstrated that Bs4-mediated cell death restricted in planta growth of Xe 82-8 strain which naturally contains avrBs4 gene, but failed to restrict in planta growth of $X e 75-3$ avrBs4 strain and other $X e$ 75-3 strains carrying numerous avrBs4 derivatives. The most probable explanation to the inconsistency of Bs4-mediated resistance is the deployment of the infection method that does not mimic the natural infection scenario, i.e. infiltration with a blunt-end needless syringe infiltration (Figure 30; Bonas et al., 1993). Therefore, a deployment of an alternative infection assay, e.g. swabbing of carborundum-containing inoculum on the abaxial side of the tomato leaflet or dipping of leaflets into inoculum (Canteros et al., 1991; Cerutti et al., 2017; Luneau et al., 2021), might help to quantify Bs4-mediated resistance to Xe 85-10 avrBs4 strain in the Bs4 background or the putative loss of Bs4-mediated resistance to this strain in the CC-Bs4 background.

The hypothesis that Bs4 provides solanaceous plants with a basic defence against Xanthomonas spp. with rapidly evolving TALEs may be supported by T3SS effectome profiling of strains pathogenic on Solanum and Capsicum spp. The screens of Xanthomonas strains collected from S. Iycopersicum do not report any strain that harbours avrBs4 or avrBs3, since these genes can only be found in strains pathogenic in Capsicum spp. (Canteros et al., 1991; Stall et al., 2009). Lack of avrBs4 and avrBs3 within the effectome of strains pathogenic in tomato might be explained by a severe Bs4-mediated selection pressure. Since these TALEencoding genes are plasmid born (Stall et al., 2009), loss of the plasmid allows bacterial strains to remain pathogenic in tomato.

Several studies on tomato bacterial spot report structural shifts in the species composition of Xanthomonas populations that are stimulated by three main factors: a) the uniformity of the global seed market with the prevalence of a few cultivars (Timilsina et al., 2015); b) the use of intensive agronomic practices for tomato fruit production, e.g. high plant densities, over-head irrigation, and high humidity, and temperatures (Abrahamian et al., 2020; Klein-Gordon et al., 2020). The third factor is a recombination between different Xanthomonas spp. via horizontal gene transfer (Timilsina et al., 2015).

Currently X. euvesicatoria is being quickly replaced by X. perforans $(X p)$ in Florida (KleinGordon et al., 2020). In addition, X. gardneri was found to be highly prevalent in tomato production facilities in different regions of the world (Potnis et al., 2015). These pathogens
are associated with two TALEs, namely AvrHah1 and PthXp1, which could be acquired via horizontal gene transfer between different Xanthomonas spp. It has also been reported that X. perforans populations demonstrate genotypic and phenotypic differences, despite lacking a clear selection pressure (Klein-Gordon et al., 2020). However, since Bs4 is epistatic to the disease symptoms caused by AvrHah1 and AvrBs3 (Figures 29A and 29B), it might also limit the activity of PthXp1, which remains to be uncovered.

Another TALE that does not cause cell death upon expression in the Bs4 background is Hax2, a TALE from Xca (Kay et al., 2005; Schornack et al., 2008). Both AvrHah1 and Hax2 are the most distant from other AvrBs3-like proteins and share a unique structure of their tandemly arranged 35 amino acid-long repeat units, which is hypothesised to help AvrHah1 and Hax2 to avoid recognition by Bs4 (Schornack et al., 2008; Schwartz et al., 2017). However, dTALE35, a dTALE with tandemly arranged 35 aa-long repeats, was recognised by Bs4 and triggered the Bs4-mediated cell death (Figure 21B). Thus, it remains unclear why the 35 aa-long repeatscontaining TALE proteins, namely AvrHah1 and Hax2, do not trigger Bs4-mediated cell death. Nevertheless, TALE co-immunoprecipitation would be an alternative method to determine if Bs4 binds to tagged AvrHah1, Hax2, and PthXp1, and, therefore, confers their direct recognition (Read, Hutin, et al., 2020).

3.2 Does AvrBs4 transcriptionally upregulate tomato host genes?

Due to its central role in mediation of TALE recognition, Bs4 is epistatic to TALE-induced disease symptoms (Figures 29A and 29B). CRISPR/Cas9-engineered Bs4 null allele (CC-Bs4) does not mediate recognition of TALEs delivered by Xanthomonas spp. and thus, unmasks TALE-caused phenotypes. It is remarkable that AvrBs4 does not cause any visible disease symptoms in the CC-Bs4 background (Figure 29B). Lack of visible AvrBs4-induced disease symptoms can be explained either by the absence of AvrBs4 targets within the tomato genome or by the impossibility to detect these symptoms on a leaflet surface.

AvrBs4 has previously been reported to transcriptionally activate Bs4C, an executor R gene from Cp (Strauß et al., 2012), while no other targets in pepper or other species were described. Overexpression of $a v r B s 4$, but not of $\operatorname{avrBs} 4 \Delta 227$ lacking central repeats 5,5-17,5, NLS, and AAD, was found to lead to formation of catalase-derived rhomboid crystals in peroxisomes of N. benthamiana cells (Gürlebeck et al., 2009). It was hypothesised that AvrBs4-induced
catalase accumulation might inhibit plant defences via detoxification of hydrogen peroxide (Gürlebeck et al., 2009).
avrBs4 was originally isolated from pepper pathogenic Xe 82-8 strain (Table 4; Bonas et al., 1993). To clarify if AvrBs4 might target any EBEs within the promoters of annotated tomato genes, the tomato genome was checked for presence of such putative EBEs with TALgetter (Grau et al., 2013) In silico analysis revealed bHLHO73 (SolycOOg050430) to be the most probable AvrBs4 target (Table 3). Testing the binding ability of AvrBs4 to the predicted EBE ${ }^{\text {bHLHOT3 }}$ in the reporter assay in planta resulted into weak enzymatic activity of β-Glucuronidase indicating that the interaction between AvrBs4 and EBE ${ }^{\text {bHLHO73 }}$ was weak (Figure 33B). This result is consistent with the previous study which demonstrated that AvrBs4 induces less transcription than AvrBs3 (Gürlebeck et al., 2009). Since bHLHO73 encodes a transcription factor, even small changes in its expression may significantly contribute to the development of disease symptoms.

Table 4. Original Xanthomonas strains and TALE-encoding genes isolated from them.

TALE-encoding gene	Bacterial strain (source)	Host (isolated on)	References
avrBs4	Xe 82-8	Pepper	Bonas et al. (1993)
avrBs3	Xe 71-21	Pepper	Bonas et al. (1989)
avrHah1	Xg 444	Tomato	J B Jones et al. (2000); Schornack et al. (2008)

Analysis of the EBE ${ }^{\text {bHLHOT3 }}$ and RVD composition of AvrBs4 revealed possible technical reasons for the weak interaction and consequently, the absence of putative visible disease symptoms. One of these reasons is the mismatch in the first position of the EBE ${ }^{\text {bHLHO73 }}$ (Figure 37), which is expected to prevent AvrBs4 binding. "NI", the first RVD of the N-terminal repeat of AvrBs4, should preferably binds to " A " (Boch et al., 2009; Miller et al., 2015), while EBE ${ }^{\text {bHLHO73 }}$ contains " T " at this position (Figure 37). The second reason that could explain the absence of putative visible disease symptoms upon delivery of AvrBs4 in tomato is the location of the EBE ${ }^{\text {bHLHOT3 }}$ 510 bp upstream of the predicted translation start site of bHLHO 3 . In the case that bHLHO73 is weakly upregulated by AvrBs4 in tomato, 5^{\prime} extension of the messenger RNA (mRNA)
transcript of bHLHO73 would occur, which might trigger degradations via nonsense mediated decay or translated into non-functional protein.

C-terminus AvrBs4 truncations ranging from AvrBs $4 \Delta 215$ lacking NLS and AAD and to AvrBs4 4230 lacking central repeats $3,5-17,5$, NLS and AAD are known to trigger Bs4mediated cell death (Schornack et al., 2004). Since all tested AvrBs4 derivatives contained "NI" RVD of the N -terminal repeat at the position " 1 " and lacked the activation domain (Schornack et al., 2004), they could not transcriptionally upregulate bHLHO73. Substitution of "NI" (binding to " T "), the first N -terminal repeat of AvrBs4, to " $N G$ " (binding to " T ") may overcome these binding limitations. Alternatively, a dTALE targeting EBE ${ }^{\text {bHLHOT3 }}$ or any other part of the bHLHO73 native promoter could be designed to activate transcription of bHLHO73. Thus, an AvrBs $4^{1-N / P N G}$ mutant or a dTALE targeting EBE ${ }^{\text {bHLHO73 }}$ might be able to transcriptionally upregulate bHLHO73 and to cause putative disease symptoms in the CC-Bs4 background.

It still remains unknown if X. euvesicatoria-mediated delivery of AvrBs4 leads to formation of catalase-derived rhomboid crystals in peroxisomes of tomato cells and if this phenotype can be caused by putative transcriptional upregulation of bHLHO73 (Gürlebeck et al., 2009). To find the answers to these questions, an RNA sequencing (RNA-Seq) approach on tomato tissue infected with Xanthomonas spp. strains expressing avrBs4 and avrBs4D227 lacking central repeats 5,5-17,5, NLS, and AAD, should be used to identify host genes that are directly or indirectly upregulated by AvrBs4 (Schwartz et al., 2017).

3.3 AvrHah1 and AvrBs3 target a putative cis-regulatory element within 5'UTR of bHLHO22-like genes.

Afore mentioned RNA-Seq approach was used for the identification of direct and indirect targets of AvrHah1 from X. gardneri in the tomato genome (Schwartz et al., 2017). The study

Figure 37. The mismatch at position " 1 " may prevent AvrBs4 binding to EBE ${ }^{\text {bHLHO73 }}$. AvrBs4 RVD structure and corresponding nucleotides within EBE ${ }^{\text {bHLHOT3 }}$ are annotated. Each RVD is coloured according to its optimal binding preferences: green = "A", red = "T", grey = " N ", and blue = "C".
reported that AvrHah1 indirectly targets a Pectate Lyase (Solyc05g014000) via transcriptional upregulation of bHLHO22 (SolycO3g097820) and bHLHO48 (SolycO6g072520). However, no tomato genes were reported as targets of AvrBs3.
avrBs3 was originally isolated from pepper pathogenic Xe 71-21 strain (Table 4; Bonas et al., 1989), while avrHah1 was identified in tomato pathogenic $X g 444$ strain (Table 4; JB Jones et al., 2000; Schornack et al., 2008). Interestingly, AvrBs3 and AvrHah1 have a similar RVD compositions (Schornack et al., 2008), which enables both TALEs to transcriptionally upregulate UPA2O (Ca03g22700) in Capsicum spp. (Kay et al., 2007; Schornack et al., 2008). UPA20 encodes a basic helix-loop-helix transcription factor which induces hypertrophy (Kay et al., 2007). It was previously demonstrated that AvrHah1-induced hypertrophy leads to water soaking in tomato and encourages intake of surface localised bacteria into N. benthamiana leaves (Schwartz, 2016; Schwartz et al., 2017). In addition, AvrBs3 and AvrHah1 bind to EBE ${ }^{B 53}$ and activate transcription of Bs3 (Ca02g00940) in Capsicum spp. (Römer et al., 2007; Schornack et al., 2008). Thus, one might hypothesise that AvrBs3 and AvrHah1 would also target the identical EBEs and the same genes in tomato (Schornack et al., 2008). This hypothesis is supported by 1) similarity between AvrBs3 and AvrHah1-caused disease phenotypes in the CC-Bs4 background (Figure 29B); 2) binding of AvrBs3 and AvrHah1 to the same predicted EBEs in planta (Figure 33B); 3) identity of tomato EBE ${ }^{\text {bHLHO22 }}$ and pepper EBE ${ }^{\text {UPA20 }}$, also referred to as the UPA box (Table 3; Boch et al., 2009; Kay et al., 2007); 4) a high homology between tomato bHLHO22 and pepper UPA2O on CDS (87\%) and protein (83\%) levels; and 5) transcriptional upregulation of bHLHO22 and indirect induction of PL by AvrBs3 and AvrHah1 in tomato (Figures 35A and 35B).

Moreover, AvrBs3 was previously reported to cause hypertrophy not only on tomato and pepper, but also on other solanaceous species (Kay et al., 2007; Marois et al., 2002). Mining of genomes of Solanum, Capsicum, Nicotiana, and Petunia species revealed presence of bHLHO22-like genes with the UPA box located upstream of the predicted start codons (Supplementary Information 5.2). The UPA box was found to be a part of the 63 bp-long sequence which was highly-conserved among the genomes of the inspected solanaceous species (Figure 36; Figure S2). Interestingly, this 63 bp-long sequence fragment was found to be transcribed in Nicotiana, Petunia, and Capsicum spp. suggesting that the UPA box and its flanking sequences might form a cis-regulatory element of bHLHO22-like genes
(Supplementary Information 5.3; Kay et al., 2007). In summary, AvrBs3 and AvrHah1 exploit a conserved element within genomes of solanaceous species to transcriptionally upregulate bHLHO22-like genes and to promote disease symptoms.

Similar pathogenesis strategy is followed by Ralstonia solanacerum. A recent study demonstrated that R. solanacerum utilises Brg11, a TALE-like effector, to upregulate transcription of tomato arginine decarboxylase (ADC) genes (D. Wu et al., 2019). Brg11 was found to target an EBE within a conserved 50 bp-long sequence, i.e. the ADC box, located upstream of $A D C$ genes. Brg11 induces truncated ADC mRNAs lacking the $A D C$ box and therefore, bypasses the ADC box-mediated translational control to boost polyamine levels.

Further study of the UPA box and its flanking sequences might reveal their roles in translational regulation of bHLHO 22 -like genes in solanaceous species. In addition, it remains to be determined if the upregulation of $\mathrm{bHLHO22}$-like genes and putative secondary targets results in a higher susceptibility of a host to avrBs3 and avrHah1-expressing X. euvesicatoria strains via quantification of bacterial growth in planta.

3.4 AvrHah1- and AvrBs3-induced disease symptoms may abolish Bs4-mediated cell death.

So far it is unknown why delivery of AvrBs4 and its C-terminus lacking derivatives consistently triggers cell death in the Bs4 background, while delivery of AvrBs3 inconsistently triggers Bs4mediated cell death (Schornack et al., 2004; Schornack et al., 2008; Schwartz et al., 2017). Moreover, AvrHah1 does not trigger Bs4-mediated cell death (Schornack et al., 2008; Schwartz et al., 2017). One might assume that lack of cell death reaction to AvrBs3 and AvrHah1 is dependent on successful transcriptional upregulation of their respective targets in tomato genome.
β-Glucuronidase enzymatic activity assay demonstrated that AvrBs3 and AvrHah1 transcriptionally activated GUS reporter under control of the promoter containing the
 result into transcriptional upregulation of bHLHO22, i.e. a cell size master regulator, and PL (Figure 35A, 35B, and 38), which leads to hypertrophy of mesophyll cells and water soaking (Kay et al., 2007; Marois et al., 2002). It was previously demonstrated that the cell death and desiccation of the leaf tissue restricts pathogen growth (Wright and Beattie, 2004). Moreover,
both Cf-4/Avr4- and Cf-9/Avr9-dependent cell death in tomato are suppressed under high humidity (95%; C. Wang et al., 2005). Therefore, it can be hypothesised that transcriptional upregulation of tomato bHLHO22 and PL as well as induction of water soaking by AvrBs3 and AvrHah1 suppresses Bs4-mediated cell death and prevents desiccation of the leaflet tissue. This hypothesis is supported by the observation that delivery of dTALEs targeting bHLHO22 and PL does not lead to cell death in tomato (Schwartz, 2016), while AvrBs4, dTALE34, and dTALE35, which do not target bHLHO22 or any of its pathway components, trigger cell death in Bs4 background (Figure 21B).

In order to clarify if the disease symptoms caused by AvrHah1 and AvrBs3 abolish Bs4mediated cell death, AvrHah1 and AvrBs3 derivatives lacking activation domains (AvrHah1 ${ }^{\Delta A D}$ and AvrBs3 $3^{\Delta A D}$) or nucleus localisation signals (AvrHah1 ${ }^{\Delta N L S}$ and AvrBs3 ${ }^{\Delta N L S}$) should be tested in the Bs4 background. The truncated derivatives of AvrBs3 and AvrHah1 would not be able to upregulate transcription of bHLHO22 and instead, might trigger Bs4-mediated cell death similarly to AvrBs4 derivatives (Schornack et al., 2004). Previously, a similar experiment was conducted and reported that AvrHah1 ${ }^{\Delta A D}$ did not cause Bs4-mediated cell death in Heinz tomato cultivar 2 dpi (Schwartz et al., 2017). However, this study was made under low humidity conditions and with low density bacterial inoculum ($O_{600}=0.1$), which might influence the speed of Bs4-mediated cell death development. Since Bs4-mediated cell death upon delivery of dTALE35 consisting of 35 aa-long repeats only became visible $3 \mathrm{dpi}\left(\mathrm{OD}_{600}=\right.$ 0.4 ; Figure 21B), it can be assumed that Bs4-mediated AvrHah1 ${ }^{\Delta \mathrm{AD}}$ recognition and cell death will take more than 2 days. Thus, testing Bs4-mediated recognition of AvrHah1 and AvrBs3

Figure 38. AvrBs3 and AvrHah1 target EBE ${ }^{\text {bHLHO22 }}$ to upregulate transcription of tomato bHLH022, an orthologue of pepper UPA20. RVD structure of both TALEs and corresponding nucleotides within the EBE ${ }^{\text {bHLHO22 }}$ are annotated. Each RVD is coloured according to its optimal binding preferences: green = " A ", red = " T ", grey = " N ", and blue $=$ " C ".
derivatives lacking activation domains or nucleus localisation signals should be done according to the experimental conditions described in this thesis.

A competition experiment between AvrHah1 and AvrBs4 could be another alternative to determine if transcriptional upregulation of bHLHO22 has any impact on Bs4-mediated cell death. For the purposes of the proposed experiment, Xe 85-10 strain delivering both TALEs, AvrHah1 transcriptionally upregulating bHLHO22 and AvrBs4 triggering Bs4-mediated cell death, should be engineered and tested for an ability to suppress Bs4-mediated cell death. If AvrHah1-induced disease symptoms outcompete Bs4-mediated cell death upon recognition of AvrBs4, the proposed hypothesis might be accepted.

3.5 $\quad \beta$-estradiol inducible system does not provide a tight control over a transgene.

Inducible systems provide the possibility to upregulate transcription of a certain gene at any stage of plant development and even in particular tissues (Borghi, 2010). Chemical inducers offer precise temporal and spatial control over transgene expression, which facilitates identification of gene functions without devastating systemic changes to plant development (Borghi, 2010). There are a few basic requirements for chemically inducible systems. However, the main parameter is the tightness of such a system, i.e. absence of any basal activity of the inducible promoter in the absence of the chemical inducer (Kubo et al., 2013). This criterion becomes extremely important when the transcriptionally activated gene produces a toxic protein. In this case, even minimal leaky expression of such gene will have a devastating effect on the plant development.

The executor R genes, which were used in the experiments, cause cell death upon their expression (Römer et al., 2007; Strauß et al., 2012; Tian et al., 2014; Chunlian Wang et al., 2015). Transient expression of the executor R genes under the control of the EIP in N. benthamiana, demonstrated that the constructs had leaky expression in the absence of estradiol (Figure 16B). Thus, leaky expression of the executor R genes during stable transformation drastically reduced the chances of developing stable transgenic lines. However, if a transgene is integrated into an appropriate genomic context, which eliminates leakiness of the promoter (van Leeuwen et al., 2001; Wilson et al., 1990), it is possible to select stable lines with a tight control over expression of the executor R genes in the absence of the chemical inducer (Holmes et al., 2020).

The second possible reason as to why the stable EIP:Bs4C, EIP:Xa10, and EIP:Xa23 lines responsive to estradiol treatment were not identified are genetic and epigenetic effects of the insertion site (Table 1). It has been reported that the chromatin regions surrounding a transgene affect its expression (Butaye et al., 2005). Thus, this creates variation in a transgene expression among different transgenic lines transformed with the same construct. Following this explanation, it is possible to hypothesise that part of the stable tomato lines, which contained corresponding EIP:Bs4C, EIP:Xa10, and EIP:Xa23 transgenes but did not exhibit cell death upon estradiol treatment (Table 1), contained the transgenes in transcriptionally repressive chromatin areas.

The third possible reason as to why the stable EIP:Bs4C, EIP:Xa10, and EIP:Xa23 lines were not responsive to estradiol treatment (Table 1) is a putative post-transcriptional XVE silencing due to its high transcriptional levels (Schubert et al., 2004). In this case, XVE silencing would lead to the absence of the sensor protein, and thus, to non-responsiveness to liquid estradiol.

Despite numerous failures to identify estradiol-responsive tomato EIP:Bs4C, EIP:Xa10, and EIP:Xa23 lines, a few EIP:Bs3 lines responsive to estradiol treatment were identified (Table 1). This positive result indicates a necessity to screen for more putative TO plants not only by phenotyping plants, but also by using qRT-PCR and immunoblot analyses for detection of the transgene-specific transcripts and translated proteins upon estradiol treatment, respectively.

3.6 Bs3-mediated pathways are preserved within solanaceous species.

This thesis describes a study of $B s 3$, an executor R gene from C. annuum encoding an FMOlike protein (Römer et al., 2009), and Bs3-mediated immunity pathways in tomato. Stable tomato lines containing Bs3 under the control of the EIP were engineered (Figures 17B and 18C). Transcriptional activation of the Bs3 transgene with liquid estradiol in the J8 (Bs4 Bs3) line correlated with the cell death (Figures $17 B$ and 17C). Alternatively, Bs3 could be transcriptionally activated with the Xe 85-10 strain expressing dTALE34 targeting the EIP and dTALE34-mediated transcriptional activation of Bs3 in the HJ1 (CC-Bs4 Bs3) line was correlated with the cell death (Figures 18B, 18C, and 19). Previous experiments demonstrated that the transcriptional activation of Bs3 by AvrBs3 causes cell death in C. annuum and transient overexpression of Bs3 causes the cell death in N. benthamiana (Krönauer et al., 2019; Römer et al., 2007). The Bs3-mediated cell death was shown to be associated with the resistance
against Xanthomonas spp. in tomato and pepper (Figure 22B; Herbers et al., 1992). Since all three species are highly related and share a basic set of genes (Livingstone et al., 1999; Tanksley et al., 1992), it is therefore non-surprising that the pathway components of Bs3mediated cell death and immunity are preserved within solanaceous plants.

It was found that Bs3 localises to the nucleus and cytoplasm (Krönauer et al., 2019). Biochemical studies revealed that Bs3 expression does not stimulate auxin production, but coincides with elevated SA and Pip levels (Krönauer et al., 2019). It was hypothesised that Bs3 catalyses an enzymatic reaction and possibly uses canonical immune signalling pathways for cell death mediation (Krönauer et al., 2019). Thus, the developed pathosystem, consisting of a range of stable tomato lines expressing Bs3 and Xe 85-10 strains expressing dTALE34 for transcriptional activation of $B s 3$, can now be used to unravel elements of Bs3-mediated cell death and immunity pathways.

The J8 line (Bs4 Bs3) can be used for transcriptome profiling upon transcriptional activation of Bs3 with estradiol or mock treatment. Such an experiment would unravel putative Bs3mediated pathway components in the absence of the pathogen, thereby excluding the pathogen-associated virulence effect. In addition, a full-scale transcriptome profiling experiment should be made in the WT (Bs4), H11 (CC-Bs4), J8 (Bs4 Bs3), and HJ1 (CC-Bs4 Bs3) lines upon infiltration with Xe 85-10 avrBs4, Xe 85-10 dTALE34 and Xe 85-10 EV strains. This experiment would enable comparison of the Bs4-mediated and Bs3-mediated immunity pathways, as well as the identification of putative shared pathway components. Subsequently, the J 8 (Bs4 Bs3) and HJ1 (CC-Bs4 Bs3) lines could be used for knock-outs of putative pathway components to estimate their impact on Bs 4 - and Bs 3 -mediated signalling.

3.7 Bs3 does not mediate cell death via EDS1.

It was previously hypothesised that Bs3 may share signalling components with NLR proteins (Krönauer et al., 2019). A series of preliminary experiments demonstrated that VIGS of NbEDS1 did not abolish Bs3-mediated cell death, while silencing of NbSGT1b and NbRAR1 abolished Bs3-mediated cell death (Krönauer, 2020). However, gene silencing efficiency was not quantified and assumption of silencing was based on changes in leaf morphology (Krönauer, 2020). Since VIGS may be incomplete and only knocks selected genes down by minimising but not abolishing their translation (E. Liu and Page, 2008), EDS1, SGT1a, and

DISCUSSION

SGT1b, i.e. master regulators of NLR-mediated immunity, were individually knocked out in tomato to test their impact on Bs3-mediated cell death.

Phenotyping of CC-EDS1 Bs4 Bs3 with Xe 85-10 dTALE34 revealed that CC-EDS1 abolishes Bs4mediated cell death (Figure 28), indicating that this EDS1, lacking EP-domain, i.e. CC-EDS1, is a true null mutant and that Bs4 mediates cell death via EDS1. These results are supported by numerous studies, which demonstrate TNL signalling via EDS1/PAD4 or EDS1/SAG1 complexes, which trigger a cascade of downstream reactions resulting in SA biosynthesis and accumulation (Adlung et al., 2016; G. Hu et al., 2005; Lapin et al., 2019; Schornack et al., 2004). Nevertheless, phenotyping of CC-EDS1 Bs4 Bs3 and CC-EDS1 CC-Bs4 Bs3 plants with Xe 85-10 dTALE34 revealed that CC-EDS1 does not abolish Bs3-mediated cell death (Figure 28). These results are in consent with the previously performed VIGS experiments (Krönauer, 2020) and led to the conclusion that Bs3 does not require EDS1 for cell death signalling.

Another point of evidence, supporting the conclusion that Bs3 does not require EDS1-mediated signalling for cell death can be found upon analysis of EDS1-mediated pathway for presence of putative substrates for Bs3. Since EDS1 and its signalling companions mediate the expression of SA biosynthesis genes Isochorismate Synthase 1 (ICS1) and AvrPphB susceptible 3 (PBS3; Berens et al., 2019; Wildermuth et al., 2001), it could be hypothesised that Bs3 plays a role in SA synthesis. However, biochemical assays suggest that Bs3 does not convert isochorismate into SA (Krönauer, 2020).

Nevertheless, the phenotypic experiments described in this thesis additionally demonstrate that Bs3-caused cell death intensity in F2 CC-EDS1 CC-Bs4 Bs3 and CC-EDS1 Bs4 Bs3 plants is comparatively weaker than the Bs3-caused cell death intensity in F2 EDS1 CC-Bs4 Bs3 and EDS1 Bs4 Bs3 plants (Figure 28). Quantification of isochorismate, SA, Pip, and N-OH-Pip content in CC-EDS1 CC-Bs4 Bs3 and EDS1 CC-Bs4 Bs3 tomato plants upon dTALE34transcriptional activation of $B s 3$ and in the J8 (EDS1 Bs4 Bs3) line upon estradiol and mock treatment should provide an explanation to this observation. Even though similar experiments were done in N. benthamiana, where overexpression of $B s 3$ coincided with the accumulation of SA and Pip, but not N-OH-Pip (Krönauer et al., 2019), until the proposed analyses in tomato are performed, it is possible to make two complimentary hypotheses: 1) EDS1-mediated signalling is a consequence of Bs3-mediated cell death; and 2) EDS1-mediated signalling may have an additive effect to Bs3-mediate cell death.

However, these hypotheses raise an additional question. Since CC-Bs4 is a null allele and is unable to signal upstream of EDS1, what is the mechanism of the receptor TNL-independent activation of EDS1-mediated signalling in EDS1 CC-Bs4 Bs3 line upon dTALE34-dependent transcriptional activation of Bs3 (Figure 28)? Recent studies suggest that superoxide radical $\left(\mathrm{O}_{2}{ }^{-}\right)$can trigger EDS1-dependent SA accumulation (Mateo et al., 2004; Rustérucci et al., 2001; Straus et al., 2010) and consecutive induction of Pathogenesis-related Protein 1 (PR1) and counterbalances cell death PR5 (Ochsenbein et al., 2006). In this case, Bs3 should be able to oxidase nicotinamide adenine dinucleotide phosphate (NADPH) for production of $\mathrm{O}_{2}{ }^{-}$ molecules, which trigger EDS1-mediated pathways. A recent study demonstrated that human FMO3 in addition to $\mathrm{H}_{2} \mathrm{O}_{2}$ produces $\mathrm{O}_{2}{ }^{-}$as its uncoupling products (Catucci et al., 2019). Even though some Bs 3 mutants are capable of elevated $\mathrm{H}_{2} \mathrm{O}_{2}$ production without causing cell death (Krönauer et al., 2019), the $\mathrm{O}_{2}{ }^{-}$levels produced by those mutants and WT Bs3 had not been measured and compared (Krönauer et al., 2019). This lacking information regarding Bs3mediated O_{2}^{-}production via NADPH oxidation is important to understand the mechanism of putative activation of EDS1-dependent SA production. In addition, it would be necessary to compare levels of expression of EDS1-dependent SA biosynthesis pathway genes in the EDS1 CC-Bs4 Bs3 tomato line in comparison to the CC-EDS1 CC-Bs4 Bs3 line upon dTALE34dependent transcriptional activation of $B s 3$. These gene expression data, in combination with measurement of ICS, SA, Pip, and N-OH-Pip, may suggest if the EDS1-mediated SA biosynthesis pathway has any additive effect to Bs3-triggered cell death. Additionally, bacterial growth assays in the EDS1 CC-Bs4 Bs3 and CC-EDS1 CC-Bs4 Bs3 tomato lines should indicate if there is any impact of EDS1 knockout on Bs3-mediated immunity.

3.8 Combination of Bs3 and Bs4 as a source of resistance against Xanthomonas spp.

Pyramiding of R genes, i.e. the accumulation of R genes into a single genotype or cultivar, is a method used by breeders and plant pathologists with an aim to achieve a durable and broadscale resistance against a particular pathogen (Collinge, 2016; M.Y.A. Tan et al., 2010). A combination of Bs3 and Bs4 might be exploited to achieve a broad-spectrum resistance against xanthomonads in numerous plant species.

Bs3 under the control of the EIP was demonstrated to provide the resistance against Xanthomonas spp. in tomato (Figure 22B). Moreover, Bs3 under the control of its native promoter (Bs3p) is a source of resistance against X. euvesicatoria strains expressing avrBs3
and X. gardneri strains expressing avrHah1 in pepper (Herbers et al., 1992; Schornack et al., 2008). Therefore, $B s 3$ under control of $B s 3 p$ could be used for generation of tomato cultivars with the resistance against X. euvesicatoria and X. gardneri strains expressing avrBs3 or avrHah1. Additionally, Bs3 might be used for resistance against Xoo in Oryza spp. or against Xcc in Citrus spp. In this case, Bs $3 p$ should be adjusted to trap the most abundant TALEs from Xoo causing bacterial blight disease in rice, namely PthXo1 (Yang et al., 2006), PthXo2 (Zhou et al., 2015), PthXo3 (Antony et al., 2010), AvrXa7 (Yang and White, 2004), TalC (Yu et al., 2011), and TalF (Streubel et al., 2013) as well as with PthA4 from Xoo, which is known to promote citrus canker disease symptoms (Y. Hu et al., 2014; Z. Li et al., 2014). In this case, EBEs for the afore mentioned TALEs should substitute native EBE for AvrBs3 and AvrHah1 within the Bs3p to form a so-called EBE-amended Bs3p (Hummel et al., 2012).

Even though the ability of Bs4 to mediate recognition of non X. euvesicatoria-derived and non Xca-derived TALE-like proteins has not been reported so far, Bs4 might mediate recognition of TALEs, interference TALEs (iTALEs), i.e. TALEs lacking the AAD but retain NLSs, and truncTALEs from Xoo strains. It would be of a particular interest to test if Bs4 mediates recognition of iTALE, since iTALEs are known to supress activity of Xa1, a CNL from rice which mediates recognition of certain Xoo TALEs (C. Ji et al., 2020; Z. Ji et al., 2016; Read, Hutin, et al., 2020; Read, Moscou, et al., 2020). In case the ability of Bs4 to mediate recognition of TALEs, iTALEs, and truncTALEs from Xoo and cell death signalling is confirmed, it might be used to improve rice resistance against this pathogen. However, the restricted taxonomic functionality (RTF) of Bs4 might limit its utilisation in rice (Tai et al., 1999). Nevertheless, a few studies report successful transfers of NLR-encoding genes between distantly related species, e.g. barley Mildew resistance locus a 1 (MLA1) was demonstrated to mediate recognition of Avr ${ }_{a 1}$ from powdery mildew fungus in A. thaliana (Lu et al., 2016) and maize Resistance to Xanthomonas oryzae 1 (RXO1) was shown to provide resistance against Xoo in rice (Zhao et al., 2005).

Pyramiding of Bs3 and Bs4 within one cultivar or genotype should provide a synergetic effect in resistance to Xanthomonas spp., where each component is responsible for a separate task: Bs4 mediates recognition of TALE-like proteins and EBE-amended Bs3p:Bs3 traps the most abundant TALEs.

3.9 Conclusions.

Genetic pathways that are exploited by executor proteins from Capsicum and Oryzae spp. to cause cell death and immunity against biotrophic pathogens remain to be unknown. As executor-mediated cell death and immunity represent a separate case of the ETI, it was hypothesised that NLR and executor proteins might share same pathway components. One of the main aims of this thesis was to develop a set of tools for comparison of TNL- and executormediated cell death and immunity pathways. The main focus was kept on TNL protein from Solanum spp. mediating recognition of TALEs and their derivatives, i.e. Bs 4 , and an executor protein from Capsicum spp., i.e. Bs3, which is transcriptionally activated by AvrBs3 and AvrHah1 TALEs from Xanthomonas species. As pepper is not amenable to transformation, the genetic dissection of Bs3-mediated pathways was done in tomato.

Tomato Bs4 null allele (CC-Bs4) was engineered using CRISPR/Cas9 system. Phenotyping experiments revealed that tomato lines containing CC-Bs4 alleles no longer showed TALEdependent cell death. Furthermore, transgenic tomato line containing estradiol-inducible Bs3 was generated. Upon transcriptional activation by liquid estradiol, Bs3 led to cell death indicating that Bs3-mediated pathway components are conserved between tomato and pepper. Moreover, dTALE-mediated transcriptional activation of the Bs3 transgene in the CC-Bs4 background correlated with the reduced in planta growth of dTALE-containing X. euvesicatoria strain. Knocking out the ETI master regulator, i.e. EDS1, abolished Bs4-mediated cell death but not the Bs3-mediated cell death, indicating that Bs3 and Bs4 utilise distinct pathways to cause cell death. Nevertheless, effect of EDS1 knockout on Bs3-mediated immunity was not quantified. Therefore, it still remains to be determined if EDS1-mediated SA biosynthesis has an additive effect to Bs3-mediated immunity. Moreover, a number of CC-SGT1a and CC-SGT1b alleles in tomato were generated using CRISPR/Cas9 system and the crosses with CC-Bs4- and Bs3-containing line were initiated. Consecutive selection of the material should be done to estimate if knockout of SGT1a or SGT1b has an effect on Bs3-mediated cell death and immunity. Additionally, the transcriptome profiling experiment upon liquid estradiol-mediated transcriptional activation of the Bs3 transgene might reveal putative components of the Bs3-mediated cell death and immunity in absence of pathogen-associated virulence effects in the J8 (Bs4 Bs3) line. Consequently, knockouts of putative Bs3-mediated pathway components in the HJ1 line (CC-Bs4 Bs3) have to be carried
out to test impact of these knockouts on Bs3-mediated resistance to the dTALE34-expressing Xe 85-10 strain.

