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Summary

Surveys addressing sensitive research topics such as domestic violence or sexist attitudes
are subject to self-protecting response biases. Randomized response techniques (RRTs)
have been proposed to encourage honest responses to sensitive questions by guarantee-
ing privacy protection of survey respondents through randomization in the questioning
design. Thereby, they aim to increase the validity of estimates of prevalences of sensitive
attributes. However, the applicability of RRTs is impaired by a still less than ideal validity
of prevalence estimates and high sample size requirements.

In this dissertation, I propose two approaches to enhance the applicability of RRTs.
First, I present a testable model that incorporates a parameter measuring non-adherence
to instructions in a common variant of the RRT. The results of an empirical study on
intimate partner violence indicate that applying this extension enables a more valid de-
scription of the mechanisms underlying responses. Second, I propose incorporating RRTs
into a sequential hypothesis testing framework using a curtailed sampling plan. Theo-
retical considerations and first empirical results show that following this approach the
sample size requirements of RRTs can be substantially diminished while preserving an
easy-to-conduct sampling procedure.

In summary, the proposed procedures can render applications of RRTs more feasible
and, thereby, enable insightful future investigations of sensitive research questions.
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Zusammenfassung

Umfragen zu sensiblen Themen, wie zum Beispiel häuslicher Gewalt oder sexistischen
Einstellungen, unterliegen selbstschützenden Antworttendenzen. Randomized Response
Techniken (RRTs) wurden entwickelt, um es den befragten Personen zu erleichtern, ehrlich
auf sensible Fragen zu antworten, indem anhand einer Randomisierung im Befragungsde-
sign ihre Privatsphäre geschützt wird. Als Konsequenz werden validere Schätzungen zur
Prävalenz sensibler Eigenschaften erwartet. Allerdings wird die Anwendbarkeit von RRTs
davon beeinträchtigt, dass die Validität der Prävalenzschätzungen dennoch nicht optimal
ist und sehr große Stichproben benötigt werden.

In dieser Dissertation schlage ich zwei Ansätze zur Verbesserung der Anwendbarkeit
von RRTs vor. Als ersten Ansatz stelle ich ein testbares Modell zur Messung von In-
struktionsmissachtungen in einer weit verbreiteten Variante der RRT vor. Die Ergebnisse
einer empirischen Studie zu Gewalt in Partnerschaften zeigen, dass diese Erweiterung eine
validere Beschreibung der Antwortmechanismen ermöglicht. Als zweiten Ansatz schlage
ich vor, RRTs in einen Curtailed Sampling Plan zum sequenziellen Hypothesentesten ein-
zubinden. Theoretische Überlegungen und erste empirische Ergebnisse zeigen, dass bei
Anwendung dieses einfach durchzuführenden Erhebungsplans die benötigte Stichproben-
größe stark reduziert werden kann.

Zusammenfassend können die vorgeschlagenen Verfahren Anwendungen von RRTs er-
leichtern und dadurch in Zukunft aufschlussreiche Untersuchungen zu sensiblen For-
schungsfragen ermöglichen.
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1 Introduction

“Have you been physically assaulted by your partner? Do you believe men are better lead-
ers? Have you made false statements on your tax return?” —

Like these, many research questions in the social sciences concern topics of sensitive na-
ture. That is, they concern topics that are perceived as private or incriminating by society.
Often, these topics are of high societal relevance, such as, for example, domestic violence,
sexist attitudes, or tax fraud. For instance, in the context of the COVID-19 pandemic,
research on domestic violence has been intensified, to validate the expectation that the
impact of the pandemic and related containment measures would foster risk factors for
domestic violence (Usher, Bhullar, Durkin, Gyamfi, & Jackson, 2020). Indeed, an increase
in police records and helpline calls was registered for the year 2020 in many countries,
leading to action appeals to policy makers (e.g., Bradbury-Jones & Isham, 2020; Jarnecke
& Flanagan, 2020). However, the extent of the problem might still be underestimated by
these numbers because there is expected to be a high number of unreported cases (i.e. a
high dark figure; e.g., Ellsberg, Heise, Peña, Agurto, & Winkvist, 2001; Gracia, 2004). To
investigate this dark figure researchers rely on self-reports. Furthermore, there are sensi-
tive research topics, such as sexist attitudes, for which there are no objective data sources
at all and self-reports are the only available data source.

However, self-reports are subject to response biases and this problem is especially pro-
nounced in the context of sensitive research questions (see Tourangeau & Yan, 2007).
Sensitive research questions are defined by being intrusive, elicit threat of disclosure, or
address socially undesirable characteristics. This can lead to decreased survey response
rates, non-response to specific sensitive questions, or under- or overreporting in response
to these sensitive questions. As a consequence, prevalence estimates of sensitive character-
istics are biased. This means that societal problems, like for example domestic violence,
are likely to be underestimated in self-report surveys.

However, the extent of response biases can be moderated by certain characteristics of
the survey. For instance, Tourangeau and Yan (2007) discuss factors of the administration
mode that reduce response biases, such as forgiving wording of the sensitive question, a
sympathetic interviewer, self-administration of the questionnaire and privacy protection.
In this vein, a group of questioning techniques was developed to guarantee the privacy
protection of survey respondents, namely indirect questioning techniques (see, e.g., Fox,
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2016; Chaudhuri & Christofides, 2013). Specifically, in indirect questioning techniqes,
single responses are inconclusive with respect to the sensitive attribute, such that no
inference about single respondents can be drawn. This way, the respondents’ privacy
protection is guaranteed. There are di�erent types of indirect questioning techniques, a
commonly applied subgroup of which are so-called randomized response techniques.

1.1 Randomized Response Techniques

The original randomized response technique (RRT) was developed in the 60s (Warner,
1965). In surveys applying this technique, respondents are randomly assigned to one of two
questions using some type of randomization device, such as dice or a deck of cards. One
asks whether they carry the sensitive attribute (e.g. “Have you been physically assaulted
by your partner?”) and the other whether they do not carry the sensitive attribute (e.g.
“Have you not been physically assaulted by your partner?”). Importantly, the random
assignment takes place covertly. Therefore, only the respondents themselves know the
outcome of the randomization and, therefore, which question they are responding to.
Consequently, a “Yes”-response can, for example, either mean “Yes, I have been physically
assaulted by my partner” or “Yes, I have not been physically assaulted by my partner”.
This way, the single respondents’ privacy is protected.

Following the original proposition of the RRT, many variants were devised. They di�er
in the concrete setup of the procedure, that is, the exact allocation to questions and types
of alternatives (e.g., Boruch, 1971; Greenberg, Abul-Ela, Simmons, & Horvitz, 1969; for
overviews, see, Fox, 2016; Chaudhuri & Christofides, 2013). For example, in the unrelated
question model (UQM, Greenberg et al., 1969) version of the RRT, the alternative to the
sensitive question S is not the reversed sensitive question ¬S but an unrelated, compelety
neutral question N, such as, “Is your mother’s birthday in the first half of the year?”. Like
in the original RRT, participants are allocated to one of the questions by a randomization
procedure. For example, they are instructed to respond to the sensitive question S, if a
die comes up one through four and to the neutral question N, if it comes up five or six.
Importantly, again, the outcome of the randomization is only known to the respondents
themselves. Therefore, a “Yes”-response can either mean “Yes, I have been physically
assaulted by my partner” or “Yes, my mother’s birthday is in the first half of the year”.
Like in the original RRT, single respondents‘ privacy is therefore protected. Furthermore,
because the alternative question is unrelated to the sensitive attribute, it is straightforward
that some responses have nothing to do with the sensitive attribute.

Nevertheless, the prevalence of the sensitive attribute can be estimated from the pro-
portion of “Yes”-responses and the known probabilities underlying the randomization
procedure. Figure 1 depicts the probabilities to respond “Yes” or “No” in the UQM. A
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N

“No”
1≠ q

“Yes”
q1≠ p

S

“No”
1≠ fi

“Yes”
fi

p

Figure 1: Probability tree of the UQM. Respondents are randomly allocated to respond to
the sensitive question S or the neutral question N with probability p and 1 ≠ p, respectively.
The probabilities of responding “Yes” and “No” to the neutral question N are q and 1 ≠ q

and the probabilities of responding “Yes” and “No” to the sensitive question S are fi and
1≠ fi. Adapted from “Cheater detection using the unrelated question model” by F. Reiber, H.
Pope, and R. Ulrich, 2020, Sociological Methods and Research, advance online publication, p.
3, https://doi.org/10.1177/0049124120914919 published by SAGE Publishing under the terms of
Creative Commons Attribution 4.0.

“Yes”-response can either come from a respondent who was instructed to respond to the
sensitive question S with probability p and who carries the sensitive attribute with prob-
abilty fi, or a respondent who was instructed to respond to the neutral question N with
probability 1≠ p and who carries the neutral attribute with probability q. Therefore, the
overall probability of a “Yes”-response is

⁄UQM = p · fi + (1≠ p) · q. (1.1)

The parameters p and q are given by the questioning design and are therefore known. In
the current example, p is the probability that a die comes up one through four, that is,
.67. The prevalence of the neutral attribute q is the probability of a birthday being in the
first half of a year, that is, about .50. The overall probability ⁄ of a “Yes”-response can
be estimated from the proportion of “Yes”-responses in a su�ciently large sample. Thus,
Equation 1.1 can be rearranged for the prevalence fi of the sensitive attribute of interest,
yielding the estimate (see Greenberg et al., 1969)

fîUQM =
⁄̂UQM ≠ (1≠ p) · q

p
. (1.2)

Although di�erent versions of the RRT di�er in the concrete implementation, all follow
the same general logic. Privacy protection is created using some sort of randomization



4 1 Introduction

Table 1: Exemplary RRT applications in psychology and related fields
Topic Study N

Induced abortion Abernathy, Greenberg, & Horvitz, 1970 2,871
Rape victimization Soeken & Damrosch, 1986 368*
Employee theft Wimbush & Dalton, 1997 196
Job applicant faking Donovan, Dwight, & Hurtz, 2003 221
Xenophobia Ostapczuk, Musch, & Moshagen, 2009 606
Corruption Gingerich, 2010 2,859
Dental hygiene Moshagen, Musch, Ostapczuk, & Zhao, 2010 2,254
Poaching Razafimanahaka et al., 2012 1,851
Cognitive enhancement Dietz et al., 2013 2,557
Academic misconduct Hejri, Zendehdel, Asghari, Fotouhi, & Rashidian, 2013 144
Organized crime Wolter & Preisendörfer, 2013 333
Physical doping Ulrich et al., 2018 2,168*
Prejudice against
women leaders

Ho�mann & Musch, 2019 721

Note. This table contains exemplary studies applying RRTs to investigate various sensitive topics.
It serves to demonstrate the application range and does not comprise an exhaustive literature re-
view. N : Total size of the sample administered for the respective question using the RRT. * These
samples consist of subsamples that were analyzed separately. From “Improving the e�ciency of
surveys with randomized response models: A sequential approach using curtailed sampling.” by F.
Reiber, M. Schnuerch, and R. Ulrich, 2020, Psychological methods, advance online publication, p.
8, https://doi.org/10.1037/met0000353. Copyright 2020 by the American Psychological Associa-
tion. Adapted with permission.

in the questioning design. Therefore, respondents have less reason to give self-protecting
responses and, consequently, they respond more honestly. This, in turn, leads to more
valid prevalence estimates. In fact, a meta-analysis (G. J. Lensvelt-Mulders, Hox, Van
Der Heijden, & Maas, 2005) of validations studies showed that RRTs elicit estimates that
are both less socially desirable and closer to known true prevalences. RRTs have been
applied to various topics. An excerpt of applications is presented in Table 1.

However, despite the theoretical e�ort put into model development and the general
empirical e�cacy, RRT applications are rather scarce (Blair, Imai, & Zhou, 2015). This
is not too surprising because the validity of RRTs is less than ideal. The beforemen-
tioned meta-analysis showed that RRTs yield more valid estimates only in certain cases
(G. J. Lensvelt-Mulders et al., 2005). Moreover, there is evidence that RRTs, too, are
subject to serious response biases (see John, Loewenstein, Acquisti, & Vosgerau, 2018).
In other words, prevalence estimates from surveys applying RRTs can be and often are
biased due to instruction non-adherence. However, RRT applications are motivated by the
aim to elicit honest responses to sensitive questions. Because there are reasons to doubt
this characteristic, researchers can be discouraged to invest the extra e�ort applying the
more cumbersome RRT.

https://doi.org/10.1037/met0000353
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This is especially relevant in light of the fact that RRT applications are associated with
high costs. The random noise, which creates privacy protection, induces uncertainty in
the estimates and, to compensate for that, very large sample sizes are required (Ulrich,
Schröter, Striegel, & Simon, 2012). In combination with the doubts concerning instruc-
tion adherence it is to be expected that researchers often do not want to invest in RRT
applications.

To summarize, by guaranteeing the privacy protection of respondents, RRTs have a
high potential to elicit valid prevalence estimates in investigations of sensitive research
questions. However, their applicability is impaired by certain restrictions.

1.2 Objective

Therefore, the aim of this dissertation was to increase the applicability of RRTs follow-
ing two routes. First, to increase the validity of RRT estimates, a model that makes
non-adherence to instructions measurable was developed. Second, the RRT was combined
with a sequential sampling approach to decrease sample size requirements. In the follow-
ing, both appoaches are described in more detail. The theoretical foundations and first
empirical results are reported.
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2 Problem I: Instruction Non-adherence

As mentioned above, although RRT estimates have been shown to often be more valid
than estimates from direct questioning, their validity is still less than ideal (see John et
al., 2018). Prevalences are still underestimated, corroborating the assumption that there
is instruction non-adherence in RRTs. This instruction non-adherence is possibly due
to the complicated instructions of RRTs, which lead to impaired understanding of the
procedure and therefore a lack of trust in its mechanism to provide privacy (Landsheer,
Van Der Heijden, & Van Gils, 1999; Ho�mann, Waubert de Puiseau, Schmidt, & Musch,
2017). John et al. (2018) argue that respondents are afraid that certain responses will be
interpreted as admissions to carrying the sensitive attribute, despite the fact that there
is no definitive link between the response and the sensitive attribute. Krumpal and Voss
(2020) even propose that this is rational because the conditional probabilities of being
a carrier given a specific response di�er between response options. For example, in the
UQM, the conditional probability of being a carrier is lower given a “No”-response than
given a “Yes”-response.1 The authors conclude that giving self-protecting responses can
be seen as rational behavior even in RRTs. Problematically, such self-protecting responses
distort the resulting RRT prevalence estimates.

To address self-protecting responses within RRTs, extensions measuring the extent of
such behavior have been developed. These models include the cheater detection model
(CDM, Clark & Desharnais, 1998), the stochastic lie detector (Moshagen, Musch, & Erd-
felder, 2012), and the extended crosswise model (Heck, Ho�mann, & Moshagen, 2018). Of
these, the CDM has been applied most frequently (e.g., Elbe & Pitsch, 2018; Moshagen et
al., 2010; Ostapczuk, Musch, & Moshagen, 2011; Ostapczuk, Moshagen, Zhao, & Musch,
2009; Pitsch, Emrich, & Klein, 2007; Schröter et al., 2016). It is based on the forced
response method variant of the RRT (Boruch, 1971), in which respondents are either in-
structed to respond honestly to a sensitive question or simply respond “Yes” depending
on the outcome of a randomization procedure. The main assumption of the CDM is that
only part of the respondents adhere to these instructions and some respondents instead
always give a self-protecting “No”-response to rule out being perceived as a carrier of the
sensitive attribute. In the above mentioned applications of the CDM, substantial propor-
tions of respondents of the latter group, termed cheaters, were observed (Elbe & Pitsch,
1
Of course, it is unclear whether respondents are aware of these conditional probabilities and base their

response behavior on them.
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2018; Moshagen et al., 2010; Ostapczuk et al., 2011; Ostapczuk, Moshagen, et al., 2009;
Pitsch et al., 2007; Schröter et al., 2016).

However, the forced response method has been found to elicit less valid estimates com-
pared to other RRTs and evoke response reluctance (Coutts & Jann, 2011; Höglinger,
Jann, & Diekmann, 2016; G. J. L. M. Lensvelt-Mulders & Boeije, 2007). Therefore, we
proposed to transfer the CDM’s concept of cheating to another, more valid RRT, and
developed the unrelated question model - cheating extension (UQMC, Reiber, Pope, &
Ulrich, 2020).

2.1 Unrelated Question Model - Cheating Extension

Reiber, F., Pope, H., & Ulrich, R. (2020). Cheater detection using the unrelated ques-
tion model. Sociological Methods and Research. Advance online publication. doi:
10.1177/0049124120914919

The UQMC is based on the standard design of the UQM but incorporates the cheating
concept of the CDM. As such, a part of the respondents is expected to respond honestly
to the UQM’s instructions and another part, the cheaters, is expected to always respond
with a self-protecting “No”. Figure 2 depicts the probabilities underlying responses in the
UQMC. Some respondents cheat, with probability “, and always respond “No” irrespective
of the question they are allocated to and of whether they carry the respective attribute
or not. The rest of the respondents responds according to the UQM’s instructions with
probability 1≠ “. If there is substantial cheating and the standard UQM is applied for
estimation, the prevalence of the sensitive attribute is underestimated.

Using two independent samples with varying randomization probabilities pi, the preva-
lence of cheating “ can be estimated in addition to the prevalence of the sensitive attribute.
Importantly, following the logic of the CDM, the overall prevalence of the sensitive at-
tribute cannot be estimated because the true status of cheaters cannot be inferred. In-
stead, the prevalence of honest carriers fiUQMC , that is, the joint probability of not being
a cheater 1≠ “ and of carrying the sensitive attribute ‘ is estimated. Using the two esti-
mates “̂ and fîUQMC , a lower and upper bound to the estimate of the prevalence of the
sensitive attribute can be determined. The lower bound, that is, the estimate if none of
the cheaters were carriers is denoted by fîUQMC . The upper bound, that is, the estimate
if all cheaters were carriers is denoted by fîUQMC + “̂. This range provides information
about some of the uncertainty in the data, which is ignored in the standard UQM.

However, the UQMC still makes quite strong assumptions about response behavior.
For instance, it assumes that the di�erent randomization probabilites pi do not influence
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C

N “No”1

1≠
pi

S “No”
1

pi

“

H

N

“No”
1≠ qi

“Yes”
qi1≠

pi

S

“No”
1≠ ‘

“Yes”
‘

pi

1≠
“

Figure 2: Probability tree of the UQMC. The prevalence of cheaters C is “ and the prevalence
of honest participants H is 1 ≠ “. Both types of respondents are allocated to respond to the
sensitive question S and the neutral question N with probability pi and 1≠ pi, respectively. The
model assumes that cheaters always respond “No” regardless of the question received. Honest
participants respond “Yes” with probability qi and “No” with probability 1≠ qi if instructed to
answer the neutral question N. They answer “Yes” with probability ‘ and “No” with probability
1≠ ‘, if instructed to answer the sensitive question S. Thus, there are three groups of participants:
(a) honest participants who are carriers of the sensitive attribute, who will respond “Yes” with
probability (1≠ “) · ‘ = fi if they are allocated to S; (b) honest non-carriers of this attribute who
will respond “No” with probability (1≠ “) · (1≠ ‘) if they are allocated to S; and (c) cheaters,
who will respond “No” with probability “ regardless of whether they are allocated to S or N.
Adapted from “Cheater detection using the unrelated question model” by F. Reiber, H. Pope,
and R. Ulrich, 2020, Sociological Methods and Research, advance online publication, p. 8, https://
doi.org/10.1177/0049124120914919 published by SAGE Publishing under the terms of Creative
Commons Attribution 4.0.

https://doi.org/10.1177/0049124120914919
https://doi.org/10.1177/0049124120914919


10 2 Problem I: Instruction Non-adherence

response behavior.2 Therefore, it makes sense to test the assumptions of the UQMC em-
pirically. It is possible to test the model fit of the UQMC using a four-sample extension.
Specifically, by varying the prevalence of the neutral attribute qi in addition to the ran-
domization probability pi, four indepent samples can be assessed. Consequently, there are
four independent response categories instead of two and the resulting extra degrees of
freedom enable testing the model fit. This testable version of the UQMC was applied in
an empirical study to validate the model and its assumptions.

2.2 Validation of the Unrelated Question Model - Cheating

Extension

Reiber, F., Bryce, D., & Ulrich, R. (in press). Self-protecting responses in randomized
response designs: A survey on intimate partner violence during the COVID-19 pan-
demic. Sociological Methods and Research.

The validation study was conducted in the context of a large scale online survey on the
prevalence of physical intimate partner violence (IPV) during the first contact restrictions
due to the COVID-19 pandemic in Germany in spring and early summer 2020. To test the
UQMC’s assumptions, the four sample version was applied and, additionally, the question
sensitivity was manipulated between two conditions.

Physical IPV, that is, behaviors such as hitting, slapping, or shoving a current or for-
mer romantic partner, is a highly stigmatized topic (Birkel & Guzy, 2015; Franke, Seifert,
Anders, Schröer, & Heinemann, 2004). Therefore, questions about experiencing IPV are
sensitive questions making the application of an RRT recommendable. We additionally
manipulated the question sensitivity by varying the queried role between participants.
They were either queried about victimization or perpetration of IPV. Because perpetra-
tion of IPV can have legal consequences and it has been found to have an even stronger
association with social desirability (Sugarman & Hotaling, 1997), we expected this ques-
tion to be the more sensitive one and therefore elicit more cheating. Because participation
was restricted to persons in a relationship with one partner, the true prevalence of IPV
perpetration and victimization was assumed to be the same. Therefore, any di�erences in
the estimates of the honest carrier prevalence were expected to result from complementary
di�erences in cheating.

The fit test indicated an overall good model fit of the UQMC to the data. Importantly,
this did not hold for the standard UQM, which does not account for cheating. Thus,
including a cheating parameter enabled a better description of the data. However, contrary
2
Dietz et al. (2018) found a non-significant di�erence between UQM estimates from conditions applying

di�erent randomization probabilities. This, however, might be due to a lack of power.
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to our expectation, cheating was estimated to be higher in the victimization condition and
the honest carrier and cheater prevalences were not complementary. Therefore, apparently,
there were more factors that influenced estimation but were not accounted for by the
UQMC. Possible influencing factors are selective sampling, di�erences in the perception
of violent events between perpetrators and victims of IPV (see Follingstad & Rogers,
2013), or additional types of instruction non-adherence.

2.3 Discussion

The UQMC was developed to account for instruction non-adherence within the UQM.
Indeed, it yielded better interpretable results in the validation study than the standard
UQM. Still, the experimental manipulation of the question sensitivity disclosed inconsis-
tencies. Specifically, parts of the results were not explainable by the model. It is impor-
tant to mention that the UQMC only accounts for one specific type of instruction non-
adherence, that is, always responding “No” irrespective of the question one is assigned to
and the carrier status. However, there are other conceivable types of non-adherence. For
example, in Reiber, Pope, and Ulrich (2020) we discuss the possibility of so-called partial
cheaters, who would respond honestly if they were allocated to the neutral question but
cheat if they were allocated to the sensitive question. Such a response style is not de-
tectable in a fit test, because it is mathematically consistent with the UQMC. However, it
would influence the interpretation of the estimates. It could, in theory, explain the unex-
pected data pattern in the validation study. Thus, the UQMC does potentially not o�er an
exhaustive description of all possible response styles. However, this is true for all models,
which are simplifications of the more complex subject. Therefore, the application of the
UQMC is nevertheless recommendable, because it accounts at least for one prevalent type
of instruction non-adherence.

Despite o�ering a more refined desciption of the data, models accounting for instruction
non-adherence have one general disadvantage compared to conventional RRTs. They in-
corporate even higher sample size requirements. The validation study required responses
from about 3 000 participants after data exclusion. This is a sample size that can often not
be accomplished. In other words, the extra information yielded by the cheating parameter
comes at a cost in terms of sample size.
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3 Problem II: Sample Size Requirements

The fact that extra information comes at cost in terms of sample size is true for RRTs
in general. The privacy protection, which is meant to increase data quality, has to be
compensated with sample size (Ulrich et al., 2012). Specifically, the randomization, which
induces privacy, adds random noise to the data. Therefore, this crucial element of RRTs
decreases sampling e�ciency. To counterplay this drawback, which is design inherent,
huge samples are required. As a consequence, RRT applications are very cost intensive
and this arguably discourages their realization.

This holds true for research aiming at precise prevalence estimates of sensitive attributes
as well as studies testing hypotheses about these prevalences (Ulrich et al., 2012). Al-
though most studies applying the RRT entail prevalence estimation, often the underlying
research questions call for hypothesis testing. For instance, many validation studies rely
on the more-is-better validation criterion (see G. J. Lensvelt-Mulders et al., 2005). This
criterion is based on the assumption that the prevalence estimate of a socially undesirable
attribute is more valid if it is higher. Thus, RRTs are concluded to be more valid if RRT
estimates exceed estimates from direct questioning (e.g. Nordlund, Holme, & Tamsfoss,
1994; Wimbush & Dalton, 1997; Wolter & Preisendörfer, 2013). The straightforward ap-
proach to this research question would be a hypothesis test (as in Ho�mann & Musch,
2016). However, also for studies applying the RRT to test hypotheses, power analyses
indicate very high sample size requirements (Ulrich et al., 2012).

A general approach to decrease sample size requirements in any type of study is se-
quential sampling. The logic underlying all sequential sampling schemes is to not sample
a pre-specified number of observations but to stop sampling as soon as su�cient infor-
mation is available (Wetherill, 1975). In case of hypothesis testing, su�cient information
can mean su�cienty small long term error rates (Neyman & Pearson, 1933). Specifically,
in a classical Neyman-Pearson hypothesis test for binomial data, such as “Yes” vs. “No”
responses, the number of collected responses N is pre-specified based on the desired long
term error rates. After collecting all data, the number of successes is compared to a crite-
rion c. Based on whether this criterion is reached, a decision with respect to the hypotheses
is made with control over the long term error rates. In contrast, in sequential sampling,
the sample size is not pre-specified. There are several sequential sampling schemes for this
purpose (see Wetherill, 1975). A very simple one of these is curtailed sampling.
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3.1 Curtailed Sampling for RRTs

Reiber, F., Schnuerch, M., & Ulrich, R. (2020). Improving the e�ciency of surveys with
randomized response models: A sequential approach based on curtailed sampling.
Psychological Methods. Advance online publication. doi: 10.101037/met0000353

The logic of curtailed sampling is very close to that of a classical Neyman-Pearson test.
The same parameters, N and c, are determined before data collection. However, instead of
always collecting N responses, sampling can be stopped earlier according to stopping rules.
Specifically, sampling is stopped as soon as (a) c successes are observed or (b) N ≠ c+ 1
failures are observed because at this point c successes can no longer be observed within N

responses (see Wetherill, 1975). Thus, the number of responses becomes a random variable
with a maximum of N responses but an expectation below N .

