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Zusammenfassung

Semiklassische Approximationen spielen eine wichtige Rolle in der mathe-
matischen Physik. Hierbei ist es das Ziel, Eigenschaften geeigneter quanten-
mechanischer Systeme im Grenzwert 7 — 0 durch klassisch Hamiltonsche
Systeme anzundhern. Im Standardfall wird das quantenmechanische System
durch einen selbstadjungierten Hamiltonoperator i = h(z, —i h'V,) auf dem
Hilbertraum L?(R") reprasentiert. Dann ist das assoziierte klassisch Hamil-
tonsche System gegeben durch (T*R",w°, h) wobei die Hamilton-Funktion £
das Symbol des Hamiltonoperators / und (T*R",w") eine 2n-dimensionale
symplektische Mannigfaltigkeit darstellt. Der Phasenraum 7*R"™ = R?" ist das
Kotangentialbiindel des R". Die kanonische symplektische Form w° ist durch
ihre Koeffizientenmatrix w" = (_({n 10") festgelegt. Die durch semiklassische
Methoden approximierten quantenmechanischen Eigenschaften umfassen
das Spektrum und die Eigenfunktionen des Hamiltonoperators , Losungen
—iht/h

der zeitabhéngigen Schrodingergleichung, die unitare Gruppe e , sowie

statistische Erwartungswerte tr ( f(h) &).

Jedoch verhalten sich in vielen Situationen nur einige physikalische Frei-
heitsgrade semiklassisch. Das einfachste Beispiel hierzu sind Teilchen mit
Spin. Hier nimmt die Wellenfunktion ¢» Werte in C' an, also ist der Zu-
standsraum durch L?(R", C!) gegeben. Allgemeiner betrachtet man den Zu-
standsraum L?(R",H;), wobei H; einen separablen Hilbertraum darstellt.
Der Hilbertraum #; wird als Raum der ’gefaserten’ oder ’schnellen’ Frei-
heitsgrade bezeichnet. In vielen derartigen Quantensystemen kann der
Hamiltonoperator A~ als Weyl-Quantisierung op, (H) = H = H(z, —ie V,)
eines auf dem Phasenraum 7*R" definierten Symbols H (g, p) mit Werten
in den linearen selbstadjungierten Operatoren auf H; dargestellt werden,
also H = op, (H) mit H : T*R" = R*>" — L, (#;). Hierbei kontrolliert der
kleine, dimensionslose Parameter ¢ < 1 die Trennung der Skalen. Die physi-
kalische Bedeutung von ¢ ist abhidngig vom konkreten Anwendungsbeispiel.
Der asymptotische Grenzwert ¢ — 0 entspricht dem adiabatischem Limes,
in welchem sich die langsamen’ von den ’schnellen’ Freiheitsgrade entkop-
peln. Gleichzeitig stellt ¢ — 0 den semiklassischen Limes der 'langsamen’
Freiheitsgrade dar. Fiir einen Uberblick iiber adiabatische Probleme in der
Physik verweisen wir auf das Buch von Bohm, Mostafazadeh, Koizumi, Niu
und Zwanziger [Boh+13].
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Auch im Zusammenhang adiabatischer Quantensysteme ist die semiklas-
sische Analysis sehr erfolgreich und die Menge an existierenden Arbeiten
in diesem Zusammenhang ist enorm. Das Ziel semiklassischer Methoden ist
es, quantenmechanische Eigenschaften auf der Skala der 'langsamen’ oder
’semiklassischen’ Freiheitsgrade zu approximieren. In dieser Arbeit liegt der
Fokus auf folgenden Eigenschaften: dem quantenmechanischen Erwartungs-
wert einer Observable A” im thermodynamischen Gleichgewicht mit Zustand
JH)

trp(f(H) A7)
sowie der quantenmechanischen Evolution einer Observable A~ im Heiseberg-
Bild der Quantenmechanik

A (t) _ 1Ht/5A efllrlt/s'

Hierbei ist die Observable A° ein selbst-adjungierter Operator auf dem
Hilbertraum A mit operatorwertigem Symbol A : T*R" — L, (Hs).

Es existiert eine Vielzahl an Methoden zur Herleitung solcher semiklassi-
scher Approximationen. Beispiele hierfiir sind adiabatische Stérungstheorie
(siehe z.B. [PSTO3b; Teu03]), WKB Methoden (siehe z.B. [EW96; Car08;
WLY13]), Gaufdsche Biindel (siehe z.B. [GRT88; DGR02; JWY08]), kohéirente
Zustande (siehe z.B. [Hag80; Hag87; Hag89; Hag94; HJ99; HJ01]) oder
Wigner-Mal3e (siehe z.B. [Gér+97; MMP94; Bal+99; BMPO01]). Was alle die-
se Methoden gemeinsam haben, ist die Einschrdnkung des Zustandsraumes
‘H auf einen Unterraum, welcher mit einem oder einer Menge an Eigen-
werten e()(q, p) des Symbols H(q, p) assoziiert ist. Hierbei ist es notwendig,
dass der Eigenwert oder die Menge an Eigenwerten e (q, p) eine Liicke zum
Rest des Spektrums von H (q,p) aufweisen. Bekanntermallen kommutiert die
Quantisierung PO der Projektion P auf den Eigenraum des Eigenwer-
tes ¢()(q, p) mit dem quantenmechanischen Evolutionsoperator e~ /¢ bis
auf Fehler der Ordnung € (1 + |t]), siehe z.B. [Teu03, Abschnitt 2.2]. Somit
bleibt der Unterraum P H bis auf Fehler der Ordnung e (1 + |t|) invari-
ant unter der quantenmechanischen Zeitevolution. Hierbei ist zu bemerken,
dass, im Gegensatz zu e~1Htder unitdre Operator e~iflt/s den Zeitevolutions-
operator auf der Skala der 'langsamen’ Freiheitsgrade darstellt. Auf3erdem
ist bekannt, dass fiir eine semiklassische Observable ¢° der quantenmecha-
nische Erwartungswert im thermodynamischen Gleichgewicht, sowie die
quantenmechanische Evolution der Observablen a°, eingeschrankt auf den



Raum P() E’H, durch die klassischen Analoga zum Hamiltonschen System
(R?", w0, e™) bis auf Fehler der Ordnung ¢ approximiert werden. Es gilt:

trw (F(AT) AT PO = (2me) /]R ()X + O )
sowie - -
7 (- i) P 0, @

wobei A\’ = dgdp das Liouville-Maf3 der kanonischen symplektischen Form
w" und @} den Fluss der Hamiltonschen Bewegungsgleichungen darstellen.

Basierend auf der Arbeit von Helffer und Sjostrand [HS90a] bereiteten
Nenciu und Sordoni [NSO4] mit der Herleitung der fast-invarianten oder
super-adiabatischen Projektion 1T~ = PO 4 O(e) den Weg fiir semiklassische
Approximationen hoherer Ordnung in e. Die fast-invariante Projektion n°
kommutiert mit dem Hamiltonoperator 4 * und somit auch mit dem unitiren
Zeitevolutionsoperator e~ /¢ bis auf Fehler welche asymptotisch kleiner
als jede Potenz von ¢ sind. Somit bleibt der sogenannte fast-invariante Un-
terraum 11 7 bis auf Fehler beliebiger Ordnung in ¢ invariant unter der
quantenmechanischen Zeitevolution.

Aber wie verhalten sich quantenmechanische Systeme, wenn man den
Zustandsraum auf den fast-adiabatischen Unterraum I1°# einschriinkt? Wel-
ches klassisch Hamiltonsche System kann mit einem solchen Quantensystem
assoziiert werden? Oder anders gefragt: Welchen Einfluss hat die Stérung
der Eigenprojektion P auf die Geometrie des klassischen Phasenraums und
die Hamiltonfunktion? Kénnen der quantenmechanische Erwartungswert im
thermodynamischen Gleichgewicht und die quantenmechanische Evolution
von Observablen eingeschrankt auf den fast-adiabatischen Unterraum Y
auf hohere Ordnungen in ¢ semiklassisch approximiert werden? Und was ist
mit Observablen mit operatorwertigen Symbolen? All diese Fragen kénnen
bisher nur teilweise oder gar nicht beantwortet werden. Ziel dieser Arbeit ist
es eine vollstandige Antwort auf alle obigen Fragen zu liefern.

Im Folgenden werden wir unsere Ergebnisse vorstellen, wobei wir auf
technische Details verzichten. Wir betrachten einen Hamiltonoperator A"
auf dem Hilbertraum H = L*(R", H;) mit Symbol H : R*" — B, (H;),
welches Werte in den beschrankten, selbst-adjungierten Operatoren auf dem
separablen Hilbertraum #; annimmt. Weiters sei ¢ : R>® — R ein isolierter,
nicht-entarteter Eigenwert von H(q,p), der glatt von (¢,p) abhéngt. Die
Eigenprojektion zum Eigenwert ey(q, p) wird mit Py(q, p), und die mit ey(q, p)
assoziierte super-adiabatische Projektion mit 11" bezeichnet. Fiir die genauen
Voraussetzungen siehe Abschnitt 2.3.
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In Abschnitt 3.2 zeigen wir, dass fiir jeden geeigneten Weyl-Operator
B° mit operatorwertigem Symbol B : R?" — B(H;) ein fast-eindeutiger
semiklassischer Operator b existiert, welcher die Wirkung des Operators
B° eingeschrinkt auf den fast-invarianten Unterraum 11" bis auf Fehler
beliebiger Ordnung in ¢ approximiert. Der Begriff fast-eindeutig bedeutet
hier und im Folgenden, dass der Operator und sein Symbol eindeutig bis auf

Fehler beliebiger Ordnung in ¢ sind.

Effektive Operatoren (cf Satz 3.6)
Sei B : R*™ — B(H;) ein geeignetes operatorwertiges Symbol und die
Koeffizienten b;(z) rekursiv gegeben durch

bo = tl"Hf (B Po)
und

bj+1 = tI"Hf (:j—l-l P()) fir ] > 07

wobei 3, als j + 1-ter Koeffizient der asymptotischen Entwicklung
TH# (B — b1y, ) # 7 = 12,6 3 mit b¥) = Y7 £ b; gegeben ist. Weiters
sei das skalarwertige Symbol b : R*" — C gegeben als Resummation der
asymptotischen Entwicklung $°5°, &' b;(2).
Dann gilt

THBH#T—mH#HbH#T=0(E>)

und

AE AE _AE

OB -1 b0

= 0(e%).

Aulderdem gilt fiir B Spurklasse und beliebiges N € Ny, dass
try (B7— 0™ ) 1) = O (N1 BJIS. )

Im Folgenden nennen wir b~ den effektiven Operator von B” und b(z) das
entsprechende effektive Symbol. Beachte, das effektive Symbol b ist reell-
wertig, falls das Symbol von B~ Werte in den selbst-adjungierten Opera-
toren auf H; annimmt. Die Koeffizienten der asymptotischen Entwicklung
b(z) < 392, ¢ b;(2) sind explizit gegeben in Abhéngigkeit vom Symbol B(z),
dem Symbol des Hamiltonoperators H(z), dem Eigenwert ¢((z), der Eigen-
projektion P,(z) sowie deren Ableitungen.

Damit existiert ein fast-eindeutiger semiklassischer Operator A mit e-
abhingigem Symbol h : R?*" — R, welcher die Wirkung des Hamiltonopera-
tors A eingeschrankt auf den fast-invarianten Unterraum 1" H auf beliebige



Ordnung in ¢ approximiert, sieche Korollar 3.8. Die asymptotische Entwick-
lung von h ist von der Form

h(z) < eo(z) + Y e My(2).
i=1
Fiir den expliziten Ausdruck von & inklusive der Korrektur zweiter Ordnung
in ¢, siehe (3.65). Das skalarwertige Symbol # stellt die klassische Hamil-
tonfunktion des zum adiabatischen Quantensystem assoziierten klassisch
Hamiltonschen Systems dar.

Dies ist die erste Arbeit, in welcher effektive Operatoren im obigen Sinne
hergeleitet werden. Bisher war nicht bekannt und wurde noch nicht einmal
vermutet, dass im Allgemeinen semiklassische Operatoren existieren, welche
die Wirkung des Hamiltonoperators I * im fast-invarianten Unterraum 11 H
auf Fehler hoherer Ordnung als £? approximieren, sieche [ST13, Kapitel 3].
Hingegen ist die Existenz eines solchen effektiven Hamiltonoperators zu
erster Ordnung schon bekannt, siehe zum Beispiel [ST13, Kapitel 3]. Die
Korrektur erster Ordnung Mj(z) zum Eigenwert eq(z) ist bekannt als "M,
'no-name’ oder Rammal-Wikinson-Term. Die Verallgemeinerung auf beliebige
operatorwertige Symbole ist unseres Wissens auch fiir die Approximation zu
Fehlern zweiter Ordnung in ¢ eine Neuerung.

Es ist beachtlich, dass die Wirkung der ’schnellen’ Freiheitsgrade im fast-
adiabatischen Unterraum bis auf Fehler beliebiger Ordnung in ¢ durch Kor-
rekturen der semiklassischen Operatoren eingefangen werden kann. Dies ist
eines der Hauptergebnisse dieser Arbeit, da es die Grundlage fiir die semi-
klassischen Approximationen in dieser Arbeit ist. Wir werden uns hier auf
die Anwendung dieser effektiven Operatoren zur Herleitung semiklassischer
Approximationen hoherer Ordnung unter der Verwendung von Weyl-Calculus
beschranken. Gleichwohl erwarten wir, dass mithilfe der effektiven Hamil-
tonfunktion A, durch Erweiterung der Methode von Emmrich und Weinstein
[EW96], bessere WKB-Approximationen hergeleitet werden konnen.

Nachdem wir mit (z) die zugehoérige Hamiltonfunktion des auf den fast-
invarianten Unterraum eingeschriankten Quantensystems gefunden haben,
beantworten wir im néchsten Schritt die Frage des Einflusses der Einschran-
kung auf den fast-invarianten Unterraum auf die Geometrie des Phasen-
raumes R?", Hierzu zeigen wir in Proposition 3.2 die Existenz einer fast-
eindeutigen Rang-1 Projektion P°(¢, z) = Fy(z) + O(¢) welche, bis auf die



Py-diagonale Korrektur ¢ 7 (¢, z), mit dem Symbol 7 (¢, z) der adiabatischen
Projektion 11" iibereinstimmt, es gilt

m(e,2) = P°(e, 2) + € Po(2) 7(e, 2) Po(2) + € Py-(2) 7 (e, 2) Py (2).

Die Familie von Rang-1 Projektionen P¢(e, z) induziert eine symplekti-
sche Form w® auf dem Phasenraum 7*R". Hierbei betrachtet man das Hil-
bertbiindel £ : T*R"™ x H; Py PR mit Pg der Projektion auf die erste
Komponente und versehen mit dem kanonisch flachen Zusammenhang V,
wobei fiir ¢ € T'(E) und X € I'(T(T*R")) gilt, dass (Vx¢)(z) = X7 9;¢(2).
Das Symbol H : T*R"™ — B(H;) kann als Schnitt im Endomorphismenbiin-
del von E betrachtet werden, das heilt H € I'(End(£)) wirkt auf Schnitte
¢ € I'(E). Nun wird mit der Rang-1 Projektion P¢ € I'(End(FE)) das Vektor-
biindel L¢ := {(z,¢) | #(z) € P°(e, z) Hs} von E assoziiert. Durch Projektion
des Zusammenhangs V auf £ wird nun ein Zusammenhang auf L indu-
ziert, also V5 ¢ := P°Vx ¢ fiir ¢ € I'(L) C I'(E) und X € I'(T(T*R")).
Der resultierende Zusammenhang V¢ wird im Folgenden als modifizierter
Berry-Zusammenhang bezeichnet. Die Kriimmungsform R° des modifizier-
ten Berry-Zusammenhangs V¢, genannt modifizierte Berry-Kriimmung, ist
gegeben durch { RS, dz' A dz/, wobei

Ry = try, (P°[07P7, 0, P7]),

siehe Proposition 3.9.

Die modifizierte Berry-Kriimmung induziert eine symplektische Form w®

iiber dem klassischen Phasenraum 7*R" durch w® := w°

— e1 R¢, siehe Propo-
sition 3.10. Somit definiert w* eine 2n-dimensionale symplektische Mannig-
faltigkeit (T*R", w®) iiber dem Phasenraum 7*R™. Es stellt sich also heraus,
dass die Einschrankung auf den fast-invarianten Unterraum 11" eine Kriim-
mung der kanonischen symplektischen Mannigfaltigkeit (7*R", w") induziert,

welche durch die symplektische Form w* dargestellt wird.

Des Weiteren ist die Koeffizientenmatrix der modifizierten Berry-Kriimmung
Re, bis auf einen Faktor i, gegeben als Imaginéarteil des modifizierten quan-
tengeometrischen Tensors

7;; =2 tI‘Hf (,P6 82735 83‘7)5) .



Der Realteil des modifizierten quantengeometrischen Tensors 7° definiert
eine Fubini-Study-Metrik ¢ auf dem Phasenraum 7*R". Die Fubini-Study-
Metrik ¢° = g;; dz' ® dz/ auf T*R" ist dann geben durch

g?j = tl";t.[f (PE [81’7)5, GJPE]+) s

wobei |-, -] den Anti-Kommutator darstellt.

Zusammen mit der klassischen Hamiltonfunktion A definiert die symplek-
tische Form w* ein klassisch Hamiltonsches System (7*R",w®, h). Durch die
Hamiltonschen Gleichungen w®(X}, ) = Vh ist das Hamiltonsche Vektorfeld
durch X ,(f’j ) = —(cf)j_i1 0;h gegeben. Dadurch ergeben sich die klassischen
Bewegungsgleichungen

(Q) — _ws(q7p>—1 (aqh(%p)) )

p Oph(q,p)

Wir sehen in weiterer Folge, dass, analog zu (1) und (2), quantenmechanische
Gleichgewichtserwartungswerte, sowie die quantenmechanische Evolution
von Erwartungswerten approximiert werden durch die zum klassisch Ha-
miltonschen System (7*R",w*, h) zugehorigen, klassischen Analoga. Dabei

miissen fiir semiklassische Approximationen hoherer Ordnung Quantenkor-
rekturen der Ordnung £? beriicksichtigt werden.

Analog zur Herleitung des modifizierten Berry-Zusammenhangs V¢ indu-
ziert die fiihrende Ordnung der Projektion P, die Eigenprojektion 7, ein
Vektorbiindel L := {(z,¢)| ¢(z) € Py(z) H¢} von E, das sogenannte Eigen-
biindel. Der mit dem Eigenbiindel assoziierte Zusammenhang VB = P, V
ist bekannt als Berry-Zusammenhang. Der Berry-Zusammenhang ist eine
wichtige GroRe in der Festkorperphysik und allgemein im Zusammenhang mit
adiabatischen Problemen. Die Holonomiegruppe des Berry-Zusammenhangs,
die Berry-Phase, spielt eine wichtige Rolle in der Erforschung von Bloch-
Elektronen und vielen verwandten Themen, wie schon in vielen wichtigen
physikalischen und mathematischen Arbeiten untersucht [ST13; PSTO3b;
MMP94; WLY13; CMS04; DL11; Bus87]).

Die mit der Eigenprojektion P, assoziierte Fubini-Study-Metrik ¢, auf
dem Phasenraum 7*R" ist unter anderem bekannt als Quantenmetrik. Im
Vergleich zur Berry-Kriimmung ist die Quantenmetrik nicht sehr gut er-
forscht, hat aber zuletzt reges Interesse in der Festkorperphysik geweckt,
siehe [Pié+16; GYN14; GYN15; Tan+19; Roy14; PG18]. Wir werden sehen,
dass die Quantenmetrik eine entscheidende Rolle in der semiklassischen

Xi
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Approximation von quantenmechanischen Erwartungswerten im thermody-
namischen Gleichgewicht spielt.

Unseres Wissens ist dies die erste Arbeit, in welcher, mit dem modifizier-
ten Berry-Zusammenhang V¢ und der Fubini-Study-Metrik ¢°, allgemeine
Korrekturen zum bekannten Berry-Zusammenhang V2™ und der Quanten-
metrik gy herleitet werden. Durch Einfiihrung eines Zusatzschrittes ergibt
sich die Projektion P¢ auf natiirliche Weise aus der Konstruktion der super-
adiabatischen Projektion 11", siche Lemma 3.1. Daher ist der Beweis von
Existenz und Eindeutigkeit der Projektion P¢ relativ einfach, vorausgesetzt
man ist vertraut mit der Konstruktion der super-adiabatischen Projektion .
Die Hauptschwierigkeit und der Fortschritt liegen hier in der Entdeckung
einer natiirlichen Definition fiir P¢, sodass das damit assoziierte klassisch
Hamiltonsche System (7*R",w®, h), bis auf Quantenkorrekturen, quanten-
mechanische Gleichgewichtserwartungswerte sowie die quantenmechani-
sche Evolution von Erwartungswerten approximiert. Fiir den Spezialfall
von Bloch-Elektronen in einem uniformen elektromagnetischen Feld haben
Gao, Yang und Niu [GYN14; GYN15] einen modifizierten Bloch-Zustand
hergeleitet, welcher eng mit der Entwicklung zur ersten Ordnung der Pro-
jektion P¢ = Py + ¢ P, + O(e?) verwandt ist, fiir weitere Details hierzu siehe
Abschnitt 1.2.

Fiir ein Hamiltonsches System (7M., w, h) ist der Ensemble-Mittelwert
einer Observable a(z) im thermodynamischen Gleichgewicht mit Dichtever-
teilung f(h(z)) gegeben durch das Phasenraummittel

(@ = [ o(h)a,

wobei die Volumenform oder das Liouville-Maf3 der symplektischen Mannig-
faltigkeit (7*M, w) durch

_1\n(n— —_1)n(n=1)/
D o ) G i T U (3)

nl nl

n-times
gegeben ist. Um quantenmechanische Erwartungswerte mit klassischen Er-
wartungswerten im thermodynamischen Gleichgewicht vergleichen zu kon-
nen, ist es notwendig, die Lebesgue-Dichte v* des Liouville-Maldes \° zur
symplektischen Form w® zu berechnen. Die Dichte © is verwandt mit der
Pfaffschen Determinante pf(w®) der Koeffizientenmatrix wg; der symplekti-
schen Form w® durch

A= (=) U2 pf(w)dgt A - Adpn. 4)



Des Weiteren nimmt die, aus der modifizierten Berry-Kriimmung R° resultie-
rende, symplektische Form w® die spezielle Form w® = w®+¢ QF an. In diesem
Zusammenhang zeigen wir zwei Spurformeln: Eine fiir die Dichte v einer
beliebigen symplektischen Form w (Satz 2.9) und eine weiter Spurformel fiir
die Entwicklung in ¢ der Dichte v des Liouville-Mal3es \° zur symplektischen
Form w® = w%+¢ Q° (Proposition 2.7). Es ist bemerkenswert, dass die Spurfor-
mel zu allgemeinen symplektischen Formen direkt aus der e-Entwicklung der
Dichte v* folgt, die umgekehrte Richtung ist hingegen schwierig zu zeigen.
Daher ist unsere Strategie in Abschnitt 2.2, zuerst die Spurformel fiir die
Entwicklung von v© zu zeigen und die allgemeine Spurformel dann direkt
daraus zu folgern. Der Beweis von Proposition 2.7 ist {iberaus technisch und
nicht trivial.

Spurformel fiir Liouville-MafSe (cf. Satz 2.9)

.....

Liouville-MaR X von €2 definiert durch (3) dargestellt werden als

(5 03) ™ Try (@ QF) 7 dg' A+ A dp" . (5)
1

= ()"

a€eNg, J

Zn To=n
i=1""0"

n

Kiirzlich und unter Verwendung eines anderen Ansatzes zeigte Krivoruchenko
in [Kri16], dass fiir zwei schiefsymmetrische Matrizen A, B € R**?" gilt:
Qj

i) pEB) = Y (-3)"

aeNG, i

Zn La;=n
i=1 T

(7% o)~ Tras (A BY)

1

n

Dies ist eine Verallgemeinerung unserer Spurformel (5), da diese direkt aus
obiger Formel, dem Zusammenhang zwischen dem Liouville-Mal$ und der
Pfaffschen Determinante (4), sowie dem Fakt pf(w®) = (—1)"("~1)/2 folgt.

Jedoch wird fiir unsere Zwecke eine Formel fiir die e-Entwicklung des
Liouville-Mafes )¢ fiir semiklassische symplektische Formen w’+¢ € benotigt.
Unseres Wissens ist dies die erste Arbeit, welche eine solche Spurformel
angibt und beweist.

Spurformel fiir semiklassische Liouville-Mafse (cf. Proposition 2.7)
Sei w® = W’ + 0 eine e-abhéngige symplektische Form. Dann ist das
Liouville-MaR3 \° von w® gegeben durch

A=A = (14> e u)dgt A A dp”
k=0 k=1
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k )
vi= Y ()" TIG% e Tea (@0 0))" firl <k <n.
aeNE, j=1

Zf:l iai=k

Die Formel der Dichte v° zur zweiten Ordnung in ¢ ist gegeben durch
Vo =1—1eTry (w’ Q) + £ e Tran (W0 Q°)* — 1 27 Trap (w* Q° WO Q) + O(7)

siehe Korollar 2.8.

Eines der Hauptziele dieser Arbeit ist die Herleitung semiklassischer Appro-
ximationen von quantenmechanischen Erwartungswerten fiir thermodyna-
mische Gleichgewichtszustédnde. Hierbei ist der wichtigste und schwierigste
Schritt, welcher auch den Grof3teil von Kapitel 4 ausmacht, die Herleitung
der effektiven Operatoren von Gleichgewichtszusténden f () eingeschrinkt
auf den fast-invarianten Unterraum 11 7. Hier ist zu bemerken, dass vor
dieser Arbeit die Existenz semiklassischer Operatoren, welche die Wirkung
von Gleichgewichtszustinden f(H ) im fast-invarianten Unterraum 11" H auf
Fehler der Ordnung hoher als 2 approximieren, unbekannt war, auch auf
heuristischer Ebene.

Effektive stationdre Zustdnde (cf. Proposition 4.3)
Sei f : R — R eine geeignete Verteilungsfunktion. Dann existieren e-
abhéngige skalare Symbole f5¢(h) und f2d(rx, h), sodass

[T (F(H) = op. (f2(h,m)) ) T || = O(™)
mit
fo(hom) = f(h) + € f(h) + € f*%(m, h) .
Die explizite Konstruktion von f5¢(h) und f24i(, h) ist im Beweis von Proposi-

tion 4.3 dargestellt. Die asymptotische Entwicklung von f*¢(h) und f2di(r, h)
beginnt mit

f(h) =— i "(e9) (w® Veg, Vieqw” Veg )
+ % 1" (e0) Tron(w® VZeqw® Viey) + O(e)
=— 5; Trap (wo V(" (eo) VZeow" Veo))
+ 4 f"(€0) Tran (w0 V?e0)?) + O(c)

und
FU(h, ) = =1 F"(eo) lw® Veoll5, + O(e) .



Hierbei ist g, die Quantenmetrik, also die fiihrende Ordnung der modifizier-
ten Quanten-Metrik ¢°. Die filhrende Ordnung der Quantenkorrektur f*°(h)
stimmt mit der Korrektur iiberein, welche von Wigner [Wig32] fiir den Fall ei-
ner Boltzmann-Verteilung und semiklassischem Hamiltonoperator hergeleitet
wurde, siehe (1.4). Im Gegensatz dazu stammt die Korrektur fadi(w, h) von
der adiabatischen Approximation, also von den ’schnellen’ Freiheitsgraden.

Bis zu diesem Zeitpunkt gibt es in der Literatur keine systematische
semiklassische Betrachtung von Gleichgewichtserwartungswerten, welche
tiber die erste Ordnung in ¢ hinausgeht. Insbesondere im Fall von nicht-
trivialisierbaren Eigenbiindeln sind keine semiklassischen Approximationen
hoherer Ordnung von quantenmechanischen Erwartungswerten im thermo-
dynamischen Gleichgewicht bekannt, weder in speziellen Anwendungen,
noch auf heuristischer Ebene. Bevor wir tiefer in die Thematik nicht-trivialer
Eigenbiindel eingehen, prasentieren wir eines der Hauptergebnisse dieser
Arbeit: die semiklassische Approximation von Gleichgewichtserwartungswer-
ten zu beliebiger Ordnung in ¢.

Erwartungswerte im thermodynamischen Gleichgewicht (cf. Satz 4.4)
Sei A : R*" — B,,(H;) das operatorwertige Symbol einer geeigneten Obser-
vable A”. Dann gilt fiir jedes N € N, dass

o (F(HT)ATIT) =(2me) / tra, (1) # f5(h, 7) @™ dz
R2n
—ie(2me)™ / trog (m# L [ fo(h, ) ;7)) a™ dz
JR2n
+ O N AL
Hierbei ist ™) = YN &7 a;(z) die asymptotische Entwicklung zur N-ten

Ordnung des effektiven Symbols a : R** — R von A(z), definiert durch
(3.26).

Fiir Approximationen zu Fehlern der Ordnung £* kann obiges Resultat
umformuliert werden zu

A E ANE AE

e (P ATTE) = @re) ([ f(uma® X 4 e [ Qleo, 90) a0 d2)
+0( " (|A]5)

wobei \° das Liouville-Maf3 (3.74) zum Hamiltonschen System (7*R", w*, h)
darstellt. Der explizite Ausdruck der Quantenkorrektur Q(eo, go) ist gegeben
durch

Q(eo, 9o) = 3 Tran (W’ V(f'(e0) gow’ Veo) ) -

XV



XVi

In Satz 4.4 wird die erste rigorose und systematische Herleitung der
semiklassischen Approximation quantenmechanischer Gleichgewichtserwar-
tungswerte zu Ordnungen hoher als 2 angegeben. Fiir den allgemeinen
Fall von Observablen A” mit operatorwertigen Symbolen A(z) ist uns kein
vergleichbares Ergebnis bekannt, auch nicht fiir Approximationen erster
Ordnung in . Wir weisen darauf hin, dass die Quantenkorrekturen zweiter
Ordnung neben der Bandenergie ¢, und der Verteilungsfunktion f nur von
der Quanten-Metrik g, abhdngen. Dies bekraftigt die allgemeine Bedeutung
der Quanten-Metrik. Das e-abhédngige Hamiltonsche System (7*R",w*, h)
schlief3t groRe Teile der semiklassischen Approximation von Gleichgewichts-
erwartungswerten zu zweiter Ordnung ein. Obwohl wir annehmen, dass
dies auch fiir beliebig hohe Ordnungen gilt, wird dies in dieser Arbeit nicht
bewiesen.

Fast alle bestehenden Methoden zur Herleitung semiklassischer Appro-
ximationen fiir Quantensysteme mit operatorwertigen Symbolen basieren
auf Eigenfunktionen ¢(z) von H(z) zum Eigenwert e((z), also einer Tri-
vialisierung des Eigenbiindels L := {(z,¢) | ¢(z) € Py(z) Hs}. Dies ist ein
essenzieller Unterschied zu unserer Methode, sowie der Methoden in [ST13]
und [EW96], welche sich auf die Verwendung der Eigenprojektion F(z)
stiitzen. Die wesentlichen Probleme bei der Verwendung von Eigenfunktio-
nen sind einerseits die Uneindeutigkeit der Eigenfunktion ¢(z), da mit ¢(z)
auch e'*?) ¢(z2) fiir reellwertiges b : R?>* — R eine Eigenfunktion von H (%)
darstellt. Andererseits gibt es Anwendungen bei welchen das Eigenbiindel
nicht trivialisierbar ist, also aus geometrischen Griinden keine glatte Wahl
von ¢(z) existiert. Natiirlich ist R?" kontrahierbar, was die Trivialisierbarkeit
des Eigenbiindels impliziert. Jedoch muss Weyl-Calculus fiir die Anwend-
barkeit in bestimmten Applikationen erweitert werden, was dazu fiihren
kann, dass die Trivialisierbarkeit des Eigenbiindels nicht mehr gegeben ist.
Ein Beispiel hierfiir sind magnetische Bloch-Binder, siehe Kapitel 6. Hier
muss Weyl-Calculus fiir sogenannte 7-equivariante Symbole erweitert wer-
den, siehe [TeuO3][Appendix B]. Dies fiihrt dazu, dass Eigenbiindel mit
nichtverschwindender Chern-Zahl nicht trivialisierbar sind.

Als Néchstes diskutieren wir die semiklassische Approximation der quan-
tenmechanischen Evolution von Observablen im Heisenberg-Bild der Quan-
tenmechanik, auch bekannt als Satz von Egorov. Es existieren bereits Egorov-
artige Ergebnisse zu beliebiger Ordnung in €. Zum Beispiel liefert die raum-
adiabatische Storungstheorie solche Ergebnisse, siehe [Teu03]. Aber auch
hier haben alle bestehenden Ergebnisse die Gemeinsamkeit, dass sie von
der Trivialisierbarkeit des Eigenbiindels abhédngig sind. Auf3erdem muss in



vielen Herleitungen von Ergebnissen des Egorov-Typs viel Arbeit in die Trans-
formation zu eichinvarianten Resultaten gesteckt werden. In dieser Arbeit
leiten wir semiklassische Approximationen der Evolution von Observablen
her, welche, anstatt auf Eigenfunktionen, auf Eigenprojektionen basieren.
Daher sind unsere Resultate per definitionem eichinvariant und konnen auch
im Fall von nicht-trivialen Eigenbiindeln angewandt werden. Weiters zeigen
wir, mindestens fiir Approximationen zu Fehlern der Ordnung €3, dass die
klassische Evolution des modifizierten Hamiltonschen Systems (7*R", w®, h)
die quantenmechanische Evolution, bis auf Quantenkorrekturen, approxi-
miert.

Satz von Egorov (cf. Satz 5.2)
Sei A : R*" — B,,(H;) das operatorwertige Symbol einer geeigneten Obser-
vable A° mit quantenmechanischer Zeitevolution

A (t) = 1 AT Tt

Des Weiteren sei @ der Fluss des Hamiltonschen Systems (7*R", w®, h) und
a(®!) die klassische Zeitevolution des effektiven Symbols von A°. Dann
existiert ein e-abhéngiges semiklassisches Symbol 2((¢) : R** — R, sodass:

N+3

<O(N Y i)

J=0

~E

I (A°(t) — op. (a(@L) +*2A(t)) ) IT

fiir jedes N € N.

Das semiklassische Symbol 2((¢) : R*® — R hat eine asymptotische Ent-
wicklung 2A(t) = 352, e¥ A (t) mit AN (t) : R* — R induktiv gegeben
durch

N t N
A (1) = [ A (a(@D) 0@t dr
)
und

Wit = [ AT (Asgyy)(7)) 0 BT dr i j > 1.

Zur Konstruktion des c-abhingigen Symbols Qlflf (a)(z) : R*™ — R siehe
Proposition 5.1, insbesondere (5.14). Der explizite Ausdruck von 21} (t) zu
Fehlern der Ordnung 3 ist gegeben durch

t
A2(1) = 2i /O (€0, ao(®7)}, 0 B dr

—3 /Otter({{eO ,Po}  {ao(®D), Po}}) o @7 dr + O(e).
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Folglich gilt fiir die quantenmechanische Zeitevolution des Erwartungswer-
tes eines nicht-stationdren Zustandes p(t) = e~ t/e o el /e mit Anfangszu-
stand py = f[s,oo f[e, dass

AE

try,(p(t) A7) = try(po T A”(£) 1T)
= tr3(po op. (a(®L) + 2 A()) ) + O().

Aufgrund der Darstellung unseres Egorov Theorems scheint die klassische
Evolution des modifizierten Hamiltonschen Systems (7*R", w®, h) gro3e Teile
der semiklassischen Approximation der Quanten-Evolution von Observablen
beliebiger Ordnung zu umfassen. Obwohl wir dies annehmen, werden wir die-
se Aussage nur fiir semiklassische Approximationen zu Fehlern der Ordnung
3 beweisen. Zu diesem Zeitpunkt besteht auch die Moglichkeit, dass das
Hinzunehmen der Terme hoherer Ordnung des modifizierten Hamiltonschen
Systems (7T*R™,w®, h) zu zuséatzlichen Korrekturen fiihrt.

In Abschnitt 5.2 werden wir ein Schema zur Herleitung numerischer
Approximationen der Zeitevolution quantenmechanischer Erwartungswerte
tra (p¥ fls) mit initialer Wellenfunktion v, € 11" zu beliebiger Ordnung in
e herleiten. Hierzu formulieren wir die Korrekturen 21 (¢) fiir festes N € Ny
um. Es gilt:

wobei jedes

m;k times
———
Ta(t,z)  R2AX X 2d g

eine explizite, von dem effektiven Symbol ¢ unabhéangige, lineare Abbildung
vom Raum der m; ,-Tensoren in die reellen Zahlen darstellt. Als Nachstes
leiten wir ein System von Anfangswertproblemen erster Ordnung fiir die Kom-
ponenten von ['*(¢, z) her, sodass die Vektorisierung des Systems dargestellt
werden kann als

gtf(t, 2) = Nt 2) T(t, 2) + bk, 2) .

Hierbei sind die Komponenten der Matrix N(t,z) und des Vektors b(t, z)
explizit gegeben in Abhingigkeit von der Hamiltonfunktion A, dem Symbol
der adiabatischen Projektion 7, sowie deren Ableitungen, ausgewertet ent-
lang des klassischen Flusses ®!. Somit kann die in [GL14] entwickelte, auf
Wignermal3e basierende Phasenraummethode direkt angewendet werden.



Das Resultat ist ein sehr effektiver Algorithmus zur Approximation der Zei-
tevolution von quantenmechanischen Erwartungswerten. In Abschnitt 7.4
validieren wir die Genauigkeit und Effektivitdt des numerischen Algorithmus,
indem wir diesen auf ein einfaches Quantensystem des Born-Oppenheimer-
Typs mit matrixwertigem Potential

[ tanh(z) o
V(z) = ( 5 —tanh(x)) , §>0,

anwenden.

In Kapitel 6 wenden wir unsere Ergebnisse auf ein Gas von nicht-wechsel-
wirkenden Fermionen in der Tight-Binding-Approximation auf dem Gitter
7? und unter Einfluss eines starken konstanten magnetischen Feldes und
eines zusatzlichen elektromagnetischen Feldes mit langsam variierenden
Potentialen, genannt Hofstadter-Modell, an. Hier ist zu bemerken, dass bei
nicht-verschwindendem starkem Magnetfeld B = (7%0 ]%0 ), By = 27r§ die
assoziierten Eigenbiindel im Allgemeinen nicht-trivialisierbar sind. Dies fiihrt
dazu, dass die meisten Methoden zur Herleitung semiklassischer Approxima-
tionen in diesem Fall nicht anwendbar sind.

Wir leiten in dieser Anwendung die Bewegungsgleichungen der sogenann-
ten Hofstadter-Elektronen her und geben diese bis zu Fehlern der Ordnung
3 explizit an, siehe Abschnitt 6.1. Aullerdem applizieren wir Satz 5.2 auf
dieses Modell und erhalten damit zum ersten Mal eine semiklassische Ap-
proximation der quantenmechanischen Zeitevolution von Observablen zu
Fehlern der Ordnung & fiir magnetische Bloch-Bénder.

Des Weiteren wenden wir Satz 4.4 an, um die freie Energie von Hofstadter-
Elektronen unter Einfluss starker magnetischer Felder B = (_OBS B ), B =
27r§ +eb, b€ R, p€ Z,qc Nungerade, auf Fehler der Ordnung 3 zu ap-
proximieren. Mithilfe der semiklassischen Approximation der freien Energie
berechnen wir die Suszeptibilitit S(B°, 3, u) = 0%-p(B?, 3, 1). Hierbei ist die
Approximation zu hoherer Ordnung entscheidend, da jede Approximation
zu Fehlern der Ordnungen kleiner 3, mit Null, ein falsches Ergebnis fiir die
Suszeptibilitét liefert.

Es ist zu bemerken, dass die Anwendung auf magnetische Bloch-Bander
eine Hauptmotivation fiir diese Arbeit ist. Semiklassische Approximationen
zweiter Ordnung und insbesondere die Suszeptibilitdt von Bloch-Elektronen
haben zuletzt starkes Interesse im Bereich der Festkorperphysik geweckt,
wie bestatigt durch die grol3e Anzahl jiingster Arbeiten [GYN14; GYN15;
LZZ15; OF15; Ogal6; Rao+15; Pié+16]. Auch diese Arbeiten basieren
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jedoch auf Eigenfunktionen und sind daher nicht anwendbar, sobald die
Eigenbander nicht-trivialisierbar sind. Dies ist aber bei Betrachtung starker
Magnetfelder im Allgemeinen der Fall (Chern-Zahl # 0). Daher liefern diese
Methoden nur im Fall B¢ = ¢ b Ergebnisse. Fiir die Suszeptibilitidt konnen auf
Eigenfunktionen basierende Methoden im Allgemeinen nur Ergebnisse fiir
ein verschwindendes Magnetfeld liefern. Fiir eine ausfiihrlichere Einfithrung
in Bloch-Elektronen sowie einen detaillierteren Vergleich mit existierender
Literatur verweisen wir auf Abschnitt 1.2, beziehungsweise Kapitel 6.

