
AUTOMATIC LOANWORD IDENTIFICATION USING TREE

RECONCILIATION

Marisa Köllner, geb. Delz





Automatic Loanword Identification
using Tree Reconciliation

D i s s e r t a t i o n
zur Erlangung des akademischen Grades

Doktor der Philosophie
in der Philosophischen Fakultät

der Eberhard Karls Universität Tübingen

vorgelegt von

Marisa Köllner, geb. Delz

aus

Künzelsau

2021



GEDRUCKT MIT GENEHMIGUNG DER PHILOSOPHISCHEN FAKULTÄT
DER EBERHARD KARLS UNIVERSITÄT TÜBINGEN

DEKAN: Prof. Dr. Jürgen Leonhardt

HAUPTBERICHTERSTATTER: Prof. Dr. Gerhard Jäger

MITBERICHTERSTATTER: Prof. Dr. Friedrich Hamm

TAG DER MÜNDLICHEN PRÜFUNG: 12.03.2021

Universitätsbibliothek Tübingen, Online-Bibliotheksinformations- und Ausleih-
system, TOBIAS-lib



TO SVEN.

THANK YOU FOR BEING MY ROCK IN BREAKING WAVES.





Abstract

The use of computational methods in historical linguistics increased during the last
years. Phylogenetic methods, which explore the evolutionary history and relation-
ships among organisms, found their way into historical linguistics. The availability
of machine-readable data accelerated their adaptation and development. While
some methods addressing the evolution of languages are integrated into linguistics,
scarcely any attention has been paid to methods analyzing horizontal transmission.
Inspired by the parallel between horizontal gene transfer and borrowing, this thesis
aims at adapting horizontal transfer methods into computational historical linguistics
to identify borrowing scenarios along with the transferred loanwords.
Computational methods modeling horizontal transfer are based on the framework of
tree reconciliation. The methods attempt to detect horizontal transfer by fitting the
evolutionary history of words to the evolution of their corresponding languages, both
represented in phylogenetic trees. The discordance between the two evolutionary
scenarios indicates the influence of loanwords due to language contact. The tree rec-
onciliation framework is introduced in a linguistic setting along with an appropriate
algorithm, which is applied to linguistic trees to detect loanwords. While the recon-
struction of language trees is scientifically substantiated, little research has so far be
done on the reconstruction of concept trees, representing the words’ histories. One
major innovation of this thesis is the introduction of various methods to reconstruct
reliable concept trees and determine their stability in order to achieve reasonable
results in terms of loanword detection. The results of the tree reconciliation are
evaluated against a newly developed gold standard and compared to three methods
established for the task of language contact detection in computational historical
linguistics.
The main aim of this thesis is to clarify the purpose of tree reconciliation methods in
linguistics. The following analyses should give insights to which degree the direct
transfer of phylogenetic methods into the field of linguistics is fruitful and can be
used to discover borrowings along with the transferred loanwords. The identification
of loanwords is a first step into the direction of a deeper understanding of contact
scenarios and possible types of loanwords present in linguistic data. The adaptation
of phylogenetic methods is not only worthwhile to shed light on detailed horizontal
transmissions, but serves as basis for further, more detailed analyses in the field of
contact linguistics.
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Zusammenfassung

Die Verwendung von computerbasierten Methoden in der Historischen Linguis-
tik stieg in den letzten Jahren stetig an. Phylogenetische Methoden, welche zur
Bestimmung der Evolutionsgeschichte und Verwandtschaftsgraden zwischen Or-
ganismen entwickelt wurden, erhielten Einzug in die Historische Linguistik. Die
Verfügbarkeit von maschinenlesbaren Daten förderten deren Anpassung und Weit-
erentwicklung. Während einige Algorithmen zur Rekonstruktion der sprachlichen
Evolutionsgeschichte übernommen wurden, wurde den Methoden für horizontalen
Transfer kaum Beachtung geschenkt. Angelehnt an die Parallele zwischen hori-
zontalem Gentransfer und Entlehnung, werden in dieser Arbeit phylogenetische
Methoden zur Erkennung von horizontalem Gentransfer für die Identifikation von
Lehnwörtern verwendet.
Die Algorithmen für horizontalen Gentransfer basieren auf dem Vergleich zweier phy-
logenetischer Bäume. In der Linguistik bildet der Sprachbaum die Sprachgeschichte
ab, während ein Konzeptbaum die Evolutionsgeschichte einzelner Wörter repräsen-
tiert. Die Rekonstruktion eines Sprachbaumes ist wissenschaftlich fundiert, wohinge-
gen die Rekonstruktion von Konzeptbäumen bisher wenig erforscht wurde. Eine
erhebliche Innovation dieser Arbeit ist die Einführung verschiedener Methoden
zur Rekonstruktion von stabilen Konzeptbäumen. Da die Algorithmen zur Erken-
nung von horizontalem Transfer auf einem Baumvergleich basieren, deuten die
Unterschiede zwischen einem Sprachbaum und einem Konzeptbaum auf Lehnwörter
innerhalb der Daten hin. Daher wird sowohl die Methodik, als auch ein geeigneter
Algorithmus in einem linguistischen Kontext eingeführt. Die Ergebnisse der Lehn-
worterkennung werden mithilfe eines neu entwickelten Goldstandards evaluiert und
mit drei weiteren Algorithmen aus der Historischen Computerlinguistik verglichen.
Ziel der Arbeit ist zu erläutern, inwieweit Algorithmen basierend auf dem Vergleich
zweier Bäume für die automatische Lehnworterkennung verwendet und in welchem
Umfang Lehnwörter erfolgreich innerhalb der Daten bestimmt werden können. Die
Identifikation von Lehnwörtern trägt zu einem tieferen Verständnis von Sprachkon-
takt und den unterschiedlichen Arten von Lehnwörtern bei. Daher ist die Adaption
von phylogenetischen Methoden nicht nur lohnenswert für die Bestimmungen von
Entlehnungen, sondern dient auch als Basis für weitere, detailliertere Analysen auf
den Gebieten der automatischen Lehnworterkennung und Kontaktlinguistik.
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Introduction 1
Language is one of the greatest and fastest changing systems of mankind. The
fascination of the evolution of languages along with their changes, contact scenarios,
and the influence of surrounding factors inspires researchers to great innovations in
the field of historical linguistics. Around the same time as Darwin (1871) presented
his idea on the evolution of species and languages, Schleicher (1861) presented the
first tree illustrating the classification of the Indo-European languages, along with an
attempt to reconstruct their latest common ancestor: Proto-Indo-European. Based
on the work of Eldredge (2005), Schleicher (1863) drew some parallels between
the evolution of languages and species, indicating that the methods from natural
science could be applied to linguistic data. Adopting the parallels of Schleicher
(1863), Atkinson and Gray (2005) and Croft (2000) presented systematic overviews
of the similarities between linguistic and biological evolution. In correspondence
with those parallels, computational methods found their way from phylogenetics
into linguistic research. The increasing availability of computational methods in
bioinformatics and digitally accessible datasets in linguistics led to an application of
the methods, resulting in a new research field: computational historical linguistics.
While the most studied topics are the classification of languages, along with the
detection of sound changes and cognates, less attention was paid to the process
of borrowing. The similarities between borrowing and the biological process of
horizontal gene transfer laid the foundation for the work presented in this thesis.
The transfer of words, also known as borrowing, is a horizontal transmission of
linguistic items due to language contact. During the process of borrowing, the
linguistic items are integrated and adapted into the recipient language, resulting in
loanwords which are barely distinguishable from inherited words. In comparison,
genes can be transferred between organisms without sexual reproduction and are
fully integrated into the DNA of the recipient. This is known as horizontal gene
transfer in biology. A popular example is the spread of antibiotic resistance in
bacteria, where the genes responsible for the resistance are transferred from one
species of bacteria to another through different processes of horizontal gene transfer,
e.g. direct cell-to-cell contact.
The parallel between the evolutionary mechanisms cannot be denied. In recent
years, phylogenetic algorithms are developed to detect horizontal gene transfer. The
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methods are based on the framework of tree reconciliation, proposed by Goodman
et al. (1979), which aims at detecting horizontal gene transfers by fitting the
evolutionary history of genes to the evolution of their corresponding species, both
represented in a phylogenetic tree respectively.
The aim of this thesis is the adaptation of horizontal transfer methods to test
whether a direct adaptation is fruitful in terms of application, performance, and
the results obtained from the algorithms. The approach of tree reconciliation
highly depends on the input data, namely the reconstructed linguistic trees. One
major innovation of this work is the introduction of various methods to reconstruct
concept trees. Concept trees are equivalent to gene trees, i.e. they represent the
evolutionary history of words within the tree model. Thus, the thesis tries to
reconstruct reliable concept trees along with associated methods to determine their
stability. In addition, the tree reconciliation framework is introduced in a linguistic
setting and an appropriate algorithm for horizontal gene transfer is adapted and
applied to linguistic data. The algorithm is compared to three methods developed
in computational historical linguistics to detect language contact and borrowing
scenarios. Finally, the results are evaluated against a newly developed gold standard
containing all relevant information for an appropriate evaluation of loanwords and
their underlying borrowing process.
During the first two chapters, all relevant concepts in historical linguistics and
phylogenetics are introduced. In the third chapter, various methods for automatic
concept tree reconstruction are presented. In a second step, resampling techniques
are used to establish the reliability of the concept trees along with the reconstruction
of tree replicates to generate tree samples. Finally, the methods are evaluated to
determine the ideal approach for concept tree reconstruction, which is further used
for the task of automatic loanword detection. The fourth chapter introduces four
algorithms to automatically detect loanwords and their corresponding borrowing
process. The phylogenetic tree reconciliation method can determine the loanword,
the recipient language, the source language, and the direction of transfer, which is
a main advantage over the other algorithms developed for this task. In addition,
the tree replicates generated for the verification of the concept trees can be used by
the algorithm to measure the stability of the detected transfer events. In the last
chapter, all algorithms are evaluated against gold-standard data to get insights in the
accuracy of their results and performance. The thesis concludes with a discussion
and summary of the presented work and a short outlook on possible improvements
and further research topics.

2 Chapter 1 Introduction



Historical Linguistics and the
Computational Turn

2
Historical linguistics is a well-studied field for the evolution of languages along with
their changes and contact scenarios. Various changes occur over time and affect a
language in different ways, which leads to a continual development. On the one
hand, there are internal changes, affecting the whole language and its varieties. For
example, the simplification of verb forms in English and German, as illustrated by
Delz et al. (2012). If one variety loses mutual intelligibility with another variety,
it becomes a separate, unique language (François, 2015). On the other hand, a
language can change drastically due to migration and contact with other languages.
Those changes are difficult to discover, and a reconstruction requires time and
knowledge about the language and its history. However, the evolution of a language
can only be fully reconstructed if all changes and modification processes are known
or can be discovered.
One of the main achievements in historical linguistics is the development of the
comparative method. The comparative method is the central point of studies in lan-
guage change and reconstruction. In contrast, the known phenomenon of language
contact was long neglected in the research area of historical linguistics. The studies
of contact-induced change led to a research field of its own, introducing a whole
new set of questions to be answered. The research of contact linguistics focuses
on contact situations, effects of contact, and the changes that come along in the
languages under question. One process that takes place in a contact scenario of two
languages is borrowing, which is the transfer of lexical items from one language to
the other.
During the last decades, the interest of using computational models and analyses
in historical linguistics increased. The known parallels between biology and lin-
guistics caused the adaptation of phylogenetic methods in a linguistic setting. This
computational turn opens up a new research area to answer questions which could
not be answered using traditional linguistic methods. This includes, among other
things, automatic language classification in a wide range of languages and language
families, automatic cognate classification, identification of contact situations, and
the effects and results of processes due to language contact, such as borrowing.
The first part of the chapter focuses on the main methods in historical linguistics,
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like language classification, language contact, and borrowing. In the second part,
the computational turn and the new insights in the field of historical linguistics that
come along with the new methods are introduced. The priority lies on the methods
needed for the detection of borrowings and loanwords, which are the main focus in
the following studies.

2.1 Historical Linguistics

Historical linguistics is one of the oldest research fields in linguistics. Language
comparison has a long tradition, starting back in antiquity, where scholars were
aware of the similarities between Greek and Latin. Modern historical linguistics
grew out of the field of philology in the late 18th century, at the latest with the first
systematic study of diachronic language change from Jacob Grimm. His study on
the development of the Germanic languages drew the attention to the research in
historical linguistics and lay the foundations for comparative linguistics. Comparative
linguistics addresses questions in the evolution, reconstruction, and classification of
languages. According to Weiss (2015), language classification and the underlying
comparative method can be dated back to Schleicher (1863), who introduced the
first pedigree for Indo-European languages.
Around the same time, Schuchardt (1868) studied the mixture of languages. In
his book Vokalismus, he made his famous statement: “There is no totally unmixed
language”1 (Schuchardt, 1868, p. 5). This book was the groundwork for studies
in language contact and initiated a great amount of research in contact linguistics.
During this time, language contact and the corresponding contact situations were
studied with great interest. It was obvious that languages under contact exchange
words. It is therefore not surprising that Paul (1886), and later Seiler (1907-1913),
started to work on the classification of the transferred words. However, the first
distinction between a Lehnwort (loanword) and a Lehnprägung (loan coinage or
calque) was formulated by Betz (1949). Compared to a loanword, where the lexical
item and its meaning are borrowed, a calque describes semantic borrowing, where
only the meaning is transferred. Haugen (1950) further classified this framework
into three categories: loanwords, loanblends, and loanshifts. This classification
serves until today as the basis for loanword classifications.

1Translated from the original: “Es gibt keine völlig ungemischte Sprache” (Schuchardt, 1868, p. 5).
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2.1.1 Language Classification

Languages which belong to the same language family are genetically related, which
means that these languages derive from a common ancestor, a single proto-language.
The classification of which languages are more related to one another within a family
is called subgrouping (Campbell, 2013). Shared innovations are a reliable criterion
for subgrouping and can be discovered with the help of the comparative method. The
comparative method is the most important tool in historical linguistics to discover
as much as possible from a proto-language by comparing the related languages in
terms of shared innovations for the reconstruction.
The comparative method is a systematic process, following an order of different
steps to accomplish the reconstruction of the proto-language (Campbell, 2013;
Weiss, 2015). The first and most important step is the identification of shared
innovations. Lexical items of related languages are compared with one another to
establish cognates and sound correspondences. Cognates are words with a common
etymological origin, which are used to determine regular sound correspondences
between related languages. Sound correspondences or correspondence sets are
sounds present in related words of cognate sets. The sounds correspond from one
related language to another since they descend from a common ancestral sound.
This mirrors the iterative character of the comparative method, since cognates and
sound correspondences can only be identified together, which requires repetition of
the comparison steps (Jäger and List, 2016). The lexical items under comparison
should be present in all languages under question. Swadesh (1955) introduced a list
of basic vocabulary, which was evaluated and both narrowed and extended in recent
studies in the course of the establishment of different databases (see e.g. Holman
et al. (2008) and Dellert and Buch (2018)). Basic vocabulary is said to be universal
and stable against borrowing in all languages under investigation. The universality
of the lexical items implies that most of the languages share a word for this meaning
and cognates can be identified. In the classical comparative method, loanwords
should be identified while establishing sound correspondences. Usually, but not
always, the systematic sound correspondences found between cognates are not
present in loanwords. The usage of basic vocabulary lists reduces this problem since
borrowings are much rarer than in other parts of the vocabulary (Campbell, 2013).
According to the cognates and sound correspondences found in words among the
related languages, proto-sounds are reconstructed.2 One of the guiding principles
in sound reconstruction is that the majority wins (Campbell, 2013). This means if
there is no evidence to the contrary, the sound in the correspondence set present

2For a detailed description of the comparative method and examples of sound comparisons and
reconstructions, please see Weiss (2015) or Chapter 5 in Campbell (2013).
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in the greatest number of daughter languages is picked for the reconstruction.
The establishing of cognates and sound correspondences and the reconstruction
of the proto-language leads to a subgrouping of the languages. The subgrouping
clusters the languages by means of shared cognates and correspondence sets. The
clusters can be represented in a tree diagram, which mirrors the classification of the
languages.
Languages can be seen as unitary organisms, meaning they are related if they
descend from a common ancestor. Relatedness is then analogous to that of animals
or plants. Languages are related via lineages, which are created through sexual and
asexual reproduction (Noonan, 2010). In historical linguistics, the unitary organism
model was adopted in the early 19th century by Schleicher (1863).

Fig. 2.1.: The family tree of the Indo-European languages from Schleicher (1863).

He was inspired by the work of Darwin (1871), since in one of his papers Darwin
himself drew the parallel between biological and linguistic evolution. The family
tree model is still preserved as the model of understanding and visualizing genetic
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relations between organisms and languages (Noonan, 2010).3 The comparative
method is the underlying process to identify related languages, and groups them
together into language families, which are represented in a language tree. The
family tree model rests on a set of assumptions obtained from the unitary organism
analogy. Following Noonan (2010), those assumptions are:

(i) Languages are unitary systems.
(ii) Languages are only genetically related if they descend from a single common

ancestor.
(iii) New languages result from splitting off from an existing language.
(iv) A split is final and produces a new independent linguistic system.

In terms of understanding the history and relationships of languages, the issues
coming along with these assumptions can be conceived, since none of the alternative
models has been prevailing.4 The tree model also assumes that language contact
is irrelevant for establishing genetic relatedness, because the influence of contact
cannot affect the genetic status of a language. This is in concordance with the com-
parative method, which assumes that language contact, and especially loanwords,
have no impact on the comparison and reconstruction of languages. To reduce the
noise in the analysis caused by loanwords, most studies aim at excluding them from
the reconstruction and classification task. The comparative analysis, however, can
also shed light on similarities of languages which are widely or not at all related
to each other. Those similarities are mostly due to language contact and exchange
of linguistic material, mostly lexical items. In the traditional comparative method,
linguists can account for borrowing and loanwords by identifying them. Since in
most cases loanwords would be excluded from the analysis, the effect of undetected
borrowing events and loanwords on the classification of languages under the tree
model remains unknown. As it can be seen in several computational studies (e.g.
Holman et al. (2008), Jäger (2013b), and Jäger (2013a)), the effect is small and the
subgrouping of the languages is still in accordance with trees reconstructed by expert
linguists using the comparative method. However, since language contact cannot
be traced in the tree model, it is still uncertain in what way borrowing influences
the analysis. This is where contact linguistics comes into play, where other linguistic
models were developed to describe language contact.

3Following the original analogy, the terms of mother/ancestor language, daughter and sister language
are used in the linguistic family tree model (Noonan, 2010).

4For a summary of alternative models to the tree model, see Noonan (2010, p. 55).
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2.1.2 Language Contact and Borrowing

Linguistic change can refer to different linguistic models. The theory of internal
(sound) change is represented by the computational method and the tree model.
The wave theory, an alternative to the tree model, is attributed to Schuchardt
(1868) and Schmidt (1872), who were both students of August Schleicher. The
wave model illustrates language change due to contact among languages, where
each change is represented by a wave (Campbell, 2013). It starts from its region
of origin and spreads over all languages sharing this innovation. Later changes
may not cover the same area and can therefore lead to an overlap with already
existing waves. This leads to the fact that there is no sharp boundary between the
languages (Campbell, 2013). Figure 2.2 shows an illustration of the wave model.

Fig. 2.2.: An illustration of the wave model, taken from François (2015). Languages are
labeled A to H and innovations are numbered #1 to #6.

The first innovation (#1) is shared by languages C, D, and E, forming one wave.
The second innovation (#2) is shared by languages A and B, and does not overlap
with other waves and languages, e.g. this is the only change happening in those
two languages. The other innovations are shared by several languages, each in
some point overlapping with the other changes. In the case where two languages
share an innovation, their similarity increases (e.g. E and F in innovation #5). If
a change only affects one of the languages, their difference is increased and they
diverge from one another (e.g. E and D in innovation #5). Many non-shared
innovations can lead to a great distinction of the languages, and they can eventually
become distinct (François, 2015). In the case of language variations, this can lead
to a split into separate linguistic systems. Language subgroups are defined “as a
group of languages whose ancestors participated together in the diffusion of one
or several linguistic innovations, at a time when they were mutually intelligible”
(François, 2015, p. 170). The wave structure can reflect a distribution of changes in
intersected patterns, which is typical for dialect continua. For this reason, the wave
model gained popularity in dialectology and was used to a lesser extent in contact
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linguistics.
The complexity of generating a wave model of languages and display all possible
contact situations starts with the difficulty of identifying contact scenarios between
all languages under question. To get a real insight of the contact situations of
languages, different components need to be considered. This includes, among
others, social, geographical, and sometimes biological, cultural anthropological,
paleoanthropological, and genetic components. Of course, not all components need
to be known to reconstruct the contact scenario. However, they are of great interest
to get a deeper understanding of the motivation of transferring linguistic items.
Thomason (2010, p. 33) states:

“It may reasonably be said that we have no full explanation for any
linguistic change, or for the emergence and spread of any linguistic
variant. The reason is that, although it is often easy to find a motivation
for an innovation, the combinations of social and linguistic factors that
favor the success of one innovation and the failure of another are so
complex that we can never (in my opinion) hope to achieve deterministic
predictions in this area.”

Tendencies and probabilities can be found, but the question why one innovation
can be adapted in one language but not in another under apparently similar circum-
stances cannot be answered.5

Considering only the linguistic component, language contact is defined as interaction
of two or more languages with one another. In contact linguistics, the terminol-
ogy is not clearly defined, and used differently by various authors. It is therefore
important to offer some clarification. In general, a distinction is made between
two categories of contact-induced changes: borrowing and transfer (which is syn-
onymous to interference and substratum influence). The category of transfer can be
divided further into subcategories, where additional categories are added by some
authors to explain detailed changes.6 The classification of different categories of
contact-induced change makes it even more complex to categorize the various types
of contact scenarios. Van Coetsem (1988) and Van Coetsem (2000) introduced a
classification framework on contact-induced change. He defines two transfer types
of cross-linguistic influence: borrowing and imposition (which is synonymous to inter-
ference via shift and substratum influence). The term transfer is used as a generic term
referring to any kind of influence. A broad distinction between the two categories
is that imposition is associated to second language acquisition and shift, whereas

5One of the major impulses for research in contact linguistics is the large-scale study of Thomason and
Kaufman (1992). The study contains various contact situations with generalizations of language
contact and its possible effects.

6A detailed description of the terminology in contact linguistics is given in Hickey (2012, p. 18).
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borrowing is associated with language maintenance. If a French speaker uses French
pronunciation while speaking English, it is imposition. During the process of borrow-
ing, an English speaker would use French words while speaking English (Winford,
2010). Both processes require a source language (SL) and a recipient language (RL).
The direction of the exchange is always from the source language to the recipient
language. The distinction between the two processes is based on the psycholinguistic
notion of dominance. The linguistically dominant language is the language in which
the speaker is most proficient and fluent in. This does not need to be his native
language (Winford, 2010). In the case of interference, the SL-dominant speaker
transfers features into the RL. The RL can, for instance, be a second language (L2)
which the speaker attempts to learn. In this case, the changes do neither affect the
system of the RL nor of the SL. The changes can, however, spread in the language
community of SL speakers learning the same L2. The RL spoken by its native speaker
remains in most cases unaffected. In the process of borrowing, the RL-dominant
speaker imports linguistic material from a non-dominant SL. Foreign material is
adopted in the native language of the speaker, which modifies the language and its
system (Winford, 2010).7

Borrowing is then defined as the acquisition of linguistic material from a SL into a
RL via RL-dominant speakers, in other words, as the transfer of linguistic material
from an external language into the language of the speaker. The extent of borrowing
depends on the so-called stability gradient of a language (Van Coetsem, 1988). The
stability varies between the different components of linguistic structure. Some
domains of a language tend to be more stable and therefore more resistant to change
than others are. More stable domains include syntax, semantics, phonology, and
morphology (especially inflection paradigms). The lexicon and specific areas of
structure, like derivational morphology and free function morphemes, are less stable
and therefore receptive to change (Winford, 2010). Thomason and Kaufman (1992)
combine the borrowability of linguistic material with the degree of contact. Intense
contact can result in intense transfer, where no linguistic barrier to borrowing exists
anymore. Lexical borrowing comes along with casual and slightly more intense
contact, where content and function words are transferred between the languages,
depending on cultural and functional reasons.8 Lexical borrowing received consider-
able attention, since the probability of borrowing lexical items from one language to
another is high. Loanwords, which are the result of the borrowing process, can be
found in most languages of the world. The borrowing of lexical items does not only
depend on the degree of contact between two languages, but also on both social and

7For a more detailed discussion of the distinction between the two processes, see Smits (1998) and
Winford (2005).

8See Thomason and Kaufman (1992, p. 74) for a detailed borrowing hierarchy.
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linguistic constraints.
The socially based motivation of borrowing is associated with need and prestige.
Weinreich (1968, p. 56) noted that “the need to designate new things, persons,
places, and concepts is, obviously, a universal cause of lexical innovation.” Socially
dominant and subordinate languages tend to borrow from each other. Depending
on the social situation, both languages can exchange lexical items to fill the gaps
for specific meanings. If one of the languages is socially dominant, e.g. during
colonization, borrowing takes place from the subordinate language to the dominant
one, but usually not the other way around. The need of borrowing increases in
terms of technology, science, and higher learning in general, where a language
wants to keep up with developments. In the Early Modern English period, English
borrowed words from French, Latin, and Greek (Winford, 2010). Prestige, as a
second social factor, is mirrored in the borrowings from French into English, where
English extended the lexicon with words like pork, beef, veal, etc. to label forms of
meat. German adopted the usage of the third person plural form as a polite pronoun
form from French. French speakers used the different pronouns to express honor
and respect to another person, which should create a gap between the higher and
lower society. German adopted the concept of prestige and the different usage of
the pronouns (Delz, 2013). However, to understand the motivations for lexical
borrowing, further aspects of the contact between the speakers need to be taken
into account. As Winford (2010) noted, “such factors [among others] include the
patterns of social interaction between the groups, the degree of bilingualism, the
demographics and power relationships, and attitudes toward the languages.” The
complete traceability of all social components of the borrowing process is complex
due to the different scenarios involved, and is therefore the most challenging part.
In most cases, there is no record of the social situation at the time of contact, and
the socially based motivation for borrowing cannot be traced back at all.
Linguistic constraints on borrowing are based on borrowing hierarchies, which are
split into two parts in terms of lexical borrowing: morpheme hierarchy and part of
speech hierarchy (Haspelmath, 2008). The morphemic type expresses that lexical
items are more likely to be borrowed than bound morphemes. Content words are
therefore easier to borrow than function words, which is underlined by different
linguistic studies (see e.g. Thomason and Kaufman (1992), Van Hout and Muysken
(1994), Haspelmath (2008), and Tadmor et al. (2010)). In regard to parts of speech,
Whitney (1881) already noted that nouns are borrowed easiest, and suggested the
following hierarchy:

(2.1) nouns – other parts of speech – suffixes – inflections – sounds
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The category of other parts of speech is not described in more detail. This hierarchy
was extended by Haugen (1950) in his case study:

(2.2) nouns – verbs – adjectives – adverbs – prepositions – interjections

On the basis of English loanwords in Hindi, Singh (1981) proposed a slightly different
hierarchy:

(2.3) nouns – adjectives – verbs – prepositions

All three borrowing hierarchies emphasize the widely acknowledged assumption that
nouns are borrowed easiest. As Myers-Scotton et al. (2002) stated, nouns receive a
meaning or a thematic role and do not assign it. Their insertion in another language
does not disrupt the structure of the language. The order of the word forms on the
borrowing scale depends highly on the data used for the case studies. The degree of
typological distance between two languages can enhance or prevent the exchange
of lexical items. For example, borrowing of verbs is facilitated if two languages
have a similar verb system (Winford, 2010). This could be the reason why different
case studies conclude different orders of the word categories. A systematic study on
borrowings across languages can shed light on the arrangement of parts of speech in
the borrowing hierarchy. The first systematic cross-linguistic research on borrowing
was done by Tadmor et al. (2010) in the course of the Loanword Typology project.
One of the results of the project was the World Loanword Database (WOLD), which
was used to establish a borrowing hierarchy quantitatively.

(2.4) nouns – verbs – adjectives and adverbs

The WOLD database includes 41 languages. An overall word list size of 1,460 was
specified, where each word was translated by specialists into the corresponding
languages. During the translation process, each specialist identified loanwords in
his/her corresponding language, which were marked as such in the database (Tad-
mor et al., 2010). According to this information, a quantitative study to establish a
borrowing hierarchy could be carried out. The quantitatively established borrowing
hierarchy in (2.4) reflects the general assumption that nouns are borrowed easiest,
followed by verbs, adjectives, and adverbs.
One of the main questions in the identification of loanwords is, how inherited fea-
tures can be distinguished from those which are borrowed. In the case of historical
relatedness (regardless of type and source), it might not matter whether languages
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share certain properties due to borrowing or inheritance, since both give evidence
for historical connections between languages. One reason for this combination is
the challenging task of identifying loanwords. Most of the time, one cannot be
sure whether a word is a loanword, and at some point of the reconstruction of
proto-languages, this question becomes unanswerable (Kessler, 2001). To address
the question and face the challenging task of loanword identification, a better un-
derstanding of the different loanword types and their integration into the languages
is needed.

2.1.3 Loanwords: Adaptation and Identification

The process of borrowing does not only include language contact and transfer
of lexical items. The transferred words spread through the whole community of
speakers and are integrated into the language system. This means each word is
adapted according to pronunciation, inflection, and spelling to fit into the RL. Sooner
or later, some of them even become indistinguishable from native words. Integrated
loanwords behave like native words, and can therefore be subject to other processes
of change. Before gaining insight in the process of integration and the identification
of loanwords, a definition of loanwords is needed.
Haugen (1950) introduced three borrowing patterns to classify loanwords, which
serve until today as the basis for loanword categorization.

Loanshifts Loanshifts include loan translations and semantic loans. Loan transla-
tions, known as calques, are often compounds which are recognized and translated by
the speaker during the borrowing process. For example, the German word Halbinsel
and the French word presqu’île are borrowed from Latin peninsula. Another example
is the German word Wolkenkratzer, which is borrowed from English skyscraper
(Haugen, 1950, p. 214). The compound is recognized by the speaker and both parts
are translated into the RL.
A semantic loan is the result of a borrowing process where only a meaning is
transferred and no structural or formal element. Haugen (1950, p. 214) uses the
example of American Portuguese speakers using humoroso with the English meaning
‘humorous’, although it means ‘capricious’ in Portuguese.

Loanblends Loanblends are hybrids consisting partially of borrowed and native
material. An example given by Haugen (1950, p. 219) is the word bockabuch (pocket
book) in Pennsylvania German, where bocka- is borrowed from English pocket and
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-buch is the German word for book. According to Haspelmath (2009), loanblends are
not widely attested, since most of the lexical items which could be identified as such
are not borrowings at all. Most of them are created based on loanwords (e.g. desk
lamp, an English compound constructed using two Greek loanwords). Such a word
cannot be counted as a loanword. This phenomenon makes it difficult to identify
hybrids in a language without any further knowledge of the borrowing process or
the contact situation.

Loanwords Loanwords are the most important types of lexical borrowings. The
group of loanwords is the vaguest one, since it may include pratically the other two
groups as well. Haugen (1950) limits it to words where the meaning, the form, and
the phonemic shape, with more or less complete substitution, is integrated in the
RL. Loanwords could further be specified according to their degree of substitution
in the borrowing language. Most of the time, there is no record of the degree of
integration or the adaptation process itself. Depending on the languages under
question and the corresponding contact situation – including the point in time in
the history, degree of contact, and the like – the understanding of the integration
process is hardly traceable. However, in comparison to the other kind of borrowing
patterns, loanwords are the most attested results of a borrowing process. Most of
the research in lexical borrowing deals with the identification of loanwords and the
reconstruction of the adaptation process.

Following Haugen (1950), Haspelmath (2008), and Winford (2010), a loanword is
defined in the following way:

Definition 2.1 A loanword is a word adapted from one language (SL) into another
language (RL) at some point in the history of the RL, showing morphemic importation
and substitution.

An example are the following French loanwords in German, taken from Volland
(1986).9

(2.5) a. Old French: raisin, rosin→ borrowed into German: Rosine
b. Old French: pastee→ borrowed into German: Pastete

9Further examples of loanwords in different languages can be found in Campbell (2013).
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At this point in time, the words describing this specific kind of objects are absent
in the German language and therefore borrowed from Old French. As it can be
seen in the example, the words underwent an adaptation process in the German
language to fit into the system. The integration involves the adjustment of sounds,
phonological patterns, and syntactic properties, like number and gender, and fulfill
the requirements stated in the definition of a loanword given in 2.1.
The modification of sounds takes place at the beginning of the borrowing process.
In the traditional view, bilingual speakers who borrow words containing foreign
sounds immediately change them. Due to phonetic interference, foreign sounds are
modified to comply with native sounds and phonological constraints of the RL. This
process is called adaptation or phoneme substitution. Campbell (2013, p. 59) defines
the term adaptation in the following sense:

“In adaptation, a foreign sound in borrowed words which does not
exist in the receiving language will be replaced by the nearest phonetic
equivalent to it in the borrowing language.”

A good example is the integration of Germanic loanwords in Finnish, given in
Campbell (2013). The voiced stops b, d, g are absent in the Finnish language. If
a Germanic loanword contained one of those, they were replaced with the closest
phonetic counterparts, namely the voiceless stops p, t, k.

(2.6) a. Germanic *bardaz→ Finnish parta (beard)
b. English humbug→ Finnish humpuuki

In the process of accommodation, loanwords with non-native phonological patterns
are modified to match the phonological combinations of the RL. This includes
deletion, addition, or recombination of sounds until the words fit into the structure of
the RL.10 Additionally, the morphology and syntax of loanwords need to be adjusted
to match the RL system. This means categories like gender, number, case, and the like
need to be assigned to the loanwords. This is, however, not always straightforward,
depending on the languages under contact. If the languages are similar in their
morphology and syntax, the assignment is in most cases obvious. If not, there needs
to be a criterion on which basis the loanwords can be integrated into the system.
This can be done by means of comparisons to native items or already integrated

10The reconstruction of the adaptation and accommodation processes of loanwords is the center of
interest in studies using Optimality Theory (OT). An overall explanation of using the OT framework
to remodel the integration process of loanwords can be found in Delz (2013). Research studies
using OT to model the substitution processes in specific recipient languages are, among others,
the ones by Silverman (1992), Vendelin and Peperkamp (2004), Rose (2012), and Paradis and
LaCharité (1997).
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loanwords, by using similar criteria like affixes, gender, or stress. Some languages
use a standard procedure to assign loanwords into their system. For example,
German loanwords of the category verb are all assigned to the class of regular verbs.
Loanwords of the category noun, where the gender cannot be determined, receive
neutral gender in German. As already stated, the outcome of borrowing varies
according to the degree of contact. Depending on the length and intensity of the
contact, the adaptation process can differ. For example, loanwords can introduce new
sounds and cause changes in the phoneme inventory of the RL (direct phonological
diffusion) (Campbell, 2013). This influences the adaptation process of loanwords
and can lead to various integration patterns. Words borrowed at the beginning of the
contact situation may undergo a different adaptation process than words borrowed
after the changes in the phoneme inventory. Only naming one of many examples
which can be caused by intense and long contact between languages. This leads
to the fact that there are typical patterns for the substitution of foreign sounds in
a language, but they do not have to be uniform over time and degree of language
contact. Another fact is that the adaptation process of loanwords is language-specific,
depending on morphological and phonological criteria. All processes of integration
are of different length and happen under different circumstances. This means no
two processes are alike.
In theory, the adaptation process seems understandable and verifiable. However,
rarely, if ever, a speaker can be caught during the actual process of borrowing and
adaptation, i.e. there is no record of a whole process. How can we identify loanwords
and detect the direction of borrowing? Linguists identify loanwords by finding similar
shapes and meanings across languages where a contact situation exists and where
another alternative explanation is missing or cannot be identified (Haspelmath,
2009). A common reason for similarities between languages is common ancestry,
which needs to be excluded during the identification process. A clear determination
of a loanword can only be ensured by verifying both the original pattern and a
possible donor language. This itself is a challenge. In most cases, the original
word is a reconstructed form, if it is present at all. The possible donor language
cannot clearly be identified, i.e. there might be more than one possible candidate.
There is not enough record of the language histories and the relatedness of the
languages under question, which might lead to a wrong verification. There are
family-internal borrowings which do not fulfill the above-mentioned criteria to
clearly identify loanwords. Additionally, this process assumes that we already have
possible candidates which could be loanwords in a language. Since loanwords can
be fully integrated in a language, they cannot be identified without any knowledge
about the language history, the possible contact situation, and the reconstruction of
the language and its words. Only then assumptions can be made which words show
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a different phonological pattern or are uncommon in a language. Campbell (2013)
stated different criteria which can be assumed to clarify if a word is a loanword. The
three strongest criteria are listed below.11

Phonological Clues Phonological clues can be found in words without a complete
substitution. Sounds which are normally not expected or even absent in the RL are
indicators for loanwords.
Furthermore, violation of the typical phonological patterns implies that words might
be borrowed. Phonological patterns are syllable structure, morpheme structure,
phonotactics, and the like. An example are the Mayan languages, having monosyl-
labic roots of the form CVC (consonant – vowel – consonant). All morphemes which
violate this pattern turned out to be loanwords or compounds.
The knowledge of the phonological history of the language, including the recon-
struction of the phoneme inventory and sound changes, can be helpful to detect
loanwords, the direction of borrowing, and the donor language.

Morphological Complexity Morphological complexity can help to discover the direc-
tion of borrowing. Morphological complexity means a word is composed out of two
or more morphemes, or has a morphologically complex etymology. The direction of
borrowing is mostly from the morphologically complex language into the language
with the monomorphemic word.
English borrowed the Spanish word el lagarto as alligator. In Spanish, the word
is morphologically complex, since it consists out of an article and the noun itself.
In English, after the borrowing process, the loanword has lost this complexity. An
example of a morphologically complex etymology is the borrowing of the French
word vinaigre into English as vinegar. The French word is a compound vin- ‘wine’ +
-aigre ‘sour’. The compound structure is absent in English, the individual words fuse
into one noun.
This is a strong but complicated criterion, since the etymology of words is not always
known, which could lead to false positives.

Cognates Cognates can shed light on the relatedness of words between languages.
Words are subject to borrowing if cognates can be found in languages of another
language family and not in most of the sister languages. The amount of attested
cognates in the languages and its families indicates the direction of borrowing.
The language family where the cognate is attested in most of its daughter or sister

11For detailed examples, please have a look at Campbell (2013, pp. 61–65).
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languages serves as donor language, and the language(s) where the cognate is
present in less daughter or sister languages serves as recipient language. The Finnish
word tytär ‘daughter’ has no cognates in other Finno-Ugric languages. In Proto-
Indo-European, *dhug@ter ‘daughter’ has attested cognates in most Indo-European
languages. Therefore, Finnish borrowed the word from an Indo-European language,
namely Baltic (Campbell, 2013, p. 64).
This criterion leads to different challenges. First, there are languages where the
cognate information is absent or not established, which results in incomplete data.
The direction of borrowing could be identified wrongly depending on the missing
cognates, but the loanwords could still be identified. If the cognate information is
missing in the sisters of the RL, the status of the word as loan is questionable and
needs to be verified using additional criteria. Second, older borrowings are inherited
by the daughters of the language where the words belong to the same cognate set.
The direction can therefore be unclear if there are enough languages that share
the information. Additionally, it might be the case that a word would be seen as
inherited instead of borrowed, since it shares the cognate set with all its sisters.
According to the definition of loanwords, it is clear that loanwords are opposed
to native words. In his detailed description of how to define the term loanword,
Haspelmath (2009, p. 38) examines the relation between the conceptions of loans
and native words:

“[...] Given our definition of [the term] loanword [...], we can never
exclude that a word is a loanword, i.e. that it has been borrowed at
some stage in the history of the language. Thus, the status of native
words is always relative to what we know about the history of a language.
English dish goes back to Old English and has cognates in other Germanic
languages (e.g. German Tisch ‘table’), so in this sense it could be regarded
as a native word (contrasting with disk, which was borrowed from Latin
discus in the 17th century). But we know more about the history of
English than the attested forms in Old English: Proto-West Germanic
*disk has itself clearly been borrowed from Latin discus, so that English
dish must count as a loanword after all. Even for words that have been
reconstructed for a very ancient proto-language, such as English mother
(from Proto-Indo-European *mātēr) or ten (from *deḱm ), we cannot
be sure that they were not borrowed from another language at some
earlier stage. Thus, we can identify loanwords, but we cannot identify
“non-loanwords” in an absolute sense. A “non-loanword” is simply a
word for which we have no knowledge that it was borrowed.”

18 Chapter 2 Historical Linguistics and the Computational Turn



The term “non-loanword” is equivalent to native or inherited word. However, there
is a tendency in historical linguistics to label only those words which have cognates
in related languages or can be reconstructed to some proto-language as native or
inherited. Loanwords can therefore only be identified if we can verify that a word
has another phonological pattern than other words in the RL; and/or if the word
belongs to a cognate set absent to most of its sister languages; and/or is present in
other (unrelated) languages. This is in line with the statement of Haugen (1950),
who noted that a double comparison is needed to identify borrowings. First, earlier
and later states of the words in the given language need to be compared. Second, a
comparison between the word under question and similar words in other languages
is required.

A word comparison between different languages can be done in two manners. For the
detection of loanwords in a specific language, words can be identified as loans either
by the knowledge of linguists, or according to the phonological patterns. If the history
of the language is known, most contact situations can be reconstructed. It is therefore
straightforward to define a set of languages which could function as source languages.
For a systematic cross-linguistic comparison of loanwords, a set of languages and
words needs to be defined. The set of words should consist of lexical items present
in most of the languages under question, where some of them are loanwords. The
research in lexicostatistics provides word lists of universal items which are used
for language classification. Even though basic vocabulary lists are said to be stable
against borrowings, quite a few exceptions can be found. McMahon (2010, p. 131)
summarizes the loanwords identified by Kessler (2001) across the 100 and 200 word
Swadesh lists: 31 loans are identified for English, Albanian has a total of 41 loans
(35 of these from Latin), French 27, and Turkish 22. Additionally, Embleton (1986)
identified 24 English loanwords, 12 from North Germanic and 12 from French, and
15 Frisian loanwords from Dutch. This weakens the assumption that basic vocabulary
is stable against borrowing, and draws the attention of identifying loanwords in
basic meaning lists.12 Using basic vocabulary lists simplifies the construction of
word lists for a set of languages, since both databases and studies in comparative
linguistics provide word lists across different languages (see e.g. Swadesh (1955),
Kessler (2001), Holman et al. (2008), Haspelmath and Tadmor (2009b), Tadmor
et al. (2010), and Dellert and Buch (2018)). The list of basic meanings for a set of
languages allows for word comparisons to determine similar forms across related
and unrelated languages.
The comparison between the earlier and later states of a word is a challenging

12See Haspelmath (2009, p. 48) for an explanation on the reasons of core borrowings.
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task, since all words under question need to be reconstructed. The comparative
method can shed light on the relatedness of words and their languages by identifying
cognates and sound correspondences. Since cognates are opposed to loanwords, the
detection of cognates and their corresponding cognate sets can provide an indication
of a word being a loanword. Loanwords tend to be grouped together with similar
words belonging to unrelated languages, and not together with their sister languages.
In some cases even the direction of borrowing can be detected with the help of
cognate sets, i.e. the language containing the loanword is grouped together in
a cognate set with languages from another language family, which indicates the
source of the word. For example, all Germanic words for the meaning ‘mountain’
are grouped together as cognates, except the English word mountain, which is
grouped together with the Romance languages, indicating that the English word is
a loanword. In this case, the direction of borrowing from the Romance language
family to English can be identified, since English is the only Germanic language
in the group of Romance languages. However, the specific source language within
the sample of Romance languages cannot be determined by cognate classes. Sound
correspondences and shared phonological patterns can be used for both detecting
loanwords and their particular source language. The comparison of phonological
patterns across languages can give insight about the similarity of words between
languages. If languages share phonological patterns, this could either be an indicator
of common ancestry or borrowing. The two possibilities can be distinguished by
using the information of the languages’ classification. If most of them share the same
phonological pattern, the word is inherited. Otherwise, there is a high probability
that it is a loanword. The direction of borrowing can be detected if the set of
languages includes other languages with the same pattern which could function
as donor languages. Using the example of the English word mountain (maUntIn),
according to phonological patterns the word is more similar to French montagne
(mOtañ), Spanish montaña (montaña), and Portuguese montanha (mot5ñ5) than
to Germanic languages like German berg (bE5

“
k), Swedish berg (bEr:g), and Dutch

berg (bErx)(Dellert, Jäger, et al., 2017).13 The English word would be identified
as loanword and French would function as donor language, since the phonological
pattern of English and French is most similar. As it is known from the history of the
English language, the native word for ‘mountain’ in Middle English was berwe/bergh,
which was displaced by the French word mountain (Merriam-Webster Dictionary,
2020). Needless to say, in most cases the identification is not straightforward;
however, the usage of the comparative method for the identification of loanwords
via cognates and similar phonological patterns is a good starting point.