It is straightforward to combine this simple sequential sampling plan with RRT applica-
tions. In RRT applications, successes are “Yes”-responses and failures are “No”-responses.
Importantly, however, due to the randomization, the hypotheses concerning the prevalence
of the sensitive attribute are not directly linked to the responses. Therefore, the hypoth-
esized prevalence values need to be transformed to probabilities of “Yes”-responses using
the known randomization probabilities. In case of an application of the UQM, for instance,
this is done using Equation 1.1.

To demonstrate, the solid curve in Figure 3 depicts the probability of accepting the null
hypothesis as a function of the true prevalence fi for a curtailed sampling plan testing the
following hypotheses:

H0 : fi Æ fi0 = .05
H1 : fi Ø fi1 = .15

The error probabilities – and — are .05, such that, when fi = fi0, the probability to accept
H0 is .95 and when fi = fi1, the probability to accept H0 is .05. In a direct question survey,
the sampling plan is based directly on these hypotheses.

In an RRT survey, however, the hypotheses on the prevalence need to be transformed
to hypotheses on the probability of a “Yes”-response first. Inserting fi0 and fi1 into Equa-
tion 1.1 yields:3

H0 : ⁄ Æ ⁄0 = .25
H1 : ⁄ Ø ⁄1 = .29

The dotted curve in Figure 3 depicts the probability to accept the null hypothesis as a
function of the probability of a “Yes”-response ⁄. Because ⁄0 and ⁄1 are closer together
3
For this example, standard design parameters p = .75 and q = .70 were used.
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Figure 3: Operating characteristic curve of a curtailed sampling plan. The curves depict
the probability of accepting the null hypothesis as a function of the true parameter value
for a test of the hypotheses H0 : fi Æ fi0 = .05 vs. H1 : fi Ø fi1 = .15 with – = — = .05.
The solid curve is based directly on the prevalence fi. The dotted curve is based on the
probability of a “Yes”-response ⁄ in a UQM design with p = .75 and q = .70. The vertical
lines mark the hypothesized values.
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than fi0 and fi1 but – and — are held constant at .05, the curve is steeper. In other words
the testable hypotheses in RRT applications are stricter, which, again, demonstrates why
RRTs are less e�cient than direct questions. Therefore, applying a sequential sampling
plan becomes even more beneficial in RRT surveys.

The extent of the e�ciency gain can be seen in Figure 4. The solid and dotted curves
depict the expected sample size of a curtailed sampling plan for the above hypotheses as
a function of the true prevalence fi in a direct question and an RRT survey, respectively.
The horizontal lines depict the maximum sample size N for either. As is to be expected
the maximum sample size for the RRT survey is much higher than that of the direct
questioning survey. The expected sample size is always lower than the maximum sample
size, which equals the pre-specified sample size of a classical Neyman-Pearson test. The
possible sample size savings are substantial, especially, when the true prevalence is far from
the hypothesized values. Due to the larger maximum sample size in RRTs, the possible
savings are even higher in this questioning design.

3.2 Applications

So far, the curtailed sampling plan for RRTs has been applied in two studies and a third is
currently in the stage of data collection. The first study was conducted in the context of an
unpublished master’s thesis (Iberl, 2019). The aim was to replicate the findings of a study
on pharmacological neuroenhancement, that is, the use of psychoactive substances with
the purpose of improving cognitive or mental performance (Schilling, Hoebel, Müters,
& Lange, 2012). The original study (Dietz et al., 2018) investigated pharmacological
neuroenhancement among university students and reported a prevalence of 14.9 percent.
Thus, the hypotheses in the replication study were:

H0: fi Æ fi0 = .01
The prevalence is lower than in the original study (i.e., nearly absent).

H1: fi Ø fi1 = .15
The prevalence is at least as high as in the original study.

A decision in favor of H1 was made after reaching the critical number c of “Yes”-responses.
At this point the maximum number of responses N was nearly reached. In other words, in
this case the application of the curtailed sampling plan did not lead to substantial sample
size savings.

The second study was a validation study conducted in the context of an unpublished
bachelor’s thesis (Hafner, 2019). In a street survey, passers-by were queried about voting
in the elections for the European Parliament in 2019 using either the UQM or direct
questioning. Because voting is generally perceived as socially desirable (Goerres, 2010),
over-reporting in a street survey was expected, but less so using the UQM. The true voter
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Figure 4: Expected sample size in a curtailed sampling plan. The curves depict the ex-
pected sample size in a curtailed sampling plan as a function of the true prevalence fi for
a test of the hypotheses H0 : fi Æ fi0 = .05 vs. H1 : fi Ø fi1 = .15 with – = — = .05.
The solid curve is based on the curtailed sampling plan for a direct question study. The
dotted curve is based on the curtailed sampling plan for a UQM study with p = .75 and
q = .70. The horizontal lines mark the respective maximum sample size N , that is, the
pre-specified sample size in a classical Neyman-Pearson test.
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turnout was 67.1 percent in the region of survey administration (Stuttgart, Germany).
Therefore, the hypotheses were for both questioning techniques,

H0: fi Æ fi0 = .70
Voting is not overreported.

H1: fi Ø fi1 = .80
Voting is overreported.

For both questioning techniques, the decision that voting was overreported was made after
reaching the critical number c of “Yes”-responses. Compared to a classical Neyman-Person
hypothesis test, the sample size savings were 12.3 percent (of N = 204) and 20.9 percent
(of N = 549) in the direct questioning and UQM conditions, respectively. Thus, in this
case, the application of the curtailed smapling plan did lead to substantial sample size
savings.

A third study to replicate findings on doping in elite athletics (Striegel, Ulrich, & Simon,
2010) is still in the state of data collection.

3.3 Discussion

The theoretical considerations and first applications demonstrate that curtailed sampling
can substantially decrease sample size and thus make RRT applications more feasible. The
replication study on pharmacological neuroenhancement shows that there is not always
a large improvement but the sample size can never exceed the fixed Neyman-Pearson
N . There are other sequential sampling approaches that are on average more e�cient.
For instance, the sequential probability ratio test (SPRT, Wald, 1945) has been proven
to be the most e�cient test when the true parameter equals or is very close to one of
the hypothesized values (i.e., fi0 or fi1; Wald & Wolfowitz, 1948). However, the SPRT
incorporates no upper limit to the sample size. Therefore, it is theoretically possible that
the sample size becomes extremely large.

A maximum sample size makes studies applying curtailed sampling more plannable.
In addition, hypothesis evaluation during sampling is very convenient because researchers
only need to count “Yes”- and “No”-responses. In the paper (Reiber, Schnuerch, & Ulrich,
2020), we provide R user scripts and an R shiny web application, to further facilitate study
planning and data evaluation.

Another advantage of curtailed sampling compared to other sequential sampling ap-
proaches is that it is straightforward to conduct subsequent estimation. Although, as
stated above, many RRT research questions call for hypothesis tests, subsequent preva-
lence estimation can provide further insight. Because sampling is stopped based on the
data, conventional maximum likelihood estimators are biased (e.g., Whitehead, 1986).
Nevertheless, in case of curtailed sampling, unbiased subsequent estimation is possible



3 Problem II: Sample Size Requirements 19

using adjusted inverse binomial sampling (Haldane, 1945).
Importantly, however, unbiasedness is not the only criterion for reliable estimation.

Another important criterion is precision. However, RRT estimates based on small sample
sizes, cannot be precise. In other words, estimation in the context of RRTs is always
subject to the trade-o� between sample size and precision and curtailed sampling is not
designed for precise estimation.

Another limitation of curtailed sampling is that it is restricted to tests of simple hy-
potheses, like the size of a single prevalence. However, there are conceivable research
questions calling for tests of composite hypotheses in the RRT context. For example,
it might be of interest whether prevalences of a sensitive attribute di�er between sub-
populations. Also, whenever an RRT accounting for instruction non-adherence, like the
UQMC, is applied, composite hypotheses have to be tested due to the nuisance parameter
(e.g., the cheating parameter “ in the UQMC).

The SPRT, on the other hand, can be extended to tests of composite hypotheses.
Schnuerch, Erdfelder, and Heck (2020) demonstrate how this is possible using the sequen-
tial maximum likelihood ratio test (Cox, 1963) in the context of multinomial processing tree
models (Riefer & Batchelder, 1988) of which the RRT is a special case. An article applying
this procedure to RRTs is currently in preparation. This will allow for sequential testing
using RRTs measuring instruction non-adherence, such as the UQMC. Consequently, this
procedure will enable combining the two approaches for enhancing the applicability of
RRTs presented within this dissertation.
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4 General Discussion

Investigating sensitive research questions is made di�cult by self-protecting response bi-
ases of survey respondents. Randomized response techniques (RRTs) provide one way to
approach this problem by guaranteeing privacy protection. However, applications of RRTs
are impaired by certain restrictions. In the preceding chapters, I have presented two ways
to address these restrictions and demonstrated how this can improve RRT applications.

First, I presented the UQMC, a new model to measure a specific type of instruction non-
adherence within a standard RRT. The UQMC validation study showed that accounting
for instruction non-adherence by means of cheating detection provides a better description
of response behavior.

However, the the empirical assessment of the UQMC also indicated that there are more
factors influencing responses. There are other types of response styles which are much
harder to incorporate in a statistical model. For instance, random responding has been
proposed as a factor strongly influencing responses in another popular RRT variant, the
crosswise model (Yu, Tian, & Tang, 2008). Because of the complicated instructions of
RRTs, random responses by respondents who do not understand the instructions might
be a severe problem. Such random responding, however, is di�cult to model, because
estimating randomness is extremely ine�cient.

As an alternative to modeling, the low comprehensibility leading to such response styles
can be addressed (Meisters, Ho�mann, & Musch, 2020). To this end, simplified instructions
and the application of training questions have been suggested (Meisters et al., 2020). An-
other promising idea, which has to my knowledge not been tested yet, are comprehensive
instruction videos, especially in the context of online surveys. Moreover, the RRT should
be designed such that the mechanism of the RRT is as intuitive as possible (Höglinger
et al., 2016). For example, using dice or a deck of cards as randomization device might
be more intuitive than an unrelated question, concerning, for example, the birthday of
a close relative. More specifically, to a person not acquainted with probability theory it
might not be intuitive that birthdays are randomly distributed. Thus, some respondents
might not understand how their privacy is protected by such a randomization procedure
and be reluctant to adhere to the instructions. This lack of understandig could either
be countered by demonstrating the randomnesss property of birthdays using one of the
above mentioned strategies or by using a more intuitive randomization procedure in the
first place. As a consequence, not only random responding but also deliberate response
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styles based on a lack of trust could be diminished.
These strategies can be devised to decrease deliberate response strategies with the

aim of impression management. However, sensitive topics do not only foster impres-
sion management strategies but are also subject to unintentional mechanisms such as
self-deception, rationalization, and di�culties recalling and reporting unpleasant events
(Näher & Krumpal, 2012; Tourangeau & Yan, 2007). Such mechanisms are not under the
volitional control of survey respondents and can therefore not be countered by an a�r-
mation of privacy protection. Thus, with respect to reducing these mechanisms, RRTs are
naturally restricted.

Second, I suggested sequential testing to ameliorate the problem of high sample size
requirements. I demonstrated that the sample size of an RRT study can be substantially
decreased in a sequential hypothesis test using curtailed sampling. However, the high
sampling variance of RRTs is design inherent and especially when prevalence estimation
is the goal of a study this cannot be circumvented.

Therefore, it is reasonable to consider in which cases an RRT application is sensible and
to keep alternatives in mind. Like mentioned in the introduction, there are ways to design
a study such that honest responding to sensitive questions is facilitated, for example,
by self-administration or forgiving wording of the sensitive question (Tourangeau & Yan,
2007). Especially in the context of online surveys, respondents might generally perceive the
privacy protection as high enough without extra protection implemented. For example, in
an unpublished online study on the perceived privacy protection in direct questioning and
di�erent RRT designs with varying randomization probabilities, we observed a ceiling
e�ect.4 Specifically, the perceived privacy protection was at the top of the scale in all
conditions including direct questioning, despite the high sensitivity of the topic (intimate
partner violence). It has even been argued that in certain situations the RRT may rather
induce a feeling of insecurity by making privacy concerns more salient (see John et al.,
2018). Thus, in such studies it can be reasonable to create an evironment that fosters
honest responding without applying an RRT.

However, applying RRTs can be very beneficial in certain situations. For example, in
face-to-face settings it is much more di�cult to create an anonymous environment and
due to the presence of an interviewer social desirability becomes even more influencial
(Tourangeau & Yan, 2007). Moreover, in face-to-face settings the implementation of in-
tuitive random generators, such as dice or a deck of cards is easily feasible.5 Additionally,
di�culties in understanding the procedure can be more easily ruled out and specific ex-
planations be provided.
4
A description of the study and the main results is in Appendix C. The ceiling e�ect with respect to the

perceived privacy protection is depicted in Figure 5 of this appendix.
5
This is more di�cult in online studies because one cannot rely on respondents to actually conduct a

physical randomization in front of their screens but online tools might not be perceived as trustworthy

(Coutts & Jann, 2011).
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Another feature making the application of RRTs appropriate is a high sensitivity of the
topic, in the sense that it strongly elicits impression management strategies, such as a
concrete sensitive behavior with possible legal consequences (e.g., theft or doping in elite
athletics). Here, the privacy protection provided by RRTs can elicit more honest responses
and lead to more valid prevalence estimates (G. J. Lensvelt-Mulders et al., 2005).

In summary, although RRTs are no panacea for self-protecting response biases in sur-
veys on sensitive attributes, they are a useful tool for specific types of studies. The results
presented within this dissertation demonstrate that if an RRT is applied, it is recom-
mendable to use a testable model accounting for instruction non-adherence. Moreover, if
the research question implies a hypothesis test, a sequential sampling design can further
lower the barrier to apply RRTs.

4.1 Conclusion

Research on sensitive topics often adresses issues of high societal relevance but it is dif-
ficult to conduct due to sef-protecting response tendencies in self-reports. Randomized
response techniques provide an approach to address this problem by creating privacy pro-
tection. However, their empirical applicability is impaired by instruction non-adherence
and high sample size requirements. In this dissertation I outlined two routes to increase
the applicability of RRTs, namely measuring non-adherence to instructions and sequential
hypothesis testing. There is certainly additional work needed to increase instruction ad-
herence in RRTs and alternative ways to facilitate honest responding to sensitive questions
have to be considered. However, the presented empirical results show that following these
routes is beneficial for RRT applications. Thus, this disseration contributes to increasing
the applicability of RRTs for a better understanding of sensitive research topics.
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Throughout the social sciences, many findings are based on surveys of var-
ious groups of individuals. Most such surveys rely on the assumption that
respondents will provide honest answers to survey questions. However, this
assumption falters when asking respondents sensitive questions (see Tour-
angeau and Yan 2007)—questions that are perceived as intrusive, stigmatiz-
ing, socially undesirable, or even legally incriminating (Tourangeau, Rips,
and Rasinski 2000). Faced with sensitive questions, respondents may refuse
to participate in the survey or may simply answer dishonestly (Tourangeau
et al. 2000), especially if they are carriers of the sensitive attribute being
assessed. Thus, direct questioning has frequently been found to underesti-
mate the true prevalence of sensitive attributes, such as having received an
abortion (Fu et al. 1998), having been convicted of driving while intoxicated,
having engaged in doping in athletics, and many other issues.

To address this problem, several indirect questioning techniques have
been developed throughout the last half-century (see Chaudhuri and Chris-
tofides 2013). One of these methods, the Randomized Response Technique
(RRT), developed by Warner (1965), introduced the idea of creating anon-
ymity by employing random encryption of the respondents’ answers. In
Warner’s model, the respondent receives one of two questions about a sen-
sitive issue. For example, the survey instrument might be designed so that
respondents will receive the question S: Have you ever used illicit drugs?
with probability p (where p 6¼ :5), or they will receive the negative of this
question c S: Have you never used illicit drugs? with the complementary
probability 1" p. A random element (e.g., the throw of a die) determines
which of the two questions the respondent receives. The survey is designed
so that only the respondent knows the outcome of the randomization (e.g., the
respondent is asked to throw the die out of the sight of the investigator). Since
only the respondent knows which question he or she has answered the inves-
tigator cannot infer the respondent’s status when the respondent answers
“yes” or “no” to the survey instrument. However, even though the investi-
gators cannot infer the status of any individual respondent, they can never-
theless estimate the prevalence of the sensitive attribute in a large survey
population because the probability p underlying the randomization is known,
and hence the estimated prevalence of the sensitive attribute can be derived
from the proportion of “yes” answers.

Several revisions and modifications of Warner’s (1965) model have been
proposed over the years (e.g., Kuk 1990; Mangat 1994). One of these is the
well-established unrelated question model (UQM; Greenberg et al. 1969; see
Figure 1). In the UQM, as in the original Warner model, a randomization
procedure determines whether the respondent is instructed to answer the
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sensitive question S. The alternative question, however, is not the reversed
sensitive question c S, but instead an unrelated innocuous question, the
neutral question N (e.g., “Think of someone close to you whose birthdate
you know, and answer “yes” if that individual was born on an odd-numbered
day”). Thus, the UQM is potentially more psychologically acceptable to
survey respondents than the original Warner method because question N is
obviously not related to the sensitive attribute and is therefore clearly not
incriminating.

With the UQM, as with Warner’s original method, the investigator cannot
determine any individual respondent’s status on the sensitive attribute. How-
ever, given a large sample of respondents, the investigator can still estimate
the prevalence p of the sensitive attribute, provided that the randomization
probability p and the prevalence of the neutral attribute q are known. Spe-

cifically, the prevalence p can be estimated from the observed proportion l̂
of “yes” responses by the formula:

p̂ ¼ l̂ " ð1" pÞ % q
p

: ð1Þ

In several studies, the UQM has elicited prevalence estimates sub-
stantially exceeding estimates derived from direct questioning (see
Lensvelt-Mulders et al. 2005), such as the prevalence of induced abor-
tion (Abernathy, Greenberg, and Horvitz 1970) and doping in elite
athletics (e.g., Ulrich et al. 2018).

N

“no”1 − q

“yes”q1 − p

S

“no”1 − π

“yes”π

p

Figure 1. Probability tree of the unrelated question model. The sensitive question S
and the neutral question N are randomly received by respondents with probability
p and 1" p, respectively. The probabilities of responding “yes” and “no” to the
neutral question N are q and 1" q, and the probabilities of responding “yes” and “no”
to the sensitive question S are p and 1" p.
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However, by introducing an unrelated question N, the UQM opens the
possibility that some respondents (“cheaters”) will be tempted to answer a
self-protective “no” to either of the two alternative questions on the survey
regardless of the true answer to the question. Even though a “yes” response
does not necessarily imply having the sensitive attribute, a “no” response
greatly reduces the possibility of that conclusion. Specifically, under the
standard version of the UQM, the conditional probability PðAj“yes”Þ of
being a carrier given a “yes” response is generally larger than the conditional
probability PðAj“no”Þ of being a carrier given a “no” response, when p is less
than one. For example, for p ¼ 0:75, q ¼ 0:5, and p ¼ 0:2 one computes
PðAj“yes”Þ ¼ 0:636 and PðAj“no”Þ ¼ 0:034 using Bayes’s theorem. Corre-
spondingly, the odds that one is a carrier of the attribute would be 49 times
greater given a “yes” response than given a “no” response. Interestingly, this
conclusion does not depend on p. As a consequence, this difference in con-
ditional probabilities may encourage cheating behavior in the form of
answering “no” under all circumstances.

Another modification of the RRT, the cheater detection model (CDM;
Clark and Desharnais 1998), addresses this drawback by dividing respon-
dents into three mutually exclusive categories: (a) honest respondents who
are carriers of the sensitive attribute, who will respond “yes” if they receive
the sensitive question, (b) honest respondents who are noncarriers of the
sensitive attribute, who will respond “no” if they receive the sensitive ques-
tion, and (c) cheaters who choose the safe option by always responding “no”
to any question regardless of whether they are carriers or noncarriers. For
illustration, let A be a carrier and c A be a noncarrier. Furthermore, let H be
an honest respondent and c H be a cheater. Then, the probabilities of the
three subgroups can be expressed as compound probabilities. These prob-
abilities are for subgroup (a)

PðA \ HÞ ¼ PðAjHÞ % PðHÞ ¼ e % ð1" gÞ; ð2Þ

for subgroup (b)

Pð c A \ HÞ ¼ Pð c AjHÞ % PðHÞ ¼ ð1" eÞ % ð1" gÞ; ð3Þ

and for subgroup (c)

Pð c HÞ ¼ PðCÞ ¼ g: ð4Þ

Note that these three probabilities add to one.
The CDM is based on another RRT variant, the forced response model

(Boruch 1971). This model modifies Warner’s model by replacing the
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inverted question c S by the instruction to simply say “yes.” In other words,
the forced instruction to say “yes” simply replaces the neutral question N in
the UQM. Hence, if no cheating is assumed and one is therefore not attempt-
ing to assess for cheating, the forced response model is mathematically
equivalent to a special case of the UQM, namely when the prevalence q of
the neutral attribute equals 1. This situation is depicted in the upper part of
Figure 2 starting at node H, representing honest respondents only.

C

F “no”1

1 − pi

S “no”1

p i
γ

H

F “yes”
1

1 − pi

S

“no”
1 ε−

“yes”

pi

1 −
γ

ε

Figure 2. Probability tree of the cheater detection model. Respondents are either
cheaters C with probability g or honest respondents H with probability 1" g. All
respondents randomly receive either the sensitive question S or the instruction F to
respond “yes” with probability pi and 1" pi, respectively. Cheaters C always answer
“no” regardless of their carrier status and regardless of whether they receive ques-
tion S or instruction F. Honest respondents H respond honestly under all conditions.
Specifically, if instructed to say “yes,” honest participants always answer “yes.” If
instructed to answer the sensitive question S, honest participants answer “yes” with
probability e and “no” with probability 1" e. Thus, participants can be divided into
three groups: (a) carriers of the sensitive attribute who will honestly respond “yes”
with probability ð1" gÞ % e ¼ p when receiving S; (b) noncarriers of this attribute
who will honestly respond “no” with probability ð1" gÞ % ð1" eÞ when receiving S;
and (c) cheaters who will respond “no” with probability g regardless of receiving S or
the instruction F to respond “yes.”
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However, note that the temptation to cheat may be especially pronounced
in the forced response model because the respondent can completely elim-
inate any suggestion of being a carrier of the sensitive attribute by simply
answering “no.” Expressed more formally, in the forced response model, the
conditional probability PðAj“yes”Þ must be always larger than the condi-
tional probability PðAj“no”Þ because PðAj“no”Þ ¼ 0 (except in the implau-
sible case where PðAj“yes”Þ is also 0). For example, for p ¼ 0:75 and
p ¼ 0:2, one computes PðAj“yes”Þ ¼ 0:5 and PðAj“no”Þ ¼ 0. Correspond-
ingly, the odds that the respondent is a carrier of the attribute would be
infinitely greater given a “yes” response than given a “no” response. In other
words, answering with “no” is a completely safe option.

Therefore, the CDM includes a parameter to assess the extent of cheating.
This is depicted in the lower part of Figure 2 starting at node C and repre-
senting cheaters. In this diagram of the CDM, the proportion of cheaters is g,
whereas the proportion of honest respondents is 1" g. The proportion of
respondents carrying the sensitive attribute cannot be estimated because only
the proportion p of honest carriers in the overall respondent population, but
not the proportion of carriers who are cheaters in the overall population, can
be identified by the model. Importantly, p in the CDM is, therefore, not
equivalent to p in the UQM because in the former it is defined as the
proportion of honest carriers and in the latter as the total proportion of
carriers. Nevertheless, in the CDM, the total proportion of carriers in the
population must lie within the range that is defined by the lower bound
p ¼ ð1" gÞ % e and the upper bound pþ g. The proportions p and g thus
represent two of the above introduced categories, namely (a) honest carriers
and (c) cheaters, respectively. Therefore, the proportion of respondents in the
remaining category (b)—the honest noncarriers—is simply given by
1" ðpþ gÞ. In order to estimate the parameters p and g for computing the
two bounds, two probabilities l1 and l2 of responding “yes” are required.
They can be estimated by the observed proportion of “yes” responses in two
independent samples with p1 6¼ p2. The resulting equation system can then
be solved for p and g.

Several empirical implementations of the CDM (e.g., Elbe and Pitsch
2018; Moshagen et al. 2010; Ostapczuk 2011; Ostapczuk et al. 2009; Pitsch,
Emrich, and Klein 2007; Schröter et al. 2016) have provided evidence of
cheating behavior—showing the importance of including a cheating para-
meter in RRTs. However, studies utilizing the forced response model (e.g.,
Höglinger, Jann, and Diekmann 2016; Kirchner 2015; Wolter and Preisen-
dörfer 2013) have raised doubts about the validity of this particular method.
Specifically, it has been shown (Coutts and Jann 2011; Höglinger et al. 2016)
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to elicit lower estimates than other indirect questioning techniques, and
respondents have reported greater difficulties in understanding this tech-
nique. Respondents also seem to express less trust that the technique guar-
antees anonymity. For example, Lensvelt-Mulders and Boeije (2007)
reported that respondents perceived being forced to give a “yes” response
as being “forced to be dishonest” (p. 600), which seemingly triggered
reluctance.

Ostapczuk et al. (2009) proposed a method to reduce this problem by
adding a forced “no” response to the forced “yes” response. In this symmetric
design, none of the response options is conclusive of the respondents’ status.
Specifically, it is not only possible to be forced to respond “yes” even though
one is a noncarrier but also to be forced to respond “no” even though one is in
fact a carrier. This should increase compliance with the instructions, and
indeed, the authors found cheating to be reduced in an empirical comparison
to the original design. Still, it is plausible that a forced response can feel like
an implicit response to the sensitive question, something that even this
approach does not address.

In summary, although it appears important to account for possible cheat-
ing when using RRTs, a technique based on the forced response model may
not be ideal. By contrast, the UQM is conceptually and mathematically
similar without potentially triggering reluctance by forcing responses. Here,
responses to the neutral question are clearly not responses to the sensitive
question because the neutral question has content of its own. Thus, in the next
section, we propose a model combining the greater psychological accept-
ability of the UQM’s design with the CDM’s concept of cheating.