Zu guter Letzt betrachten wir das Paradebeispiel fiir adiabatische Quanten-
systeme, ndmlich Hamiltonoperatoren vom Born-Oppenheimer-Typ, Kapitel 7.
Also betrachten wir einen Hamiltonoperator

A E

H =2 (~iV, — A(2)? + V(2)

auf dem Hilbertraum H = L?(R") ® H; mit magnetischem Vektorpotential
A : R" — R™ und operatorwertigem Potential V' (z) € B.(H¢). Molekiile
unter Einfluss elektromagnetischer Felder werden von Hamiltonoperatoren
von obiger Form beschrieben. Daher ist die effektive Beschreibung von Born-
Oppenheimer-Typ Systemen von grof3er Wichtigkeit in der Chemie sowie der
theoretischen Physik.

Auch in diesem Zusammenhang basieren die meisten bekannten Methoden
auf der Verwendung von Eigenfunktionen mit dem Nachteil, dass die Resul-
tate oft von der Eichung abhédngen. Des Weiteren sind die Eigenwerte des
elektronischen Hamiltonoperators V' (z) im nuklearen Konfigurationsraum
R™ im Allgemeinen nur lokal isoliert. In diesen Fillen ist man gezwungen
sich auf Losungen der Schrodingergleichung zu beschrianken, deren Tréger
initial in A C R" ist und in diesem Gebiet bleibt, wobei A C R" die Region
darstellt in welcher der betrachtete Eigenwert e, (z) die ’Gap’-Bedingung
erfiillt. Dann definiert die entsprechende Eigenfunktion F, : I' — B(H;) ein
Vektorbiindel, das im Allgemeinen nicht-trivialisierbar ist. Nichtsdestotrotz
werden wir uns in dieser Arbeit auf den Fall mit global-isoliertem Eigenband
beschranken.

Wir leiten die Bewegungsgleichungen fiir die 'langsamen’ Freiheitsgrade,
die Atomkerne, her und geben diese bis zu Fehlern der Ordnung £? explizit
an, siehe Abschnitt 7.1. Durch Anwendung von Satz 4.4 leiten wir, unseres
Wissens zum ersten Mal, eine semiklassische Approximation von quanten-
mechanischen Erwartungswerten im thermodynamischen Gleichgewicht her,
Abschnitt 7.2. Aullerdem applizieren wir Satz 5.2 und erhalten damit die



explizite semiklassische Approximation der quantenmechanischen Zeitevolu-
tion von Observablen zu Fehlern der Ordnung 3, Abschnitt 7.3.
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Introduction

Semiclassical approximations play a significant role in mathematical physics.
Here, the goal is to approximate properties of quantum mechanical systems in
the limit 7 — 0 using an appropriate classical Hamiltonian system. Typically,
a semiclassical quantum system is represented by a self-adjoint Hamiltonian
operator H = H(x,—ihV,) acting on the Hilbert space #. Then, the associ-
ated classical Hamiltonian system is of the form (7*R", w, h) where (T*R",w)
is a symplectic 2n-dimensional manifold and the classical Hamiltonian 4 is a
smooth function on phase space T*R"™ with values in the reals. The phase
space T*R" = R?" is the cotangent bundle of the n-dimensional space R".
The range of properties approximated by semiclassical methods includes the
spectrum and eigenfunctions of the Hamiltonian operator H, solutions to the
—i Ht/h

time-dependent Schrédinger Equation, the full unitary group e as well

as statistical expectation values tr ( f(H) d) .

An essential tool in semiclassical analysis is pseudodifferential calculus.
Here, a classical function on phase space a : R*® — C is linked directly
to a quantum operator on L?(R") through a quantization rule. We denote
the function a(q,p) on phase space as symbol of the quantized operator
a® = a(x,—1hV,). The most commonly used quantization rule is the Weyl
quantization where one of the main arguments for this particular quantiza-
tion rule is that it maps classical observables to quantum observables, i.e. it
maps real valued functions to essentially self-adjoint operators on L?(R").
For a more detailed introduction and a selection of known results from Weyl
calculus, see Section 2.1.

In a quantum mechanical system the time evolution of an initial state
1o € H is governed by the underlying Schrédinger equation

iR = H iy
or equivalently by the action of the unitary evolution operator, i.e.

Py = e H



2

In the Heisenberg picture of quantum mechanics, rather than considering a
time-dependent wave function ); one considers time-dependent observables
a(t) whose time-evolution is given by

a(t) — eiﬁt/ﬁ&e—iﬁt/ﬁ )

The quantum mechanical expectation with respect to an observable a is equal
in both pictures since

<wt ’ &wt>’H — <efil:lt/h wo ’ &efilflt/h w0>H
= <1/)07 ot/ g o =it/ ¢0>H = (Yo, a(t) Yo)y -

On the contrary, the classical Hamiltonian function h € C*°(7T*M) defines
the so called Hamiltonian vector field X;, by w(X},-) = dh. The flow ®*
generated by the Hamiltonian vector field X}, is known as the Hamiltonian
flow associated to the Hamiltonian system (7*M,w, h). The classical time-
evolution of an observable a € C*>°(T*M) is governed by the Hamiltonian
flow ®°, we have a(t) = a(d").

The standard system of semiclassical analysis is a Hamiltonian h acting
on L*(R") where h° is the Weyl quantization of a real-valued function A :
T*R" = R?*" — R. Then, using Weyl calculus and a standard Duhamel
argument one can show that the quantum mechanically evolved observable
a°(t) is approximated by the Weyl quantization of the classically evolved
symbol a(®'). Here, ®' is the flow of the classical Hamiltonian system
(R*", % h) where w" is the canonical symplectic form with coefficient matrix
(_({n In ) This result is usually referred to as Egorov’s theorem and has first
been formulated in [Ego69]. More precisely, one gets for any N € N, that

g . rE N y
ol A t/h ge iRt/ _ op, (CL(q)t)) . Z K27 op. (aj(t)) H = O<h2N+1) (1.1)

=1

holds uniformly on bounded time intervals where the higher order corrections
are given explicitly in terms of the symbols a, h and their derivatives. For
a proof of the above result and refined error estimates within the context
of semiclassical microlocal analysis, see e.g. [Rob87; BR02; Zwo12]. Note
here, using the above result one can approximate the quantum evolution of
observables up to arbitrary order in terms of the classical counterparts » and
a to the Hamiltonian A~ and observable 4°. Here, one shall keep that the
classical evolution yields an approximation to errors of order k2. The higher
order corrections can not be expressed as classical Hamiltonian system.

Chapter 1 Introduction



Another important application of semiclassical analysis that will be of
big importance throughout this thesis is the approximation of quantum
statistical expectation values. For a thermodynamic equilibrium state f ()
the expectation value with respect to a trace-class observable a is given by

(@°) iy = tr(f(f[) &) :

For a classical Hamiltonian system (7*M, w, h) the average of an observable
a(z) in thermodynamic equilibrium with distribution f(h(z)) is given by the
phase space average

= h)a A 1.2
(s = [ o) (1.2)
where the volume form or Liouville measure of the symplectic space (7% M, w)
is given by
A= 7(_1)71(7:71)/2 W = 7(_1)71(7,171)/2 WA Aw . (1.3)
n-times

In the standard case of a purely semiclassical system, i.e. a Hamiltonian h
given as Weyl quantization of a real-valued function Ai(q, p), it is well known
that the expectation value of a thermodynamic equilibrium distribution f (fALE)
with respect to a trace-class observable a° is approximated by its classical
counterpart, i.e.

tr(f(R7) ) — ke /R _f(h(2)a(z)dz| = O(r*™).

In his famous paper ’On the Quantum Correction for Thermodynamic Equi-
librium’ [Wig32] Wigner derived the second order correction to the classical
phase space average for the special case of Boltzmann distributed particles
subject to an external potential. Herein, the importance of the second order
quantum correction as first correction to the classical evolution was pointed
out. Using Weyl calculus, Wigner’s result can be generalized to

— O(K*™) (1.4)

(£ @) = e [, (F) + B Fo(h)(2)) a(2) dz

where

Fe)(z) == 31 f"(h(2)) (* Vh(2), V?h(2) «* Vh(2))
+ & £7(h(2)) Trcen (w° Vh(2) w° V2h(2))

C2n

with w° the coefficient matrix of the canonical symplectic form.
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Moreover, the above result extends to semiclassical approximations to arbi-
trary order in &, see [DS99, Chapter 8].

To summarize, in the special case of a semiclassical system one can ap-
proximate the evolution of observables as well as expectation values in
thermodynamic equilibrium to errors or order £* by the classical counter-
parts. Moreover, there are explicit expressions in terms of the operator’s
symbols and their derivatives to approximate those quantities to arbitrary
order in ¢.

Nonetheless, the above results hold only for very specific systems where
all degrees of freedom behave semiclassically but there are many examples
of quantum mechanical systems where only some degrees of freedom behave
semiclassically. The simplest of such examples are particles with spin. Here,
the wave functions takes value in C!, i.e the state space is L%(R", C'). More
general, one considers a state space L?(R",H;) where H; is a separable
Hilbert space denoted as the space of ’fast’ or ’fiber’ degrees of freedom. In
many such systems the Hamiltonian can be expressed as Weyl quantization
H = H(z,—ie V,) of a symbol H(g, p) on phase space T*R" taking value in
the linear self-adjoint operators on Hy, i.e. H : T*R" — L, (H;). Here, the
small, dimensionless parameter ¢ < 1 controls the separation of the scales.
The physical meaning of ¢ depends on the concrete example. The asymptotic
limit € — 0 corresponds to the adiabatic limit where the ’slow’ and ’fast’
degrees of freedom decouple. At the same time ¢ — 0 is the semiclassical
limit for the slow degrees of freedom. For a survey of adiabatic problems in
physics see the book of Bohm, Mostafazadeh, Koizumi, Niu and Zwanziger
[Boh+13].

Also within the context of adiabatic problems semiclassical analysis is
very successful and a vast amount of literature exists. The goal of semi-
classical analysis is to approximate properties on the scale of the slow’ or
’semiclassical’ degrees of freedom. There are various approaches to derive
such approximations. Examples are adiabatic perturbation theory (see e.g.
[PSTO3b; Teu03]), WKB methods (see e.g. [EW96; Car08; WLY13]), Gaus-
sian beams (see e.g. [GRT88; DGR0O2; JWYO08]), frozen Gaussians (see
e.g. [DIY16; DLY18]), methods based on coherent states (see e.g. [Hag80;
Hag87; Hag89; Hag94; HJ99; HJ01]) or Wigner measures (see e.g [Gér+97;
MMP94; Bal+99; BMPO01]). What all approaches have in common is that
they rely on restricting the state space H to a subspace associated to a single
or a set of eigenvalues ¢ (q, p) of the Hamiltonian’s symbol H(q, p) that is
gapped away from the rest of the spectrum. Let (g, p) be such an eigenvalue
of H(q,p) with projection Py(q, p) to the respective eigenspace. Using Weyl
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calculus it is easy to see that up to errors of order ¢ the Weyl quantization ]53
of the eigenprojection P, commutes with the Hamiltonian operator A ‘e

B, Py =0(e).

Hence, the range of P, is invariant under the action of A" up to errors
of order . Then, a standard Duhamel argument shows for the evolution
—iA%t

operator e on the time-scale of the 'fast’ degrees of freedom that

[ Py = O]t

So, on the ’fast’ time-scale the subspace ]5; H is invariant under the quantum
evolution to errors of order ¢ |t|. However, what we are actually interested
in is the dynamics on the time scale of the slow’ degrees of freedom. Here,
the same argument yields only an O(1) error. Nevertheless, it is known that
the operator ]3; does in fact commute with the unitary quantum evolution
e~i1A"t/= to errors of order ¢ (1 + |t]), see e.g. [Teu03, Section 2.2]. Then,
a standard Duhamel argument shows that within the subspace P, H the
quantum evolution of an observable ¢° := @° ® 14,, a : T*R” — R acting
on the slow degrees of freedom can be approximated by classically evolving
the symbol a(q,p) using the flow ®f of the classical Hamiltonian system

(R W0, ey), i.e.

In addition, for an equilibrium distribution f : R — R and respective steady

Py (a°(t) — op. (a(®h) 13,) ) Po | = O(e) .

state f(H 6) an application of the Helffer Sjostrand formula together with the
fact that 153 commutes with the Hamiltonian A~ to order ¢ shows

tw(f(H)a Py) — gy /T e alz)dz | = 0.

This means that in case of operator valued symbols, the canonical classical
analogues still lead to semiclassical approximations when restricting to the
subspace ]5;. But we loose one power of ¢ in accuracy. What is unclear at this
point is, if and how one can derive higher order semiclassical approximations.

One major challenge in semiclassical analysis is on how one can perturb the
subspace ]33 H as well as the Hamiltonian system (R*", w°, () by a correction
of order ¢ in order to get higher order semiclassical approximations. In
[NS04] Nenciu and Sordoni derived the space-adiabatic projection 11", based
on algebraic construction that is due to Hellfer and Sjostrand [HS90a] and
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with a different approach and independently Emmrich and Weinstein [EW96].
This projection I1” is related to ]33 through I = ﬁ’; + O(e) and commutes
with the Hamiltonian A~ as well as the unitary evolution operator eiH /e
up to arbitrary order in . Hence, the range of 11° is invariant under the
action of A  to any order in . We say that the subspace 1" H is almost-
invariant. The subspace "M is usually referred to as the almost-invariant
or space-adiabatic subspace.

So, how do quantum mechanical systems behave when restricting to
the almost-invariant subspace II"H? It turns out that restricted to the
space-adiabatic subspace the action of the Hamiltonian operator H * can
be approximated to errors of order % by the Weyl operator h° with scalar
symbol of the form

h(q,p) = eolq,p) + € M(q,p). (1.5)

The correction M, is referred to as 'no-name’, 'M’ or 'Rammal-Wilkinson’
term.

In order to derive higher order semiclassical approximations one has
to take into account the geometry of the eigenbundle associated to the
eigenvalue ey. Hereto, one considers the Hilbert bundle F : T*R™ x H; g
T*R"™ with Py the projection onto the first component and equipped with
the canonical flat connection V where for ¢ € I'(E) and X € I'(T(T*R")),
(Vx¢)(z) = X79;¢(z). The symbol H : T*R" — B(H;) can be seen as a
section in the endomorphism bundle of £, i.e. H € I'(End(F)) acting on
sections ¢ € I'(E). Then, one associates to a non-degenerate eigenvalue
ep : T*R™ — R of H with eigenprojection F, € I'(End(FE)) the eigenbundle
L = {(z,¢)|¢(z) € Py(z)Hs} of E. The connection V of E induces a
connection on L by projection, i.e. Vi ¢ := P,Vx ¢ for ¢ € I'(L) c T(E)
and X € I'(T(T*R")). The resulting connection VE™ is the famous Berry
connection. The Berry connection and its holonomy, the Berry phase, play
a significant role in the study of Bloch electrons and vast related fields
as investigated in many important physical and mathematical works (e.g.
[ST13; PST03b; MMP94; WLY13; CMS04; DL11; Bus87]). The curvature
form RBe™ of the Berry connection V3™, known as Berry curvature, is
LRI dz' A d2d where

Rgerry = ter (PU [@Po, (9]P0])

see e.g. [ST13, Proposition 6]. In addition, the Berry curvature defines a
symplectic form on classical phase space through Q = —i R, At the same
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time the coefficient matrix of the symplectic form (2 is the imaginary part of
the quantum geometric tensor

7;j = 2tI'Hf(P0 &PO ajp()) .

The real part of the quantum geometric tensor defines a metric g, on phase
space known as quantum or Fubini-Study metric. Compared to the Berry
curvature the quantum metric is not very well studied but recently gained
much interest in the solid state physics community, see e.g. [Pié+16; GYN14;
GYN15; Tan+19; Roy14; PG18].

The symplectic form € associated to the Berry curvature R®*™ can be in-
terpreted as geometrical modification to the canonical phase space (T*R", w")
that results from restricting to the space-adiabatic subspace 1. Together
with the classical Hamiltonian 4 (1.5), the modified symplectic form w® :=
w? — i RBe™Y gives rise to an e-dependent classical Hamiltonian system
(T*R"™,w*, h). Then we have that the quantum evolution of a semiclassical
observable d° := a° ® 14,, a : T*R™ — R satisfies

|1 (a°(t) — op. (a(®!) 13,,) ) IT'|| = O(<?) (1.6)

where ®! is the flow of the classical Hamiltonian system (7*R"™,w*, h), see
[ST13, Theorem 2]. Moreover, when restricting to the space-adiabatic sub-
space 1" H the expectation value of a thermodynamic equilibrium distri-
bution f(H") with respect to a trace-class semiclassical observable a° is
approximated by the classical phase space average with respect to the Liou-
ville measure

(_1)n(n—1)/2

A= WENA - AWE
- ——

n-times

n!

of the symplectic form w®, i.e.

= O<€2in) )

tr(f(A7)a 1) — ghy /T*Rn F(h)ax

see [ST13, Theorem 1]. To conclude, also in the case of Hamiltonians with
operator valued symbols the quantum evolution of observables as well as
expectation values in thermodynamic equilibrium can be approximated to
errors of order €2 by a classical Hamiltonian system.

Note, there is a big variety of results on semiclassical approximations
of systems where the Hamiltonian’s symbol is operator valued. A major
drawback of almost all such approaches is that they rely on eigenfunctions
©(q, p) of the Hamiltonian H (¢, p) to an eigenvalue e(q, p), i.e. a trivialization
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of the eigenbundle of H(q,p) associated to e(q,p). The main issues with
this are: first, (¢, p) in not unique since with ¢(q,p) also e'/(@?) (g, p) for
real-valued f is an eigenfunction of H(q,p) to the eigenvalue e(q,p). And
second, in some applications the eigenbundle is not trivializable, i.e. such a
smooth global choice of (¢, p) does not exist by geometric reasons. Clearly,
R?" is contractible and hence every vector bundle over R?" is trivializable.
Nevertheless, there are applications where the symbols, rather than R?" are
defined of some other manifold. An example hereto are the so called 7-
equivariant symbols, see [Teu03, Appendix B]. The concept of r-equivariant
symbols is of big importance in the application to magnetic Bloch electrons.
Here, the eigenbundle is not trivializable whenever the Chern number of
the respective eigenbundle in non-zero. Hence, the approaches that rely on
eigenfunctions are inapplicable to such systems, see Section 1.2 or Chapter 6,
respectively.

On the contrary, Emmrich and Weinstein in [EW96] gave a geometric
derivation of the transport equation in WKB approximations that is valid
even if the eigenbundle is not trivializable. The key difference here is
that instead of eigenfunctions they use only the unique projections F; to
the respective eigenspaces. Stiepan and Teufel in [ST13] developed an
approach to derive semiclassical approximations of the quantum evolution
of semiclassical observables in the Heisenberg picture as well as expectation
values of quantum mechanical equilibrium distributions when restricting
to the space-adiabatic subspace. Although driving towards semiclassical
approximations directly they use tools from space-adiabatic perturbation
theory without actually driving towards an effective Hamiltonian in the
sense of space-adiabatic perturbation theory. Also in this approach, only the
unique projections P, to the respective eigenspaces I, H; are being used.
One major drawback of the results in [ST13] is that they are applicable
only when the observable d° acts solely on the ’slow’ degrees of freedom,
i.e. the symbol of G° is scalar. This prevents applying the theorems to many
interesting physical applications. In [DL17] De Nittis and Lein extended the
Egorov theorem (1.6) to observables with operator valued symbols in order
to derive ray optics equations in photonic crystals. Another limitation of
[ST13] and also [EW96] is that their approaches depend heavily on the fact
that, when restricted to the almost-invariant subspace n ‘H, the action of
the full Hamiltonian A~ can be approximated to errors of order 2 by a Weyl
operator with scalar symbol h. It was pointed out in [ST13, Chapter 3] that
a semiclassical operator approximating the action of the full Hamiltonian
H to higher orders is not expected to exist in general. Nonetheless, in this
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work we prove this expectation to be wrong by showing the existence of a
semiclassical operator d° for any operator A" with operator valued symbol
that approximates the action A” to arbitrary order in £ when restricting to
the almost-invariant subspace 1.

In recent years higher order semiclassical approximations gained much
attention. One of the reasons for this is that many physical phenomena can
only be understood when using higher order semiclassical approximations.
The derivation of the orbital susceptibility for Bloch bands is one application
that is of particular interest in the physics community, as the big variety of
recent physics literature in this direction suggests (e.g. [GYN14; GYN15;
LZZ15; OF15; Ogal6; Rao+15; Pié+16]). Here, first order approximations
give no or a wrong answer, namely zero. This topic will be handled in
more detail in Section 1.2. Clearly, whether higher order semiclassical
approximations for the quantum evolution of observables nor the expectation
values in thermodynamic equilibrium can be expressed in terms of a classical
Hamiltonian system, see (1.1) and (1.4). Nevertheless, one can still hope for
a semiclassical approximation by a modified classical Hamiltonian system and
additional quantum corrections. One approach that allows the derivation
of semiclassical approximation to arbitrary order in ¢ is space-adiabatic
perturbation theory. Here, rather than finding a classical Hamiltonian system
that approximates quantum mechanical properties, the main goal is to find
an effective Hamiltonian 4~ that acts on the ’slow’ degrees of freedom and is
unitarily equivalent to the full Hamiltonian 7 °, see e.g. [PST02; PSTO3b;
Teu03]. Then, the effective Hamiltonian h° is admissible to semiclassical
approximations. Using space-adiabatic perturbation theory one can derive an
Egorov type theorem to arbitrary order in &, similar to (1.1), for the quantum
evolution of observables A with operator valued symbol A(q,p). Hereto,
one has to restrict to the almost-invariant subspace 11 %, i.e. one considers
I eift/e A% 1Bt (see e.g.[Teu03, Corollary 3.29.]). As already noted
earlier, a major drawback of the approach in [Teu03], as well as almost all
other approaches considering Hamiltonians with operator valued symbols,
is that they rely on eigenfunctions ¢(q, p) of the Hamiltonian H(q, p) to an
eigenvalue e(q,p). Also, the results to errors of order higher than £? are
nowhere explicitly computed and there is no attempt to incorporate parts of
the resulting expressions in a modified Hamiltonian system.

To conclude, from a structural applicability perspective there seem to be
be two different types of existing results: on the one hand those that provide
semiclassical approximation to any order in ¢ also when the observable’s
symbol is operator valued but are inapplicable whenever the eigenbundle is
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not trivializable. On the other hand those that are applicable in the case of
non-trivializable eigenbundles but only lead to approximation to first order.
The aim of this work is not less than to give a full solution to this problem.

We will develop a theory to approximate the quantum evolution of semi-
classical observables in the Heisenberg picture (Section 5) as well as expec-
tation values of quantum mechanical equilibrium distributions (Section 4)
to arbitrary order in . Our results are gauge independent, do not rely on
trivializability of the eigenbundle and are applicable when the observable’s
symbol is operator valued. The derivation is particularly transparent and all
expressions are given explicitly in terms of the Hamiltonian’s symbol H(q, p),
the observable’s symbol A(q, p), the eigenvalue ey(q, p), the eigenprojection
Py(q,p) and their derivatives. Moreover, we will show that the restriction to
the almost-invariant subspace naturally gives rise to a modified e-dependent
Berry connection, a modified e-dependent Fubini-Study metric and a closely
related modified e-dependent Hamiltonian system (Section 3). Hereto and
in contradiction to the remark in [ST13], we give an explicit construction
of effective operators d° for Weyl operators A" with operator values symbol
(Section 3.2). The notion of effective operators within this thesis shall not
be confused with the effective operators in the context of space-adiabatic
perturbation theory. By an effective operator we mean an operator with
scalar symbol a : R*" — C that incorporates the action of the operator A to
any order in £ when restricting to the almost-invariant subspace I H,ie. a
Weyl operator G° with scalar symbol satisfying

AE , AE

1T (A" —op, (a1,)) 1T || = O(=>).

We compute the £ contributions to the semiclassical approximation of equi-
librium expectation values and show that, up to quantum corrections dis-
covered by Wigner, all expressions are either incorporated by the modified
classical Hamiltonian system or can be expressed in terms of a Fubini-Study
metric. To this end, we prove a trace formula for the Liouville measure of
general symplectic forms and in particular for semiclassical symplectic forms
w® = w’ + 0 (Section 2.2). Moreover, we give a scheme on how to extend
the approach of [LR10; GL14] leading to an effective numerical method to
approximate the time-evolution of quantum mechanical expectation values
for the case of Weyl operators with operator valued symbols.

The general results are then applied to a quantum mechanical system with
Hamiltonian of Born-Oppenheimer type including an external magnetic field.
Here, we prove an Egorov type theorem as well as the semiclassical approxi-
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mation of equilibrium expectations. Also we will give the explicit expressions
for the e-dependent Hamiltonian system as well as the quantum correction
of order £2. For an introduction to Born-Oppenheimer type Hamiltonians
and a summary of our related results see Section 1.3.

Last but not least we will apply our theory to the system that serves as
main motivation for this work. Namely, to a gas of non-interacting fermionic
particles in the tight binding approximation on the lattice Z? subject to a
’strong’ constant magnetic field and an additional electromagnetic field with
slowly varying potentials, known as Hofstadter model. Here, we derive
an Egorov type theorem to approximate the quantum evolution of observ-
ables restricted to adiabatic subspace associated to magnetic Bloch bands.
Furthermore, we apply our result on steady states to derive a semiclassical
approximation for the free energy per unit area. From the expression for the
free energy we can then easily deduce the magnetic susceptibility. Hereto the
second order expressions in the semiclassical approximation are crucial. It is
worth pointing out that to our knowledge this is the first time a derivation of
the orbital susceptibility for magnetic Bloch bands is given. See Section 1.2
for an introduction into Bloch electrons and a summary as well as discussion
of our results on the Hofstadter model.

We should note here that from an analytical perspective we make no
attempt to achieve greatest generality in this work. Instead we focus mostly
on the structural aspects of the problem and avoid distracting technicalities
by making stronger assumption than necessary. Note that the algebraic
computations and expansions stay the same when relaxing the assumptions.
The restrictive assumptions come into play when we turn our results from
the level of symbols into statements about operators. As a reference on how
to extend our results to more general symbol classes we refer to [Teu03].

Main Resulis

We will now describe our main results postponing technical details to Sec-
tion 2 and beyond. We consider a quantum mechanical system described by
the Hamiltonian operator H : given as Weyl operator acting on L?(R", H;)
and with symbol H : R*" — B,,(H;) taking value in the bounded linear
self-adjoint operators on H;. Moreover, we assume ¢, : R** — R to be an
isolated, non-degenerate eigenvalue of H(q, p) depending smoothly on (¢, p).
The projection to the eigenspace associated to e, is denoted as F,. For the
detailed assumptions see Section 2.3.

1.1 Main Results
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With the eigenvalue e, we associate a projection 11" that commutes with the
Hamiltonian A~ as well as the unitary evolution operator e~ 7 “te to arbitrary
order in . We say that the space 11" is almost-invariant. The derivation
of the super-adiabatic projection I1° is due to Nenciu and Sordoni [NS04]
based on the work of Hellfer and Sjostrand [HS90a]. Our ultimate goal is
to derive semiclassical approximations of quantum mechanical equilibrium
expectations

ey ( FUT)A° ﬂ€>
as well as the quantum evolution of observables in the Heisenberg picture

- 7€ ~E s v E
elH t/sA e iH t/e

within the almost-invariant subspace 11 7 and this to arbitrary order in e.

Moreover, we derive a e-dependent Hamiltonian system (7*R",w®,h)
that incorporates the semiclassical approximation up to quantum correc-
tions. Hereto, recall that there is a known classical Hamiltonian system
(T*R",w® — i RB™ h) that approximates the quantum evolution and equi-
librium expectations within the almost-invariant subspace 11" to errors of
order £2, see e.g. [ST13]. Here, the classical Hamiltonian A (1.5) is the scalar
symbol of the operator h° that approximates the action of the full Hamil-
tonian A~ within to the almost-invariant subspace 11" to errors of order
2. The Berry curvature RB™ is the curvature form of the Berry connection
VBery that results from projecting the Hilbert bundle £ : T*R"™ x H; B R
using the eigenprojection FPy(z).

We begin the presentation of our main results with the e-dependent modi-
fied Hamiltonian system (7 R",w*, h). For the modification of the symplectic
form, the basic idea is to modify the eigenprojection FPy(z) where the result
is again a pointwise rank-one projection itself. Then, this modified rank-
one projection induces a modified Berry connection and so also a modified
symplectic form. Hereto, we show that there is an almost-unique rank-one
projection P4 (e, z) = Py(z) + O(e) that coincides with the symbol 7 (¢, z) of
the adiabatic projection 1 up to a Py(z)-diagonal correction of order ¢, i.e.

(e, 2) =P(e,z2) + e Po(2) (e, 2) Po(2) + € POL(Z) 7(e, 2) POL(Z),

see Proposition 3.2. Here, by almost-unique we mean that P¢(e, z) is unique
up to an error of arbitrary order in . The symbols P*(¢, z) and 7 (e, z) have
asymptotic expansions in ¢ with coefficients given explicitly in terms of the
Hamiltonian symbol H(z), the eigenvalue e((z) and the eigenprojection Py(z).
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The explicit algebraic construction of P° and 7 (e, z) are given in Lemma 3.1.
For the explicit expressions up to order €2, see (3.17) - (3.20).

Analogous to the famous Berry connection VB the family of rank-
one projections P¢(z) defines a line-bundle over the classical phase space
T*R™ that inherits a connection V¢ := P°V from the trivial vector bundle
E : T"R" x H; 28 R, The resulting connection V¢ we refer to as the
modified Berry connection. The curvature form R® of the modified Berry
connection V* is given by R = L RS, dz' A dz/ where

R% = tl"Hf (P€ [81'778, 837)8]) 5

see Proposition 3.9. The modified Berry curvature induces a symplectic form
w® over the classical phase space T*R" by w® := W’ — ¢i R®, see Proposi-
tion 3.10. Then, w*® defines a 2n-dimensional symplectic manifold (7 R", w®)
over the phase space T*R". The modified Berry curvature is, up to a factor
of i, given as the imaginary part of the modified quantum geometric tensor

Ti; = 2try, (P 0;/P° 0;PF) .

The real value of the modified quantum geometric tensor defines a Fubini-
Study metric ¢° on phase space T*R". Then, the Fubini-Study metric ¢° =
g5;dz* ® dz/ on T*R" is

9i; = tra (P [0.P%, 0, P°]4) -

Here, [-, -], denotes the anti-commutator.

To our knowledge, the definition and construction of ¢ and thus also of
the modified Berry connection V¢ and the Fubini-Study metric ¢° is com-
pletely new. The projection P¢(e, z) naturally emerges from the algebraic
construction of the super-adiabatic projection n by introducing an interme-
diate step, see Lemma 3.1. Therefore, showing the existence and uniqueness
of P¢(e, z) is quite straight forward provided one is familiar with the construc-
tion of the space-adiabatic projection I1°. The main difficulty and advance
here clearly lies in the discovery of a natural definition of P°(¢, z) such that
the associated classical Hamiltonian system incorporates large parts of the
higher order semiclassical approximations of thermodynamic equilibrium
expectations as well as the quantum evolution of observables. For the special
case of Bloch electrons subject to uniform electromagnetic fields Gao, Yang
and Niu [GYN14; GYN15] derived a modified Bloch state that is closely
related to the first order expansion of P(e,z2) = Py(z) + & Pi(z) + O(e?),

1.1 Main Results
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for more details see Section 1.2. Compared to the Berry curvature RBe™Y
the quantum metric go;; = try, (P [0;F, 0;F]+) is not very well studied
but recently gained much interest in the solid state physics community, see
e.g. [Pié+16; GYN14; GYN15; Tan+19; Roy14; PG18]. To our knowledge,
corrections to the quantum metric gy ;; as given by g;; have nowhere been
stated prior to this work.

In order to compare classical phase space averages in thermodynamic equi-
librium (1.2) with the semiclassical expansion of thermodynamic equilibrium
expectations it is crucial to compute the Lebesgue density v of the symplectic
form w*®’s Liouville measure \°* = v*dqdp (1.3). The Liouville density v© is
related to the Pfaffian pf(w®) of the symplectic form w*®’s coefficient matrix
w;; through

Ve = (—1)" D2 pf(wf) (1.7)

Moreover, the symplectic from w*® resulting from the modified Berry curvature
R? takes a particular form, namely w® = w° + £ Q°. Within this context we
prove two trace formulas: One trace formula for the Liouville density v of
an arbitrary symplectic form w (Theorem 2.9) and another trace formula
for the e-expansion of the Liouville density »° of on e-dependent symplectic
form w® = w® + £Q° (Proposition 2.7). What is quite remarkable in the
proofs of the trace formulas is that while the formula for general symplectic
forms w follows directly from the s-expansion of v, the reverse direction
is rather intricate. Hence, our strategy in Section 2.2 is to first derive the
trace formula for e-expansion of v°. Then, the general trace formula for the
Liouville density v is a direct consequence. The proof of Proposition 2.7
is very technical and certainly not straight forward where one of the main
issues is to find a suitable framework that helps to keep an overview over
the terms and cancellations in the expressions.

Trace Formula for Liouville Measures (cf Theorem 2.9)

'''''

measure \ of ) defined by (1.3) can be represented as

A=Y ( ) ﬁ 9 a;l)” Trgn((wOQ)j)ajdql/\---/\dp”. 1.8)

aeNg, j=1

Zn Ta;=n
i=1 T
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Recently and using a different route to ours, Krivoruchenko [Kril6] showed
that for two skew-symmetric matrices A, B € R*"*?" it holds that

n

pf(A) pf(B) = ZN (-1 11 (% ;1) ™ Tean (A BY)™

n

joq Lo=n

This is a generalization of our trace formula for Liouville densities v (Theo-
rem 2.9) as (1.8) follows directly by combining the above result with (1.7)
and the well know fact that pf(w°) = (—1)"("=1/2,

Nevertheless, for our purposes we require a formula for the e-expansion of
the Liouville measure \° for symplectic forms of the form w° + & Q. To our
knowledge, this is the first work where such a formula is stated and proven.

Trace Formula for semiclassical Liouville Measures (cf. Proposition 2.7)
For an e-dependent symplectic form w® := w® + £ Q° the respective Liouville
measure \° can be represented as

:ng)\i: (1+Zeky,§)dq1/\---/\dp”
k=0 k=1

where
; ol T a .
Ge Y () T e T (@)
aGN’g, j=1
Zfﬂial*k
forl1 <k <n.

Focusing on the terms up to order ¢* the density v° of the Liouville measure
A® is

V5 =1—1&Trg(w’ 0)) + £ &2 Trap (W’ Q%) — 1 €% Trg (w° W Q) + O(%)

see Corollary 2.8.

Up to this point all results presented are devoted to the change of the
phase space’ geometry due to the restriction to the adiabatic subspace 11"
To derive semiclassical approximations for systems with operators having
operator valued symbols one crucial step is to 'replace’ the full operator by
an ’effective’ operator that is amendable to semiclassical approximations.
Hereto, it was proven in [ST13] that there is an almost-unique semiclassical
operator h° that approximates the action of the full Hamiltonian A ° when
restricted to the almost-invariant subspace 11" A to errors of order 2.

1.1 Main Results
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In this work we will generalize this result in two ways: we show that such
an effective operator exists not only for the Hamiltonian operator [ “ but
for any operator with operator valued symbol and so for approximations to
arbitrary order in €.

Effective operators (cf. Theorem 3.6)

Let B : R*" — B(H;) be a suitable operator valued symbol and define the
scalar symbol b(¢) : R*" — C as re-summation of the asymptotic expansion
S0 €' bi(2) with coefficients b;(z) recursively by

b() = tl"’Hf (B Po)
and (1.9)
bjp1 = try, (Jjy1 Fo) for j>0

where 3, is the j + 1-th coefficient of the asymptotic expansion of
TH# (B — b1y, # 7 =< 32, &' 3; with bU) = 327_ 7b;. Then,

THBH#T—mnH#HOH#T=0(™)

and
0B — 0550 | = 0(=).

Moreover, for a trace class operator B and arbitrary N € Ny we have
try (B7— 0™ ) 1) = O (N1 | BJIS. ) (1.10)

Hence, within the almost-invariant subspace 11 7 the action of a Weyl
operator B~ can be approximated to arbitrary order by a Weyl operator
b- with scalar symbol b(e, z). We call b the effective operator of B~ and
b(e, z) the respective effective symbol. Note, that the effective symbol b is
taking values in the reals whenever the symbol of the original operator B is
taking value in the self-adjoint operators acting on #;. The coefficients of the
asymptotic expansion b(e, z) < 33°, €' b;(2) are explicitly given in terms of
B(z), the Hamiltonian H(z), the eigenvalue ¢y(z), the eigenprojection Fy(z)
and their derivatives.

The effective symbol % of the Hamiltonian A~ defines a classical Hamilto-
nian on phase space 7*R". Then, (T*R",w*, h) defines a classical Hamilto-
nian system. By the Hamiltonian equations w®(X},-) = Vh the Hamiltonian
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vector field is given by X;’ = —(w?)};' Oih. So, the classical equation of

@\ _ ety -t [Gahla.p)
(p)‘ (-7 (aphm,p))‘

For the explicit expression for the classical Hamiltonian 4 including second

motion are

order corrections see (3.65).

It is quite remarkable that the action of the ’fast’ degrees of freedom can
be captured by corrections of the semiclassical operators to arbitrary order in
¢ when restricting to the adiabatic subspace. This is one of our key results as
it is the basis for all semiclassical approximations in this work. Here, we will
focus on the use of effective operators to derive higher order semiclassical
approximations using Weyl calculus. Nevertheless, it is expected that by
use of the classical Hamiltonian ~ one can extend the approach of [EW96]
leading to an improved WKB approximation.

Despite the fact that the existence of such effective operators prior to
this work was not expected or was at least unclear, our derivation of those
effective operators is particularly transparent, at least on the level of symbols.
The dependency on the L'-norm of the observable in the error estimate of
(1.10) is crucial when taking the thermodynamic limit as we will see in
Section 6. The proof of this error estimate is very technical and one of the
larger parts in the proof of Theorem 3.6.

As already mentioned, one of the main goals of this work is to derive
semiclassical approximations of expectation values for thermodynamic equi-
librium states. Hereto, one of the crucial and most intricate steps that take
the larger part of Chapter 4 is the derivation of the effective operator of
the equilibrium state f(H ") restricted to the almost-invariant subspace 1 .
Note that prior to this work the existence of a semiclassical operator that
approximates the action of the equilibrium state f(H 6) within the almost-
invariant subspace 11" to errors of order higher than second order in € was
unknown, even on a heuristic level.

Effective stationary states (cf. Proposition 4.3)
Let f : R — R be a suitable real valued distribution. Then, there exist
e-dependent scalar symbols f5¢(h) and f2di(r, h) such that

|10 (F(H") = op. (f°(h,m)) ) I || = O(c™)

with
fo(h,m) = f(h) +&® f*(h) + & f*%(m, h) .

1.1 Main Results
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For the explicit construction of f5°(h) and f*¥i(r, h) see the proof of Proposi-
tion 4.3.

The asymptotic expansions of f5¢(h) and f2i(x, h) start with

Po(8) = = 3 £7(e0) (o Ve, Ve Vo)
+ & f"(e0) Tran (w” VZegw® Veo) + O()

= = 51 Tran (W V(" (e9) V2eow” Veo) )

- ﬁ f"(eo) T1"2n((w0 VQeO)Q) + O(e)

and

fr(h,m) = = f"(eo) |’ Veol[g, + Oe).-

2
g0
Here, g, is the leading order of the modified quantum metric ¢°. The leading
order of the quantum correction f*°(h) coincides with the correction derived
by Wigner [Wig32] in the case of a Boltzmann distribution and a semiclassical
Hamiltonian, see (1.4). On the contrary, f24i(r, h) results from the adiabatic

approximation and thus stems from the fast degrees of freedom.

Up to this point there exists no systematic semiclassical treatment of
equilibrium expectations above first order in . In particular, for the case
non-trivial eigenbands there is no higher order semiclassical approximation
known, not for particular application and not even on a heuristic level. We
now present one of the main results of this work which gives a semiclassical
approximation of quantum mechanical expectation values in thermodynamic
equilibrium to arbitrary order in e.