Moreover, transgenic lines containing other executor R genes, namely $B s 4 C, X a 10$, and $X a 23$, in the Bs4 background had been generated. The introduction of some of these transgenes to the CC-Bs4 background by crossing was started but not finished. Selection of the homozygous lines and consecutive testing of the transcriptional activation of the transgenes using dTALE34 has to be carried out to test if they are functional in tomato. Additionally, bacterial in planta growth upon the transcriptional activation of these transgenes in the CC-Bs4 background should be quantified. The resulting plant material can be used to further decipher Bs $4 C$-, Xa10-, and Xa23-mediated pathways.

As for Bs4, it was discovered that Bs4 mediates recognition of dTALEs with different length of central repeats (34 and 35 aa-long) and that Bs4 is epistatic to TALE-induced disease symptoms. In the scope of this information, it would be worthwhile to test if Bs4 mediates recognition of TALEs and their derivatives from rice and citrus pathogenic Xanthomonas strains as well as TALE-like proteins from Ralstonia solanacearum. Moreover, the Bs4mediated immunity to avrBs4-expressing Xe 85-10 strain was not quantified in an assay mimicking natural infection process, and therefore remains to be done.

The second part of this thesis described identification of putative tomato gene targets of AvrBs4, AvrBs3, and AvrHah1, i.e. TALEs from tomato and pepper pathogenic Xanthomonas strains. An infection assay demonstrated that AvrBs3 and AvrHah1 enhanced hypertrophy and water soaking in the CC-Bs4 background, while AvrBs4 did not cause any visible phenotype. Transcript abundance analysis of in silico predicted putative TALE targets revealed that basic Helix-Loop-Helix transcription factor 022 (bHLHO22), a tomato orthologue of pepper Upregulated by AvrBs3 No. 20 (UPA20), and a pectate lyase encoding gene, PL, were upregulated by AvrBs3 and AvrHah1, but not by AvrBs4. Nevertheless, the putative virulence effect upon transcriptional upregulation of bHLHO22 and PL by AvrBs3 and AvrHah1 haven't been quantified yet. This study will require an assay mimicking the natural infection scenario, e.g. dipping of leaflets into an inoculum, to enable reliable quantification of bacterial in planta growth.

Analysis of 5' untranslated regions (UTRs) of bHLHO22-like genes from numerous solanaceous species revealed presence of a conserved 63 basepair-long sequence fragment, containing the UPA box. These experimental outcomes indicate that AvrBs3 and AvrHah1 exploit a conserved element within 5' UTRs of bHLHO22-like genes to enhance similar disease symptoms in numerous solanaceous species. Moreover, the conservation of UPA box and its flanking sequences upstream of annotated start codons of bHLHO22-like genes from numerous solanaceous species suggests their putative role as cis-regulatory elements of bHLHO22-like genes. A further study might be initiated to reveal if UPA box and its flanking sequences play a role in the translational control of $\mathrm{bHLHO22}$-like genes in numerous solanaceous species.

4 MATERIALS AND METHODS

4.1 Bacterial strains, media and antibiotics.

Bacterial strains, antibiotics, and media for bacterial cultivation used in this study are listed in the Tables 5-7. Other solutions, expression vectors and oligonucleotides used in this study are listed in separate tables within the methods in which they were utilised.

Table 5. Bacterial strains.

Strain	Relevant Characteristics
E. coli Top 10	F^{-}mcrA (mrr-hsdRMS-mcrBc) 80d lacZM15 lacX74 deoR recA1 araD139 (ara, leu) 7697 ga/U ga/K rpsL (StrR) endA1 nupG
E. coli ccdB survival	F- mcrA (mrr-hsdRMS-mcrBc) 80d lacZM15 lacX74 deoR recA1 araD139 (ara, leu) 7697 ga/U /K rpsL (StrR) endA1 nupG tonA:Ptrc-ccdA
A.tumefaciens GV3101	C58 (RIF R) Ti pMP90 (pTiC58DT-DNA) (gentR/strepR) Nopaline
Xe $85-10 ~$	RifR TALE-less strain pathogenic on pepper and tomato

Table 6. Antibiotics and fungicides.

Chemical compounds	Stock solution	Dilution
Ampicillin	$100 \mathrm{mg} / \mathrm{ml}$ in water	$1: 1000$
Chloramphenicol	$15 \mathrm{mg} / \mathrm{ml}$ in EtOH	$1: 1000$
Gentamycin	$15 \mathrm{mg} / \mathrm{ml}$ in water	$1: 1000$ (E. coli) / 1:300 (A. tumefaciens; X. euvesicatoria)
Kanamycin	$25 \mathrm{mg} / \mathrm{ml}$ in water	$1: 1000$ (E. coli) / 1:250 (A. tumefaciens)
Rifampicin	$100 \mathrm{mg} / \mathrm{ml}$ in DMF	$1: 1000$
Spectinomycin	$100 \mathrm{mg} / \mathrm{ml}$ in water	$1: 1000$
Cycloheximide	$50 \mathrm{mg} / \mathrm{ml}$ in EtOH	$1: 1000$

Table 7. Media and buffers.

Name	Composition
Lysogeny Broth (LB)	$5 \mathrm{~g} / \mathrm{l}$ yeast extract, $10 \mathrm{~g} / \mathrm{l}$ tryptone, $10 \mathrm{~g} / \mathrm{l} \mathrm{NaCl}$
Yeast Extract Broth (YEB)	$5 \mathrm{~g} / \mathrm{l}$ beef extract, $1 \mathrm{~g} / \mathrm{l}$ yeast extract, $5 \mathrm{~g} / \mathrm{l}$ peptone, $5 \mathrm{~g} / \mathrm{l}$ sucrose, $0.5 \mathrm{~g} / \mathrm{l} \mathrm{MgSO}$, pH 7.2
Nutrient Yeast Glycerol (NYG)	$5 \mathrm{~g} / \mathrm{l}$ peptone, $3 \mathrm{~g} / \mathrm{l}$ yeast extract, $20 \mathrm{~g} / \mathrm{l}$ glycerol
Minimal Infiltration Buffer (MIB)	Per 100 ml : sucrose $2 \mathrm{~g}, \mathrm{MS}$ basal salt mix (no vitamins) $0.5 \mathrm{~g}, \mathrm{MES} 0.195 \mathrm{~g}$, 200 mM 4'-Hydroxy-3',5'-dimethoxyacetophenone dissolved in DMSO 100 ul. Adjust pH to 5.6

4.2 Plant methods.

4.2.1 Plant species and genotypes.

Plant species and genotypes used in this study are listed in the Table 8.

MATERIALS AND METHODS

Table 8. List of plant species and genotypes used in this study.

Line	Species	Genotype	Publication
Nb	Nb	WT	
MM (WT)	SI	EDS1 Bs4	Schornack et al. (2004)
C18	SI	EDS1 CC-Bs4 (mutation in TIR domain)	This thesis
C39	SI	EDS1 CC-Bs4 (mutation in TIR domain)	This thesis
D12	SI	EDS1 CC-Bs4 (mutation in NB domain)	This thesis
H11	SI	EDS1 CC-Bs4 (mutation in NB- and LRR-domains)	This thesis
J8	SI	EDS1 Bs4 EIP:Bs3-3xFLAG-T2A-mGFP5	This thesis
HJ1	SI	EDS1 CC-Bs4 EIP:Bs3-3xFLAG-T2A-mGFP5	This thesis
E26	SI	CC-EDS1 Bs4	This thesis
F2 5.42	SI	EDS1 Bs4 EIP:Bs3-3xFLAG-T2A-mGFP5	This thesis
F2 5.78	SI	EDS1 CC-Bs4 EIP:Bs3-3xFLAG-T2A-mGFP5	This thesis
F2 5.79	SI	CC-EDS1 Bs4 EIP:Bs3-3xFLAG-T2A-mGFP5	This thesis
F2 5.24	SI	CC-EDS1 CC-Bs4 EIP:Bs3-3xFLAG-T2A-mGFP5	This thesis
LA2963	Sp	SpBs4	Schornack et al. (2004)
ECW	Ca	WT	Kay et al. (2007)
ECW-30R	Ca	Bs3p:Bs3	Römer et al. (2007)
79	$C p$	Bs4Cp:Bs4C	Strauß et al. (2012)

4.2.2 Assembly of vectors for CRISPR/Cas9-mediated mutagenesis of tomato genes.

Gene-specific sgRNAs were designed using CCTop CRISPR/Cas9 target online predictor (Stemmer et al., 2015) for knockout of Bs4 (Solyc05g007850), while CRISPOR.ORG web-tool (Concordet and Haeussler, 2018) was used to design gene-specific sgRNAs for knockout of EDS1 (Solyc06g071280), SGT1a (Solyc06g036410), and SGT1b (Solyc03g007670) in S. Iycopersicum cv. Moneymaker (MM; Table 9). The off-target and on-target specificity of sgRNAs was predicted in S. Iycopersicum genome v3.0 using the ITAG (International Tomato Annotation Group) 3.2 gene annotation (Jouffroy et al., 2016; Shearer et al., 2014; T.D. Wu and Watanabe, 2005). sgRNAs were selected based on their high on-target specificity (according to the design tool automatic annotations) and number of mismatches between ontarget and off-targets. Only sgRNAs which contained minimum three mismatches in total, two of which had to be in sgRNA "core", were selected for cloning and vector assembly (Table 9). In case, the first nucleotide at the 5 '-end of 20 bp-long sgRNA was not " G ", it was substituted to " G " to ensure sgRNA transcription initiation by MtU6 promoter (Bortesi and Fischer, 2015; D. Zhang et al., 2017)

The CRISPR/Cas9 vector cloning system (p201N; Jacobs et al., 2015) was used for Bs4 mutagenesis in MM tomato (Table 9). Cloning of the gRNA and assembly of the T-DNA vectors was done as previously described (Table 9; Jacobs et al., 2015). On later stages, the following modifications were made to CRISPR/Cas9 vector system (p201N) to facilitate cloning process
and to integrate up to four sgRNAs (Morbitzer, unpublished). A Gateway cassette containing $c c d B$ gene and recombination sites was added into p201N (Morbitzer, unpublished). Up to four sgRNAs and 35s promoter-driven N-terminal triple NLS-containing GFP were sub-cloned into pUC57 (Spectinomycin), which contained recombination sites for LR reaction (Morbitzer, unpublished). The assembled cassettes were introduced to p201N-Gateway_Cassette via LR reaction using Invitrogen LR Clonase II. This upgraded p201N vector system was used to knock outs EDS1, SGT1a, and SGT1b in MM tomato (Table 9).

Table 9. Selected sgRNA sequences and their target sites. If the first nucleotide at the 5'-end of 20 bp-long sgRNA was not " G ", it was substituted to " G " and marked with red colour.

sgRNA	Sequence 5' - 3'	PAM	Gene	Locus	Targeted Area
1	GTTCAAAGTATTATCCTCGA	TGG	Bs4	Solyc05g007850	TIR
2	GATACCGATCTTTTATAATG	TGG	Bs4	Solyc05g007850	TIR
3	GGGGTTGGAGTCCGAAGAGC	AGG	Bs4	Solyc05g007850	NB
4	GTGATCTACGACTAAGTCGT	AGG	Bs4	Solyc05g007850	Between NB and LRR
5	GTGTTTCCTCCTGTGAATAA	CGG	Bs4	Solyc05g007850	LRR
6	GTGTTTGCAGGGCACTCGT	CGG	EDS1	Solyc06g071280	Between LP and EP
7	GTCTTCGTGCAGCAGGAGAG	TGG	EDS1	Solyc06g071280	Between LP and EP
8	GCTTTCAACTTACCGTATGA	AGG	SGT1a	Solyc06g036410	Between TPR8 and CS
9	GAAGAGTACGCAGCTTCGCC	TGG	SGT1a	Solyc06g036410	CS
10	GGGAAATGCCTCGAGTATAC	TGG	SGT1a	Solyc06g036410	Between CS and SGS
11	GGCGTCCGATCTGGAGACTA	GGG	SGT1b	Solyc03g007670	Upstream TPR8
12	GACATCGCTTGAGTATACAA	CGG	SGT1b	Solyc03g007670	Between CS and SGS
13	GGAAGGATAACTGGGCCGCG	GGG	SGT1b	Solyc03g007670	Between CS and SGS

4.2.3 Assembly of the constructs containing executor R genes under control of the EIP for stable tomato transformation.

Assembly of initial pER10 vector containing EIP were described in Zuo et al. (2000). This vector was upgraded by integration of the Gateway Cassette via Spel and Xhol digestion for facilitation of the cloning process (Morbitzer, unpublished). Triple FLAG-tag and mGFP5 reporter were fused to the 3 'end of the coding sequence of the executor R genes and were separated by T2A self-cleaving peptide to produce two separate proteins (Donnelly et al., 2001). This cleavage is intended for preservation of functionality of both proteins. These structural elements were assembled via GoldenGate system (Binder et al., 2014) into pENTR vector containing recombination sites for LR reaction (Morbitzer, unpublished). The assembled cassettes were introduced to pER10-Gateway_Cassette vector via LR reaction using Invitrogen LR Clonase II to produce EIP:Bs3-3xFLAG-T2A-mGFP5, EIP:Bs4C-3xFLAG-T2AmGFP5, EIP:Xa10-3xFLAG-T2A-mGFP5, and EIP:Xa23-3xFLAG-T2A-mGFP5 constructs. Which

MATERIALS AND METHODS

were consequently were used for transient expression in N. benthamiana and for stable transformation of MM tomato.

4.2.4 Cloning of SIBs4, SpBs4, and CC-Bs4.

Fragments of $\operatorname{SIBs} 4^{g D N A}$ and $S p B s 4^{g D N A}$ were sub-cloned from isolated genomic DNA into pUC57 (spectinomycin) vectors. Mutagenesis PCR was used to introduce silent mutations for removal of Bpil recognition sites within the sequence of the sub-cloned fragments. Following the Golden Gate cloning strategy, the fragments were assembled into pENTR vector via cutligation.
$S / B s 4^{C D S}$ and $S p B s 4^{C D S-\beta}$ versions were obtained upon a series of mutagenesis PCRs over subcloned fragments of $S I B s 4^{g D N A}$ and $S p B s 4^{g D N A}$ for removal of introns according to the annotated SIBs4 gene model. The difference between $S p B s 4^{C D S-\alpha}$ and $S p B s 4^{C D S-\beta}$ is in SNP mutation G1873A at the end of the second exon in $S p B s 4^{g D N A}$ which leads to alternative splicing resulting in inclusion of four consequent nucleotides "GTAA" (1874-1877) to the SpBs4 $4^{\text {CDS- } \alpha}$ and a frameshift (Figure 8B).

Upon Sanger sequencing of $C C$-Bs4 amplicons derived from H 11 line, $C C-B s 4^{C D S}$ was created by introduction of the CC-Bs4-specific mutations into SIBs4 ${ }^{C D S}$ using a series of mutagenesis PCRs over sub-cloned SIBs4 ${ }^{C D S}$ fragments. The pENTR pre-assembled cassettes were introduced into pGWB606 vector via LR reaction using Invitrogen LR Clonase II.

4.2.5 Transient expression in \boldsymbol{N}. benthamiana.

Electro-competent A. tumefaciens GV3101 strains carrying the respective binary plasmids were grown overnight ($12-16$ hours) at $28^{\circ} \mathrm{C}$ in YEB medium containing rifampicin and vectorspecific antibiotics. Cultures were pelleted, re-suspended in the MIB, and adjusted to $\mathrm{OD}_{600}=$ 0.4. Leaves of four to five weeks-old N. benthamiana plants were infiltrated with a blunt end syringe.

In case of transient expression of EIP:Bs3-3xFLAG-T2A-mGFP5, EIP:Bs4C-3xFLAG-T2A-mGFP5, EIP:Xa10-3xFLAG-T2A-mGFP5, and EIP:Xa23-3xFLAG-T2A-mGFP5 constructs, 24 hpi with the inocula of A. tumefaciens GV3101 strains carrying the respective constructs liquid estradiol or mock treatments were infiltrated with a blunt end syringe in the same leaf tissue. Leaves were
harvested two dpi with liquid estradiol or mock treatments and destained in $80 \% \mathrm{EtOH}$ at $95^{\circ} \mathrm{C}$ for 60 mins. This experiment was repeated three times.

In case of transient co-expression of N-terminus GFP-labelled SIBs4, SpBs4, and CC-Bs4 gDNA and CDS versions with avrBs4 and GFP, the respective cultures were adjusted to $O_{600}=0.8$. The combinations of two cultures were mixed 1:1 and the respective inocula were infiltrated with a blunt end syringe in the leaves of four to five weeks-old N. benthamiana plants. Leaves were harvested two dpi and destained in $80 \% \mathrm{EtOH}$ at $95^{\circ} \mathrm{C}$ for 60 mins. This experiment was repeated three times.

4.2.6 Stable tomato transformations and event characterisation.

The assembled constructs were introduced into A. tumefaciens GV3101 strain by electroporation. A. tumefaciens colonies containing the assembled constructs were used for stable transformation of S. lycopersicum cv. Moneymaker (MM) following the protocol described by Wittmann et al. (2016). Total genomic DNA was extracted from individual plants regenerated from calli and putative events were genotyped for a transgene (in the case of EIP:Bs3-3xFLAG-T2A-mGFP5, EIP:Bs4C-3xFLAG-T2A-mGFP5, EIP:Xa10-3xFLAG-T2A-mGFP5, and EIP:Xa23-3xFLAG-T2A-mGFP5 constructs) or a mutation in a GOI (in the case of CRISPR/Cas9-mediated mutagenesis) using primer pairs listed in Table 10.

Table 10. Primer pairs used for genotyping of putative TO tomato lines.

Pair	Sequence 5' - 3'	Orientation	(WT) Amplicon length, bp	GOI	Purpose
1	GTGGAAAAAGGGCAACGGTA	Forward	735	Bs4	Bs4 Mutations
	AGCAGTTAGGGCAGTTCTCC	Reverse			
2	AAGGTGTGGGGCTGTTTA	Forward	834	Bs4	Bs4 Mutations
	GTTCAAGATGAACAAGCTTTTCTGG	Reverse			
3	CATCGGAACGATGAAGCCG	Forward	574	Bs4	Bs4 Mutations
	ACTTGTAAGACTCCTGCAATCTTT	Reverse			
4	AAGGTGTGGGGCTGTTTA	Forward	1892	Bs4	Bs4 Mutations
	ACTTGTAAGACTCCTGCAATCTTT	Reverse			
5	ATTCTACACGCACCCGTTGA	Forward	1315	EDS1	EDS1 Mutations
	ACCTGCTAGCTCAAGCCTTC	Reverse			
6	CTTGTCATGGGCTCCATTAATATCT	Forward	1100	SGT1a	SGT1a Mutations
	TGAACACAGAGCAAAGGGAAG	Reverse			
7	AAAGAGCCGAAATAATCCAAGGT	Forward	500	SGT1b	SGT1b Mutations
	ACAAACTCTTCACCATAAACCCC	Reverse			
8	TTCTGAAATTGTTCCCCGAGT	Forward	579	SGT1b	SGT1b Mutations
	CCAAGCATTCAGGGACAAAGA	Reverse			

MATERIALS AND METHODS

Table 10 (Continued). Primer pairs used for genotyping of putative T0 tomato lines.

Pair	Sequence 5' - 3'	Orientation	(WT) Amplicon length, bp	GOI	Purpose
9	AAGGGGGCCTCTGCCCAGTC	Forward	539	Cas9	Cas9 Screening
	GACAGCCGCCCCCATCCTGT	Reverse			
10	GGCGGAGCAAGCCAGGAGGAA	Forward	899	Cas9	Cas9 Screening
	CTTGACAGCCGCCCCCATCCT	Reverse			
11	CCTCTTATTGTTGGAGCTGGC	Forward	607	Bs3	Bs3 Transgene Genotyping
	GACCCTGTACCGAGCTTCG	Reverse			
12	TTGATCTTGATTTTGGCTAACATGC	Forward	451	Bs4C	Bs4C Transgene Genotyping
	GAGTTTCATGTTGCTGGCTCAC	Reverse			
13	GCAACTGATGCTGACGTTCTG	Forward	370	Xa10	Xa10 Transgene Genotyping
	GCTGATTTCTTCGTCATCTTCACC	Reverse			
14	ATGTTGCATCATCTCAAGGAGC	Forward	338	Xa23	Xa23 Transgene Genotyping
	ACAGGGAGAATAACCATCTTGTCG	Reverse			

In the case of CRISPR/Cas9-mediated GOI mutagenesis, amplified fragments were purified and sent for Sanger sequencing (Table 10). TO plants with confirmed mutations in a GOI (mainly big sequence deletions) were kept for seed multiplication. In the next generation (T1), segregating populations were screened for the corresponding mutations in the GOI and for Cas9 coding sequence by PCR amplification (Table 10). Cas9-free plants that are homozygous for the confirmed mutations were phenotyped minimum three times and kept for seed multiplication (Table 10). The progenies of these plants were used for phenotyping experiment and bacterial growth assays.

In case of tomato transformation with EIP:Bs3-3xFLAG-T2A-mGFP5, EIP:Bs4C-3xFLAG-T2AmGFP5, EIP:Xa10-3xFLAG-T2A-mGFP5, and EIP:Xa23-3xFLAG-T2A-mGFP5 constructs, T0 lines containing a transgene were phenotyped with liquid estradiol and mock treatments minimum three times. The TO lines exhibiting cell death reaction upon estradiol treatment were kept for seed multiplication. gDNA of these TO lines was used for identification of number of inserted transgene copies and their genomic locations.

4.2.7 Identification of number of inserted Bs3 transgene copies and their genomic location in stable tomato lines.

$1 \mu \mathrm{~g}$ of gDNA samples of TO lines were separately digested with 10 U of the blunt-end cutting enzymes Alul, Bsh1236I (BstUI), BsuRI (HaellI), Rsal, Eco32I (EcoRV), MIsI (Mscl), Pvull, Smil (Swal), and Sspl (Kasl) from Thermo Fischer Scientific in $100 \mu \mathrm{l}$ reaction volume. The digestion was made for 16 hours at $37^{\circ} \mathrm{C}$ followed by heat inactivation at $80^{\circ} \mathrm{C}$ for 20 minutes.

1:10 dilutions of the stock solutions (100 pmol) of the adapters GWALong and GWAShort (Table 11) were mixed 1:1, denatured at $95^{\circ} \mathrm{C}$ for 2 minutes, and cooled down to room temperature. The digested gDNA libraries were used for ligation of adapters. The ligation was performed at $16^{\circ} \mathrm{C}$ for 16 hours. $1 \mu \mathrm{l}$ of $1: 10$ diluted samples and the primer pairs AP1 / AMRB01, AP1 / AMRB02, AP1 / AMLB01, AP1 / AMLB02 (Table 11) were used as templates for the 1st PCR with TAKARA PrimeSTAR GXL Polymerase (40 cycles; $\mathrm{t}_{\mathrm{a}}=60^{\circ} \mathrm{C}$; $\mathrm{T}_{\mathrm{e}}=3,5 \mathrm{mins}$). The $1 \mu \mathrm{l}$ of $1: 10$ diluted samples and 2 pmol of the primer pairs AP1 / AMRB01, AP1 / AMRB02, AP1 / AMLB01, AP1 / AMLB02 (Table 11) were used as templates for the 1st PCR with TAKARA PrimeSTAR GXL Polymerase following the manufacturer-defined protocol (40 cycles; $\mathrm{T}_{\mathrm{a}}=60^{\circ} \mathrm{C}$; $t_{e}=3,5$ mins). 1μ of 1:50 diluted $1^{\text {st }}$ PCR reactions and 2 pmol of the primer pairs AP2 / AMRB03, AP2 / AMRB04, AP2 / AMLB03, AP2 / AMLB04 (Table 11) were used as templates for the $2^{\text {nd }}$ PCR with TAKARA PrimeSTAR GXL Polymerase (40 cycles; $\mathrm{t}_{\mathrm{a}}=60^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{e}}=3,5 \mathrm{mins}$). The $1 \mu \mathrm{l}$ of 1:10 diluted samples and the primer pairs AP1/AMRB01, AP1/AMRB02, AP1/ AMLB01, AP1 / AMLB02 (Table 11) were used as templates for the 1st PCR with TAKARA PrimeSTAR GXL Polymerase following the manufacturer-defined protocol (5 cycles $98^{\circ} \mathrm{C}$ for 20 sec and $68^{\circ} \mathrm{C}$ for 3,5 mins; followed by 30 cycles of $98^{\circ} \mathrm{C}$ for $20 \mathrm{sec}, 55^{\circ} \mathrm{C}$ for 20 sec , and $68^{\circ} \mathrm{C}$ for 3,5 mins).

Table 11. Primer sequences used for identification of number of inserted transgene copies and their genomic location.

Primer	Sequence 5' $\mathbf{- 3}$	Purpose
GWALong	GTAATACGACTCACTATAGGGCACGCGTGGTCGACGGCCCGGGCTGGT	Adapter
GWAShort	PO4 - ACCAGCCCG - Spacer C3	Adapter
AP1	GTAATACGACTCACTATAGGGC	$1^{\text {st }}$ PCR
AMRB01	CTTGCGAAGGATAGTGGGATTGTGCGTCATCC	$1^{\text {st }}$ PCR
AMRB02	CTTGAGCTTGGATCAGATTGTCGTTTCC	$1^{\text {st }}$ PCR
AMLB01	CCTTGCAGCACATCCCCCTTTCGCCAGCTGG	$1^{\text {st }}$ PCR
AMLB02	CGGCGTTAATTCAGTACATTAAAAACGTCC	$1^{\text {st }}$ PCR
AP2	ACTATAGGGCACGCGTGGT	$2^{\text {nd }}$ PCR
AMRB03	CAGTGTTTGACAGGATATATTGGCGG	$2^{\text {nd }}$ PCR
AMRB04	TCAGTGGAGATGGATCCTCTAGAGGCACGTGG	$2^{\text {nd }}$ PCR
AMLB03	CGTCCGCAATGTGTTATTAAGTTGTCTAAGC	$2^{\text {nd }}$ PCR
AMLB04	TAATAGCGAAGAGGCCCGCACCGATCG	$2^{\text {nd }}$ PCR
332	CAAATTACTCACTCTTCCAACTC	Bs3.1
333	TGTAACAGCTAGTGTATGATTCAG	Bs3.1
215	TTTATTGAGGTTCGGGGCTTT	Bs3.2
216	CGTAGATTTGTAGGGGATCAT	Bs3.2

Results of the $2^{\text {nd }}$ PCR were visualised on 1% agarose gel and well amplified products were cut out of the agarose gel and purified with Thermo Scientific ${ }^{\text {TM }}$ GeneJET Gel Extraction Kit. Each

MATERIALS AND METHODS

amplicon was sub-cloned into Smal-digested pUC57 (gentamicin) vector and sequenced. S. lycopersicum genome v3.0 was screened for matches with the Sanger sequencing reads. Upon successful mapping of the reads, the combinations of chromosome-specific and transgenespecific primers, namely 333 / AMRB03 and 215 / AMLB04 (Table 11), were used to confirm genomic integration of $B s 3.1$ and $B s 3.2$ in TO J8 line. The combination of chromosome-specific primers, namely 332 / 333 and 215 / 216 (Table 11), were used to check if the integrated transgene copies are hemi- or homozygous in T1 generation.

4.2.8 Cloning of dTALEs and TALEs for X. euvesicatoria-mediated tomato infections.

dTALE34 and dTALE35 were assembled by modular cloning into pENTR vectors (Morbitzer et al., 2011). $1 \mu \mathrm{~g}$ of pSKX1 backbone containing ahax37-FLAG (Streubel et al., 2013; Tran et al., 2018), pENTR dTALE34, and pENTR dTALE35 plasmids were digested with $0,5 \mathrm{U}$ of FastDigest BamHI enzyme from Thermo Fisher Scientific. BamHI-digested pSKX1 backbone containing only transcription start site and 3'-end of ahax37-FLAG part, dTALE34, and dTALE35 were purified from 1\% agarose gel using GeneJet Gel Extraction Kit from Thermo Fischer Scientific. The purified BamHI-digested dTALE34 and dTALE35 fragments were ligated into the purified BamHI-digested pSKX1 backbone with T4 ligase 30 Weiss $\mathrm{U} / \mu \mathrm{l}$ from Thermo Fischer Scientific. The purified BamHI-digested pSKX1 backbone was self-ligated with T4 ligase 30 Weiss U / μ from Thermo Fischer Scientific to produce pSKX1 Empty Vector construct. E. coli TOP10 competent cells were transformed with 5μ of each ligation reaction. Colony PCR and consequent Sanger sequencing allowed to identify the clones with forward orientation of inserts.
pSKX1 avrBs4 construct was cloned in a similar fashion as previously described. However, instead of BamHI enzyme, the Fast-Digest Pvul enzyme from Thermo Fischer Scientific was used for digestion of $1 \mu \mathrm{~g}$ of pSKX1 ahax37-FLAG (Streubel et al., 2013; Tran et al., 2018) and pBinar avrBs4-FLAG-Avi (Lutz, unpublished). Xe 85-10 electrocompetent cells were transformed with the assembled pSKX1 constructs. Colony PCR was performed to select the colonies containing the whole dTALE/TALE sequence. 10-20 positive clones were tested for an ability to transcriptionally activate their respective targets and to cause associated cell death phenotype in numerous tomato and pepper genotypes: Bs3 in tomato HJ11 line and MM (lacking Bs3) for dTALE34 / dTALE35 as well as Bs4C in Cp " 79 " and C. annuum Early Calwonder (ECW; lacking Bs4C; Strauß et al., 2012). Per each strain, one clone continuously causing
expected phenotypes in three independent phenotyping pre-tests were selected for further bacterial growth assays and phenotyping experiments. pDSK602 avrBs4, pDSK602 avrBs4 4227 , and pDSK602 EV (Schornack et al., 2004) as well as pDSK602 avrBs3 and pDSK602 avrHah1 (Strauss, unpublished) were generated in separate studies.

4.2.9 Phenotyping of plants with the liquid estradiol and mock treatments.

20 mM of β-Estradiol $\geq 98 \%$ (CAS \# 50-28-2) from Sigma-Aldrich was dissolved in dimethyl sulfoxide (DMSO) and stored as a stock solution for maximum of two weeks at $-20^{\circ} \mathrm{C} .1: 1000$ dilution of the stock solution in Milli-Q water was used for preparation of liquid estradiolcontaining inoculum ($20 \mu \mathrm{M}$). Mock treatment was prepared by 1:1000 dilution of the DMSO in Milli-Q water. Both inocula were syringe-infiltrated into the leaflets of four to five weeksold tomato plants. Phenotypes were observed two dpi. Phenotyping experiments were independently repeated three times with similar results. Samples for the transcripts abundance measurement via qRT-PCR were collected 12 and 24 hpi . And the transcripts abundance analyses were made only once per experimental design.

4.2.10 Phenotyping of tomato and pepper plants using X. euvesicatoria.

Xe 85-10 strains were grown on solid NYG medium containing rifampicin and a vector-specific antibiotic (gentamycin for pSKX1 or spectinomycin for pDSK602) for two days at $28^{\circ} \mathrm{C}$. Bacterial cells were re-suspended in sterile water, inocula were adjusted to $\mathrm{OD}_{600}=0.4$, and were infiltrated into the abaxial side of the leaflets of the four- to five-weeks-old tomato or pepper plants. Upon infiltration with the inocula, the plants were kept for two days at $22 \pm 1^{\circ} \mathrm{C}$ with relative air humidity of $40-50 \%$ a $16 \mathrm{~h} / 8 \mathrm{~h}$ day/night cycle. Representative leaflets exhibiting cell death phenotypes were collected 2 dpi (or 3 dpi in case of phenotyping with Xe 85-10 expressing dTALE35). Harvested leaflets were destained in $80 \% \mathrm{EtOH}$ at $95^{\circ} \mathrm{C}$ for 60 mins. Phenotyping experiments, where the impact of CC-EDS1 on Bs3-mediated signalling was tested, were repeated twice with similar results. While the remaining phenotyping experiments were independently repeated three times with similar results.

4.2.11 Bacterial in planta growth assay.

Four- to five-weeks-old tomato plants were transferred to Outsunny PVC Transparent Greenhouse ($200 \times 100 \times 80 \mathrm{~cm}$) two days prior to infiltration to create high humidity

MATERIALS AND METHODS

conditions for bacterial growth. Xe 85-10 strains containing dTALE34 and EV pSKX1 were grown on solid NYG medium containing rifampicin and gentamycin, while Xe 85-10 strains containing avrBs4 and EV pDSK602 were grown on solid NYG medium containing rifampicin and spectinomycin for two days at $28^{\circ} \mathrm{C}$. Bacterial strains were re-suspended in sterile water, inocula were adjusted to $\mathrm{OD}_{600}=0.00004\left(10^{5} \mathrm{CFU} / \mathrm{ml}\right)$, and were infiltrated into the abaxial side of the leaflets of the prepared plants. Upon infiltration with the inocula, the plants were kept in extra humid conditions at $22 \pm 1^{\circ} \mathrm{C}$ with a $16 \mathrm{~h} / 8 \mathrm{~h}$ day/night cycle. Infiltrated leaf tissue samples ($0.64 \mathrm{~cm}^{2}$) were harvested at 0,4 , and 7 dpi for Xe 85-10 pSKX1 dTALE34 and Xe 85-10 pSKX1 EV. In case of Xe 85-10 pDSK602 avrBs4 and Xe 85-10 pDSK602 EV strains, the samples were harvested at $0,4,7$, and 9 dpi . The harvested samples were grinded in $100 \mu \mathrm{l}$ $1 \mathrm{mM} \mathrm{MgCl}_{2}$ solution in a Retsch Mixer Mill 200 ($20 \mathrm{f} / 40$ seconds). Series of sample dilutions (10^{0} to 10^{-6}) were plated on solid NYG medium containing cycloheximide and corresponding antibiotics and incubated at $28^{\circ} \mathrm{C}$ for 36 to 48 hours. $\log _{10}$ values representing number of CFUs per cm^{2} of infiltrated leaflet surface were used for statistical analyses. These in planta bacterial growth experiments were independently repeated minimum three times with similar results.

4.2.12 In silico analysis of putative AvrBs4, AvrBs3, and AvrHah1 EBEs in tomato genome.

TALgetter (Grau et al., 2013) were used for prediction of putative EBEs within the 1 kb promoter regions (upstream of translation start codon, both strands) of annotated tomato genes (S. lycopersicum genome v 3.0 and ITAG3.2). The RVD composition, i.e. TALE-code, of each effector were used for prediction of putative EBEs. In order to shortlist potential target genes of AvrBs3-like proteins, strict selection criteria were introduced to EBE location in the promoter regions of their putative targets. First, an EBE of a putative target should start with " T " at the position " 0 ". Second, an EBE should be in the forward orientation towards a predicted transcription start site of a putative target. Third, an EBE should be located 50-300 bp upstream a predicted start codon of a putative target. Top candidates satisfying the selection criteria and having high likelihood of the predicted TALE-EBE interaction were selected for further analysis.