13Transcriptions are taken from the online database, see Dellert, Jäger, et al. (2017).
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Summary: Loanword Identification as challenging task

The identification of loanwords, their adaptation process, and the detection of donor
languages are challenging tasks. The adaptation during the borrowing process is
language-specific, where no universal assumptions can be made. If possible candi-
dates of loanwords are known, traditional linguistic theories, like Optimality Theory,
can be used to reconstruct the adaptation process. The most promising method to
identify loanwords and detect their source language is a systematic cross-linguistic
comparison between a set of languages using historical methods. The comparative
method functions as the underlying method for the detection task. The determina-
tion of cognates and sound correspondences can serve as criterion to distinguish
an inherited word from a loanword. If the word is recognized as loanword, the
similarity between phonological patterns can lead to the identification of the source
language. The key point for all studies is a clear definition of loanwords, where it
might be needed to ignore other (sub)categories to keep it a manageable survey.
For visualization purposes, the wave model needs to be rejected, since neither indi-
vidual loanwords nor the direction of borrowing can be analyzed or displayed. A
reconstructed language tree is a good basis for further development, since it repre-
sents the classification of the languages under question. In the last years, networks
have been introduced in the research on language contact and borrowing, which
combine language classifications with contact scenarios. However, the usage of
networks causes further challenges, as it will be shown in the following chapter.
Additionally, it should be noted that only linguistic constraints on borrowings are
taken into account. The borrowing hierarchy indicates that nouns are most likely to
be borrowed. Working with basic word lists already implies this constraint, since
most words are nouns, followed by verbs, and larger word lists contain also adjec-
tives and adverbs. Including social constraints on borrowing in this kind of linguistic
survey bears a different and probably even more difficult undertaking.
A systematic cross-linguistic study on borrowing and loanword detection is a chal-
lenging task, which can barely be done manually by linguists. It is time-consuming.
The more languages in the set, the more time is needed to compare each word in
each language with one another. Cognates, loanwords, and sound correspondences
need to be determined, not to mention the detection of the donor language of
each loanword. Fortunately, phylogenetic methods found their way into historical
linguistics and unveiled a new field of study: computational historical linguistics.
Computational methods are helpful tools to automatically detect cognates and sound
correspondences, and to reconstruct language trees. And, as it will be shown in
this research, they can shed light on the detection of loanwords and their source
languages.
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2.2 Computational Historical Linguistics

Computational approaches have been used in historical linguistics over half a century.
During the last decade, the research in computational historical linguistics (CHL)
experienced rapid growth due to the digitally available databases and the transfer of
methods from phylogenetics.
Phylogenetics goes back to Darwin (1871), who introduced the tree model to study
evolutionary relationships between species and organisms. The field of cladistics
arose out of the methods for grouping species and organisms according to their
common ancestry (Lecointre, 2006). These methods, which serve as basis for
manual and computational phylogenetic analysis, were developed by the German
entomologist Willi Hennig (Hennig, 1999).14

In his work, Darwin (1871) already mentioned the parallels between species and
language evolution, which inspired Schleicher (1863) to his work on the Darwinian
theory in linguistics. Based on this work, a systematic overview of the parallel types
and mechanisms between biology and linguistics was outlined in the work of Croft
(2000) and the study of Atkinson and Gray (2005). It is therefore not surprising that
linguists transferred (computational) ideas and methods from phylogenetics. The
research in historical linguistics benefits from the newly introduced approaches, since
computational models allow for faster and larger data processing. In phylogenetics,
methods of sequence comparison, taxon clustering, and tree reconstruction are
already established and found their way into linguistic research. The following
chapter introduces the computational elaborations of the comparative method and
other computational approaches to study language contact, borrowing, and loanword
detection.

2.2.1 Comparative Method: The Computational Turn

In cladistics, methods are elaborated to group species and organisms according to
their ancestry. This is comparable to the aspects of the comparative method, i.e. the
identification of sound correspondences and cognates to group genetically related
languages. Further, the comparative method aims at detecting sound laws and
reconstructing a proto-language and a tree diagram to represent the classifications of
the languages. Jäger and List (2016) showed that a complete implementation of the
traditional comparative method is currently not feasible. Some aspects correspond to
phylogenetic approaches, for which computational methods are already established.

14The original book was written in 1966. In 1999, it was translated into English and published by the
University of Illinois Press.
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The systematic process used in the computational variant of the comparative method
would include the following steps:15

1. Collection of basic vocabulary for a set of languages;
2. Sequence comparison to identify shared (phonological) patterns;
3. Cognate identification and grouping of cognate sets;
4. Reconstruction of a tree to classify languages.

A list of basic meanings can be extracted from different digitally available databases,
which are introduced later in the chapter. Most of the databases focus on phonolog-
ical presentations of the lexical items. Sounds are the basis for sequence compar-
ison in the classical comparative method to establish sound laws and reconstruct
proto-languages. In phonology, the International Phonetic Alphabet (IPA) is the stan-
dard representation of sounds from spoken languages (Yallop and Fletcher, 2007;
O’Grady et al., 2011; International Phonetic Association, 2019). The advantage over
orthographic forms is that all words are described with the same set of characters
independent of their writing system. Additionally, some orthographically ambiguous
words can be disambiguated using their phonological representation. Most of the
databases therefore collect phonological representations of the basic vocabulary
using IPA or a reduced form of it. This complies with the task of systematic cross-
linguistic comparisons, since there is no barrier for the comparison of lexical items
across different languages having different alphabets.
The detection of cognates and sound correspondences is a particular task of sequence
comparison, which allows to determine shared patterns between the phonological
representations of the lexical items. The identification of matching sounds due to
word comparisons is the core analysis of the classical comparative method to estab-
lish sound correspondences in cognate pairs (Jäger and List, 2016). In phylogenetics,
alignment analyses are a general task to model similarities and differences between
two or more strings. Alignments are represented in matrices, where similar sounds
are aligned in the same column and the empty cells are filled with gap symbols to in-
dicate the differences between the strings. The computational alignment algorithms
developed in biology and computational science are used in historical linguistics
for a cross-comparison of phonological sequences. Generally, a distinction between
two different alignment analyses is made: pairwise phonetic alignment and multiple
phonetic alignment. Pairwise phonetic alignment is the comparison of two strings,
resulting in an alignment matrix and a similarity or distance score. The following

15See Jäger and List (2016) and Jäger (2019) for a visualization of the steps. For a detailed technical
description of all computational steps of the comparative method to receive language phylogenies,
see Jäger and List (2016) and Dunn (2015b).
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alignment example for the meaning ‘mountain’ shows automatic pairwise alignments
of phonological strings.16

(2.7) Pairwise alignment of the words for the concept ‘mountain’:

a.
French: m o - t a 5 -
Spanish: m o n t a 5 a

b.
English: m a u n t - i n
French: m - o - t a - 5

c.
English: m a u n t i - n -
Spanish: m o - n t - a 5 a

d.
English: - m a - - u n t i n
German: b - E r k - - - - -

e.
German: b E r k
Dutch: b E r x

The alignments of English, Spanish, and French show a greater similarity than the
alignments between English and German. This underlines the observation that
the English word is cognate to the words in the Romance languages and therefore
a loanword. In comparison, the German and Dutch word correspond with each
other, which is indicated by the alignment without using any gap symbol. The
additional computed similarity or distance score by the algorithm is a good indicator
for the relatedness of languages and can be used for further processing. Multiple
phonetic alignment, on the other hand, compares multiple strings with one another
to construct an overall alignment matrix, which pictures the diversity within a
cognate set. In example 2.8, the Swedish word berg is added to the alignment of
Germanic languages showing the sound correspondences of the cognates. In the
cognate class of the Romance languages, the diversity of the sounds within the
cognate set is illustrated.

(2.8) Multiple alignments for the concept ‘mountain’:

a.

German: b E r k
Dutch: b E r x
Swedish: b E r g
. . .

16For representation purposes, the words are transcribed using the reduced phonological characters
introduced in Brown et al. (2008) from the ASJP database (Wichman et al., 2018). 3 = high and
mid central vowel, rounded and unrounded (IPA: 1, 9, @, 3, 0, 8, Å). 5 = palatal nasal (IPA: ñ).
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b.

English: m a - u n t i - n -
French: m - o - - t - a 5 -
Spanish: m - o - n t - a 5 a
. . .

The multiple alignments can differ compared to the pairwise alignments depending
on the algorithm and the underlying technique. It is therefore advisable to test
different phylogentic algorithms on linguistic data to determine the most suitable
one.17

The assessment of sound correspondences leads to the assignment of cognate classes,
which are determined according to the alignments and established sound correspon-
dences. Words with the same cognate class form a cognate set. The grouping can
be represented in a binary presence-absence matrix, where 1 indicates the presence
and 0 the absence of the cognate class.

cognate sets
language phono. string m b f

French mota5 1 0 0
Spanish monta5a 1 0 0
English mauntin 1 0 0
German bErk 0 1 0
Dutch bErx 0 1 0
Swedish bErg, fyEl 0 1 1
Norwegian bErg,fyEl 0 1 1
Icelandic fEtl 0 0 1

Tab. 2.1.: Binary (presence-absence) coding of cognate classes for the concept ‘mountain’.
The abbreviations stand for: Germanic languages b = ‘berg’, f = ‘fjäll’; Romance
languages: m = ‘mountain’.

For illustration purposes, the Germanic languages containing a variation of the word
fjäll for the concept ‘mountain’ are added to the example in table 2.1. All present
Romance languages and English are assigned to the cognate class m, whereas German
and Dutch are grouped together in b. This is in accordance with the alignment in
example 2.7. The Germanic languages containing another word for the concept
‘mountain’ are grouped together in f. Since Swedish and Norwegian have both two
words referring to the meaning, they are grouped in two cognate classes respectively.
As it can be seen, the task of automatic cognate detection is a clustering or partitioning
task, since the goal is a grouping of phonological sequences according to their
similarity. Automatic methods used in historical linguistics promise good results,

17See Jäger and List (2016) for a detailed description of the alignment methods and an overview of
computational alignment algorithms used and developed in historical linguistics.
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which are confirmed in several studies (see e.g. Dunn et al. (2011), Bouckaert
et al. (2012), List (2014), Rama et al. (2017)).18 Some historical linguists provide
cognate information for their data, like Ringe et al. (2002) or The Austronesian Basic
Vocabulary Database (ABVD) by Greenhill et al. (2008). The cognate judgments in
the databases can either be used for further analyses, or to evaluate the automatically
detected cognates and their groupings.
In the comparative method, the languages are clustered according to the shared
innovations. The more innovations two languages share, the closer they are related
and clustered in the tree. The similarity/distance scores or the cognate classes can
be used to reconstruct a language tree using phylogenetic methods. There is a
wide range of algorithms developed in computational biology, and most of them
are applicable out of the box in historical linguistics.19 Both phylogenetics and
historical linguistics strive for the same goal using tree reconstruction, namely the
representation of observed languages at the leaves of the tree. The internal nodes of
the tree should present inferred historical stages of the languages and their families.
Noonan (2010) mentioned the assumptions made with the tree model, which
are all reflected in the tree diagram reconstructed from automatic methods. The
internal nodes should represent the common ancestor of two languages or groups of
languages, indicating a language family. Further, the internal nodes display the split
of two languages into unitary systems, which causes a new independent linguistic
system. The automatically reconstructed tree in figure 2.3 displays the historical
correct classification of the Germanic and Romance languages. Several linguistic
studies demonstrate that compared to an expert classification tree, automatic tree
reconstruction algorithms build trees with equally good language classifications (see
e.g. Brown et al. (2008), Holman et al. (2008), Jäger (2013a), and Jäger (2013b)).
The tree model assumes that language contact is irrelevant for the classification of
languages according to shared innovations. The reconstructed tree in figure 2.3
displays the historically correct classification of the languages, although loanwords
are present in the underlying data.

Depending on the language sample and the underlying data, loanwords introduce
either a low or a high amount of noise to the analysis. The effect of noise varies
according to the loanwords present in the basic meaning lists of the languages under
question. In figure 2.3, the known loanwords introduce a low amount of noise,
which leads to the correct classification of the languages. One of the reasons is that,
on average, two languages share more cognates than they share loanwords. The
cognate information between genetically related languages is more powerful than

18For a detailed description and overview of the current methods, see Jäger and List (2016).
19Delz (2013), Dunn (2015b), and Jäger and List (2016) give detailed explanations of the tree

reconstruction methods in historical linguistics.
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Fig. 2.3.: Automatically reconstructed tree of the Germanic and Romance languages from
Delz (2014).

the loanword information. For example, Embleton (1986) identified 24 loanwords
in English, 12 from French and 12 from North Germanic, in the 200 word Swadesh
list. If those are the only loanwords in the list for English, the other 176 words
should then be cognates. The 12 loans from North Germanic are harder to identify,
since the languages belong to the same language family and might be grouped
into cognate sets including other Germanic languages. If all French loanwords are
grouped to the Romance languages, there are still 188 words which cluster English
into the Germanic language family. It seems that in the sense of language tree
reconstruction, loanwords carry less weight for a proper language classification.
However, the amount of noise introduced to the analysis and its effect remains
unclear if the correct number of loanwords cannot be established. If loanwords can
be identified and excluded from the meaning list, the effect of noise in automatic
tree reconstruction can be minimized. This could result in an increased consistency
between the automatic reconstructed language trees and expert classifications. In
addition, the detected loanwords are good indicators for language contact and
borrowing, as it will be seen in the following studies.
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2.2.2 First Attempts on Loanword Identification

Automatic methods for the detection of borrowings and loanwords are still in their
infancy. Until now, there is no suitable method for this kind of identification task.
Although the field of phylogenetics provides interesting methods and approaches, it
seems that the transfer of these kind of approaches is more difficult than expected.
One of the reasons is that, in classical historical linguistics, the task of loanword
identification is already difficult enough, as it is previously shown. Language contact
does not proceed in a regular manner, i.e. there are no universal constraints which
could be applied for the identification, and both linguistic and social constraints play
a major role during the process of borrowing. Not to mention the different kinds
of loanwords which result from the borrowing process. If the identification of loan-
words by classical methods is already a challenge, how could automatic approaches
solve this task? First, there are limitations and concessions which need to be made
while applying automatic methods from phylogeny. Second, different approaches
need to be tested in order to shed light on the suitability of the algorithms. Third, the
issue of data availability for training and testing data is still present. The problem in
creating high-quality databases lies, on the one hand, on the time-consuming task of
annotating and digitizing the data, and on the other hand, on the limited knowledge
of the borrowing process between the languages of the world (List, 2019). In this
chapter, attempts on loanword detection which do not fit in the later chapters are
presented to illustrate the several ideas of automatic approaches.
One of the first attempts, to my knowledge, to identify loanwords via a formula was
the study of Embleton (1986). The main aim of the study was, instead of excluding
the loanwords from the word lists to compute language-relatedness, to introduce a
borrowing parameter that can be added to the computation to correct for the effects
of loanwords. The borrowing parameter is computed by identifying the number of
loanwords in a RL from all its neighboring languages, resulting in one borrowing
parameter for each language pair. The issues with this approach are that first, the
parameter is language pair-specific. And second, McMahon and McMahon (2005, p.
91) showed that the number of loanwords needs to be known beforehand, i.e. the
loanwords are identified manually. The method is therefore no help in the detection
of unknown borrowings or loanwords across languages.
Minett and Wang (2003) propose a model using parsimony methods (Fitch, 1971) to
detect conflicts of cognate sets on a given phylogeny. The cognate sets are distributed
over seven Chinese dialects using multistate modeling of the lexical cognates, which
excludes possible synonyms within a concept. In a later study, Wang and Minett
(2005) introduced the idea of skewing to detect language contact, where the simi-
larity between languages serves as underlying computation. However, the method
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was not extended to detect loanwords if the result of the skewing method indicates
borrowing between two languages.
In their work, Ringe et al. (2002) aimed at finding the “perfect phylogeny” for the
Indo-European languages, which turned out to be more complicated than expected.
The tree is reconstructed and refined using their own implementation of the max-
imum compatibility method. Wang and Minett (2005, p. 123) pointed out that
although no single true tree could be established, the remaining incompatible char-
acters could be indicators for non-genetic processes, like borrowing. Applications
using the computational technique of answer set programming in combination with
the implementation of Ringe et al. (2002) are introduced to model contact-induced
innovations (Erdem et al., 2003; Brooks et al., 2005). The results look promising
for small datasets, like the 24 Indo-European languages used by Ringe et al. (2002).
However, for larger datasets, the computation is not feasible under the introduced
models. In a follow-up study, Nakhleh et al. (2005a) extended the model of Ringe
et al. (2002) to address the issue of incompatible characters due to contact. The
aim of the study is to reconstruct a “perfect phylogenetic network” which consists of
a single true tree containing a small number of contact edges. The contact edges
are bi-directional, i.e. characters can be borrowed in both directions. Although the
number of incompatible characters can be established, no effort was made to specify
the loanwords or provide results about particular incompatible characters. One of
the main issues is that the parsimony approach leads to more than one possible
network, and the conflicts between optimization criteria for “perfect phylogenetic
networks” cannot be solved (Nakhleh et al., 2005a).
The work on loanword detection of Van Der Ark et al. (2007) is based on sequence
comparisons between phonological representations of lexical items. Similar to the
procedure in the computational comparative method, phonological sequences are
compared with a corresponding alignment algorithm to compute a distance score.
The idea that loanwords have a small phonetic distance to words from which they
were copied seems to be promising to detect loanwords. Both in the first study by
Van Der Ark et al. (2007) and in the follow-up study by Mennecier et al. (2016), a
near-zero word distance between unrelated languages is the indicator for loanwords.
The main issue is the definition of a threshold by which words are judged to be
loanwords. This is a crucial point using sequence-based methods for loanword
detection tasks. Van Der Ark et al. (2007) and Mennecier et al. (2016) solved this
issue by using annotated loanword data to determine the thresholds. It is unclear
whether the established thresholds are achieving equally promising results for other
language samples. Ideally, a method for loanword detection should not completely
rely on expert loanword judgments to avoid circularity in the analysis. In addition,
databases providing loanword annotations are only available to some extent.

2.2 Computational Historical Linguistics 29



2.2.3 Databases

The availability of digital databases increased during the last decades. On the one
hand, some databases focus on one particular language family, including expert
cognate judgments. Since the manual annotation of cognates is a time-consuming
task, the focus on one language family is not surprising. Those databases are used
for evaluation purposes of automatic cognate detection tasks. On the other hand,
some databases focus on the coverage of a wide range of language families at the
cost of expert cognate annotations. Those databases are mostly used to detect sound
correspondences, where the computational methods benefit from the large amount
of data.
While most of the time, the databases are distinguished according to the presence
or absence of expert cognate judgments, in this thesis the main focus lies on the
availability of loanword judgments. Except for the WOLD database, which was
created for systematic cross-linguistic research on borrowing, existing databases are
extended with loanword annotations. The choice of the database depends on the
study and the research question of the loanword detection task. A database focusing
on a particular language family can be used to detect family-internal loanwords,
while with a database including languages from different families, family-internal
and external loanwords could be identified. A presence-absence annotation of
loanwords can only be used to verify the identified loanwords, whereas with the
information of the donor language, the borrowing direction could additionally be
evaluated.
In the following, the four main databases providing loanword annotations are
introduced. This list does not aim for completeness, it rather presents the most
prominent digital databases available with loanword annotations, and the one used
throughout this thesis.

IELex The Indo-European Lexical Cognacy Database (IELex) (Dunn, 2015a) is based
on an early study of Dyen et al. (1992), and contains basic vocabulary lists of
Indo-European languages. The database contains a meaning list of 225 lexical items
and their translations into the 24 languages provided by Ringe et al. (2002), plus
additional 139 languages. The phonological representations are not presented in
uniform IPA, i.e. many forms are transcribed in the Romanized IPA format introduced
in Dyen et al. (1992). For each lexical item, the corresponding cognate class is
determined according to the classifications of Dyen et al. (1992). During the last
years, presence-absence annotations of loanwords were added to the database,
where 1 means loanword and 0 either inherited or not annotated. The inconsistent
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transcription of the lexical items requires post-processing of the data to use it with
computational methods. Additionally, the presence-absence representations of the
loanwords can neither distinguish between inherited and unannotated words, nor
give an indication of the donor language.

ASJP The Automated Similarity Judgment Program (ASJP) (Wichman et al., 2018)
is a cross-linguistic database covering over 5,000 of the world’s languages in version
18. A reduced meaning list of 40 lexical items is used in order to achieve such a high
coverage of languages. According to Holman et al. (2008), the 40 meanings on the
list are enough to keep a stable classification of the languages on an automatically
reconstructed tree. The lexical items in the database are transcribed using a 41 sym-
bol encoding, out of which 7 symbols are for vowels and 34 for consonants (Holman
et al., 2008).20 In the last years, presence-absence loanword annotations have been
added, where 1 indicates loanword and 0 inherited or missing annotation. Although
the database provides a good coverage across the world’s languages and probably
enough data for automatic loanword detection, the distinction between inherited
words or missing annotations is crucial for a statistical evaluation. Additionally, the
donor languages of the loanwords cannot be extracted from the database, which are
substantial for an evaluation of the direction of borrowing.

NorthEuraLex The NorthEuraLex (NELex) database (Dellert, Jäger, et al., 2017) is
a large-scale lexicostatistical database generated within the EVOLAEMP project at
the University of Tübingen.21 A wide range of 1,060 concepts across 107 languages
in Northern Eurasia is covered in the database. The unified IPA coding of the lexical
items is generated automatically out of orthographies or standard transcriptions.
The result is a constant transcription format across all languages, which is useful
for all computational tasks, like language classification, cognate detection, and
loanword detection. Additionally, the word lists can be converted automatically
into the reduced ASJP encoding or other fine-grained transcriptions (Dellert et al.,
2020). NELex is a large cross-family database for a well-researched linguistic area
in the world, which is a great advantage in the task of loanword detection. In
addition, the database is under constant development. Within the ongoing EtInEn
project, expert cognate and loanword judgments are collected (Dellert, 2019b).22

For loanwords, the donor language and a source word, if present in the source text,
is provided. Further, the borrowing process and its history is reconstructed as far

20A detailed transcription of the alphabet can be found in the appendix of Holman et al. (2008).
21https://www.evolaemp.uni-tuebingen.de/
22http://www.sfs.uni-tuebingen.de/~jdellert/etinen
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as the information is available.23 Since NELex covers a wide range of concepts on
languages from different language families and provides expert loanword judgments
including the donor languages, this database is the one of choice for the following
studies.

WOLD The World Loanword Database (Haspelmath and Tadmor, 2009b) is a result
of the empirical study of borrowability in the collaborative Loanword Typology
project (Haspelmath and Tadmor, 2009a). The database contains 41 individual
languages, where for each language a specialist selects counterparts for items on
a 1,460 fixed meaning list. WOLD provides information like orthographic and
phonological form, as well as details about the loanword status, the donor language,
and the source word with its meaning. The languages were selected “to represent
the world’s genealogical, geographical, typological, and sociolinguistic diversity”
(Haspelmath and Tadmor, 2009a, p. 3). The diversity of the languages in the sample
is well-suited for a systematic cross-linguistic study of loanwords and the borrowa-
bility of languages. However, for an automatic loanword detection approach, where
the comparative method serves as basis, the diversity of the languages is obstructive.
A good balance between related and unrelated languages is needed in order to
get reliable results from the computational comparative method. Nevertheless, the
loanword annotations and the corresponding donor languages can still be used for
evaluation purposes. All loanwords where the meanings, the languages, and the
donor languages are included in the NELex database are extracted and added to the
evaluation set.

23The collection of the data is still under development. A preliminary version was kindly provided by
my colleague Johannes Dellert.
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Modeling Horizontal
Transmission: Trees and
Networks

3

The parallels between biological and linguistic evolution led to the adoption of phylo-
genetic methods to historical linguistics. While most of the studies in computational
historical linguistics are concerned with language comparison, cognate detection,
and language classification, less attention is paid to the parallels between horizontal
gene transfer (HGT) and borrowing.
HGT (also called lateral gene transfer) is the transfer of genetic material between
unrelated organisms without sexual reproduction (Morrison, 2011). A popular
example from biology is the spread of antibiotic resistance in bacteria, where the
genes responsible for the resistance are transferred from one species of bacteria
to another through different HGT processes, e.g. direct cell-to-cell contact. Such
a transfer of genes causes a change within an organism by adding new genetic
material. This leads to a modification of the lineage, and the organisms’ classifi-
cation on the tree can be affected. However, similar to historical linguistics, the
genes derived from sexual reproduction have a stronger impact on the tree than the
transferred genes, i.e. the classification of the organisms in the tree is not affected
by horizontal transfer. In biology, during sexual reproduction the offspring inherits
genetic material from the parents. Due to recombination, the transferred genes are
passed on to the next generation along with the inherited genes, and lead to a new
mixture of the genetic material. With each reproduction process, the combination
of the genes changes, and transferred genes are more and more integrated into the
organism’s structure of genetic material. The parallel can be drawn to borrowing,
where words are transferred between languages without any form of inheritance
and only through language contact. Words are the genes of the language and object
to horizontal transfer between different languages. After the transfer, the words are
passed on to the daughter languages along with the inherited words, and at some
point in time, the words are completely adapted into the language.
In biology, horizontal transmission is modeled using networks to represent both
the tree due to inheritance and the horizontal transfer of genes between organisms.
Since a visualization of borrowing using the wave model was rejected in the last
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chapter, networks offer a new and interesting opportunity to model borrowing, and
explicitly loanwords. The field of phylogenetics provides a wide range of different
algorithms to reconstruct different kinds of networks. Keeping the parallel of hor-
izontal gene transfer and borrowing in mind, suitable methods and networks are
applied for the purpose of modeling borrowing using the methodology of HGT.
Since different kinds of trees are a key principle for understanding the underlying
methods of HGT and networks, those are introduced first in this chapter. Sec-
ond, phylogenetic networks, their purpose, and their counterpart in linguistics are
represented. Additionally, different kinds of networks to model language contact
and borrowing used in linguistic studies are discussed to illustrate their usage and
representations in linguistics. The last part of this chapter introduces the under-
lying methodology of horizontal gene transfer and the usability of this method in
linguistics.

3.1 Phylogenetic Trees in Linguistics

In his famous book, Felsenstein states that “phylogenies, or evolutionary trees, are
the basic structures necessary to think clearly about differences between species, and
to analyze those differences statistically” (Felsenstein, 2004, p. xix), which indicates
the important role of tree structures in phylogenetics. In linguistics, the comparative
method illustrates the importance of the tree concept to display language classifica-
tions. Until now, tree diagrams are the best concept in both fields to represent the
relatedness of entities in a graphical way.
Phylogeneticists examine the tree from a mathematical point of view and have es-
tablished several reconstruction algorithms. The tree itself is a versatile graph which
is, on the one hand, flexible when dealing with different changes and manipulations,
and on the other hand, informative according to the classification of the entities
under question. Although a tree cannot represent all evolutionary processes, it can
serve as fundamental idea or basis.
Trees can have different graph theoretic properties for the representation of the
data, e.g. they can be either unrooted or rooted. The property of the tree illustrates
a specific kind of classification of the entities under question. Depending on the
underlying research question, the representation of the data and the corresponding
illustration of the tree needs to be chosen. Furthermore, the labels on the tree can
depict various kinds of data. Depending on the displayed data on the leaves, the
interpretation of the trees differs, i.e. the histories of species and genes can both be
represented using a tree.
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The computational comparative method, introduced in section 2.2.1, outlines the
computational steps for the reconstruction of phylogenetic trees. Figure 3.1 visu-
alizes the main steps for data processing to obtain an automatically reconstructed
tree.1

Language Data:
Wordlists of the languages

Editing wordlists:
Matrix computations

Character-based Methods

Maximum Parsimony
Maximum Likelihood
Bayesian Inference

Distance-based Methods

UPGMA
Neighbor-Joining
FastME

Fig. 3.1.: Workflow for automatic tree reconstruction.

For a better understanding of the various representations of phylogenetic trees, the
properties, reconstruction methods, and labeling possibilities are explained in the
following chapters. Depending on the data used for the reconstruction, the resulting
trees present different information, and display various kinds of groupings of the
entities under question, whereas the order of the processing steps remains the same.
The distinct trees obtained from different kinds of linguistic data are the input to
the HGT methods to detect horizontal transmissions. In addition, the computational
steps, which need to be completed until the tree is compiled, are explained with
respect to the process of the computational comparative method in CHL.

3.1.1 Trees as Graphs: The Fundamental Concept

From a mathematical point of view, the underlying concept for trees are graphs.
Graphs are a popular way to represent the relationship between objects, where
objects are represented as nodes and the relationships between them by edges. There
are two types of graphs: undirected and directed graphs.2 Huson et al. (2010, p. 3)
define undirected graphs in the following way:

1For a detailed description and visualization of all alignment methods and tree reconstruction
methods, see Huson et al. (2010, p.24).

2The overview is based on Huson et al. (2010).
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Definition 3.1 (Undirected graph) An undirected graph G = (V,E) consists of a
finite set of nodes V and a finite set of edges E, where each edge e ∈ E is of the form
{v, w}, with v, w ∈ V .

For an edge e = {v, w}, the endpoints of the edge are the nodes v and w, where e
connects the two points with each other, i.e. v and w are incident to e. Two nodes
are adjacent when they are connected by an edge, and two edges are adjacent when
they share an endpoint. The degree of a node is the total number of incoming and
outgoing edges (Huson et al., 2010). In an undirected graph, each edge consists
of an unordered pair of two distinct nodes. In contrary, each edge in a directed
graph consists of an ordered pair of nodes, i.e. the edge has a direction. Huson et al.
(2010, p.4) give the following definition of a directed graph:

Definition 3.2 (Directed graph) A directed graph G = (V,E) consists of a finite set
of nodes V and a finite set of edges E, where each edge e ∈ E is the form (v, w), with
v, w ∈ V .

In an edge e = (v, w), v is the source and w is the target node connected by the edge
e, the edge is directed from v to w. In this scenario, e is the out-edge of v and the
in-edge of w. The indegree of a node is the number of in-edges, the outdegree of
a node is the number of out-edges respectively. The degree of a node is therefore
the sum of its indegree and outdegree. A directed graph which is free from directed
cycles is called a directed acyclic graph (DAG). If there exists a direct path from node
v to node w, v is the ancestor or parent of w, and w is the descendant or child of v.
It follows that a node v cannot be both a descendant and an ancestor of any other
node w (Huson et al., 2010). The definition of a DAG forms the basis for rooted
phylogenetic networks, introduced later in the chapter.
A tree is a special kind of graph, i.e. a connected, noncyclic graph (Huson et al.,
2010). A tree is transformed into a phylogenetic tree by labeling the leaves of the
tree with the corresponding taxa contained in the set of taxa. The terminology
introduced will be used to refer to the constituents of the tree as nodes and edges,
whereas edges are sometimes called branches in phylogenetics (Huson et al., 2010).
A phylogenetic tree can either be unrooted or rooted, where in a rooted tree one
node is declared as root. Unrooted trees illustrate the relatedness of entities at the
leaves without making any assumptions of ancestry. The declaration of a root results
in a hierarchical classification of the data, representing the ancestry and the latest
common ancestor of all entities at the leaves of the tree (Felsenstein, 2004; Huson
et al., 2010; Morrison, 2011). This is in accordance with most of the manually
compiled trees introduced so far. Biologists use rooted trees to display the evolution
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of organisms, where each split in the tree is the result of a speciation event. In
linguistics, rooted trees represent the ancestry of the languages and their splits into
further unitary linguistic systems. This holds for both manually and automatically
reconstructed trees.
Huson et al. (2010, p. 26) give the following mathematical definition of a rooted
phylogenetic tree:

Definition 3.3 (Rooted phylogenetic tree) Given a set of taxa χ, a rooted phyloge-
netic tree consists of a rooted tree T = (V,E, ρ) and the taxon labeling λ : χ→ V that
assigns exactly one taxon to every leaf and none to an internal node. All nodes, except
ρ, must have degree 6= 2.

In the definition, each taxon x ∈ χ is mapped onto some node v in the tree by the
taxon labeling denoted as λ. In λ(x) = v, the node v is labeled by the taxon x.
It is assumed that each leaf in the tree is obtained by some label via λ. In most
cases, internal nodes remain unlabeled, and each leaf obtains exactly one label.
Additionally, the definition requires that all nodes have a degree 6= 2.3

The set of taxa can be denoted as χ = {x1, ..., xn}. In phylogenetics, each taxon xi

represents some species, group, or organism whose classification and evolutionary
history is of interest for the analysis. In linguistics, the main aim of automatic
tree reconstruction is the classification of languages according to the comparative
method. The set of taxa consists of a set of languages, which are represented on the
leaves of the tree. Whether other kinds of data can serve as input, and in which way
the interpretation of the tree and its evolutionary history will differ, is one of the
main topics in this thesis.
Definition 3.3 implies that any node in a tree can be specified as the root, i.e.
inner nodes and leaves. Most, if not all of the tree reconstruction methods compile
unrooted trees, since the selection of a root is an additional decision task in the
computation. The decision task is either dependent on further knowledge of the
evolution of the entities under question, or on mathematical assumptions. In
classical historical linguistics, the tree is reconstructed bottom-up, answering the
question of the root during the comparison and reconstruction process. The usage
of computational methods leads to a rethinking in the selection of the best node to
serve as root. There are several algorithmic solutions to this decision task, which
are discussed later in the thesis. The mathematical definition of a phylogenetic tree
opens up many possibilities to implement different algorithms for the reconstruction

3Mathematical phylogeny makes sometimes use of the more general concept of an X-tree (see e.g.
Steel (2016)). For more information on this topic and an adequate discussion, see Huson et al.
(2010, p. 25).
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and manipulation of trees to address different research questions. Graph theory
is widely used in different research fields where algorithms for manipulating and
changing graphs can easily be adopted into phylogenetics. This results in a large
number of algorithms which can be further integrated and adapted into CHL.
The rooted phylogenetic trees are of main interest to CHL, since they represent the
evolution of languages in a hierarchical tree diagram and give a clear classification
of the languages. The languages and their ancestry are of great interest in the
detection of borrowing and loanwords. Borrowing can happen at any point in
time in language history, which can be better indicated if the tree is hierarchically
clustered. Additionally, rooted trees play an important part in the computation
of rooted phylogenetic networks, which are important for displaying horizontal
transmission due to the HGT methods, which can be used to detect borrowings and
loanwords. From a theoretical point of view, rooted trees contain more information
useful for further analyses and the detection of horizontal transmissions. In an
algorithmic perspective there are other challenges to solve, which will be discussed
below. Rooted trees are the trees of choice used in this thesis.4

3.1.2 Overview of Tree Reconstruction Methods

As it can be seen in figure 3.1, methods for phylogenetic inference are divided
into two main methods: distance-based methods and character-based methods. The
various algorithms are developed using different underlying mathematical models
to reconstruct phylogenetic trees, which is one of the distinctions between them.
However, another difference is the input matrices used for the reconstruction. The
distance-based methods require a distance matrix, i.e. a matrix displaying the
pairwise distances between two entities. Character-based methods require either
a character matrix illustrating a multiple-sequence alignment, or a notation of the
presence and absence of characters. The three main algorithms for each method are
introduced below. For a detailed and mathematical description of the algorithms,
please refer to Felsenstein (2004) and Huson et al. (2010), or to the original article
for the corresponding method. An overview of the reconstruction algorithms in a
linguistic context is given in Jäger and List (2016) and Dunn (2015b).

4For more detailed mathematical descriptions of directed graphs and trees in phylogenetics, see
Huson et al. (2010). Delz (2013) gives an introduction to phylogenetic trees in a linguistic context.
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Distance-Based Methods

In a distance-based analysis, the sequences are aligned using a pairwise alignment
method while simultaneously computing a similarity or distance score. If the
pairwise alignment results in a similarity score, the score is converted into a distance
for further processing. The distance matrix is provided to an algorithm such as
UPGMA, Neighbor-Joining, or FastME to reconstruct a pyholgenetic tree (Huson et al.,
2010).

UPGMA The unweighted pair group method using arithmetic means (UPGMA) (Sokal,
1958) is a simple bottom-up hierarchical clustering method. UPGMA reconstructs
a phylogenetic tree on a given distance matrix with edge length. “The method
operates by clustering the given taxa, at each stage merging two clusters and at the
same time creating a new node in the tree. The tree is assembled bottom-up, first
clustering pairs of leaves, then pairs of clustered leaves, etc. Each node is given a
height and the length of an edge is obtained as the difference of heights of its two
end nodes” (Huson et al., 2010, p. 52). The algorithm presupposes a constant rate
assumption, i.e. it assumes an ultrametric tree having equal branch lengths from the
root to every node in the tree.

NJ The neighbor-joining algorithm (Saitou and Nei, 1987) is also a bottom-up
hierarchical clustering algorithm. It reconstructs unrooted phylogenetic trees with
branch lengths from a given distance matrix. “The neighbor-joining algorithm is a
modification of the UPGMA algorithm. Both algorithms are agglomerative methods
that repeatedly decide which two clusters to join, so that their nodes are ‘neighbors’
in the resulting phylogenetic tree” (Huson et al., 2010, p. 55). The UPGMA algorithm
clusters correctly if the distances come from an ultrametric tree indicating that closest
neighbors are indeed neighbors. However, in a general setting, two nodes or clusters
can be separated by a small distance without being true neighbors in the tree. In
this case, UPGMA reconstructs the wrong tree. To compensate for this effect, the
NJ algorithm “subtracts the average distance (almost) of each cluster to all other
clusters” (Huson et al., 2010, p. 54). NJ can therefore be used to reconstruct an
unrooted phylogenetic tree from any distance matrix. In addition, the algorithm
is faster and more widely applicable, which makes it the most popular method for
computing trees in phylogenetics.
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FastME The FastME algorithm (Desper and Gascuel, 2002; Desper and Gascuel,
2004) was developed within the framework of balanced minimum evolution (BME).
It constructs an initial tree from a distance matrix using a distance-based algorithm,
like NJ. Within the framework of BME, balanced average distances between two
taxa are computed to assign a balanced edge length on the branch connecting the
two taxa. The balanced length edge is defined depending on whether the edge
connects an inner node and a leaf (leaf edge), or two inner nodes (inner edge). A
mathematical description of the different formula is given in Huson et al. (2010,
p. 57). The tree is then optimized using nearest neighbor interchange (NNI) and
subtree prune and regraft (SPR), i.e. branch-swapping operations to transform a
tree T into another T ′ by rearranging a part of T . NNI is a simple branch-swapping
operation, in which subtrees that are attached to a common edge are swapped to
find the optimal position (Moore et al., 1973; Robinson, 1971; Huson et al., 2010).
SPR is a more general branch-swapping method, in which a subtree is pruned from
the given tree T and regrafted at a different location of the tree (Page, 1993; Huson
et al., 2010). The optimization steps are the reason why FastME runs significantly
faster than NJ. FastME does not need to explicitly compute the edge lengths or
tree lengths of the trees under consideration. The evaluation of the change of the
tree length is associated with the number of insertions or swapping-moves, which
can be computed in constant time. FastME has three advantages over NJ: it is
faster, it provides more accurate trees, and it almost never produces negative branch
lengths.5

Character-Based Methods

In a character-based analysis, there are three approaches to choose from: Maximum
Parsimony, Maximum Likelihood, and Bayesian Inference. The input to these methods
are character matrices, which are either obtained from multiple sequence alignment
methods, or binary presence-absence data representations obtained from a clustering
of the sequences, i.e. cognate clustering in linguistics. The optimal phylogenetic tree
is usually found by the performance of a search in tree space, where it might be the
case that several equally optimal trees are found. Character-based methods require
an evolutionary model of the characters for the inference of the tree. The different
models of evolution are described in Felsenstein (2004).6

5Huson et al. (2010, p. 37) give a detailed introduction to branch-swapping methods to solve
optimization problems on phylogenetic trees.

6For an illustration of the classification of the most important models of DNA evolution, please see
Huson et al. (2010, p. 31).
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Maximum Parsimony The maximum parsimony method tries to find the optimal
tree which explains a set of sequences by the minimum number of evolutionary
events which happen during the evolution of the sequences along the tree. The
maximum parsimony criterion is an optimality criterion, under which the tree that
minimizes the number of character changes is preferred. The algorithm computes
a parsimony score for each possible scenario of character evolution (Huson et al.,
2010). The tree with the smallest parsimony score is the most optimal one. Since the
algorithm reconstructs each possible scenario, it is possible that there exists more
than one optimal tree with the same parsimony score, i.e. with the same number
of character changes. It is therefore not trivial to choose the best tree if there is
more than one optimal tree that fulfills the optimality criterion. The general idea of
parsimony methods was first introduced by Edwards and Cavalli-Sforza (1963). The
two most famous algorithms are introduced by Fitch and Margoliash (1967) and
Sankoff (1975), and outlined by Felsenstein (2004).

Maximum Likelihood In phylogenetics, the basic idea of maximum likelihood es-
timation is to determine a phlyogenetic tree that maximizes the likelihood under
a given model of evolution for the given data (Huson et al., 2010). The maximum
likelihood approach uses standard statistical techniques to assign probabilities to a
phylogenetic tree. The parameters of a probability function are computed by maxi-
mizing the likelihood function. The likelihood function is an indicator of goodness of
fit for a statistical model to a dataset (Felsenstein, 2004). It is similar to maximum
parsimony in the sense that the method requires a substitution model to assess the
probability of mutations, and the more mutations a tree requires, the lower the
probability. In other words, the less mutations needed to reconstruct a tree, the
higher the probability. The tree with the highest probability is the most optimal tree
obtained from the algorithm. The maximum likelihood approaches for phylogenies
were introduced by Edwards (1964) using gene frequency data. Later, Felsenstein
(1981) showed a practical computation for a moderate number of sequences using
maximum likelihood estimation. An overview of maximum likelihood methods in
phylogenetics is given in Felsenstein (2004), Salemi et al. (2009), and Huson et al.
(2010).

Bayesian Inference The goal of Bayesian inference of phylogenetic trees is the
estimation of the posterior probability of a pyhlogenetic tree. “Generally speaking,
the posterior probability of a result is the conditional probability of the result being
observed, computed after seeing a given input dataset. The prior probability of a
result is the marginal probability of the result being observed, yet before the input
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dataset is examined.” (Huson et al., 2010, p. 45). In a Bayesian analysis, the dataset,
the evolutionary model, and the prior probability of a tree need to be specified. The
posterior probability of the tree can be obtained from the prior probability using
Bayes’ theorem. For more details on the computation, refer to Felsenstein (2004) or
Huson et al. (2010). The computation of the posterior probability seems quite simple.
However, it is usually impossible to solve the complete expression analytically. The
computation of Bayes’ theorem involves summing over all possible tree topologies
and model parameters, which will be a time-consuming task, if it could be solved at
all. To avoid this problem, the Bayesian inference algorithms use the Markov Chain
Monte Carlo (MCMC) approach. The MCMC approach searches the tree space to
find the region of the highest likelihood. A chain of trees is constructed, and at each
step of the analysis a modification of the tree is proposed. The algorithm decides
probabilistically if the modified tree is accepted or the current one is kept (Huson
et al., 2010). Bayesian methods produce a tree sample according to the posterior
distribution of phylogenetic trees instead of a tree representing a point estimate.
This opens up new possibilities for further processing and analyses of the trees in
the sample.