Expectation values for stationary states (cf. Theorem 4.4)
Let A : R?*™ — B,,(H;) be the symbol of a suitable observable A, Then, for
every N € Nj it holds that
try (f(ﬁs) A° fIE) :(27r5)_"/ trgg, () # f(h, 7) o™ dz
R2n

—ic(@me)™ [t (m#t [ () w]) 0 de
+ O |4l

Here, a™) = Y% &7 a () is the expansion to order N of the effective symbol

a:R*™ — R of A(z) defined by (1.9).
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For approximations to errors of order ¢* the above result can be reformu-
lated to

try (f(H )121 I1 ) = (27r6)_"</R% fe(h,m) a® )\ + &2 /RQn Q(eo, 90) ao dz)
+O(7 | All5)
(1.1D

where X¢ is the Liouville measure (3.74) associated to the Hamiltonian system
(T*R™,w*, h). The explicit expressions for the quantum correction Q(ey, go) is

Q(eo, go) = 3 Tran (W’ V(f'(e0) gow’ Veo) ).

In Theorem 4.4 we give the first rigorous and systematic derivation of
semiclassical approximations of equilibrium expectations to error of orders
higher than 2. Moreover the results are gauge-invariant and applicable
also in case of non-trivializable eigenbundles. As already mentioned, the
dependency on the L!-norm of the observable in the error estimate is crucial
when taking the thermodynamic limit. The additional quantum corrections
to the expectation values of steady states, besides the effective operator
of the equilibrium state f(H "), result from the fact that we restrict to the
almost-invariant subspace, i.e. we consider try ( FHHYA f[a) instead of
try ( f(H 6) fle). It is worth pointing out that other than the band energy e,
and the distribution function f, the second order quantum corrections depend
only on the quantum metric gy. This corroborates the general importance
of quantum metric. The modified e-dependent classical Hamiltonian system
(T*R",w®, h) incorporates big parts of the semiclassical approximation of
equilibrium expectations to error of order €3 (1.11). Although we expect this
to be true to arbitrary order, we will not prove it in this work.

Next, we discuss the semiclassical approximation of the quantum evolution
of observables in the Heisenberg picture also known as Egorov type theorem.
There are already existent works on Egorov type theorems to arbitrary order.
One limitation that all such results have in common is their reliance on
the trivializability of the eigenbundle. Also, in most derivations of Egorov
type theorems big effort has to be taken in order to make the results gauge
invariant. In this work we derive an Egorov type theorem that is based upon
eigenprojections rather than eigenfunctions and is therefore gauge invariant
by definition and applicable also in case of non-trivial eigenbundles. The
applicability to non-trivializable eigenbundles is of particular importance
in many applications as magnetic Bloch bands (see Section 1.2) or locally
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isolated eigenbands in the time-dependent Born-Oppenheimer approximation
(see Section 1.3). In addition, we show that at least in the approximation to
errors of order &* the modified classical Hamiltonian system incorporates the
quantum evolution of observables, up to quantum corrections. Note, with
the derivation of effective operators in the sense of Theorem 3.6 in hand,
the derivation of an Egorov type theorem is comparatively straight forward.
Here, we mainly follow the strategy of [ST13, Theorem 2].

Egorov type theorem (cf Theorem 5.2)
Let A : R*™ — B, (H;) be the symbol of a suitable observable A" with
quantum mechanical time-evolution

Ae(t) — ol "t/z 7o ill te
In addition, let ®! be the classical flow associated to the Hamiltonian system
(T*R"™,w®, h) and a(®!) the classical evolution of the effective symbol of A

Then, there exists an e-dependent semiclassical symbol 2(¢) : R*" — R such
that

N+3

<O(N Y |t)

j=0

1" (A%(t) — op. (a(@h) + 2 2A(1)) ) T

for every N € N.

The semiclassical symbol 24(¢) : R*"” — R has an asymptotic expansion
A(t) =< 3320 ¥ AP (t) with 23 (¢) : R*" — R inductively given by

t
0 (1) = [ A (a(@D)) 0 @17 dr
0 b
and

t
AN (1) = /0 AN (AN (7)) 0 BT dr forj > 1.

For the construction of the e-dependent symbol leiv (a)(z) : R*™ — R see
Proposition 5.1, in particular (5.14). Regarding the explicit expressions to
errors of order £* we have

t
AZ(1) = 21/ (€0, ao(®7)}, 0 B dr
0

—3 /Ot tryg, ({{eo, Po} . {ao(®]), Po}}) o L7 dr + O(e).
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As a consequence, for the quantum evolution of the expectation value of a

non-stationary state p(t) = e~ifl ¥/ p, eifl /¢ with initial state py = 11 po 11 it
holds that

tra(p(t) A7) = try(po I A*(8)1T)
ZtTH(POOPE( (@) +¢° ()))+O(EOO)'

The way we stated the Egorov theorem it seems like the modified e-
dependent classical Hamiltonian system (7*R"™,w®, h) incorporates big parts
of the semiclassical approximation of the quantum evolution of observables
to arbitrary order. Although we expect this statement to be true, in this work
we will prove it only for the semiclassical approximation to errors of order
3. At this point it may as well be that the higher order corrections to the
classical Hamiltonian system lead to additional correction terms.

Last but not least, in Section 5.2 we will introduce a scheme to derive
numerical approximation schemes for the time evolution of quantum me-
chanical expectation values try (5% A”) with initial wave function v, € 1
and this to arbitrary order in . Hereto, we reformulates the corrections
AN (t) for fixed N € N, leading to

N lj
=y & Z L k(t, 2, D™k a o ®L(2))
j=0 k=0

where

mj g times
——~~—
Tu(t,z)  R2X X2 R

are explicitly defined linear mappings from the space of m, ;-tensors to the
real numbers that are independent of the effective observable a. Then we
derive a first order system of initial value problems for the components of
[V (t, ) such that the vectorization of this system can be written as

0 = -
QF(t z2) = N(t,2)T(t,z) + b(t, 2)
where the components of the Matrix N(¢, z) and the vector b(t, z) are given
explicitly in terms of the classical Hamiltonian h, the symbol of the adiabatic
projection 7 as well as their derivatives, evaluated along the classical flow ®..
Then, the Wigner type phase space method developed in [GL14] can directly
be applied leading to a very effective algorithm to approximate the evolution
of quantum mechanical expectation values. In Section 7.4, we validate the
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accuracy and efficiency of the resulting algorithm by applying it to a simple
quantum system of Born-Oppenheimer type with matrix valued potential

_ [tanh(z) J
Viz) = ( ) —tanh(x)) ’ 0>0.

Due to the success of semiclassical approximation for Hamiltonians with
operator valued symbols there is a huge amount of literature on this topic.
We give a short overview over the contributions that we believe are most
important where we will focus mostly on higher order semiclassical ap-
proximations. For a short survey over the literature related to semiclassical
approximation to error of order 2, see [ST13, Section 6].

The first appearance of the first order corrections to the symplectic form w°
and the energy ¢, is in [LF91] where they use Weyl calculus to diagonalize
operators with matrix valued symbols. Here, the change of coordinates due
to the symplectic form is used as technical tool rather than as the coordinates
for the ’slow’ degrees of freedom. Independently, Chang and Niu [CN96]
formally derive the first order corrections to the classical equations of motion
to approximate the evolution of wave packets for the case of Bloch electrons.
The first rigorous proof of the Egorov theorem to errors of order £? in the case
of Bloch electrons without strong magnetic field is given in [PST03b] and
was slightly generalized in [DL11]. In [ST13] the proof of Egorov’s theorem
is then extended to the case of a non-trivializable eigenbundle. In addition,
a semiclassical approximation of thermodynamic equilibrium distribution is
proven in [ST13]. The results in [ST13] are very similar to Theorem 5.2 and
Theorem 4.4 but limited to errors of order £? and to observables with scalar
symbol. The first order semiclassical model has been studied intensely an led
to big advances in the theory of solid state physics, see [XCN10] for a review.

As already mentioned, for the case of a trivializable eigenbundle one can
use space-adiabatic perturbation theory to derive an Egorov type theorem in
the sense of Theorem 5.2, see e.g. [Teu03]. For the special case of particles
with spin an Egorov theorem to arbitrary order in € was proven in [BG04].
Related to the theory of Bloch electrons, Blount pioneered the work of sys-
tematically extending semiclassical theory up to second order by using phase
space quantum mechanics [Blo62b]. Recently and completely independent
to this work, Gao, Yang and Niu [GYN14; GYN15] have constructed a second
order semiclassical theory for Bloch electrons under uniform electromagnetic
fields. Here, they introduced a positional shift a’ for the case of Bloch bands
with trivializable geometry. This positional shift acts as correction to the
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Berry phase and induces a Berry connection that is very similar to the next
to leading order part of the modified Berry connection V. In addition, a
second order correction to the wave-packet energy is given in this work.
The approach can not be applied in the case where the Bloch bundle is
non-trivializable as in the case of magnetic Bloch bundles with non-zero
Chern number (see e.g. [DN80a; DN80b]). Moreover, [GYN14; GYN15] is
based on formal computations which includes making the correct guesses for
certain needed objects. Thus, the approach does hardly reflect the structure
of the problem and none of the statements is rigorously proven. We will
give a more detailed comparison of our results with [GYN14; GYN15] in
Section 1.2.

The existence of semiclassical operators that approximate the action of
operators with operator valued symbols restricted to the adiabatic subspace
to errors of order £? is well known and has previously been used e.g. in
[EW96; ST13; DL17]. To higher orders the existence of such effective
operators has previously been neither claimed nor proven.

Magnetic Bloch Bands

The understanding of Electrons within a two dimensional crystal subject to
electromagnetic fields is one of the central problems of solid state physics.
Such Bloch electrons are described by the underlying Schrodinger equation

104 (x,t) = Hp (. 1)
with Hamiltonian
H= %( — iV, +3Boz — A(sx))2 + Vi(z) + @(ex).

The potential V- : R? — R, generated by the nuclei of the crystal, is periodic
with respect to the regular lattice I' with basis 7,7, € R?,i.e. T = {ay;,+b :
a,b € Z}. The strong constant magnetic field perpendicular to the plane is
represented by By = (_%0 Eéo) with By € R. The potentials A(ex) and ®(cx)
are slowly varying on the scale of the lattice I" which is expressed through
the dimensionless semiclassical parameter 0 < ¢ < 1.

The dynamics of Bloch electrons and properties in thermodynamic equi-
librium are considered of big importance, as the big variety of past and
recent works in theoretical physics (e.g. [Blo62b; Zak68; Hof76; Tho+82;
Ber84; SN99; GAO03; Blo05; XCN10; GYN15; LZZ15; OF15; Ogal6; Rao+15;
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Pié+16]) and mathematical literature (e.g. [DN80a; DN80b; Nov81; Bus87;
Bel88; GRT88; RB90; HSTO1; PST03a; DGR04; Pan07; ST13]) in this di-
rection suggests. Also the spectral properties of Hamiltonians with slowly
varying external potentials are studied intensely as can be seen by the large
number of mathematical articles (e.g. [HS89b; HS89a; HS90b; HKS90;
GMS91; AJ09; HK15]). Due to the enormous amount of literature in this
direction we can mention only a small part here. For a review of the mathe-
matical and physical literature until 1991 we refer to [Nen91]. A well known
approach in understanding Bloch Hamiltonians is the Peierls substitution
and the derivation of effective Hamiltonians as done in (e.g. [Pei33; Blo62a;
Nen89; Nen91; FT16; DL11; DP10]). While in the limiting cases By = 0
and By, — oo the construction of unitarily equivalent effective Hamiltonians
is well understood (see e.g. [PST03a; DP10; DL11]), for the case B, # 0
the validity and the meaning of Peierls substitution was absolutely unclear
(see e.g. [Zak86; Zak91]) until recently. The main obstruction in the case of
magnetic Bloch bands (B, # 0) is the fact that the associated Bloch bands
are non-trivializable. A first derivation of a unitary equivalent effective
Hamiltonian for the case of magnetic Bloch bands was given in [FT16].

Although many problems have already been solved, there are many proper-
ties of electrons in crystals that can not be described at all or at least not in a
satisfying manner. One of this properties is the magnetic susceptibility which,
as many other phenomena, can be explained by using a second-order semi-
classical theory for Bloch electrons. Recently, Gao, Yang and Niu [GYN14;
GYN15] have constructed such a theory under uniform electromagnetic fields,
including a derivation for the first-order correction to the Berry curvature. As
already noted, this approach can not be applied in the case where the Bloch
bundle is non-trivializable as in the case of magnetic Bloch bundles with
non-zero Chern number (see e.g. [DN80a; DN80Ob]). As already mentioned,
[GYN14; GYN15] is based on formal computations, does hardly reflect the
structure of the problem and none of the statements is rigorously proven. In
[LZZ15] a second-order semiclassical theory for the dynamics of Bloch elec-
trons without external magnetic field is derived rigorously using WKB-type
solutions to the underlying Schrodinger equation. Their results can be used
to describe the dynamics of certain wave packets up to second order but the
resulting equations depend on the shape of the wave packet and the choice
of phase in the Bloch waves. In addition, the approach can not be used when
an external magnetic field is present and therefore is inapplicable to compute
properties like the magnetic susceptibility. Moreover a trivialization of the
Bloch bundle is used in this approach as well, making it inapplicable to the
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case of magnetic Bloch bands. Also, there are several recent works on the
derivation of the magnetic susceptibility using Green’s functions, see e.g.
[OF15; Ogal6; Rao+15; Pié+16]. To conclude, despite the huge interest
in higher order semiclassical approximations and especially the magnetic
susceptibility of Bloch electrons there is no existing result for the case of
magnetic Bloch bands with non-trivial geometry, not even on a heuristic level.
This is the main motivation for this work.

In the following we will explain how our theory can be applied to Bloch
electrons in order to derive a higher order semiclassical theory that is rigor-
ously proven and applicable also when the Bloch band are non-trivializable.

Clearly, the Hamiltonian A can not be expressed as Weyl quantization of
an operator valued symbol. We will briefly show how the problem can be
reformulated allowing the use of Weyl calculus. Hereto, we transform the
Hamiltonian A unitarily using the magnetic Bloch-Floquet transform. Note,
that we will not go much into detail here. For a detailed introduction to the
magnetic Bloch-Floquet transform, see e.g [FT16].

We assume the flux per unit cell of the strong magnetic field B, to be
a rational multiple of 27, i.e. By (11 X 1) = 27r§,p € Z,q € N where
71,72 € R? is the basis of the lattice I. Further, we consider the sublattice
I', ¢ T with basis v{ = ¢ and 7§ = v,. The Brillouin zone M* is the
centered fundamental cell of T';, the reciprocal lattice to T',.

The unperturbed Hamiltonian
A 1 i 1 2
Hp, = 5( —iV, + 5301’) + Vr(2)
fibers in magnetic Bloch-Floquet representation as

A~ ©®
UBF HBO z/{él%" = /M* Hper<k)

where
2
Hper (k) = 5( =1V, + $Boy + k) + Vi(y).

Then, H,..(k) is bounded from below and has a compact resolvent. Thus,
the fibered Hamiltonian H,., (k) has a discrete spectrum with eigenvalues
e(™ (k) of finite multiplicity that accumulate at infinity. The eigenbundle
associated to an eigenvalue e(™ (k) is known as Bloch bundle. While in the
non-magnetic case (B, = 0) the Bloch bundle is always trivial, a magnetic
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Bloch bundle is trivializable only when its Chern number is zero. In addition,
Hyex(k) is called to be 7-equivariant in the sense that for every v* € T

Hyer(k —7") = 7(v") Hpea(k = ") 7(7") ™

where the operator 7(v*) acts on a function f € L?(R?) as

(T()N) =TI f(y) .
The magnetic Bloch-Floquet transform U/ maps the full Hamiltonian A to
H® = Upp HUgh = L(— iV, + 1Boy + k — A= VD) + Vi(y) + @(ic V)

where V7 denotes the derivative with T-equivariant boundary conditions.
Then, A" can be represented as the r-quantization of the 7-equivariant
operator valued symbol

H(r,k) = Upr HUlgh = (= 1V, + 1Boy + k — A(r))" + Ve(y) + &(r)
= Hper(k — A(r)) + (1)

For details on the 7-quantization we refer to [Teu03, Appendix B].

So, we transformed the original problem to a system driven by a Hamil-
tonian that can be expressed as quantization of an operator valued symbol.
Usually the non-trivializability of the Bloch bundle is considered as the main
obstruction to overcome in the magnetic Bloch case. As noted several times,
this is no issue in our case. Still, there are some obstructions that prevent us
from applying our theory to this general case.

« While A is the T-quantization of H (r, k), our approach is based upon
Weyl symbols defined on R?": since all our results hold for 7-equivariant
symbols with the same proofs we can neglect this issue, see [Teu03].

e While H(r, k) is in general unbounded, we assume the symbols to
take value in the bounded operators on a Hilbert space H;: clearly,
it is not a straight forward task to extend our results to unbounded
operators. Nevertheless, adiabatic-perturbation theory was applied to
Bloch operators and since most of our results base on the techniques
of space-adiabatic perturbation theory we do not expect serious issues
when extending our results to Bloch operators as done in [Teu03].

* The restriction that the eigenvalues must be non-degenerate is a limita-
tion of our approach and at this point we do not see much way around
this.
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Nonetheless, in Section 6 we will apply our results to a simplified model.

Namely, a gas of non-interacting fermionic particles in the tight binding
approximation on the lattice Z? subject to a constant magnetic field and an
additional electromagnetic field with slowly varying potentials, known as
Hofstadter model. Here, the single particle Hamiltonian is

HY = Y T +4°

la=1

acting as bounded self-adjoint operator on ¢?(Z?). The magnetic translations
T4 are defined by

(TA )5 = e Ay for ¢ e®(Z?) and o,f €2,
The magnetic vector potential A° : R? — R? is given by
As(r) = —%Bor + A(er) where A(r) = Ay(r) — %br

with By = (9 %), By =272, peZ,geN, b= (5%}),beRand
Ay : R? — R? smooth and bounded together with all its derivatives. The
electric potential ¢ is a multiplication operator defined by

(6°)s = ¢(eB)Yg for € (*(Z*),3 € Z* where ¢(r) = ¢p(r) +E -7

with £ € R? and ¢, : R? — R smooth and bounded with all its derivatives.
Then, an application of the respective magnetic Bloch-Floquet transform
(6.2) to HA" yields

H =uboHuby = Ho(k — A(ieV])) + ¢(ie V)

where Hy (k) acts on L*(M,, C?) as matrix valued multiplication operator, see
(6.3).

In the following we will explain our main results in the context of Hof-
stadter electrons. Note that in this application we focus on second order
semiclassical approximations. Clearly, our approach allows an extension of
the results to semiclassical approximations of arbitrary order in ¢.

We begin with the modified classical Hamiltonian system. So, let e(™),
1 < m < g be an isolated eigenvalue of H,(k) with Pém)(k:) the associated
spectral projection. Then, &™) (r, k) := ™ (k — A( )) + ¢(r) is an isolated
eigenvalue of H(r, k) with spectral projection 2™ (r, k) = P\™ (k — A(r)).
After a change of coordinates to kinetic momentum ~ = k — A(r), the e-
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dependent classical Hamiltonian system associated to (™ is (w7 (r, &), h(™).

Here, the classical Hamiltonian A is given explicitly by (6.7) and the

coefficient matrix of the symplectic form wﬁ&)(r, k) is of the form

m, o~ [TB) 1 2 0 Lt (r, k)
”KM(““)_( -1, 59(7”)(7",/1)) e (—(L(m))T(r,/@) 0 )

where B(r) = B(r)Jo = B(r) (% }), B(r) = V x A(r); LU(r, k) is given by
(6.9) and Q™ (1, k) = QU (r, k) J, with

Q(m) (7’, KJ) =2T7m tl"cq (81P(§m) 82P0(m) Pém)) (Ii)
+ 20, x (B(r) S (k) + W () Vo(r))

the modified Berry curvature for the m-th band (see Equation 6.6).

The associated Hamiltonian equations are (6.15)

T . L —E& Q(m) ].2 n 52 0 _JQ (L(m)>T J2 8Th(m)
i) v\ -1, B Jo LM J, 0 0. hm |

where
v (r k) = 14¢ B(r) Q™ (k) + 2 Try (L(m) (r, /i))

is, up to errors of order £3, the density of the Liouville measure \™ of the

symplectic form w(%(r, k), i.e.

A — (u(m)(r, k) + (9(53)> dri A - Adk, .

This is the first time that a Hamiltonian system for the second order semi-
classical approximations of magnetic Bloch electrons is given. Also within the
context of Bloch electrons without strong Magnetic field, to our knowledge
there is no result known of such generality. The only comparable results
the are those in [GYN14; GYN15] and [LZZ15]. Where in [GYN14; GYN15]
uniform electromagnetic fields are considered, in [LL.ZZ15] no magnetic field
is considered at all. If we restrict our results to a trivializable Bloch bundle
and uniform electromagnetic field then the correction to the Berry phase

B(r) S™ (k) + W™ (k) V(r)

coincides exactly with the positional shift in [GYN14]. Since in case of a uni-
form electromagnetic field the expression L™ (r, k) vanishes, our symplectic
and thus also the Liouville measure coincides with the one in [GYN14]. In
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[GYN15], an additional correction to the positional shift 'magically’ occurs.

Due to the simple and natural structure of our approach, in contrast to
most other approaches, an assignment to the effective energy and the Berry
curvature arise naturally. Hence, we think that rather than introducing this
additional correction to the positional shift this correction should have been
incorporated in the effective energy. Nevertheless, we have to admit that
we did not do a detailed comparison of our effective Hamiltonian with the
wave-packet energy in [GYN14; GYN15]. If we assume a vanishing magnetic

and constant electric field then our results coincide with the ones in [LZZ15].

Before we get to our results on steady states we briefly discuss our results
on the second-order approximation of the quantum evolution of magnetic
Bloch electrons. Hereto, let R be a self-adjoint operator acting on ¢%(Z?)
such that O° = B R (/P is a Weyl operator with T-equivariant symbol.
Moreover, let 5™ be the effective symbol of O associated to the Bloch band
e(™ and o™ (r, k) the second order effective symbol in kinetic momentum
representation o™ (r, k) := Y2 & 6™ (r, k + A(r)).

Egorov Theorem for Hofstadter Electrons (cf. Proposition 6.4)
Let Ay(r) = 0, By = 271%, p€Z,q e Nand m € {1,...,q} for ¢ odd or
m e {1l,...,q} \ {¢/2,q/2 + 1} for g even. Then,

~e(m)

ﬁa(m) Z/{BO eiHAet/s éefiHAEt/s UBO* I
(m)

~e(m)

op. (o™ (@) + 2 A (1)) (r,k + 1 br)) IT

5
+0(N 015, Y1)
§=0

-

(m

where the Hamiltonian flow &, ) is the flow of the Hamiltonian system
(h™,w\7)) and the quantum correction 2™ (t) is given by (6.26).

In particular, for v, = e~ H*t/= 4 where the initial state 1, € *(Z?)
satisfies 270 ¢y = 1) € f[s(m)L2(Mq, C?) we have

(e, Ripv), o

= (%o, op. ((o"™(@™) + 2A™ (&) (r, k + L br)) 1) +O(E%).

L2(M,,C9)
To our knowledge this is the first time that a complete second-order semi-
classical approximation of the quantum evolution of Bloch electrons is given.
Note, the assumption that the magnetic field is constant is only a techni-
cality that simplifies the computations and leads to a more readable result.
As already stated, Gao et al. [GYN14] gave a derivation of the modified
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Hamiltonian system but the additional quantum corrections are nowhere
mentioned in this work. This probably is due to the fact that they consider
only semiclassical wave-packets. Clearly, by applying space-adiabatic pertur-
bation theory [PST03a; Teu03] one can derive a second-order semiclassical
approximation for the quantum evolution of Bloch electrons but as already
mentioned space-adiabatic perturbation theory is applicable only when the
Chern number vanishes. Also, space-adiabatic perturbation theory makes no
statement about the associated modified classical Hamiltonian system.

Finally, we get to the results that are one of the main motivations of this
work. Namely, the semiclassical approximation of equilibrium expectations
for magnetic Bloch bands including an application of that result leading to a
second-order approximation of the free energy and an exact formula for the
magnetic susceptibility. Hereto, we assume 2, O°, 5™ and o™ as above.

Equilibrium Expectations for Hofstadter Electrons (cf. Proposition 6.1)
Let f : R — R be a suitable real valued distribution and B, = 2%%, pEL,q
odd. Then,

q

try2 22)<R f(H™Y)) ﬁ > (/2 o™ fe(Rm) M)y \&(m)
m=1 R2x Mgy

[, o Qg drdr)

R2x M,

O [O]1)

where M, :=[0,27 /q) x [0,2 ) is the reduced Brillouin zone. The effective
equilibrium state f¢(h(™, 7(™) is given by (B.67) and the quantum correction
Q(hi™. g5™) by (B.65).

To our knowledge there is no comparable result to the above in the lit-
erature, not for the case of trivializable Bloch bundles and not even on a
heuristic level. Note, that the dependency of the error estimate on the L!-
norm of the observable is crucial when taking a thermodynamic limit as we
will see in our next result, the free energy per unit volume.

For a gas of non-interacting Hofstadter electrons at temperature 7' = 31
and chemical potential i the free energy per unit volume is defined by

2

€ . AE,
p(B%, B, 1) = 1}5& N |tf1z2 @) (xj(ez) In (14 P =m))

Here, v, : R? — [0, 1] is a sequence of smooth cutoff functions supported in
A; := [—J, j]* such that x;(z) = 1 for all = € A,;_; where with an abuse of
notation we define |A;| = ||x;| .-
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Free Energy (cf. Proposition 6.2)
Let ¢ odd, By = 27r§ and A,(r) = ¢(r) = 0. Then, for £ > 0 small enough,
£ > 0and i € R it holds that

p(B 0.0 = e 3 ([ b)) )

m=1

_ e /T QU (1) dm) + 0@

where T, is the torus [0, %%)?, Fj,(z) = -4~ In (1 + e‘ﬁ(l"“)) is the anti-
derivative of the Fermi-Dirac distribution f3,(z) = (1 + ¢#@=#)~! and

m 2 m 1 2 _(m 1 m) L2
QY = U fh,u(e™) (5 det (V2e™) + [ Vel 4%, )

The first expression in the quantum correction Ql(jr”) is well established
and known as Landau-Peierls magnetic energy, see e.g. [Blo62b]. It results
from the semiclassical approximation (1.4) for a purely semiclassical sys-
tem. On the contrary, the second term of Q{7 stems from the adiabatic
approximation and to our knowledge is completely new, at least in this
generality. There are several recent works on the approximation of the free
energy or grand canonical potential to second order in the magnetic fields,
e.g. [BCS12; Savl12; GYN15; GS11; OF15; Ogal6; Rao+15; Pié+16]. While
[BCS12; Sav12] use magnetic perturbation theory, [GYN15] is based upon
semiclassical wave packets and [GS11; OF15; Ogal6; Rao+15; Pié+16]
use Green’s functions to approximate the free energy. None of those works
are applicable to magnetic Bloch bands. Hence, their results are valid only
for weak constant magnetic fields while our results can be applied for ar-
bitrary constant magnetic fields by expressing the magnetic field as field
with rational flux plus a small perturbation. In addition, [OF15; Ogal6]
is limited to time-reversal case, i.e. a centrosymmetric potential where the
Berry curvature ° vanishes. In [GS11; Rao+15; Pié+16] a formula for the
approximation of the grand potential to second order in terms of Greens
functions for two-dimensional tight-binding models is given. For a two-band
model, the explicit expression in terms of Bloch functions is then given in
[Pié+16]. The results in case of a two-band model are surely very similar to
our results. Nevertheless, we will not give a exact comparison here. Hence, it
is not clear at this point whether the results coincide exactly. In [GYN15] the
grand potential to second order in the magnetic field for a three dimensional
model is determined. In contrast to the previously discussed works, here the
Landau-Peierls energy is only introduced artificially and is no direct result
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of the approach. Thus, we are quite confident that the second term of the
quantum correction ng) is missing in this work but also here we will not
give a more detailed comparison. The results in [BCS12; Sav12] are not very
explicit and thus are very difficult to compare with our results.

The free energy gives rise to many interesting physical quantities. An exam-
ple hereto is the orbital magnetization defined by M(By, 3, 1) = 0p-p(B°®, 3, 11).
By the fact that

e (Bo, B, ) = b7 &p (B7, B, )

e=0

we get

M(By,B0) =~ s 32 ([ Faude () MO 1)

which reproduces the result in [ST13]. Clearly, only a first order theory is
needed to determine the orbital magnetization. On the contrary, for the
orbital susceptibility

S(Bo, B, 1) = 03-p(B°, B, ) = b2 92p (B*, B, jn)

e=0

the first order theory gives a wrong answer, namely zero. Here, only a higher
order theory gives the correct answer being one of the main motivations for
this work as well as [Blo62b; GYN14; GYN15; GS11; OF15; Ogal6; Rao+15;
Pié+16]. We get the following result.

Susceptibility (cf. Corollary 6.3)
Let g odd, By = 2r2 and A(r) = ¢(r) = 0. Then for 0 < § < ocoand p € R
the magnetic susceptibility is
S(-BO?/B /’L)
_ 27 4 Z [ Ipule™ () (2 S0 % Velm 43 Mm@
(Vle(m W gLemy — 2 tre, (Mg;”) (Hy — elm)~t M* Pom))
+itre (VMG x VR™ P™)
T Ltre (Treo (V2 P V2 (Hy — <m>))P<m>))( )

L5, (R)) (MI)? = 5 det (V2el™ ) — [Vt 4|2 ) () i

Chapter 1 Introduction



1.3

It’s worth noting that the result above is not an approximation but an exact
formula for the orbital susceptibility and clearly this is the first time a formula
for the orbital susceptibility is given for magnetic Bloch bands.

Born-Oppenheimer Type Hamiltonians

The effective description of molecules is of big importance in chemistry as
well as theoretical physics. The molecular Hamiltonian for / nuclei and m
electrons is

Hypot = —%AI + Pfe(l”)

acting on the Hilbert space H = L*(R¥) ® L*(R*™) where

A

Ho(x) = =5 Ay + Ve(y) + Va(2) + Veu(,y) -

Here, V. is the electronic and V,, the nucleonic repulsion and V,,, the attraction
between nuclei and electrons. The potentials V,, and V., may include external
electro-static fields. For notational simplicity we ignore spin and assume all
nuclei have the same mass m,,.

Even though the linear time-dependent Schrédinger equation
ih Z(1) = Hua (1), (7o) = tho € L*(R3H) (1.12)

is a linear partial differential equation, its direct numerical treatment is
notoriously difficult for two reasons:
* The dimension 3(/ + m) of configuration space is large. Even a simple
molecule as C'O, contains, 3 nuclei and 22 electrons resulting in a
3 (I +m) = 75 dimensional configuration space.
* Long Microscopic times 7 have to be considered to observe finite motion
of the nuclei.

Already in 1927, Born and Oppenheimer [BO27] realized that the large
disparity between the mass of the light electrons and heavy nuclei can be
exploited to explain general features of molecular spectra. Here, the physical
intuition is the following. Due to their lower mass the electrons move much
faster than the nuclei. Hence, the electrons can adjust their state quickly to
the movement of the slow nuclei. So, if the electrons start in the N-th bound
state, they stay in the N-th bound state although the nuclei are moving. This
results in the bound state of the new nuclei position. Born and Oppenheimer
realized that the small ratio m./m, can be used as expansion parameter
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for the energy levels of the molecular Hamiltonian (1.13) leading to the
time-independent Born-Oppenheimer approximation.

In addition, London [Lon28] realized that the nuclei position dependent
bound states and electronic energies act as effective potential for the move-
ment of the nuclei. Moreover, due to their large mass the nuclei can be
treated semiclassically. This approach is known as time-dependent Born-
Oppenheimer approximation and is the most important tool for studying the
quantum dynamics of molecules.

The number of works on Born-Oppenheimer type approximations is im-
mense and we can only mention a small fraction here. In what follows, we
will give a short overview on what from out perspective are the most relevant
works. For a review of existing literature see [HJO7].

The first rigorous proof of the time-independent Born-Oppenheimer ap-
proximation is due to Combes, Duclos and Seiler [CS79; CDS81]. Hagedorn
[Hag87] showed the expansion to arbitrary order in € = /m./m,, assuming
smooth potentials which was generalized to general molecules in [Kle+92].

The time-dependent Born-Oppenheimer approximation was first proven by
Hagedorn for smooth potentials in [Hag80] and extended to approximations
of arbitrary order in [Hag86]. A generalization to Coulomb potentials then
followed in [Hag88]. In [STO1; PST07] space-adiabatic perturbation theory
was applied to proof the time-dependent Born-Oppenheimer approximation
for an isolated subsets of the spectrum of H.(x). One of the main advantages
of this approach compared to many others is the separation of the adiabatic
and semiclassical approximation. This separation is also related to some
numerical approaches in chemical physics where in contrast to the semi-
classical treatment of the nuclei, the idea is to handle the nuclei quantum
mechanically using the electronic energy band F(x) as effective potential.
Due to the fewer approximations this approach is expected to yield better
results.

Also within the context of Born-Oppenheimer type approximations most
approaches rely on eigenfunctions with the drawback that the results are
often gauge dependent. In addition, the eigenvalue bands of H,(x) are
in general only isolated locally in the nucleonic configuration space R* as
they may cross or merge into the continuous spectrum. In such cases, one
has to restrict to solutions of the Schrodinger equation that are initially
and stay supported in the region A C R where the considered energy
band e, (x) satisfies the gap condition. Then, the respective eigenprojection
Py : I' — B(#;) defines a vector bundle that is non-trivial in general. The
reason for this is that in contrast to R¥ the region I' may not be contractible.
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To our knowledge our approach is the first that is applicable also in such a
regime. Nevertheless, here we will restrict to the case where the eigenvalue
is isolated globally, i.e. A = R,

Our goal within the application to Born-Oppenheimer type Hamiltonians is
to derive the respective modified classical Hamiltonian system (Section 7.1)
and show an Egorov type theorem (Section 7.3) as well as the second order
semiclassical approximation of equilibrium expectations (Section 7.2). In
Section 7.4 we apply the numerical scheme developed in Section 5.2 to a
simple example of Born-Oppenheimer type in order to validate the accuracy
and efficiency of the respective numerical algorithm.

We consider the molecular Hamiltonian for [ nuclei and m electrons subject
to an external magnetic field B in atomic units (m. =k = 1), i.e

A~ E

H,y = 2 (—iV,+ A(2)* + O, (z) (1.13)

where
He(z) = 2(=iVy — A[))* + Ve(y) + Val@) + Ven(, 1) .

The magnetic vector potential A : R — R” is assumed to be smooth and
bounded. By an abuse of notation A : R* — R3 or A : R* — R3™ is the
extension of the vector potential obtained by repeating the vector potential
A : R® — R3 of the external magnetic field B = V x A, [ or m times,
respectively. The electrons are treated as point-like. Hence the electronic
repulsion is

m—1

k
=0 j=i+1 Yi — y]

For physical and technical reasons, the nuclei are modeled to have an ex-

tended, rigid charge distribution p € CP(R?), p > 0, ||p||z: = 1. Hence the

nucleonic repulsion is

i=0 j—it1’R° & — ¢

and the attractive potential between electrons and nuclei satisfies

Venl2:) ZZ/ |€ yj

=0 j=1
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Assuming nuclei and electrons having a kinetic energy of comparable
magnitude, one finds for the speeds that |v,| ~ ¢ |v.| where ¢ is the small
dimensionless parameter

_ Me
E = miﬂ .
Hence, the dynamics of the nuclei must be followed over microscopic times
of order ¢! to observe motion over finite distances. Rescaling the time to

e 1 =t the Schrodinger equation (1.12) becomes
ie 50(t) = Hug (1), olto) = € LR )
and ﬁ;ol is the Weyl quantization of the symbol

Hoot () = 3(p — € A(q))* + He(q) .-

The main goal here is to apply our approach in order to derive an e-
dependent classical Hamiltonian system (h,w*®) that, up to quantum correc-
tions, approximates the quantum evolution of observables and equilibrium
expectations to errors of third order in . Clearly, H,,,(q, p) does not fulfill
our assumptions (see Section 2.3) preventing us to apply our results directly.
This is so for several reasons.

* While H,,,(q,p) takes value in the unbounded operators on H; =
L*(R*™), we assume the symbols to take value in the bounded opera-
tors: clearly, it is not a straight forward task to extend our results to
unbounded operators. Nevertheless, this is only a technical issue and
the domain questions arising have to be dealt case by case, see [Teu03].
We will thus assume H, to take values in the bounded operators on #;
from here.

* Similar to the application to magnetic Bloch bands, the restriction
that the eigenvalues must be non-degenerate is a limitation of our
approach and at this point we do not see much way around this. Also
our approach does not allow to handle subsets of energy bands which
is clearly a limitation compared to adiabatic-perturbation theory.

* While H,,,(q,p) is growing quadratically in p, we assume the Hamil-
tonian to be bounded with respect to ¢ and p: Even if we relax our
assumptions on the Hamiltonian to Hormander symbol classes, our
approach would still be inapplicable since Hormander symbol classes
impose an increasing gap condition to the energy bands. In particu-
lar we would require the energy gap to increase quadratically in the
momenta p which is not fulfilled by the molecular energy bands in
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general. This causes a qualitative change in the sense that the adiabatic
decoupling is no longer uniform. Hence, a momentum cut-off needs to
be introduced.
In Section 7 we consider the Hamiltonian operator H ) acting on ‘H =
L?*(R") ® H; for H; some separable Hilbert space and given as Weyl-operator
with symbol

H(q,p) = 5p—cA(@] 1y, +V(g),  for (¢p)=z€eR*™ (1.14)

The magnetic vector potential A : R — R” is assumed to be smooth and
bounded. The operator valued potential V' (¢) is assumed to be bounded
together with all it’s derivatives and to take value in the continuous linear
self-adjoint operators on H;. In addition, we assume V'(z) to have a non-
degenerate isolated eigenvalue e, () with eigenprojection Fy(q). Then,

e(q.p) =%lp—ecAlQ)f + eulq)

is an isolated non-degenerate eigenvalue of H(q,p) with eigenprojection
Po(q).

Clearly, due the quadratic growth of H(q, p) our results are still not directly
applicable. Nevertheless, we can at least formally determine the modified
Hamiltonian system associated to H(q,p), see Section 7.1. The associated
classical Hamiltonian is

ha,p) = 51lp—e AP +en(q) + 5% Ip — e A(@) 5y + O(E7)

with
Wij(q) = tra, ([0 P | (V = €)' [0;0]4 ) (q)

where (V — ¢e,)~! is the reduced resolvent on P;- H;. Note, the second order
correction to the classical Hamiltonian can be represented as

5 16l = 5 mitra ([BiPo | (V — €)1 8;Po]4) () Ky
= tra, ((k, VPy(q)) (V(q) — eu(q)) " (VPo(q) , K))

and thus coincides with the M term in [PSTO07]. Nonetheless, the classical
Hamiltonian ~ does not include the Born-Huang potential and therefore
does not coincide with the symbol of the effective Hamiltonian that results
from adiabatic perturbation theory, cf. [PSTO7]. It turns out that the Born-
Huang potential is closely related to the quantum metric g,, see Remark 7.1.
As we will see later in our result on equilibrium expectations as well as
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the evolution of observables, one can include the Born-Huang potential
into the classical Hamiltonian which actually results in a simplification of
the quantum corrections. Nevertheless, at this point we state the classical
Hamiltonian system the way it results from our general approach.

The coefficient matrix of the modified symplectic form is
w(g,p) = w' +eQ(q,p) + O’) .

with modified Berry curvature

where

0Y(q,p) = —itry, ([8; P, ;P ] Po)(q)
— e (OiWi(q) — 0;Walq)) (p — e A(q)): -

The associated Fubini-Studi metric g°© is

(@) 0

e o o 9o
g°(¢,p) = go(q) +O(e) = ( 0 0) +O(e)

where
96’ (q) = try, (Po [0:Po(q), 9;Po(q))+) -

The Liouville measure of the symplectic form w* satisfies
2 =1v5(q,p)dgi A--- Adp, = (1 + &2 Tr, (W)(q) + (’)(53)) dgp A -+ Adp, .
Then, the Hamiltonian equations of motion are

§ =p—cAlq) +0()
and (1.15)
pi = —ien(q) + € (9;Aq), p— € A(q))
—eQ%(q,p) (p — £ A9));
— 38 {p—<Alg), AW (q) (p — e Aq)))
+ &2 Wij(q) 9je4(q) + O(e?).
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To our knowledge, the modified Berry connection and thus also the symplectic
form and the quantum metric for Born-Oppenheimer type Hamiltonians have
nowhere been stated before, not even on a heuristic level.

As addressed already, we need to cut off large momenta to make our
approach applicable. Hereto, we replace |p — ¢ A(q) |* by a smooth function
that flattens at large momenta. Then, the symbol H (g, p) (1.14) changes to

Hy=3x(lp—cAWQ)?) + V(g

where y) : R — R is a smooth and monotonically non-decreasing function
satisfying that y,(z) = z for x < X and x,(z) is constant for z > \+1. Clearly,
H) satisfies Assumptions 2.10 and 2.11 with eigenvalue e,(q, p) = %XA(\ p—
e Alq) |2) + e,(¢) and eigenprojection P(q). Thus, we are now able to apply
the theory developed in Chapter 2 - 5 where we aim to express as much as
possible in terms of quantities that stem from the original Hamiltonian A .