4.2.13 TALE and Bs3p-EBE ${ }^{\text {GenelD }}: G U S$ reporter assay.

avrBs4, avrBs3, and avrHah1 were assembled into pGWB605 using Invitrogen LR Clonase II. Empty pGWB605 was used as a negative control. pGWB3* vector containing the native pepper

Bs3 promoter (343 bp upstream of ATG) introduced via Golden Gate assembly (Binder et al., 2014; D. Wu et al., 2019) was used for integration of EBE GenelD by PCR-based mutagenesis. Primers used in this study were listed in Table 12. Bs $3 p-E B E^{B s 3}: G U S$ and $B s 3 p-E B E^{B s 4 C}: G U S$ constructs in pGWB3* vector used as positive controls very assembled in the previous study (Jordan, unpublished). All constructs were transformed into A. tumefaciens GV3101 strain by electroporation. A. tumefaciens were grown in YEB medium containing rifampicin and spectinomycin (for pGWB605-containing strains), or rifampicin and kanamycin (for pGWB3*containing strains) at $28^{\circ} \mathrm{C}$ for 16 h . Bacterial cells were harvested by centrifugation, resuspended in the MIB and adjusted to an optical density at $600 \mathrm{~nm}\left(\mathrm{OD}_{600}\right)$ of " 1.2 ". Combinations of pGWB605-containing and pGWB3*-containing strains were created by mixing inocula with the adjusted OD_{600} in 1:1 ratio. Inocula were infiltrated into 4 -week-old N. benthamiana leaves with blunt-end syringe. 36 hpi minimum four leaf discs from infiltrated area were harvested and stained in GUS staining solution ($\mathrm{pH}=7.0,0.1 \mathrm{M}$ sodium phosphate, 5 mM EDTA, 1 mM K3[Fe(CN)6], 1 mM K4[Fe(CN)6], 0.1\% Triton X-100 and 0.05\% X-Gluc) for 24 h , followed by washing in 70\% ethanol for two days. Four representative stained leaf discs were scanned.

Due to the big number of samples and controls within this assay, all combinations of infiltrations were divided into two separate groups. i.e. expected positive interactions and expected negative interactions. These two groups were tested separately. However, the standard controls, i.e. Bs3pEBE ${ }^{B s 4 C}: G U S / a v r B s 4-G F P$, Bs3pEBE ${ }^{B s 4 C}: G U S / G F P$, $B s 3 p E B E^{B s 3}: G U S / a v r B s 3-G F P, B s 3 p E B E^{B s 3}: G U S / a v r H a h 1-G F P, B s 3 p E B E^{B s 3}: G U S / G F P, 35 s: G U S$, were included into each set. The whole assay was made once.

Table 12. Primer sequences used for integration of EBE ${ }^{\text {GenelD }}$ sequences into $\mathrm{pGWB} 3 *$ vector containing the native pepper Bs3 promoter.

Primer	Sequence 5' - 3'	GenelD
145	PHO-ATAAAATTGGTCAGGCAAACGTGTTCATTG	$B s 3 p$
146	TATGTACACCTCCCCCTCTTCACAACTTCAAGTTATCATCCCCTTTCTC	$P E$
147	TCTGTAAACCTAACCCAATTCACAACTTCAAGTTATCATCCCCTTTCTC	$A P$
148	TATATAAACCTGACCCTTTTCACAACTTCAAGTTATCATCCCCTTTCTC	$b H L H 022$
149	TTTAATTATTAATCCACTTTCACAACTTCAAGTTATCATCCCCTTTCTC	$b H L H 073$
150	TACAACTACTAATCCCCTTTCACAACTTCAAGTTATCATCCCCTTTCTC	$U P$
151	TATATTTAGTACTCCTCTTTCACAACTTCAAGTTATCATCCCCTTTCTC	$R I N G$
152	TATAATTATTAATTCACTTTCACAACTTCAAGTTATCATCCCCTTTCTC	$B C P$

MATERIALS AND METHODS

4.2.14 TALE-mediated tomato target gene upregulation assays in tomato.

A. tumefaciens GV3101 strains expressing avrBs4, avrBs3, avrHah1 and GFP (pGWB605 EV) or Xe 85-10 strains containing avrBs4, avrBs3, avrHah1, and EV pDSK602 were infiltrated at $\mathrm{OD}_{600}=0.4$ with the blunt-end syringe into leaflets of four- to five-weeks-old tomato plants (Moneymaker and its corresponding mutants). In case of A. tumefaciens-mediated transient expression of TALEs, the infiltrated tissue samples were harvested 48 hpi , while for $X e 85-10$ inocula, the infiltrated tissue samples were harvested 24 hpi. Each of these experiments was made once.

4.2.15 RT-PCR and qRT-PCR.

Total RNA was isolated from infiltrated tissue samples with the Roboklon Universal RNA Kit following to the protocol provided by the manufacturer. The quality of total RNA isolated from the samples was checked by nanodrop. Additional off-column treatment with DNasel was made following the protocol from RevertAid First Strand complementary DNA (cDNA) Synthesis Kit (Thermo Scientific). Equal amounts of DNasel-treated total RNA (400 ng) for all samples within one experiment were prepared for cDNA synthesis using RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific) according to the protocol provided by the manufacturer.

Table 13. Primer pairs used for RT-PCR.

Pair	Sequence 5' - 3'	Orientation	Amplicon length, bp	GeneID
15	TGGACCGCGAAAGACGATAATT	Forward	317	PE
	AGTTTTGGAGGATAGCTGACG	Reverse		
16	TATGAGTGGGGGAGGCCAA	Forward	315	$A P$
	GTAGTTGTCGTCCTTTCATGT	Reverse		
17	AGGCCCTTATGTTGGATGAG	Forward	340	bHLHO22
	CCCCATAAGAGCTGTCCAATAC	Reverse		
18	AAGAAGAAATGGAACTTGGACC	Forward	339	bHLH073
	TCCCTCCATATCCAGCATTTCT	Reverse		
19	CATACAAACCATCAATAGTGCC	Forward	303	UP
	TCAGTATTTCCATCGTCATCAG	Reverse		
20	TTTCTCTACTTGTACCATCCCT	Forward	209	RING
	TGTCTTCATTTCTCTTGCATCG	Reverse		
21	GGTGCATCATGTGGTCGGAGAA	Forward	351	$B C P$
	GCTACAGCCATTAATCCAACAT	Reverse		
22	AGTCAACTACCACTGGTCAC	Forward	205	EF1 α
	GTGCAGTAGTACTTAGTGGTC	Reverse		

RT-PCR was performed in $20 \mu \mathrm{l}$ reactions, each containing 1 pmol of forward and 1 pmol of reverse primers (Table 13), $2 \mu \mathrm{l}$ of 1:20 diluted cDNA, $4 \mu \mathrm{l}$ of 5 x Phusion High Fidelity Buffer from New England Biolabs Inc., $0,2 \mu$ l of Phusion High Fidelity Polymerase, and Mili-Q water following the PCR protocol (35 cycles of $98^{\circ} \mathrm{C}$ for $10 \mathrm{sec}, 53^{\circ} \mathrm{C}$ for 15 sec , and $72^{\circ} \mathrm{C}$ for 30 sec). EF1人 (Solyc06g009970) from S. lycopersicum (Table 13) was used as reference gene for comparison with expression levels of putative target genes (Szczesny et al., 2010). RT-PCRs were repeated twice on one set of template samples.
qRT-PCR was performed in 8μ l reaction (384-well Thermo Scientific ${ }^{\text {TM }}$ PCR Plates, CFX384 Touch qRT-PCR Detection System BioRad), each containing 1 pmol of forward and 1 pmol of reverse primers (Table 14), $2 \mu \mathrm{l}$ of 1:4 diluted cDNA, and $4 \mu \mathrm{l}$ of MESA BLUE qRT-PCR MasterMix Plus for SYBR Assay No ROX (Eurogentec). Standard program was used for all qRTPCR runs ($95^{\circ} \mathrm{C}$ for $5 \mathrm{~min} ; 40$ cycles of $95^{\circ} \mathrm{C}$ for $15 \mathrm{sec}, 58^{\circ} \mathrm{C}$ for 45 sec). The primer specificity was checked by running a melting curve after all qRT-PCR runs $\left(0.5^{\circ} \mathrm{C}\right.$ elevation every 5 sec from 58 to $95^{\circ} \mathrm{C}$). The primer efficiency was checked by running a trial qRT-PCR with minimum five different cDNA samples of various dilutions (1:4, 1:16, 1:64, and 1:256 or 1:5, 1:25, 1:125, and 1:625). Each sample had three technical replicates. The mean of Ct values for five biological replicates were used to determine qRT-PCR primer efficiencies. TIP41-Like (Solyc10g049850) from S. Iycopersicum (Table14) was used as a reference gene for internal normalisation (Lacerda et al., 2015). Relative expression was calculated with $2^{-\Delta C t}$ method and this raw data was used for statistical analyses. qRT-PCRs were made once for each set of template samples.

Table 14. Primer pairs used for qRT-PCR.

Pair	Sequence 5' - 3'	Orientation	Amplicon length, bp	Efficiency, \%	GeneID
23	CGGTTGGCTGTGGCAATTC	Forward	98	97,21	Bs3
	ACGACCCTGTACCGAGCTT	Reverse			
24	GCTTAGGGTTGATGGAGTGCT	Forward	104	95,57	TIP41-Like
	CTCTCCAGCAGCTTTCACGA	Reverse			
25	TACTACATCACAGGCAGCTGAAG	Forward	147	96,57	bHLHO22
	TCATCTGCACCCCATAAGAGC	Reverse			
26	GCTTGTGCAAAGGATGCCAA	Forward	91	95,64	PL
	TCCTCCAATTGCATACATCTCCC	Reverse			
27	CAGGCCTTGTCTTCGAAAGGA	Forward	128	97,66	TIP41-Like
	TTTTACAGGACACTCCAACATGG	Reverse			

MATERIALS AND METHODS

4.2.16 Mining of plant genomes for tomato bHLHO22 orthologues and alignment of sequences.

Genomic sequence of tomato bHLHO22 (SolycO3g097820) was used as a query for mining of bHLHO22-like gene sequences within the genomes of Solanum, Capsicum, Nicotiana, Petunia, Coffea, and Vitis species using the genomic browsing platforms available at https://www.solgenomics.net and https://blast.ncbi.nlm.nih.gov. Sequences of the bHLHO22like genes and the sequences upstream of their predicted (annotated) start codons were extracted for further analysis (Supplementary Information 5.2). 303 bp-long sequences (300 bp upstream and 3 bp representing the start codon) were aligned using the Multiple Sequence Comparison by Log-Expectation (MUSCLE) algorithm (Edgar, 2004). The most conserved nucleotides were annotated with the BoxShade algorithm at (https://embnet.vitalit.ch/software/BOX_form.html). The complete alignment of these sequences is available as Figure S2.

4.3 Quantification and statistical analyses.

Statistical analyses of raw data were performed in R v4.0.3. Where applicable, unpaired twosamples Wilcoxon test and pairwise Wilcoxon rank sum test followed by FDR p-value adjustment method for multiple comparisons were used to compare significance levels between different groups. Significance levels are represented by number of asterisks, where *, $p \leq 0.05$; $^{* *}, p \leq 0.01$; ${ }^{* * *}, p \leq 0.001$; and ${ }^{* * * *}, p \leq 0.0001$. All details regarding applied statistical tests are described in the figure legends. The box plots were deployed to represent the distribution of the numerical data points and skewness. n represents numbers of independent biological replicates.

REFERENCES

Aarts, N, Metz, M, Holub, E, Staskawicz, BJ, Daniels, MJ, and Parker, JE. (1998). Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences, 95(17), 10306-10311.
Abrahamian, P, Sharma, A, Jones, J, and Vallad, GE. (2020). Dynamics and spread of bacterial spot epidemics in tomato transplants grown for field production. Plant Disease.
Adlung, N, Prochaska, H, Thieme, S, Banik, A, Blüher, D, John, P, Nagel, O, Schulze, S, Gantner, J, Delker, C, Stuttmann, J, and Bonas, U. (2016). Non-host resistance induced by the Xanthomonas effector XopQ is widespread within the genus Nicotiana and functionally depends on EDS1. Frontiers in Plant Science, 7(1796).
Antony, G, Zhou, J, Huang, S, Li, T, Liu, B, White, F, and Yang, B. (2010). Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os11N3. The Plant Cell, 22(11), 3864-3876.
Austin, MJ, Muskett, P, Kahn, K, Feys, BJ, Jones, JDG, and Parker, JE. (2002). Regulatory role of SGT1 in early R gene-mediated plant defenses. Science, 295(5562), 2077-2080.
Azevedo, C, Betsuyaku, S, Peart, J, Takahashi, A, Noël, L, Sadanandom, A, Casais, C, Parker, J, and Shirasu, K. (2006). Role of SGT1 in resistance protein accumulation in plant immunity. The EMBO Journal, 25(9), 2007-2016.
Ballvora, A, Pierre, M, van den Ackerveken, G, Schornack, S, Rossier, O, Ganal, M, Lahaye, T, and Bonas, U. (2001). Genetic mapping and functional analysis of the tomato Bs4 locus governing recognition of the Xanthomonas campestris pv. vesicatoria AvrBs 4 protein. Molecular Plant-Microbe Interactions, 14(5), 629-638.
Ballvora, A, Schornack, S, Baker, B, Ganal, M, Bonas, U, and Lahaye, T. (2001). Chromosome landing at the tomato Bs4 locus. Molecular Genetics and Genomics, 266(4), 639-645.
Bartsch, M, Gobbato, E, Bednarek, P, Debey, S, Schultze, JL, Bautor, J, and Parker, JE. (2006). Salicylic acid-independent Enhanced Disease Susceptibility1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the nudix hydrolase NUDT7. The Plant Cell, 18(4), 1038-1051.
Berens, ML, Wolinska, KW, Spaepen, S, Ziegler, J, Nobori, T, Nair, A, Krüler, V, Winkelmüller, TM, Wang, Y, Mine, A, Becker, D, Garrido-Oter, R, Schulze-Lefert, P, and Tsuda, K. (2019). Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. Proceedings of the National Academy of Sciences of the United States of America, 116(6), 2364-2373.
Bernsdorff, F, Döring, A-C, Gruner, K, Schuck, S, Bräutigam, A, and Zeier, J. (2016). Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways. The Plant Cell, 28(1), 102-129.
Binder, A, Lambert, J, Morbitzer, R, Popp, C, Ott, T, Lahaye, T, and Parniske, M. (2014). A modular plasmid assembly kit for multigene expression, gene silencing and silencing rescue in plants. PLOS ONE, 9(2), e88218.
Blocker, A, Jouihri, N, Larquet, E, Gounon, P, Ebel, F, Parsot, C, Sansonetti, P, and Allaoui, A. (2001). Structure and composition of the Shigella flexneri 'needle complex', a part of its type III secreton. Molecular Microbiology, 39(3), 652-663.
Boch, J, and Bonas, U. (2010). Xanthomonas AvrBs3 family-type III Effectors: discovery and function. Annual review of phytopathology, 48(1), 419-436.

REFERENCES

Boch, J, Scholze, H, Schornack, S, Landgraf, A, Hahn, S, Kay, S, Lahaye, T, Nickstadt, A, and Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326(5959), 1509-1512.
Bogdanove, AJ, Schornack, S, and Lahaye, T. (2010). TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol, 13(4), 394-401.
Bonas, U, Conrads-Strauch, J, and Balbo, I. (1993). Resistance in tomato to Xanthomonas campestris pv. vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3. Molecular and General Genetics MGG, 238(1), 261-269.
Bonas, U, Stall, RE, and Staskawicz, B. (1989). Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet, 218(1), 127-136.
Borghi, L. (2010). Inducible gene expression systems for plants. In Hennig, L, and Köhler, C (Eds.), Plant Developmental Biology: Methods and Protocols (pp. 65-75). Totowa, NJ: Humana Press.
Bortesi, L, and Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 33(1), 41-52.
Bultmann, S, Morbitzer, R, Schmidt, CS, Thanisch, K, Spada, F, Elsaesser, J, Lahaye, T, and Leonhardt, H. (2012). Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Research, 40(12), 5368-5377.
Burdett, H, Bentham, AR, Williams, SJ, Dodds, PN, Anderson, PA, Banfield, MJ, and Kobe, B. (2019). The plant "resistosome": structural insights into immune signaling. Cell Host \& Microbe, 26(2), 193-201.
Butaye, KMJ, Cammue, BPA, Delauré, SL, and De Bolle, MFC. (2005). Approaches to minimize variation of transgene expression in plants. Molecular Breeding, 16(1), 79-91.
Canteros, B, Minsavage, G, Bonas, U, Pring, D, and Stall, R. (1991). A gene from Xanthomonas campestris pv . vesicatoria that determines avirulence in tomato is related to avrBs3. Mol Plant Microbe Interact, 4(6), 628-632.
Catucci, G, Gao, C, Rampolla, G, Gilardi, G, and Sadeghi, SJ. (2019). Uncoupled human flavincontaining monooxygenase 3 releases superoxide radical in addition to hydrogen peroxide. Free Radical Biology and Medicine, 145, 250-255.
Cerutti, A, Jauneau, A, Auriac, M-C, Lauber, E, Martinez, Y, Chiarenza, S, Leonhardt, N, Berthomé, R, and Noel, LD. (2017). Immunity at cauliflower hydathodes controls infection by Xanthomonas campestris pv. campestris. Plant Physiology.
Collinge, DB. (2016). Plant Pathogen Resistance Biotechnology. Wiley.
Concordet, J-P, and Haeussler, M. (2018). CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Research, 46(W1), W242W245.
Correll, DS. (1958). A new species and some nomenclatural changes in Solanum, section tuberarium. Madroño, 14(7), 232-236.
Cottage, A, Yang, A, Maunders, H, de Lacy, RC, and Ramsay, NA. (2001). Identification of DNA sequences flanking T-DNA insertions by PCR-walking. Plant Molecular Biology Reporter, 19(4), 321-327.
Cox, KL, Meng, F, Wilkins, KE, Li, F, Wang, P, Booher, NJ, Carpenter, SCD, Chen, L-Q, Zheng, H, Gao, X, Zheng, Y, Fei, Z, Yu, JZ, Isakeit, T, Wheeler, T, Frommer, WB, He, P, Bogdanove, AJ , and Shan, L. (2017). TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nature Communications, 8(1), 15588.

Cox, R. (1966). The role of bacterial spot in tomato production in south Florida. Plant Disease Reporter, 50, 699-700.
Cox, R, Conover, R, and Sowell, G. (1956). Symptomatology of Bacterial Spot of Pepper And Tomato in Southern Florida. Paper presented at the Phytopathology.
Cui, H, Qiu, J, Zhou, Y, Bhandari, DD, Zhao, C, Bautor, J, and Parker, JE. (2018). Antagonism of transcription factor MYC2 by EDS1/PAD4 complexes bolsters salicylic acid defense in Arabidopsis effector-triggered immunity. Molecular Plant, 11(8), 1053-1066.
de Lange, O, Schandry, N, Wunderlich, M, Berendzen, KW, and Lahaye, T. (2017). Exploiting the sequence diversity of TALE-like repeats to vary the strength of dTALE-promoter interactions. Synthetic Biology, 2(1).
Donnelly, MLL, Hughes, LE, Luke, G, Mendoza, H, ten Dam, E, Gani, D, and Ryan, MD. (2001). The 'cleavage' activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring '2A-like' sequences. Journal of General Virology, 82(5), 1027-1041.
Doudna, JA, and Charpentier, E. (2014). The new frontier of genome engineering with CRISPRCas9. Science, 346(6213), 1258096.
Doyle, EL, Booher, NJ, Standage, DS, Voytas, DF, Brendel, VP, Vandyk, JK, and Bogdanove, AJ. (2012). TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Research, 40(Web Server issue), W117-W122.
Edgar, RC. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797.
Falk, A, Feys, BJ, Frost, LN, Jones, JDG, Daniels, MJ, and Parker, JE. (1999). EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proceedings of the National Academy of Sciences, 96(6), 3292-3297.
Forestier, ECF, Czechowski, T, Cording, AC, Gilday, AD, King, AJ, Brown, GD, and Graham, IA. (2021). Developing a Nicotiana benthamiana transgenic platform for high-value diterpene production and candidate gene evaluation. Plant Biotechnology Journal.
Galán, JE, and Wolf-Watz, H. (2006). Protein delivery into eukaryotic cells by type III secretion machines. Nature, 444(7119), 567-573.
Grau, J, Wolf, A, Reschke, M, Bonas, U, Posch, S, and Boch, J. (2013). Computational predictions provide insights into the biology of TAL effector target sites. PLOS Computational Biology, 9(3), e1002962.
Gu, K, Yang, B, Tian, D, Wu, L, Wang, D, Sreekala, C, Yang, F, Chu, Z, Wang, G-L, White, FF, and Yin, Z. (2005). R gene expression induced by a type-III effector triggers disease resistance in rice. Nature, 435(7045), 1122-1125.
Guo, Y, Wiegert-Rininger, KE, Vallejo, VA, Barry, CS, and Warner, RM. (2015). Transcriptomeenabled marker discovery and mapping of plastochron-related genes in Petunia spp. BMC Genomics, 16(1), 726.
Gürlebeck, D, Jahn, S, Gürlebeck, N, Szczesny, R, Szurek, B, Hahn, S, Hause, G, and Bonas, U. (2009). Visualization of novel virulence activities of the Xanthomonas type III effectors AvrBs1, AvrBs3 and AvrBs4. Molecular Plant Pathology, 10(2), 175-188.
Hardon, JJ. (1967). Unilateral Incompatibility between Solanum pennellii and Lycopersicon esculentum. Genetics, 57(4), 795-808.
Hartmann, M, and Zeier, J. (2019). N-hydroxypipecolic acid and salicylic acid: a metabolic duo for systemic acquired resistance. Curr Opin Plant Biol, 50, 44-57.
Hartmann, M, Zeier, T, Bernsdorff, F, Reichel-Deland, V, Kim, D, Hohmann, M, Scholten, N, Schuck, S, Bräutigam, A, Hölzel, T, Ganter, C, and Zeier, J. (2018). Flavin monooxygenase-generated N -hydroxypipecolic acid is a critical element of plant systemic immunity. Cell, 173(2), 456-469.e416.

REFERENCES

Heidmann, I, de Lange, B, Lambalk, J, Angenent, GC, and Boutilier, K. (2011). Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant cell reports, 30(6), 1107-1115.
Herbers, K, Conrads-Strauch, J, and Bonas, U. (1992). Race-specificity of plant resistance to bacterial spot disease determined by repetitive motifs in a bacterial avirulence protein. Nature, 356(6365), 172-174.
Holmes, DR, Mobitzer, R, Wunderlich, M, Sun, H, Kasmi, FE, Schneeberger, K, and Lahaye, T. (2020). A shortcut in forward genetics: concurrent discovery of mutant phenotype and causal mutation in Arabidopsis M2 families via MAD-mapping. bioRxiv, 2020.2006.2029.177808.

Hu, G, DeHart, AKA, Li, Y, Ustach, C, Handley, V, Navarre, R, Hwang, C-F, Aegerter, BJ, Williamson, VM, and Baker, B. (2005). EDS1 in tomato is required for resistance mediated by TIR-class R genes and the receptor-like R gene Ve. The Plant Journal, 42(3), 376-391.
Hu, Y, Duan, S, Zhang, Y, Shantharaj, D, Jones, JB, and Wang, N. (2016). Temporal transcription profiling of sweet orange in response to PthA4-mediated Xanthomonas citri subsp. citri Infection. Phytopathology ${ }^{\circledR}$, 106(5), 442-451.
Hu, Y, Zhang, J, Jia, H, Sosso, D, Li, T, Frommer, WB, Yang, B, White, FF, Wang, N, and Jones, JB. (2014). Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proceedings of the National Academy of Sciences, 111(4), E521-E529.
Hubert, DA, Tornero, P, Belkhadir, Y, Krishna, P, Takahashi, A, Shirasu, K, and Dangl, JL. (2003). Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. The EMBO Journal, 22(21), 5679-5689.
Hummel, AW, Doyle, EL, and Bogdanove, AJ. (2012). Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak. New Phytologist, 195(4), 883-893.
Hunter, CT. (2021). CRISPR/Cas9 targeted mutagenesis for functional genetics in maize. Plants, 10(4), 723.
Ishige, F, Takaichi, M, Foster, R, Chua, N-H, and Oeda, K. (1999). A G-box motif (GCCACGTGCC) tetramer confers high-level constitutive expression in dicot and monocot plants. The Plant Journal, 18(4), 443-448.
Jacob, F, Kracher, B, Mine, A, Seyfferth, C, Blanvillain-Baufumé, S, Parker, JE, Tsuda, K, SchulzeLefert, P, and Maekawa, T. (2018). A dominant-interfering camta3 mutation compromises primary transcriptional outputs mediated by both cell surface and intracellular immune receptors in Arabidopsis thaliana. New Phytologist, 217(4), 16671680.

Jacobs, TB, LaFayette, PR, Schmitz, RJ, and Parrott, WA. (2015). Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology, 15(1), 16.
Ji, C, Ji, Z, Liu, B, Cheng, H, Liu, H, Liu, S, Yang, B, and Chen, G. (2020). Xa1 allelic R genes activate rice blight resistance suppressed by interfering TAL effectors. Plant Communications, 1(4), 100087.
Ji, Z, Ji, C, Liu, B, Zou, L, Chen, G, and Yang, B. (2016). Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Nature Communications, 7(1), 13435.

Jinek, M, Chylinski, K, Fonfara, I, Hauer, M, Doudna, JA, and Charpentier, E. (2012). A programmable dual-rna-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821.
Jones, JB, Bouzar, H, Stall, RE, Almira, EC, Roberts, PD, Bowen, BW, Sudberry, J, Strickler, PM, and Chun, J. (2000). Systematic analysis of xanthomonads (Xanthomonas spp.) associated with pepper and tomato lesions. International Journal of Systematic and Evolutionary Microbiology, 50(3), 1211-1219.
Jones, JB, Stall, RE, and Bouzar, H. (1998). Diversity among xanthomonads pathogenic on pepper and tomato. Annual review of phytopathology, 36(1), 41-58.
Jones, JDG, and Dangl, JL. (2006). The plant immune system. Nature, 444(7117), 323-329.
Jones, JDG, Vance, RE, and Dangl, JL. (2016). Intracellular innate immune surveillance devices in plants and animals. Science, 354(6316), aaf6395.
Jouffroy, O, Saha, S, Mueller, L, Quesneville, H, and Maumus, F. (2016). Comprehensive repeatome annotation reveals strong potential impact of repetitive elements on tomato ripening. BMC Genomics, 17(1), 624.
Kapila, J, De Rycke, R, Van Montagu, M, and Angenon, G. (1997). An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Science, 122(1), 101-108.
Kay, S, Boch, J, and Bonas, U. (2005). Characterization of AvrBs3-Like effectors from a Brassicaceae pathogen reveals virulence and avirulence activities and a protein with a novel repeat architecture. Molecular Plant-Microbe Interactions, 18(8), 838-848.
Kay, S, and Bonas, U. (2009). How Xanthomonas type III effectors manipulate the host plant. Current Opinion in Microbiology, 12(1), 37-43.
Kay, S, Hahn, S, Marois, E, Hause, G, and Bonas, U. (2007). A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science, 318(5850), 648-651.
Khadempar, S, Familghadakchi, S, Motlagh, RA, Farahani, N, Dashtiahangar, M, Rezaei, H, and Gheibi Hayat, SM. (2019). CRISPR-Cas9 in genome editing: Its function and medical applications. Journal of Cellular Physiology, 234(5), 5751-5761.
Kim, B-S, and Hartmann, R. (1985). Inheritance of a gene (Bs3) conferring hypersensitive resistance to Xanthomonas campestris pv. vesicatoria in peper (Capsicum annuum). Plant Disease, 69(3), 232-235.
Klein-Gordon, J, Xing, Y, Garrett, KA, Abrahamian, P, Paret, ML, Minsavage, GV, StrayerScherer, AL, Fulton, J, Timilsina, S, Jones, JB, Goss, EM, and Vallad, GE. (2020). Assessing changes and associations in the Xanthomonas perforans population across Florida commercial tomato fields via a state-wide survey. Phytopathology ${ }^{\text {® }}$.
Knepper, C, Savory, EA, and Day, B. (2011). Arabidopsis NDR1 is an integrin-like protein with a role in fluid loss and plasma membrane-cell wall adhesion. Plant Physiology, 156(1), 286-300.
Kothari, SL, Joshi, A, Kachhwaha, S, and Ochoa-Alejo, N. (2010). Chilli peppers - a review on tissue culture and transgenesis. Biotechnology Advances, 28(1), 35-48.
Krönauer, C. (2020). Functional and biochemical analysis of the Capsicum annuum resistance protein Bs 3 . Universität Tübingen.
Krönauer, C, Kilian, J, Strauß, T, Stahl, M, and Lahaye, T. (2019). Cell death triggered by the YUCCA-like Bs3 protein coincides with accumulation of salicylic acid and pipecolic acid but not of indole-3-acetic acid. Plant Physiology, 180(3), 1647-1659.
Kubo, M, Imai, A, Nishiyama, T, Ishikawa, M, Sato, Y, Kurata, T, Hiwatashi, Y, Reski, R, and Hasebe, M. (2013). System for stable β-estradiol-inducible gene expression in the moss Physcomitrella patens. PLOS ONE, 8(9), e77356.

REFERENCES

Lacerda, ALM, Fonseca, LN, Blawid, R, Boiteux, LS, Ribeiro, SG, and Brasileiro, ACM. (2015). Reference gene selection for qPCR analysis in tomato-bipartite begomovirus interaction and validation in additional tomato-virus pathosystems. PLOS ONE, 10(8), e0136820.
Lapin, D, Bhandari, DD, and Parker, JE. (2020). Origins and immunity networking functions of EDS1 family proteins. Annual review of phytopathology, 58(1), 253-276.
Lapin, D, Kovacova, V, Sun, X, Dongus, JA, Bhandari, D, von Born, P, Bautor, J, Guarneri, N, Rzemieniewski, J, Stuttmann, J, Beyer, A, and Parker, JE. (2019). A coevolved EDS1-SAG101-NRG1 module mediates cell death signaling by TIR-domain immune receptors. The Plant Cell, 31(10), 2430-2455.
Li, T, Yang, X, Yu, Y, Si, X, Zhai, X, Zhang, H, Dong, W, Gao, C, and Xu, C. (2018). Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology, 36(12), 11601163.

Li, Z, Zou, L, Ye, G, Xiong, L, Ji, Z, Zakria, M, Hong, N, Wang, G, and Chen, G. (2014). A potential disease susceptibility gene CsLOB of citrus is targeted by a major virulence effector PthA of Xanthomonas citri subsp. citri. Mol Plant, 7(5), 912-915.
Liu, E, and Page, JE. (2008). Optimized cDNA libraries for virus-induced gene silencing (VIGS) using tobacco rattle virus. Plant Methods, 4(1), 5.
Liu, H-J, Jian, L, Xu, J, Zhang, Q, Zhang, M, Jin, M, Peng, Y, Yan, J, Han, B, Liu, J, Gao, F, Liu, X, Huang, L, Wei, W, Ding, Y, Yang, X, Li, Z, Zhang, M, Sun, J, Bai, M, Song, W, Chen, H, Sun, Xa, Li, W, Lu, Y, Liu, Y, Zhao, J, Qian, Y, Jackson, D, Fernie, AR, and Yan, J. (2020). High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. The Plant Cell, 32(5), 1397-1413.
Liu, Y, Burch-Smith, T, Schiff, M, Feng, S, and Dinesh-Kumar, SP. (2004). Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and RAR1 to modulate an innate immune response in plants. Journal of Biological Chemistry, 279(3), 2101-2108.
Livingstone, KD, Lackney, VK, Blauth, JR, van Wijk, R, and Jahn, MK. (1999). Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics, 152(3), 1183-1202.
Lu, X, Kracher, B, Saur, IML, Bauer, S, Ellwood, SR, Wise, R, Yaeno, T, Maekawa, T, and SchulzeLefert, P. (2016). Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen. Proceedings of the National Academy of Sciences, 113(42), E6486-E6495.
Luneau, JS, Cerutti, A, Roux, B, Carrère, S, Jardinaud, M-F, Gaillac, A, Gris, C, Lauber, E, Berthomé, R, Arlat, M, Boulanger, A, and Noël, LD. (2021). Xanthomonas transcriptome inside cauliflower hydathodes reveals bacterial virulence strategies and physiological adaptation at early infection stages. bioRxiv, 2021.2001.2019.427230.
Mak, AN-S, Bradley, P, Cernadas, RA, Bogdanove, AJ, and Stoddard, BL. (2012). The crystal structure of TAL effector PthXo1 bound to its DNA target. Science, 335(6069), 716-719.
Marois, E, Van den Ackerveken, G, and Bonas, U. (2002). The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Molecular Plant-Microbe Interactions ${ }^{\circledR}$, 15(7), 637-646.
Mateo, A, Mühlenbock, P, Rustérucci, C, Chang, CC-C, Miszalski, Z, Karpinska, B, Parker, JE, Mullineaux, PM, and Karpinski, S. (2004). LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiology, 136(1), 2818-2830.

Miller, JC, Zhang, L, Xia, DF, Campo, JJ, Ankoudinova, IV, Guschin, DY, Babiarz, JE, Meng, X, Hinkley, SJ, Lam, SC, Paschon, DE, Vincent, AI, Dulay, GP, Barlow, KA, Shivak, DA, Leung, E, Kim, JD, Amora, R, Urnov, FD, Gregory, PD, and Rebar, EJ. (2015). Improved specificity of TALE-based genome editing using an expanded RVD repertoire. Nature Methods, 12(5), 465-471.
Mine, A, Seyfferth, C, Kracher, B, Berens, ML, Becker, D, and Tsuda, K. (2018). The defense phytohormone signaling network enables rapid, high-amplitude transcriptional reprogramming during effector-triggered immunity. The Plant Cell, 30(6), 1199-1219.
Mladenov, E, and Iliakis, G. (2011). Induction and repair of DNA double strand breaks: The increasing spectrum of non-homologous end joining pathways. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 711(1), 61-72.
Morbitzer, R, Elsaesser, J, Hausner, J, and Lahaye, T. (2011). Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Research, 39(13), 5790-5799.
Moscou, MJ, and Bogdanove, AJ. (2009). A simple cipher governs DNA recognition by TAL effectors. Science, 326(5959), 1501.
Movahedi, A, Wei, H, Zhou, X, Fountain, JC, Chen, Z-H, Mu, Z, Sun, W, Zhang, J, Li, D, Guo, B, Varshney, RK, Yang, L, and Zhuge, Q. (2021). Precise exogenous insertion and sequence replacements in poplar by simultaneous HDR overexpression and NHEJ suppression using CRISPR-Cas9. bioRxiv, 2020.2007.2004.188219.
Mücke, S, Reschke, M, Erkes, A, Schwietzer, C-A, Becker, S, Streubel, J, Morgan, RD, Wilson, GG, Grau, J, and Boch, J. (2019). Transcriptional reprogramming of rice cells by Xanthomonas oryzae TALEs. Frontiers in Plant Science, 10(162).
Müller, E, Lörz, H, and Lütticke, S. (1996). Variability of transgene expression in clonal cell lines of wheat. Plant Science, 114(1), 71-82.
Ochsenbein, C, Przybyla, D, Danon, A, Landgraf, F, Göbel, C, Imboden, A, Feussner, I, and Apel, K. (2006). The role of EDS1 (Enhanced disease susceptibility 1) during singlet oxygenmediated stress responses of Arabidopsis. The Plant Journal, 47(3), 445-456.
Parker, JE, Holub, EB, Frost, LN, Falk, A, Gunn, ND, and Daniels, MJ. (1996). Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. The Plant Cell, 8(11), 2033-2046.
Peng, A, Chen, S, Lei, T, Xu, L, He, Y, Wu, L, Yao, L, and Zou, X. (2017). Engineering cankerresistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnology Journal, 15(12), 1509-1519.
Pérez-Quintero, AL, Rodriguez-R, LM, Dereeper, A, López, C, Koebnik, R, Szurek, B, and Cunnac, S. (2013). An improved method for TAL effectors DNA-binding sites prediction reveals functional convergence in TAL repertoires of Xanthomonas oryzae strains. PLOS ONE, 8(7), e68464.
Peter, K. (2002). Struktur- und Funktionsanalyse des Tomaten-Resistenzgens Bs4 und von Bs4Sequenzhomologen.
Potnis, N, Timilsina, S, Strayer, A, Shantharaj, D, Barak, JD, Paret, ML, Vallad, GE, and Jones, JB. (2015). Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Molecular Plant Pathology, 16(9), 907-920.
Qin, J, Zhou, X, Sun, L, Wang, K, Yang, F, Liao, H, Rong, W, Yin, J, Chen, H, Chen, X, and Zhang, J. (2018). The Xanthomonas effector XopK harbours E3 ubiquitin-ligase activity that is required for virulence. New Phytologist, 220(1), 219-231.

