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Tag der mündlichen Qualifikation: 28.06.2021

Dekan: Prof. Dr. Thilo Stehle

1. Berichterstatter: Prof. Dr. Ruth E. Ley

2. Berichterstatter: Prof. Dr. Daniel Huson

3. Berichterstatter: Dr. Richard Neher



Abstract

The human gut microbiota is made of a myriad of microorganisms,

among which not only bacteria but also archaea. Present at lower abun-

dances, technically more challenging to quantify, and under-represented

in databases, archaea are often overseen when describing the human gut

microbiome. Nonetheless, the main archaeon in terms of prevalence and

abundance is Methanobrevibacter smithii, family Methanobacteriaceae.

It has been associated with various host phenotypes such as slow tran-

sit or diet habits. Remarkably, contrasting evidence shows an associa-

tion between M. smithii and body mass index (BMI): it is enriched in

lean or obese individuals according to population studies. Reasonable

hypotheses relying on the metabolism of the archaeon support these

conflicting findings. For instance, its slow replication time supports its

association with slow transit.

M. smithii and all members of the Methanobacteriaceae family are

methanogens: their metabolism relies on the reduction of simple carbon

molecules to methane. In the human gut, methanogenesis starts from

bacterial fermentation products. In particular, H2 and CO2 are the pri-

mary substrates of M. smithii , formate can also be used but with a lower

energy yield. By uptaking fermentation products, M. smithii can boost

specific fermentation pathways, consequently affecting the production

of short-chain fatty acids (SCFA). These byproducts of bacterial fer-

mentation are absorbed by the host, where they mediate host energy

and inflammatory metabolisms. Accordingly, its overall effect may de-

pend on the fermentation potential of the gut microbiome, itself defined

by the microbiome composition. Hence, M. smithii may influence its

host by consuming fermentation products. Because we know so lit-

tle about the interactions between M. smithii and fermenting bacteria,

gaining knowledge on their diversity and specificity and the underlying

mechanisms would improve our understanding of methanogens’ role in

the human gut.

This work aims at providing insights into the associations between

M. smithii and gut bacteria. Due to the fastidiousness of methanogens’

culture, I performed a meta-analysis of human gut metagenomes using

machine learning models. To decipher the variable interactions cap-
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tured by the model, I developed a tool for interpreting tree ensem-

ble models. My new method allowed me to infer biologically relevant

associations between the methanogen and components of the human

gut environment. In particular, I found a clear association between

M. smithii and an uncultured family of the Christensenellales order,

as well as members of the Oscillospirales order predicted to have a

slow replication time and be associated with slow transit. Further-

more, predictions from the model revealed a gradient in relative abun-

dances of a core group of taxa associated with the colonization of hu-

man guts by Methanobacteriaceae. This gradient generally followed

microbiome composition types, i.e., enterotypes, previously correlated

with human population traits. This suggests that associations between

methanogens and phenotypes known to be associated with certain en-

terotypes, such as BMI is correlated with the ETB enterotype, may be

spurious. Then, I further explored the association between M. smithii

and members of the Christensenellales order. For this, I compared co-

cultures of M. smithii with Christensenella minuta, a human gut iso-

late of the Christensenellaceae family, and Bacteroides thetaiotaomi-

cron, a common H2-producer from the human gut. Results demon-

strated a syntrophy via H2-transfer between Christensenellaceae and

the methanogen, accompanied by a switch in SCFA production.

Altogether, my findings complement the current knowledge on inter-

actions between the human gut methanogen M. smithii and fermenting

bacteria. They support the hypothesis that M. smithii preferentially

interacts with specific H2-producers in the human gut, e.g., members of

the Christensenellales order, as well as a core group of bacteria favoring

its colonization of the gut environment. Syntrophy may underlie the

identified associations, with potential effects on bacterial fermentation.

In addition, my method for interpreting machine learning models ap-

plies to all sorts of problems being studied with tree ensemble models.

Thus, its potential in helping understand complex systems is not lim-

ited to the microbiome field and will hopefully appear useful to other

researchers in the future.
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Zusammenfassung

Das Darmmikrobiom des Menschen besteht aus einer Vielzahl von Mi-

kroorganismen, darunter nicht nur Bakterien, sondern auch Archaeen.

Archaeen, die in geringerer Häufigkeit vorhanden, technisch schwieri-

ger zu quantifizieren und in Datenbanken unterrepräsentiert sind, wer-

den bei der Beschreibung des menschlichen Darmmikrobioms häufig

übergangen. Ungeachtet dessen ist Methanobrevibacter smithii, ein Mit-

glied der Familie der Methanobacteriaceae, das Hauptarchäon in Bezug

auf Prävalenz und Häufigkeit. Es wurde mit verschiedenen Phänotypen

des menschlichen Wirtes wie verringerte Darmbeweglichkeit oder

Ernährungsgewohnheiten verbunden. Bemerkenswerterweise zeigen

verschiedene Studien einen widersetzlichen Zusammenhang zwischen

M. smithii und dem Body-Mass-Index (BMI): Während einige Studien

eine erhöhte Abundanz von M. smithii in schlanken Menschen auf-

weisen, zeigen andere eine höhere Häufigkeit in fettleibigen Menschen.

Begründete Hypothesen, die sich auf den Stoffwechsel des Archäons

beruhen, stützen diese widersprüchlichen Befunde. Beispielsweise un-

terstuezt seine langsame Replikationszeit die Assoziation mit einer ver-

ringerten Darmbeweglichkeit.

M. smithii und alle anderen Mitglieder der Methanobacteriaceae-

Familie sind Methanogene: Ihr Stoffwechsel beruht auf der Redukti-

on einfacher Kohlenstoffmoleküle zu Methan. Im menschlichen Darms

geht die Methanogenese von bakteriellen Fermentationsprodukten aus.

Insbesondere H2 und CO2 sind die primären Substrate von M. smit-

hii . Auch Formiat kann verwendet werden, jedoch mit einer geringeren

Energieausbeute. Durch die Absorption von Fermentationsprodukten

kann M. smithii bestimmte Fermentationsprozesse ankurbeln und folg-

lich die Produktion kurzkettiger Fettsäuren (SCFA) beeinflussen. Sol-

che Nebenprodukte der bakteriellen Fermentation werden vom Wirt ab-

sorbiert und beeinflussen seinen Energie- und Entzündungsstoffwechsel.

Dementsprechend könnte die Gesamtwirkung von M. smithii auf den

menschlichen Wirt vom Fermentationspotential des Darmmikrobioms

abhängen, das wiederum durch die Mikrobiomzusammensetzung defi-

niert ist. Auf diese Weise kann M. smithii im Zusammenspiel mit dem

Mikrobiom seinen Wirt durch den Verzehr von Fermentationsproduk-
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ten beeinflussen. Weil so wenig über die Wechselwirkungen zwischen

M. smithii und fermentierenden Bakterien bekannt ist, kann das Wissen

über ihre Vielfalt und Spezifität, sowie ihrer zugrunde liegenden Mecha-

nismen unser Verständnis der Rolle der Methanogenen im menschlichen

Darm vertiefen.

Ziel dieser Arbeit ist es, Einblicke in die Beziehung zwischen M. smi-

thii und Darmbakterien zu geben. Da Methanogenkulturen anspruchs-

voll sind, führte ich eine Metaanalyse menschlicher Darmmetageno-

me mittels Machine-Learning Modellen durch. Um die vom Modell

erfassten variablen Interaktionen zu entschlüsseln, habe ich ein Tool

zur Interpretation von Tree-Ensemble-Modellen entwickelt. Mit meiner

neuen Methode konnte ich biologisch relevante Zusammenhänge zwi-

schen Methanogen und Komponenten des menschlichen Darmmilieus

erschließen. Insbesondere fand ich einen klaren Zusammenhang zwi-

schen M. smithii und einer nicht kultivierten Familie in der Ordnung

der Christensenellales sowie Mitgliedern des Oscillospirales-Ordnung.

Für Letztere wurde ebenfalls eine langsame Replikationszeit prognosti-

ziert. Darüber hinaus zeigten die Prognosen des Modells, dass die rela-

tive Häufigkeit einer Kerngruppe von Taxa graduell mit der Besiedlung

des menschlichen Darms durch Methanobacteriaceae einhergehent. Die-

ser Gradient folgte im Allgemeinen den Mikrobiom-Zusammensetzung

Typen, Enterotypen genannt, die zuvor mit menschlichen

Bevölkerungsmerkmalen in Verbindung gebracht wurden. Dies deu-

tet darauf hin, dass Zusammenhänge zwischen Methanogenen und be-

stimmten Phänotypen, von welchen eine Verbindung mit den Enteroty-

pen bekannt ist, beispielsweise die Korrelation von BMI mit dem ETB-

Enterotyp, möglicherweise falsch sind. Weiterhin untersuchte ich die Be-

ziehung zwischen M. smithii und den Mitgliedern der

Christensenellales-Ordenung. Zu diesem Zweck verglich ich Kokultu-

ren von M. smithii mit Christensenella minuta, einem menschlichen

Darmisolat aus der Familie der Christensenellaceae, und Bacteroides

thetaiotaomicron, einem verbreiteten H2-Produzenten aus dem mensch-

lichen Darm. Die Ergebnisse zeigten eine Syntrophie über H2-Transfer

zwischen Christensenellaceae und dem Methanogen, begleitet von ei-

nem Wechsel in der Produktion kurzkettiger Fettsäuren.
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Insgesamt kann ich durch meine Ergebnisse das aktuelle Wissen

über Wechselwirkungen zwischen dem menschlichen Darmmethanogen

M. smithii und fermentierenden Bakterien ergänzen. Sie unterstützten

die Hypothese, dass M. smithii bevorzugt mit spezifischen

H2-Produzenten im menschlichen Darm interagiert, z. B. Mitgliedern

der Christensenellales-Ordnung, sowie mit einem Kernmikrobiom, das

die Besiedlung von M. smithii in der Darmumgebung begünstigt. Dem

identifizierten Zusammenhang kann eine Syntrophie zugrunde liegen,

die potenzielle Auswirkungen auf die bakterielle Fermentation hat.

Darüber hinaus lässt sich meine Methode zur Interpretation von

Machine-Learning-Modellen auf alle Arten von Problematiken, die mit

Tree-Ensemble-Modellen untersucht werden, anwenden. Da diese Me-

thodologie zum Verständnis komplexer Systeme beiträgt und nicht auf

das Mikrobiomfeld beschränkt ist, kann es in Zukunft auch Forschern

aus anderen Themengebieten von Nutzen sein.
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Prologue

We are made by half of ourselves, i.e., made of our own human cells,

and by half of microbes, i.e., made of microorganisms present on our

skin and in our gut, for example [204]. Does it matter? Probably

more than we imagine. More than 90 % of our microorganisms are

localized in our gut [204], at the interface between the undigested food

that reaches the intestine and the epithelial cells of the gastrointestinal

tract [63]. Their presence alone is important to us as the proteins and

glycolipids they harbor on their cell membranes can be recognized by

the host, hence mediating immunity [137]. In addition, they degrade

undigested dietary components, prolonging our digestion and providing

us with additional energy sources. Finally, they produce metabolites

that can interact with all kinds of host cells, including T-cells, involved

in inflammation; neurons, involved in the gut-brain axis; or adipocytes,

involved in energy storage [102].

The gut microbiota has attracted attention in recent years. As the

majority the gut microbiome inhabitants are still uncultured, sequence-

based studies have the advantage of capturing a broader range of mi-

croorganisms without being restricted by the need for isolates [103].

Thanks to advances in sequencing technologies, using stool samples to

assess microbial diversity is now cost-effective and allows us to obtain

an overall picture of the human gut microbiome diversity. However,

most protocols are designed for bacteria, the main microorganisms in

the human gut microbiome, therefore overlooking the archaea, fungi
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and yeasts that also colonize this environment [24, 179].

The major archaeon of the human gut microbiome, in terms of rela-

tive abundance and prevalence, is Methanobrevibacter smithii, from the

Methanobacteriaceae family. This family only comprises methanogens,

i.e., microorganisms whose metabolism reduces carbon substrates to

CH4 [62]. In the human gut, methanogenesis starts from products of

bacterial fermentation; for M. smithii , namely H2 and CO2, and alter-

natively formate to the cost of lower energy yield. The H2 produced

during fermentation is also used in other processes such as bacterial

sulfate reduction [196]. Hence, methanogens are part of a syntrophic

chain starting with host digestion, pursued by bacterial hydrolysis and

fermentation, and finally ending with methanogenesis and sulfate re-

duction [29]. It is hypothesized that by uptaking fermentation prod-

ucts, M. smithii participates to modulating the production of bacterial

metabolites interacting with the host [46, 196]. Evidence of altered

bacterial fermenting activity have been reported for co-cultures of the

methanogen with human and ruminant gut bacteria [30, 195]. Further-

more, M. smithii has been associated with various host phenotypes

using sequencing data [121, 238, 170, 147, 42, 144, 9, 157, 80, 201, 106,

28, 150, 249, 228], likely due to its interactions with fermenting bacteria

and revealing insights into its effects on the gut microbiome.

Although published findings shed light on the ecology of

methanogens in the human gut, much remains to be unveiled.

Methanogens are monitored in cattle to improve food energy intake [82,

223, 111] and, with the emerging idea that they could be used as pro-

biotics for humans [28, 198], it is critical to further our understanding

of their role in the human gut. In particular, the ecology of M. smithii

must be characterized: how it interacts with other members of the hu-

man gut microbiome, and what is the ecological feedback between the

microbiome and the gut environment.
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While sequence-based data are routinely used nowadays in microbiome

research [115], the means to properly analyze them are yet to be es-

tablished. For a long period, classical statistical methods have been

employed to infer microbe-microbe and host-microbe associations, al-

though being inappropriate and yielding unacceptable false discovery

rates (FDR) [236]. Over the last decade, numerous models have been

proposed to fit microbiome data and replace pairwise comparisons with

classical statistical analyses [178, 101, 251, 98, 243, 34, 70, 124]. How-

ever, these models presuppose that microbial features and their inter-

actions are all of the same kind, and so, can be uniformly modelled by

one parametric equation [26]. This is questionable given the complex-

ity of microbial interactions [255], likely explaining the high FDR of

microbial network inference techniques based on such models [236, 70].

Accordingly, machine learning (ML) algorithms are emerging as the

most appropriate methods to investigate relationships between hosts

and microbes [115, 116, 225]. Their flexibility and robustness are

adapted to microbiome data and they proved to be accurate for pre-

dicting host phenotypes using microbial features [135, 171, 36, 222,

182, 220, 65, 245]. Unfortunately, if their complexity enables capturing

complex interactions, it also renders their interpretation more difficult.

Methods to apprehend ML models have been suggested but were not

designed for fully describing high-dimensional models [140, 190, 123, 47,

14]. Their use with microbiome data is hindered by the high-dimension

of sequence data sets and results in limited insights. Accordingly, stud-

ies utilizing complex models often only report ranked lists of identi-

fied taxa and carry on with their analyses using classical statistical

tests [2, 85, 171, 220, 65, 182, 245, 36, 248, 91, 59, 15, 110, 222].

Thus, there is a need for the field to overcome the interpretation is-

sue of complex models. Solutions will allow comprehending interactions

between components of the gut microbiome and their host.
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Chapter 1

Background

1.1 The human gut methanogen Methanobrevibacter

smithii : description and detection in human guts

1.1.1 M. smithii depends on fermenting bacteria to colonize

the human gut

Methanobacteriaceae are the most prevalent and abundant archaea in

the human gut [23, 97]. Together with Methanomassiliicoccales, an-

other clade of archaea detected at considerably lower abundances and

prevalence, they compose the pool of methanogens found in the hu-

man gut [24]. Methanogens produce CH4 as an end-product of their

metabolism, through the reduction of CO2, methylated compounds or

acetate [62, 156]. H2 is generally the electron donor for the reaction,

and can be sourced from the environment or generated during steps

prior to the reductive step [62, 156, 134]. While Methanobacteriaceae

are CO2-reducing archaea, beside the genus Methanosphaera that can

also start methanogenesis from methanol [62, 156, 134], Methanomas-

siliicoccales require methylated substrates [21, 22, 56]. Furthermore,

certain methanogens can cleave formate into CO2 and H2, allowing

them to use formate as an alternative to H2 and CO2 [62, 156, 134, 94].

Methanobrevibacter smithii accounts for the great majority of
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Methanobacteriaceae in the human gut, both in terms of prevalence

and abundance [23]. It has been associated with various host pheno-

types such as constipation and slow transit [121, 238] or non-western

diet [170, 147, 42]. Interestingly, relative abundances of M. smithii

have also been correlated with low [144, 9, 157, 80, 201, 106, 28] and

high body mass indexes (BMI) [150, 249, 228]. If these contrasting

observations are correct, then the context in which each process occurs

must differ. For instance, methanogens may promote a high BMI in

the context of one particular diet or microbiome composition, while

promoting leanness in the context of another. This hypothesis is sup-

ported by the dependency of M. smithii upon bacterial fermentation

for its methanogenesis. Non-digested carbon sources that reach the

colon are degraded through fermentation into short-chain fatty acids

(SCFA), H2 and CO2 by gut bacteria (Figure 1.1). Produced SCFAs

mostly comprise acetate, propionate, and butyrate, which can be ab-

sorbed by the host, where they mediate energy metabolism by means

largely described in [29, 161, 138, 46, 120, 137]. When enzymatic activ-

ity is not limited (e.g., low enzyme or cofactor concentration), the sec-

ond law of thermodynamics predicts that a chemical reaction is boosted

by removing products [118]. Therefore, by uptaking H2 and formate,

M. smithii may promote specific bacterial fermentation pathways and

alter SCFA production, subsequently mediating host metabolism (Fig-

ure 1.1). For instance, in co-cultures with the H2-producer Ruminococ-

cus flavefaciens or with the formate producer Fibrobacter succinogenes,

the methanogen promotes acetate production [195]. However, in co-

cultures with Ruminococcus albus or Roseburia intestinalis, its H2 con-

sumption does not trigger any change in SCFA production and therefore

in bacterial fermentation activity [195, 30].

Several fermentation pathways occur in the gut, all of which involve

disparate substrates, products, and microorganisms (Figure 1.1) [138,
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Figure 1.1: Metabolic pathways performed by microorganisms
in the human gut, from carbohydrate degradation to CH4

production. Names of metabolic pathways are indicated in a distinct font

and main metabolites are indicated in bold. Microorganisms are colored by

taxonomic phylum or family; taxa shown are not exhaustive and based on

literature. DHAP: dihydroxyacetonephospate; PEP: phosphoenolpyruvate.

Figure adapted from Louis et al. [138].

46]. The dependence of M. smithii on H2 and formate may drive its

adaptation to the human gut microbiota [94, 198]. M. smithii has

acquired the formate dehydrogenase (Fdh) via horizontal gene trans-

fer [94], which allows the archaeon to start methanogenesis from for-

mate. Although the use of formate is energetically less efficient [134],

it provides an alternative to escape competition with hydrogenotrophs,

i.e., sulfate-reducing bacteria (SRB) and acetogens, when resources of

H2 are scarce (Figure 1.1) [196, 213, 168]. M. smithii strains also harbor

a great variety of adhesin-like protein (ALP) genes coding for proteins

thought to mediate direct cell-cell interactions [94]. Fick’s law of diffu-

sion dictates that the efficiency of interspecies H2-transfer substantially

increases with decreasing distance among cells [208, 212]. This diversity
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in ALPs may be advantageous to M. smithii to establish direct contact

with H2-producers, as observed for Methanobrevibacter ruminantium,

a methanogen closely related to M. smithii and colonizing ruminant

guts [128, 165].

As the ability of M. smithii to colonize the human gut partially de-

pends on the gut microbial composition and metabolism, its prevalence

and relative abundance in human populations must be associated with

members of the human gut microbiota, metabolic functions, and host

habits likely to alter the host microbiome [193, 234]. Some associations

have already been reported. For instance, M. smithii co-occurs with

specific H2-producers, such as members of the Christensenellaceae fam-

ily [80, 94, 230, 114] and cellulose-degrading Ruminococcus spp. [31].

Carbohydrate intake also positively correlates with a microbial commu-

nity composed of fermenting bacteria, fungi, and the Methanobrevibacter

genus [97], and the addition of resistant starch to diet is associated with

an increase in fermenting bacteria and M. smithii [230]. More gener-

ally, the methanogen is associated with specific microbiome profiles as

defined by the enterotype landscape. While it is depleted in micro-

biomes enriched in the Bacteroides genus, it is more abundant in mi-

crobiomes with the highest Prevotella/Bacteroides relative abundances

ratio [10, 38, 97].

1.1.2 M. smithii is a fastidious organism, limiting its use in

culture-based approaches

M. smithii has a slow replication time: as I show in Chapter 5, accord-

ing to measurements of gases under optimal growth conditions in a

rich medium with excess methanogenesis substrate, M. smithii reaches

stationary phase after five days of growth, while the commensal gut bac-

teria Bacteroides thetaiotaomicron and Christensenella minuta reach

this phase in less than two days (Figure 5.1). As a result, culture
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experiments of the methanogen with other bacteria in batch mode,

i.e., without continuous renewal of growth medium, may be subopti-

mal due to the asynchronous growth of the micro-organisms involved.

Continuous experiments necessitate bioreactors, which are expensive

and time-consuming equipment. Therefore, they often do not allow

multiple replicates and constrain the experimental design to a minimal

number of tested conditions [226, 60]. This means that researchers face

a trade-off between more biologically relevant continuous experiments

with very few replicates and more comprehensive batch experiments

with several tested conditions, controls, and replicates.

Methanobacteriaceae are obligate anaerobes, i.e., they are sensitive

to O2 [12]. For this reason, specific culture conditions are required

to manipulate them. The growth medium must be boiled or sparged

with N2 to remove O2 and kept under an O2-free atmosphere. Like-

wise, inoculated cultures must be handled under an O2-free atmosphere

and with O2-free material, the most optimal being the use of anaer-

obic glove-boxes [12]. Furthermore, M. smithii requires an external

source of H2 for growth [155]. H2 is a flammable gas and so it cannot

be contained in high concentrations and high volumes in laboratories.

Due to the need for a growth atmosphere that is both O2-free but H2-

containing, cultures are commonly grown in Balch tubes pressurized

to 1 or 2 bar with a 80/20 % v/v H2/CO2 atmosphere [12]; though

recently, protocols including bacteria as an H2-source have been pro-

posed [113, 227]. High-throughput screening machines, e.g., plate read-

ers, are not designed to be compatible with such tubes. In addition,

equipment designed for high-throughput screening exposes microorgan-

isms to concentrations of H2 too low for M. smithii to grow in optimal

conditions [146]. Consequently, fastidious methods necessary to grow

methanogens limit their inclusion in culture-based investigations of the

human gut microbiome.
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1.1.3 Shotgun metagenome sequencing is the most appropri-

ate method to infer archaeal ecological patterns from human

gut microbiome studies

The prevalence, abundance, and diversity of archaea in human gastroin-

testinal tracts are commonly underestimated [24]. The first historic

method utilized to determine the prevalence and abundance of archaea

in human guts was the quantification of CH4 concentrations in host

breadth. However, the majority of the CH4 produced in the human

gut is excreted through flatulence [156], leading to a mis-calculation of

methanogen’s prevalence and abundance.

The second method consists of estimating the relative abundance

of methanogens in stool samples from sequence data. Although more

reliable than breath CH4 concentrations [61], such methods still in-

volve certain limitations [179, 24]. Archaeal cell walls are composed of

pseudo-peptidoglycans that lyzozyme fails to disrupt [62, 13]. Since,

DNA extraction protocols often rely on lyzozyme to free DNA from

cells, they may not be adapted to archaeal physiology and samples may

necessitate additional treatments to recover as much archaeal DNA as

possible [54, 197, 179]. Furthermore, the choice of primers is crucial

for 16S rRNA gene amplicon studies [179]. For instance, primers tar-

geting the V1-V2 regions of the 16S rRNA gene do not hybridize with

archaeal DNA, resulting in a failure to detect archaea in taxonomic pro-

files generated with such primers [122]. Finally, although primer lim-

itations do not apply to shotgun metagenome sequencing procedures,

archaea’s general lower abundance compared to bacteria [179, 226] and

their under-representation in genome databases [211] can also result in

an under-estimation of the archaeome importance and diversity in the

human gut [24].

In conclusion, analyses of shotgun metagenomes are currently the

most appropriate method to explore associations between human gut
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methanogens with host factors and co-occurring bacteria. Thanks to

efforts to enrich genome databases [43], they have already extended the

known archaeal human gut diversity [23, 177, 44].

1.2 Analysis of shotgun metagenome sequences

from gut microbiomes

1.2.1 Assessing taxonomic diversity from metagenomes

Metagenomes constitute the ensemble of DNA isolated from an en-

vironment [92]. When applied to the human gut microbiome, shot-

gun metagenome sequencing consists of extracting all DNA from stool

samples, sequencing sheared DNA fragments and processing the ob-

tained sequences [77, 235, 186]. Sequences are first filtered based on

quality scores, e.g., length and coverage, and human sequences are re-

moved [108]. Once cleaned, the remaining sequences can be mapped

onto reference genome databases to infer taxonomic microbial abun-

dance [104, 239, 105, 203, 139, 43] or metabolic profiles [1, 67]. Se-

quences can also be assembled and binned, e.g., according to their rela-

tive abundances or sequence similarity, to establish gene catalogs [167,

184] or build metagenomic assembled genomes (MAG) [210, 112, 242].

Bins can be mapped to genome databases to identify the taxa to which

they belong and obtain taxonomic abundances [186, 73]. MAGs as-

sembly is beneficial to uncover diversity [174, 177, 162, 6, 66, 252] and

allows genome databases to be extended to include uncultivated mi-

croorganisms [43, 32, 7].

The aim of investigating metagenomes is often to associate vari-

ables, taxonomic or metabolic profiles, to a phenotype. However,

metagenomes have intrinsic properties that complicate their analyses.

In the following sections, I first review those characteristics and then

evaluate current analysis procedures.
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1.2.2 Considerations for the analysis of metagenomes

Hierarchical features Microorganisms are named according to a

taxonomy that follows their phylogenetic tree. Limits that divide mi-

croorganisms into taxonomic groups are arbitrarily defined and do not

consistently reflect metabolic capacities or specificities [206, 172]. Con-

sequently, describing microbial diversity with a unique taxonomic level

may not capture microbial interactions in a community. For example,

let us assume a metabolic function is shared by members of the same

taxonomic family. A phenotype dependent on this function may thus

be strongly correlated with the family relative abundance. However, at

the genus level, the correlation may be weaker due to the ability of every

genus to perform the function, hence attenuating the statistical signal.

When investigating microbial interactions, choosing an inadequate tax-

onomic rank can lead to biased results. Finer ranks will provide a better

resolution that will distinguish specialized interactions, but they may

miss generalized interactions. Conversely, coarser ranks will allow to

identify general patterns but not specific interactions. The same issue

applies to genes, metabolic pathways, and other objects described by

metagenomes.