3.1.3 Language Trees: Genetic Classification of Languages

As described in section 2.1.1, genetic classification of languages aims at grouping
languages according to shared innovations across a set of words. In accordance with
the classical comparative method, the language relations are illustrated in a tree
diagram to model diversity (Noonan, 2010; François, 2015). Linguistic phylogenetics
incorporates the computational steps used in the computational comparative method
to infer linguistic trees, illustrated in section 2.2.1 and visualized in figure 3.1. This
chapter gives a short reiteration of the underlying process, and illustrates the
computation steps to reconstruct linguistic trees displaying the genetic classification
of the languages according to a basic vocabulary list.
To recap, phylogenetic trees are computed from sequence data, e.g. molecular data
or language data. In linguistics, the single sequences are represented by words
obtained from a basic meaning list of a set of languages. The total number of
languages and meanings is restricted by the database used for the computation. The
size of the meaning list varies across databases, e.g. between 40 words in ASJP,
and 1,016 word in NELex. The introduced databases provide basic meaning lists
containing phonological representations of the words, which is important for the
detection of sound correspondences. A word list, as shown in table 3.1, serves as
starting point for the analysis. For the reconstruction of language trees, the whole
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basic meaning list is used as input for all computation steps. The cognate assignment
is not available in all databases, and is therefore assigned manually for the following
presentation of the example.

Meaning ‘sun’ Meaning ‘mountain’ Meaning ‘you’ Meaning ‘louse’
word cc word cc word cc word cc

English son s mauntin m yu d laus l . . .
Icelandic soul s fEtl f 8u d lus l . . .
Swedish sul s bErg, fyEl b,f d3 d l3s l . . .
Norwegian sul s bErg, fyEl b,f d3 d l3s l . . .
Dutch zon s bErx b y3 d l3is l . . .
German zon3 s bErk b du d laus l . . .
Romanian soare s munte m tu d p3duke p . . .
Italian sole s monta5a m tu d pidokyo p . . .
French solEy s mota5 m ti d pu p . . .
Catalan soL s munta53 m tu d pol p . . .
Portuguese soL s mota5a m tu d pyulu p . . .
Spanish sol s monta5a m tu d pyoxo p . . .
. . .

Tab. 3.1.: An excerpt of the data from the NorthEuraLex Database containing the phono-
logical representations of the words in the ASJP alphabet and manually assigned
cognate classes.

Alignment analyses are used for sequence comparisons and detection of sound
correspondences across all languages in the set. No previous knowledge or expert
information of language relationships is needed for the alignment. For each meaning
in the list, all languages are compared and aligned with one another. Pairwise
sequence alignment methods simultaneously compute a similarity or a distance
score for each alignment, whereas a similarity score is converted into a distance for
further processing. At the end of the computation, the distance scores are aggregated
to maintain an overall distance between two languages across all meanings. The
pairwise distances between the languages are visualized in a matrix, where the
distance scores are the off-diagonals and the diagonal is filled with 0, indicating
the relation between the same language. Table 3.2 shows a sketch of a distance
matrix for the Germanic languages, using arbitrary distance scores for illustration
purposes.

eng isl swe nor nld deu
eng 0.0 0.36 0.38 0.38 0.3 0.3
isl 0.36 0.0 0.1 0.1 0.2 0.2
swe 0.38 0.1 0.0 0.08 0.25 0.24
nor 0.38 0.1 0.08 0.0 0.24 0.25
nld 0.3 0.2 0.25 0.24 0.0 0.01
deu 0.3 0.2 0.24 0.25 0.1 0.0

Tab. 3.2.: A sketch of a distance matrix for the Germanic languages using arbitrary distance
scores.
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The distance matrix obtained from the pairwise sequence alignment serves as input
for all distance-based methods. In linguistics, the neighbor-joining algorithm and
FastME are the most popular ones (Jäger, 2013a). UPGMA is suited best for ultra-
metric data, since sequences are in most cases not ultrametric, neighbor-joining and
FastME are the better choice for linguistic data. In addition, NJ and FastME are way
faster and produce more correct trees than UPGMA (Huson et al., 2010).
The distance scores and sound correspondences received from the pairwise alignment
serve as indicators to determine cognate classes for the corresponding meanings.
Cognates are either assigned automatically, or manually by linguists. There are
various methods for automatic cognate detection which are based on sequence
alignments and their corresponding distance scores. For each meaning, depending
on the alignments and distances of the words, the algorithm assigns cognate classes
to the words, and simultaneously clusters them into cognate sets. The result is a
categorization, as it can be seen in table 3.1. The cognate classes are represented in
a presence-absence character matrix, like in table 3.3, where 1 means presence and
0 absence of the cognate class.

Cognate sets
s m b f d l p . . .

English 1 1 0 0 1 1 0 . . .
Icelandic 1 0 0 1 1 1 0 . . .
Swedish 1 0 1 1 1 1 0 . . .
Norwegian 1 0 1 1 1 1 0 . . .
Dutch 1 0 1 0 1 1 0 . . .
German 1 0 1 0 1 1 0 . . .
Romanian 1 1 0 0 1 0 1 . . .
Italian 1 1 0 0 1 0 1 . . .
French 1 1 0 0 1 0 1 . . .
Catalan 1 1 0 0 1 0 1 . . .
Portuguese 1 1 0 0 1 0 1 . . .
Spanish 1 1 0 0 1 0 1 . . .
. . .

Tab. 3.3.: The presence-absence matrix for the languages and cognate classes displayed in
table 3.1.

The character matrix in table 3.3 is used as input for the character-based methods.
Depending on the method of choice, the result will either be a tree representing a
point estimate, as for maximum parsimony and maximum likelihood approaches, or
a distribution of trees from Bayesian models.

The language tree can be compared to a species tree in phylogenetics, i.e. a tree dis-
playing the evolution and relatedness of species or organisms. This representation is
the most popular one in both fields, and the algorithms are mainly developed for this
reconstruction purpose. In contrast to phylogenetics, automatically reconstructed
language trees are of main interest in CHL so far. There are two reasons: first, one of
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Fig. 3.2.: The distance-based language tree, representing the language classification of the
selection of Germanic and Romance languages.

the main aims in CHL is the implementation of the comparative method to classify
languages automatically, and second, different databases provide various kinds of
input data needed for the automatic reconstruction of languages. In addition, there
are several databases like Glottolog (Hammarström et al., 2018) providing expert
classifications of linguistic trees, which can be used to evaluate the automatically
reconstructed trees obtained from the algorithms.
The language tree in figure 3.2 is a distance-based bifurcating tree computed using
FastME, which is the output of most tree reconstruction methods, except for Bayesian
inference. The Bayesian analysis infers a distribution over trees which could be
summarized into a single consensus tree using different algorithms.7 Linguists
debate whether bifurcating or multifurcating trees are best to represent language-
relatedness. A language can have more than two descendants, since the splitting
of the languages or varieties into unitary systems is not restricted to two languages
per generation. This is a valid assumption, which is reflected in the expert classifi-
cation provided by Glottolog. Different linguistic studies showed that a bifurcating
tree obtained from tree reconstruction methods corresponds to over 80 percent to
the expert tree from Glottolog, see e.g. Steiner et al. (2011), Jäger (2013a), and
Jäger (2013b). Those results show that bifurcating language trees are suitable for
representing language classifications.

7The consensus tree methodology is introduced in chapter 4.
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In a language tree, adjacent languages share more sound correspondences than less
related languages. This is reflected in the clustering of the tree in figure 3.2. The
classification of the languages is in accordance with the linguistic knowledge: all
Germanic languages and all Romance languages are clustered together. Taking a
look at the detailed clustering of the Germanic languages, the clusters correspond to
the linguistic and geographical background knowledge, i.e. German and Dutch are
closely related and clustered together, the same holds for Swedish and Norwegian,
including Icelandic. McMahon (2010) showed that there are a considerable number
of loanwords within the basic meaning list, proving that loanwords and borrowings
cannot be ignored in the analysis. However, as it was shown in section 2.1.3, the
loanwords do not disturb the signal for an appropriate clustering of the languages,
which is reflected in the automatically reconstructed tree. English is still within
the cluster of the Germanic languages, since the majority of the words in the basic
meaning list are cognates to other Germanic languages. Nevertheless, the loanwords
(explicitly the French loanwords) are responsible for grouping English as outlier of
the Germanic languages in the sample.
To sum up, an automatically reconstructed language tree reflects the language re-
lationships in correspondence to the classical comparative method, illustrating the
language families and splits into unitary linguistic systems. In the hierarchical repre-
sentation of the tree, two nodes (either leaves or inner nodes) are joined together,
where the mother node represents the most recent common ancestor. The language
tree represents the relatedness of the languages according to their clustering into
language families.

3.1.4 Concept Trees: Genetic Classification of Words

It has been known for a long time in historical linguistics that words can evolve
differently and independently of their languages. The famous statement “every
word has its own history”8 is often credited to Gilliéron and Edmont (1902-1910),
although Campbell (2013) attributes it to Hugo Schuchardt, one of the founders
of the wave model. The assumption that every word has its own history is the
fundamental idea of the wave theory to model the spread of words in accordance to
their innovations with regard to the genetic classification represented in language
trees.
Words can enter a language either through vertical or through horizontal trans-
mission, i.e. they can be inherited from the ancestor language, transferred due
to language contact, or derived from other words. All the words belonging to the

8Translated from the original: “chaque mot a son histoire” (Gilliéron and Edmont, 1902-1910).
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language, independent of their transmission, can evolve and change in different
ways during language evolution. Words can change their form by sound changes
and analogy, they can change their meaning due to semantic change, or they can
disappear completely from the language. The result is an individual development of
the words during the evolution of the language.
Within the framework of the classical comparative method, it was already known
that words within a language might evolve differently than others. The distinction
of different sound changes, the assignment of shared innovations to a specific word
group, and the detection of complementary distributions within correspondence
sets are the main indicators for language classification and the reconstruction of
proto-languages.9 Other mechanisms, like analogy, semantic change, and extinction,
play also a major role in the evolution of languages, although they receive less
attention within the comparative method. Regarding the process of horizontal trans-
mission, Haugen (1950) classified the different kinds of loanwords by dividing them
into categories with respect to their adaptation and change during the borrowing
process. The adaptation process is an individual and language-dependent procedure.
Regarding the language and the phonology of the borrowed word, the word is
changed to fit into the structure and phonology of the RL. After the integration of the
loanwords, the words can undergo the same evolutionary changes as other words
in the language, i.e. they are treated like inherited words. The different processes
of evolution and change of words shape the characteristics of a language, and are
responsible for language diversity.
The evolution and classification of languages according to their shared innovations
across a list of basic meanings is displayed in a language tree. This representation
is not sufficient enough to illustrate the individual evolution of words. The genetic
classification of words aims at grouping the words within a single meaning according
to their shared innovations. The language clusters represent the classification of
languages according to one single concept. The resulting tree is called a concept
tree.10

Phylogenetic trees are computed out of sequence data, which could also be a se-
quence of sounds in a word. Concept trees represent the clustering of the languages
according to a single meaning in the basic vocabulary list, illustrated in table 3.4.
The number of languages is therefore restricted by the database used for the analysis.
The number of words determines the number of resulting trees of the analysis,
i.e. the evolution of each meaning is represented by a single tree. The size of the

9A summary of different kinds and processes of sound changes can be found in Campbell (2013).
10The word “concept” and “meaning” can be used interchangeably. Here, the term “concept” is used to

refer to one meaning in the basic meaning list. Since the word for a meaning in the list can consist
of more than one part, the term “concept” is preferred over the term “word”.

3.1 Phylogenetic Trees in Linguistics 47



meaning list is also restricted by the database, since each database provides its own
meaning list.

Meaning ‘mountain’
word cc

English mauntin m
Icelandic fEtl f
Swedish bErg, fyEl b,f
Norwegian bErg, fyEl b,f
Dutch bErx b
German bErk b
Romanian munte m
Italian monta5a m
French mo,mota5 m
Catalan munta53 m
Portuguese mot3, mota5a m
Spanish monta5a m
. . .

Tab. 3.4.: An excerpt of the data from the NorthEuraLex Database containing the phonolog-
ical representations of the concept ‘mountain’ in the ASJP alphabet and manually
assigned cognate classes.

The computation of the matrices and the reconstruction of the trees are similar to
the ones for language trees. Alignment analyses are used for sequence comparisons
and for the detection of sound correspondences between the words. Simultaneously,
the pairwise alignment methods compute a similarity or distance score, where a
similarity score is converted into a distance for the matrix generation. The pairwise
word distances are visualized in a language matrix, where the diagonals are filled
with 0 and the off-diagonals with the pairwise distances between the words of two
languages. A sketch of a distance matrix for the concept ‘mountain’ using a small
language sample is given in table 3.5.

fra spa eng deu nld
fra 0.0 0.2 0.3 0.98 0.98
spa 0.2 0.0 0.33 0.95 0.95
eng 0.3 0.33 0.0 0.93 0.93
deu 0.98 0.95 0.93 0.0 0.05
nld 0.98 0.95 0.9 0.05 0.0

Tab. 3.5.: A sketch of the concept distance matrix for ‘mountain’ of a language sample using
arbitrary distance scores.

The language sample is chosen in order to illustrate the small distance between the
English word mountain and its counterparts in the Romance languages. The small
distance indicates that the English word shows a greater similarity to the words of
the Romance languages compared to the ones present in the Germanic languages, i.e.
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the English word mountain is a loanword. The distance matrix serves as input for the
neighbor-joining or FastME algorithms to reconstruct the concept trees. Compared
to the matrix computation for language trees, the distance matrices for concepts can
capture the history of the words in more detail and give a better insight into the
language relationships within one concept. It can be assumed that the language
relationships according to the word pair distances are reflected in the reconstructed
concept trees.
The manually or automatically detected cognate classes can be used to reconstruct a
binary character matrix, which serves as input for the character-based tree recon-
struction algorithms within the frameworks of Maximum Likelihood or Bayesian
inference. The generation of a binary presence-absence matrix of single mean-
ings can lead to one difficulty, namely the presence of too few cognate classes.
Few or even one cognate class illustrate the relatedness of all words from a sin-
gle common ancestor. Although this clustering is highly informative for linguists,
the resulting character matrix would contain too few data points for a character-
based analysis. The reconstruction of a tree with enough phylogenetic signal using
character-based methods is therefore questionable. New ideas to gain more signal
out of the characters of the words to reconstruct suitable character matrices for the
tree reconstructions are introduced in chapter 4.2.

Fig. 3.3.: The concept tree ‘mountain’ representing the language classifications of the
selection of Germanic and Romance languages, reconstructed using a distance-
based method.
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The concept tree can be compared to a gene tree in phylogenetics. Gene trees repre-
sent the evolution of individual genes, which is said to be different to the evolution
of species. In biology, a mixture of the genes is transferred from the parents to the
offspring due to recombination. Some organisms can even transfer genes without
sexual reproduction. Similar to words, genes can be inherited, transferred, and
changed during time according to different mutation processes. In phylogenetics,
the research focuses on the reconstruction of gene trees as input to further analyses
and on the fusion of gene trees to obtain a species tree, where the species tree is
unknown or not reconstructable. In linguistics, algorithms for reconstructing and
summarizing concept trees can be adapted and used to get insights of the evolution
of words.
Figure 3.3 displays a distance-based concept tree for the meaning ‘mountain’ ob-
tained from FastME. Similar to the language tree, the concept tree is a bifurcating
tree. As already stated, bifurcating trees are suitable to represent language classifica-
tions. With respect to further processing and the reconciliation of the trees to detect
horizontal transmission, it is essential that both trees share the same branching
pattern.
A concept tree reflects the language classifications according to a single meaning
in the list. The Germanic and Romance languages are still separated, forming their
own language clusters as a family. English, however, belongs to the cluster of the
Romance languages, which is clearly reflected in the concept tree. Historical lin-
guistic research has shown that the English word mountain was borrowed from Old
French (Merriam-Webster Dictionary, 2020). Since the sequence comparison is done
using phonological representations of the modern languages at this point in time,
the clustering of the languages in the concept tree might change due to the evolution
of the words. The languages are clustered according to their alignment and distance
scores, without any insight into their history or older word forms.
This is a shortcoming of the usage of phylogenetic reconstruction methods, since
explicit processes like sound change, word formation, inflection, analogy, compound-
ing, etc. are not modeled and reconstructed in the tree. List and Schweikhard (2020)
proposed a framework of modeling individual word histories, including relevant
processes of word changes. The focus on this study lies in modeling the formation
of words throughout history, taking regular sound changes, derivations, borrowing,
and other processes into account which could have influenced the evolution of the
words. However, the model requires an annotated database, including roots and
attested forms. List and Schweikhard (2020) manually selected and annotated the
data from the etymological dictionary Nomina im indogermanischen Lexikon (NIL)
(Wodtko et al., 2008), which the reconstruction of word trees relies on. Publicly
available databases include basic meaning lists of varying sizes without further
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annotations or reconstructions of the word histories. The extension of databases
like NELex with these kinds of annotations and assignments as proposed by List and
Schweikhard (2020) is time-consuming, if possible at all. In their framework, List
and Schweikhard (2020) used the selected and annotated data from Proto-Indo-
European languages, one of the best-attested language families so far. For other
languages and language families which do not have this amount of written records
and research on the reconstruction of the languages, this model could not be applied.
If the model is fully developed and transferable to other databases, the word trees
would be a great achievement in computational historical linguistics, and could be
used for further analyses in terms of tree reconciliation.
In addition, List and Schweikhard (2020) mentioned that the comparison of all
words in one concept using alignment methods indicates that all words are related to
each other, which seems to be unrealistic in a historical linguistics context. However,
the further back in time words and their forms are reconstructed, the less infor-
mation about word forms and their meaning are present. The question is whether
there is enough certainty if the reconstructed form is clearly the most latest common
ancestor of the current occurrence of the word. Needless to say, there is a lot of
substantive and verified research in historical linguistics and the reconstruction of
proto-languages with respect to the comparative method. However, Kessler (2001)
stated with regard to loanwords that most of the time the certainty whether a
word is a loanword fades at some point in the reconstruction, which makes a clear
distinction and clarification of the word history nearly impossible. Unfortunately, the
information on word histories from etymological dictionaries, including a detailed
description of the cognate and loanword status, is not included in any of the publicly
available databases. The question whether all words and all languages descend from
one single ancestor cannot be answered with clarity and remains open.
In this thesis, the focus lies on the reconstruction of concept trees using standard
matrix computations and tree reconstruction algorithms. To my knowledge, there
is no other study testing different matrix computation approaches with respect to
concept tree reconstructions using linguistic data, which can further be used for tree
reconciliation algorithms to detect horizontal transmission. In chapter 4, various
methods on matrix generations are introduced with respect to linguistic data on
basic vocabulary lists.

Distinction between Language and Concept Trees

The evolution of words can be independent and different to the evolution of their
corresponding language. This leads to the idea to reconstruct language trees and
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concept trees for the comparison of the language classifications in order to obtain
insight in different evolutionary processes like borrowing.
Language trees represent the history and evolution of languages across a list of basic
meanings. The clustering illustrates the relatedness of the languages according to
shared innovations over a set of words. This indicates the overall relationship of
languages, their ancestry, and evolution. Concept trees, on the other hand, illustrate
the history and evolution of single concepts and their phonological representations
in the languages under consideration. The clustering displays the grouping of the
languages according to shared innovations within one single meaning. This gives
new insights in the relation of the languages conforming to a single concept, which
opens up the view on word-relatedness due to inheritance and language contact.
The mathematical concept of a phylogenetic tree is the fundamental concept of
both trees. Additionally, the tree reconstruction methods provided by phylogenetics
are used to reconstruct both types of trees. The main difference is the input data
and the representation purpose. The language tree is reconstructed using all words
in the basic meaning list, resulting in one single tree representing the language
classifications. The concept tree is reconstructed out of all words for a single meaning
in the list, where the number of resulting trees is determined by the number of
meanings in the list. Each single tree illustrates the language classification according
to a meaning in the list. The history of the words can differ, and so does the
clustering of the languages on the concept tree. The trees are used for further
processing in order to detect borrowings, and especially loanwords. Since the
clustering of the languages might differ in the language and the concept tree, the
trees can be compared to detect matches and mismatches in the branching patterns
of the trees. For these kinds of algorithms, it is important that the underlying tree
concept and the branching pattern are similar in both trees, i.e. both trees are in
accordance with the mathematical definition of a phylogenetic tree. In order to
fulfill these requirements, similar reconstruction processes are chosen for language
and concept trees. Since concept trees are not well researched and bear different
challenges, different matrix reconstruction methods are introduced in chapter 4.

3.2 Phylogenetic Networks in Linguistics

The concept of the tree is the fundamental principle in both phylogenetic and linguis-
tic research. Groundbreaking research has shown the importance of the concept to
model the classification of species and languages, or of genes and words, and analyze
the results statistically. However, the significance of horizontal transmission within
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the evolutionary process was long underestimated and paid less attention to in the
classification task. It is long known in historical linguistics that language contact
cannot be dismissed as trivial in the evolution of languages. Not even the basic
vocabulary is resistant to borrowing, which underlines the importance of including
language contact and horizontal transfer into the analysis of language evolution.
Phylogenetics provides network models as an alternative approach to phylogenetic
trees, which allow to display horizontal transmission in the evolutionary process.
Still, the tree concept serves as the underlying model for most networks models, i.e.
the fundamental principle is to reconstruct a tree in cases where the data contains
no amount of horizontal transmission, and to reconstruct a network for datasets
with horizontal signals. Networks are therefore suitable for taxa that evolve in a
tree-like manner, i.e. a small amount of horizontal transmission is assumed for the
dataset, as well as for datasets including a high amount of horizontal transmission,
i.e. reticulate events (Huson et al., 2010). Reticulate events in phylogenetics are
caused by processes like horizontal gene transfer, hybridization, recombination, and
other processes. In linguistics, reticulate events are caused by language contact and
the transfer of linguistic items of the languages. In addition, networks can represent
conflicts in the data that are, for example, due to mechanisms like incomplete lineage
sorting, or to deficiencies of the assumed evolutionary model (Huson et al., 2010).
Like trees, networks can have different graph theoretic properties and representation
purposes. The properties of the networks exemplify the type of networks, which
at the same time describe and visualize specific evolutionary scenarios in the phy-
logeny. Depending on the linguistic dataset and the research question, the adequate
network model needs to be chosen. Not all types of networks are suitable to display
horizontal gene transfer or the transfer between languages.
For a complete understanding of the network models, the different network types
and their properties are introduced in this chapter. In addition, several kinds of
networks are compared to each other in order to find the most suitable one to
represent horizontal transmission with respect to the linguistic requirements of bor-
rowing and loanword detection. Finally, an overview of different linguistic studies
using networks to model language contact and reticulations are introduced and
discussed.

3.2.1 Networks: Underlying Concept and Application

The envisioned idea of phylogenetic networks in biology is to elaborate the details
of a (rooted) phylogenetic network to describe the evolution of life, as it was pro-
posed by Doolittle (1999). Ideally, the networks represent the history of organisms,
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taking reticulate events into account. However, similar to linguistics, horizontal
transmission can be caused by different mechanisms. In phylogenetics, different
networks and different analyses are proposed to describe specific mechanisms and
processes of horizontal transmissions. This results in approximately 20 different
names and definitions for networks proposed in the phylogenetic literature (Huson
et al., 2010).11 A more general distinction between networks can be made according
to the categories, depending on their graph theoretic properties and representation
purposes, as shown in figure 3.4.

Phylogenetic Networks

Unrooted Networks

Abstract Networks:
Split Networks
Neighbor-Net Networks

Unrooted Phylogenetic Tree

Rooted Networks

Explicit Networks:
Hybridization Networks
HGT Networks

Rooted Phylogenetic Tree

Fig. 3.4.: Overview of networks and algorithms important for this thesis.

From a mathematical point of view, the underlying concept of a phylogenetic net-
work is an (un)directed cyclic graph, which is a generalization of an (un)directed
acyclic graph, as defined in section 3.1.1. In networks, objects or taxa are repre-
sented as nodes, the relationship between the objects by tree edges, and horizontal
transmission by reticulations, i.e. reticulate edges.12 Networks can be either unrooted
or rooted, where rooted networks are used to illustrate evolutionary history, in-
cluding horizontal transmission. A second major distinction between networks is
the one between data-display and evolutionary networks, also named abstract and
explicit networks respectively. Data-display networks visualize incompatible datasets
with an amount of horizontal transmission in a fruitful manner, where conflicts
in the dataset can occur due to mechanisms such as incomplete lineage sorting.
Evolutionary networks, on the other hand, illustrate a putative evolutionary history
involving horizontal transmission, i.e. reticulate events caused by hybridization

11The process of naming networks according to specific properties is clarified in Huson et al. (2010, p.
71).

12For a graphical illustration and description of the terminology, see Morrison (2011, p. 41–42).
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or horizontal gene transfer. By definition, most unrooted networks are abstract
networks, and thus, an unrooted tree is also abstract in the sense of displaying the
characteristics of the dataset. Rooted phylogenetic networks can be either abstract
or explicit, depending on the underlying technique of their reconstruction algorithm
(Huson et al., 2010).
Huson et al. (2010, p. 71) give a very general definition of an unrooted network.

Definition 3.4 (Unrooted phylogenetic network) Let χ be a set of taxa. An un-
rooted phylogenetic network N on χ is any unrooted graph whose leaves are bijectively
labeled by the taxa in χ.

In phylogenetics, each kind of unrooted network has another underlying method,
which leads to an extension and specification of the mathematical definition. Huson
et al. (2010) focus on the most prominent networks used in phylogenetics, the class
of split networks and quasi-median networks.13 Phylogenetics provides a great num-
ber of established tools for the reconstruction of unrooted phylogenetic networks,
which can be directly adapted into CHL and applied to linguistic data. It is therefore
not surprising that the first studies in CHL applied methods to reconstruct unrooted
networks to display language contact. Keeping in mind that abstract networks
display the discrepancies in the dataset, the reticulations can be interpreted as an
occurrence due to horizontal transmission. However, unrooted networks display the
relationship between the languages without making any assumptions of ancestry.
The evolutionary history of the languages can therefore not be reconstructed in
terms of inheritance.14

In the phylogenetic analysis of reconstructing rooted trees and networks, the concept
of clusters plays an important role. For a set of taxa, clusters represent a group
of elements which share an attribute. In linguistics, clusters represent languages
according to shared innovations, like sound correspondences and cognate classes.
A rooted phylogenetic tree represents a set of compatible clusters, i.e. languages
are grouped according to their shared innovations to form language groups and
families. A rooted phylogenetic network additionally represents incompatible clus-
ters, which may occur due to evolutionary events like horizontal gene transfer in
biology and borrowing in linguistics (Huson et al., 2010). Since the underlying
graphical structure is a DAG, rooted phylogenetic networks are a generalization of
rooted phylogenetic trees. This is reflected in the definition of rooted phylogenetic
networks given by Huson et al. (2010, p. 138):

13The mathematical and algorithmic descriptions are described in Huson et al. (2010).
14See Morrison (2011) for a detailed description of data-display networks.
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Definition 3.5 (Rooted phylogenetic network) Let χ be set of taxa. A rooted phy-
logenetic network N = (V, E, λ) on χ consists of a directed graph G = (V, E) and a
node labeling λ : χ→ V such that:

(i) The graph G is a directed, acyclic graph (DAG).
(ii) The graph G is rooted, that is, has precisely one node ρ of indegree 0.

(iii) The node labeling λ assigns a taxon to each leaf of G.

We usually assume that the network does not contain any node that is suppressible,
in other words, any unlabeled node with indegree 1 and outdegree 1. In addition, we
usually assume that the taxon labeling λ is a bijection between the taxon set χ and the
set of leaves of N.

The definition is specified in a general way, since rooted phylogenetic networks
can be restricted in various ways, depending on the evolutionary processes under
consideration. In the case of horizontal gene transfer, it is assumed that only two
species can be involved in a transfer event. The set of indegrees of nodes is restricted
with respect to the process of HGT, i.e. the values are determined to 0, 1, and 2.
The root of the network has an indegree of 0, tree nodes have an indegree of 1, and
reticulate nodes an indegree of 2, respectively (Huson et al., 2010).15

At this point, it is important to mention that in the case of phylogenetic trees,
unrooted trees can be rooted by choosing one node in the tree as root node, i.e.
the tree can be rooted using any internal node. The resulting rooted tree can be
interpreted as displaying the evolutionary history of the entities. This means all
tree reconstruction methods independent of the resulting trees can be used for
building a rooted phylogenetic tree and making assumptions about the ancestry of
the languages. This is, however, not the case for phylogenetic networks. Unrooted
networks cannot be rooted to display the evolutionary and horizontal relationships
between the objects. A data-display network is an interpretation of the data in
terms of interconnections. The nodes in a data-display network play a heuristic role,
displaying the conflict of the data, and the edges simply represent this difference
between the nodes (Morrison, 2011). If a data-display network is rooted, the result
would be a nonsensical diagram where the nodes do not represent the ancestors
of two other nodes, and the edges do not represent horizontal transmission due
to transfer processes. Rooted, and especially evolutionary, networks need to be
computed using different algorithms in order to display the evolutionary relationship

15The different types of nodes and edges present in a rooted phylogenetic network are listed in Huson
et al. (2010, p. 139). Additional terminology for networks is explained in Huson et al. (2010, p.
140).
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between ancestors and descendants in terms of inheritance and horizontal transmis-
sion.
The underlying assumptions on evolutionary networks to model horizontal gene
transfer are in accordance with the fundamental principles of borrowing in historical
linguistics. The process of borrowing involves only two languages which are in
contact with each other. A node in the network with indegree 2 indicates two evolu-
tionary processes, one on the basis of inheritance, displayed by the edge connecting
the mother with the daughter language, and one process due to horizontal transfer,
connecting the two languages which are in contact with each other. Depending
on the network of choice, the two edges can clearly be identified and assigned to
the corresponding processes. This is not the case for all types of evolutionary net-
works, which means that the method and algorithm for reconstructing evolutionary
networks should be chosen carefully depending on the aim of the analysis and the
research question. In computational historical linguistics, evolutionary networks are
rarely used. One of the main reason is that the calculation of rooted phylogenetic
networks is difficult and fewer computational methods are developed for practical
usage. Within the last decade, the development of reconstruction algorithms for
evolutionary networks emerged in the field of phlyogenetics. The adaptation and
application of these methods in CHL is still in its infancy. However, to model the
process of borrowing and to detect loanwords, the focus lies on the application and
adaptation of HGT algorithms. These algorithms generate evolutionary networks
where inheritance and horizontal transmission can clearly be identified. An intro-
duction to the fundamental idea of horizontal gene transfer and the corresponding
network model is given in chapter 3.3.

3.2.2 Network Analyses in Linguistics

Data-display networks, especially neighbor-net networks, and some evolutionary
networks are used in linguistic studies to model the connections between languages
due to inheritance and contact. All studies operate on the language level to shed light
on the complete language evolution of the Indo-European language family. However,
some methods introduced in the studies are used to address research questions in
other language families as well. Not all networks used in linguistic studies focus
on the detection of borrowing and loanwords, but aim at modeling various kinds
of secondary connections due to horizontal transmission. In this section, the usage
and the main aims of the different kinds of networks used in linguistic studies are
introduced and discussed. Although most of those networks and their algorithms
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cannot be used to explicitly detect borrowing and loanwords, they lead to a better
understanding of the evolution of natural languages.

Data-Display Networks

Linguistic studies using split networks to visualize language relationships are inter-
ested in the so-called secondary connections between languages. Split networks
can be reconstructed using various types of linguistic data, including lexical data
(Hamed and Wang, 2006; Bryant et al., 2005), phonetic data (McMahon et al., 2007;
Heggarty et al., 2010; Prokic, 2010), and typological data (Daval-Markussen and
Bakker, 2011; Szeto et al., 2018). While some studies focus on representing all
kinds of historical relationships within a language family (Lehtinen et al., 2014;
Heggarty et al., 2010), others aim at detecting contact and borrowing between the
languages (McMahon and McMahon, 2005).
Kessler (2001) mentioned that at some point in prehistory, the question whether a
word is a loanword becomes unanswerable. The first major distinction is therefore
the one between any kind of historical connections and similarities due to chance.
Languages are historically connected if they share certain properties, no matter if
the elements are inherited from a common ancestor or transferred via language
contact. Shared elements due to horizontal transmission cause noise in the tree
model, which is not reflected in the representation. Data-display networks are an
adequate combination of the tree and the wave model, while aiming at visualizing
various kinds of historical relations between the languages. The noise in the dataset
can be identified by discrepancies, which lead to incompatible evolutionary scenarios
displayed as reticulate edges. One of the most prominent methods to reconstruct
split networks is the neighbor-net algorithm, introduced by Bryant and Moulton
(2004). The algorithm uses a similar idea to reconstruct networks than the neighbor-
joining algorithm to reconstruct phylogenetic trees. A distance matrix is generated
from the dataset, which serves as input to the algorithm to cluster the languages
according to shared innovations. The results of the clustering algorithm can lead
to overlapping clusters, which are then visualized in an unrooted network.16 The
studies using split networks aim at modeling the complete evolutionary history of
the languages under question, taking common ancestry and horizontal transmission
into account (McMahon and McMahon, 2005; Heggarty et al., 2010; Lehtinen et al.,
2014). The detection of borrowing events, loanwords, and the direction of the

16For a detailed description of the neighbor-net method, see Bryant and Moulton (2004) or Huson
et al. (2010, p. 254). The algorithm is implemented in the SplitsTree software by Huson and
Bryant (2006) and in the R package phangorn (Schliep et al., 2017).
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transfer is disregarded. Since the underlying evolutionary processes causing the
scenarios cannot be captured by a split network, it is also questionable if and how
horizontal connections can be distinguished from similarities by chance.17

In their study, McMahon and McMahon (2005) claimed that borrowing must be
the prime candidate for the reticulations they hope to detect by means of discrep-
ancies in the dataset. A character-based algorithm called Network (Bandelt et al.,
1999; Forster et al., 2001) is used to reconstruct networks on real language and
simulated data.18 The program results in a split network, where a dataset without
discrepancies is represented as a tree and otherwise as a network. The reticulations
in the network should represent language contact due to borrowing. However, the
network cannot display any further information on the direction of borrowing or
on the items responsible for the reticulations, i.e. the items which are detected as
loanwords by the algorithm. There are two different ways to test which items are
actually causing the discrepancies in the data. One way would be sampling the data
to generate different networks and evaluating them by counting the emergence of
the same (sub)patterns. This process is called either bootstrapping or jackknifing
in phylogenetics, depending on the sampling technique. The sampling processes,
depending on the size of the data and the number of samples, are time-consuming
tasks.19 Since the network algorithm provides a shortcut, McMahon and McMahon
(2005) discarded the sampling procedure. For each graph produced, the algorithm
provides a list of data points which were difficult to reconcile with the tree, i.e.
the items which cause the algorithm to insert reticulations. However, the number
of reticulations, and therefore also the list of data points, depend on an internal
parameter, which needs to be set manually. The parameter reflects the sensitivity of
the algorithm according to the visualization of incompatible data structures. Param-
eter setting is always a challenging task. The best parameter can only be found by
evaluating the results, which would lead to a circular process. The user needs to
estimate which amount of reticulations, i.e. which amount of loanwords, would be
expected in the given dataset. This requires linguistic knowledge of the languages
in the dataset and an expectation of the amount of loanwords and language con-
tact between the languages. Otherwise, the parameter needs to be set arbitrarily.
McMahon and McMahon (2005) discussed the problem in their study, but did not
provide a solution for the parameter setting. The results of their study showed that
for a small Germanic/Romance dataset, Network detects the expected reticulations.

17A graphical representation of the networks modeling secondary connections can be found e.g. in
Lehtinen et al. (2014), Heggarty et al. (2010), and McMahon and McMahon (2005).

18The Network program (Bandelt et al., 1999; Forster et al., 2001; Polzin and Daneshmand, 2003) can
be found online under https://www.fluxus-engineering.com/sharepub.htm#a6. For further
information on the application in linguistics, see McMahon and McMahon (2005) and McMahon
et al. (2005).

19A detailed description of the processes is given in chapter 4.
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McMahon and McMahon (2005) did not test the network algorithm on a bigger
dataset. Nevertheless, it can be shown that split networks computed by Network
can be used to determine language contact due to shared innovations. However,
the algorithm results in several disadvantages: the direction of transfer cannot be
detected; the underlying evolutionary process can only be determined by linguists;
and the amount of loanwords depends on the parameter setting. Additionally, an
unrooted data-display network cannot make any assumptions on the ancestry of
the languages. The network gives insights on the historical connections between
languages independent of inheritance or transfer, i.e. explicit evolutionary processes
like borrowing cannot be captured.

Evolutionary Networks

Evolutionary networks represent the evolution of the languages and horizontal
transmissions according to evolutionary processes like hybridization or borrowing.
Rooted networks can be derived from characters, clusters, or trees (Morrison, 2011).
Similar to data-display networks, evolutionary networks aim to represent the com-
plete evolution of the languages. The major difference is the visualization of the
hierarchical structure indicating the classification of the languages according to
ancestry. In an evolutionary network, the underlying clustering of the languages is
kept, while reticulate edges indicating additional transfer are added.
The study of Willems et al. (2016) focuses on using hybridization networks to
retrace the evolution of the Indo-European language family. In phylogenetics, a
hybrid species is a mixture of two parental species combining the qualities of two
organisms of different varieties through sexual reproduction. This means, one part
of the hybrid genome comes from one parent and one part from another parent.
An example would be a mule, which is a hybrid of a male donkey and a female
horse. In linguistics, hybridization is similar to the emergence of mixed languages,
i.e. pidgin or creole languages. A pidgin language develops between groups that
have no language in common. It is a marginal language used to fulfill certain
communication needs among those speakers without forcing one group to learn the
language of the other (Campbell, 2013). A creole language arises out of a pidgin
language, becoming the native language of the speakers in this newly formed com-
munity (Campbell, 2013).20 Pidgin and creole languages emerge out of two mother
languages during language contact instead out of one single ancestor language due
to inheritance. They are special kinds of languages according to their emergence

20For a more detailed discussion and a list of pidgin and creole languages, see Campbell (2013, p.
309).
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and evolution processes, which differ to the common processes of inheritance and
horizontal transmission. Willems et al. (2016, p. 2) argued that “word borrowing
can be viewed as the main development mechanism to the emergence of hybrid (i.e.,
mixed or contact) languages”. In the emergence of a pidgin language, words are
transferred from two languages to develop a new, simplified language to fulfill a
specific communication purpose. The question arises whether the transfer of words
to design a new language is allocated to borrowing or inheritance. In the case of
inheritance, two mother languages pass on their linguistic material to the child,
resulting in a new linguistic system compared to the inheritance from one single
ancestor language. In the case of transfer, two languages transfer lexical material to
create a new language compared to the modification of one language from another
donor language. Both processes clearly differ from the common procedures known
for existing languages. Schuchardt (1868) already mentioned that there is no totally
unmixed language.21 This means all languages are, in a sense, mixed languages,
and the transfer of items to change them could be seen as a process of development,
regardless of whether they are pidgin, creole, or existing languages. However, the
adaptation and integration process of words to form a pidgin differs from the mech-
anisms known for loanword adaptation and integration into existing languages. An
existing language contains inherited items from its mother language and borrows
words from another donor language due to language contact. In contrast to the
process of borrowing, where the mother and donor language are clearly identifiable,
no distinction between mother and donor language is made in the case of pidgins.
A pidgin language develops out of words transferred from two languages, where
both are simultaneously mother and donor language. The borrowing procedure
might seem to be similar; however, the requirements and outcomes are different
and need to be visualized in separate networks. It is therefore questionable to adapt
the parallel between hybridization and mixed languages proposed by Atkinson and
Gray (2005) to all contact scenarios in linguistics and equate the two processes
of horizontal transmission, as done by Willems et al. (2016). Although the recon-
struction of hybridization networks to display horizontal transmission in the sense
of borrowing is debatable in linguistic terms, Willems et al. (2016) proposed a
solution where the reticulate events and their linguistic evolutionary processes can
be explained and evaluated in terms of language contact. According to the linguistic
evaluation in the study, the reticulations represent expected contact scenarios within
the Indo-European languages, which can shed light on the evolutionary history in
terms of horizontal connections between the languages.
The algorithm in the study of Willems et al. (2016) is based on lexical data and aims
at detecting lexical hybrids and word borrowing events. The inputs of the algorithm

21Translated from the original: “Es gibt keine völlig ungemischte Sprache” (Schuchardt, 1868).
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(Willems et al., 2014) are a distance matrix and three user-defined parameters, i.e.
the algorithm is not parameter-free.22 The result is an explicit hybridization network
to model the evolution of the languages and to identify hybrid languages along with
their corresponding parent languages. In addition, the algorithm computes a degree
of hybridization for each reticulation, i.e. the percentage of transferred lexical
material from their parents. The resulting network visualizes the language history,
including the most prominent mixtures as reticulations. The network represents
mixed languages in a sense that all languages show some degree of mixing due
to language contact and borrowing. Languages with two parents are hybrids in a
sense that they borrowed lexical items from both languages to a certain extent. The
amount of transfer, i.e. the percentage of lexical items transferred from one lan-
guage to the RL, is recorded at the corresponding reticulation. The direction of the
transfer can be determined by the algorithm. However, since they are working with
hybrids, no distinction between ancestral language and donor language(s) can be
made, since hybrids are more similar to pidgin and creole languages than to existing
languages. To account for this issue, Willems et al. (2016) proposed the usage of
an underlying language tree, e.g. from Gray and Atkinson (2003), which displays
the clustering of the languages due to common ancestry. The reticulations detected
by the hybridization algorithm are added to the phylogenetic tree to construct an
evolutionary network. The resulting network represents the common ancestry of
the languages with respect to the underlying tree and two reticulations indicating
horizontal transmission (hybridization) from two other languages.
Other evolutionary networks can be inferred from a set of two or more phylogenetic
trees. Since the calculation of these networks is computationally hard, topological
constrained classes of networks are introduced in phylogenetics to model evolution-
ary history. Among other rooted networks, a galled network is the most specific type
of topological restricted network, next to the more general level-k network. In the
literature, the term level refers to the maximum number of reticulations in a network,
where k indicates the number of reticulations (Huson et al., 2010). A level-0 network
is a phylogenetic tree, a level-1 network contains one reticulation, a level-5 network
contains five reticulations, and so forth. Depending on the algorithm, the parameter
k needs to be set manually or is selected by the algorithm according to the given
data. The parameter restricts the reticulations which are present in the network.
A level-k network cannot necessarily represent all sets of clusters compared to the
more specific galled network, which is able to represent every representation of a
given set of clusters. In a galled network, reticulation cycles can share edges, but

22Willems et al. (2016) give a short explanation on their selection of the parameters, but refer the
reader to their original article (Willems et al., 2014).
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they cannot share reticulation nodes (Morrison, 2011).23 An algorithm to compute
a galled network is implemented in Dendroscope (Huson and Scornavacca, 2012),
a software to view and compute rooted phylogenetic networks out of trees.24 The
input for the algorithm to reconstruct a galled network displaying the evolutionary
history of languages including horizontal transmission is a set of trees. Willems et al.
(2016) constructed a galled network with Dendroscope using 200 concept trees, i.e.
one for each concept in the basic vocabulary list.25 The resulting galled network
models hybridization events with two parents, i.e. the mother language cannot be
distinguished from the donor language. The algorithm in Dendroscope computing
the galled networks reclusters the objects to meet all topological restrictions. This
can result in a different language clustering than proposed by the language tree.
Without the usage of an underlying tree to classify the language relationships, both
the hybridization and the galled network might result in a different language clus-
tering. Delz (2014) showed that galled networks can also be reconstructed using
one language tree and one concept tree to model borrowing. The resulting galled
network is restricted to concept-internal borrowings, where the reticulations could
indicate clear word borrowings between the languages. However, the disadvantages
are still present and cannot be solved. A galled network models reticulations in case
of hybrids, and not of borrowings between existing languages. The mother language
cannot be distinguished from the donor language, the direction of borrowing cannot
be determined, and the algorithm might change the language classifications due to
inheritance. Consequently, galled networks are not an appropriate method to model
language borrowing.
Neither hybridization nor galled networks can make a clear distinction between
mother and donor language, which is important in a model of borrowing and
loanword detection. The hybridization algorithm by Willems et al. (2016) can be
merged with an attested underlying language tree, which is an unavoidable step to
come closer to the common visualization of borrowing, where the mother language
can clearly be distinguished from the donor language(s). This network displays
the classifications of the languages according to the tree, and the most prominent
horizontal edges according to the hybridization algorithm. The direction of the
transfer and the reticulation degree are the major gains of the study. Although
the network algorithm proposed by Willems et al. (2016) originates from a wrong
parallel between phylogenetics and linguistics, it is a step in the right direction for a

23For a detailed description and a graphical comparison of the different networks, see Morrison (2011).
Delz (2014) introduces the different topologically restricted networks in terms of linguistic transfer
scenarios.