REFERENCES

Read, AC, Hutin, M, Moscou, MJ, Rinaldi, FC, and Bogdanove, AJ. (2020). Cloning of the rice Xo1 resistance gene and interaction of the Xo1 protein with the defense-suppressing Xanthomonas effector Tal2h. bioRxiv, 2020.2005.2026.116731.
Read, AC, Moscou, MJ, Zimin, AV, Pertea, G, Meyer, RS, Purugganan, MD, Leach, JE, Triplett, LR, Salzberg, SL, and Bogdanove, AJ. (2020). Genome assembly and characterization of a complex zfBED-NLR gene-containing disease resistance locus in Carolina Gold Select rice with Nanopore sequencing. PLoS genetics, 16(1), e1008571.
Richter, A, Streubel, J, Blücher, C, Szurek, B, Reschke, M, Grau, J, and Boch, J. (2014). A TAL effector repeat architecture for frameshift binding. Nature Communications, 5(1), 3447.

Richter, A, Streubel, J, and Boch, J. (2016). TAL effector DNA-binding principles and specificity TALENs (pp. 9-25): Springer.
Rodríguez-Leal, D, Lemmon, ZH, Man, J, Bartlett, ME, and Lippman, ZB. (2017). Engineering quantitative trait variation for crop improvement by genome editing. Cell, 171(2), 470480.4478.

Römer, P, Hahn, S, Jordan, T, Strauß, T, Bonas, U, and Lahaye, T. (2007). Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science, 318(5850), 645-648.
Römer, P, Recht, S, Strauß, T, Elsaesser, J, Schornack, S, Boch, J, Wang, S, and Lahaye, T. (2010). Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytologist, 187(4), 1048-1057.
Römer, P, Strauss, T, Hahn, S, Scholze, H, Morbitzer, R, Grau, J, Bonas, U, and Lahaye, T. (2009). Recognition of AvrBs3-like proteins is mediated by specific binding to promoters of matching pepper Bs3 alleles. Plant Physiology, 150(4), 1697-1712.
Roux, B, Bolot, S, Guy, E, Denancé, N, Lautier, M, Jardinaud, M-F, Fischer-Le Saux, M, Portier, P, Jacques, M-A, Gagnevin, L, Pruvost, O, Lauber, E, Arlat, M, Carrère, S, Koebnik, R, and Noël, LD. (2015). Genomics and transcriptomics of Xanthomonas campestris species challenge the concept of core type III effectome. BMC Genomics, 16(1), 975.
Rustérucci, C, Aviv, DH, Holt, BF, Dangl, JL, and Parker, JE. (2001). The disease resistance signaling components EDS1 and PAD4 Are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. The Plant Cell, 13(10), 2211-2224.
Sahoo, KK, Tripathi, AK, Pareek, A, Sopory, SK, and Singla-Pareek, SL. (2011). An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods, 7(1), 49.
Salmond, GPC, and Reeves, PJ. (1993). Membrance traffic wardens and protein secretion in gram-negative bacteria. Trends in Biochemical Sciences, 18(1), 7-12.
Schornack, S, Ballvora, A, Gürlebeck, D, Peart, J, Ganal, M, Baker, B, Bonas, U, and Lahaye, T. (2004). The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. The Plant Journal, 37(1), 46-60.
Schornack, S, Minsavage, GV, Stall, RE, Jones, JB, and Lahaye, T. (2008). Characterization of AvrHah1, a novel AvrBs3-like effector from Xanthomonas gardneri with virulence and avirulence activity. New Phytologist, 179(2), 546-556.
Schornack, S, Peter, K, Bonas, U, and Lahaye, T. (2005). Expression levels of avrBs3-like genes affect recognition specificity in tomato Bs4- but not in pepper Bs3-mediated perception. Molecular Plant-Microbe Interactions ${ }^{\circledR}$, 18(11), 1215-1225.

Schubert, D, Lechtenberg, B, Forsbach, A, Gils, M, Bahadur, S, and Schmidt, R. (2004). Silencing in Arabidopsis T-DNA transformants: The predominant role of a gene-specific RNA sensing mechanism versus position effects. The Plant Cell, 16(10), 2561-2572.
Schulze, S, Kay, S, Büttner, D, Egler, M, Eschen-Lippold, L, Hause, G, Krüger, A, Lee, J, Müller, O, Scheel, D, Szczesny, R, Thieme, F, and Bonas, U. (2012). Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity. New Phytologist, 195(4), 894-911.
Schwartz, AR. (2016). Host Specificity and Virulence Mechanisms of Xanthomonas type III effector proteins in bacterial spot disease. UC Berkeley. ProQuest ID: Schwartz_berkeley_0028E_16612. Merritt ID: ark:/13030/m5vm975w. Retrieved from https://escholarship.org/uc/item/25n056x8.
Schwartz, AR, Morbitzer, R, Lahaye, T, and Staskawicz, BJ. (2017). TALE-induced bHLH transcription factors that activate a pectate lyase contribute to water soaking in bacterial spot of tomato. Proceedings of the National Academy of Sciences, 114(5), E897-E903.
Shapter, FM, and Waters, DLE. (2014). Genome Walking. In Henry, RJ, and Furtado, A (Eds.), Cereal Genomics: Methods and Protocols (pp. 133-146). Totowa, NJ: Humana Press.
Shearer, LA, Anderson, LK, de Jong, H, Smit, S, Goicoechea, JL, Roe, BA, Hua, A, Giovannoni, JJ, and Stack, SM. (2014). Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome. G3 Genes/Genomes/Genetics, 4(8), 1395-1405.
Shirasu, K. (2009). The HSP90-SGT1 chaperone complex for NLR immune sensors. Annual Review of Plant Biology, 60(1), 139-164.
Singh, RK, Gase, K, Baldwin, IT, and Pandey, SP. (2015). Molecular evolution and diversification of the Argonaute family of proteins in plants. BMC Plant Biology, 15(1), 23.
Stall, RE. (1995). Xanthomonas campestris pv. vesicatoria. Prokaryotes, 1, 167-184.
Stall, RE, Jones, JB, and Minsavage, GV. (2009). Durability of resistance in tomato and pepper to xanthomonads causing bacterial spot. Annual review of phytopathology, 47, 265284.

Stemmer, M, Thumberger, T, del Sol Keyer, M, Wittbrodt, J, and Mateo, JL. (2015). CCTop: An intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLOS ONE, 10(4), e0124633.
Straus, MR, Rietz, S, Ver Loren van Themaat, E, Bartsch, M, and Parker, JE. (2010). Salicylic acid antagonism of EDS1-driven cell death is important for immune and oxidative stress responses in Arabidopsis. Plant J, 62(4), 628-640.
Strauß, T, van Poecke, RMP, Strauß, A, Römer, P, Minsavage, GV, Singh, S, Wolf, C, Strauß, A, Kim, S, Lee, H-A, Yeom, S-I, Parniske, M, Stall, RE, Jones, JB, Choi, D, Prins, M, and Lahaye, T. (2012). RNA-seq pinpoints a Xanthomonas TAL-effector activated resistance gene in a large-crop genome. Proceedings of the National Academy of Sciences, 109(47), 19480-19485.
Streubel, J, Pesce, C, Hutin, M, Koebnik, R, Boch, J, and Szurek, B. (2013). Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytologist, 200(3), 808-819.
Szczesny, R, Büttner, D, Escolar, L, Schulze, S, Seiferth, A, and Bonas, U. (2010). Suppression of the AvrBs1-specific hypersensitive response by the YopJ effector homolog AvrBsT from Xanthomonas depends on a SNF1-related kinase. New Phytologist, 187(4), 1058-1074.
Tai, TH, Dahlbeck, D, Clark, ET, Gajiwala, P, Pasion, R, Whalen, MC, Stall, RE, and Staskawicz, BJ. (1999). Expression of the Bs2 pepper gene confers resistance to bacterial spot

REFERENCES

disease in tomato. Proceedings of the National Academy of Sciences, 96(24), 1415314158.

Takahashi, A, Casais, C, Ichimura, K, and Shirasu, K. (2003). HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proceedings of the National Academy of Sciences, 100(20), 11777-11782.
Tan, L, Rong, W, Luo, H, Chen, Y, and He, C. (2014). The Xanthomonas campestris effector protein XopDXcc8004 triggers plant disease tolerance by targeting DELLA proteins. New Phytologist, 204(3), 595-608.
Tan, MYA, Hutten, RCB, Visser, RGF, and van Eck, HJ. (2010). The effect of pyramiding Phytophthora infestans resistance genes RPi-mcd1 and RPi-ber in potato. Theoretical and Applied Genetics, 121(1), 117-125.
Tanksley, SD, Ganal, MW, Prince, JP, de Vicente, MC, Bonierbale, MW, Broun, P, Fulton, TM, Giovannoni, JJ, Grandillo, S, and Martin, GB. (1992). High density molecular linkage maps of the tomato and potato genomes. Genetics, 132(4), 1141-1160.
Tian, D, Wang, J, Zeng, X, Gu, K, Qiu, C, Yang, X, Zhou, Z, Goh, M, Luo, Y, Murata-Hori, M, White, FF, and Yin, Z. (2014). The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum. The Plant Cell, 26(1), 497-515.
Timilsina, S, Abrahamian, P, Potnis, N, Minsavage, GV, White, FF, Staskawicz, BJ, Jones, JB, Vallad, GE, and Goss, EM. (2016). Analysis of sequenced genomes of Xanthomonas perforans identifies candidate targets for resistance breeding in tomato. Phytopathology, 106(10), 1097-1104.
Timilsina, S, Jibrin, MO, Potnis, N, Minsavage, GV, Kebede, M, Schwartz, A, Bart, R, Staskawicz, B, Boyer, C, Vallad, GE, Pruvost, O, Jones, JB, and Goss, EM. (2015). Multilocus sequence analysis of xanthomonads causing bacterial spot of tomato and pepper plants reveals strains generated by recombination among species and recent global spread of Xanthomonas gardneri. Applied and Environmental Microbiology, 81(4), 1520-1529.
Timilsina, S, Potnis, N, Newberry, EA, Liyanapathiranage, P, Iruegas-Bocardo, F, White, FF, Goss, EM, and Jones, JB. (2020). Xanthomonas diversity, virulence and plant-pathogen interactions. Nature Reviews Microbiology, 18(8), 415-427.
Toruño, TY, Stergiopoulos, I, and Coaker, G. (2016). Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annual review of phytopathology, 54(1), 419-441.
Tran, TT, Doucouré, H, Hutin, M, Jaimes Niño, LM, Szurek, B, Cunnac, S, and Koebnik, R. (2018). Efficient enrichment cloning of TAL effector genes from Xanthomonas. MethodsX, 5, 1027-1032.
Üstün, S, Bartetzko, V, and Börnke, F. (2013). The Xanthomonas campestris type III effector XopJ targets the host cell proteasome to suppress salicylic-acid mediated plant defence. PLOS Pathogens, 9(6), e1003427.
Üstün, S, and Börnke, F. (2014). Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways. Frontiers in Plant Science, 5(736).
van Leeuwen, W, Ruttink, T, Borst-Vrenssen, AWM, van der Plas, LHW, and van der Krol, AR. (2001). Characterization of position-induced spatial and temporal regulation of transgene promoter activity in plants. Journal of Experimental Botany, 52(358), 949959.
van Wersch, S, Tian, L, Hoy, R, and Li, X. (2020). Plant NLRs: the whistleblowers of plant immunity. Plant Communications, 1(1), 100016.

Wang, C, Cai, X, and Zheng, Z. (2005). High humidity represses Cf-4/Avr4- and Cf-9/Avr9dependent hypersensitive cell death and defense gene expression. Planta, 222(6), 947956.

Wang, C, Zhang, X, Fan, Y, Gao, Y, Zhu, Q, Zheng, C, Qin, T, Li, Y, Che, J, Zhang, M, Yang, B, Liu, Y, and Zhao, K. (2015). XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Molecular Plant, 8(2), 290-302.
Wang, J, Zeng, X, Tian, D, Yang, X, Wang, L, and Yin, Z. (2018). The pepper Bs4C proteins are localized to the endoplasmic reticulum (ER) membrane and confer disease resistance to bacterial blight in transgenic rice. Molecular Plant Pathology, 19(8), 2025-2035.
Wang, M, Lu, Y, Botella, JR, Mao, Y, Hua, K, and Zhu, J-k. (2017). Gene targeting by homologydirected repair in rice using a geminivirus-based CRISPR/Cas9 system. Molecular Plant, 10(7), 1007-1010.
Wildermuth, MC, Dewdney, J, Wu, G, and Ausubel, FM. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414(6863), 562-565.
Wilson, C, Bellen, HJ, and Gehring, WJ. (1990). Position effects on eukaryotic gene expression. Annual Review of Cell Biology, 6(1), 679-714.
Wittmann, J, Brancato, C, Berendzen, KW, and Dreiseikelmann, B. (2016). Development of a tomato plant resistant to Clavibacter michiganensis using the endolysin gene of bacteriophage CMP1 as a transgene. Plant Pathology, 65(3), 496-502.
Wright, CA, and Beattie, GA. (2004). Pseudomonas syringae pv. tomato cells encounter inhibitory levels of water stress during the hypersensitive response of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 3269-3274.
Wu, D, von Roepenack-Lahaye, E, Buntru, M, de Lange, O, Schandry, N, Pérez-Quintero, AL, Weinberg, Z, Lowe-Power, TM, Szurek, B, Michael, AJ, Allen, C, Schillberg, S, and Lahaye, T. (2019). A plant pathogen type III effector protein subverts translational regulation to boost host polyamine levels. Cell Host \& Microbe, 26(5), 638-649.e635.
Wu, R, Lucke, M, Jang, Y-t, Zhu, W, Symeonidi, E, Wang, C, Fitz, J, Xi, W, Schwab, R, and Weigel, D. (2018). An efficient CRISPR vector toolbox for engineering large deletions in Arabidopsis thaliana. Plant Methods, 14(1), 65.
Wu, TD, and Watanabe, CK. (2005). GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics, 21(9), 1859-1875.
Yang, B, Sugio, A, and White, FF. (2006). Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proceedings of the National Academy of Sciences, 103(27), 10503-10508.
Yang, B, and White, FF. (2004). Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice. Molecular PlantMicrobe Interactions ${ }^{\circledR}$, 17(11), 1192-1200.
Yu, Y, Streubel, J, Balzergue, S, Champion, A, Boch, J, Koebnik, R, Feng, J, Verdier, V, and Szurek, B. (2011). Colonization of rice leaf blades by an african strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice Nodulin-3 (Os11N3) gene. Molecular Plant-Microbe Interactions ${ }^{\circledR}$, 24(9), 1102-1113.
Yuen, G, Khan, FJ, Gao, S, Stommel, JM, Batchelor, E, Wu, X, and Luo, J. (2017). CRISPR/Cas9mediated gene knockout is insensitive to target copy number but is dependent on guide RNA potency and Cas9/sgRNA threshold expression level. Nucleic Acids Research, 45(20), 12039-12053.

REFERENCES

Zhang, D, Zhang, H, Li, T, Chen, K, Qiu, J-L, and Gao, C. (2017). Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases. Genome Biology, 18(1), 191.
Zhang, D, Zhang, Z, Unver, T, and Zhang, B. (2021). CRISPR/Cas: A powerful tool for gene function study and crop improvement. Journal of Advanced Research, 29, 207-221.
Zhang, H, Zhang, J, Wei, P, Zhang, B, Gou, F, Feng, Z, Mao, Y, Yang, L, Zhang, H, Xu, N, and Zhu, J-K. (2014). The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 12(6), 797-807.
Zhang, J-P, Li, X-L, Li, G-H, Chen, W, Arakaki, C, Botimer, GD, Baylink, D, Zhang, L, Wen, W, Fu, Y-W, Xu, J, Chun, N, Yuan, W, Cheng, T, and Zhang, X-B. (2017). Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biology, 18(1), 35.
Zhang, X, Dodds, PN, and Bernoux, M. (2017). What do we know about NOD-like receptors in plant Immunity? Annual review of phytopathology, 55(1), 205-229.
Zhang, Z, Hua, L, Gupta, A, Tricoli, D, Edwards, KJ, Yang, B, and Li, W. (2019). Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnology Journal, 17(8), 1623-1635.
Zhao, B, Lin, X, Poland, J, Trick, H, Leach, J, and Hulbert, S. (2005). A maize resistance gene functions against bacterial streak disease in rice. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15383-15388.
Zhou, J, Peng, Z, Long, J, Sosso, D, Liu, B, Eom, J-S, Huang, S, Liu, S, Vera Cruz, C, Frommer, WB, White, FF, and Yang, B. (2015). Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. The Plant Journal, 82(4), 632-643.
Zsögön, A, Čermák, T, Naves, ER, Notini, MM, Edel, KH, Weinl, S, Freschi, L, Voytas, DF, Kudla, J, and Peres, LEP. (2018). De novo domestication of wild tomato using genome editing. Nature Biotechnology, 36(12), 1211-1216.
Zuo, J, Niu, Q-W, and Chua, N-H. (2000). An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. The Plant Journal, 24(2), 265-273.

SUPPLEMENTARY FIGURES

Figure S1. Gene models and CRISPR/Cas9-generated mutations within 13 CC-EDS1 alleles identified in Casg ${ }^{\text {EDS1 }}$-free plants from $\mathbf{F 2}$ generation. Green blocks represent sequence regions encoding functional domains. Black triangles and vertical dashed lines indicate the sgRNA6 and sgRNA7 target sites. Blue triangles represent primers used for genotyping. WT EDS1 genomic and protein sequences impacted by mutations are highlighted with bold black font. CC-EDS1 mutations within genomic and protein sequences are marked with bold red font. Black and red stars represent the locations of native and premature stop codons, respectively.

Figure S1. Continued

Figure S1. Continued

SUPPLEMENTARY FIGURES

Figure S2. Alignment of sequence fragments upstream of start codons of bHLHO22-like genes from genomes of solanaceous species, namely Solanum lycopersicum (SI), Solanum tuberosum (St), Solanum melongena (Sm), Capsicum annuum (Ca), Nicotiana benthamiana (Nb), Nicotiana tabacum (Nt), Nicotiana attenuata (Nt), Petunia axillaris (Pa), Petunia inflata (Pi). 303 bp-long sequences (300 bp upstream and 3 bp representing the start codon) were aligned using the Multiple Sequence Comparison by Log-Expectation (MUSCLE) algorithm (Edgar, 2004). The most conserved nucleotides were annotated with the BoxShade algorithm. Shaded (black and grey) nucleotides represent the most conserved sequence fragments. Black horizontal line represents EBE ${ }^{\text {bHLHO22 }}$ and EBE UPA20, i.e. target sites of AvrBs3 and AvrHah1, respectively. White triangle (∇) represents annotated CDS start site of bHLHO22-like genes. White circles (O) represent identified TSSs of UPA2O from non-infected C. annuum plants (Kay et al., 2007). Black circles (\bullet) represent identified TSSs of UPA2O from C. annuum upon transcriptional activation with AvrBs3 (Kay et al., 2007). Black triangles represent the start (\downarrow) and the end (\langle) of the duplicated sequence region upstream of start codons of the bHLHO22-like gene from the Pi genome (Supplementary Information 5.2).

Figure S2. Continued

					∇	
Sl	-28	CAAAT	AA $A C$	AAA AAAAC	ATG	+3
St	-24	CAAAT	CAAAAC	AACAAAAA	ATG	+3
Sm	-20	CAAAT	AT-AAACT	AAAAAA	T	+3
Ca	-21	CAAAT	AT-AAACT	-TGAAAAA	ATG	+3
Nb	-43	CAAAT	AT-ATACT	AATAAAGAAGAATTTTTTTTT-AAAAAAAA	AT	+3
$N t$	-43	CAAAT	AT-TTACT	AATAAAGAAGAATTTTTTTTT-TAAAAAAA	ATG	+3
Na	-44	CAAAT	AT-ATACT	AATAAAGAAGAATTTTTTTTTAAAAAAAAA	ATC	+
Pa	-38	CAAAT	AT-AAACT	AACAAAGAAGAAAACA------AAAACAAA	ATG	+
Pi	-38	CAAAT	AT-AAACT	AACAAAGAAGAAAACA------AAAACAAA	ATG	+

SUPPLEMENTARY INFORMATION

5.1 Genomic locations of the integrated EIP:Bs3-3xFLAG-T2A-GFP transgene copies within the chromosome 7 of the J8 (Bs4 Bs3) line.

Identification of genomic integration sites of the Bs3 transgene copies in S. Iycopersicum TO J8 line (Bs4 Bs3) was done using Genome Walking method (Materials and methods, chapter 4.2.7; Cottage et al., 2001; Shapter and Waters, 2014). The shaded nucleotides (grey) represent the identified Bs3 T-DNA parts (right or left border). The non-shaded nucleotides (white) represent identified genomic fragments of chromosome 7 before or after which the Bs3 T-DNA copies were integrated.
>Solanum lycopersicum T0 J8 line (Bs4 Bs3) Bs3 t-DNA copy 1 Right Border (grey) is located at chromosome 7 (non-shaded; positions 1587709-1588013)
gDNA digestion enzyme: HaeIII
First PCR primers: AMRB03 \& AP1 (Table 11)
Second PCR primers: AMRB02 \& AP2 (Table 11)
Sequencing primer: AMRBO2 (Table 11)

Abstract

CNNNNNNNNNNNNNNCCGTGGCGGCACGTGGCAAGCTTGGATCCACGATATCCTGCAGGCATGCAAGCTTAGCTT GAGCTTGGATCAGATTGTCGTTTCCCGCCTTCAGTTTAAACTATCAGTGTTTGATTTAGTGNGAAAAATTAAAAA AATATAAAAATATTTTGGTTTGTGAATTTTGATGGGAAAATTGTTATATATATAATTATTATTATTATTATTTTG AATTTTAAAGATATANTGAGGNNAAANNANGTGANTCTGGAGGCTTTTTGGGATGATGANTTGAATGNTTATGCA ANGGGCNNGTGATTNNTCCATTTTAATTAAGAAATGCTGAATCATACACTAGCTGTTACACATTAATATTCCTNA AAAAATTGGTCAAAAAATNNCANTTTNCTCATTCTTTTTATTTTTGNANTCCCCCAAGANCAAN

>Solanum lycopersicum T0 J8 line (Bs4 Bs3) Bs3 t-DNA copy 1 Right Border (grey) is located at chromosome 7 (non-shaded; positions 1587709-1587939) Confirmatory PCR primers: 333 \& AMRB03 (Table 11) Sequencing primer: AMRB03 (Table 11)

NnnntTNnNnnnNANnNNnNnNnNnNnNNGGATCCTCTANAGGCACGTGGCGGCACGTGGCGGCACGTGGCGGCACG TGGCAAGCNAGGATCCACGATATCCTGCAGGCATGCAAGCTTAGCTTGAGCTTGGATCAGATTGTCGTTTCCCGC CTTCAGTTTAAACTATCAGTGTTTGATTTAGTGTGAAAAATTAAAAAAATATAAAAATATTTTGGTTTGTGAATT TTGATGGGAAAATTGTTATATATATAATTATTATTATTATTATTTTGAATTTTAAAGATATAATGAGGAGAAAAA ACGTGATTCTTGATACTTTTTGGAATGATGAATTGAATAATTATCCAAGTGGCTAGATATTAATCCATTTTAATT AAGAAATGCTGAATCATACACTAGCTGTTACANNN

>Solanum lycopersicum T0 J8 line (Bs4 Bs3) Bs3 t-DNA copy 2 Left Border (grey) is located at chromosome 7 (non-shaded; positions 2668199-2668868) gDNA digestion enzyme: HaeIII
First PCR primers: AMLBO4 \& AP1 (Table 11)
Second PCR primers: AMLB01 \& AP2 (Table 11)
Sequencing primer: AMLBO1 (Table 11)

NNAATTTGTTTTTAGTTGTCTAAAAATATATATACAACCAATACGATAAAGTTAATTCTAATTATTAATATTTGC ATGTTAGATAAATTTCGGAGTGAAGCTAGAATATATTAAATATTAGTATTGATTGGTTTCTAATCRAAGCTGAGG GTTGAGGACCTAAAGCCCCRAACTTTAATAAATGATAAGGTAGGAACAGACCTAAGCAAAGCGTGGCAGTGGGAT GGGGGTGGAGCCTTTATAAAAATCATGAATCCGCCAATAGAAAATGAATCTGACAAAATATGTAGTACTGAGTTA GGATTGATCTCAGATTTCAAATCRAAGTTAGAATTGGAGACCTAAAGCCCCGAACCTCAATAAATGATAAGGGAG GAATGGACCGAAGCAAAGGGTGAGAGTGGGATGGGGGTTGAACCAAGTGAATTGATTTTATTTTTGGTGATAATG TAATTACTTATTTTTTGCTCGTCAAGTTATTGTTTAAATAAAATTCTACATCTTATCTTAAAAAGTAAGTATTAT AATTGTCATCTTAAAAYCCTGAATTCGCTTTTGTCAATAGTCAGTAATTTGAAAAGTCTAAAATTTTGCTATGGG TCATNNNNNAATGTAATTAGTATACCTGTTATTTAAAAATTCTGAANTCGTCTCTSNCAGTTANCATGATMAANN TTTTGCNATGAATCATNNAACAACNNNNCAACTTTGCNNTNNNNGNTGACNNGNNNNTCNTCATGMANNNGGACC CTNAANNNCCTTAACGCTGTNNANTTGNNNNNNNTTCNNTGAAANGACAAANGNNTNNNNNNNNNNNNCTTNNNT GGNNNNNCNNNAAANNNNNNNNTNNNNNTNNNNNNNNNNNNNNNNNNNNNTTNNNNNNNNNCNNANNANNNANNN NNNNNNTNNNNNNNN

SUPPLEMENTARY INFORMATION

>Solanum lycopersicum TO J8 line (Bs4 Bs3) Bs3 t-DNA copy 2 Left Border (grey) is located at chromosome 7 (non-shaded; positions 2668537-2668868) Confirmatory PCR primers: $215 \&$ AMLB04 (Table 11) Sequencing primer: 215 (Table 11)

NNNWNGGGNTTAGGTCTCANTTCTAACTTCGATTTGAAATCTGAGATCAATCCTAACTCAGTACTACATATTTTG TCAGATTCATTTTCTATTGGCGGATTCATGATTTTTATAAAGGCTCCACCCCCATCCCACTGCCACGCTTTGCTT AGGTCTGTTCCTACCTTATCATTTATTAAAGTTCGGGGCTTTAGGTCCTCAACCCTCAGCTTCGATTAGAAACCA ATCAATACTAATATTTAATATATTCTAGCTTCACTCCGAAATTTATCTAACATGCAAATATTAATAATTAGAATT AACTTTATCGTATTGGTTGTATATATATTTTTTAGACAACTTAAAAACAAATTGACGCTTAGACAACTTAATAAC ACATTGCGGACGTTTTTAATGTACTGAATTAACGCCGAG

5.2 Genomic sequences of bHLHO22-like genes and their upstream genomic sequences

 identified within the genomes of solanaceous species.Genomic sequences of bHLHO22-like genes (and their corresponding 3000 bp upstream fragments) from genomes of Solanum, Capsicum, Nicotiana, Petunia, Coffea, and Vitis species. Sequences were aligned using the Multiple Sequence Comparison by Log-Expectation (MUSCLE) algorithm (Edgar, 2004). The most conserved nucleotides were annotated with the BoxShade algorithm (Materials and Methods, chapter 4.2.16). Black shaded nucleotides represent EBE ${ }^{\text {bHLHO22 }}$ and EBE ${ }^{\text {UPA20, }}$, i.e. target sites of AvrBs3 and AvrHah1, respectively. Grey and black shaded nucleotides represent the most conserved sequence fragments within the genomes of the examined species. Bold script represents the duplicated sequence region upstream of the start codon of the bHLHO22-like gene from the Pi genome. The most homologous sequence to EBE ${ }^{\text {bHLHO22 }}$ in the genome of Coffea arabica contains four bp insertion (TGAC) between positions 14 and 15 . The most homologous sequence to EBE ${ }^{\text {bHLHO22 }}$ in the genome of Vitis vinifera contains two bp with switched positions (" T " at the position 15 and "C" at the position 16).

>Solanum lycopersicum v3.0 ch3 bHLH022 (Solyc03g097820)

AAATCCTTGCAAGGACAAAACATTCATCTGGCATATAGAGACAGAAAAAAAAGGGAGGTATTGACCAAACTATTA ACGGAGCAAAGATATTTTTGGACCAAAATATTGATAGCAAGAATATATTTATTCGTTTCACATAGTTGAAGTTCT TTTTTAATTATTCTCCATAGTTTCTATGATTAAAAAGTTGTTTCCTTATATAGTACTATTTTAACAATTTTTACT CACAAACTAGGGTATAGAATTATAAGTTACATTTTATGTACAAAGACATGCGGATCGAAATGACCAAAACATGTG GTTTATATCTAATTACACTTGCTTAATCGATATGTAAAAGAGATAACAGATATAGAATGAGCCTTAGGTCTAGTG TTAATAGCTGGCAGCATCACCAGGCAAAGCTTGATTTTGTAAATATAAATTAGGGAGTAACATTGTTAAATCTCC TTTAACTATTTTTTTATATTTTGAAAAATCATGCTTTCGCCACCATTTCAATCACGTTTTGAGGATAATTATAGT ATTTGATGTTGTCCCTCCTAATTATTCACTTTCAACCTATTTTTGTTGCCACATATCACTTCTTGATTCGTCCAT ATGTCATGCTCGATTTTAATCATAAAGATTATTAATTTAATTTTTTTTTAAGGATAGAATCATTCATACCTGTAT TATTAGAGTACTAATTATGGTATAATAATGCAAAATTCCACTTTTGCTTTAATCAAGAATATAGTAAGCTATTTT AGAATGGGCCATGACAAAACTAATGCTAGAAATATTAGACTCAACTATAGGGGTTTGTGATGAGTACAATAATAA TTAAAAGATGAGAAACACAAGTAACAATTAATGGCAGCAATGAATAGATGTTTTTATTTACGTTTCAACTCTTGT GAATTGTCATATTTTTAGATACATAAAAACAACTGACTTGAAAGTTGAATCATCATATCTCAGTGTTTGCATCTC TGATTCACTGATGAGAAAGAGTCATTCAACGGAAGACCAAAAAAAGCAACTGACATTTTCAATATAATTGGGGTG TGTCATGCATGTATTACGAAATTTTAACACAAACAAGTAACAACAACAATAATACACTCATCTTCATCACCAACA AGCAAGGTCAACTTGACAAATTAATACTATTTCAATATCGTTATATCTACGAATTAAATTTAGTGTAACACTTTT TTTTTATATTCATTATGTCATCTTTTTAAATTCTTGAGTTTGATTTTATTATTTTAACTATATACTATACATTTT GATTGAAAATTTATATTCTTTGTTCTTATTTCATAAGGTTTGCATATATTTTGTCTTCCATAAATATCACTCCTA GAATTATACTGAGTATATGATGGTCGTCAATTTATATATGTAATAAGAAGGAAAAAAAGTAAGACCTCTTTATGA AGCTGGCTTTAGGTCCCAATCTTGTTGAATTTTTAACACTTGAGAAGCACAGGATGGATGCAACTTATACCTATT GTGTCGGGTAGGAATATATATTATTTTTATTAGGCTTTCGGATTTAAAAGAAAAGTTTTCGACACACAAAAGAAG ACATGATATAAAGCAAATAAAACAACAAATAGTAATACCTAATGAAAATAGAAGAATGTGTCACTACTAAGGGGT CTTCGACTTAAAGACAAGTTATGTTGAGATTAATTATGATAGAATGAGTTATATTGAGATAAATTATGATCAAAT TAGTTATGTTAATATTATTTTTTATTAATTAATTGGTTTATAAAACATGTATGACATACATAATAAGTTGTTGTT TACAAAAATATCCTCTAAGAATAAGTTGTTTGTTTATAAAAGAGGATTTAAGGGGGATATTAACAAATTTGTTAT TTTACATTTTTATATTGGAATAAGTTATTCGAGGATTAATATTTCACCCAAAAATAGAGATTATATATCCCAGCC ATAATTATTAATCACGGAATAAGTTGTCTCACGATTAGTATTTCACCCATAAGTAAGGATAATAAATCCTAGTCA TAATTATTAATCTTTAAATACATTATCTTACACTTTGTAACCAGACAAAAGAATTGAGTAAAGCTTTTATACATA TCTCAATATTATTTTTCTTTATTCATCACACCAAACAACCCCTCCTACAAAATATGCAACAACACTAGATTATCT ACTACAATCTTTATTCTAATCTTAAACGTTCATAGCTTTCTTTTTAGGATCATGTTACCAGTAAGCTGAAATTAT ATCATATTTTATCTAATTACCTTCATTCATTTTTTTTACACCATTTTCATCTCTCGAACTGTTGCTATAGTCCCG TTTATAAATCTCTGCTACTATTATTCTAATATCATTATCATTTTTAGTTTTCTATTTATATACTCGATACTCATA TTAAAATCTAATCAAATTTTGATCATATAGAAATATATCATATTGGCGTAAAAATCAACGAAATTGATCTAAAAA ATACCGATATAACCCCAGGATAATTCTTGGAGTTTTCTCCATGCCCGATGGAGAAGTAAAAATATTTAATAAAAT TTAATTTATTTTAATAATAAACAAAACTAATAGGATTGATTATGTATCAGAACTAAAACACTCAAATTCAAAAAT СTCTTCTCTATAGTGGCTTATTCATACTCATTATCTACTTAATTATTTAATATCTTAAACATAAATTTCATTATT TGTTTTTATAAACAGAGAATTGTCTATAGATATAAGCTACCAGCAAACTTAAATGAGCCCACACTCACCCCCAAG CTTTGATAAGACTAGTCAAATGCATAGGAATAAGCTAGAAAATAAAAAATTAAAAAAATCCAATTTTTAGCTAAA ATAAAATAAAATCATGTCCTATCTCTCTCTTCATCTTTATATAAACCTGACCCTTTGAGATTTTCTCAGACCCAT