High-dimensionality The dimensionality of a dataset corresponds

to the number of variables p describing the set of n observations; a

dataset is high-dimensional when p >> n [96]. Each observation can

be seen as a vector of values of the p variables. This vector is one among

all possible vectors from a space of p-dimensions. As p increases, the

set of n observations will represent a relatively smaller set of the p-

dimensions space. It will thus be harder for models to evaluate the

general association of each variable or even interactions of variables

with the phenotype, and associations detected may be true only for the

specific set of samples used for analyses. Overfitting means producing
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results that are not generalizable. The risk of overfitting analyses to

the set of observations is amplified when p increases, which is called the

curse of dimensionality [96]. Although certain statistical methods can

help to analyze high-dimensional data, reducing p before analyses re-

mains necessary to obtain the best results [96]. The choice of taxonomic

ranks to include in analyses is therefore dependent on the number of

samples to keep p < n, or at least as close to n as possible. As microbes

are organized into functional networks [254, 160, 138, 137], their inter-

dependencies may cause a combination of taxa to be correlated with

the response variable, but not each taxon of the group. Therefore, in-

teractions should be included when investigating microbiomes at the

cost of increasing dimensionality.

Inter-dependence and redundancy A drawback when consider-

ing including several taxonomic ranks in analyses is the redundancy

in the information of nested levels. Relative abundances of taxa from

the same phylogenetic branch may be highly correlated as they repre-

sent subsets of the same microorganisms [172]. Variables carrying very

similar information would thus not only increase dimensionality and

noise, but also subsequently reduce the power to distinguish important

features.

Compositionality The abundance calculated from metagenomes is

bounded by the sequencing depth of the extracted DNA. Consequently,

it is the relative abundances of taxa that are computed. Metagenomic

data are therefore compositional: if the absolute abundance of a taxon

increases, the increase in its relative abundance is automatically asso-

ciated with a decrease in the abundances of all other taxa [78].

Sparcity Human gut microbiomes are highly diverse and vary with

age, geography, and many other factors [177, 193, 10, 117]. Accordingly,
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microorganisms are not ubiquitous and are often present at low preva-

lence and abundances. When comparing large heterogeneous human

populations, this microbial disparity generates zero-inflated variables

with distributions skewed towards zero and different variances.

Human factors In addition to the aforementioned technical biases,

e.g., DNA extraction protocols, sequencing depth, or reference

databases for mapping reads, biases in studies may arise from sam-

pled populations. Since the environment has a significant influence on

the human gut microbiome [177, 193, 117], host co-factors, e.g., alcohol

consumption, age, and diet restrictions, can confound microbial relative

abundances or the studied phenotype, leading to a bias in results [234].

1.2.3 Methods for comparing metagenomes

In this section I present common methods used to identify microbial

taxa and functions associated with phenotypes, e.g., diseased versus

healthy host.

Pairwise comparisons Classical pairwise comparisons with p-value

correction are widespread in microbiome studies. Correlation tests

examine whether two numeric vectors have a linear correlation, e.g.,

Spearman’s coefficient of correlation, if numeric values of one vector

are relatively higher for samples belonging to a grouping factor com-

pare to another group, e.g., Wilcoxon-rank-sum tests, or if the dis-

tribution of groups across factor variables is not as expected by ran-

dom, e.g., χ2-tests. Subsequent p-value correction methods, such as the

Benjamini-Hochberg method [16], aim at accounting for the increased

chance of obtaining a significant correlation when testing multiple as-

sociations and variables. However, results from these studies are open

to criticism as such statistical tests are not designed for compositional
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zero-inflated data and cofactors cannot be taken into account [115]. In

support to these points, the parametric Pearson and non-parametric

Spearman tests, followed by Bonferroni correction, have been shown

to yield an unacceptably high false discovery rate (FDR) [236]. Fur-

thermore, pairwise comparisons cannot evaluate variable interactions

associated with the phenotype of interest. These methods are thus not

recommended for exploring metagenome profiles.

Generalized linear models Generalized linear models predict a

variable of interest, also named response variable or target, by approx-

imating its distribution with other variables, also named predictors or

features. The fitted distribution of the response variable can be ad-

justed to better correspond to metagenome data. For instance, mod-

els have been developed to account for sparcity by using distributions

skewed towards zero such as the zero-inflated Gaussian [178], beta-

binomial [101, 251], or Dirichlet-multinomial [98, 243] distributions, to

cite merely a few. An advantage of linear models is that cofactors due

to experimental design, e.g., batch effects, or sampled population, e.g.,

age, can be included in the set of predictors to correct for their effect.

Mixed effects models have been proposed to better take into account

cofactors [87, 34]. In such models, cofactors with an expected consistent

effect such as drug usage are included within the set of predictors as

fixed variables, while others are included as random variables that are

assumed to describe correlations between observations [151]. For in-

stance, in a longitudinal study, sampled individuals would be included

as random effects to account for the dependency of their samples [34].

Furthermore, the simple structure of linear and generalized models fa-

cilitates their interpretation. One parameter is fitted for each predictor,

or pair of predictors, such that their effects on the response variable

can easily be visualized. However, due to their simplicity, such models
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are limited for capturing complex feature interactions. Their rational is

also based on the idea that data follow the fitted model, hence assuming

that data were generated in a relatively mechanistic manner [26].

Covariance matrices Sparse covariance matrices are used in mi-

crobiome science to determine conditionally non-independent taxa and

build correlation networks [69]. The comparison of networks computed

from distinct sample groups can help identifying associations specific to

these groups. For instance, by comparing networks generated for sam-

ples collected from environment A versus environment B, one can infer

associations of variables specific to each habitat [70]. Several methods

exist to estimate covariance matrices, all proposing different approaches

to deal with the compositionality and sparsity of metagenome data.

• The sparCC algorithm calculates the covariance of variables

across observations. Relative abundances are first adjusted with a

pseudocount to avoid zero values, are subsequently log-

transformed to reduce the effect of compositionality [3], and the

covariance of pairs of variables is finally estimated [70].

• Meinshausen and Bühlmann, 2006 [152] proposed an algorithm

which first fits LASSO linear models to each pair of variables

and then uses the estimated parameters to create the covariance

matrix. The lasso regularization consists of including a penal-

ization parameter βi for each variable i in the model to decrease

variable effects. The βi parameters will be null or very low for

most variables, such that only a few variables will be used in the

final model, therefore forcing sparsity [224]. In the Meinshausen

and Bühlmann (MB) method, models are fitted for each variable

given the other variable in the pair. For each pair, if one or

both lasso parameters are not null, variables are assumed to be

correlated [152].
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• The graphical lasso method [69] builds upon the MB method,

which is suggested to be a simpler approximation of the covari-

ance matrix [69]. Hence, similarly to the MB method, graphical

lasso fits lasso models and uses the estimated penalization param-

eters to make the covariance matrix. However, variables are as-

sumed to follow a Gaussian distribution and the fitting procedure

is iterated to find parameters that maximize the log-likelihood of

all variables to follow such distribution.

• Both the MB [152] and graphical lasso [69] methods are imple-

mented in the SPIEC-EASI framework [124]. To account for com-

positionality, a centered-log ratio transformation is first applied

to relative abundances of taxa [3, 124]. Covariance matrices are

then computed with either the MB or graphical lasso method.

A drawback of covariance matrices is their incompatibility with cate-

gorical variables. Therefore cofactors cannot be included in analyses,

hence limiting the application of covariance matrices to studies where

experimental design or population structure may exist.

Tree ensemble models Tree ensemble models are a class of ma-

chine learning (ML) models that rely on decision trees to predict a

response variable [96]. As for linear models, the response variable

can be numeric, e.g., relative abundance of a taxon, or categorical,

e.g., presence/absence of a taxon. Predictors can also be of any sort,

i.e., numeric or categorical. Decision trees are structured to split sets

of samples into more homogeneous subsets in terms of response vari-

able. Diverse procedures have been proposed to build trees, with the

random forest (RF) algorithm being the most used in microbiome sci-

ence [25, 115, 116]. General considerations, unspecific to metagenomes,

are detailed in the next section.

The sequential splitting of samples by different predictive variables
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enables tree ensemble models to capture complex interactions between

predictors. In addition, contrary to linear or generalized models, no as-

sumption is made on data distribution with tree ensembles. RFs, a class

of tree ensemble models for which trees are grown independently from

each other [25], have also been shown to be robust to high-dimensional

data [116, 115, 225, 250]. Therefore, tree ensembles are compatible

with sequence data and are the most appropriate models to analyze

metagenomes, to date. However, their use in microbiome science is still

limited due to their complexity and consequently low interpretability.

Although they achieve good predictive performances with host pheno-

types using relative abundances of microorganisms [116, 115, 225, 250],

the underlying variable interactions are commonly summarized by a

measure of the variable importance in the model, resulting in only a

list of taxa important for predictions.

1.3 Fitting of tree ensemble models for predicting

host traits with metagenomes

A model can designate the predictive object, e.g., an RF fitted on a

given set of observations and predictors, or the processes that produce

such object, e.g., the algorithm and set of parameters utilized to ob-

tain the predictive object. To fit a good model, one must (i) select the

best sequence of processes for fitting the final predictive model, and (ii)

measure the quality of the final model, i.e., its generalization to new

data. As rightfully stated by Pedro Domingos [51], it is not fitting the

final model that takes time but selecting the model to fit. In the follow-

ing paragraphs, I will briefly describe the pivotal points to consider for

fitting tree ensemble models to microbiome data. My main resource to

write these paragraphs was the book “The elements of statistical learn-

ing: data mining, inference, and prediction” from Hastie, Tibshirani,
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and Friedman (2009) [96] that exhaustively present all considerations

and procedures for fitting ML models. It was notably written by three

of the researchers whose work provided a foundation for the field.

1.3.1 Model assessment

The ability of models to make accurate predictions depends on sev-

eral factors. First, many ML algorithms exist: RF, gradient boosted

models (GBM), linear regressions, and neural networks, to cite only a

few. Each model has a different structure and learning process that

will affect its ability to predict the analyzed data. In addition, steps

upstream to model fitting, e.g., feature selection, modify data and con-

sequently the predictive performance of models. Furthermore, models

rely on hyper-parameters which value often control the model complex-

ity, e.g., the number of trees in a RF, or the learning process, e.g., the

loss function used in boosted trees. The risk with increasing model

complexity is to overfit models to the input data. Overfitting means

that predictions are accurate only for observations very similar to the

set of data used to fit the model. Consequently, an overfitted model

does not perform well on new observations.

Models are assessed by measuring their predictive accuracy on un-

seen observations, which were not used to fit the model. Hence, a vali-

dation set of samples is kept aside when fitting models and is predicted

afterwards. The model with the highest accuracy on the validation set

is selected to fit the final model. Ideally, the measure of the quality

of the final model would be performed on an independent unseen data

set. However, when the number of observations available for analysis

is limited, cross-validation (CV) is instead routinely employed for both

selecting a model and estimating its expected accuracy. For this, model

training and testing is repeated on different splits, or folds, of the full

data set. In each fold:
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1. observations are assigned to either the train or test set,

2. a full model , i.e., the complete sequence of processing steps for a

given ML algorithm with fixed hyper-parameter values, is fitted

on the train set,

3. the model accuracy is measured on the test set.

The accuracy of each full model is averaged across folds to estimate the

generalization of the model and guide model selection. The selected

model is finally fitted on all observations.

In practice, five or ten folds are recommended for CV, and the

sample sizes of train-test sets depend on the noise in data and total

number of observations available [96].

1.3.2 Model quality

The quality of a model is estimated from its predictions on new data for

which the truth is known. The function utilized to measure the quality

depends on the goal of the model and data used to fit the model.

Let y ∈ R represent a response variable observed on n samples,

such as y is continuous for regressions and 0-1 encoded for classifi-

cation. Classifications of multi-class variables can be simplified into

binary problems by choosing a positive class encoded by 1 and assign-

ing 0 to all other classes. Let ȳ = 1
n

∑n
i=1 yi be the average response

variable across all observations and ŷi be the prediction of the model

on a sample i ∈ {1, . . . , n}.

Regression

For regression, the goodness of predictions is typically measured using

the deviation of predictions from the true values [95, 96, 214], e.g., with

the root mean squared error (RMSE) or coefficient of determination
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R2 [53],

RMSE =
1

n

n∑
i=1

√
(yi − ŷi)2 and R2 = 1−

∑n
i=1(yi − ŷ)2∑n
i=1(yi − ȳ)2

.

The smaller the average deviation, the more accurate the predictions.

For certain tasks, more sophisticated functions may be more appro-

priate to measure the quality of models. For instance, survival analyses

investigate the occurrence of events in time, e.g., looking at the remis-

sion of patients according to treatment. Thus, models are fitted to

predict the risk or probability of the event for each observation of each

individual, and the concordance statistic (c-statistic) can be used to

assess the quality of models [214, 95]. This index compares for pairs

of individuals, the probabilities predicted for individuals who experi-

enced the event versus those predicted for individuals who did not.

For instance, the probabilities of remission for patients that received a

placebo should be lower than for patients who received the treatment.

The higher the c-statistic, the better the model is at discriminating

individuals at risk [214].

Classification

For classification, measures are based on a confusion matrix which

counts the number of well-classified observations within each class, i.e.,

the true positive (TP) for the 1 encoded class and true negative (TN)

for the 0 encoded class (illustrated in Table 1.1).

Positive prediction Negative prediction

Observed positive class True positive (TP) False positive (FP)

Observed negative class False negative (FN) True negative (TN)

Table 1.1: Confusion matrix for binary classification
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Numerous metrics are derived from the confusion matrix (Table 1.1),

each describing different proportions of well- or mis-classified samples,

and being used alone or in combinations to measure the quality of clas-

sifiers.

First, the accuracy is commonly used to assess the overall predictive

performance of a model by looking at the ratio of well-classified samples

over all samples, Equation (1.1). An accuracy between 0.5 and 1 means

that a majority of samples were well-classified, and so that the classifier

does better than random. However, this metric is not fair when classes

are imbalanced. If only the majority class has been well learnt by

the model, most samples in this class would be well-classified, hence

resulting in a large accuracy despite the minority class being poorly

predicted.

A =
TP + TN

n
(1.1)

Consequently, Cohen’s κ [37] is recommended to evaluate the qual-

ity of a model for imbalanced data. This metric compares the pro-

portion of well-predicted samples of each class to the predictions that

would have been expected by random, i.e., by a random guessing clas-

sifier. A model predicts a ratio TP+FP
n of samples to be in the positive

class; while by random, the proportion of observed samples in the pos-

itive class TP+FN
n is expected. Thus, the probability for a sample to be

well-classified in the positive class by the model but also by a random

classifier is py=1 = TP+FP
n

TP+FN
n . Likewise, the probability for a sam-

ple to be well-classified in the negative class by the model and random

classifier is py=0 = TN+FN
n

TN+FP
n . Cohen’s κ is defined as

κ =
A− (py=1 + py=0)

1− (py=1 + py=0)
, κ ∈ [−1, 1]. (1.2)

A classifier is better than random guessing when κ > 0 and, as a rule

of thumb, κ ≥ 0.6 indicates a good classifier [126].
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The receiver operating characteristic (ROC) curve is an alternative

to Cohen’s κ which is particularly useful to tune the model classifica-

tion threshold. Similar to the ROC curve, the precision-recall (PR)

curve focuses on the well-prediction of one particular class instead of

both. These curves are built by varying the threshold used by a model

to predict a class. For instance, RFs calculate an average score from

all predictions made by individual decision trees. A threshold is then

employed to discriminate classes and assign a label to samples accord-

ing to their score. Consequently, if we consider a model fitted to detect

cancer from patient material, a sample with ŷi = 0.8 may be classi-

fied as healthy for a threshold of 0.5, but as cancer for a threshold

of 0.9. The ROC curve shows for each threshold the recall and speci-

ficity, Equations (1.3) and (1.4), respectively. The recall, also named

sensitivity, measures the proportion of well-classified samples from the

positive class, i.e., the true positive rate. The specificity mirrors the

recall for the negative class. As the name suggests, the PR curve shows

the precision and recall, Equations (1.5) and (1.3), respectively. The

precision measures the proportion of TP among samples classified as

positive by the model; it corresponds to 1 - the false discovery rate

(FDR), Equation (1.6).

Sn =
TP

TP + FN
(1.3) Sp =

TN

TN + FP
(1.4)

P =
TP

TP + FP
(1.5) FDR =

FP

TP + FP
= 1− P

(1.6)

Metrics aforementioned are the most common ones found in the

literature, though many others exist. The choice of the model quality

measure depends on the set of observations used for model fitting, on

the task performed, and on the purpose of the model.
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1.3.3 Tree ensemble algorithms

Tree ensemble models make predictions from decision trees: predictions

made by each tree are gathered to make the final prediction. Differ-

ent strategies can be employed to grow the ensemble of trees, RF and

GBM are the two main methods that I will detail in the following

paragraphs [96]. They come in various variations and are the building

blocks of tree ensemble ML models [25, 71].

Decision trees

A decision tree splits a set of samples into more homogeneous subsets

in terms of response variable [96]. The mean squared error (MSE)

and Gini impurity are the most common error criteria used to measure

the homogeneity of subsets for regression and classification, respec-

tively [25, 71]. The Gini impurity, for generalized inequality index,

sums the probabilities pk of randomly drawing each class k ∈ K of the

response variable from a set of observation [218],

Gini = −
∑
k∈K

pk(1− pk) . (1.7)

For a binary 0-1 encoded response, this becomes Gini = 2 · py=1(1 −
py=1), such as Gini = 0 when a unique class is found in the set of

observations, and Gini = 0.5 when both classes are found in same

proportions. The MSE compares response values to the average across

the n samples ȳ,

MSE =
1

n

n∑
i=1

(yi − ȳ)2 . (1.8)

The improvement due to a split on n observations is calculated

such as the error criterion measured before splitting is compared to the

sum of error criteria measured on the two created subsets Rl and Rr,

weighted by their respective subset sizes |Rl|/n and |Rr|/n.
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A decision path is then defined as an ordered sequence of splits

(a branch of the tree); decision paths partition observations into non-

overlapping subsets from which predictions are estimated by taking

the average response value. The number of splits in a decision path

corresponds to the interaction order, such as a decision path consisting

of 1 split corresponds to a main effect.

Random forests

RF algorithms grow independent decision trees on bootstraps of sample

sets. Each tree makes a vote on predicted observations, and votes are

averaged across the forest to obtain the final predictions [25].

Within trees, at each node a set of m ≤ p predictive variables is

randomly drawn. The algorithm then searches for the predictor and

threshold value that separate samples into two subsets with the minimal

response variable variance. The procedure is repeated for each newly

created subset. The variance can be measured by different functions,

the MSE and Gini impurity being commonly used for numeric and

categorical responses, respectively [96, 25].

Consequently, when m = p, similar trees may always be grown

and the deviation between predictions and truth may be high due to

a smaller exploration of the p dimensions. Conversely, if only a very

small number of predictors is drawn at each split, irrelevant predictors

may be used and therefore given importance. The rule of thumb is to

use m = b√pc for classification and m = bp/3c for regression [96].

Fully grown trees have tips consisting of homogeneous sets of obser-

vations, i.e., with a null or very low variance. Models with fully grown

trees or comprising a high number of trees are more complex, which

can lead to overfitting. However, as trees are grown independently on

sample bootstraps, RFs are robust to tree depth and forest size, such

as not much tuning is needed to achieve a good model [96, 25, 26].
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Nonetheless, a simplicity bias can be introduced by pruning trees or

limiting the size of the forest with a minimal loss of accuracy [96, 202].

Gradient boosted models

While in RFs decision trees are grown independently from each other on

bootstraps, on the contrary, the boosted method learns non-

independent trees on all data. The algorithm learns to predict data

by adjusting itself in an iterative fashion while minimizing a loss func-

tion [71, 96]. The loss function measures the deviation of the predictions

to the real observed values. The idea of boosting is to fit weak models to

predict samples that were not well-predicted by models from previous

iterations and add them to obtain a strong final model. In comparison,

RF aggregates perfect models fitted on bootstraps to obtain a strong

average model.

In essence, GBMs are constructed as follow. Let m ∈ {1, . . . ,M}
be the iteration number, Tm be the decision tree fitted at iteration m,

and fM be the GBM. The algorithm starts by fitting a decision tree T1

on all samples. Gradients, or pseudo-residuals, derived from the loss

function are calculated, and a new tree T2 is fitted on these residuals.

Each decision path Rj,2 of T2, j ∈ {1, . . . , J} and J the number of leaves

in the tree, is then weighted so that to minimize the loss function of

the model comprising both T1 and T2. The procedure is repeated for

all M trees. The final model corresponds to

fM (x) =

M∑
m=1

γmTm(x) =

M∑
m=1

J∑
j=1

γjm1Rj,m(x) ,

with γjm ∈ γm the weight for each decision path Rj,m in Tm. Therefore,

a GBM is the addition of several weighted decision paths, fitted sequen-

tially by focusing at each iteration on samples not yet learned, i.e., with

absolute gradients larger than zero. The complexity of GBM increases
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with the number of trees (or number of rounds) and tree depth. Here,

since the model is additive, the variance increases with the variance due

to each tree and so with complexity. In practice, the tree depth J is

advised to be 4 ≤ J ≤ 8 and the number of round should be increased

until no further gain in accuracy can be achieved [96].

1.3.4 Optimizing models with feature selection

As we have seen in the previous section, tree ensembles are built by test-

ing the ability of predictive variables to partition the response variable.

Intuitively, as p increases with irrelevant variables, the probability for

the algorithm to select only relevant variables decreases. Consequently,

the resulting model will be more complex due to the high number of

variables utilized, and more noisy due to the use of variables randomly

associated with the response for a few observations. Feature engineer-

ing is hence important for model fitting and can greatly improve model

quality [116]. However, it is the most difficult part since it is mostly

knowledge based.

First, variables can be filtered in a reasonable manner by removing

all that are most likely to be noisy. For instance in microbiome studies,

relative abundances of rare taxa, i.e., with low prevalence and average

abundance, may be associated with the response variable only by ran-

dom due to an under-representation. Hence, such taxa are routinely

excluded from analysis.

Further filtering can be performed by estimating the association of

predictors with the response variable and many algorithms have been

proposed to this end [116, 45]. Pairwise tests such as Spearman or

χ2 tests can be used to remove variables. However, such tests do not

account for variable interactions and may thus exclude important fea-

tures that do not have a main effect [51]. Consequently, complex models

such as RFs may be used to select important variables before fitting the
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model [90, 123, 48, 100, 107, 8, 172]. For instance, the Boruta frame-

work fits numerous RFs to compare the Gini importance of features to

the the Gini importance of randomized variables [123]. Variables with

an average importance higher than randomized features are selected

by the algorithm, such that all important features, event redundant

ones, will be included. Conversely, the guided Regularized Random

Forest (gRRF) algorithm uses a two-step approach to select only the

relevant non-redundant features [48]. For this, a RF is fitted and vari-

able weights are computed from the Gini importance. A second RF

is then built in a regularized manner, such that the decrease in Gini

impurity due a variable, Equation (1.7), is weighted to alter the proba-

bility of non-relevant variables to be selected [100] (see also Chapter 4,

Equation (4.1)).

Finally, hierarchical features such as taxa can be filtered by taking

into account structures in variables. In their Hierarchical Feature En-

gineering (HFE) framework, Oudah and Henschel [172] propose to first

reduce the dimensionality by filtering correlated parent-child features,

and then select important features. Hence, in a first step, the Pear-

son coefficient of correlation is calculated for each pair of parent-child

variables, and if it is greater than a user-defined threshold, the child

variable is removed. In a second step, a decision tree is constructed to

entirely reflect the hierarchical variable structure, e.g., the taxonomic

tree. The decrease in splitting error is measured for each node and com-

pared to the averaged splitting error of all parents nodes, e.g., the av-

erage across coarser taxonomic ranks. If it is lower, then the child node

is considered as irrelevant given the importance of its coarser levels and

is removed [172]. While this procedure is elegant, it only aims at reduc-

ing hierarchical redundancy from features and does not accept variables

from outside the hierarchy, e.g., host metadata. Furthermore, it does

not integrate variable interactions and, similar to pairwise tests, may
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thus exclude taxa that are important only in combination with others.

Since microorganisms interact in many processes [254, 160, 138, 137],

it is reasonable to assume that such inter-dependent associations with

the response variable may exist in microbiome data.

1.3.5 Adapting models to imbalanced data

In medicine, it often happens that cohorts cannot be fully controlled,

hence resulting in more healthy individuals than diseased ones for ex-

ample. In that case, if the aim of the study is to generate diagnosis

tools from the cohort, it is important to take into account this im-

balance between healthy and diseased cases to make sure that next

individuals will be well diagnosed and taken care of. If not, a predic-

tive model trained on imbalanced data will likely be biased towards the

over-represented class, also called the majority class. Due to fewer ob-

servations belonging to the under-represented one, the minority class,

fewer classification rules can be learned [216, 136]. As a consequence,

the model would typically predict new observations to be of the major-

ity class, resulting in higher mis-classification rates for samples of the

minority one. With the diseased versus healthy example, this would

lead to patients classified as healthy although they are not.

Three approaches have been proposed to tackle this issue [136].

First, data can be directly harmonized by down- or over-sampling, i.e.,

randomly removing samples from the majority class or duplicating sam-

ples from the minority one [136, 33, 216]. Second, the cost-sensitive

method corresponds to adapting model algorithms so that the learning

process is tuned to well predict both classes [33, 180, 50, 68, 136]. In

this method, a weight is given to classes and the cost of mis-classifying

one or the other class is then proportional to the provided weights.

Finally, model performance can be evaluated using measures reflect-

ing mis-classification of imbalanced data, such as Cohen’s κ, Equa-
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tion (1.2) [136, 216, 37, 57]. While the second technique requires using

specific learners, the two others are compatible with any method. Fur-

thermore, the first and second options intervene in the learning process

and are thus useful to improve models. Evaluation measures reflect-

ing mis-classification imbalance enable selecting the most appropriate

model.

In particular for RF models, the ranger R-package [240] implements

options to perform weighted bootstrapping, and so fit decision trees on

balanced data, or to attribute weights to classes to adjust the learning

process to better learn the minority class. In GBM, gradients of ob-

servations can be weighted to reflect data imbalance and inflate their

weight during the fitting of decision trees.

1.3.6 Model interpretation

At this stage, models including different feature engineering processes,

algorithms and hyper-parameters should have been trained and tested,

and compared with an appropriate metric. The final model should

have been selected and applied to all data. The expected quality of the

model is the one measured during CV.

A few methods can help deciphering models according to needs

and model purposes. When the goal of a model is to make accurate

predictions on new observations, e.g., for diagnosis purposes, the inter-

pretation may be rather simple: features used by the model are sought

to adapt future data collection. However, if the goal of the model is

to capture complex interactions from data and describe them with re-

gards to the predicted variable, e.g., to understand why a treatment

succeeded with certain but not all patients, more insights into the model

are needed than only the list of utilized features. Despite the differences

in method bases, the aim is invariant: to provide an estimation of the

magnitude of the use of features by the model for predictions. A large
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feature importance means that predictions heavily rely on this partic-

ular feature, and conversely, features with low feature importance are

irrelevant to the model. Following are examples of model interpretation

methods.

Feature importance from the tree ensemble

Feature importances can be measured directly during model fitting

thanks to the splitting error criterion. Accordingly, the Gini importance

corresponds to the average decrease in Gini impurity, Equation (1.7),

across all splits in the forest for a given variable [25, 71]. In the same

line, the feature importance can be measured by counting the number

of splits using each variable or the number of time a variable is used

to initiate trees, i.e., is the first split [215, 17]. A drawback of feature

importances derived from the trees is their reliance on tree structure.

The selection of a variable to create a new split depends on the sample

subset determined by previous splits. Hence, such measures are suscep-

tible to perturbations in trees. Since different tree structures can result

in the same model quality, feature importances relying on the tree en-

semble structure are unstable, i.e., they vary across models fitted on

different data sets from the same distribution [142, 107, 215].