24Dendroscope (Huson and Scornavacca, 2012) also contains an algorithm to compute level-k networks
and other types of topologically restricted networks.

25Please see Willems et al. (2016) for a detailed explanation on the computation of concept trees used
in their study.
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better understanding of the evolution of natural languages, including both common
ancestry and horizontal transmission.
In linguistics, the minimal lateral networks (MLN), originally introduced in phy-
logenetics by Dagan and Martin (2007), were applied to the task of automated
borrowing detection (Nelson-Sathi et al., 2011). The underlying method to compute
a MLN is one of the best-explored network methods in linguistics, and was applied
to several datasets, including Indo-European (Nelson-Sathi et al., 2011; List et al.,
2014a), Chinese dialects (List et al., 2014b; List, 2015), and Austronesian (Jäger and
List, 2018). Although MLNs are mainly used to model language contact, the method
can give insight into the underlying lexical flow causing the contact scenario. The
linguistic model of phylogenetic lexical flow inference (PLFI), developed by Dellert
(2019a), uses information-theoretic causal inference to discover language contact.
The main aim of the algorithm is to reconstruct contact scenarios and generate an
evolutionary network, including reticulate edges, to illustrate the lexical transfer. In
addition, the detected contact situations in a PLFI analysis contain additional infor-
mation on specific borrowing events and the lexical items involved in the transfer.
Both the MLN and the PLFI algorithm can be used to extract more information on
borrowings and loanwords. Hitherto, less attention was paid to the detection of
loanwords using these algorithms. In chapter 5, the algorithms, their adaptation to
the task of loanword detection, and their (dis)advantages are introduced in more
detail.

3.3 Horizontal (Word) Transfer

HGT networks capture evolutionary events which arose due to a specific kind of
transfer, i.e. the horizontal transfer of genes. During the HGT process, genes are
transferred from one organism to another without sexual reproduction (Morrison,
2011). The transfer of genes causes changes within the genetic structure of the
organism, which leads to a modification of a single lineage. Each gene transfer is
unique, and depends on the contact situation where genetic material is added from
a donor (Morrison, 2011). The network should therefore be able to represent the
direction of transfer, the gene under consideration, and the donor and recipient. To
ensure for these results, the underlying algorithms are adjusted according to the
theory and methodology of horizontal gene transfer.
The process of borrowing is comparable with the process of HGT. Two languages
are in contact with each other and exchange linguistic material, which results in
a modification of the recipient language. Different types of linguistic material can
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be transferred, which is restricted by the intensity of the contact situation, i.e. the
borrowability of linguistic material can be measured on the degree of contact. Since
the lexicon is one of the language’s less stable parts, lexical items can be transferred
easiest between both related and unrelated languages. Lexical items can be seen
as the genes of a language, which both form the basis of the language as a whole
and are objects of transfer between two languages in contact situations. During the
process of borrowing, the speakers involved in the contact situation decide on the
lexical items which are transferred and included in their language. In accordance
with the process of HGT, a network of horizontal word transfer (HWT) should
represent the direction of borrowing, the loanword, and the donor and recipient
language. This can only be captured within the framework of horizontal gene
transfer.
For a complete understanding of the underlying methods and algorithms used later
in this thesis, the theory and concept of horizontal gene transfer is introduced. The
parallel to linguistics according to the concept of HGT is explained to specify the idea
in linguistic terms. Lastly, linguistic studies using the idea and methods introduced
in phylogenetics for HGT are discussed.

3.3.1 HGT: Fundamental Concept and Methodology

Since HGT occurs when a gene is transferred by other means than sexual reproduc-
tion, different processes can be involved including transformation, conjunction, and
transduction (Morrison, 2011). In case of transformation, the genetic material is
incorporated from the surroundings of the cell. The process of transduction involves
e.g. a virus, where the virus functions as a messenger carrying the genetic material
from one cell to another. Conjunction is the only process where the cells are in direct
contact with each other exchanging material. All of these processes modify one
gene in the cell and change the evolutionary history of this gene due to horizontal
transmission. It is therefore obvious that the phylogenetic tree of a gene or genome
fragment involved in HGT will differ from the classifications represented in the
species tree.
The characteristics of horizontal gene transfer are the following (Morrison, 2011):

(i) HGT does not happen during sexual reproduction.
(ii) HGT can only occur between contemporaneous taxa.

(iii) HGT modifies a single lineage by adding new genetic material.
(iv) HGT can affect both only one gene or various genes.
(v) HGT can affect closely and distantly related lineages.
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These characteristics distinguish HGT from other evolutionary processes, like e.g.
hybridization, deep coalescence, and duplication–loss scenarios, which happen due
to sexual reproduction and can be explained by regularities (Morrison, 2011). The
modification of a single lineage and the impact on one or more genes due to HGT
affect the evolutionary history of the gene, but not the development of the species
due to inheritance. The recognition of possible discordance between the evolutionary
history of a gene and its species has led to proposals for treating genes as single
characters to model their explicit evolutionary history using phylogenetic trees (Page
and Charleston, 1997). The unique history of a gene is therefore represented in a
gene tree, whereas the species tree represents the overall evolutionary history of
the species.26 The underlying idea to detect HGT events is the reconciliation of a
gene tree with its species tree to explain the history of a gene by fitting its lineage
into the branching pattern of the species tree. The incongruence between the two
trees can be captured by introducing a specific number of evolutionary events. The
reconciliation of trees takes the other HGT characteristics into account. The effect
on closely and distantly related lineages can be captured, the merging of the trees
can account for differences between contemporaneous taxa, and the mismatches
can be computed and displayed as reticulations.
The idea of tree reconciliation dates back to Goodman et al. (1979), who aim at
detecting evolutionary processes by fitting gene trees to their corresponding species
trees. Page (1994a) formalized the idea of Goodman et al. (1979) to map a gene
tree into its species phylogeny by describing an algorithm and developing methods
to measure the degree of fit between the trees. One of the main gains of the study is
the visualization of a so called map of trees to display the reticulations.27 Further
algorithms have been developed to detect transfer events by counting the minimum
number of events needed to fit the gene tree into the species tree. Most of the
methods only need tree topologies as inputs.28

For the detection of mismatches between two trees, the methods need a species and
a gene tree as input. In comparison, hybridization algorithms take multiple gene
trees as input to merge them into a species network with additional reticulate edges.
However, since horizontal transmission affects only one gene, only one of many
gene trees will reflect this pattern. The algorithms used to detect hybridization are
consensus methods, and are therefore likely to ignore a pattern in a single tree. The

26Page and Charleston (1997) mentioned that the usage of gene trees shifts the attention from the
relationships between characters and trees to the level of relationships between trees.

27In further studies, the idea of reconciling trees is used for different purposes. Page (1994b) used a
reconciliation method to detect host switching events caused by the process of transduction. Mirkin
et al. (1995) and Maddison (1997) developed alternative methods for combining gene trees to
reconstruct a single species tree.

28For an overview of available software to detect hybridization and horizontal gene transfer, see
Morrison (2011, p. 159).
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advantage of mapping one gene tree into its species tree is the direct detection of
transfer in the history of this single gene. This results in the explicit identification of
the gene, the transfer, and the respective donor and recipient. Depending on the
algorithm, the direction of transfer can be added to the model. Figure 3.5 shows an
illustration of a reticulate edge due to horizontal transmission. The first gene tree

Fig. 3.5.: A representation of a species tree (left) with five taxa (T1–T5), with two taxa
involved in an HGT event, plus two gene trees. The first gene tree (middle)
reflects the history of the species tree, whereas the other gene tree (right) differs
from the history of the species tree due to horizontal transmission. The graphic is
from Morrison (2011, p. 112).

(middle panel) is in accordance with the species tree, i.e. the evolutionary history of
the gene and species are the same. This results in a perfect match of the two trees,
where no reticulations are needed to explain the difference between them. The
evolution of the second gene (right panel) differs from the history of the species. To
map the gene tree into the species tree, the branch of taxa T3 in the gene needs to
be moved to another position to correspond to the branching pattern of the species
tree. This is indicated by adding a reticulate edge. The evolutionary history of the
species is kept in the resulting network, and the horizontal transfer by which the
gene is affected is displayed by a reticulation.
However, the reconciliation of evolutionary histories is mathematically NP-hard,
which makes it problematic to develop exact algorithms for reconciliation of trees.
This leads to the problem that most algorithms can only detect potential transfer
events, which could lead to the addition of arbitrary events. Additionally, there are
two ways of interpreting the output of a HGT network (Morrison, 2011). First, the
output could be explicit, i.e. the network is an interpretable diagram. Second, the
output could be implicit, i.e. insight is needed to interpret the diagram. In most
studies, the resulting evolutionary networks are treated as explicit networks, where
each reticulation is treated as an evolutionary event due to horizontal transmission.
Morrison (2011) argues that the networks should be treated as implicit. This is
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that mathematically, every hybridization or HGT event creates a reticulation cycle in
the network, i.e. a cycle with three or fewer outgoing arcs. The interpretation of
the cycles have a great impact on the biological explanations of the networks. This
means, in some cases it is difficult to distinguish the various causes of evolutionary
events which could cause the reticulations. In biology, hybridization and horizontal
gene transfer are closely related to each other. Hybridization is the exchange of
genes due to sexual reproduction, mostly present in animal or plant breeding.
Horizontal gene transfer is the exchange of genetic material between unicellular
and/or multicellular organisms like bacteria. An implicit interpretation of a network
can therefore only be done by experts in the field, and not by the algorithm itself.
Biologically, both the mapping of a gene into a species tree and the summarizing of
gene trees into a species network can be applied to detect reticulate events. Morrison
(2011) mentioned that it is a historical accident that gene-tree reconciliation is so
strongly associated with the detection of horizontal gene transfer. However, from a
linguistic point of view, this association is important, since the distinction between
the evolutionary processes of hybridization and horizontal transfer plays a crucial
role in language evolution.

3.3.2 The Concept of HGT in Linguistics

During language contact, linguistic material is transferred from one language to
another. The transfer can be caused not only by a large number of different under-
lying processes, but also by several social and linguistic factors. The composition
of the processes and the factors included is unique, and can differ depending on
the contact situation. Further, the contact persists during a certain period until it
breaks off. The challenge lies in both locating the contact phase and in detecting the
transfers, including the surrounding factors and the underlying processes. It is not
surprising that the identification of the complete contact situation is difficult, if not
impossible. The focus therefore lies on the detection of loanwords, which remain
in the RL as result of the borrowing process. Although loanwords are adapted and
integrated into the recipient language, they are the most detectable items to identify
a borrowing scenario and to trace back their donor language in order to specify the
contact situation.
The process of borrowing shows similar characteristics to the process of HGT.

(i) Borrowing does not happen due to inheritance.
(ii) Borrowing can only occur between contemporaneous languages.

(iii) Borrowing modifies a single language by adding new linguistic material.
(iv) Borrowing can affect only one word or various words.
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(v) Borrowing can affect closely and distantly related languages.

Those characteristics are distinctive for the processes of borrowing, and clearly show
the distinction to the process of hybridization, where two languages are mixed to
create a new one. The process of borrowing is not due to inheritance. In linguistic
terms, this means that the speaker of a recipient language borrows words to fulfill
particular needs in order to enhance their language for a better communication.
The borrowings are specified by the speech community and are primarily caused
by social constraints, like need or prestige, and by various linguistic constraints.
This implies that borrowing can only occur between contemporaneous languages,
since languages can only be in active contact with each other during the same time
period. There are neither restrictions on the intensity and degree of contact, nor
on the transfer process itself, which includes borrowing between both closely and
distantly related languages as long as they are in contact with another. During
language contact, the recipient language borrows from the donor language, i.e. only
the RL is modified by the transfer of lexical items. Each modification is specific to
the borrowing process, the donor language, and the transferred items. The amount
of words transferred from the SL to the RL is determined by the speakers involved in
the transfer, while the whole speech community is responsible for the integration and
maintenance of the new lexical items. It is therefore not surprising that borrowing
affects the evolutionary history of the word involved in the transfer. The modification
of the word’s history, however, does not have a great impact on the evolutionary
classification of the language itself within the language family.
The similarities between HGT and borrowing are obvious, which leads to the adap-
tation of the corresponding methods for tree reconciliation to linguistics. Since
the evolutionary history of a word is represented in a concept tree, and one of the
languages in a language tree, the trees are equivalent to gene and species trees in
phylogenetics and serve as input for the tree reconciliation methods. The mapping of
a concept tree into its language tree provides insights into the evolution of the lexical
items to detect contact and transfer situations. The discordance between the trees
is measured by the number of evolutionary events, which need to be introduced
to fit the concept tree into the language tree. This analysis takes all borrowing
characteristics into account, i.e. borrowing between closely and distantly related
languages can be captured, as well as the modification of a RL through another
language.
A concept tree captures transferred lexical items within one concept which have
an impact on the evolutionary history and modify the recipient languages due to
borrowing. Since the pattern is likely to occur only in one single concept tree, the
direct mapping of the concept tree onto its language tree gives insights about the
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discordance between the trees with respect to the concept under consideration. This
results in a detection of evolutionary events for a specific concept, including the
transfer, the respective donor and recipient language, and the direction of transfer.
The obvious discordance between the concept tree in figure 3.3 and the language

Fig. 3.6.: The sketch of a visualization of a network to model horizontal word transfer.

tree in figure 3.2 is the position of English. The concept tree displays the evolution-
ary history of the word ‘mountain’, where English is grouped within the Romance
languages. This reflects the attested borrowing of the word mountain from Old
French (Merriam-Webster Dictionary, 2020). Figure 3.6 displays a sketch of a HWT
network visualizing the borrowing between French and English. The language tree is
the underlying model of the network, keeping the language clusters according to the
classification of the computational comparative method. The detected evolutionary
event is added to the language tree in form of a reticulate edge between the two
languages. The arrow indicates the direction of transfer between the SL French and
the RL English. The tree reconciliation methods from phylogenetics aim at detecting
these kinds of evolutionary events, where the loanword can clearly be identified in
addition to the transfer, including the donor and recipient language.
The adaptation of phylogenetic methods for tree reconciliation does not circumvent
the problem of being mathematically NP-hard. In linguistics, the application of
the methods leads to the same problem, namely the detection of potential HWT
events by most algorithms. The resulting networks could therefore contain arbitrary
events which might not be due to borrowing. In addition, the interpretation of the
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output, mentioned by Morrison (2011), does also hold for linguistic data. Networks
of horizontal word transfer can be either interpreted as explicit or implicit. The
explicit interpretation is an interpretable diagram, where each reticulation is treated
as transfer event. The implicit interpretation requires linguists and their expert
knowledge to distinguish arbitrary from real evolutionary events by identifying true
borrowings within the network. This kind of interpretation cannot be done by the
algorithm. In phylogenetics, the two processes of hybridization and HGT are closely
related, where a clear distinction of the events is needed for a complete biological
analysis. In linguistics, hybridization should be modeled in a different network than
borrowing, since the two evolutionary processes need to be analyzed separately. An
explicit analysis gains in significance, since tree reconciliation methods are used
exclusively for the identification of borrowings. However, the detection of potential
HWT events, along with the appearance of arbitrary events, ensures for an additional
implicit analysis to underline the results.
In linguistics, the difficulty for a proficient interpretation of HWT events lies within
the complexity of the adaptation and integration processes of loanwords. Those
processes are individualized and differ according to the languages included in the
contact scenario. The results of an optimal computational analysis should reflect
the state of a loanword within a specific time period. For the concept and language
trees computed using the basic vocabulary list of NELex, it can be assumed that all
loanwords are fully integrated in the languages. The borrowed word still needs to
show a different pattern than the other words to be identified as loanword. However,
a complete integration of a word in a language makes it difficult to analyze a pattern
indicating the status of a word as loanword. On the one hand, Kessler (2001)
already mentioned this uncertainty of analyzing a loanword at a specific point in
time, since the older the loanword, the more it is integrated in the RL. On the other
hand, Haugen (1950) introduced different types of loanwords and their integration
processes, which could lead to different patterns in loanwords compared to inherited
words. A tree reconciliation algorithm cannot analyze such finely graded patterns of
loanwords and answer the question of identifiability. The results of the algorithms
depend highly on the data and the reconstructed input trees. All methods leave
some room for interpretation by experts to clarify the detected contact scenarios and
the true borrowings within the network.
The identification of mismatches between two trees in order to detect evolutionary
events due to horizontal transmission opens a new research field. The phylogenetic
algorithms give insights in the evolutionary history of lexical items and their re-
lation to the language classifications proposed by the computational comparative
method. The methods provide a straightforward way to discover language relation-
ships, contact scenarios, and borrowings. Boc et al. (2010a) used a HGT algorithm
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(Makarenkov et al., 2006) to represent the classification of the Indo-European lan-
guages within a phylogenetic network. The reconstructed distance-based concept
trees are mapped to the language tree proposed by Gray and Atkinson (2003),
resulting in different tree reconciliation scenarios. All results obtained from the
borrowing scenarios are combined to compute a borrowing statistic.29 The language
tree from Gray and Atkinson (2003) is extended by the ten most prominent transfer
events to create a network. The HGT network illustrates the relationships of the
Indo-European languages, including the ten most prominent contact scenarios in-
dicated by reticulate edges. The focus of applying tree reconciliation methods to
detect language contact lies in the identification of language relations within an
evolutionary network. Borrowing scenarios and the detected loanwords were not
analyzed in the study. In a preliminary study, Delz (2013) used the algorithm by Boc
and Makarenkov (2003) to illustrate the detection of borrowings and loanwords
within the HGT framework. The results are displayed in an evolutionary network,
where the language tree provides the underlying structure and the transfer events
detected by the algorithm are added as reticulate edges. Delz (2013) evaluated the
results of the detected evolutionary events manually and contextualized the linguis-
tic analysis of the contact scenarios. In a follow-up study, Delz (2014) developed a
tree comparison method based on the idea of jackknifing to detect loanwords using
mismatches between a language and a concept tree. The tree comparison algorithm
is the first linguistic method using a language and concept tree as input to discover
borrowings and loanwords, which is why it serves as a comparative algorithm to
the HGT algorithms in this thesis.30 The generated evolutionary networks including
borrowings and loanwords are evaluated manually, since gold standard data for the
database under consideration was not available for a statistical evaluation. The main
aim of the study was to elucidate the role of donor and recipient languages within
the borrowing process, along with the complexity factor of the determination of both
RL and SL in the contact scenario and the network. To my knowledge, no further
cross-linguistic studies on borrowing including a detailed loanword analysis using
tree reconciliation algorithms have been attempted. The main aim of this thesis is
to clarify the purpose of tree reconciliation methods in linguistics. The following
analyses should give insights to which degree the direct transfer of phylogenetic
methods into the field of linguistics is fruitful and can be used to discover borrowings
and the corresponding loanwords. The detection and identification of loanwords is
a first step into the direction of a deeper understanding of language contact, contact
scenarios, and the possible types of loanwords present in the data. The adaptation

29For a detailed representation of the borrowing statistic, please see the tables and explanations in
Boc et al. (2010a).

30The idea of jackknifing and the algorithm are explained in detail in chapter 5.
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of phylogenetic methods is not only worthwhile to shed light on detailed horizontal
transmissions, but serves as basis for further, more detailed analyses in the field of
loanword detection.
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Concept Trees: From
Wordlists to Word Trees

4
Trees are the major foundation of both network and tree reconciliation methods. In
order to identify horizontal word transfer within the framework of tree reconciliation,
both concept and language trees are needed for the analysis. The computational
comparative method results in a language tree which displays the language classifi-
cations according to their shared innovations. The methods for automatic language
tree reconstruction are well-tested and evaluated by several linguistic studies, which
present a high agreement between automatically reconstructed trees and expert clas-
sifications (see e.g. Brown et al. (2008), Holman et al. (2008), Jäger (2013a), and
Jäger (2013b)). In contrast, research in CHL paid less attention to the reconstruction
of concept trees to illustrate the evolution of individual words within the tree model.
Up to this point, only a few studies have made use of concept trees in linguistics
to address the research question of detecting horizontal transmission (Delz, 2013;
Delz, 2014; Willems et al., 2016). The concept trees were reconstructed to serve the
purpose of reconstructing evolutionary networks and discovering transfer events,
i.e. they are a secondary effect of the studies. The concept trees in these studies
are reconstructed using simple sequence alignments and distance-based methods.
No further research on the application of other phylogenetic methods for matrix
computation, tree reconstruction methods, or evaluation techniques in terms of
concept tree generation was made. One challenge is to adapt suitable methods from
phylogenetics into linguistics. Besides this, the methods need to be adjusted to fulfill
linguistic requirements important for concept tree reconstructions. However, in
terms of gene tree generation, phylogenetic methods are not as well established as
it might seem. Gene trees are mainly reconstructed for the computation of networks
or consensus trees in order to explain the evolution of the species (Liu and Pearl,
2007; Nakhleh et al., 2009; Rasmussen and Kellis, 2007; Doolittle et al., 1996). In
addition, some studies are using small datasets to detect horizontal transfer using
gene trees (Hallett and Lagergren, 2001; Boc and Makarenkov, 2003; Nakhleh et al.,
2005b; Makarenkov et al., 2006). Nevertheless, few research is done on matrix
computations for gene data, and very little in terms of gene tree evaluation. These
issues will be addressed in this chapter with regard to linguistic data and concept
tree reconstruction.
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In terms of borrowing detection, the measure of surface similarities has been proven
useful and can serve as a proxy for the detection of borrowings (Van Der Ark et al.,
2007). Loanwords show a high degree of surface similarity with their corresponding
counterparts in the SL from which they were copied (Haugen, 1950; List, 2019).
The comparison of the words can give insights into the relationships among them
and possible transfer scenarios between languages. It is therefore necessary to have
a closer look at the phylogenetic methods for sequence comparison and matrix
computation to establish suitable methods which can be applied to linguistic data.
Some of the methods can be applied with small adjustments, whereas other methods
need to be customized in order to handle linguistic data in an appropriate way. In
addition, tree reconstruction methods are revised and adapted for the computation
of concept trees. This is the initial step in order to gain reasonable results in terms of
borrowing and loanword detection using tree reconciliation methods. It is therefore
essential to address the issue of concept tree reconstruction to elaborate suitable
methods for linguistic data.
The underlying procedure for concept tree reconstruction was introduced in section
3.1.4, which will be extended in terms of new ideas and innovations to compute
matrices and generate trees. The tree reconstruction methods are divided into
distance-based and character-based methods respectively, where the best attested
methods for tree reconstruction in linguistics are adapted to model concept trees. In
order to achieve usable results, the methods for matrix computation are adapted as
well to fulfill the requirements for concept tree reconstruction.
First, the distance-based methods are introduced, including different matrix gener-
ation methods and sampling techniques to assess tree replicates and the stability
of inner clades for evaluation purposes. Second, the computation of data matrices
for character-based methods are presented, including the sampling techniques of
the algorithms to extract tree replicates. For all distance-based and character-based
methods, the ideal method is determined. The concept trees computed by the most
optimal methods serve as input for the loanword identification task.

4.1 Distance-Based Methods

Distance-based methods were one of the first tree reconstruction methods adapted
to CHL from phylogenetics.1 The major advantages are their high efficiency and
their application to a wide range of different data types (Huson et al., 2010; Jäger
and List, 2016). The underlying distance matrix can be computed using different

1For a digression on the history and philosophy of phylogenetic methods, see Felsenstein (2004).
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kinds of measurements, where sequence alignment is the most widely used. The
input for the alignment are lists of lexical items, which can vary in amount and
classification of the words, and depend on the dataset under consideration. Since,
the comparison of words is the standard technique to classify languages according
to the (computational) comparative method, linguists laid a stronger focus on the
collection of word lists for various languages to optimize their classifications. This
results in a wide range of databases providing different kinds of word lists covering
various language families. The availability of databases covering a great amount of
language families in the world is the reason why distance-based methods are quite
popular to reconstruct linguistic trees (Jäger, 2013a).
Word lists are the starting basis for the computation of distance matrices. Based on
the datatype and the transcription of the lexical items, a distance measure can be
developed to reconstruct a linguistic tree. This means various distance measures can
be applied to the same data, which results in a greater range of experiments. Since
the reconstruction algorithms are computationally efficient, they can also be applied
to large distance matrices in a reasonable time (Huson et al., 2010). This is a great
advantage, since the amount of data only has influence on the alignment and matrix
computation, and not on the reconstruction of linguistic trees. Therefore, language
trees for one or more language families can be reconstructed to shed light on the
classifications of the languages and their relationships.
The underlying concept and procedure for concept tree reconstruction is introduced
in chapter 3.1.4. The input data in form of word lists is taken from the NorthEuraLex
database, introduced in section 2.2.3. The unaligned lexical items are compared
using sequence alignment methods to compute distances represented in matrices.
Within the task of concept tree reconstruction, one challenge is the adjustment of
alignment methods for the matrix generation. There are different ways to compute
them, using phonetic representations or cognate classes of lexical items. Further-
more, geographical language distances can be added as additional parameters to
the estimation of the distances between word pairs. The general idea is to inte-
grate additional components, e.g. cognate classes and geographical distances, into
the alignment analysis to improve the distance measurement. Both traditional se-
quence alignment techniques and newly developed methods are described in the
next subsections. The matrices serve as input for the tree reconstruction meth-
ods. In chapter 3.1.2, three different reconstruction algorithms are introduced and
compared. In phylogenetics, the FastME algorithm (Desper and Gascuel, 2002;
Desper and Gascuel, 2004) is the computationally most efficient algorithm, resulting
in more accurate trees than the other two algorithms. For the reconstruction of
linguistic trees, Jäger (2013a) compared the distance-based algorithms implemented
in the FastME software package (Desper and Gascuel, 2002). FastME provides
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BME-based reconstruction algorithms, including post-processing techniques for tree
improvement. In terms of automated language classification, the BIONJ algorithm,
introduced by Gascuel (1997), performs best.2 Additional post-processing methods
improve the results significantly. Following the results of Jäger (2013a), the FastME
algorithm, implemented in the software package ape (Paradis et al., 2004) with
post-processing techniques is used to reconstruct concept trees in the following
analyses.

4.1.1 State-of-the-Art: Pairwise Sequence Alignment and Distance
Matrix Computation

Sequence comparison in linguistics aims at identifying shared patterns between
the phonological representations of two lexical items. Alignment methods from
phylogenetics represent the string comparison in a matrix and compute either a
similarity or distance score between two lexical items. The methods are adapted
into CHL for the computation of similarities or distances between each pair of lexical
items in the dataset.
In linguistics, the Levenshtein distance is the standard approach for pairwise sequence
alignment. The method computes a distance score between two sequences, where the
distance is defined as the minimal number of edit operations needed to transform one
sequence into the other one. Holman et al. (2008) proposed a normalized version
of the Levenshtein distance to account for varying word length. The Levenshtein
distance is normalized by dividing the distance score by the length of the longest
word.
The normalized Levenshtein distance can only distinguish between identical and
non-identical sounds (Jäger, 2013b). In order to achieve a better approximation of
the etymologically correct alignment, similarity values of segment pairs can be taken
into account to estimate the probability of sound correspondences. The weighted
Needleman-Wunsch (NW) algorithm (Needleman and Wunsch, 1970) uses a given
substitution matrix and gap penalties to efficiently generate the optimal alignment
and its similarity score.3 The substitution matrix reflects the similarity scores
between sounds, which are estimated in CHL using Pointwise Mutual Information
(PMI). Jäger (2013b) developed a PMI-based method for the computation of string
similarities using the ASJP database. Within the PMI-based framework, the NW
algorithm efficiently determines the optimal alignment given the PMI values and

2See Jäger (2013a) for a detailed linguistic evaluation of the algorithms.
3The Needleman-Wunsch algorithm is a generalization of the Levenshtein distance. For a comparison

of the two measurements, see (Jäger, 2013b).
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gap penalties. The PMI scores estimate the probability of sound correspondences
between all segment pairs across the 41 symbol encoding of the ASJP database.4

The computation of the PMI scores is implemented in the OnlinePMI program by
Rama et al. (2017), which was used to calculate the PMI scores for NELex using the
ASJP encoding system. When aligning lexical items, there are often gaps indicating
that a sound has no corresponding counterpart in the other word, as shown in the
repeated alignment example 4.1 below.

(4.1) Pairwise alignment of the words for the concept ‘mountain’

a.
French: m o - t a 5 -
Spanish: m o n t a 5 a

b.
English: m a u n t - i n
French: m - o - t a - 5

c.
English: m a u n t i - n -
Spanish: m o - n t - a 5 a

d.
English: - m a - - u n t i n
German: b - E r k - - - - -

e.
German: b E r k
Dutch: b E r x

The NW algorithm uses one parameter for opening a gap, i.e. insertion of a new gap
in the alignment, and one for extending the gap. The gap penalties optimize the
alignment and the resulting alignment score. The proposed gap penalties by Jäger
(2013b) are used futheron in the analyses for two reasons. First, appropriate values
for both parameters can only be found via optimization, carried out in a precise way
by Jäger (2013b) for the ASJP encoding system. Second, since Rama et al. (2017)
used the proposed gap penalties within their OnlinePMI algorithm for estimating
the PMI scores, the same parameters are applied to other analyses in order to stay
consistent in parameter selection. Using a substitution matrix of PMI scores and gap
penalties, weighted NW improves the accuracy of the distance measure compared to
the Levenshtein method (Jäger, 2013b). Therefore, the PMI-weighted NW algorithm
is the method of choice for the computation of word pair alignments. However, the
method results in a PMI-based similarity score between each pair of lexical items.
Since the distance-based tree reconstruction algorithms require a distance matrix as
input, the similarity scores need to be converted into distances.

4See Jäger (2013b) for a detailed description of the parameter estimation.

4.1 Distance-Based Methods 79



Distance ddow The ALINE system introduced by Downey et al. (2008) provides a
formula to transform similarities into distances.5 The similarity is converted into a
distance score by normalizing it with the similarity score of the word self-comparison:

ddow(w1, w2) = 1− 2× s(w1, w2)
s(w1, w1) + s(w2, w2) (4.1)

where s(w1, w2) is the similarity score resulting from the NW alignment between the
two words w1 and w2. The word self-comparison of the two words is presented by
s(w1, w1) and s(w2, w2) respectively. The aggregation method can be extracted and
used to compute a distance score from the NW alignments within the PMI-based
method. The distance score directly represents how distinct or similar two lexical
items are to another. Downey et al. (2008) note that this approach is a useful
measurement of phonetic distances and can therefore be used to generate distance
matrices for automatic tree reconstructions.

Sigmoid Transformation Another approach to transform a distance score using NW
alignment was proposed by Rama et al. (2017). Within their OnlinePMI system, they
used the sigmoid transformation to convert a similarity score into a distance score:

dsig(w1, w2) = 1−
( 1

1 + exp(−s(w1, w2))

)
(4.2)

where s(w1, w2) is the similarity score between two words, w1 and w2, computed
using the Needleman-Wunsch algorithm. The distance scores resulting from the
sigmoid function lie in the range of [0, 1]. Within the multilingual cognate clustering
task of Rama et al. (2017), word pair distance in the range of [0, 1] can be used
to estimate a cutoff point in order to determine the cognacy of two words. The
classification of cognates according to their PMI score serves as input for the cluster-
ing algorithm, which leads to more accurate results in terms of automated cognate
clustering (Rama et al., 2017).6 To my knowledge, the sigmoid transformation and
the resulting distances are until now not used for distance matrix generation and

5ALINE was developed for linguistic analyses, where each sound is represented as a vector of manually
collected phonetic features. The distance between two sounds is determined by their difference in
feature values. A comparison between ALINE and the PMI-based method can be found in Jäger
(2013b).

6For more details on the automatic cognate clustering and the comparison between other methods,
see Rama et al. (2017).
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concept tree reconstruction.
Both distance transformations, ddow and dsig, are used to generate distances matrices
for the tree reconstructions. In the distance matrix, the entries along the diagonal
represent the distance of same words, which are 0, while the off-diagonal entries
represent the distance between words from different languages. A sample distance
matrix for the concept ‘mountain’ was given in table 3.5.

Handling Synonyms

For some languages and concepts, the NorthEuraLex database contains synonyms,
i.e. the languages have more than one entry for a specific concept in the word
list. An excerpt of NELex for the concept ‘mountain’ was given in table 3.4, which
is repeated in table 4.1 below. Compared to the other languages, Swedish and
Norwegian contain two words for the concept ‘mountain’.

Meaning ‘mountain’
word cc

English mauntin m
Icelandic fEtl f
Swedish bErg, fyEl b,f
Norwegian bErg, fyEl b,f
Dutch bErx b
German bErk b
Romanian munte m
Italian monta5a m
French mo,mota5 m
Catalan munta53 m
Portuguese mot3, mota5a m
Spanish monta5a m
. . .

Tab. 4.1.: An excerpt of the data from the NorthEuraLex Database containing the phonolog-
ical representations of the concept ‘mountain’ in the ASJP alphabet and manually
assigned cognate classes.

The most prominent way of dealing with synonyms is to choose one word at random
for the analysis. In this case, one word is chosen as representative for Swedish and
one for Norwegian, whereas the other word(s) are excluded from the analysis. As
a result, each language is represented by one word, i.e. each language is present
once in the set of leaves of the concept tree. To achieve a better estimation of
the language classification, the synonyms should be included in the analysis. The
number of representatives of a concept can have an effect on the similarity between
two languages, and therefore also on the language clustering in the tree. In addition,
taking all words into account is in accordance with the linguistic perspective of the
comparative method.
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One strategy is to split the set of words for the languages into single entries in
the word list, i.e. the number of synonyms determines the number of entries
for the language. The languages containing synonyms would be present more
than once in the distance matrix, and therefore also in the reconstructed concept
tree. In the above example, Swedish and Norwegian would appear twice in the
dataset: SwedishbErg, SwedishfyEl, NorwegianbErg, NorwegianfyEl. Each entry
is represented in the distance matrix and in the language clustering of the tree.
However, in order to reconcile a language tree and a concept tree for the detection of
horizontal transmission, both trees need to have the same set of leaves. If the concept
tree contains one language entry for each lexical item present in the corresponding
language, the synonyms would cause a tree with a greater set of languages on the
leaves. This means the number of languages can differ between several concept trees,
since the number of leaves depends on the contained synonyms within each concept.
The language tree, however, is a representative of the language classifications
according to the comparative method, i.e. each language is present once in the
tree. Since each concept tree should be reconciled with the same language tree, all
concept trees need to have the same set of leaves as the language tree. In order to
integrate synonyms in the analysis, it is essential to find a solution which can be
implemented in the distance-based framework.
In the following approach, synonyms are integrated into the distance computation
in such a way that both requirements, the consideration of synonyms and the single
occurrence of a language in the concept tree, can be realized. The initial idea
was presented by Willems et al. (2016) to account for multiple meanings while
computing distances between cognates. The method is adapted to the task of
distance matrix computation via pairwise alignment for concept tree reconstruction.
Following the general idea of the method, an overall distance of a language pair
containing synonyms can be computed. For two languages, all possible combinations
of word pairings are aligned, and a distance is computed for each alignment. From
the resulting set of distances, the minimal score is chosen as representative of the
languages’ distance for this concept. The method is formalized in the following
way:

sli
n = {wl

m|n = m&li = l&l ∈ L} (4.3)

dm(li, lj) = min{d(x)|x ∈ sli
n × s

lj
n &li 6= lj} (4.4)

Let L be the set of languages, Wm be the set of words for meaning m, and wl
m ∈Wm
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a word in Wm belonging to language l ∈ L. Since there can be synonyms, a set of
words for each language is constructed where sli

n is the set of words including all
lexical items for meaning m of language l. The distance d(x) between a pair of words
x is computed using the PMI-based NW algorithm. The similarities are converted
into distances using the respective methods ddow (equation 4.1) and dsig (equation
4.2). The minimum value of the set is taken as the representative distance between
the two languages. If two languages under comparison contain no synonyms, i.e.
one lexical item for the concept, the set for each language sli

n is a singleton. The
distance between the languages is therefore the converted PMI-based similarity
score from the NW algorithm. The result of the method is the distance dm(li, lj)
between two languages li and lj for meaning m. For each concept, a distance matrix
is generated, out of which a concept tree is reconstructed where each language is
present only once.
Having a look at the sample data in table 4.1, three possible scenarios of language
comparisons can be extracted:

1. A comparison of two languages where both contain synonyms: Swedish and
Norwegian.

2. A comparison where only one language contains synonyms: Swedish and
German.

3. A comparison where no language contains synonyms: German and Dutch.

In the first example, the set of languages is L = swe, nor. The set of words for each
language is sswe

n = bErg, fyEl and snor
n = bErg, fyEl, respectively. The distance is

computed by taking the minimum of all distances in dm(swe, nor) = min(d(bErg −
fyEl), d(bErg − bErg), d(fyEl − fyEl)), i.e. the minimum distance out of three is
chosen as representative of the comparison. In the second example of L = swe, nor,
only Swedish contains synonyms. The set of words are sswe

n = bErg, fyEl and
sdeu

n = bErk. The distances are computed using dm(swe, deu) = min(d(bErg −
bErk), d(fyEl−bErk)) and choosing the minimum score out of two possible ones. In
the last example, each language in L = deu, ndl has one lexical item for the concept,
resulting in the set of words sdeu

n = bErk and snld
n = bErx. This leads to a pairwise

alignment where the minimal distance score dm(deu, nld) = min(d(bErk − bErx))
is identical to the distance score obtained from the pairwise alignment via PMI-based
NW. The overall distance score obtained from the analysis is included in the distance
matrix computation. A concept tree with an identical set of leaves as the language
tree can be reconstructed, i.e. each language is present once at the leaves of the
tree.
This approach takes all possible words for one meaning into account and determines
a distance score depending on the languages under comparison. Since the overall
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distance score is computed using one of all possible alignments, the minimal distance
value is a fair measurement which is consistent with the distance computation
between two languages containing no synonyms. The method represents the distance
between two languages containing synonyms in a reasonable way, compared to
the distance computed using randomly chosen words. The minimal distance score
represents the highest similarity between two languages, indicating their closeness
in the language clustering, which is represented in the tree. A possible effect of the
synonyms on the language relationships can be included in the analysis with respect
to the condition that a language can only occur once in the concept tree.

4.1.2 Cognate Data and Distance Matrix Combinations

The reconstruction of concept trees using the PMI-based NW alignment takes shared
patterns of words into account. However, no information on cognacy is included
in the analysis. Cognates are etymologically related, since they share a common
ancestor. This can shed light upon both word relationships within the same lan-
guage family, indicating inheritance and relatedness between words due to contact
indicating horizontal transmission. Within the classical comparative method, the
identification of sound correspondences and cognate classes is a circular process,
which can lead to the identification of both scenarios. The integration of cognate
class information is therefore a reasonable parameter which is added to the align-
ment analysis. Willems et al. (2016) proposed an approach to combine cognate
classes and sequence alignments to compute language distances and generate dis-
tance matrices. They used the linguistic database introduced in Dyen et al. (1992),
which contains manually annotated cognate judgments. Since NELex does not
contain expert cognate judgments, the cognate classes are inferred automatically.
For this task, the OnlinePMI program by Rama et al. (2017) is used. The program
combines the PMI-based alignment method with the Infomap clustering algorithm
originally introduced by Newman and Girvan (2004). The words within a concept
are clustered into cognate classes, as illustrated in table 4.1. To compute the distance
between two languages in one concept, the cognate class information is combined
with the distances received from the sequence alignment:

dm(l1, l2) =
∑

c∈Cm
dc(l1, l2)

nl1,l2

(4.5)
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Let dm(l1, l2) be the distance for meaning m between the two languages l1 and l2.
The cognate class c is member of Cm, the set of cognate classes for meaning m.
The distance dc(l1, l2) is the distance for the cognate class, where dc(l1, l2) = 0 if
neither word form is present in c, dc(l1, l2) = 1 if either one or the other word form
is present in c, and dc(l1, l2) = d(w1, w2) is the distance computed between two
words w1 and w2 where both word forms are present in c.7 If the two languages
under comparison contain synonyms, the same procedure to handle synonyms is
used as explained above and formalized in equation 4.4. The integer nl1,l2 is the
number of cognate classes present in m that included at least one word of either l1
or l2.
Given the same language pairs from the previous example, a computation can
be carried out using arbitrary distances for illustration purposes and the manu-
ally assigned cognate classes in table 4.1. First, the distance between Swedish
and Norwegian for the meaning ‘mountain’ is computed. Both languages contain
synonyms. The synonyms, however, belong to different cognate classes, i.e. the
comparison of the lexical items belonging to the same cognate class is automatically
integrated in the analysis. This is reflected in the computation, where for c in Cm

the sum of all distances is (dm = 0) + (df = 0.1) + (db = 0.1) = 0.2. Since the
words from both languages are present in two cognate classes, 0.2

2 results in the
overall distance dmountain(swe, nor) = 0.1. In the second example, the sum of all
distances between Swedish and German is (dm = 0) + (df = 1) + (db = 0.1) = 1.1.
Swedish contains a synonym clustered in a different cognate class, i.e. the value
for the distance df in this cognate class is set to 1. This affects the computation
of the overall distance dmountain(swe, deu) = 1.1

2 = 0.55. In the third example, the
words for German and Dutch belong to the same cognate class and no synonyms
are present in both languages. The sum of all distances for the cognate classes
is (dm = 0) + (df = 0) + (db = 0.1) = 0.1 and the overall distance results in
dmountain(deu, nld) = 0.1

1 = 0.1. The three examples illustrate the effect of cognate
information combined with sequence analysis on the computation of the distances.
The impact on the distance matrices depends on the cognate clustering, and there-
fore on the automatic cognate clustering algorithm. This, of course, can influence
the reconstruction of the concept tree and its language clustering.
The approach illustrated in equation 4.5 is used to compute a distance matrix for
each concept in NELex using pairwise word alignment and the corresponding au-
tomatically inferred cognate classes. Willems et al. (2016) computed the distance
between two words in dc(l1, l2) via the normalized Levenshtein distance. In the
state-of-the-art string alignment used so far in CHL, the weighted NW algorithm
improves the distance measure compared to the Levenshtein method (Jäger, 2013b).

7For a detailed description of the formula, please refer to Willems et al. (2016).
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However, a similar analysis to compare the two distance measures was not carried
out within this framework, i.e. both distance measurements are taken into account
in the following analyses. In the first analysis, d(w1, w2) is computed via the nor-
malized Levenshtein distance, as originally proposed by Willems et al. (2016). The
second analysis uses the PMI-based NW algorithm to compute the distance between
two words d(w1, w2). The resulting similarities are converted into distances using
dsig (equation 4.2). In accordance with Rama et al. (2017), dsig is the method of
choice, since it is used in the OnlinePMI algorithm to convert the similarities of
the sequence alignments needed for the cognate clustering. Both methods result in
distance matrices for all concepts, which serve as input for the tree reconstruction
methods.