SUPPLEMENTARY INFORMATION

Abstract

IATTATCTCTTACTTCCTCTGTTTTTTTTTCATTGAGAATTCCAAAGCAAATCACAAAACTAAAAAAAAAAAAAG ATGGCTGCTTTTTCATCACACCAATTACAACACAATAACCCATTTCTTCTTGATTCAGTATTTTTGCCAACTTCT CCTATTAAAATGTCTGGCTTTTTTGAGGAACCAAACAATTCTTGTATAGTACAACAGTTTTACCAACAAGAATTC CCTTCCAATTTAATTTCTCATGAAAATAGCTTTTGCCTTGACCCTAAAAGTAGCAGCAGTATAAGCTTAGATATG GATGCTTCCTCTGTTACTGATAAAATTGAAAGTGGAATTAATAATAATAAGGCTAATGTTAGTCCTTTGGATAAG AAAAGAAAATCTAGTGAAGGGTCTTCTTCTATGACTTCTGCTCATTCTAAGGTAATTTGGAATTTTCCATTTCTG TTCTGTAAATTATTCATTTTCTTGGAATTGGGATTAATGATTACTCTGTTTTTTTGTTTTTTGTTTTTATTATTA GAATGAGAAACAGGGTGATAATGGGAAAAAGAAGAAAATTATCAGCAAGTTAGTAGCCAAAGATGAAAAGAAAGC TAATGAAGAAGCACCAACAGGGTACATTCATGTTAGAGCAAGAAGGGGCCAGGCAACTGATAGCCATAGTCTTGC TGAAAGGGTATAATTCTACTTTTTGCCCCTTTTAACTATTGGTCCCTCGGTTCGATTTGATACGGAGTTTTAAGA AAAAAATATTATTTGTATGATTATATATTATTTCATTAATAATAAAAAAATAAAGTTAAATTATTATTTAATATA GTTATATGTCATTTCAAAAACACTAACTAAAAAGAAAAATAAGTTATAAATAGAAATGGAACGGATACTAAAATT TATAATGTGGTGTGAAAATTGAAACAACTAAATTTAAATTCATGTTGAAAAATAACACATACGAACTAAATACTT CTTACTAAAAATGAATCGACAATTAATTTAATATTTACCACTCCATCATAATCGTCGGTGTCCGGTAAACCTATT ATTGTTGTGGAACAGTTTTTTCACTGTTTAGCTTGTGATATGATTTCAGGTGAGGAGAGAGAAAATAAGTGAAAG GATGAAGATATTGCAATCTCTTGTTCCTGGTTGTGACAAGGTAAATGACAAAGTTAATTCAGTAAAAAAATTTTG TCTTTTATTTGTCTTTCCATGTAGTACAATTGAAAGGCACTTTTCAAGAAATTAGTATTTAAAAATCTTTTAAAT TATAATTCTTCTGACAATTTTCATGTGACTTGAATGAGATCAGGTAACTGGAAAGGCCCTTATGTTGGATGAGAT AATTAATTATGTCCAATCTTTGCAAAACCAAGTTGAGGTATTAAACAAGAGAACAATCAATTAATAACTTCCTTT ATATTTTAACTTGCATAATTATAAAATATTAATACTAATTATATTATGTGTTTCTCATGTTTCAGTTTCTCTCAA TGAAACTTACTTCTTTGAATCCAATGTACTATGACTTTGGAATGGACTTAGATGCACTCATGGTCAGACCTGATG ACCAGGTAAGCTAGCGTTTAATCATATATTCAGAACTTGAATTTTTTTAAATTTCGACTTTATCATTAATCAAAT TCATTTTTTATGATTTTCCTTTTCAGAGTTTAAGTGGCTTGGAGACACAAATGGCAAATATTCAGCAAGGTAGCA CAACTACTACATCACAGGCAGCTGAAGTTATTGCTAACACTAATAGTGGCTACCAATTTTTGGATAATTCAACAT CACTCATGTTTCAACAATCCCATTTCCCTAATTCTATTCCTCAGGTATTACATATTCATTGAATCTACTTGTTGT CATTATCTATTCATAATCACACATAGACAAACACCTAATAATGATGGAATTGATATCAAACATTTTGATGACACA TTATTACTAAGGTTAATTAGTTATTATTTTTATCAGGTTATCGAAGATTTACATGTAATTATCTTATAAACGTCC GGTACATAGAAAAAATACCGTAGGATATGATTGATAAATAGTATAAAGGTAGGTAATATACATGATGTGAAATTT TCTAACATGGAAAAGTAATATTTTTTTTTCAGGGTATTGGACAGCTCTTATGGGGTGCAGATGAGCAAACACAAA AAATAATAAATCAGTCTGGATTTAGCAACAACTTTTGTTCTTTCCATTAA

>Solanum tuberosum PGSC DM v3 ch03 PGSC0003DMS000003852

CTGTTAGTATAAAGGGTATATATGCTCTAGTTTTTGAATGGCAGAGACACCAATGTCCCAAAAGTATGACGGGGG ATATCTGCATATTATTTACTATAATTCGGGACAATATTTGTCCTTTTTCCCTTATAATTTGGTTGAAAAATATTG AAGATATAACGTCCTCAAAATTCTTGCAAGGACAACATTCAGCTAGCATATAGAGAGAGAAAAAAAAAGGAGGTA TTGACCAAACTATTAACGGCAAAGACATTTTTGGACCAAAATATTGATAACAATGACAAACCCTTAAGAGCATTT TTTTTTACTCTTTTCCGTAGTTTCTATGATTAAATTGTGGTCTCCCTATTTAATATTTCAACAGTTTTCACTCAC AAATTAAACTAGGGTATAAAACTATAAATTAAATTGTATATACAAGGACATGCGGATCGAAATGACCAAAACATG TGGTTTGTATATTAATTATGACACTTGCTTAATCAATATGAACAAAGAGATAACGAATATAGAATGAGCCTGAGG TCCAGTGTTGATAGCTGGCAGCATCACCGGGCAAAGCTTGATTTTGTAAATATGGACCAGAGGGAGTAATTTTGA ATTCCCTTTATTTTTTTTTATATTTTGAACCTTCTAAGTGAATAATCTTGATTTTGCCATCGTTTTTAATCACGC TCTGACGATGAGGATAGTATTTGATGTTATCCCTCCTAATTACTCACTTTCAACCTATTTTTCTTGCCACATATC ACTTCCTGATTCGTCCATTTGTCATGCTCGATTTTTATCCTATAAAGATTTCTTTTTGATCTATTAATTTAAATT TTTTGAGGATAGAATCATTCATACCAATTTAGTATTATTAGATTACTAATTATGGTGTAATAATGCAATTTTCCA CTTTTGCTTTAATCAAGGATGTAGGTAAGCTATTTTACAATACGGCCATGACTAAATTAGTGCTAGAAATATTAG ACTAAAGTATAGGGGTTTGTGATGAGTACAATAATTAAAAGCTGAGCTGAAACACAAGTACAATTAATGACAGCA ATGAATAGATGTTTTTATTACATTTCAACTCTTGTGAATTGTCATATTTTTACATAATAATAACTGACTTGAAAG TTGAATCATCATATCTCAGTGTTTGCATCTCTGATTCACTGACGAAAGAGCCATTCAACGGAAGACCAAAAAAAG CAACTGACATTTTCATTATAATTGGGGTGTGTCATGCATGTTTTAGGAAATTTTAACACAAAAAAGTAATAACAA CAATAATACACTCATCTTCATCCCCCAACAAGCAAGGTCAACTTGATAAATCAATACTATTTCAATATCATTATA TCTACGAATTAAATTTAGTATAACACTTTTTTTATATCATTATATCATCTTTTTAAATTCTTGAATTTGATTTTA TTACTTTAACTTTATACTATACATTTTCATTGAAAATTTGCATTTTTTACATTCTTACTTCATAAGATTTGAATA TATCCTACCCTCCGTAGATCTCACTTATAGGATTACACTAAATATATTAATGTTATCAATTTATATATGTAAATT AGTAGGGGGAAAATAAGACATTTTTATGAAGCTTTCTTTAGACCCCAATCTTATTGAGATAGCCTTGACGAGCAT AGGATGGATGCAACTTATCCCTATTTTTATAGGGTAGGAATATATGTTGTTCTAGTAGATTCTCAGTTTTAAAAA GAAAAGTTTTTGACACACAAAACAAGACATGATACAAAACAAATAAAACAATAAATAGTAATACCCATTGAAGAA TAAAAGAATATGTGACTATTTAGGGGTCGTTAGATTTAAAAACAAGTTATGTTGAGATTAATTATGATGAAATAA GTTATATTGAGATAAGTTATGATGGATATGTTAAGATTTTTTTTTATTGGTTGTTTGGTTTGTCAAATATGCATG ACATAATTTCTAAGAATAAGTTTATTGTTTATAAAAATACCCTCTAAGAATAAGTTGCTTGTTTATAAAAAGAGA TTTAAAAGGGTACTTTGTTAATTTATATTTTTATCCTGGGATAAGTTATCCCCAGAATTAGTATTTCACCTGCAA GTAGGGATAATATATCTCAGTCAAATTATTAATCCTGGAATAAGTTATCTTACACTTTGTAACCAGACAAGGAAT TGAGAAATACTTAAAACTTATCCCAATATTATTTTCTTTATCCATCACACCAAACGACCCCTCATAATGCTATTA ATACTGAGAGGAGGGGGCCTGACCCTCTACCCCTCCAACAAAATATGTGACAACACTAGATTATCTACTACAACT

Abstract

ТТТТАТССТАATсТТAAACGTTСATAGCTTTCTCTCTTTAGGATCATGTTATCAGTAACCTGAAGTTATATCATA ТТТТТТТСТААТСАССТТССТТСАТТСТТТТТТАGACTACTTCTATCTCTCCCAACTCCTGCTATAGCCAAACAA GTACACTCCATTTATAAAACTCTGCTACTATTGTTCTAACATCATGATCTTTTTTAGTTTTCTATTATATGTGCG АТАСТТАТАТТААААТСТААТСАААТТТТАТТСАТATCGAAATATCTCATATTGGAGTATTCAACAAAACTCTAG СТСАAGATСТСТТСТСТATAATGACTTATTСATACTCATTATCTACTTAATTATTTAATATCTTAAACATAAATT TСАТТАТТТТТТТТATAAACAGAGAATTGTCTATAGATATAAGCTACCAGCAAACTTAACAGACCCTACCTCCCC CAAGCTTTGATTAGACCAGTCAAATGCATGGGAATAAGCTAGAAAAAAAATAAAAAGATTTCCAATATTTAGCTA AAATAAAATAAAATAAAATTATGTCCTATCTCTCTCTTCATCTTTATATAAACCTGACCCTTTGAGATTTTCTCA GAСССАТТАТТАТСТСТТАСТТССТСТGТТТТТТСАТTGAGAATTCCAAAGCAAATCACAAAACTAAACAAAAAG ATGGCTGCTTTTTCATCACACCAATTACAACACAATAACCCTTTTCTTCTTGATTCAGTATTTTTGCCAACTTCT ССТАTTAAGATGTCTGGCTTTTTTGAGGAACCAAACAATTCTTGTATAGTACAAAATTGTTTTCCTCAATTTTAC СААСААGAATTСССТТССААТТТААТТСТТСАТGAAAATAGCTTTTGCCTTGATCAAACCATGAACGACCCTAAA AGTAGCAGCAGTATAAGCTTAGATATGGATTCTTCCTCTGTTACTGATAAAATTGAAAGTGGAAATAATAATAAG GСTAATTTTAGTCCTTTGGATAAGAAAAGAAAATCTAGTGAAGGGTCTTCTTCTATGACTTCTGCTCATTCTAAG GTAATTсTAATTTTсСATTTсTGTTTTGTAAATTATTCATTTTCTTGGAAATGGGATTAATGATTACTCTGTTTT тТТтТТТСтТАТСТТАТТAGAATGAGAAACAGGGTGATAATGGGAAAAAGAAGAAAATTAATAGCAAATTAGTAG CCAAAGATGAGAAGAAAGCTAATGAAGAAGCACCAACAGGGTACATTCATGTTAGAGCAAGAAGGGGCCAAGCAA CTGATAGCCATAGTCTTGCTGAAAGGGTATAATTTTACTTTTGCCCCTTCAACTATTAGTCCCTCCGTTCGATTT GACACGAAGTTTAAGAAAGAAATATTATTTGCATGACTGTACATTATTTCATTAGGTATAAAATAAATATTTTGA AGTTAAATTGTTATTTTATATAGTAATGTGTCCTTTTTTTTTACCGACTAAAAAGAAAAGTAAGTCATATAAATT GAGACAGAATGAGTACTAAAATTTAAGGATGTGGTGTGAAAACCAAGTTGAATAAATTTGAATTTGTGTTGAAAA GTATCACATTGAATTAAAATGCTTCTTATAAAAAACGAGTTCATAACCAATTTGATACTTACCACTACATCATAA CCGTTGGTGTCTACTACTACTATTATTTATGTGCAATAGTTTTTTCACTGTTTAGCTTGTGATATGATTTCAGGT GAGGAGAGAGAAAATAAGTGAAAGGATGAAGATATTGCAATCTCTTGTTCCTGGTTGTGACAAGGTAAATGACAA AGTTAATTCAGTAATTTTTTTTGTCTTTTATTTGTCTTTCCATGTACAATGGAAAGGCACTTTTTCAAGAAATTA GTATTTTAAAATCTTTTAAATTATAATTCTTCTGACAATTTCATGTGTCTTGAATGAGATCAGGTAACTGGAAAG GСССТTATGTTGGATGAGATAATTAATTATGTCCAATCTTTGCAAAACCAAGTTGAGGTAAAAAAAGAGAATGAT AAATCACTAATTTCCTTTATATTTAACATTGTATAATTAAAATATTAGTACTAATTGTGTCTCTCATGTTTCAGT ТТСТСТСААТGAAAстTAстТСТТТGAATсСAATGTACTATGACTTTGGAATGGACTTAGATGCACTCATGGTCA AACCTGATGATCAGGTAAGCTAGCGTTTTATCATAGATTTTAAAAATTATATTCAAATACAACTTTTAAAAACTT AATTTTTCAAGTTTCGACTTCATTATTAATCAGACTCATTTTTTATGATTTTTTTTTTCCAGAGTTTGAGTGGCT TGGAGACACAAATGGCAAATATTCAGCAAGGTAGCACAACTACTACATCACAGGCAGCTGAAGTAATTGCTAACA CTAATAGTGGCTATCCATTTTTGGATAATTCAACATCACTCATGTTTCAACAAGCCCATTTCCCTAATTCTATTC CTCAGGTATTACATATTCATTGAATCTACTTATAGTCATTATCTATTCCTAATCACACAAATTGACAAACACCTA AAAAGGACACAATAATGATGGAATTGATATCCAACATTTTGATGACACATTATTTCTAAGGTTAATTAGTTATTA TTTTTATCAGGTTATCGAAGATTTACCTGTAATTACCTTATAAGTAGTATAGTTTTATATTATATCAACGTCGAT ACATAGAAAAAATACTGTAGAATATGATTGATAAATAGTATATAGCTAGGTAATATACATGATGTGAAATTTTCT AACATGGAATAGTAATTTTTTTTCAGGGTAATGGACAGCTCTTATGGGGTGCAGATGACCAAAGACAAAAAATAA TAAATCAGTCAGGATTCAGCAACAACTTTTGTTCTTTCCATTAA

>Solanum melongena v4.0ch03: 13395157-13401156
TGTTCATTGTGGATCTATATATGGTGTGAACTCTCCTATAATTCTATTTATAATATGATTTGAGTGAAGAATATT AAAGACATAACGTCCTCAAAATTCGTACAAGGACAAAACATTTAGCTAGCATATAGAGAGAGATAAAACCCGGGA TTAAATATTAATCAGCGTTTGACATGACTTGTGTCATCGTTATGAATAAAGTGAAAGAAATAACGAATATAGAAT GAAATTACAATAAGAAGTTGAAGTAATAAGTCTGAGGTCCAATGTTGATAGCTGGTAGCATCATTGATAAAGCTA GGCGGGCTTTGTTGATATGACGTTGGCCCTGATTATCTTGACTTTGAATCTTTCACAGATAGGATTATTTTTTTC AATTAGGACAGAGACAGGAAGGGTTTAGGAGTCCATATGAATCTTCTTCGGTAGAAAATTACACTGTGTTTATAT GATTATGGCCCAGATTGTCTTGACTCCAGATTTTTCACAGATAGAATTATCTTTTCCAATCAGAGGCTGGAAGGG TTTAGGAGTTCATCCAAATCTTCTTCGGCAGAAAATTACACTATGTTTATATAATTATGACCCAAATTGCCTTGA СTCGAGATATTTCACGGATAGAATTATTTTTTTCAATCAAGGATTGGAAGGTTTAGAAGTTCATATGAATCTTCT TTATATGATTATGACCCAGATTGTTTGTCTTGATTCTAAATCTTTCACAAATATGATTATCTTTTCCAATCAGGG ACAATTGAACTCTCTTTGATTTATATATGTGCTTAACTTTTTGTATTTTGAATTTTCTTAATGAAAATTATGATT TCGCCCTTATCTCCGATCATGTTCTGAGTATATATAGCCTTTGATTTTATCAATGTTTGAGTCACTTTCTGCCTA TTTTTCTTGCCTAATGTTGATTCCTGAATGACCCATATGTCATGCCCGATTTTTTAACCCATACTAATCCAGTTT TTTGAGGACAATTATTCATACCTATGTGGTGTCAGAGTACTAACTATGGTAAATAATGCAGTTTTGCACTTTTGC TTTAAACACGGATGTAGGTAAGCTATTTTACAATACGGCCCAGCAATATTAGAGACTAAGTATAGGGCTTTGTGA TGAGTACAATAATTTAAAGATACATTTAATGAGAGCAATAAATAGATGTTTTTATTACGTTTCAACTCTTGTGAA TTGTСATATTTACATAATAACTGACTTGAATCATCATATCCCCAGTGTTTTCATCTCTGATTCACTGAAGAAAAG GCСATTCAACGGTAGACCAAAAAAAGCAACTGACATTTTCATTATAATTGGTGTTGCTCTGCATCGTTGAGGAAA ТТТТААСАСАААСАAGTAACCACCACTATAATACACTCGACCGATTATGATACAAAGCAAATGAAGCACAAATAA TTAGTGTCGGATTTAGAATTTTTACTTAAAAGTTTGAAAAATAAAAATGTAAGGCTAGAACTTGAAATCTTGAGG CAAATTTTTGATCGTCCTAAATCATTGAACTAAACTCTCTTCCTGTGTTTAATAGATTCAAAATCTATATATACA TATACATAAAAAAAAAATATTATCTTATACATACAAATAATTTTTTGCCGAGGGGGTTCGGAGAAACCCCTTCCC

SUPPLEMENTARY INFORMATION

GGCCCTTTTGATCCGCCCCAGCAAATAATAAAATTACACATTGAAGACAGGGGTAGAGCCACCTTATGCCTAGGA GGTTCATCCAAACCTTTTTTTGATGAAAAATTATACTTCCTCTGTCTCATTTTATGCGACATCGTTTGACTTGAC ATGACATGATATTTAAGAAAAAATAGAAGACTTCTGAAACTTTTAGTCTAAACCAATTCTTAGATAATTGTGTGG TTGTAAATCATTTCATTAAATGTAAAAGAAGAATTTTAAGTTAAAATATTTTTAATTATATGTACTAAGGTGACA TTCTTTTTAGGACTAACAAAAAAAAAGAAAGATGTCACATAAAAGGGATAGAGAGAGTACTATTTGTATAGTTAA ACTTATTTTTTATCTATATATAATAAACATCAAATCTCTTTCGGCTAGTTTGTATATTTGCTTTTTCAAATTTTG AATCTCCTCAACTAAAATCCTGACTCCACCACTGATTAAAGAGTTAGAGAATACATGCGCGGCTACTTTATAATA CTACTAATATTGAGAAGAGGAGGTCCAACCCTCTACTTCTCCCGTGACAAGTACTATAACAGTCTGCTACCTACT AGCCCTCTACTATAATCCTTGACTTCAATTGCTTTTTATTTAGAGTCACGTCCATACTAAGCCAAAAGTACTATA TTATATCTAATCGATTTTCCCAATTCTTTTTAGGACTACTTCAACCTCTCCCAACACTTGTTATAGCCAAATAAC TACACTCCGTTTTTTAATAATACTCCGCAAATATTATTGATATCATTTTTTGTTTTCTATCTGTGTGTTTGACAG TTACATTAAATTTGAATTTACAGTGGAAAGATTTAAATTGGTGTAAAATACTCTTTAATAATGGCTTATTCATAC ATACCTCCTCTATATTGGCTTATTCATACTCATTAACACATTAAATTTGAATTTATAGTGGAAAGATTTAAATTG GTGTAAAATACTCTTTAATAATGGCTTATTCATACATACCTCCTCTATATGGGCTTATTCATACTCATTATCTAT TTAATTATTTAATACCTTGAACATAAATTCCATTTTCTTTTTATAAAAAACAGAAGTCTCCCCCATAGCCTGATA AGACCAGTCAAATGCATGGGAATGAGCTAGAAAAAAAAAAGGATTTTAATTTTTAGCTAAAAAAATAAAATAAAA TAAAAACTTATGTCCTATCTGTCTCTTCACCTTTATATAAACCTGACCCTTTGAGATTTTCTGAGACCCATTATT ATCTTTCAAGTCCCTCTTGACTTACTTCTCTCTGTTTTCATTGAGAATTCCAAAGCAAATCATAAACTAAAAAAG ATGGCTTCTTTTTCATCACACCAATTACAGCACAATAACCCTTTCCTTGTTGATTCAGTGTTTTTGCCAAGTTCA ATGTCTGGCTTTTTTGAGGAACCAAACAATTCTTGTATAGTACAGAATAGTTTTCCTCAATTTTATCAACAAGAA TTCCCTGTTGTTCATGAAAATAGCTTTTGTTTTGACCAAACCACAAATGTTAGCCATGATGAGCCTAATTCTGTA CACACTAACAAAAGTAGCAGCAGTATAACCTTGGATATGGATTCTTCCTCTGTTACTGATAAAATTGAAAGTGGG AGTAATAATAATAAGGCGAATGTTACTTCTATGGAAAAGAAAAGAAAATCCAGAGAAGGGTCTTCTTCTATGACT TCTGCTCATTCTAAGGTAATTCAAATTTTCCATATATGTGCTCTTATTGTTTCTGTGACAAGGTTCCCAGGAAAC AACCACTCTACTCTATGAGGTAGTGATAAGGTCTGCGTACATTTTATCAGACCTTACTTATGGGATTCCAGTGGG TATGTTGTTATTGTTGTTGTGCTCGTAGTCATTCATTTTCTTGATTAATAATTACTCTGTTTCTTTTTCTTTTCT GATTAGAATGTAAAACAGAGTGACAATGGGAAAAAGAAGAAAACCAACAGCAAATTAGTAGCCAAAGATGAGAAA AAAGCTAATGAAGAGGCACCCACAGGCTACATTCATGTTAGAGCAAGAAGAGGCCAGGCAACTGACAGCCATAGT CTTGCTGAAAGGGTACAATTTTACCCCCTTCTCTTTTTGTTTGGTTTTCACCGGGTGTCCACTATCAATATTGGA GCCTGATTATATTCGAATTCGGTGCTGCATAGGCCCCATTTAAGAAAGCACTCCCTACCAAGAATTTTTTCATTC CTCTGGTCGAGGGAGGAGCAGCTCTATCCATTGCACCACATCTTTTTGGCAGTTACAATTTTACCTTTGCCCCTC TAGTTATTACTACTAAAATTTACTTTGGATTCGCACAAGAAAGCCTGGGCTAAAGCGCTTTTTACCAAAAATGAT TTCATAATTATTGATCAAGAATAGAAGAGTATTTACCACTTCATCACATTCGTTAGTGTTGTAAAGAAAATTATT ACTGTACTATTATTTTTCGTGTGCAACAATTTTTTGACTGTTGAACTTGTGATATGATTTCAGGTTAGGAGAGAG AAAATAAGTGAAAGGATGAAGATATTGCAATCTCTTGTTCCTGGTTGTGACAAGGTAAATGACAAAGTTATTTCA GTAATTTTTTGTCTTTTATTTGTCTTTCCATGTACAGTGGAGTGACACTTTTTCAAGAAAGTAATATTAAATCTT CTTCCTTTTCTTTAATCGTAATTCTTCTGACAATTTTCATGTGACTTGAATGAGATCAGGTAACTGGAAAGGCCC TCATGTTGGATGAGATAATCAATTATGTCCAATCTTTGCAAAACCAAGTTGAGGTAAAAAAAAAAAACAATAATT AGTAATTTCCTTTATTTAACATTGTATAATTAAAATATTATTAGTATTAATTTATATTATGTGTGTTTCTCATGT TTCAGTTTCTCTCAATGAAACTTACTTCTGTGAATCCAATGTACTATGACTTTGGCATGGACTTAGATGCCCTCA TGGTCAAACCTGATGACCAGGTAATCTAGCGTTTGTCCATAAATTTTATATATCTCTAAAAATAACTTCAAATTC TAAAAGTCACAAACTTCAAAAACTCAAAATTTTAAATTTCAACTTCAGTATTAATCCGATTTTTTCTTTTTTGCC CAGAGTTTGAGTGGCTTGGAGACACAAATGCTAAATATTCAGCAAGGTAGCACAACTACTACATCACAGACCGCT GAAGTTATTGCCAACACTAATAGTGGCTATCCATTTTTGGATAATTCAACATCACTCATGTTTCAACAAGCCCAT TTCCCTAATTCCATTCCTCAGGTATTGCATATTCACTGAATATACATAGTCACCAAATAGACAAACACCTAAAAA GACACACTAATGATGGAAATTGATATCAGACACTTTGATGACACATTATAAAATGTACTAATATTTTACTTACCA TACAAGTAGTATAATTCTATAAATATATTTTTCATGATTGAGAAATAGTATATAAAAAACAACATACCAGTGAAA TTTACAAGTGGGGTTTGGGGAGGATAGAATGTACACAAACCTTACTACTACCTCATGGAGATATAGAGAAGTTAT TTCCTGGAAACGCAGAATGAGAAATAGTATATAGCTAGGTAATATACATGATGTGAAACTTTTTCTAACATGAAA AATACATGTAAATAATTTTTTACAGGGTAATGGACAGCTCTTATGGGGTGCAGATGACCAAAGACAAAAAATAAT AAATCATTCAGGATTCAGCAACAACTTTTGTTCTTTCCATTAATGGCCCCTTCCAGCCCTACCCTACACAACATT TGGTGAGCAATCCATCATTGTCTTAATTAGTAACATTTTTCAAGTACCAAAAAAAAAATATCACAACATTTTAAT TTATCTACAAATAATAAAGAGTTGACAATGTTTTGTTAATTTATGCAGGGAGATGAATTAAACCTGACTACATCT AGCTAAGCCTCTAGTATATAATAACCTGTGGATGGAGGATTATATTGTAAAATCACCCTATTAACAAGGCTGGGA GTATTTTTATATTATATTGGATGGATGAGATTAAATGAGTGGAAGCCAAAAGAGTACTTAGAAGTCATCAGCAAG GTAGCAGGGAGAATTATTTGAGACAGATTTTTTTGGGAGATCCTTTTCATTGTTGGCTCTGTCCAATATTTGACT TATTATTCCTAAATCTATTGAAAGCACAACTTCCTAGAGCCATGTGATGATGGTGGTGGAGGGTGGTTAAAAACC CTAGCTTTTTTCTTGCATCTTCTTCTTTTGTATTACCATGTGTACTTACTAATGATAATATGATTGTTTCTTTTA

>Capsicum annuum CM334 v1.55 ch3 UPA20 (Ca03g22700)

TCTGAACTATTTTGGATTTGTCCGAAAATGTTCCAAACTATTAGAAATAGGACAGACCTACCCACATTGTTGGCA AATAGACCCAATAATGCCCCTATCGTAGTAACAGATCTCAAATATACCCTTTTAAGAGTTATTTCTCTACTGATG AGACGGACACCATCTTGGAAAAAAAAACCTCACCAACTAATGTATCTGTTTTGTTCTTGACTTTCTTATTAATCC

Abstract

AAAGTTAGACCATATATGTATAATGTATGACTTGACTGTACGTTACTCCTAATAGAGGGATACAAATTCATTAAA AAAAAACGATTTTAAGTCTCAATAGAGACCAAAAAGAAAAAGAAAAAGAAAAAGAAAGGTGGTTCTTTTTTATCG TTCTTTTTTATCTTTCTTTCCAGTATTTTTTAGTATAGAGTTATTTGGTACCTCTATATACTGGTAAAAGAAAGT GAATGAGCTAAGTTGCCAATGTAGTAATTATGGGACAATAATGCAGTTTTAATTTAGACACAGATGTAGGTCAGT AgGTAAGTTATTTTTCGAACTAATGCTAGGATTAATATTAGTAGATTAAGTATAGGGATTTATGATTAGTACAAT AATTTAAGAAGAGAAATACAAGTTCAACGAATATTATTAAGAGCAATAAATGGATGTTTTTATTACGTTCCAACT CTTGTGACTTGTCATTTATATAACTGGCTTGAATAATCATATCCCCAGTGTTTGCATTTCTGATTCACTGAGAAA AAGAGCCATTCAATCGAAGACCCCCCAAAAAGCAACTGACATTTTCATTATAATTTATCGTTGCCCTGCATGTTT GAGGAAAATTTAACACCAACAGGTAACAACAACAATTTAGCCAAGATAATTCTGATAACCATGAAAAAAAAATAT ATCCATGATAATCTGACGAGTAGGATTTAGGGAGCATAGGATTACGCAAATTTCACTTCTATTTTTGTGGGGTAA AAAGATTATTTTCGATAGACATTCGGCTTAAATAAAACATTTTCGAAGTAGAATTGCAAGAAAAATATGACAGCA AACAAACAAGATACAAAACAAATAAAGCAATAAATAGTATCCTCCTAATGTACATTGAAAAATACTACTAATACT TAGAAGAGGGACGACACTAGCCCCCTACCTCTCCAACAAAAAATCGACAACAGTCGGCTACCTAGTATCTTTCTA TCATAATCTTCAACCTCTATGCCTTTCTATGTTCTATCTAGTGTCATCTCTTCACCAAACTGAAGTTTGTCATAC CTCGTCTAATCACCTTCCTCAATTATTTTTCAGTGTGCCTCTACCTTCTATAATTCTTGGAGCGCCAAACAAGTA CACATTGTTTTAATGATACTCCACTACTGTTGTTCTGACATCATTATCATTTTTCGATTCGCTGCCTGTCTTCGA TACTTATATTAGGATCAGAGACGAATCCAGGATTTGAAGCTTGTGGATGCACCGGTGTTGTCAAAGGCGCGCATA AGCCTCGAAGCAAGACTCAAAATGTGTTGAGCGTTCGCCACGCTTAATGTGCAGCTTAGGTTCTAATTTCTACTA CATACTTTCCCTTGTTAATGAAGCTTTCTAAAGAGACGGACTATTTCACTTTATCAAAAGAAAAAAAAATTGTTC ATATATTTGTCATTTATGCTTATATTATTAGTGTTGGACTAGACATATATTTATATTTTTTCTCTCTTTATGCCT TTTTTCATTAAATCTCACACTTTATTTGTCCTTTGTACTTAAACACAATAGATCGTGAAGTTTTTTTACGCTTAT TACTTTTGACAATATTGTGGTGCACAATATTATCTTAAGACGTTAGAAAAACTTTCAGTGTCAATTAAGGGATAT TATCATATTCAATTGGTCGCCAAAGACATGAAAGTACTAAAAAGATAAATATATAGAACAAATATGAGTTCTAAG CTAATAACTTTACTTTCTTATAGTAATATGAAGCTTACTTTTAATGTTATTGAATAATTGGTTGTGGTAGATCAA TGGTCAGGATGATTCATTTTACGGGATGATCACGGGTTCGAATTCTCAATCCAACAATTTTGATGTTATAAATTT AACAATAAGCCAAGTATTAAAAATAAAAGCAAAAATAAGGATGATTCATTTTACGGAATGGTCGCAGGTTCGAAT TCCCAATCCAACAATTTTGATGTTATAAATTTAGCAATAAGCCAAGTATTGAAAATAAAAGCAAAAATATTGTGT GACTCAGGGATCAATCCCTAGTCGTGTGGATGGAAGCAATGACTTCAGCCAGCTCACCCATGTGCACTACCTAAG TGCACTATCATTCATGTTGGGGTGCATTATTAATTATATCCCAATTTCTGAAGGTATATACACATAATTTTTTTC GATGTTAATGGGTGCACGTGCACCCCTACTAACACATGTTGGTCCGCCTCTGATTAGGATCCAACTAAATTTAAA TTTACATCAAAAAGTCCCATATTGAGATAAAACACTTCTTAATAGGCGACCACCCAACAACACTCAAACCCAAAA TCTTTTGATTAAGAACAAAGAAATACTTACCTCTATCCAATCGACTTCACACTCATTATCTACTTAATTATTTAA GTAATACATTAGACATAAATTTCAATTTAACAAAAAAAAAACAAAAAAAAACAGAGTTTTGTCTATAGACTTAAG CTAGTAGCATATTATTAACTAGGCCCCACCTTCCCTCCAAGCTTGATAAGACCAGTCAAATGCATGTAAATGAGC TTGAAGAAAAATAATTTTAGTAGGAGTAATTTTAAACTAAAAAAAAGTTTATTTCCTATCTCTCTCTTCATCTTT

 ATATAAACCTGACCCTTTGTGACATTCTGAGACCCATTATTATTTTTTCAGTTCCTCTTGACTATTTCCTCTGTT TACAATTTCTCTCTTCCATCACTTTCTTGAAGCCTTCCATTTAGAATTCCAAAGCAAATCATAAACTTGAAAAAG ATGTCTACTTTTTCATCATACCAATTACAACAACACAATACCCCTTCTCTTCTTGATTCAGTATTTTTGCCAAGT TCACCTCTAAAAATGTCTGGCTTTTTTGAGGAACCAAACAATTCTTGTGTTGTCCAAAATTGTTTTTCTCAATTT TACCAACCAGAATTCCCTACCAATAATGTTAATGTTAATGAAAATAGCTATTGCCTTGACCAAAACACAAATGTT ACTAACAAAAGTAGTAGCAGTATAAGCTTGGATATGGACTCTTCTTCTGTTACTGATAAAATGGAAAGTGGAAAT AATAAGCCTAATGTTACTAGTCCTATGGACAAGAAAAGAAAATCCAGAGAAGGGTCTTCTTCTATGACTTCTGCA AATTCTAAGGTAATTGGAATTCTCCATTTATTGTCATCTAAATTTTCATCTTCTTAATCAATTTTTTAGAATTGG GATTAATAATTATTCTTTTTTCTTTTCCCTATTAGAATGTAACACAAGGTGATAATGGGAAAAAGAACAAGAGCA ATAGCAAATTAGTAGCCAAAGATGAGAAAAAAGCTAATGAAGAGGCACCAACAGGCTACATTCATGTTAGAGCAA GAAGAGGCCAAGCAACTGACAGCCATAGTCTTGCTGAAAGGGTAACTAATTTTTACCAATGTGCTATGAACATTA TTTTTTTTTGGTACTCATAATGATCCAACTAAATTTGAATTTGTTCTAAAATGCTTCTTATCAAAAATTATTTTA CAGCAGTGTTCGAACTCGTGACTTATAATTAAGAATAAAAGAATATTTACCGCTCGTCATTACAGTCGGTGTTCT AGGAAAATTATTACTACTGTACTAGTCCTACTACATTATTTATGTGCAACAGTATTCTTACTATTTAACTTGTGA TATGATTTCAGGTGAGGAGAGAGAAAATAAGTGAAAGGATGAAAATGCTGCAATCTCTTGTTCCTGGTTGTGACA AGGTGAATAACAAAGTTAATTCAGTAATTTTTCTTGTCTTTTATTTGTCTTTCCATGTACATGAGTAGAGTGACA CTTTTTCAAGAAAGTATAGTATTTAAATCTTCTTTTATTTTATAAAAATTCTTCTGACAATTATCATGTGACTTG AATGAAATCAGGTAACTGGGAAGGCCCTTATGTTGGATGAGATAATCAATTATGTCCAATCTTTGCAAAATCAAG TTGAGGTAAAAAGAGGATAATTAATAATATATTCTCTTTATTTAACATTGTATAATTAAAAATATTAGTACTAAT TACAATACGTGTTTCCCATGTTTCAGTTTCTGTCAATGAAACTTGCTTCTTTGAATCCAATGTACTATGACTTTG GCATGGACTTAGATGCACTCATGGTCAGGCCTGATGACCAGGTATATATATATATATATACAAAAAAGTTGGTCC AGTTAAGCTATCGTTTAACCGTAGATTTTGAAAAATTATCTTCAAATATTTATTTGGTCATGAAATTTATCGGGC TCTTTTCTTTTTTCAGAATTTGAGTGGCTTGGAGACACAACTACCAAATATTCAGCAAGCTAGCACTACTACATC ACAAGCAGCTGAAGTTATTCCTAACACTAATAGTGGCTATCCTTTTTTGGATAATTCAGCATCACTTATGTTTCA ACAAGCCCATTTCCCTAATTCCATTCATCAGGTATTGCATATTCATTGAATATAGTCATTATGTATAAGACTATA TACATAATCACCAAATAGACAAACACCTAATAAGACACACTAATGATGGAATTGATATCGGACACTTTTATGACA CATTATAACGTGTGATACTTGGTTAGTTACTTAGTCATTATCTTATCAGGTTATCAACTAATTCGATATTATAAC GAAGATTTCAAAAATATATTTTTATCAACCGTCGGTACATAGAAAAAAACTGTAGAATATGATTGAGAAATAGTA
SUPPLEMENTARY INFORMATION