We start with our results on equilibrium expectations. So, let f a suit-
able equilibrium distribution. Think of a Boltzmann e ?? or Fermi-Dirac
(14 ®@=m)~1 distribution, as example.

Equilibrium Expectations for Born-Oppenheimer Type Hamiltonians

(cf. Proposition 7.3)

The equilibrium expectation with respect to a suitable observable R° with
symbol R : R?" — B, (H;) satisfies

tey (F(Hy) BT,
= (2me)™" /AA (£(h(a,p) + > Quo(q,p)) (g, p) V" (q) dg dp

+ (27r<€)—”</H%Z,n\/\A Je(ha,mx) ralq, p) v5(q, p) dgdp (1.16)
2 [ QUino o). p) ) dadp)
+ (9(63_”)

with quantum correction to the equilibrium state

Quo(q.p) = 5 f'(e(q.p) Tra(90(q)) + 5 f"(e(q, p)) llp — € A(Q)]2 )
— 5 /" (elq,p)) Aey(q)
— 2 F"(e(a,p) (Ip = £ A@)[Bee ) + [Veu(@)?) -

In the first summand of the rh.s. of (1.16) we restrict the integration
over phase space to A, := {(¢,p) € R*" : |p — £ A(¢)|* < A}. The scalar
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symbol r(q,p) is the effective symbol of R(q,p) associated to H(q,p) =
% Ip — e A(q)|? + V(q) and eigenvalue e(q, p) = % Ip — e A(q)]? + e.(q).

The effective equilibrium distribution f*(h,,r,) as well as the quantum
correction Q(hy,go) are the expressions that follow directly from apply-
ing Theorem 4.4 to the l.h.s of (1.16). The classical Hamiltonian system
(R?", w5, hy) is determined in Section 7.1.

Besides the computational effort to compute the explicit expressions for
the classical Hamiltonian system (h,w®) and the quantum correction as well
as their analogues including the momentum cutoff, the above result follows
directly from Theorem 4.4.

Note, a simple Taylor expansion shows that the first summand of the quan-
tum correction ()go(q, p) can be incorporated in the classical Hamiltonian
system by including the Born-Huang potential into the classical Hamiltonian,

i.e. h(g,p) = h(g,p) + 3 Tr,(90(q)).

We expect that for rapidly decreasing f one can let ) tend to infinity with
the result that

Jim fry (f(Hy) R IL)
= (2me)™" | (f(hlg,p)) + > Qro(q,p)) (g, p) v*(q) dgdp

JAy

+ (’)(53_”) .

Nevertheless, this is not proven in this work. For a rough argumentation on
why we expect the above to be true, see Remark 7.4.

Next, we present our result on the semiclassical approximation of the
quantum evolution of an observable R" within the Heisenberg picture of
quantum mechanics. Clearly, one can directly apply Theorem 5.2 the time-
evolved observable R°(t,\) := At/ "¢~ | As already mentioned we
aim the express as much as possible in terms of the classical Hamiltonian
system (h,w®) associated to the original Hamiltonian symbol H(q,p). This
leads to some technical difficulties one has to take care of. First of all, we
limit the energy to a range where the original Hamiltonian symbol H (g, p)
coincides with H,(q,p). Hereto, we cut off large energies by introducing
the operator gH(FI i) where ¢, : R — R, ¢ > 0 is a smooth cutoff function
satisfying ,,(z) = 1 for < pand (,(x) = 0 for x > ;14 1. Moreover, we have
to be quite careful regarding the flow ®! of the Hamiltonian equations of
motion (1.15) as it may not be defined for arbitrary (¢, p) € R**,¢t > 0. This
leads to the following proposition as well as its proof to be quite technical.
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Egorov theorem for Born-Oppenheimer type Hamiltonians (cf. Proposition 7.5)
There exist \, > )\, > 0and a7}, > 0 such that for ﬁi\u the super-adiabatic
projection associated to H,, with eigenvalue e,, and 0 <t < T}, ,, we have

A

i ( Batle B et _op, ((r(@) + 2 2() &, ) ) I, G(A) |

= 0().

Here, &5, 5, is a smooth cutoff function with &5, (¢,p) =1 for (¢,p) € A5,
and &5, (¢,p) = 0 for (¢,p) € R\ A5 ., where Ay := {(¢,p) € R*" :
lp — € A(q)]> < A}. The scalar symbol r(q,p) is the effective symbol of
R(q,p) associated to H(q,p) = 5 |[p— e A(q)|* + V(q) and eigenvalue e(g, p) =
2 |p— e A(q)]* + €,(g). The quantum correction 2(¢) is given by

A(t) = [ % o(®0)) 0 B dr

with

25, (r0) (g, p) = — 3 Trn(0m0(¢,2) 90(9)) =  (Fpro(@: 1), V Tralg0(q)))
+ 305 ,r0(a,p) (p — £ Al9)); g ()
+ 2i4 azi'pjpzro(q’p) 3f’jlev(q,p) +0(e).

Note here, the reason for introducing &5, is that the Weyl quantization of
r(®L) 4+ &*A(t)) may not make sense for all ¢ € [0,7},,,) as the Hamiltonian
flow ®. may not exist for arbitrary (¢,p) € R* and ¢ € 0,7}, ). Including
the cut-off, the expression (r(®.) + e*2U(t)) &5, ,, is smooth and bounded
with all its derivatives for any ¢ € [0,7),,).

Also here, the inclusion of the Born-Huang potential into the classical
Hamiltonian, i.e. h(q,p) = h(q,p) + Tr,(g0(q)) leads to a simplification
of the quantum correction 2§ (r¢)(¢,p). Note that apart from the Born-
Huang potential also the sign of the expression ;& [|p — ¢ A(q)|[3y(, differs
in our classical Hamiltonian when compared to the symbol the effective
Hamiltonian the results for space-adiabatic perturbation theory, c.f. [PSTO07].
One can alter the coefficient matrix of the symplectic form w* to obtain a
second order Egorov theorem using the effective Hamiltonian form [PSTO7]
but this results in an @° that is not skew-symmetric and therefore does not
define a symplectic form, see Remark 7.6.
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2.1

Weyl Calculus, Liouville 2
Measures and
Assumptions

This chapter consists of three mainly independent sections. In Section 2.1 we
give a general overview over Weyl calculus and state known results that are
used throughout this thesis. In contrast, the results of Section 2.2 are very
general and to our knowledge mostly new. There, we will drive the Lebesgue
density of the Liouville measure of an arbitrary symplectic form 2 on R*". In
addition, we will derive the Lebesgue density of the Liouville measure for
the special case of a semiclassical symplectic form w® = w° + ). Besides the
general importance of these trace formulae we will use them in the analysis
of the structure of expectation values for stationary states. In the third and
last section of this chapter we state the assumptions on the Hilbert space H,
the Hamiltonian A~ and the eigenvalue eo(z) on which we will restrict to
throughout this thesis.

Weyl Calculus, Notation and Other Useful
|dentities

Let X be a Banach space and k£ € R. We define

SHX) = {f € C°(R*, X) : sup

z€ER2™

()" 02 f(2)|, < oo foralla e Ngn}

where (z) := (1 + |2|?)*/2. The family of seminorms

£ llk.rx = max sup [(2)* 02 £ (=)
a€ENZn ZeR2n

laf<r

X

43



44

turns S*(X) into a Fréchet space. For B € S¥(X) with k£ > 2n it holds that

|0 Bllureon ) = [, 102B)xdz = [ (2)7H1(2)F 02 B(:) | dz

R2n

—k
< | Bllk,jal,x /R%<z) dz <

for all & € N2". Thus, B is Bochner-integrable together with all its derivatives.

The space of maps B : [0,&0) — S*(X) with

for all r € Ny is denoted by S*(e, X). Similar to above, for B € S*(e, X) with
k > 2n we have

102 Bl|71 men,x) = sup (|07 B(e)l|L1@en.x) = sup |02 B(e, 2)| x dz

e€(0,e0) e€[0,e0) /R?"

< IBllijayx [, (2" dz < o0

R2n

for all & € N2". Hence, also here B is Bochner-integrable together with all its
derivatives. We call the elements of S*(X) and S*(e, X') symbols. To increase
readability, we will omit the € and z dependence of symbols in S*(¢, X) in
many computations and statements throughout this thesis, e.g. we write 0; B
for %B (¢, 2).

If for B € S*(e, X) there exist B; € S*(¢, X), j € Ny such that

sup
e€[0,e0)

< 0
ko, X

g~ (N+D) (B(s) — Z &' B; (5))

for all r € Ny and N € Ny, then we say that B has an asymptotic expansion
Y9 B)(e) and write B < Y22 €7 B;(¢) in S*(e, X). We denote B (¢) :=
Y€l Bj(e). If B € S*(e, X) has an asymptotic expansion with B;(e) = 0
forall0 < j < Nandalle € [0,20) we write

B =0 in SF(e, X)

and if B;j(¢) =0forall j > 0andall ¢ € [0,5,) we write

B=0(®) in S, X).
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Note that for B; € S*(¢,X), j € Ny the series >/ B;(¢) does not
converge in general. However, one can always find a symbol B € S*(e, X)
such that B < Y52 &/ Bj(e).

Lemma 2.1 Let (B;(c)),>0 be a sequence in S*(e, X) . In addition, let y : R —
R be a smooth cutoff function supported in Bo(0) with x(x) = 1 on B;(0). Then
there exists a sequence ()\;);>o in R, \; "= co such that

B(e) == isj x(e \) Bj(e) € S*(e, X)

and .
Bx=Y & Bjle) inSFe X).
=0

This Lemma was proven several times for the case where the B; € S*(X)
are ¢ independent see e.g. [Zwo12, Theorem 4.15] or [Fol89, Proposition
2.26]. Yet, for B; € S*(e, X) the same proves hold with just minor adjust-
ments.

Now let H; be a separable Hilbert space. We denote the Banach space of
continuous linear operators by B(#;) and use the following abbreviations

1Bk = [1BENkr.500:) » 1Bk = IBllk..504) -
IBE)lz = 1B(e)llLr @2 By and 1Bz = [1Blz1 2n i) -

For a symbol B € S*(e, B(H;)), k > 0 we define its Weyl quantization
B° = op, (B) by the action on a Schwartz function ¢ € .%(H;) = N SF(Hy)
k=0

1
(2me)n

(B'0) (@) = [, B(e 3@ +a).p) 70 p(gdgdp.  2.D)
R2n

By the Calderon-Vaillancourt theorem there exists a constant C,, independent

of B and ¢ such that

HFst(m < Col|B(€)lo2nt1 (2.2)

for all € € [0,g9) (see e.g. [Fol89, Theorem 2.73] or [Mar02, Theorem
2.8.1]). Therefore, B° can be extended to a continuous linear operator on
L?(R™, H;). By (2.1) one can easily see that the adjoint of a Weyl quantized
operator B~ agrees with the quantization of the pointwise adjoint symbol
B*. As a consequence, the Weyl quantization of a symbol B taking values in
Bs.(H¢), the self-adjoint bounded linear operators on H;, is self-adjoint.

2.1 Weyl Calculus, Notation and Other Useful Identities
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By .7 (e, B(Hs)) = ;(jo S*(e, B(H;)) we denote the Schwartz functions from

R*" to B(H;) uniformiy bounded with respect to ¢ and define ¢(®,,9,) =

(WD, , D,) where D, := 1V, and «° is the canonical symplectic form with

i

o [0 1
W = .
. PR

For R, B € .% (e, B(H;)) we have

coefficient matrix

R B" =op, (e@“@z@”R(z) B(y)| ) =: op. (R# B)

y==2

9,9

where €'27(®=24) is defined as a Fourier multiplier (see e.g. [Zwo12, Theorem

4.11]). The bilinear map #, called Moyal product, extends uniquely to
# S (e, B(Hy)) x ™ (e, B(Hs)) — S (e, B(Hy))

and is continuous with respect to the Fréchet topologies uniformly in ¢, i.e.
there exists an 7 € N and a constant C, < oo for any r € Ny, ky, ky > 0 such
that

I(B#B)(@)l[ky ko0 < CrllB(E) k1 | B(€)[[ s foralle €0,0),  (2.3)

see e.g. in the proof of [Zwo12, Theorem 4.17] or [Fol89, Proposition 2.41].
Let R, B, A € ./(¢, B(Hs)) then

(R B)# A)() = 5702 (3720 R(a) By)| ) A(2)

= 5722 4Dy.0:) 150 (0. 00) (1) B(y)) A(Z)’

z=y

Z=Yy=x
_ ei%a(’Dx,Dz)ei%a(@y,’Dz)eiga(f)x,’Dy)R(:E) B(y) A(z)‘
Z=Yy=

It is easy to verify that the same is true for (R# (B # A))(z), showing the
associativity of the Moyal product #.

For R € S* (¢, B(H;)) and B € S* (e, B(H;)) the Moyal product R#B €
Skitkz(¢ B(H;)) has an explicit asymptotic expansion

R#B = isj {R(¢), B(e)}j

where (2.4)
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The map {-,-}, is a generalization of the Poisson bracket {-,-} which is
defined by

{R(e), B(e)} = Zn: (0p R(e) 04, B(e) — 0, R(e) D, B(e))

=1

The generalized Poisson bracket can be reformulated as

{R(e),B(e)}; = ﬁ Y wos e 'ngb’j V%R(e, 2) VI B(e,2z) (2.5)
a,Be{1,...,.2n}

and thus for j = 1 agrees with the Poisson bracket {-,-} up to a factor
of 2i. The remainder maps of the Moyal expansion Ry : S* (g, B(H;)) x
Sk2(e, B(Hy)) — SM1tk2 (e, B(Hy))

N
Ry(R,B):=e "W (R#B Y& {R(e) B(e)};)
j=0
are continuous with respect to the Fréchet topologies, i.e. for any N,r € N

there exists an 7 € Ny and a constant C, < oo such that

BN (R, B) ()b thor < Cr[[B(E)]k 7 [ B() [k, foralle €0,2). (2.6)

By (2.5) it is easy to see that

{R(e), B(e)}; +{B(e), R(e)};

[V4R(e, 2),ViB(e,2)], jodd
[V4R(e,2),ViB(e,z) ], jeven
and 2.7)

[V4R(e,2), ViB(e.2) |4, jodd
[V4R(e,2),ViB(e,z)], jeven

— 1 0 0
 (20)7 4! Z .walﬂl " Wayg; {

where [-, -] denotes the commutator and [+, -], the anti-commutator. If R €
Ski(e,B(H;)) and B € S*2(e, B(H;)) commute as for example when B is
given by B(e, z) = b(e, 2) 134, where b € S*¥2(¢, C) is a scalar symbol then

R#B—-B#R=<2:c{R,B}, +2*{R,B}s + O(c")
= —ie{R,B}+2{R,B}s+ O(&%).
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We also want to work with triple Moyal products i.e., A#B#R for A €
Ski(e, B(H;)), B € S*2(e, B(H;)) and R € S*3 (¢, B(H;)) with this in mind we
denote

{AIR|BY, =i > @l -wa,s VBA(E 2) R, 2) VI B(e, 2)

a,Be{1,....2n}J

and
[A|R|B]:== ARB—-BRA.

Then a simple computation shows

A#R#B=ARB+eA{R,B}, +c{A|R|B}, +c{A R}, B

2 2 3 (2.8)
+e2{{A,R}, B}, +*{AR,B}, + O().

We call B € S*(e, B(H;)) a classical symbol if B has an asymptotic expan-
sion with coefficients B; that do not depend on ¢, i.e. B(e) < ¥32(¢'B;,
B; € S*(B(Hy)) for all j € Ny. If R and B are classical symbols then also the
Moyal product R#B is a classical symbol an asymptotic expansion given by

(R#B)(e Zsj R#B); Zé?] > {Ra, s Bos}a, - (2.9)
J=0 J=0  «aeNg,
Ia\=j
Moreover, the remainder satisfies that for any N, r € N, there exist 7 > r and
C, < oo such that

N
Sy H R#B Jz:;)gj k1+k277“
N—]al
—| ¥ (R #Bu)©) = Y & (Ray # Ba))
0<a1,a2<N 3=0

+((R=R™)#(B - BY)(e) *19

N N
< OT(Z IRillkns D 1 Billk,r
=0 i=0

+ e (R~ RO e, (B — B ()llr)

0,r

for all ¢ € [0, ).

We also want to take traces of Weyl operators. By J(H;) C B(H;) we
denote the Banach space of trace-class operators on #; with trace norm
|B||1 := try,|B| and for B € S*(e, J(H;)) abbreviate

1Bk = [1BEkrgey — and (Bl = I1Bllirso -
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The Moyal product restricts to maps

4 S* (e, T(Hy)) x S*2(e, B(He)) — SH 2 (e, T (Hy))
and (2.11)
4 S* (e, B(Hye)) x S™2 (e, T (He)) — SHTF2(e, T (Hy)).

Continuity of Moyal product and asymptotic expansion holds as well with
respect to the trace norm || - ||; on J(H;). One crucial observation is that a
Weyl operator B~ with symbol B € S*(e, 7(#;)), k > 2n is trace class and
its trace can be computed by a phase space integral

tr L2 (mm 24y (EE) = (2me)™" /R% try, (B(e, 2)) dz. (2.12)

Moreover, for two Weyl operators B°, R with symbols B € S* (¢, B(H;))
and R € S*(e, B(Hs)),k1, ks > 0 satisfying that |[try, (B R)|| 1@z < oo the
composition B R is trace class with

AE AE

e (BT RY) = (2me) /]R try(B(e,2) R(e. 2)) d (2.13)

see e.g. [ST13, Section 2.2]. In particular, if B € S*(e, B(H;)), k > 2n and
R € S°e, J(H;)) then B” R is trace class since

Lol (Ble,2) Rie, )|z < [ 11B(e, =)l [t (R(e, 2))] d

< [IB]Iz [ Rll50,1 < 00

(2.14)

holds for all € € [0, gy). In the case of scalar symbols B € S*(e,C), k > 2n
and R € S°(e, C) we have

tr 2 (mn) <B€ RE> = (27r6)_"/ B(e,z) R(e, z) dz

R2n

see e.g. [Ron84].

For later reference we will also state some identities for symbols that
take value in the orthogonal rank-one projections on ;. So, let the symbol
P € S%¢, J(H;)) take value in the rank-one projections on H;. Then, there
exists an orthonormal basis {1 (¢, 2) }icn, of H; for every z € R?™, ¢ € [0, &)

2.1  Weyl Calculus, Notation and Other Useful Identities
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such that P(e,z) = |¢o(c, 2)) (¢ (e, 2)|. Hence, for every A € S*(e, B(Hy))
and every z € R*, ¢ € [0, ) it holds that

P(e, 2) try (AP) (e, ) = (to) wz Wil A o) (ol [3)) (<, 2)

(1¢0) (2ol ¢0|A|¢0>)( 2) (2.15)

|[90) (0] A [1)0) ¢0|)( z)
P(e,2) A(e, 2) P(e, 2)

The following statements about first and second order derivatives of symbols
taking value in the rank-one projections will be used many times throughout
this thesis. For any i € {1,...,2n} we have

0;P(e,2) = 0;(P(e,2) P(e,2)) = P(e, 2) O;P(e, 2) + 0;P(e,2) P(e, 2) .

Consequently, P(¢, 2) 9;P (e, 2) P(e, 2) = PL(g, 2) 9;P (e, 2) PL(g, 2) = 0 where
PL(e,z) := 1y, — P(¢, 2) is the orthogonal complement of P. Therefore,
first order derivatives of P are off-diagonal with rank less or equal to two.
Moreover, a simple computation shows

02P(g,2) =P(2) 0}P(e, 2) P (e, 2) + P (e, 2) ;P (e, 2) P(e, 2)
—P(e,2) [0;P(¢,2),0;P (e, 2) |, P(e, 2) (2.16)
+ P*(e, 2) [0;P(e, 2),0,P(e, 2) N P(e, 2)

foreveryi,j € {1,...,2n}.

Density of Liouville Measures

We consider a symplectic form Q = 3>, _; Q;; dz; A dz; with skew-symmetric
coefficient matrix Q0 € R***2", The symplectic form ) defines a symplectic
manifold (R*", ) over R*". The natural volume form )\ on the symplectic
manifold (R?", 2), also known as Liouville measure is given by

(_1)n(n71)/2 (_1)n(n71)/2

Q/\n —

n! n!

A= QA---ANQ .
—_—

n-times

The Liouville measure is of big importance in classical mechanics. By
Liouville’s theorem the Liouville measure ) is invariant under the classical
Hamiltonian flow &' associated to a classical Hamiltonian system (R**, ), h)
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with Hamiltonian » : R*® — R. Moreover, for a system of identical non-
interacting particles in phase space (R?", Q) with one-particle Hamiltonian
h in a thermodynamic equilibrium state with density p(h), the expectation
value with respect an the observable a : R*" — R is

The Liouville measure \ can be represented by using the so called Pfaffian
pf(€2) which is defined by the equation

%QA”:pf(Q)dql A ---dg, Ndpy AN dp,.
Clearly, we get

A= (=1)"D2pfQ)dgy A - dge Adpy Ao A dp,.

In this section we will derive a trace formula for the density of a general
Liouville measure with respect to the Lebesgue measure dg A dp = dg' A
o Adg® Adpt A--- Adp?, ie. we derive the density v : R?® — R satisfying

A=uvdg A dp. (2.17)

By v = (—1)"""D/2pf(Q), the trace formula for the Liouville density v
directly yields a trace formula for the Pfaffian pf(f2) for skew-symmetric
matrices (). The resulting density v is of surprisingly simple form. Namely, a
sum where each summand is given as product of terms of the form

Troy, ((wo Q)l) :

Here, ° = (_‘in 15) is the coefficient matrix of the canonical symplectic
form.

Moreover, we will derive the Lebesgue density of the Liouville measure
associated to the symplectic form w® = w® + £ where ¢ € R, «° is the
canonical symplectic form and () is an arbitrary symplectic form on R?".
What is remarkable is that it is straight forward to deduce the density of
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the Liouville measure for the general case from the case where we use the
special form w® as symplectic form. This is due to the fact that

(_1)n(n—1)/2
A° ::7'(,05/\-'-/\00E
n.
n-times
(_1>n(n—1)/2
SR @ n e 04 20)
’ n-times
=Y e
k=0
with
. (_1)n(n71)/2 0 0
k::T Z w/\.../\ng/\.../\ﬂZ/\--J\w. (2.18)
. 1<hi<..<lp<n 11 th I th
for 0 < k < n. Then,
(1)
Ny = QA A (2.19)

n-times

Therefore our strategy is to derive the density of the Liouville measure for
the special case w® = w° + £ and then deduce the density for a general
symplectic form € directly from this result.

Before we begin with the derivation of the trace formulae we give a
brief motivation for the first two lemmata of this section. By the fact that
a ANb="bA a for any two 2-forms a, b

Z wo/\--~/\5‘2/\-~~/\5‘2/\--~/\w0

1<l <...<lp<n 11th Lyth

n (2.20)
= <k>Q/\---/\Q/\wO/\---/\w0 .
k-times n—k-times
By definition of w®
. . 2” . .
w® = Z (ng +eQy)d' ANde! = % Z (w?j + Q) dzt Ad2.
1<i<j<2n i,j=1

Chapter 2 Weyl Calculus, Liouville Measures and Assumptions



Hence,

QA AQAL A AW

k-times n—k-times

I\" 0 0
— (2) Z Q04151 T Qakﬁk Woim """ Yy

a,BE{1,...,.2n}*
vne{l,....2n}n—F

Az AdZP A A2 A2 AT AdZT A Ad2 TR A dRT
(2.21)

Combining (2.18)- (2.21)

. (_1)n(n—1)/2 1\" 0 O
)\k == m (2) N ﬁe{lz Qn}k Qouﬁl e Qakﬁk le”h e wwn_knn_k
I

Az AP A - AdZ AdZP AdZ ADZ™ A Ad2 R A dE
(2.22)

Sorting the dz%s, dz%s, dz”s and dz"s in the above equation using the
anti-commutativity of the wedge product (which only leads to variations
of the sign in the summands) we get a function satisfying (2.17). But this
sorting has to be done for each «, 3, v, n separately. So, at this point it is not
clear how to do this sorting in a structured way that leads to a closed form
for the density v. By definition of the symplectic form w°

wy # 0 <= j = li+n]an (2.23)

where the modulo function |-|;: Z — {1,...,l}, | € Ny is given as follows:
For i € Z with unique decomposition i = j + kl, j € {1,...,(} and k € Z we
define

i) :=17. (2.24)
It follows directly from (2.23) that

Yoo whde AdY =W, d2f Adalre

2.2 Density of Liouville Measures
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From the above and the anti-commutativity of the wedge product we con-
clude that for non-vanishing terms in (2.22) the multi-indices «, § and ~, v
must stem from disjoint index sets. We obtain

E (_1)n(n—1)/2 1\F
N a) Y
’ ’ Ic{1,...,n}
\T|=k
< S Qaysr o Qs Az A AP A A d2 A dzﬁk>
a,BeLF
A > wgm e wgnik%kk dz" AdZ" A Ad2TREA dz”"’“)
A/,VGL?_IC
where here and in the following we write L := I U (/ +n) and L. :=

IcU(I°4+n)with I¢ = {1,...,n} \ [ forevery I C {1,...,n}, |I| = k and
M +n:={i+n|i € M} for every set M C {1,...,n}. Note here that by the
simple structure of w° the second factor in the formula above is fairly simple
to compute. So, the main issue is the first part that includes the symplectic
form 2. We will do the sorting of the dz®s and dz”s in

Z Qalﬁl T Qakﬁk dz® A dzﬁl Ao Adz A dzﬁk
a,BeLlk

inductively where we prove the most important part of the induction step in
a separate lemma.

To simplify the proofs we introduce to following map that will be of big
importance throughout this section. For k € N, my,...,my_1 € {1,...,2n}
we define the linear map

k-times

B . RQnX2n N R2n><2n — R2n><2n

Ak
recursively by

1 1y . pl
AL(BY) = BY,

A% . (B'B?) :=B? "

mi1;%,J im1 “m1 [mi1+n]on

B! (2.25)

[m1+n]an j

1 0 2
+ Bi [mi4n]an wLmH-nJ 2n M1 Bml J
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and

1 k
M1,y mk,l;i,j<B 7"-7B )
k—1
= > A (B AL (BLBM), .. BMY) fork > 2.
I=1
(2.26)

Note here that A% B, ..., B*) defines an skew-symmetric matrix

for every k € N, my,...,my € {1,...,2n} and arbitrary skew-symmetric
matrices B!, ..., B¥ € R?"*?" for a proof see Lemma A.1.

77777 mk—uiJ(

Lemma2.2 Letk e N, I C{l,...,n}, |I| =k, L =I1U(I+n)and B’ € R>"*"
for j =1,... k be skew-symmetric matrices. Then,

Z Bé1,31 T ngﬁk Azt A2t A A dz® A d2
o,BELF

=2 2

meL a7BELI[7;J1n
1 k—1 0 Al k
(— Ba g Bay g, Trmy (" AY(BY)) (2.27)

a1 f1 a1 -1 Frmia,By

k—1
+ Z Bl . Bl*l A2 <317 Bk)
=1
+1 k—1
Q41841 Bakﬂ 5k1>
dz® AP A A det A dPer A dglme A dplmde

where A' and A? are defined by (2.25) and

Limp, = (LN AIm]a}) U I\ {Lm]n}) +n).

with |m]|, given by (2.24). The partial trace Try;(R) of a matrix R € R?"*"
with respect to a set M C {1,...,2n} is given by

Try(R) = . R -

meM

PROOF LetkeN, I C{l,...,n},|I|=k L=1U(I+n)and B/ € R*"*"
for j =1,..., k be skew-symmetric matrices. The anti-commutativity of the
wedge product implies for «, 3 € L* that

k
A2 A2 A Adz AdP #£ 0 = (J{ow, Bi} = L.

i=1

2.2 Density of Liouville Measures
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Hence, by separating the sum over 3, from the rest the sum

>, k By g e Bh g dz® A A A2 A2
a,pel

splits into six parts. We get

> Bl o BE g d2® AdZM A AdZ™ A d2P
o,BELF

=)+ D)+ TI)+ (IV)+(V)+ (VI)

where

Z Z Bal B Bak 1Bk—1 Béem*”)m

1
mel+n o geLkt

Az AdZP A - Ad2® 1t AP AT A 2™

k
(II) = Z Z Balﬂl Bak 1B8k—1 B(m+”)m
mel avﬁeL’fmj

Az A AP A A dz e AP A AT A AT

III Z Z Z Ba151 ’ Bm n)g lem

mel+n [=1 k—1
aBeL|,

Az AP A AT AP A A D A d2™ A d2™

l k
Z Ba1 B’ B(m+n) Bal m

mel =1
aBGLLmJ

Az AP A AT AL A A AP A d2™M A d2™

Z Z Z Balﬂ1 "Blal(m—n)'“B’ﬂglm

I+n 1=1
meltn I=1 o gery

Az AP A A AT A AR A AT
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and

k—1
l k
Z Z Bal g1 Bal (m+n) "7 Bﬁlm
mel I=1 g, gerf-1

Az AP A A2 AT A AR A AT

Next we analyze each of the six parts. For (I) assume m > n and a, 3 € LLm In
then,

k
Boq B ° Bak 1Bk—1 B(m—n)m
dz® AdZP A Ad2® 1 AP AT A d2™

k

- Bou B’ Bak 18k-1 B(m*")m

Az Ad2? A - Adz 1t AdZPRT AdgmT A dp™T
_ e 3

_Boél B Bak 1 Br—1 W [mtn)an BLm+nJ2nm

Az Adz? A Adz® e Ad2PEr A dglme A dplmie

k—1 0 Rk

- _Bal BT Bak—1 Br—1 Tr{m}(w B)

dz®t AP A A dz e A d2PE A dglmne A dplmie

(2.28)

where in the second equality we used that

1 fori<n,j=i+n
wii=4q—1 fori>n,j=i+n . (2.29)

0  otherwise
Regarding (/1) letm < nand a, 5 € L}, then,

k
B(m+n) m

B Bak 1Bk-1

dz® AdZP A - A dz® 1 A 2P A D™ A d2™
k-1 k

04151 ar—1Bk-1

dz® AP A - A dz® 0 A dZPET A dp™ A dg™
-B! - B*- B

g 1f5k 1~ (m+n)m
Azt AP A A dz e A d2ZPE A dglmn A dplmie
0 k
- _B Bak 1 Br—1 Ym (m+n) B(m+n),m
dz®t A dzﬁl oo Adz¥-1 A dzﬁk—1 A qumJn A dmejn
_ k—1 0 Pk
_Bal B’ Bakﬂ Br-1 Tl"{m} (w B )

dzCt AdZ A A dz®t A AP A dglme A dplmin

ai B’

aiBr

(2.30)

ar B’
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where in the second equality we used the anti-commutativity of the wedge
product. By (2.28) and (2.30) we obtain

k— k
(D+UN)==> > Buyg - B ls  Trpn(w’ BY)
mela,geli ] (2.31)

dzt AP A A dz e A dZPE A dglmn A dplmin

For (IN), letm € I +n,1 € {1,...,k—1}and o, 3 € L¥"! . Then,

lm]n

1 I k
Bl g Blowps o BEw
Az AdZ?P A AT AP A A A d2™
) l . (2.32)
= Balﬁl T B(m—n)ﬁz e Bazm
Az Ad2® A Adg™Mr AdZP A A de® A dplmie
By the anti-commutativity of the wedge product it holds that
d' AdZ2 A AdZPA - AdZ A AdRR
= —d'AdPA - AdPT A A A AR
for any 1 < i < j < k. This implies
1 I k
B, G B(m—n)ﬁl o Bazm
Az AdZP A A dgMn AdZ A A dz A dplmdn
_ 1 -1 k ] I+1 k-1
- _Bal B Balfl Bi-1 Bal m B(m*n) Bi Bal+1 Big1 Bakﬂ Br—1
2NN A AR A A AP A gl A dplmie
(2.33)
By definition of w® (2.29)
1 -1 k ! I+1 k-1
- Boq g1 BOéz—1 Bi—1 BOéz m B(m—n) B Baz+1 Bit1 Bak—l Br—1
VAP A - AdZ AP A A A2 A dglmie A dplmdn
_ pl -1 ko0 ] I+1 k-1
- Bal B Bal—l Bi—1 Balm W (m—n) B(m—") Bi Baz+1 Biyr BOék—1 Br—1

Z2UANAZ A AdZ AR A A AP A dglme A dplmin

I+1 . pk-t
a1 By ag—1Bk-1

o 1 -1 k 0 l
- Ba1 B Bazfl Bi—1 Baz m Wi [m+n ]2 Blm+nJ2n By B

2NN AdZY AN A AP A qumJ” A dmeJ" .
(2.34)
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Combining (2.32)- (2.34) yields

UUED B >

mel+n [=1 a,ﬁELk_l

m]n

1 -1 k 0 l +1 k—1
Bal gL Baz& Bi-1 Bazm Win |m+n]an BLerngn B Bal+1 Big1 Bak—l Br-1
22 OANAZN A AL A AP A qumJ" A dmeJ” )
(2.35)
With similar arguments as for (2.35) we get
k—1
IVy=>> >
mel =1 a”BeLlf;tjln
1 -1 k 0 l I+1 k—1
Bal B T Bazfl Bi—1 Bal m Ym [m4n]an Blm'*‘ngn Bi BalJrl By Bakfl Br—1
ZOANAPN A AL A A qumJ" A dmeJ" .
(2.36)
Then, adding (2.35) and (2.36)
(IIT)+ (1IV)
k—1
meL [=1 a’BELIE;Jln
1 -1 k 0 l I+1 k—1
Bal B BOéz—1 Bi-1 Bazm Win [m4n]ay BLm+nJ2n B Baz+1 Bit1 T Pog_1Br-1
ZOANA AN AN A qumJ” A dmeJ" .
(2.37)

For (V), assume m € [ +n,l € {1,...,k—1}and o, € L{, | . Then, similar
to (2.33) we get

1 l k
Boél pr " Bal (m—n) """ B/Blm
Az AN AZ AT A AP AT
_ 1 -1 l k +1 k—1
- _Bal gL BOél—l Bi—1 Bal (m—n) BBlm Boél+1 Bi+1 BOék—l Br—1

Az AdZ A AdZ AdZP A A dglm A dplmie

(2.38)
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By the skew-symmetry of B* and the definition of w® (2.29) we obtain
1 -1 I k I+1 k-1
- Boq g Bazq Bi-1 Bal (m—n) Bﬁlm Bal+1 By Bak—l Br—1
Azt AdZPP A Adz AR A A dglme A dplmin
1 -1 I I+1 k-1
=Bl B B + ... B

W B
-1 Bi-1 T ap | mtn]on Y mAn]enm Sm B = ot B agp—1Br—1

Az Ad2P A Adz AP A A g™ A dplmin

(2.39)
Combining (2.38) and (2.39) we get
k-1
V= > > >
mel+n =1 Oc,,BGLlf;len
1 -1 ! 0 k I+1 k—1
Bal Br T Baz—l Bi—1 Baz Lm+n)an W m+n)anm Bmﬂz Bal+1 Bit1 Bak—l Br—1
Azt AdZ? A AdZ AP A AdglmIn A dplmin
(2.40)
Similar to (2.40) we get for (V' I) that
E—1
VD=3 > X
mel =1 a”BELIE;LJln
1 -1 ! 0 k 1+1 k—1
Boél BT Balq Bi-1 Bal lm+n])on Y m+n|on m Bmﬁl a1 B Boékq Br—1
Az AdZP A A AR A A qumJ" A dmeJ” )
(2.41)

Adding (2.31), (2.37), (2.40) and (2.41) and applying the definitions of A!
and A? shows (2.27), finishing the proof. O

Lemma 2.3 Let k € N, B/ € R*® for j = 1,...,k be skew-symmetric
matricesand I C {1,...,n}, |[I| =k, L =1U (I + n) then

ZkBélﬁl [N B(’Zf\lkﬁkdzal /\dzﬁl /\.__/\dzak /\dZBk
a,BEL
= Z (_l)lp\ Z
peP(k) meLF
1<i<j<k
0 A lpjl (p)1 (Pj)\ |
H Tr{m(Pj)|p]_|}(w /\'mj(pj)1 ..... m<pj>(\pj|71) (B T 7B Pj ))

JE{1,....Ipl}
qumJn A dplmljn A A dq[kan A dplmkjn
(2.42)
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where P(k) denotes the set of all partitions of {1,...,k} and for p € P(k) we

write {p1,...,pp} = p with p; = ((pi)1,- .-, (i) |ps)) for every 1 < i < |p| and
(pi)1 < (pi)2 < ... < (pi)jps- The linear maps AL, . are defined by (2.26).

..... m

REMARK 2.4 At this point we did not proof any symmetry in the arguments
m; and B; of A. Hence, sorting the (p;);s is important to make the above
formula well-defined. In what follows we will always imply such a sorting in
the arguments of A as long as not noted differently. Later in this section we
will see that

Tl"{mjl} (wo Almjl ..... ms,_, (le, R le))
+ Tr{ Lmjl‘i‘nJQn} (wo AlTrle ..... mjl—l (le7 cty B]l))

is actually independent of the ordering of the j;s making the above formula
well-defined also without implying this sorting.

PrROOF The proof is by induction on k. Let £ = 1 and let I; € {1,...n},
B! € R?*?" skew-symmetric be arbitrary. Then, I = {[,}, L = {I}, I, + n}
which implies

Y Bl s Az Adz” = B (1 dg™ Adp™ + By, 4 dp™ A dg™
a,BEL

By definition of w® and the anti-commutativity of the wedge product we get

Bl (114n) dg" A dp™ + B(111+n) 5, dp™ Adgh
= Bl (1y4m 40" A dp" = By, 4y, dg™ Adp”
= ~W(n+m 1 Bl (4 dg" A dp" — W, (t4n) Binamy i dg™ A dph
== > Trpmy"AY(BY).

mi1€L

Now, assume (2.42) holds for fixed k and every B/ € R j =1,...k
skew-symmetric and every I C {1,...,n}, |I| = k; we prove it for k£ + 1. Fix
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Bi e R?2 j=1,...,k+1 skew-symmetricand I C {1,...,n}, |I| = k+1.
By Lemma 2.3 we have

> BOQB1 - Bkl dz® Ad2P A A A dgPen

A g1 Brr1
a,BELk+1

- Z Z Ba1 B’ sz Br Tr{mk+1}<w0 Al(Bk+1))

mg1€L a,BeLk [t 1ln

dz® Adz® A Ade® A d2PE A dglmeedn A dplmaedn

> 2

my+1€L a,BeLk [t 1in
Z Ba1 g1 Blal Bi* Otk B A72nk+17az,,31 (Bl’ Bk+1)
dz" A dzﬁl o Ade® Az A dglmiende A dplmidn
=:(I)+ (I1)
(2.43)
where we make use of the notation where
Bal ﬁl ) Blal Bt Bik Br — = Bal ,31 Blilalfl Bi-1 Bl+1al+1 ,Bl+1 T sz B *
Applying the induction assumption to (/) yields
1 k+1
Z Z _Bal B’ Bak Bk Tr{karl} (w A (B * ))
mg1€L a,BeLk Lmges1ln
Az A AP A A d2® A dZPEA qum’““J" A dme’““J"
= X X (DT 3T T (W AN(BHY)
my1€L peP(k) meL’fmkHJn
Lsznfl_mJJn7
1<i<j<k
Tr{m w® AP B B
je{ll,_..[.7|p|} : “’”'Pj'}( m<w>1"“’m<”ﬂuvﬂ71>( )>
qumlJn A dme1Jn Ao A dq\_mk-kljn A dpl_mk+1Jn _
(2.44)
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By Lemma A.1 A7, .(B', B*"') is a skew-symmetric matrix for any 1y, €

L, 1 <1 < k. Hence, replacing B, by A? (B!, B¥*1) in the induction

Mk 100,01

assumption and applying it to (/]) for every | € {1,...,k}. We obtain

|p|
=y X (UIyy
mi1€L p={p1,....pjp }EP(K) r=Llepy
2 L, ) (
mGL'f ]
Me4+11n
Lmi [n# My I,
1<i<j<k
0 |pr| (pr) 2 l k+1 (pr) r
w Am(l’r)l """ m(Pr)(‘pM_l) (B 17 e 7Amk+l§al,5l<B ’ B )7 e 7B le ‘))
0 A lpjl (i) ®i)1p|
I1 Tr{m(pj)lpj‘}(w A (B®), .. B®)nl))

Je{l,Ipl\{r}
dqlmlJn A dplmlJn A-ee A dqtm’d" A dmekJ"
(2.45)

where in addition we used the fact that U'sz‘l pr ={1,...,k} for any partition

pof {1,...,k}. By definition of A* we have

Z Tr{m(p")lpr\ t (

l€pr
0 Alprl (pr)1 2 l pk+l (Pr)mﬂ)
AL i (B AT (BB B )
=Tr (w® Al B B, B
{m<F’r)\pT‘} m(pr)l ..... m(pr)(|pr\71) ,mk+1< Y Y 9 )

(2.46)

for any p, € p where p € P(k). Combining (2.45) and (2.46) we obtain

Ip|

(I1) = PEENCHILD DY >

—ip Pk r=lmygy1EL k
p={p1, 7p\p|}€ (k) k+1 meLLmk+1Jn

L] nm;]n,
1<i<j<k

Tr{m(z)r)‘ ‘}(WO A‘pT‘Jrl (B(pT)17 . B(Pr)|p7,‘ ’ Bk+1))

M(pr)p e m(Pr)(|pT‘_1)7mk+1

11 Tr i, )l ‘}(wo AlPs| (B(pj)lr_.’B(pj)\pﬂ))
pj Py

JE{Lmlpl N\ (7} e T
dglmin A dplmiln oo dglmeln o gplmedn
(2.47)
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Finally, combining (2.44), (2.43) and (2.47) yields

Y Bag o Bh g Az AdZT AL AdZM A

a,BELk+1
RS
pEP(k+1) meLk+1
\_mijnfl_mjjm
1<i<j<k+1
0 Alp;l (pj)1 (®5) 1,1
H Tr{m(pj)lpjl}(w Amj(pjh ..... m<pj)(\pj|71) (B J P 7B pj ))

Je{1,...,|pl}

qumlJn A dplmlJn Ao A dq[mk+1Jn A dmekHJn

which finishes the proof. O

To get an overview over what is left to derive the Lebesgue density v of
the Liouville measure \° of w*® we give an outline of the procedure where we
restrict to \°. Replacing the B's in (2.42) and choosing k = n we get

Z Qo - Qay, g, 290 A dzP AL A A2 A dRP
a,Be{1,...,.2n}"

P i

me{l,...,2n}" peP(n)

] 0 g I,
1<i<j<n

Trom, W AP (Q)
je{ll,_..[.,|p|} {m(p”"’j'}( T e p 1) )

where by an abuse of notation we write

j-times
J - AJ
Am1 ..... mj_l(B’ v 7B) = Am1 ,,,,, m]-_l(B) ‘

By the fact that wedge products of two-forms commute we have

qumlJ” A dmelJ" VA qum”J" A dpme =d¢* Adpt AL AdgT A"
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for any m4,...,m, € {1,...,2n}. Moreover, by the anti-commutativity of
the wedge product

dg* Adpt A AdGTEAdP T EAdGEA P T A dgT A dp”
(=) dg' Adp* A~ Adg" 2 Adp" 2 Adg" T Adg™ Adp™t Adp™
(—1) (=1)*dg"* Adp* A---Adg" 2 Adg" P Adg" Adp" 2 Adp™ Tt AdD”

(—1)(2?:_11i) dg" A---Adg" Adpt A= Adp™
(=) =02 gt A Adg" Adpt Ao Adp™ .