Unrelated Question Model—Cheating Extension (UQMC)

Below, we introduce the UQMC, a model combining the basic idea of the
CDM (Clark and Desharnais 1998) with the standard version of the UQM
(Greenberg et al. 1969). The setup of the UQMC resembles that of the UQM,
in that respondents receive the sensitive question S with probability p and the
neutral question N with probability 1" p. As in the CDM, participants are
categorized as being either honest respondents or cheaters. Figure 3 depicts
the resulting probabilities. The same parameters generated in the CDM can
be estimated using this model. Specifically, g corresponds to the probability
of being a cheater, and p ¼ ð1" gÞ % e depicts the probability of being an
honest carrier of the sensitive attribute. As in the CDM, the prevalence of the
sensitive attribute cannot be inferred because the proportion of carriers can
only be estimated among honest respondents and not among cheaters.

Reiber et al. 7



However, it is still possible to compute an estimated range for the prevalence,
which is defined by the bounds p and pþ g.

As in the CDM, two independent samples of respondents are required to
estimate p and g. Again, different values of pi must be used with the two
samples, i ¼ 1; 2. Thus, the probability of responding “yes” in sample i is
given by

C

N “no”1

1 − pi

S “no”1

p i
γ

H

N

“no”
1 − q

“yes”q1 − pi

S

“no”
1 −

“yes”

p i

1 −
γ

ε

ε

Figure 3. Probability tree of the unrelated question model—cheating extension. The
prevalence of cheaters C is g and the prevalence of honest participants H is 1" g. In
both cases, the sensitive question S and the neutral question N are received by
participants with probability pi and 1" pi, respectively. Cheaters always say “no”
regardless of the question received. Honest participants respond “yes” with prob-
ability q and “no” with probability 1" q if instructed to answer the neutral question
N. They answer “yes” with probability e and “no” with probability 1" e, if instructed
to answer the sensitive question S. Thus, there are three groups of participants: (a)
honest participants who are carriers of the sensitive attribute, who will respond “yes”
with probability ð1" gÞ % e ¼ p if they receive S; (b) honest noncarriers of this
attribute who will respond “no” with probability ð1" gÞ % ð1" eÞ if they receive S;
and (c) cheaters who will respond “no” with probability g regardless of whether they
receive S or N.
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li ¼ pi % pþ ð1" piÞ % ð1" gÞ % q: ð5Þ

As l1 and l2 can be estimated from the corresponding observed propor-

tion l̂1 and l̂2 of “yes” responses in each sample, the resulting equation
system can be solved for p and g,

p̂ ¼ l̂2 % ð1" p1Þ " l̂1 % ð1" p2Þ
p2 " p1

; ð6Þ

and

ĝ ¼ 1" l̂2 % p1 " l̂1 % p2

q % ðp1 " p2Þ
: ð7Þ

The corresponding sampling variances of the two estimates are

Varðp̂Þ ¼ 1

ðp2 " p1Þ2
ð1" p1Þ2 %

l2ð1" l2Þ
n2

þ ð1" p2Þ2 %
l1ð1" l1Þ

n1

! "
;

ð8Þ

and

VarðĝÞ ¼ 1

q2 % ðp1 " p2Þ2
p2

2 %
l1ð1" l1Þ

n1

þ p2
1 %

l2ð1" l2Þ
n2

! "
: ð9Þ

The covariance of these estimators is

Covðp̂; ĝÞ ¼ 1

q % ð2p1p2 " p2
1 " p2

2Þ
ðp2

1 " p1Þ %
l2ð1" l2Þ

n2

þ ðp2
2 " p2Þ %

l1ð1" l1Þ
n1

! "
:

ð10Þ

Table 1 provides a numerical example to illustrate the UQMC. This exam-

ple assumes that the estimates l̂1 and l̂2 of “yes” responses were obtained
from two independent samples. The observed proportions of “yes” responses
in this table were simulated with p ¼ 0:2, and g ¼ 0:3. Inserting the values of
Table 1 into equations (6–9) yields parameter estimates p̂ and ĝ with their
standard errors, which are depicted in Table 2. These estimates can be used to
generate the possible range of the prevalence of the sensitive attribute. The
lower bound of this range (i.e., the lowest possible estimate of the prevalence)
is p̂ ¼ 0:190, with a 95 percent confidence interval of 0:149 to 0:231. The
upper bound is p̂ þ ĝ ¼ 0:190þ 0:305 ¼ 0:495. The sampling variance of
this upper bound is given by
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Varðp̂ þ ĝÞ ¼ Varðp̂Þ þ VarðĝÞ þ 2 % Covðp̂; ĝÞ; ð11Þ

using equations (8–10). Therefore, the 95 percent confidence interval of
the upper bound ranges from 0:341 to 0:648. Hence, even though the
prevalence of carriers among cheaters remains unknown, one can con-
clude from this model that the estimated total proportion of carriers is at
least 0:190 and at most 0:495 with 95 percent confidence intervals rang-
ing from 0:149 to 0:648.

It is important to note that the size of this range is in large part due to the
true cheating proportion, which is 0.3 in this example, and not merely due to
random sampling error. A model that does not take cheating into account,
such as the original UQM, would therefore yield an estimate with a smaller
confidence interval. On first sight, this may look preferable. However, this
estimate would be biased, as it disregards the true prevalence of cheating. As
such, there is uncertainty in both cases, but only the UQMC makes the degree
of this uncertainty explicit by taking cheating into account. If on the other
hand, there is in fact no cheating, the UQMC can capture this as well (with ĝ
approximating 0), and the confidence interval of the prevalence estimate
range will decrease correspondingly. By way of illustration, if one changes

Table 1. Numerical Example Illustrating the Unrelated Question Model—Cheating
Extension.

Sample ni pi q oyi oni l̂ i

1 1,000 .75 .5 229 771 .229
2 1,000 .25 .5 308 692 .308

Note. ni¼ size of sample i; pi ¼ probability of being assigned to the sensitive question in sample i;
q¼ prevalence of the neutral attribute; oyi ¼ observed frequency of “yes” responses in sample i;
oni ¼ observed frequency of “no” responses in sample i; l̂ i ¼ proportion of “yes” responses in
sample i.

Table 2. Numerical Example Illustrating the Unrelated Question Model—Cheating
Extension (Continued).

Parameter Prevalence Estimate SE CI

p .200 .190 .021 [.149, .231]
g .300 .305 .046 [.215, .395]
pþ g .500 .495 .079 [.341, .648]

Note. SE ¼ standard error of parameter estimate; CI ¼ 95 percent confidence interval of
parameter estimate.

10 Sociological Methods & Research XX(X)



the true cheating prevalence in the above example to g ¼ 0:1, the estimates
resulting from simulation are p̂ ¼ 0:239 with 95 percent confidence interval
ranging from 0:193 to 0:284 and p̂ þ ĝ ¼ 0:239þ 0:082 ¼ 0:321 with 95
percent confidence interval ranging from 0:193 to 0:449. As can be seen from
this example positing a lower rate of cheating, the 95 percent confidence
interval for the estimated range of the carrier proportion is much smaller,
namely 0:193 to 0:449.

In addition to estimating the above parameters, the UQMC can test
whether a substantial amount of cheating is present. Indeed, Clark and
Desharnais (1998) introduced a likelihood ratio test for this purpose in their
initial presentation of the CDM. This test utilizes the ratio of the maximum
likelihood of a model setting cheating to g ¼ 0 and the maximum likelihood
of a model allowing for cheating. It can be applied to the UQMC in a similar
manner, where it is formalized as

w2ð1Þ ¼ 2 % log Lðp̂; ĝÞ " log Lðp̂'; g ¼ 0Þ½ ): ð12Þ

In the above example, this likelihood ratio test supports the hypothesis

that cheating is present, with w2ð1Þ ¼ 41:119, p < :001. Appendix A (which
can be found at http://smr.sagepub.com/supplemental/) contains R-code that
can be used for applying the calculations to one’s own data.

As is true for all indirect questioning techniques, the sampling variance
of the estimates is quite high. Due to the additional estimation of the
cheating parameter, this variance becomes even higher than in one-
parameter RRMs, such as the original UQM. An optimized choice of pi

and q, and an optimized division of the sample into the two subsamples can
minimize this drawback. Appendix B (which can be found at http://smr.
sagepub.com/supplemental/) illustrates the influence each of these para-
meters has on the sum of standard errors and power of the model estimates.
In short, more extreme values of pi and larger values of q make the sum of
standard errors smaller and the relative size of the two subsamples within
the overall sample has only a small impact, as long as the difference is not
too extreme. Thus, a division of the sample into two equal subsamples is
desirable. However, minimizing the standard error cannot be the only con-
sideration when choosing the values for pi and q because in case of values
for pi and q close to 0 or 1, the responses become more indicative of the
respondents’ status and thus anonymity protection decreases. Therefore,
the applied values must be chosen to represent a compromise between
efficiency and anonymity protection. Recommended values would there-
fore be 0.75 and 0.70 for p1 and q, respectively.
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Different parameter combinations might be advantageous if the focus of
the study is mainly on prevalence estimation or mainly on cheater estimation.
In the former case pi should be more extreme, q should be smaller, and the
larger part of the sample should be allocated to the subsample with higher pi.
In the latter case, pi should be closer to 0.5, q should be higher, and the larger
part of the sample should be allocated to the subsample with lower pi.

The above recommendations are based on the influence that the design
parameters have on the standard error and statistical power, together with an
intuitive evaluation of the influence that these parameters have on perceived
privacy protection. In specific applications, the parameters should be
informed by the specific sensitive question at hand and the implementation
of the questioning design. In doing so, one can refer to theoretical as well as
empirical work on the optimal choice of design parameters in RRMs with
respect to efficiency and perceived privacy protection (e.g., Greenberg et al.
1977; Lanke 1975; Leysieffer and Warner 1976; Ljungqvist 1993; Soeken
and Macready 1982). An overview on this topic is given by Fox (2016).

Partial Cheating

As explained above, the UQMC utilizes the cheating concept as initially
defined in the CDM, where “cheaters” are assumed to always choose the
safe option of a “no” response, regardless of the question presented. How-
ever, this may be an unduly restrictive assumption, as there might be respon-
dents who would cheat when confronted with the sensitive question but
would answer the neutral question truthfully, since they do not feel threat-
ened by this latter question. Allowing for cheating in this broader and prob-
ably more realistic sense implies that the original categories (completely
honest respondents and complete cheaters) should be extended by the cate-
gory “partial cheaters” (i.e., cheating only if presented with the sensitive
question). In the following, we refer to the original group of cheaters, who
always respond “no,” as “complete cheaters.”

Figure 4 depicts how partial cheating affects the probabilities for “yes”
and “no” responses. Honest respondents still answer honestly to whichever
question they are assigned. Complete cheaters, as before, respond “no” to
whichever question they are assigned. In this figure, we add partial cheaters,
who answer honestly if assigned to the neutral question, but always respond
“no” to the sensitive question, regardless of whether they are carriers of the
sensitive attribute. Thus, there is a new branch of the probability tree leading
to a “yes” response, gp % ð1" piÞ % q. The resulting total probability for

answering “yes” if there is partial cheating can be reduced to
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li ¼ ð1" gc " gpÞ % e % pi þ ð1" piÞ % ð1" gcÞ % q: ð13Þ

It should be stressed that not all three parameters gc, gp, and e can be

estimated from empirical data. In other words, the same value of p can be

P

N

“no”1 − q

“yes”q
1 − pi

S “no”1
pi

γ
p

C

N “no”1
1 − pi

S “no”1
pi

γc

H

N

“no”1 − q

“yes”q
1 − pi

S

“no”1 −

“yes”

pi
1 −
γ c
−
γ p

ε

ε

Figure 4. Probability tree of the unrelated question model—cheating extension
including partial cheating. Participants are (a) honest H with probability 1" gc " gp,
(b) partial cheaters P with probability gp, or (c) complete cheaters C with probability
gc. All types of participants receive the sensitive question S and the neutral question N
with probability pi and 1" pi, respectively. (a) Honest participants respond “yes” with
probability q and “no” with probability 1" q, if instructed to answer the neutral
question N. They answer “yes” with probability e and “no” with probability 1" e, if
instructed to answer the sensitive question S. (b) Partial cheaters always say “no” if
they are instructed to answer the sensitive question S, regardless whether or not they
are carriers, but if instructed to answer the neutral question N, they answer honestly
by saying “yes” with probability q and “no” with probability 1" q. (c) Complete
cheaters always answer “no” regardless of the question that they receive and
regardless of whether or not they carry the attribute.
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achieved by an infinite number of combinations of gp and e, which would

give rise to the same probability li. Therefore, this extension can be only
partially solved for parameters p ¼ ð1" gc " gpÞ % e and gc. As such, p can

be inserted into equation (13) resulting in

li ¼ p % pi þ ð1" piÞ % ð1" gcÞ % q: ð14Þ

It is clear that equation (14) is equivalent to equation (5), except that g is
replaced by gc. Thus, the lower bound for the estimated prevalence of the
sensitive attribute is still defined by p when allowing for partial cheaters.
However, the upper bound of the estimated prevalence, which was formerly
given by pþ g, may no longer be given by pþ gc after allowing for partial
cheaters because the remaining category now comprises not only the pro-
portion of honest noncarriers but additionally gp. Since partial cheaters can

be carriers of the attribute, gp should be added to the possible prevalence

range. This results in an increased upper bound of pþ gc þ gp, which cannot

be determined because gp is not identifiable.

For the above numerical example, this would mean that the estimate for the
lower bound of the prevalence range would remain at p̂ ¼ 0:188. The estimate
for the upper bound, however, would potentially exceed p̂ þ ĝc ¼ 0:188þ
0:304 ¼ 0:492 because there could be an additional unknown proportion of
partial cheaters. In other words, if one computes the prevalence of the sensitive
attribute using the UQMC, which formally assumes only the possibility of com-
plete cheating, the estimate of the lower bound of carrier prevalence is not
affected by the presence of partial cheaters, but the upper bound of this range
may be underestimated if partial cheaters are present. This consideration
should be kept in mind when interpreting the results of a study using the
UQMC. In other words, if one wants to address partial cheating within the
UQMC framework, the same estimates can be calculated but need to be inter-
preted differently concerning the upper bound of the prevalence estimate.

It is worth mentioning that the same line of reasoning would apply to the
CDM. That is, the possibility of partial cheating would involve a reinterpretation
of the parameters estimated by the CDM. Specifically, as before, in the presence
of partial cheating, the lower bound of the prevalence would remain at p.
However, the upper bound could exceed pþ g if partial cheaters are present.

A Survey Design for Testing the UQMC

A limitation of RRTs in general is that their empirical adequacy cannot be
tested because the number of unknown parameters usually equals the number

14 Sociological Methods & Research XX(X)



of independent samples, and therefore, there are no degrees of freedom left
for testing empirical adequacy. Thus, empirical adequacy must simply be
assumed. Fortunately, this drawback can be resolved in the UQMC by vary-
ing the prevalence of the neutral attribute q. In the basic UQMC, p1 and p2 are
applied to two independent samples in order to generate two independent
equations for l1 and l2, allowing for two parameters to be identified. How-
ever, if qj is varied orthogonally to pi, four independent samples can be
drawn, each with a unique combination of these design parameters,
ðp1; q1Þ, ðp1; q2Þ, ðp2; q1Þ, and ðp2; q2Þ. The resulting model with four inde-
pendent equations for lij (l11, l12, l21, and l22) provides two degrees of

freedom, allowing for an empirical test of adequacy.
Table 3 illustrates what the setup of the UQMC with four samples could

look like, including exemplary estimates l̂ij. Like in the first example, the

observed proportions of “yes” responses in this table were simulated with
p ¼ 0:2 and g ¼ 0:3. In this case, there is no explicit solution for the estima-
tion of the model parameters. Parameter estimates p̂ and ĝ can be obtained by
numerical maximum likelihood estimation. Furthermore, the standard errors
of the estimated parameters can be numerically evaluated using the observed
Fisher information. For the example in Table 3, these estimates are depicted
in Table 4. The likelihood ratio test can also be conducted in the four-sample
extension. In the numerical example here, the results are in favor of

the hypothesis that cheating is present, with w2ð1Þ ¼ 55:029, p < :001. The
exemplary results shown so far are equivalent to those obtainable by the
UQMC with two samples. However, the four-sample extension additionally

enables testing of the model’s adequacy using Pearson’s w2 goodness-of-fit
test. In the UQMC, this is formalized as

Table 3. Numerical Example Illustrating the Unrelated Question Model—Cheating
Extension with Four Samples.

Sample nij pi qj oyij onij l̂ ij

11 500 .75 .7 129 371 .258
12 500 .75 .3 96 404 .192
21 500 .25 .7 204 296 .408
22 500 .25 .3 98 402 .196

Note. nij ¼ size of sample ij; pi ¼ probability to be assigned to the sensitive question in samples i;
qj¼ prevalence of the neutral attribute in samples j; oyij ¼ observed frequency of “yes” responses
in sample ij; onij ¼ observed frequency of “no” responses in sample ij; l̂ ij ¼ proportion of “yes”
responses in sample ij.
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w2ð2Þ ¼
X2

i¼1

X2

j¼1

ðoyij " eyijÞ2

eyij

þ ðonij " enijÞ2

enij

" #

; ð15Þ

where oyij and onij are the observed frequencies of “yes” responses and “no”

responses, respectively, in each sample with pi and qj. Likewise, eyij and enij

are the corresponding expected frequencies. The test supports the fit of the

UQMC in the numerical example, w2ð2Þ ¼ 0:080, p ¼ :961. Appendix C
(which can be found at http://smr.sagepub.com/supplemental/) contains
R-code for parameter estimation and the goodness-of-fit test that can be
applied to one’s own data.

Discussion

The present article extends the UQM to allow it to assess cheating while still
ensuring respondents’ anonymity. This extension incorporates the basic idea
of the CDM (Clark and Desharnais 1998) while preserving the more psy-
chologically acceptable design of the UQM. Such an extension seems appro-
priate because there is ample evidence that many respondents cheat by
always answering “no” in randomized response surveys (e.g., Elbe and Pitsch
2018; Moshagen et al. 2010; Ostapczuk 2011; Ostapczuk et al. 2009; Pitsch
et al. 2007; Schröter et al. 2016), probably because a “no” response reduces
the fear of embarrassment or other negative consequences. In particular,
when a respondent is administered the UQM, such cheating would greatly
diminish the conditional probability of being deemed a carrier of the sensi-
tive attribute. For example, as noted earlier, Bayesian analysis reveals that
for the design parameters p ¼ 0:75 and q ¼ 0:50, the odds of carrying the
sensitive attribute would be 49 times higher in the presence of a “yes”
response as opposed to a “no” response, if respondents were to obey the
UQM’s instructions. Therefore, disobeying these instructions by cheating

Table 4. Numerical Example Illustrating the Unrelated Question Model—Cheating
Extension with Four Samples (Continued).

Parameter Prevalence Estimate SE CI

p .200 .186 .020 [.146, .225]
g .300 .317 .042 [.234, .400]
pþ g .500 .502 .056 [.393, .612]

Note. SE ¼ standard error of parameter estimate; CI ¼ 95 percent confidence interval of
parameter estimate.
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with uniform “no” responses is potentially attractive as a self-protecting
strategy.

In the present article, we have first introduced an extension of the UQM
utilizing the standard assumptions of the CDM—namely the assumption that
cheaters will always respond “no” regardless of whether they are directed to
the sensitive or to the neutral question. For this extension of the UQM, which
we have termed the UQMC, we provide explicit formulae to compute the
lower and upper bound of the prevalence estimate range, together with a
likelihood ratio test to statistically assess the presence of cheating.

Second, we have discussed in this article the possibility of partial cheating
in addition to complete cheating—a perhaps more realistic assumption. Par-
tial cheaters answer honestly if directed to the neutral question but always
respond “no” if directed to the sensitive question, even if they are in fact
carriers of the sensitive attribute. The parameters of a model including partial
cheating are only partially identifiable. Currently, we are not aware of a
mathematical or experimental solution for this limitation. However, we have
shown that even if partial cheating is disregarded, as in the UQMC, the lower
prevalence limit is not affected if partial cheaters are present, although the
upper limit may be higher than that estimated by the UQMC if partial chea-
ters are present. Importantly, such a lower bound provides relevant informa-
tion like, for example, in a study on the prevalence of doping in elite athletics
using the UQM (Ulrich et al. 2018). The UQM estimates of more than
30 percent were clearly much higher than the prevalence estimates from
physical doping tests, which indicated a prevalence of about 2 percent at the
time (World Anti-Doping Agency 2012). Consequently, even if this only
represents a lower bound to the prevalence, the implications are consider-
able. In addition, the UQMC can account for a very likely type of nonadher-
ence, namely complete cheating. Thus, even if one wants to avoid
overconfident conclusions and regards partial cheating, UQMC estimates
can have important implications.

Third, we have also shown how the adequacy of the UQMC can be
empirically tested. Finally, we have performed power analyses to show
that reliable parameter estimates can be obtained even with modest total
sample sizes.

The described RRT cheating models assume the presence of “no” cheat-
ing for self-protective reasons. Nevertheless, it is at least conceivable that
some respondents could cheat with a false “yes” response. For example, a
clean athlete might be tempted to cheat with “yes” in order to inflate the
prevalence estimate of doping in the hope that this would lead to stricter anti-
doping policies (Elbe and Pitsch 2018). In light of this possibility, Feth et al.
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(2017) extended the CDM to address not only “no” cheating but also “yes”
cheating. These authors regard the idea of the CDM in the context of a more
general variant of the forced response method, in which there is a forced “no”
response in addition to the forced “yes” response. The authors provide an
in-depth discussion of the estimation of “yes” and “no” cheating within this
framework and also mention the possibility of transferring this idea to
the UQM. This CDM extension was recently applied to estimate the preva-
lence of doping among elite Danish athletes (Elbe and Pitsch 2018).
Although the model revealed a high proportion of “no” cheaters, the propor-
tion of “yes” cheaters was virtually nil. A similar conclusion was reached in a
recent experimental individual-level validation study (Höglinger and Jann
2018), which examined whether cheating in a dice game could be accurately
assessed by several indirect questioning techniques—and, if not, in which
direction respondents misreport on their actual behavior. In case of the UQM,
these investigators found a substantial prevalence of false-negative responses
(i.e., “no” cheating), but not of false-positive responses (i.e., “yes” cheating).
These findings are consistent with several lines of evidence indicating that
misreporting usually occurs in the socially desirable direction (see Touran-
geau and Yan 2007). In the present article, we have extended the standard
UQM only for “no” cheating, but future extensions of the UQM could
include the possibility of “yes” cheating (including, at least in theory, the
possibilities of both complete and partial “yes” cheating). However, asses-
sing for “yes” cheating would likely be useful only in rare situations where
social desirability plays a subordinate role, or where there might be a plau-
sible motivation for “yes” cheating.

In the UQMC, the estimation of two parameters requires independent
subsamples. A possible limitation of this approach is that it relies on the
assumption that these subsamples do not differ with respect to the true para-
meter values. In case of the cheating parameter, this assumption could be
violated because different probabilities of receiving the sensitive question
might induce different levels of trust and hence different levels of cheating.
There are alternative approaches to estimate nonadherence parameters that
do not rely on independent subsamples (e.g., Böckenholt and van der Heijden
2007; Böckenholt, Barlas, and van der Heijden 2009; Cruyff, Böckenholt,
and van der Heijden 2016). However, these approaches usually involve the
assessment of multiple RRM questions instead of using independent sub-
samples. Thus, these alternative approaches are not equally suited to the
same research questions as approaches using subsamples. When applying
the UQMC, this risk of violating the above-mentioned assumption can be
minimized by defining the design parameters such that the motivation to
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cheat would not be expected to strongly differ between subsamples. Addi-
tionally, and most crucially, the model test proposed in this article allows one
to assess the adequacy of these assumptions.

In this article, we have focused on the UQM and CDM. The Crosswise
Model (Yu, Tian, and Tang 2008) provides an alternative to these two mod-
els. An advantage of this model is that it does not necessitate a randomization
device, nor does it require a “yes”/“no” response. Thus, a response cannot be
interpreted as a direct response to the sensitive question, which seems to
increase perceived anonymity (Hoffmann et al. 2017). Despite these advan-
tages, this model also has drawbacks. First, the sampling variance of this
model’s prevalence estimate is relatively high and thus samples much larger
than those typically used in the original UQM are required (Ulrich et al.
2012). Second, the Crosswise Model has been shown to be susceptible to
other types of instruction nonadherence, which may distort the prevalence
estimate (e.g., Höglinger and Diekmann 2017; Höglinger and Jann 2018).

In summary, the present article attempts to enrich the RRT toolbox by
extending one of the most common RRT models, the UQM, to allow for the
estimation of cheaters. This extended model is relatively easy to implement in
surveys. Therefore, we recommend that cheating and model adequacy should be
routinely taken into account in future RRT surveys that will employ the UQM.
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Tübingen, Germany, in the research training group Statistical Modeling in
Psychology.

Harrison Pope is professor of psychiatry at Harvard Medical School in Boston,
USA, and Chief of the Biological Psychiatry Laboratory at McLean Hospital in
Belmont, USA. His research interests include the diagnosis and treatment of various
psychiatric and substance abuse disorders, together with epidemiology and statistical
methods.