4.1.3 Combining Word Distances with Geographical Distances

In a classical cross-linguistic study carried out with the classical comparative method,
language relationships between geographically close languages are implicitly con-
sidered in the manual language comparison task. Geographically close languages
are intuitively assumed to be related, and are first considered for a comparison to
determine their relationships. The geographical spread of most of the language
families, e.g. Germanic and Romance, underlines this assumption. In addition, the
nodes in the tree model can correspond to both a language and its social community.
Each split of a mother language into its daughter languages can therefore be seen as
an event of social split into separate social communities (François, 2015).8 A division
of a population into two social communities indicates geographical closeness, which
can also be assumed for the corresponding languages. This is reflected in the cluster-
ing of a phylogenetic tree, where the evolution of languages and their communities
implies that genetically related languages are in most cases geographically close to
each other.
Several linguistic studies which confirm this view adapted methods proposed in the
field of phylogeography. Phylogeography combines the disciplines of biogeography,
genetics, and phylogenetics to model the geographic distribution of individuals, e.g.
population expansion and migration. The adapted methods can be used to combine
different parameters within one analysis. In linguistics, methods are adapted to
model language expansions, or to detect geographical areas of the languages and
their homeland. Hereafter, the most relevant studies which served as inspiration

8The development and division of social communities is by far not so straightforward as assumed by
the classical tree model (François, 2015). The history of populations is complex and studied in the
field of sociolinguistics.
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and basis for the following analyses are summarized. A method to determine the
homeland of a language family was developed by Wichmann et al. (2010). In
their study, measurements for geographical and lexical distance are combined to
locate the language with the highest diversity in the sample. This language is then
identified as the homeland of the language family.9 The study of Atkinson (2011) is
based on the assumption that languages expanded out of Africa. He claimed that
the phoneme inventory size of a language decreases if the geographical distance
to Africa increases. Wichmann et al. (2011) refined this approach by taking an
inferred homeland, derived by the method introduced in Wichmann et al. (2010), to
measure the correlation of phoneme inventory size with geographical distance to
the homeland.10

The assumption that genetically related languages are geographically close to each
other, and the idea of phylogeography to combine various distance measures, re-
sults in a newly developed method for matrix computations. The decision basis
of the tree reconstruction algorithms are the distances between languages, which
are represented in a matrix. It can be expected that additional parameters, inte-
grated into the computation of the distance matrices, can improve the results of
the language clustering. The geographical distance between two languages adds
a stable component to the alignment analyses to take geographical closeness into
account. The general idea is to add a smaller distance to adjacent languages and
a larger distance to distant ones, i.e. the geographical distance serves as global
parameter in the analysis. In terms of concept tree reconstruction, the impact of
short sequence alignments on the language clustering can only be estimated. The
number of sounds in a phonological representation of a lexical item determines the
number of sounds which can be aligned by the algorithms. This can have an effect
on the computed distances, i.e. short words can lead to small distance variations in
the concept distance matrix. Since the tree reconstruction algorithms highly depend
on the distance matrices, small distance variations can affect the resulting language
clustering. The geographical language distances add a stable component to the
analysis, which can improve the language clustering on the concept tree in order to
get a clearer insight into the language relationships.
The geographical distances between language pairs are computed using the method
introduced in Wichmann et al. (2011). Since only the computation of the geographi-
cal distances between language pairs is needed and not the inferred homeland, the

9In another prominent study, Bouckaert et al. (2012) used Bayesian phylogeographic approaches
combined with vocabulary lists to trace back the homeland of the Indo-European language family.

10The phylogeographic program of Wichmann et al. (2011) is available on the homepage of the ASJP
database (Wichman et al., 2018).
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corresponding code is extracted and modified.11 For each language pair in NELex,
the geographical distance is computed using the longitudes and latitudes for each
language.12 A geographical distance matrix is generated, having the same form
than a concept distance matrix (see e.g. the concept matrix in table 3.5). This
means the entries along the diagonal represent the geographical distances of same
languages, which are 0, while the off-diagonal entries represent the geographical
distance between different languages. Each concept distance matrix can therefore
be merged with the geographical distance matrix. The merging of the two matrices
is done via the super distance matrix (SDM) method proposed by Criscuolo et al.
(2006), which is implemented in the R package ape (Paradis et al., 2004). The
SDM method fuses both distance matrices into a supermatrix, which can be used to
reconstruct a concept tree. To merge two matrices, “SDM deforms the source matri-
ces, without modifying their topological message, to bring them as close as possible
to each other; these deformed matrices are then averaged to obtain the distance
supermatrix” (Criscuolo et al., 2006, p. 740). The SDM algorithm is described in
detail in Criscuolo et al. (2006), where the results of simulation studies show that
“SDM deals efficiently and accurately with collections containing a large number of
source matrices of varying size” (Criscuolo et al., 2006, p. 741). The SDM method
reconstructs a supermatrix that is the best representative of all input matrices, i.e.
one concept distance matrix and the geographical matrix. Since the shape of the
distance matrix remains the same in the supermatrix, it can serve as input to the
distance-based tree reconstruction algorithms.

4.1.4 Reliability Measure for Distance-Based Concept Trees

The application and development of distance computations for the reconstruction
of concept trees using phylogenetic methods is a feasible task in CHL. However,
an evaluation of the automatically reconstructed trees is needed to get an idea of
the suitability of the algorithms in CHL. There are two techniques to determine the
reliability of trees.

Correctness of Trees The best attested technique to verify the correctness of an
automatically reconstructed tree is the comparison to an expert tree, i.e. a tree
reconstructed by linguists (Jäger, 2013a). As already mentioned in chapter 3.1.3,
there are several databases like Glottolog (Hammarström et al., 2018) providing

11For a detailed description, please refer to the source code provided by the ASJP database (Wichman
et al., 2018).

12The longitudes and latitudes for the languages are included in NELex (Dellert, Jäger, et al., 2017).
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expert classifications of linguistic trees which can be used to evaluate the automati-
cally reconstructed trees obtained from the algorithms. To measure the correctness
of distance-based concept trees is, however, not straightforward. The expert tree
from Glottolog displays the history and relationships between languages, whereas a
concept tree represents relationships between lexical items of a specific concept for
these languages. Since the representation purposes of the trees differ, the expert tree
from Glottolog cannot serve as gold standard tree for a comparison with concept
trees. The representation of word histories using trees is a new approach, and no
expert words trees are available which could be used for a tree comparison. To
measure the correctness of concept trees is therefore unfeasible.

Stability of Trees The stability of the tree and its clades is determined using sta-
tistical resampling techniques. Resampling techniques are used to estimate the
precision of sample statistics. The procedure is as follows. First, a new dataset is
created by either using a subset of the initial dataset, or by choosing randomly with
replacement characters from the initial dataset to create a sample of the same size.
Second, the analysis is replicated using the sample sets in order to estimate sample
statistics, like e.g. medians and variances. The two standard resampling techniques
are jackknife and bootstrap. The jackknife creates subsets from the initial dataset by
dropping one or more characters and calculating the estimate each time (Felsenstein,
2004). The bootstrap involves sampling with replacement to create a sample set of
the same size as the initial dataset, which is used to rerun the analysis. To illustrate
the general ideas of the two techniques, the language sample displayed in table 3.1
is used, which is repeated in table 4.2 below.

Meaning ‘sun’ Meaning ‘mountain’ Meaning ‘you’ Meaning ‘louse’
word cc word cc word cc word cc

English son s mauntin m yu d laus l . . .
Icelandic soul s fEtl f 8u d lus l . . .
Swedish sul s bErg, fyEl b,f d3 d l3s l . . .
Norwegian sul s bErg, fyEl b,f d3 d l3s l . . .
Dutch zon s bErx b y3 d l3is l . . .
German zon3 s bErk b du d laus l . . .
Romanian soare s munte m tu d p3duke p . . .
Italian sole s monta5a m tu d pidokyo p . . .
French solEy s mota5 m ti d pu p . . .
Catalan soL s munta53 m tu d pol p . . .
Portuguese soL s mota5a m tu d pyulu p . . .
Spanish sol s monta5a m tu d pyoxo p . . .
. . .

Tab. 4.2.: An excerpt of the data from the NorthEuraLex Database containing the phono-
logical representations of the words in the ASJP alphabet and manually assigned
cognate classes.
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If s = {sun,mountain, you, louse} is the set of all concepts, the data is sampled
depending on the method of choice to create different samples. The jackknife would
create subsets of a smaller size without replacement, i.e. each concept can only
be present once, e.g. s1 = {sun,mountain, you} and s2 = {mountain, you, louse}.
Bootstrap would sample with replacement, i.e. a concept can appear more than
once in a set in order to create k sample sets of the same size, e.g. if k = 2 then
s1 = {sun, sun,mountain, louse} and s2 = {mountain, louse, you, you}. For each
sample in the set, a tree is reconstructed generating a set of trees. This would result
in two trees for both sampling techniques. For each method, the resulting trees
are summarized in a consensus tree, where the stability values of the inner clades
reflect the appearance of the corresponding clades in the tree sample. The two
main methods to reconstruct a consensus tree are the strict consensus tree and the
majority-rule consensus tree. The strict consensus tree contains all clades present
in the tree sample, which can lead to an unresolved consensus tree (Felsenstein,
2004). The majority-rule consensus tree represents the clades that are present in
the majority of the trees, i.e. typically in over 50% of the trees in the sample.

Standard Method: Jackknife

The jackknife technique (Felsenstein, 1985; Mueller and Ayala, 1982) is the older
technique and samples without replacement. The two main techniques are the
delete-half and the delete-one jackknife. The underlying concepts are illustrated
using the data in table 4.2, where the set of concepts is of size n = 4. The delete-
half jackknife samples n

2 times without replacement, i.e. a random half of the
characters are taken into account. This results in two sample sets of size n = 2, e.g.
s1 = {sun,mountain} and s2 = {you, louse}. The delete-one jackknife drops one
observation at a time, i.e. each sample includes n− 1 concepts. This results in four
sample sets of size n = 3 with the following data: s1 = {sun,mountain, you}, s2 =
{sun, you, louse}, s3 = {sun,mountain, louse}, and s4 = {mountain, you, louse}.
In linguistics, it is advisable to use the delete-one jackknife, since this technique
results in a larger sample size. This is relevant due to the sometimes small datasets
used for linguistic tree reconstruction.
In the case of language tree reconstruction, the delete-one jackknife results in
a number of matrices of the same size n − 1. Language trees are reconstructed
using all concepts present in the database, which means the number of concepts
determines the sample size. Since the number of concepts included in the digitally
available databases varies between 40 and 1,016, sampling without replacement is
unproblematic. However, in terms of concept tree reconstruction, the application of
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the delete-one jackknife is problematic. A concept sample normally contains one
lexical item per language for the corresponding concept. In the case of synonyms,
the number of lexical items might increase slightly, i.e. in most cases there is one
additional synonym present. The columns of the matrix determine the sample size
of the jackknife method. The concept data displayed in table 4.1 shows that without
synonyms, the data is represented in a vector, and with synonyms in a two-column
matrix. Dropping one observation at a time would result in a pretty small sample set
in case of a two-column matrix, whereby it is unfeasible for a vector. An alternative
approach would be to apply the delete-one jackknife on the rows of the matrices,
i.e. dropping one language at a time. Felsenstein (2004, p. 357) states that “it is
not easy to see what statistical meaning this jackknifing of [languages] will have.
[Languages] are not independent and identically distributed - they come to us on
some phylogeny, where they are highly clustered.” Additionally, jackknifing the
rows of the matrices would result in a matrix containing n− 1 languages from the
sample, i.e. the set of leaves for each reconstructed tree contain different languages.
The trees in the sample can therefore not be summarized in a consensus tree, since
for this reconstruction all trees need to have the same set of leaves. However, a
number of sample trees with different sets of leaves can be summarized using a
supertree. Supertree techniques are divided into direct and indirect approaches.
Direct methods reconstruct a supertree out of a tree sample without providing any
support information on the inner clades of the tree to indicate the stability of the
tree. Indirect methods generate a matrix out of the tree sample which serves as input
for the supertree reconstruction. In the resulting supertree, only goodness-of-fit
statistics, like e.g. consistency values for the inner clades, can be displayed (Bininda-
Emonds et al., 2002). This is not the same as computing support values to determine
the stability of the inner clades to reflect the clustering of the trees in the sample.
Both direct and indirect supertree methods can therefore not be used to estimate the
stability of concept trees. The underlying concept of the indirect supertree technique
leads to the idea of using the SDM method to combine various matrices in order
to reconstruct a supertree. By applying the delete-one jackknife procedure, n − 1
jackknife matrices are generated by leaving out one language at a time from the
sample with n languages. The distance matrix computation is repeated for each
sample, creating a set of matrices. The distance matrices of all jackknife replicates
can be combined using SDM, out of which a single tree is reconstructed. Since no
tree sample can be created out of this method, there is no possibility to compute the
frequency of the clades in order to reflect their stability. To conclude, the delete-one
jackknife cannot be applied to concept data in order to assess clade credibility to
concept trees.
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Standard Method: Bootstrap

The bootstrap technique, introduced by Efron (1979), involves sampling with re-
placement to create k number of bootstrap replicates. The variability of the estimate
is inferred by the bootstrap replicates, using a rather large variation of the initial
sample (Felsenstein, 2004). The size of the bootstrap sample k is set manually. Since
the bootstrap technique samples with replacement, an appropriate value for k needs
to be estimated in order to obtain a large variation of the initial sample. Typically,
the sample size of bootstrap replicates varies between 100 and 1,000. The result is a
sample of k data matrices with the same number of languages and the same number
of concepts as in the initial data matrix of size n.
Since the words are sampled with replacement, one lexical item can occur more
than once in the sample, whereas another one might not occur at all. In the case
of language trees, bootstrapping can unproblematically be applied to the basic vo-
cabulary lists. Using the data in table 4.2, the set of concepts is of size n = 4, and
k = 3 is the manually set sample size of the bootstrap replicates. Three datasets
of size n = 4 are replicated by randomly sampling with replacement, resulting
e.g. in s1 = {sun, sun,mountain, louse}, s2 = {mountain, louse, you, you}, and
s3 = {mountain,mountain, you, you}. For each dataset in the sample, the analysis
is repeated following the initial procedure for matrix computation and tree recon-
struction. The resulting tree sample of bootstrap replicates is also of size k. All
sample trees are summarized in a majority-rule consensus tree, including only those
clades which are present in the majority (50%) of the trees. An estimate for the level
of support on each clade is provided, determining the stability of the clusters in the
trees. Compared to the jackknife technique, the bootstrap method is independent
of the number of characters in the data sample, since the number of replicates is
set manually and can be customized for each analysis. Therefore, the bootstrap
method has become the standard technique for the assessment of clade credibility in
phylogenetic trees in phylogenetics as well as in linguistics.
On the concept level, the traditional bootstrap method leads to the question how to
sample from a word list with replacement. As shown in data illustrated in table 4.2,
most concepts include one representation per language, and only a few synonyms
might be present in the dataset. Sampling the columns of the matrix with replace-
ment would lead to a sample of size k with identical matrices. The sample trees
would be highly similar, if not identical. This results in a majority-rule consensus
tree, which would not be a good estimate for clade stability and tree credibility as
expected from a bootstrap analysis.
A logical conclusion would be the sampling of phonetic characters instead of lexical
items. From a theoretical point of view, this would be possible. The characters
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can be sampled with replacement in order to create bootstrap replicates which
can serve as input for the matrix computation and tree reconstruction algorithms.
However, the phonetic characters of a lexical item appear in an order which reflects
the phonological system of the language and follows certain word formation rules.
The order of the sounds has a significant meaning which should not be split by a
sampling method. The rearrangement of the sounds would result in nonsense words.
This has a great impact on the sequence comparison and the following analysis,
i.e. the concept trees would no longer illustrate the history of a concept, and the
majority-rule consensus tree would not be a good estimate for clade credibility.

Noisy Bootstrap

The jackknife and bootstrap techniques cannot be applied to achieve the intended
results for measuring the stability of distance-based concept trees. An alternate
method, developed by Nerbonne et al. (2008), can be transferred for this task. Ner-
bonne et al. (2008) introduce a “noisy” clustering approach to overcome instabilities
in dialect clustering. The fundamental idea of this technique is to add noise to a
distance matrix to indicate whether the signal or the clade in a tree is stable within
different replicates. This technique is adapted to measure the stability of the clades
in concept trees where sampling of the data is impracticable.
The stability of the inner clades of a tree is measured by modifying the concept
matrix in order to obtain varying replicates which can be summarized in a consensus
tree. Following Nerbonne et al. (2008), a small noise ceiling c, where c = σ/2, i.e.
one half of the standard deviation of the distances in the corresponding matrix, is
specified. Random amount of noise r, where r varies uniformly (0 ≤ r ≤ c), is added
to the matrix to generate a new matrix replicate out of which a tree is reconstructed.
The computation is done k = 1, 000 times to create a tree sample of size 1,000.13

A majority-rule consensus tree summarizes the tree sample to display the support
values of the inner clades. Since the procedure is similar to the bootstrap technique,
the method will be called noisy bootstrap.

Evidence for Noisy Bootstrapping An experiment should shed light on the accuracy
and efficiency of the noisy bootstrap method. For this task, a language sample as
displayed in table 4.2 serves as input to reconstruct a distance-based language tree.
Both the standard and the noisy bootstrap technique can be applied to determine the
stability of the tree clustering. The stability values obtained from both methods can

13The size of k should be higher than 100 because the variance of the matrices is small. A sample of
size k = 1, 000 can give clearer insights into the stability of the inner clades.
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be compared to evaluate the accuracy of the noisy bootstrap method. Additionally,
the automatically inferred tree and both consensus trees can be compared to an
expert tree to account for correctness.
For this task, a subset of the NorthEuraLex database is extracted, including all Indo-
European languages with the most 200 stable concepts (Dellert and Buch, 2018).
To determine the correctness of reconstructed trees, an expert tree is extracted
from the Glottolog database (Hammarström et al., 2018) for the comparison. The
tree displays the expert classifications of the Indo-European languages included in
the subsample from NELex and serves as gold standard tree for the comparison.
Two trees are compared by computing the topological distance between them. The
smaller the distance, the better the automatically reconstructed tree. In linguistics,
language trees can either be bifurcating or multifurcating. Distance-based trees are
bifurcating, whereas expert and consensus trees can be multifurcating. Following
Jäger (2013a) and Jäger (2013b), the generalized quartet distance (GQD) is used
as distance measure between two trees. It is a generalized version of the quartet
distance introduced by Estabrook et al. (1985), which takes the asymmetry between
bifurcating and multifurcating trees into account. The method compares existing
quartets in the expert tree to the quartets in the inferred tree, and computes the
distances as the proportion of quartets on the leaves, which have a different topology.
The underlying procedure for language tree reconstruction is introduced in chapter
3.1.3. To determine the distance between two languages, the wordpair distances are
computed using the PMI-based NW algorithm, and aggregated using the measure-
ment called dERC (Distance-based on Corrected Evidence of Relatedness) in Jäger
(2013b).14 The resulting distance matrix serves as input to the FastME algorithm
to reconstruct the language tree. The standard bootstrap method can be applied to
language data. The lexical items in the dataset are sampled with replacement to
generate k new data matrices, where k = 1, 000. For each data matrix, the initial
analysis, including matrix computation and tree reconstruction, is repeated. The
tree sample contains 1,000 replicates, out of which a majority-rule consensus tree is
reconstructed. For the noisy bootstrap technique, the distance matrix computed for
the language data is used to add noise and create k = 1, 000 noisy bootstrap matri-
ces. Tree sample of size 1,000 is used to compute the corresponding majority-rule
consensus tree. In terms of efficiency, it can already be seen that adding noise to a
matrix is computationally cheaper than the procedure of standard bootstrap.
All three output trees, i.e. the language tree and the two consensus trees, are
compared to the expert tree of Glottolog using the GQD. The results are shown in
table 4.3.

14For a detailed mathematical description of the dERC method and the procedure of aggregating
language distances, see Jäger (2013b).
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Tree compared to Glottolog tree GQD
Inferred language tree 0.0193
Consensus tree standard bootstrap 0.0193
Consensus tree noisy bootstrap 0.0206

Tab. 4.3.: Generalized quartet distance between the three inferred trees and the expert tree

All three trees show a high agreement with the expert classification, i.e. the GQD
distances are small. The distance between the automatically reconstructed language
tree and Glottolog indicates a correctness of the inferred tree from over 80%. This is
in accordance with the results obtained in other linguistic studies, see e.g. Steiner
et al. (2011), Jäger (2013a), and Jäger (2013b). The small distance between the
consensus tree generated out of the tree sample from the standard bootstrap method
and the expert tree indicates that data sampling results in a stable tree. The distance
between the expert tree and the consensus tree computed from the noisy bootstrap
method is slightly, but not significantly, larger. The consensus tree still shows a high
agreement around 80% to the Glottolog tree, which underlines the correctness of
the consensus tree. This leads to the result that the noisy bootstrap method is a
suitable alternative to the standard bootstrap technique in terms of accuracy.15

The stability values obtained from the standard and the noisy bootstrap techniques
can be compared to get a clearer insight on the accuracy of the clustering. The trees
are displayed in figure 4.1. Both majority-rule consensus trees are unrooted and
multifurcating, which is mirrored in their topologies. The topologies differ slightly
in their internal clustering, which is due to the different computation techniques of
the replicated distance matrices and reflected in the GQD distances. The languages
are clustered correctly together according to their families. Within the language
families, the internal structure is similar in both trees. The stability values are higher
on the standard bootstrap consensus tree, indicating a greater stability within the
replicates. It is not surprising that a reiteration of the initial analysis using data
sampling leads to more stable results than adding noise to the distances. However,
the slight difference between the stability values does not have a great impact on the
accuracy of the methods. In most cases, there will be variance within the automat-
ically reconstructed (consensus) trees, which is due to the various computational
approaches. Nevertheless, the comparison of the consensus trees supports the noisy
bootstrap method as an alternative technique to standard bootstrap.
The experiment verifies the assumption that noisy bootstrapping can be used to
determine the stability of trees where statistical sampling is impracticable. In terms
of efficiency, the noisy bootstrap method is computationally cheaper. Compared

15For the sake of completeness, all analyses are also computed using the Neighbor-Joining algorithm.
For a comparison of the two reconstruction algorithms, see Appendix A.1.
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(a) Consensus tree standard bootstrap.

(b) Consensus tree noisy bootstrap.

Fig. 4.1.: Graphical representation of the two consensus trees from the bootstrap analyses.
Language families are colored: pink=Romance, blue=Germanic, green=Iranian,
purple=Slavic, orange=Celtic.

to data sampling in order to repeat the initial analysis, adding noise to a distance
matrix speeds up the analysis and results in a faster running time. The comparison
of the noisy bootstrap consensus tree to the Glottolog tree, and the comparison of
the stability values between the consensus trees show a high accuracy of the noisy
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bootstrap method. Since the assessment of stability values works well for language
data, the noisy bootstrap method can be transferred to concept data to get an insight
into the concept trees’ stability.

Noisy Bootstrapping for Concept Trees To determine the stability value of concept
trees, the procedure of the noisy bootstrap method will remain. In table 3.5, a sketch
of a concept distance matrix is given. In two computation steps, the noisy bootstrap
method generates bootstrap matrices of size k for each concept. In the first step,
the noise ceiling c, where c = σ/2, is specified. Second, random amount of noise r,
where r varies uniformly (0 ≤ r ≤ c), is added to the matrix. These two steps are
repeated k = 1, 000 times, and a tree sample is generated. The trees are summarized
using a majority-rule consensus tree. The concept tree for ‘mountain’, displayed
in figure 3.3, is repeated in figure 4.2a for a direct comparison with the consensus
tree reconstructed from the noisy bootstrap method. The consensus tree in figure
4.2b shows unresolved clusters within the Germanic and the Romance language
family. This illustrates an unstable clustering within the bootstrap replicates, where
none of the possible clustering combinations were present in more than 50% of
the bootstrap trees. The stability value reflects the frequency of appearance of this
cluster within the bootstrap replicates. The first cluster of the Romance language
family, which includes English, has a stability value of 62%. The other cluster,
including French and Portuguese, has a stability of 84%. Although the Romance
languages descend from Latin, they additionally consist of loanwords from Latin
which were later integrated into the languages. Latin is the most common source
of loanwords in the Romance languages, in addition to a great amount of internal
borrowings between the Romance languages (McMahon and McMahon, 2005). This
uncertainty is reflected in the clustering of the consensus tree, and is even more
present in the automatically reconstructed concept trees. The Germanic languages
are divided into two clusters. The first cluster represents the West Germanic language
family, including German and Dutch, with a stability of 66%. The North Germanic
languages are clustered together with a stability of 85%. The high stability values of
the Germanic and Romance languages show a clear and stable distinction between
the two language families. In terms of loanword detection, the grouping of English
within the Romance languages indicates a stable position of English within the
Romance languages in the replicated trees. The transcription of the words for the
concept ‘mountain’ already indicates the high similarity to the Romance languages,
which is confirmed in the clustering of the consensus tree.
The noisy bootstrap method can be applied to concept data to determine the stability
of the tree clustering. All possible reconstruction methods introduced so far have an
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(a) Distance-based concept tree.

(b) Consensus tree noisy bootstrap.

Fig. 4.2.: Graphical representation of the distance-based concept tree and the consensus
tree of the noisy bootstrap method for the concept ‘mountain’ using an excerpt of
the Germanic and Romance languages.

underlying distance matrix for each concept where the noisy bootstrap technique
can be applied.
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4.1.5 Evaluation

The different matrix computation methods introduced so far result in more than one
reconstruction option. In terms of automatic loanword detection, the method with
the most representative trees for the concepts should be determined. On the one
hand, tree reconciliation using all trees reconstructed from the introduced methods
is unfeasible. On the other hand, the optimal method is assumed to lead to more
accurate results in terms of loanword identification, since the matrix computations
lead to the most representative trees. Several approaches are worth considering to
evaluate the different methods for matrix computation.

Species Tree Reconstruction This approach is adapted from phylogenetics, where
a species tree can be reconstructed out of different gene trees. In linguistics, the
concept trees can be summarized by a consensus method to reconstruct a language
tree. The distance between the language consensus tree and the expert Glottolog
tree can be computed to measure the agreement of the two trees, i.e. the correctness
of the language consensus tree. However, due to missing entries in NELex, the
concept trees do not contain the same set of leaves, i.e. no consensus tree can be
reconstructed, and therefore no comparison to an expert tree can be made.

Consensus Tree Reconstruction Another approach is the usage of the consensus
tree for each method, reconstructed out of the noisy bootstrap tree replicates. Each
concept consensus tree would contain stability values at the inner clades, which
could be compared between the concepts of the different methods. This would imply
that trees have the same set of inner nodes. However, the concept trees will only
have the same topology by chance, since the reconstruction of different replicates
will lead to different concept consensus trees for each method.

MCC Tree Reconstruction An alternative to a consensus tree is the maximum clade
credibility (MCC) tree, introduced by Heled and Bouckaert (2013). The maximum
clade credibility method evaluates each tree in the sample to find the best repre-
sentative. In contrast to the consensus tree, the MCC tree is an actual tree from
the sample of replicates, and not a summary of the inner clades. In addition, the
MCC tree is a fully resolved topology, whereas a consensus method might produce
unresolved trees (Heled and Bouckaert, 2013).
The maximum clade credibility method computes a score for each clade in a tree
on the fraction of times this clade appears in the trees of the sample. The product
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of the score is taken as the clade credibility score for the tree. The maximum clade
credibility tree is the tree with the highest clade credibility score, and therefore
the best representative tree of the tree sample.16 For each concept, the highest
clade credibility score is computed using the tree replicates obtained from the noisy
bootstrap method. The clade credibility scores between all methods are compared
in order to identify the best representative tree, i.e. the tree with the highest clade
credibility score. The method with the highest sum of highest clade credibility scores
for all concepts serves as the ideal method for further analyses.17

In the previous chapters, various matrix computation methods for automatic tree
reconstructions were introduced. In total, there are eight different possibilities to
compute concept distance matrices and reconstruct trees using FastME, as listed in
table 4.4.

Method Description

CTdow
PMI-based NW algorithm

+ ddow conversion

CTsig
PMI-based NW algorithm

+ dsig conversion

CTdow+Geo
PMI-based NW algorithm + ddow conversion

+ geographical distances

CTsig+Geo
PMI-based NW algorithm + dsig conversion

+ geographical distances

CTLev
Levenshtein distance

+ cognate classes

CTNW
PMI-based NW algorithm + dsig conversion

+ cognate classes

CTLev+Geo
Levenshtein distance + cognate classes

+ geographical distances

CTNW+Geo
PMI-based NW algorithm + dsig conversion
+ cognate classes + geographical distances

Tab. 4.4.: The eight different matrix computation methods for tree reconstructions with
FastME.

The first two computations (CTdow and CTsig) use the PMI-based NW algorithm and
convert the similarities into distances using two different measurements, namely
ddow, introduced in equation 4.1, and dsig, stated in equation 4.2. Two approaches
(CTLev and CTNW) use the idea introduced in chapter 4.1.2, the combination of
cognate class information with a distance measure for lexical items. One approach
uses a normalized Levenshtein distance in correspondence with Willems et al. (2016),
16See Heled and Bouckaert (2013) for mathematical details on the computation of the clade credibility

score.
17The computation of the maximum clade credibility score for a tree sample is implemented in the

python package Dendropy (Sukumaran and Holder, 2010).
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who introduced this idea. The other method uses the PMI-based NW algorithm with
the sigmoid conversion to transform similarities into distances. All resulting distance
matrices from the four approaches can be combined with the geographical distance
matrix computed for the languages in NELex. For each concept in the eight methods,
the noisy bootstrap method is used to create a tree sample of 1,000 replicates.
The ideal method is determined using the concept of an MCC tree and the clade
credibility computation. For each method, the best representative tree is found for
each concept out of 1,000 noisy bootstrap replicates. The method with the highest
sum of highest clade credibility scores for all concepts serves as optimal method.
The methods and their corresponding sum of the highest clade credibility scores are
listed in table 4.5.

Method SCC
CTdow 503
CTsig 14
CTdow+Geo 205
CTsig+Geo 143
CTLev 0
CTNW 0
CTLev+Geo 33
CTNW+Geo 118

Tab. 4.5.: The MCC comparison of the different matrix computation approaches for the
tree reconstruction with FastME. The ideal method with the sum of highest clade
credibility scores for the concepts is marked in bold.

According to the sum of highest clade credibility scores for all concepts, the CTdow

method serves as the ideal method for distance-based concept tree reconstruction.
The CTdow method uses the equation 4.1 to convert the similarity scores of the
PMI-based NW algorithm into distances. This indicates that in the case of concept
trees, the conversion method introduction by Downey et al. (2008) results in a
better distance estimation than the sigmoid function used by Rama et al. (2017).
The sigmoid function transforms the similarities into distances of range [0, 1], i.e. it
scales the distances in order to fit into the range. The scaling of the distances into a
small range brings them closer together, as expected by the similarity score obtained
from the PMI-based NW algorithm. Since the distances in the matrix are the decision
basis of the tree reconstruction algorithm, the scaling of the sigmoid function affects
the language clustering and could result in unsuitable trees. Out of the four methods
using cognate classes plus a distance measurement for words within the same
cognate class, the PMI-based NW algorithm combined with geographical distances
leads to the best results. This is not surprising, since the Levenshtein distance
only distinguishes between identical and non-identical sounds, whereas the PMI-
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based NW algorithm achieves a better approximation of the sound similarities using
PMIs and results in better alignments (Jäger, 2013b). The results of the analyses
underlie this assumption. However, the introduction of cognacy as additional
parameter did not add more information to the analysis, as it was expected. This
can have two reasons. First, the method used to combine cognate classes with
distances is not as informative as using pairwise alignments. The PMI-based NW
algorithm is used to align words clustered in the same cognate class, otherwise
the matrix is filled with 0s and 1s, as shown in equation 4.5. This results in
distance matrices which are less informative than aligning all word pairs using the
PMI-based NW algorithm. Second, the cognate classes are inferred automatically.
Rama et al. (2018) showed that for language tree reconstruction on cognate data
(manually and automatically inferred) compared to an expert Glottolog tree, the
reconstructions using expert cognate judgments are generally more suitable. The
difference to the reconstructed trees using automatic cognate sets is, however,
not very large and therefore not significant. This indicates that automatically
inferred cognate classes can be used to reconstruct reliable phylogenetic trees on
the language level. Rama et al. (2018) reconstructed the trees using automatic
cognate data in a Bayesian framework, which can lead to different results than using
cognate class information in a distance-based framework. Additionally, the impact
of cognate classes on the language level can be different than the effect on a concept
level. This is reflected in the results, since most of the other methods outperform
the ones using cognate data. Adding geographical distances to the cognate class
distances improves the results. The geographical distances between languages add a
stable component to the analysis to take geographical closeness into account. The
parameter indicates that geographically adjacent languages are closer together in
the distance matrix and therefore also in the tree, which could have an effect on the
clustering of the languages. Compared to the methods using cognacy information,
the geographical distance does not have a great impact in combination with pairwise
sequence alignment. Using the sigmoid transformation method, the results improve
by including geographical distances. However, the CTdow approach still outperforms
the rest of the methods, including the one combined with geographical distances.

4.2 Character-Based Methods

Character-based models of change have increasingly become a matter of interest in
linguistics, since they estimate the relationship between two languages by inferring
the evolution from their common ancestor. This involves the usage of an evolutionary
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model according to which the evolutionary history of the characters is modeled onto
a phylogenetic tree. The advantage of using models of character evolution is the
description of character changes along a phylogenetic history, i.e. the phylogenetic
tree optimally explains a given data matrix. The data matrices can be generated
using multiple sequence alignment or binary data representations obtained from a
sequence clustering, which serve as input to the algorithms of the different character-
based frameworks.
The underlying procedure for the reconstruction of concept trees is introduced in
chapter 3.1.4. The linguistic data needs to be organized in character matrices, where
the languages are categorized according to discrete features. Ideally, the discrete
features are historically informative, e.g. the clustering of words into cognate
classes to represent the relationships of the languages. However, high quality data,
i.e. the manual assignment of cognate classes by linguists, is only available for a
few databases. The cognate classes are transformed in order to generate binary
presence-absence matrices, as illustrated in table 2.1 and 4.6. In terms of concept
tree reconstruction, the generation of binary matrices can lead to one difficulty,
namely the assignment of few cognate classes by the automatic clustering algorithm.
From a linguistic point of view, this is not surprising, since it can be the case that
words are closely related within one concept. Few or even just one cognate class
illustrate the descent from common ancestor(s). It is well known that words from
stable concepts are related and can be inherited from a single common ancestor in
one language family. This leads to the assumption that the reliability of a concept
tree reconstructed with a small number of cognate sets is questionable. To gain
more signal out of the characters of the lexical items for a suitable reconstruction of
character matrices, innovative ideas on matrix computations are introduced in the
following chapters next to the state-of-the-art methods.
In chapter 3.1.2, the different character-based approaches are introduced. The
field of bioinformatics provides well-known programs for character-based analyses,
which can be adapted into CHL. The maximum parsimony method aims at finding
the optimal tree using the minimum number of character changes. This often
results in more than one optimal tree, and it is not trivial to choose the best tree
from the resulting sample. Therefore, maximum parsimony methods are excluded
from concept tree reconstructions. For the frameworks of maximum likelihood and
Bayesian inference, several linguistic studies (Atkinson and Gray, 2006; Greenhill et
al., 2010; Gray and Atkinson, 2003; Hinneburg et al., 2007) show that the standard
algorithms work well on linguistic data. In accordance with those studies, for each
framework one algorithm is chosen to reconstruct concept trees.
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Maximum Likelihood In chapter 3.1.2, the maximum likelihood framework is in-
troduced. The underlying idea of maximum likelihood estimation is to find the
phylogenetic tree that maximizes the likelihood under a given model of evolution.
The evolutionary model specifies the evolution of the sequences along the edges of a
tree, where the model assesses the probability of mutations. The lower the number
of mutations, the higher the probability, i.e. the higher the likelihood. The tree with
the highest probability is the optimal tree obtained from the algorithm under the
given model of evolution.18

The main advantage of maximum likelihood estimation is the provision of “a sys-
tematic framework for explicitly incorporating assumptions and knowledge about
the process that generated the given data” (Huson et al., 2010, p.40). It needs to
be considered that evolutionary models are a rough estimate of the (biological)
evolution known from reality. However, Huson et al. (2010, p. 40) mentioned
that “in practice, maximum likelihood methods are believed to be quite robust to
violations of the assumptions made in the models.” This indicates that evolutionary
models add important parameters to the estimation of character evolution along a
phylogenetic history. On the other hand, it can be quite a challenge to determine
the best evolutionary model of a given dataset for the analysis.
In linguistics, determining the best evolutionary model is not so trivial, since most
of the implemented models are defined for biological data. One solution to this
challenge is to choose the best model for a given dataset automatically in order
to reconstruct a suitable tree under the maximum likelihood framework. The pro-
gram of choice for the reconstruction of the concept trees is IQ-Tree (Nguyen et al.,
2014). IQ-Tree provides fast tree inference algorithms to reconstruct maximum
likelihood phylogenies for large datasets. Compared to other programs like RAxML
(Stamatakis, 2014) and PhyML (Guindon et al., 2010), IQ-Tree computes trees
with a higher likelihood in a reasonable runtime (Nguyen et al., 2014). IQ-Tree
provides a modelfinder (Kalyaanamoorthy et al., 2017) to determine the best-fit
model for the given data in a reasonable time. This is an advantage for concept
tree reconstruction, since the model is chosen according to the data matrix given
to the algorithm. The analysis is therefore independent of a manual choice by the
user, which could have led to an inaccurate selection of an evolutionary model that
might not be in accordance with the given data. The maximum likelihood analysis
in IQ-Tree is based on an initial starting tree. The tree can be a user-defined fixed
tree topology, a BIONJ tree (Gascuel, 1997) computed by IQ-Tree, or a random
starting tree. The initial tree serves as basis for the application of the evolutionary
model in order to estimate the character evolution on a given phylogeny to compute
the maximum likelihood tree. The program contains a standard bootstrap method,

18A classification of the most important DNA models is given in Huson et al. (2010, p. 31).
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where the number of bootstrap replicates can be specified. IQ-Tree summarizes the
tree replicates using a majority-rule consensus tree, where the support values are
displayed at the inner nodes of the tree. The program provides several outputs,
including the reconstructed maximum likelihood tree, the consensus tree, and the
tree sample containing all bootstrap replicates. In addition, IQ-Tree also returns
the initial tree, a file containing the model choice, and a log file, if needed. For the
following analyses, IQ-Tree is used with the following settings: a BIONJ starting
tree computed by IQ-Tree, the model proposed by the modelfinder, and the standard
bootstrap method with a sample size of k = 100.

Bayesian Inference Bayesian methods are currently the most popular methods used
in linguistics to estimate trees using character-based models of change (Atkinson
and Gray, 2006; Greenhill et al., 2010; Gray and Atkinson, 2003). The underlying
framework is introduced in chapter 3.1.2. Bayesian inference aims at estimating the
posterior probability of a phylogenetic tree via the MCMC approach. The methods
result in a distribution of phylogenetic trees instead of a single tree representing
a point estimate. Usually, the trees in the sample are summarized in a consensus
tree. The posterior distribution provides support values of groups of taxa present
in the tree sample, which are displayed at the inner nodes of the consensus tree.
An overview of the work on Bayesian inference of phylogenetic trees is given by
Huelsenbeck et al. (2001).
The main advantage of Bayesian methods is the computation of a tree sample
according to the posterior distribution of trees, which opens up new possibilities for
further processing and analyses. The posterior distribution is computed based on
the input data, an evolutionary model, and a presumed prior distribution of trees. In
comparison to IQ-Tree, most algorithms implemented under the Bayesian inference
framework have no automatic modelfinder. In order to define a general model of
DNA evolution, the rates of change need to be specified. The clock model defines
how rates change globally across branches, and the additional substitution model
determines the change of rates between characters. The clock model can be defined
in three ways: strict, relaxed, or no clock. According to Dunn (2015b, p. 199), the
strict clock model is inappropriate for linguistics, since the rate of change is constant
across the tree. Defining a model with no clock indicates limitless evolutionary
variation between branches, which is less likely to reflect a real evolutionary process
(Dunn, 2015b). Therefore, the relaxed clock is the one of choice for linguistic data.
The relaxed clock allows “rates to vary across the tree, chosen from a probability
distribution whose mean is determined by the rate of the parent branch” (Dunn,
2015b, p. 199). For a substitution model, the gamma model is expected to be a good
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fit on linguistic data (Dunn, 2015b). In this model, a gamma distribution is used to
sample the rates for each class. Using a gamma distribution is popular, since it has
the useful property of having a single parameter that determines the shape of the
distribution (Huson et al., 2010). For this reason, it is expected to have the best fit
on linguistic data, since different items in a word list can have a different stability
(Dunn, 2015b).
The program used for concept tree reconstruction is MrBayes (Huelsenbeck and
Ronquist, 2001; Ronquist and Huelsenbeck, 2003). MrBayes contains all possible
combinations of models needed for a Bayesian analysis using MCMC on linguistic
data. The concept trees are reconstructed using a relaxed clock and the gamma
model to specify the rates of change. MrBayes provides several outputs. The most
important ones for further analyses are the tree samples, including all trees according
to the posterior distribution, and the consensus trees. The support values in the
consensus tree are provided by the posterior distribution, i.e. no further analysis
like bootstrap is needed.

4.2.1 State-of-the-Art: Cognate Clustering

The classical comparative method does not only aim at identifying shared patterns
via sequence comparison, but also at identifying etymologically related words and
grouping them into cognate classes. The process of establishing sound correspon-
dences and cognate classes is circular, i.e. cognates can only be identified according
to sound correspondences, and sound correspondences occur only in cognates (Jäger
and List, 2016). Within the computational comparative method, sequence align-
ments are used to cluster words into cognate classes. Cognate classes represent
the etymological relationship between the languages within one concept, and are
optimal features for the creation of a binary character matrix.
NELex does not provide expert cognate judgments for the words in the basic con-
cept list. Therefore, the cognates are clustered automatically using the OnlinePMI
program by Rama et al. (2017). The PMI-based alignment method, combined with
the Infomap clustering algorithm, assigns cognate classes to the words concept-wise.
An illustration example is given in table 4.1. The algorithm assigns an index to each
lexical item in the concept representing the cognate class. The shared cognate class
indicates the etymological relationship, i.e. the descent from a common ancestor.
The cognate classes serve as features to generate a binary character matrix.

Table 4.6 represents the language sample from table 4.1 with the transcriptions of
the lexical items using the ASJP encoding, the assigned cognate class(es), and their
binary coding. The data matrix is filled with 1 for presence and 0 for absence of the
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Cognate sets
Language Phono. string cc m b f

English mauntin m 1 0 0
Icelandic fEtl f 0 0 1
Swedish bErg, fyEl b,f 0 1 1
Norwegian bErg, fyEl b,f 0 1 1
Dutch bErx b 0 1 0
German bErk b 0 1 0
Romanian munte m 1 0 0
Italian monta5a m 1 0 0
French mo,mota5 m 1 0 0
Catalan munta53 m 1 0 0
Portuguese mot3, mota5a m 1 0 0
Spanish monta5a m 1 0 0

Tab. 4.6.: Binary (presence-absence) coding of cognate classes for the concept ‘mountain’.
The abbreviations stand for: Germanic languages b = ‘berg’, f = ‘fjäll’; Romance
languages m = ‘mountain’.

cognate class. The integration of synonyms in a binary system is straightforward.
In cases like Swedish and Norwegian, where the synonyms belong to different
cognate classes, both cognate classes receive a 1, indicating their presence. In
comparison, French and Portuguese contain two representations for the concept
‘mountain’ belonging to the same cognate class, which is indicated by assigning a 1
to the cognate class m indicating the presence. In this case, the synonyms cannot be
captured in the representation of the binary matrix.

Cognate sets
Language m b f

English 1 0 0
Icelandic 0 0 1
Swedish 0 1 1
Norwegian 0 1 1
Dutch 0 1 0
German 0 1 0
Romanian 1 0 0
Italian 1 0 0
French 1 0 0
Catalan 1 0 0
Portuguese 1 0 0
Spanish 1 0 0

Tab. 4.7.: Binary (presence-absence) character matrix for the concept ‘mountain’.
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In the final presence-absence matrix, displayed in table 4.7, each row represents
a language and each column a cognate class, where 1 indicates presence and 0
absence, respectively. The number of columns depends on the number of cognate
classes assigned by the clustering algorithm. For each concept, a binary presence-
absence matrix is generated which serves as input to IQ-Tree and MrBayes for tree
reconstruction.
Admittedly, the difficulty of binary matrix generation using cognate classes, i.e. the
assignment of few cognate classes by the clustering algorithm, is still present in the
analysis. The impact on the reconstruction of concept trees using a small character
matrix with a low number of cognate classes is unclear. It is therefore advisable
to include the state-of-the-art method for binary matrix generation in the analyses
in order to get an impression on the effect of small character matrices in terms of
concept tree reconstruction.