(2.48)
Combining the above equations yields

Z Qo - Qay, g, A28 A AP AL A d2 A dP
a,Be{1,....2n}"

:(_1)n(n71)/2 Z (_1)\pl

pEP(n)

Ip;|
> II Tr{m(pjnpﬂ}(wOA”a(pjh ~~~~~ m@j)(\pj\—l)(m)

me{l,...2n}" je{l,...|p|}
\_mijnil_mjjnv
1<i<j<n

dg' A - Adg® Adpt A dp".

Now, assume

0= (- ] Tr{m<pj)lpjl}(w0/\|pf| Q) (2.49

. o)1 @) (|ps -1
pEP(n) je{domlpl} P31~

whenever m; = m; for some i # j. Then,

Z Qay = Qay, g, A2 A AP AL Ad2 A dP
a,Be{1,....2n}"

= (=102 ST (=TT T (0 A1)
pEP(n) Je{l,..pl}

dg' Ao Adg" Adp' Adp™.

where we denote

N@) =Y AL (9.

me{l,....2n}i -1

From the definition of A’ it’s easy to see that A'(Q) = C (Quw")" ' Q for
some natural number C. Comparing the above result with \° (2.21) we
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conclude that the above is exactly of the form what we are looking for. So,
the main points left are the prove of (2.49) and derive the exact formula for
Try, (wo Alpsl (Q)) .

To show (2.49) we have to go quite deep into the structure of Af‘mwmj_l) (Q).
In general, the terms

_ 1)l 0 Alpsl
Z ( 1) H Tr{m(pj)‘p]‘}(w Am](pj)l’“'7m(pj)(\pj\—1) (Q>>

peP(k) FE{1,lpl}

are very complex. To keep a better overview over the structure we introduce
a new short notation. From the definition of A{m"_.’mj_l) (Q) (2.26) it is easy
to see that each summand in the explicit formula of Afm,...,mj,l) (Q2) is of the
form

0
Qi miy wmll |_mll+nJ 2n QLmh +nJ 2n LmZQ +nJ 2n

0
my,_, [, +nlan wl_mlk_l-‘rnJQn my, lek—l J -

From this one can see that the only differences between the summands
are the ordering of the indices m; as well as whether the first index of w’
associated to m; is m; or |m; + n|,,. So we can uniquely identify any term
of this form just by using those two properties. In what follows we will use
the following notation. For my,...,my,4,j € {1,...,2n}and 1 <[ < k we
write

1. 0
l]z = Qjm, Wing [my+n]2n thl"‘”J%i

(2.50)

T 0
l]’L T Q] Lml+nj2n w\_mg—i—n]gn my lei .

We call the number (as [ in the above) the index and the arrow (1 or |) the
direction of such a symbol. In addition, we define a product or contraction
of two such symbols by merging the ()s that meet. As an example we have

(2737

W0
( jma m2 |_m2+nj2n QLm2+nJ on = Qj LWS‘HH 2n \_mg-‘rnj on M3 del)]l

= Q Jm2 m2 ng—l—nJ on Ql_m2+nJ 2n |_m3+nJ 2n wng—l—nJQn ms Qm3 7

Furthermore, we introduce a ’partial trace’ for these symbols where we insert

an additional w°. For a matrix B € R?"*?" we write

TTN(B) = ngl [m1+4n|2n Blm1+nJ2n m1

and

TrlT(B) = W(L)ml.:,-nj 2n My Bml Lmaitn)zn -
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Here, we again use | if m,; occurs at the first index of w® and 1 when the first
index of w° is |m; + n]s,. Then, as an example we have

Try, (2¢ 3T) = wgu [mi+n|2, QLml—i-nJ 2n M2 w?fm [ma+n]2n

0
QLmz—i—nJ on [ ma+n]on wngJrnJ on M3 Qms mj -

To simplify the computations following we also introduce a special case. We
write

TrlT() = TrlT(Q) = w?rrn—&—njgn mi le Lm1+nJ2n ‘

Moreover we introduce the inversion operator (-) for the directions | and T,
ie. forae {1,]}

g fora=L (2.51)
J, fora =7

For a collection of properties regarding this notation, (see Lemma A.2).
Furthermore, for aset R = { Ry, ..., Ry} we denote the set of all permutations
of R by Sym(R). For o € Sym(R) we write 0; = o(R;) for 1 <i < k.

In the next step we express A¥ ~(©) in the short notation introduced
above. We start with A2, (). Now, let m € {1,...,2n}" then

2 0
Aml;i,j(Q) = QZ m1 wm1 [m1+n]on QLm1+nJ2nj
+ Q'L I_m1+nJ2n w(fm1+nJ2n mi lej (2'52)
=1 +1".
For A}, ..,..;(€), let’s have a closer look at the definition
3 A k—1 2 k—1 2
Aml,mg;i,j (Q> T Am1 ..... Mp—2;%,7 (Q7 Amg (Q)) + Am1 ..... Mmg_—2;%,] (Am2 (Q)7 Q) .

This means that in (2.52) every Q will be replaced by A2 (). Replacing the
first Q in 1+ will add a (2 + 27) in front of the 1*. Replacing the second (2 in
1+ will add a (2* + 2) after the 1*. The equivalent holds for the 1" summand
of A2, ., ;(Q2). Hence,

A2 () =2b1h 2T th bt vt 2kt 2Tt 1T 2 1T T

mi,m2
- > T oo

ae{1,1}? ceSym({1,2})
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Inductively, we get

e ()= > > oMot t fork>2. (2.53)
ac{t 4}~ oeSym({1,....k—1})

Note here that the above shows that AF,
ordering of the m;s. Now, consider A%

(Q) is independent of the

----- mz—17Lmz+nJ2n,mz+1,...,mk_1(Q) forl e
{1,...,k — 1}. Clearly, replacing m; by |m; + n]s, in (2.53) every T will
turn to [+ and vice versa. Since all possibilities to distribute the indices and

9999 mpg—1

directions are already included in A, _,(©2) we conclude

k Q) = A* Q) (2.54)

for every 1 <[ < k — 1. Also, one can easily see that

Tr{mk} (wo Aﬁu ..... M1 (Q))
_ .0 k
- wmk [mg+n]an Am1 ..... mp_1;|me+n|on,mg (Q)

= 2 > Trp (0] - - 05"

ae{td}k~1 oeSym({1,....k—1})
as well as (2.55)
Tr{ I_mk“rnj?n}(wo A’rk;ll ..... Mp—1 (Q>>
= 2 Y. Trp(of oty

ac{td}¢~1 oeSym({1,....k—1})

Combining (2.55) and (A.3) we have

Tr{mk}(wo A’lrcnl ..... ME—1 (Q)) + Tr{ Lmk:'i‘nJ QH}(WO Afnl Mp—1 (Q))

,,,,,

= 2 > Trpen (07" -+ - 07"

ac{t}* oeSym({1,....k—1}) (256)

= X > T(ofteeopty).

ac{t ¢ oeSym({1,....k}\{5})
forany 1 < j <k.

Now, we are set to derive the explicit formula for

S (—1) > II Tr{m(pj)‘pﬂ}(woAszi'pjn vvvv m<Pj>(\pj|71>(Q))'

peEP(n) me{l,...2n}" je{l,...|pl}
[mi]n#lmjln,
1<i<j<n

As we can see by the following lemma.
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Lemma 2.5 Let k € N. Then,

Z (_1)|p\ Z H Tr{m(pj)‘pj|}<wo Alﬁﬂ)j)l """ m(Pj)(\p].\,l) (Q)>

peP(k) me{l,....2n}* je{l,....[p[}

[mi]n#miln,
1<i<I<k

kY (02 TG o) T (@0 0))”

aEN’g, Jj=1
Zf:l Zal:k
(2.57)

PROOF We start with the following observation. By (2.55)

SIS [T Trmg,, 3 (9" AR .. m(pj)(‘pﬂ_l)(ﬁ))

peP(k) me{l,....2n}k je{l,....p[}
L Jn M) n,
1<i<i<k
= > (= > II
peP(k) me{l,....2n}F je{l,..,|p|}
LmiJni\_ijnv
1<i<j<k

o Xlp;l-1
Z Z Tr(pj)llpj\ (o‘l 1.. 'Ulp]-|]_1 )>

ac{t,4}Pil=t o€Sym({(p;)1,-(Pi)(1p;1-1)})
(2.58)

Combining (2.54) and (2.56) yields

Z (_1)\pl Z

peP(k) me{l,...,.2n}F je{l,...,|p[}

[mi]n# My n,
1<i<i<k

o Oé| .|,1
) )y Ty, (ot wopy))
ac{t,}}1Pi! =1 o€Sym({(p;j)1,-+(Pj)(1p;1-1)}) ’
= > (=3 II
peP(k) mée{1,...,n}* j€{1,....[p}

mi#mh

g o Ylpj|-1
Z Z 2|p3| ! TI'( )Q\Pj\ (0-1 bees O-|p]-p|J—1 ))

ae{t,}Pil oeSym{(p;) 1, (Ps)(1p;1-1)}) P21,

— Z (_1)|p\ ok—Ip| Z H
peP(k) me{1,...,n}* je{l,....Ip[}

mi;éml )

a| .‘,1
> > Tr o (01 0y )> '

ac{t,}}1Pil o€Sym({(pj)1,(Ps) (1p;1-1) }) el
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Now, choose an arbitrary m € {1,...,n}* with m; = m, for some i # [ and a
p € P(k). We define as M, the set of all partitions of {1,..., k} that include
aset { with ¢, € &, i.e.

M, :={pe Pk)|Fep:ilet}.

In addition, for p € M; with £ € p and i,l € £ we define the set of all
partitions of {1,...,k} that result from splitting ¢ into two sets & and &,
where one of the two sets includes i and the other one [, i.e.

MP:={pe Pk)|3 & epic€&,l €& GUE =EL.

Clearly, the union of the sets M? over all p in M, results in the set of all
partitions of {1, ..., k} satisfying that there are two distinct &;, &, € p with
i €& and [ € &. Also, for an arbitrary p € P(k) there are two possibilities.
Either there is a £ € p with i,/ € £ or there are &,& € p with ¢ € & and
j € &. It is therefore obvious that

U (MPU{p}) = P(k).

peEM;

This fact together with Lemma A.7 shows that for every m € {1,...,n}* with
m; = my for some i # [

Z (_1)\p| ok—Ipl H

peP(k) J€{L,lpl}

o a| “*1
2 2 I )] (01" -+ Oy >>

ac{t,}Pil o€Sym{(p) 1, (Pj) (1p;1-1)}) Ip;1
S ((_1)15| okl ]
6% alﬁ"*l
(X > Tr e (0f 0,70 "))

we (i1 o€SYmU{G) )y} ]

4 Z (_1)|p| ok—Ipl H

pEM?P Je{1,..lpl}

> L))

ae{t}Pil oeSym{(p;) 1, (Pj) (1p;1-1)}) Ip;|

=0.
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It follows that

Y Yyl T

me{l,...n}* peP(k) JE{1,..,Ipl}
mi#mh
1<i<i<k
o Ylp;|
) ) T e(of o)
ac{t,}}Pil e€Sym({(pj)1,(Pj) (1p;1-1) }) el (2.59)
— Z Z (_1>\pl ok—Ip| H
me{l,...,n}* peP(k) Je{l,..lpl}

2 2 Tr e (01 o 11))

ac{t, }Pil o€Sym{(p;)1, (0 (1p;1-1)}) Pi)lp; ]

Since the m;s in the above formula are independent of each other we can
split up the sum over m € {1, ...,n}* depending on each partition p in a way
that the resulting sums are interchangeable with the product. This yields

Z (_1)|p\ ok—Ip| Z H

peP(k) me{1,...,n}* j€{1,....[p[}

3 3 Ty ‘pj (o0 5= 1)>

(+s) 7lpsl-1
ae{t,}}Pil oeSym({(pj)1,(Pi) (1p;1-1)}) Ipj

= 3 (—pklok T ( 3 (2.60)

peP(k) je{1,...lp|} “oeSym({(p;)1,-- (pj)(\pj\—l)})
ai Flp;l-1
2 > Tr(p]) w1 (07 a‘pj’ . ))
ae{t,4}/Pil {m(p])l ,,,,, m(pﬂ)l ‘}6{1 77777 n}!Pil Ip;l

As is easy to see, for every fixed p € P(k), j € {1,...,|p|} and
o € Sym({(p)1. - . () }) We have

> > Tr ey (08000

Pi) . | |pj| 1
.
ae{t,}}/Ps! {mep;), M), | yE{L n}lP! ’

= Trgn((w Q)'p”) :

(2.61)

2.2 Density of Liouville Measures 71



72

Combining (2.60), (2.61) and the fact that [Sym({(p;)1, .-, (2;)(p;~»})| =
(Ipj| — 1)! we obtain

Z Z Ip\ ok—Ipl H

me{1,...n}* peP(k) je{1,...,|p|}
o Ypj|
Z Z Tr(p.)o‘\pjl (07" - U|p]p| 11>) (2.62)
ae{TﬁL}lpj‘ Uesym({(pj)l »»»» (pj)(\pj\—l)}) J Ipjl

= 3 (=Pl T (Ipyl = 1)! Trgn((wo Q)ijl) _

peP(k) Je{1,....Ipl}

Then, by (2.58)- (2.59) and (2.62) we get

| \ 0 A lpsl
Z Z g H Tr{m(Pj)|pj\}(w A;;“J(Pj)l """ m(Pj)(|pj|,1> (Q))

me{l,....2n}F peP(k) JE{L,..Ipl}
i
= 3 (=Pl T (sl = 1)! Trgn((wo Q)ij\) _
peP(k) Je{L,lpl}

(2.63)

Now, note that the summands in the above result only depend on the car-
dinalities of the partition p € P(k). As an example consider k£ = 3 and the
partitions {{1},{2,3}} and {{3}, {1,2}} then

(=Dl ok=l T (Ipy] = 1) Tr2n<(w0 Q)\ﬁjl)

Je{L,...lpl}

= (—1)2 23_20! Tl"gn((wo Q)) 1! Tr?n((wo Q)2>

for either of the partitions. Thus, we simplify our result to a sum over all
partitions with distinct cardinalities. To that end we first compute the number
of partitions with given cardinalities r,...,r,. Note, that the number of
possibilities to distribute the numbers {1,. ...k} into s sets with cardinali-
ties rq,...,ry is given by the multinomial coefﬁc1ent (7« Tf ” ) In the set
of partitions with cardinalities r,...,r, we do not differentiate between
permutations of equal sets. Thus we divide the multinomial coefficient by
the number of permutations of sets with identical cardinality, i.e. we divide
by the product [T%_; |Uic(1.. s}, r=;{ri}|!. Also note that the set of all parti-
tions with distinct cardinalities can be expressed by {3 € NE| K i 8; = k}.
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Here, 3; encodes the number of sets with cardinality . Then, the number of
partitions with cardinalities given by o € {8 € NE|SF_ i 8; = k} is

( k ) ﬁ 1 ﬁ k!
— = 4 = F e 1
Lo ok k) oyl ]1 - (i)Y !
o -times . -times
Therefore,

S (=Rl T (Ips| - 1) Tr%((wo Q)ijl)

peP(k) JE{L,.lpl}
S e e B T (G (e0))
= - — J— 1) 1ron | (W
aen, [T (i) el 5
Zleiai:k
k .
=k (=l T ag) 7 T, (0 ©)7)
aeNE, j=1
Zleioq:k
To finish the proof we combine the above result with (2.63). O

REMARK 2.6 The equation (2.57) can be expressed in a slightly different way
using integer partitions. For an integer partition £ of k € N we write ¢ F k.
We will make use of two distinct ways of expressing an integer partition
¢ F k. Namely,

E=6>6>---6,>0 and £=1"22... k% o c Ni,

Clearly, we have |a| = ¥ | a; = sand % i a; = k. It follows that o € {3 €
NE|SF i 3; = k} whenever ¢ is an integer partition of k and vice versa we
can associate any o € {3 € Nf| ¥ i 8; = k} with an integer partition ¢ I k.

Hence, we can represent (2.57) as

) > (= 1 11 Tr{m(pﬂ‘pﬂ } (WO AEiLj)l ,,,,, o) s -1 (Q)>

me{l,...,2n}F peP(k) Je{l,...lpl}
)L
1<i<i<k
= Y1)l 2kl H (% ay!) Tan((WOQ)J')C”.
ek j=1
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Proposition 2.7 Let ¢ € R, Q = 3", j<y, Qi d2' A dz? be a symplectic form
on R*" and let w° be the canonical symplectic form on R?". Then, the Liouville
measure X° of w® := w® + £ Q defined by

n:

A= CETOTDE e A (2.64)

n-times

satisfies
A=Y = (1+Z€ky,i)dq1 Ao ANdp”
k=0 k=1
where
g |a| k ‘s _ aj
vi= X (-3)" T16™ o)™ T (00 2))
a€eNE, j=1
Zf:liai:k
for1 <k <n.
PROOF Substituting the definition of w* into (2.64) we get
A=k
k=0
with
. _(=pntmh 0 0
=" Y WA AQAAQA AW (965)

n!
1<lhi<..<lp<n Iyth Ith

By the fact that a A b = b A a for any two 2-forms a, b

Z wo/\.../\g‘)/\.../\g‘)/\.../\wo

1<l <...<lp<n 11th Lyth

(2.66)

:<Z>Q/\---/\Q/\w0/\---/\w0.

k-times n—k-times
By definition of w®

2
w® = Z (ng+5§2ij)dz"/\dz]’:%' (w?j+5Qij)dziAdzj.

1<i<j<2n 1,j=1

N
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Hence,

QA AQAW A AW

k-times

n—k-times
1\
0 0
<2) Z Qalﬂl e Qakﬂk w'Y1l/1 T w’Yn—kank
a,8e{1,....2n}F

Az AdZP A - A2 A2 AT AR A - Ad2 TR A dRYrk

(2.67)
Combining (2.65)- (2.67)
(_1)n(n—1)/2 1\"™ 0 0
A;:<> S Qa6
k! (TL — k)' 2 o fe(l . an} kPk iy Yn—k k

~ve{l,...,.2n}n—k

Az AdZP A AdZ AdZP AdZ ADZ A Ad2 R A dRYk

(2.68)

By (2.23) we have for any / C {1,...,n},|/| = k with complement /¢ :=
{1,...,n}\ I that

Z w’(‘){lljl T w'(})’nfkun,kdzvl /\ dZVl /\ “ e /\ dZ’Yn—k /\ dZ]/n_k
vve({L,....2n\I)n—k
- Z w’(})/llll e wgn_kyn_kdz’yl /\ dzyl /\ e /\ dZ’Yn—k /\ dzl/n_k .
yve(leu(Ie+n))n—k
(2.69)
Furthermore,
1 fori<n,j=i+n
wy =3 -1 fori>n,j=i+n .
0  otherwise
Therefore,

2n n n n
Yowpdd Ad =) dg Adp' =D dpt Adg' =2 dg' Adp'
irj=1 i=1 i=1 i=1
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Clearly, the above statement generalizes to

0 ... 0 Y1 vy e Yn—k VUn—k
> Wayin Wy A2 AT A A d2 A dz
vve(IUIHn))nF

— 2nfk Z dq'}’l A dp71 A A dq“fn—k A dp'Yn—k
,Ye([c)nsz

(2.70)

where I C {1,...,n},|I| = k with complement /¢ := {1,...,n} \ I. By the
skew-symmetry of the wedge product we can conclude that the summands
in the above result are zero whenever vy € (I°)"~* satisfies that ; = v, for
some 1 <7< j <n— k. Hence,

Z dq'Yl A dp”l N dq'Yn—k A dp’Yn—k
,Ye(lc)nfk
= Y dg" Adp™ A---AdgE AdpTE (2.71)
e,
1<i<j<n—k
We are now at the point where it’s rather straight forward to deduce ;.
Combining (2.68) - (2.71) we get

Ao = EDR s g a g A A g A dp
0= N7 q p T q™ p".
(TZ)' ~ve{l,...,n}", (272)
ViFVi
1<i<j<n

By the fact that wedge products of two-forms commute we have that
dg" Adp™ Ao Adg™ Adp™ =dgt Adpt A Adg™ A dp” (2.73)

for any v € {1,...,n}" satisfying 7; # 7, forevery 1 < i < j <n—k. In
addition by (2.48)

dg* Adp' A AdGTEAdPEAdGTE AP A dGT A dp”

(2.74)
= (=)D qgt A Adg" Adpt A Adp™.
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Note here that the cardinality of the set of all multiindices in (1¢)"~* with dis-
tinct indices is given by the number of all permutations of the set {1,...,n —
k} which is (n — k)!. Thus,

S 1=y ety V1<i<j<n—k}=(n—k)

Teeh,
1<i<j<n—k
(2.75)
and in particular
H{1l,....n}" | #v V1<i<j<n}| =nl (2.76)

By combining (2.72) - (2.74) and (2.76) we obtain

Ay =dg' A Adg" Adpt A Adp™.

From now on let £ > 1. By the anti-commutativity of the wedge product
we have for a, 3 € {1,...,2n}* and v,v € {1,...,2n}"* that

Az Ad2P A Adz AdZP AdR AR A Ad2E AdR R =0

whenever two of the indices are identical. Hence, we have for I C {1,...,2n},
|I| =2k, a, 3 € I¥ and v,v € {1,...,2n}"* that

AP AN £0e= ) {w,B}=1 and

ie{l,....k}
U {ww)={1,....200\I.
1€{1,...,n—k}

(2.77)

Combining (2.69)- (2.71) and (2.77) we conclude that for non-vanishing
terms in (2.68) the multi-indices «, 5 and ~, v must stem from disjoint index
sets. We obtain

-1 n(n—1)/2 1
T

k
9 Z Z Z QO41:31 e Qakﬁk
2

"kl (n— k)
T
[1|=k YiFEVis
1<i<j<n—k
Az Ad2 A Adz® AP Adg Adp™ A A dgTE A dpTnE

(2.78)
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where L := T U (I +n). By Lemma 2.3 with B/ = Q, j = 1,..., k we have

Z Qalﬁl T Qakﬁk Azt AdZP A - A de® A d2PE

o,fELF
S I
peP(k) meLk
Lmijnfl_.mjjnv (279)
1<i<j<k
0 Alpsl
je{ll:[-,lp}Tr{m(”j’le}<w Amj(”ﬂl """ m(pJ')(\Pj\*l)(Q))

dqtmljn A dptmljn Ao A dqlkan A dplkan _

Analogous to (2.73) and (2.74) it follows for every m € L*, [m; |, # |m;]n,
1 <i<j<kandeveryy € (I°)"* that

qumlJn A dmelJn A A dqtm’d" A dmekJ”
Adg™ Adp™ A -+ AdgT R AdpTnE (2.80)
= (=)= D24t A Adgt Adpt A - AdpT.

Combining (2.75) and (2.78) - (2.80) yields

1 /1\*
i=n(3) T Y%
) peP (k) Ic{1,...,n}, meLF
IT|=k  [miln#|m;]n,
1<i<j<k

Tr (wo Alps| Q )
) H {m(pj)|pj|} M) m(pj)(‘pjlil) ( )
Jje{1,....Ipl}

dg* A Adg" Adpt A - Adp™.

(2.81)

As is easy to see, it holds that

{me{1,....2n}"|mi|n # |mjln V1<i<j<k}
= U {meLjlmiln#|mjln V1<i<j<k}.

where additionally for 1, I, C {1,...,n}, |I1| = |I2] = k, I, # I, we have

0={meLj|lmi,#|mil, V1<i<j<k}
N {m e Lf |lmi]n # |mjln V1<i<j<k}.
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Therefore, we represent (2.81) as

i=n(3) S x

peP(k) me{l,...,.2n}"
Lmzjn7éLmJJn’
1<i<j<k
TI' w0A|pj| Q
je{ll:[.,pl} {m(”j)lpj\}( pg)1 m(”f)ﬂpj\—U( ))

dg* A Adg" Adpt A - Adp™.

Applying Lemma 2.5 to the above result shows

1 k -\ O
M= kY (D) 2Rl T ) 7 T, (0 Q)7)
ol 2k . L
a€eNg, J=
Zi;liai:k
dg* A Adg" Adpt A - A dp”
o] £ N
= Y (=) TIG™ ag) ™ Tran (" QYY)

aEng, Jj=1
Zleiai:k
dg* A~ Adg" Adpt A - A dp”

which finishes proof. O

Corollary 2.8 Let € > 0 small enough, Q a symplectic form on R?" with the

coefficients Q;; € S°(¢,R) and let w° be the canonical symplectic form on R*".

Then, the Liouville measure \° of w® := w" + £ Q is given by
No=vidgt AdEA - Adp”
with
VS =1— 2Ty, (wQ)) + £ Tran (W’ Q) — 1 &2 Tra,, (W QW' Q) + O(%) .

PROOF By Proposition 2.7, v = 1 + 3}_, e vf with
. ol & N
vi= Y (-3)" T10% a) ™ Tea (@ Q))
aeNk, j=1

Ef:l tai=k

for 1 < k <n. Then,

Vi =—3 Trgn((wo Q)) :

2.2 Density of Liouville Measures
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and

2

vs = (~1)" (122) " Trau ("))

Since, ;; € S°(e, R) this finishes the proof. O

.....

Liouville measure of € is given by

A=Y (0" 1% o) Tron (0 Q) dg" A~ A dp".
SGNQ, j=1

joq bai=n

.....

& = w® 4 Q with Liouville measure \. By (2.19) we have that A = )\,,. Then,
the assertion follows by applying Proposition 2.7 with w®* =@ and e = 1. [

Assumptions

We consider a composite system with state space
H=L*(R") @ He = L*(R", Hy) .

Here L%(R") is the state space of the ’slow degrees of freedom’ and the
separable Hilbert space #; is the state space of 'fast or fiber degrees of
freedom’.

Assumption 2.10 We consider a Hamiltonian H “onH given as the Weyl
quantization of a symbol

H(z) = Ho(2) +eH (2) + ¢ - 2
with Hy € S°(Bso(H:)), H' a classical symbol in S°(e, By, (Hs)) and € € R*™.

Then H, and H!" are bounded operators on H. Thus, A is self-adjoint
A E A~ E

on D(H ) C H with D(H ) being the maximal domain of the operator
£ -x—ieck, V, where { = (gg)
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Assumption 2.11 (Gap Condition) We assume that the principal symbol
Hy(z) of the Hamiltonian H(z) has a non-degenerate eigenvalue ey(z) such
that ey : R*" — R is continuous and satisfies the uniform gap condition

dist(eg(2),0(Ho(2))\{eo(2)}) > g >0 (2.82)

for every z € R*". We denote the eigenprojection of Hy(z) associated to the
eigenvalue ey(z) by Py(z), i.e.

Ho(z) Py(z) = eo(2) Po(2).

The gap condition implies that for any z, € R*" there exists a neighborhood
U., C R?" of z; such that the positively oriented complex circle v(z) =
{lz —eo(20)| = §} satisfies

dist (7(z0), 0 (Ho(2))}) > % forall z € U,, .
Therefore the eigenprojection

i

Py(z) = f]{ (Ho(z) —€)"'d¢  forall » € U,
27 J(z0)
is smooth and bounded with all its derivatives on U,,. As is easy to see,

it follows that P, € S°(B(H;)). Moreover, since Hy, € S°(B,,(H¢)) and
Hy(2) Py(2) = eg(2) Py(2) we conclude ey € S°(R).

2.3 Assumptions
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3.1

Space-Adiabatic
Perturbation Theory

The main goal of this chapter is to derive a effective theory for systems with
operator-valued symbol within the almost-invariant subspace 1" . The
derivation of the space-adiabatic projection I1” is well known and was done
several times in the past (see e.g. [Teu03], [NS04] or [EW96]). Nevertheless,
we derive 11" in Section 3.1 where we slightly vary the derivation. This
variation leads to a pointwise projection P¢ that is used Section 3.3 to
define the modified Berry connection V<. In Section 3.2 we construct scalar
effective operators that approximate the action of operator-valued symbols
B € S*(e,B(Hs)), k > 0 up to any order in e. As already mentioned, in
the third section of this chapter we define the modified Berry connection
from which we deduce a symplectic form w®. This symplectic form together
with the effective operator h of the Hamiltonian H defines a e-dependent
Hamiltonian system (7*R"w*®, h). Later, in Chapter 4 and 5 we show that
this e-dependent Hamiltonian system incorporates most expressions of the
semiclassical approximation of expectation values for stationary state as well
as the time propagation of observables with operator-valued symbols in the
Heisenberg picture of quantum mechanics.

The Almost-Invariant Subspace

In this section we will show that there is a projection 11" associated to an
isolated eigenvalue eq(z) of Hy(z) such that the subspace I1"H is almost-
invariant under the action of # . In addition, we prove the existence of a
pointwise rank-one projection P¢(z) taking values in the self-adjoint trace-
class operators J.,(H;) that is closely related to the adiabatic projection .
In Section 3.3 we will use P¢ to define a modified Berry connection leading
us to a symplectic form on the classical phase space. The existence of the
almost-invariant subspace 11" was proven several times in the literature.
We will follow the strategy of the proof of [Teu03, Theorem 3.2] which is
due to Nenciu and Sordoni [NS04] and based on the work of Helffer and
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Sjostrand [HS90a]. The basic idea is to recursively construct a classical
symbol 7 € S%(e, Bz (H;)) satisfying

1) 7#rm =71+ 0O(=™)
(i) H#(m)—n#H=0(™).

In addition, it is known that 7 indeed takes value in the trace-class operators,
ie. m € S%e, Jw(Hs)), see [ST13, Proposition 1]. The main idea in the
construction of P¢ is to decompose 7 into a almost pointwise projection P
and a remainder 7. This is achieved by extending the recursion of 7 by two
additional steps. Then 7#° and P(z) are almost projections as operators acting
on # and H;, respectively. Finally, one defines II" and P<(z) as spectral
projections of 7° and P(z) to their spectrum near one.

Lemma 3.1 Let Assumption 2.10 and 2.11 hold and fix N € Ny. Then there
exist unique P;,7t; € S*(Jea(HMs)), 4,7 € No, j < N, i < N — 1 such that
PN =N jel Py, #ND = el 7 and 7™ = PWN) 4+ e 7N satisfy

G PN PN _ pM) — oV

(i) PV Py =P aNYp=0
Gii) 7™ #7M) — 7 ) = (N T
Gv) H#aW™ -7z g —0EN)

(3.1)

where P, is the eigenprojection of H, corresponding to e,.

PROOF We start our proof with the following observation. Recall that
P, is the eigenprojection of H, to the eigenvalue e,. Then, making use
of the asymptotic expansion of the Moyal product it hold that P, # P, =
PoPo+0(e) = R+ O(e)aswellas [H, By |, = [Ho, o] + O(e) = Ofe). In
addition, since ¢, is non-degenerate by assumption, P, takes value in the
self-adjoint rank-one projections on H; and thus P, € S°(J (H;)).

Now, assume there are P; € S°(Jw(Hs)) for 0 < j < N and 7; €
SY(Ja(Hg)) for 0 < j < N — 1 such that (i)-(iv) holds. We prove it for
N + 1. By induction assumption

PN pN) _ pN) — 0N+
Then, defining G v 1by

éN-H = (P(N) P(N))N—i—la (3.2)
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Py, must satisfy
0= (PWH) pWN+1) _ p(N+D) v = Py Pyyy + Pyy1 Po — Py + Gy -
This uniquely determines the diagonal part of Py, to be
Py =—PyGny Po+ PGy By (3.3)

In addition, we have

Py G Ly, = Po) =(Py e NP PO — PV (14, — Ry))
(5 (N+1) p(N p(N) pN) p(N)) (Ly, — p(N))>O
(5 N+1) pm) _ P(N)) (p(N pWm) p(N )
0
=0.

(3.4)

Similarly, (15, — Py) Gn41 Py = 0 showing that Gy, is diagonal with respect
to Fy. As a consequence,

(PO + €Y1 PR, (PY) 4 &M PR,y — (P 4 M PR,,) = O(™+).

We define u™) ;= PW) 4 eN+1 pD | e7(N=1)_ Then, (iii) yields
N) gy N) () = (N
Therefore,
w) = (V) 4 N+ ™
has to satisfy
0= (w(N) #w®) — w(N))N+1 =P 7N+ 78 P — 7Ty + Grya
where
Gni1 = (u(N) #u(N))N+1 .
This uniquely determines 7 to be

fin=—PyGni1 Po+ Py Gy Py 3.5)

3.1 The Almost-Invariant Subspace

85



86

The proof of G, 1 being diagonal with respect to I is very similar to (3.4).
Consequently, 7y is diagonal with respect to P, and w™) satisfies (iii) up to
order O(eV+?).

Finally, using induction assumption (iv) we have
[H,w™ ]y = 0E?)
and define

((H,w™ ] p) v = Fyar

The diagonal part of PJ,, and 7y, being fixed already, P{”, has to fulfill
the equation [Hy, P{?\] = —Fn41, i.e.

Hy Py PRy Py — Py PR} P Hy = —Py PRY, By (Ho — eo) = —Py Fy . By
and
Ho Py~ PYY) Py — Py~ PR Py Hy = (Hy — eq) Py PRy, Po=—Py Fn By

This uniquely determines the off diagonal part of Py_; to be
PRYy = Py Foy1 (Ho — €)™ Py — Py (Ho — €0) " Fri1 By . (3.6)

where (Hy — ¢g) ™t = P (Hy — ey) ! Py is the reduced resolvent on Pg-H;.
Since w™M#w™) — ™) = O(eN*2) and wy = P, we have

Py Fyi Py = (N1 (Py H#w™ Py — Py H # w™ PO))O

eNHL (M) g 7 0™ ™) — ™) s F oty #w(N))>O

I
S~

and similarly (14, — Py) Fy4+1 (1x, — FPo) = 0. So, Fix4; is off diagonal with
respect to Py. Therefore,

[H, PN 4 ez | = 0(eN2).

To sum up, we have that PN+ 4 ¢ 7(N) satisfies (i)-(iv). What is left is to
proof that Py, and 7y take value in the self-adjoint linear operators and
are bounded with all their derivatives with respect to the trace norm. Clearly,
Gy takes value in the trace-class operators by definition. In addition,
by (2.11) we conclude Gy, € S°(J(H;)) and Fyyy € S°(J(H;)) which
directly implies Py,; € S°(J(H;)) and 7y € S°(J(H;)). Regarding the
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self-adjointness note that G, is obviously self-adjoint for all z € R*" by
the symmetry of its definition and since all P; for 0 < j < N are self-adjoint
by assumption. Therefore, the diagonal part of Py, is self-adjoint. By the
expansion of the Moyal product for classical symbols (2.9) together with
(2.7) it is easy to see that Gy, takes value in the self-adjoint operators and
thus also 7. Similarly, by (2.7) the self-adjointness of Fy,; and thus also
PGP, follows which finishes the proof. O

Proposition 3.2 (Super-adiabatic projection) Let Assumption 2.10 and 2.11
hold and let ¢ > 0 small enough. Then there exist a pointwise rank-one
projection P¢ € S°(e, Jea(Hs)) and an orthogonal projection 117 € Bu,(H)
satisfying

I[H°, 1] = O(=>), 3.7)
IT° — 77| = O(=), (3.8)
where
#° = op. (P +¢e7), 7 =Py Py+ Py 7 Py
and
P =P+0E®)  inS%e T(H)). (3.9)

P and 7 are classical symbols in S°(e, Jia(H¢)). The symbol P(e, z) and thus
also P (e, z) and 11” are related to the eigenvalue eo(z) through its associated
eigenprojection FPy(z) which is the principal symbol of P(e, z).

PROOF For the derivation of the super-adiabatic projection 11" we follow
the idea of [NS04]. Also the derivation of the pointwise projection P¢(¢, z) is
based on this approach. By Lemma 3.1 there exist P;, 7; € S*(Jw(Hs)), J €
N such that (3.1) is satisfied for any NV € N,. A resummation (Lemma 2.1) of
(Pj)jen, and (7;)en, results in symbols P, 7 € S°(e, J(H;)) with asymptotic
expansions P =< Y% ¢/ P; and 7 =< Y32, ¢’ &; where 7 is diagonal with
respect to F.

Then, 7 = P + £ 7 is an almost Moyal projection, i.e. 7 # 7 — 1 = O(e™).
Hence, 7° satisfies ||[7°7° — 7°|| = O(¢*). We define 11" as the spectral
projection of 7° for its spectrum near one, i.e. = X[%’%](ﬁs). Then, 11"
satisfies (3.7) and (3.8), for details see e.g. [NS04] or [Teu03, Section 3.2].

By definition P(e, z) takes value in the almost pointwise projections on #j,
i.e. there is a constant C,. y > 0 for every r € Ny and N € Ny such that

1P = P, < Cryve™.
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In particular, it holds for every N € N that
|P?(g,2) — P(e, 2)||pan) < Cone®  foranye € [0,5) and 2z € R*".

It follows from the spectral mapping theorem for self-adjoint operators that
there is a constant Cy > 0 for every N € Ny such that

o(P(e,2)) C [-Cne™,Cn e Ul = CneN, 1+ Ox e =1 o5 U ot

Therefore, we can define
i
© = — P —¢)td¢.
Ples) =5 | (P2 =07 d¢

for € R?*" and ¢ small enough. Then, it is easy to see that P (e, z) depends
smoothly on z, is bounded with all it derivatives and takes value in the
pointwise projections on #;. In addition, defining F(e, z, -) as the projection
valued measure of P(¢, z) we have

P(e,z) = /UW NE(e, 2, d)\) = /U NE(e, 2, d\) + O(EN) = Pi(e, 2) + O(eY)

for every N € Ny. Moreover, since P¢(¢, z) depends smoothly on ¢ and
P=(0, z) = Fy(z) we conclude that P° actually takes value in the pointwise
rank-one projections on Hy, finishing the proof.

]

Corollary 3.3 Let A € S*(c, B(H;)) for k > 2n. Then A"1I" and A" #° are
trace class with

&€

try (A 7%) = O(e™"|| Al 1)
and

try (A1) = trp (A" 2%)(1 + O(e™)) . (3.10)

Corollary 3.4 The diagonal Hamiltonian AT + 0 AT s self-adjoint
on D(H 6) and the projection 11" almost commutes with the unitary time evolu-

tion operator; i.e.
. A€ ~AE
H [e—lH t/e’H }

| = 0= [t))

and
—iH%t)e efi(ﬁEﬁEﬁEJrﬁaJ‘ﬁEfISL)t/s

= O™ |t]).

e
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See [ST13][Corollary 1] for a proof of Corollary 3.3 and Corollary 3.4.