Rolf Ulrich is professor of cognitive psychology at the University of Tübingen,
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Online Supplement
Appendix A

R-code for UQMC parameter estimation

library(bbmle)

## Parameter definition
# pi: proportion of honest carriers
# gm: proportion of cheaters
q <- 0.5 # prevalence of neutral attribute
p1 <- 0.75 # probability of the sensitive question in sample 1
p2 <- 0.25 # probability of the sensitive question in sample 2
n1 <- 1000 # sample size in sample 1
x1 <- 229 # frequency of "Yes"-responses in sample 1
lmb1 <- x1/n1 # proportion of a "Yes"-response in sample 1
n2 <- 1000 # sample size in sample 2
x2 <- 308 # frequency of "Yes"-responses in sample 2
lmb2 <- x2/n2 # proportion of a "Yes"-response in sample 2

## Calculation of model estimates

pi = (lmb2*(1-p1)-lmb1*(1-p2))/(p2-p1)
se_pi = sqrt((1/((p2-p1)^2))*((((1-p1)^2)*lmb2*(1-lmb2))/n2

+ (((1-p2)^2)*lmb1*(1-lmb1))/n1))

gm = 1 - (lmb2 * p1 - lmb1 * p2)/(q*(p1 - p2))
se_gm = sqrt((1/((q^2)*((p1-p2)^2)))*(((p2^2)*lmb1*(1-lmb1))/n1

+ ((p1^2)*lmb2*(1-lmb2))/n2))

piPlusGm = pi + gm
se_piPlusGm = sqrt(se_pi^2 + se_gm^2 +

(2/(q*(2*p1*p2 -p1^2 -p2^2))) *
((((p1^2-p1)*s_lmb2*(1-s_lmb2))/n2) +

(((p2^2-p2)*s_lmb1*(1-s_lmb1))/n1)))

Estimate <- c(pi, gm, piPlusGm)
SE <- c(se_pi, se_gm, se_piPlusGm)
lowerCI <- Estimate - 1.96*SE
upperCI <- Estimate + 1.96*SE
UQMC_Estimates <- cbind(Estimate,SE,lowerCI,upperCI)
rownames(UQMC_Estimates) <- c(�Pi�,�Gamma�,�(Pi + Gamma)�)
UQMC_Estimates

## Likelihood ratio test for cheating
# negative log-Likelihood function:
l <- function (pi,gm){

-((x1*log(p1*pi + (1-p1)*(1-gm)*q) +
(n1-x1)*log(1-(p1*pi + (1-p1)*(1-gm)*q)) +
x2*log(p2*pi + (1-p2)*(1-gm)*q) +
(n2-x2)*log(1-(p2*pi + (1-p2)*(1-gm)*q))))}

1



# Unrestricted negative log-Likelihood:
lim <- 1e-15
ML1 <- mle2(l, start = list(pi = pi, gm = gm),

method = �L-BFGS-B�,
lower = c(lim,lim), upper = c((1-lim),(1-lim)))

summary(ML1)

# Restricted negative log-Likelihood with gamma = 0:
ML0 <- mle2(l, start = list(pi = pi),

fixed = list(gm = 0),
method = �L-BFGS-B�,
lower = lim, upper = (1-lim))

summary(ML0)

# Likelihood ratio:
(LR = 2*((-ML1@min) - (-ML0@min)))
pchisq(LR, df = 1, lower.tail = F)

Appendix B

Parameter optimization and power analysis

Because the randomization procedure in all RRTs adds extra variance, it seems important to enhance the
e�ciency of the UQMC by optimizing the design parameters. These are the probabilities p1 and p2 of
receiving the sensitive question in the first and second sample, the probability q of a “yes”-answer to the
neutral question by an honest respondent, and the parameter f1, which is defined as the proportion of all
respondents assigned to the first sample, f1 = n1

n1+n2
. In the following discussion, p2 = 1≠ p1 is assumed. To

suggest the optimal choice of these parameters, we examine their influence on the sum of the standard errors
of the model parameters fi and “.

The sum of the standard errors is minimized if p1 is as far from 0.5 as possible, as can be seen in Figure B1.
Which value of p1 minimizes the sum of standard errors does not depend on q and depends only slightly on
f1. Importantly, this also holds for other values of fi and “. When choosing an extreme value for p1, however,
one has to keep in mind psychological e�ects. A very high or very low probability of receiving one of the
questions reduces the degree that one’s anonymity is protected. Therefore a value of about 0.75 (or 0.25)
seems advisable.

Figure B2 depicts the influence of the choice of q on the sum of the standard errors. This value becomes
smaller with higher values chosen for q. The remaining parameters do not influence at which value of q the
sum the standard errors becomes minimal. Again, this also holds for other values of fi and “. Choosing the
optimal value for q by means of standard error minimization is not ideal because a very high prevalence of
the neutral characteristic reduces the anonymity protection. Thus, we suggest a value around 0.7.

As can be seen in Figure B3 the value of f1 should be chosen to be about 0.5, meaning that the respondents
should be equally divided between the two subsamples. The minimum sum of standard errors depends on the
choice of p1. Specifically, when p1 is higher than 0.5, the sum of the standard errors is smaller if the larger
proportion of the sample is assigned to the second subsample, i.e. f1 < 0.5. When p1 is less than 0.5, and
therefore p2 is higher than p1, the sum of standard errors can be minimized by f1 > 0.5. Thus, the subsample
with the lower probability of receiving the sensitive question should contain more respondents. The sum of
standard errors depends on the choice of q in the sense that f1 should be slightly further from 0.5 if the
prevalence of the neutral question is lower (towards 0 if p1 > 0.5 and towards 1 if p1 < 0.5). Again, the same
pattern holds for other values of fi and “. As the di�erences in the area around 0.5 are quite small, equal
allocation to the two subsamples seems recommendable.

The influence of the design parameters on e�ciency can also be observed by using a power analysis. Ulrich et
al. (2012) provide a general framework for the power analysis of RRTs. Implementing the UQMC sampling
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Figure B1: Curves showing the sum of the standard errors of fi and “ as a function of the probability p1 of
receiving the sensitive question in the first sample, with p2 = 1≠ p1. Parameters fi and “ are kept constant
at 0.2 and 0.3, respectively. In the left panel, f1 is kept constant at 0.5 and the curves di�er with respect to
q. In the right panel, q is kept constant at 0.7 and the curves di�er with respect to f1.
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Figure B2: Curves showing the sum of the standard errors of fi and “ as a function of the prevalence q of the
neutral characteristic. Parameters fi and “ are kept constant at 0.2 and 0.3, respectively. In the left panel, f1
is kept constant at 0.5 and the curves di�er with respect to p1, with p2 = 1≠ p1. In the right panel, p1 is
kept constant at 3/4, with p2 = 1≠ p1, and the curves di�er with respect to f1.
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Figure B3: Curves showing the sum of the standard errors of fi and “ as a function of the distribution
parameter f1, defined as the proportion of participants assigned to the first sample. Parameters fi and “ are
kept constant at 0.2 and 0.3, respectively. In the left panel, q is kept constant at 0.7 and the curves di�er
with respect to p1, with p2 = 1 ≠ p1. In the middle and right panels, p1 is kept constant at 1/4 and 3/4,
respectively, with p2 = 1≠ p1, and the curves di�er with respect to q.

variance of fi yields the following statistical power for accepting the hypothesis H1 that fi takes on a certain
value fi1,

power of detecting fi1 = �
�
fi1 + z� ·

�
V ar(fî|fi = 0)�

V ar(fî|fi = fi1)

�
. (1)

The cumulative distribution function of the standard normal distribution is thereby denoted by � and –

is the probability for erroneously rejecting the hypothesis H0, that fi = 0, with z� being the (100 · –)th
percentile of the standard normal distribution, z� = ��1(–). V ar(fî|fi = 0) is given by Equation 8 with fi = 0
and V ar(fî|fi = fi1) is given by Equation 8 with fi = fi1. The equation for hypotheses concerning parameter
values of “ is composed correspondingly, by

power of detecting “1 = �
�
“1 + z� ·

�
V ar(“̂|“ = 0)�

V ar(“̂|“ = “1)

�
. (2)

V ar(“̂|“ = 0) is derived from Equation 9 with “ set to 0. V ar(“̂|“ = “1) is derived from the same equation
with the parameter set to “ = “1.

Power curves of the two model parameters as a function of sample size, given di�erent choices of p1, q and f1,
are depicted in Figures B4, B5 and B6, respectively. Naturally, the power for all parameters increases, as the
parameter value itself increases. Across all variations of p1, q and f1, fi has a higher power than “. Choosing
a more extreme value for p1 (3/4 compared to 2/3) increases the power for fi and decreases the power for “.
Increasing the value for q slightly decreases the power for fi but strongly increases the power for “. Higher
values of f1 lead to slightly higher power for fi and markedly lower power for “, if p1 > 0.5. The opposing
influence of p1, q and f1 on the power for fi and the power for “ must be considered when setting the values
of the design parameters for a given study, depending of the study’s focus. Specifically, if the study’s focus is
on estimating the minimal prevalence of the sensitive attribute, p1 should be chosen to be farther from 0.5, q
should be smaller and f1 higher (if p1 > 0.5). If the study’s focus is on the prevalence of cheating, however,
p1 should be chosen closer to 0.5, q higher and f1 smaller (if p1 > 0.5). If both outcome measures are of equal
interest (e.g. because the maximal prevalence estimate is the focus), the above suggestions based on the sum
of the standard errors can be applied.
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Figure B4: Power curves showing the e�ect of di�erent choices of p1. Each curve shows statistical power as a
function of sample size n with f1 = 0.5, i.e. n1 = n2 = n/2. The prevalence q of the neutral characteristic is
set at 0.7. The probability p1 of answering the sensitive question is set at p1 = 2/3, with p2 = 1≠ p1 = 1/3,
for the left panels and at p1 = 3/4, with p2 = 1≠ p1 = 1/4, for the right panels. The top and bottom panels
show power curves for fi and “, respectively. The curves within each panel di�er with respect to the size of
the respective model parameter.
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Figure B5: Power curves showing the e�ect of di�erent choices of q. Each curve shows statistical power as a
function of sample size n with f1 = 0.5, i.e. n1 = n2 = n/2. The probability p1 of answering the sensitive
question is set at p1 = 3/4, with p2 = 1≠ p1 = 1/4. The prevalence q of the neutral characteristic is set at
q = 0.2 in the left panels, q = 0.5 in the middle panels and q = 0.8 in the right panels. The top and bottom
panels show power curves for fi and “, respectively. The curves within each panel di�er with respect to the
size of the respective model parameter.
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Figure B6: Power curves showing the e�ect of di�erent choices of f1. Each curve shows statistical power
as a function of sample size n. The probability p1 of answering the sensitive question is set at p1 = 3/4,
with p2 = 1≠ p1 = 1/4, and the prevalence q of the neutral characteristic is set at q = 0.7. The distribution
parameter f1 determining the proportion of participants assigned to the first sample is set at f1 = 0.2 in the
left panels, f1 = 0.5 in the middle panels and f1 = 0.8 in the right panels. The top and bottom panels show
power curves for fi and “, respectively. The curves within each panel di�er with respect to the size of the
respective model parameter.
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For the numerical example in the main text with two samples (total size n = 1000 and – = .05), the statistical
power for obtaining a significant result with fi = 0.2 is equal to 0.999, and that for “ = 0.3 would be even
higher than 0.999.

Appendix C

R-code for parameter estimation in the testable UQMC

library(bbmle)

## Parameter definition
# pi: proportion of honest carriers
# gm: proportion of cheaters
q1 <- 0.7 # prevalence of neutral attribute in sample 1 and 3
q2 <- 0.3 # prevalence of neutral attribute in sample 2 and 4
p1 <- 0.75 # probability of the sensitive question in sample 1 and 2
p2 <- 0.25 # probability of the sensitive question in sample 3 and 4
n11 <- 500 # sample size in sample 1 (with p1 and q1)
x11 <- 129 # frequency of "Yes"-responses in sample 1
n12 <- 500 # sample size in sample 2 (with p1 and q2)
x12 <- 96 # frequency of "Yes"-responses in sample 2
n21 <- 500 # sample size in sample 3 (with p2 and q1)
x21 <- 204 # frequency of "Yes"-responses in sample 3
n22 <- 500 # sample size in sample 4 (with p2 and q2)
x22 <- 98 # frequency of "Yes"-responses in sample 4

## Numerical maximum likelihood estimation
# negative log-Likelihood function:
l <- function (pi,gm){

lambda11 <- pi*p1 + (1-gm)*(1-p1)*q1
lambda12 <- pi*p1 + (1-gm)*(1-p1)*q2
lambda21 <- pi*p2 + (1-gm)*(1-p2)*q1
lambda22 <- pi*p2 + (1-gm)*(1-p2)*q2
l11 <- x11*log(lambda11) + (n11-x11)*log(1-lambda11)
l12 <- x12*log(lambda12) + (n12-x12)*log(1-lambda12)
l21 <- x21*log(lambda21) + (n21-x21)*log(1-lambda21)
l22 <- x22*log(lambda22) + (n22-x22)*log(1-lambda22)
l = -(l11 + l12 + l21 + l22)}

# Unrestricted likelihood:
lim <- 1e-15
ML1 <- mle2(l, start = list(pi = 0.5, gm = 0.2),

method = �L-BFGS-B�,
lower = c(lim,lim), upper = c((1-lim),(1-lim)))

summary(ML1)
Estimate <- c(coef(ML1),sum(coef(ML1)))
SE <- c(sqrt(vcov(ML1)[1,1]),sqrt(vcov(ML1)[2,2]),sqrt(sum(vcov(ML1))))
lowerCI <- Estimate - 1.96*SE
upperCI <- Estimate + 1.96*SE
UQMC_Estimates <- cbind(Estimate,SE,lowerCI,upperCI)
rownames(UQMC_Estimates) <- c(�Pi�,�Gamma�,�(Pi + Gamma)�)
UQMC_Estimates

## Likelihood-Ratio test for cheating

8



# Restricted likelihood with gamma = 0:
ML0 = mle2(l, start = list(pi = 0.5),

fixed = list(gm = 0),
method = �L-BFGS-B�,
lower = lim, upper = (1-lim))

summary(ML0)
# Likelihood ratio:
(LR = 2*((-ML1@min) - (-ML0@min)))
pchisq(LR, df = 1, lower.tail = F)

## Chi^2 model test
f <- function (par){

pi <- par[1]
gm <- par[2]
lambda11 <- pi*p1 + (1-gm)*(1-p1)*q1
lambda12 <- pi*p1 + (1-gm)*(1-p1)*q2
lambda21 <- pi*p2 + (1-gm)*(1-p2)*q1
lambda22 <- pi*p2 + (1-gm)*(1-p2)*q2
y11 <- (x11 - n11*(lambda11))^2 / (n11*(lambda11))
n11 <- ((n11-x11) - n11*(1-lambda11))^2 / (n11*(1-lambda11))
y12 <- (x12 - n12*(lambda12))^2 / (n12*(lambda12))
n12 <- ((n12-x12) - n12*(1-lambda12))^2 / (n12*(1-lambda12))
y21 <- (x21 - n21*(lambda21))^2 / (n21*(lambda21))
n21 <- ((n21-x21) - n21*(1-lambda21))^2 / (n21*(1-lambda21))
y22 <- (x22 - n22*(lambda22))^2 / (n22*(lambda22))
n22 <- ((n22-x22) - n22*(1-lambda22))^2 / (n22*(1-lambda22))
f = sum(y11,n11,y12,n12,y21,n21,y22,n22)}

xsq <- optim(par = c(0.5,0.5), fn = f,
method = �L-BFGS-B�,
lower = c(lim,lim), upper = c((1-lim),(1-lim)))

xsq$value
pchisq(xsq$value, df = 2, lower.tail = F)

9
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Abstract

Randomized response techniques (RRTs) are applied to reduce response biases in

self-report surveys on sensitive research questions (e.g., on socially undesirable

characteristics). However, there is evidence that they cannot completely eliminate

self-protecting response strategies. To address this problem, there are RRTs specifically

designed to measure the extent of such strategies. Here, we assessed the recently devised

cheating extension of the unrelated question model (UQMC, Reiber, Pope, & Ulrich,

2020, Soc. Methods and Research) in a preregistered online survey on intimate partner

violence (IPV) victimization and perpetration during the first contact restrictions as

containment measures for the outbreak of the COVID-19 pandemic in Germany in early

2020. The UQMC accounting for self-protecting responses described the data better than

its predecessor model which assumes instruction adherence. The resulting three-month

prevalence estimates were alarmingly high (� 10 percent) and we found a high proportion

of self-protecting responses in the group of female participants queried about IPV

victimization. However, unexpected results concerning the di�erences in prevalence

estimates across the groups queried about victimization and perpetration highlight the

di�culty of investigating sensitive research questions even using methods that guarantee

anonymity and the importance of interpreting the respective estimates with caution.

Keywords: sensitive research questions, randomized response techniques, cheater

detection, intimate partner violence, self-protecting responses

Word count: 7998
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Self-protecting responses in randomized response designs: A survey on

intimate partner violence during the COVID-19 pandemic

Many social and psychological phenomena of high societal relevance are di�cult to

investigate empirically because of their sensitive nature. For instance, the German news

broadcaster Tagesschau recently reported an alarming increase in the incidence of

intimate partner violence (IPV) in criminal statistics during the ongoing COVID-19

pandemic (Emundts 2020). However, criminal statistics are assumed to underestimate the

actual numbers, because they only capture legally reported cases and the dark figure,

that is, the number of non-registered cases, might substantially exceed these numbers.

Problematically, the dark figure of cases of IPV is di�cult to investigate because it is a

highly stigmatized topic (e.g., Ellsberg et al. 2001; Gracia 2004). Both victimization and

perpetration of IPV are perceived as socially undesirable and reporting is associated with

negative consequences (e.g., Birkel and Guzy 2015; Franke et al. 2004). Social desirability

and fear of stigmatization or other negative consequences can influence response behavior

in surveys and interviews (Tourangeau and Yan 2007). Specifically, survey respondents

can be inclined not to respond at all, especially if they carry the investigated undesirable

or stigmatized attribute, or to give an untruthful self-protecting response. Although both

these behaviors are employed to disguise ones own individual status, they bias group level

estimates of dark figures as well. The consequence is that the extent of societal problems

such as IPV can be underestimated by surveys (Tourangeau and Yan 2007). This

impairment concerns a variety of research fields in the social sciences that address

sensitive characteristics.

Randomized Response Techniques

To overcome self-protecting response strategies in surveys on sensitive attributes,

randomized response techniques (RRT, Warner 1965) were developed to assure the

protection of the respondents’ anonymity. Specifically, a randomization device (such as a

die) is employed to ambiguate single responses and thus make them inconclusive towards

the carrier status of a single respondent. For instance, in the unrelated question model
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(UQM, Greenberg et al. 1969) version of the RRT, a randomization device decides

whether a respondent shall answer the sensitive question S of interest, such as “Have you

ever been physically assaulted by a partner?” or an unrelated neutral question N, such as

“Is your mother’s birthday in the first half of the year?” In case of employing a die as

randomization device, the instruction could be to answer the sensitive question S, if the

die comes up 1 through 4, and the neutral question N, if it comes up 5 or 6. Importantly,

only the response to either question but not the outcome of the randomization is

reported. Therefore, a “Yes”-response could either mean that the respondent has been

physically assaulted by a partner or that their mother’s birthday is in the first half of the

year. Consequently, it remains concealed whether a specific respondent was physically

assaulted by a partner and, theoretically, respondents have no reason to employ

self-protecting response strategies that could bias prevalence estimates. In the current

study, we applied such a technique to estimate the prevalence of IPV during the first

COVID-19 related contact restrictions in Germany in spring 2020.

Importantly, it is possible to compute these prevalence estimates using the known

probabilities underlying the questioning design. Figure 1 depicts the probabilities

underlying “Yes”- and “No”-responses in the UQM. A “Yes”-response can come (a) from

a respondent who was instructed to respond to the sensitive question S with probability p

and carries the sensitive attribute with probability � and (b) a respondent who was

instructed to respond to the neutral question N with probability (1≠ p) and carries the

neutral attribute with probability q. Therefore, the overall probability to respond “Yes”

is

� = p · � + (1≠ p) · q. (1)

The randomization probability p is known - in the example using a die, above, it is

p = 4/6 = .67. The neutral question can be chosen such that the neutral prevalence q is

also known. In the example above it is q � .5, assuming a uniform distribution of

birthdays across the year, which is a reasonable assumption based on the birthdate

records over the last 50 years in Germany (Statistisches Bundesamt 2020). The

probability � to respond “Yes” can be estimated from the proportion of “Yes”-responses
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in a su�ciently large sample such that Equation 1 can be rearranged to estimate the

prevalence of the sensitive attribute:

�̂UQM =
�̂≠ (1≠ p) · q

p
. (2)

Because the respondents’ anonymity is protected, this estimate is expected to be less

biased due to self-protecting response strategies. In fact, there is evidence that RRT

applications elicit prevalence estimates that are less biased towards the socially desirable

response option (e.g., Moshagen et al. 2010; Ulrich et al. 2018; Wimbush and Dalton

1997) and closer to a known true prevalence (e.g., Horvitz, Greenberg, and Abernathy

1976; Van Der Heijden et al. 2000).

Non-Adherence to Instructions in Randomized Response Techniques

However, there are reasons to doubt that even with the RRT there is full honesty

in responding. A number of studies did not find RRT estimates to be more valid than

those from studies using direct questions (Holbrook and Krosnick 2010; e.g. Höglinger

and Diekmann 2017; Höglinger and Jann 2018). A possible explanation for this finding is

that the instructions of the RRT are di�cult to understand (Ho�mann et al. 2017) and

there is still a lack of trust in the anonymity protection (Höglinger, Jann, and Diekmann

2016). One way to address this problem is to increase comprehensibility (e.g., Meisters,

Ho�mann, and Musch 2020). Another way is to quantify the extent of non-compliance

with instructions. In this vein, some RRT extensions, such as the cheater detection model

(CDM, Clark and Desharnais 1998) or the stochastic lie detector (Moshagen, Musch, and

Erdfelder 2012) include parameters for specific types of instruction non-adherence.

Especially the CDM has been applied in a number of studies (e.g., Elbe and Pitsch 2018;

Moshagen et al. 2010; Ostapczuk 2011; Pitsch, Emrich, and Klein 2007; Schröter et al.

2016). It is based on another RRT variant, the forced response technique (Boruch 1971),

which is similar to the UQM. The only di�erence is that the alternative to the sensitive

question is not a neutral question but the instruction to respond “Yes.” In the CDM,

respondents are considered to be either honest and follow the instructions or to be

cheaters and give a “No”-response irrespective of the outcome of the randomization and
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their carrier status. The latter can serve to evade being seen as a carrier of the sensitive

attribute and has thus been termed a self-protective response strategy (Böckenholt and

Van Der Heijden 2007). Based on this categorization, two parameters can be estimated:

The proportion of cheaters � and the proportion of honest carriers �CDM .
1

To allow for

the estimation of both these parameters, two independent estimates of the probability of

a “Yes”-response are required. To that end, two independent samples are assessed using

varying levels of the randomization probability p. Studies applying this design found

substantial proportions of cheating (Elbe and Pitsch 2018; Moshagen et al. 2010;

Ostapczuk 2011; Pitsch, Emrich, and Klein 2007; Schröter et al. 2016). Thus, it seems to

be reasonable to include a cheating parameter in RRTs.

It is important to note, however, that the CDM still makes strong assumptions

about the nature of instruction non-adherence. For instance, the varying levels of the

randomization probability p, which are employed to enable the estimation of the cheating

parameter, are assumed not to influence responses. In practice, di�erent randomization

probabilities could influence the subjective anonymity protection and thereby the

probability to cheat.
2

Unfortunately, assumptions, like this assumption of randomization

probability independence, are not testable within the CDM. The variation of p across two

independent samples allows for the estimation of both parameters. However, the resulting

model is saturated, which means that it is not possible to assess model fit or, for instance,

test whether cheating di�ers between the subsamples.
3

The Unrelated Question Model - Cheating Extension

The recently proposed unrelated question model - cheating extension (UQMC,

Reiber, Pope, and Ulrich 2020) transfers the CDM’s concept of cheating to the UQM’s

design. The reason for devising this extension was that the psychological acceptability of

the UQM has been found to be superior to that of the forced response method (Höglinger,

Jann, and Diekmann 2016). As such, the UQM can be seen as less fallible to

self-protecting responses, since there is no response option that clearly rules out being a

carrier of the sensitive attribute (one could respond “No” to the neutral question and still
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be a carrier of the sensitive attribute). However, also in the UQM “No” can be seen as a

self-protecting response since the conditional likelihood of being a carrier is always lower

given a “No”- than given a “Yes”-response. Additionally, and probably more intuitively

from a respondent’s perspective, a “No”-response to the neutral question can naively be

interpreted as a response with which being a carrier of the sensitive attribute is negated.

Thus, it is worthwhile to investigate whether cheating occurs in the UQM as well.

Another major advantage of embedding the cheating concept within the UQM is

that it is possible to test the model’s assumptions. In contrast to the CDM, the UQM

incorporates a second design parameter that can be varied, namely the prevalence of the

neutral attribute q. Therefore, four independent samples can be assessed and the degrees

of freedom gained make the model testable.

From Figure 2 the probability of a “Yes”-response in sample i in the UQMC is

�i = (1≠ �) · [pi · � + (1≠ pi) · qi] . (3)

Only respondents who do not cheat would respond “Yes.” If they are assigned to the

sensitive question S (with randomization probability pi in sample i � {1, 2, 3, 4}), honest

respondents answer “Yes” with probability �, that is the true prevalence of the sensitive

attribute. If they are assigned to the neutral question N (with probability 1≠ pi in

sample i), honest respondents answer “Yes” with probability qi, that is the prevalence of

the neutral attribute in sample i. Following the logic of the CDM, �UQMC = (1≠ �) · � is

the prevalence of honest carriers, that is, the joint probability of not cheating and of

being a carrier of the sensitive attribute. Therefore,

�i = pi · �UQMC + (1≠ �) · (1≠ pi) · qi. (4)

There are no closed form equations to compute estimates for �UQMC and � from the four

samples’ estimated probabilities of a “Yes”-response �̂i.4 Instead, the parameters must be

estimated using numerical likelihood optimization.

The development and properties of the UQMC are described in more detail in

Reiber, Pope, and Ulrich (2020). However, the validity of the model has so far not been
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investigated empirically. The aim of the present study was, therefore, to test the UQMC’s

validity in an empirical investigation and to assess whether it provides an advantage over

its predecessor model, the original UQM.

Present Study

There are di�erent approaches to assessing a model’s validity. One widely

accepted approach is to compare prevalence estimates with a known criterion, optimally

on an individual level (e.g., Ho�mann et al. 2015). Unfortunately, the prevalences of

highly sensitive topics are often not known, especially not on an individual level.

Therefore, studies using this approach often use experimentally induced behaviors for

sensitive characteristics, such as cheating for extra pay-o� in the survey (e.g., Ho�mann

et al. 2015). However, these characteristics di�er from those addressed in typical RRT

applications because RRTs are most useful for investigating highly sensitive topics (see

Lensvelt-Mulders et al. 2005). Therefore, in the present study, we chose another approach

to assess the UQMC’s validity. Specifically, to test whether the cheating extension

provides a more realistic model than the original UQM, the occurrence of cheating in a

survey sample was tested and the general model fit assessed and compared to that of the

original UQM. Since we wanted the study to resemble a typical RRT application, we

assessed a highly sensitive characteristic, that is, intimate partner violence (IPV).