The permutation importance measures the decrease in accuracy due

to randomizing the variable vector [25, 107, 215]. For variables asso-

ciated with the response, wrong decision paths would be followed for

predictions and so permutations will lead to a drop in accuracy. For

irrelevant variables, the measured decrease in accuracy would only be

a consequence from noise and random associations [107].

Decision trees are known to be noisy due to their greedy building

mechanisms [96, 71, 25]. Hence, distinguishing irrelevant from relevant

variables based on the “raw” tree ensemble can be difficult. Certain

implementations suggest to evaluate the FDR by adding random vari-
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ables to the set of variables used for model fitting [123] or to estimate

the variable importance distribution expected by random by repeatedly

permuting the response variable [8]. Nonetheless, such methods do not

actively prevent attributing high importances to irrelevant features.

Opening of tree ensembles with rule ensembles

The rule ensemble theory proposes to decompose decision trees into

decision paths, named rules, to create a surrogate model [72]. Since

tree ensemble make predictions based on partitions, limiting their abil-

ity to learn linear correlations, linear terms are additionally included

to the surrogate. Hence, a regularized linear model is fitted such that

the response variable is predicted using weighted rules and regularized

variables. Here, model fitting consists of computing (i) rule weights

that minimize a loss function reflective of the model predictive accu-

racy, and (ii) variable regularization terms that minimize the number

of additional linear terms.

Friedman and Popescu [72] propose to compute the feature impor-

tance with two means. First, the importance of each rule r ∈ R is

measured using its weight ar in the model and sample support sr, i.e.,

the fraction of samples that follow the rule. It is then uniformely dis-

tributed across all mr variables participating to the rule. For each

variable, the importance due to rules is averaged across all rules to

which it participates to. Secondly, the linear participation of a variable

xj to the model is measured via its regularized term bj and standard

deviation. Finally, the feature importance of a variable corresponds

to the sum of its averaged contribution to rules weighted by the rule

importance and to its linear importance [72].

This methods presents several advantages: (i) the noise from the

original forest can be decreased via regularization and (ii) complex

variable interactions captured by trees, and subsequently rules, are ac-
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cessible. However, the need for a surrogate adds computational cost

and, although being accessible, high-order interactions are not resumed

in a comprehensive manner. For instance, in the inTrees R-package [48]

implementation of the rule ensemble framework, the linear model sur-

rogate is replaced by a RF trained on rules directly (the linear terms

from the original surrogate are ignored), and the rules in the RF with

the best Gini importance are returned. Therefore, data analysis has to

be performed through two RFs and the interpretation of the final RF

is not clear. Furthermore, the package does not provide any tool to

understand variable interactions and feature importance.

Quite similar to rule ensembles, Random Intersection Trees

(RIT) [205] suggest to evaluate all high order variable interactions via

rules. In Basu et al. [14], authors proposed to extend the RIT frame-

work by first training RFs, extracting rules from decision trees, and

pruning them with the RIT algorithm. Bootstrapping is employed to

obtain a stable ensemble of rules, and variable co-occurrences across

rules are then calculated. A caveat in this method is the non-utilization

of the informative model accuracy for assessing variable importance and

interaction importance.

Model interpretation via local explanations

Finally, tree ensembles can be interpreted by looking at the contribu-

tion of variables to the prediction of each sample [71, 140, 191]. The

general idea is to measure the change in prediction due to a variable

value. Hence, such methods do not rely on the model shape but on its

predictions only.

The partial dependence plot (PDP) [71] and individual conditional

expectation (ICE)plot [79] estimate changes due to a fixed variable by

screening predictions made for samples with the same variable value,

for each value taken by the variable in the data set. While the ICE
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plots for each observation the curve estimating the conditional change

of predictions given the values of all other predictors, the PDP outputs

their average.

The LIME framework estimates variable contributions by fitting

simple models around samples [190]. For a fixed observation x, new

observations are generated by perturbing predictor values of x, model

predictions are obtained, and a new local model predicting the original

predictions is fitted on the set of perturbed samples. The local model

can be of any sort, e.g., a linear regression or decision tree. It is em-

ployed to assess the contributions of variables to the prediction of each

observation.

Finally, Shapley values build on the game theory, such that fea-

tures are considered to be players of a game resulting in the prediction

values [207]. Accordingly, for each game played (prediction) Shapley

values measure the contribution of each variable to the game. Similar

to LIME, the contributions of all variables are evaluated at once per-

sample, instead of individually across samples as PDP and ICE. Many

methods have been proposed to estimate Shapley values [217], among

which the SHapley Additive exPlanation (SHAP) [140] that has been

optimized for tree ensembles [142]. SHAP measures the effect on pre-

dictions of adding each variable to the model given all combinations of

other predictors, hence it evaluates the additive effects of variables for

each observation. For this, changes in predictions are recorded for se-

quential addition of variables and the expected change in prediction due

to each variable is then calculated. Since the variable introduction or-

der influences the effect of variables due to variable interactions, SHAP

are approximated in practice to reduce computational costs [143, 18].

SHAP can be generalized to pairs of variables to assess the SHAP in-

teraction for each feature in a pair [143]. The total interaction effect

for a pair {xi, xj} is equal to the sum of the SHAP interaction value
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attributed to each variable, and the SHAP interaction value of xi is

equal to the difference in effect when xj is considered, i.e., when it is

already present in the model, versus when it is absent. A concern for

applying SHAP to tree ensembles is the assumption that variables have

additive effects although models are not additive, which may lead to

biased estimations of variable effects and variable interactions [84].

Local explanations are not specifically designed for the overall un-

derstanding of models and consequently may not be possible to summa-

rize across observations. Furthermore, the number of plots to inspect

the association between single variables and the target is equal to p, and

the number of variable interaction plots is greater than (p2− p)/2. For

p = 10, the number of plots already reaches 40; hence, such methods

are often inappropriate for microbiome studies where p is high.

1.4 Outline

In the present work, I aim to provide support to bioinformatic analyses

of sequence data with tree ensemble ML models. To this end, I first

introduce a tool I created for interpreting tree ensemble models and

benchmark it against state-of-the-art methods for analyzing sequence

data. Then, I illustrate how tree ensemble models, together with my

new method, can be applied to microbiome data. For this, the presence

of methanogens in human gut microbiota is taken as an example. Fi-

nally, I provide supporting evidence of a key finding of the bioinformatic

analysis using in vitro experiments.

Chapters 2 and 3 are dedicated to detailing endoR, a method for

interpreting tree ensemble models. The method builds upon existing

theories to offer a user-friendly, accurate, and comprehensive tool to de-

scribe tree ensemble models. In particular, it produces reliable results,

thanks to bootstrapping, and displays them as an interaction network
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that enables visualizing complex interactions captured by predictive

models. My proposed workflow, i.e., fitting tree ensemble models and

interpreting them with endoR, surpasses state-of-the-art methods for

analyzing sequence data.

The predominant human gut methanogen M. smithii , predominant

in terms of relative abundance and prevalence, has been correlated to

various host phenotypes. However, no thorough investigation focus-

ing on M. smithii across human populations and using an appropri-

ate data analysis workflow has been conducted to date. Chapter 4

presents results from such analysis, with a meta-analysis of human gut

metagenomes performed using tree ensemble models and endoR.

Finally, in Chapter 5, I explore a main finding of my meta-analysis

using in vitro experiments. Results from co-cultures of M. smithii with

gut bacteria confirm the association of the methanogen with specific

bacteria identified in Chapter 4, here due to cross-feeding.
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Chapter 2

The endoR framework to
interpret tree ensemble
machine learning models

I will start my results sections by presenting the theoretical framework

of a method I developed to facilitate the interpretation of tree ensem-

ble models. While this tool is not directly related to metagenomes

nor methanogens, it will be used in Chapter 4 to process a model pre-

dicting the occurrence of Methanobacteriaceae in human guts using

metagenomic data. It was designed especially for this purpose but is

applicable to any tree ensemble model.

Parts of this chapter will be submitted in an article still in prepa-

ration and the following text is adapted from drafts of the article. I

conceptualized and implemented the whole method in R. Dr Niklas

Pfister (University of Copenhagen, Denmark) provided valuable feed-

back on the method and participated to the mathematical writing. Dr

Niklas Pfister and Dr Nicholas Youngblut reviewed and edited my orig-

inal manuscript. All author contributions are detailed in Appendix A,

Table A.1.
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2.1 Introduction

The gut microbiome consists of microbial sub-communities exchanging

and competing for resources, with the environment being shaped by the

host [38, 193]. Relationships between the host and its gut microbiome

are notably investigated using fecal microbiome sequencing.

For this, generalized linear models and covariance matrices adapted

to support microbiome data are commonly employed for their ease of

interpretation (e.g., SPIEC-EASI [124], MIMIX [87], mLDM [243] and

kLDM [244]). Nonetheless, (i) generalized linear models do not cap-

ture complex interactions in predictive variables, and (ii) current im-

plementations of covariance matrices are designed for sequence count

data, hence limiting the exploration of microbiome in the light of host

or study characteristics, e.g., country of origin or dataset in a meta-

analysis. In consequence, tree ensemble models, i.e., random forests

(RF) [25] and gradient boosted models (GBM) [71], are preferred to ex-

plore microbiome data [116, 115, 225]. RF models can successfully pre-

dict certain host phenotypes with microbial taxonomic and metabolic

profiles generated from fecal metagenomes [171, 36, 182, 220, 65, 245].

However, tree ensembles are challenging to interpret due to their com-

plexity.

Tree ensemble models are made of decision trees, with each tree de-

noting how groups of features partition samples by the prediction tar-

get [71, 25]. For example, a decision tree may segregate diseased from

healthy individuals based on their high relative abundances of microbes

A and B, but low relative abundances of microbe C. RF models build

decision trees on random bootstrap resamples of features and observa-

tions, thus resulting in often hundreds of differing decisions trees [25].

Generating large forests leads to high accuracies with less overfitting

but greatly increases the complexity of model interpretation.

Many efforts have been made to improve the interpretability of tree
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ensemble models, either via procedures to select the most relevant fea-

tures and consequently decrease the complexity of models due to data

dimensionality [48, 172, 187, 123], or via the measure of feature impor-

tance [2, 205, 140, 14, 17]. Feature selection is part of the model fitting

workflow and is not a model interpretation tool per se, while feature

importance is the state-of-the-art method for model interpretation after

model fitting. The feature importance describes the strength of variable

contributions to model prediction accuracy, the most common measures

being the Gini and permutation importances [25, 27]. Recently, new

feature importances emerged in microbiome science. For instance, Ai

et al. [2] utilized the tree structure of RF to identify microbes predic-

tive of colorectal cancers. Alternatively, Gou et al. [86] used SHapley

Additive exPlanations (SHAP) [140] to select microbiome features as-

sociated with type-2-diabetes. Since SHAP do not inform on variable

interactions, authors then correlated important microbiome features to

host genetics and risk factors using generalized models.

Shapley values build on game theory to measure the contribution

of variables to the prediction of each observation [207] and can be esti-

mated from any model with many methods [217], including the SHAP

method [140]. As they generate local, per-observation interpretations,

they generally do not address the problem of the global feature impor-

tance [217]. In addition, despite being applicable to variable interac-

tions, interactions are often calculated only for pairs of variables due

to computational cost and their interpretation can be challenging for

high-dimensional data sets [143]. Furthermore, the SHAP framework

assumes variables to have additive contributions, even though tree en-

sembles are not additive models, which can lead to biased estimations

of feature interactions [84].

Since decision trees utilize several features for prediction, they can

inform on variable interactions with regards to predictions. Compared
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to variables never used together for predictions, variables repeatedly

found on a same tree and branch are more likely to be associated.

However, as tree ensembles are generated with a greedy procedure, es-

pecially RF, unimportant variables may occur along decision paths. To

remove noise and facilitate the interpretation of tree ensembles, Fried-

man and Popescu [72] propose to measure the importance of variables

in decision paths via lasso regression and then use the linear model

as a surrogate to the RF. The inTrees R-package [47] and random in-

tersection tree algorithm [205] implement similar ideas of simplifying

tree ensemble models to create a reduced set of decisions from a forest.

However, they lack tools to further interpret decisions. For instance,

variables often co-occurring in trees may be co-dependent with regards

to predictions (e.g., high abundances of both microbes A and B are

associated with diseased individuals). The randomForestExplainer R-

package [109] measures variable interactions in this manner. However,

noise is not removed from tree ensembles before measuring variables

co-occurrences and the package does not offer tools to easily interpret

results of models fitted on high-dimensional data.

Due to the limitations of existing tools for interpretation of tree

ensembles, I developed endoR, a method for interpreting tree ensem-

ble models. The framework relies on decisions extracted from a tree

ensemble model to measure the association of features, and pairs of

features, with the response variable. For this, endoR extracts all deci-

sions from decision trees, simplifies them via pruning and assess their

stability via bootstrapping. The contribution of variables and pairs of

variables in terms of importance and influence on predictions are then

calculated. The importance corresponds to the gain in predictive accu-

racy attributed to variables (or pairs of variables), while the influence

measures the change in model prediction due to the inclusion of vari-

ables (or pair of variables). Multiple intelligible plots are finally created
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to enhance readability of feature and interaction importances and influ-

ences. In particular, an interaction network where nodes correspond to

variables and edges to interactions between them is generated. The size

of nodes and edges in the network is proportional to their importance

and colors indicate of the influence.

2.2 Theoretical framework

2.2.1 Rules, decisions and decision ensembles

Let x = (x1, . . . , xp) ∈ Rp represent p real-valued predictor variables

(numeric or factor variables), y ∈ R a response variable, and assume we

have observed a sample of n observations (x1, y1), . . . , (xn, yn) ∈ Rp+1.

Both regression, where y is assumed to be a continuous variable, and

binary classification, where y ∈ {0, 1}, are considered. In the case of

multi-class classification, the problem needs to be transformed into a

binary problem, e.g., one class against all other classes, which is auto-

matically performed by endoR. Each predictor variable xj is assumed

to be either a numerical variable or a 0− 1 encoded factor variable. In

particular, multi-level factor variables are assumed to be encoded by in-

dividual dummy variables (my implementation automatically performs

this reduction).

A rule is a function r : Rp → {0, 1} of the form

r(x) = 1Xr
(x) =

p∏
j=1

1X j
r
(xj),

where Xr = X 1
r × · · · × X pr ⊆ Rp. A decision is defined to be a tuple

D = {rD, ŷD} consisting of a rule rD and a constant prediction ŷD.

The prediction ŷD should be thought of as a good approximation of

y on the sample support SD := {i ∈ {1, . . . , n} | rD(xi) = 1}, the subset

of samples following the rule. For each decision, ŷD is computed either
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as the mean of y on SD, in the case of regression, or as the fraction of

samples in the positive class (defined by the user) on SD, in the case

of classification.

Decisions are the building blocks of a large class of non-parametric

machine learning models such as decision trees, random forests and

boosted trees. These models combine many decisions to construct high-

capacity prediction procedures. Any such model can therefore be seen

as a collection of decisions D = {D1, . . . , DM}, which we call a decision

ensemble, together with an appropriate method for aggregating the

predictions [96].

For every subset of observations S ⊆ {1, . . . , n}, the error function

α(S, ·) : R → R is defined either as the mean residual sum of squares

in the case of regression, or by the mean misclassification error in the

case of binary classification, formally,

α(S, ŷ) :=
1

|S|
∑
i∈S

(yi − ŷ)2

or α(S, ŷ) :=
1

|S|
∑
i∈S

(
1− (ŷ)yi(1− ŷ)1−yi

)
,

respectively.

For a fixed decision D and a variable xj , or pair of variables {xj , xk},
the complement decision Dc

j , or Dc
j,k, are defined to be the decisions

resulting from modifying rule rD to have the complement support for

the variable xj , or the pair of variables {xj , xk} (Figure 2.1), i.e.,

rDc
j
(x) := 1R\X j

rD
(xj)

∏
k 6=j

1Xk
rD

(xk)

or rDc
j,k

(x) := 1R\X j
rD

(xj)1R\Xk
rD

(xk)
∏

l/∈{j,k}

1X l
rD

(xl),

respectively.

Additionally, decisions Drm
j and Drm

j,k are defined to be the decisions

resulting from removing the variable xj , or pair of variables {xj , xk},
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from the rule rD (Figure 2.1), i.e.,

rDrm
j

(x) :=
∏
k 6=j

1Xk
rD

(xk) and rDrm
j,k

(x) :=
∏

l/∈{j,k}

1X l
rD

(xl),

respectively.

Finally, for a subset of variables J ⊂ {xj , j ∈ {1, . . . , p}} the de-

cision Dpr
J is defined to be the decision resulting from removing all

variables not included in J from rD, i.e.,

rDpr
J

(x) :=
∏
k∈J

1Xk
rD

(xk).

The predictions ŷDc
j
, ŷDc

j,k
, ŷDrm

j
, ŷDrm

j,k
and ŷDpr

J
are each updated

based on the new rule.

For a variable xj , we define the set of active decisions as Dj := {D ∈
D|X jrD 6= R}, the subset of decisions which depend on xj . Likewise,

the set of active decisions of a pair of variables {xj , xk} is defined as

Dj,k := Dj ∩ Dk.

2.2.2 Decision importance

For a decision D ∈ D, the decision importance is defined by

ID :=
(

1− α(SD, ŷD)

α(SD, ȳ)

)
· |SD|.

This quantifies the improvement of predicting y on the support SD

with ŷD instead of with the full sample average ȳ := 1
n

∑n
i=1 yi. It is

weighted by the size of the decision’s support.

For regression and binary classification,
(

1− α(SD,ŷD)
α(SD,ȳ)

)
corresponds

to the coefficient of determination (or R2) [53] and Cohen’s κ [37], re-

spectively, computed on the subsample SD. Hence, the decision impor-

tance is a quality measure that incorporates both the support size and

predictive performance of the decision.
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Figure 2.1: Prediction schemes used to calculate the partici-
pation of variables to decisions. Values that a decision D can take

on variables j, k are heree represented. The support SD is indicated by the

stripped areas on A-C/, such as samples in the support of D all take positive

values on j and k. B/ When variable j is removed from the rule rD of D,

the support SDrm
j

is extended to samples taking negative values on j (colored

area). C/ Similarly, a pair of variables {j, k} is removed from rD, samples in

SDrm
j,k

can take positive and negative values on j and k. For SDrm
j

and SDrm
j,k

,

ŷDrm
j

and ŷDrm
j,k

are calculated using all samples in SDrm
j

and SDrm
j,k

, respec-

tively. The decision-wise importance δjD of j in D is calculated by comparing

the error of ŷDrm
j

on SD (B) versus the error of ŷD on SD (A). Similarly,

to calculate the decision-wise importance of a pair of variables {j, k} in a

decision D, we compare the error from the decision not constraining values

on j or k, with ŷDrm
j,k

on SD (C) to the error of the decision with ŷD on SD

(A).

2.2.3 Feature and interaction importance

To estimate the importance of a variable xj within a decision D, predic-

tive performance of two prediction schemes on the observations SD are

compared. The first prediction scheme uses the variable xj to predict

ŷD on SD, while the second prediction scheme does not use information

about xj and predicts ŷDrm
j

on SD (Figure 2.1).

For a variable xj , the decision-wise feature importance is defined as

δjD := α(SD, ŷDrm
j

)− α(SD, ŷD),

the difference in predictive performance on SD between ŷD and ŷDrm
j

.

43



For a pair of variables {xj , xk}, the decision-wise interaction im-

portance

δj,kD :=

√
δjDδ

k
D

is the product of the decision-wise feature importances of xj and xk. I

use the square root to ensure that the interaction importance remains

on the same scale as the feature importance.

The feature importance and interaction importance,

Fj :=
∑
D∈D

δjDID and Fj,k :=
∑
D∈D

δj,kD ID,

respectively, are then obtained by summing decision-wise feature and

interaction importances over all decisions in D weighted by the decision

importance. High values of the feature and interaction importances

indicate that the variable, or pair of variables, participate a lot to

important decisions.

2.2.4 Feature and interaction influence and direction

To understand how a single feature influences the prediction, one needs

to understand whether a rule uses predominantly small or large values

of that feature. For every decision D and variable xj , the direction

indicator djD ∈ {−1, 1}

djD :=


1 if 1

|SD|
∑
i∈SD

xji ≥ 1
|SDc

j
|
∑
i∈SDc

j

xji

−1 if 1
|SD|

∑
i∈SD

xji <
1
|SDc

j
|
∑
i∈SDc

j

xji

expresses whether D predominantly uses small or large values of vari-

able xj .

The influence of a feature, or pair of features, on the prediction ŷD

of a decision is measured similarly to the feature importance, though
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actual predictions are now compared instead of errors of predictions on

SD.

For a variable xj and pair of variables {xj , xk}, the decision-wise

feature influence and decision-wise interaction influence are defined as

γjD := djD(ŷD − ŷDrm
j

) and γj,kD :=
djD + dkD

2
(ŷD − ŷDrm

j,k
),

respectively. A large positive value of γjD indicates that large values of

xj are positively associated with the response y on the support of the

rule, while negative values of γjD imply a negative association. Likewise,

a large value of γj,kD indicates that large values of both {xj , xk} are

positively associated with y, and γj,kD is negative when small values of

both {xj , xk} are negatively associated with y. In addition, γj,kD is null

when large values of xj but small values of xk are positively associated

with y.

We assess the overall feature influence of a feature xj , and interac-

tion influence of pair of variables {xj , xk}, by averaging the decision-

wise feature and interaction influences,

Γj :=
1∑

D∈Dj ID

∑
D∈Dj

γjDID

and Γj,k :=
1∑

D∈Dj,k ID

∑
D∈Dj,k

γj,kD ID,

respectively.

For every pair of variables {xj , xk},

ηj,k := sign
( ∑
D∈Dj,k

(djD · d
k
D · ID)

)
records whether variables {xj , xk} are each associated with y in the

same direction across D ∈ Dj,k. When both variables {xj , xk} have

large, or small, values associated with the response y, then ηj,k is pos-

itive; and when large values of xj are positively associated with y but
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small values are positively associated with y, then ηj,k is negative. The

later occurs when γj,kD = 0.

2.2.5 Regularization of the decision ensemble

I propose several procedures to regularize the decision ensemble and so

reduce the noise by including a simplicity bias. Procedures are recom-

mended but optional.

Decision discretization Numerical predictors can be discretized

based on their quantiles (e.g., into levels “Low”, “Medium” and “High”).

All decisions containing discretized variables are then modified by re-

placing any numeric rule (e.g., “xj ≤ t”) by the best approximating

rule which only uses the discretized variables (e.g., “xj = ‘Low’”).

Decisions consisting of the same rules are grouped, the multiplicity is

recorded, i.e., how many decisions have been collapsed into the simpli-

fied decision) and the prediction, error, support and importances are

re-computed based on the updated rule, and the decision importance

is weighted by the decision multiplicity. Finally, the feature influence

is computed for each level of discretized variables and the feature im-

portance is calculated across all levels.

Decision pruning Pruning consists of removing variables from de-

cisions that do not participate much to a decision, i.e., for which the

difference in errors of the decision with and without the variable is

low [47]. Comparison of errors can be performed using the absolute or

relative difference in errors (absolute difference by default) [47]. Ac-

cordingly, the procedure looks for the smallest subset of variables J
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with the lowest error, such as,

α(SDpr
J
, ŷDpr

J
)− α(SD, ŷD) ≤ θ or

α(SDpr
J
, ŷDpr

J
)− α(SD, ŷD)

max
(
α(SD, ŷD), 10−6

) ≤ θ,

(2.1)

with θ a user-specified threshold (θ = 0.05 by default). If Equation (2.1)

is not satisfied by any J , i.e., for all simplified decisions the differences

in error are above the threshold, the original decision is returned. The

prediction, error, support, importance and multiplicity are updated as

described above.

Decision ensemble stability The decision ensemble will often be

large and still include poorly predictive decisions. In addition, our

method depends on the input data, which implies that for a new dataset

drawn from the same distribution, the feature and interaction impor-

tance/influence might be slightly different. In consequence, decision fil-

tering via bootstrapping and stability selection can be performed [153].

More explicitly, the decision ensemble D is first extracted from the

predictive model and decisions are discretized if wanted. The entire

method is then ran on B bootstrap resamples of the data, with pruning

optionally performed and decisions’ predictions, errors, supports and

importances being calculated from the bootstrap data. A predictive

model is not refitted, as this would be computationally too demanding.

By default, bootstrapping is performed on B = 10 resamples of size

n/2. The stable reduced final network is then obtained by adapting

the stability selection procedure due to Meinshausen and Bühlmann

[153]: all q most important decisions of each bootstrap are first aggre-

gated, and those appearing in at least πthr ·B of the resampled decision

ensembles are then selected. For user-selected parameters α ∈ R>0 and

πthr ∈ (0.5, 1] (α = 1 and πthr = 0.7 by default), q is determined by

q =
⌊

max
{

1,
√

(2πthr − 1) · α · d
}⌋
,
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where d is the average number of decisions across all resamples. For

each decision in the stable decision ensemble, the decision-wise influence

and importance are averaged across the resampled decision ensembles,

and the influence and importance are re-computed as described above.

When bootstrapping is not conceivable, I propose to instead filter

out all decisions with an importance below a given threshold λimp,

selected by the user or using the following heuristic procedure

λimp := argmax
λ

|D| − |D(λ)|
|D(λ)|

∑
D∈D(λ)

ID,

where D(λ) is the set of decisions with ID ≥ λ.

Taxa aggregation I propose to take advantage of the feature im-

portance to compare taxonomic ranks, aggregate them into the most

relevant ones when possible, and thus facilitate interpretation. For this,

taxonomic levels of a same branch are ranked according to their fea-

ture importance. First, if a taxonomic level has a lower rank than its

coarser one, it is replaced in all decisions by the coarser level. In a

second step, if a taxonomic level is represented by a unique finer level

with a better rank, the coarser level is replaced by the finer one. Both

steps are independent and can be performed separately of sequentially.

2.3 Implementation

I implemented the whole method described above, together with func-

tions to visualize results, into an open source R-package available on

GitHub (aruaud/endoR).

The main wrapper function of the endoR package takes as inputs

(i) a predictive model fitted using the randomForest, ranger, gbm or

XGBoost R-packages [129, 241, 88, 35], and (ii) data and a response

variable on which to fit the decision ensemble, being the ones used to
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fit the model or not. Upon starting, all factor variables are transformed

into dummy variables, and, in the case of multi-class classification, the

problem is transformed into a binary problem according to the class

defined by the user to focus on. All regularization steps, i.e., discretiza-

tion, pruning, filtering and bootstrapping, are optional and parameters

can be elected by the user. The current implementation was optimized

using the data.table R-package, can be ran locally in parallel thanks to

the parallel R-package, and bootstrapping can be further performed in

parallel, locally or on a high-performance computing (HPC) environ-

ment, with the clusterMQ R-package.

I hereafter detail certain procedures that need additional clarifica-

tions.

2.3.1 Extraction of rules from predictive models

Decisions are extracted from tree-based models (randomForest, ranger,

gbm and xgboost [129, 241, 88, 35]) using the inTrees R-package [47],

with slight modifications. More specifically, given a tree-based model,

rules are first extracted from all trees, or a subset of them, by following

branches from the root down to the terminal node, e.g., for a tree

composed of 4 terminal nodes, 4 decisions would be extracted.

From inTrees [47], I adapted the treeVisit, extractRules, and

ruleList2Exec functions to be compatible with parallelization and re-

turn only full length rules. I also corrected the Ranger2List function

that was deficient in inTrees [47].