In order to explicitly compute the contributions form super-adiabatic
subspaces up to the second order in € we need to know the explicit formulas
for 7, P and 7 up to the order 2. We follow the construction of Lemma 3.1
starting with Py, the eigenprojection of H, corresponding to e,. Since Py Py —
Py = 0 we have PP = 0.

Next, we want to compute 7y. By (3.2)
G1={Py, Py}, = —5w 0;Py0;Py = =5 w); [0; P, 0i Py ] .
Thus (3.3) yields
o = —% Py Tro (w° QF) Py + 1 Py Tr,, (w° QF) Py
where
Qar

0,ij

= —i [82‘P0,ajpo] .

Regarding PP, we define w") := P, + ¢ #,. Then

([H,w(l)]#)l :Hoﬁ'g—ﬁ'oHo—i‘Hé P()—P()Hé
+{Ho+¢ 2, P}, —{P, Hy+ &2} = Fy

where we used that £ - z and © commute. Then, combining (B.2) and (B.3)
with (3.6) leads to

PPP =1 P(w" VP, V(Hy+ ep) +2&)(Hy — eo) " — Py Hy (Hy — €9) ™"
_%(HO —60)_1<V(H0+€0)+2§7 WOVP())PO— (H0—€0)_1H5P0.
(3.11)

We can reformulate P, = PPP by defining
Mzojp = —% &PO 8j(H0 — 60) .
such that

{P(] ,H() — 60}1 = Trgn(wo MOp)
and
{H@ — €o, PO}l = Trgn((wo MOp)*)
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resulting in

P1 = — P()(Tl'gn(wo MOP) +H&)(H0 — 60)71
+iPy (W' VP, Veg+&) (Ho—e) ™!

) 0 . (3.12)
— (Ho — eo) ™ (Tran((w” M?)") + Hy ) o
—i(Ho—eo) ' (Veg + £, " VF) Py
where Try,(-) is the trace on C?.
Having P, we define
7;;?17 :76?5 + € 1?% = @PO 8jP0 + €8Z'P1 @-PO + 687;P0 8jP1 , (313)
QO =y + 0, = HTE — (T2)) 51

=—1[0,FP,0;P] —ei|0:P,0;P] —¢ei|0;FP,0,P],
and
955 = 9oai T €97 = Tozg + (Tog)"
=[0iPy,0;P ], +e [0iP1,0; Py, +¢ [0:FP,0;P1 ],
for 1 <i,7 < 2n. Then

op ._1,0p | iO)op
T = 395 + 3% -

We proceed by computing P and observe that
((P0+6P1)(P0+5P1))2 :Plpl.
Thus, by (3.3)

PP =—P,P P P,+P;P P P;.

Regarding 7, we define u") := Py + ¢ P, + £ 7y + £2PP. Then

(uM#u)y =7y Py + Py fig + o 7o

5wy ;P 0; Py — 5 wy; 0; Py 0; Py
— S wpy 0Py O5tg — S wy; 8,70 0 Py
- % w?j wlom 8]2mP0 85 P,

= GQ
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where we used that P, P + PP Py + P P, — P = 0 by definition of P}’. By
(3.5)

1 =—Py Gy Py+ Py G2 Py
Applying (B.4) yields

Pgﬁ'lp() = — ipoTr2n<WOQ(1)p)P0
+ % PO Tl'zn((,do QSP) TI'Qn(u)O Qgp) PO
— 1 Py Tran (w® QFF w® QFF) Py
— L Py Tran (W’ V2P Py’ V2P By .

(3.15)

A similar computation using (B.5) leads to

Py 71 By =1 Py Trap (W QF) By
— % POL Tron (w® QF) Tray, (W QFF) POL
+ 3 Ps- Ty, (w® QP W QFP) Py-
+ § By Tron(w’ V2P Pyw” V2 Py) Py

(3.16)

To summarize, the Moyal projection 7 is given by
T=P+e# (3.17)
where the expansion of P starts with
P=Py+ecP,—*PyP P Py+ &> Py PP, Py +&*PPP + O(%)

where

Py = — Py (Tron(w® M) + H} ) (Hy — eo)™*
+1Py(w’ VP, Veg+ &) (Hy —eg) !
— (Ho — eg) ™ ( Tron ((W° MPY*) + Hy ) Py
—i(Hy— ) (Veg+ &, 0 VR Fy.

(3.18)

Note here that we did not compute P{P since it will not be needed for later
computations. The expansion of 7 is given by

T=mg+ePyi Py+elPy i Py + O(e?) (3.19)

3.1 The Almost-Invariant Subspace

91



where

o = — ipo Tf2n<wo Qgp) P+ i Pol Tr?TL(wO Qgp) POL !

Poﬁ'l PO = — %POTI‘QTL(WOQ?I)> PO
+ % Py Try, (wo Q) Tron (wW® QF) Py
— % PO Tl'gn(wo Qgp wo Qgp) PO
— 1 Py Ty, (w” V2P Py’ V2 Py) Py
and
P71 Py =1 Py Tra, (W QF) Py
— % POL Trop, (w® QFF) Tray, (wW° QFF) POL
+ % POL Tron (w? QF W QFF) POL
+ & Py Tryn (W° V2P Pyw” V2 Ry) Py

(3.20)

In addition, by (B.6)

try, (Py 71 Py) = — L trgy, (P Tran (w” QF))
— % o3, (P Trapn (w° QF W QFF))
+ %6 trag (Po Trap, (w® Q) Tray, (W QF))
+ L tryg (Py Tran(w” V2P Py w’ V2 Py)).

3.2 Effective Operators

The goal of this section is the following: to an arbitrary Weyl operator B
with B € S*(e, B(H;)) we want to associate a Weyl operator b with scalar
symbol b € S*(e,C) that approximates the action of B restricted to the
adiabatic subspace 1" to arbitrary order in ¢, i.e.

We will refer to b as the effective Symbol of B or B, respectively. The Weyl
quantization b of b will be called the effective Operator of B°. Before we
begin with the actual construction of the effective operator we introduce
the basic idea. For now, assume that B is a classical symbol in S*(e, B(Hy)).
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In addition assume that for some N € Nj there is a classical symbol R €
S*(e, B(H;)) such that

m# (B —R)#71=0("). (3.21)

Then, 7 # (B—R) # = is a classical symbol which has an asymptotic expansion
that starts with the order N term, i.e.

T#(B—R)#7m = iEi(ﬂ'#(B—R)#ﬂ')i.

=N

Since 7 is a Moyal projection we have

TH#H(B-—R)#r=n#n#(B—R)#r#T.

Thus, we can express the leading order coefficient of the asymptotic expan-
sionof m# (B — R) #m as

(m#(B—-R)#m)n=(m#7#(B—-R)#1#7)N
=P (m#(B—R)#7)ny P

where in the last equality we used the assumption (3.21). Since P, is a
rank-one projection we can express the last term in the above equation as a
scalar multiple of the projection F,. More precisely, applying (2.15) yields

Po(m# (B — R)# m)n Po = try,(Po (n# (B — R) #7)n) Po

In addition, since

TH#Htry, (Po(m# (B—R)#m)n)#7
= try, (Po (n# (B — R)#m)n) Py + O(e)

we obtain

T#(B—R)#7—eNm#tra(Po(n# (B —R)#7m)n)#7=0(EVT.
(3.22)
Now we want to use (3.22) to construct the effective operator b. Obviously,
for N = 0 and R = 0 the assumption (3.21) is satisfied for any classical
symbol B in S*(e, B(H;)). Therefore, defining

bo = ter(PU (W#B#ﬂ')o) = ter(PO Bo)

3.2 Effective Operators
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we have

TH#(B—bly)#rm=n#BH#r—nH#by#m=0(e).

But now 7 # (B — byly,) # 7 satisfies assumption (3.21) for N = 1 and
R = byly,. It follows by (3.22) that

TH# (B -tV ) #r=n1# (B —boly,)#m—ecm#b #m=0(?).

where
bl = tI'Hf(PQ (W# (B — bole) #7{')1) .

Clearly, we can apply the above procedure inductively and so, for any NV € N
construct b™) satisfying

m# (B — b1y ) # 1= 0EV). (3.23)
The recursion for b?Y) is given by

bO - tr'Hf (BO PO)
and (3.24)
by = trw, (m# (B — b9 1y ) #m); B) for j>1.

The symbol of the effective operator b is then obtained by a resummation
according to Lemma 2.1. So we can say that in the space of symbols we
already know that the effective symbol b approximates the action of a classical
symbol B restricted by the Moyal projection 7. Moreover, applying the
Calderon-Vaillancourt theorem (2.2) the result about symbols (3.23) can be
turned into a statement about operators, i.e.

B 1" —11°6 17 || = 0(™). (3.25)

At this point it seems that we reached our goal to derive effective operators
already. However, our actual goal is to proof (3.25) for arbitrary B €
S*(e, B(Hy)). So, also for symbols B that are no classical symbols. The main
issue here is the following: the asymptotic expansion of the Moyal product
of two classical symbols is unique if one restricts to coefficients that do not
depend on e. If one of the symbols is not classical there is no such unique
asymptotic expansion. This makes it quite difficult to control the remainder
of an asymptotic expansion especially when one only has the information
about the ¢ order of a term, e.g. 7 # (B — R) # m = O(¢). Therefore, to prove
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(3.25) we will have to keep track of the explicit form of the remainder in the
induction step. On the other hand we can already derive the recursion of the
effective symbol b of an arbitrary B € S*(¢, B(H;)) from (3.24).

For a symbol B € S*(e, B(H;)), k > 0 we define

bg({f) = tI‘Hf (B(E) P())
and (3.26)
bj+1(e) = try, (Jj(e) Fo) for j=>0

where 7, is the j + 1-th coefficient of the asymptotic expansion of
TH# (B — bWy, ) # 7= 3527 Jj(e) given by

Jie) = Y {{Ma . B(E)}y, +Tay )

e %}

aENg,
lal=j+1
J
- Z Z {{ﬂ-al ) bi<€>}a2 ) 7Ta3}a
=0 qeNd, *

|a|=j+1—i

Since P, is a symbol in S°(J..(H;)) and B € S*(e, B(Hy)), clearly b, is a
symbol in S*(e, C). Assuming b; € S*(¢,C) fora j > 0 and any j > i > 0 we
have b;,; € S*(¢,C) since all 7, € S°(J..(H;)) take value in the trace class
operators for every [ > 0. By induction b; is a symbol in S*(¢, C) for any
j > 0. A similar argument shows that there exist 7 € Ny and C,; < oo for
any r, j € Ny such that

165 ()lk.r < Crj [ B(E) 15 (3.27)

Then a resummation according to Lemma 2.1 defines a symbol b € S*(e, C)
where b(e) < 3252 €7 b;(e).

Assume B € S¥(g, B, (H;)) to take value in the self-adjoint operators on
H;. Then, by takes value in R. Considering the associativity of the Moyal
product, the definition of J; (¢) is symmetric. Moreover, all symbols included
in 3, (¢) take value in the self-adjoint operators. Therefore, J; (¢) takes value
in the self-adjoint operators on H; and thus b; takes value in R. Inductively it
is easy to show that every b; and thus also b take value in R, i.e. b € S*(¢, R).

The main goal for the rest of this section is to proof that b~ approximates
the action B restricted to the almost-invariant subspace II"#. We start
by proving that the effective symbol b given by (3.26) cancels the terms in
the asymptotic expansion of m # B # = order by order. This is done in the
following proposition.
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Proposition 3.5 Let B be a symbol in S*(e, B(Hs)), k > 0 with effective symbol
b € Sk(e, C) given as resummation of (3.26). Then, for every N € Ny it holds
that m# (B — b™)1,,.) # 7 has the asymptotic expansion

Rt (Bt #rx S (X {{Tas BOy T,
i=N+1 aeNy, *
o= (3.28)
-y Y {7 b()}ay o},
Jj=0 a€N4
al=i %

In particular,

> {7 BO}ay 1 Tas),, Z > {7 0i(E)}a, s Tasf, =0
aeNG, J=0 aeNg,
|a|=i la|=i—j

(3.29)

forevery 0 < i < N.

PROOF Let B € S*(g, B(H;)), k > 0 with effective symbol b € S*(e, C). We
prove (3.28) and (3.29) by induction over N € Nj. For the induction basis
(N = 0) we start with the following observation. We have

> {{mar s BE) = bo(e) i oy s Taa |, = Po(B(e) = try (B(e) Po) 1) Py
aGNﬁ,
|| =0

:PoB<€>P0—PoB(€)P0:O

where for the second equation we applied (2.15) using the fact that £ is a
rank-one projection. By the asymptotic expansion of the Moyal product (2.4)
for symbols in S*(e, B(H;)) we have

TH# (B —boly,) #m
= P() (B(€> - tI"Hf(B(é?) PO)]-’Hf) PO
3 Y {{a BE) = bo(e)Ln Yo, +Taa |

=1 aeN} |al=i

= igi > {{qu , B(e) — bo(e) 1oy b, ,7Ta3}

i=1  aeN} |a|=i

Q4

Qg

which proves (3.28) for N = 0.
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Now let (3.28) and (3.29) hold for N € N, we will prove it for N + 1. First,
we define B;, € S*(¢, B(H;)) for j € Ny, j < N and « € N§ by

Bo.o(e) := {{ﬂ'al , B(g) = bo(e) 1y}, ,ﬁag}

and
Bja(e) == — {{ﬂal 0 (e)}a, ,7Ta3} forl<j<N.

By the induction hypothesis (3.29), it holds that for every m € N, with
m < N and every 3 € N}

S Y {mn B, ),

=0 aeNy,
o= (3.30)
= {{Wﬁl 72 Z BJOé }ﬁ2 ) T3 },34 =
Jj=0 a€N4
lal=m_j
Hence, Lemma A.8 yields
N
Z > Bale)=Y X {{m B}y, s,
J=0  aeNg, Jj=0 o,BENS,
jal=N-+1—; laf+|B|=N+1-j
N
:Z Z P()Bjﬂ(&“) PO
i=0  aeNi,
|o4 N+1—j
N+1—1
+ Z Z Z Z {{ﬂ-ﬁl 7Bj,a<€>}52 77T53}ﬂ4
i=1geNg, j=0 a€NE,
|Bl=i =N +1—i—j
- Z Z PO Bj a( ) PO
Jj=0 a€N4
o= N+1- —J
(3.31)

where the last equation follows directly from (3.30) with m = N + 1 — 4.
Applying (2.15) results in

N
Z Z P()B Z Z tI'Hf(PQBj7a(E)) PQ :bN_H(E) P().
J=0  aeNg, J=0  aeNg,
lal=N+1-j la|=N+1—j
(3.32)
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Combining (3.31) and (3.32) we get

N
> Y Bjae) =bnu(e) B (3.33)
J=0  aeNy,
la|=N+1-j
and thus
N+1
Z {{ﬂ-oq 7B(5)}a2 77Ta3}a4 - Z Z {{71'@1 7bj(€)}a2 ’7TO‘3}a4
a€NG, J=0  aeNg,
|a|l=N+1 la|=N+1—j

= bN+1(€) P() - bN+1(8) PO =0.

In the next step, we apply (3.33) to the asymptotic expansion of 7 # B # 7
given by the induction hypothesis (3.28). We obtain

o) N
TH#H Bty )#r= D &Y Y Biale)
i=N+1  j=0 aeNg,
la|=i—j

[e’s) N
= — eV bni(e) Py + S D> Bjale).
i=N+2  j=0 aeNd,
lal—ij

(3.34)

By the expansion of the Moyal product (2.4), 7(¢) # by+1(¢) # 7(¢) has an
asymptotic expansion given by

THON 1 # T X byya(e) Po+i€i Z {{Wal 0N 1(8) Yo, ,Wag}

Qq

=1 aeNd,
|a|=i
= bN+1<5> PO
> .
S ED DD DR £ C NI C) S
i=N+2 aeNg, *
|a|=i—N—-1

(3.35)
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Then, combining (3.34) and (3.35) yields

T# (B —bM1y ) #r—a# b Lg
> (X {{Far s BOYay 7

Q4

=i
N+1
- Z Z {{ﬂ-al ) }02 77Ta3}a4>
Jj=0 a€N4
ol =i~
which finishes the proof. ]

Combining Proposition 3.28 and the continuity of the Moyal remainder
(2.6) we get that 7 # (B — b™)14,) # 7 is of order e¥*! in S¥(¢) for every
N € Njy. In addition, applying the Calderon-Vaillancourt theorem (2.2) the
result about symbols can be turned into a statement about operators, i.e.

In Chapter 4 we will derive semiclassical approximations for expectation
values of thermodynamic equilibrium distribution, i.e. terms of the form

by (I F(A%) %)

For this derivation similar statement as (3.25) but for trace class operators
B° € J(H) will be of big importance i.e. that

try ((ES — () a) fIE> =0E"" sup ||B|1)

e€l0,eB)
where the more precise error estimate will be crucial when taking a thermo-
dynamic limit.

Theorem 3.6 Let N € Ny and B be a symbol in S*(e, B(H;)), k > 0 with
effective symbol b € S*(e, C) given by (3.26). Then

THBH#T —maH#HbH#HT=0(E®) in S*(e,B(Hy)) (3.36)
and
"B 11 —11°6 11 || = O(e™). (3.37)
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Also, there exist 7 € Ny and C, < oo for every r € Ny such that

|m# B#m—a#b™ x|z, < C eV B (3.38)

If additionally k > 2n then it holds for every R € S°(e, J(H;)) that

try (B RY) = O(™ | Rl ;0 1B5:) (3.39)
and
oy (b 1) = O || B]5,1). (3.40)
Furthermore,
try (B7 = 00)7) 7) = O(N17 | BIJS, ) (3.41)
and
try (B7— 00 ) 1) = O (N1 BJIS. ) (3.42)

PROOF Let N € Ny, B € S*(e, B(Hy)), k > 0 and b € S*(e, C) the associated
effective symbol. Clearly, (3.36) and (3.37) hold by the previous discussion.
Also, (3.36) is a direct consequence of (3.38). Hence, we will start our prove
by showing (3.38). By Proposition 3.5 we have

o0

W#(B—b(N)]_fo)#ﬂ'X Z 5i< Z {{77-04173(5)}@2 >7Ta3}a4
1=N+1 aeNG,

laf=i

S S (b Noaw sTr},, )

Jj=0 a€N4
\alzi—j

Thus, for » € N, we have
|7 # (B =6 150) # ]
N
< HW#B#W—Z&i S {7 B}, 7o)

1=0 aENg,
\Otl i

TH#b #w—z > {{man i), 5 Tas )
a€N4
|ov|=i

A4 |k, r

+Z€]

X |k,

(3.43)
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By the continuity of the Moyal remainders (2.6) there exists r; € Ny and a
constant C; < oo for every r € Ny such that

H?T#B#ﬂ'—it?i Z {{wal,B(s)}a2 ,wag}

=0 aeNd, o Tk

|ee|=1
<MCHB(E) |Inr
and (3.44)
N-j
Hw#bj #r—> & > {{ﬂ'al 05 (e)} 4, ,Wag}a

i=0  aeNd,  ler

|a|=i

< NI [y (€) s

for every 0 < j < N. Of course, the C;s and r;s may be different in each
inequality but taking the maximum of all these constants the inequalities are
still true. In addition, by (3.27) there exist 7 € N, and C, < oo such that

IB(e)lkry < (N +2)""Cy ' C || Bz =
and (3.45)
16;(€) Ve lwo < (N +2)7"CTCr || Bl5 5

for every 0 < j < N. Then, our claim (3.38) follows directly by combining
(3.43)- (3.45).

Now we additionally assume k > 2n. Prior to proving (3.39) - (3.41) we
reformulate the b;s. By Lemma A.9 there exist Q%" € S*(J(H¢)), 0 <r <j
and « € {1,...,2n}" for any j € Ny such that

bj(g)zzjj St (Q VIB(e)). (3.46)

r=0ae{l,...,.2n}"

Let R € S%(e, J(H;)) then an integration by parts shows

L (@i Vi BE) () tra (RE)(2) d
L (Vi (RE) Q) B())(2) dz
<N1QY o 1R@llora [, 1B )] dz

< 1@ lloia [1RI5 51 1B11Zs

(3.47)
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forany j > 0,0 <r <jand a € {1,...,2n}". Combining (3.46) and (3.47)
there exists a constant C; > 0 for each j € N,

L bite. 2 tra(Rie, ) dz | < G RN, IBIS . (348)

Then, (3.39) directly follows by (3.48) and the trace formula (2.12). More-
over, replacing R € S°(e, J(H;)) by m € S°(e, T (H;)) in (3.39) we get

oy (b 7%) = O(™ |lmll5 1 I1BII5,)

Then, (3.40) follows from the above equation and (3.10).

To prove (3.41), we again use the reformulated form of the b;s (3.46). By
Proposition A.10 we have for any m € N

L o (7 B ) (e, 2) dz
:i Z/ ter( {7y, B(€) }, >7Ta3}a4)(2)dz (3.49)

1=0 ozEN‘1
|or|=i

+0(em™ B3,
and

/R%ter( # try QU 02 B) # ) (e, 2) dz

6N4
o] =i

+0(em B3,
(3.50)

forany j > 0,0 <r <j,a€{l,...,2n}". Combining (3.46) with (3.50) we
see

+0(N 7 B]5)
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for each 0 < j < N. Subtracting (3.51) and (3.49) we conclude

/]R?n tl"’Hf(ﬂ'# (B — b(N)]-Hf) #71')(57 Z) dz

:igi ZN /R ) ter<{{7ra17B(e)}a2 ,7Ta3}a4>(z) dz

|a|=i
N-j
DS /R Qntrq.[f({{wal,bj(a)}w ,WQB}M)(z)dz
=0 aGNé,

|| =1

+ 0N B, -

N .
_ Z el
§=0

(3.52)

Finally, applying Lemma 3.5 to the previous equation (3.52)

/R% o (T # (B — bV 1) #m)(2)dz = (M |BIEL) . (3.53)

Then (3.41) directly follows by (3.53) and the trace formula (2.12). To finish
the proof, we apply (3.10) to (3.41) which proves (3.42). O

To finalize this section, we consider classical symbols B € S*(e, B(Hs)), as
in the beginning of this section. Imagine that in an application one may only
be interested in the leading order of the effective symbol b,. Until this point
one would have to compute by = try,(Fy B(¢)) in order to get the needed
error estimates provided by Theorem 3.6. But b, is obviously a classical
symbol and contains higher order terms one may actually not be interested
in. Thus we provide the respective error estimates for such a case in the
following proposition.

Proposition 3.7 Let N € Ny and B be a classical symbol in S*(e, B(Hy)),
k > 0 with effective symbol b € S*(e, C). Then b; is a classical symbols for every
j € Ny with asymptotic expansion

bi(e) < &by,
=0
Defining
5 N N—j
() = 3 Y by,
§=0 i=0
we have
T#BH#T -1 H#IN # 1 =0E®) in S, B(Hy)) (3.54)
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and

AE AE A

I BT — 11 op, (b)) IT'|| = O(e™). (3.55)

Also, there exist 7 € Ny and C,. < oo for every r € Ny such that

|m # (B — b 15,) #WH’“ < O, Nt (HBHEF + i Hg—(i+1) (B — B%)
’ =0

o)
ki)

(3.56)
If additionally k > 2n then it holds for every R € S°(e, J(H;)) that
~ AE N
tr (op, (b)) B) = O™ | R[5 wa Y- I1Billr) (3.57)
=0
and N
tr (op, (b)) 1) = O(e™ > [|Bill 1) - (3.58)
=0
Furthermore,

ir ((bW — 5™ Pf) = O || RIS nx (iv‘ e~ (B = BD)|[54))
i=0

(3.59)

Thus,

tr (B = 8007) #7) = (N1 (1Bl + 3[04 (5 - BO)5,))
=0

(3.60)

and

r ((ff — ) n) = O(N = (I1B]5 + S e+ (B BO)|[5.)).
=0

(3.61)

PROOF Since 7 # (b — b)) # 1 is clearly of order ¥+ in S*(e, H;), (3.54)
follows by (3.36). As in the proof of Theorem 3.6, (3.55) follows by (3.54),
the Calderon-Vaillancourt theorem (2.2) and the fact that I = #° + O(e™).

Using the reformulation of the b;s (3.46) we find that there are Q%" €
SUT(He)),0<r<jand a € {1,...,2n}" for any j € N, such that

j .
bia=, »,  tru(QY VLB (3.62)

r=0 ae{l,...,.2n}"
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(3.63)

Thus, there exist 7 € N, and C, < o for every r € Nj such that
I # (0™ = B e < Cre™ T (D e (B = BO)|55)
1=0

which, together with (3.38) shows (3.56).
Similar to (3.47)

‘ /Rzn 134, (Q Vo Bi) (2) tryg, (R(e, 2)) dz | < |Q4 o I1BIIG 1 11 Bill 2o

N
< 1Q& Mo IR1G51 > 11Bill
1=0

for everyi,j € Ng, j < N, i < N — j. This, together with the trace formula

(2.12) and the reformulation of b,, (3.62) implies (3.57). With the same

argument as in the proof of Theorem 3.6, (3.58) follows from (3.57).
Applying Proposition A.10 with N = —1 we have

g /R e (7 # b, (QF7 02 (e V(B — BN ) ) (2) de
_ O(gNJrlfj Hgf(N+1fj)<B i B(ij)>HsLl)

for each j € Ny, j < N. This, together with the trace formula (2.12) and
the reformulation of b, (3.63) implies (3.59). Then, (3.60) follows by
additionally using the result for general B € S*(¢, B(H;)) (3.41). With
the same argument as in the proof of Theorem 3.6, (3.61) follows from
(3.60). O
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We derive a classical Hamiltonian system (R*", w?, h) which, up to additional
quantum corrections, approximates quantum expectation values to higher
orders in . We begin with the derivation of the classical Hamiltonian
h : R?™ — R. Since we are interested in semiclassical approximations inside
the adiabatic subspace 1", our goal is to derive a real valued, s-dependent
function whose quantization approximates the action of the full Hamiltonian
H' restricted to the adiabatic subspace. Thus, we want to define h(z) as the
effective Symbol of H(z) using Theorem 3.6. Because of the linear part ¢ - z
the Hamiltonian does not fulfill the assumptions of Theorem 3.6. On the
other hand ¢ - z is a scalar function already. Thus, the solution is to define the
classical Hamiltonian as h(z) := h(z) + £ - » where h is the effective symbol
of H(z) — £ - z. In addition, we will compute the expansion of the classical
Hamiltonian up to the second order in .

Corollary 3.8 Let Assumption 2.10 and 2.11 hold. Then, there exists a classical
symbol h € S°(e,R) such that h(z) := h(z) + & - z satisfies

T#H#T — nfhftn = O(e®) in S%(e, B(Hy))
and thus
I AT -~ AT = O(E™). (3.64)

In addition, for Qo, W, M € S°(R****") and M;’ € S°(J(Hs)), 1 <i,5 < 2n
defined by
Q;L)] = —itI"Hf(PQ [&PO, 8JP0]) s
Wij o= tra, ([0iPo | (Ho — eo) ™" | 9;Po]4)
Mz‘j = %ter(ﬁiPO (HO - 60) 8jP0)
and
M,Zp = —% &PO aj(HO — 60),
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we have

h(z) = eo(2) + & - 2+ & (trag, (H' Py) + Tran (w” M) (1= 4 & Trgn (w° Q)
+e [’ (Veo +€), W' (Ve +€))
— trpg, ( Tron(w” M) + H' ) (Ho — €0) ™ ( Tran((w” MP)*) + H') Py)
— 313, (@ Vg (0 M?), V Py ) Py)
+ 194, (Tran(w® V2R w® V2(Hy — €0) ) Py — 5(w" VP, VH' ) )
— itry, ((W" VP, H'VP) Py — 5 (" VH', V) R)| + O()
(3.65)

PROOF The existence of h € S°(¢,R) follows by applying Theorem 3.6 to
H(z) — € - 2. So, the only thing left to proof is that h?(z) — ¢ - » given by

(3.65) coincides with the effective Symbol of H(z) — ¢ - =z defined by (3.26).

We define v(z) = ¢ - z such that H — v = Hy + & H'. Since P is the rank-one
projection to the eigenspace associated to the eigenvalue ¢, of H,

trag, ((H — v)oPy) = try, (Ho Py) = e = ho.
Before we proceed with the computations for /4, note that
0=0;(Py(Ho—e0)) = 0;P (Hy — eo) + Py 0;(Hy — o)
so that

ter(Mi(}p PQ) - —tI"Hf((MOP)z} Po) == %tl‘q.[f (&PO (HO - 60) 8jP0) == Mz’j .
(3.66)
Regarding h,, note that

(H—v—e)#m=(Hy—eo) Py +e(Hy—eo)m +cHy Py
+e{Hy— e, Py}, + O(?)
=¢c(Hy—eo)m +eHy Po+e{Hy— ey, P},
+ O(£?).

Thus a simple computation using (3.66) results in

tl'q.[f ((ﬂ'#(H—U — 60)#7’(')1 P()) = tI'Hf(P(]Hé P()) +6Tr2n(w0 M) = hl.

3.3 The Classical Hamiltonian System

107



108

Since the scalar symbol h; commutes with any operator-valued symbol and
0; P, is off-diagonal with respect to 1

try, ({h1, Po}y Po) = 0 = try, { o, a } Fo) - (3.67)
In addition
0={Fy(Ho—eo),m}, ={m |Ho—eo| P}, + Po{Ho—eo,m}, (3.68)
as well as
0={m,(Ho—eo) P}, ={m|Ho—eo| P}, +{m,Ho—eo}; Po. (3.69)

Then, the explicit expansion of the triple Moyal product (2.8) combined with
(3.67)-(3.69) yields

(m# (H —v—ey—chy)#m)s
=m (Hyo—eo)m +m {Ho—eo, o}, +{Fo,Ho—eo}; m
+{Fo, Ho—eo}y , o}y +{Fo, Ho — eo}y
+m Hy Py+ Py Hym + { Py, Hy ) Po+ {Po|H | o},
+ Po{H}, P} —him Py —hy Pym = {Py, Po}, + P H} By

By definition we have
{po s HO — 60}1 = Trn(wo M0p> and {HO — €p, Po}l = Trn((wo MOp)*> .

This and a simple computation using the definition of m; as well as (3.66)
leads to

tro, (m# (H —v — ey —ehy) #7)2 Fo)
= try, (H{ Py) — 3 Tron(w” M) Trop (w” Qo) — 2 Tran (W Qo) tray, (Hy Fo)
— g (Tean (W M) + HE ) (Ho — €)™ (Taan (@0 M#)") + HY ) Py)
+ tTHf(<V€0 +&, W VP) (Ho—eo) (W' VR, Veg +§>P0)
+ trpg, ({Tean (W MP), Py }1 Po+ {Po, Ho — eo}, Po)
+tepg, ({Po, Hy 11 Po+ {Po | Hy | Po b Po+ {Hy , Py hh Po)

Using the definition of the generalized Poisson bracket {-, -}, finishes the
proof. O
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What is left in the derivation of the Hamiltonian system is the symplectic
form w®. Similarly to [ST13][Section 5], we define w® := w°® + £ Q° where
W = (_({n 10”> is the canonical symplectic form. Up to the factor i, )¢ is
given as the curvature form of the Berry connection where we replace the
eigenprojection P, by the modified projection P¢ in the derivation of the

Berry connection.

Regarding the modified Berry connection we define the Hilbert bundle
E : R x H; %8 R?" with Py the projection onto the first component and
equipped with a canonical flat connection where for ¢ € I'(E) and X €
[(TR*), (Vx¢)(z) = X7 3;4(z). Then, the symbol H, : R*" — B(H;) can be
seen as a section in the endomorphism bundle of £, i.e. Hy € I'(End(E))
acting on sections ¢ € I'(F). By Proposition 3.2 we associate a rank-one
projection P¢ : R** — B(H;) with an isolated eigenvalue ¢, : R*" — R
of Hy. The projection P¢ can also be seen as P° € I'(End(F)). With this

we can define a sub vector bundle L¢ := {(z,¢)|¢(z) € P(z) H;} of E.
The connection of E then induces a connection on L by projection, i.e.

Vi ¢ := P°Vx ¢ for ¢ € T'(L) C I'(F) and X € I'(TR?*"). For the curvature
form R of the modified Berry connection V¢ the following result holds.

Proposition 3.9 The curvature form R° of the modified Berry connection V* is
3R, dz' A d2, where

R;; = try, (P [0,PF, 0;P7)).

PROOF Let X,Y € I'(TR*") and ¢ € I'(L¢). Then

ViVy ¢ = ViV ¢
=P X" 0;(P°Y? 0;¢) — P°Y? 0;(P°X" 0;9)
=P X'Y! 0,(P°0;¢) + P X" 0;Y7 0;¢
—PY 0, X" 0,9 — PTX"Y7 0;(P° 0:))
= X'Y7[P°0;P° 0;¢ — P° 0;P° 0] + Vix 10 -
Since P¢ is a projection of rank-one and ¢ = P¢ ¢, (2.15) yields

PE [(91-775, 8JPE]¢ = tl"y.[f (7)6 [&PE, @PE])qﬁ
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Additionally using that 9;P¢ is off diagonal with respect to P¢ we obtain

R(X,Y)¢ :=(V5Vy = Vi VX — Vixy))o
=X"Y7 [P 0;P° 0;¢ — P ;P 0;¢)]
=X"Y7 [P 0;P° 0;(P°p) — P° 0;P° 0;(P°9)]
=X"Y? [P°0;P° 0;P° ¢ — P° 0;P° O;P° ¢
+ P O, P P° 9;¢ — P° 0;P° P° 0;¢)
=X"Y7 P [0;P,0,P°] ¢
=X"Y7 try, (P°[0;P%,0;P°]) ¢ .

[]

We then define the symplectic form w* of the Hamiltonian system (h, w®)
as

W =w +e0f

where w' is the standard symplectic form on R?" and Q° a two form with
coefficients
ng'j =—i R; = —iter(Ps [ai’PE, (9]735]) .

Clearly, the fact that P¢ € S%(e, J.(H¢)) (see Proposition 3.2) implies that
P [0;P¢, 0,P¢] is skew-symmetric. Therefore, the coefficients of (2 are sym-
bols in S°(¢,R). What is left is to show that w® actually defines a symplectic
form.

Proposition 3.10 For ¢ small enough the two form w*® defines a symplectic
form on the phase space R*".

PROOF The matrix (2 is skew-symmetric and bounded by definition. Thus
w® is non-degenerate since detw® # 0 for ¢ small enough. In addition a
simple computation shows that w® is closed, see [ST13, Proposition 4] and
replace m, by P=. O

Note that by (3.9) we have
Pe(z) = P(2) + O(e™) = Py(z) + £ Pi(2) + O(e?) .
Therefore, the symplectic form w® has an asymptotic expansion where
Wi =wh +eQ5 =w) +eQf +2Q7 + O(e?) (3.70)

where
Qf = —itry, (P [0; P, 0; 1))
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and
Qilj = —itl";l.[f<P1 [aipo, GJPO]) - itI‘Hf(Po [@'Pl, 8JP0]> - itI'Hf(PO [&PO, 8JP1]) .
Since P, is off-diagonal with respect to P, we obtain

Qilj = —iter<P0 [&;Pl, QJPO]) - itI‘q.Lf(Po [(‘3@-]30, 8]]31])
=—i aiter([Pl ,ajpo] PO) + 18]ter([P1 ,@PO] Po) (3.71)
=2 &jm(trﬂf(Pl 8jP0 P0)> — 28j’5m(ter(P1 &PO P())) .

Hence, we can reformulate §2; as the exterior derivative of the one form S
with coefficients

8j = ity ([P, 0;P0) Po) = 29m(try, (P 0;Fo Fy))
leading to

w® = wo — %8tr7{f(P0 [&-Po,(‘?jPo]) dZi AN de + 82 ds + 0(83) .

In addition to the symplectic form w® we can associate a Fubini-Study
metric ¢° to the phase space R?*" with coefficients

g = tra (P 0P, 0,7

Similarly to ¢, the Fubini-Study metric ¢° has an asymptotic expansion
starting with

95 = try (P [0;P, 0;Po)4) + O(e) =: g§ + O(e). (3.72)
In addition, we define

T = try, (P° 0P 0;P°) = 4(g5, +192,) . (3.73)

The Liouville measure of w® will be very important when we derive semi-
classical approximations for thermodynamic equilibrium states in Section 4.
By Proposition 2.7 we obtain that the Liouville measure of w® is given by

A =17dgt A Adpt = (14X R f) dgt A Adp” (3.74)
k=1
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with

c lot] . _ AN
vi= 3 (=37 TIG™ ag) ™ T (@ ))™ .
aEN’g, j=1
Zf:l iai=k
for 1 < k < n. In particular, applying Corollary 2.8 shows
Ve =1— 3Ty, (w’ Q%)) + 1 Trop (w” Q) — 1 €% Trap (W’ Q° w” )
+ 0O(e?).
(3.75)
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Semiclassical
Approximations for
Stationary States

For an equilibrium state f(H E) in I1"H the expectation value with respect to
an observable A° is given by

tr (T f(H)A") .

One can think of f being a distribution function like a Fermi-Dirac or Boltz-
mann distribution. In this section we develop a formalism to derive semiclas-
sical approximations of such equilibrium expectations. The approximation is
given as phase space integrals over symbols that can be explicitly expressed
in terms of f, the observable A, an isolated eigenband ¢,, the associated
eigenprojection P,, effective Hamiltonian / as well as the reduced resolvent
(Hy — ¢9) ! on ].—A.[EJ_Hf and their derivatives. As already mentioned in the
introduction, even in the special case of a purely semiclassical system it is
not possible to express the second-order terms of an equilibrium expectation
value in terms of a classical system, see (1.4). Hence, this will not be pos-
sible in the general case either. Nevertheless, we will show how to express
the terms obtained from the second order semiclassical approximation by
the e-dependent Hamiltonian system (R?",w*®, h) derived in Section 3.3 plus
quantum corrections of order £2.

We begin with some formal computations that aim to give the reader
an overview over the approach. First, we introduce a tool that is used
throughout this section, the Helffer-Sjostrand formula. For R a self-adjoint
operator acting on the separable Hilbert space ‘H and

feA={feC®R)IF>0: sup ()P ) ()| < 00 Vn € Np}

with almost analytic extension f we have

f(R) = %/RQ O:f(C) (R—¢)'dady, seee.g. [Dav95].
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The Hamiltonian A~ almost commutes with the super-adiabatic projection
I1". Therefore, the resolvent (H ¢ )~ almost commutes with I1° for any
¢ € C\ R. Then, the Hellfer-Sjéstrand formula suggests that f(H 6) almost
commutes with T1". Hence,

by (07 f (A7) A7) sy (10 (A7) 17 AT

For now, assume the existence of an ¢-dependent scalar symbol f¢(¢, z)
whose quantization approximates the action of the equilibrium state f (FI 6)
restricted to the almost-invariant subspace, i.e. Il f (H E) 0 ~1 op. (f9) 1.
Then,

A

try (HE f (I:IE) A f[e) A try (f[s op. (f9) n A f[s) .

In the next step we replace A" by its effective operator ¢° defined in Sec-
tion 3.2. In addition, a simple computation using the fact that I isa
projection yields

I op, (f5) 11" a° =11 op, (f°) da—isﬂsé [opE (f) ,fIE] ac.

Thus,

AE 3

£

Combining the statements above leads to
try (ﬁaf (ﬁ[a) Ag) ~ (2me)™" /R% (tI"Hf(ﬂ') #fe)(z) a(z)dz
—ie(2me) " /R oy (5 [ £, 7]),)(2) a(z) .

Note that the basic strategy displayed above in due to Stiepan and Teufel
[ST13][Theorem 1]. At this point all the statements above can be made
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4.1

rigorous quite easily using the tools we have developed in the previous
chapters. Nevertheless, we will present the proofs in Section 4.2. However,
we only assumed the existence of an effective symbol f¢(z) of the equilibrium
state f (FI 6). This is the main issue remaining in deriving a semiclassical
expansion of expectation values in thermodynamic equilibrium. We explain
our solution for this problem in the following section.

Effective Operators of Stationary States

We derive an effective symbol of a stationary state f(H") restricted to the
almost-invariant subspace, i.e. a symbol f¢ € S°(e, B(H;)) such that

AE

I (A =T op, (f) I + O(™).
By Helffer and Sjostrand’s formula we have
i f(A5) T = ;/RQ 0 F(O) T (A7 = ¢) ' 11 dardy 4.1)

with f being an almost analytic extension of f € A. Hence, the key problem
is to approximate the resolvent (H "¢ )~! restricted to the adiabatic subspace

This approximation divides into a three step procedure. First, we "push’
the adiabatic projection into the resolvent

AE A E

n(a

AE

—

AE AE AE AE

=1 (1

see e.g. [ST13, Theorem 1], or rather [ST13, Appendix Lemma 1]. Although
the above statement was proven already, we give a proof as part of Proposi-
tion 4.3, the main Proposition of this section. The next step is to replace the
full Hamiltonian A~ by the effective Hamiltonian h° defined in Section 3.3.