Intimate partner violence

The term IPV incorporates physical, sexual, and psychological violence and

controlling behavior towards a former or current intimate partner (World Health

Organization 2012). The present study focused on physical IPV because this facet is

easiest to explain to respondents in an online survey using concrete examples of behavior

(here “shoving, slapping, hitting, kicking, or punching”). Other forms of violence, such as

“humiliation” as an example for psychological violence, can be much more di�cult to

identify as violence for survey respondents. The lifetime prevalence of physical and sexual

IPV against women in the EU was estimated to be 22 percent in a survey by the

European Agency for Fundamental Rights (2014) and the 12 month prevalence to be
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4 percent. The Federal Criminal Police O�ce reported 141,792 cases of attempted or

committed IPV in Germany in 2019 (Bundeskriminalamt 2020), that is 17.3 percent of all

reported violent crimes (incl. non-partner violence). Of these, 61.2 percent were actual

bodily harm (“einfache Körperverletzung”). Of all IPV victims in the criminal statistic,

26,889 were male and 114,903 female. Numbers like these contribute to the assumption

that IPV is mainly perpetrated by men against women. However, there is an ongoing

debate about gender (a-)symmetry with respect to varying characteristics of both the

specific type of violence investigated and the survey method (e.g., Archer 2000; Johnson

2006; Kimmel 2002). For instance, the lifetime prevalence of physical IPV victimization

in the US was estimated to be 30.6 percent among women and 31.0 percent among men

in the National Intimate Partner and Sexual Violence Survey (Smith et al. 2018),

whereas the prevalence of severe physical violence victimization was estimated to be

21.4 percent among women and 14.9 percent among men. Generally speaking, estimates

vary strongly between studies due to di�erences in the applied measures and samples (see,

e.g., Devries et al. 2013; Garcia-Moreno et al. 2006; Kimmel 2002; Waltermaurer 2005).

As outlined in the beginning of this paper, IPV is a highly sensitive topic, that is,

exactly the kind of topic for which RRTs were developed and thus suitable for the present

validation study. Furthermore, several articles in scientific journals and the media

reported rising numbers of IPV in the context of the impact of the spread of the

coronavirus disease 2019 (COVID-19), which was declared a pandemic by the World

Health Organization in March 2020 (e.g., Bradbury-Jones and Isham 2020; Emundts

2020; Jarnecke and Flanagan 2020). The pandemic, and the measures implemented to

contain it, are believed to foster factors associated with IPV, such as increased material

worries or restricted possibilities to avoid the perpetrator and seek help (Usher et al.

2020). The rising numbers of criminal reports corroborate this argumentation,

highlighting the relevance of investigating the dark figure of IPV. Thus, we applied the

UQMC to estimate the prevalence of physical IPV during the first COVID-19 contact

restrictions in spring and early summer 2020 in Germany to assess the models empirical

adequacy in a context which is relevant and representative of RRT applications.
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Sensitivity manipulation

To further test the UQMC we employed an experimental manipulation of the

sensitivity of the question: Respondents were either queried about their role as victim of

IPV or as perpetrator of IPV. As mentioned before, both roles are associated with stigma

and perceived as socially undesirable. However, being a perpetrator is even legally

incriminating and has been shown to have an even stronger association with social

desirability (Sugarman and Hotaling 1997). We therefore expected the question on

perpetration of IPV to be more sensitive than the question on victimization of IPV.

Consequently, we expected cheating to be more pronounced in the subsample queried

about perpetration. We restricted our sample to participants who were, at the time of

the investigation, in a romantic relationship with exactly one person. This way, the true

proportion of perpetrators and victims should be equal in our sample. Assuming that

di�erences in honesty of responding would be captured by the cheating parameter, any

di�erences between estimates of the prevalence of honest carriers should be reflected in

complementary di�erences in cheating estimates. Specifically, we expected that, if there

was significant cheating, (a) it would be estimated to be higher in the subsample queried

about perpetration and that (b) the prevalence of honest carriers would be estimated to

be lower in the subsample queried about perpetration. If there was no significant cheating,

the prevalence of honest carriers was expected not to di�er between the subsamples.

Objective

To summarize, the aim of the present study was to assess the empirical validity of

the recently devised cheating extension of the unrelated question model (UQMC; Reiber,

Pope, and Ulrich 2020) in a survey on the prevalence of IPV. To this end, the fit of the

UQMC was compared to that of its predecessor, the original UQM, and the occurrence of

cheating was tested. Additionally, the queried IPV role was experimentally manipulated

to investigate the di�erential influence of the question sensitivity on cheating.
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Methods

Participants

Participants were recruited from the participant panel of the market research

institute respondiAG with a target sample size of 4800. Quotas to approximate

population proportions were installed for gender, age and highest educational

achievement. The target quotas are depicted in Table 1.

To participate, respondents had to declare that they were at least 18 years old and

currently in a relationship with one person. Participants who indicated that they were

younger than 18 years or that they were in no romantic relationship or in a romantic

relationship of equal importance with more than one person, were screened out before

answering the questionnaire. Participants who fell into an age, gender, or education level

category for which the quota was already full were also screened out. To ensure data

quality, an attention check question was included in the questionnaire and participants

who failed to answer this question correctly were screened out before finishing the

questionnaire. Section A of the online supplemental materials contains information on

participant dropout per page.

The total data set consisted of 4804 participants who reached the last page of the

questionnaire. Of these, 1326 participants who failed to answer the second of two training

questions correctly, described in more detail later, and 183 participants with a mean

response time less than half of the median of each page (relative speed index, Leiner

2019) were excluded from the analysis.

After exclusion, the final sample consisted of 3295 participants with a mean age of

47.35 (SD = 15.44); 1732 (52.56 percent) indicated that their gender was female and 10

(0.30 percent) indicated diverse. Age and gender categories approximated the target

quotas very well as can be seen in Table 1. The target quotas for education could not be

attained because too few participants in the lower education level groups were reached, as

can be seen in the table. More specifically, people with a high education level were
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over-represented in the sample.

Of the final sample, 1618 (49.10 percent) answered the question on victimization

of IPV. They did not di�er from those who answered the question on perpetration with

respect to age, t(3293) = 1.79, p = .073, gender, p = .623, Fisher’s exact test, or highest

educational achievement, �2
(5) = 7.22, p = .205.

Design

The prevalence of IPV was assessed using one of two sensitive questions.

Participants were either asked if they had experienced IPV (victimization role) or if they

had committed IPV (perpetration role). They were randomly assigned to either of these

role conditions, which only di�ered in the phrasing of the sensitive question itself. The

sensitive question in the victimization condition read: “Have you, in your current

relationship, since March 23rd, been intentionally physically assaulted by your partner?”
5

In the perpetration condition it read: “Have you, in your current relationship, since

March 23rd, intentionally physically assaulted your partner?”
6

The date March 23rd was

chosen because it marks the date on which contact restrictions as a means of containing

the spread of COVID-19 were o�cially announced in Germany. Participants were

reminded of this context before answering the IPV question.

The sensitive question was presented within a UQMC design. Specifically,

participants were instructed to think of a person whose birthday they knew and keep that

birthday in mind. If the birthday was within a certain range of days in a month, they

were asked to respond to a neutral question A and if it was in the remaining days of a

month they were asked to respond to the sensitive question B. This range of days in a

month determined the randomization probability p to respond to the sensitive question B.

It was varied between participants on two levels: 1st to 10th day (p1 = 2/3) or 1st to

20th day (p2 = 1/3). The sensitive question B was the question on IPV. The neutral

question A asked whether the memorized birthday was in a certain range of months in

the year. This question was also varied between participants on two levels to obtain two
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neutral prevalences q: January to September (q1 = .75) or January to March (q2 = .25).

The birthday probabilities were reconciled with German birth rate records since 1950

(Statistisches Bundesamt 2020). Participants were instructed to mark their response

(“Yes” or “No”) to the question they were assigned to and reminded that only they knew

which question they were responding to.

The combination of the factors role condition, p, and q resulted in eight groups,

which are depicted in Table 2. This design was implemented to allow for testing the

UQMC’s assumptions and model fit.

Procedure

The questionnaire was created using the software SoSci Survey (Leiner 2020). The

survey administration period lasted from June 29th to July 15th 2020.

On being directed to the survey via a link distributed by respondiAG, participants

received general information about the study and were asked to confirm their informed

consent. Only participants who did so were directed to following pages of the

questionnaire. First, they answered demographic questions on age, gender, highest

educational achievement, and relationship status for screening and quota checks. Then

they received detailed instructions on the UQMC together with an example involving the

abuse of illicit drugs as the sensitive question. All participants completed two UQMC

training questions. In each one they received a vignette of a fictional person who is asked

whether they took illicit drugs within a UQMC design. This design was, for each

participant, exactly the same as in the question on IPV, with the di�erence that the

sensitive question was on taking illicit drugs instead of IPV and that participants did not

have to answer for themselves but for the fictional person. This way, it was possible to

provide feedback on the response, because the correct answer was known from the

vignette. In both cases the correct response was “Yes” but only once because the fictional

person had taken illicit drugs. In the other case the correct response was “Yes” as an

answer to the neutral question although the person had not taken illicit drugs. This was
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meant to demonstrate the anonymity protection. Participants who did not respond

correctly to the second training question were later excluded from the analysis. After

completing the training questions participants were informed about the definition of

physical IPV and the relevant time period beginning March 23rd, that is, during the first

contact restrictions due to the COVID-19 pandemic in Germany. Participants then

completed the IPV question within the UQMC design in one of the above described eight

conditions. On the following two pages, participants were asked to provide information

on their living conditions during the considered time period. A list of the questions is in

Section B of the online supplemental materials. Among the additional questions was an

attention check (“Which of the following cities is not in Germany?” - Berlin, Hamburg,

Cologne, London, Frankfurt, Munich). Participants were expected to be able to answer

this question if they were paying attention and, thus, participants who failed to answer

correctly were excluded from the survey. On the last survey page participants were

provided helpline information for victims and perpetrators of IPV before being redirected

to the site of respondiAG.

Data analysis
7

Data exclusion

Participants who responded incorrectly to the second of two UQMC training

questions were excluded from the analysis. Because the training questions were very

similar to the IPV question, failing to answer the second training question correctly was

taken as an indicator for unreliable statements in the IPV question. We excluded 1326

participants, that is 27.60 percent, because they did not meet this criterion. This is a

surprisingly high number, especially because only 866, that is 18.03 percent failed to

respond correctly to the first training question. Even though it is unclear why so many

participants failed to answer the second training question correctly, this casts doubts on

the validity of this criterion. However, the main results of this study are not strongly

a�ected by in- or exclusion of the respective participants. Section C of the online

supplemental materials contains the results of the analyses including participants who



HONESTY OF RESPONDING IN AN RRT SURVEY ON IPV 15

answered the second training question incorrectly. Di�erences between the two analyses

are largely explainable by di�erences in power.

Additionally, 183 fast respondents with a relative speed index (RSI, Leiner 2019)

above 2.00 were excluded from the main analysis. The RSI measures the participants’

screen processing times relative to the screens’ median processing times averaged across

all screens. Therefore, an RSI above two indicates that the participant, on average,

proceeded to the next screen twice as fast as the median of respondents. This can be

used as an indicator for careless responding (Leiner 2019).

The participants’ gender was included as a control variable in most analyses

because of the inconclusive findings in the literature concerning its association with IPV.

Whenever it was included, participants who indicated diverse gender were excluded from

the analyses because the group was too small to be included as separate factor level.

Parameter estimation and assessment of model fit

All models were fitted by optimizing the G2
statistic, which is a measure for the

deviance of observed and model predicted response frequencies, using the method by

Nelder and Mead (1965) implemented in the function optim provided in the stats

R-package. In a first step, the sample was split into four subsamples following from the

combination of the two factors Gender (excluding diverse gender) and Role. For each of

these subsamples, the IPV prevalence �UQM in the UQM and the prevalence of honest

carriers �UQMC and the cheating prevalence � in the UQMC were estimated separately.

The model fit of both models in the four subsamples was assessed using the

asymptotically �2
-distributed G2

statistic. Additionally, the overall fit of both models

was assessed by summing the G2
values from the subsamples and thereby making use of

the additivity property of �2
-distributed values. The fit of the UQM and UQMC was

compared using G2
di�erence tests and the Akaike and Bayesian information criterion

(AIC and BIC), which set the model fit in relation to model complexity using penalty

terms depending on the number of free parameters.
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Analysis of role conditions

To test the influence of the role manipulation within the UQMC, a full logistic

model including baseline cheating and honest carrier prevalence parameters as well as

parameters for the factor Role (victimization vs. perpetration), the factor Gender (male

vs. female), and interaction terms was fitted by optimizing the G2
statistic:

logit(�) = �0 + �1 ·Gender + �2 ·Role + �3 ·Gender ·Role, (5)

logit(�) = �0 + �1 ·Gender + �2 ·Role + �3 ·Gender ·Role. (6)

The factor Role was dummy coded with victimization as reference category. Therefore,

the e�ects of Role (�2 and �2) can be interpreted as the di�erence in � and �UQMC

between the victimization and perpetration conditions. Gender was included as control

variable and was e�ect coded in order that the mean e�ects of Role across the levels of

Gender could be estimated. This full model was compared to restricted models using G2

di�erence tests. Specifically, we successively restricted the interaction e�ects of Role and

Gender �3 and �3 and the main e�ects of Role �2 and �2 to be equal to 0.
8

We compared

each resulting model to the previous more complex model with respect to G2
, AIC and

BIC di�erences.

All analysis scripts and a preregistration of the study are on the Open Science

Framework (OSF, https://osf.io/9bna3/).

Results

Estimation and model fit

Table 3 depicts UQM and UQMC parameter estimates and their standard errors

for the four subsamples following from the allocated role condition and participant

gender. Due to the beginning of the contact restrictions on March 23rd and the survey

administration period from June 29th to July 15th, the estimates refer to 3 to 3.5 month

IPV prevalences. The estimates for physical IPV without accounting for cheating, that is
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�̂UQM , lie between 7.43 percent and 11.56 percent. Applying the UQMC, in three of the

four subsamples cheating is estimated to be close to 0 and, correspondingly, the

prevalence estimates di�er only slightly between the UQM and the UQMC. Only the IPV

prevalence estimates among female participants queried about IPV victimization di�er

strongly between the models, with an honest carrier prevalence estimate of �̂UQMC =

17.56 percent and a cheating estimate of �̂ = 30.17 percent.

The latter outcome is consistent with the results of the model comparison in

Table 4. The model fit of the UQMC is better than that of the UQM with respect to all

model comparison criteria only for this subsample. Within this subsample, the UQM’s

G2
statistic is highly significant, indicating insu�cient model fit. The G2

statistic

indicates su�cient model fit for both models in all other subsamples.

The last two rows in Table 4 depict the overall model fit of the UQM and the

UQMC using the G2
sums over the subsamples. The UQMC’s G2

test indicates a

reasonable model fit, whereas the UQM’s G2
value is significant, indicating insu�cient

model fit. The significant G2
di�erence test supports the superiority of including the

UQMC’s cheating parameter.

When cheating is taken into account, the plausible range of estimates for the

prevalence of IPV is indicated by the interval [�̂UQMC ; �̂UQMC + �̂]. As it is typical for

RRTs, the standard errors of both bounds are quite high, despite the large sample size.

To accommodate this uncertainty, the confidence intervals of the bounds need to be taken

into account. Descriptively, the resulting range is highest in the subsample of female

participants queried about victimization, with 95 percent CIs ranging from 12.15 to 62.88,

and lowest in the subsample of female participants queried about perpetration, with

95 percent CIs ranging from 2.70 to 22.60. The subsamples of male participants are very

similar with respect to the UQMC’s estimates with 95 percent CIs ranging from 8.66 to

39.06 in the victimization condition and from 5.83 to 31.32 in the perpetration condition.

Note that these intervals are relatively wide because they incorporate the cheating

estimates. Thus, they do not only indicate unsystematic uncertainty in the estimates but
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the systematic influence of a specific response style on the estimates. Therefore, despite

being wide these confidence intervals are indicative of relevant information, which is

ignored by the original UQM and most RRTs as well as direct questioning techniques.

The estimates do not indicate a clear gender e�ect. An e�ect of the role condition

is more apparent in the UQMC’s estimates, especially in the subsample of female

participants. Consequently, the e�ects of the role condition on the UQMC’s estimates

and their interactions with gender were tested in a logistic model. The main e�ects of

gender were not specifically tested because there were no founded expectations due to the

inconclusive findings on the gender di�erences in IPV.

Analysis of the role condition

The results of testing the e�ects of the role condition on the IPV prevalence and

cheating are in Table 5. Each row of this table includes G2
, AIC and BIC values of two

models and their di�erences between both models. The parameter representing the

respective e�ect is estimated freely in the “free” model and restricted to 0 in the

“restricted” model. None of the fit statistics indicate that excluding an interaction term

(�3 or �3) for participant gender and role condition leads to a relevant decrease in model

fit. Restricting the main e�ect of role condition on the honest carrier IPV prevalence �2

to equal 0 does not lead to a decrease in model fit. Only the AIC favors the model

allowing �2 to di�er from 0, and only if the restriction is introduced before the restriction

on the main e�ect on cheating. The e�ect size estimate is �̂2 = -0.50 on the logit scale,

which means that the odds of reporting IPV are estimated to be e�0.50
= 0.61 times as

high for participants queried about perpetration as compared to victimization (i.e.,

taking the inverse, 1.64 times as high for participants queried about victimization).

Restricting the main e�ect of role condition on the cheating prevalence �2 to equal 0

leads to a decrease in model fit according to the G2
test, if it is restricted before the main

e�ect on the IPV prevalence is restricted. However, this e�ect is not significant if

multiple testing is taken into account using Holmes-Bonferroni corrections on the

p-values. The AIC favors the unrestricted model both if the restriction of the main e�ect
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on cheating is introduced before and after the main e�ect on the honest carrier IPV

prevalence is restricted. The e�ect size estimate is �̂2 = -2.31 on the logit scale, which

means that the odds of cheating are estimated to be e�2.31
= 0.10 times as high for

participants queried about perpetration as compared to victimization (i.e., taking the

inverse, 10.11 times as high for participants queried about victimization).

To summarize, we found (a) no interaction of role condition and participants’

gender and (b) no significant main e�ect of role condition on the honest carrier prevalence

or cheating. Specifically, contrary to our expectations, the prevalence of cheaters � is not

estimated to be higher in the group queried about perpetration than in the group queried

about victimization. Additionally, numerically, the e�ect of role condition on �, indicated

by a small AIC di�erence, even goes in the opposite direction (i.e., � is estimated to be

higher in the group queried about victimization). Moreover, the e�ect of the role

condition on the prevalence of honest carriers �UQMC is not complementary to the e�ect

on cheating. An e�ect of role condition on �UQMC is only indicated by a small AIC

di�erence and, numerically, the e�ect goes in the same direction as the e�ect on cheating

(i.e., �UQMC is estimated to be higher in the group queried about victimization).

From the e�ect size estimates, separate predictions for the UQMC parameters for

both role conditions can be derived. For IPV victimization, the predicted honest carrier

prevalence is �vict = 0.14 and the predicted cheating prevalence is �vict = 0.05, both

pooled across gender. For IPV perpetration, the predicted honest carrier prevalence is

�perp = 0.09 and the predicted cheating prevalence is �perp = 0.01, both pooled across

gender.

Discussion

The current study was conducted to assess the validity of the cheating extension

of the unrelated question model (UQMC; Reiber, Pope, and Ulrich 2020) in an applied

setting. To that end, we investigated intimate partner violence (IPV) in a UQMC design

in an online survey. We assessed the fit of the UQMC and compared it to the fit of the
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UQM not accounting for cheating. Additionally, respondents were either queried about

IPV victimization or perpetration because we expected this manipulation of question

sensitivity to influence cheating. In light of the inconclusive prior findings on gender

di�erences we either conducted the analyses separately for male and female respondents

or included gender as a control variable.

The overall model fit of the UQMC is acceptable and it is superior to the fit of the

UQM, which cannot account for cheating. The biggest advantage is observable in the

subsample of female participants queried about victimization of IPV. In this group the

prevalence estimate of cheating is 30 percent. Thus, especially in this group of

respondents, accounting for cheating allows responses to be more accurately described.

However, the e�ects of the IPV role condition manipulation are not as expected.

Contrary to our expectations, cheating is estimated to be higher in the subsamples

queried about victimization. Also in the logistic model, the observed e�ect of the IPV

role condition on cheating is not as expected and numerically even opposite to our

expectations. Theoretically, this could mean that perpetrators are less reluctant to report

their behavior than victims
9
, but this is not in line with previous literature, which showed

that reporting of perpetration is stigmatized (e.g., Birkel and Guzy 2015; Franke et al.

2004) and associated even stronger with social desirability than victimization (Sugarman

and Hotaling 1997). Moreover, if perpetrators were open to report their behavior and

victims were reluctant to do so, the honest carrier prevalence of perpetration should be

higher than that of victimization. Specifically, because the sample only consists of persons

in an exclusive relationship, the true prevalence of IPV victimization and perpetration

should be the same and, therefore, di�erences in the honest carrier prevalence should

result from complementary di�erences in cheating. However, the prevalence estimate of

honest carriers is not lower but numerically even higher in the subsample queried about

victimization. In other words, the manipulation of the IPV role did not a�ect the

parameters in di�erent directions, indicating that the model’s parameters are not

complementary. This is not in line with the reasoning behind these parameters.
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To summarize, although the general model fit is good (and therefore the model’s

assumptions seem to hold), we were not able to di�erentially manipulate the model

parameters. In the following, three possible explanations for this inconsistency are

outlined.

First, the inconsistency might be due to selective sampling. The expectations

concerning the parameter relationship between role conditions are based on the

assumption that the true prevalence of IPV perpetration and victimization in the

assessed sample is the same. Yet, this does not necessarily have to be true. For example,

IPV perpetrators could have decided to abort the survey more often than victims of IPV

once they realized the content of the question. This would mean that the honest carrier

and cheating prevalence are not complementary and explain how both can be higher in

the victimization condition. However, the general dropout rates are not high enough to

completely explain the inverted data pattern (see Section A of the online supplemental

materials). Especially the dropout rates on the screen on which the queried role became

apparent are very low (victimization: N = 9; perpetration: N = 13). A higher dropout

among perpetrators before this point, which is independent of the role condition, could

only have such a large impact on parameter estimates if the true prevalence of IPV was

much higher than estimated in either of the conditions. Therefore, selective dropout is an

unlikely explanation for the unexpected finding of model parameters being

non-complementary. However, selective participation could still explain the results

pattern, if IPV perpetrators were generally less likely to participate in surveys or be part

of respondiAG’s participant panel.

Second, there could be violations of the model assumptions which are

mathematically consistent with the UQMC and thus not detectable merely by

computational tests of model fit. For example, the UQMC inherited the assumption from

the CDM that cheating is equally likely among respondents instructed to respond to the

sensitive question and respondents instructed to respond to the neutral question.

However, this need not be the case. Therefore, in the original presentation of the UQMC
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(Reiber, Pope, and Ulrich 2020), the possibility of partial cheating was outlined. In this

framework, in addition to the two categories of respondents defined in the UQMC, that is,

honest respondents and cheaters, there is a third category termed partial cheaters. This

group of respondents would respond honestly if directed to answer the neutral question

but give a self-protecting “No”-response if directed to the sensitive question. Interestingly,

following this logic, the estimation of the model parameters does not change. Specifically,

the prevalence of cheating � and the prevalence of honest carriers �UQMC are estimated

like in the UQMC that only allows for complete cheaters. The only thing that changes is

the interpretation of the remainder category. In the UQMC, like in the CDM, the

remainder category, 1≠�UQMC ≠ �, is interpreted as the prevalence of honest non-carriers.

However, in the framework of partial cheating, this remainder category also entails the

partial cheaters.
10

In light of this idea, the results of the study could be interpreted

di�erently: There could be partial cheaters in the subsample queried about perpetration,

who cannot be detected by the model but their presence would explain the unexpected

di�erences between estimates in the perpetration and victimization conditions.

Third, following a more substantive line of reasoning, di�erences in the individual

interpretations of IPV by the participants could account for the data pattern. The

UQMC is only capable of detecting deliberate cheating. Therefore, the hypotheses

depend on the assumption that not only the true prevalence of IPV victimization and

perpetration is equal, but also the perceived prevalence. However, it has been proposed

that perpetrators and victims judge the same instance of IPV di�erently (see, Follingstad

and Rogers 2013). Specifically, the same situation can be reported as violent by the

suspected victim but not by the suspected perpetrator. In such a case, a perpetrator not

admitting to a violent act, which was perceived as violent by the victim, would not be a

cheater in the sense of the UQMC. We decided to assess only physical IPV and provided

specific examples in the instructions to minimize the likelihood of self-deception.

However, it might still have played a role. This would explain why the lower estimated

perpetration prevalence in the current study is not explainable by higher cheating.
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Apart from these accounts there are limitations of the present study which might

have influenced the results. On the one hand, it was crucial for the premises of our

experimental manipulation that the participants were in a relationship with exactly one

person. However, the relationship status in itself is a sensitive topic since in most social

groups being in a committed relationship with one person still constitutes the norm. By

only contrasting “being in a committed relationship with one person” to “not being in a

relationship” or “being in more than one relationship of equal importance” in the

respective screening question, we tried to minimize social desirability bias. However, it is

still possible that some respondents chose to respond that they were in a committed

relationship with one person although they were not. Nevertheless, this would only

influence the results pattern if the likelihood of this response tendency di�ered strongly

between perpetrators and victims of IPV.

On the other hand, there was a high proportion of respondents (27.60 percent)

who did not respond correctly to the second training question. This calls into doubt that

the instructions were su�ciently understood. Given that the probability to guess the

correct response is 50 percent, this would in the worst case mean that another 30 percent

did not fully understand the instructions. However, this seems unlikely because the rate

of incorrect responses to the first training training question was much lower

(18.03 percent). Instead, since respondents did not know that an incorrect response to the

second training question would lead to an exclusion of their data, they might not have

payed attention to this question after correctly answering the first one. Therefore, the

high proportion of incorrect responses could be not as much indicative of a major

problem with understanding the instructions but rather that this preregistered exclusion

criterion was sub-optimal. Still, this exclusion criterion did not substantively influence

the results pattern either, as indicated by the additional analyses in Section C of the

online supplemental materials.