2.3.2 Transformation of extracted rules

All multi-class factor predictive variables are then converted to 0 − 1

encoded dummy variables. Extracted rules are then adjusted to be us-

ing only one class of each of the original multi-class factor variables and
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rules multiplicity is decreased accordingly. For instance, for a multi-

class factor xj taking values in {a, b, c}, three dummy variables would

replace xj and a rule such as “xj ∈ {a, b}” would be transformed into

two rules “xja = 1” and “xjb = 1” with multiplicity equal to 0.5. In

addition, the same procedure of rule splitting is applied for predictive

factors that were already encoded as dummy variables for fitting the

predicting model. Levels of multivariate variables are thus included

only by their presence, later helping with the visualization and inter-

pretation of networks.

2.3.3 Rule discretization

All, or a subset defined by the user, numeric variables are discretized

based on their quantiles using the discretizeVector function from the

inTrees R-package [47] that I adapted to accept missing values (NA).

For each rule containing discretized variable, numeric thresholds are

replaced by corresponding levels for which the majority of observations

are included in the original sample support (Figure 2.2). Rules are then

transformed as described in the above section to be based on only one

level, and the multiplicity is updated.

2.3.4 Constructing the network

After regularization and computing all metrics, I propose to visualize

the feature and interaction importance and influence in a network. In

particular, nodes in the network correspond to single variables and

edges to interactions between variables. More specifically, for every

node j ∈ {1, . . . , p}, we choose the node size and color in the following

way:

• node size: feature importance F j . Larger nodes correspond to

more important variables;
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Figure 2.2: Discretization of variables and modification of
rules. Simple example of the discretization of a uniformly distributed vari-

able x into three levels. An original rule “x < t” (orange) is modified accord-

ing to the number of observations in each level included in the sample support

of the rule (new rule-s in green). B/ A minority of samples in the “Medium”

level were included in the original sample support defined by “x < t”, there-

fore the “Medium” level is not selected to make a new rule as in C/.

• node color: feature influence Γj , where the color interpolates from

blue to orange (via white), with blue corresponding to small pre-

diction values, white to prediction values close to the mean re-

sponse variable across all samples, and orange to large prediction

values.

Similarly, for every pair of nodes {j, k} ∈ {1, . . . , p}2, the edge be-

tween the two nodes is chosen as follows:

• edge width: interaction importance Fj,k. Thicker edges corre-

spond to more important interactions;

• edge color: interaction influence Γj,k, with the same color scale

than for nodes;

• edge type: interaction direction ηj,k. It is either a solid line if

the pair of variables is on average used in the same direction in

decisions, i.e., they are positively associated, and it is a dashed

line otherwise.

The network object is created using the igraph and ggraph R-

packages [39, 181], hence being compatible with the broadly employed

51



ggplot2 R-package [237].

2.4 Discussion

The method I developed builds on (i) the tree ensemble theory [72] to

open and simplify tree ensemble predictive models into decision ensem-

bles, and (ii) Shapley values [72] to describe the role of features for pre-

dictions by decisions. Furthermore, it integrates regularization steps to

prevent overfitting of the decision ensemble and facilitate the interpre-

tation of results. Regularization is performed at two scales: decision-

wise by directly simplifying decisions via pruning, and ensemble-wise by

selecting the most important decisions via bootstrapping and stability

selection. The method can be applied to any tree ensemble model and

is therefore compatible with both regression and classification tasks,

and with any type of data that can be predicted by the fitted predic-

tive model. Thus, my method is appropriate for all sorts of problems

investigated through tree ensemble model fitting.

I have implemented the method in an R-package, named endoR,

available on GitHub. The current implementation offers means to visu-

alize variable descriptors, i.e., the feature and interaction importances

and influences, via intelligible plots to enhance the understanding of

the final decision ensemble. In addition, the code is open source and

outputs are readable by the base and ggplot2 R-packages [219, 237],

hence enabling tuning by researchers for their own analyses. Further-

more, I optimized scripts and computation time with the data.table

R-package [52] that utilizes multiple-threading for computations, thus

decreasing computation wall-time. Within each bootstrap, local par-

allelization of tasks is possible using the parallel R-package, and boot-

straps can be processed in parallel on HPC environments thanks to

the clustermq R-package [200]. Additionally, certain tasks could be
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re-written in C++, notably using the Rcpp R-package [58], to accel-

erate computations. Accordingly, endoR is a user-friendly tool readily

usable in R, a language routinely employed in biology, that can be effec-

tively incorporated to data analysis workflows. Although not available

in Python, a language also commonly used in biology, the similarities

between R and Python would streamline the conversion of the endoR

R-package into a Python-package.

In the next chapter, endoR will be applied to models fitted on simu-

lated data and real metagenomes with artificial phenotypes to evaluate

how it captures true associations from predictive models. It will also be

benchmarked by comparing the accuracy of its feature descriptors, i.e.,

the feature and interaction importances and influences, to the accuracy

of results from methods commonly used for metagenome analysis.

53



Chapter 3

Benchmarking of endoR

In continuity to Chapter 2, I will here benchmark the endoR method

for interpreting tree ensemble models.

Similarly to Chapter 2, the following text has been adapted from

an article in preparation. I produced all results and analyses. Dr

Niklas Pfister provided much feedback on the design of simulations,

their analyses, and on the mathematical writing. Dr Niklas Pfister and

Dr Nicholas Youngblut reviewed and edited my original manuscript.

All author contributions are detailed in Appendix A, Table A.1.

3.1 Introduction

Sequence data from gut microbiome have enabled exploring the rela-

tionships between human traits, e.g., body mass or diet, and microor-

ganisms colonizing the last compartment where digestion ends. The gut

microbiota is key to extract energy from undigested food such as resis-

tant starch, and is in constant interaction with our immune system [29].

Consequently, efforts towards comprehensive studies of associations be-

tween gut inhabitants and host phenotypes have been undertaken [29].

A challenge in analysing sequence read data is that they are sparse,

high-dimensional, and compositional [236, 124, 116]; hence, the need
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for appropriate tools to obtain confident, reproducible results. Al-

though the objective is to recover as many true associations as possible,

much care should be put on false positives (FP), particularly in biology

where bioinformatic analyses are often used to orientate subsequent

research [76, 188]. Therefore, the expected number of FP should be

kept as low as possible to avoid expensive, time-consuming, and irrele-

vant experiments or investments. Classical statistical tests, e.g., Spear-

man’s coefficient of correlation, and sparse covariance matrices, such as

sparCC [70] and graphical lasso [69], are commonly used in microbiome

science to infer microbe-microbe co-abundance patterns. Already five

years ago, Weiss et al. [236] demonstrated that these methods produced

unacceptable FP rates and were not better than random guesses in mi-

crobiome data configurations [236]; even though p-value correction and

regularization were applied to prevent high false discovery (FDR) rates.

Furthermore, sparse covariance matrices can only handle continuous,

compositional, and zero-inflated variables, consequently precluding cor-

rection for covariates during association inference. This comment is

relevant to classical pairwise tests too, which by nature, compare only

two variables. Sparse covariance matrices also do not directly describe

how microbe-microbe interactions associate with host phenotypes.

While methods to apply generalized models to microbiome data

have been proposed [87, 243], a caveat of statistical modeling is the as-

sumption that data follow a parametric model designed by

researchers [26]. This has the advantage of producing simple and in-

telligible results, but is a priori incompatible with nature. The high

FDR from sparse covariance matrices that are based on generalized

models [236] gives evidence for generalized models to be inappropriate

to sequence read data.

Complex models such as random forests (RF) can accurately pre-

dict host traits from sequence reads [135, 171, 36, 222, 182, 220, 65,
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245]. Hence, they are recommended for investigating microbiome data

although their interpretation is challenging [116, 115, 225]. Due to

their complex structure, a measure of variable importances for mak-

ing predictions is often the only information reported from these mod-

els [2, 85, 171, 220, 65, 182, 245, 36, 248], when other classical sta-

tistical analyses are not carried instead to characterize host-microbe

and microbe-microbe associations [91, 59, 15, 110, 222]. Since eco-

logical systems rely on complex relationships between their compo-

nents [254, 29, 138], bioinformatic workflows should capture high-order

interactions and outputs them in a clear manner. The SHapley Ad-

ditive exPlanation (SHAP) method, implemented in Python and R,

computes feature and interaction importances from models, including

tree ensembles [140], and proved to be efficient on biomedical prob-

lems [141, 143]. However, calculations are made for each samples which

complicates their understanding: SHAP values are to be examined for

each pair of variables across the data set, i.e., one plot per pair, conse-

quently rising the number of outputs to (p2−p)/2 (for p = 10 variables,

40 plots should be screened to detect interactions, and this rises to 190

when p = 20). Consequently, they may not be adapted for microbiome

applications where data are highly dimensional and expected to have

high-order interactions. Furthermore, in R, SHAP interaction values

are implemented solely for gradient boosted models (GBM) [35] but

not for RF.

In the previous chapter, I described endoR, a method I developed to

enhance the interpretation of tree ensemble models (Figure 3.1). The

method simplifies these predictive models into stable decision ensem-

bles that preserve the predictive accuracy of the original models. A

new measure of the feature importance is implemented and an addi-

tional measure describing the influence of features on predictions of

the response variable is proposed. More specifically, the importance
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measures the gain in predictive accuracy attributed to a variable (or a

pair of variables), while the influence measures how the inclusion of a

variable (or a pair of variables) changes the models prediction. With

the complexity of tree ensembles being reduced to a set of decisions,

measures of importance and influence are easily extended to pairs of

variables to seize variable interactions captured by the original model.

Results are displayed as multiple intelligible plots to enhance readabil-

ity of feature and interaction importances and influences (Figure 3.1 B

and see Figure 3.3 for an application to metagenomes). Notably, endoR

generates an interaction network where nodes correspond to variables

and edges to interactions between them. Moreover, the sizes of nodes

and edges are proportional to their importances, while their colors are

indicative of their influence. Bootstrapping is readily integrated with

stability selection to prevent overfitting and false discoveries. I imple-

mented the full method into a user-friendly R-package that is compu-

tationally optimized, compatible with routinely used packages such as

ggplot2 [237], and open source on GitHub.

I benchmarked my method on both fully simulated data sets and

real metagenomes [176] with artificially generated phenotypes. In par-

ticular, I compared the endoR workflow with state-of-the-art proce-

dures commonly used for analysing microbiome data. Results showed

that endoR successfully extracts complex interactions from random for-

est (RF) models and performs better or comparable to existing meth-

ods. I then employed endoR on a metagenome dataset published by Qin

et al. [185], in which the original study identified certain gut microbiome

features to be associated with cirrhosis. From a single application of

endoR, I was able to recover all major results of the original study and

expand upon them by identifying additional oral-bacteria colonizing the

gut of patients with cirrhosis and the depletion of bacteria associated

with healthy microbiome [11].
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My simulations demonstrate that tree ensemble models coupled

with endoR are appropriate to analyze metagenome data. The pro-

posed workflow is made of a few steps only, is user-friendly, produces

accurate results with low FDR, and generates understandable outputs

summarizing complex interactions from metagenome data.

3.2 Methods

3.2.1 Simulated data

Data I generated n independent observations of a random vector

(Y,K, V 1, . . . , V 12) as follows. Let V 1, . . . V 12 be independentN (0.5, 1)

distributed random predictive variables, let K, a multiclass predictor,

be uniformly distributed over the categories {a,b, c,d} and assume that

the binary response variable Y is given by

Y =
[

sign(V 1V 2)1K=a + sign(V 3)1K=b + sign(V 4 + V 5)1K=c +

sign(V 6 − V 7)1K=d

]
(2 · ε− 1), (3.1)

where ε ∼ Bernouilli(1− r) adds noise by flipping the sign of Y with a

probability of r. A set of correct decisions for this setting are given in

Table 3.1.

I use this data generating mechanism as a toy model to evaluate

endoR as the underlying mechanism is fully understood here.

Sets of simulations were performed with the following data param-

eters: n = 200, 1000 or 5000 samples and r = 0.05, 0.1 or 0.2 (with

n = 1000 and r = 0.05 unless mentioned). Each set was replicated in

100 independent simulations (Figures 3.6 A-B and G-H), and a single

replicate of the data with parameters n = 1000 and r = 0.05 is given

in Figure 3.2 A-D.
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Figure 3.1: Description of the endoR workflow. A/ Overview of

the workflow from data acquisition to the visualization of a network. endoR

is applied to a fitted classification or regression tree ensemble model. The

model is first simplified into a decision ensemble used to calculate feature

importances and the influence on predictions. These metrics are displayed in

a summary plot of individual variables and via a network for individual and

pairs of variables. The network clearly illustrates the association between

the response (target) and single or pairs of variables, in regards to feature

importance and influence. Thus, if the influence of a variable depends on

other variables, this will be visible on the network via edges between nodes.

B/ Steps taken by endoR to generate a stable network. Regularization is

optional and consists of simplifying decisions and the decision ensemble to

reduce noise. The procedure can be repeated on B bootstraps to select stable

decisions prior to constructing the final network.

Evaluation of endoR An RF model was fitted on each data set

using the randomForest R-package with default parameters [129], un-

less mentioned (Figures 3.6 E-F). Classifiers were then processed with
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Decision rule Target label

Group = ’a’ & V1>0 & V2>0 1

Group = ’a’ & V1≤0 & V2≤0 1

Group = ’a’ & V1>0 & V2≤0 -1

Group = ’a’ & V1≤0 & V2>0 -1

Group = ’b’ & V3>0 1

Group = ’b’ & V3≤0 -1

Group = ’c’ & V4>0 & V5>0 1

Group = ’c’ & V4≤0 & V5≤0 -1

Group = ’d’ & V6≤0 & V7>0 -1

Group = ’d’ & V6>0 & V7≤0 1

Table 3.1: Predetermined decision rules based on the target equation

from the simulated datasets.

endoR using default parameters, unless mentioned, and on B = 100

bootstrap resamples with α = 20 (Figure 3.2 G-H) or B = 10 with

α = 5 (Figure 3.4 A-B and E-G). The average accuracy of the RF

fitted on data in Figure 3.2 A-D was estimated on 10 cross-validation

(CV) 0.7− 0.3 train-test. The accuracy of models fitted on all data is

reported otherwise (Figure 3.6 A-B and E-F).

3.2.2 Artificial phenotypes

To assess the performance of endoR under more realistic microbiome

conditions, I additionally evaluated it on a real metagenomic dataset

with simulated response variables. Therefore, while the predictors are

real data derived from metagenomes, I artificially constructed pheno-

typic groups and response variable to known ground truth of the under-

lying model. These data sets will be referred to as artificial phenotypes.

Metagenomes Data consisted of a subset of the metagenomes used

in Youngblut et al. [246], so that samples with the following reported in-
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formation were removed: i) samples from rectal swabs; ii) samples from

individuals suffering from mumps, coeliac disease, gestational diabetes,

cholera or with high relative abundances of Vibrio cholerae, infected by

shiga toxin-producing Escherichia coli or cytomegalovirus; iii) samples

with less than a million of sequence reads; iv) samples with missing age

information. In total, metagenomes from 2147 samples from 19 studies

and 23 countries were gathered. Only families, genera and species with

a prevalence above 25 % relative abundances were included (p = 520

taxa).

Artificial phenotypes A multiclass phenotypic variable K, uni-

formely distributed either over the categories {a, b, c, d} (Figure 3.3 A-

D) or {a, b, c}, was constructed. Within each group, combinations of

randomly picked taxa with a prevalence higher than 50 % were used

to determine the sign of the response variable Y (for the replicate in

Figure 3.3 A-D, see Table 3.2 and Figure 3.3 A-E). Noise was added

by changing the group label with a probability r, such as the new label

was drawn uniformly from all other groups and an additional irrelevant

one.

Evaluation of endoR Predictive tree ensemble models were fitted

as described in the following section 3.2.4. Each model was processed

with endoR using default parameters and α = 10 (Figure 3.4 C-D, H-J,

and 3.6 C-D). For the replicate in Figure 3.3, numeric variables were

discretized into 3 categories and B = 100 bootstrap resamples were

performed with α = 5 for stability selection.

3.2.3 Cirrhosis dataset

Finally, I evaluated endoR on previously published gut microbiome

data used to predict cirrhosis.
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Decision rule Target labela

Group = ’a’ & t1 > 0 & t2 > 0 1

Group = ’a’ & t1 ≤ 0 -1

Group = ’a’ & t2 ≤ 0 -1

Group = ’b’ & t3 > 0.1 & t4 > 0.003 1

Group = ’b’ & t3 ≤ 0.1 -1

Group = ’b’ & t4 ≤ 0.003 -1

Group = ’c’ & t5 > 0 & t6 > 0 & t7 > 0.01 1

Group = ’c’ & t7 > 0.01 1

Group = ’c’ & t5 > 0 & t6 > 0 1

Group = ’c’ & t5 ≤ 0 & t6 ≤ 0 & t7 ≤ 0.01 -1

Group = ’c’ & t5 ≤ 0 & t7 ≤ 0.01 -1

Group = ’c’ & t6 ≤ 0 & t7 ≤ 0.01 -1

Group = ’d’ & t8 ≤ 3.98 · 10−4 & t9 > 0 1

Group = ’d’ & t8 > 3.98 · 10−4 -1

Group = ’d’ & t9 ≤ 0 -1

Table 3.2: Predetermined decision rules based on the mak-

ing of the artificial phenotypes.

Data The dataset was composed of 130 samples for which age, BMI

and sex information were available (68 cirrhotic and 62 healthy individ-

uals). Metadata and gut microbial taxonomic profiles generated from

metagenomes by Qin et al. [185] were downloaded from the MLRepo

(https://github.com/knights-lab/MLRepo, accessed on 27/01/2021).

The dataset consisted of stools samples from which gDNA had been

extracted and sequenced via an Illumina HiSeq sequencer, and taxo-

nomically profiles had been obtained using BURST [4] and Prokaryotic

RefSeq Genomes. The downloaded taxonomic profiles consisted of read

counts for taxonomic levels not collapsed at coarser level (ie, if a read

count had been assigned to the species level, the number of count of

the genus was not indicated). Consequently, I calculated the true read

counts for each taxonomic level by summing read counts of all finer lev-
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els. Relative abundances were then normalized per the total number of

reads to obtain relative abundances. Taxa were filtered as described in

Chaper 4, section 4.2.1.

Evaluation of endoR I compared feature selection (FS) procedures

to determine which full model to interpret with endoR (section 3.2.4

and Table 3.3). The final model was processed with endoR using de-

fault parameters, discretization into 3 categories, B = 100 bootstrap

resamples of size 3n/4. The number of samples that could be predicted

from decision ensembles generated with various α values was used to

select α = 30 (Figure 3.9 B).

3.2.4 Fitting of models on metagenome data

Due to the high-dimensionality of metagenomes, feature selection (FS)

was performed before fitting an RF model with default parameter [129].

A boosted tree model was alternatively fitted instead of the RF using

the XGBoost R-package (default parameters and nrounds = 10) [35].

The choice of the FS algorithm and parameters was determined using 10

CV with a 0.7−0.3 train-test split of the data: the model that resulted

in the highest average Cohen’s κ was selected and a final full-model

was then refitted to the entire data (Table 3.3).

The types of models considered for the metagenome experiments

were the following:

• randomForest function from the randomForest R-package (no

FS);

• subselect variables using the Boruta R-package (Boruta and

TentativeRoughFix functions with default parameters) and then

apply randomForest from the randomForest R-package;

• subselect variables using the gRRF algorithm from the gRRF

R-package for values of γ between 0 and 1 and, for each set of
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features selected with a different γ value, apply randomForest

from the randomForest R-package;

• subselect variables using a modified version of the gRRF algo-

rithm to take into account the taxonomy (see Chapter 4, sec-

tion 4.2.2), for values of γ and of k between 0 and 1 and, for

each set of features selected with a different (γ, k) couple, apply

randomForest from the randomForest R-package.

The choice of the Boruta and gRRF algorithms was motivated by the

ability of Boruta to select all relevant variables [123], hence most likely

to include all correlated variables, and for the ability of gRRF to select

only relevant and non-redundant variables [48]. I additionally modi-

fied the expression of the regularization term in the gRRF algorithm,

to account for the hierarchical taxonomic structure in metagenomes

(motivation and method are detailed in Chapter 4, section 4.2.2).
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3.2.5 Evaluation metrics

Simulated data The ground truth network was extrapolated from

Equation (3.1) (Figure 3.2 E). The network constructed from the final

decision ensemble by endoR (Figure 3.2 H) was compared to the truth

to count true positive (TP), false positive (FP), and false negative (FN)

nodes and edges.

Artificial phenotypes Ground truth networks were extrapolated

from the procedures used to create the artificial phenotypes (for an

example, see Table 3.2 for the artificial phenotype in Figure 3.3 A-F

and ground truth network in Figure 3.3 G). Since the data set is made

of real metagenomes, a deficit here was the lack of ground truth on

associations among predictive variables, notably from the same taxo-

nomic branch. Hence, to account for taxonomic relationships, I also

extended the lists of true nodes and edges to include nodes and edges

from related taxa. I counted as related taxa the direct coarser and finer

ranks, and species from the same genus. Consequently, a node identi-

fied by endoR was counted as TP if it was in the ground truth network,

or related to a node in the ground truth network. If both a true node

and a related taxa were identified by endoR, the TP was counted only

once to prevent inflating results. The same counting was performed for

edges.

Metrics Classical metrics (accuracy, precision, recall) were calcu-

lated to evaluate networks generated by endoR. In addition, TP and

FP were weighted by their feature or interaction importances (for nodes

and edges, respectively) to calculate the weighted precision, and so esti-

mate the magnitude of TP in the endoR results. Furthermore, TP/FP

curves can be constructed by any procedure that can rank the compared

objects. To do so with endoR, for a fixed α, I first ranked the top q deci-
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sions of each bootstrap according to their probability of being selected

in the final stable decision ensemble, i.e., they were ranked by their

number of occurrences across bootstraps. Networks were computed for

each probability of decisions of being selected, and the probabilities of

edges and nodes to be in networks were subsequently calculated. Edges

and nodes were then ranked by these probabilities and TP/FP curves

were constructed for endoR (Figures 3.4 A-D, 3.5 and 3.6 H). Curves

were interpolated and averaged across repetitions.

3.2.6 Benchmarking

Comparison of endoR with other analysis methods

To evaluate endoR against state-of-the-art methods for microbiome

analysis, the artificial phenotypes were processed with the following

procedures and compared to random guessing using TP/FP curves. Ex-

cept for Figure 3.7 A-B, curves were interpolated and averaged across

artificial phenotypes.

Pairwise comparison I used a Wilcoxon-rank sum test to identify

taxa (p = 520 taxa) enriched in samples labelled with one or the other

target category, and a χ2-test to assess whether the K group categories

comprised more samples than expected from one or the other target

category; p-values were adjusted using the Benjamini-Hochberg correc-

tion method. Variables were ranked by increasing adjusted 1−p-values

to build the TP/FP curves.

Covariance matrix Sparse covariance matrices are used in micro-

biome science to determine conditionally non-independent taxa and

build correlation networks [69]. The comparison of networks computed

for distinct sample groups allows to identify different associations in

these groups. For instance, by comparing networks extrapolated for
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samples collected from environment A versus environment B one can

to infer associations of variables specific to each habitat [70]. A draw-

back of covariance matrices is the exclusion of categorical variables from

analysis. Consequently, the K group variable was excluded from anal-

yses, samples were divided by artificial phenotype label, and relative

abundances of the p= 520 taxa were used to build sub-networks for each

label. Edges shared between the two sub-networks were filtered out.

Methods implemented in the SpiecEasi R-package [124] were employed

to estimate covariance matrices, i.e., the sparCC [70], Meinshausen

and Bühlmann [152] (MB), and graphical lasso [69] algorithms. Edges

were ranked by the square value of the matrices parameter for mak-

ing the TP/FP curves. Note that due to the low accuracy of the MB

method [152], its results are not shown in the Results section. Lower

performance was expected as this method is a simpler approximation

of the covariance matrix suggested by Friedman et al. [69].

SHAP and Gini importances from tree ensembles Finally, I

compared endoR to methods for interpreting predictive models. The

Gini importance [25, 27] and SHAP values [140] were extracted from the

RF classifiers used in Figures 3.3 and 3.6, using the randomForest [129]

and iBreakDown [18] R-packages, respectively. In particular, SHAP

values were calculated on the default number of 25 random paths, es-

timations were averaged across random paths for each sample, and for

each variable, the absolute SHAP values averaged across samples were

finally used to rank variables for the TP/FP.

Implementations of SHAP for RF classifiers in R do not return

interaction values (see the iBreakDown [18], iml [158] and the fast-

shap R-packages). Consequently, I additionally fitted XGBoost mod-

els [35] on the same sets of features selected during FS when fitting the

RF models, with default parameters, nrounds = 10, and objective =
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’binary:logistic’. SHAP values and SHAP interaction values were ex-

tracted using the xgboost [35] and SHAPforxgboost [133] R-packages.

Models were processed with endoR with default parameters. Figures of

SHAP values extracted from XGBoost models were created using the

SHAPforxgboost R-package [133] (Appendix A, Figure A.3).

Note that nodes and edges were ranked by feature and interaction

importances to build the TP/FP endoR curves for comparison with the

state-of-the-art methods.

Random guessing Variables, or pairs of variables, were randomly

drawn and sorted to build TP/FP curve. The process was repeated a

1000 times and averaged.

Computation time

I measured the computation time and memory needed by endoR and

the shap function (iBreakDown R-package [18]) to process RF models

fitted the artificial phenotype of Figure 3.3 (Figure 3.8 and Appendix A,

Table A.2). Since SHAP values can be directly extracted from XGBoost

models, hence not requiring any additional processing time, I focused

on comparing endoR and SHAP for RF models. Runs were performed

in triplicates for the measurement of the total CPU time and maximal

virtual memory used at any time (Appendix A, Table A.2), and in 5

replicates for the wall-time.

The same RF model as in Figure 3.3 was processed with endoR and

shap using different input sample sizes, n = 500, 1000 or 2000, and

number of bootstraps, B = 1, 10, 20, 40 (Figure 3.8 C-F). Furthermore,

I increased the number of variables used in the predictive model by

including non-selected features and fitting a new RF model via the

randomForest R-package with default parameters [129].

Finally, the original model with 18 features and n = 2147 samples
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was processed with endoR and shap, with parallelization of calcula-

tions across 4 or 10 workers (controlled by the parallel R-package).

For endoR, bootstraps were also allowed to be run individually in par-

allel using the clustermq R-package [200] (option clustermq.scheduler

= ‘multiprocessor’). Wall-times were measured from runs on a ma-

chine equipped with Intel(R) Xeon(R) E5-4620 v4 @ 2.10GHz CPUs

(80 CPUs in total).

3.3 Results

3.3.1 endoR recovers meaningful networks and metrics

Two sets of data were generated to evaluate endoR results. The first

data sets were fully simulated so that predictors were independent from

each other, normally distributed, and all associations of variables that

could predict the target were known (Figure 3.2). For a more realistic

configuration, I additionally used published human gut metagenomes

comprising 2147 samples [176] and constructed artificial phenotypes

from relative abundances of taxa generated from these metagenomes

(Figure 3.3). Hence in the artificial phenotypes data sets, predictive

variables were non-independent and consequently, not all predictive

associations were known.

For both sets, different types of variable interactions were simulated

to create the response variable. Observations were separated into four

groups using a multiclass variable, and a binary response variable was

computed via combinations of a group level and 1-3 of the continuous

features (Figures 3.2 A-D and 3.3A-D, and Methods). I introduced

noise in the fully simulated data by randomizing the target (r = 0.05),

and in the artificial phenotype data by randomizing the group levels

(r = 0.05). Here, I present results for one replicate of each configuration

for which RF classifiers were trained and processed with endoR on
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B = 100 bootstraps with α = 20 for the simulated data and α = 5 for

the artificial phenotype (Figures 3.2 F-H and 3.3 G-J).