4.2.2 Multiple Sequence Alignment for Character Matrices

In terms of linguistic tree reconstruction, character-based methods allow a detailed
and fine-grained inference on language classifications and change from pre-processed
data. Distance-based methods, on the other hand, can be applied to raw, unprocessed
data, resulting in equally good language classifications compared to an expert
classification tree. The fundamental idea of the method proposed by Jäger and List
(2015) is to combine the best of both methods, i.e. the processing of raw data with
the detailed, fine-grained inference of linguistic trees. The approach uses multiple
sequence alignment (MSA) on the raw and unprocessed data, out of which a binary
character matrix is constructed for the fine-grained tree inference.
Multiple sequence alignment is applied to linguistic data to get an impression on the
diversity of the words and additional evidence on sound correspondences from the
complete sequence comparison. This is in accordance with the classical comparative
method, where sound correspondences and cognates are identified via comparisons
over multiple words in the languages. Within a MSA, all sequences present in
the data are aligned in one block. Overall structures, similarities, and differences
between all sequences under comparison can be seen at one sight. A multiple
sequence alignment between all lexical items in one concept could indicate the
direct relationships between the languages and their words. In example 4.2, the
multiple alignments of the concept ‘mountain’ are illustrated for three Germanic
languages and two Romance languages, plus English. The variety of sounds in
the lexical items determines the amount of gaps needed for the alignment. Within
the Germanic language sample the diversity of sounds is low, resulting in a small
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amount of gaps needed to align the words. Within the alignment of the two Romance
languages and English, the high diversity of sounds determines the higher number
of gaps included in the MSA.
The major problem of multiple alignments is the increasing complexity of the analysis,
which grows exponentially with the number of sequences being aligned (Jäger and
List, 2016). Therefore, most algorithms use heuristic methods, such as progressive
alignment, rather than global optimization to identify the optimal alignment between
sequences.19

(4.2) Multiple alignments for the concept ‘mountain’

a.

German: b E r k
Dutch: b E r x
Swedish: b E r g
. . .

b.

English: m a - u n t i - n -
French: m - o - - t - a 5 -
Spanish: m - o - n t - a 5 a
. . .

Progressive alignment requires a guide tree that captures the sequences in question
and, ideally, the evolutionary relationships between them. The sequences are present
at the leaves of the tree. The tree is traversed bottom-up and aligns the sequences of
the daughter nodes at an inner node. The complete multiple sequence alignment
is present at the root of the tree. The disadvantage of progressive alignment is
that each node can only use the information which is present in the corresponding
daughter nodes. If the alignment at the inner node is not optimal or etymologically
correct, the decision cannot be undone further up in the tree. The T-Coffee algorithm
(tree-based consistency objective function for alignment evaluation), introduced by
Notredame et al. (2000), contains a pre-processing approach called consistency-based
alignments, which is used to enhance the progressive alignments. The basic idea
is that a good multiple alignment of the sequences should be consistent with a set
of independently established pairwise alignments. Jäger and List (2015) combined
the PMI-based method introduced for pairwise alignments with the T-Coffee algo-
rithm, resulting in a two-stage PMI-T-Coffee approach. In the first step, a set of
independently computed pairwise alignments, called a library, is generated using the

19The strategy of progressive alignment was introduced by Hogeweg and Hesper (1984) and Feng and
Doolittle (1987).
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PMI-based NW algorithm. Within the library, a scoring function is initialized, where
each pairwise alignment receives a weight according to the matches and mismatches
in it. In the second step, an extended library of composite alignments is collected, i.e.
each pair of sequences is aligned with the rest of all sequences. The scoring function
is further modified and used with the progressive alignment in order to compute the
MSA at the inner nodes and the root of the tree.20 The T-Coffee algorithm enhances
the progressive alignment according to these pre-processing steps, and can therefore
be used to avoid the problem that each node can only use the information of its
daughters.
Although the field of bioinformatics provides several computational algorithms and
approaches to align multiple sequences, the applications of MSA in linguistics is
still in its infancy. The first algorithm on MSA of phonetic sequences was proposed
by Covington (1998). However, the method contained an inefficient tree-search,
which was not tested on large datasets (Jäger and List, 2016). Prokić et al. (2009)
applied the ALPHAMALIG algorithm (Alonso et al., 2004) for cognate alignments in
Bulgarian dialects to study discourse structure, which reached a high accuracy in the
comparison to gold standard data. The two latest studies on MSA in linguistics are
the one by List (2012) and Jäger and List (2015). List (2012) presented a progres-
sive alignment implementation of the SCA (sound-class-based phonetic alignment)
method (List, 2010), which outperforms the algorithm introduced by Prokić et al.
(2009). Jäger and List (2015) showed that phylogenetic trees reconstructed with
the PMI-T-Coffee algorithm came closer to the gold standard Glottolog tree than the
SCA algorithm.
To construct binary character matrices, the lexical items for each concept in the
NELex word list are aligned according to the PMI-T-Coffee algorithm of Jäger and
List (2015). The guide tree needed for the progressive alignment is a language tree
computed using the PMI-based NW algorithm and the aggregation of the language
distances proposed by Jäger (2013b). Synonyms in the dataset can easily be taken
into account, i.e. the MSA is constructed to align more than two words, and syn-
onyms can simply be added to the alignment. The result is a complete multiple
alignment of the lexical items for the corresponding concept. To construct a binary
presence-absence matrix, the languages need to be categorized according to features,
i.e. the MSA needs to be organized in a binary data format. Since the alignments
are arranged in columns, as illustrated in example 4.2, binary characters can be
created using the alignment information. Each occurrence of a sound class present
in each column of the alignment block is transformed into a binary character for the
languages, where 1 means presence and 0 absence of the character. Those binary
characters are arranged in a matrix, where the languages are present in the rows

20A workflow of the algorithm is illustrated in Jäger and List (2015).
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and the binary characters in the columns. For each concept, a binary data matrix is
generated, and trees are reconstructed using IQ-Tree and MrBayes.

4.2.3 String Subsequences and Matrix Generation

Binary data matrices cannot only be reconstructed using a binary version of a MSA
or cognate data, but also by using string subsequences. Phonetic strings or lexical
items can be split into substrings of any length. The following approach was inspired
by the work of Rama and Borin (2014), who used phonetic n-grams to establish
phonological similarity with item stability. Earlier works, like the ones from Dun-
ning (1994), Huffman (1998), and Singh and Surana (2007), motivated the use of
n-grams for language identification tasks.
In computational linguistics, an n-gram is the result of splitting a sequence into
n items. The n-gram is therefore a contiguous sequence of n characters from the
transcription of the lexical items. Using Latin numerical prefixes, an n-gram of size
one is called unigram, size two is a bigram, size three is a trigram, and so forth.
Using NELex word lists, n-grams are generated by using phonological transcriptions
of the lexical items, i.e. a substring is a sequence of phonological characters. For
each language pair in a concept, the intersection of the substrings is built, out of
which a binary data matrix is then reconstructed.
In the following, three different methods are introduced to generate n-gram se-
quences:

1. String subsequences using the traditional n-gram approach;
2. String subsequences using pairwise alignment;
3. String subsequences using pairwise alignment and n-grams.

The N-gram Approach In the first approach, n-grams of different sizes are created
by splitting the phonological transcriptions of the words into n items. The resulting
n-grams are unigrams, bigrams, and gappy bigrams. In gappy bigrams, one character
is skipped during the automatic generation of bigrams. The size of n is kept small to
avoid the issue of small character matrices. Additionally, some lexical items in the
word list are not long enough to construct n-grams with a higher value for n. The
gappy bigrams increase the amount of substrings in the n-gram set, which adds more
information to the language comparison than raising the value of n. For bigrams
and gappy bigrams, symbols to indicate the beginning (ˆ) and ending ($) of a lexical
item are added (Bergsma and Kondrak, 2007). Each lexical item in the concept is
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split into n-grams to construct a set of all unigrams, bigrams, and gappy bigrams:

German bErk ⇒ {b, E, r, k, ˆb, bE, Er, rk, k$, ˆE, br, Ek, r$}
Dutch bErx ⇒ {b, E, r, x, ˆb, bE, Er, rx, x$, ˆE, br, Ex, r$}

The two sets of n-grams for the German and Dutch words for ‘mountain’ contain
all unigrams, bigrams, and gappy bigrams. The intersection of the two n-gram sets
indicates the set of matching substrings:

Matching substrings⇒ {b, E, r, ˆb, bE, Er,ˆE, br, r$}

This introduces a similarity measure between the language pair in the corresponding
concept, which indicates the relationship between the languages according to their
shared substrings. Both German and Dutch have an n-gram set of size 13, where 9
n-grams are shared by both languages. In the case of synonyms, a shared n-gram set
is built for each word pair. The shared substring of both languages is the intersection
of all sets of possible word pairs. The data matrix therefore contains the languages
in the rows and all possible n-grams in the columns. If an n-gram is a match
between two substrings, the presence is coded with 1 and the absence is coded with
0. The character matrix for the set of shared n-grams between German and Dutch is
displayed in table 4.8.

Language b E r k x ˆb bE Er rk rx k$ x$ ˆE br Ek Ex r$
German 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1
Dutch 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1

Tab. 4.8.: Binary data matrix of n-gram subsequences between German and Dutch.

Pairwise Alignment The second approach uses the resulting string alignment of
the PMI-based NW algorithm introduced in chapter 4.1.1 to construct binary char-
acter matrices. In contrast to the distance-based methods, where the automatic
pairwise alignments are used to compute a linguistic distance between languages,
this approach uses the actual string alignment to generate a set of substrings for the
language comparison.
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(4.3) Pairwise alignments of the words for the concept ‘mountain’

a.
German: b E r k
Dutch: b E r x

b.
German: b - E r k - -
Icelandic: - f E - - t l

c.
German: b - E r x - -
Icelandic: - f E - - t l

Considering all possible combinations of pairwise alignments between the three
languages, a set of shared alignments indicates the similarity between them. For
German and Dutch, the similarity is high, and no gaps need to be inserted in the
alignment. Within the comparison of the two languages German and Dutch with
the Icelandic word fEtl, the distance between the languages increases, which is
indicated by the amount of gaps inserted in the alignment. The string alignments are
used to build sets containing all aligned sounds, i.e. the columns of the alignment.
The alignment between a sound and a gap is also taken into account. In the case of
synonyms, all possible combinations of word pairs are aligned. Using the alignments
between the language pairs, a binary data matrix is reconstructed, where 1 indicates
presence and 0 absence of the sound correspondences. An example of a binary
matrix using the three languages from the example is given in table 4.9.

Language bb EE rr kx b- -f r- k- x- -t -l
German 1 1 1 1 1 0 1 1 0 1 1
Dutch 1 1 1 1 0 1 1 0 1 1 1

Icelandic 0 1 0 0 1 1 1 1 1 1 1
Tab. 4.9.: Binary data matrix of aligned strings between German, Dutch, and Icelandic.

Pairwise Alignment and N-grams The third approach is a combination of the two
introduced approaches, i.e. alignment of the strings using the PMI-based NW algo-
rithm, and splitting of the strings to generate n-grams.21 In the first step, the lexical
items are aligned using the PMI-based NW algorithm as illustrated in example (4.3).
The strings from the alignment are used to create n-grams. In the alignment between
German and Icelandic, gaps need to be inserted to align the phonetic characters. The
string for the n-gram analysis would change for German from bErk into bErk-- and
for Icelandic from fEtl into f-E--tl. For the German-Icelandic pair, the n-gram

21Jäger and Wichmann (2016) combined the PMI distance with a bigram inventory distance to infer a
world tree. The bigram inventory distance should add information where the lexical distance does
not provide a detectable signal.
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substrings would be as follows:

German bErk--⇒
{b, E, r, k, -, ˆb, bE, Er, rk, k-, --, -$, ˆE, br, Ek, r-,k- -$}
Icelandic f-E--tl⇒
{f, E, -,t, l, ˆf, f-, -E,E-,--, -t, tl, l$, ˆ-,fE,E-,-t,-l, t$}

If a language contains synonyms, all possible word pairs are aligned, and a shared
n-gram set is built. The intersection of the subsequences is used to reconstruct a
binary matrix. The presence-absence matrix is similar to the one displayed in table
4.8, where 1 indicates presence and 0 absence of the n-grams.

All binary presence-absence matrices serve as input for IQ-Tree to reconstruct concept
trees within the maximum likelihood framework and for MrBayes to reconstruct
Bayesian concept trees.

4.2.4 Evaluation

The approaches to generate binary character matrices for concept tree reconstruction
result in more than one matrix generation method. As already introduced for the
distance-based methods, the aim is to determine the method with the most repre-
sentative trees. In terms of character-based methods, the trees reconstructed using
IQ-Tree are separately evaluated from the Bayesian trees obtained from MrBayes,
i.e. resulting in one evaluation for each framework.
There are five different approaches to compile character matrices for the tree recon-
structions with IQ-Tree and MrBayes, resulting in five matrix computations for each
framework. All options are listed in table 4.10.

The first approach is state-of-the-art cognate clustering via the automatic clustering
algorithm OnlinePMI, where a binary presence-absence matrix is compiled out of
the obtained cognate classes. The second approach uses the PMI-T-Coffee algorithm
to align multiple sequences. The columns of the resulting MSA are represented
in a binary character matrix. The last three approaches use the idea of splitting
strings into subsequences for the generation of presence-absence matrices. The
subsequences can be obtained in three different ways: through n-gram splitting,
decomposing a pairwise alignment, or n-gram computation of the pairwise alignment
strings.
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Method Description
CTML+cog IQ-Tree + cognate data
CTML+msa IQ-Tree + PMI-T-Coffee
CTML+ngrams IQ-Tree + subsequences with n-grams
CTML+NW IQ-Tree + subsequences with PMI-based NW
CTML+ngramsNW IQ-Tree + subsequences with PMI-based NW and n-grams
CTBayesian+cog MrBayes + cognate data
CTBayesian+msa MrBayes + PMI-T-Coffee
CTBayesian+ngrams MrBayes + subsequences with n-grams
CTBayesian+NW MrBayes + subsequences with PMI-based NW
CTBayesian+ngramsNW MrBayes + subsequences with PMI-based NW and n-grams

Tab. 4.10.: The five approaches to reconstruct data matrices used for tree reconstructions
with IQ-Tree and MrBayes.

As described for the distance-based methods in chapter 4.1.5, the maximum clade
credibility method is used to determine the best tree representative in a tree sample
and its clade credibility score. For each concept, the clade credibility scores are
compared between all methods to identify the method with the highest score. The
method with the highest sum of highest clade credibility scores for all concepts
serves as the ideal method for further analyses. Since the evaluation is split into two
parts, this analysis is done separately for each framework.

Evaluation Maximum Likelihood Within the maximum likelihood framework, the
bootstrap replicates reconstructed with the implemented bootstrap technique in
IQ-Tree serve as tree sample. For each method, the MCC tree with the highest
clade credibility score is determined in the set of bootstrap replicates computed for
each concept. Due to runtime issues, restrictions need to be made for the standard
bootstrap method. For this evaluation task, the bootstrap sample for all methods is
computed out of the most stable 200 concepts (Dellert and Buch, 2018) from NELex
to create 100 bootstrap replicates.22 The sums of the highest clade credibility scores
for each method are listed in table 4.11.

22Nguyen et al. (2014) advertise the Ultrafast Bootstrap Method, introduced by Hoang et al. (2017),
implemented in IQ-Tree. However, the method reduces the number of characters in a sample,
which can result in a reduced number of leaves in the tree. The fact that the trees in the sample
do not have the same set of leaves has a great impact on the maximum clade credibility method
and the computation of the MCC tree. Therefore, it is more suitable to use the standard bootstrap
method with restrictions for this analysis.
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Method SCC

CTML+cog 30
CTML+msa 3
CTML+ngrams 47
CTML+NW 50
CTML+ngramsNW 70

Tab. 4.11.: The MCC comparison of the five approaches to reconstruct data matrices used
with IQ-Tree. The most optimal method is marked in bold.

Evaluation Bayesian Inference For the Bayesian analysis with MrBayes, the tree
sample for one concept consists out of the trees contained in the posterior distribu-
tion. The number of posterior trees can vary between concepts. However, this does
not have an impact on the evaluation of the methods using the MCC method. For
the MCC analysis, the first 25% of the posterior trees from the burn-in are discarded.
The rest of trees are used to determine the MCC tree with the highest score for each
concept in each method. The method with the highest sum of clade credibility scores
serves as the ideal method. The results are listed in table 4.12.

Method SCC

CTBayesian+cog 0
CTBayesian+msa 0
CTBayesian+ngrams 1
CTBayesian+NW 1013
CTBayesian+ngramsNW 2

Tab. 4.12.: The MCC comparison of the five approaches to reconstruct data matrices used
with MrBayes. The most optimal method is marked in bold.

Discussion In both analyses, the approaches using automatically inferred cognate
classes and multiple alignment via PMI-T-Coffee are outperformed by the other meth-
ods using subsequences. The results for the tree reconstructions using automatic
cognate clustering underline the assumption that the reconstruction of concept trees
depends on the dimension of the character matrix. Although Rama et al. (2018)
showed that language tree reconstruction in a Bayesian framework using automat-
ically inferred cognate classes results in reliable trees, this effect is not mirrored
in the reconstruction of concept trees. It cannot be excluded that the OnlinePMI
algorithm assigns few cognate classes to the words within one concept. The basic
vocabulary list contains stable meanings indicating the relatedness of the words
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between the languages, where most of the words are inherited. This results in
the clustering of words into a small set of cognate classes, which is reflected in
the character matrix. The effect of small character matrices on character-based
tree reconstruction is unclear. However, the evaluation results show a clear ten-
dency towards the other methods under comparison. Multiple sequence alignment
using PMI-T-Coffee on a concept level does not mirror the reliable results shown
for phylogenetic reconstruction on language data by Jäger and List (2015). The
automatically inferred language tree used as guide tree can lead to spurious results
in the bottom-up alignment, since the words of a concept are placed directly at
the leaves and are aligned with their sister language in the language tree. In the
reconstruction of language trees, this is an advantage over the pairwise sequence
alignment. In the reconstruction of concept trees, pairwise sequence alignment
represented in a binary way leads to better results. However, using a language tree
is obviously the best choice, since there are no expert concept trees and, up to this
point, there is no assessment of automatically inferred concept trees. In the Bayesian
analysis, the subsequences received from the PMI-weighted NW algorithm have
by far the best results according to the MCC analysis. In the maximum likelihood
framework, the subsequences preserved from the method using the PMI-based NW
algorithm in combination with the n-gram analysis outperforms the other methods.
The underlying idea of using subsequences for a binary presence-absence coding is
to receive more fine-grained information from the data and extend the columns in
the matrix for a better character-based tree reconstruction. In comparison to the
cognate clustering and MSA approach, using subsequences works well on linguistic
data for the reconstruction of concept trees.
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Networks: Modeling
Horizontal Word Transfer

5
The network model is a representation combining the tree and the wave model
in order to shed light on a vast majority of the evolution of languages, including
inheritance and horizontal transmission. Evolutionary networks are the networks
of choice to illustrate language evolution and horizontal transfer according to evo-
lutionary processes. Explicitly, HGT networks can capture evolutionary events due
to borrowing, including information on the loaned word, the RL, the SL, and the
direction of transfer. During the process of horizontal word transfer, only the re-
cipient language is modified, which affects the evolutionary history of the word.
This is mirrored in the concept trees, which are reconciled with a language tree
in order to detect the discordance between the two trees. The mismatches in the
tree determine the number of reticulations and therefore also the detected transfer
events. Phylogenetic tree reconciliation algorithms can only detect potential HWT
events, which can result in arbitrary reticulations in the network. Since less attention
is paid to the parallels between HGT and borrowing in CHL, it is worthwhile to adapt
a phylogenetic HGT algorithm to linguistic data to gain a detailed estimation of the
application, performance, and results obtained from the algorithm. The following
analyses should indicate whether the direct transfer of HGT algorithms into CHL is
fruitful for the detection of borrowings and the corresponding loanwords.
The algorithm of choice from phylogenetics is the one developed by Boc and
Makarenkov (2003), which was adapted into CHL to detect loanwords and model
HWT networks. The decision of choosing this phylogenetic algorithm over others is
explained in the following chapter along with the underlying computational model.
The suitability of the adaptation and application of the HGT method is examined in
the evaluation compared to other linguistic approaches.
In linguistics, Delz (2014) introduced a tree comparison method based on the idea
of tree reconciliation to detect loanwords, which can be applied to the data from
NELex to serve as direct comparison to the HGT algorithm. The MLN approach,
originally introduced in phylogenetics by Dagan and Martin (2007), was applied
to the task of borrowing detection by Nelson-Sathi et al. (2011). To obtain transfer
scenarios of lexical items, the method can be applied to concept data to detect the
lexical items included in the contact scenario. The third linguistic model is the PLFI
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model developed by Dellert (2019a). The detected contact situations by the PLFI
method contain information on specific borrowing events and lexical items involved
in the transfer, which can be statistically evaluated.
First, the HGT algorithm by (Makarenkov et al., 2006) and the additional three
linguistics-based algorithms are introduced in more detail. Both the underlying
concepts and the advantages and disadvantages are presented in terms of loanword
detection. Second, the preconditions for the tree reconciliation algorithms, the MLN,
and the PLFI are introduced. For all algorithms, equal pre-processing steps are
necessary to maintain an appropriate evaluation.

5.1 Algorithms for Horizontal Transfer

The evolutionary process of borrowing consists of several phases (i.e. language
contact, speaker interaction, borrowing, adaptation, and integration), where each
phase contains different tasks. To get a complete picture of the whole borrowing
process, a deeper understanding of the different stages is needed to explain the
transfer and its results. The complexity of the process leads to various challenges
when it comes to loanword identification. Not only is their adaptation and inte-
gration process dependent on the single transfer, but also on the detection of the
donor language. Less, if any, universal assumptions can be made to account for
various transfer processes between a language pair, not to mention the difficulty of
developing universal assumptions between several language pairs.
From an algorithmic perspective, the computational comparative method can func-
tion as an underlying method in order to use cognates and word alignments as
criteria to distinguish an inherited word from a loanword. This is the key assumption
for the HWT algorithms introduced below. The visualization of horizontal transfer
within a network model combines the language classifications obtained from the
computational comparative method with transfer scenarios. The main aim of the
algorithms is to detect horizontal word transfer events, including the loaned word,
the RL, the SL, and the direction of the transfer. Each algorithm has advantages and
disadvantages over the others, and only two out of four can model the direction of
the transfer.
From a linguistic point of view, the process of borrowing is complex and contains
additional parameters for a complete reconstruction of the borrowing scenario.
However, the construction and implementation of such a full-featured borrowing
model taking all parameters into account is not realizable up to this point. More
analyses need to be made in both linguistics and CHL to get a better understanding
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of modeling language contact and lexical transfer. The following algorithms serve
as first steps into this direction to gain insights in the application and performance
of different computational approaches to model language contact and lexical bor-
rowing. The results provide added value to further work on loanword detection and
modeling transfer scenarios.

5.1.1 Phylogenetic HWT Algorithm

The HGT algorithm was developed by Makarenkov et al. (2006) and extended by
Boc et al. (2010b) to detect horizontal gene transfer events in the evolution of mi-
croorganisms.1 Due to the parallels between horizontal gene transfer and borrowing,
the algorithm is adapted and applied to linguistic data to detect loanwords. The tree
reconciliation procedure, introduced in chapter 3.3, serves as an underlying idea,
where a concept tree is mapped into a language tree to estimate the discordance
between the two trees. The main advantage of the algorithm is the additional
usage of tree replicates to assign a reliability value to the horizontal transfer events.
Delz (2013) discussed the advantages of the application of the HGT algorithm to
linguistic data. The results obtained by the method include the loaned word, the
RL, the SL, and the direction of transfer. In this preliminary study, the main aim
was to elaborate the proposed parallel between HGT and borrowing. The thesis was
underlined by a small experiment on using the algorithm to detect horizontal word
transfer events. Since the reconstruction of concept trees was a secondary effect
of the study, the algorithm was not tested on different reconstructed concept trees
along with tree replicates to determine transfer events with reliability values. By
using the innovatively computed concept trees presented in chapter 4 along with
tree replicates, the reliability of the transfer events can be estimated.

Description of the Algorithm

Boc et al. (2010b) described a new polynomial-time algorithm to infer HGT events,
which is adapted to CHL to detect borrowings. The algorithm searches for an optimal
scenario of subtree prune and regraft (SPR) moves to transform a concept tree into a
language tree. In addition, four optimization criteria are introduced for the selection
of the optimal SPR move, i.e. HGT event. After introducing SPR and the four

1The phylogenetic algorithm is integrated in the online platform Trex-online (Boc et al., 2012), which
is accessible under http://trex.uqam.ca/.
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optimization criteria, the preliminary and computational steps of the algorithm are
explained.2

SPR Subtree prune and regraft (SPR) is a branch-swapping method where a
subtree from a given phylogenetic tree is detached (“pruned”) and reattached
(“regrafted”) at a different position in the tree (Huson et al., 2010).3 One operation
of pruning and regrafting a subtree is called SPR move. A branch-swapping method
like SPR can also be used to define a distance between two phylogenetic trees,
i.e. the minimum number of SPR moves needed to transform one tree into the
other (Huson et al., 2010). The SPR distance determines the discordance between
the concept and the language tree. The language tree is gradually transformed
into the concept tree by a series of SPR moves. The result of each SPR move is a
transformed tree, which serves as new tree for the comparison. The goal is to find
the minimum number of SPR moves, i.e. the shortest sequence of transformed trees
needed to transform the language tree into the concept tree. This determines the
SPR distance between the two trees, which is equal to the number of transfer events
detected by the algorithm. However, at each transformation step, several SPR moves
are possible, i.e. there is more than one possibility to reattach the subtree to the
language tree. The different possibilities of reattachment are evaluated using one of
four optimization criteria in order to find the optimal SPR move.

Optimization Criteria The first criterion is the least-square (LS) function, which is
calculated using the patristic distance between two leaves in both the language
and the concept tree.4 The second criterion is the topological Robinson-Foulds
(RF) distance (Robinson and Foulds, 1981), which is based on the symmetric
differences of the bipartitions in the tree. It computes the minimum number of
elementary operations (e.g. merging and splitting of nodes) to transform one tree
into the other one. The third criterion is the quartet distance (QD) (Estabrook
et al., 1985), introduced in chapter 4.1.4, which is determined by the number of
quartets that differ between the two compared trees. The fourth criterion is the
bipartition dissimilarity (BD) between two phylogenies, which is introduced in Boc
et al. (2010b) along with the HGT algorithm. A presupposition of computing the BD
between two trees is that both trees are binary branching and have the same set of
leaves. In figure 5.1, two unrooted sample trees and their corresponding bipartition
tables are illustrated. Each row in the bipartition table indicates a bipartition vector,

2See Boc et al. (2010b) for a detailed explanation including all mathematical formula.
3Huson et al. (2010, p. 39) give a graphical illustration of the SPR operation.
4A mathematical description and the formula is given in Boc et al. (2010b, p. 196).
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Fig. 5.1.: Two trees and their bipartion tables, taken from Boc et al. (2010b). Each row in
the table corresponds to one internal branch of the tree. The arrows indicate the
associations between the vectors. The values display the associated distance.

i.e. a binary vector induced by one internal branch of the tree. The lower-case
letters next to the vector in figure 5.1 correspond to the lower-case letters in the
tree, indicating a split to form a bipartition. The binary values 0 and 1 represent
the leaves present in each partition. For example, the tree T is split at the internal
branch a. The set of leaves {1, 5} included in one partition is represented using 0.
The other set of leaves {2, 3, 4, 6} is represented by 1. For each tree, one bipartition
table is created to demonstrate the possible splits at the internal branches of the
tree. The bipartition dissimilarity between two tables, i.e. two trees, is computed
using the formula given in Boc et al. (2010b, p. 197). The underlying idea is to
compare each row of one table to all rows of the other using the Hamming distance.
The Hamming distance compares two strings of equal length and determines the
number of positions at which the symbols differ. The formula introduced in Boc et al.
(2010b) also considers the complement vectors, where the values are switched to
account for differences in the assignments of 0 and 1. In figure 5.1, each row of table
one is compared to each row and its complement in table two, taking the minimal
value as result, and vice versa. The numbers next to the rows in the figure 5.1
represent the result of the bipartition dissimilarity computed for the corresponding
vector. The two vectors with the smallest distance are indicated by an arrow, as
shown in figure 5.1. For example, vector a is compared to all vectors and their
complements in table two, resulting in a bipartition dissimilarity of 2. The smallest
Hamming distance is computed between vector a and f, which is indicated by an
arrow. The overall bipartition dissimilarity of two trees is computed by summing
over all minimum values obtained from the comparison and normalizing it by the
number of tree typologies. In figure 5.1, the overall bipartition dissimilarity is
((2 + 1 + 2) + (2 + 1 + 1))/2 = 4.5.
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Optimization Criteria as Selection Parameter The optimization criteria serve as
selection parameter to determine the optimal SPR move in the set of possible reat-
tachment options. Each possible reattachment is performed to create a transformed
tree. The transformed language tree is compared to the concept tree using one of
the proposed criteria to compute a distance between the trees. The SPR move, which
provides the minimum value of the selected criterion computed for the transformed
language tree and the concept tree, is retained (Boc et al., 2010b).
In a simulation study, Boc et al. (2010b) examine the performance of the HGT
algorithm according to the four optimization criteria and the resulting number of
HGTs. The BD criterion obtained generally more accurate results than the other
three optimization criteria, i.e. the BD-based strategy outperforms the other criteria
in most simulation analyses.

Preliminary Steps The preliminary steps of the algorithm are summarized as fol-
lows:

1. Inference of the language and concept tree, denoted T and T ′ respectively,
whose leaves are labeled with the same set of languages.

2. Rooting of the trees.
3. Reducing the size of the problem if there are identical subtrees in T and T ′

with two or more leaves. (This is done by the algorithm.)

The inference of concept trees was discussed in chapter 4. The three resulting
optimal methods evaluated for distance and character-based tree reconstructions
serve as input for the HGT algorithm. The reconstruction of the language tree is
explained in chapter 5.2, along with the rooting of the trees. The tree rooting is
essential in tree reconciliation. A misplaced root in the language or the concept
tree can lead to false positive and false negative HWTs. If the trees are not rooted
beforehand, the trees are rooted internally by the algorithm. Identical subtrees are
recognized by the algorithm and excluded from the analysis, which reduces the
problem of tree reconciliation. If all preliminary steps are carried out, the algorithm
starts with the detection of HWT events.

HWT Detection The algorithm recursively performs the procedure described in the
following to determine HWT events. Each step k equals one SPR move, including
the different possibilities of reattachment on the tree.

1. Consider all possible HWTs between the pairs of the branches in the language
tree Tk−1, where k is the number of steps, i.e. T0 at step 1.
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2. Reject all transfers between adjacent branches and those violating the subtree
constraint.

3. Among them, find those satisfying theorem 2 first and theorem 1 second, and
carry out the SPR moves.

4. Carry out all remaining SPR moves satisfying the subtree constraint, which
transforms the tree from Tk−1 to Tk.

5. The direction of each HWT is determined using the selected optimization
criterion.

6. Reduce the problem by collapsing identical subtrees.

In the first step, all possible HWTs are considered, i.e. all possible SPR moves to
transform the language tree. During this step, for each SPR move (i.e. each HWT)
all regrafting possibilities are evaluated using the optimization criterion to find the
optimal SPR move. At each step k, multiple SPR moves (i.e. multiple HWTs) can be
carried out to transform the tree. Transfers between adjacent branches are rejected
along with those violating the subtree constraint. The subtree constraint states
that a transfer between branches is only allowed if, and only if, the newly emerged
cluster rooted by that branch is already present in the concept tree. In other words,
a fusion of two clades under one mother node by an SPR move is only possible
if this newly formed clade is already present in the concept tree.5 This constraint
allows to arrange the topological conflicts between the two trees which are due
to HWTs between close ancestors of the contemporary languages in the first step,
and transfers that appeared deeper in the phylogeny in the second step. The two
theorems defined in Boc et al. (2010b) specify some properties of the bipartitions in
connection with HWTs satisfying the constraint. All SPR moves are carried out to
transform the language tree Tk−1 to Tk. For each HWT, the optimization criterion is
used to identify the direction of the transfer. In the case of two opposite HWTs, the
transfer that minimizes the value of the selected optimization criterion computed
for the transformed language tree Tk and the concept tree T ′ is chosen. In the
last step, the algorithm reduces the problem by collapsing the identical subtrees.
This procedure is repeated recursively until the stopping criterion is met, i.e. when
the coefficient of the optimization criterion equals zero. After the reconciliation
of the language and concept tree, a backward procedure is carried out. This step
eliminates redundant transfers, i.e. the removal of the transfer from the scenario, if
it does not change the topology of the resulting concept tree. The remaining HWTs
are the transfer of lexical items found by the algorithm for a specific concept, i.e.
loanwords.

5See Boc et al. (2010b) for a visual representation.
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Reliability of Transfer Events The main advantage of this algorithm is the usage of
tree replicates to assign reliability values to the transfer events. In the traditional
bootstrap analysis, introduced in chapter 4.1.4, confidence intervals are placed at the
inner nodes of a consensus tree, indicating their stability. In the HGT algorithm, the
bootstrap validation procedure, introduced in Makarenkov et al. (2006), is extended
to assess reliability values of the determined HWTs. In an initial step, the concept
tree replicates are inferred, and a tree sample is created. All HWT events detected
in the original scenario are verified if they appear in the set of HWTs determined
by using the replicated trees from the sample. This is done via a comparison of the
corresponding SPR moves. In their study, Boc et al. (2010b) considered two HWT
events as equal if the biparitions of both recipient and donor branch are equivalent
in both transfers. This means the topologies of the recipient and donor subtrees can
be different, even though the languages were the same in both compared HWTs.
Boc et al. (2010b, p. 200) stated that “the bootstrap score of a [HWT] scenario can
be defined as the product of all individual bootstrap scores found for the transfers
being part of this scenario.” The corresponding formula to compute the bootstrap
score for a transfer event is given in Boc et al. (2010b, p. 200).

Evidence for the Choice of the Algorithm

There are several algorithms which can infer HWT events using the SPR distance.
The most popular ones, next to the algorithm of Boc et al. (2010b), are LatTrans,
RIATA-HGT, HorizStory, and EEEP. The LatTrans algorithm was introduced by Hallett
and Lagergren (2001). The method can map numerous gene trees into a species
tree in order to model HGTs. Although it can generate all shortest SPR scenarios, it
is exponential in the number of HGT events. The HorizStory algorithm, described by
MacLeod et al. (2005), intends to approximate the SPR distance between two rooted
phylogenetic trees. In the first step, the algorithm rejects identical rooted subtrees
present in both trees. Second, it carries out SPR moves on the remaining trees
until they are reconciliated. Beiko and Hamilton (2006) introduced the efficient
evaluation of edit paths (EEEP) algorithm, which determines the minimum number
of SPR moves between two rooted trees. The key of this algorithm is the division of
the species trees into those bipartitions that are concordant and discordant regarding
the gene tree. The simulation study by Beiko and Hamilton (2006) to compare EEEP
with HorizStory and LatTrans showed that LatTrans clearly outperforms the others
in terms of HGT detection accuracy. The RIATA-HGT algorithm was developed by
Nakhleh et al. (2005a) and is based on a divide-and-conquer approach. In simulation
studies by Than et al. (2007), RIATA-HGT outperforms HorizStory, EEEP, and Lat-
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Trans in terms of speed, while performing at least equally good in terms of accuracy.
In the latest version of RIATA-HGT, Than and Nakhleh (2008) demonstrated that
RIATA-HGT is faster and almost equivalent regarding accuracy compared to the
LatTrans algorithm. However, LatTrans is still one of the most popular methods for
HGT detection next to RIATA-HGT and the HGT algorithm of Boc et al. (2010b).
Therefore, Boc et al. (2010b) carried out several simulation studies to compare
the different algorithms.6 The basis for the simulation studies are a species tree, a
gene tree, and tree replicates. The tree replicates are reconstructed with respect
to the number of HGT events in order to control for them in the evaluation of the
comparison.
There are four different versions of the HGT algorithm due to the proposed opti-
mization strategies by Boc et al. (2010b). In order to compare the best version of
the HGT algorithm to LatTrans and RIATA-HGT, the optimization criterion with the
best performance needs to be established. Hence, two simulation studies are carried
out by Boc et al. (2010b) to compare the four optimization strategies. In the first
simulation study, the optimization criteria are compared in terms of HGT detection
rate (i.e. true positives), measured as a percentage, and number of HGT events. The
BD-based algorithm yields very stable results, and mostly outperforms the other
three optimization criteria. In the second study, the behavior of the four criteria is
studied under the condition of correctness of the gene tree. The algorithm based
on BD clearly outperforms the other three strategies. Therefore, Boc et al. (2010b)
used the BD-based version of the algorithm for further comparisons with LatTrans
and RIATA-HGT.
Boc et al. (2010b) presented a detailed comparison to the LatTrans algorithm regard-
ing HGT detection accuracy and running time. In most of the studies, the BD-based
HGT algorithm outperforms LatTrans in terms of HGT detection accuracy. The
polynomial time complexity of the BD-based algorithm provides a significant gain in
the running time compared to the exponential-time LatTrans algorithm. According
to the improvement of the detection results in the simulation studies and the gain in
running time, the BD-based HGT algorithm is preferred over LatTrans. In addition,
the LatTrans algorithm does not provide the usage of tree replicates to establish
reliability values of the transfer events.
The only algorithm to assess reliability values to transfer events is the RIATA-HGT
algorithm introduced by Nakhleh et al. (2005a). The PhyloNet package (Than et al.,
2008b) provides an extended implementation of RIATA-HGT, including the estima-
tion of bootstrap support of HGT branches. The algorithms are compared in terms of
HGT detection accuracy and running time. In terms of running time, the BD-based

6See Boc et al. (2010b) for a detailed description of the simulation studies, including the design,
results, and graphical illustrations of the comparison.
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HGT algorithm clearly outperforms RIATA-HGT, whereas for the HGT detection
accuracy both algorithms provide equally good results. In addition, example studies
using biological datasets are carried out using both algorithms. The results show
that the BD-based HGT algorithm detects less and more accurate transfer events
compared to RIATA-HGT. Than et al. (2008b) proposed a method to establish boot-
strap support to internal HGT branches.7 The support of a HGT branch is defined
as “the maximum bootstrap support of all internal branches of the path linking the
nodes [...] in the gene tree” (Boc et al., 2010b, p. 204), which can only be assigned
if the gene trees, and ideally also the species tree, have bootstrap values pre-assigned
to the trees. In comparison, the approach described in Boc et al. (2010b) uses tree
replicates to assess the bootstrap values of HGT events, i.e. the method takes the
different topologies of the replicated trees into account. Using tree replicates to
compute the bootstrap values can include important information which might not be
present in a unique gene tree with given bootstrap scores. As a result, the method
proposed by Than et al. (2008b) can overestimate the bootstrap values, whereas the
method by Boc et al. (2010b) uses more detailed information to determine realistic
reliability scores. Boc et al. (2010b) evaluated the assignment and computation of
the bootstrap values within the example studies using biological datasets, where the
bootstrap scores found by RIATA-HGT are generally higher than the ones found by
the BD-based algorithm.
In summary, the HGT events detected by the BD-based HGT algorithm improve the
results in terms of accuracy and running time compared to the other algorithms.
The estimation of bootstrap scores to verify the transfer events using tree replicates
is a great advantage over the other algorithms. In addition, the resulting network
contains the species tree as underlying tree and additional reticulate edges indicating
the transfer events, including reliability values.

Linguistic Application of the BD-based HGT Algorithm

The adaptation of the BD-based HGT algorithm for linguistic tree reconciliation is
introduced in chapter 3.3. The resulting network contains the language tree as an
underlying representation of the language classifications and the reticulate edges to
indicate the transfer events (i.e. SPR moves). The discordance between the trees
is estimated using the SPR distance, i.e. the minimum number of SPR moves to
transform the concept tree into the language tree. The evolutionary constraints,
included in the BD-based algorithm, prohibit transfers between branches located at

7A description of the method to compute bootstrap support in RIATA-HGT is given in Than et al.
(2008b) and in the supplementary material of Boc et al. (2010b).
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the same lineage and crossing transfers, which lead to inappropriate HGT scenarios
(Boc et al., 2010b).8 The constraints ensure that the detected HGT events are in
accordance with the characteristics of the HWT process, i.e. transfer events should
only occur between contemporaneous languages and can affect both closely and
distantly related languages. Borrowing modifies a single RL by adding new linguistic
material. The transfer of a lexical item affects the evolutionary history of the word
captured in the concept tree. The reconciliation of a concept tree to a language
tree reveals this modification by computing the discordance between the trees, i.e.
identifying the horizontal transmission. If the two trees are in concordance with
each other, i.e. no horizontal transfer is present, the BD-based algorithm results in
the language tree without reticulate edges. Otherwise, a network will be provided.
In the following example, the language tree in figure 3.2 and the concept tree for
‘mountain’ in figure 3.3 are reconciled by the BD-based HGT algorithm. The resulting
network is displayed in figure 5.2.

Fig. 5.2.: HGT network produced by the BD-based HGT algorithm for the selection of
Germanic and Romance languages and the concept ’mountain’.

The network contains the language tree as an underlying graph, where reticulate
edges are added to illustrate transfer events (i.e. SPR moves). The algorithm detects
five transfer events, where one is between two Germanic languages (Swedish and
Icelandic), three are within the Romance languages, and one is the transfer between
a Romance language and English. It is not surprising that the algorithm identifies

8Descriptions of the evolutionary constraints are given in Boc et al. (2010b). See also Maddison
(1997) as well as Page and Charleston (1998).
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borrowings within a language family. There are known interborrowings within
the Germanic languages as well as within the Romance languages (McMahon and
McMahon, 2005). For the words of the concept ‘mountain’, no internal borrowing is
recorded for either the Germanic or Romance transfers. On the one hand, it can be
difficult to detect interfamily borrowing in a classical historical analysis. It might
be the case that either language contact or language change are responsible for an
approximation of the pronunciation of the words. Such a similarity can be reflected
in the concept tree. On the other hand, the four interborrowings could be arbitrary
events detected by the algorithm. Those can either be an artifact of the concept tree
reconstruction, or due to the underlying heuristic search algorithm. The reliability
values of the transfer events provided by the implemented bootstrap procedure can
be used to reject arbitrary events, i.e. transfers with a low bootstrap support. This
does not exclude the possibility that deficient concept trees cannot have an effect on
the tree reconciliation. Quite the contrary is the case, since concept trees have a high
impact on the reconciliation algorithm. However, the extent of deficient concept
trees and their impact on the tree reconciliation algorithm is unclear. The evaluation
of the complete data using the gold standard in chapter 6 is used to shed light on
this issue.
Figure 5.3 displays the network including reliability values for the HGT events.9

In the analysis, tree replicates from the concept tree are considered, while the
language and concept tree were held constant. The support values indicate to
what percentage the corresponding transfer can also be found in the reconciliation
between the language tree and the concept tree replicates. The reliability values on
the HGT events show that the support for internal borrowings within the language
families is lower as the value for the borrowing between a Romance language
and English. The bootstrap procedure can be used to reject borrowings with low
support from the evaluation. However, for linguistic data, it is unclear up to which
percentage the transfer events are seen as artifacts and when as reliable transfers.
This is tested in the chapter 6.3 using different cut-off points to split the transfer
events into two groups and evaluate the group with the higher percentages against
the gold standard. The evaluation will shed light on the application of bootstrap
values in order to reject arbitrary events from the analysis.

9Since the BD-based HGT algorithm uses heuristic methods to reconcile the two trees, the transfer
events detected with and without assessment of reliability scores can differ.
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Fig. 5.3.: HGT network produced by the BD-based HGT algorithm containing reliability
scores for the transfer events.