Abstract

AAAATAGTTACTTAATATACATGATGTGAAATTTTCTAACATGAAAAAGTACATATATTTTTTTTTTTCAGGGAA TTGGACAGCTCTTATGGGGTGCAGAAGACCAAAGACAAAAAATAATAAATCAGTCAGGATTCAGCAACAACTTTT GTTCTTTCCATTAA

>Nicotiana benthamiana v1.0.1 Niben101Scf00376g01004
TAATATGAACATGTAATAAATGTAGACAATGGCAATAAATATAATAAAGGAGAATCTATCACCCAAATATTATAT GCTTTGGATTCTTCTACCTGGTAGCAATGTGGAAAAATGAGAGCTGAAGATGGATAAGAAATCGTCGGATCTTAT GAACAAGACAACTTTTGTATATTCTTTCTTAGTCAACATTTTGCAATATATTCTTATCAACAAGTGAATATCTCC CTATTGTTCTCTATCTCTTCTTATTTATAAGGAATATTTCAAAGAAATCCTAAAAAGTATAAAATAAGAAATATT CCAAAGGAATATTCCTTGTGTCCATTTCTAAACCTATCCTATCATTATTTCCTTACTTCAGTTGCTCGTCCTCGA CAAGTCCTTTCGAAGACGGCTTCTTGATATTACACTATGGTCGACCACGTCTTCCATTCTATTTATCTATCATTA TCAAGTCGCCAAATTTAATCCAATACAATTATAAAGATGATTTGAAATTCATCAACCACAGAGGACGCTAACAGC AGAATTTTCTGGTTATATAAAAAACTTTTGTAATTAGCAATTTTGTGTGCAATAGCACGAGTTTCCAAATTAATG AGTTCAAATGGAGCCTTAGTAAAAGGAAAAGAAAAGTAAAATTTTGTTTCACTTTACGCCACTGTCCTTTAATCT TTTCACAAATGAAAACGATATTTTTATCCTAGTTGCCCTTTTTTTTTCTTCATTTGGTGTTCAATATTCGTATTG GAACCAAATTATATCTGGATTCGCACCACGAGTTTCATTCAGGGGGAAGCGTTAACTACTAAGAAATTTTTCATA CTAAAAAATCGGATATTTATGATTAAGGAAAGAACAATCATATATACTGCACCACGTCATTTGATGGTTTTATCC TAGATGTCATATTCAAATGTTGTAACTTATAATCGAAAGCTACTCATACTAGTACACAGTAAGGAGGACAAATTT GATTGTGGGGCTGGATCAAATGTATAGTTTCACGTTTTAAGACTGAATGAGCTTCAAGAACAGGCTGGACTTAGA CAAAGACAAAAGCCCAACAATGTTCAAAATACCAATCAATGGTCTGAACTGTCCTATAGTTGTATTTTAACATTT TGAGTGAAGATAGAAAGTCTCAAAATTCTGTGTATTTTTACATTTTGAGTGAAGATAGAAAGTCTCAAAATCCTT ACTCCTACTATTAGATCAATTGACATTAATCATTTACAAACGGTTCAGCACAGAGAATTAATGTTCACAAAAGAA AGCTAAAGATTTAAGGAATTGAGCTCTATATATATATATATATATATANNNNNNNNNNNNNNNNNNNNNNNNNNN NNN NNN NNNNNNNNNNNNNNTATTGTTATTAATTTAATTGA ATGTTGTAATATGATGATTTTGCATGTGTTTTAAGAAAATTTCAGAATTAAGCTGTACTATAGAAAAGGTAAATT GCTTATTATTATTATTATTATTATTATTATTATTATTATTATTTACCCTGTTCTCACCACTAGCTGTAGGCTAAA ACTCAATATATAGCTAGGTTTTCAGGCAAGAGTATGAAAATGTGCTTATTCACAATGGCCTAATATTCAGTGTAT AAATACCTGGCATCAGTTTATGTATAAGCTGTTATTAGTTAGATATGGTTTGTTAATACACTTTCTCACCCGATT TTATCATTAATTATGGTAAACTAATGTAGTTTTGTTTTTAAAAAAAAACTAGGTGTAGGTAAGTTTTTTTTATTT TCTCACACAGTCATTACTGCAATAGTGCTAGAAGCAATAGATTTAGTATAGGGCATACATATTAGTACAATTATT AAAGTATTAAAAGATGATAAATACAAGTACAATTAATAACAGCAATAAATAGGTAGTGAATTGTCTTTTAGATAA CTGGCTTGAATCATCATATCCCCAGTGTTTGCATCTCTGATTCACTGAAGGAAAACTGAGCCATAAAAAAAGGAA GACTAAAAAAGTAACTCACACTACATTATAATTGTTCGCCAAATAAATATTTCCCATAGGCCCTTGCGGTTACCC TTCATGTTTGAGGAAATTTTAACACAAGGTACTATGTATATTTATTTGCTCTTGATACTGTTTTTCTCGTATTAT CTTATTATTGTTATTGTTTATTTTCTTATTATCTTGCTGGTTGTTGTTTTTTTTTTTTTTTTTTTNNNNNNNNNN NNTTTTTTTTTTTTTTTTTTTTG AGTTGAGTGCCTATCGGAAACAATCTTTTTATTTTCAAAGTAGGAGTAAGGTGTGAGTATACACTATACACTACT CTCCCCATAATCCACTCATGAGATTATACTGAATTTGTTGTTATTTACCGTGTATGTTTATAATGATCGTACTGT TATGACATCATTATCTGCTAGCTTAAATTATTTAATATGTTAAAGGAAAAAAATTTTTTACGAAAAGAAAAAAGA TAAGCTTAGCATATTTAATAGCCCCCACCTTCCCAAAGCTTGATAAGACCAGTCAAATGCAAAGCAACTGCATGG GAATGAGCTAGAAAATATTTTTAGCTAAAATTTGGATGCCTTATCTCTCTCCTTATGTTTATATAAACCTGACCC TTTGGGACTTTCTCAAACTCATTATAATATTTATTTCTCTCTTGACCTCTGTTTACCATTTCTCTCTTTGATCAC TTTCTTGAATCCTTCCCTTGGGATTTCCAAAGCAAATTATATACTAATAAAGAAGAATTTTTTTTTAAAAAAAAG ATGGCTGCTTTTTCATACCAATTACAGCACACAAACCCTTTCCTTCTTGACTCAGTTTTTTTGCCAAGTTCTCCT ATTAAGATGTCTGGTTTTTTAGAGGAACAAAACAATTCTACAGTGCAGAATTGTTTTACTCAATTTTACCAACCA GAATCTTTTCAGCAGCTCCCAACTGCCAATGTGATTGGTCATGAAAGTAGCTATTGCCTTGACCAAAGTACAAAT GTTACACTTAGCCAAAATGAGCTTAATTCTGTGACCAACAACAGTAGCAGCAGTGTTAGCTTGGATATGGATTCT TCCTCTGTTACTGATAAAATGGAAAGTGGGAATAAGCCTAATTTTATTCCTATGGACAAGAAAAGAAAATCCAGA GAAGGGTCTTCTTCTATGAGTTCTGCTCATTCTAAGGTAATACAATTCTTCTATATTGATCATAAATTTCTTTTC TTTTCTCCTGATGGATTTTGAATTGAGATTAACTATCTGTTTTCTTAGAATGTAAAACAGGTTGATAATGGGAAA AAGAAGAAAAACAATAGCCAATTAGTAGCCAAAGATGAGAAAAAGGGAAAAGATGACAACAAAAAAGAGGAAAAG AAAGCTAATGAAGAGGCTCCAACAGGCTACATTCATGTTAGAGCAAGAAGGGGTCAAGCAACAGACAGCCATAGT CTTGCTGAAAGGGTATAATATCTTTAATTAATTGGATTAATTTTTTTTACTAAGATAATAATTAATTACCCATGT CATAGGGTAAATTATTCGTTTGAACAGTTTTTTCACTGTTTAACTTGTGACATGATCTCAGGTGAGGAGAGAGAA AATAAGTGAAAGGATGAAGATACTGCAATCACTTGTTCCTGGTTGTGACAAGGTGAGTAACAAAGTTAGTTCAGT AATTTGTCTTTTATTTGTCTTTCTATGTACAGTAAAGTGATAACTTTTTCAACAAAAGTAGTCTGTATATTTTTC GTTAATTATTTAATTGTTCTGACAGTTTTCATGTGACCTGAATGAGATCAGGTAACTGGGAAGGCCCTCATGTTG GATGAGATAATCAATTATGTCCAATCTCTGCAAAACCAAGTTGAGGTAAAAATAATACTAGTAATTAATAATACC CTTTATTTAATAATTTAACTGTCTCATTCATTTAACCTAAAATATTACTAATATTATGTGGTTCTTATGTATCAG TTTСТСTССАTGAAACTTGCTTCTTCTAATCCAATGTACTATGACTTTGGCATGGACTTAGATACACTCATGGTC AAACCTGACCAGGTATGCAATTTTATTGGTTCAGTTTATGGATTTTCTTCAAATATTTAGTAGTTTTATTAGTAC

Abstract

TTTTCAGCATTAATTAATCAGACATTTTTTTTTCTTTAATCTTTTTTCAGAGTTTGAGTGGATTGGGCACACCAC TGCCAAACATGCAGCAACCTAGCCCTACTAATATTACATCACAGGCAGCTGAAGTTATTCCTAACATTAATAATA GTGGCTATCCTTTCTTGGATAATTCAGCTTCACTCATGTTTCAACAAGCCCATTTTCCTAATTCCATTTCTCAGG TAATGCATATTCATTGAATATGGTCATATGGGCATCTATAATACTTCTGTATATAATCACCAACTAGACAAAAAC CTAAAAAGACATATTATGATGGATCCTATGTCAGATACTTTGGTGATAAGTTTTTAAAAGTATATTGAGTTCCAT GAACATAAACAAACAAATAAAATATCTTAGGAGTTTATAAGTTTTACGGTAGTGTATAATAACAGGCAATACGTC ACAACAAGTTTAATATTGTAATTTGGAAAATAGTAATACCCTACTATAATAGGTTAAATTGCACTTATATATAGT GTAACAAAGATTCATACTAGCTAACTGTCTATGTAACCCAAATCTAGGTTAAATAATAGAGAGAATACTGTTGAA TACAATTGAAAAATAGTATATAGCTGATGTTTATCTAACATGAACAAGTACATATCTTTTTCAGGGTAATGGACA GCTCTTATGGGGTGCAGATGACCAAAGACAAAAATTTATTAATCAGTCAGGACTCAGCAACAACTTTTGTTCTTT CCATTAA

$>N i c o t i a n a ~ b e n t h a m i a n a ~ v 1.0 .1 ~ N i b e n 101 S c f 01182 g 03011$
TTCCAGTTATGTTCCTTTTACTAAATTTAATTATACTTTATTATTAATTAGTTTCTCGAGTATTTCCTTAAAAAA TGATCACCTTTTAATTTTCATCATTTAGACTTGAATTAATAACAGATAAATCATTTAGAAAACATATACTTGCAT AAAATGTCCATAGTTTGAAATTTCCCGAATATGTGATTTAAATTTCTTCCTAAAAATTGGAGCTTTTAGCTCAAA ATGTCATTGACTCAAAGCCGAGAACATGGTTACAACGATGATTTGAAATTCATCAACCACAGAGATGCTAACAGC AGAATTTTCTGGTTAAATAAAAAAATGTAATTAGCAATTTTGTGTGCAATAAATAGCATGAATTTCCAAATTAAT AAGTCCAAATGGAGCCTTGGTAAAAGGAAAAGAAAAGTAAAATTTTGTTTCACTTTATGGCTTTACGCCACTGTC CTTTAATCTTTTCACAAATGAAAACGATATTTTTATCCTAGATGTCCTTTTTTTTCTATCACCCGGTGATCAGTA TCTGTATTGGAACCCGATTATATTTGAATTCGCGCCATATAAGACTCCATTCGGGGAAAGTACTCCCTACAAAAA AAAATTTATACACATGGCTCGAACCCGATCTCCGTTTAAAATAAAAGCAACTCCATCTACGGTACTACGTTCTTT GGTGTGGTTTTATCCAAGATGTAATATTCAAATGTTTTGCAATCTATAATCGAAAACTACGCATACTAGTACATA GTAAGGAGGACAATTTTTTGATTGTGGGGCTGGATCAAATGTATAGTTTCACGTTTTAAGACCGAATGAGCTTCA AGAACAGGCTGGACTTAGACAAAGACAAAAGCCCAACAATGTTCAAAATACCATCAATGGTCTGAACTGTCCTAT AGTTGTATTTTTACATTTTAACTGAAGATAGAAAGTCTCAAAATTTTTACTCTTATTACTATATCAATTGACATT AATCAATGTATAAAAGATTCAGCATAGAGAATTAATGTTTACAAAGAAAGCTAAAGATTTAAGGAGTTGAGCTGT ATTTTCGTATTAATTTAATTGAATGTCGTTGTAATATGATGATTATTCATGTTTTTATGAAAATCTCAGAATGAA ACTGTACTGTAGAAAAAAAGGTAAATTACTTATAAGTTTTATTACTATTGTTATTATTATTATTATTATTATCAT CATTATTATTATTATTATTATTTTTATTTATTTATTATTATTATTATTATTATTTACCTCTTCTCACCACAAGTT GTAGGATAAACTTCAAATATATAGTTAGGTTTTCAGGCAAGAGTATGAAAATCTGCTTATTCACATTGGCCCATT ATTCAATGTATAAATACCTGACATCAGTTTTTATATAAGCTGTTATTAGTTAGATATGGTTAGTTAATATCAGGG GCGGATCTATGTAGAAAATTTGGATGCTTAAGCACCCATTAACCTTAACTATTGGTAGGTAAAATTTCATAGAAA ACTTAATGAAATGGATATATATTATCAAAAGCACCTAGATAACAAAACTATTGGTGAATGCTTTGGTTAAGAAGG GGTGTTGGAAGCTTAGTGATGTTAGGGGCGTTTCTTTTTCTTATATTCAAGGTTCTTCCTCCTTCTTCATTCTTT TTTTTGTATGAGTTTTCTCATCAACTTTTTTCACTGTCGTATTGAAATAGTTGTGTACTGTAGTAACATTATAAC AAAAAAAAAATTGAGCACCCGGGAACGTAATATCCTAGATACGCCACTGGTTAATACACTTTCTCACCTGATTTT ATCACTAATCAACTAATGTAGGTTTGTTTTTAAAGAAAACTAGGTGTAGGTAAGTTTTTTTTTCCTCACACAGCC ATAACTGCGTTAGTGCTAGTAGCAATAGATTAAGTAGAGGGCATACAGATTAGTACAATTATTAAAGTATTAAAA GATGACAAATACAAGTACAATTAATAACAGCAATAAATAGGTAGTGAATTGTCATATAGAGAACTGGCTTGAATC ATCAGTGTTTGCATCTCTGATTCACTGAAGGAAAACTGAGCCATAAAAAAAGGAAGACTAAAAAAGCAACTGACA CTTCATTATAATTGTTCGCCAAATAAATATTTCCCATTGCCCTTGCGGGACCTAATGCATAGACTGCAGGTTTTT TGAAATTCAATAACTCTAGCATAAATTTTGTATTTATATTAAAAAATTTATTAAATATTGATAAATATTTAATTG TGAAGTGTGAACCTAGTTATTATTACATATCAATCTGAAATTATGATAGGAGCTCATAAACCTCAAATCCTGAAT CCGCCTCTAGTTGCGGTTACCCTACATGTTTGAAGAAATTTTAACACAAGGTACTATGTATGTTTATTTACTATT TATTTTCTTATTATCTTACTGTTGGTATTGCTGGTTTTTTTTTTTTTTTTGAGCTTGGGGCTATACATAAGAAAC AACCTTTTTACCTTCAAGGTAAGGATAAGGTTTGTGAACATATTGCCCTTCCCATTTTTCAATTGTAAGATTATA TTGATTTTTTTGTTATTGTTGTACTGTGTATGTTTATAATGATAGTACTGTTCTGACATCATTATCTGCTAGCTT AAATTATTTAATGAAATAAAGGAAAATTATTTTTTACAAAAAAAGAAGAAGTTGTATATAAATATAAGCATAGCA TATTTAATAGCCCCCACCTTCCAAAGCTTTGATAAGACCAGTCAAATGCAAAGCAACTGCATGGGAATGAGCTAG AAAATATTTTTAGCTAAAATTTGGATGCCTTATCTCTCTCCTTATGTTTATATAAACCTGACCCTTTAGGACTTT СTCAAACTCATTATAATATTTATTTCACTCTTGACTACTATCTCTGTTTACTATTTCTTTCTTTTATCACTTTCT TGAATCCTTCCCTTGGGATTTCCAAAGCAAATCATATACTAATAAAGAAGAATTGTTTTTAAAAGAAAAAAAAAG ATGGCTGCTTTTTCATACCAATTACAGCACACAAACACTTTCCTTCTTGACTCAGTTTTTTTGCCAAGTTCTCCT ATTAAGATGTCTGGTTTTTTAGAGGAACAAAACAATTCTATAGTGCAGAATTGTTTTACTCAATTTTACCAACCA GAATCTTTTCAGCAGCTCCCAACTGCCAATGTGCTTGTTCATGAAAGTAGCTATTGCCTTGACCAAAGTACAAAT GTTACAGTTAGCCAAAATGAGCTTAATTCTGTGACCAACAACAGTAGCAGCAGTGTTAGCTTGGATATGGATTCT TCCTCTGTTACTGATAAAATAGAAAGTGGAAATAAGCCTAATTTTACTCCTATGGACAAGAAAAGAAAATCCAGA GAAGGGTGTTCCTCAATGAGTTCTGCTCATTCTAAGGTAATATAAAATTTTCATCTCCTTGATAAAGTTCTTGGC CTTTCTCGTGATGAATTTGAATTGGGATTAATTATATATCTGTTTTTTCTTAGAATGTAAAACAGGTTGATAATG GGAAAAAGAAAAAAAACAATAGCCAATTAGTAGTCAAAGATGAGAAAAAGGGAAAAGATGACAACAAAAAAGAGG AGAAAAAAGCTAATGAAGAGGTTCCAACAGGCTACATTCATGTTAGAGCAAGAAGGGGTCAAGCAACAGACAGCC ATAGTCTTGCTGAAAGGGTACAATTTTTTAGTTAATATTATTAATTTTTTTCACTAAGATAATAATTAATTACCC

SUPPLEMENTARY INFORMATION

Abstract

ATGTCATAAGGTAATTATTGGTTTGAACAGTTTTTTCGCTGTTTAACATGTGACATGATCCCAGGTGAGGAGAGA GAAAATAAGTGAAAGGATGAAGATACTGCAATCTCTTGTTCCTGGGTGTGACAAGGTGAATAACAAAGTTTAGTT CAGTAATTTGTCTTTTATTTGTCTTTCTATGTACAGTAAAGTGATACTTTTTCAACAAAAGTAGTCTGTATATTT TTCTTTATTTATTTAATTGTTCTGACAATTTTCATGTGACCTGAATGAGATCAGGTAACTGGGAAGGCCCTCATG TTGGATGAGATAATCAATTATGTCCAATCTTTGCAAAACCAAGTTGAGGTAAAAATAATACTCCCTAGTAATTAA TAATATCCTTTATTTAATAATTTCACTGTCTCATTCATTTAACCTAAAATATTACTAATATTATGTGGTTCTTAT GTATCAGTTTCTCTCCATGAAACTTGCTTCTTCTAATCCAATGTACTATGACTTTGGCATGGACTTAGATGCACT CATGGTCAAACCTGACCAGGTATGAAATTTTTTTGGTTCAGTTTATGGATTTTCTTCAAATATTTAGTAGTTTTA TTACTACTACTTTTCAATATTAATTAATCAGACTTTTTTTTTCTTTAATCATTTTTCAGGGTTTGAGTGGATTGG GAACACCACTACCAAACATGCAGCAACCTAGCCCTACTAATATTACATCACAGGCAGCTAAAGTTATTCCTAACA TTAATAATAGTGGCTATCCTTTCTTGAATAATTCAGCTTCCCTCATGTTTCAACAAGTCCATTTTCCTAATTCCA TTTCTCAGGTATTGCATATTCATTGAATATGGTCGTATGGGCAATCTATAATACTTCTGTATATAATCACCAACT AGACAAAAACCTAAAAAGACATATTATGATGGATCCCGTGTCAGACACTTTGATGATACGTTTTTAAAAGTATAT TGAGTTCCATGAACATAAACAAACAAATTAAATATGTTAAGAGTTTATAAGTTTTACAGTAGTGTATAATAGCAG GTAATACTTCACAACAAGTTTAATATTGTAATTAGGTTAAATTGCACTTATATATAGTGTAACAAAGATTCATAC TAACTGTATATGTAACCCAAATGTAGGTTAAATAATAGAGAGAATACTGTTGAATACAATTGAGAAATAGTATAT AGCTGATGGTTATCTAACATGGACAAGTACACATCTTTTTTAGGGTAATGGACAGCTCTTATGGGGTGCAGATGA CCAAAGACAAAAATTTATTAATCAGTCAGGACTCAGCAACAACTTTTGTTCTTTCCATTAA

>Nicotiana tabacum v4.5 ch04 Nitab4.5_0004728g0060
TTGACTATTTATTGATGGGACTAATTCATGTCTTCCAGTTATGTTCCATTTACTAAATTTAATTATACATTATTA TTAATCAGTTTCTTGAGTATTTCCTTAAAAAATGCTCACCTTTTAATTTTCATCATTTAGACTTGAATTAATAAC TGATAAAACATTTAGAAAACATATACCTACATAAAATGTGCCAAAGTTTGAAATTTCCCGCTGAATAAGTGATTT AAAGTTCTTCCCAAAAATTGGAGCTTTTAGCTCAAATGTCATTGACTCAAAGTTGAGAACTTAATTATAAAGATG ATTTGAAATTCATCAACCACGGAGATGCTAACAGCAGAATTTTCTGGTTATAAAAAAAATTTGTAATTAGCAATT TTGTGTGCAATAGCATTAGTTTCCAGATTAATGAATCCAAATGGAGCCTTAGTAAAAGGAAAAGAAAAGTAAAAT TTTGTTTCACTTTACGCAACTGTCCTTTAATCTTTTCACAAATGAAAACGATATTTTTAACCGATATGTCCTTCT TTTTTTTTGTTTCTCACACGTTGTTCAGTACCCATATTGGAACCCCGACTATATCTGGATTCGCGCCACGTAGGG CCCCATTCGGGGGGAAGCGTTTTCCAGCAAGAATTTTTCCATACCCAAGGCTCGAACCCGAAATCTCTGGTTATG TGAATAATAACTTCATCCGCTGCACCACATCCTTTGGTGGTTTTATCCTAGATGTCATATTCAAATATTGTAACT TGTAACTTATAATCGAAAACTACTGATACTAGTACATAGTAAGGAGGACAAATTTTGTTTGTGGGGCTGGATCAA ATGTGTAGTTTCACGTTTTAAGACTGAATGAGCTTCAAGAACAGCCTGGACTTAGACAAAGACAAAAGCCCAACA ATGTTCAAATACCGATCAATGGTCTGAACTGTCCTATAGTTGTATTTTACATTTTGAGTGAAGATAGAAAGTCTC AAAATTCTTACTCCTATTAGGATATGAATTGCCATTAATCAAGTAGAAACGATTCAGCATAGAGAATTAATGTTT ACACAGAAAGCTAAATATTTAAGGAATTGAGCTATATTTTGGTATTAATTTAATTGAATGTCGTAATATGATGAT TTTGCTTGTGTTTTTAAGAAAATTTCAGAATTAAACTGTACTATAGAAAAAAGGTAAATTGCTTATAAATTTTTC ATATTATTATTATTATTAATATTTACCTTCTTCTCACCACAAGTTGCAGGCTAAAACTCAGATATATAAATTTTC CTATTGCTTATAAATTTTCCTATTGCTCTTATCATCACCACAAGTTGTAGGCTAAAACTCAAATATATAGCTAGG TTTTCTGGCAAGAGTATGAAAATGTGCTTATTCACGTTGGCCCAATTCAATGTATAAATACCTGACATCAGTTTT TACGATATCAATTTTCATAAAACACTATAGTTTACAGCGTAGTAATTATAGTTTGCCTAATTATCATTCATAATT ACTGTTTAATTGTTACATCACTCGCGCGAATGTATTCAACGAATACAACATGTATCAACTATAACCAAGGCGAAA TGCGTATACAAAGGATACAACTTGTATCGACTGTATTCGTAACCAAGGCGAAATACAGAAAGATAAGATGCTCTT GTTGAAAAATGGACTCAAGACTTTCATAAAGCACTATAGTTTAGAACCTAGTAATTATACCATTCGTAACTACTG TTTAATTGTTACATCACTTGTATTCAAACGCTCAACGAATACAACGAGCGAATGTATTCAACGAATACAACATGT ACCAACTATAACCAAGGCGAAATACAGGGGTGTATATATACAAATGATACAACCTGTATCGACTGTATTCATAAC CAAGGCAAAATACAGAAATACAAAAAAATTAAGATGCTCTTGTTGAAAGATGAACTCAAGACCTCCGGTAACTAA GCGGACGCTATAACCAACTGACTTACGAGAGCTTATTGTTCTCTTATTTCAGTTCAAAATAATTAATCTCTTGTT TCATGAATTTGCTATAAAATTTAAATATAACTACGGATGATAAATTTGCTGAAAGTATTGATACAAATGGTAAAT ATAATGTATATGTTTGACGTGTTATATGATGTTCCCTTTTATATAAGATGTTATTAGTTAGATATATGGTTAGGT AATACACTTTCTCACCAGATTTTATCATTAATCATGGTACACTACTAGTTTTTTTTCTTCTCACACAGCCATAAC TGCATTAGTGCTAGAAGCAATAGATTAAGTATAGGGCATACAGATTAGTACAATTATTATTATAGTATTAAAAGA TGACGAATACAAGTACAATTAATAACAGCAATAAATAGCTAGTGAATTGTCATTTAGATAACTGGCTTGAATCAT CATATCCCCAGTGTTTGCATCTCTGATTCACGGAAGGAAAACTGAGCCATAAAAAAAGAAGACTAAAAAAACAAC TGACACTTGATTATAATTGTTCGCCATAAATAATTCCCATTGGCCCTTGCGGTTGCCCTTCATGTTTGAGGAAAT TTTAACACAAGGTACTGTGTATATTTATAATGATTGTACTGTTCTGACATCATTATCTGCTAGCTTAAATTATTT AATATGTTAAATGAAAATTGTTTTATACAAAAAAAAAAAAGGAAAAAAAAAGAGAGTTGTATATAGATATAAGCT AAGCATATTTAATAGCCCCCACCTTCCCAAAGCTTGATTAGACCAGTCAAATACAAAGCAACTGCATGGGAATGA GCTAGAAAGTATTTTTAGCTAATATTTGGATGTCCTATCTCTCTCCTTATGTTTATATAAACCTGACCCTTTGGG ACTTTCTCAAACTCATTATAATATTTATTTCTCTCTTGATTACTACCTCTGGTTACCATTTCTCTCTTCCATCAC TTTCTTGAATCCTTCCCTTGGGATTTCCAAAGCAAATCATTTACTAATAAAGAAGAATTTTTTTTTTAAAAAAAG ATGGCTGCTTTTTCATACCAATTGCAGCACACAAACCCTTTCCTTCTTGACTCAGTTTTTTTGCCAAGTTCTCCT ATTAAGATGTCTGGTTTTTTAGAGGAACAAAACAATTCTATAGTACAGATGTTTTACTCAATTTTACCAACCAGA ATCTTTTCAGCAGCTCCCAACTGCCAATGTGATTGTTCATGAAAGTAGCTATTGCCTTGACCAAAGCACAAATGT

TACACTTGGCCAAAATGAGCCTAATTCTGTGACCAACAACCGTAGCAGCAGTGTTAGCTTGGATATGGATTCTTC CTCTGTCACTGATAAAATAGAAAGTAGGAATAAGCCTAATTTTACTCCTATGGACAAGAAAAGAAAATCCAGAGA AGGGTCTTCCTCAATGAGTTCTGCTCATTCTAAGGTAATATAGTTCTTCTATATATGTCTATAAATTTTCATCTC CTTGATAAAGTTCTTGGCCTTTCTCCTGATGAATTTGAATTGGGATTAATTATATATCTGTTTTTTCTTAGAATG TAAAACAGGTTGATAATGGGAAAAAGAAGAAAAGCAATAGCCAATCAGTAGCCAAAGAGGAGAAAAAGGGAAAAG AGGAGAAGAAAGCTAATGAAGAGGCTCCAACAGGCTACATTCATGTTAGAGCAAGAAGGGGTCAAGCAACAGACA GCCATAGTCTTGCTGAAAGGGTACAATTTTCTTTTTCCCCTTTAGCCATTTTGTAATTAATAGGATTAATTCTTT TCACTAAGATAATAATTAATTACTGATGTTCTATATATATATGGTAATTATTCGTTTGGAACAGTTTTCTTACTG TTTAACTTGTGACATGATCTCAGGTGCGGAGAGAGAAAATAAGTGAAAGGATGAAGATACTGCAATCTATTGTTC CTGGTTGTGACAAGGTGAATAACAAAGTTAGTTCAGTAATTTGTCTTTTATTTGTCTTTATATGTACAGTAGAGT GACACTTTTTCAAGAAAAGTAGTCTGTATATTTTTCTTTCTTTATTTATTTAATTGTTCTGACATTTTTCATGTG ACCTGAATGAGATCAGGTAACTGGGAAGGCCCTCATGTTGGATGAGATAATCAATTATGTCCAATCTTTGCAAAA CCAAGTTGAGGTAAAAATAATAAGTAATTAATAATATCCTTTATTTGACCTTGTATGATTAATTAACTGTCTCAT TCAATTACCTAAAATATTAATATTATTGTGTTTCCCATGTTTCAGTTTCTCTTCATGAAACTTGCTTCTTTGAAT CCAATGTACTATGATTTTGGCATGGACTTAGATGCACTCATGGTCAGACCTGACCAGGTAGAAACTTTTTAGTTC AGTTTATGGATTTTCTTTAAATATTTAGTAGTTTTATTACTACTACTTTTCAGTATTAATTAATCAGACTCTTTT TTTCTTTAATCTCTTTTCAGAGTTTGAGTGGATTGGGAACACCACTGCCAAATATGCAGCAAGCTAGCCCTACTA ACATTACATCGCAGGCAGCTGAAGTTATTCCTAACATTAATAATAGTGGCTATCCTTTCTTGGATAATTCAGCTT CACTCATGTTTCAACAAGCACATTTTCCTAATTCCATTTCTCAGGTATTGCATATTCATTGAATATGGTAACTCT TTAAATAATCACCAACTAGACAAAAACCTAAAAGACATACTATGATGGATCCTACTGTTGAATACAATTGAGAAA TAGTATGCCTGATGTATATTTAACATGGACAAGTACATATCTTTTTCAGGGTAATGGACAGCTCTTATGGGGTGC AGATGACCAAAGACAAAAATTTATTAATCAGTCAGGACTCAGCAACAACTTTTGTTCTTTCCATTAA