Whether any of these accounts is actually responsible for the observed

inconsistencies in the data pattern is, of course, not testable using the given data.
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However, the applied design enabled us to detect these inconsistencies and come up with

plausible explanations. Surveys using direct questions or a simple RRT design are

probably also a�ected by unexpected response patterns. In these cases, however, the

inconsistencies do not become visible. Using the design applied in this study, we could,

first, measure a specific type of instruction non-adherence, namely cheating, and the

results indicate that especially among female participants queried about IPV

victimization cheating is highly prevalent. Second, the unexpected e�ects of

experimentally manipulating the queried IPV role indicated that additional factors

influence the estimates. Although we can only speculate about these factors, detecting

inconsistencies itself has important implications. It shows that the estimates need to be

treated with caution - something that is arguably true for any survey on IPV.

All of the outlined explanations suggest that the IPV prevalence estimates in this

study rather represent a lower limit to the true prevalence of IPV during the period of

about three months starting with the initiation of the first contact restrictions due to the

COVID-19 pandemic in Germany. However, even the lower limit estimates of about

10 percent are already very high for such a short time period. Therefore, although the

exact numbers need to be interpreted carefully and, of course, a direct comparison to

other time periods is not possible, the presented results are in line with the literature

reporting alarmingly high numbers of IPV in the context of the COVID-19 pandemic and

the related containment measures (e.g., Steinert and Ebert 2020).

Conclusion

The purpose of the current study was to validate the UQMC, an extension of the

UQM, to account for self-protecting responses. To that end, we conducted an online

survey on IPV during the first contact restrictions due to the COVID-19 pandemic in

Germany. The UQMC provides a reasonable account of the data, which is superior to

that of the UQM. The data indicate an alarmingly high prevalence of IPV, which is in

line with the increase in IPV related to the COVID-19 pandemic reported by many other

sources. Some unexpected data patterns emerged, highlighting once more the di�culty of
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investigating sensitive research topics and the need for treating the respective estimates

with caution. Nevertheless, testable RRT designs accounting for instruction

non-adherence can provide more insight into the response process and, thereby, a better

understanding of sensitive research topics.
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Footnotes

1Note that the interpretation of fiCDM di�ers from that of fiUQM as it denotes the combined probability

of being an honest respondent and a carrier of the sensitive attribute.

2The assumption that a higher probability to receive the sensitive question would lead to a lower

proportion of honest admissions was tested by experimentally manipulating p in a UQM survey (Dietz et

al. 2018). A di�erence in the expected direction was observed but it was not significant, possibly due to

a lack of power.

3This would require estimating a model with separate cheating parameters for each subsample. Such

a model, however, is underdetermined.

4Closed form equations for a UQMC implementation using only two subsamples are provided in Reiber,

Pope, and Ulrich (2020). However, this approach does not allow for the assessment of model fit.

5Adapted from Moshagen, Musch, and Erdfelder (2012) and translated from German.

6Adapted from Moshagen, Musch, and Erdfelder (2012) and translated from German.

7We used R (Version 4.0.5; R Core Team 2021) and the R-packages dplyr (Version 1.0.5; Wickham et

al. 2021), forcats (Version 0.5.0; Wickham 2020), ggplot2 (Version 3.3.2; Wickham 2016), kableExtra

(Version 1.1.0; Zhu 2019), papaja (Version 0.1.0.9997; Aust and Barth 2020), purrr (Version 0.3.4; Henry

and Wickham 2020), readr (Version 1.3.1; Wickham, Hester, and Francois 2018), stringr (Version 1.4.0;

Wickham 2019), tibble (Version 3.1.0; Müller and Wickham 2021), tidyr (Version 1.1.3; Wickham 2021),

and tidyverse (Version 1.3.0; Wickham et al. 2019) for all our analyses.

8To facilitate estimation we used the estimates from simpler models as starting values for the more

complex models.

9A reviewer suggested they could even be boastful instead of ashamed about their controlling behavior.

10For an outline of the logic behind this conclusion see Reiber, Pope, and Ulrich (2020).
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Table 1

Sample demographics

Sample size (percentage)

Target quota in percent All Victimization Perpetration

Gender

Male 49.60 1553 (47.13) 752 (46.48) 801 (47.76)

Female 50.40 1732 (52.56) 862 (53.28) 870 (51.88)

Diverse - 10 (0.30) 4 (0.25) 6 (0.36)

Age

[18,30) 18.50 640 (19.42) 328 (20.27) 312 (18.60)

[30,40) 16.50 510 (15.48) 251 (15.51) 259 (15.44)

[40,50) 17.00 558 (16.93) 280 (17.31) 278 (16.58)

[50,60) 21.20 689 (20.91) 342 (21.14) 347 (20.69)

[60,80) 26.80 898 (27.25) 417 (25.77) 481 (28.68)

Highest educational achievement*

Less than primary school - 12 (0.36) 6 (0.37) 6 (0.36)

Primary/lower secondary education - 485 (14.72) 220 (13.60) 265 (15.80)

� low 32.90 497 (15.08) 226 (13.97) 271 (16.16)

Middle secondary education - 1043 (31.65) 512 (31.64) 531 (31.66)

� medium 32.40 1043 (31.65) 512 (31.64) 531 (31.66)

High secondary education - 269 (8.16) 141 (8.71) 128 (7.63)

Apprenticeship - 868 (26.34) 415 (25.65) 453 (27.01)

University degree - 618 (18.76) 324 (20.02) 294 (17.53)

� high 34.70 1755 (53.26) 880 (54.39) 875 (52.18)

Note. Displayed are the target quotas and acquired sub sample sizes (percentages in parantheses)

for all participants, and those in the victimization and perpetration conditions separately, for

gender, age and highest educational achievement.

*Target quotas for highest educational achievement referred to the summary categories “low”,

“medium”, and “high”. The percentages in the raw categories and the summary categories each

sum up to 100 percent. The raw categories of highest educational achievement are translated from

the German categories “Kein Schulabschluss”, “Grund-/Hauptschulabschluss”, “Realschule

(Mittlere Reife)”, “Gymnasium (Abitur)”, “Abgeschlossene Ausbildung”, and

“(Fach-)Hochschulabschluss” in this order.
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Table 2

Condition allocation

Victimization Perpetration

p
q

0.25 0.75 0.25 0.75

1/3 420 407 405 425

2/3 402 389 426 421

Note. Number of participants per

combination of the factors role, p

and q.



HONESTY OF RESPONDING IN AN RRT SURVEY ON IPV 37

Table 3

Model Estimates

N �̂ (SE) �̂ (SE) �̂ + �̂ (SE)

Victimization Male

UQMC 752 .14 (.03) .08 (.06) .23 (.08)

UQM 752 .12 (.02) - -

Victimization Female

UQMC 862 .18 (.03) .30 (.06) .48 (.08)

UQM 862 .07 (.02) - -

Perpetration Male

UQMC 801 .11 (.03) .05 (.05) .16 (.08)

UQM 801 .09 (.02) - -

Perpetration Female

UQMC 870 .08 (.03) .00 (.06) .08 (.08)

UQM 870 .08 (.02) - -

Note. Estimates for the prevalence of IPV (prevalence of honest

carriers) � in the UQM (UQMC), the prevalence of cheating �

and the upper bound of the prevalence of IPV � + � in the

UQMC along with their estimated standard errors in parentheses.
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Figure 1

Probability tree of the UQM

N

“No”
1≠ q

“Yes”q1≠ p

S

“No”
1≠ �

“Yes”�

p

Note. The sensitive question S and the neutral question N are randomly received by

respondents with probability p and 1≠ p, respectively. The probabilities of responding

“Yes” and “No” to the neutral question N are q and 1 ≠ q and the probabilities of

responding “Yes” and “No” to the sensitive question S are � and 1≠ �. Adapted from

“Cheater detection using the unrelated question model” by F. Reiber, H. Pope, and

R. Ulrich, 2020, Sociological Methods and Research, advance online publication, p. 3,

https://doi.org/10.1177/0049124120914919 published by SAGE Publishing under the

terms of Creative Commons Attribution 4.0.
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Figure 2

Probability tree of the UQMC

C

N “No”
1

1≠ pi

S “No”
1

pi

�

H

N

“No”
1≠ qi

“Yes”qi1≠ pi

S

“No”
1≠ �

“Yes”�

pi

1
≠ �

Note. The prevalence of cheaters C is � and the prevalence of honest participants H is

1 ≠ �. In both cases, the sensitive question S and the neutral question N are received

by participants with probability pi and 1 ≠ pi, respectively. The model assumes that

cheaters always say “No” regardless of the question received. Honest participants respond

“Yes” with probability qi and “No” with probability 1 ≠ qi if instructed to answer the

neutral question N. They answer “Yes” with probability � and “No” with probability

1 ≠ �, if instructed to answer the sensitive question S. Thus, there are three groups of

participants: (a) honest participants who are carriers of the sensitive attribute, who will

respond “Yes” with probability (1≠ �) · � = � if they receive S; (b) honest non-carriers of

this attribute who will respond “No” with probability (1≠ �) · (1≠ �) if they receive S;

and (c) cheaters, who will respond “No” with probability � regardless of whether they

receive S or N. Adapted from “Cheater detection using the unrelated question model”

by F. Reiber, H. Pope, and R. Ulrich, 2020, Sociological Methods and Research, advance

online publication, p. 8, https://doi.org/10.1177/0049124120914919 published by SAGE

Publishing under the terms of Creative Commons Attribution 4.0.
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Supplemental Section A

Participant dropout

Figure A1 depicts the dropout of participants per screen of the questionnaire and the

median processing time of each screen. Only the data of participants who completed the

whole survey were included in the data analysis.
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Figure A1

Participant dropout per screen
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Supplemental Section B

Additional questions

1. How many rooms does your flat/house have (excluding kitchen and bathroom)?

2. How many persons live in the household in addition to you? (Total/Children)

3. Do you live together with your partner? (Yes / No)

4. Which city is not located in Germany? (Berlin, Hamburg, Cologne, London,

Frankfurt, Munich)

5. Mark all alternatives that apply to you:

• I am employed (incl. self-employed).

• I mainly work from home.

• I am in Kurzarbeit (short-time work, furlough scheme: forced reduction of

working time to avoid bankruptcies or layo�s; part of the salary is

compensated by the state)

• I am in full-time education.

6. Do or did you feel threatened by unemployment? (Yes / No / I was unemployed

before March 23rd / I became unemployed after March 23rd)

7. Did you have regular personal contact with persons (e.g., friends, family) not living

in your household? (Yes - more than twice a week / Yes - at least once a week /

Yes - less than once a week / No)

8. Did you adhere to the contract restrictions that apply to you? (Yes / Mostly / No)

9. How anxious do you currently feel? (1 - not anxious at all / 2 - a bit anxious / 3 -

intermediate anxious / 4 - very anxious / 5 - extremely anxious)
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Supplemental Section C

Analyses including participants who did not respond correctly to the second traing question

Of the sample including those participants who did not respond correctly to the second

training question, 2212 (49.35%) answered the question on victimization of IPV. They

did not di�er from those who answered the question on perpetration with respect to age,

t(4480) = 0.98, p = .325, gender, p = .875, Fisher’s exact test, or highest educational

achievement, �2
(5) = 5.03, p = .413.
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Table C1

Sample demographics - Including participants incorrectly responding to the second training question

Sample size (percentage)

Target quota in percent All Victimization Perpetration

Gender

Male 49.60 2173 (48.48) 1069 (48.33) 1104 (48.63)

Female 50.40 2297 (51.25) 1138 (51.45) 1159 (51.06)

Diverse - 12 (0.27) 5 (0.23) 7 (0.31)

Age

[18,30) 18.50 781 (17.43) 395 (17.86) 386 (17.00)

[30,40) 16.50 715 (15.95) 355 (16.05) 360 (15.86)

[40,50) 17.00 743 (16.58) 370 (16.73) 373 (16.43)

[50,60) 21.20 974 (21.73) 478 (21.61) 496 (21.85)

[60,80) 26.80 1269 (28.31) 614 (27.76) 655 (28.85)

Highest educational achievement*

Less than primary school - 16 (0.36) 9 (0.41) 7 (0.31)

Primary/lower secondary education - 731 (16.31) 350 (15.82) 381 (16.78)

� low 32.90 747 (16.67) 359 (16.23) 388 (17.09)

Middle secondary education - 1468 (32.75) 731 (33.05) 737 (32.47)

� medium 32.40 1468 (32.75) 731 (33.05) 737 (32.47)

High secondary education - 329 (7.34) 173 (7.82) 156 (6.87)

Apprenticeship - 1164 (25.97) 553 (25.00) 611 (26.92)

University degree - 774 (17.27) 396 (17.90) 378 (16.65)

� high 34.70 2267 (50.58) 1122 (50.72) 1145 (50.44)

Note. Displayed are the target quotas and acquired sub sample sizes (percentages in parantheses)

for all participants, and those in the victimization and perpetration conditions separately, for

gender, age and highest educational achievement.

*Target quotas for highest educational achievement referred to the summary categories “low”,

“medium”, and “high”. The percentages in the raw categories and the summary categories each

sum up to 100 percent. The raw categories of highest educational achievement are translated from

the German categories “Kein Schulabschluss”, “Grund-/Hauptschulabschluss”, “Realschule

(Mittlere Reife)”, “Gymnasium (Abitur)”, “Abgeschlossene Ausbildung”, and

“(Fach-)Hochschulabschluss” in this order.
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Table C2

Condition allocation - Including

participants incorrectly responding to

the second training question

Victimization Perpetration

p
q

0.25 0.75 0.25 0.75

1/3 555 545 557 590

2/3 580 532 545 578

Note. Number of participants per

combination of the factors role, p

and q.
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Table C3

Model Estimates - Including participants incorrectly responding to

the second training question

N �̂ (SE) �̂ (SE) �̂ + �̂ (SE)

Victimization Male

UQMC 1069 .23 (.03) .11 (.05) .34 (.07)

UQM 1069 .19 (.02) - -

Victimization Female

UQMC 1138 .21 (.02) .29 (.05) .50 (.07)

UQM 1138 .11 (.02) - -

Perpetration Male

UQMC 1104 .11 (.02) .03 (.05) .14 (.06)

UQM 1104 .09 (.02) - -

Perpetration Female

UQMC 1159 .11 (.02) .01 (.05) .12 (.07)

UQM 1159 .11 (.02) - -

Note. Estimates for the prevalence of IPV (prevalence of honest

carriers) � in the UQM (UQMC), the prevalence of cheating �

and the upper bound of the prevalence of IPV � + � in the

UQMC along with their standard errors in parentheses.
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Role e�ect on �UQMC : �̂2 = -0.81 on the logit scale, which means that the odds

of reporting IPV are estimated to be e�0.81
= 0.44 times as high for participants inquired

about perpetration as compared to victimization (i.e., taking the inverse, 2.25 times as

high for participants inquired about victimization).

Role e�ect on �: �̂2 = -2.84 on the logit scale, which means that the odds of

cheating are estimated to be e�2.84
= 0.06 times as high for participants inquired about

perpetration as compared to victimization (i.e., taking the inverse, 17.20 times as high for

participants inquired about victimization).

From the e�ect size estimates, separate predictions for the UQMC parameters for

both role conditions can be derived. For IPV victimization, the predicted honest carrier

prevalence is �vict = 0.21 and the predicted cheating prevalence is �vict = 0.16, both

pooled across gender. For IPV perpetration, the predicted honest carrier prevalence is

�vict = 0.11 and the predicted cheating prevalence is �vict = 0.01, both pooled across

gender.
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Abstract
Randomized response models (RRMs) aim at increasing the validity of measuring sensitive attributes by
eliciting more honest responses through anonymity protection of respondents. This anonymity protection
is achieved by implementing randomization in the questioning procedure. On the other hand, this
randomization increases the sampling variance and, therefore, increases sample size requirements. The
present work aims at countering this drawback by combining RRMs with curtailed sampling, a sequential
sampling design in which sampling is terminated as soon as sufficient information to decide on a
hypothesis is collected. In contrast to nontruncated sequential designs, the curtailed sampling plan
includes the definition of a maximum sample size and subsequent prevalence estimation is easy to
conduct. Using this approach, resources can be saved such that the application of RRMs becomes more
feasible. An R Shiny web application is provided for simplified application of the proposed procedures.

Translational Abstract
Survey data are often subject to response biases, especially when sensitive (e.g., socially undesirable)
characteristics are studied. However, protecting the respondents’ anonymity can facilitate honest re-
sponding. Randomized response models (RRMs) achieve this goal by encrypting responses via random
noise. Unfortunately, this noise increases uncertainty in the data and, therefore, large samples are
required for sufficiently informative inference. To remedy this disadvantage, we propose to combine
RRMs with a simple sequential testing procedure, that is, curtailed sampling. Following this approach,
sample size requirements are reduced while still controlling statistical error probabilities. This way,
resources can be saved such that the application of RRMs becomes more feasible. In this article, we
describe how a curtailed sampling plan for RRM applications can be devised and how the respective data
can be analyzed. We illustrate the procedure by means of simulations and reanalysis of empirical data.
Additionally, we provide an easy-to-use R Shiny web application for simple implementation of the
described procedures.
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A large amount of findings in the human sciences is derived
from studies relying on self-reports as the only available data
source. However, self-reports are subject to biases, like the
social desirability bias (Paulhus, 1991). This problem becomes
especially pronounced, when the characteristic of interest is

sensitive, that is, socially, morally, or even legally incriminat-
ing (see Tourangeau & Yan, 2007), such as environmental
littering, endorsement of racist beliefs, drug abuse, or domestic
violence. Survey respondents and interviewees are reluctant to
disclose such incriminating information about themselves even
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when they are assured confidentiality. Instead, responses to
such questions are susceptible to selective nonresponding or
dishonest responding (Tourangeau, Rips, & Rasinski, 2000).
These self-protecting response tendencies do not only pose a
problem in research focusing on the individual but also in
research focusing on population characteristics. Specifically,
these individual response tendencies distort inferences on the
prevalence of the assessed characteristic.

Randomized response models (RRMs) are a class of ques-
tioning designs built to overcome this problem of self-
protecting responses. RRMs assure anonymity protection of
respondents by encrypting responses via a randomization pro-
cess. They were originally developed (Warner, 1965) for inves-
tigating the prevalence of binary sensitive characteristics, like,
for example, having consumed illicit drugs or not. In such
cases, as explained before, a conventional prevalence estimate
using the proportion of affirmative responses to a direct ques-
tion is prone to be biased and likely underestimate the true
prevalence because of self-protecting responses (see Krumpal,
2013; Tourangeau & Yan, 2007). In RRMs, in contrast, a
randomization process involved in the questioning makes single
responses inconclusive with respect to the individual manifes-
tation of the sensitive characteristic. Therefore, the individual
respondent’s anonymity is protected. Nevertheless, drawing
inferences on a group level is still possible knowing the prob-
ability underlying the randomization. This way, RRMs reduce
the urge to give self-protecting responses and therefore enable
a more valid assessment of the prevalence of sensitive attri-
butes. RRMs have been applied in psychology and related fields
to investigate prevalences of various sensitive topics; for ex-
amples, see Table 1. Readers interested in a comprehensive
review of RRM applications are referred to Fox (2016).

Unfortunately, the validity increase in RRMs comes at a cost:
The randomization, which is the key element of RRMs, induces
additional noise. Compensating for this drawback requires large
sample sizes— often more than 1,000 respondents—to allow for
sufficiently powered inference (Ulrich, Schröter, Striegel, &
Simon, 2012). Trying to reduce this demand on sample size by

adjusting the inherent parameters of the design is always at the
cost of anonymity protection, which would sabotage the in-
tended purpose of RRMs.

The original RRM was followed by a large number of further
developments (see Chaudhuri & Christofides, 2013; Fox, 2016,
for overviews). Some developments focused on increasing va-
lidity by increasing the psychological acceptability of the ques-
tioning design. Others aimed at increasing efficiency by de-
creasing sampling variance through design adjustments.
However, all RRMs use random encryption for creating ano-
nymity and thus inherit, to various extents, both the validity
advantages and efficiency disadvantages of the original RRM.
This inevitable tradeoff is arguably one of the main reasons to
restrain from applying RRMs.

However, altering the questioning design is not the only
possibility to reduce sample size requirements. Indeed, there are
procedures designed to make the sampling process itself more
efficient, namely sequential sampling procedures (see, e.g.,
Wetherill, 1975). Instead of sampling a fixed number of obser-
vations, which is predefined based on power calculations, the
data are monitored throughout the sampling process, and sam-
pling is terminated as soon as a specified criterion is reached.
As a consequence, if the data show a clear result, sampling can
in many cases be stopped earlier and, thus, resources are saved.
In this article, we demonstrate how RRMs can be incorporated
in such a sequential sampling plan, namely curtailed sampling
(see Wetherill, 1975), and how this can enhance the efficiency
of RRM applications. First, we introduce two well-established
RRMs to provide a better understanding of the mechanism
driving the increase both in anonymity protection and in sam-
pling variance. Second, we briefly outline the concept of se-
quential testing within curtailed sampling and how the two
before described RRMs can be integrated in this sampling plan.
Third, we describe how, following this procedure, unbiased
prevalence estimates can be computed. Fourth, we demonstrate
the efficiency of this curtailed RRM design by reanalyzing
empirical data on physical doping. Finally, we discuss potential
drawbacks and distinguish the present approach from other

Table 1
Exemplary RRM Applications in Psychology and Related Fields

Topic Study N

Induced abortion Abernathy, Greenberg, & Horvitz, 1970 2,871
Rape victimization Soeken & Damrosch, 1986 368!

Employee theft Wimbush & Dalton, 1997 196
Job applicant faking Donovan, Dwight, & Hurtz, 2003 221
Xenophobia Ostapczuk, Musch, & Moshagen, 2009 606
Corruption Gingerich, 2010 2,859
Dental hygiene Moshagen, Musch, Ostapczuk, & Zhao, 2010 2,254
Poaching Razafimanahaka et al., 2012 1,851
Cognitive enhancement Dietz et al., 2013 2,557
Academic misconduct Hejri, Zendehdel, Asghari, Fotouhi, & Rashidian, 2013 144
Organized crime Wolter & Preisendörfer, 2013 333
Physical doping Ulrich et al., 2018 2,168!

Prejudice against women leaders Hoffmann & Musch, 2019 721

Note. This table contains exemplary studies applying RRM to investigate various sensitive topics. It serves to
demonstrate the application range and does not comprise an exhaustive literature review. N ! total size of the
sample administered for the respective question using RRM.
! These samples consist of subsamples that were analyzed separately.
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sequential procedures. In addition, we created a user-friendly R
Shiny web application to apply the methods introduced in this
article in substantive research.

Randomized Response Models

The Unrelated Question Model

In the first example, the unrelated question model (UQM;
Greenberg, Abul-Ela, Simmons, & Horvitz, 1969), the sensitive
question S of interest, for example, “Have you ever used illicit
drugs?” is presented together with an unrelated neutral question N,
for example “Is your mother’s birthday between January and June
inclusive?” Which of the two questions S and N a respondent has
to answer depends on the outcome of a randomization device, like
rolling a die. If, for example, the outcome is one, two, three, or
four, the respondent is to answer the sensitive question S. By
contrast, if the outcome is five or six, the respondent is to answer
the neutral question N. Importantly, this outcome is known only to
the respondent and only the response to either question is known
to the interviewer. Therefore, the individual respondent’s anonym-
ity is protected because a “Yes” response can either mean “Yes, I
have ever used illicit drugs” or “Yes, my mother’s birthday is
between January and June inclusive.” The benefit of including a
neutral question N is that any response is perceived as less stig-
matizing because some responses have nothing to do with the
sensitive topic. Figure 1 depicts the probabilities with which “Yes”
or “No” responses are generated in the UQM. Clearly, a response
can be generated without having to answer the sensitive question
(lower branch). From this figure, the total probability " of a “Yes”
response is

!UQM " p · # $ (1 % p) · q, (1)

with probability p to receive the sensitive question S, prevalence #
of the sensitive attribute and prevalence q of the neutral attribute.
The neutral question N can be chosen such that q is known, like in
the example above, where q $ .50 under the assumption that
birthdays are equally distributed over the year. The probability of
a “Yes” response can be estimated from the proportion of “Yes”
responses in a survey sample, leaving # the only unknown variable
in Equation 1. Solving Equation 1 for # gives the estimator (see
Greenberg et al., 1969)

#̂UQM "
!̂UQM % (1 % p) · q

p (2)

with sampling variance

Var(#̂UQM) "
!UQM · (1 % !UQM)

n · p2 . (3)

As can be seen in Equation 3, the randomization procedure is
reflected in the sampling variance through parameter p. In other
words, the randomization adds variance to the sampling process
and therefore impairs precision, leading to the above mentioned
efficiency loss. To illustrate, the difference in required sample size
between a direct question study and one that utilizes the UQM is
depicted in the dashed and solid curves in Figure 2, respectively.
This comparison is based on a common choice of UQM design
parameters, that is, p ! .75 and q ! .70. Clearly, the required
sample size is much larger in the UQM as compared with direct
questioning. Especially in cases where a high precision is required
(SE ! 0.01) the difference becomes substantial and UQM appli-
cations are very costly compared with direct questioning.

The Crosswise Model

The second example is a newer development in the field of
RRMs, the crosswise model (CWM; Yu, Tian, & Tang, 2008). It
is a prominent model within a class of RRM developments labeled
nonrandomized response models. They are named thus because no
actual randomization device is part of the procedure although they
make use of random encryption, anyway. In the CWM, like in the
UQM, a sensitive question S is paired with a neutral question N,
with known prevalence q. In this case q must not equal .50. In
contrast to the UQM, respondents are not asked to respond to
either of the questions based on the outcome of a randomization
device but to give a combined response to both questions. As such,
the answer categories are “A: My response to both questions is
the same” (i.e., “Yes” to both or “No” to both) and “B: My
response to both questions differs” (i.e., “Yes” to one and “No” to
the other). In addition to evading the need for a randomization
device, this procedure has the advantage of not asking for a
confirming or dismissive response. Instead, the response catego-
ries themselves are neutral with respect to the sensitive attribute.1

The response generating probabilities are depicted in Figure 3.
From this figure, the probability of an “A” response can be
derived as

!CWM " q · # $ (1 % q) · (1 % #). (4)

Clearly, any response can come from both a carrier and a
noncarrier of the sensitive attribute, depending on that person’s
status on the neutral attribute. Because the latter status is not
known, the individual respondent’s anonymity is protected. How-
ever, because the probability of carrying the neutral attribute is
known, the group-level prevalence can still be estimated by (see
Yu et al., 2008)

1 Of course, the probability of carrying the sensitive attribute is not the
same given different responses. For q % .50, P(C | “A”) % P(C | “B”) and
for q & .50, P(C | “A”) & P(C | “B”). For example, the odds of being a
carrier are nine times larger given an “A” than given a “B” response for
q ! .75. However, it is unlikely that respondents’ decisions are influenced
by this.