By (3.64) we have Hﬂglfﬁe —IT' A II || = O(¢*). Additionally, making use
of the fact that for self-adjoint operators R, B and ( € C\ R

O (B Ol (R e (B gy < B R
[(R=¢O) " = (B=¢ l=I(R-¢) " ( ) (B =) HS\%(OP
4.2)
we obtain
T AT -7 =0 (A0 -7 +0()
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The final and most elaborate step is to derive an effective symbol whose Weyl-
quantization approximates (ﬁg A1 —¢ )~ restricted to the almost-invariant
subspace. The main idea here is to derive an operator that approximates
(I'AIE A1 — ¢)~! and is admissible to semiclassical approximations.

Lemma 4.1 Let B be a self-adjoint operator on H with domain D(B) and
II € B(H) an orthogonal projection satisfying I1 D(B) C D(B) and

I, Bl < d

for some d < oo. Then

dQ(N-H)

|[Tm(C) [P+

HH ((MBII-¢)” i( ) g)l)HHg

=0

forany N € Ny and ¢ € C\ R where

G(¢):=(B=07" [B,1] (B-¢)" [B, 1L

PROOF Let( € C\Rand N e Ny. By assumption B is self-adjoint. As a

consequence, |[(B — ()7 < and

Iﬁm(C)l

d2
[Tm(O))?

In addition, IT B1I is self-adjoint on II D(B) @ II+ H which implies

IGOIl <

(4.3)

ITBII—¢)~*| < [3m(¢)|~" and [IIITBII—¢)~ 11| < [Jm()] .
(4.4)

Moreover, ¢ commutes with II so that [B,Il] = [B — (,IIJand [1(B — () Il =
II(II BII — (). Therefore,

A (B—¢)" [B,1]1I
(B—=QI(B-¢) " (B-QIII

=+(B—-¢)"

—(B=() ' I(B=¢)(B-¢) (B - ()M
~(B-=Q ' (B-QU(B-( ' II(B-Q)T
+(B-()'II(B=¢)(B-¢) ' I(B- )
=-—II(B—-¢ 'IIIIBII—¢)+11.
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Since G(¢) = G(¢) I1, we conclude
NMBO—-¢) M =(B-)'"O+TGIM(MBII—-¢) . (4.5)

Repeatedly substituting (4.5) into itself we obtain

MBI - ()M=Y 1 (G(Q)1) (B¢
=0

+11(G() ™)

N+1

(IIBII—¢)'1I.

By G(¢) = G(¢) 11, the above equation turns into

MBI - ()M=Y 1(GQ) (B¢

1=0 (4.6)
+1(a)" T @BI- ).
Applying the estimates (4.3) and (4.4)
N+1 -1 d>N Y
B Q@B -7 | < S 4.7)
Then, combining (4.6) and (4.7) finishes the proof. O

Note that for the special case where N = 1, Lemma 4.1 was previously
shown in [ST13, Appendix, Lemma 1].

In [DS99, Chapter 8] Dimassi and Sjostrand derived a symbol r (e, z) whose
quantization approximates (ﬁs—( )~! to any order in e. Therefore, by applying
Lemma 4.1 to (ﬂ6 AT — ¢)~!it is easy to see that

I-ti
N mmes

|0 (A= ¢) " —op (LG (O # - #G(Q) #0)) |

=0

— O<€2(N+1))

where

G(Q)=r#(hgtm—msth)#r# (h#m—mH#h)#m.

Which is what we are aiming for. The derivation of r(e, z) is a very important
and non-trivial step. In addition, we aim for a special representation of
r(e, z). Hence, we derive r(g, z) in the following Lemma with some slight
variations compared to [DS99, Chapter 8].
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Lemma 4.2 Let £ € R*>" and b(e, z) = by(2) + e by (e, z) where by(z) — € - 2
belongs to S°(R) and b, is a classical symbol in S°(<,R). Then, there exists a
classical symbol r(¢) € S°(, C) for every ¢ € C\ R such that

r(QO#(b =) =1+0(*) and (b—#r(() =1+ 0(e>).

In addition, there exist classical symbols q, j(b) € S°(g,R), | € Ny, 0 < j < 21
such that

Z“’ L ald)
€ b 2l+1
1=0 0

with
a(Q) = (b1 (b — Q) +Zq” —¢Y.

The G, ;(b)s can be expressed explicitly in terms of by, b, and their derivatives
where

Go.0(b) = G10(b) = q1.1(b) = q12(b) = G2,0(b) = G2,3(b) = Go,a(b) = 0,

G (b) = 1 (w’ Vg, VZbow’ Vb ) + O(e) (4.8)
and

G22(b) = § Trap(w” V2o w” Vb)) + O(e)
Hence,

r(Q) =(bo = Q)" —ebi (b — )+ 207 (bo — )
+ 122 (W Vby, V2o w® Vg ) (b — ¢)~*
+ 122 Tran (W’ VZhyw” V2ho) (bo — €)% + O(%)..

PROOF We will mainly follow the procedure developed in [DS99, Chapter
8]. Fix ¢ € C\ R. We make the ansatz

o0

Z 7%1 => r(¢)

= 7>0

Then, ({)#(b — ¢) has an asymptotic expansion given by

HO#0 -0 =3 (X i c},ﬁz@lk{n e 1(0), B )

=: ;él Ci(0)
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Then

(bo — ¢) = qo(C) (4.9)

and

— C}k+z (Ql)k{rl k— 1( )7[;1 }k
=1(¢) (bo — ¢) + r1=1(¢) by

I
+kZ_: k{rlk C}k"‘z glk{rlkl()agl}k

T R
(b — O (b= 0)+ (by — )21 by
I
1 @ik (¢)
' kZ::I @) {(bo — )A=k)+1 vbo = C}k
-1
1 Q—k—1(¢) -~
+Z¥”kh%—<wlmlﬁ}k
for [ > 1. Thus, defining ¢, := 1 and ¢, for [ > 1 recursively by
QI(C) =—aq- 1 1
qi—- k ”
{ b =¢) w o >bo—C}k(bO—g) (4.10)

q ~
{ =k 21(1 0o 51} (bo — ¢)*
k
yields
r(QO# (b —¢) = 1+ 0N
for any N € Ny. In addition, since
821<b0 - C)im =—-m (bO - C)i(erl) azibO

one can easily see that ¢;(¢), [ > 0 can be written in the form

QZ(C):(—bl (bo — C) )+ZQZ] ) (bo — ¢ )

The boundedness of the ¢, ;s and their derivatives is obvious since none of
these terms depends on b, directly but just on its derivatives. It follows that
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r;(¢) are classical symbols in S°(¢, C). A resummation (Lemma 2.1) shows
the existence of r(¢) with

r(Q#(b—¢) =14+ 0(e%).

Note that one can construct rz(¢) with (b — () #rr(¢) = 1 + O(¢*) analo-
gously. By the associativity of the Moyal product it follows that

rr(€) = (r(Q)#(b = Q) #rr(Q) + O(™) = r(Q) # ((b — () #rr(()) + O(™)
=7(0) +0(™).

Regarding the explicit formulas (4.8), note ¢o(¢) = 1 by (4.9) and ¢;(¢) =
—by (by — ¢) by (4.10) and

: (6 i-1(¢ - )
2 (@ q—(o)?jﬂ o (boq—<<>) g )= Q)

1
=il g o} O = gl o} =0,

In addition, a simple computation shows

1 5(6 i-1(C ~ A
p> (2i)F ({ (hoq_(o)m'ﬂ > bo }k + { (boq—C()?il’ hy }k)(bo —¢)

j+k=2
k>1

=+ wy; wp, 03bo Ombo Di3bo (bo — €)
— § Wiy Win, 02,00 Bi3bo (bo — €)* + O(e)

which implies
02(C) = b7 (b = ) + 3 ¥ (w Vo, V2how' Vby ) (by — ()
+ £ &2 Trop (w” V2w’ Vbg) (bg — ¢)* + O(e) .
[]
We now have all the tools needed to derive the effective symbol of f(H").

Proposition 4.3 Let Assumptions 2.10 and 2.11 hold. Moreover, let f € A
and h be the effective hamiltonian as defined in Corollary 3.8. Then, there exist
classical symbols f*¢(h) and f*¥i(r, h) in S°(e, R) such that

[

[F° (") = T) — & op.(f(R)) — £ op.( * (m, ) Ti

= 0(e™).
(4.11)
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The expansion of f*°(h) is given explicitly in terms of f, h and their derivatives
with
Fe(h) = = g5 f""(ho) {w° Vho , V?how' Vo )
+ % f”<h0) TrQn(WO V2h0 W? V2h0) + (’)(5)
= — & Tra (w° V(" (ho) Vo w® Vho))
+ 4 1" (ho) Tran ((w° V2he)?) + O(e)

(4.12)

and the expansion of f24i(h, ) is given explicitly in terms of f, h, = and their
derivatives with

S U (h, ) == 1 f"(ho) lw® Vholl2 + Oe) . (4.13)

PROOF Let( € C\ R and N € Ny. By (3.7) the full Hamiltonian A and
the adiabatic projection 11" almost commute. Hence, applying Lemma 4.1
(with N = 0) yields

T (A -7 = (T AT - )T || = [3m(Q)[P0E™). 414

By (3.64) the effective Hamiltonian operator h approximates the action of
H' restricted to the adiabatic subspace to any order in ¢, i.e.

IMATT 1A T || = 0®E™)
This and the estimate (4.2) imply
(AT - = (AT =T = [3m(Q) 2 0(E™). (4.15)

The symbol of 0 A 1 s operator-valued. Thus, we cannot approx-
imate (f[a A - ¢)~! using Lemma 4.2 directly. We first want to re-
move the projections from this resolvent, followed by an application of
Lemma 4.2which leads us to an effective symbol of (f[s AT —¢ )~!. Since
h is real valued, A is self-adjoint on H with domain D(H ). Moreover, we
have [A° 11 | = [h°,#°] + O(e®) = O(¢). Hence, Lemma 4.1 shows

LN/2]

AE A A AE

(AT =) = (A —¢)° ZG JIT (h° = ¢

= [Im(Q" O™

(4.16)
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where

AE AE

G(¢):=(h" = [A ] (A= ¢t [A7, 1] 1T

Moreover, by Lemma 4.2 there exist classical symbols r(¢) € S°(e,C) and
Gij(h) € S%¢,R) for I € Ny, 0 < j < 2l such that

r(Q#(h =0 =140(*) and (h—Q)#r(()=1+0() (4.17)

and

21
r(¢) =< ¢ ((_ih)l (ho — )" + 3" Gy (ho — C)7(2l+1)+j) . (4.18)

1>0 §=0

where 7, (z) := h(z) — ey(z) — € - z. Then, replacing II" by #° (3.8) and
applying (4.17) yields

. v/ . /2
I ( 2 CHOB =07 = 3 on. (GO #r™M(0)) ) T

where

G(Q) === rM( Q) # L [h,mly # () # L [h 7], #7.

|—times

and G*(¢)%, denotes G*(()# - - - #G°(().

Combining (4.14)-(4.16) and (4.19) yields

e e [N/2] e
0 ((H =)™ = 3 op. (G5O, #r™M(¢)) ) T

=0
= [Im(Q)|" N O(eMH)

(4.20)

Now let f be an almost analytic extension of f with [0z f(¢)| < C |Jm(¢)|V*3
(see e.g. [Mar02, Chapter 2, Exercise 23]). Since H_ is self-adjoint with do-
main D(H “) and ﬁED(FI °) c D(H") we apply the Helffer-Sjéstrand formula
leading to

i =2 [ 0 f(Q " (A - O dedy.
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Then, (4.20) leads to

(o uv/zJ »
|07 (508 =4 [ 0cf(©op (3 G0 #r(0)) dray)
- |2 /R L0 f(Q " (= ¢
IN/2] ¥
=3 o (G0 #1(0) )1 oy a21)
s%/l@f ) [ (" - o)
/2] ¥
= > op. (GO #r™M(Q) ) T
=0
— O(€N+1) )
By Taylor’s formula
N
f(h) f ho + €h1 le‘ 6h1 ! ddzllf(ho) + O(€N+1) .
=0
Then, the fact that
o) =L [ 000 F(C) (ho = ) dudy (4.22)

for any m € Ny (see e.g. [Mar02, Chapter 2, Exercise 24]) and integration
by parts leads to

(i)' L [ ODLF(C) (ho — )t drdy + O™

N
=1 /R2 O:f(Q) (=) (ho — )~V dwdy + O(eN ) (4.23)

N
F”%%=1Aﬁﬂ025 G5 (h) (ho — Q)" dady  (4.24)

and
. /2] o
Foas M (h ) = — 52 3 / O:f(QO) GO #r™M(Q)dzdy.  (4.25)

=1
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Combining (4.23)- (4.25), (4.21) and (4.18) leads to

H T (f(H) = op. (fN(h) + & =M (h) + & PN (h,m)) ) T
Lv/2]

(7)1 [ aef@on.(+ 2 6@ #r™(0) )

= 0.

(4.26)

Note, for any o € N3"
10975(C)| = O(|Fm(¢)|~Zr+1HaD).

Thus, the corrections to the equilibrium density f5>)(h) and F24()(h, 1)
are classical symbols in S°(e,R) and S°(e, J (H;)), respectively. In addition,
it is easy to see that F*¥%(N)(} 1) takes value in the self-adjoint operators
on H;. By a resummation there exist classical symbols f*(h) € S°(e,R) and
Fadi(h, ) € S%e, Jea(Hy)) such that

F(h) = f(h)
and
Fodi(p, ) < Fadi(oo)(p gy
Then, (4.26) yields

AE

I (F(H) = op. (f(h) + 2 <(h) + €* F(h,m)) ) 1T

= 0N .

By Proposition 3.7 the scalar symbol f2di(h, 7) € S°(e,R) of F2di(h, ) defined
by (3.26) satisfies

AE . . AE

1" (op. (F*¥(h, 7)) = op, (f*(h,m)) ) 11

=0(™).

Clearly, f24i(h, ) is a classical symbol by the definition of effective symbols
and since F®di(h, ) is a classical symbol. This completes the proof of (4.11).

What is left is to proof that the coefficients in the asymptotic expansions of
f5¢(h) and f2d(h, ) can be expressed explicitly in terms of f, h, = and their
derivatives where the expansions start with (4.12) and (4.13), respectively.
We start by reformulating f5=(")(h).
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An integration by parts and (4.22) yield

N
fsc’(N)(h) :Zg B | G (b / aCan ]f (€) (ho — O_l dr dy
=0

(
_1)2l-j
1) 505 255 £ ).

p— ] !
Then, replacing the ¢, ;(h)s by their explicit formulas (4.8) yields

fsc(h) = — i ”/(h()) <w0 Vho s V2h0 wo Vho)
+ % I (ho) Tron (W V2how? V2he) + O(e) .

Regarding f*V(h), note 8.,(ho — ()" = —1 (ho — )~V 0., ho. Therefore,

it is easy to see that the expansion of

IN/2) |
e Y (G #r#r ()
=1

can be reformulated as a polynomial in (hg — ¢)~' with coefficients in
SO, Jea(Hs)), i.e. there exist m; € N for [ = 0,..., N — 2 and symbols
aj(m h) € 8%, Jwu(Hs)) for l = 0,...,N —2and j = 0,...,m; depending
on 7 and h as well as their derivatives up to order N such that

LN/2]

g2 Z )y #m#r™(C) Z ich (m,h) (hg — ¢)~UtD 4 OV
Jj=

An integration by parts together with (4.22) yields

N-2 my |
g %/ ¢) cij(m, k) (ho — €)Y dedy
1= j=0
N—-2 l my 1 - 1
-X- ];W/R 0:0LF(C) etz (m, h) (ho — )~  da dy
N-2 l moq
=€) =0 f(ho)cy(m, h)
=0 j=0J"

Hence,

N-2 my 1
FadN(p 1) = Zelzﬁ  f(ho) cij(m, h) + O(eN 1.
=0 7=0
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In addition, by using the definition of effective symbols (3.26) it is easy to see
that the coefficients in the expansion of f24i(h, ) can be expressed explicitly
in terms of f, h, m. Moreover,

N/2|

e :Z_:l GOy #r#r ™) = =(ho = O {h, P} {h, P} P+ O(e)
for N > 2. This implies my = 2, ¢y = cp1 = 0 and
cop =1{h,P} {Fy,h} F
leading to
Fr(h,m) =~ f"(ho) {ho, P} {ho, Po} Py + O(e)

Thus, by definition of the effective symbols (3.26) the expansion of f2di(h, )
starts with

i 1 "
A, m) = =5 "(ho) trae({ho, Po} {ho, Po} Po) + O(e).
Finally, a simple computation shows

tI"Hf({ho,Po} {ho,Po} P()) = % <w0 Vh(), gwo Vh()) =1 |(,d0 Vh()”i

2

which completes the proof. O

Expectation Values for Stationary States

With all the preparatory work done in the previous sections we are now at
the point to prove one of the main theorems on this thesis, the semiclassical
approximation of quantum mechanical expectation values of thermodynamic
equilibrium state

(T f(H)AT).

The expectation value of the classical thermodynamic system with e-dependent
classical Hamiltonian system (R?",w?, ) defined in Section 3.3, classical e-
dependent observable a(e, z) given as the effective symbol of A(e, z) and

density f(h) is given by the phase space integral

/]R2” f(h(e,2))a(e, 2) A°
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where )¢ is the Liouville measure associated to w®. We will show that, up
to quantum corrections of order £, the semiclassical approximations up to

errors of order £* can be represented as the classical expectation value above.

Theorem 4.4 Let Assumption 2.10 and 2.11 hold. In addition, assume f € A
and A € S*(e, Bs.(Hy)) Then
tey, (f(H°) A7) =(2me) / g0, (m) # f2 (R, ) a™) dz
RZ'n

—ie(me) ™ [t (m it () w] ) a) ds
+ O<€fn+N+l HAHil)
(4.27)

for every N € Ny. Here a € S*(¢,R) is the effective symbol of A(e, z) with
asymptotic expansion a < .32, a;(e, z) defined by (3.26). The effective symbol
of the stationary state f(H E) is

fe(h, ) = f(h) + &> £°(h) + &% f*4i(h, 7 (4.28)

with f5¢(h) and f24(rx, h) given by (4.12) and (4.13), respectively. The effective
Hamiltonian h(e, z) is defined in Corollary 3.8.

Moreover; if A(e, z) is a classical symbol. Then, a; is a classical symbol for
every j € Ny with asymptotic expansion

Oo .
=) cla;
=0
and

try ( FH)A H)

- (2%5)_"(/RM fe(h, 7T) DN 4 g2 / Q(ho, 90) dz> (4.29)
+ 07 (1415 + 3 (140 + 10404 - 4D 5)

where \° is the Liouville measure (3.74) associated to the Hamiltonian system
(R?",w?, h). The effective symbol of the observable is

2—

2
Z €Z ajﬂ- s

7=01

<.

I§
o
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and the quantum correction

Q(ho, go) = & Tran (W’ V(f'(ho) gow” V) ). (4.30)
PROOF Fix N € Ny. By (2.14) we have that try (A 117) = O(="|| A]5.).
For B € B(H) this implies
iy (BATIL) = O™ || B| |A]l5,) - (4.31)
By Theorem 3.6

—

try (a(N)€ﬂ€> = (9(5_”HAH‘21>

and
try ((1215 — o) 5) f[s) = O(€N+l’”|\A|]€Ll> :
Hence,
try (Ba™ 1) = O | B] || A]5:) (4.32)
and
try (B (A" = a®7)IT°) = O (N1 || B A5, (4.33)

for any B € B(H).

By (3.7) the resolvent (H~ — ¢)~* almost commutes with the adiabatic
projection 1" for any ¢ € C\ R. In addition, since H is self-adjoint on H
with domain D(FI 6) the Helffer-Sjostrand formula (4.1) together with (4.31)
and the cyclicity of the trace imply

A

oy (FOH) AT ) = togy (T f(AN)TTAT) + O(N 1 Al5) . (4.34)

By Proposition 4.3 there exist classical symbols f*(h) and f*di(r, h) in
SY(e, R) such that

|17 (0347 1) — op. (£(h) = & () = & (1)) ) 117 = O™
Combining this with (4.31) yields
tr ﬁgf OO A ) =t f[aopé. fe(h,m A1
w (I F(H) ) = try, (T op.(f*(h, 7)) ) 435)

+O(NA]5).
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where f¢(h, 7r) = f(h) + 2 f<(h) +¢ fadl(w h). By (4.33) replacing the
observable A by is effective operator a™” yields

~ —

try (ﬁsopg( fe(h,m)) I A fIE) =try (fIEopE( fe(h,m)) I o) ) ﬁ5>

+O(N TS| Adl|) -
=0
(4.36)

. . . ~E . . .
A simple computation using that I1 is a projection leads to

AE /\E /\E)

try (ﬁaOps(fE(h,ﬂ'))H a™) 11
= try (ﬁaopa( fe(h,m)) a™) E) (4.37)
—ietry (f[gé {Opa(fe(h,ﬂ') ) ,ﬁs} anV)a) :

Combining (3.10) with (4.32) we obtain

try (ﬁaopa(fs(h, 7)) a™) 6) —ietry (ﬁaé [Opg(fs(h,ﬂ') ) ,ﬁa} a™) E)
= try (ﬁaopa(fe(h, 7)) a®™) E) —ietry (ﬁg Llop.( f(h,m)), 7] a®™ 5)
+O(N | A5).
(4.38)

Then, the trace formula (2.13) implies

try <7r op.( f* (h,w))a(N) ) —ietry (f[ Llop.(fo(h,m)),7°] a(N)E)
(2me) ”/Rzn (trH E 7r))( z)a™M (e, 2) dz
—ie(2me)” ”/ tryy, 7?# (h,ﬂ'),7T]#>(€,Z)G(N)(E,Z)d2.
(4.39)

Finally, (4.34)-(4.39) shows (4.27).

What is left is to proof (4.29). So, let A € S*(¢, B..(H;)) be a classical
symbol.

We begin by proving that the Liouville measure \° given by (3.74) satisfies

2 = (try, (m) + O(E*))dgy A -+ - Adp, . (4.40)

Since F, takes value in the rank-one projections and P, is off-diagonal with
respect to P, (see Equation 3.18) we have

tI‘Hf(ﬂ') =1+ Etl"yf(ﬁ'(]) + 82 ter(PQ) + 82 ter(ﬁl) + 0(53) . (441)
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By the fact that
tI‘Hf(POL [ajpo, azpo]) = tI‘Hf(PO [(‘ZPO, 8JP0])

and
tl"’Hf(ngj P()) == —ltI'Hf([@ZPO y ajP()] P(]) == Q()J‘j .

we get

trag, (o) = — 3 trag, (Po Tran (W0 Q) + 1 trag, (Py- Trop (w” QFF))

(4.42)
= — % Trzn(wo Qo) .

By definition, (1}, is diagonal with respect to F, (3.14) and

try (Q7; Po) = =ity ([0:Py,0;Ry] Po) —itry ([0iPy,0;PL] Po) = Q-
Thus, (3.15) and (3.16) yield
trg, (1) = — £ Tron (W® Q1) + £ Tron(w® Q)* — & Tran (W’ Qo w’ Q). (4.43)
By the cyclicity of the trace
try, (P2) = —try, (Py PL Py Py Py) —trog, (P PL Py PLPy) =0, (4.44)

Combining (4.41)-(4.44) we conclude

tryg, (1) = 1 — 3 € Trop (W0 Q) + £ €% Trap (w” Q) — 122 Tryp, (w” 7 OF)
+ O(e%)

which shows (4.40).

Combining estimate (3.59) and the trace formula (2.13) we obtain

L. o) £, m) o dz
—ie /R% try, (m# L[ f(h, ) ;T 4) a® dz
= [ () # £ () @ dz (4.45)
—ie /R?n tryg (m# L[ f(h, ) () a?dz

2
+O(NT A5 + 3 eI (A — AD)5,)

=0
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In what follows we will repeatedly use that by (3.57) and (2.13)

2
| /R trw (R)a® dz| = O(|IR]5, ;HAiHLl)

for any R € S, J(H;)).

Clearly, f¢(h,7) = f(h) + O(£?) and 9, try, (Py) = 0. Thus,

oy, (1) # f*(h, ) '™ = trgg () f2(h, ) '™ + €% {try (m0), f(R)}, a®
+ O(g%)

Since P, is off-diagonal with respect to I3 and (4.42) we have
trpg (m1) = tryy (o) = 2try, (Pom) -
Therefore, Lemma A.11 leads to
Lo ) # £ m) @@ dz
= [ £ () @ oy () dz + 26° /]R ey (Pom) {£(h) ,a® }1 dz
LOE S ).
- (4.46)
By f(h,7) = f(h) + O(c*) we have
try (m# L[ fo(h,m) w],) = trp (w# L [ f(R),7w],) + O(). (4.47)
Since f(h) is scalar and 0, F is off-diagonal with respect to P, we conclude

try, (m# L[ f(h),7]y) :215ter(7T1 {f(h),. Po}y) + Po{f(h),m}
+{Py. {f(h), Po},}, ) + O()

By Lemma A.11 and the product rule

Jo (PO AT () i) 8z = = [t (m {7(h), Po})a® dz
R2n R2n

(4.48)
- /Rz" try (Pomi) {f(h),a® }1 dz
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By (4.46) - (4.48) we get

/R% trgg, (1) # f°(h, ) @ dz—let/2 tr%f@#é[fs(h,w),w]#)a@) &
fo(h, ) @ tryg, () dz + 22 /Rzn tra, ({Po, {f(h), Po},},) a® dz

2
e > || Aill) -
1=0

R2n

(4.49)

Then, combining (4.45), (4.49) and the fact that f(h(z)) = f(ho) + O(e)
with (4.27) we obtain

try (F(H)AIT)
= (2me)~ "/ fE(h,m) @@ try, (7) dz

4262 (2me)” / try, ({Po {f(ho) . Po}, },) @

O (1415 + 3 (A + 175504 - A9)5,)))
=0
Replacing try, (7) dz by A° (4.40) and a simple computation yields

o (P { (o), ok ) = = 5 0s(tr30 (0,0 1) f (o) iy Oy )
= 160 0(f'(ho) go i iy D, ho)
= 2 Tra, (w° V(f'(ho) gow’ Vo))

finishes the proof. O

REMARK 4.5 It is easy to validate that in the special case of particles subject
to a potential the quantum correction f°(h) (4.30) coincides with the correc-
tions derived by Wigner (see Equation 1.4). In addition, one can conclude
from a comparison of those two results that the e-dependent Hamiltonian
system incorporates many of the terms emerging from the adiabatic approx-
imation. But there are additional quantum corrections appearing, namely
Q(h, ) (4.30) and f24i(h,r) (4.13). The correction &2 (f*(h) + f24i(h,m))
can be interpreted as quantum correction to the density f(h). The term
Q(h, ) does not allow such an interpretation and is thus simply considered
as a quantum correction to the expectation value.

If we assume the Liouville measure \° to satisfy

A = (tryg () + O(e™)) dz, (4.50)
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then we can also express the higher order semiclassical approximations
(4.27) as classical expectation with respect to the Hamiltonian system (h, w®)
and corrected density f¢(h, ) plus quantum correction Q°(h, ), i.e.

try (f(ﬁa) 1218 ﬂf) :<27T€)_n(/Rzn f5<h77-(-) CL(N) A\ /Rzn Qs(h,ﬂ') a(N) dZ)
+O(e A1)

Nevertheless, at this point it is not clear whether (4.50) holds.

4.2 Expectation Values for Stationary States
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An Egorov Type
Theorem

The goal of this chapter is to approximate expectation values of non-stationary
states p(t) = e~ t/< p, eifl /¢ with initial state p, satisfying p = 11 po 11, i.e.

~E

tra(p(t) A).

Here, A” is an observable given as Weyl quantization of an operator-valued
symbol taking values in the self-adjoint operators acting on #;. Then py =
11 poll” and consequently

~E

try(p(t) A7) = trgy (e HEIT pg I 1112 A7)

AE AE

= try(po 1l el t/e % o=iflt/e f[s) =: try(po 1 As(t) ).

It is known that in the case where the symbol of the observable A" is a scalar
multiple of the identity on #; one can approximate the quantum evolution
Aa(t) restricted to the almost-invariant subspace up to errors of order &2
by evolving the symbol A(z) by an e-dependent classical flow ®! | see e.g.
[ST13, Theorem 2]. This is known as Egorov’s theorem. As we have seen in
the introduction already, even in the case of a purely semiclassical system
there is no classical system whose flow approximates the quantum evolution
up to errors of order . But, there are quantum corrections to the classically
evolved observable that lead to an approximation of the quantum evolution
up to errors of order €3, see (1.1). In Section 5.1 we prove that even in the
case of Hamiltonian and observable having operator-valued symbols a similar
result as (1.1) holds, when restricting the initial state p, to the super-adiabatic
subspace 11 7. We show that, up to explicitly given quantum corrections, the
classical evolution according to the e-dependent classical system (R?", w*®, h)
(see Section 3.3) approximates the quantum evolution to errors of order
3. Moreover, we show how to derive semiclassical approximations for the
quantum evolution restricted to the super-adiabatic subspace up to arbitrary
order in ¢.

In [LR10] Lasser and Roblitz developed a numerical scheme to approxi-
mate quantum mechanical expectation values (¢;, a° ¢;) for particles subject
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to a potential up to errors of order 2. This approach was extended in
[GL14] to approximations up to errors of order three in . In Section 5.2
we explain how one can use the results of Section 5.1 to generalize this
numerical scheme to Hamiltonians # and observables A~ with operator
values symbols.

The Corrections to Egorov’s Theorem

One of the crucial steps in deriving semiclassical approximation for the
quantum evolution of observables is the semiclassical approximation of the
commutator {FI ° &5] restricted to the super-adiabatic subspace.

Proposition 5.1 Let Assumptions 2.10 and 2.11 hold and a a scalar symbol
in S°¢e,R). Then, with h the effective Hamiltonian given by Corollary 3.8
the Hamiltonian vector field X;** = —(w®),; Osh is a symbol in S°(e, R*"). In
addition, for any N € N, there exists a linear map A" : 5°(¢,R) — S°(¢, R)
satisfying that there is a r € N such that

AE . AE

(L[ A°,6° | = op.(X - Va) — e op (25" (a)) T

1
€

N+1
= 0= al5,) -
(5.1)
Moreover, there exists a constant C,. < oo and a 7 € Ny for every r € Ny such
that

12N (@) [15, < Cr [lalls ;- (5.2)

Furthermore, there is a r € Ny such that
A" (a) = 2i{ho, a}y — 5 tra({{ho, R} . {a, Po}}) + Ol lal5,).  (5.3)

PROOF We start our proof by reformulating (w®)~! for e small enough by
use of a Neumann series. We get

(@) = + 07 = (@) (1L (—e 0 ()71

=)l — (W)t = —woioej(ﬂs w®) . (>.4)

Therefore, the fact that ©f;, 0 <4, j < 2n and Jsh are a symbols in S°(¢, R)

(see Section 3.3) implies that X;** is a symbol in S°(e, R?*"). To show (5.1) we
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start by replacing the Hamiltonian by its effective Operator (see Corollary 3.8)
and obtain

Agé [[:Ig’d ] ﬁs
=M L[ AT I 6710 | 1T + O(e™ |l°])) (5.5)
=M L[ AT I s 1T | 1T + O™ |a7])).

where in the first equation we used that the Hamiltonian H * almost com-
mutes with the adiabatic projection 11" (see Proposition 3.2). Since I isa
projection

e ne. ne Dﬁg (5.6)

An application of Proposition 3.2 to replace n by 7° and the definition of
the Moyal product yield

] —ie [4R° A9 e 7] )1+ o af])

L) oE ).
5.7)

I
=
o
C:O
VRS >
-
\'@
o
|
o
o e
-~
3
*
N
3
£

Here, we use the notation of the Moyal commutator [ A , 7 | y =h#T—mH#h
As scalar symbols, a and h commute with any operator-valued symbol. We
define B;l’a(é‘) € S%e,R) and Bj"(¢), B;l’”(g) € S%e, J(Hy)) for j € Ny by

o0

bl 42 55921 (0 ey = 30 B
7=0
Ha,n] 252J21{a (E)}oj1 = Zgj B (e (5.8)
and
Llh,m] 262321 {h(e) 7€) }gjn =0 D€’ B (e).
7=0

where we used the expansion of the Moyal product (2.4) and the identity
(2.7) to obtain the above asymptotic expansions.

5.1 The Corrections to Egorov’s Theorem
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Again using (2.4) yields

h,aly—ie [Llhorly  Haorla],

=32 (Bl -1e ¥ ({Blre). B}, - (B2 Bl @), )
jal=j
=: igj BJH’Q(@'

(5.9)

Now fix N € Ny. Combining the continuity of the Moyal product (2.3), the
continuity of the Moyal remainder (2.6), the fact that 9;h € S°(¢,R),1 <
j < 2n and the previous result (5.9) there is a constant C' > 0 and a 7 € N
for every r € N such that

N
Hhaly —ie [Hhorly taml] = < B <O ol
]:

Hence, applying Calderon-Vaillancourt’s Theorem (2.2) there is a r, € Nj
such that

A AE

1 op, (Y h,aly —ic [L[h, 7], ,g[a,w]#}#)n

5.10
— 11 ops(iv:ej B (o)) 1T + O (N allg,,) - 510
j=0

Following Section 3.2, there exists a linear map bﬁf? 0 8%, R) — S%¢, R)
which maps a € S°(e, R) to the Nth order effective symbol of Y-Y &/ B{"*(e).
Hence, it follows from Theorem 3.6 that there is a constant C' > 0 and a
7 € Ny for every r € Ny such that

N
|74 (3o B (e) = b (a(e))) #m ||, < ¥ alls,.
i=0 ’
As above, the Calderon-Vaillancourt Theorem (2.2) yields

n° Ops(%a?j B (e)) 1T =11 op, (b (a(e))) T + O(N a5, )
j=0

(5.11)

for a r, € Ny large enough.
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Combining (5.5)-(5.7) with (5.10) and (5.11) there is a 3 € Nj such that

= 1T op, (b, (a(e)) " + O(N* lall5,,) . (5.12)

In the next step we compute bg{? (a(e)) up to the contributions of second
order in e. For this, let N > 2. By (5.8) and the definition of B#* (5.9) we
have

Bi'(e) = 2i {h(e) ,ale)}, = {h(e) a(e)} = («* Vh, Va)
Bi"(e) = —ie [{h(e),m(e)} , {ale) ,m(e)}]

and
B;"(e) = 2i {h(e) ,ale)}; —ie { {h(e) ()} {ale) ()} |
+ie{{a(e),7(2)} . {h(e) ()} },.

1

Hence, Lemma B.3 and B.4 imply that the expansion of the effective symbol
bg)(a(g)) starts with
b (a(e)) = (W Vh(z), Va(e)) +2ie® {h(e) ,a(e)},
+e (W W Vh(e), Va(e)) + & (w° (2 w")? Vh(e), Val(e))
— gt ({{(e) . o} . {a(e) . Po}}) + O(° [lallg,,)

for some r, € Nj large enough. Comparing the above result with the
Neumann series (5.4) shows

b (a(e)) = (—(w) " Vh(e), Vale)) +2i2” {h(e) ,a(e)},
— 1 try, ({{R(e), Ro} ,{a(e), Po}}) + O(”)

(5.13)
—Xi - Va(e) + 212 {h(e) ,a(e)},
— 52ty ({{n(e) , Po} {ale) , Ro}}) + O’ |lallg,,,)
Then (5.1) follows by combining (5.12) and (5.13) and defining
A (a(e)) = e—2<bg{i>(a(e)) _X:. Va(a)) . (5.14)

In addition, by (3.27) and the continuity of the Moyal product there is a
constant C' > 0 and a 7 € N, for every r € N, such that

N ~ £
1650 (a(e))]|o.r < C llall5

5.1 The Corrections to Egorov’s Theorem
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and thus
125 % (a(e) o < C lalls -

for a constant C > C. To finish the proof, notice that (5.3) follows by
combining (5.13) and (5.14). O

Notice that extending the proposition above to observables with operator-
valued symbols is fairly simple. Nevertheless, as we will see in the proof of
Theorem 5.2 that this generalization is unnecessary to derive semiclassical
approximations of the quantum evolution of observables with operator-
valued symbols.

Theorem 5.2 Let Assumptions 2.10 and 2.11 hold. In addition, assume A €
SY(e, Beu(Hy)) with effective Operator a° € S°(e,R). Then, the Hamiltonian
flow ®! of (R*",w*, h) exists globally. Moreover, for any N € Ny and t € R
there exists a constant C > 0 and a r € Ny such that

N+3
< CMHAlG, D It

J=0

(5.15)

1" (A%(t) — op. (a™(@L) + 2 AN(1)) ) IT°

where
A (1) = oM 41

and AN (t) = ZJL%QJ 2 A% (t) with A (t) € S°(e, R) inductively given by
t N
W (1) = [ A (@(@D) 0@t dr
) b
and
t
A1) = [ A,y () e @l Tdr forj= 1.

with Q[Zg(a)(z) defined by (5.14). Moreover, there exists a r € Ny such that

t
A2(¢) :21/0 {ho , ag(®7)}, 0 L7 d7

t
=3 [ o B {ao(@). R} o 9 dr + O(e A5, 1)
(5.16)

PrROOF Fix N € Ny. By Proposition 5.1 the Hamiltonian vector field X} is a
classical symbol in S°(e, R?*"). This implies that the Hamiltonian flow ®! of
(h,w?) exists globally and ®! € S°(¢, R*") for ¢ fixed. By (3.27) there exists a
constant C' > 0 and a 7 € N, for every r € Ny and ¢ € R such that

la™ (@15, < CIAIIG -
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Moreover, by (5.2) we have for every r € Ny and ¢ € R that

126" (¢) |10r</ 12653 (a™(@)) 0 97 |5, dr
< CaftH 1™ (@55, < C [t 1 All5 5

for large enough C' > C, > 0 and 7,7, € Ny. From the definition of A" (t)
and the results above it is easy to see that there is a constant C' > 0 and a
7 € Ny for every r € Ny and ¢ € R such that
. B N+1
|a™ @) +aV @) | <Al D1 (5.17)
b ‘7:0
Defining
a (t) = a™ (D) + 2 AN (1)

it directly follows that ™ (t) € S°(e, R) for fixed ¢. In addition, a¥ (¢) depends
smoothly on ¢ and is uniformly bounded on bounded time intervals. By
Calderon-Vaillancourt’s theorem (2.2) and Corollary 3.4

{17 102 A7 A T = G A e 4 O AN g )
(5.18)

By (2.2) and the estimate (3.38) there exists a r; € Ny such that

1H t/e n AT e—iﬁet/e _ eiﬁft/a 0 op. (a(N)> n e—iHEt/e + O(6N+1 ||A||8,r1) ‘

(5.19)

Moreover, combining (2.2), Corollary 3.4 and the estimate (3.27) there is a
ro € Ny such that

1H e o ( (N )) 0 efiI:IEt/s

R e e (5.20)
=17 op, (a™) e VL + O || A5, [£])

5.1 The Corrections to Egorov’s Theorem
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By a standard Duhamel argument and the fact that o’V (0) = a

H < id%t/e op. ( (N)) efiHEt/s — op, (CZN(t))) ﬁe
= /O A1]° e/ op, (aN(t — S)) e/ 1T ds
:Ateiﬁgs/eﬁsé ];\[E,OPE( t—g)} —1ﬁss/5
_ le/z-:H Opa(d N(t—S) )ﬁa

)
+O(== sup [lon, (o) |)

s€[0,t]

—iH s/e ds

where we applied Corollary 3.4 at the last equality. In addition, applying

Calderon-Vaillancourt’s theorem (2.2) and the estimate (5.17) to the previous
result we get that there is a r3 € Nj such that

:/0 ol s/ i {He,opg(aN(t—s))

I efif{ s/e
_ eiﬁas/e ﬁs op. (%(IN(t _ S)) ﬁs e—iﬁss/e ds (5.21)
N+3 '
+O0(= A5, Y ItF).
j=2

Now, note that &4 (®!) = X - Va™)(®!) as well as

d t
N _ N (N) dT (I)t_T
200 = 3 [ 4@ @) et ar
t
=AY (@M (@) + X5V [ 245N (@ (@1)) 0 817 dr
R
= A5 2 h(a™ (@) + X - VA (1)

and similarly

d c .
5(0) = ALY (A ) (1) + X - VAR(D).
Hence,
d €
70" (0 =Xi - V(@) + &2 (V@)

LIv/2]

(5.22)
+ Z 2000 (X7 - VA (1) + 224N (A(1)))
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At the same time, by Proposition 5.1 we have that

f[aé [}AIE , 0D, (aN(t)) } 1
= 11 op. (X7 - Va™(@)) + £ 2 (o) (21))
N/2] (5.23)

AE

I

Y PO (NG VAt + & 912’5(%?@»)) 1
=0

+OE  dD)5,,)

for some r3 € Ny large enough. Combining (5.22), (5.23) and the estimate
(5.17) there exists a r, € Ny such that

/ot S (L[ op. (a¥(t - 9)) ] —op. (a0 - ) )1 e ds
N+2

= O(M AL, X 1)

=1

(5.24)

Finally, combining (5.18)- (5.21) and (5.24) shows (5.15).
What is left is to show (5.16). By (5.3) one can easily see that

t
W(t) =2i [ {ho,a®(@)} 0@t dr
0

3 [Cnel{{he, P} {a®(@7), P} o 8 dr -+ O(< ] 4I5,)

for r € Ny large enough. Then, applying (3.27) to the above equation finishes
the proof. N

REMARK 5.3 Comparing the result of Theorem 5.2 to the result for semi-
classical systems (1.1) one can see that including the second order in ¢ the
e-dependent Hamiltonian system incorporates most additional terms of the
semiclassical expansion. But there appears an additional quantum correction
that one has to take into account, namely

_% /Ot tra, ({{ho, Po} ,{ao(®L), Po}}) o @7 dr.