>Nicotiana attenuata v2 Scaffold03036

GCCACATGTAATGAGCATTAAATGGAAGTGACAATTGAAGCATCGATTCTATCATAGCATTAATGGCGGTAAACA TTCCCGCTTTAATGAAATCCACTTCCCAAATATTCAATTGATGAATAAATGGCAAGTGGGGGGACTATCTGTATT GGGTAAAACTGAGTTTATACATATCGAAGTGATTGAAAGATGATATGTCATGACACATAGGTAGGTCAAAGAATG ATGATTAGCAAAGAGGCACGAGTTGCAACAGATACGAGCGGAAGCACAAGAAGAGGCACGAGCAAATATTCAAAA GACTCAATGCTCGTACCTATTTAAGTCTAAAAGCTGAAAAGAATGAACCTGACAGCACAGGAGAGCCCAGATACA GTATTTAATAAGCATTAAATACTGAAAACGTTAGAGAATCTGTATTAAATTACAATGATTATGTAACGTAACATT TAATGCCTTTAATCGTCCATCATGACCTTATTATGACAAATGCAAAATATATAACTTAAAAATAGCTATAAAAGG GAGAAGACTGATCATTTGTAAGGACACGAAAAATCAACTGAATATATTGGATTACTTTGTTTTCTGCTATCTATT TGTTATCAAAATCAATTTCTTTTATTCATTTTCGATTATCAGTAACCCGAGTTCTTCTAAAAATAAAGCTTTGAC TGAAATTCCATTTTTTGATTAAACAGTCCATAGTTTGAAATTTCCCGAATAAGCGATTTAAATTTCTTCCCAAAA ATTGGAGCTTTTAGCTCAAAATGTCATTGACTCAAAGTTGAGAACTTGATTATAAATATGATTTGAAATTCATCA ACCACAGAGGATGCTAACAGCAGAATTTTCTGGTTATATAAAAAAACCTTTGTAATTAGCAATTTTGTGTGCAAT AAATAGCATGAGTTTCCAAATTAATGAGTCCAAATGGAGCCTTAGTAAAAGGAAAAGAAAAGTAAAATTTTGTTT CACTTTACGCCACTGTCCTTTAATCTTTTCACAAATGAAAACGATATTTTTATCCTAGATGTCTTTTTTTTTTTT CCTCACCCGGTGTCCAATACCCATATTGGAACCCGACTTACTATATCCGGATTCTCGCCACGTAGAGCCCATTCG GGGCAAAGCGTTACCTATCAAGAATTTTTCTATACCCAAGGCTCGAACCGAACGCCTATGGTTAAGGAAAGAACA GCCCCATCTACTGCACCACGTCCTTTGGTGGTTTTATCCTAGATGTCATATTCAAATATTTTGTAACTTATAATC GAAAACTACTCGTACATAGTAAGGAGGACAAATTTTGATTGTGGGGCTGGATCAAATGTATAGTTTCACGTTTTA AGACTGAATGAGCTTCAAGAACAGGCTGGACTTAGACAAAGACAAAAAAGCCCAACAATGTTCAAAATACCAATC AATGGTCTGAACTGTCCTATAGTTGTATTTTTACATTTTGAGTGAAGATAGAAAGTCTCAAAATTCTTACTCCAA TTAGGATATCAATTGACACTAATCATGTACAAAAGATTCAGCATAGAGAATTAATGTTTACAATGAAAGCTAAAG ATTTAAGGAATTGAGCTATATATTGCTATTACTTTAATTGACTGTCGTAATATGATGATTTTGCATGTGTTTTAA GAAAATTTCAGAATTAAACTGTACTATATAGAAAAAAGGTAAATTGCTTATAAATTATTATTATTATTATTATTA TTATTATTATTATTATTATTATTATTATTATTATTATTATTATTATTATTATTATTATCCCTCTTCTCATCACAA GTTGTAGGCTAAAACTCAAATATATAGCTAGGTTTTCAGGCAAGAGTATGAAAATGTGCTTATTCACATTGGCCT AATATTCAATGCATAAATACCTGATATCAGTTTTTATATAAGCTGTTATTAGTTAGATATGGTTAGTTAATACAC TTTCTCACCCGATTTTATCATTAATCATGGTAAACTAATGTAGTTTTGTTTTTTTAAAAAAAACTAGGTGTAGGT AAGCTTTTTTTATTTTCTCACACAGCCATAAGTGCATTAGTGCTAGAAGCAATAGATTAAGTATAGGGCATACAG ATTAGTACAATTATTGTAGTATTAAAAGATGACAAATACAAGTACAATTAATAACAGCAATAAATAGGTAGTGAA TTGTCATATAGAGAACTGGCTTGAATCATCATATCCCCAGTGTTTGCATCTCTGATTCACTGAAGGAAAACTGAG CCATAAAAAAAGGAAGACAAAAAGCAACTGACACTTCATTATAATTGTTCGCCAAATAAATATTTCCCATTGACC CTTACGGTAACCCTTCATGTTTGAGGAAATTTTAACACAAGATACTATGTATGTTTATTTGTTGTTTGATACTGA TTGTTCTCTTATTATCTTATTATTATTACTGTTTGTTCTTTTATTATCTTGTTGTTGGTATTGCCGGTTGTTGCT GCTTTTTTTTTTCTTGAGCCGGGGGCTATATGTATGAAACAACCTCTCTACCTCCCTAGACCCCATTCGTGAGAT TATACTGTTTTTTTCTTCTTCTTTTTTTTGTACTGTGTATGTTTCTAATTATAGTACTGTTCTGACATCATTATC TGCTAGCTTAAATTATTTATTGTGTTAAAGGAAAATTATTTTTTTAGAAAAAAAAAAAGAGTTGTATTTGGATAT AAGCTTAGCATATTTAATAGCCTCCACCTTCCCAAAGCTTGATAAGACCAGTCAAATGCAAAGCAACTGCATGGG AATGAACTAGAAAATATTTTTAGCTAAAATTTGGATGCCTTGTCTCTCTCCTTATGTTTATATAAACCTGTCCCT TTGGGACTTTCTCAAACTCATTTTAATATTTATTTCTCTCTTGACCTCTGTTTACCATTTCTCTCTTTTATCACT

SUPPLEMENTARY INFORMATION

Abstract

TTCTTGAATCCTTCCCTTGGGATTTCCAAAGCAAATCATATACTAATAAAGAAGAATTTTTTTTTAAAAAAAAAG ATGGCTGCTTTTTCATACCAATTACAGCACACAAACCCTTTCCTTCTTGACTCAGTTTTTTTGCCAAGTTCTCCA ATTAAGATGTCTGGTTTTTTAGAGGAACCAAACAATTCTATAGTGCAGAATTGTTTTACTCAATTTTACCAACCA GAATCTTTTCAGCAGCTCCCAACTGCCAATGTGATTGGTCATGAAAGTAGCTATTGCCTTGACCAAAGCACAAAT GTTACACTTAGCCAAAATGAGCTTAATTCTGTGACCAACAACAGTAGCAGCAGTGTTAGCTTGGATATGGATTCT TCCTCTGTTACTGATAAAATAGAAAGTGGGAATAAGCCTAATTTTATTCCTATGGACAAGAAAAGAAAATCCAGA GAAGGGTCTTCTTCTATGAGTTCTGCTCATTCTAAGGTAATACAATTCTTCTATATTGATCAATTTCTTTTCTTT TCTCCTGATGAATTTGGATTTGAGATTAACTATCTGTTTCCTTAGAATGTAAAACAGGTTGATAATGGGAAAAAG AAAAAAAACTATAGCCAATTAGTAGCCAAAGAAGAGAAAAAGGGAAAAGATGAAAACAAAAAAGAGGAGAAAAAA GCTAATGAAGAGGCTCCAACAGGCTACATTCATGTTAGAGCAAGAAGGGGTCAAGCAACAGACAGCCATAGTCTT GCTGAAAGGGTACAACTTTTTTTCCCTTTAGTAGGATTAATTTTTTTCACTAAGATAATAATTAATTACCATGTC ATAGTAATTATTCATTTAAACAGTTTTTTCACTGTTTAACTTGTGACATGATCTCAGGTGAGGAGAGAGAAAATA AGTGAAAGGATGAAGATACTGCAATCTCTTGTTCCTGGTTGTGACAAGGTGAATAACAAAGTTAGTTCAGTAATT TGTCTTTTATTTGTCTTTCTATGTACAGTAAAGTGATACTTTTTCAACAAAAGTAGTCTGTATATTTTTCTTTAT TTATTTAATTGTTCTGACAATTTTCATGTGACCTGAATGAGATCAGGTAACTGGGAAGGCCCTCATGTTGGATGA GATAATCAATTATGTCCAATCTTTGCAAAACCAAGTTGAGGTAAAAATAATACTAGTAATTAATAATACCCTTTA TTTAATAATTTCACTGTCTCATTCATTTAACCTAAAATATTACTAATATTATTTGGTTCTTATGTATCAGTTTCT CTCCATGAAACTTGCTTCTTCTAATCCAATGTACTATGACTTTGGCATGGACTTAGATACACTCATGATCAGACC TGACCAGGTATGAATTTTTTTTGGTTCAGTTTATGGATTTTCTTCAAATATTTAGTAGTTTTATTACTACTACTT TTCAATATTAATTAATAAGATTTTTTTTTCTTTAATCTTTTTTCAGAGTTTGAGTGGATTGGGAACACAACTGCC AAACATGCAGCAAGCTAGCCCTACTAACATTACATCACAGGCAGCTGAAGTTATTCCTAACATTAATAATAGTGG CTATCCTTTCATGGATAATTCAGCTTTACTCATGTTTCAACAAGCCCATTTTCCTAATTCCATTTCTCAGGTATT GCATATTCATTGAATATGGTCATATGGGCAATCTATAATACTTCTGTACATAATCACCAACTAGACAAAAACCTA ATAGGTTAAATTGGAAAAATAGAGTAATATCCTACTATAATAGGTTAAATTGCACTTATATATAGTGTAACAAAG GTTCATACTAACTGTATATGTAACCCAAATCTAGGTTAAATAATAGAGAGAATACTGTTGAATACAATTGAAAAA TAGTATATAGCTGATGTTTATCTAACATGGACAAGTACATATCTTTTTCAGGGTAATGGACAGCTCTTATGGGGT GCAGATGACCAAAGACAAAAATTTATTAATCAGCCAGGACTCAGCAACAACTTTTGTTCTTTCCATTAA

>Petunia axillaris v1.6.2 Peaxil62Scf00171g01120
AATGCATAGCATACAAGTTTAAACAATTTTTTTTTTTTTAAAAAAAACTTGAAAAGAATAATAGAATATATCGTG ACCGGAATCCGGTGACCGTCAGTAGCCGGTAGAGACTGGCTGAAGGAGGTGGAGGGGGTTGGGGGCAATGTAGAA AAAGAAAGGGGGTCTAGAGTTTGTTTCCCTCTTTTATGTATATTTGTTATTTTTTGATAAAAAAGTATTGCTATT TTTGAAACTCCAATAATACCGCTATTTTTATGTAAGAAGGAATGTTACTTTGTATAGTTATGTAATTAACCCAAT TATTTATGTATAGAACCAGCTCAAGCACTTAAAACTAGAGAGATTTACAAATATATACAATCCTAACACCAAAAT TACAAAAAAATACCAATATTATTCCATTTTACAAAAAATACCAACATTTTTTACACATTATATACAAAAATCAAC AAAAGTAATAAATTAGGGTTCCTCCTTCTTCCTACTGCCCCCCACCACTGCTACCACCCCAGGCGGCGGCGCTGC CGGCCGCCGCCATTCACCACTAGTATTTTTTTTTTTTTTTTTTGATCTAAAAAATAAAATACACATAATACACAT GTAAACATTGATTTTTTTTTTTTGAAATTAAAGTTGAAAATAATATAAATAAAAATACATGTAAATACACAAAAA ATTGTGTTATAAATACACTAAGCACACACATACATACACGAATCTACAGATCTACAAACGAAACATACAAATTTA TGTGTGTGACATTTATTACTTGACATACAACAAAAAATACATACAAAAAATACAAATAGATGCTCGGATATACAC GTTCATACAGTGATATACACGACATATACTTGTGTGTTGAAATTATTTACATGTATATACACGAACATACAGATT ACATACACTTGTAGATCTGAATTTGAATGTGTATATTCAAATGCAAAAAAGAAGAAGGAGAAACAGATCTGAACT TGTATTATACAAAATACACATGTATACATGAGAAATACACACATATACACGTACAGAATGAAAAAAAAAGAGGAG AAGATCGGAAAAAAGGAGCAGATCTGCTTCAATTCGCTGCGGTGGAGCACGCAGCGACGGCGATCGACGAGGGGG GGCGGGGGTGGGTGGAGGAGAGGAGAGAAAGAGAGAGGGAGAAGTTAGGGTTTTGGGTAGAGAGGGAAGAAAGGA AATGAAAAATTGTATATTTTGTAAAATGTGAAAAAATGTTGGTATGTAGGGTAATTATTTAAAAATATCGGTAAT TTTTGTAATTAAGTGGTTTAATATGTCAATTAGCGTAAAAATGTCTTAAAACTATTCGTAACCATGTATAATAGC CCACAATATTTCATATTAACAAGTCATTTAGCACTAACATAATATAGCCACAATATTTATATTTAAAATCTAATT TATAATTAAAAATATCAAATATAATTGATTGATATTTTGTATATATACCTTCTATACACATATATATATTTGTCC TATATTTTTTAAATATTTATATCATCAAATTATATTTAATAAATATGCTAGAAAAAGAAAGAAATGACAAAATTT GGTTACAAAAGTGGATAAAGGTTGGGAATGGTTATATGGGGTAAAAATTCCTTTTTTAAAAGCCAACCCAAATGG GCTTTTCTGAATCAGTGCATAGCTGCGTATAAGTATAGGGCATTCGGATTAGTACAATTATTTGAAGACGACGAA TACAAATAAGGACAGCAATAAATAGCCATTTTTATTACGTTCCTACTCTTGTGAATTGTCATTTAAACAACTGAC TTGAATCATCATGTATGTCTTCAGTGTTTACATGTCTGCTTCACTGAAGATAGGAAAAACAGAGCCCTTCAACCC AAAAGGGGAAGACCAAAAAAGCAACTGACATTGTGTTATAATTGTTCGCCATAAATAAATGCCCTTCCGGTTGCC CTGCATGTTTGAGTATTAATTGTCAAATGATATTGCCTGCAACACTATTACTTTAGCGGATTTACATTATTTACA TTATCAATACAAGTTTAATTTGTTATAGTAGGTTTATTCACTATTTAGTTTAATTTGTAATGGTAGTTTAATCAG AGGCGGAACCATGATTTGAAGTTTAGGGGTTCAAGTTCTAATTTTATAAAGTATGAGATTCTAAATTAATAATTT ATTCATATTATACGAATTTCGTAACAAATATAGAATTTGCATCAAAATTAGGGGGTTCGGGGTTCCTCTAACTCT GCCATTGATTGTAGCCTAGGTACTATTTCAAAAAACATATTCAATATGATCTACAAAGCTAAGTGAGGTCTAGGG AGGCTTATGTTTATGCAGACATATTTCTTAATTGGTAAAAACAATGATACCGATACTATTTTGTAAATGATATAG AATCCCTTTTTGGGCATGCTAGTCTCCTTATAAATGTAGGCTGATTGATATAGCTCTTGTAACTATGGAATTAGC ATTGCCTTTGTGCTAATATTAGTACATACGCACATACCATTCTAAAAAGAAGTATTTAATTATAGTAGTATATTT

Abstract

TAATTATATTAAGAAATGGTAAAGGAAATTTTAACACAAGGTCCTGTGTTTATAATGATAGTAGTACTGTTCTGA САТСАСТАТСТGСТТAAAATTTAATATGTTCAAGGGGAATTTTATTTACTAAAATAAAAACAGAGTTGTCTATAG ATATAAGCTACAGTAGCATACTTAATAGCCCCACCTTCCCCCAAGCCAAGTTTGATAGGACCAGTCAAATGCAAA GAAACTGCATGGGATGACTTTAAAAGTATTTTTAGCTAAAATTTGTATGTCCTATCTCTCTCCTCATGTTTATAT AAACCTGACCCTTTGTGATTTTCTCAGACCAATTAATTATTTCCCCTCTTGAGTAATAGTACAACCTCTCTGTTT AСАСТТТСТТGAATССТТТAGTTGGGAAAATCCAAAGCAAATCATAAACTAACAAAGAAGAAAACAAAAACAAAA ATGGCTGCTTATTCATACCAATTACAGCACACAAATCCTTTTCTTGTTGACACAGTTTTTTTGCCAAGTTCTCCT ATTAAGATGTCTGGTTATTTGGAGGAACCAAACAACCAAAACTATTTTTCTCAATTTTACCAATTACCAGAATCT TGTCAGCACCTCCCTACAAATATGATTGTTCATGAAAGTAGCTATTGTCTTGACCAAAGCACAAATGTTACTCTT AGCCAAAATGAGCCTTCTGAGACTAACAAAAGTAGCAGCAGCAATATCTTGGATATAGAATCTTCTTCAGTTACT GATAAAATTGAAACTGGGAATAAGCCTATGAACAAGAAAAGAAAAGCCAGAGAAGGGTCTAATTCTTCAATGAGT TСТGСТСАТTСТAAGGTACTAACTGTTCTTCTATATGTGTTTCTAAATGTTCATGTCTTTATCATTTTCTTTGCT ТТТСТТССАATGAATTCTGAATTGGATTAATTAATTTTGTTCTCTAATTAGAATGTAAGAGAGGGTGATCATGGA AAAAAGAAGAAAAACAATAGCCAAGTATCCAAAGATGCTAAAGAGAAAAAAGGAAGTGATGACAACAAGAAAGAG GAGAACAAATCTCATGAAGAGGCACCTACTGGCTACATTCATGTTAGAGCAAGAAGGGGCCAAGCAACTGACAGC CATAGTCTTGCTGAAAGGGTACTGTAATTTCCCTTTAGCAATTTCAATAGTTTAATGACTTTAGTGTTATTAGTA ACTTCAGTTATATCAAGTAAAATTCAGTTATTATGAGAAAATAGTTAACTGATATTTTTGTTATTATGAATGGAA ССААТТТАТTATTAACCATACATGAAATTAACCACCATCTTGTCTTGTCATAAGTATCATATACGTATATACGTA TGTCAGTTATTCATGTACGACATTTTTCTTACTGTTAAACTTGTGATATGATATCAGGTGAGGAGAGAGAAAATA AGTGAAAGGATGAAGATACTGCAATCTCTTGTTCCTGGTTGTGACAAGGTGAACAATTAAAGTTAGTTCAGTATT TTGTСTTCTATTTGTCTTTCCGTGTACAGTAGAGAGATACTTTTTCAAGAAAGTAGTAGTAGTAATGTGTGTATA TTTATATATTTTTСТТTTTTTATATTTTCTGACAATTTTCATGTGATCTGAATGAGATCAGGTAACTGGGAAGGC ССТСATGTTGGATGAAATAATTAATTATGTCCAATCTTTGCAAAACCAAGTTGAGGTGAAATAATTATTATATTA ATTGCATTTATTATCTAAAATAGAAGAAGAAAACCATCTGAGTAATAAATTACTAATATTATTTGTTTCTCATGT ATTTCAGTTTCTCTCCATGAAACTTGCTTCTTCAAATCCAATGTACTATGACTTTGGCATGGACTTAGATGCACT CATGGTCAGACCTAACCAGGTATAAAAAAAAAGTATTGTGTAATTCATTTCTTGTAATTTTTTAATTTTCAGTAT TGAGATTAATTTTTCTTTTATATTATTCTTTATTCAGAATTTGGGTGGTTTGGAGACACCACTGCCAAACATTCA GСAAACCAGCATTACTGATACTACACCACAGGCAGCTGCAGTCATTCCTAACATTAATAATGGCTATCCTTTCTT GGATAATTCAGCCTCACTTTTGTTTCAACAAGCCCATTTCCCTAATTCCATTTCTCAGGTATTCCATATATTCAT TGAATATGGTCATCTTTAAGGCTCTACACATAATCACCAAGTAGACATTTACCTAAAAGACAATACTATGATGGA AACACCTCCAAGACATGGTTTTTTTTTAGAGTATATTGAGTTCCATGGCAATAAATAACATATAAAAAAAATAAA GAAGTTACCTAATTATATAAAAAAATACTTCTACTGTTAGTATAAGTATATTACTTATATAAATTTACAAACTCA AAACAATAATATACTCCATATACAATACTGCAGAGAAAGACTAGTAATATAATACATGATGTATTTTTTTCTAAC ATGCACAAGTACACATCTTTTTCAGGGTAATGGACAGCTCTTATGGGGTGCGGATGACCAAAGACAAAAAATTAC TATTGATCAGTCAGGATTCAGCAACAACTTTTGTTCTTTCCATTAA

>Petunia inflata v1.0.1 Peinf101Scf03000g00020
ТАТТАСТСТТТТТТСТTGTTACCCTСTTСTCACCGCAAGTTTTAGGCTAACATTCTAGTCTAAAAATTCCGTGCC AAGAACATCATATGACAAATATATTTATTTGCACGTTTGTTTCAACTCAATAAATATTTATCGTTAATCTTTACA TGTTGCCAATTAGTTATAGTTAATTGATACACATTATTACTTCAAATTTTACAACTAATTATGGTTAAAACATAC TCTGTTTGTTCTATTATAAGCGTCTAACTTATTTATTTTATTATTAAATGTGATAATCGTTTTAATCGCAGGTCA GTATTGATAAAAAATAGATAATCTGATAATTTTATTTAGTTAATAAGAGTGTTTGGATAACTTAAAAGTGCTTAG ATTTTTTGGCTTTTAAGCTAAAAATAAAAGCAAAAAAGTTATAAGCTGTGTAATCCTTATAATTTATTGATTTTT GGCTTAAAAGCTGTTATAGTTAGATCAACTTTTTTAGTTTTTATTTTATAATTTTTTTTAATTTCACTAATACCT TСACTAGCAAATTTCTAAAAATATTGTCCTTTTTCTATTTTAAGGGTATTTTGATCATTTAATTGAAGTTTTAGT AAAATTCAATAGCATTTTAAGAAATCTTACGTTGAATCTTCGCTTGAACAGAGCAATCTGTAAAAGGAATAGATT TTTAGCATTTTCTTGATCGCGTGAATGAAGAAAAGGAAGAGAAGAGACTGGACAAGTCTTTTTATTGGTTGTGAA GGGGTATTTTCGTCTGCAATAAGTTTCATTAAACTAATGGAGGACATTTTTGCTAAACCACTGTTATTTAGAAAA TTTTGGCAGATCATTGCGTCATATTTTTGCAAATCAGCCCACATTATTACTTTAAGATATTCTGTTTGTTCTATT ATAAGCATCTAATTTAAATATTTTATTATTAAATGTGATAACCATTTTAATCGCAGGGTCAATATTAATGAAAAA TAGATAACTTTTATTTAGTTAATAAGAGTGTTTGGATAACTGAAAAGTGCCTAAAGTTTTTGACTTTTAAACTTA AAAAAAAAGGCCAAAACTTATAAGTTGTGTAATCCTTATTTATTGTTTTTGGCTTAAAAGCTGTTATAGTTAGAT СААСТАТTTTAGTTTTTTATTTTATATATATTTTTTTAATTTCACTAATACCCTCACTAGCAAATTCCTAAAAAT ATTTTCCTTTTTATTTTAAAGGTATTTTGATTATGTTATTAAAAAAAAATATTTTTATTTAAAGTTTCAAATACT TСТАТССАAATAGTAATTACTTATGTATAAAACTAGCTCAAGCTCTTAAAAACTATTCGTAAGCATGTATACTTA AAAACTTTTTTTTTTTTAAAGCCAACCCAAATGGGCTTTTCTGAATCAGTGCATAGCTGCGTATAGAGTATAGGG CATTCGGATTAGTACAATTATTTGAAGACGACGAATACAAATAAGGACAGCAATAAATAGCCATTTTTATTACGT ТССТАСТСТТGTGAATTGTСATTTAAACAACTGACTTGAATCATCATGTCTTCAGTGTTTACATGTCTGCTTCAC TGAAGATAGGAAAAACAGAGCCCTTCAACCCAAAAGAGGAAGACCAAAAAAGCAACTGACATTGTGTTATAATTG TTCGCCATAAATAAATGCCCTTCCGGTTGCCCTGCATGTTTGAGTATTAATTGTCAAATGATATTGCCTGCAACA СТАТТAСTTTAGCGGATTTACATTATTTACATTATCAATACAAGTTTAATTTGTTATAGTAGGATTATTCACTAT TTAGTTTAATTTGTAATGGTAGTTTAAGCAGAGGCGGAACCATGATTTGAAGTTTAATGGTTCAAGTTCTAATTT TATAAAGTACGAGATTCTAAGTTAATAATTTATTCATATTATACGAATTTCATAACAAATACAGAATTTGTATCA

SUPPLEMENTARY INFORMATION

Abstract

AAATTAGGGGGTTCGGGGTTCCTCTAACTCTGCCATTGAATGTAGCCAAGGTACTATTTCAAAAAACATATTCAA TATGATCCACAAAGCTAAGTGAGGTCTAGGGAGGCTTATGTTTATGCAGACATATTTCTTAATTGGTAAAAACAA TGATACCGATACTATTTCGTAAATGATATAGAATCCCTTTTTGGGCATGCTAGTCTCCTTATAAATGTAGGCTGA TTGATATAGCTCTTGTAACTATGGAATTAGCATTGCCTTTGTGCTAATATTAGTACATACGCACATACCATTCTA AAAAGAAGTATTTAATTATAGTATATTTTAATTATATTAAGAAATGGTAAAGGAAATTTTAACACAAGGTCCTGT GTTTATAATGATAGTAGTACTGTTCTGACATCACTATCTGCTTAAAATTTAATATGTTCAAGGGGAATTTTATTT ACTAAAATAAAAACAGAGTTGTCTATAGATATAAGCTACAGTAGCATATATACTTAATAGCCCCACCTTCCCCCA AGCCAAGTTTGATAGGACCAGTCAAATGCAAAGAAACTGCATGGGATGACTTTAAAAGTATTTTTAGCTAAAATT TGTATGTCCTATCTCTCTCCTCATGTTTATATAAACCTGACCCTTTGTGATTTTCNCTTAATAGCCCCACCTTCC CCAAGCCAAATTTGATAGGACCAGTCAAATGCAAAGAAACTGCATGGGATGACTTTAAAAGTATTTTTAGCTAAA

 ATTTGTATGTCCTATNTATACTTAATAGCCCCACCTTCCCCCAAGCCAAGTTTGATAGGACCAGTCAAATGCAAA GAAACTGCATGGGATGACTTTAAAAGTATTTTTAGCTAAAATTTGTATGTCCTATCTCTCTCCTCATGTTTATAT AAACCTGACCCTTTGTGATTTTCTCAGACCAATTAATTATTTCCCCTCTTGAGTACTAGTACAACCTCTCTGTTT ACACTTTCTTGAATCCTTTAGTTGGGAAAATCCAAAGCAAATCATAAACTAACAAAGAAGAAAACAAAAACAAAA ATGGCTGCTTATTCATACCAATTACAGCACACAAATCCTTTTCTTGTTGACACAGTTTTTTTGCCAAGTTCTCCT ATTAAGATGTCTGGTTATTTGGAGGAACCAAACAACCAAAACTATTTTTCTCAATTTTACCAATTACCAGAATCT TGTCAGCAGCTCCCTACAAATATGATTGTTCATGAAAGTAGCTATTGTCTTGACCAAAGTACAAATGTTACTCTT AGCCAAAATGAGCCTTCTGAGACTAACAAAAGTAGCAGCAGCAATATCTTGGATATAGAATCTTCTTCAGTTACT GATAAAATTGAAACTGGGAATAAGCCTATGAACAAGAAAAGAAAAGCCAGAGAAGGGTCTAATTCTTCAATGAGT TCTGCTCATTCTAAGGTACTAATTGTTCTTCTATATGTGTATCTAAATGTTCATGTCTTTATCATTTTCTTTGCT TTTCTTCCAATGAATTCTGAATTGGATTAATTAATTTTGTTCTCTAATTAGAATGTAAAAGAGGGTGATCATGGA AAAAAGAAGAAAAACAATAGCCAAGTATCCAAAGATGCTAAAGAGAAAAAGGGAAGTGATGACAACAAGAAAGAG GAGAACAAATCTCATGAAGAGGCACCTACTGGCTACATTCATGTTAGAGCAAGAAGGGGCCAAGCAACTGACAGC CATAGTCTTGCTGAAAGGGTACTGTAATTTCCCTTTAGCAATTTCAATAGTTTAATGACTTTAGTGTTATTAGTA ACTTCAGTTATATCAAGTAAAATTCAGTTATTATGAGAAAATAGTTAACTGATATTTTTGTTATTATGAATGGAA GCAATTTATTATTAACCATACATGAAATTAACCACCATCTTTTCTTGTCATAAGTATCATATACGTATATACGTA TGTCAGTTATTCATGTACGACATTTTTCTTACTGTTAAACTTGTGATATGATATCAGGTGAGGAGAGAGAAAATA AGTGAAAGGATGAAGATACTGCAATCTCTTGTTCCTGGTTGTGACAAGGTGAACAATTAAAGTTAGTTCAGTATT TTGTCTTCTATTTGTCTTTCCGTGTACAGTAGAGAGATACTTTTTCATGAAAGTAGTAGTAGTAGTGTGTGTATA TTTATATATTTTTCTTTTTTTTATATTTTCTGACAATTTTCATGTGATCTGAATGAGATCAGGTAACTGGGAAGG CCCTCATGTTGGATGAAATAATTAATTATGTCCAATCTTTGCAAAACCAAGTTGAGGTAAAATAATTATTATATT AATTGCATTTATTATCTAAAATAGAAGAAGTAAACCATCTGNTAACTTCAGTTATATCAAGTAAAATTCAGTTAT TATGAGAAAATAGTTAACTGATATTTTTGTTATTAAGAATGGAAGCAATTTATTATTAACCATACATGAAATTAA CCACCATCTTTTCTTGTCATAAGTATCATATACGTATGTCAGTTATTCATGTACGACATTTTTCTTACTGTTAAA CTTGTGATATGATATCAGGTGAGGAGAGAGAAAATAAGTGAAAGGATGAAGATACTGCAATCTCTTGTTCCTGGT TGTGACAAGGTGAACAATTAAAGTTAGTTCAGTATTTTGTCTTCTATTTGTCTTTCCGTGTACAGTAGAGAGATA CTTTTTCATGAAAGTAGTAGTAGTAGTGTGTGTATNAGAAAGTAGTAGTAGTAATGTGTGTATATTTATATATTT TTCTTTTTTTATATTTTCTGACAATTTTCATGTGATCTGAATGAGATCAGGTAACTGGGAAGGCCCTCATGTTGG ATGAAATAATTAATTATGTCCAATCTTTGCAAAACCAAGTTGAGGTAAAATAATTATTATATTAATTGCATTTAT TATCTAAAATAGAAGAAGTAAACCATCTGAGTAATAAATTACTAATATTATTTGTTTCTCATGTATTTCAGTTTC TCTCCATGAAACTTGCTTCTTCAAATCCAATGTACTATGACTTTGGCATGGACTTAGATGCACTCATGGTCAGAC CTAACCAGGTATAAATAAAAAAAAAGTATTGTGCTAATTCATTTCTTGTAATTTTTTAATTTTCAGTATTGAGAC TAATTTTTCTTTTATATTATTCTTTATTCAGAATTTGGGTGGTTTGGAGACACCACTGCCAAATATTCAGCAAAC CAGCATTACTGATACTACACCACAGGCAGCTGCAGTCATTCCTAACATTAATAATGGCTATCCTTTCTTGGATAA TTCAGCCTCACTTTTGTTTCAACAAGCCCATTTCCCTAATTCCAATTCTCAGGTATTACATATATTCATTGAATA TGGTCATCTTTAAGGCTCTACACATAATCACCAAGTAGACATTTACCTAAAAGACAATACTATGATGGAAACACC TCCAAGACATGTTTTTTTAAGAGTATATTGAGTTCCATGGCAATAAATAACATATAAAAAATAAAATAAAGAATA CAATCTAAATACAATATCAATGTAGTGGTTGGTTACGTGTAGTTATCTTTTAAATGATCTAATTGATTTTGATAG ACATAATTAAAAAGTTACCTAATTATATAACAAAAATACTTCTACTGTTAGTATAAGTATATTACTTATATAAAT TTACAAACTCAAAACAATAATATACTCCATATACAATACTGCAGAGAAAGACTAGTAATATAATACATGATGTAT TTTTTTCTAACATGCACAAGTACACATCTTTTTCAGGGTAATGGACAGCTCTTATGGGGTGCGGATGACCAAAGA CAAAAAATTACTATTGATCAGTCAGGATTCAGCAACAACTTTTGTTCTTTCCATTAA
>Coffea arabica ch04 CM011113.1

TGTGATCTTTTTACTCTTCTCTTGGCCATAGGATTCATAAATAATTAAGCTAGTACCCATGGCACGGAGTTGTCT GGAGATACAAGCTCAGATCTTTGATAGCCCCCACCTTCGCCATGCCTTGAACTGTTCATGCACAGTGGTGCGACC ATGAATGGGCTTTGAGTAAAGCAATTCTGATACGGATGAATTCGGGGGTCTGAGACAGGTATAGTTGAGATTTTG GTACGATTTTGCAACTTTGGATATTTTACATGATTTAGTATAAATTAACTTTGTTTTGTTATATGAGTGAATTTT GTTCATGCATACGAGTACAATTGTAGATACAATTGTATCTACAATAGCACACTGTGAAAGAAATATAACAACCGC ACTAATTGTACCAAAAACCAACCGCATGCGACTCAATCCATCGCAGAAGACGGAGTGGTAAAGGGGATAACCAGC CACTCCCTGCTCAATTTTTTTAAAAATTTTAATTTTTATCCTATGTAATTTTAGTACTAGCTGTAGTAGATGGAA TCTCGTGAAAATAAAGACTAAAGGTTGTGCAACTTCGAAAAGTCAGTTGAATATGGTACAGCACTAAGTCATGTA TGTGTTAGGTTAACTTAATTTGTTACTGAGACAAAAATCTTGCACACTTTTGCATATGCATAATGACTCGCCAAA