5.1.2 Loanword Detection through Tree Comparison

A linguistic tree comparison algorithm for loanword detection is developed by Delz
(2014). The basic idea of the tree comparison method (TC) is to detect evolutionary
events via computing the distance between a language and a concept tree. To see
whether a language is affected by horizontal transmission, an approach inspired
by the jackknife technique, introduced in chapter 4.1.4, is used. For detecting
loanwords through tree comparisons, Delz (2014) uses the jackknife technique in
order to generate subtrees of the sample to measure their distance. Given a language
sample of size n, the generated subtrees are of size n − 1. The resulting sample
consists of a language and a concept tree including all n languages, and n language
and concept jackknife trees over n− 1 languages each. The trees in the sample are
compared to each other in order to measure the discordance between them. Let d
be the distance between the language and the concept tree for the complete sample
and d′ be the distance for a jackknife sample where language L is removed. If the
criterion d′ < d holds, this means that the omission of L increases the fit of the
trees. This is an indicator that an evolutionary event involving horizontal transfer
has occurred for this concept in L. For each concept, the criterion provides a list of
languages involved in borrowings, i.e. recipient languages.
Delz (2014) compared different distance measures for the comparison of the trees,
i.e. the Robinson-Foulds (RF) distance (Robinson and Foulds, 1981), the GQD
introduced in chapter 4, and the normalized triplet distance (NTD) (Critchlow et al.,
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1996). In correspondence to the results of a small study, Delz (2014) chose the triplet
distance as optimal distance measure for the comparison of two trees according
to the stability and accuracy of the results.10 A triplet is the smallest informative
subtree for binary rooted trees (Sand et al., 2013). The triplet distance is measured
by splitting two trees into its triplets and counting the identical topologies induced
by the three leaves in the two trees. For two rooted trees over the same set of leaves,
the triplet distance is defined as the proportion of triplets over the leaves whose
topology differs in the two trees. The triplet distance is normalized by the number
of possible triplets over their leaves, which is estimated through the binomial, i.e.
for n leaves, the number of possible triplets is

(n
3
)
.

The following example shows the workflow of the TC algorithm using the language
tree in figure 3.2 and the concept tree for ‘mountain’ in figure 3.3, repeated in figure
5.4. The pruned language and concept trees without English are displayed in figure
5.5.

(a) Language tree representing the classifica-
tion of the Germanic and Romance lan-
guages.

(b) Concept tree ‘mountain’ for the Ger-
manic and Romance languages.

Fig. 5.4.: Illustration of language and a concept tree for a selection of Germanic and
Romance languages.

In the first step, the NTD for the language and the concept tree, including the
complete language sample, is computed. The result of d = 0.2454 shows the
inconsistency between the two trees, which is due to the different clustering of the
languages. In the second step, the NTD is computed between the pruned language
tree and the jackknife concept tree, where English is removed. The resulting distance
is d′ = 0.096. Since the criterion d′ < d is true, it is assumed that the English word
mountain is a loanword. This step is repeated for all languages in the sample. The
10See Delz (2014) for a detailed description of the distances and the example study.
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(a) Language tree representing the classi-
fication of the languages in the sam-
ple without English.

(b) Concept tree ‘mountain’ for the lan-
guage sample without English.

Fig. 5.5.: Illustration of a jackknife replicate language and a concept tree for a selection of
Germanic and Romance languages without English.

result is a candidate list including all languages for which the criterion holds. A
network is used to display the results, where the language tree is the underlying
structure and reticulate edges indicate the connection to the sister node in the
concept tree.11 The TC algorithm does not include the detection of the SL and the
direction of the transfer.
In an unpublished study, Koellner and Dellert (2017) combined the tree comparison
study with different linguistics-based ancestral state reconstruction (ASR) techniques
introduced in Koellner and Dellert (2016). The fundamental idea was to filter out
arbitrary events which are not due to borrowing. However, on a small test and
evaluation sample, the filters did not lead to the expected improvements of results.
The basic tree comparison algorithm using the NTD still leads to the best results,
which is why the other options are rejected in the following analyses.
The TC algorithm can be extended in order to compute reliability scores for the
transfer events, i.e. the detected loanwords. The procedure is similar to the one
implemented in Boc et al. (2010b), introduced in chapter 5.1.1. The tree comparison
algorithm is applied to the language and the concept tree. In the bootstrap analysis,
this procedure is repeated using the concept tree replicates, whereas the language
tree is held constant. All languages detected as RLs in the original scenario are
verified if they appear in the set of languages determined by using the replicated
trees from the sample. The appearances of each language as a RL in the replicated
trees are counted, and the result is normalized by the number of tree replicates used
in the analysis. The resulting percentage score indicates the frequency of occurrence,
11See Delz (2014) for a graphical representation of the network.
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i.e. the stability of appearance of the transfer event. The reliability score can be used
to filter out arbitrary events, i.e. to reject loanwords with low support. However,
the same test needs to be applied here as for the BD-based HGT algorithm, since
it is unclear up to which percentage the transfer events are seen as artifacts or not.
This means, different cut-off points need to be evaluated using gold-standard data
in order to test the effect of support values as filters.

5.1.3 Minimal Lateral Networks

The minimal lateral networks (MLN), originally introduced by Dagan and Martin
(2007) to detect gene transfers, were adapted into CHL by Nelson-Sathi et al. (2011)
for the task of automated borrowing detection. The algorithm was applied to several
datasets, including Indo-European (Nelson-Sathi et al., 2011; List et al., 2014a),
Chinese dialects (List et al., 2014b; List, 2015), and Austronesian (Jäger and List,
2018).12 In these studies, the MLNs are used to model language contact and to
estimate the frequency and distributions of the languages under consideration.
The MLN algorithm uses the technique of gain-loss mapping to presence-absence
patterns to detect lateral components (List et al., 2014a). The presence-absence
patterns are obtained from cognate sets, i.e. lexical items in the basic vocabulary lists
are clustered into cognate classes to compile the binary presence-absence pattern
needed for the MLN analysis. The algorithm needs a reference tree, i.e. language
tree, as an underlying structure to reflect the evolution and classifications of the
languages. For all concepts in the dataset, specific gain-loss scenarios are inferred
according to the structure of the language tree. Each scenario provides a possible
explanation of the evolution of a given character along the language tree as a
process of gain-loss events. One gain-loss scenario should contain only one gain
event to confirm the assumption that the given character evolves in a vertical way, i.e.
inheritance only. If more than one gain event is needed to explain the evolution of
the character, a lateral transfer event is inferred. The MLN algorithm selects the best
gain-loss scenario out of all possible ones by using ancestral genome size distribution,
a key argument in the phylogenetic implementation of the algorithm. Genomes are
physical entities whose inferred ancestral size can be brought into agreement with
the distribution contemporary genome sizes using statistical methods (List et al.,
2014a). However, the linguistic data consists of lexical items from basic meaning
lists. List et al. (2014a, p. 147) restate the criterion in such a way that “those
scenarios in which the number of words used to express specific meanings does
not differ much between ancestral and contemporary languages.” The adapted

12The MLN algorithm is implemented in the software package lingpy (List et al., 2017).
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algorithm for computing MLNs for linguistic data uses weighted parsimony for the
task of gain-loss mapping. The resulting network consists of the underlying language
tree as phylogeny, and lateral transfer is indicated by reticulate edges. MLNs are
mainly used to model language contact. The reticulate edges can, therefore, be
weighted according to the weights of the gain-loss scenario to reflect the frequency of
occurrence of the inferred link. The frequency of occurrence indicates the intensity
of the contact between two languages.13

Up to now, MLNs are used to model language contact. However, the method can also
give insights into the underlying lexical flow causing the contact scenario. In order
to identify loanwords, the algorithm needs to be applied to single concepts instead
to the whole database. For each concept in the dataset, the inferred cognate sets are
used to construct binary presence-absence patterns, out of which gain-loss scenarios
are computed and an MLN is reconstructed. In other words, for each concept in the
database, a single MLN is computed in order to reflect the lateral transfers within a
single concept, i.e. loanwords can be detected. Since reticulate edges are inferred
between two languages, the algorithm can give insights into the RL and the SL of
the transfer. However, the direction of transfer cannot be determined, i.e. it is not
clear which language is the RL and which the SL. The reticulate edges can be seen
as contact events where, theoretically, both directions of transfer are possible. This
might not be a problem for language contact, however; in case of loanword detection,
a clear identification of the RL and therefore of the loaned word remains, i.e. a
workaround solution is presented to evaluate the algorithm statistically against the
gold standard. Nevertheless, MLN is the best explored network method in linguistics
and serves as state-of-the-art for modeling contact scenarios. It is worthwhile to test
the MLN approach in terms of loanword detection to determine the performance of
the algorithm on concept data.

5.1.4 Phylogenetic Lexical Flow Inference

The linguistic method of phylogenetic lexical flow inference (PLFI), developed by
Dellert (2019a), uses information-theoretic causal inference to model language
contact between languages. The toolchain contains the clustering of lexical items
into cognate sets from basic vocabulary lists in the first step. In the next step, the
genetic relatedness of languages and language contacts are modeled to explain how
languages have influenced each other during their evolution.
The PLFI algorithm uses the overlap of cognate sets to reconstruct ancestral states

13See List et al. (2014a) for a graphical illustration of an example of the gain-loss mapping and an
MLN network for linguistic data.
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in a given language tree, and determines the lexical transfer between languages.
The cognate classes are obtained from basic vocabulary lists using an internally
implemented approach for cognate clustering. The Information-Weighted Sequence
Alignment (ISWA), a newly established phonetic form alignment method, is a variant
of sequence alignment to cluster cognates. The main advantage of this method is
the consideration of varying information density of lemmas to align only the stems
of a word. The idea is illustrated on an example given by Dellert (2019a): the
alignment of the English word freeze and its German equivalent gefrieren shows
that the additional material in the German word affects the alignment. In order to
improve the alignment, only the stems of the words are aligned, i.e. the German
word gefrieren is stripped into -frier- for the alignment with freeze. In addition,
the word length is normalized to correct for possible effects of phoneme inventory
size. The ISWA algorithm achieves a better approximation of the alignment and its
corresponding alignment score, resulting in a better estimation of cognacy. According
to Dellert (2019a), the method refines the established methods for automated
cognate clustering and shows its strength in cross-family cognate detection.14

The overlap of cognate sets is the basis for the information measure for sets of
languages. This, in turn, results in a measure of conditional mutual information
which determines a notion of lexical transfer. The measure of conditional mutual
information between languages “quantifies how much of the lexical overlap between
two groups of languages can be accounted for by transmission through a third set
of languages” (Dellert, 2019a, p. 4). The lexical material of the transfer between
two languages is described by a path connecting the languages, which explains
the overlap of cognate sets. Standard causal inference algorithms are then being
applied to the resulting mutual information to determine the links that are minimally
necessary to explain the pattern of lexical overlaps.
The standard causal inference algorithm (PC algorithm) can only be applied if
ancestral languages are explicitly modeled. This requires a reconstruction of the
cognate classes at the internal nodes of the language tree which represent the
proto-languages. In the PLFI algorithm, the proto-languages are modeled using
ancestral state reconstruction methods from bioinformatics. The model therefore
requires a language tree as guide tree, where the proto-languages are reconstructed
as sources of overlaps represented by the presence or absence of each cognate class
at each node. Since causal inference is designed to extract information about the
directionality of the lexical transfer between two languages, the PLFI algorithm adds
directed reticulate edges to the language tree to represent the lexical transfer. The
resulting network displays the minimal number of lateral connections determined

14The ISWA method is embedded in the PLFI toolchain and not separately available.
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by the PLFI algorithm.15

The PLFI algorithm determines the RL, the SL, and the direction of the transfer. The
information of the lexical items present in each lexical flow can be extracted from
the algorithm to obtain the information of the loaned words between languages.16

5.2 Fundamental Requirements for Loanword Detection

All algorithms introduced for the task of automatic loanword detection are based on
different pre-processing steps needed for the computation. In order to maintain a
reasonable evaluation, the requirements for all algorithms should be equal to the
extent possible.
The first requirement is an underlying language tree, which is needed by all four
approaches to detect conflicts which are due to transfers. The two reconciliation
algorithms require a concept tree and the corresponding tree replicates for the
bootstrap analysis. The analyses of the MLN and PLFI algorithms use cognate classes
in order to identify the classes whose evolution does not match the given language
tree. All trees (i.e. the language tree, the concept trees, and the tree replicates) need
to be rooted to reflect the evolutionary relationship of the languages in a hierarchical
tree diagram.

5.2.1 Language Tree

The language tree represents the genetic classification of languages according to the
comparative method. The tree can either be obtained from databases like Glottolog
(Hammarström et al., 2018) using expert classifications, or from automatic recon-
struction methods. From a linguistic point of view, the expert tree from Glottolog
would be the tree of choice. The language classifications of the Glottolog tree are
expected to be accurate, which can lead to better results in terms of loanword detec-
tion. The expert tree from Glottolog is multifurcating and reflects the assumption
that a language can have more than two descendants. The tree reflects the clustering
of the languages according to the theory obtained from classical historical linguistics.
On the other hand, several linguistic studies in CHL (see e.g. Steiner et al. (2011),
Jäger (2013a), and Jäger (2013b)) showed that an automatically reconstructed

15See Dellert (2019a) for a detailed explanation of the underlying methodology and the algorithm
itself. In addition, graphical illustrations of PLFI networks are provided.

16Up to now, the algorithm is not available online. The results were kindly provided by Johannes
Dellert, who also extracted the information of the loanwords causing the lexical flow between the
languages.
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bifurcating tree is a suitable alternative to an expert tree. It is therefore justifiable to
choose an automatically reconstructed tree for analysis.
For the task of loanword detection, the choice of the language tree depends on
the applicability of the algorithms. Three algorithms (the TC, MLN, and PLFI) can
handle both binary and multifurcating trees, whereas the BD-based HGT algorithm
can only process binary trees. In their study, Boc et al. (2010b) tested the BD-based
algorithm on simulated nonbinary trees. However, this function is not accessible
in the publicly available versions of the algorithm. In order to achieve a reliable
comparison between all four algorithms, an automatically reconstructed binary
language tree is preferred. Additionally, an automatically reconstructed tree reflects
the language relationships according to the basic vocabulary list used for the other
analyses. On the basis of the applicability of the binary tree and the valid evidence
that an automatically reconstructed tree is a suitable alternative, an automatically
reconstructed binary tree is the tree of choice.
In linguistics, Bayesian methods are the most popular methods to reconstruct lan-
guage trees and to model language classifications (Atkinson and Gray, 2006; Green-
hill et al., 2010; Gray and Atkinson, 2003). Among others, Boc et al. (2010a) used
the inferred tree from Gray and Atkinson (2003) as an underlying language tree for
their analysis. The framework for Bayesian inference is introduced in chapter 3.1.2,
and the detailed settings for MrBayes are described in chapter 4.2. The language tree
is reconstructed using the 200 most stable concepts from NELex for all languages in
the dataset (Dellert and Buch, 2018).17 The character matrix is created using the
automatically inferred cognate classes from the OnlinePMI program by Rama et al.
(2017). MrBayes reconstructs a tree sample according to the posterior distribution
next to the consensus tree summarizing the tree sample. Since the consensus tree
can result in a multifurcating tree, the maximum clade credibility tree from the
tree sample selected. The MCC tree is the best representative and an actual, fully
resolved binary tree from the tree sample (Heled and Bouckaert, 2013). To test
whether the MCC tree is a good representative of the language classifications, it
can be compared to the Glottolog tree using the GQD, introduced in chapter 4.1.4.
The small GQD of d = 0.0307 indicates their agreement.18 This underlines the
assumption that an automatically reconstructed binary tree is a suitable alternative
to an expert tree. The tree obtained from MrBayes serves as input to all loanword
detection algorithms requiring a language tree.

17Due to the long running time of MrBayes, the number of concepts is reduced.
18The automatically reconstructed language tree is displayed in appendix A.2.
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5.2.2 Concept Trees and Tree Replicates

The BD-based HGT and the TC algorithms require concept trees and their replicates
for the reconciliation process. The establishment of the concept trees using different
reconstruction methods is introduced in chapter 4. The analyses are carried out
using the trees from the optimal methods determined by the MCC evaluation.
The distance-based concept trees are computed by the PMI-based NW algorithm
and reconstructed using FastME. The tree replicates derived by the noisy bootstrap
method are reconstructed using the same requirements. All trees reconstructed by
the FastME algorithm are unrooted binary-branching trees.
Due to the different frameworks to reconstruct character-based concept trees, the
analyses result in two optimal methods, one for the maximum likelihood framework,
and one for Bayesian inference. The trees computed by IQTree are based on character
matrices generated by using the combined approach of PMI-based NW and n-grams.
IQTree results in a binary maximum likelihood tree and a sample containing binary
tree replicates obtained from the implemented bootstrap analysis. The concept trees
for Bayesian inference are computed using the character matrices generated from
the PMI-based NW approach. MrBayes results in a consensus tree summarizing
the posterior distribution of trees from the analysis. Since the consensus tree is
multifurcating, the concept tree and tree replicates are obtained from the binary
trees of the posterior distribution. The MCC tree is selected as concept tree to express
the best representative of the whole tree sample.
The three methods result in tree samples of different sizes. For a fair comparison
of the reliability of the transfer events, the tree samples should all be of the same
size. The noisy bootstrap method creates a tree sample of size k = 1, 000, which is
advisable to account for the small variance of the matrices. IQTree uses the standard
bootstrap method to generate the tree sample. The traditional data sample technique
includes the replication of the complete initial analysis, which is computationally
intensive and results in a long running time. Since the size of the tree sample
can be set manually, a size of k = 100 is chosen to result in a reasonable running
time. MrBayes determines the size of the posterior distribution in accordance with
the input data, the evolutionary model, and a presumed prior distribution of trees.
The tree sample can therefore be of varying size. To ensure for the same size of
the tree samples, all tree samples are equated to the size of k = 100. From the
noisy bootstrap replicates, 100 trees are chosen randomly to create the sample of
size k = 100. For the posterior distribution of MrBayes, the trees are chosen after
rejecting the first 25% of the trees in the sample. The first 25% of the trees are used
for the so called burn-in period required by the MCMC approach. During this period,
the process settles into its equilibrium distribution (Felsenstein, 2004). After this
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period, MrBayes records a tree every S steps, where S = 500. From the remaining
sample, 100 trees are chosen randomly to create a tree sample of size k = 100.

5.2.3 Tree Rooting

In order to achieve a hierarchical tree diagram to represent the evolutionary relation-
ship between languages, all trees are rooted according to the same technique. Most
of the standard reconstruction algorithms infer unrooted trees with branch lengths,
so do the methods introduced in this thesis. Tree rooting needs to be performed in a
separate post-processing step. The most popular methods for tree rooting are out-
group rooting and midpoint rooting. In a recent study, Tria et al. (2017) introduced
the minimal ancestor deviation (MAD) rooting. Jäger (2019) compares the three
automatic rooting methods using phylogenetic trees inferred from linguistic data. In
his study, Jäger (2019) reconstructs language trees within the maximum likelihood
framework using the ASJP database. The resulting trees are rooted using the three
automatic methods, and compared to the corresponding Glottolog tree via GQD.

Outgroup Rooting The simplest way of rooting an unrooted tree is either by declar-
ing one of its nodes to be the root, or by inserting a new root to one of the edges.
A popular way in practice is to determine the root by choosing an outgroup. The
outgroup is defined as taxa which are closely related to the ingroup, but lie outside
of it and are placed on the edge, leading to this outgroup (Huson et al., 2010). To
root a tree using an outgroup, prior knowledge of the language grouping is needed
to classify the phylogenetic relations between the outgroup and the ingroup. Figure
5.6 illustrates the Germanic languages extracted from the language tree in figure 3.2.
In this language sample, English would be defined as outgroup, since it is closely
related to the main group, but lies clearly outside of it. Therefore, the root is placed
on the edge between English and the remaining Germanic languages. However,
considering the Germanic and Romance languages as in figure 5.7, the specification
of an outgroup is unclear. In order to root this tree on an outgroup, other languages
can be added to serve as the outgroup for the rooting. The insertion of a new
language group to root the tree depends on the data sample. The outgroup needs to
fulfill certain restrictions, like being closely related to the ingroup while still lying
outside of the sample. The specification of an appropriate outgroup can therefore
be problematic for some language samples. In addition, the more languages the
tree contains, the more difficult it is to determine an outgroup for tree rooting. In
the study of Jäger (2019), the language tree rooted by an outgroup shows a poorer
agreement with the expert tree compared to the other two methods.
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Fig. 5.6.: The language tree of the Germanic languages, based on an excerpt of the NELex
database.

Fig. 5.7.: The language tree representing the language classification of the selection of
Germanic and Romance languages.

Midpoint Rooting The midpoint rooting technique, introduced by Farris (1972), can
be used to assign a root in the case where no suitable outgroup can be determined.
The method locates the midpoint of the longest path between all languages in the
phylogeny, i.e. it will join the most dissimilar languages to root the tree (Vandamme,
2009). The path length between two languages is the sum of the lengths of the
intervening branches. The longest path is selected to root the tree. Midpoint rooting
assumes that all branches have roughly similar evolutionary rates. It is advisable to

5.2 Fundamental Requirements for Loanword Detection 141



be cautious to use midpoint rooting as the method of choice, since this assumption
does not hold for many linguistic datasets. In the comparison of the rooting methods,
midpoint rooting outperforms the outgroup rooting. However, the comparison to
the expert classification shows a small improvement of the MAD rooting method
(Jäger, 2019).

MAD Rooting The minimal ancestor deviation method, introduced by Tria et al.
(2017), operates on binary unrooted trees with branch lengths. No outgroup or
other prior knowledge of the data under consideration is needed. In contrast to
the midpoint rooting, MAD uses the idea of similar evolutionary rates instead of
assuming them to be equal. Additionally, the root position is estimated by consid-
ering all branches as possible roots (Tria et al., 2017). Using this assumption, the
induced ancestral–descendant relationships of all nodes in the tree can be derived
and evaluated to determine the best root position. The best candidate for the root
position is the branch that minimizes the relative deviations among all mean relative
deviations calculated for all possible root positions (Tria et al., 2017).19 Compared
to the other rooting algorithms on language data, the MAD method performs best
and is substantially better than midpoint rooting (Jäger, 2019).

The correct rooting of the trees is essential for the BD-based HGT algorithm to
determine transfer events via tree reconciliation. A misplaced root can lead to
false positive and false negative HGTs, since the whole reconciliation process will
be affected (Boc et al., 2010b). The specification of the root position by the MAD
algorithm determines the ancestral relationship of all nodes in the tree. The certainty
whether the rooting algorithm inserts the root at the correct position can only be
estimated with difficulty. It is unclear to which extent the resulting rooting depends
on the data and the phylogenetic inference methods. Nevertheless, rooted trees
indicate the evolutionary relationship between the languages under consideration
and are required by the BD-based HGT algorithm. Therefore, the language tree, the
concept tree, and all tree replicates are rooted using the MAD algorithm by Tria et al.
(2017).

19See Tria et al. (2017) for a detailed mathematical description of the algorithm and experiments on
biological datasets.
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5.2.4 Cognate Classes

The MLN and PLFI algorithms require cognate classes to identify transfer events
in the underlying language tree structure. Since NELex does not contain expert
cognate judgments, the cognate classes need to be inferred automatically. The MLN
algorithm requires the lexical items with their corresponding cognate classes as
input. Consistent with the other analyses, the automatically inferred cognate classes
from the OnlinePMI program (Rama et al., 2017) are used for the inference of the
gain-loss scenarios. The toolchain of the PLFI algorithm includes the ISWA algorithm
for the clustering of cognate classes used for the inference of lexical transfers. Hence,
the internal cognate classes determined by the PLFI algorithm need to be used for
the detection of transfer events.

5.3 Loanword Detection Methods: an Overview

In this chapter, four different algorithms are introduced for the task of automated
loanword detection. The following overview should ensure for a better transparency
of all the methods which can be applied to determine loanwords. The methods are
summarized in table 5.1.

Algorithm Input Output

BD-based HGT
CTdow Loanword information from 1,016 concepts:

RL, SL, transfer direction, and reliability values.
CTML+ngramsNW

CTBayesian+NW

Tree comparison
CTdow Loanword information from 1,016 concepts:

RL, SL, transfer direction, and reliability values.
CTML+ngramsNW

CTBayesian+NW

MLN Cognate Classes OnlinePMI
Loanword information from 1,016 concepts:

2 languages involved in the transfer.

PLFI Cogante Classes ISWA
Loanword information from 1,016 concepts:

RL, SL, and direction of transfer.
Tab. 5.1.: Overview of the methods for automatic loanword detection.

BD-based HGT and TC Algorithm The BD-based HGT algorithm requires a language
tree, a concept tree, and concept tree replicates. The language tree is obtained from
MrBayes, as explained in section 5.2.1. The concept trees and their corresponding
replicates are the results of the MCC evaluation to determine the optimal method,
introduced in chapter 4. Since there is one optimal distance-based method and two
optimal character-based methods, this results in three analyses using the BD-based
HGT algorithm and three analyses using the tree comparison algorithm to detect

5.3 Loanword Detection Methods: an Overview 143



horizontal transfer. The results contain the RL, the SL, the direction of transfer, and
reliability scores for the transfer events.

MLN The MLN algorithm requires the language tree computed by MrBayes as
guide tree (see section 5.2.1). The cognate classes which are used to model the
gain-loss scenarios along the tree are the ones inferred by the OnlinePMI algorithm
(Rama et al., 2017). For each concept, the algorithm is applied to capture single
transfer events due to lexical borrowing. The result is a transfer path between two
languages where the RL and SL cannot clearly be specified, i.e. no transfer direction
is inferred. Additionally, no reliability values for transfer events can be established
by the algorithm.

PLFI The PLFI uses the MrBayes language tree (see section 5.2.1) as guide tree
to model ancestral language reconstruction and determine the direction of transfer
from the overlapping cognate sets. The cognate classes are inferred internally using
the ISWA algorithm, which was established along with the specific task of lexical flow
inference. The information of the transfer events for lexical items can be extracted
from the analysis. The results contain the RL, the SL, and the direction of transfer.
Reliability values for the transfer events cannot be obtained from the analysis.
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Evaluation and Discussion of
Loanword Detection

6
The task of loanword detection can be carried out by four algorithms: the BD-based
HGT algorithm, the TC algorithm, MLN, and PLFI. The four algorithms differ in
both the underlying methodology and the results. List (2019) divides different
algorithms for borrowing detection into groups. The MLN approach belongs to the
group of phylogeny-based approaches to borrowing detection. The fundamental idea
is the evolution of cognate traits along a given language tree to detect which traits
are in accordance with the phylogeny, and which are causing conflicts. The ones
causing conflicts in their evolution along the tree are assumed to be borrowed. The
PLFI can be added to this class, since it uses cognate classes and ancestral state
reconstruction to identify the overlapping cognate sets causing lexical flow in a
given language tree. The BD-based HGT and the TC algorithm belong to the class of
sequence-based approaches to borrowing detection. The basis of these algorithms are
word similarities, which are used to detect borrowings. The reconstructed concept
trees reflect pairwise word similarities and their corresponding clustering. The tree
reconciliation algorithms estimate the discordance between the language and an
individual concept tree to detect transfer events, i.e. loanwords. Since the algorithms
use different methodologies to determine loanwords, a direct comparison between
the algorithms needs to be treated with caution.
The results of the four different algorithms for the task of loanword detection are
evaluated against a gold standard, i.e. expert judgments of loanwords. In order to
evaluate the different results of the algorithms, the gold standard should contain not
only the information whether a word is loaned or not, but also additional information
like their donor language and the direction of the transfer. This information can
only be provided by two databases, which are combined for this evaluation task.
First, the gold standard is explained in more detail to get insights into its uniqueness
compared to the other available gold standards. Second, a statistical evaluation is
carried out for all algorithms using a precision–recall computation. In an additional
evaluation, the usage of reliability values for transfer events to reject arbitrary
events is discussed for the BD-based HGT and the tree comparison algorithm. Last,
the transfer direction inferred by the BD-based HGT and the PLFI algorithms are
qualitatively evaluated and analyzed.
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6.1 Gold Standard

The gold standard is a combined dataset consisting of NELex (Dellert, Jäger, et al.,
2017) and WOLD (Haspelmath and Tadmor, 2009b). WOLD cannot be used as the
underlying database, since its languages’ diversity is obstructive for the concept tree
reconstruction and loanword detection algorithms. The information on loanwords,
however, can be used as part of the gold standard. All loanwords where the meaning,
the languages, and the donor languages are included in the NELex database are
added to the evaluation set. In total, 443 words are extracted from WOLD to be
included in the gold standard. The NELex database is under constant development,
and within the ongoing EtInEn project, expert cognate and loanword judgments are
collected (Dellert, 2019b). A status of either loaned or inherited is assigned to each
lexical item in NELex. Depending on the status, the ancestral or donor language is
annotated, as well as the source word or the reconstructed word form, if present in
the source text. For loanwords, this implicitly includes information on the borrowing
process and its reconstructed history, if available. The preliminary version, kindly
provided by Johannes Dellert, contains a total of 9,500 words, among which 1,200
are loanwords and 8,300 inherited words.
The preliminary gold standard provides a good distribution over the language fami-
lies in NELex. For the Uralic language family, the works of Sammallahti (1988) and
Janhunen et al. (1981) provide information on various subfamilies, like e.g. Finnic,
Hungarian, and Permian. Etymological information for the Saami language family
is extracted from Lehtiranta (2001) for 1,960 words, for the Samoyedic language
family from Janhunen (1977) for 649 words, for Finnic words from Itkonen and
Kulonen (1992), and for Hungarian words from Zaicz (2006). Word annotations for
the Turkic language family are extracted from Sevortyan (1974) and Dybo (2013).
The Mongolic words are annotated using the information present in Sanžeev et al.
(2015). The Indo-European language family is represented in the gold standard by
the subfamilies of Albanian (Boretzky, 1975; Orel, 1998), Balto-Slavic (Derksen,
2008; Derksen, 2014), Germanic (Kroonen, 2013), and Italic (De Vaan, 2008; Meyer-
Lübke, 2009). For the Italic language family, the highest amount of words (in total
1,737) are annotated, which is of great interest in terms of borrowing and loanword
detection, next to the 1,276 annotated words for the Germanic language family. The
research on language contact containing Romance and Germanic languages is well
studied and therefore highly suitable for the evaluation of the loanword detection
algorithms in terms of donor languages and direction of transfer. In addition, the
475 annotated Albanian words contain a high proportion of loanwords, which makes
them interesting to study.
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The gold standard obtained from this detailed annotation contains the status of the
words, i.e. loaned or inherited, plus additional information on the ancestral or bor-
rowing history. In comparison, IELex and ASJP only provide binary presence-absence
information on loanwords. In a binary annotation scheme, the loanwords can clearly
be identified, whereas the absence state indicates either inherited, unknown, or
missing annotation. In addition, both databases do not provide information on the
corresponding donor language of the loanwords, i.e. neither the donor languages
nor the direction of transfer determined by the algorithms can be evaluated. The
identification of donor languages and the determination of the transfer direction,
however, are the main advantages of the tree reconciliation algorithms and PLFI.
This can only be obtained by the detailed and unique annotation of the gold standard
developed for NELex and WOLD. It is therefore the only gold standard which can
be used to evaluate all results of the automatic loanword detection algorithms, i.e.
loanwords, donor languages, and direction of transfer.

6.2 Statistical Evaluation

The automatically detected loanwords by the algorithms are evaluated against
the gold standard using a precision–recall analysis. In this evaluation procedure,
precision is the proportion of annotated loanwords in the gold standard among the
detected loanwords by the algorithms, while recall is the proportion of the total
number of loanwords that were actually detected by the methods. A high precision
score indicates that every loanword identified by the analysis was relevant; however,
the score cannot show whether all relevant loanwords are detected. A high recall
score demonstrates that all relevant loanwords were found by the algorithm, but it
cannot display the amount of erroneously detected loanwords. In most cases, the
two measurements are combined into a single one: the F-measure. The F-score is
the weighted harmonic mean of precision and recall, which measures the accuracy
of the algorithms in terms of loanword detection.
For the precision–recall evaluation, the results obtained by the algorithms are
combined with the gold standard. Since the gold standard is only available for an
excerpt of NELex, the algorithms’ results are adapted respectively. One advantage of
the gold standard is the clear distinction between inherited words and unknown or
not annotated words. Precision and recall are therefore computed using a binary
representation of the data, where 1 means loaned and 0 inherited. This is the basis
for a clear evaluation in order to obtain a realistic estimation of the accuracy of the
algorithms.

6.2 Statistical Evaluation 147



It might be the case that the BD-based HGT, the MLN, and the PLFI algorithm
determine an inner node, i.e. representatives of ancestral languages, as recipient
language. Due to the underlying methodologies of the algorithms, it can be assumed
that the loaned word is passed on to the descendants present at the leaves. An
established ancestral language is represented as set of the corresponding leaves. In
the evaluation task, it is assumed that all languages in the sets are RLs. Linguistically,
there is a wide range of different scenarios how a word can evolve if it was loaned
by an ancestral language. On the one hand, this is highly dependent on the status of
the loan, the integration, and the adaption of the word embedding at the time of
inheritance. This indicates that a detailed clarification is only possible with expert
knowledge. On the other hand, the classification and reconstruction of ancestral
languages are based on expert judgments; so is the identification of loanwords. There
are still uncertainties present which cannot be taken into account in a statistical
analysis.
Since the algorithms are divided into two groups depending on their underlying
methodology, the algorithms of each group are evaluated first before an overall
comparison is discussed.

6.2.1 Evaluation of the Phylogeny-Based Approaches

The MLN and PLFI algorithm belong to the group of phylogeny-based algorithms.
Both methods use a guide tree to detect cognate classes which are causing conflicts
in the given phylogeny and are therefore assumed to be due to borrowing. From
the PLFI, the loanwords and their corresponding RL can be easily extracted, since
the algorithm infers directed reticulate edges between the RL and SL. In the MLN
approach, the RL and SL can be detected but not distinguished, since no directionality
is inferred, i.e. both directions of transfer are possible. A workaround solution is
needed in order to evaluate the results of the MLNs against the gold standard.

Workaround Solution for MLN Evaluation For each detected transfer event between
a language pair, the recipient language used for the precision–recall computation is
chosen randomly. This sampling procedure is repeated k = 100 times, resulting in a
set of size k = 100 of all precision–recall scores, out of which the mean is computed.1

The results of the statistical evaluation of the MLN and PLFI method are displayed
in table 6.1. By using the mean values as representatives, an approximation of

1Different sampling sizes are tested and evaluated. The results can be found in appendix A.3.
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the performance of the MLN algorithm in terms of automated loanword detection
is achieved. A direct comparison of the two algorithms needs to be treated with
caution.

Algorithm Precision Recall F-score
PLFI 0.179 0.141 0.158
MLN 0.145 0.567 0.231

Tab. 6.1.: Precision–recall values for the phylogeny-based approaches to loanword detec-
tion.

The F-score gives insights into the accuracy of the algorithms, indicating that both
algorithms perform poorly when it comes to loanword detection. The MLN approach
is most successful, achieving the highest recall at a precision of 14%. In terms of
accuracy, the MLN approach results in a considerably higher F-score compared to
the PLFI approach, which is due to the high recall. The high recall retrieved by the
MLN algorithm indicates the amount of annotated loanwords, while not measuring
the erroneous ones that are also contained in the results. The low precision scores
in both methods indicate the quality of the found loanwords in terms of the gold
standard, i.e. both methods are not able to detect a high amount of true loanwords.
Of course, there is an inverse relationship between precision and recall, i.e. one
cannot be increased without decreasing the other. In the evaluation of the MLN, the
high recall comes with the cost of the low precision value, i.e. the algorithm detects
50% of the relevant links, only 14% of the detected loanwords are correct. Overall,
the MLN approach achieves better results in terms of loanword detection than the
PLFI algorithm.
From a linguistic point of view, this result was not expected. The PLFI approach was
developed within a linguistic framework using linguistically motivated parameters,
like estimated cognate classes and reconstructed proto-languages for the detection
of lexical flow. Hence, it was assumed that this additional information leads to a
better estimation of lexical transfer, and therefore also to a more accurate detection
of loanwords. However, the difference of 8% in the F-score shows that the opposite
is the case.

6.2.2 Evaluation of the Sequence-Based Approaches

The BD-based HGT and the TC algorithm belong to the group of sequence-based
algorithms detecting loanwords on the basis of word similarities. The word pair
similarities within one meaning are represented in the concept trees. Both algorithms
use a language tree for tree reconciliation with concept trees to detect transfer
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events. The results obtained by the algorithms are the RL, the SL, and the direction
of transfer, i.e. the RL and loanwords can clearly be identified by the algorithms.
Since the concept trees are obtained by three different methods, i.e. one distance-
based and two character-based methods, precision–recall is computed for all possible
tree reconciliations to achieve an overall evaluation. The results of the statistical
evaluation against the gold standard are given in table 6.2.

Algorithm Concept trees Precision Recall F-score
TC CTBayesian+NW 0.153 0.430 0.226
TC CTML+ngramsNW 0.147 0.395 0.214
TC CTdow 0.165 0.345 0.223
HGT CTBayesian+NW 0.137 0.824 0.2349
HGT CTML+ngramsNW 0.137 0.920 0.2391
HGT CTdow 0.137 0.924 0.2398

Tab. 6.2.: Precision–recall values for the sequence-based approaches to loanword detection.

The algorithms’ accuracy, measured by the F-score, lies around 22% for all analyses.
Since a high F-score implies a high accuracy, the results indicate an overall worse
performance of the algorithms for the task of loanword detection. The BD-based
HGT algorithm achieves the highest recall at the cost of a low precision and resulting
in the highest F-score of all methods. The different methods for the reconstruction
of the concept trees have no impact on the tree reconciliation and therefore also
on the detection of the loanwords. The BD-based HGT algorithm shows an over-
generalization of the transfer events due to the SPR moves necessary to transform
the concept tree into the language tree. Since the algorithm is based on the topology
of the reconstructed trees, no further linguistic information is included in order
to detect true loanwords. The discordance of the two trees causes the amount of
loanwords detected by the algorithms. The tree comparison algorithm achieves
a higher precision, but comes at a high cost to recall, and the F-score remains at
about 22%. Similar to the BD-based HGT algorithm, the concept trees reconstructed
using different approaches do not have an impact on the detection of the loanwords.
Overall, the BD-based HGT algorithm using the distance-based reconstructed con-
cept trees for tree reconciliation achieves the highest F-score in terms of loanword
detection.
Even though the tree comparison algorithm was developed on linguistic data, the
algorithm does not improve in terms of accuracy. This is due to the fact that the
basic methodology of the algorithm uses topological tree distances to estimate the
discordance between a language and a concept tree. The resulting loanwords are
detected according to the trees’ topologies, without using additional linguistic in-
formation. An improvement of the results according to linguistic information can
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thus not be expected. The tree comparison algorithm is therefore similar to the
BD-based HGT algorithm in both the underlying idea and the results for detecting
loanwords.

6.3 Evaluation of Bootstrap Thresholds

The sequence-based algorithms can verify the detected transfer events in the original
scenario by using concept tree replicates to compute support values. The values indi-
cate the frequency of occurrence of the transfer event, and can therefore be seen as a
stability measurement. The BD-based HGT algorithm uses heuristic search strategies
to determine the minimal number of SPR moves needed for the tree reconciliation.
Therefore, the detection of exact HGT events is not possible, i.e. the algorithm can
only determine potential transfer events. This can lead to the presence of arbitrary
events. The tree comparison algorithm is based on the topological distance between
the language and concept tree and their corresponding jackknife replicates, which is
why the detection of arbitrary events cannot be excluded. This evaluation should
show whether the bootstrap scores can be used as thresholds to reject arbitrary
events from the results.
The bootstrap scores serve as thresholds for the statistical evaluation to exclude
the events with a lower support value. For each threshold, the above explained
precision–recall analysis is repeated. The results are visualized in precision–recall
curves, displayed in figure 6.1 for the tree comparison algorithm, and in figure 6.2
for the BD-based HGT algorithm. The exact values including the F-scores are given
in appendix A.4.
All precision–recall curves show an increasing precision at the cost of a low recall
the higher the threshold gets. At a threshold of 0.9, the most accurate detected
transfers are assumed, since the support values are 90% and higher. The recall
increases with the lowering of the reliability values at the cost of the precision. It can
therefore be assumed that the algorithms mostly detect noise. This explains their
poor performance, reflected in the F-scores for the statistical evaluation in table 6.2.
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(a) Precision–recall curve for the Bayesian concept trees.

(b) Precision–recall curve for the ML concept trees.

(c) Precision–recall curve for the distance-based concept trees.

Fig. 6.1.: Precision–recall curves for the tree comparison algorithm.
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(a) Precision–recall curve for the Bayesian concept trees.

(b) Precision–recall curve for the ML concept trees.

(c) Precision–recall curve for the distance-based concept trees.

Fig. 6.2.: Precision–recall curves for the BD-based HGT algorithm.
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As a working sample, three words of the concept ‘mountain’ for three languages
(English, German, and Inari Saami) are analyzed to illustrate this assumption. The
English word mountain is clearly marked as loanword (Haspelmath and Tadmor,
2009b). The Inari Saami word väär. i (Lehtiranta, 2001) and the German word berg
(Kroonen, 2013) are inherited words from their corresponding ancestral language.
In table 6.3, the detection of the three example words is visualized for both tree

Algorithm Language Bootstrap score Expert judgement

HGT CTBayesian+NW

eng 28,7% loanword
smn 96% inherited
deu - inherited

HGT CTML+ngramsNW

eng 1% loanword
smn 8,9% inherited
deu 1% inherited

HGT CTdow

eng 12,9% loanword
smn 34,7% inherited
deu 26,7% inherited

TC CTBayesian+NW

eng - loanword
smn 95% inherited
deu - inherited

TC CTML+ngramsNW

eng - loanword
smn - inherited
deu - inherited

TC CTdow

eng - loanword
smn - inherited
deu 36% inherited

Tab. 6.3.: Working example: Detection of three words for the concept ‘mountain’ within
the different versions of the algorithms.

reconciliation algorithms and all three concept tree approaches, including the relia-
bility values for the transfers. It can be clearly seen that there is no uniform pattern
between the algorithms. The BD-based algorithm detects most of the words as
loanwords, which reflects the over-generalization of the algorithm, mirrored in the
recall values for the complete analysis. The high recall values can be explained by
the detection of a high amount of loanwords with a support value lower than 10%.
Since the algorithm can only detect potential transfers with an unknown amount
of arbitrary events, the underlying method using SPR for the tree reconciliation
introduces a lot of noise to the analysis. On the other hand, the tree comparison
algorithm never identifies the English word as loanword. It is unclear to which
amount the distance measure between the language and the concept tree and their
corresponding jackknife replicates introduces noise to the analysis. Both algorithms
highly depend on the pre-processing steps necessary for the tree reconciliation. The
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short word lengths for the computation and reconstruction of concept trees is an
issue, which is reflected in this evaluation to a greater extent as in the previous
evaluation.
As a result, the bootstrap values computed by both tree reconciliation algorithms
cannot be used to filter out arbitrary events from the results. It is neither possible to
determine a suitable threshold, nor to boost the analysis in terms of a more accurate
detection rate for loanwords. However, the evaluation cannot give any insights in
the source of the problem. In order to improve the results, new innovations for the
subtasks and the loanword detection algorithms are needed, along with suitable
datasets for training and testing. The determination of a threshold to reject arbitrary
events from the results can be refined when better solutions for all involved tasks
are developed.