The RF accuracy and Cohen’s κ, averaged across 10 cross-validations,

were of 80.47±1.39 and 0.56±0.03 for the simulated data replicate, and

of 85.19±2.36 and 0.70±0.05 for the artificial phenotype (Table 3.3).

Figure 3.2: endoR captures interactions predictive of a re-
sponse variable from a random forest fitted on simulated data.
A-D/ Four groups of samples (labelled a-d) were generated so that for each

group, the target takes the value ‘1’ or ‘-1’ according to a combination of vari-

ables (e.g., V1 and V2 for Group a). F/ Feature importance (mean decrease

in Gini impurity) based on the fitted random forest. G/ Feature importance

(summed across discretized levels) and feature influences for each discretized

level computed by endoR. H/ endoR network produced from the RF model.
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Consistent results were obtained across the two configurations. The

feature importance measured by endoR better discriminated true pre-

dictive features from irrelevant ones compared to the commonly used

Gini importance (Figures 3.2 F-G and 3.3 G-H). Furthermore, stable

networks generated by endoR were coherent with ground truth net-

works, as they captured the interactions between numeric variables

and groups (precision = 1 and recall = 0.90 for the simulated data set,

and weighted precision = 0.57 and recall = 0.95 for the artificial phe-

notype; Figures 3.2 I,H and 3.3F,I-J). Finally, associations between the

target and (i) each variable were conveniently displayed thanks to the

feature importance and influence plot (Figures 3.2 G and 3.3 I-J), and

(ii) variable interactions were easy to interpret thanks to the network

(Figure 3.2 H and Figure 3.3 I-J).

3.3.2 endoR is robust to hyperparameters

I repeated the data and artificial phenotype simulations with different

endoR hyperparameters to evaluate how the accuracy of endoR varies

across differing conditions (Figure 3.4).

A sensitivity-precision trade-off is introduced by α

First, I explored the effect of α, which determines the expected number

of wrong decisions selected by endoR after bootstrapping. As expected,

the number of selected decisions increased with α (Figure 3.4 E,H).

Accordingly, the number of TP and FP edges identified by endoR also

increased (Figure 3.4 A,C,F and I). Nonetheless, the probability of true

edges to be identified was still higher than the one of false edges, result-

ing in TP edges being first identified and having the highest importance

in the stable networks (Figure 3.4 A,C,G and J). Hence, my results in-

dicated a sensitivity-precision trade-off to consider when setting α and

my general advice, especially for metagenomes, is to set α high enough
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Figure 3.3: endoR captures interactions predictive of an ar-
tificial phenotype from an RF fitted on real metagenomes.
A-E/ The artificial phenotype was computed from a group variable and ran-

domly chosen microbial abundances. Dashed lines: thresholds used to make

the phenotype. C-D/ Group c: the phenotype was built with an ‘OR’ rule.

G-H/ Related: features related to the ‘True’ ones used to make the pheno-

type. I/ Full endoR network; only the 20 features with the highest feature

importance labelled; the edge transparency is inversely proportional to the

importance. J/ 20 edges with the highest interaction importance.
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to recover a reasonable number of stable decisions and to particularly

focus later interpretations on edges with the best importances.

Figure 3.4: endoR is robust to hyperparameters. A-J/ Aver-

age number (#, lines or points) and standard deviations (shaded areas or

bars) across simulations of identified true positive (TP) and false positive

(FP) edges or of decisions in the stable decision ensembles; dashed lines:

true number of edges. 100 simulated data sets (n = 1000) and 50 artificial

phenotypes were generated per hyperparameter value (r = 0.05). A, C, E-

J/ Effect of α, the expected number of false decisions in the stable decision

ensemble (B = 10). B, D/ Effect of B, the number of bootstrap resamples

(α = 5 or 10 for the simulated data and artificial phenotypes, respectively).

A-D/ Curves extrapolated for each simulation from the probabilities of deci-

sions to be selected in the stable network; grey: results expected by random;

traced points: TP and FP in the stable decision ensembles.
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The stability selection procedure is robust to changes of B

Varying the number of bootstrap resamples between 10 and 90 did not

affect the precision and sensitivity of endoR (Figure 3.4 B and D). This

consistency in results suggests that on average, endoR results are sim-

ilar for different number of bootstraps and that my stability selection

procedure is efficient at discriminating relevant decisions. However,

increasing the number of bootstraps helps obtaining steady decision

ensembles for a same task processed with different random bootstrap

resamples. This slight decrease in variance given higher number of

bootstraps is exemplified in Figure 3.5 where I repeatedly processed

replicates of the artificial phenotypes using distinct bootstrap resam-

ples, for B = 10 or 100 bootstraps each time. Therefore, although

endoR outputs similar results regardless of the number of bootstraps,

those results are more likely to be closer to the expected average results

with higher number of resamples. I thus recommend setting B as high

as possible.

endoR gains in accuracy with better predictive models

Since endoR interprets tree-ensemble models, I then proceeded with

evaluating the influence of input models on the accuracy of endoR. As-

sessment was performed using either or both simulated data sets and

artificial phenotypes. The model accuracy was altered via (i) the model

complexity through the number of trees in the RF (Figure 3.6 E-F), (ii)

the noise in data by varying r, the probability of observations to be la-

belled with the wrong target, for the simulated data, or group category,

for the artificial phenotypes (Figure 3.6 A-D), and (iii) the number of

observations in data (Figure 3.6 G-H). The higher the number of trees

in the forest, the lower the noise or the higher the number of samples,

the higher were models’ accuracy (Figure 3.6).
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Figure 3.5: The variance of endoR results decreases with
higher number of bootstraps. Replicates of artificial phenotypes were

processed 10 times with B = 10 or 100 bootstraps resamples. Curves show

the average number (#) of identified true positive (TP) and false positive

(FP) edges according to edges probabilities of being selected in the stable

decision ensemble. Curves were interpolated for each technical replicate, and

the average (line) and standard deviation (shaded area) across number of

bootstraps are displayed. Traced points: average number of TP and FP in

the stable ensembles returned by endoR for π = 0.7 and α = 10.

Taken together, results consistently showed that the performance

of endoR depends on the quality of the input model (Figure 3.6). In

particular, the weighted precision consistently benefited from improv-

ing predictive performances of forests (i.e., the accuracy or Cohen’s

κ), such that it increased with predictive performances of input mod-

els (Figure 3.6 A-F). Furthermore, the variance of the weighted preci-

sion across data sets decreased with increased predictive performances,

meaning that although endoR produces rather precise networks on av-

erage, the probability of obtaining a precise network increases with

the input model accuracy. The effect of model and data parameters

on network recall was not as homogeneous as on the precision. For

instance, although the recall greatly improved with lower noises for

the simulated data (Figure 3.6 A), it barely increased for the artificial
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phenotypes (Figure 3.6 C).

Finally, while increasing the number observations for model train-

ing increased models’ accuracies and so the weighted precision (Fig-

ure 3.6 G), it also allowed endoR to generate stable decision ensem-

bles. Indeed, endoR produced a network via stability selection, with

B = 10 and α = 5, for 62 % of simulated data with n = 200 observa-

tions, whereas networks were produced for all simulations with n ≥ 800.

Nonetheless, for 45 % of all simulated data with n = 200, the precision

of the network was equal to 1 (Figure 3.6 G-H). Therefore, for small

sample sizes, endoR produces scarce but accurate networks, despite

possibly not reaching a stable network. Furthermore, as the sample

size increases, more complex and accurate networks can be generated

by the method.

3.3.3 endoR surpasses the state-of-the-art for metagenome

data analysis

I utilized the real metagenome data with artificial phenotypes to con-

trast the performance of endoR with the state-of-the-art (Figure 3.7).

I processed each replicate of the artificial phenotype data sets with (i)

a classical pairwise statistical analysis using the non-parametric sta-

tistical Wilcoxon rank-sum and χ2 tests, (ii) sparse covariance matri-

ces computed with the sparCC [70] and graphical lasso (gLASSO) [69]

methods, (iii) RF classifiers fitted using the randomForest

R-package [129], from which the Gini importance [25, 27] and SHAP

values [140] were extracted, and that I further processed with en-

doR, and (iv) gradient boosted models fitted using the xgboost R-

package [35] from which SHAP values were extracted and that I also

further processed with endoR. For each replicate, single variables iden-

tified as associated with the artificial phenotype by SHAP (from RF

and XGBoost models), Gini importance, and pairwise statistical tests
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Figure 3.6: The accuracy of endoR increases with the accu-
racy of input models. A-B, E-H/ 100 simulated data sets were generated

for each assessed parameter value, with n = 1000 and r = 0.05, as default pa-

rameters; models were fitted with ntrees = 500 as default, and were processed

with endoR with α = 5 and B = 10. C-D/ RF predictive of 50 artificial phe-

notypes were fitted with ntrees = 500, and were processed with endoR using

α = 10 and B = 10. A-H/ Large traced points: average across sets for a

given parameter value. H/ Number of identified true positive (TP) and false

positive (FP) edges according to edges probabilities of being selected in the

stable decision ensemble. Curves were interpolated for each simulation, and

the average (line) and standard deviation (shaded area) are displayed. The

average number of TP and FP expected by random, and standard deviations,

are shown in grey; dashed grey lines: actual number of TP.

were ranked by methods’ output parameters and compared with the

nodes identified by endoR from the RF and XGBoost models. Further-

more, the same procedure was carried for pairs of variables identified

by SHAP (from the XGBoost model only as no method to compute

SHAP interaction values from RF models is currently available in R),

gLASSO, sparCC, and endoR.
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Figure 3.7: endoR is better or as good as state-of-the-art
methods at identifying true variables and pairs of variables
predictive of artificial phenotypes. TP: true positives; FP: false

positives; dashed grey lines: true number of TP; Random: results expected

by random guessing. A-B/ Results for the single replicate presented in Fig-

ure 3.3. C-D/ Average (line) and standard deviation (area) across repetitions

of artificial phenotypes. B/ ‘gLASSO’ and ‘Random’ lines are dotted due to

their overlap.

endoR is better or as good as state-of-the-art methods at iden-

tifying true variables and pairs of variables predictive of arti-

ficial phenotypes

All methods that did not use a predictive model (i.e., non-parametric

statistical tests, sparCC and gLASSO) performed poorly, with accu-

racies nearly equivalent to random guessing (Figure 3.7 A-C). The

generally good performance of methods based on classifiers was high

thanks to the FS step performed with gRRF [48] before fitting mod-

els (Figure 3.7 A and C). As in my previous assessments, the Gini

importance was not as good as endoR for discriminating true from

irrelevant variables (Figure 3.7 A and C). SHAP values and endoR fea-

ture importances extracted from the RF and XGBoost models were
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both very precise in their ranking of features (Figure 3.7 A and C).

SHAP derived from the XGBoost model was slightly better than en-

doR at identifying true interactions on the single artificial phenotype

replicate (Figure 3.7 B, the replicate presented in Figure 3.3 had a more

complex artificial phenotype creation mechanism than the repetitions).

However, interaction importances extracted from XGBoost models for

the repetitions of artificial phenotypes were better ranked by endoR

than SHAP (Figure 3.7 D). Note that on average, XGBoost models

were more accurate than RF models. The average Cohen’s κ across

repetitions was 0.97±0.00 and 0.91±0.03 for XGBoost and RF models

respectively (mean across 10 CV sets for each replicate averaged here).

And, for the single replicate, Cohen’s κ was 0.95±0.01 for the XGBoost

model and 0.70±0.05 for the RF model (averaged across 10 CV sets).

endoR results are easier to interpret than SHAP’s

SHAP estimates the contribution of each variable, or pair of variables,

to the prediction of each sample [140]. Thus, SHAP values are com-

monly visualized per sample, for each variable [141, 143, 133]; examples

of SHAP visualization plots for the single artificial phenotype (Fig-

ure 3.3) are provided in Appendix A, Figures A.2 and A.3. Similar to

endoR, summary plots of the feature importance can be produced by

SHAP to provide a global overview of associations between the response

and predictive variables. However, contrary to endoR, no summary vi-

sualization tool is available for SHAP to facilitate the interpretation of

variable interactions and their associations with the response variable.

Variables interactions are plotted for each pair of variables and each

sample, such that as p increases, the number of plots to inspect ex-

ponentially rises. Furthermore, higher interactions cannot be assessed

with SHAP since plots are created for pairs of variables, whereas endoR

networks enable estimating such interactions.
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endoR better scales with high-dimensional data and comput-

ing resources than SHAP for random forest models

Finally, I compared the computation requirements of endoR and SHAP

on artificial phenotypes. Since SHAP values are computed by the xg-

boost R-package [35] while fitting the model, the two methods were

compared on RF models only. SHAP values were generated from RF

using the shap function from the iBreakDown R-package [18]. EndoR

was much faster than shap and, in particular, was only linearly affected

by the dimensionality and sample size while shap CPU time exponen-

tially increased with dimensionality and sample size (Figure 3.8 A and

C). The shap function used less maximal virtual memory used at any

time than endoR. As expected the CPU running time of endoR linearly

increased with the number of bootstraps (Figure 3.8 E). However, since

endoR can be highly parallelized, shorter computation wall-times were

measured for endoR with either B = 10 or 25, compared to shap (Fig-

ure 3.8 G).

My evaluations on all simulated data sets and phenotypes showed

that endoR is more accurate that most state-of-the-art, and as accu-

rate as the SHAP method. Furthermore it surpasses SHAP at facil-

itating model interpretation. Finally, compared to SHAP for RF, it

better scales with highly-dimensional data and large sample sizes in

terms of computation performance. Taken together, these results val-

idated endoR as a powerful tool for investigating metagenomes with

tree-ensemble models.

3.3.4 endoR recapitulates in one analysis previously

reported results

To illustrate the utility of endoR for microbiome studies, I applied

my tool to a previously published gut microbiome dataset comprising
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Figure 3.8: endoR is much faster to build an interaction net-
work from a random forest classifier than the iBreakDown
package calculating SHAP. A-F/ Total CPU time and maximal vir-

tual memory used at any time (max v. memory) for three technical replicates

of runs. By default, the artificial phenotype presented in Figure 3.3 was used

with 18 variables and 1000 samples (see Methods), and endoR was ran on

B = 1 bootstrap of size n/2. F/ Five technical replicates of runs on the main

artificial phenotype (18 variables and 2147 observations), with parallelization

of calculations across 4 or 10 workers and for endoR, bootstraps also allowed

to be ran individually in parallel (see Methods).

patients diagnosed with cirrhosis versus healthy individuals [185]. The

dataset included 130 Chinese subjects, among which 48 % were healthy,

35 % were women, with ages varying from 18 to 78 years old (45 years

old on average), and BMI ranging from 16 to 29 kg.m-2 (22 kg.m-2

on average). In the original study, the authors tested for differences

in microbial taxon relative abundance between cirrhosis and healthy

patients. For this, they employed non-parametric statistical tests (i.e.,

Wilcoxon rank-sum test and Spearman’s coefficient of correlation) with

multiple testing corrections on both sequencing reads directly mapped

to genome databases or grouped into metagenomic species before map-

ping. In addition, they constructed interaction networks by measuring

correlations between taxa relative abundances with Spearman’s coeffi-
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cient of correlation.

I trained an RF classifier to predict the disease status (healthy or

cirrhosis) of individuals based on their age, gender, BMI and relative

abundances of gut microorganisms derived from sequencing reads di-

rectly mapped to a genome database (see Methods for details on model

training and fitting). The model accuracy was on average across 10 CV

train-test sets of 86.58±3.81 % and Cohen’s κ was of 0.73±0.08 (Ta-

ble 3.3). FS reduced the number of predictors from 926 to 85, to which

I added back the age, BMI, gender and sequencing depth metadata to

fit the final model on all samples. The model was then processed with

endoR, on B = 100 bootstraps with default parameters and stability

selection with α = 30 (Figure 3.9 B). endoR identified 18 stable deci-

sions that were using 23 predictors (Figure 3.9). Decisions, and feature

and interaction importance and influence are given in Appendix A,

Tables A.3 and A.4, respectively.

Many taxa used in the stable network were closely taxonomically

related to taxa identified in the original study, with the same direc-

tion of association (Figure 3.9 A-B). I define ‘closely related’ as di-

rect descendants or ancestors in the taxonomic hierarchy, as well as

species from the same genus. As shown by Qin et al. [185], Veil-

lonella parvula, Megasphaera micronuciformis, and members of the

Fusobacterium, Campylobacter, Lactobacillus, Streptococcus, Prevotella

genera, are enriched in individuals with cirrhosis; while members of Eu-

bacterium genera, Lachnospiraceae and Porphyromonadaceae families

are depleted (Figure 3.9 B). However, my results do not show a de-

pletion in Alistipes, Faecalibacterium praustnitzii, Coprococcus comes,

Bacteroides and Ruminococcaceae in individuals with cirrhosis.

Moreover, unlike Qin et al. [185], endoR did not identify any associa-

tion between members of the Veillonella and Campylobacter,

Haemophilus or Fusobacterium genera. These may have been spuri-
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Figure 3.9: Exploration with endoR of gut microbiomes from
healthy individuals versus patients diagnosed with cirrhosis.
A/ Feature importance aggregated across each level of discretized variables

and influence per-level as determined by endoR. Related: taxa directly

coarser or finer, and species from the same genus, than taxa identified by Qin

et al. [185]. White influence: the level was not used in any stable decision so

that the influence could not be calculated. B/ Effect of α on the number (#)

of decisions in the stable ensemble and samples that could be predicted by

the ensemble. Green line: total number of samples in the dataset; grey line:

chosen α to compute the stable decision ensemble (A,C). C/ Full network

extracted from the stable decision ensembles. The boxed legend is shared for

A and C.

ous associations detected in the original study due to a concomitant

enrichment of these taxa in individuals with cirrhosis.

endoR identified two species to be the most discriminative between

healthy and cirrhotic microbiomes: Megasphaera micronuciformis and

Veillonella parvula (Figure 3.9 A). With the Streptococcus and Lep-
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totrichia genera that had lower importances, they were the only ones

to make decisions using a single variable, meaning that these taxa had

a main effect (Appendix A, Table A.3). All other decisions in the stable

ensemble predicted the health status of individuals using pairs of vari-

ables (Figure 3.9 C and Appendix A, Table A.3). Given the extremely

low error on predictions of these decisions (on average, 0.02±0.01) and

their support size (on average, 0.21±0.03), the interactions identified

by endoR may also be relevant. Interestingly, endoR revealed an en-

richment in the Leptotrichia genus in individuals with cirrhosis, notably

associated with an enrichment in Prevotella enoeca (Figure 3.9 A and

C). Those two taxa are part of the oral microbiome [49] and are en-

riched in patients with periodontal disease [131]. Periodontitis is more

prevalent in individuals with alcohol-related cirrhosis, presumably due

to a decrease in oral hygiene [89]. In addition, endoR identified in in-

dividuals with cirrhosis, an enrichment in members of the oral-taxon

Neisseriaceae [49], notably of the Kingella denitrificans species. Al-

together, these findings support the hypothesis of Qin et al. [185] of

colonization of guts of patients with liver cirrhosis by oral commensals.

Furthermore, endoR distinguished an enrichment in Adlercreutzia

equolifaciens in healthy individuals relative to individuals with cirrho-

sis (Figure 3.9 A). This finding is coherent with the previously observed

depletion of A. equolifaciens in patients with primary sclerosing cholan-

gitis, a condition that can lead to cirrhosis [11]. The species was shown

to depleted while M. micronucformis was enriched, as reflected in the

endoR network (Figure 3.9 C).
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3.4 Discussion

I have shown that endoR, my tool for interpretation of tree-ensemble

machine learning (ML) models, accurately captures the main variables

and interactions of variables that predict a target of interest (e.g., dis-

ease status). To this end, endoR combines the conceptual backbone of

rule ensemble theory [72] to simplify complex models, with game theory

reasoning for the calculation of variable contributions [207]. It allows it

to recover meaningful networks and feature importance. Furthermore,

the method is proposed with regularization and stability selection to

prevent overfittting of results [153]. My simulations showed that endoR

is robust to hyperparameters, hence not demanding particular tuning.

EndoR processes tree ensemble models fitted on categorical and dis-

crete features; hence, my method enables exploring not only microbial

abundances but also metadata such as gender and age. Results from

benchmarking showed that endoR was more accurate than state-of-the-

art commonly used measures, i.e., Gini importance, non-parametric

statistical tests, and sparse covariance matrices. It was as accurate as

SHAP and, compared to SHAP, endoR had the benefit of providing

intelligible outputs to facilitate interpretation, i.e., the feature impor-

tance and influence plot, and the interaction network. Notably, SHAP

does not provide any summary output allowing to get an overall idea

of variable, and interaction of variables, associations with the response.

As microbiome studies include often more than hundreds of variables,

an effective comprehension of models with SHAP is hindered by its lack

of summary visualization tool. In particular, as the gut microbiome is

a dynamic environment where microbes and host all interact with each

other [254, 29, 166], the interaction network is critical for understanding

the mechanisms by which microorganisms alter host phenotypes. Fur-

thermore, in R and for RF models, endoR better scales to large datasets

than SHAP in terms of computational time. Finally, endoR was the
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only method to readily integrate both regularization and bootstrapping,

enabling to generate accurate results while preventing overfitting [153].

EndoR allowed me to easily explore differences in gut microbiota

between healthy and cirrhotic individuals [185]. For this, I could use a

unique analysis consisting of a FS step, the fitting of an accurate RF

classifier and finally, the interpretation of the RF model with endoR.

My findings confirmed results from the original study and reinforced

them with new insights. Notably, I identified additional oral-bacteria

enriched in guts of cirrhotic individuals, as well as a concomitant de-

pletion in A. equolifaciens, a healthy-gut-associated microbe, and en-

richment in M. micronuciformis in cirrhotic individuals compared to

healthy ones. Nonetheless, the feature importance calculated by endoR

highlighted the main effects in distinguishing cirrhotic from healthy in-

dividuals due to M. micronuciformis and V. parvula.

While I have shown that endoR is a powerful tool for ML model

interpretation, the approach has limitations. Similar to all model in-

terpretation methods, the accuracy of endoR is proportional to the

input model accuracy. My extensive simulations provide a guideline on

what accuracy to expect from endoR, depending on the accuracy of the

ML model. Regardless, researchers should fit models of good quality

prior to applying endoR or any interpretation method. Another gen-

eral limitation of endoR is its specific design for tree ensemble models,

making it incompatible with other algorithms. Nonetheless, as RF and

GBM often outperform other algorithms when applied to microbiome

data [225, 116], endoR is relevant to the field.

Due to filtering and bootstrapping, it may occur that the final de-

cision ensemble cannot predict all observations, i.e., samples are not

part of any decision support. In such cases, the α parameter can be

increased until all samples belong to the support of at least one decision

or bootstrapping can be performed on on larger data sets. Furthermore,
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non-predicted samples may be outliers requiring additional analyses or

information to elucidate the mechanisms behind their response variable

value.

Finally, although I primarily designed endoR to be compatible with

omic data, my current implementation can be demanding in time and

memory for complex models, e.g., large forests trained on data with

p > 100 & n > 1000. Hence, I generally advise users to include FS in

their model fitting protocol to decrease p, which will also most likely

result in better predictive models. If memory issues arise, setting the

number of categories for discretization to 2 (default) can solve the prob-

lem. Otherwise, the model complexity may need to be adjusted by per-

forming a more constraining FS step, or fitting a smaller model, e.g.,

an RF with less trees.

Through extensive evaluations on simulated and real data, I have

demonstrated that endoR, my method for interpreting tree-ensemble

ML models, outperforms the state-of-the-art with regards to accuracy,

robustness, and ease of interpretability. EndoR provides sharp insights

into pairwise associations of features with the response variable, and

produces a clear network to assess high-order interactions among vari-

ables. Tree-ensemble models are more frequently utilized to investigate

relationships between microbiome sequence data and host phenotypes

such as disease states. EndoR helps to unlock the mechanisms by which

these black-box models make accurate predictions. Such insights are

needed to move beyond predictive models and determine the dynamics

underlying the modulation of host phenotypes by the gut microbiome

and vice versa. Past the scope of this work, there is no restriction to

applying endoR on ML models fitted on any problem, being biology-

related or not.
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Chapter 4

The occurrence of
Methanobacteriaceae across a
large population is predicted
by relative abundances of a
consortium of bacteria

This chapter will present results from analyses of human gut

metagenomes to identify patterns of bacterial and metabolic pathway

relative abundances associated with the presence of Methanobacteriaceae.

Considerations related to data processing arising from previous chap-

ters were applied here: (i) shotgun metagenomes from multiple human

populations were used for analyses, (ii) as many metadata as possible

were included to account for population and study biases, (iii) many

taxonomic ranks were also included as limited prior knowledge of the

important ones was available, (iv) tree-ensemble machine learning mod-

els were trained to predict the presence/absence of methanogens based

on their compatibility with highly-dimensional and compositional data,

and (v) taxa-aware feature selection (FS) was performed to decrease the

number of predictive variables. Models were interpreted with endoR,

the method I created and described in Chapter 2.
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4.1 Introduction

The human gut methanogen M. smithii stands at the end of a trophic

chain that starts with the host’s food digestion along the gastroin-

testinal tract and continues in the intestine with the gut microbiome.

Undigested carbohydrates and proteins are degraded and fermented

by unique, or consortia of, bacteria [63, 64]. Notably, this process re-

sults in various products, including H2, CO2, and formate. M. smithii

then transforms these substrates into CH4, a gas excreted from the

host [138, 196]. SRBs and acetogens can also use H2, rendering them

potential competitors of the methanogen. Fermentation substrates

and pathways are specific to bacteria, such that the composition of

the pool of undigested products will shape the microbiome compo-

sition [102, 193, 29]. Ultimately, this will influence the colonization

ability of M. smithii .

In line with these interconnections, M. smithii is associated with

carbohydrate-rich diets [31, 42, 147, 170] and H2-producers fermenting

distinct substrates, e.g., the cellulose-degrading Ruminococcus sp. [31]

or members of the Christensenellaceae family [80, 94, 230, 114], which

grow on simple sugars [159, 149, 253]. However, contrary to expecta-

tions based on competition for H2, M. smithii and SRBs are positively

correlated, probably owing to shared niche preferences [94]. By up-

taking fermentation products, the methanogen is believed to promote

fermentative pathways that produce methanogenesis substrates in the

gut [196, 46, 120, 138]. By doing so, it would modify SCFA production,

therefore influencing host metabolism, which would support its associa-

tion with BMI [144, 9, 157, 80, 201, 106, 28, 150, 249, 228]. In addition,

M. smithii has a slow generation time in vitro. Accordingly, its reported

associations with slow transits and constipation have been suggested to

result from a lower wash-out effect by digestive tracts [121, 238].

Although valuable, most studies reporting associations between hu-
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man gut methanogens and their environment rely on statistical tests not

designed for compositional data, as is the case for all studies cited in the

previous paragraph. Colinearity between methanogens and bacterial

relative abundances is commonly assessed using Spearman’s or Pear-

son’s correlation tests, and relative abundances in sample groups (e.g.,

healthy versus diseased) are frequently compared with a Kruskal-Wallis

test or a Student t-test. Such methods only allow pairwise associations

and may thus miss interactions between microorganisms. Furthermore,

despite the growing use of shotgun metagenomes for microbiome inves-

tigations, some findings are supported by breath CH4 measurement [31]

or sequencing of the 16S rRNA gene [80, 94, 230, 114] to cite merely a

few. Due to biases inherent in these detection methods, methanogens’

occurrences and relative abundances may be underestimated in those

datasets, potentially resulting in a lack of statistical power to infer

associations.