TTTTCACAGACCATAATTAATTACTCAACAGCCATGCACTTGAGAACCTTAGTGACAACGAAATCTATTACAGCC TTCTGTATATCATGCCACCACCCGAGAGAGAGAGAGAGAGAGGATAAGACCAGTCAAATGTAGTAGAAGTGTGAA TGCATGAAATGAGTAGGATGAGCTAGAATGGTTTTTCAGCTAAGTTCTTGCCTTGCTCTCTCTCTCTTCGAGTTT
ATATATACCTGACCTGACCTTTGAGATTTGTCTCAGAGCCACAACTTTTCCTTGACTGCAGCAACATCAGTCTTC TCTTCAACTAGGAGTATCATTCACCAACACCATCTCTTCTCCATCCGTCTCTTCCATCACTTTCTCTTGAAGCCA TTCATTCATTTCCAACTCCAAAGGCATCAATGGCAACTTTTTCCTACCAACACCAACAACAACCTTTACATCTTG AATCATCATCAGGACTGTTTTTGCAAAGCAGCTCCCAAATGAGGATGTCTGCAGGCCTTCTTGAGGAGCCAAACA TGACAAGAATGACCACCACCACTACTTCTTTCCCTCAATTCTACAGGCCTGATCATTTTCTGCATCAGGAAATCC CTTCCAAATCCTATGTTAATGAAAGTACTTGTTCCATCTTTGACCAGAGCTGCACAAAAGTTACTCATTTTAGCA ATAATGGGCCGTCCTTAACAAACAAAACTTCCACCGATTCTTCATCAGTAACTGATAAACTTGAAAGTGGGGAGC AAGTTACTCAGAAGGTACATGCTGCAGCCATGGACAAGAAGAGGAAAACAAAGAAGGGGCCTCTTCCTGTAAATT CTGCTCAATCAAAAGTACTTAATCCATTTTTTTTTTCAATTTTTCATCATGGATTTTCTATCAAAACTGTTTACT CATATACATCTACGAGCCCTTTTTCCCTTTTAATTTTAAGTTTCAAGACTATATGTCTTATATGTTCTTTAATTA GGCTATAGGAGATCAATTAGCTAAAGGGAAAAAGCAGAGGAAATGTGGCAGAATTATGAAAGAGGTTGAAGACAA GAAGTCTAATGAGGATAAAAAAGTTCCAGAGAAAGCTGCTGAAGAAGCTCCCCCCACAGGCTACATTCACGTAAG AGCAAGGAGGGGCCAAGCCACGGACAGCCACAGCCTAGCTGAAAGGGTACAATTCCATTAAATAATCATCGCTAG TTATTGTTCTTGAAAATAAAAACCCTTAAATGCTTACTTTTCTCTGACATAAACAATTAAGGCAATAACTATATT GTCTAGCACACAAACCATGATTAAAATTTTGTCACATGTACCACTCAAAACCAAAATTACTGCAGTTGGGATCCC AATAGTGCCTAAGTTCATGTATCAGCTAAATTTTTTCTGGAATTGATATCAGGTGAGGAGAGAGAAAATCAGTGA AAGGATGAAAATATTGCAAGCACTTGTTCCAGGTTGTGACAAGGTGAAGTTTTTTCATCAGCATCTTGTCTTTAT TTTGTTTGTCTCGCTAAAGTTTTTTTTTTCTGACAATTTGAAGTGAATTCGACTGATAAACAGGTAACCGGAAAG GCCCTCATGTTGGATGAAATAATCAATTACGTCCAATCCCTACAAAATCAAGTTGAGGTAAAACTTTTGATAGAC TTGTTATTTGGTAAAGTTTTTGAAGCTTGCTGTTATATAATCCATGCAAAATATTTCAAATTCTTGCAGTTTCTA TCCATGAAGCTTGCTTCTCTAAATCCGATGTTTTATGATTTTGGCATGGACTTGGATCCATATATTGCAAGACCA GAACCGGTACATGTTGCACAATGTTCTAACACAATTGTGTACCAAGTTGTTATATTTCAGAGAATGTTTCACCAT TGTCGTCCATACTTATCCTGATGAATTATGTCTTTTTTTTCTTTCTTTCTTTAATGATGAGATCTTCAGACGCTG AGTAACATGGCATCACCGGTTCAAAATATGCAACAATGTGATCCAATGCAGGCACCAATCATTTCTGCCACAAAC AATAGCTTGAGAACTGATACTGCCAATGACTATCCTCAGTTGGATTCTTCAGCTTCAGCATTATTAATTCAACAA AGCCACCACATCCCTCAAATTCTCTCTCAGGTGCTTTTAACTTTTCATGGCCACCAATAGTAGAATGAAAAGCAT ATACTAATTGATAAAATTAAAGAAACATTAAAGTAAAAGAATATTTTCTTTCTTCCATGGAGAAATAAATGCTCA GGTCGGTATCTTTGTGGCTTAGACAAAAATATCACTTTCAGGAAAATGGACAGCTCTTGTGGGATGTGGATGACC GAAGACAGAAACTTATTAATCAGACGGGGTTCAACAACAACTTGTGTTCGTTTCATTAATTATAAGACCAAAGGG CAAGAGTTGCCCTACACATATCTGGTAAGCCTTCAATTGCTGTCTCAAATAATACGAGCAAATGCTAATAAAAAT TAGTGACAACTGCGAATGAGCTAAGAGACATATGTACATAGAGTCATTATCAGAAATGCTTCCTTTCATGCCCCT TAATTTGAATTTTTTAATACTTTTTCCTGGCTTTCACACCATTTGAGATTTGAGAAATCTCAGTTGGTTATTTGG GCCGTATGCCATTTTTGTTTAGCATAAAGCAAACTAATTAGAACGGACGACGTGCATGCATAGGGCTTAATCACT TGGGAATTAATTACTCAGGTAGATTTAAACTATTAAACCTACATGCCTTAATTGCTCTTACCTTTCCAGATGGTA TAAATAATAATGCAAATGTTACAATTATATAAAATACCCAATCTGCAAGATCAAGTCCCGAACTGAATTAGTTCA CTTATGTTGACGAAATATTTGTTGAACACCTGAGTTTCTCTGTAGTCCACAATTGTTTAGAGATAATGCGACAAG GCACACAGAGTCTCATATGGTCCTACGTACTACCTCCATGTCTCATTCAATGGAAGAAATTTTACTTGCACGAAT TATCCAAAAAAAAAAAAAGGAAAAGAAGAACAAATAGATACAAGTATTAGCTATATAACCCTAAAAAAACAGAGA ATTGTTGCAGGTTTTGTATGTTTTCTTCTTTTGGTAATTTTGCTCCTGGTTTTTTGATGAATGACCACAGGTTTG TCAAGATTTGTGAAGGGCAAAAAGGTAGTGCCAGACAAATGTTACTGTAGTTTCTTATTCGTTAGTATCAATTCT AATGGAGAAGGGTTTCAGCTTGCATATTACTTTGATCACCTCAAAGCTCGGATTCTGAATTCATTGGAGGAATGG GGTCTTCTATCTCTCTGATCACATGAATAAAAAGAAAAGCAAAGTAAAAGGGCATGAAGAGGATAGAAATCAA
>Vitis vinifera Contig VV78X035637.14 AM473672. 2
TGGATGAGTTCAAATCTCGAGGCTСTTTСТСТСТGСТTСАСАTGCAGGGGCACAAAAGGCTCTTTATGGGCAGCG TACCATAGCTTTAAGGGCACTGTCCCAATTTCAACTGAATGCAATAAACATGGGCTGCGGACATGTCCTGTGGAG CTGAGCCATGTGAGCTGTGACCCAGATCAAAGCCTGATTCTACGGTTTGCCTTCCACTTTTGTAGCTGGTTTTTA CCTGGTATGGCAAATTTCAAGCATCTGGAGCTGAGCTGTGATCCAGTTGATTTGGAGTAACAGGCAGGCCCCCAC AGGCCACATCCATAACCCAAATCAAAGGCACATACAATGCTGCTTTGACCATCAATTTTTTTCGGTTAAATCATT GTTTTATGAGCTCGAAAAAGACGTACTTGTTTCTATATAAGGCGTATGTTCTCTGATTACATTCCGATTGCTAGT GGTAATCGTCTGTAAGTGATTCAAACCACGAATCCTCGTCATTCCAATGACGACTTGAAGCCCTAAAATTGAAGG TCAAATTTTGCCTGGAAAACACCAAACTTGGATCATTTTCTTGTCCTTGTAAAACCGTTCGCTTGGTTCAAAACT TAGTCAAGCCACAGCTAAACAAATGATCAAAGCTGACTACAAAATAGGCCAAGACCAAGTACGTTAAAGCTCACA TACTTGGTTACATTATATAAGAGCTAGAAACAAGGGAGGACATTAGCCACATACATCTGGGTCCCGTTTATGGAC ACACCTCGGCCCACTTTCTGTATCCTTGTGCCCCTGCGCCGAAGGCATCGGCAGAGGGCAAGGTTTTGGACCATG TCAGTCTTAAAATTATCCTTCATTTGACGAGTTTCATTTATTTTTATATAATAAAAAAATTTCAAATATGCGAGT TTTTAGTCAAATTAGCCCTTAGTCCAAATTTCAATACAAAAAGTGAAACTTAATACAAATTTAGAAACCGTGTAT TTATAAACTGTATTTTCTTTCTCTTTCTTTTTCTTTCCCTTTTTTAATATCCACCTCAATAGCATATATGGTTTC AGACTGATTCTGCAAATTATAATTATTAAGAACCATAAAACATGGATGTGACTTCTAATCCATTAGGGGATGCAA GAGACCCATGTGAAGTTGAAAGAAGAAAATGATGTGTGATTGTGTGCCTATCAAGATATATAAAATCTATAAACA

SUPPLEMENTARY INFORMATION

AACTGATCTCACCATGCTTTTCGCCGACTGGAAAAATTCTACATTTCTTTCCAAATCCCTTTTTTTTGTTTTTTT GTCAAAAAAAAGTAAAGGGCTTGGATCATTTTCAAAAAATAAATTAAAAAAAAAAGTATTTAAAATATGTTTTAC AAAATGATTTGTTTTGAAAGTAAATTCTTTAAGTAACAAAAAACTGTTTTCAACAACACTTTTTATGGATGGCCT GCAAAATTCTAAATGATATTTTGAACAATTATTTAGAAAGGAAAGAAGAAAATAAAAAATCTTTTTTCACGCAAC CAATTTGACCCAAAGCTTAGAATTTCAACATACACTAAAAAGAGTATTGGAATTTGGAAGTGAATAAAGGGGTGT GGGCTCTCCCATAGCCTCATATCATTAGTATGAGGCACAAGTTCCGCCACTTGAAATGGTGATTCGTTGATTGAT GACTGGCTTTTTATCTAGTCTTTGCAGGTGCTTTTAGGGATTGATCACCTTTTACTGGCTTCTTCATGACAACTG GCTCACATCTTGGATCAACACCTGGCCTGCATCTCATCTCTCTCCCTCAATGATTCTTCTTCTACTTATATCAGT CCTTGACTCCTTGTTGCTTCATTTCTTTGCTCTACTCCCTACACCATATATTCATACCCTTGATATTGACACTTG GGTTGCCACTTTGTTTTAAATCTTCTTTTGCTTTCGTTTGCCCACTAAAATTTGTGTGATGTGAATTAGGGTTTG ATTTGGGATGATTTGAAATGATTTCATATGAAAATCTAGGCATAGTTCATTGCCAGCTAAAAGCCATTAGAACAA AAGTCATGCAAACGTGTGTAAAATATAAATGTAATTAAAATAAATTGAGACAATGATGGCTAAAACTTGTAATGA TAGAGACCATGAGTACCATAAACATAGTGTGATTATAGATTACATCTATTGACAAAATTGTTGAATGGGAGGATT CAAATCATTTTGATAGACATTATTAACATTTAGACTAAGTGTTTTAGTTAATGAATTATTTTAAATGAACATAAA TACTTTGGTATTTCTTTATGCAAGTACAGATCACCTCATAATTGAATGGCAAGAAAATGATAACAACTAAGACAA GAAGCTTTGGACTTATTGAACTAAAAAATAATAGTGGCAATAATAATAGAGGGATTTATGGAAGAGACCACAAGA CAAAGAAGTTAAATGTTTGTTTTAGCTATGTTGGGAAAATTTTAAAAAGAAAATTAATATCAAATCATAAAAATG TGAAAGGAAAGAGGTGAAATATCAAGGAAAATGAACTTTGGTATGTAAGAGGCAGTGCACACCAAAAGCTGAGCC TGCTGCTAAGTACAGCTTTTGTAAATCACTGAATGACATGGAGACCTCTCTCTCTCTCTCTCTCTCTCTCAATTC TGTTGTTTTCTACTAGCAGTAAACTTTTTTTTCTTTCTTTGATGGTACCCATCAAGATGCTTTAAATACCAACCC CACAAATGACAAAACCTCTTATTCAAACCCATCTAAACCAAGGTTTTTTACAGTGTACAAACAATGGCATCAACA ATTAAGTGATTTTGACAGTCCATCATGCTGAGAAGCTAGGCCCCTACTATTAACTTAGCCCAATGCCTATTTATC AAAAAAGGAAAATTTTTGTTTTTTTTTTTTTATTGGTTGCTTGGATTTCAAACTCCCATAGGGCCATAAGTGGGT ATTTCTGTACCATGAAAAGTTAAAAGAAAATGAAAAAATAGACAACACGGTGACACACTGCCCATTTCTATGAGA AGGGGTGGCCAAAACCAATTATGGTGAACTGTTTTTCAATAACAGAATCATAAATTCTATGTCTGAAAATCTGAA TCATTGATATCATGTCCTTGCAGCAATAGAAAACAAACAAAAAACCAGGGAAAATGTACTTTTTATTTATTAAAA AGTATTCAACTGGAGAAGTCCAGAGATGTATCACAACTTTTTTCTTTTCTTTTCTAGTAGATGAGAAGAGATACA TCATAGCTTAAAACTTTAATTACTTAATCTCTTACCTTAGGGGGAGAGAGAGAGTGTGATAAGACCAGTCAAATG TACAGAAGCTTTGCATGGGGATGAGTTATACTTTGGGTGCCTTCTCTCTCTTCCCTCATCTTTATATAAACCCGA ССТСТTAGATTGTCTCAGACCCACTTTACTTGACTGCAAGCTTTTGCCTCTCCTCCATCATTTTCTTGAAGGCTT CCATTTTCAATTTTTGAAGCTCTTAAAATGGCAGCCTTTTCGTATCAACACCCACCTTTTCTTCTTGACTCAGTT TTCTTGCCGAGTACTCCCATTAAGATGTCTGGTTTTATGGAGGAAGGGAACACCACCACTTGTTTCTCTCAGTTT TTCCCTTCTGAATCTCTTCATGAGGTTCCTGCTGATGCTAGGGTTCATGAAAGTACGTCTCTTCAACACAGCTCA AAGGTCACTCTCAGTGACAATGAGCCTTGTGTGACCCAGAAACTGAGCACAGACTCTTCGTCAGTGGTGGATAGG CTTGAACTTGGTGAACAGGTCACCCAGAAGGTGGCTCCCATAGAGAGGGAGAGGAAGAGGAAGAGCAGAGATGGG TCTTCCTTGACTTCTGCTCAATCGAAGGTAAAAAGTCCACCTGAAACTGAGCTTCAAGAATACATATACTGGATT CCTATTCAAGTGGGCTGTCCTCATATTTTTCATATTTTGAACCTTTTGATCTTAATTTGTTGATTGATTTGGAAG TTTGCCATGGTTTATTAATTTCATTAGGATGCAAGAGAAGGGAAAGGAAAGAAGGCAAAGAAAGGCAGTGGTCTG GTGAAGGATGGAGAAGAGGAGCAGCTCAAAGCAGACAAGAAGGATCAGAAGAAAGCCTCTGAAGAGCCTCCAACC GGCTACATTCATGTAAGAGCAAGGAGGGGCCAAGCAACAGACAGCCACAGCCTTGCAGAGAGGGTACTACTGTTC ACTAATATTAATTATTAAAAGCCCATGGAACCCAGTGTCTTTGTTACATTTATTAAGGCATTAGTTTCCCATAAT ACCCCAACAACAAATCACAGAGTTTTCAATGTTTTGGTACCTACCAGAATAGTTTCTAAAAGAATTTCTCACCCT ATTCTTACAACTATTCATTTTCTTCAAATGGGTTCCAGGTAAGAAGAGAGAAAATCAGTGAGAGGATGAAGCTCT TGCAAGCACTTGTTCCTGGTTGTGACAAGGTGAAGTTGATTCTCTTCTAAATGATAATGACTTGTTTTTCCTAGA CAAGTATTTTTCTGACACTGTCATGTGGTTTGGCTTGAAATATAGGTTACTGGAAAGGCCCTTATGTTGGATGAA ATAATCAACTATGTCCAGTCCCTACAGAATCAAGTAGAGGTAATTAATTAATTAATAATTAGGAAAGTGTTTGTA TACTTCTAAGTTCTAATGAAACTTATATCCATGTGAAATGTAACTGAACCAGTTCCTTTTTTTACAGTTCCTCTC TATGAAGCTTGCTTCTGTGAATCCTATGTTCTATGACTTTGGCATGGACCTAGATGCACTCATGGTGAGGCCAGA GGTAATAGGAAAAAAAAAAAAAAAACCCACCCCTTGAAGCCCATTTATGTGTTATCAATATTTGATCCTTTTTCC TTCATTGAAGCTGATGGGATCTTTGTCTCTGACATGAATATTCAGAGATTGAGTGCCTTGACATCACCACTGCCA TCTCTGCAACAATGCAGTCCTTCCCAGCCCACAGCTTATGCTGATACAACCACCACCTTCACTGCAACAAATAAC TATCCTGTTATGGACACTTCAGCTTCAATTTTATTTCACCAGGGGCAAAGGCTAAATGTCTTCTCACAGGTAATT СTTTTCTTTCTTTCTTTTATTTTTCCTTACCCCACATTGTATTTATATCTAATGTGAAAATGATCCTACTCTTCA TAATGAAAGGACACTGTATAATTAACTAATTCCACCTTTTATTTTGACTAGAAAATTAGAAAGAAATCATGTGAT TGGAAGGGGGGAAAAATCTATCTTGCTAACTATGACAAGCACATCATTTTCAGGATAATGGTAGTCTATTGTGGG ATGTGGATGATCAAAGACAGAAGTTCATTAATCCATCTGGACTCATCAGCAACAACTTGTGTTCTTTCAATTAAA ATAATAAACTGAGCTGCCCTACCAACATCTGGTAAGCCCTCAAATCTTGTCTCAGGCCAGAGAAAAAAAAAATGA AGTATAATAAATATACTAATTAATTCTCTTTCTTAGACACACCCACAAACACTTGTATCATACTCTCGTAATTAA CCCTTACTTTTGGTCTTTTCCAGTGTGTGTGTGAGGAGGATTTGGAAGAGAACTTGGGAGAAAAGAAACCTTAGA AGACATGGAATTGTTTTGTTCTTAGGATGAGTTCCAATGGAGGGGGCTTCTTCTTCTCAAAAGCTATGATTCCAT CATTTCCAAGTCCAGTTGTTTAAAGGAGAAGGGTATCTGAACAATGAATAAAGGGGCAGCAAAATCAATGGAGGA AGAACAGACACAAAAGGACAGTTATAACCGACCAAATAAGACCAGATCTTTTATAGATCCCTTGTTCCTCTCCAA TTTGACTCCCAAAGTCTCATGCACAAATTCCAAGAGCCTGTGGTGGATCAACCCTAGTCCTACAAACATTACCAT

TCTAAACAAATATTTATATATATGTAATGTATGTAAAAAAAATAATCCCATGTATGTCCTTCCATGCATTATAAA TTTCATTCATTATGGTTCTGTTATTACAGTTATCTTTACAGTTACATTCCCTCCTCCTTTCTTCATTTATGTCCA CTGTGGAGAGAAGTGAAAGGAGTTATTGCTGTTGTTGACATGACTTGGGTTAAGAATTCTTATGGTTTCCTGCCT TTAATGTTGGTGGAATCTTTCTCTGTTCTTGGCTCTTGCCATTATTATGGTAATTGGCTAAGGTTTCTGAGGTGA ATTCCCCCTATCCACCTTCCCAATGGTCCTCCACATCCCATCAACTCTTCTTCTTTCCAACCAAACACCTATTAA CTAGAAAACATAAATGAGACTTGAGAAGCTCATGTGTGAGTCTCCCTAATTCAAATCCATATTTATTACTTCCTT GTGCAGGCATTTTAGACATAGCTGTATGAATCATATGAGAGAAAGTTACATTAATTAGGAGTATTTTCCTAGAAG СTСTССAССTTAACAGGGCTTTTGAATAATTGGATATAGATATGAAGATAACGCAATCAGAAACCCTCACTGGAA CCACAGTGAACTGGTTTCTCAAAGAAAGGTGAATGGAGAAGTAAAATGTTGGAAACTTGGGACCAAACATAAGAG GAATAGTAAGAGAATTGTGATTTCTAGTTGTGACAATAACCGATATAACGGCTTAATTAGGATGAAGTATCGAAA TACTTGTGACAATAACATTGCCGATTCATGCCCCCATCACAAGCATATGTCACTCTCCTCCATACCCAAGATATG ATCAGATAAAGAGCCTTCAATGAGTACAGTCAGCTCCTCTTTAAATGGACAAGATTAGTTAAATATCCGATTAAA CCGAGCAAATCAAAATGCTGCCCTCTAAACAGCAAGTGTTAATAAACTACAGTAGCTACAGACAATCCATGTGAT TCTTGAGTTGCACCTGATTTCAATAGACCTACATGTTGAATTGTCTTGATCAATCATTTTTTCGTACCCTAACAT TATGTCCTTCAACAGAAGAAAATGCCTAAACCTGATAAGAAAATTCAATCCCCAGCTTTCCCAGTCCCATCTCCT CAACAGGATGATCCACCTCTCATCCCCTCTAGAAACACCCACTTCATTTCAGTTCTCCCCCTTTATCTTCCACCA ATCTTTTTGCTTTTCCAAAAAGCTAAAATGGCTGTTTCTCCTGATGATAACCATGACCCAGTTTTTGTTTTTAAC TCTCCAACTTATTCCACTTGGCCCAAAACTGAATCCACAAAAGAGAAAGAAAGACCAGACACCCTGAAATTACCT GCTACTGCCAACTAGAAACAAGCATGCAGATCAGTAAATGCTGGATCATACATGTAGCTCACCAACTCATCAAAT TGCAGTTAAAAGGGTCCCTTATGTTGATCACTTCTCATCCAAAAACATTGCCAATGTCCCCATTTCATTCAACTA AACTCCGTTTTTTTTTCTAAATTGGAGCTGGACCATTAATGAAACTGCTCCTTTTCTAACAACTTAATTATGTTG TTTTCAATGTATCTGCTATATTCACAGATTAAACAGTCTAGTTTCCAAGTTCATCATCCATTTCCAACTTGTCGG GTTGGCAGCAGCATCATCTATCAGCAACTGTCATATCTTCGCGTGGCGTGTTTGATCCTTTCCCGGAAGATTTAT CTTAGTTTACTGAATTTTCTGGAGCAATGCTGCTCACCCAGGGTCCCAGACCTATAATTTTGATCAAGTCAACTG AGGACTTTACCTTAAGACTTTCCCCCAGATACAACCAGGCATGTGTTAAGCTTGTCTAGAATCTTCACTGATTTT GTTAGGCAAGAAGCATATATTAGTAGTGTCAGTGGCCCTCCAAATCCAAATTATTGACCGATAATCGCGCTGATT GAACTGAACTTTGGACTAATCCAACAACGATACTGCAAACTGGGGTTACTAGAAAAATAAGCTTGATCTTCAAAA GGCTAGGGTGCTAGCTAGAAGGAGCCAATTTCATGAACAAAAATAACCATGTCTATACTCTAATAATGTTTATGC AAAATGGCATGTCATATGACTGGTATCTTAATTATGTAATTAATAATTTGGTGTAAAATTGAGAATATTTATATT TCAAATTAAAATTACTTATAAAGTAATAACATATGCTATTAATATGGTATACATTTTATTGGTTATTGTCTAATA ATTTAAGTTTTTAAGTCAAATTAGCAACTTCATATGTTATTAGGTTAGTTATATATGTCTTTTTCTTTTCATATT GGGATATGTGAGTTTGAGTTTTTGCGTCTTCACATGCAAGTATGAACCTGTTCTATGATAACATCATATAGATAC TGTCTACTTTCATCCTGTAAATTTTCGTGACTTTAAAACAAATTTATATATAATAGATGAGTCATTCTATACAAG TGTCATGAATTTCTACCTATATATTATAAGTTTACCCATAGAAATCAATTCTAATGTCATTCTTTATTAATTTGA AGTTGGATTGACCTATTGCTCGAGACCTAATAAATATTATATATGGTTTGTAAATTGTGAAACTATATATATTTA TGGTGGGGGACTAATTTTGATAGTGACGACCCATGTAAATATTAATATCCTCAAACTCTCTGGTATGCTCTTTCC TTCACATGACAAGTCAGCATTCAAAACTCAGCTGAGTTGGACAAGACTGACCCATCTTAGCATGACACGTGTAAG ACCAGACAATGATCTGCAGCCATCTAAAGAAAAAAAAAAATTTCCCAAATTTTTTTTAAATAGAGTACCAGAAGG AATGCACATATGTGCACATTGACCAATAGTGACGTGCCACATGGGCATACCTGAAGGGCTTGCGTCCACATTTAT GATGATGATGATAGAAATGGATGACCCATCAAAATCTAGATGGGGCATGATGGAGGGTCTGGATGGATGTGAATG TCATTGTCATCACCCATCATGCTTACTCGAAGGGCTAAGACTTGAGACCACTGGGAAGCTCTTTTCACAGTGGGT GGTGCCCAAACCCCATACGGAATAGGATGTCGACATCATTTGGAAAGGGAGACATGTGTCATGTCATTTGATGGG CATGCATCATGGGTTCCATGATACGTGGCATGCAATTACGCATTTTGGCTAGCCGACATCCATGTATGGTCACTT GGCTCCGCCTCCTTCGTGACTTTGATATCCCACATGCGAGTTGACTCAAAATGCTAATCATCCCTTTCATTTTTT CCCCTTTTTTTTTCCATCTTTTAAAGGTGAAAATTTTGGGAAATGGAATATTCCCTCTTTATTTTCCATATTCAG AAAAGGACGTACACATTTGTGAAAGATTTTCAAAATAATTTCTCTTTTCTCTTTTACAATATGACATTGTTTATA ATTTTTGGATTTTATTTTTTTTGTATAAATGTTAAGAGACGTTAGATTTTGAGATGATTAAAATAATTTAATTAT AAAAATGATGTGTTTGCCATATGTTTAAAATTTTCAAAGAATCCCTTAATTAAAAAAATATTATAAAAATTAAAG GAAGATAATAGAAAAAGGCATCTTTGGAAAGAAGACTTTCACTTTCACAGTTTCCAAACACAACTTTTTCAAAAA TAACTTTATTTATTTTTCCCATAACCTTGTTCTACTTTCTTCCTCCTGTCTTTTCCCTTTAAGAAGCACCAAGTG TCCTTATCGCCAATGCGTAACTAGCCCACTTTCTCCTCCAAGTGATTTTCAAAACCATCTCTTTCACCTCTTTTT ATCTTCTTCATTTCATAATAAGCCAAAAAAAAAATAAAAAAATAAAAATAAATA

SUPPLEMENTARY INFORMATION

5.3 UPA box containing transcribed RNA sequences identified in solanaceous species.

Previously identified 63 bp-long sequence fragments containing the UPA box and conserved within genomes of solanaceous species was identified as part of the transcribed RNA sequence in Nicotiana, Petunia, and Capsicum spp. (Figure 36; Figure S2; Kay et al., 2007). These results suggest that the identified sequence fragment is a part of 5^{\prime} UTR, and therefore is important for regulation of translation. Black shaded nucleotides represent the UPA box, i.e. EBE ${ }^{\text {bHLHO22 }}$ and EBE ${ }^{U P A 2 O}$, i.e. target sites of AvrBs3 and AvrHah1, respectively. Grey shaded nucleotides represent the most conserved sequence fragments within the genomes of the examined species.
>Transcriptome Shotgun Assembly: Nicotiana attenuata Na_454_85814 Transcribed RNA Sequence Genebank Accession GBGF01081108 (Singh et al., 2015)
TGTTTTTTTCTTCTTCTTTTTTTGTACTGTGTATGTTTCTAATTATAGTACTGTTCTGACATCATTATCTGCTAG CTTAAATTATTTATTGTGTTAAAGGAAAATTATTTTTTAGAAAAAAAAAGAGTTGTATTTGGATATAAGCTTAGC ATATTTAATAGCCTCCACCTTCCCAAAGCTTGATAAGACCAGTCAAATGCAAAGCAACTGCATGGGAATGAACTA GAAAATATTTTTAGCTAAAAATTTGGATGCCTTGTCTCTCTCCTTATGTTTATATAAACCTGTCCCTTTGGGACT TTCTCAAACTCATTTTAATATTTATTTCTCTCTTGACCTCTGTTTACCATTTC
$>$ Transcriptome Shotgun Assembly: Nicotiana tabacum Locus 15016 Transcript 2/5 Confidence 0.692 Length 1902 Transcribed RNA Sequence (Reverse Compliment) Genebank Accession GDGU01095412
СTTATCTCTCTCCTTATGTTTATATAAACCTGACCCTTTAGGACTTTCTCAAACTCATTATAATATTTACCTCTC TCTTGACTACTGCCTCTGTTACCATTTCTCTCTTTCATCACTTTCTTGAATCCTTCCCTTGGGATTTTCAAAGAA AATCATATACTAATAAAGAAGAATTATTTGTAAAAAAAAGATGGCTGCTTTTTCAGACCAATTACAGCACACAAA CCCTTTCCTTCTTGACTCAGTTTTTTTGCCAAGTTCTCCTATTAAGATGTCTGGTTTTTTAGAGGAACAAAACAA TTCTATAGTGCAGAATTGTTTTACTCAATTTTACCAACCAGAATCTTTTCAGCAGCTCCCAACTGCCAATGTGAT TGTTCATGAAAGTAGCTATTGCCTTGACCAAAGCACAAATGTTACACTTGGCCAAAATGAGCCTAATTCTGTGAC CAACAACCGTAGCAGCAGTGTTAGCTTGGATATGGATTCTTCCTCTGTCACTGATAAAATAGAAAGTAGGAATAA GCCTAATTTTACTCCTATGGACAAGAAAAGAAAATCCAGAGAAGGGTCTTCCTCAATGAGTTCTGCTCATTCTAA GAATGTAAAACAGGTTGATAATGGGAAAAAGAAGAAAAGCAATAGCCAATCAGTAGGCAAAGATGAGAAAAAGGG AAAAGATGACAACAAAAAAGAGGAAAAGAAAGCTAATGAAGAGGCTCCAACAGGCTACATTCATGTTAGAGCAAG AAGGGGTCAAGCAACAGACAGCCATAGTCTTGCTGAAAGGGTGAGGAGAGAGAAAATAAGTGAAAGGATGAAGAT ACTGCAATCTCTTGTTCCTGGTTGTGACAAGGTAACTGGGAAGGCCCTCATGTTGGATGAGATAATCAATTATGT CCAATCTTTGCAAAACCAAGTTGAGTTTCTCTCCATGAAACTTGCTTCTTCGAATCCAATGTACTATGACTTTGG CATGGACTTAGATGCACTCATGGTCAGACCTGACCAGAGTTTGAGTGGATTGGGAACACCACTGCCAAACATGCA GCAAACTAGCCCTACTAACATTACATCACAGGCAGCTGAAGTTATTCCTAACATTAATAATAGTGGCTATCCTTT CTTGGATAATTCAGCTTCACTCATGTTTCAACAAGTCCATTTTCCTAATTCCATTTCTCAGGGTAATGGACAGCT CTTATGGGGTGCAGATGACCAAAGACAAAAATTTATTAATCAGTCAGGACTCAGCAACAACTTTTGTTCTTTCCA TTAATGTAACACCAAAGCCCTGCCCTACTTAACATCTGCACTTTGGAAAGGAGGTTTTATCCAGCAAAAGAAGTG GGGCTAAAACAAAAGAAAATTCAAAAAGCTGACTATATATAGTCCTAGTATATAACCTGTGCATGCGTATGGAGG AAGCTAAATCACCCTATCAAGGCTCGGATTCTTCTTAAATATTCACTAGATTGAAATGATAGGCCTTTTGGATGG ATGTTATGAATCAAGAAATCAGTGGAAGCCAAAAGAGTACAAAGAGTCAACTGGCGGAATAAGAAGGCAGAGATC TTTTTGGAGATCCTTTTGATTGTTCCTGTCCAATATTTTGACTTATAATTCCTGAATCTATTGAAGCACAAGTTC CTAGAGCCATGTGATGGTGGTGGGTGGGTGTTAAACCCTAGCTTAGCTAAAAGAAGGGGAAAAAATGTAATTCGT TTTTTTGCATCTTCTTCTAGTAATTGATATTATTATTGTTGTTTCTTTGTTATTACTGTTAATTTTTACGGTTTT AGTAGGGTTTGATGTTATTTTGTGAATGCCACATGATTGGTTTGCATAAAAGATGGAGGATTGTTGCTTTCATAT CTATGTTTGTACGATGGAATCTTTCAG

Transcriptome Shotgun Assembly: Petunia axillaris Locus 28275 Transcript 1/2 Confidence 0.667 Length 1831 Transcribed RNA Sequence Genebank Accession GBRU01063012 (Guo et al., 2015)
AAGTATTTTTAGCTAAAATTTGTATGTCCTATCTCTCTCCTCATGTTTATATAAACCTGACCCTTTGTGATTTTC TCAGACCAATTAATTATTTCCCCTCTTGAGTACTAGTACAACCTCTCTGTTTACACTTTCTTGAATCCTTTAGTT GGGAAAATCCAAAGCAAATCATAAACTAACAAAGAAGAAAACAAAAACAAAAATGGCTGCTTATTCATACCAATT ACAGCACACAAATCCTTTTCTTGTTGACACAGTTTTTTTGCCAAGTTCTCCTATTAAGATGTCTGGTTATTTGGA GGAACCAAACAACCAAAACTATTTTTCTCAATTTTACCAATTACCAGAATCTTGTCAGCAGCTCCCTACAAATAT GATTGTTCATGAAAGTAGCTATTGCCTTGACCAAAGCACAAATGTTACTCTTAGCCAAAATGAGCCTTCTGAGAC TAACAAAAGTAGCAGCAGCAATATCTTGGATATAGAATCTTCTTCAGTTACTGATAAAATTGAAACTGGGAATAA

Abstract

GCCTATGAACAAGAAGAGAAAAGCCAGAGAAGGGTCTAATTCTTCTATGAGTTCTGCTAATTCTAAGAATGTAAG AGAGGGTGATCATGGAAAAAAGAAGAAAAACAATAGCCAAGTATCCAAAGATGCTAAAGAGAAAAAAGGAAGTGA TGACAACAAGAAAGAGGAGAACAAATCTCATGAAGAGGCACCTACTGGCTACATTCATGTTAGAGCAAGAAGGGG CCAAGCAACTGACAGCCATAGTCTTGCTGAAAGGGTGAGGAGAGAGAAAATAAGTGAAAGGATGAAGATACTGCA ATCTCTTGTTCCTGGTTGTGACAAGGTAACTGGGAAGGCCCTCATGTTGGATGAAATAATTAATTATGTCCAATC TTTGCAAAACCAAGTTGAGTTTCTCTCCATGAAACTTGCTTCTTCAAATCCAATGTACTATGACTTTGGCATGGA CTTAGATGCACTCATGGTCAGACCTAACCAGAATTTGGGTGGTTTGGAGACACCACTGCCAAACATTCAGCAAAC CAGCATTACTGATACTACACCACAGGCTGCTGCAGTCATTCCTAACATTAATAATGGCTATCCTTTCTTGGATAA TTCAGCATCACTTTTGTTTCAACAAGCCCATTTCCCTAATTCCATTTCTCAGGGTAATGGACAGCTCTTATGGGG TGCGGATGACCAAAGACAAAAAATTACTATTGATCAGTCAGGATTCAGCAACAACTTTTGTTCTTTCCATTAATG CAACACCAAGCGCTGCCCTACTCAACATCTGCTAGCACTATGGAAGGTAGTTTTATCGAGCAAAAGAGGTGGGGC AGAAAAAACATTTGAATCTGACTATAGCCTAGTATATATATAACCTGTGGAAGGAGGATGCAAAATCACCCTATC AAGGCCTGGATTCTTGTTATTCGGTAGATTGAAATGATAGGTCTTTGGATGGACGGTATGAATAAAAAATCAATG GAAGGAAAAAAAGTACAATCAAGAAAAAGAAGTCATCAGCTGGCAGAAAAAAAAAAGGAGCAAATCTTTTTGGAG ATCCTTTTGATTGTTGCTGTCCAATATTTGACTTAGTTCTCCTGAATCTATTGAGACACAAGTTCTTAGAGCCAT GTGATGGTGGTGGGTGTGATTAAGCCTTAGCTAGCTTAGCTAGAAAGAGGAAGCATCTAAATGTAGAGAAAAAAT GCACTAGTTTTTGTTTCATTTTCTTTTTGTGTATCATCTTCTTTTATCACTAGTACTGAATATTGTAATGATCTG TTGTTTTAATGTATGGCGCATTCTTTCTGTT

ACKNOWLEDGEMENTS

Before starting my study in Tuebingen, I perceived a doctorate study as a campaign full of challenges, discoveries, victories, joy, and endless discussions with companions. Even though my expectations and naivety slowly vanished over these four years, I still consider my stay at Tuebingen as an adventure. And in this trip, I met numerous people who became part of my life and whom I want to acknowledge in this section.

First of all, I would like to thank Prof. Dr. Thomas Lahaye for the chance to work in his lab, for his patience, and supervision. Thomas taught me how to ask fundamental questions, to develop hypotheses, to prioritise tasks, to design experiments, and provided all resources necessary for my research. Moreover, I thank the members of my thesis advisory committee, Dr. Farid El Kasmi and Jun.-Prof. Dr. Chang Liu, for their out-of-the-box thinking and ideas which improved the quality and depth of my research.

I'm thankful to Dr. Robert Morbitzer for his tailor-made tools and materials which helped me to start my experiments and to reach the results described in this thesis. Moreover, I thank Dr. Annett Strauss for her supervision, patience, suggestions about the organisation of my study, and for countless discussions over experimental results. My work would be much more complicated without the exceptional help of the amazing ZMBP Plant Cultivation Team. I thank Johanna, Annina, Gert, Mohammad, Peter, Richard, and Sofia for taking care of my plants. I acknowledge Catarina and Ana for time consuming and laborious stable tomato transformations.

I thank Erin for her friendship and proof-reading of my doctoral thesis, to Stefan, Mayank, Tine, Bene, Shu Yao, Jia Xuan, and Paul for the friendship and laughter! Additionally, I thank Angela, Betty, Charley, Christina, Claudia, Dousheng, Danalyn, Ezgi, Gautier, Guillaume, Jenny, Maria, Markus, Nan, Ophelie, Rotem, Trang, Yuan, General Genetics, Nanoscience, and ZMBP members for a great environment to work. Special thanks are for Suayib and his Team. I felt excited and inspired working with them!

While doing my doctorate study, I was lucky to meet Sabrina! I thank her for the love, care, and extraordinary support over the highs and lows of our life in Tuebingen. Finally, I thank my mother for her unconditional support and willingness to help in any situation.