Figure 1. Probability tree of the UQM. The sensitive question S and the
neutral question N are randomly received by respondents with probability
p and 1 ' p, respectively. The probabilities of responding “Yes” and “No”
to the neutral question N are q and 1 ' q and the probabilities of
responding “Yes” and “No” to the sensitive question S are # and 1 ' #.
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#̂CWM "
!̂CWM % 1 $ q

2q % 1 (5)

with sampling variance

Var(#̂CWM) "
!CWM · (1 % !CWM)

n · (2q % 1)2 . (6)

The increase in variance induced in this procedure is even
higher than in the UQM as is visible in the dotted curves in Figure

2. Like for the UQM, the CWM specification used in this demon-
stration represents a common choice of design parameters, that is,
q ! .75. Thus, despite the high face-validity of the CWM, its
applicability is impaired by its excessive costs in sample size.

In conclusion, RRMs ensure individual anonymity protection by
design and therefore provide researchers with a tool to acquire
estimates less distorted by self-protecting responses. However, the
application of these procedures is impaired by high sample size
requirements because of the additional variance induced by ran-
domization. This is especially problematic whenever respondents
are difficult to recruit. Such difficulties arise, for example, when a
special population is investigated (e.g., elite athletes in a survey of
physical doping) or when taking part in the survey involves ob-
stacles, such as fear of being stigmatized (e.g., for being addicted
to drugs). Both these scenarios are not unlikely in research on
sensitive topics, which is the field of applications of RRMs.

Hypothesis Testing With Randomized
Response Models

This problem of high sample size requirements is relevant in
studies focusing on prevalence estimation as well as in those
focusing on hypothesis testing. There has been a general debate on
the justification of hypothesis testing as compared with parameter
estimation in psychology. Specifically, some authors argue that
parameter estimation provides more informative results and should
become the standard data analysis procedure (Cumming, 2014).
However, others argue that “[n]either hypothesis testing nor esti-
mation is more informative than the other; rather, they answer
different questions” and “hypothesis testing, not estimation, is
necessary for testing the quantitative predictions of theories” (Mo-
rey, Rouder, Verhagen, & Wagenmakers, 2014, p. 1290; see also,
Anderson, 2019). Thus, the choice between estimation and hypoth-
esis testing should be based on the research question.

Figure 2. Required sample size depending on questioning type. Depicted is the required sample size as a
function of the true prevalence #. The curves within a panel depict the questioning types: Direct question (DQ,
dashed), unrelated question model (UQM, solid) and crosswise model (CWM, dotted). The design parameters
are p ! .75, q ! .70 in the UQM and q ! .75 in the CWM. The panels differ in the estimate’s standard error
(SE) 0.01, 0.03, and 0.05 from left to right. Note the individual y-axis scaling of each panel.

Figure 3. Probability tree of the CWM. Respondents are asked to respond
to both questions S and N in one response, “A” or “B.” Respondents carry
the neutral attribute N with known probability q or do not carry it ¬N with
probability 1 ' q. Carriers of the neutral attribute respond “A” with
probability # because they carry the sensitive attribute and thus their
response to both questions is the same. They respond “B” with probability
1 ' # because they do not carry the sensitive attribute and thus their
response to both questions differs. Noncarriers of the neutral attribute
respond “B” with probability # because they carry the sensitive attribute
and thus their response to both questions differs. They respond “A” with
probability 1 ' # because they do not carry the sensitive attribute and thus
their response to both questions is the same. Note that the order of the two
questions in the tree is arbitrary and is not meant to imply a sequential
process. Instead, respondents answer both questions simultaneously and
the order in the tree could just as well be reversed.
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In fact, the RRM literature features many studies addressing
research questions that conform to hypothesis tests. For example,
many studies investigating the validity advantage of RRMs make
use of the more-is-better assumption, that is, they investigate
whether prevalences of sensitive attributes are inferred to be higher
when assessed using RRM questioning as compared with direct
questioning (see Lensvelt-Mulders, Hox, van der Heijden, &
Maas, 2005). Although in most studies following this assumption
prevalence estimates are compared between the questioning de-
signs (e.g., Nordlund, Holme, & Tamsfoss, 1994; Wimbush &
Dalton, 1997; Wolter & Preisendörfer, 2013), this is actually a
research question that calls for a hypothesis test with decision error
control (as in Hoffmann & Musch, 2016).

Likewise, in substantively motivated RRM applications, there
are research questions that are best addressed using hypothesis
tests. As such, an application of RRMs is often motivated by the
question: Is a certain sensitive attribute really as small as one
concludes from conventionally collected data? This question is
reasonable whenever estimates from direct questioning or other
commonly used data sources are surprisingly low.2 The straight-
forward statistical approach to such a question is a statistical test of
the hypothesis that the RRM estimate is higher than the conven-
tional estimate.

Apart from being the theoretically suitable approach for certain
research questions, hypothesis tests require smaller samples than
precise estimation. However, the required RRM samples are still
very large, as compared with hypothesis tests in the context of
direct questions (Ulrich et al., 2012). To address this drawback,
RRMs can be incorporated in a sampling framework that is de-
signed to be economic in terms of sample size, namely, sequential
testing or, more precisely, curtailed sampling.

Curtailed Sampling

When testing hypotheses about whether the prevalence of an
attribute lies in a certain range, classical data collection requires
the definition of a fixed sample size to achieve the requested
statistical power. In RRM studies, this usually leads to very large
sample size requirements, as explained before. A group of proce-
dures aimed at minimizing sample size requirements are sequential
tests. As stated above, the general idea of sequential tests is to
terminate sampling as soon as sufficient support for the hypotheses
is allocated, instead of continuing until some predefined sample
size is reached. The rationale for this procedure is that in some
cases, sufficient certainty for a decision might be present at an
earlier stage and, thus, further sampling would constitute a waste
of resources. Detecting this early support requires, as the name
indicates, sequential testing throughout the sampling process. The
challenge is, certainly, to design a sampling plan such that Type-1
and Type-2 decision errors are still controlled for.

There exists a variety of sequential sampling procedures.
Among these, one basic procedure, applicable to binomial data, is
curtailed sampling (see Wetherill, 1975). In curtailed sampling,
data collection is terminated corresponding to stopping rules that
apply when sufficient evidence for making a decision is obtained.
The stopping rules are defined by the maximum sample size Nmax

and a bound cs, denoting the amount of observed successes re-
quired to reject the null hypothesis. These parameters are equal to
the fixed sample size and the critical value in a Neyman-Pearson

test with (upper bound) Type-1 and Type-2 decision error proba-
bilities ( and ), respectively (Wetherill, 1975). In the classical
Neyman-Pearson test, an a priori defined number of observations
N ! Nmax is sampled. If the number of successes among these
observations exceeds the critical value cs, the null hypothesis is
rejected. Otherwise, it is maintained. The rationale of the curtailed
sequential test is that if cs successes are observed at any point
before reaching Nmax, the test will always reject the null hypothesis
at Nmax. Therefore, in contrast to the Neyman-Pearson test, instead
of continuing the sampling process until N ! Nmax is reached, it
can be terminated as soon as cs successes have been observed, thus
rejecting the null hypothesis. In the same vein, if cf ! Nmax ' cs *
1 failures are observed during the sampling process, the test will
always maintain the null hypothesis at Nmax, because the critical
value cs of successes cannot longer be reached. Hence, it can be
terminated already at this point, thereby rejecting the alternative
hypothesis.

The horizontal and vertical lines in Figure 4 display these two
bounds, while the diagonal line denotes the maximum sample size
Nmax, for an exemplary UQM sampling plan described in more
detail later. This diagonal line also represents the fixed sample size
of a corresponding Neyman-Pearson test. In the context of
the UQM (CWM), successes are defined as “Yes” responses and
failures as “No” responses (“A” and “B” responses). Thus, Nmax is
the maximum number of all responses before sampling is stopped
and cs is the minimum number of “Yes” responses (“A” responses)
required before rejecting Hypothesis H0.

The parameters Nmax and cs depend on the hypotheses about the
prevalence # of the sensitive attribute and the specified error
probabilities. If, for example, one wants to construct a sampling
plan that tests the Hypothesis H0 that a sensitive attribute has a
prevalence of at most #0 ! .05 against the Hypothesis H1 that
the prevalence is at least #1 ! .15 with error probabilities ( ! .05
and ) ! .10, the following needs to be considered. The probability
of deciding in favor of H0 should be 1'( ! .95 at # ! .05 and
) ! .10 at # ! .15. In the area between #0 and #1, termed the zone
of indifference (Wetherill, 1975), no clear preference for a deci-
sion in favor of one of the two hypotheses exists. The resulting
probabilities of a correspondingly constructed curtailed sampling
procedure for deciding in favor of H0 for all possible values of #
are illustrated by the operating characteristic (OC) curve in Figure
5. The curve in Panel A depicts the straightforward case in which
the probability of an affirmative response equals the prevalence #,
that is in direct questioning.

However, in RRMs the probability of an affirmative response is
not # but ", which is a linear transformation of # and depends on
the design parameters of the RRM. For example, in case of the
UQM the probability of a “Yes” response, "UQM, can be computed
from # using Equation 1. The curve in Panel B of Figure 5 depicts
the resulting probabilities for deciding in favor of H0, now with
respect to "UQM. This demonstrates how the UQM influences the
sampling plan requirements: The zone of indifference becomes
narrower and, therefore, the differentiation between the competing
hypotheses becomes more difficult. Specifically, larger Nmax and

2 The study presented in the section Sequential Reanalysis of Empirical
Data later in this article is an example for such a case.
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cs are required such that the error probability requirements are
fulfilled for these stricter hypotheses.

Determination of the Sampling Plan Parameters

To determine Nmax and cs, a priori power analyses need to be
conducted. Exact values such that the resulting error probabilities
are closest to, but never larger than, ( and ) can be determined by
a numerical search algorithm. This algorithm searches for the
smallest Nmax which, in combination with a corresponding cs,
meets the requirements. Specifically, it iteratively searches all
possible values for Nmax along the lines of the following four steps:

1. Starting with an initial Nmax, a cs is derived by computing
the inverse of the CDF specified by the current Nmax and
"0 for the cumulative probability 1 – (.

2. The CDF specified by the current Nmax and "1 is evalu-
ated at the current cs.

3. As long as the resulting cumulative probability is larger
than ), Nmax is increased by *1 and the procedure is
repeated.

4. As soon as the resulting cumulative probability is smaller
or equal to ), the search is terminated and the algorithm

returns the current instantiations of Nmax and cs as suit-
able sampling plan parameters.

The respective pseudocode can be obtained from Section A of
the online supplemental materials.

In the above mentioned UQM example (see Figure 4) with the
design parameters p ! .75 and q ! .70, the parameters defined by
an exact power analysis are Nmax ! 290 and cs ! 74, for testing
the hypotheses #0 ! .05 and #1 ! .15 with ( ! .05 and ) ! .10.
Thus, the stopping rules in this case are defined as: Stop sampling
if (a) the number of “Yes” responses reaches cs ! 74 or (b) the
number of “No” responses reaches cf ! 217. It is possible that
when either (a) or (b) is the case, the maximum number of
responses Nmax ! 290 is reached, but it can never be exceeded.

Figure 4 depicts at what point the sampling paths of 10 simu-
lated samples3 reach one of the bounds. The mean sample size
when a bound is reached is N̄ ! 204.00 with SD ! 16.90. The
example demonstrates the advantages of a curtailed sampling
design: The actual sample size N is no longer a fixed value but a
random variable with maximum Nmax and an expected value lower

3 The simulation was conducted with the above described design param-
eters p ! .75, q ! .70, ( ! .05, ) ! .10, #0 ! .05, #1 ! .15, the resulting
bound-values cs ! 74 and Nmax ! 290 and true prevalence # ! .25.

Figure 4. Sampling paths of simulated samples. The 10 samples were simulated as unrelated question model data
with design parameters p ! .75, q ! .70, and true prevalence # ! .25. The depicted bounds are (a) the maximum
number of “Yes” responses cs ! 74 (horizontal); (b) the maximum number of “No” responses cf ! 217 (vertical); and
(c) the maximum total number of responses Nmax ! 290 equaling the fixed sample size of a Neyman-Pearson test
(diagonal). They are based on the hypotheses #0 ! .05 and #1 ! .15 with ( ! .05 and ) ! .10.
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than Nmax. Specifically, in this example, the mean sample size
saving is Nmax 'N̄ ! 290 ' 204 ! 86. In other words, one can
come to a conclusion earlier and, therefore, less resources are
needed.

Efficiency of the Curtailed Sampling Plan

The extent of this advantage can be illustrated by the average
sample number (ASN) curve in Figure 6. It depicts the expected
sample size when reaching either of the bounds as a function of the
true parameter value #. The average sample size per value of # is
calculated by the possible sample sizes N weighted by their prob-
ability of occurrence. Specifically, the ASN curve of the above
example (left panel) has its maximum of N ! 278.53 at # ! .081.
For # % .26 the expected sample number drops below 200 and for
# % .75 below 100. As a comparison, the necessary sample size
for a classical test would always be Nmax, that is, 290. Thus, the
expected N in the curtailed sampling plan is always smaller than
the sample size required by classical analyses. Especially if # is
notably smaller or larger than the decision relevant values #0 and
#1, respectively, the sample size saving is substantial. What is
more, the sample size required by the curtailed design can never

exceed that of the classical analysis. Additional ASN curves for
varying UQM design specifications are provided in Section B of
the online supplemental materials.

The same line of reasoning applies to any other RRM. The only
difference between varying models lies in the beforehand trans-
formation of the prevalence # to the actual response probability ".
In case of the CWM, this is done using Equation 4 and gives the
probability "CWM of “A” responses. The curve in Panel C of Figure
5 depicts how this affects the testable hypotheses derived from the
same hypotheses concerning # as in the example above (#0 ! .05
and #1 ! .15 with ( ! .05 and ) ! .10). Clearly, the zone of
indifference is even smaller than in the UQM, which is in line with
the larger sampling variance of the CWM. In a CWM design with
q ! .75 this test requires a curtailed sampling plan with Nmax !
722 and cs ! 219. Again, the impact on expected sample size
manifests in the ASN curve in Figure 6 (right panel). Not surpris-
ingly, Nmax and the expected sample size exceed the corresponding
values in the UQM. However, compared to the sample size re-
quired by a classical test, the saving in sample size can, again, be
substantial, especially if the true prevalence is far from the indif-
ference zone. Additional ASN curves for varying CWM design

Figure 5. Operating characteristic curve. Depicted is the probability of deciding in favor of H0 depending on the true
probability of a “Yes” response " in a curtailed sampling plan. All panels refer to the same hypothesis test concerning
the prevalence #: #0 & .05 (dotted line) versus #1 ' .15 (dashed line) with ( ! .05 and ) ! .10. The panels differ
with respect to the questioning design. Panel A depicts the case of direct questioning, such that the probability
of a “Yes” response " equals the prevalence #. Panel B depicts the case of the UQM, such that the probability
of a “Yes”-response " is a transformation of # using Equation 1, in this example with design parameters p !
.75 and q ! .70. Panel C depicts the case of the CWM, such that the probability of a “Yes” response " is a
transformation of # using Equation 4, in this example with design parameter q ! .75.
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specifications are also provided in Section B of the online supple-
mental materials.

Subsequent Estimation

Despite the previously discussed theoretical legitimization of
hypothesis testing, subsequent prevalence estimation can be desir-
able after conducting the hypothesis test. Estimation following a
statistical test is straightforward in a fixed-sample design, but
sequential sampling may introduce considerable bias for conven-
tional maximum-likelihood estimators (e.g., Whitehead, 1986).

Even though the same holds true for curtailed sampling proce-
dures when relying on conventional estimators, unbiased estima-
tion is feasible by using adjusted inverse binomial sampling esti-
mation. In inverse binomial sampling, rather than sampling a
predefined number of observations, evidence is collected until a
certain number Ns of confirmative responses is obtained. The
prevalence estimate then depends on the distribution of the total
number of responses until this number is reached. Similarly, in
curtailed sampling, estimation can be conducted depending on the

distribution of the total number of responses when one of the
bounds is reached.

Inverse binomial sampling follows a negative binomial distri-
bution and, therefore,

!̂ "
Ns % 1
N % 1 (7)

is an unbiased estimator of the probability " of a confirmative
response (Haldane, 1945). This probability estimate "̂ refers to the
probability of a “Yes” response or “A” response in the UQM or
CWM, respectively, and can thus be transformed to the prevalence
estimate #̂ using Equations 2 and 5. The inverse binomial sam-
pling estimator in Equation 7 can be applied to data assessed in a
curtailed sampling plan, whenever sampling is stopped because the
boundary cs of confirmative responses is reached. In this case,
Ns ! cs.

If, however, sampling is stopped because the bound cf of dis-
missive responses is reached, the results do not follow a negative
binomial distribution. Therefore, the estimator in Equation 7 is not
an unbiased estimator of the probability of a confirmative response

Figure 6. Average sample number curves. The solid curves depict the expectation of the sample size N when
reaching one of the bounds of a curtailed sampling plan as a function of the prevalence #. The dashed lines depict
the maximum sample size Nmax. The gray dots depict the mean sample size N̄ of 10,000 samples simulated for
each prevalence value #. The two panels correspond to different sampling plans, one applying the unrelated
question model (UQM, left panel) and the other one applying the crosswise model (CWM, right panel). Both
sampling plans are defined with respect to the hypotheses #0 ! .05 and #1 ! .10 with ( ! .05 and ) ! .10.
For the UQM, the design parameters are p ! .75, q ! .70 and the resulting bound-values are cs ! 74 and Nmax !
290. For the CWM, the design parameter is q ! .75 and the resulting bound-values are cs ! 219 and Nmax !
722.
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in these cases. However, this requirement is fulfilled by the ad-
justed estimator

!̂ "
N % cf

N % 1 . (8)

Indeed, the combination of both estimators yields a joint prob-
ability distribution of estimates with expectation equal to the true
prevalence. Further details on the derivation of these estimators are
provided in Section C of the online supplemental materials.

To illustrate the properties of the combined estimators, Figure 7
shows the theoretical sampling distributions of estimates attainable
from the example curtailed sampling plan for the UQM introduced
in the previous section (for testing the hypothesis whether # & .05
against # ' .15). Specifically, each panel depicts the probabilities
of attaining the possible prevalence estimates for a specific true
prevalence value. The two estimators are marked by different
shades of gray. Notably, there is a violation of normality at the
transition point between the application ranges of the two different
estimators. Nevertheless, the expectation of the combined estima-
tors equals the true prevalence indicating unbiasedness.

In the same vein, Figure 8 shows the frequencies of prevalence
estimates obtained from simulated samples under the same exam-
ple sampling plan with the same true prevalence values as in
Figure 7. Each panel depicts the frequency distribution of the
subsequent prevalence estimates from 100,000 samples simulated
with the respective true prevalence value. The mean of the esti-
mates is close to the true values in all six cases with negligible
bias, that is, bias ! 0.00013 with SD ! 0.00010.

Given the non-normality of the estimates’ probability distribu-
tion, the determination of confidence intervals using the sampling
variance is not recommendable. Instead, the Clopper-Pearson in-
terval (Clopper & Pearson, 1934) can be calculated.4 The param-
eter coverage of the thus calculated 95% confidence intervals for
the estimates of the simulated samples in Figure 8 is .954. The
deviation from .95 is explainable by the discrete distribution which
does not allow for exact cutoffs leading to a more conservative
confidence interval.

The preceding analyses demonstrate that subsequent unbiased
estimation following curtailed sampling is feasible within UQM.
Importantly, the same holds for all types of RRMs. As such,
equivalent probability distributions and parameter recovery distri-
butions are obtainable for various curtailed sampling plans.

R-Scripts and a user guide for the application of the procedures
described in the two preceding sections are available on the Open
Science Framework (OSF; https://osf.io/7kteu/). The scripts pro-
vide functions for the determination of the sampling plan param-
eters Nmax and cs for given hypotheses, for plotting the OC and
ASN curve for a given sampling plan and for analyzing and
plotting curtailed sampling data. Additionally, an R Shiny web
application (Chang, Cheng, Allaire, Xie, & McPherson, 2020),
which requires no prior knowledge of R, is available on https://
fabiolareiber.shinyapps.io/CurtailedRRT/ for easy application of
these procedures. All reported simulation and analysis scripts are
also available from the OSF.

Sequential Reanalysis of Empirical Data

The following reanalysis illustrates the benefit of curtailed sam-
pling in the framework of the UQM. Ulrich et al. (2018) applied

the UQM to assess the dark figure of doping at two international
athletics competitions, namely the 13th International Association
of Athletics Federations World Championships in Athletics
(WCA) in Daegu, South Korea, and the 12th Quadrennial Pan-
Arab Games (PAG) in Doha, Qatar, both in 2011. The application
of the UQM elicited doping prevalence estimates that substantially
exceed common estimates derived by direct questioning or bio-
logical testing, #̂WCA ! 43.6% (95% CI [39.4 – 47.9]) and #̂PAG !
57.1% (95% CI [52.4 – 61.8]) as compared with estimates of 2%
reported by the World Anti-Doping Agency (2012) for the same
year 2011. These estimates were obtained with this level of
precision on the basis of sample sizes of 1,203 and 965 at WCA
and PAG, respectively, and were therefore associated with
correspondingly high costs. However, what made these esti-
mates so interesting was not their exact size, but that they were
much higher than usual estimates. Importantly, as highlighted
above, such a finding is attainable through hypothesis testing
and it does not require precise estimation. Indeed, it is possible
to conduct a sequential test with curtailed sampling, because the
hypothesis concerning the prevalence is simple: Is the doping
prevalence estimated with the UQM higher than usual estimates
or not?

As prevalence estimates from official doping tests in elite ath-
letics are very low (World Anti-Doping Agency, 2012), the fol-
lowing test seems reasonable. Hypothesis H0 states that doping is
virtually nonexistent, that is 2% like in the official testing figures,
and Hypothesis H1 states that the prevalence is above 10%. Thus,
when # ! .02, H0 should be selected with at least probability 1 '
( ! .95 and when # ! .10, H0 should be selected with at most
probability ) ! .10, to preserve sufficient decision error control.
Given the design parameters q ! .50 and p ! .67 applied in the
study, the minimal values for Nmax and cs of a curtailed sampling
plan meeting the test’s requirements can be calculated as 490 and
102, respectively.

When reanalyzing each of the two samples sequentially, in the
order, in which they were assessed, a decision in favor of H1 that
the prevalence is equal to or above 10% would have been reached
markedly ahead of time, with sample sizes of 262 in the WCA
sample and 199 in the PAG sample, when reaching the bound of
“Yes” responses cs ! 102. The corresponding sampling paths are
depicted in Figure 9. In 1,000 random permutations of each sample
the bound of “Yes” responses is reached in all cases. The mean
sample size when reaching the bound is 222.60 and 186.31 in the
WCA and PAG samples, respectively. In sum, sequential testing
would have led to accepting the hypothesis that the doping prev-
alence is higher than suggested by official testing figures and
thereby provided conclusions in the same direction as the original
results with markedly lower sample size requirements and decision
error control.

Following the sequential hypothesis test, the estimation proce-
dure proposed in the previous section can be applied to the data.
The estimates computed using the subsequent estimation proce-
dure on the data available at the point in sampling, when the
decision would have been made, are listed in Table 2 together with
the conventionally computed original estimates. Both estimates are
below the estimates calculated from the fixed samples but the

4 Highest density intervals can be calculated as an alternative approach.
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confidence intervals overlap in both cases. Naturally, the confi-
dence intervals of the sequential estimates are much larger than
those calculated from the whole sample, as is to be expected from
a study using a randomized response design with a sample size this
small. Still, it is possible to narrow down the range of the preva-
lence estimates by this procedure at much lower cost than in
classical fixed sample size studies. Importantly, the mean of the
estimates computed from all 1,000 permutations of the data nearly
equals the original estimates, 43.7 and 57.0 for WCA and PAG,
respectively. This confirms that the deviation of the sequential
estimate from the original estimate is due to random sampling
error. Thus, subsequent estimation as an additional step after the
sequential test could have served to acquire more precise informa-
tion on the doping prevalence.

Discussion

Randomized response models provide means to increase the
validity of estimates of sensitive attributes. Yet, their applicability
is impaired by high demands on sample size due to random noise
induced by the questioning design. Especially when aiming at
sufficiently powered statistical inference, this can lead to very

large required sample sizes. Combining RRMs with sequential
testing by means of a curtailed sampling plan can ameliorate this
drawback. Especially when the true prevalence is well outside the
zone of indifference between the decision relevant values of the
hypothesis test, considerable sample size savings are possible. In
such cases, conclusions concerning the possible range of the prev-
alence of a sensitive attribute can be drawn with decision error
control and at much lower cost than in classical fixed sample size
studies. Additionally, subsequent estimation of the prevalence of
interest using closed form estimators adjusted to the outcome of
the hypothesis test can serve to acquire additional information.
Reanalysis of data of a large scale UQM-study on the prevalence
of doping in elite athletics (Ulrich et al., 2012) shows that results
pointing in the same direction can be obtained at much lower cost
using curtailed sampling and subsequent estimation.

However, comparing the results of the conventional estimation
to those of the subsequent estimation within curtailed sampling
highlights a limitation: The estimates are not as precise when
sampling is conducted in a curtailed sampling plan. However, this
is not surprising, as the goal of curtailed sampling is sample size
reduction and estimates from a study with smaller sample size will

Figure 7. Theoretical sampling distributions of #̂ |#. Depicted are the probabilities of obtaining a certain
estimate after testing the hypotheses #0 ! .05 and #1 ! .15 with ( ! .05 and ) ! .10 in a curtailed sampling
plan using the UQM with design parameters p ! .75, q ! .70. The panels differ with respect to the true
prevalence value, from # ! 0 in the top left panel to # ! 1 in the bottom right panel, which is indicated by the
vertical line in each panel. The estimates marked by black points are obtainable from samples in which the
horizontal bound cs ! 74 is reached and are calculated using the estimator in Equation 7. The estimates marked
by gray points are obtainable from samples in which the vertical bound cf ! 217 is reached and are calculated
using the estimator in Equation 8.
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always be less precise. Moreover, this is not a real flaw of the
method, because curtailed sampling is not designed for precise
estimation but for hypothesis testing. Therefore, as stressed before, it
should be applied only if the research question involves a test of
sensible hypotheses. Specifically, this could include testing whether a
prevalence is in a relevant range in a pilot study, testing whether
estimates changed in a replication study, or testing whether RRM
estimates differ from estimates derived using other methods in a
validation study. In such cases, curtailed sampling can substan-
tially increase efficiency and is recommendable.