As a whole, we have acquired disparate knowledge of M. smithii ’s

ecology but still lack global insights. To gain a broad picture of its inter-

actions with the human gut microbiome, I performed a meta-analysis

of gut metagenomes from 26 studies, representing individuals from 23

countries worldwide, using tree-ensemble models that can capture in-

teractions between variables. Predictive models were interpreted using

endoR and showed that M. smithii ’s occurrence is highly associated

with the presence of members of the CAG-138 family, order Chris-

tensenellales, specifically with the Phil-1 genus, as well as with members

of the Oscillispiraceae family. In particular, high relative abundances

of the glycolysis IV pathway coupled with low relative abundances of

Oscillispiraceae spp. were indicative of an absence of methanogens in

samples, and inversely, low relative abundances of the metabolic path-

way coupled with high relative abundances of Oscillispiraceae spp. or

Christensenellales spp. were indicative of methanogen presence. More-

91



over, host characteristics, such as body mass index (BMI) or enterotype,

did not prove to be predictive of the presence of Methanobacteriaceae,

suggesting that the microbiome composition primarily determines the

ability of methanogens to colonize human guts. Taken together, my

results provide new perspectives on the prevalence of methanogens in

the human gut and their plausible interactions with members of the

gut microbiome.

4.2 Methods

4.2.1 Data

curatedMetagenome database

Data used in this chapter were downloaded from the curatedMetage-

nomic database [176]. I included all samples from Youngblut et al.

[246], except for samples meeting the following additional exclusion

criteria: (i) samples from rectal swabs; (ii) from individuals older than

90 years old, with a BMI greater than 40 kg.m-2, with any reported

disease, or not part of control cohorts; (iii) samples from David et al.,

2015 [40], due to the infection of all individuals with Vibrio cholerae or

enterotoxigenic Escherischia coli ; (iv) samples with less than a million

sequence reads.

Information about sampled individuals comprised: country of ori-

gin, age, BMI, and whether the individual was from a westernized pop-

ulation. Here, westernization should be understood as a urban lifestyle

with a diet composed of fewer carbohydrates and enriched in fat, sugar

and animal products compared to rural populations [183, 42]. The

dataset consisted of 2203 samples from 26 studies and 23 countries,

among which 748 samples had complete gender, age, and BMI infor-

mation (Appendix B, Tables B.2 and B.1).
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Enterotype clustering

Enterotypes were determined as described in Arumugam et al. [10]:

the Jensen–Shannon distance matrix was calculated from the relative

abundances of genera using the ape [173] and phytools [189] R-packages,

and partitioning around medoid was then performed with the cluster

R-package [145].

Metabolic pathways formatting and filtering

Relative abundances of metabolic pathways were downloaded from the

curatedMetagenomic database [176], where they had been obtained

thanks to the HUMANn2 pipeline [67]. All engineered, unmapped and

unintegrated pathways were removed. Furthermore, only relative abun-

dances of pathways at the community level, i.e., calculated from all gene

abundances in the sample, were considered for analysis. Accordingly,

I removed all relative abundances calculated from species-level gene

abundances, i.e., the abundances attributed to distinct species [67]. I

additionally crossed the relative abundance and coverage of pathways.

The HUMANn2 pipeline calculates a confidence score that indicates

whether reactions of pathways with non-zero relative abundances are

confidently detected. A pathway coverage of 0 means that although

genes coding for proteins involved in this pathway were detected, not

all reactions of the pathway were confidently mapped [67]. For this

reason, for each sample and metabolic pathway, the relative abundance

was replaced for 0 if the coverage was null. Finally, all pathways present

in less than 25 % of samples were removed. A total of 117 metabolic

pathways were included in analysis.
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Taxa abundances filtering

Sequence reads were processed by Dr. Nicholas Youngblut for taxo-

nomic profiling [246]. I performed multiple taxonomic filtering steps to

reduce sparsity, taxonomic redundancy, and ultimately the number of

variables.

Filtering of rare taxa I took a progressive approach to filter out

rare taxa, with low average abundance or low prevalence. Hence, a

taxa t ∈ T of prevalence Pt and average abundance At was removed if:

Pt < At · β0 + β1,

with

β0 :=
mediani∈{1,...,T}(Pti)− Pq1
Aq1 −mediani∈{1,...,T}(Ati)

β1 := Pq1 − β0 ·mediani∈{1,...,T}(Ati).

Pq1 and Aq1 correspond to the prevalence and abundance quantile val-

ues of 25 % of all taxa. This continuous filtering allows me to keep

taxa that are highly abundant in only a few samples, and conversely

to keep taxa with high prevalence across samples but low abundances

(Figure 4.1). This filtering was performed with pooled family, genus

and species taxonomic ranks.

Filtering of correlated taxa To limit redundancy in relative abun-

dances from taxonomic ranks of a same branch, I filtered out taxa that

were significantly correlated to their direct coarser level [172]. A Spear-

man test was performed between the two taxa, and the finer one was

removed if p-value < 0.05 and ρ2 ≥ 0.95. A total of 89 taxa were

filtered out in this manner.
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Figure 4.1: Mean relative abundances and prevalence of family, genus

and species taxonomic levels in the metagenomic data.

4.2.2 Data analysis

General workflow to fit a model predicting the presence of

Methanobacteriaceae

As DNA extraction protocol can alter archaeal DNA recovery, and so

influence the relative abundance of methanogens in samples, I looked

for associations between taxa and metabolic pathways relative abun-

dances, and metadata, with methanogens’ presence. Their occurrence

was inferred from non-zero relative abundance of Methanobacteriaceae.

Random forests (RF) were employed for analyses as they are com-

patible with high-dimensional, compositional, sparse and correlated

data [116, 115]. I used the ranger R-package [240] to fit RF mod-

els and account for data imbalance. To accomplish this, two strate-

gies were tested: providing class weights to tune the learning process

and obtain a cost-sensitive model (class.weight parameter), and provid-

ing sampling probabilities inversely proportional to classes’ distribution

(case.weights parameter). I also trained gradient boosted models us-

ing the XGBoost R-package [35], but these resulted in lower predictive

performances (Appendix B, Table B.3). Thus, they were not further

utilized.

Finally, models’ performances were evaluated on 10 cross-validation

(CV) 70-30 % of train-test sets. Model processes were fitted to training
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sets and predictive performance was measured using Cohen’s κ on test

sets.

For model selection, I restrained model complexity by taking into

account the number of features used for fitting models and the number

of trees in the forest. Let wm be the scaled weight of model descriptors

for each model m ∈M , and M the set of all fitted models across model

sequences and cross validation sets, then

wm := 1−
max{niT · niFS | i ∈M} −

(
nmT · nmFS

)
max{niT · niFS | i ∈M} −min{niT · niFS | i ∈M}

,

with wm ∈ [0, 1], nT the number of trees in the forest, and nFS the

number of selected features. The combination of FS parameters and

number of trees that minimized Cohen’s κ weighted by wm was se-

lected as being the most optimal with the best predictive performance

but lowest complexity. This strategy was used to compare RF mod-

els trained on all observations, i.e., without gender, age, and BMI in

the set of predictors, with taxonomic ranks ranging from the family to

species.

Sets of predictors

I fitted models on different sets of predictors to reduce dimensionality.

Since gender, age, and BMI were incomplete (Appendix B, Table B.1), I

first assessed whether those variables were selected and used in models

fitted on the 748 samples with complete information (nT = 500 and

cost-sensitive model). Otherwise, models were fitted on all samples

without gender, age, and BMI. Included metadata were added in each

model processing step, even if they were not selected during the FS.

For taxonomic relative abundance, I first included taxonomic ranks

from family to species, totaling 2206 taxa, and then fitted models with

taxonomic ranks from phylum to genus, thus including 893 taxa.
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To reduce noise and dimensionality, a taxa-aware FS step was per-

formed prior to fitting predictive models. The method is developed in

the following section 4.2.2.

Taxa-aware feature selection

Due to the hierarchical structure of taxonomy, redundancy occurs when

including several taxonomic ranks in analyses [116]. Prior knowledge of

which ranks are the most relevant for inclusion is often limited, leading

to high-dimensional datasets. Therefore, taking into account taxonomic

hierarchy during FS can help further reduce dimensionality by limiting

selected taxa to their most relevant ranks [172, 5, 99].

I modified the guided regularized random forest (gRRF) FS algo-

rithm [48] to consider the taxonomic structure. To do this, I added a

term reflecting the importance of taxa phylogenetically related to the

focal taxon i when calculating its regularization term λi. The original

λi,

λi := 1− γ + γ
Impi
Imp∗

, γ ∈ [0, 1], (4.1)

was hence defined as

λi := 1− γ + γ
( Impi
Imp∗

)1−k( Impi
max(Impj | j ∈ b)

)k
, k ∈ [0, 1], (4.2)

with b the subset of variables in the same taxonomic branch as vari-

able i. For variables not describing a taxon, e.g., a metadata, λi was

calculated as in Equation 4.1.

b is defined relatively to i to comprise all directly coarser and finer

taxa. If i was the finest taxonomic level included for FS, sister levels of

i were added to b. For instance, if the family, genus and species levels

were used, b was defined for each level as:

• family: the family and all its genera;

• genus: the genus, the family it belongs to and all its species;
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• species: the genus it belongs to and all species of that genus.

Both γ and k were tuned to evaluate how much weight should be

given to gRRF Gini importances and to the taxonomic term in Equa-

tion (4.2), respectively. For each model sequence, 121 combinations of

FS parameters were tested.

Model interpretation with endoR

The final fitted model was processed with endoR: variables were dis-

cretized in K = 2 categories, bootstrapping was performed on B = 100

resamples, and α was chosen to maximize the number of predicted

samples while being as small as possible (Figure 4.4 A).

Samples were classified into four groups using k-means according

to their affiliation to decisions’ sample support and response variable

(clustering repeated a maximum of 500 times to reach stable groups).

The lowest number of clusters that minimized within-group variances

was chosen (Figure 4.2).

Figure 4.2: Variance of k-means clusters of samples, built
based on the presence of Methanobacteriaceae and predictions
of the stable decision ensemble. Dashed line: number of k-means

clusters selected.
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4.3 Results

4.3.1 Gut microbial diversity maps onto the enterotype land-

scape

Metagenomes gathered for the following analysis had been collected

for 26 studies from 2203 individuals worldwide, living in 23 countries

in total (Appendix B, Table B.2). Participants were aged from 19

to 84 years old, with a median and mean age of 33 and 40 years old,

respectively (no age information was reported for 528 individuals), and

with a BMI ranging from 16.02 to 36.41 kg.m-2, median and mean BMI

being 23.27 and 24.03 kg.m-2, respectively. Finally, 76.53 % of sampled

individuals were from westernized populations, in the sense of living an

urban lifestyle with a diet comprising fewer carbohydrates and more fat,

sugar and animal products compared to rural populations [183, 42].

I first explored the spread of samples along the enterotype land-

scape [10, 38]. Similar to previous findings [10, 38], the Jensen–Shannon

distance calculated from the relative abundances of genera separated

observations according to gradients of enrichment in Bacteroides and

Prevotella (Figure 4.3 A-B). However, samples did not strongly clus-

ter, as shown by the within-group silhouette scores below 0.5, indicating

weak clustering [38, 119] (Figure 4.3 D-G). This was to be expected due

to the heterogeneity of studies included in the meta-analysis and is con-

sistent with the low silhouette scores reported for these same data [176].

Clustering in three groups resulted in sample groups consistent with the

ETB, ETF, and ETP enterotypes previously reported as mapping onto

the gradients in Bacteroides and Prevotella relative abundances [10, 38]

(Figure 4.3 A-C). Since the ETF enterotype has been positively asso-

ciated with higher relative abundances of M. smithii [38], despite the

enterotypes low homogeneity, they were included in further analysis to

verify their association with the methanogen.
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Figure 4.3: Enterotyping of data. A-C/ Principal coordinate analysis

ordination of the Jensen-Shannon distance matrix used to cluster samples.

A-B/ Samples colored by relative abundance (RA) of Bacteroides and Pre-

votella, respectively. For each genus, a pseudocount equal to the minimal

non-null RA was given to samples for which the genus was not detected

(i.e., RA = 0) to calculate the log. C/ Samples colored by enterotype clus-

ter [10, 38]; ETF: Firmicutes, ETB: Bacteroides, ETP: Prevotella; colors

correspond to those on E. D-G/ Average silhouette score within each cluster

(bar) and across clusters (thick line). Dashed line: threshold above which

clustering strength is moderate.

4.3.2 The occurrence of Methanobacteriaceae is not associ-

ated with age, BMI or gender

To determine whether gender, age or BMI are associated with

methanogens in human guts, I fitted RF models on the 748 samples

with complete metadata information. On average, the best model Co-

hen’s κ (0.56±0.05) was lower than for models fitted on all 2203 samples

that did not include age and BMI in the set of predictors (0.60±0.02,

respectively, Appendix B, Table B.3). As this could be due to the fewer

observations available for model training, I sought to determine whether

gender, age and BMI were important for predictions. Across all 10 CV
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repetitions of the best predicting model fitted on the 748 samples, none

of these variables was ever selected. Therefore, gender, age, and BMI

were determined as not important to predict methanogens’ presence

from this set of observations and were excluded for further analyses.

4.3.3 Members of the Oscillospiraceae and CAG-138 families

determine the occurrence of Methanobacteriaceae in human

guts

I trained several tree ensemble models to predict the presence of

Methanobacteriaceae in human guts using taxonomic and metabolic

pathways relative abundances, available metadata on individuals, and

enterotypes (metadata are listed in Appendix B, Table B.1). The se-

lected model had an expected accuracy of 0.83±0.01 and Cohen’s κ of

0.61±0.02 on unseen observations (see details on model training and

selection in section 4.2.2 and Appendix B, Table B.3). The final model,

fitted on all observations, resulted in 75 features selected by the taxa-

aware gRRF algorithm, to which metadata were added to fit the pre-

dictive RF.

A stable decision ensemble was extracted from the predictive model

using endoR with α = 15 on B = 100 bootstrap resamples. It com-

prised 23 decisions that could make predictions on 2057 samples, out of

the total 2203 (Figure 4.4 A), with an average error of 0.32±0.08 and

support of 0.27±0.07 (Figure 4.4 B).

A total of sixteen features were used in decisions to predict the pres-

ence of Methanobacteriaceae. The Phil-1 genus (family CAG-138, order

Christensenellales) had the highest importance, and the CAG-138 fam-

ily, to which the genus belongs to, was ranked shortly after in terms

of feature importance (Figure 4.5 A). The glycolysis IV pathway was

the only metabolic pathway present in the decision ensemble; it had

the second highest importance and was negatively associated with the
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Figure 4.4: Processing of the final model with endoR: choice
of α and decision characteristics. A/ α was selected to maximize the

number of samples that could be predicted with the decision ensemble, while

minimizing the number of decisions in the ensemble; therefore, α = 15 was

used to obtain the stable decision ensemble (grey dashed line). Green line:

n = 2203, the total number of samples in the dataset. B/ Characteristics

of decisions in the stable decision ensemble. Shape: number (#) of features

used in decisions. Color: predictions < 0.5 correspond to the absence of

methanogens.

presence of methanogens (Figure 4.5 A). Finally, the Oscillospiraceae

family was over-represented, with four taxa of this family used in deci-

sions, and together with the CAG-382 family, they accounted for five

members of the Oscillospirales (Figure 4.5 A). No metadata was used

in decisions to predict samples, meaning that microbial features were

sufficient to discriminate samples where Methanobacteriaceae were de-

tected from those where they were not.

The Holdemanella genus (order Erysipelotrichales, class Bacilli,

phylum Firmicutes) was the most connected node in the interaction

network, sharing edges with eight distinct features. Nonetheless, the

glycolysis IV pathway and Phil-1 genus both had a node degree of

7, while also having the highest feature importances and total inter-

action importance, i.e., the sum of interaction importances to which

they participate. The CAG-170 sp002404795 (family Oscillospirales)

was the next feature with both highest feature importance and de-

gree. Altogether, this suggests that bacterial markers of the presence
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of Methanobacteriaceae are important due to their interactions with

other variables.

The glycolysis IV pathway was negatively associated with

Methanobacteriaceae and used in decisions such that low relative abun-

dances of the metabolic pathway, together with high relative abun-

dances of Oscillospirales or CAG-138 were predictive of the presence

of methanogens in samples.

Figure 4.5: Feature importances and interaction network pre-
dictive of Methanobacteriaceae’s presence. A/ Global feature im-

portance and influence per level. Pink bars: taxa from the Oscillospiraceae

family or Oscillospirales order. Green bars: taxa from the CAG-138 fam-

ily, order Christensenellales. B/ Interaction network. The color legend is

common to A and B.

4.3.4 Humans gut microbiomes are positioned on a gradient

favorable to colonization by Methanobacteriaceae

Samples were clustered into four groups using k-means. Clustering was

performed based on the detection of Methanobacteriaceae in

metagenomes and predictions of the decision ensemble (Figure 4.6 and

Figure 4.2).
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The presence of Methanobacteriaceae was associated with high rela-

tive abundances of members of the CAG-138 family (Figure 4.6, group

A). The majority of samples also had high relative abundances Pep-

trostreptococcaceae or Clostridiaceae, together with the higher relative

abundances of members of the CAG-138 family. In addition, a sub-

set of samples also showed lower relative abundances of the glycolysis

IV metabolic pathway accompanied by higher relative abundances of

members of the Oscillospirales order, notably of the Oscillospiraceae

family, and CAG-138 family. Together, these observations suggest

a strong association between Methanobacteriaceae and the CAG-138

family. They also suggest an association between Oscillospirales and

Methanobacteriaceae when the relative abundance of the glycolysis IV

metabolic pathway is low. Samples in group A were mainly from the

ETF enterotype, with 51 % of samples belonging to this enterotype

and only 14 % to the ETB enterotype. This was significantly divergent

from the proportions in the whole dataset where 28, 32, and 40 % of

samples were from the ETB, ETP, and ETF enterotypes respectively

(χ2-test, χ2 = 434.1, df = 6 and p-value < 2.2 · 10−16).

In contrast, a group of samples where Methanobacteriaceae were not

detected (98 % absent), were characterized by lower abundances of all

important taxa and, to a certain extent, higher relative abundances of

the glycolysis IV metabolic pathway (Figure 4.6, group D). This group

mostly comprised samples of the ETB enterotype (60 % ETB versus

23 % ETF and 14 % ETP), and a majority of ETB samples belonged to

this group (54 % of them). Furthermore, westernized individuals were

over-represented in group D, accounting for 96 % of samples.

The k-mean algorithm also distinguished a second group of samples

where Methanobacteriaceae were not detected (Figure 4.6, group C,

97 % of samples without Methanobacteriaceae). Similarly, this group

was characterized by lower relative abundances of the most important
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taxa and higher relative abundances of the glycolysis IV pathway. How-

ever, the Holdemanella genus was not specifically at lower abundances

as in group D. Furthermore, both the enterotype and westernized dis-

tributions were reflective of those in the whole dataset (25 % ETB, 34 %

ETF, and 41 % ETP in group C versus 28, 32, and 40 % respectively

in the dataset; and 73 % westernized samples in group C versus 77 %

in the population).

A last group of samples where methanogens had not been detected

was heterogeneous, presenting either none of or a mix of the aforemen-

tioned relative abundance patterns (Figure 4.6, group B). Despite the

non-detection of methanogens in samples of group B, 235 of them pre-

sented the same patterns as samples in group A, with higher relative

abundances of members of the CAG-138 family and Oscillospirales or-

der. Samples that displayed mixed patterns were disparately enriched

in certain important taxa and depleted in others.

Finally, no prediction could be made on samples that were not part

of any decision support (in total 146 samples could not be predicted

by the stable decision ensemble, 121 without methanogens belonging

to group B and 35 with methanogens belonging to group A). These

samples were mostly from the ETP enterotype (60 and 52 % of samples

where Methanobacteriaceae were detected or not, respectively, detected

were ETP), and those with methanogens comprised more ETF than

ETB enterotypes (respectively, 26 and 14 %), while samples without

methanogens comprised slightly more ETB than ETF (respectively, 28

and 20 %).

4.4 Discussion

In this chapter, I investigated a large dataset of gut microbiomes sam-

pled worldwide to identify patterns of bacterial markers associated
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Figure 4.6: Clustering of samples according to predictions of
the presence of Methanobacteriaceae by the stable decision
ensemble. Samples were clustered in four groups using k-means based on

the presence of methanogens (Truth) and predictions by the stable decision

ensemble (heatmap). Groups are labelled A-D. Decisions are displayed by

a matrix (left), where each feature used is colored by its relative abundance

(RA), e.g., the bottom decision is low RA of CAG-138 and Oscillospirales.

Members of the Oscillospirales order and CAG-138 family are grouped for

concision.

with methanogens. Metagenomes were used to predict the presence

of Methanobacteriaceae with relative abundances of bacteria, described

by several taxonomic levels to consider specialized and general inter-

actions, and metabolic pathways. Information on sampled individuals

and original studies part of the meta-analysis were also included to

correct for covariates.

A taxa-aware FS step showed that methanogens’ presence is not as-

sociated with either age, gender, or BMI in the broad population stud-

ied. Previous reports of correlations between M. smithii , and age [233,

28, 245, 154] or BMI [144, 9, 157, 80, 201, 106, 28, 150, 249, 228] may
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be population-specific, or false positives due to confounding factors or

utilization of inadequate methods. However, with reference to the as-

sociation between age and methanogens, it must be noted that only

adults and elders were included in the present analysis, preventing pos-

sible comparison with other stages of life, i.e., infants, children, and

teenagers.

Processing of the final predictive model with endoR highlighted the

importance of combinations of certain bacterial families and of the gly-

colysis IV pathway to predict the presence of Methanobacteriaceae.

In particular, my results showed that the Phil-1 genus and its family,

the CAG-138, Christensenellales order, were the most important taxa

associated with methanogens. The Christensenellaceae family, order

Christensenellales, was the first family of the order to be described

and, to date, is the only family to comprise isolates. It has also been

repeatedly associated with M. smithii [80, 94, 230, 114]. Therefore, my

findings suggest that at a broader population scale, the CAG-138 family

is more strongly associated with methanogens than Christensenellaceae

are. Moreover, since CAG-138 relative abundances were not included in

early studies, Christensenellaceae relative abundances may have been

proxies for CAG-138 abundances, hence confounding associations.

Multiple members of the Oscillospiraceae family, the CAG-382 and

CAG-272 families, order Oscillospirales, were used to predict the pres-

ence of Methanobacteriaceae. An in-depth study of the genome of

the co-abundance gene group CAG-83, Oscillospiraceae family, pre-

dicted it to be a glycan-degrading bacterium likely to produce bu-

tyrate and a slow grower [83]. Members of the Oscillospirales order

may thus produce H2 during fermentation and consequently, be in-

volved in a syntrophic relationship with methanogens in gut micro-

biomes. In addition, M. smithii , the most abundant and prevalent

Methanobacteriaceae in human guts, is also a slow grower associated
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with slow transits [121, 238]. Thus, the methanogen may share niche

preferences with members of the Oscillospiraceae family, which are

associated with slow transits due to their long-predicted replication

time [232, 83].

Microbial patterns associated with colonization of gut microbiomes

by methanogens were identified by visualizing decisions and predic-

tions across samples. Relative abundances of important taxa identified

by endoR formed a gradient. At one end, all taxa were at high rela-

tive abundances and Methanobacteriaceae were detected in all sam-

ples, ranging to the other end, where all relative abundances were

low and methanogens were detected in none of the samples. Con-

versely, relative abundances of the glycolysis IV pathway were low or

high in samples with or without Methanobacteriaceae, respectively. Al-

though not included in decisions and weakly supported by their within-

group variance, enterotypes largely followed this gradient. The ETF

group was over-represented among samples with Methanobacteriaceae,

while the ETB enterotype was over-represented among samples with-

out methanogens. Since the vast majority of the identified important

taxa belonged to the Firmicutes phylum, the enterotype landscape may

follow the gut colonization gradient by Methanobacteriaceae due to the

association of some Firmicutes with Methanobacteriaceae. Despite the

number of studies that reported an enrichment in methanogens in the

guts of non-westernized populations [170, 147, 42], my analysis did

not confirm these findings. Nonetheless, samples depleted in taxa as-

sociated with Methanobacteriaceae were found to be predominantly

westernized. Notably, across the three groups of samples where no

Methanobacteriaceae were detected, the group comprising almost only

westernized samples was characterized by lower relative abundances of

the Holdemanella genus, from the Erysipelotrichales family and Bacilli

class, compared with samples of the two other groups.
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Finally, results supported the importance of bacterial taxa over

metabolic pathways and host characteristics for the colonization of guts

by Methanobacteriaceae. This indicates that metabolic pathways sup-

porting methanogens’ growth may be ubiquitous in human guts and

that at a large population scale, host characteristics may not be con-

founded with microbiome composition. Furthermore, specific interac-

tions between methanogens and identified taxa must occur consistently

across individuals worldwide, as shown by individuals of all countries

being mixed along the gradient.

A number of samples showed mixed patterns or could not be pre-

dicted by the decision ensemble. Additional or alternative factors must

influence the colonization of guts by Methanobacteriaceae in those in-

dividuals. The RF model may not have captured them due to a lower

representation of such samples in the dataset or a lack of information,

e.g., specific diets. For example, consumption of raw milk by children

has been hypothesized to be a source of M. smithii , resulting in higher

relative abundances of methanogens [231]. Additional host information

could help characterize microbial environments favoring the coloniza-

tion of humans by Methanobacteriaceae in the future.

Collectively, these results give evidence for the complex interactions

that occur in the human gut, here resulting in varying occurrences

of methanogens. They additionally highlight the value of large-scale

analyses to disentangle host characteristics from microbiome compo-

sition. For instance, several studies have reported associations be-

tween M. smithii and host BMI, including anorexia [144, 9], lean-

ness [157, 80, 201, 106, 28], and obesity [150, 249, 228]. They addition-

ally suggested that mediating methanogens’ relative abundance in hu-

mans may alleviate such phenotypes [28, 148]. As shown by my results

on a large population, BMI is not associated with Methanobacteriaceae.

Even though methanogens may be markers of host phenotypes, the bac-
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teria with which they interact are the most likely to affect the host, and

methanogen’s abundances may have been confounded in the studied

populations with bacteria truly associated with BMI. Furthermore, to

correctly investigate microbiomes, associations must be identified us-

ing appropriate methods, therefore without classical statistical analysis

such as Spearman’s correlation, and by extracting as much information

from analyses as possible. This will better support experimental de-

signs aiming to characterize underlying relationships in a second step.

EndoR enables to overcome the low interpretability of tree ensemble

models, as here illustrated with predictions of Methanobacteriaceae’s

presence. This interpretation method can be applied to various prob-

lems to enhance our understanding of human gut microbiomes.
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Chapter 5

Syntrophy via interspecies
H2-transfer between
Christensenella spp. and
Methanobrevibacter smithii

The aim of this chapter is to provide evidence for the biological rel-

evance of my meta-analysis of metagenomes. This will be illustrated

through the example of the M. smithii - Christensenellaceae relation-

ship, which has previously been suggested as a result of sequence data

analysis [80, 94, 230, 114], and that is in line with my finding of

an association between M. smithii and the CAG-138 family, order

Christensenellales, for which no isolate is available. Microscopy im-

ages, and gas and SCFA concentrations acquired during the course

of co-culture experiments of the methanogen with members of the

Christensenellaceae family will be contrasted with results from co-

cultures of the methanogen with Bacteroides thetaiotaomicron, an H2-

producer ubiquitous to human guts but non-associated with M. smithii.