6.4 Qualitative Evaluation of Donor Languages

The BD-based HGT algorithm and the PLFI approach are both able to determine the
directionality of the transfer, i.e. identify possible donor languages. This is one of
the main advantages over the other two algorithms. In order to fully understand
a borrowing process, the SL and the direction of transfer are the most important
factors next to the RL and the loaned word. A direct identification of a possible
donor language implicitly determines the directionality of the transfer.
In the BD-based HGT algorithm, the SPR moves applied to reconcile two trees deter-
mine the direction, and therefore also the donor language. No additional linguistic
information is used by the algorithm to specify the SLs. The PLFI approach identifies
the donor languages according to overlapping cognate sets present at the internal
nodes of the language tree. The determination of the SL, next to the directional-
ity, RL, and loanwords, depends on the automatic cognate clustering and the ASR
method. Still, the cognate information reconstructed to represent proto-languages
adds linguistic information to the determination process.
Both algorithms can only identify SLs within the language sample under considera-
tion. The analyses are based on the NELex database, i.e. all automatically detected
donor languages are present in NELex. Loanwords from outside the language sample
cannot be detected by the algorithms, since the determination of the directionality
is limited to the underlying language tree. With this restriction, limitations for the
evaluation arise. First, the loanwords borrowed from languages outside the sample
need to be excluded from the evaluation. Second, not all borrowing scenarios can be
identified clearly and reconstructed in classical historical linguistics, i.e. no definite
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SL can be determined. These loanwords should also be excluded from the evaluation
task. This results in a small amount of loanwords with an obvious borrowing sce-
nario. The inner clades of the language tree represent the corresponding established
ancestral languages. As discussed in chapter 2, the language reconstructions on
an expert tree are assumed to be multifurcating, since languages can have more
than two descendants. In terms of tree comparison, the automatically reconstructed
language tree is equally good as their expert counterparts. However, the bifurcating
tree assumes for each internal node exactly two descendants, which results in more
estimated ancestral languages as assumed in multifurcating trees. However, it is
still debatable which tree is the best representative for language relatedness, since
the amount of proto-languages can only be estimated. For a statistical evaluation
of the determined donor language, a clear mapping of the SLs provided by the
gold standard to the inner clades of the language tree is essential. This cannot
be guaranteed, since the donor languages in the gold standard are extracted from
etymological dictionaries, and a bifurcating expert tree representing the needed
proto-languages is not available.
The algorithms work on contemporaneous data, i.e. no information of the proto-
languages at the inner clades is provided. The proto-languages are represented as a
set of their corresponding descendants present at the leaves. There are three options
of SL representations:

1. From leaf to leaf:
fra (French)→ eng (English)

2. From inner node to leaf:
{fra, spa, cat, ita, por} (French, Spanish, Catalan, Italian, Portuguese)→ eng
(English)

3. From inner node to inner node:
{fra, spa, cat, ita, por} (French, Spanish, Catalan, Italian, Portuguese)→ {nld,
deu} (Dutch, German)

The first example illustrates the borrowing of the French word for ‘mountain’ into
the English language. French is detected as the donor language, and a direct link
between the two languages is inferred, representing the direction. In the second
example, the English word mountain is borrowed from an internal node representing
an ancestral Romance language. The ancestral language is represented by a set of
Romance languages, since the algorithms cannot define a clear proto-language. In
the third example, the ancestor of Dutch and German borrowed the word for ‘win-
dow’ from an ancestral Romance language family represented by the set of Romance
languages. In accordance with the statistical analysis, each language present in the
set of recipients is identified as RL. The sets of the ancestral languages, however,
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cannot be mapped clearly to the proto-languages of the gold standard. Using only
the loanwords where the donor language is within NELex, each descendant from the
ancestral language can be used as reference for the proto-language. This, in turn,
is highly dependent on the underlying language tree and its branching. Linguistic
research is concerned with the time depth of the languages and their arrangement
within the language tree. There are language families, like Proto-Indo-European,
with a clear, linguistically proven classification of the languages. For the Turkic lan-
guage family, on the other hand, the grouping and classification of the languages is
still unclear. The high similarity between the languages makes it difficult to obtain a
clear clustering. Due to the different states of research, a solid statistical evaluation is
impractical. It is therefore advisable to carry out a qualitative evaluation and go with-
out a statistical precision–recall evaluation of the directionality and donor languages.

For a qualitative evaluation, three working examples are chosen out of the 1,016
concepts:

1. Concept ‘mountain’ with the English loanword mountain.
2. Concept ‘egg’ with the English loanword egg.
3. Concept ‘day’ with the inherited English word day.

For the concept ‘mountain’, the English loanword is a clear borrowing with a known
borrowing process (Haspelmath and Tadmor, 2009b). The word was borrowed in the
Middle English time period from French, replacing the inherited word berwe/bergh
(Merriam-Webster Dictionary, 2020). There are two main reasons for choosing this
example. First, the borrowed word can be identified clearly in terms of spelling and
pronunciation, since it belongs to a different cognate class. Second, the grouping
of the Germanic and Romance languages into two language groups is verified by
experts, i.e. it is a borrowing across language borders. It can be assumed that the
algorithms can detect English as RL and determine a possible donor language.
In the second example, the English word egg is a borrowing from Old Norse, i.e.
internal borrowing within the Germanic languages. Further, it is a cognate class
internal borrowing, since the replaced English word ey was cognate to egg. The PLFI
algorithm is based on cognacy and overlapping cognate sets. It should not be able
to detect English as RL, and can therefore not determine a possible donor language.
For the BD-based HGT algorithm, it is also difficult to detected English as RL due to
the high similarity of the words within the Germanic languages.
The concept ‘day’ is the second most stable concept in NELex (Dellert and Buch,
2018), i.e. most of the words are inherited. The English word day can be recon-
structed to its Proto-Indo-European root and is clearly inherited (Kroonen, 2013).
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Due to the high stability of the concept, the algorithms should not detect English as
RL, and therefore no donor language at all.

Evaluation of ‘mountain’ For the concept ‘mountain’, the results of the determined
SLs by the algorithms are displayed in table 6.4.

Algorithm RL SL Reliability score
GS eng fra -
HGT CTBayesian+NW eng kaz (Kazakh) 28.7%
HGT CTML+ngramsNW eng (ita, fra, cat, por, spa) 1%
HGT CTdow eng (ita, fra, cat, por, spa) 12.9%
PLFI eng cym (Welsh) -

Tab. 6.4.: The donor languages determined by the gold standard and found by the algo-
rithms for the English loanword in the concept ‘mountain’.

The gold standard specifies French as donor language, since it is a direct ancestor of
Old French. The BD-based HGT algorithm determines the donor language and the
directionality of the transfer in accordance to the SPR move applied to transform the
concept tree into the language tree. The analysis using Bayesian concept trees for the
reconciliation infers Kazakh, a language from the Turkic language family, as donor.
The concept tree replicates verify this result in 28.7% of the tree reconciliations.
The Kazakh word for ‘mountain’ is transcribed as tau, where the a and u should
be aligned in both words. However, the remaining sounds should cause gaps in
the alignment, i.e. word similarity is not the reason for the inference of the HWT.
The underlying heuristic search of the BD-based HGT algorithm is responsible
for this SPR move identifying the wrong donor language. For the distance-based
and maximum likelihood concept trees, the algorithm determines a set of Romance
languages as donor languages. The set includes other Romance languages containing
related words for ‘mountain’ belonging to the same cognate class. Not only can
the set be seen as the ancestor of French, but French can be isolated from the
set, serving as correct identification of the SL. Nevertheless, the low bootstrap
support values indicate the uncertainty of the algorithm, i.e. this transfer is only
found by a minority of the reconciliations using tree replicates. The PLFI algorithm
identifies Welsh as donor language. The transcription of the Welsh word is m3ni8,
which should be clustered in the same cognate class with mauntin. Due to the
automatic cognate clustering and the ASR methods used for the reconstruction of
proto-languages, the detection of the correct SL was not possible. The algorithm
relies on a toolchain of various tasks, which makes it difficult to identify the source
of the wrong determination. Overall, two versions of the BD-based HGT algorithm
correctly determine the donor language of the borrowing process. However, the
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support for this transfer is so low that the detection of the borrowings could be
arbitrary events due to the underlying heuristic search procedure.

Evaluation of ‘egg’ The results of the identified donor languages for the concept
‘egg’ are displayed in table 6.5.

Algorithm RL SL Reliability score
GS eng isl -
HGT CTBayesian+NW eng kmr (Northern Kurdish) 86%
HGT CTML+ngramsNW eng isl 1%
HGT CTdow eng (swe, nor, dan) 95%
PLFI - - -

Tab. 6.5.: The donor languages determined by the gold standard and found by the algo-
rithms for the English loanword in the concept ‘egg’.

The English word egg is an interborrowing from Old Norse. The gold standard
specifies Icelandic as representative language of Old Norse, since Icelandic is the
language closest to Old Norse. It was assumed that the detection of the English
loanword egg would be difficult, if not impossible for the two algorithms. In the
case of PLFI, the algorithm does not detect a borrowing scenario with English as
RL. The algorithm clusters the English word correctly within the same cognate class
containing the other Germanic languages. Since the loanword detection is based on
the reconstruction and overlapping of cognate classes, this internal borrowing, where
the loanword and its replaced counterpart belong to the same cognate class, cannot
be found by the PLFI method. The BD-based algorithm using Bayesian concept
trees identifies Northern Kurdish as SL, with a high bootstrap score indicating the
frequency of occurrence within the reconciliation using tree replicates. There is a
high probability that the alignment of the the Northern Kurdish word hek and the
English word eg receive a high similarity score due to the alignment of e-e and
g-k. This is the downside of using phonetic word alignment on short sequences.
Short words can show a high agreement with each other, since the correct alignment
of a small amount of sounds is sufficient to receive a high similarity score. The
BD-based HGT algorithm using concept trees computed by IQTree correctly identifies
Icelandic as donor language. However, the verification of the reconciliation by tree
replicates results in a high uncertainty, mirrored in the low bootstrap score. The
tree reconciliation with distance-based concept trees achieves the best result. An
established ancestral language containing Swedish, Norwegian, and Danish could
be identified as donor language, which could be interpreted as Old Norse although
Icelandic is missing. The high bootstrap support indicates a clear identification of
the transfer among 95% of the tree reconciliations using tree replicates. However, in
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a statistical analysis, the donor language would be rejected and counted as wrong
identification, since Icelandic is not contained in the set of languages. Overall, the
BD-based algorithm correctly identifies the donor language in two cases, whereas
the PLFI approach is not able to detect the internal borrowing.

Evaluation of ‘day’ Table 6.6 displays the results of the determined SLs for the
concept ‘day’.

Algorithm RL SL Reliability score
GS eng - -
HGT CTBayesian+NW eng jpn (Japanese) 11.9%
HGT CTML+ngramsNW eng che (Chechen) 12.9%
HGT CTdow - - -
PLFI eng cym (Welsh) -

Tab. 6.6.: The findings of the algorithms for the English native word in the concept ‘day’.

The English word day is inherited and can be traced back to a Proto-Indo-European
root (Kroonen, 2013). This is correctly identified by the BD-based HGT algorithm
using distance-based concept trees, where English as RL is not present in the re-
sults. The variant using Bayesian concept trees wrongly identifies English as RL
and Japanese as donor language. Since English is a well-known donor language
for loanwords in Japanese, the direction could be inferred wrongly. However, this
assumption is not underlined by the gold standard, where the Japanese word for
‘day’ is not listed as loanword (Haspelmath and Tadmor, 2009b). The BD-based
HGT algorithm using concept trees obtained from IQTree determines English as RL
and Chechen, a language from the Nakh-Daghestanian language family, as source
language. The Chechen word de for ‘day’ shows a high similarity to the English
word dei. The transfer is therefore due to short sequence alignment. All in all, both
variants show low support values for the transfer events, i.e. these could also be
arbitrary events found by the algorithm. The PLFI method identifies English as RL
and Welsh as SL. However, the English word dei and the Welsh word di8 belong to
the same cognate class, i.e. the transfer is an effect of wrong cognate clustering.

In summary, it seems that an accurate determination of donor languages along
with the correct inference of directionality can only be estimated by chance. The
algorithms show no clear tendency for a systematic identification of the SL in the
language tree. The BD-based algorithm can only detect potential events, while
arbitrary events cannot be rejected from the results and cause additional noise.
The determination of the SL highly depends on the underlying language tree and
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the inferred SPR moves during the reconciliation process. No further linguistic
information is provided to improve the detection of RL, SL, and the inference of
directionality. It is, therefore, not surprising that the correct SL can only be detected
by chance. The PLFI algorithm is based on cognacy and the reconstruction of
cognate sets to represent proto-languages at the inner nodes of the tree. Although
the algorithm highly depends on the pre-processing steps, a better chance to correctly
identify the SL due to implicit linguistic information present at the inner nodes was
assumed. However, the qualitative evaluation shows the opposite. It seems the
systematic of finding overlapping cognate sets to determine the SL and the direction
of transfer leads also to arbitrary results, and the correct SL can only be determined
by chance. Overall, both algorithms correctly identify the direction of transfer,
since the RL is detected in most cases. However, the accurate determination of the
SL is rather by chance than following any systematic which can be linguistically
motivated. This evaluation underlines the poor performance of the algorithms
in terms of loanword identification. Unfortunately, the algorithms can neither be
successfully applied to the task of automated loanword detection, nor achieve a
breakthrough in terms of SL identification and the inference of directionality within
evolutionary networks.

6.5 Discussion of the Results

All presented evaluations reflect a rather poor performance of the algorithms for the
task of automatic loanword detection. In an overall comparison, the results of the
statistical evaluation are similar in terms of F-scores. For the MLN, the BD-based
HGT, and the TC algorithm, the loanword detection accuracy is around 23%. The
PLFI approach performs worst, with an F-score of 0.15. The BD-based HGT methods
achieve the highest recall, but due to a low precision, the F-score remains at 0.23.
The reliability scores computed by the sequence-based algorithms through concept
tree replicates cannot be used to reject arbitrary events from the results. It was
assumed that low support values are an indication for arbitrary transfer events, since
the frequency of occurrence in the analyses is low. The evaluation has shown that the
reliability values could neither be used to determine a threshold to sort out arbitrary
events, nor to improve the accuracy of the loanword detection. The BD-based
HGT algorithms and the PLFI are able to infer the directionality of the borrowing
process along with a possible SL. However, both algorithms only detect the right
donor language by chance. The inference of the correct directionality can merely be
estimated, since this implies the correct identification of the RL. In the qualitative
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evaluation using three working examples, the identification of the RL, and therefore
the right direction of the transfer, was correct. However, the poor performance
of the algorithms indicates that in an overall analysis the correct determination is
still problematic. The rather poor performance of the algorithms can have several
reasons next to the underlying methodologies used in each algorithmic framework.
The main reasons are discussed in the following.

Other Evolutionary Changes A word occurring nowhere else in the dataset is
indistinguishable from the effects of internal replacement, which is often due to
semantic shift. For instance, the concept ‘head’ has two realizations in German:
Haupt and Kopf. Haupt is the inherited word, with a figurative meaning nowadays.
It is therefore not included in NELex. In earlier times, the word Kopf represented a
vessel for drinking and was borrowed from the Latin word cuppa (Dudenredaktion,
2013), i.e. it is cognate to the English word cup (Dudenredaktion, 2013). Due to
semantic shift and language evolution, the word Kopf has changed semantically. This
type of meaning change cannot be detected by the algorithms, since Kopf and cup
now represent two different concepts. The algorithms are applied concept-wise and
focus on the detection of loanwords within a single concept, i.e. semantic changes
during language evolution cannot be captured by the approaches. It is unclear
to which extent other evolutionary processes influence the results in both the pre-
processing steps needed for the analyses and the actual application of the methods.
The pre-processing methods, like alignments and cognate class assignments, are
applied to contemporary phonological representations and cannot take the original
state of the word into account without using any expert linguistic information. If
this cannot be captured and analyzed in the pre-processing steps, the information
is lost and cannot be detected by the loanword detection algorithms. For example,
without any additional linguistic information, the German word Kopf cannot be
identified as loanword by the detection algorithms. Therefore, the results obtained
from the loanword detection cannot give any insights whether different evolutionary
processes are involved next to the process of borrowing detection. A distinction
between different evolutionary processes within the computation of the algorithms
is one difficulty in the procedure of automatic loanword detection.

Automated Cognate Detection For the phylogeny-based algorithms, the automated
cognate judgments limit the achievable performance of the algorithms. Compared
to gold standard data, algorithms for cognate clustering achieve promising results
(Rama et al., 2018). However, at the description level of cognate classes, it is
impossible to detect borrowings within the same cognate class. For instance, the
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English word egg is a borrowing from Old Norse egg, replacing the inherited word
ey. The English word is, therefore, annotated as loanword in the gold standard.
However, this kind of internal borrowing is invisible to the phylogeny-based methods,
since the loanword and the inherited word belong to the same cognate class. This
demonstrates that the information loss on the description level can have a negative
impact on the performance. Additionally, algorithms for cognate detection might
cluster the words differently, as proposed by linguists. The varying amount of
cognate classes can also have an impact on both the phylogeny-based loanword
algorithms and the reconstruction of character-based concept trees. The assignment
of less or even one cognate class to the words within one concept can lead to
spurious concept trees, since the effect of small matrices on tree reconstructions is
unclear. In contrast, a small amount of cognate classes have no effect on the analysis
using phylogeny-based approaches. Linguistically, a small amount of cognate classes
represent the strong relationship between the languages in the sample. If all words
in a concept are cognates, the phylogeny-based approaches would not detect any
loanwords in the analysis. If the amount of cognate classes is small, the algorithms
would detect a smaller amount of loanwords, if any. It could be assumed that this
leads to more accurate results in terms of loanword detection, since the cognate
classes add linguistic information to the analysis, and the probability of detecting
arbitrary loanwords should decrease. This, however, is not mirrored in the results
of the evaluation presented in table 6.1. The difference in the amount of cognate
classes automatically assigned to the words within one concept, compared to an
expert clustering, can lead to historically incorrect reconstructions of the character
evolution along the tree. This, in turn, affects the loanword identification carried
out by the phylogeny-based algorithms.
Overall, the task of automated cognate detection achieves promising results which
can be included in the toolchain for loanword detection. Although some effects
cannot be captured by the algorithms, the linguistic information is important to
distinguish inherited words from loanwords.

Short Word Length For the sequence-based algorithms, the word length can have
an impact on the computation of the matrices and the reconstruction of the trees.
Compared to genome sequences, the short length of the words can induce noise
resulting in less reliable trees as expected from the research on gene trees. The
number of sounds in a word determines the number of sequences used for the
alignment analysis. Shorter sequences can lead to small distance variations between
the languages within a concept. This is reflected in the small range of the distances
present in the matrix. The effect of short sequences on the language clustering
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obtained from the tree reconstruction methods can only be estimated. In theory, the
distances in the matrix are the decision basis for the tree reconstruction algorithms
to cluster the languages. This indicates that the clustering is dependent on the
computed language distances. If the distances and their variations are small, it is
more difficult for the algorithm to compute the clustering of the languages.
For the character-based methods, a small amount of cognate classes can lead to
spurious results of the concept tree reconstruction. However, the usage of different
approaches to account for word length by using subsequences does not improve
the results in terms of loanword detection. It was assumed that more information
of the characters leads to better character matrices, which could result in reliable
concept trees. The approaches using subsequences are based on the phonological
representations of the words. No further linguistic knowledge is added to the
computation. Although the number of characters in the matrix increases, the
underlying information does not gain on information. This, in turn, could explain
the missing improvements, which were expected by the analysis. Additionally,
the concept trees could only be indirectly evaluated using the tasks of loanword
detection. The resampling analyses only give insights in the stability of the inner
clades and the tree structure. No assessment of the tree could be made in terms
of correctness. To my knowledge, no equivalent methods for gene tree evaluation
are present, which is why the reliability of gene trees in bioinformatics is still
questionable, and thus, also the reliability of the concept trees. The question of gene
or concept tree evaluation remains, therefore, unanswered. It is purely speculative
to which extent the word lengths have a negative impact on the performance of the
tree reconciliation algorithms.

Tree Rooting The rooting of the trees is another blind spot in the pre-processing
analyses. Both the language and the concept tree including its replicates are rooted
to obtain a hierarchical clustering of the nodes. A rooted phylogenetic tree is able to
represent the history of the languages and the latest common ancestor of all entities
at the leaves of the tree. The rooting of the language tree is in accordance with the
classical comparative method, which identifies the root along with the reconstruction
of the proto-languages. In terms of concept trees, the declaration of one latest
common ancestor for all words presenting the same meaning should be assessed
critically. The assumption whether all words in a concept can be reconstructed to one
latest common ancestor depends highly on the linguistic theory and the languages
under consideration. For a language family like Germanic, this assumption can
easily be verified, since linguistic research has shown that all languages are highly
related to another. Additionally, they descend from another common ancestor,
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namely Proto-Indo-European (PIE). PIE contains several subfamilies, where several
reconstruction possibilities could occur: all words have one latest common ancestor
in PIE, PIE contained more than one word for the concept, or the words emerged in
the subfamilies without any representation in PIE (e.g. through borrowing, semantic
change, or neologism). The uncertainty of the identification of loanwords at a
specific time in the reconstruction, mentioned by Kessler (2001), also holds for the
identification of inherited word forms. PIE is a reconstructed language based on the
comparison of contemporaneous languages, while considering their records from
earlier times if known. The reconstructed language reflects the occurrences of the
words in its daughter languages, i.e. it determines both the number of words and
the word form. This affects the linguistic theory about the latest common ancestor
of words. However, it is assumed that all languages on a language tree descend from
one latest common ancestor. Words are passed on from the mother to the daughter
language, reflecting the inheritance of words forming a new language. Intuitively,
the same assumption can be made for the descent of words. This is in accordance
with the biological theory, where genes are passed on through sexual reproduction
and therefore descend from two parents. All of these arguments indicate that the
assumption of one latest common ancestor of words would be in accordance with
the classical comparative method. However, an unambiguous statement whether a
concept tree should be rooted by one latest common ancestor or not can therefore
not be made.
The rooting affects the hierarchical representation of the tree, which can have an
impact on the identification of the donor languages within a borrowing process.
The BD-based HGT algorithm highly depends on the input data, i.e. the language
and concept tree. The rooting of the trees has an impact on the tree reconciliation,
since the transfer events correspond to the SPR moves applied to transform the
concept tree into the language tree in order to identify loanwords, their SL, and the
directionality of transfer. The PLFI algorithm is based on the language tree and the
reconstructed cognate classes. The distribution of the languages and their ancestral
states in the tree affects the ASR and the detection of overlapping cognate sets to
determine loanwords, their SL, and the direction of the transfer. The rooting of the
trees plays, therefore, a major role in order to achieve an accurate detection of the
borrowing process for both the BD-based HGT and the PLFI algorithm.
Since the manual rooting of a linguistic tree is already a challenging task, the
correctness of automatic methods is questionable. The automatic determination
of the root using the MAD algorithm highly depends on the reconstructed trees.
The effect of negative rooting on the loanword detection algorithms can only be
estimated. Incorrect rooting has a higher impact on the tree reconciliation methods
than on the phylogeny-based algorithms. A misplaced root in the language or
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the concept tree can lead to the detection of false positive and false negative
transfer events using the BD-based HGT algorithm (Boc et al., 2010b). In the tree
comparison algorithm, the rooting can affect the language clustering, and therefore
the discordance measurement using the NTD. For the phylogeny-based algorithms, a
misplaced root in the language tree has an impact on the estimation of the character
evolution along the phylogeny, which influences the results. However, a manual
rooting of the trees would require the availability of expert trees. The automatically
reconstructed language tree could be replaced by the Glottolog tree to improve the
results of the loanword detection algorithms. This is, however, not yet possible for
the BD-based HGT algorithm. Expert concept trees are not available, which is why
the analyses need to be carried out using automatically reconstructed and rooted
concept trees.

Borrowing from Outside the Sample All loanword detection algorithms can only
determine loanwords within the language sample. Loanwords borrowed from lan-
guages not included in the sample cannot be identified as such. The cross-linguistic
studies made in this thesis are all restricted to the available datasets and the gold
standard present for the analysis. All algorithms operate on the basis of a language
tree and on some form of linguistic information of the lexical items used. Linguistic
information which is not included in the dataset cannot be taken into account by
the algorithms, since it is not given as input. This limits the automatic detection
of loanwords compared to the classical comparative method, which is based on
linguistic knowledge, and additional information can easily be taken into account.
This, of course, also affects the detection of donor languages in the BD-based HGT
and PLFI algorithm. Both algorithms can only use the information given in the
language tree to determine donor languages. Loanwords with donor languages not
present in the sample, i.e. borrowings from outside the sample, cannot be captured
by the algorithms. This can either lead to a wrong determination of the SL, or to
undetected loanwords.
The preliminary gold standard limits the evaluation of the detected loanwords of
NELex. On the one hand, this gold standard is the most precise and detailed gold
standard available. A clear distinction between inherited and loaned words can
be made, where unclear cases and unannotated words could be rejected from the
evaluation. This leads to a better estimation of precision–recall than using the binary
gold-standard data from the ASJP database. On the other hand, the annotation
of such a gold standard is a time-consuming task. Linguists classify inherited and
loaned words on the basis of etymological dictionaries. No attention can be paid to
the limitation of the algorithms in terms of intersample borrowing detection.
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Such limitations affect both the evaluation of the loanword detection and the devel-
opment of suitable algorithms. It is therefore advisable to extend the development
of annotated datasets in order to improve the results through achieving innovations
in the development of suitable algorithms.

Interpretation of the Network The statistical evaluation is an explicit interpreta-
tion of the network, i.e. each reticulation is treated as an evolutionary event due
to horizontal transfer. No further linguistic knowledge is added to the analysis.
However, the interpretation of the network has a great impact on the explanations
of the transfer events. Morrison (2011) argues that an implicit interpretation is
crucial to distinguish the various causes of evolutionary events represented by the
reticulations. In other words, without an implicit interpretation using linguistic
knowledge, borrowing cannot be distinguished from other evolutionary events like
semantic change; the correct history of the word and its SL cannot be determined;
unclear borrowings from outside the sample cannot be identified; and arbitrary
transfers cannot be identified. The graphical representation of the networks can be
used as starting point for such an implicit analysis. In linguistics, the difficulty for a
proficient analysis of the transfer events lies within the complexity of the borrowing
process. The adaptation and integration of the words into the RL are individual,
not to mention the various types of loanwords which were classified by Haugen
(1950) and others. This detailed information cannot be analyzed by the loanword
algorithms. Linguistic knowledge, and therefore an implicit analysis, is needed for a
full reconstruction of the borrowing process. However, the identified loanwords can
be evaluated using an explicit analysis, since in linguistics the two main processes,
borrowing and hybridization, are clearly distinct.

The mentioned limitations to detect loanwords influence the performance of the
algorithms. The question arises whether the detected loanwords are found by
chance. In theory, the algorithms are suitable for the detection of borrowings, and
the underlying methodologies indicate promising results. However, all algorithms
highly depend on the dataset and several pre-processing steps. The pre-processing
toolchain builds on established subfields of CHL, such as sequence alignment and
cognate clustering. The performance of the algorithms is bound to improve further
when better solutions for these subtasks are available. In addition, the limited
number of suitable datasets for the different tasks of linguistic inference limits
the development of applicable algorithms, since data for testing and training is
missing (List, 2019). There is a crucial need of annotated datasets to test both the
pre-processing and the loanword detection methods.
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Conclusion 7
This thesis presents the adaptation of the tree reconciliation framework into compu-
tational historical linguistics and its application using linguistic data. The approach
reconciles two linguistic trees to compute the discordance between them in order to
detect horizontal transfer. The background in historical linguistics is reviewed to
specify guidelines and definitions for a clear usage and implementation of the tree
reconciliation approach. The most important insight is that the identification of loan-
words, their adaptation process, and the detection of the SL are challenging tasks.
The adaptation and integration of loanwords is language, if not process-specific.
No universal assumptions and patterns can be established which could be used as
additional information for the task of automatic loanword detection. There are a
few linguistic constraints on borrowing, which are included in the analysis. First,
the borrowing hierarchy indicates that nouns are most likely to be borrowed, which
is reflected in the usage of a basic vocabulary list. Second, the classical comparative
method serves as basis, since cognates and sound correspondences are criteria to
distinguish inherited from loaned words. Third, the clear distinction between hy-
bridization and borrowing leads to an unambiguous analysis of loanwords.
The underlying methodology of the algorithms requires a language and a concept
tree for the process of tree reconciliation. The language tree displays the classifi-
cation of the languages according to a basic vocabulary list, whereas the concept
tree represents the language clusters within a single concept, i.e. the evolution
of individual words. The comparison of a single concept tree to a language tree
gives insights into the different evolutionary histories of the words. The mismatches
between the trees are due to horizontal transfer, where the explicit identification of
the loanword, the RL, the SL, and the directionality can be inferred. Language trees
are a well-known model to display language classifications, and suitable methods
for their automatic reconstruction are established in the field of CHL. Up to this
point, less attention is paid to the reconstruction of concept trees to illustrate the
evolution of individual words using the tree model. Although several studies used
concept trees for the detection of horizontal transmission, the reconstruction was
a secondary effect of the analyses (see Delz (2013), Delz (2014), and Willems
et al. (2016)). Since the concept trees play a major role in the tree reconciliation,
different approaches to compile distance and data matrices for concept tree re-
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construction are introduced in chapter 4. The main challenge in linguistics, and
also in bioinformatics, is to assess the quality of the concept trees. There are no
expert concept trees which can be used for a tree comparison to determine the
correctness of the trees. Therefore, statistical resampling techniques are used to
establish the reliability of the trees. The character-based algorithms, IQ-Tree and
MrBayes, already include the computation of a tree sample to determine the stability
of the clades. For the distance-based method, the noisy bootstrap technique was
introduced to assess the reliability of inner clades. All resampling techniques create
a tree sample out of replicates, which can be used to find the optimal method for
the reconstruction of concept trees. This is an important step towards an unbiased
comparison of the different methods independently from other tasks like loanword
detection. In summary, there are three methods for concept tree reconstruction
found to be ideal in comparison to the other methods under consideration, namely
CTdow, CTML+ngramsNW, and CTBayesian+NW. The resulting concept trees and their
replicates from these three methods are used for the loanword detection tasks.
The tree reconciliation algorithm from Boc et al. (2010b) is used to infer HWT events
which result in the detection of loanwords. The algorithm is an implementation of
the tree reconciliation procedure described in chapter 3.3, and can be applied to
linguistic data to test whether a direct adaptation of the algorithm is fruitful for the
detection of borrowings and the corresponding loanwords. The BD-based version
is the one of choice used for the linguistic analyses. It provides information about
single transfer events, the loaned word, the RL, the probable SL, and the direction of
the transfer. These results can additionally be illustrated in an evolutionary network.
The BD-based HGT algorithm is applied to each concept of NELex to extract the
loanwords detected by the algorithm for the whole dataset.
The BD-based HGT algorithm is compared to three algorithms from CHL for the task
of borrowing detection. The first algorithm, introduced by Delz (2014), is a tree
comparison method based on the idea of tree reconciliation to detect loanwords. The
algorithm was only evaluated manually, since at the time the database under consid-
eration did not contain expert judgments for loanwords. The analysis is repeated
using the data from NELex and serves as a direct comparison to the BD-based HGT
algorithm. The MLN approach, originally introduced in phylogenetics by Dagan and
Martin (2007), was applied to the task of borrowing detection by Nelson-Sathi et al.
(2011). In contrast to tree reconciliation methods, MLNs establish the evolution
of binary characters along a given language tree to detect the transfer events. In
several studies, MLNs are used to model language contact (see e.g. Nelson-Sathi
et al. (2011), List et al. (2014a), List et al. (2014b), List (2015), and Jäger and
List (2018)). In addition, the method can be applied to concept data in order
to detect the lexical items included in the contact scenario. The third linguistic
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model is the PLFI model developed by Dellert (2019a). The approach makes use of
information-theoretic causal inference to discover language contact and to generate
an evolutionary network including reticulate edges. The detected contact situations
by the PLFI method contains information on specific borrowing events and lexical
items involved in the transfer which can be statistically evaluated.
The algorithms are divided into phylogeny-based (MLN and PLFI) and sequence-
based methods (BD-based HGT and TC algorithm) to achieve a reliable statistical
evaluation. Additionally, two further evaluations are carried out. First, the usage
of reliability values of the transfer events for the sequence-based algorithms are
evaluated to determine whether arbitrary transfers can be rejected from the results.
Second, a qualitative evaluation on the identification of SLs is carried out for the
BD-based HGT and the PLFI algorithm. All results show a rather poor performance
of the four algorithms. This was expected, since the task of loanword identification is
challenging and involves several intermediate steps on the way to the identification
and reconstruction of a borrowing process. The detailed review in chapter 2 presents
the great variety of linguistic and social constraints which led to the full integration
and adaptation of the loaned words in the RL, not to mention the great challenge
to reconstruct the language history, the contact scenarios, and all additional factors
involved in the borrowing process. It is therefore not surprising that an automatic
identification of loanwords without any additional linguistic information results in
a poor performance. In addition, the identification of loanwords comes with some
limitations which cannot be captured by the algorithms.
In summary, the algorithms on automatic loanword detection are still in their infancy.
The BD-based HGT algorithm from phylogenetics, adapted for this task into CHL,
is a step into the right direction. Using the framework of tree reconciliation, the
algorithm can detect the loanword, the RL, the SL, and the directionality of the
transfer. This can only be captured by the PLFI network, which, however, shows the
worst performance compared to the other three algorithms. The thesis shows that
a direct transfer of HGT algorithms in CHL results in an equally poor performance
as the algorithms developed for the purpose of detecting horizontal transmission.
Although further improvements of the methods are necessary, the detection and
identification of loanwords is a first step for a deeper understanding of language
contact, contact scenarios, and possible types of loanwords present in the data. The
development of appropriate approaches and algorithms has been neglected in CHL
for far too long. It was, therefore, worthwhile to adapt phylogenetic methods into
CHL to shed light on their application, performance, and results obtained from the
analyses.
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7.1 Outlook

Since the task of automatic loanword detection highly depends on the pre-processing
steps, there are various options to improve the performance of the tree reconciliation
algorithms.
The implementation of the BD-based HGT algorithm could be extended to work
with multifurcating language trees. If an expert language tree could be used for the
reconciliation, more linguistic information on the languages’ history is included in
the computation. This could not only improve the results of the loanword detection
along with the reliability of the transfer events, but also the determination of the
potential donor languages.
The uncertainty of the concept trees’ reliability is a far-reaching problem. No expert
concept trees are available, and a reconstruction by linguists is time-consuming. The
development of methods using more linguistic information on the history of words
is necessary. However, this would include information on inheritance and borrowing
of the words, along with an integration of possible adaptation steps of loaned words,
which need to be explored in both classical and computational historical linguistics.
Additionally, the inclusion of linguistic information needs to be treated carefully to
avoid circularity in the process of automatic clustering and reconstruction of the
languages.
The problem of short sequence alignment is crucial in terms of concept tree recon-
struction, which leads to the question whether basic vocabulary lists are suitable
for this task. However, the issue of data availability limits the application of other
datasets. If different datasets are used for the concept tree reconstruction, it must
be ensured that high-quality gold-standard data is available for the evaluation. In
addition, linguistic constraints on borrowing should be considered along with the
choice of the dataset using different concepts. The WOLD database includes concepts
of the modern world which reflect a high amount of borrowing. However, many
of these concepts are not culture-free, i.e. a high proportion of the languages have
no word representing this meaning (Tadmor et al., 2010). It is obvious that the
choice of the underlying dataset is limited on further restrictions which need to be
considered for the task of automated loanword detection.
Each pre-processing step needed for a detailed loanword detection analysis requires
more research to develop reliable methods which could be used for further process-
ing. This includes both the development of concept tree reconstruction methods and
the automatic rooting of trees. The issue of data availability for training and testing
algorithms and enhancing the development of suitable methods is still present in
CHL. There is a major need for high-quality databases which can serve as input for
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the automatic phylogenetic methods. In addition, annotated gold-standard data is
needed for a more detailed annotation of the results. The research group around
NELex is working on a high-quality gold standard, which clearly had a positive
impact on the evaluation of the algorithms. With an increasing gold standard,
more detailed evaluations are possible to gain more profound insights into the
performance of the loanword detection algorithms.

7.2 Final Remarks

The main contributions of this thesis to the field of computational historical linguis-
tics are rather related to methodology and algorithms as to the results themselves. It
has been shown that both is possible: the reconstruction of concept trees to model
the evolution of words along a phylogeny, and the application of tree reconciliation
to detect loanwords, the RL, the SL, and the direction of transfer. Although the
methods for the task of automated loanword detection are still in their infancy,
the HGT methods adapted from phylogeny open a new research field introducing
new methods and challenges to CHL. It is a long way to develop a model for a
complete identification and reconstruction of borrowing processes. However, tree
reconciliation methods are a step into the right direction in order to model transfer
events.
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Appendix A
A.1 Evidence for Noisy Bootstrap: Neighbor-Joining

versus FastME

All analyses in the experiment to verify the noisy bootstrap method presented in
chapter 4.1.4 are also carried out using the neighbor-joining algorithm. The compar-
ison of the results is shown in table A.1.

Inferred language tree GQD
NJ 0.0324
FastMe 0.0193
Consensus tree standard bootstrap GQD
NJ 0.0250
FastMe 0.0193
Consensus tree noisy bootstrap GQD
NJ 0.0317
FastMe 0.0206

Tab. A.1.: Generalized quartet distance between the expert tree and inferred trees obtained
from the NJ algorithm.

The generalized quartet distances (GQD) show a high agreement with the Glottolog
tree for both methods. Using NJ, the agreement between the automatically recon-
structed NJ tree is slightly smaller, but still indicates a correctness of around 80%. A
similar distance is computed between the consensus tree obtained from the noisy
bootstrap method and the expert tree. The results underline the usage of the noisy
bootstrap method as suitable alternative to the standard bootstrap method in terms
of computing the accuracy of trees.
The comparison of the reconstruction methods shows a higher agreement between
the trees inferred using the FastME algorithm. This underlines the results of Jäger
(2013a), who showed that the FastME algorithm with post-processing options slightly
improves the results of automatic language classification compared to other re-
construction methods. This emphasizes FastME as the method of choice for the
reconstruction of distance-based trees.
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A.2 Automatically Inferred Language Tree on NELex

The following figure represents the automatically reconstructed language tree for
the NELex database using MrBayes. The tree is the best representative tree from
the posterior distribution, i.e. the MCC tree. It is an actual tree from the sample
with a fully resolved topology. In addition, the tree is rooted using the MAD rooting
algorithm. For a better representation, the tree is split into two halves.

Fig. A.1.: Upper half of the language tree.
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Fig. A.2.: Lower half of the language tree.
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A.3 Sample Size Estimation for MLN Sampling

The MLN algorithm results in a language pair included in the transfer process, but
cannot distinguish between RL and SL. In chapter 6.2.1, a workaround solution is
presented to account for this issue. The procedure includes sampling of the data in
order to estimate precision and recall for the MLNs. For each language pair present
in a transfer event, the RL is chosen randomly. For the chosen RL, precision and
recall are computed to maintain a statistical parameter. The sample size determines
the number of sampling steps, and therefore the number of possible RLs used for
the evaluation procedure. In order to obtain an overall estimate, the mean of all
precision, recall, and F-score values is computed. As it can be seen in table A.2, the
resulting numbers for precision, recall, and F-scores do not differ significantly. For a
matter of running time, a sample size of k = 100 is chosen for the final analysis.

Sample size Mean precision Mean recall Mean F-score
100 0.145 0.567 0.231
500 0.145 0.572 0.232
1,000 0.145 0.572 0.232

Tab. A.2.: Precision–recall values for the different sample sizes for MLN sampling.

A.4 Evaluation of Bootstrap Thresholds

A detailed representation of the evaluation scores for each bootstrap threshold is
given in table A.3a for the tree comparison algorithm, and in table A.3b for the BD-
based HGT algorithm. Since the F-scores are not illustrated in the precision–recall
curve, they are listed in the corresponding tables. It can clearly be seen that
independent of the thresholds, the recall decreases, whereas the F-score does not
increase, which is an indicator of a great amount of noise present in the results of
the tree reconciliation algorithms.
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Method Threshold Precision Recall F-score

CTBayesian+NW

0.1 0.152 0.424 0.224
0.2 0.151 0.414 0.221
0.3 0.152 0.404 0.221
0.4 0.153 0.391 0.220
0.5 0.150 0.360 0.212
0.6 0.156 0.333 0.212
0.7 0.156 0.288 0.202
0.8 0.155 0.230 0.186
0.9 0.156 0.164 0.160

CTML+ngramsNW

0.1 0.148 0.395 0.215
0.2 0.150 0.391 0.217
0.3 0.153 0.370 0.217
0.4 0.160 0.326 0.215
0.5 0.160 0.244 0.193
0.6 0.168 0.165 0.167
0.7 0.211 0.102 0.138
0.8 0.260 0.042 0.073
0.9 0.371 0.010 0.0212

CTdow

0.1 0.167 0.344 0.225
0.2 0.172 0.336 0.228
0.3 0.175 0.314 0.224
0.4 0.176 0.288 0.219
0.5 0.181 0.264 0.215
0.6 0.186 0.225 0.204
0.7 0.199 0.197 0.198
0.8 0.222 0.155 0.183
0.9 0.227 0.099 0.138

(a) Precision–recall values for the bootstrap thresholds for
the tree comparison algorithms.

Method Threshold Precision Recall F-score

CTBayesian+NW

0.1 0.143 0.537 0.227
0.2 0.142 0.404 0.210
0.3 0.143 0.321 0.198
0.4 0.145 0.252 0.184
0.5 0.143 0.198 0.166
0.6 0.135 0.143 0.139
0.7 0.138 0.111 0.123
0.8 0.130 0.073 0.093
0.9 0.150 0.040 0.063

CTML+ngramsNW

0.1 0.150 0.243 0.185
0.2 0.158 0.148 0.153
0.3 0.160 0.087 0.113
0.4 0.178 0.058 0.088
0.5 0.166 0.034 0.057
0.6 0.157 0.017 0.031
0.7 0.226 0.014 0.026
0.8 0.230 0.007 0.014
0.9 0.294 0.004 0.008

CTdow

0.1 0.143 0.653 0.235
0.2 0.151 0.542 0.236
0.3 0.163 0.462 0.241
0.4 0.168 0.365 0.230
0.5 0.173 0.270 0.211
0.6 0.176 0.199 0.187
0.7 0.176 0.147 0.160
0.8 0.182 0.101 0.129
0.9 0.192 0.061 0.093

(b) Precision–recall values of the bootstrap thresholds for
the BD-based HGT algorithms.

Fig. A.3.: Evaluation of the bootstrap thresholds for the sequence-based algorithms.
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A.5 Availability of the Programming Code

The programming code is available on my GitHub profile MarisaKoe (https://gi
thub.com/marisaKoe), where the repositories are organized in a project named
Automatic Loanword Identification using Tree Reconciliation (https://github.com
/users/marisaKoe/projects/1). In the following, the names of the programs are
allocated to the chapters of the dissertation.

Chapter Description URL GitHub
Chapter 4.1.1 Reconstruction of state-of-the-art

distance-based concept trees
https://github.com/marisaK
oe/conceptTreesPMI

Chapter 4.1.2 Reconstruction of distance-based
concept trees using cognate data

https://github.com/marisaK
oe/conceptTreesCognateData

Chapter 4.1.3 Combining sequence and geo-
graphical distances for concept
tree reconstruction

https://github.com/marisaK
oe/geo_conceptTrees

Chapter 4.1.4
Reconstruction of the language
tree using Bayesian inference

https://github.com/marisaK
oe/languageTreeMrBayes

Standard Bootstrapping for the
language tree

https://github.com/marisaK
oe/languageTreePMI

Noisy bootstrapping for concept
trees

https://github.com/marisaK
oe/bootstrappingWithNoise

Chapter 4.2 Reconstruction of binary matrices
and character-based tree recon-
struction

https://github.com/marisaK
oe/conceptTreesCharBased

Chapter 4.2.3 Reconstruction of the binary
data matrices using substring se-
quences

https://github.com/marisaK
oe/binaryDataMatrices

Chapter 4.1.5 and 4.2.4
Extract the MCC tree from the
tree replicates

https://github.com/marisaK
oe/mccTree

Evaluation of the most reliable
method according to the MCC
trees

https://github.com/marisaK
oe/mccEvaluation

Chapter 5.2.3 Tree rooting using MAD https://github.com/marisaK
oe/rootingMAD

Chapter 5.1.1 Horizontal Language Transfer us-
ing BD-based HGT algorithm

https://github.com/marisaK
oe/loanwordDetection-HGT
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