There are also sequential methods developed specifically for
estimation (e.g., Kelley, Darku, & Chattopadhyay, 2017). For
instance, the basic rationale of Kelley, Darku, and Chattopadhyay
(2017) is to sample until the confidence interval of the estimate is
smaller or equal to a desired width. The advantage of this approach
is that no assumptions on unknown parameters are necessary, as is
the case when one determines the necessary fixed sample size for
a sufficiently precise estimate beforehand. As discussed in the
introduction of this article, both approaches have advantages and
the choice between hypothesis testing with error control and pre-

cise parameter estimation should depend on the research question.
In either case, a sequential design can increase sampling effi-
ciency.

Within the hypothesis testing framework, it is important to keep
in mind that the curtailed sampling plan only applies to the test of
simple hypotheses, that is, hypotheses in which all parameters are
either known or specified by the hypotheses. This is not the case,
for example, if the RRM includes additional unknown parameters
to account for cheating behavior (Clark & Desharnais, 1998;
Reiber, Pope, & Ulrich, 2020). In the same vein, hypotheses on
prevalence differences between groups are not simple, unless the
concrete group prevalences are specified. Obviously, classical tests
have the same limitation because a priori power analyses require
specification of all parameters. However, as in classical analysis, it
is possible to define a curtailed sampling plan for composite
hypotheses based on conservative (i.e., extreme) assumptions
about the unknown parameters. In this case, the error probabilities
of the procedure denote upper limits which will hold for any
parameter values less extreme than specified. Note, however, that
a conservative assumption will result in a less efficient test.

Figure 8. Simulated sampling distributions of #̂ |#. Depicted are frequency distributions of prevalence
estimates #̂ calculated from simulated samples using the information available in the moment when sampling
would have been stopped in a curtailed sampling plan for testing the hypotheses #0 ! .05 and #1 ! .15 with
( ! .05 and ) ! .10. Samples were simulated in a UQM design with design parameters p ! .75, q ! .70. The
panels differ with respect to the true prevalence value, from # ! 0 in the top left panel to # ! 1 in the bottom
right panel, which is indicated by the vertical line in each panel. Each panel includes a total of 100,000 simulated
samples. The estimates from samples in which the horizontal bound cs ! 74 was reached are depicted in black
and were calculated using the estimator in Equation 7. The estimates from samples in which the vertical bound
cf ! 217 was reached are depicted in gray and were calculated using the estimator in Equation 8.
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For simple hypotheses, we demonstrated that the curtailed sam-
pling plan is more efficient than classical analysis. However,
curtailed sampling is not the only sequential testing procedure.
Another efficient procedure is the well-known sequential proba-
bility ratio test (SPRT; Wald, 1947). Here, the likelihood ratio of
two competing hypotheses is continuously computed throughout
sampling until it reaches one of two boundary values, which are
based on predefined decision error probabilities. For the case of
simple hypotheses, the SPRT has been proven to be the most
efficient test procedure, that is, for given error rates no sequential
test requires less observations on average (Wald & Wolfowitz,
1948). The SPRT has been applied to common test scenarios such

as t tests (see Schnuerch & Erdfelder, 2020) and it is straightfor-
ward to apply it to RRM analysis, as well (Schnuerch, Erdfelder,
& Heck, 2020).

A potential limitation of the SPRT is that it is a so-called
nontruncated sequential procedure. That is, there is no definite
upper sample size at or before which the test will reach a decision.
Curtailed sampling, on the other hand, is a truncated procedure
because a lower and upper bound for the sample size are known in
advance. Therefore, potential costs and required resources are
easier to calculate, which makes curtailed sampling more conve-
nient to plan beforehand.

Moreover, curtailed sampling studies are straightforward to
conduct. During sampling, one only has to count observed re-
sponses, whereas other sequential designs often require complex or
tedious computations. And finally, as mentioned before, curtailed
sampling enables simple, unbiased subsequent estimation of the
unknown prevalence. Although estimates following a sequential
test stopping early will be less precise than for fixed-sample
procedures with larger samples, the estimator for the curtailed test
presented herein is unbiased. Thus, curtailed sampling constitutes
a compromise between the advantages of sequential tests (i.e.,
efficiency) and those of classical analysis (i.e., easy to plan and
unbiased estimation).

In conclusion, curtailed sampling is a relatively easy to imple-
ment and practical tool for enhancing the efficiency of surveys
applying RRMs. By reducing costs, it makes RRM applications
more feasible for studies in which the approach usually would
have been prevented by its excessive costs. Therefore, combining

Figure 9. Sampling paths of the two samples in the doping study. The underlying design parameters are p !
.50, q ! .67. The depicted bounds are cs ! 102 (horizontal), cf ! 388 (vertical), and Nmax ! 490 (diagonal) and
are based on the hypotheses #0 ! .02 and #1 ! .10 with ( ! .05 and ) ! .10. The two samples were assessed
at the World Championships in Athletics (WCA) in 2011 in Deagu, South Korea, and at the Pan-Arab Games
(PAG) in 2011 in Doha, Qatar.

Table 2
Conventional and Subsequent/Sequential Estimation of
Doping Prevalence

Sample

Conventional estimation!
Subsequent/sequential

estimation

N Estimate CI N Estimate CI

WCA 1,203 43.6% 39.4, 47.9 262 33.2% 24.7, 42.4
PAG 965 57.1% 52.4, 61.8 199 51.5% 41.5, 62.5

Note. N ! sample size, a random variable in case of sequential estima-
tion: current sample size, when bound cs ! 102 “yes” responses were
reached; CI ! 95% confidence interval (Clopper-Pearson intervals for the
subsequent estimates); WCA ! 13th International Association of Athletics
Federations World Championships in Athletics in Daegu, South Korea,
2011; PAG ! 12th Quadrennial Pan-Arab Games in Doha, Qatar, 2011.
! Estimates and confidence intervals are adopted from Ulrich et al. (2018).
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curtailed sampling with RRMs provides more valid assessment of
sensitive attributes for a broader range of research questions.
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Supplemental Section A
Exact determination of the bounds of a curtailed sampling plan

The proposed algorithm searches for the smallest possible values of Nmax and cs such that, when combined, they meet the
required properties of the hypothesis test. In other words, it searches for the smallest possible values of Nmax and cs for which
P(“H0”|�0) � 1 � � and P(“H0”|�1) � � holds.

Algorithm 1: Iterative search for Nmax and cs

Input:
Nlow �� lower bound of search window for Nmax
Nup �� upper bound of search window for Nmax
�0 �� lower bound of � indi�erence zone
�1 �� upper bound of � indi�erence zone
��� acceptable type 1 error probability
��� acceptable type 2 error probability
begin

N = Nlow
while N � Nup and b > � do

cs = CDF�1(1 � �,N, �0)
b = CDF(cs,N, �1)
N = N + 1

if b > � then
warning
“No Nmax and cs meeting the defined requirements in the defined range”

else
return
N � 1 �� Nmax: maximum sample size before sampling is terminated
cs: maximum number of successes before sampling is terminated
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Supplemental Section B
Expected sample size for varying RRM design specifications

Figures B1 and B2 depict the espected sample size and mean sample sizes of 10,000 simulations each for varying curtailed
sampling plan and design specifications of the UQM and the CWM, respectively.
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Figure B1. Average sample number curves for varying UQM design specifications. The solid curves depict the expectation of
the sample size N when reaching one of the bounds of a curtailed sampling plan as a function of the prevalence �. The dashed
lines depict the maximum sample size Nmax. The gray dots depict the mean sample size N of 10,000 samples simulated for each
prevalence value �. Each panel corresponds to a specific curtailed sampling plan using di�erent UQM desing specifications.
From top to bottom the panels di�er with respect to the design parameter p, with p = .55, p = .75 and p = .95, respectively.
From left to right the panels di�er with respect to the specified hypotheses, with �0 = .05 and �1 = .15, �0 = .05 and �1 = .25,
and �0 = .15 and �1 = .25, respectively. In all panels, � = .05 and � = .10 and q = .70.
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Figure B2. Average sample number curves for varying CWM design specifications. The solid curves depict the expectation of
the sample size N when reaching one of the bounds of a curtailed sampling plan as a function of the prevalence �. The dashed
lines depict the maximum sample size Nmax. The gray dots depict the mean sample size N of 10,000 samples simulated for each
prevalence value �. Each panel corresponds to a specific curtailed sampling plan using di�erent CWM desing specifications.
From top to bottom the panels di�er with respect to the design parameter q, with q = .55, q = .75 and q = .95, respectively.
From left to right the panels di�er with respect to the specified hypotheses, with �0 = .05 and �1 = .15, �0 = .05 and �1 = .25,
and �0 = .15 and �1 = .25, respectively. In all panels, � = .05 and � = .10.
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Supplemental Section C
Subsequent estimation - derivation

Parameter estimation following curtailed sampling must di�er from usual prevalence estimation because sampling is stopped
only because a certain number of confirmative (dismissive) responses was reached in the last trial. If sampling is always
stopped because the bound cs of confirmative responses was reached, the number of responses N follow a negative binomial
distribution with probability mass function (see Wetherill, 1975)

P(N|�) =
�
N � 1
cs � 1

�
· �cs · (1 � �)N�cs (1)

because the last response was a confirmative response. Thus, the inverse binomial sampling estimator

�̂ =
cs � 1
N � 1

(2)

with the estimated variance
Var(�̂) =

(cs � 1)(N � cs)
(N � 1)2(N � 2)

(3)

is an unbiased estimator of the prevalence in these cases.
If, however, sampling is always stopped because the bound c f was reached, the number of responses N has probability

mass function
P(N |�) =

�
N � 1
N � c f

�
· �N�c f · (1 � �)c f (4)

because the last response was a dismissive response. Thus, the inverse binomial sampling estimator can be adjusted to

�̂ =
N � c f

N � 1
(5)

with the estimated variance
Var(�̂) =

(N � c f )[N � (N � c f ) � 1]
(N � 1)2(N � 2)

(6)

which is, again, unbiased for these cases.
Both estimators can be combined to cover all possible outcomes of the curtailed sampling procedure and their joint

expectation is

E(�̂|�) =
Nmax�

N=cs

cs � 1
N � 1

·
�
N � 1
cs � 1

�
· �cs · (1 � �)N�cs

+

Nmax�

N=c f

N � c f

N � 1
·
�

N � 1
N � c f

�
· �N�c f · (1 � �)c f .

(7)

It can be shown that �̂ is an unbiased estimator of � (Girshick, Mosteller, & Savage, 1946). From this follows the joint variance

Var(�̂|�) =
Nmax�

N=cs

�
cs � 1
N � 1

�2
·
�
N � 1
cs � 1

�
· �cs · (1 � �)N�cs

+

Nmax�

N=c f

�
N � c f

N � 1

�2
·
�

N � 1
N � c f

�
· �N�c f · (1 � �)c f

� E(�̂|�)2.

(8)
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The randomized response technique (RRT) is a survey tool, which was developed for the assessment of
prevalences of sensitive characteristics (Warner, 1965). The validity of such assessments can be impaired by
response biases such as the social desirability bias (Paulhus, 1991). The rationale of the RRT is that such
biases can be counteracted by facilitating honest responding through anonymity protection. Specifically, a
random element in the questioning design ecrypts individual responses such that they are not conclusive of
the respondents’ status. Nevertheless, inference on the aggregate level can be drawn given a su�ciently large
sample.

Several ways to implement the randomization in the questioning design have been proposed (for overviews
see, e.g., Christofides, 2013; Fox, 2016). Three commonly used RRT variants are the forced response model
(FRM; Boruch, 1971), the unrelated question model (UQM; Greenberg et al., 1969) and the crosswise model
(CWM; Yu, Tian, & Tang, 1991).

To illustrate the mechanism of these three techniques, imagine conducting a study on the prevalence of
drug abuse. The straightforward direct questioning approach would be to administer the question “Did you
ever take illicit drugs?” among a survey sample. However, this is a sensitive question, which might elicit
self-protecting responses. The urge to give a self-protecting response can be decreased by increasing the sense
of anonymity protection using one of the three named RRTs.

First, if the FRM is applied, the survey respondents are instructed to respond to the sensitive question
only conditional on the outcome of a randomization device, such as a die. For example, they are instructed
to respond honestly to the question on drug abuse if the die comes up one, two, or three. Else, they are
instructed to give a forced response, which is not related to drug abuse, such as: say “yes” if the die comes up
four or five and say “no” if it comes up six. Importantly, the outcome of the randomization is covert and
only known to the respondent him- or herself. Therefore, a response is not conclusive of the responent’s
status, because it can either be a response to the sensitive question or a forced response. Nevertheless, it is
possible to estimate the prevalence of drug abuse given a su�ciently large sample, because the probabilities
underlying the randomization are known. The probability of a “yes”-response is

⁄FRM = p · fi + (1≠ p) · q (1)

with randomization probability p = 1/2 to respond to the question on drug abuse (i.e., the die coming up
one, two, or three), the conditional probability q = 2/3 to say “yes” given the response is a forced response
(i.e., the die coming up four or five, out of four, five, and six) and the prevalence fi of interest (i.e., drug
abuse). The probability ⁄FRM can be estimated from the proportion of “yes”-responses in the sample and
the equation can be rearranged for the prevalence

fîFRM = ⁄̂FRM ≠ (1≠ p) · q
p

. (2)

Thus, although the individual status remains unknown the prevalence of drug abuse can be estimated.
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Second and similarly, if the UQM is applied, the instruction to respond to the sensitive question on drug
abuse is also conditional on the outcome of a randomization device. However, the alternative is not a forced
response but an honest response to a second unrelated question, such as, “Is your birthday in the first 20
days of a month?”. Specifically, the instuction could be to respond honestly to the question on drug abuse, if
the die comes up one, two, or three and respond honestly to the birthday question if it comes up four, five,
or six. Because the randomization is, again, covert it is not clear, whether a specific response is related to
the question on drug abuse. Therefore, the individual respondent’s status remains hidden. Like in the FRM
the prevalence can be estimated from a su�ciently large sample, because the probabilities underlying the
randomization are known. The probability of a “yes”-response is, indeed, mathematically equivalent to the
FRM

⁄UQM = p · fi + (1≠ p) · q (3)
with the distinction that q � 2/3 is the probability to respond “yes” to the unrelated birthday question.
Therefore, the prevalence estimate can be computed using the same equation in the UQM as in the FRM,

fîUQM = ⁄̂UQM ≠ (1≠ p) · q
p

. (4)

Third, if the CWM is applied, the sensitive question “Did you ever take illicit drugs?” is also paired with an
unrelated question, such as “Is your birthday in the first 20 days of a month?”. However, respondents are
not instructed to respond to either question, but to give a combined (crosswise) response. As such, they are
instructed to respond “A” if their response to both questions is the same (i.e., “yes” to both or “no” to both)
and “B” if their response to both questions di�ers (i.e., “yes” to one and “no” to the other). As long as the
response to the unrelated question is unknown, the status on the sensitive attribute remains unknown, as
well. For example, if a respondent answers “A”, that could either mean that he or she has taken illicit drugs
and his or her birthday is in the first 20 days of a month or that neither is true. In the CWM, the probability
of an “A”-response is

⁄CWM = p · fi + (1≠ p) · (1≠ fi) (5)
with randomization probability p � 2/3 to respond “yes” to the unrelated birthday question. Thus, the
prevalence of drug abuse can be estimated as

fîCWM = ⁄̂CWM ≠ (1≠ p)
2p≠ 1 (6)

from a su�ciently large sample.

In summary, these three RRT variants have in common that some sort of randomization leads to individual
anonymity protection. Theoretically, the anonymity of respondents is protected irrespective of the size of the
randomization probability p. Specifically, the status of a respondent cannot be inferred with certainty as long
as p �= 0, 1. However, it is possible that the size of this randomization probability p influences the perceived
anonymity protection because the conditional probability of being a carrier of the sensitive attribute given
a certain response depends on p. Importantly, it is the perceived anonymity protection that influences the
validity of prevalence estimates. Indeed, it is a crucial mechanism of the RRT: Only if the randomization
increases the perceived anonymity protection, participants are more inclined to answer honestly.

From a rational point of view the perceived anonymity protection should depend on the the informativity of
a response with respect to the sensitive attribute. This di�ers as a function of p for RRTs, as can be seen in
the odds-ratio (OR) of being a carrier given a “yes” (“A”)- and given a “no”(“B”)-response

OR =

�
P (carrier|{yes,A})

P (non-carrier|{yes,A})

�

�
P (carrier|{no,B})

P (non-carrier|{no,B})

� (7)

with
P (carrier|yes) = [p+ (1≠ p) · q] · fi

p · fi + (1≠ p) · q (8)
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and
P (carrier|no) = (1≠ p) · (1≠ p) · fi

1≠ (p · fi + (1≠ p) · q) (9)

in the UQM and FRM, and
P (carrier|A) = p · fi

p · fi + (1≠ p) · (1≠ fi) (10)

and
P (carrier|B) = (1≠ p) · fi

fi · (1≠ p) + (1≠ fi) · p (11)

in the CWM.

Figure 1 depicts the absolute log OR as a function of p for the UQM (black curve), the FRM (black curve) and
the CWM (gray curve). The UQM and FRM are subsumed in the same curve because they are mathematically
equivalent. For the UQM and FRM the linetype di�ers with respect to di�erent values of q. Rationally, a
lower absolute log OR should correspond with higher perceived anonymity protection. Clearly, the influence
of p on the predicted (i.e., rational) perceived anonymity protection is not equivalent in all models. Moreover,
it is not to be expected that respondents have such a rational representation of anonymity protection.
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Figure 1
Influence of p on the informative content of responses. The true prevalence is fixed to fi = .3.

The actual influence of p on the perceived anonymity protection of survey respondents is not known. This is,
however, an important characteristic, as the design of RRT studies depends heavily on the choice of this
parameter. One goal when choosing p is to maximize the perceived anonymity protection. However, the size
of p has another important impact: The more randomness is induced through p, the higher the sampling
variance becomes, making estimates less precise. Therefore, in terms of sampling e�ciency, it is desirable to
keep the randomness at a minimum. These two requirements drive p in opposite directions and it is therefore
crucial to make a considerate choice on p. A prerequisite for such a choice is knowing the actual influence p
has on the perceived anonymity protection.

3



1 Objective

Thus, the aim of this study was to empirically investigate the influence of the randomization probability p on
the perceived anonymity protection and, as a consequence, the (validity of) prevalence estimates.

We investigated this influence within as well as across di�erent RRTs.

2 Methods

Design. To that end, we conducted a large scale online survey with between subject variation of both the
questioning design (UQM, FRM, CWM and direct questioning) and randomization probability p (.75, .95).
For reasons of simplicity and because the expected influence is substantially smaller in the rational model we
refrained from additionally varying q. Table 1 displays the resulting seven conditions.

The randomization probabiltiy p was implemented using the distribution of birthdates over a month. As the
distribution of birthdates is approximately uniform, the probability of the birthdate being in a specific range
can be calculated. In the UQM and FRM conditions, respondents were instructed to respond to the sensitive
question if their mother’s birthday lay within a specific range, which depended on the respective p condition.
In the CWM conditions, the unrelated question A was whether the respondents’ mother’s birthday lay within
the respective range. The respective ranges and resulting exact randomization probabilities pexact for the two
p conditions are depicted in bold face in Table 2.

Substantive question. To create a realistic scenario we implemented a highly sensitive question, that is,
“Have you ever experienced intimate partner violence?”. We defined intimate partner violence as any type of
physical or sexual violence by an intimate partner, such as spouse or boyfriend/girlfriend, and administered
the survey among women in Germany. The prevalence of female victimization of physical and sexual intimate
partner violence in Germany was estimated to be 22% in a EU-wide survey on violence against women using
direct interview questioning (FRA, 2014). Thus, we expected prevalence estimates of about this size (and
higher in the RRT conditions) in our study.

Sample. 2201 female German speaking (native or fluent) participants, of legal age, resident in Germany,
with at least intermediate-level education were recruited from the participant panel of the market research
institute Respondi. The data of 2028 participants were analyzed after excluding respondents who responded,
on average, twice as fast as the median respondent per screen of the survey. We aimed for equal distribution
to the age groups “18 to 29”, “30 to 39”, “40 to 49” and “50 or older” and the education level groups “German
‘Realschule’ or equivalent”, “German ‘Abitur’ or equivalent”, “University degree or higher”.

Procedure. After indicating their informed consent to participate in the study, participants were informed
about the topic of the study and the applied definition of intimate partner violence. Then, participants were
randomly assigned to the seven conditions. To maximize power for the various condition comparisons the
distribution wase based on equal weights for the RRT conditions and half for the direct question condition
(see Table 1). The sensitive question was presented in the respective questioning design with the respective
randomization probability. To make sure that participants understood the RRT instructions, they first
answered a training question in the same RRT design for a fictional person based on a vignette. Because the
correct answer was known, feedback on the response could be provided before the respondents answered the
question on intimate partner violence for themselves. In the next step, the perceived anonymity protection
was assessed for the implemented randomization probability p in a follow-up question using a slider. The
individual function of p on the perceived anonymity protection was assessed by a magnitude estimation
procedure with the implemented p as reference. Specifically, respondents were asked to indicate how well they
would have felt their anonymity was protected in four alternative scenarios with varying p (see Table 2 for the
implementation using date ranges and resulting exact p), compared to the perceived anonymity protection in
the implemented scenario, if the perceived anonymity protection had been 100 in the implemented scenario.
To make sure that the magnitude estimation procedure was understood, respondents were first presented with
a training question. Specifically, they were asked to rate the safety of jogging and skydiving as compared
to road racing. Finally, participants were presented with an attention check, which asked them to mark
the second lowest option of a selection of the numbers 1 through 5 (participants who responded incorrectly
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Table 1
Conditions

p UQM FRM CWM DQ
0.75 2 2 2
0.95 2 2 2
1.00 1
Note. Cell weights for each con-

dition; p: randomization probabil-

ity; UQM: Unrelated Question Model;

FRM: Forced Response Model; CWM:

Crosswise Model; DQ: Direct question-

ing.

Table 2
Probabilities

p Implementation as days in a month* pexact

0.05 30 - 31 0.047
0.25 24 - 31 0.244
0.51 16 - 31 0.507
0.75 9 - 31 0.737

0.95 3 - 31 0.934

Note. p: target randomization probability; pexact: ex-

act p resulting from the date range; * If the respondent’s

mother’s birthay is within this range, (a) in the UQM and

FRM conditions he or she should respond to the sensitive

question or (b) in the CWM conditions he or she should

respond ’Yes’ to the neutral question A; The implemented

scenarios are highlighted in bold face. Respondents receive

either of the two and then judge the perceived anonymity

protection in all four alternative scenarios relative to this

anchor.

were excluded) before being provided helpline information for victims of intimate partner violence and being
redirected to Respondi.

3 Results

3.1 Completion time

Figure 2 depicts the survey completion time per condition.

3.2 Demographics

Information on age and highest educational achievement of participants per condition is provided in Figure 3
and Table 3, respectively.
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Table 3
Education per condition

Condition Realschule Abitur Hochschulabschluss
DQ 50 71 55
UQM (.75) 102 104 107
UQM (.95) 97 94 100
FRM (.75) 95 101 115
FRM (.95) 103 104 98
CWM (.75) 111 100 100
CWM (.95) 109 101 111
Note. Number of participants in each condition by highest

educational achievement; conditions are, direct questioning

(DQ), unrelated question model (UQM), forced response model

(FRM), crosswise model (CWM) with p = .75 (75) or p = .95

(95).

Table 4
Proportion correct responses to control question

DQ UQM (.75) UQM (.95) FRM (.75) FRM (.95) CWM (.75) CWM (.95)
- 0.652 0.708 0.907 0.879 0.743 0.748

3.3 RRT

Descriptives on the RRT control question and estimates for intimate partner violence are in Tables 4 and 5
and in Figure 4.

3.4 Anonymity rating and magnitude estimation

Figure 5 depicts the initial perceived anonymity rating per condition. Figure 6 depicts the results of the
training question for the magnitude estimation procedure. The proportion of unexpected results, that is, a
rating below 100 for jogging and a rating above 100 for skydiving was 0.249 and 0.116, respectively. Figure 7
depicts the results of the magnitude estimation for each randomization probability p and Figure 8 summarizes
these results over all probabilities. Table 6 depicts the proportion of ratings exactly equal to 100 for each
randomization probability p.
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Table 5
Prevalence estimates per condition

Condition N Estimate SE Lower CI Upper CI
DQ 176 0.216 0.031 0.155 0.277
UQM (.75) 313 0.204 0.034 0.138 0.270
UQM (.95) 291 0.227 0.026 0.175 0.279
FRM (.75) 311 0.146 0.032 0.083 0.209
FRM (.95) 305 0.143 0.022 0.099 0.186
CWM (.75) 311 0.156 0.053 0.052 0.260
CWM (.95) 321 0.253 0.028 0.198 0.307
Note. Conditions are, direct questioning (DQ), unrelated ques-

tion model (UQM), forced response model (FRM), crosswise model

(CWM) with p = .75 or p = .95. N : Number of responses, SE:

standard error, CI: 95 percent confidence interval.
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Figure 4
Prevalence estimates across conditions. Errorbars indicate 95 percent confidence intervals.

Table 6
Proportion of ratings equal 100 per level of magnitude estimation.

p Proportion
0.05 0.407
0.25 0.414
0.55 0.444
0.75 0.453
0.95 0.387
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Figure 6
Magnitude estimation for control questions
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Figure 7
Magnitude estimation for each p. Ratings above 500 are excluded.

10



UQM
(.75)

UQM
(.95)

FRM
(.75)

FRM
(.95)

CWM
(.75)

CWM
(.95)

.05.25.55.75.95 .05.25.55.75.95 .05.25.55.75.95 .05.25.55.75.95 .05.25.55.75.95 .05.25.55.75.95
0

100

200

300

p

R
at
in
g

Figure 8
Magnitude estimation for all ps per condition.
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