Parts of this chapter were originally published in Ruaud and

Esquivel-Elizondo, 2020 [194]. The following text was adapted from

the original manuscript for this dissertation. I conducted all exper-
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iments in collaboration with Dr Sofia Esquivel-Elizondo (i.e., experi-

mental design, making of experiments, data acquisition), data analysis

and making of figures was done by me alone. All author contributions

relevant to this chapter are detailed in Appendix C, Table C.1.

5.1 Introduction

Several studies have reported a correlation between M. smithii and

the Christensenellaceae family, order Christensenellales, in the human

gut [80, 94, 230, 114]. These bacteria are of particular interest for hu-

mans as they have been consistently associated with leanness, though

the underlying mechanisms remain unknown [80, 94, 41, 74, 81]. More-

over, both the bacteria and the methanogen are heritable taxa, mean-

ing that the host genetics explains a small but significant part of their

relative abundance in the gut microbiome [80, 81, 229, 130, 19].

Christensenellaceae have only recently been described [159] and no

more than five species, all from the Christensenella genus, have been

isolated to date [159, 163, 164, 127, 132]. Nonetheless, many MAGs

have been assembled in the last few years, such that the family now

comprises 17 genera referenced in the GTDB genome database [175]

(accessed on April 17th, 2021). Given that the cultured representatives

of Christensenellaceae ferment simple sugars [159, 127] and that their

genomes contain hydrogenases [192], it is likely that they produce H2.

Their association with M. smithii could thus be due to the utilization

by the archaea of the bacterial H2 as a substrate for methanogenesis.

Understanding how the methanogen interacts with members of the

Christensenellaceae family would not only provide support to sequence-

based findings, but would also provide insight into the mechanisms by

which Methanobacteriaceae are associated with host phenotypes.

I explored the association between Christensenella spp. and
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M. smithii via co-culture experiments. To accomplish this, i) gas pro-

duction and consumption, as well as SCFA production, were compared

between mono- and co-cultures to estimate gas flows and bacterial fer-

mentation changes, and ii) imaging via confocal and scanning electron

(SEM) microscopy was performed to assess physical interaction be-

tween microorganisms. Due to the culture fastidousness of M. smithii,

experiments focused on Christensenella minuta, the most abundant

cultured Christensenella in human guts. Experiments were then ex-

tended to Christensenella timonensis and Christensenella massiliensis.

Moreover, the strength of the association was assessed by comparing co-

cultures of M. smithii and C. minuta with co-cultures of M. smithii and

Bacteroides thetaiotaomicron. The methanogen can grow in the lab-

oratory from the H2 provided by B. thetaiotaomicron [227, 113, 169],

a common gut commensal never found associated with M. smithii in

the human gut. This bacterium is thus a good control to compare

how non-associated versus associated bacteria support the archaeon

in co-cultures. Results showed that Christensenella spp. outperform

B. thetaiotaomicron in supporting the growth of M. smithii via in-

terspecies H2-transfer. In addition, M. smithii directed the metabolic

output of Christensenella spp. towards less butyrate and more ac-

etate. In summary, this work demonstrates that the association be-

tween Christensenellaceae and M. smithii , repeatedly detected from

metagenome data analysis, is most likely due to efficient H2-transfer

favoring gut colonization by the methanogen.

5.2 Methods

5.2.1 Culturing of methanogens and bacteria

M. smithii DSM-861, C. minuta DSM-22607, C. massiliensis DSM-

102344, C. timonensis DSM-102800, and B. thetaiotaomicron VPI-
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5482 were obtained from the German Collection of Microorganisms

and Cell Cultures (DSMZ; Braunschweig, Germany). Each culture was

thawed and inoculated into Brain Heart Infusion (BHI) medium (Carl

Roth, Karlsruhe, Germany) supplemented with yeast extract (5 g/L),

reduced with L-Cysteine-HCl (0.5 g/L) and Ti-NTA III (0.3 mM),

and buffered with sodium bicarbonate (42 mM, pH 7, adjusted with

HCl 6 M). 10 mL cultures were grown at 37 ◦C without shaking in

Balch tubes (total volume of 28 mL) under a headspace of N2:CO2

(80:20 % v/v) in the case of the bacteria, and H2:CO2 (80:20 % v/v,

pressure adjusted to 2 bar) for M. smithii. When initial cultures reached

exponential growth, and before floc formation, they were transferred

into fresh medium and these transfers were used as inocula for the

experiments described below.

5.2.2 Co-culture conditions

M. smithii was co-cultured with C. minuta, B. thetaiotaomicron,

C. massiliensis, or C. timonensis, and in parallel, each microorganism

was grown in mono-culture (Table 5.1). Prior to inoculation, one-day

old cultures of bacterial species, or four-day old cultures of M. smithii,

were adjusted to an OD600 of 0.01 with sterile medium. For the co-

cultures, 0.5 mL of each adjusted culture were inoculated into 9 mL

of fresh medium. For the mono-cultures, 0.5 mL of the adjusted cul-

ture and 0.5 mL of sterile medium were combined as inoculum. For

negative controls, sterile medium was transferred as a mock inoculum.

Headspaces were exchanged with 80:20 % (v/v) of N2:CO2 or H2:CO2

and pressurized at 2 bar or atmospheric pressure (i.e., 0.98 bar, Ta-

ble 5.1). Each batch of experiments was carried out once with 3 bio-

logical replicates per culture conditions (Table 5.1).
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5.2.3 Imaging

For confocal microscopy, SYBR ® Green I staining was performed

as previously described [125] with the modifications detailed in Ap-

pendix C, Additional methods. Imaging by confocal microscopy (LSM

780 NLO, Zeiss) was used to detect the autofluorescence emission of

coenzyme F420 of M. smithii and the emission of SYBR® Green I (Ap-

pendix C, Additional methods). Images were acquired with the ZEN

Black 2.3 SP1 software and processed with FIJI [199]. Micrographs

are representative of all replicate cultures within each experimental

batch. The preparation of samples for scanning electron microscopy is

described in Appendix C, Additional methods. Cells were examined

by Jürgen Berger (Electron microscopy facility, Max Planck Institute

for Developmental Biology) with a field emission scanning electron mi-

croscope (Regulus 8230, Hitachi High Technologies, Tokyo, JPN) at an

accelerating voltage of 10 kV.

5.2.4 Gas and SCFA measurements

Headspace concentrations of H2, CO2, and CH4 were measured with

a gas chromatograph (GC) (SRI 8610C; SRI Instruments, Torrence,

USA) equipped with a packed column at 42 ◦C (0.3-m HaySep-D packed

Teflon; Restek, Bellefonte, USA), a thermal conductivity detector

(TCD) at 111 ◦C, and a flame ionization detector. The gas production

and consumption were estimated from the total pressure in the vials

(ECO2 manometer; Keller, Jestetten, Germany) and the gas concentra-

tions in the headspace using the ideal gas equation. The concentrations

are given in mMol of gas in the headspace per liter of culture.

SCFA measurements were performed with liquid samples (0.5 mL)

filtered through 0.2 µm pore size polyvinylidene fluoride filters (Carl

Roth, GmbH, Karlsruhe, GER). SCFA concentrations were measured
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with a CBM-20A high performance liquid chromatography (HPLC)

system equipped with an Aminex HPX- 87P column (300 x 7.8 mM,

BioRad, California, USA), maintained at 60 ◦C, and a refractive in-

dex detector. A sulfuric acid solution (5 mM) was used as eluent at

a flow rate of 0.6 mL.min-1 (40 bar column pressure). Calibration

curves for acetate and butyrate were prepared from 1.25 to 50 mM

using acetic acid and butyric acid, respectively (Merck KGaA, Darm-

stadt, Germany). No other fatty acids were detected (Appendix C,

Additional methods). The SCFA concentrations were estimated with

the Shimadzu LabSolutions software.

5.2.5 Statistical analyses

I used Wilcoxon rank sum tests to compare gas production between

cultures after 6 days of growth. When more than one culture condi-

tion (i.e., headspace composition and pressure,, in mono- or co-culture,

Table 5.1) was included in the comparison, I instead performed an

ANOVA followed by Tukey’s post-hoc test to discriminate between the

effects of the different conditions.

SCFA concentrations were compared using a two-way ANOVA such

that the culture conditions (i.e., headspace composition and pressure,

Table 5.1) and the sample (mono- or co-culture) were evaluated to ex-

plain the variance of butyrate and acetate concentrations after 6 days of

growth. p-values were adjusted using the Benjamini-Hochberg method.

A Tukey’s post-hoc test was performed to discriminate between the ef-

fects of the different conditions. All statistical analyses were done in R

using the stats R package.

117



5.2.6 Comparison of expected (theoretical) versus measured

CH4 production in co-cultures

We used the stoichiometry of hydrogenotrophic methanogenesis:

CO2+4H2=CH4+2H2O, to calculate the amount of CH4 that could be

produced from the estimated amount of H2 consumed in each sample

(Table 5.2). For this, we used the mono-cultures of bacteria as refer-

ences and assumed H2 production in co-culture was equivalent to that

in mono-culture. We estimated the H2 consumed after 6 days for each

replicate as the difference between the averaged H2 concentrations in

mono-cultures and the concentration measured in co-culture (i.e., un-

consumed H2). The estimated H2 consumed was then divided by 4 in

order to obtain the theoretical amount of CH4 that could have been

produced via hydrogenotrophic methanogenesis.

5.3 Results

5.3.1 M. smithii consumes the H2 produced by C. minuta

To validate our hypothesis that Christensenellaceae produce H2 which

M. smithii can grow on, we tracked gas concentrations in mono- and

co-cultures of the methanogen with C. minuta, the most abundant

Christensenellaceae in the human gut, and B. thetaiotaomicron, a com-

mensal H2-producer of the human gut [227, 113, 169].

M. smithii did not grow in mono-culture when no H2 was supplied

(80:20 % v/v N2:CO2 headspace, Figure 5.1 b), but did when it was pro-

vided in excess (i.e., 80:20 % v/v H2:CO2 atmosphere at 2 bars). After

6 days, the methanogen had produced on average 9.0 ± 1.0 mmol.L-1

of CH4 (Figure 5.1 b and Figure C.1 b). C. minuta had produced

on average 7 times more H2 than B. thetaiotaomicron in mono-culture

(after 6 days, H2 concentrations were 14.2 ± 1.6 mmol.L-1 versus 2.0

± 0.0 mmol.L-1, Figure 5.1 a and d and Figure C.1 a; Wilcoxon rank
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sum test, p-value = 0.1). Accordingly, M. smithii in co-culture with

C. minuta outgrew the co-culture with B. thetaiotaomicron (respec-

tively 5.8 ± 0.5 mmol.L-1 and 1.1 ± 0.0 mmol.L-1 of CH4 measured;

Wilcoxon rank sum test, p-value = 0.1; Figure 5.1 c and e and Fig-

ure C.1 b). The methanogen consumed most H2 from bacterial fermen-

tation, as shown by the very low H2 concentrations in co-culture (on

average across all time points and replicates, H2 concentrations were 0.5

± 0.6 mmol.L-1 in co-cultures with C. minuta, and 0.1 ± 0.1 mmol.L-1

with B. thetaiotaomicron; Figure 5.1 c and e and Figure C.1 a).

Figure 5.1: Gas concentrations over time in mono- and co-
cultures of M. smithii , C. minuta, and B. thetaiotaomicron
grown under different conditions. Average of the 3 biological repli-

cates for each condition (points), and minimal and maximal values (red bars).

In conditions where H2 was provided in excess (H2 - 2 bar and H2 - atm,

headspace initially composed of 80:20 % H2:CO2), its concentrations are not

shown for scale reasons. Initial concentrations of H2 in conditions where it

was not provided in the headspace were undetectable (N2 - 2 bar and N2 -

atm, headspace initially composed of 80:20 % N2:CO2) and stayed null in

the mono-cultures of M. smithii (not shown). CH4 concentrations in the

bacterial mono-cultures were undetectable and are not shown as well. Panels

a-c share the same y-scale, as do panels d-e.

Gas solubility increases with pressure as described by Henry’s law.

Consequently, gas consuming microorganisms are predicted to grow

better in a pressurized environment [55, 12]. We tested whether

C. minuta would similarly support the growth of M. smithii even
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at lower pressure, i.e., starting at atmospheric pressure (0.98 bar) in-

stead of 2 bar, the recommended pressure to grow M. smithii [12, 93,

55]. H2 production was higher in mono-cultures of C. minuta at at-

mospheric pressure compared to 2 bar (respectively 17.28±1.12 and

14.15±1.56), supporting M. smithii ’s growth to a similar extent in co-

culture (ANOVA followed by Tukey’s post-hoc test, adjusted p-value

= 1.0; Figure 5.1 c, Figure C.1 b).

5.3.2 M. smithii colonizes flocs formed by C. minuta

A striking phenotype observed from cultures containing C. minuta was

the formation of a biofilm visible with the naked eye from 3 days of

growth (Figure 5.2 a and g). We therefore imaged cultures with con-

focal microscopy and SEM between 3 to 7 days after inoculation (Fig-

ure 5.2 and Figure 5.3).

C. minuta’s flocs were colonized by M. smithii at least as early as 3

days post-inoculation (Figure 5.3 a,b and d, and Figure 5.2 a-c and g-j).

M. smithii did not aggregate in mono-culture before 7 to 10 days (data

not shown). In comparison, B. thetaiotaomicron did not flocculate

when grown alone (Figure 5.3 c) and displayed very limited aggregation

when co-cultured with M. smithii (Figure 5.3 e, Figure 5.2 k-n).

As Fick’s law of diffusion states that the flux of a metabolite be-

tween two microorganisms is directly proportional to the concentration

gradient and inversely proportional to the distance [212, 208], we hy-

pothesized that the aggregation of M. smithii and C. minuta facilitates

H2-transfer between the methanogen and the bacterium. We hence ex-

amined whether M. smithii joins C. minuta’s flocs if provided with H2

in excess in the headspace at high pressure (i.e., 80:20 % v/v H2:CO2

atmosphere at 2 bars). In such conditions, the methanogen does not

depend on the bacterium as an H2 source. M. smithii aggregated with

C. minuta (Figure 5.3 f-g) and CH4 production was even higher than in
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Figure 5.2: Scanning electron micrographs of the cultures at
3-7 days of growth. a, d, g and k: Representative Balch tubes of cultures

of C. minuta (Cm), M. smithii (Ms), C. minuta and M. smithii (Cm/Ms),

and B. thetaiotaomicron and M. smithii (Bt/Ms) after 7 days of growth. In

panel g, the floc formed by Cm/Ms is indicated with an arrow; b-c: Scanning

electron micrographs (SEMs) of mono-cultures of C. minuta at 5 days of

growth; e-f: SEMs of mono-cultures M. smithii at 5 days of growth; h-j:

SEMs of co-cultures of C. minuta and M. smithii at 7, 5 and 2 days of

growth respectively; l-n: SEMs of co-cultures of B. thetaiotaomicron and

M. smithii at 7 days of growth. Arrows indicate M. smithii cells. Metal bars

on a, d and j are from the tube rack.

mono-culture under the same condition, reaching 14.2 ± 5.3 mmol.L-1

in co-culture versus 9.0 ± 1.0 mmol.L-1 in mono-culture after 6 days

(ANOVA followed by Tukey’s post-hoc test, adjusted p-value = 0.1,

Figure 5.1 b and c). This indicates that interspecies H2-transfer occurs

even when H2 is added to the headspace and that it boosts methano-

genesis rather than solely uptaking H2 provided in the headspace.

Note C. minuta and M. smithii also aggregated at atmospheric

pressure (Figure 5.3 h-i).
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Figure 5.3: Confocal micrographs of mono- and co-cultures
of M. smithii, C. minuta, and B. thetaiotaomicron at 3 days
of growth. a-e: cultures from Batch 1 (Table 5.1); SYBR® Green I

fluorescence (DNA staining) is shown in red and M. smithii ’s coenzyme F420

autofluorescence is shown in blue; based on gases production, at 3 days of

growth, B. thetaiotaomicron was already at stationary phase (explaining the

elongated cells), C. minuta was at the end of the exponential phase and

M. smithii was still in exponential phase.

f-i: co-cultures from Batches 2 and 3 (Table 5.1) with culture condition

indicated on the left.

Scale bars represent 10 µm.

5.3.3 M. smithii influences the SCFA production of

C. minuta

We assessed whether bacterial fermentation was modified in co-cultures

due to M. smithii. To achieve this, we compared the SCFA concen-

trations between C. minuta’s mono-cultures and co-cultures with the

methanogen (i.e., cultures at 2 bar or atmospheric pressure with an

80:20 % v/v N2:CO2 or H2:CO2 headspace, Table 5.1). Under all

tested conditions, acetate and butyrate were the only SCFAs produced

by C. minuta (among 10 short and medium chain fatty acids screened,

Appendix C, Additional methods) and we thus focused our analyses on

them.
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Butyrate was consistently measured at lower concentrations in co-

cultures compared to mono-cultures, with an average difference of con-

centrations of 1.1 ± 0.24 mmol.L-1 after 6 days (Figure 5.4 a-c, Fig-

ure C.1 c and Table 5.2; ANOVA, F-value(1) = 161.461 and adjusted p-

value = 7.7x10-8). The interaction factor between the mono/co-culture

conditions and the growth condition was not significantly correlated to

butyrate concentrations (ANOVA, F-value(2) = 0.862, adjusted p-value

= 0.4). Therefore, butyrate production was inhibited in co-cultures

regardless of pressure and headspace composition, meaning that the

methanogen’s presence steadily inhibited C. minuta’s fermentation to

butyrate.

In addition, acetate production slightly but significantly increased in

co-cultures compared to mono-cultures (Figure 5.4 d-f and Figure C.1 d;

ANOVA, F-value(1) = 317.41 and adjusted p-value = 3.2x10-9). After 6

days, differences in acetate concentrations ranged from +0.7 mmol.L-1

at 2 bar under an H2:CO2 (80:20 % v/v) atmosphere to +2.2 mmol.L-1

at atmospheric pressure under an N2:CO2 (80:20 % v/v) atmosphere.

These differences significantly varied with the headspace and pressure

conditions (the interaction term between the mono/co-culture and the

growth condition was significantly correlated to acetate production;

ANOVA, F-value(2) = 29.09 and adjusted p-value = 3.0x10-5). The

effect of M. smithii on acetate production was thus larger at lower

pressure, when H2 solubility is predicted to be lower and therefore the

gas will be present at lower concentrations in the liquid growth media.

5.3.4 M. smithii produces more CH4 than predicted in

theory in co-culture with C. minuta

We observed more CH4 than expected in co-cultures of M. smithii with

C. minuta (Figure 5.1 a-c). The expected quantity of CH4 in co-culture

was calculated by assuming equal H2 production from C. minuta in
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Figure 5.4: SCFA concentrations over time in mono- and co-
cultures of C. minuta and M. smithii grown under different
conditions. Short chain fatty acids over time in cultures from batches 1-3

(see Table 5.1). a-c: butyrate concentrations; d-f: acetate concentrations.

Only these SCFA were detected among the fatty acids tested (fatty acids

from C1 to C8, iso-valerate and iso-butyrate). Points represent the average

of the 3 biological replicates for each condition, and red bars join the minimal

and maximal values. Mono-cultures of M. smithii are not shown as they did

not differ from the blanks (negative controls).

both mono- and co-cultures (Table 5.2). This suggests that the bac-

terium outproduced methanogenesis substrates in the presence of the

methanogen. Since the production of acetate yields more H2 than bu-

tyrate production [196, 138], the additional CH4 observed could origi-

nate from the shift in metabolism from butyrate to acetate production

by C. minuta in co-culture, which would have led to higher H2 yields

for the methanogen.
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5.3.5 C. massiliensis and C. timonensis, other members of

the Christensenellaceae family, support the growth of M. smithii

We further investigated the association between Christensenellaceae

and M. smithii by replicating our co-culture experiments with

Christensenella massiliensis and Christensenella timonensis at atmo-

spheric pressure. C. timonensis had a slower metabolism such that

cultures would reach stationary phase after 7 days of growth (Fig-

ure 5.5 d, g, i). Nonetheless, for consistency with experiments with

C. minuta and B. thetaiotaomicron, we stopped the experiments after

7 days (Appendix C, Figure C.1).

Figure 5.5: Gas and SCFA concentrations in mono- and co-
cultures of C. massiliensis and C. timonensis with M. smithii.
a-e: H2 (orange) and CH4 (blue) concentrations in the headspace in cultures

from batch 4 (see Table 5.1); f-g: butyrate and h-i: acetate concentrations in

these cultures. Points represent the average of 3 biological replicates, and red

bars join the minimal and maximal values. In the mono-cultures of M. smithii

(b) where H2 was provided in excess (condition H2 - atm, headspace initially

composed of 80:20 % H2:CO2), its concentrations are not shown for scale

reasons.
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C. massiliensis and C. timonensis produced H2 in smaller quantities

than C. minuta (concentrations in mono-cultures after 6 days of growth

were 6.9 ± 0.5 mmol.L-1 for C. massiliensis and 0.6 ± 0.1 mmol.L-1

for C. timonensis, Figure 5.5 a,d and Figure C.1 a). The H2 was all

consumed by M. smithii in co-cultures with C. massiliensis and 4.0

± 0.2 mmol.L-1 of CH4 were accordingly produced (Figure 5.5 c and

Figure C.1 b). In co-cultures with C. timonensis, the methanogen

did not uniformly consumed H2 across replicates, such that it was all

consumed in certain but not all across the course of the experiment

(Figure 5.5 e; 1.5 ± 0.3 mmol.L-1 of CH4 had been produced after 6

days, Figure C.1 b). Furthermore, C. massiliensis and C. timonensis

formed smaller flocs than C. minuta (even if left to grow for longer

periods than 7 days), which M. smithii colonized (Figure 5.6).

Figure 5.6: Confocal imaging of C. massiliensis and
C. timonensis in mono- and co-cultures with M. smithii. Con-

focal micrographs after 5 days of growth of a: C. massiliensis, b: M. smithii

and C. massiliensis in co-culture, c: C. timonensis, d-e: M. smithii and

C. timonensis in co-culture. SYBR® Green I fluorescence (DNA staining)

is shown in red and, M. smithii ’s coenzyme F420 autofluorescence is shown

in blue. Scale bars represent 10 µm.

Similar to our observations with C. minuta, butyrate production

was reduced in co-cultures of C. massiliensis and C. timonensis with

M. smithii compared with bacterial mono-cultures (Wilcoxon rank sum

test, p-values = 0.33 for C. massiliensis and 0.5 for C. timonensis;

Figure 5.5 f,g and Figure C.1 c). Butyrate was in fact barely de-

tectable in co-cultures: production dropped from 0.93 ± 0.06 mmol.L-1
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and 1.10 ± 0.00 mmol.L-1 in mono-cultures of C. massiliensis and

C. timonensis respectively after 6 days, to 0.20 ± 0.14 mmol.L-1 and

0.13 ± 0.15 mmol.L-1 in co-cultures. Contrasting with the co-cultures

of M. smithii and C. minuta, no significant change in acetate concen-

trations were observed for C. massiliensis and C. timonensis (Wilcoxon

rank sum tests, p-values = 0.2 and 0.8 respectively; Figure 5.5 h,i and

Figure C.1 d).

5.4 Discussion

We explored in vitro the association previously identified from hu-

man gut sequence data between Christensenellaceae and M. smithii.

B. thetaiotaomicron was elected as a control for our experiments as it

is used as a H2 provider to M. smithii in labs [113, 227, 169] but has

never been reported to correlate with the methanogen in human guts.

Our results showed that Christensenella spp. produce H2 that sup-

ports the growth of M. smithii in co-cultures. C. minuta produced

copious amounts of H2 enabling M. smithii to grow as well in co-

culture with this bacterium as in mono-cultures with an excess of

H2. Although C. timonensis produced less H2 at atmospheric pres-

sure than B. thetaiotaomicron at 2 bar, in co-cultures we measured

higher CH4 concentrations with C. timonensis than with B. thetaio-

taomicron. Furthermore, in co-cultures with C. minuta, we observed

a greater CH4 production than expected from bacterial H2 production

in mono-cultures. Finally, Christensenella spp. formed flocs in mono-

cultures that M. smithii colonized in co-cultures. Strikingly, flocs from

C. minuta were visible with the naked eye. Taken together, these re-

sults suggest that C. minuta, C. massiliensis, and C. timonensis out-

perform B. thetaiotaomicron at supporting M. smithii ’s metabolism via

interspecies H2-transfer. Gas transfer in co-cultures with
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Christensenella spp. may be facilitated by close contact within mixed

aggregates, to the benefit of the methanogen. In these flocs, the dis-

tance between the H2-producer and consumer is reduced to a mini-

mum, therefore optimizing the flux from one to the other as predicted

by Fick’s law of diffusion [212, 208].

Consistent with the assumption that M. smithii affects bacterial fer-

mentation through H2 consumption, we abserved a change in bacterial

SCFA concentrations in co-cultures compared with mono-cultures of

C. minuta, C. massiliensis, and C. timonensis. First, butyrate produc-

tion was inhibited for all three species under all conditions in the pres-

ence of M. smithii. Second, acetate production was altered to different

extents: while it was significantly enhanced for C. minuta and mildly

increased for C. massiliensis, no change was evident for C. timonensis.

This indicates that the mechanisms by which M. smithii influences

bacterial fermentation are consistent across Christensenella spp. for

butyrate production, but are species specific for acetate. The fermen-

tation of distinct bacteria has also been reported to be affected differ-

ently by the methanogen in co-cultures [195, 30]. For instance, when the

H2-producing ruminal bacteria Ruminoccocus albus and Ruminococcus

flavefaciens are grown on cellulose with the methanogen and compared

with mono-cultures, the fermentation of R. albus remains unaltered,

while an increase in acetate production occurs for Ruminococcus flave-

faciens. Our findings related to on Christensenella spp.’s metabolism

are therefore in line with previous findings.

Based on the theoretical quantities of CH4 that could have been

produced from the H2 measured in bacterial monno-cultures, unexpect-

edly high concentrations were measured in co-cultures of M. smithii

with C. minuta. This suggests that C. minuta produced additional

substrate for M. smithii ’s methanogenesis. This substrate could be

H2 or formate, or may correspond to direct electron transfer between
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the two microorganisms. We were unable to confirm boosted H2 pro-

duction based on our experiments as the gas was all consumed in co-

cultures. Although here I could not detect formate in the supernatant

of C. minuta’s mono-cultures nor co-cultures, it cannot be excluded as

a potential substrate. The genome of the bacterium has been predicted

to carry the gene encoding the pyruvate formate lyase, the enzyme that

catalyzes the conversion of pyruvate into acetyl-CoA and formate [192],

and formate was recently measured in mono-cultures of C. minuta

grown on glucose [253]. Interspecies formate transfer can take place

in co-cultures of H2-producers and hydrogenotrophic methanogens ca-

pable of formate utilization such as M. smithii [221, 20], though this is

difficult to quantify since formate is rapidly produced and consumed.

Moreover, a formate-based symbiosis between M. smithii and the rumi-

nal bacterium Fibrobacter succinogenes has been reported: in line with

our observations in co-cultures of M. smithii and C. minuta, acetate

production was enhanced in the co-cultures of M. smithii and F. suc-

cinogenes [195]. Finally, no evidence of direct electron transfer between

M. smithii and bacteria has been reported to date. Nonetheless, since

this phenomenon can occur in microbial aggregates [208], it is also a

potential explanation for the higher metabolism of the methanogen in

co-cultures with C. minuta.

This work demonstrates that members of the Christensenellaceae

act as an H2 source for M. smithii , and that this process is enhanced

via close physical proximity. Such interactions likely underlie the co-

occurrence patterns between the methanogen and Christensenellaceae

in the human gut microbiome. Further experiments better reflecting

the gut environment, e.g., with complex microbial communities or in

continuous growth mode (i.e., with continuous influx and removal of

growth medium and gases), would allow to deepen our understanding

of M. smithii ’s role in the human gut.
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These results support sequence-based analysis studies that have re-

ported these patterns and provide evidence for the biological and prac-

tical relevance of results presented in Chapter 4. They also confirm that

the methanogen mediates bacterial fermentation of gut microorganisms

in various ways, resulting in changes in SCFA that can potentially in-

fluence human phenotypes.
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Discussion and outlook

The human gut microbiome is a complex environment comprising a

myriad of microorganisms interacting together and with their host.

Due to culture limitations, insights from the diversity and function-

ing of microbial components of this environment largely rely on se-

quence data from stool samples. Among others, they have allowed to

characterize archaeal gut diversity [23, 44, 22, 21, 247] and to asso-

ciate the presence of Methanobrevibacter smithii, the most abundant

and prevalent human gut archaeon, with host traits such as constipa-

tion and slow transit [121, 238], non-western diets [170, 147, 42], and

BMI [144, 9, 157, 80, 201, 106, 28, 150, 249, 228]. Since co-culture ex-

periments suggest that M. smithii alters bacterial production of short-

chain fatty acids (SCFA) [30, 195], and given that these fermentation

substrates mediate host metabolism [29, 161, 120, 138, 137, 46], a better

understanding of the ecology of gut methanogens is critical to appreci-

ate their impact on humans.

To perform a reliable bioinformatic analysis, one needs the right

tools. Comparative studies of gut microbiota, for which associations

are inferred between microbes and host traits, lack appropriate work-

flows enabling accurate and comprehensive analyses. While classi-

cal statistical analyses and models produce simple results, they have

been shown to be defective in accuracy [236]. Conversely, tree ensem-

ble machine learning models are accurate but generate complex non-
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intelligible models [225, 115, 116]. A major part of my thesis has been

dedicated to develop endoR, a method for interpreting tree ensemble

models. Thanks to the use of these models, it produces results more

accurate than statistical tests, e.g., Spearman’s coefficient of correla-

tion and χ2 tests, and sparse covariance matrices [70, 124]. Results

from endoR are as accurate as those from other tools for interpreting

tree ensemble models, e.g., SHAP [140]. However, endoR better scales

with high-dimensional data and summarises models into clear figures

from which complex interactions can be deduced. It is readily available

in R, a statistical language broadly used in microbiome science. In the

future, its computation performance could be improved via code opti-

mization in C++, and ideally, the R-package would be translated into

a Python package, the second statistical language utilized for biological

data analysis.

Tree ensemble models coupled with endoR enabled me exploring

associations between human gut methanogens and gut bacterial fea-

tures in a unique analysis. My results confirmed the strong associa-

tion between Methanobacteriaceae and members of the Christensenel-

lales order [80, 94, 230, 114], particularly with the uncultured CAG-

138 family. Furthermore, endoR identified multiple associations be-

tween methanogens and members of the Oscillospiraceae, CAG-382

and CAG-272 families (all from the order Oscillospirales). Similar to

M. smithii , CAG-83, Oscillospiraceae family, has been predicted to

have a slow replication time and be associated with slow transit [83].

The co-occurrence of methanogens with Oscillospirales may thus be

due to shared niche preferences, i.e., guts with slow transits so that the

washout effect is lower and microorganisms can steadily colonize the

environment. Nonetheless, CAG-138 is also predicted to produce bu-

tyrate, a SCFA tightly connected to acetate production which produces

H2 [138]. Additional insights into the metabolism of Oscillospirales are
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required to assess the mechanisms underlying their co-occurrence with

methanogens in human guts. Moreover, as several species and genera

were identified by my analysis, the specific interactions of M. smithii

with these taxa may be explored to elucidate the adaptation poten-

tial of the methanogen to its environment. Finally, an extensive vi-

sualization of endoR outputs allowed me to compare results from the

model with host traits. I could thus define a gradient of bacterial rel-

ative abundances predictive of methanogens’ presence in human guts.

While samples depleted in all taxa were generally from westernized

populations, no clear westernization pattern followed bacterial and

methanogen enrichment on the rest of the gradient. Hence, the absence

of methanogens in westernized populations can be in part explained by

the low relative abundances of Oscillospirales, Christensenellales, the

Holdemanella and Coprococcus, to cite only a few. In non-westernized

populations or westernized individuals not characterized by an ETB

enterotype, other factors may prevent the colonization of human guts

by Methanobacteriaceae when these bacteria are in higher abundances.

The given data and analysis could not determine these factors, prob-

ably due to a lack of data information, e.g., diet, or sample resolu-

tion. Nonetheless, they provide reliable general patterns of bacteria

widely co-occurring with Methanobacteriaceae that should be investi-

gated with culture-based experiments to associate methanogens with

host phenotypes.

I undertook such culture-based experiments to examine the relation-

ship between M. smithii and members of the Christensenellales order.

Among the findings from the meta-analysis was the association between

methanogens and the CAG-138 family, order Christensenellales, which

does not comprise any isolate. Therefore, I conducted experiments

with members of the Christensenellaceae family, order Christensenel-

lales, which have been associated with methanogens in previous stud-
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ies [80, 94, 230, 114]. This family is of particular interest for humans

as it has been repeatedly correlated to leanness [80, 94, 41, 74, 81] and

host genetics [80, 81, 229, 130, 19]. At this point it is important to

mention that CAG-138 has been described in 2017 [209], hence five

years after Christensenellaceae [159]. Associations between the later

and methanogens, that I could not confirm with my meta-analysis, may

thus be due to Christensenellaceae serving as proxy to CAG-138 in early

analyses, or to their association being true in specific populations only.

Nonetheless, my co-culture experiments showed a H2-based syntrophy

between M. smithii and members of the Christensenellaceae family,

particularly strengthened by co-colonization of biofilms. Furthermore,

bacterial fermentation was altered in co-cultures and resulted in con-

sistently lower butyrate production, and higher acetate production for

one of the three tested species. Altogether, these results support find-

ings from the meta-analysis and provide grounds for characterizing how

methanogens may influence host phenotypes through altered bacterial

fermentation.

Altogether, my findings complement the current knowledge on inter-

actions between the human gut methanogen M. smithii and fermenting

bacteria. They support the hypothesis that M. smithii preferentially

interacts with specific H2-producers in the human gut, e.g., members of

the Christensenellales order, as well as a core group of bacteria favoring

its colonization of the gut environment. Syntrophy may underlie the

identified associations, with potential effects on bacterial fermentation

and so, on the human host. In addition, endoR, my method for inter-

preting machine learning models, applies to all sorts of problems being

studied with tree ensemble models. Thus, the application of endoR is

not limited to the microbiome field and will hopefully appear useful

to other researchers investigating complex systems in the future. Fur-

thermore, it could help deciphering host-microbe interactions occurring
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across all human microbiomes. Ultimately, comprehending dynamics

of human microbial inhabitants will allow us to understand how these

microorganisms, accounting for half of our cells [204], affect us and are

part of us.
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[152] N. Meinshausen and P. Bühlmann. High-dimensional graphs and
variable selection with the Lasso. Annals of Statistics, 34(3):
1436–1462, 2006. doi: 10.1214/009053606000000281.
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[201] A. Schwiertz, D. Taras, K. Schäfer, S. Beijer, N. A. Bos, C. Donus,
and P. D. Hardt. Microbiota and SCFA in lean and overweight
healthy subjects. Obesity, 18(1):190–195, 2010. doi: 10.1038/oby.
2009.167.

[202] M. R. Segal. Machine Learning Benchmarks and Random Forest
Regression. Biostatistics, pages 1–14, 2004.

[203] N. Segata, L. Waldron, A. Ballarini, V. Narasimhan, O. Jousson,
and C. Huttenhower. Metagenomic microbial community profil-
ing using unique clade-specific marker genes. Nature Methods, 9
(8):811–814, 8 2012. doi: 10.1038/nmeth.2066.

[204] R. Sender, S. Fuchs, and R. Milo. Revised Estimates for the
Number of Human and Bacteria Cells in the Body. PLOS Biology,
14(8):e1002533, 8 2016. doi: 10.1371/journal.pbio.1002533.

[205] R. D. Shah and N. Meinshausen. Random intersection trees.
Journal of Machine Learning Research, 15:629–654, 2014.

[206] B. J. Shapiro, J. B. Leducq, and J. Mallet. What Is Specia-
tion? PLoS Genetics, 12(3):1–14, 2016. doi: 10.1371/journal.
pgen.1005860.

[207] L. S. Shapley. A Value for n-Person Games. In Contributions to
the Theory of Games (AM-28), Volume II, pages 307–318. Prince-
ton University Press, 12 1953. doi: 10.1515/9781400881970-018.

165

https://cran.r-project.org/package=clustermq
https://cran.r-project.org/package=clustermq


[208] L. Shen, Q. Zhao, X. Wu, X. Li, Q. Li, and Y. Wang. Inter-
species electron transfer in syntrophic methanogenic consortia:
From cultures to bioreactors. Renewable and Sustainable Energy
Reviews, 54:1358–1367, 2015. doi: 10.1016/j.rser.2015.10.102.

[209] M. E. Shiffman, R. M. Soo, P. G. Dennis, M. Morrison, G. W.
Tyson, and P. Hugenholtz. Gene and genome-centric analyses
of koala and wombat fecal microbiomes point to metabolic spe-
cialization for Eucalyptus digestion. PeerJ, 5:e4075, 2017. doi:
10.7717/peerj.4075.

[210] C. M. K. Sieber, A. J. Probst, A. Sharrar, B. C. Thomas,
M. Hess, S. G. Tringe, and J. F. Banfield. Recovery of genomes
from metagenomes via a dereplication, aggregation and scor-
ing strategy. Nature Microbiology, 3(7):836–843, 7 2018. doi:
10.1038/s41564-018-0171-1.

[211] A. Spang, E. F. Caceres, and T. J. G. Ettema. Genomic
exploration of the diversity, ecology, and evolution of the ar-
chaeal domain of life. Science, 357(6351):eaaf3883, 8 2017. doi:
10.1126/science.aaf3883.

[212] A. J. M. Stams and C. M. Plugge. Electron transfer in syntrophic
communities of anaerobic bacteria and archaea. Nature Reviews
Microbiology, 7(8):568–577, 8 2009. doi: 10.1038/nrmicro2166.

[213] J. Stewart, V. Chadwick, and A. Murray. Carriage, quantifi-
cation, and predominance of methanogens and sulfate-reducing
bacteria in faecal samples. Letters in Applied Microbiology, 43
(1):58–63, 7 2006. doi: 10.1111/j.1472-765X.2006.01906.x.

[214] E. W. Steyerberg, A. J. Vickers, N. R. Cook, T. Gerds, M. Gonen,
N. Obuchowski, M. J. Pencina, and M. W. Kattan. Assessing the
Performance of Prediction Models. Epidemiology, 21(1):128–138,
1 2010. doi: 10.1097/EDE.0b013e3181c30fb2.

[215] C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn. Bias
in random forest variable importance measures: Illustrations,
sources and a solution. BMC Bioinformatics, 8(1):25, 12 2007.
doi: 10.1186/1471-2105-8-25.

166



[216] Y. Sun, A. K. Wong, and M. S. Kamel. Classification of im-
balanced data: A review. International Journal of Pattern
Recognition and Artificial Intelligence, 23(4):687–719, 2009. doi:
10.1142/S0218001409007326.

[217] M. Sundararajan and A. Najmi. The many Shapley values for
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Appendix A

Appendix to Chapters 2
and 3

Relevant author contributions to Ruaud et al. (in

preparation)

I conceptualized the whole endoR method and received valuable feed-

back from Dr Niklas Pfister. I implemented the method in R, simulated

data to benchmark the method under the supervision of Dr Niklas Pfis-

ter, and produced all results. Dr Niklas Pfister and I wrote the math-

ematical text of the method. I wrote the rest of the manuscript, and

Dr Niklas Pfister and Dr Nicholas Youngblut reviewed and edited it.

Contributions as defined by CRediT roles (https://casrai.org/credit/)

are formally described in Table A.1.

I adapted the current draft of the article into Chapters 2 and 3.
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CRediT rolea Authors

Conceptualization Albane Ruaud and Niklas

Pfister

Data curation Albane Ruaud and Nicholas

D Youngblut

Formal analysis Albane Ruaud

Investigation Albane Ruaud

Methodology Albane Ruaud and Niklas

Pfister

Software Albane Ruaud

Supervision Niklas Pfister and Nicholas D

Youngblut

Visualization Albane Ruaud

Writing – original draft Albane Ruaud and Niklas

Pfister

Writing – review & editing Albane Ruaud, Niklas Pfister

and Nicholas D Younglut

Funding acquisition Ruth E Ley

Table A.1: Author contributions relevant to Chapters 2

and 3.
a Contributions are attributed according to CRediT roles
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Variable 1 Variable 2 F Γ

M micronuciformis High 10.5924 0.4480
V parvula High 3.5552 0.4270

Streptococcus High 1.7156 0.4067
Leptotrichia High 1.2759 0.3991

M micronuciformis Low 0.4996 -0.2461
L salivarius High 0.1709 0.4011

A equolifaciens High 0.1464 -0.1802
C symbiosum Medium M micronuciformis Low 0.1196 -0.3217
M micronuciformis Low A equolifaciens High 0.1135 -0.2175
L saburreum Medium M micronuciformis Low 0.1128 -0.3226
K denitrificans High 0.0903 0.2615

C symbiosum Medium 0.0892 -0.1802
Veillonellaceae High 0.0843 0.2538

L saburreum Medium 0.0839 -0.1795
L salivarius High C stercoris Low 0.0810 0.4060

Campylobacter High 0.0643 0.3695
Pasteurellaceae High 0.0629 0.2284
F caenicola Medium M micronuciformis Low 0.0596 -0.3108

Erysipelatoclostridium High 0.0551 0.1053
C stercoris Low 0.0527 0.0907

R microfusus Low Pasteurellaceae High 0.0508 0.2610
C sp ASF356 Low 0.0492 0.1919

Veillonellaceae High Erysipelatoclostridium High 0.0462 0.2293
F caenicola Medium 0.0458 -0.1800
R microfusus Low 0.0441 0.1603
F nucleatum High 0.0385 0.1770

K denitrificans High Erysipelatoclostridium High 0.0351 0.2690
E ventriosum Low 0.0317 0.2182

K denitrificans High P sp PSNIH2 High 0.0292 0.2881
P enoeca High Leptotrichia High 0.0282 0.2101

C sp ASF356 Low E ventriosum Low 0.0274 0.2773
Eggerthellaceae Low F nucleatum High 0.0269 0.1857
Campylobacter High C stercoris Low 0.0254 0.3713

B viscericola Low 0.0243 0.2180
B viscericola Low C sp ASF356 Low 0.0236 0.2983

P sp PSNIH2 High 0.0217 0.1417
Eggerthellaceae Low 0.0211 0.0968

P enoeca High 0.0170 0.0760

Table A.4: Variable and interaction importance and influence calcu-
lated by endoR from the RF predicting cirrhosis vs healthy individuals.
F : importance; Γ: influence.
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Additional figures

Figure A.1: Effect of α on the number of decisions, TP and FP
in the stable decision ensemble. A-E/ Simulated data with n = 1000,

r = 0.05, and π = 0.7; A-B/ single replicate with B = 100 (Fig 3.2), C-E/

100 repetitions with B = 10 (Fig 3.6). F-K/ Artificial phenotypes with

r = 0.05; F-H/ single replicate with B = 100 (Fig 3.3); I-K/ repetitions

of artificial phenotypes with B = 10 (Fig 3.6). The means (points) and

standard deviations (bars) are plotted for repetitions on C-E and I-K. The

dotted grey lines correspond to the total number of true edges.
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Figure A.2: SHAP values from a random forest classifier fit-
ted on metagenomes with an artificial phenotype. SHAP values

were calculated from the random forest classifier fitted on the replicate of

metagenomes with an artificial phenotype presented in Figure 3.3. I used

the iBreakDown R-package [18] to calculate SHAP values. The feature im-

portance corresponds to the average of the absolute SHAP values across

samples. As the SHAP interaction values could not be calculated, SHAP

values for the relative abundances (log10 transformed) of all 14 taxa colored

group categories are displayed.
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Figure A.3: SHAP values from the XGBoost classifier fit-
ted on metagenomes with an artificial phenotype. SHAP val-

ues were calculated from the XGBoost classifier trained on the replicate of

metagenomes with an artificial phenotype presented in Figure 3.3. The fea-

ture importance is given by the average of the absolute SHAP values across

samples. Given the high number of features and interactions, we only plotted

the first 10 individuals and 4 interactions, as ranked by feature importance;

those plots are the direct outputs from the SHAPforxgboost R package.
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Appendix B

Appendix to Chapter 4

Additional tables and figures

Metadata na Summaryb

Dataset 2203 See Table B.2

Number of reads 2203 1.42 - 356.01 million reads (52.18 and

58.92±43.69 million reads)

Country 2203 See Table B.2

Regionc 2203 Africa (190), Central Asia (377), Eu-

rope (1159), Fiji (115), India (88),

North America (219), Peru (55)

Westernized 2203 False (517), True (1686)

Gender 1780 Female (1109), Male (671)

Age 1675 19 - 84 years old (33 and 40.34±17.70

years old)

BMI 1020 16.02 - 36.41 kg.m-2 (23.27 and

24.03±3.76 kg.m-2)

Enterotype 2203 ETF (882), ETB (622), ETP (699)

Table B.1: Metadata included in predictive models training
a Number of samples with available information.
b For numeric variables: minimal - maximal values (median and mean ± stan-

dard deviation). For categorical variables: each level (number of samples in
the level).

c Samples from countries of a same geographic area. Region with a unique
country are named after the country name to prevent confusion.

182



Dataset Countrya n n metadatab

AsnicarF, 2017 ITA 8 0

Bengtsson-PalmeJ, 2015 SWE 70 0

BritoIL, 2016 FJI 115 0

CosteaPI, 2017 DEU 2 0

CosteaPI, 2017 KAZ 21 21

DhakanDB, 2019 IND 88 88

FengQ, 2015 AUT 12 12

HanniganGD, 2017 CAN 3 0

HanniganGD, 2017 USA 24 0

HansenLBS, 2018 DNK 204 25

Heitz-BuschartA, 2016 LUX 2 2

HMP, 2012 USA 137 0

JieZ, 2017 CHN 107 100

KarlssonFH, 2013 DEU 2 0

KarlssonFH, 2013 FRA 1 0

KarlssonFH, 2013 ISL 1 0

KarlssonFH, 2013 SWE 39 0

LiJ, 2017 CHN 41 0

LiuW, 2016 MNG 110 0

LouisS, 2016 DEU 92 0

Obregon-TitoAJ, 2015 PER 7 5

Obregon-TitoAJ, 2015 USA 19 19

PasolliE, 2018 MDG 107 93

PehrssonE, 2016 PER 48 0

PehrssonE, 2016 SLV 71 0

RaymondF, 2016 CAN 36 36

SchirmerM, 2016 NLD 405 396

TettAJ, 2019, a TZA 36 0

TettAJ, 2019, b GHA 23 0

TettAJ, 2019, c ETH 24 0

XieH, 2016 GBR 250 0

YeZ, 2018 CHN 45 45

YuJ, 2015 CHN 53 0

Table B.2: Datasets and country of origins of samples

used for analysis
a Countries are designated by their ISO 3166 alpha-3 three-letter

country code.
b Number of samples for which both age and BMI were reported.
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Figure B.1: Gini importances of features in the model de-

scribed in section 4.3.3.
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Appendix C

Appendix to Chapter 5

Author contributions

Hereafter are the relevant author contributions to Ruaud and Esquivel-

Elizondo, 2020 [194], from which Chapter 5 is derived. Dr Sofia

Esquivel-Elizondo and I performed all in vitro experiments and wrote

the text for those experiments; I performed all statistical analyses and

wrote the text for them; Pr Ruth E Ley, Dr Sofia Esquivel-Elizondo

and I wrote the introduction and discussion of the manuscript; Ruth E

Ley provided much feedback on the results and methods paragraphs;

Nicholas D Youngblut, Jillian L Waters and Lars T Angenent pro-

vided feedback on the manuscript. Contributions as defined by CRediT

roles (https://casrai.org/credit/) are formally described in Table C.1.

I adapted the original published manuscript [194] into Chapter 5.
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CRediT role Authors

Conceptualization Albane Ruaud, Sofia Esquivel-

Elizondo, Ruth E Ley and Lars T

Angenent

Investigation Albane Ruaud and Sofia Esquivel-

Elizondo

Formal analysis Albane Ruaud and Sofia Esquivel-

Elizondo

Supervision Sofia Esquivel-Elizondo and Ruth E

Ley

Data curation Albane Ruaud

Visualization Albane Ruaud

Writing – original draft Albane Ruaud, Sofia Esquivel-

Elizondo, Ruth E Ley

Writing – review & editing Albane Ruaud, Sofia Esquivel-

Elizondo, Ruth E Ley, Nicholas D

Younglut, Lars T Angenent and

Jillian L Waters

Funding acquisition Ruth E Ley and Lars T Angenent

Table C.1: Author contributions relevant to Chap-
ter 5. Contributions are attributed according to CRediT roles

(https://casrai.org/credit/).
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Additional figures

Figure C.1: Summary of gases and SCFA produced in mono-
and co-cultures of C. minuta, C. timonensis, C. massiliensis,
B. thetaiotaomicron, and M. smithii after 6 days of growth.
a-d/ Points: concentration of each biological replicate after 6 days of growth

in all mono- and co-cultures presented in this study (batches 1-4, Table 5.1).

e/ Summary of the culture conditions: gas mixture (H2:CO2 or N2:CO2

80:20 % v/v), initial pressure (2 bar or atmospheric) and microorganisms

inoculated. C: C. minuta. Ct: C. timonensis. Cm: C. massiliensis. B:

B. thetaiotaomicron. M: M. smithii. Samples inoculated with the same

microorganisms are the same color.
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Additional methods

Data and code availability

The jupyter notebooks and associated data are available on GitHub at:

https://github.com/aruaud/Ruaud EsquivelElizondo.

Confocal imaging, equipment, and settings

For confocal microscopy, SYBR® Green I staining was performed as

previously described [125] with the following modifications: 0.5 mL

of culture were sampled and pelleted by centrifugation for 6 min at

6,000 xg (Benchtop centrifuge, Eppendorf, Hamburg, Germany) and

pellets were resuspended in a solution containing 744 µL 1x PBS, 16 µL

25x SYBR®®Green I (Sigma-Aldrich, Merck, Germany) and 40 µL

70 % v/v ethanol. Samples were pelleted and resuspended before imag-

ining in 100 µL 1x PBS, of which 5 µL were immobilized on 50 µL solid

agar (1.5 % noble agar in distilled water) [75]. Imaging was performed

with a confocal microscope (LSM 780 NLO, Zeiss) using oil and water

objectives (40x and 63x). A DPSS laser at 405 nm was used to excite

the F420 enzyme of M. smithii. Autofluorescence emission was collected

on a 32 channel GaAsP array from 455 to 499 nm. A transmitted light

detector (T-PMT) was used to collect the whole light spectrum to cre-

ate a bright field image. On a second track, an Argon laser at 488 nm

was used to excite SYBR® Green I and its emission was collected from

508 to 588 nm with the 32 channel GaAsP array as well.

Images were acquired with a time and space resolution of

2048x2048x(1 to 12)x (xyzt) and pixel dimensions of 0.1038x0.1038 µm

for the images taken with the x40 oil objective and pixel dimensions of

0.0659x0.0659 µm for the images taken with the x63 oil objective. The

bit depth was 16-bit. Acquisition was performed at 20 ◦C.
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Processing of the confocal images

FIJI [199] was used to process the confocal micrographs. Contrast and

brightness adjustment were applied to the whole image. Due to the

thickness of the aggregates of Christensenella minuta, the SYBR®
Green I fluorescence intensity was varied with different focal planes.

We used a gamma transformation (with gamma = 0.50) to homogenize

the fluorescence intensity. The exact same transformation was applied

to all samples, even though there were no aggregates, for consistency

purposes. Similarly, we applied a gamma transformation to the F420

autofluorescent channel to decrease the low fluorescence coming from

SYBR® Green I (gamma = 1.20 to 1.50). As their excitation and

emission spectra overlap, there wasa low fluorescence intensity of the

SYBR® Green I on the F420 autofluorescent channel. The lookup

tables (LUT) were Cyan Hot for the F420 autofluorescence and red

(linear LUT, covering the full range of the data) for the SYBR® Green

I fluorescence.

Preparation of samples for scanning electron microscopy

Pellets were washed 3-5 times with 1x PBS and then fixed with a

2.5 % v/v glutaraldehyde solution in 1x PBS for 1-2 h at room tem-

perature and post-fixed with 1 % w/v osmium tetroxide for 1 h on ice.

Samples were dehydrated in a graded ethanol series followed by drying

with CO2in a Polaron critical point dryer (Quorum Technologies, East

Sussex, UK). Finally, cells were sputter coated with a 5 nm thick layer

of platinum (CCU-010 Compact coating unit, Safematic GmbH, Bad

Ragaz, SWI).

Screening of the short and medium chain fatty acids produced

Before carrying out the experiments presented in the main text, we

used gas chromatography (GC) to determine which fatty acids were

produced by the cultures and if the corresponding peaks were present

in growth medium (brain heart infusion medium). For this screen-
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ing, the external standards included equimolar mixtures of acetate,

propionate, iso-butyrate, butyrate, iso-valerate, valerate, iso-caproate,

caproate, heptanoate, and caprylate, from 0.2 to 7 mM. Measurements

were performed with a 7890B GC system (Agilent Technologies Inc.,

Santa Clara, USA) equipped with a capillary column (DB-Fatwax UI

30 m x 0.25 m; Agilent Technologies) and an flame ionization detec-

tor detector with a ramp temperature program (initial temperature of

80 ◦C for 0.5 min, then increasing by 20 ◦C per minute up to 180 ◦C, and

final temperature of 180 ◦C for 1 min). The injection and detector tem-

peratures were 250 and 275 ◦C, respectively. Samples were prepared as

for high performance liquid chromatography (HPLC, Methods in the

main text) with the addition of an internal standard (Ethyl-butyric

acid) and acidification down to pH 2 with 50 % formic acid. Data were

acquired and analyzed with the Agilent OpenLAB CDS software.

Only acetate and butyrate were detectedin the mono- and co-

cultures, and none of the other short and medium chain fatty acids

used as standards were detected. As formate was used to acidify sam-

ples for the GC measurements, to assess if it was a main product in

the cultures, its concentration was measured by HPLC. We also looked

for ethanol using HPLC but similar to formate, it was not detected in

any of the cultures. Thus, for the experiments in the main text, only

acetate and butyrate were quantified via HPLC.

BHI medium showed peaks corresponding to 0.33 mM formate and

6 mM of acetate, which were subtracted from the reported concentra-

tions of the cultures.
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