We expect that for higher orders the s-dependent Hamiltonian system in-
corporates parts of the semiclassical expansion. In more detail, we expect
that parts of bg)(a(g)) are canceled by subtracting X} - Va(e) and thus no
additional error is produced defining QIZZEV (a(e)) by (5.14). But this is not
clear at this point.

5.1 The Corrections to Egorov’s Theorem
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To end this section we show how to apply our results to approximate the
dynamics of quantum mechanical expectation values using Wigner functions.
The expectation value of an observable A°, A € 5°(¢, B(H;)) with respect to
a wave function ¢ € 11 # = I L2(R", Hy) is given by

~E ~E

(0, A" )y =t (p” A).

For ¢ € H the corresponding Wigner transform W : R** — B(H;) is defined
by
W¥(q,p) = ey | e""P(q— 52) @ (q + 5x) da.
@ o

A well known result for Wigner transforms is that the quantum expectation
value with respect to a state 5* and an observable A" can be expressed as

A

tra(p¥ A7) = /R trg (W A)(2) dz. (5.25)

Corollary 5.4 Let the assumptions of Theorem 5.2 hold and assume the ini-
tial wave function vy to satisfy ¢, € I1"H. Then, the quantum mechanical
expectation value at time t > O with respect to the observable A satisfies

try (p¥ A7) = /R e (W)(2) (a(®L) + 26N (1)) (2) dz + OV

where 1, := e~ H /e 4y

PROOF By assumption, p¥* = e~if /= o oifl t/= and 4, = I1° ¢)y. Therefore,
try (5% A7) =ty (e VT po T 2 AT) = trg(pe T A" (1) 1)

Then, Theorem 5.2 yields

A A

tryg (PP T A°(2) IT)
try (570 117 0p6< ®!) +e22AV(H)) ) + 0N )
—tTH(P Opa< )+ 2 AN (¢t ))) O
= ter(W%)(z)( (@) + 2 AN(1))(2) dz + O )

R2n

where in the last equality we applied (5.25) and used that a(®!) + &2 AV (¢)
is scalar. O
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5.2 How to get from Egorov’s Theorem to a
Numerical Scheme

In this section we explain a general scheme to derive numerical approxi-
mation schemes for the time evolution of quantum mechanical expectation
values try (p** A”) with initial wave function 1, € II . Hereto, we adopt the
general scheme for the case of semiclassical operators developed in [LR10]
that was extended to higher order approximations in [GL14]. The main idea
is the following. By Corollary 5.4 we have

(5 A7) = [ i (W0)(2) (al@h) + 22 2V (1)) (2) dz + O(=Y1)

Splitting the scalar Wigner function try, (W¥0)(z) into its positive and nega-
tive part try, (W%)(z) = w{°(z) — w?"(z) and sampling w%°(z) and w*°(z) by
sufficiently many phase space points 27", .. ., z3; € R?" the expectation values
try(p¥ A”) are approximated by

~ > (al0h) + £ 2YW) ) - v 3 (a(@0) +e* 2% (1)) ()
— 1 (a(@L) + 2 AV (1))

[N/2]
= M(a(®)) + 3 SOV IM(RA5(1)

(5.26)

where we used Corollary 5.4 in the first equality. Then, approximating the
classical flow ®!(z) by ¥'(z) and 4/ (t, z) by W4,(2) for j = 0,..., | N/2]

Lv/2)
try(p¥t A7) =~ IM )+ Z 20D PM(RE Y (5.27)

Treating each summand in (5.27) independently has a big impact in the
computational effort of the numerical scheme. Here, the prefactor ¢/ allows
the descretization of the more complex higher order terms to be rather
coarsely with the same overall accuracy. The computational work in the
above procedure lies in the sampling of the scalar Wigner functions and
the approximation of the classical flow ®(z) as well as of 2J’(t, z) for each
sampling point. In what follows we will focus on the latter where we

5.2 How to get from Egorov’s Theorem to a Numerical 145
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will show a procedure with which one can derive systems of initial value
problems whose respective flows give the corrections 2 (¢) for any N € N
and j = 0,...,|N/2|. Note that this is a generalization of [GL14] where
quite similar IVPs for the second order correction in the special case of a
scalar Hamiltonian h(z) were derived.

To derive the IVPs we take the following steps. For fixed N € N, we
reformulate the corrections 2 (¢) leading to

IN/2] N
Yo U AR (L 2) =Y &l Y Tyk(t, 2, D™ a0 BL(2)) (5.28)
=0 =0 k=0
where .
"Lj,k times

——
Fm(t,z):Rde'”XQd—)R

are explicitly defined linear mappings from the space of m;,-tensors to
the real numbers that are independent of a. Then we derive a first order
system of initial value problems for the components of I'V*(¢, z) such that the
vectorization of this system can be written as

9 - . .

Ef(t, 2) = N(t,z)T'(t, z) + b(t, 2), I'0,2) =0

where the components of the Matrix N (¢, z) and the vector b(t, z) are given
explicitly in terms of the classical Hamiltonian &, the symbol of the adiabatic
projection 7 as well as their derivatives, evaluated along the classical flow
oL,

We start by bringing the corrections into the form (5.28). By definition,
A (o) is the effective symbol of a function that consists only of Moyal
products of a with other functions (see (5.11) and (5.14)). Thus, similar to
Lemma A.9 one can prove that 25" (a(™)) can be reformulated as sum over

o zma(CI)é) with Bi1 im € So(ﬁ,C),il,...,im =

77777 tm i, Jeuns

terms of the form "B,
1,...,2n,m € N. So %Vj(t) can be expanded as a sum where each summand
is of the form

Tj .
j+1 75 +1 T Tj—T;
: '/0 (Bij+1 gt 82-#1 g+ a(@F*)) o @I ATy -+ (5.29)
1 1

7777 ™y

) o dItT™ d7'2> o ® M dry .
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To obtain the desired form (5.28) the idea is to ’pull out’ a(®Z*") from the
integrals using the chain rule together with the semi-group property of the
Hamiltonian flow. This of course has to be done for every summand.

For a general term of the form (5.29) the procedure to 'pull out’ the
observable a is very technical. Since the procedure is very similar for any
term of the form (5.29) we will only show it for a special case {j = 0, m; = 2},
i.e.

1112

t
| (Bi 02, a(@D)) 0 0L
0
Applying the chain rule and the semi-group property of the Hamiltonian flow
yields
t
/ (Biyi, 02, a(®7)) 0 O dr
0

1112 1112

¢
:/0 (Bm’2 B, ®L 5, 0, L5, D2 5,0 0 CD;) o @, T dr

2 T eg2 U T Eg1 T gjev
t
v / (Bivia 010, ®7; 0ja 0 87) 0 @17 dr (5.30)
0 I

t
— 8?1j2a (0] @Z/O (Bilig a T ail @T ) O q)ii‘r dT

12 £, 72 €,J1
t
+9a0 <1>§/ (Bisia 01,12 ®7;) 0 L7 dr (5.31)
O 9.
=T, 2, V2a 0 ®) +T%(t,z,Vao ®).

With this one can easily see how one can reformulate 2" (¢) to obtain the
desired form (5.28).

Next, we want to derive coupled systems of IVPs whose solutions are given
by the coefficients of the tensors I'(¢, z,-). Similar to above, the general
derivation of the IVPs is very technical so we want continue with the previ-
ous example and derive the IVPs that are solved by T'j, (¢, 2) and I'}(t, 2),
respectively. Obviously, the initial value for ¢ = 0 will be zero for all of the
terms. So we want to compute the time derivative of I'; , (¢, z) and T'3(t, 2).
The idea here is to ’push’ the time derivative through the integrals and end
up with terms as

t
/ (Bi1i2 %81112(1);> © (I)t_T dr.
0
We will show this step in detail later. Then using the Hamiltonian equation

d

0= (- (@) 'Vh)od?

5.2 How to get from Egorov’s Theorem to a Numerical
Scheme
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yields

d T e\—1 T T
0] =~ a((w) Vh)j o &7 9,9
d T e\— T T T

o e\—1 T BT
01((w ) Vh)j o d7 0, D] .
Therefore,

/Ot (Bmz'z d%.aZUQCI);) o ®d T dr

- _ /Ot (Bm‘g 312112 ((we)—l Vh)j o ®7 ai1q)lT1 ahq);) o ®d T dr
a /Ot (Bim 81((wa)—1 Vh>j 0 ®7 Dy (DZT) o ®'Tdr

which coincides with (5.30), replacing —(w®)~! VA by a. So, we again want
to ’pull out’ this term in front of the integrals leading to terms similar to
(5.31). Doing the same thing for I'*(¢) would thus lead to a system IVPs of
the form

T = =35, () VB) 0 8 T (1) = 01, () Vh) 00 TH ()
(05, = ~0n((w) VR

° o ®' I}y, (t) — 0 ((w') "' VA) o ® T}, (1)

J2

J1

It’s easy to see that a similar procedure can be applied to every term of the
form (5.29). This simply holds since pulling out a(®*) or (—(w®)~* Vh) o &
just produce the same type of terms. Now, the only question left is how to
push the time derivative into the integral. The following observation gives
an answer, namely: for b : R*” — R and f : R x R*" — R smooth we have
that

(i/ot<bf(7')) o ® T dr = /Ot(b(i_f<7->> o ® T dr + (b f(())) ot

see [GL14, Lemma 2.2] for a proof.
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Applying the above to I''(¢),,;, leads to

d d
S ), z&/ Bma %7, 0,97, ) 0 ®' 7 dr

dt 12 = ja YT g
_/ 112 d 6Z2CD;2> 811(1);1> o q)t_T dr

+/ (Buviz 0,7 4 507 )) 0@ dr

127 2 dr (25}

(Bma Y, 0,8}, ) 0 @'

2 7 g2 YN T

T T t—T1
_/ iz = a<I>)ac1>)o<1> dr

12 = g2/ Tt T g

22 J2 4 1T

+ (Biiy 01,1 0111 ) © cbt .

/ By, 0,07, 3 —(0,97,)) 0 0T dr

So, the procedure of ’pushing’ the time derivative into the integral pro-
duces an additional term. In the above example this extra term is given by
(Bm2 Sirir 5,-1j1> o ®'. Notice that 977" = 0 for any 7,j € {1,...,2n} and
m > 2. Therefore, this additional term is non-zero only if all derivatives
acting on ®' are of first order. It is easy to see that the above procedure
can be applied to any term of the form (5.29). The only difference is that
terms of lower order may be reproduced and thus need to be included in the
system of IVPs.

REMARK 5.5 In certain situations it is useful to reformulate the assertion
of Theorem 5.2 by neglecting the additional structure leading to the full
e-dependent classical System (R?",w?, h) and base the result on (R?", ", h).
Using the Neumann series for (w®)~' (5.4) we define

(W)t = I UJOZE] ¥ = (W)™ + € Weor -

Then, we can reformulate (5.1) leading to the assertion that there is a
constant C' > 0 and a r € N, such that

AE

|0 (2 [A7.a° ]~ op.(x}, - Va) — cop. (A7 (a)) 11

< Ce"allg,

where X)) = —(w?) ! Vhy = w’ Vhj and

AN (a) = —(w* V(h — ho), Va) — (W) VA, Va) + %Y (a).

5.2 How to get from Egorov’s Theorem to a Numerical 149
Scheme



150

Then, defining 2V (t) = >N &/ AV (¢) with A¥ (t) € S°(¢, R) by

~ t
A (1) = [ AN (a(@f) 0 B dr
0 b
and

t ~
AN (1) = | A (AL () o ®f T dr forj > 1

one can proof analogously to the proof of Theorem 5.2 that for any N € N
and ¢ € R there exists a constant C' > 0 and a r € N, such that

N+3
< Ce"HAll5, Y It

J=0

1 (A%(t) — op. (a(@f) + 2V () ) TT°

At first sight it may seem that this formulation is less complex since the terms
only depend on the Hamiltonian flow associated to the canonical symplectic
form w° rather than w® but 2V (¢) contains many more terms than 2V (¢).
Then, why is this formulation useful? Similar to (5.26), expectation values
tra (p¥ fls) for an initial wave function v, € 11 # are approximated by

tryy (P A7) = /R trgg (W) (2) (a(@8) + e AV (1)) (2) dz + O(N)

M

~ 37 2 (a(®) + 22N ()) (=) — 57 2 (a(®h) + 24V ()) (=)

=0 i=0

1M (a(@g)) + Y& MRV (1)).

J=0

(5.32)

Now, assume ¢ to be small, take ¢ = 1073 as an example. Then, the term
e IM (AN (t)) can already be discretized rather coarsely given a fixed overall
accuracy. Thus, the biggest computational effort lies in the approximation of
the term ™ (a(®Y)). On the other hand, if we base our numerical scheme on
(5.26) then the biggest computational effort lies in the approximation of the
term /M (a(®!)). Clearly, to be able to reach the same overall accuracy in both
approaches one needs the same accuracy in the approximation of 7 (a(®))
and ™ (a(®!)). Now, the point is that there are several very effective numer-
ical methods to approximate the Hamiltonian flow of classical Hamiltonian
systems with canonical symplectic form w° and classical Hamiltonian of the
form h(q,p) = |p|* + V(q) as for example high order symplectic splitting
methods, see e.g. [Yos90]. For the case of a e-dependent symplectic form w*®
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there are in general no such effective integrators making the approximation
of the Hamiltonian flow ® more costly and so for every sampling point z;".
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Application: The
Hofstadter Model

In the following chapter we apply the theory developed in Chapters 2 - 5 to a
gas of non-interacting fermionic particles in the tight binding approximation
on the lattice Z? subject to a strong constant magnetic field and an additional
electro-magnetic field with slowly varying potentials. The main goal is to
approximate the free energy per unit area of such a gas at inverse temperature
$ and chemical potential ; up to errors of order €3 where here ¢ represents
the scale on which the potentials of the electro-magnetic field vary. From
the free energy one can deduce many important physical properties of solids
where we will focus on the magnetic susceptibility. In addition, we will
derive an Egorov type theorem to approximate the quantum evolution of
observables restricted to adiabatic subspace associated to magnetic Bloch
bands. Last but not least we will apply the Egorov theorem to approximate
the evolution of quantum mechanical expectation values for initial states
that are in some, to a magnetic Bloch band associated, adiabatic subspace.

The single particle Hamiltonian is

HY = Y TX +¢° (6.1)

|laj=1

acting as bounded self-adjoint operator on ¢?(Z?). The magnetic translations
T4 are defined by

(T )y = e APy for € (*(Z*) and a,fB cZ?.
Here, the magnetic vector potential A° : R* — R? is given by
A*(r)=—1iBor+ A(er)  where  A(r) = Ay(r) — ibr
with By = (7%0 %’), By eR, b= (_Ob8>, b e R and 4, : R> - R? smooth

and bounded together with all its derivatives. The electric potential ¢° is a
multiplication operator defined by

(6°)5 = p(eB)g for b € (*(Z*),3 € Z* where ¢(r) =¢y(r) +E -7
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with £ € R? and ¢, : R? — R smooth and bounded with all its derivatives.

Clearly, our approach is not directly applicable here. Hence, we first
transform the above system to a setup where our approach is applicable. To
begin with, assume A° = ¢° = 0. Clearly, the translation operators T4°=°,
a € Z? commute and thus form a unitary representation of the group Z2.
Moreovet, the Hamiltonian H° = 3°,,_, T4°=% commutes with the translation
operator T2°=° for every o € Z*. Hence, H® is diagonalized by the Fourier
transform

F@) = LR 2 Z), v (FP)k) = 3 O 00,

YEZL?

where the Hamiltonian H° transforms to a multiplication operator with the
function e(k) = 2 (cos(k1) + cos(k2)). Next, we assume only B, to be zero.
In this case, we have that F HA*50=0 F* = e(k + A(ie V}™)) + ¢(ie V) =
hO(ie Vi k). Here, V™ denotes the derivative with periodic boundary
conditions. Note, that we cannot apply Weyl calculus here directly since
hP(ie VY k) is an operator acting on L?(R? / (27 Z?*)) rather than L*(R?).

This problem can easily be solved by associating functions in L*(R? / (27 Z?))

2
loc

with 2 r-periodic function in L2 (R?) and restricting to 2 7-periodic symbols.
We conclude that in the case where the strong magnetic field B, is zero the

Fourier transform F transforms (6.1) into a semiclassical system.

As a next step we consider particles subject to the strong magnetic field
represented by B, where B, is a rational multiple of 27, i.e. A=0,¢ =0
and By =27 %, p € Z, q € N. Then, the Hamiltonian is

HPo = " 1h

la|=1

with magnetic translations

(TPoap) 5 = ex(@-BoBlyy  forep € (2(Z2) and o, B € Z7.
The associated dual magnetic translations are given as

(THop) 5 = e_%w’B“ﬁ)wﬁ_a for o, €Z”.

Analogously to the case where A° = ¢° = 0 the Hamiltonian H?° in invariant
unde_r dual magnetic translations. But T(]ff’o) T(’gf’l) = ¢l Bo T(’gf’l) T(ff)o) so that
the T'5s do not form a unitary representation of Z?. On the other hand, the

Chapter 6 Application: The Hofstadter Model



dual magnetic translations can be extended to a unitary representation of
the subgroup I', = {y € Z? : vy € qZ} of Z* by

T = (Tiy) " (Tah) ™

In addition, for R, := {(m,0) : m € {1,...,¢q — 1}} we represent the state
space (*(Z?) as (*(Z*) = (*(T', x R,) = (*(T',) ® (*(R,) = (*(T,) ® C? and
apply a Fourier transform to the first component, replacing the ordinary
translations Tj‘s:o by the extended dual magnetic translations Tfo. The
resulting transformation is known as magnetic Bloch-Floquet transform,
sometimes also referred to as Zak transform [Zak68]. For technical reasons
we introduce an additional factor to the magnetic Bloch-Floquet transform
leading to

Z/{BO . 62(Z2) N L2<Mq,(cq),
b € (Futagn © 1oa) @) = €57 30 BN (TPop) o) 60

€l

form=0,...,q—1

where M, := [0,27/q) x [0,27) is the reduced Brillouin zone. From the
definition of /P (6.2) it is easy to see that for every 7* in the dual lattice
= {(", 1) eR*|f € %’TZ,V; € 2 Z} we have

U P)(k + ") = diag(L,e ™™, ... e V) U p) (k)
= () U P)(k) .

Hereto, we say that a function f : R? — C? is T-equivariant if
flk+~") =71(v")f(k) := diag(1,e77*, ... e @) f(k) forall y* € ry.

It follows, that functions in the range of /% can be extended to 7-equivariant
functions in L (R?* C?). For general results on Floquet theory, see e.g.
[Kuc82]. The magnetic Bloch-Floquet transform (/5o HPo UBo* of the Hamil-

tonian H?0 acts on L?*(M,, C?) as matrix valued multiplication operator

2 cos(k2) e ik1 0 etk1
ekl 2 cos(k2+Bo) e~ik1 . 0
HO(]{;> = 0 etk1 2 cos(k2+2Bo) : . (63)
. . 0
0 o—ik1
e—ik1 0 et*1 2 cos(ka+(q—1)By)
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For ¢ odd, H, has q real-analytic isolated eigenvalues eV (k) < ... < €@ (k)
where ™ (M,) N {e®D(k)} = 0 for m # I, k € M,. If q is even, it is known
that the two middle bands touch at ¢ points. Other than that the rest of the
bands are real-analytic and isolated.

Finally we consider the full Hamiltonian H4°, see (6.1). Analogously to the
case where B; = 0, an application of the magnetic Bloch-Floquet transform
to H* yields

H =UP HXUP* = Hy(k — A(eV])) + ¢(ieV]) (6.4)

acting on L*(M,, C?) where the matrix entries of Hy(k — A(ieV})) are defined
by the functional calculus for self-adjoint operators and 9 denotes the
derivative with 7-equivariant boundary conditions. Also here, we cannot
apply Weyl calculus directly since A~ acts on L2(M,, C?) and not L*(R2, C9).
The overcome this problem we use the fact that Hy(k) is 7-equivariant, i.e.

Ho(k+~*) =7(v") Ho(k) 7(—7*) forevery ~"e€T™.
It follows, that for any fixed » € R? the symbol
H{(r, k) = Ho(k — A(r)) + (r) .

is 7-equivariant. Now, we identify L?(M,, C?) with the space L2 := {f €
Li, (R?,C%) : f is T-equivariant} with norm [|f[2 = L5 [y, [f(k)[*dk and
restrict to 7-equivariant symbols. Then, H~ can be reinterpreted as the Weyl
quantization of H(r, k) and all results of Chapters 2 - 5 hold with the same
proofs, for details see [PST03a] or [Teu03, Appendix B].

The Classical Hamiltonian System

In what follows we will derive the classical Hamiltonian system (7*T?, w®, h)
associated to H(r, k) and an eigenvalue e of H. Note here, in our notation &
denotes elements of the torus T? and r € R?. Nevertheless, since r takes the
part of ¢ as used in the previous chapters we will keep the ordering of the
parameters as above for readability reasons. So, let ¢™), 1 < m < ¢ be an
isolated eigenvalue of Hy(k) with Pém) (k) the associated spectral projection.
Then,
M (r, k) =™ (k — A(r)) + ¢(r)
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is an isolated eigenvalue of H (r, k) with spectral projection
By (r k) = P (k= A(r)).
Throughout this chapter we will represented the magnetic field by the matrix

B(r) = VA(r) — (VA (r) = B(r) J, (6.5)

where
B(r) =V x A(r) = 01 A2(r) — 02A1(r)

0 1
Jo 1= )

vt =Jyv forany v e R?

and

In addition, we denote

as well as
Vt=J,V and V?!=J],V2

The classical system (%, &), Liouville measure \° and equations of motion
associated to H(r, k) with eigenvalue é™ follow directly from Lemma B.7.
Here, we will focus on the Hamiltonian system that results from a change of
coordinates to kinetic momentum x = k — A(r).

By (B.60) the modified Berry curvature for the m-th band is given by
A, 1) = O (r, ) + 2" (1, ). (6.6)

Here,
Q" (k) = Imtres (VES™ x V™ P™) (),

is the well known Berry curvature. The order ¢ correction ng)(r, k) to the
Berry curvature satisfies

O (1, k) = 9, x (B(r) ST (x) + W™ (k) V(1))
with

Sy (k) = —Retrea (VE™ (1) x V(Hy + e™) (k)
(Ho — ™)~ (k) 0, P5™ () ™ () .
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and
W»(m)<’€) = 2Retreg (@Pém) (Ho — e(m))_l 8jpém))(/€) :

v

As is easy to see, the leading order of the Fubini-Study metric g(()m) satisfies
gosy (k) = 2Re trea (0P 0 P5™ Po) ().

Moreover, by Lemma B.8 and a straight forward computations using (6.5)
the classical Hamiltonian is

W™ (r, k1) = € (k) + ¢(r) + € Br) M™ (r) (1+ §& B(r) Q™ (x))
+2(3( Fiad (o), WO () Fiod (r, 1) )
B(r) trce (M <><Ho elm)- <>M*<m<f~e> (k)

B(r)* trcs (w m)( ) x VB (k) B (5)
+ 3 tres (MG () (VB(r), VES™ < >>Po’" ()
(r)%rcq(Trz(vMP (k) V2 (Ho — €™)(r) ) Py™ ()
+ Ltrea (Tro( V2™ (k) (V2A(r )VQ(HO—e(m )())) 23" (k)

+ L trea (Tra( (V2A(r V2P0m( )) V2(Hy — €™)(r)) Py™ ()
(6.7)

with Lorentz force
Fio? (r,m) = =Vo(r) + B(r) Ve (x).
effective magnetic moment
M (k) = Tmtred (9 PY™ (Ho — €™) 0,P5™ ) ()

as well as
MG () = VP (1) % V(Ho — e™)(x)

Then, the coefficient matrix defining the system’s symplectic form is

(m) —B(r) 1, 2 0 LEW(r, )
win (1, K) = ( 1, (r /ﬂ)) +¢€ (_(L(m))T(n R) 0 )

(6.8)
where
L (r, ) = 020(r) W™ (k) + 0,B(r) S™ (k) (6.9)
and
Q" (r, k) = Q™ (r, k) Jo. (6.10)
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By the fact that
B(r) Q™ (k) = B(r) Q0" (k) Jo Jy = —B(r) QY™ (x) 12 (6.11)
we have
LTy (B(r) Q5 (k) — 122 Tra (B(r) 2 (w) B(r) Q5™ () = 0.
Hence, the Liouville measure of wg’ﬁ/} (r, k) given by (B.61) simplifies to
A = (v (r,5) + O@E®)) dry A+ Adisy (6.12)

with
v (r k) =14 € B(r) Q™ (k) + & Tro (L0 (r, 1))

In the next step we simplify the Hamiltonian equations (B.57). Combining
(6.5),(6.10) and (6.11) we get

1, -B
+&° ( ’ (LEm)T ) +O(%).

QM —1
(i)t =(1— Q™ B 42 (Q™ B)?) (5 2)

(6.13)
~LM™ B (L™)T + L™ B

On the other hand,

-1

(™) = 1= (e BQ™ — £ Ty(L))]
=3 (—eBOM — 2 Try @)Y
j=0

=1 —eBQM™ — 2 Try(LM) + 2 (BQ™)2 + O(?)

for £ small enough. Hence,

QM —1 Qm _1
(e ° :(1—5Bﬂ(m)+52(BQ(m))2) c 2
y(m) 1, -B 1, -B

0 TI'Q(L(m)) ]_2 3
+é° + O(%).
c (—TI'Q(L(m)) 12 B TI'Q(L(m)) J2 <€ )

In addition,
L™ — Try(LM™) 1, = J, LM J,
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as well as
Jo (LUNT L 1,0 Jy — Try(LM™) J, = 0.

Comparing (6.13) and (6.14) and making use of the two identities above we
conclude that the Hamiltonian equation simplify to

7 - (m) -1 &JL(m)
o) = () (5

1 —& Q(m) 12 4 2 0 —Jg (L(m))T Jg 6Th(m)
R 6 .
-1, B Jo L™ J, 0 D, h(m)

/()
(6.15)

Note, for A,(r) = 0 the magnetic field is constant with B(r) = b and
9% Ay(r) = 0. If the electric field ¢ is zero as well then the classical Hamilto-
nian system simplifies significantly. We get

) (k) = €™ (k) + e bM™ (k) + § (e 0)2 M™ () Q5™ (k)
+(£0)* (L (Ve W Thelm ) ()
— trea (MG (Ho — ™)™ Mit™ By™) (k) 6.16)

op
+ 4 tred (VMU 5 V2™ 2™ ) ()
+ L twea (Tra(V2ERY™ V2 (Hy — ™)) P ) (k)

with modified Berry curvature
Q" (k) = O (k) + £ Q™ (k)

where
O (k) := bV x S (k)

with
S}m)(/{) = —NRetrea (VPO(m) x V(Ho + e™) (Ho — ™)1 9; PO (m)> (k).

The symplectic form simplifies to

—b 1
(m) .\ _ 2
wien (K) (_12 5Q(m)(/<a))
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6.2

which results in Hamiltonian equations

AN QM (k) 15\ [0.h™ (k)
i) vm(k) —1, b/ \0.h™(k))

The Liouville measure is

A = (VM (k) + OE?))dry A - Adk,,

)

with
V() =1+4+ebQ(k) =1+ ebQ(r) + 200 (k). (6.17)

Equilibrium Expectations, Free Energy and
the Magnetic Susceptibility

In this section we first derive the second order semiclassical approximation
of thermodynamic equilibrium expectations. Clearly, our theory allows to
extend the below result to semiclassical approximation of arbitrary order
in . Nevertheless, within the context of Bloch electrons we will focus on
second order approximations. We will then use the results on steady states
to compute the free energy per unit area of a gas of Hofstadter electrons up
to errors of order 3. This result will then lead us to an explicit formula for
the magnetic susceptibility.

Proposition 6.1 Let ¢ > 0 small enough, By, = 27r§, p € Z, q odd and
f € A. In addition, let R be a self-adjoint operator acting on (*(Z?) such that

O = UBo RuPo* is a Weyl operator with T-equivariant symbol in S°(By, (C9)).

Then, the effective symbol 6™ € S°(R) of O is T-equivariant and

q
tI‘g2(Z2)(R f(HA )) :(2735)2 Z

1

( / o™ F2 (R0 7)) yeim)
R2x M,

+ / o™ Q(hém), g(()m)) dr d/-@)
JR2Xx My,

+0(E[O]lL)

where M, = [0,27/q) x [0,27) is the reduced Brillouin zone. The second
order effective symbol in kinetic momentum representation is o™ (r, k) =
2 et 6™ (r, k + A(r)). The classical Hamiltonian is given by (6.7) and A(™

is the Liouville measure (6.12) of the symplectic form wgﬁd)(r, k) (6.8). The

6.2 Equilibrium Expectations, Free Energy and the Magnetic
Susceptibility
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effective equilibrium state f¢(h™ 7(™) is given by (B.67) and the quantum
correction Q(h{™, ¢i™) by (B.65).

PROOF We begin with the following observation. The effective symbol
5™ of the observable O° depends only on 7-equvariant symbols and their
derivatives and is therefore 7-equvariant as well.

By the unitarity of the Bloch-Floquet transform and (6.4)

trpzzy (R F(HY)) = trrea, co) (U RUPUP f(HA ) UP)
= trLQ(Mq,(Cq) (OE f(ﬁs)) .

Since ¢ is odd we already know that all ¢ eigenbands e™ of H, are non-
degenerate, real-analytic and isolated. Hence,

q
N ~E NG ~e ae(m)
trr2(n,,co) <O J(H )) = > trie(u,co) (O J(H )T >

m=1

where 1" is the super-adiabatic projection associated to the m-th eigen-
band e™ of Hy(k) as defined in Proposition 3.2. An application of Theo-
rem 4.4 yields

A€ ey 1E(m) d ~ m) fe/7.(m) ~(m)\ Ye,(m
tI'LQ(qu(Cq) (O f(H )H€ ):(271_15)2 Z </]R 0(2)7( )f5<h( )’7-[-( )) )\57( )

me=1 2x Mg

+ 6 QU™ 5§ dr k)

R2x M,

+O0EO]|Lr)
where Q(h(™, g™ (r, k) is given by (4.30) and
FE(R 7Y = f(RV) 4 &2 fe(h™) 4 &2 foi(htm), 70m)

with f*(h) and f*di(h,#) given by (4.12) and (4.13), respectively. The
classical Hamiltonian is 2™ (7, k) = h™) (k — A(r)) where h(™ () is given by
(6.7). The Liouville measure \*(™ is defined in (6.12).

Then, a change of coordinates to kinetic momentum x = k — A(r) and
application of Lemma B.9 yields

/ Fm) Fe(Rm) 7 m)) feitm) 4 / 5 O™ 56 dy
R2 x M, R2x M,
R2x My R2x Mg

Combining the above results finishes the proof. O
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Now we compute the free energy per unit area also known as pressure
of a gas of non-interacting fermionic particles on the lattice Z* at inverse
temperature 5 and chemical potential i subject to a constant magnetic field.

Proposition 6.2 Let q odd, By = 2rt and Ay(r) = ¢(r) = 0, i.e. A%(r) =
-1 (7%5 B;) r with B = By +¢b, b € R. In addition, let x; : R* — [0,1]
be a sequence of smooth cutoff functions supported in A; := [—j,j]* such
that x;(z) = 1 for all z € A;_; where with an abuse of notation we define
|Aj| = |Ix;ll 1. Then, for € > 0 small enough, 5 > 0 and i € R, the limit

2

. € e
p(B% B, 1) = % 1_>m Ttrz2(z2) (xj(ex) In (1 4 e BHA u)))
300 | Ay

exists and it holds that

q
p(B%, B, =D F (A" (1)) 1™ () die
m=1 (/T (6.18)

e /T Qgr”)(/f)d/{)vLO(s?’)

where T, is the torus [0,2%)% Fs,(r) = —f~"'In (1 + e‘ﬂ(w‘“)) is the anti-
derivative of the Fermi-Dirac distribution fs ,(r) = (1 + @)1 and

QU =1 £, (e™) (5 det (V2e™) + 4 ||ve<m>¢||§ém>) . (6.19)
PROOF We begin our proof with the observation that
U x(ex) U™ = x;(ieVE) = op. (x; (1)) -

Then, applying Proposition 6.1 with observable R = x;j(ex) and equilibrium
distribution f(z) = —Fj ,(x) yields

5|A | tre(z2) (X](sm) In (1 + e AHY ))>

(2 )2 zq: (/RgxM i(7) fa(h(m), W(m))(/i) V(m)(/i) dr dx

(6.20)
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where

Q(hE™, g™ (k) = —3Tra (0 NP ™ (k) + § b 9, NG (1))

-T2
and
FER, 7 ) (k) = = Fpu(B (k) + 1% £, () () DV 200 (1)
0
— & fé,#(e(m) (k) Tra(b V2™ b V2e™) (k)
+ 5, & Try (aﬂA/fC’(m) +3b 8KA/2SC’(m)> (k)
+O(e%).

For the definition of N'¢ and A/5“("™ see (B.66) and (B.69), respectively.

Note, by the T-equivariance of Hy, the integrand in (6.20) is periodic with
respect to I'; in k. Moreover, by the symmetry of the original problem it is
even periodic with respect to 27“ Z2. Hence, we can restrict to an integration
over the torus T, resulting in a factor q. Moreover, we have

Try(b V2™ b V2e™) (k) = =212 det(V2e™) (k) (6.21)

In addition, by the fact that the torus T, has no boundary and v(™ (k) =
1+ O(e) we have

/T Tra (0N + § D 0N () V™ (1) di = O(e)  (6.22)

q

as well as (6.23)
/ Troy <8HN1G?’(m)(/£) + %b@,@NQQ’(m)(/i))(/i) ds =0. (6.24)

Tq

Hence, we conclude that

| F B B ) () de 2 [ QR g™ ()
Ma Ma (6.25)
— /T Fy o (h™ (k) ™ (i) dis + g 2 /T QU (k) dr + O(%).

Combining (6.20)-(6.25) finishes the proof. O

With the thermodynamic pressure in hand we are now able to compute
many physically interesting quantities, where the magnetic susceptibility
S(B¢, 3, 1) = 0%.p(B?, B, 1) is of our main interest.
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Corollary 6.3 Let g odd, By = 272 and Ay(r) = ¢(r) = 0. Then for 0 < § < oo
and p € R the magnetic susceptibility is

S(B()v ﬁa ILL)
= 8%5]) (BO7 57 )

:—WZ o) (2807 x Vel 13 M)

+ (Ve ,W V™) — 2tres (MG (Ho — ™)~ M B™)
+itre (VMG < VR™ P™)
T L tres (Teo (V2 P W2 (8, —e(m)))Pém)D(/@)

+ L5 (R)) (MI)? = 5 det (V2el™ ) — [ Vet L2, ) () dis.

where f3 () is the Fermi-Dirac distribution (1 + e#@=#)~1,

PROOF We start with the following observations. Clearly we have

O3-p (Bo, B,11) = b= 02p (B7, B, 1)

e=0"

Replacing p (B¢, 3, 1) by our result for the free energy (6.18) we obtain

S(By, B, 1) = 0z-p (Bo, 5, 1)
s 30 2 ([ s )0
/ QU (k) dk + O(e ))

e=0

where
Fs(z) :=—=3""In (1 + e*ﬁ(’”*“)) .

is the anti-derivative of the Fermi-Dirac distribution f5 ,(x). Then, a simple
computation shows

S(Bo 1) = = s 2 [ 2ol (1) 0

+2 fa,u(e™ (1)) (B™ 4™ + h§™) ()
+ £ (e (k) (h{™)2 (k) — 2QUM (k) dr

6.2 Equilibrium Expectations, Free Energy and the Magnetic
Susceptibility
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Replacing the density, the effective Hamiltonian and the quantum corrections
to the pressure by the expressions (6.16), (6.17) and (6.19) leads to

S(Bo, B, 1)
- %22/21% (1)) V x S0

Fou(€™ (1)) (2 S0 5 elm) 4 g A
+ (Ve W vty 9 tre, (ijg) (Ho — ¢™) " M3om Py™)
+itres (VMG x VA™ Py™)

+ L trge (Tro (V2 2™ V2 (Hy — et™)) PO’”))) ()
L™ (9)) (M) = 55 det (V2e™) = 5 [[Ve™ 420 ) () ds.

By the divergence theorem and the fact that the torus T, has no boundary
we have

which finishes the proof. O

6.3 An Egorov Type Theorem

To end this chapter on the Hofstadter Model we derive an Egorov type
theorem to approximate the quantum evolution of observables restricted to
adiabatic subspaces associated to magnetic Bloch bands. In the subsequent
corollary we then apply the result to approximate the evolution of quantum
mechanical expectation values for initial states that are in a magnetic Bloch
band’s associated adiabatic subspace.

Proposition 6.4 Let ¢ > 0 small enough, Ay(r) = 0, By = 27r§, p € 7,
geNandm € {1,...,q} forqodd or m € {1,...,q} \ {q/2,q/2 + 1} for q
even. In addition, let R be a self-adjoint operator acting on (*(Z?) such that
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O° = UP RUPo* is a Weyl operator with T-equivariant symbol in S°(Bs, (C9)).
Then, the effective symbol 6™ € S°(R) of O is T-equivariant and

e 1B o HAte o =i HAt/e [7Box T
e(m)

~e(m)

op. ((o(m)(@(m)) + 2 A (¢ ))(r, k + %br)) 11

+0("*H[ol5, S It)

J=0

=TI

where the second order effective symbol in kinetic momentum representation
is o™ (r, k) = Y2 e o™ (r, 1 — L 1 br) and the Hamiltonian flow (™ is the
flow of the Hamiltonian system (w&M), h(™)) (see Equations 6.7 and 6.8).

The second order quantum correction 2™ (t) satisfies

A0 (¢ / 20 (o) (BU))) 6 BT dr (6.26)

where for a € S°(e, C)

Qlc’(’”)( )(r; k)
— 3 (MPVFD), VDPa) (r, k) g™ ()
-1 <Db]:LO” Dba A ZJ> (r, k)
+1 <DbDba .FLOT , Vgom)’”> (r, k)
— Ltre, ( (V2P b V2R F) DRa) ) (r k)
+ 12 z;k¢( ) Kikj nka(r K)
15 Ope™ () 83, alr, k)

b [ 0 1,
M = (_1n b)

n:S8%e, C) — SY%e, C) is a differential operators defined

with

and Db = (’D'})>’L=1
by

.....

DPa(r, k) = bdealr, k) — O.a(r, k)
fora € S%¢, C).

REMARK 6.5 Note that the assumption A,(r) = 0 in the above preposition is
only technical and simplifies the computations for the explicit expressions.
In addition, here we only present the result to errors of order £3. Clearly, our
theory allows the derivation of an Egorov Type theorem to errors of arbitrary
order in ¢.
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PROOF We begin with the following observation. The effective symbol
5™ of the observable O° depends only on 7-equvariant symbols and their
derivatives and is therefore T-equvariant as well.

Combining, the fact that the Bloch-Floquet transform /%0 is unitary and
(6.4) yields

e

i m) YPBo i HA t/e o o= 1HA /e [7Box 1

e(m)
_ ﬂe(m) Z/[BO o HA /e uBO* LIBO R uBo* uBo e—iHAEt/e UBo* ﬂe(m)

_ ﬂf(m) G A t/e AT —if7t/e ﬁa(m) ‘

By Theorem 5.2 and Lemma B.10 we have

ﬁe(m) eiﬁgt/s O‘E e—iﬁst/e ﬁe(m)

(m)

~e(m)

op. ((o(’”)(cbi’”)) + 2 (t)) (r,k + % b r)) II

5
+ 0 (V05 Yo 1tP)
7=0

fIE

T

)

(MPV(DPRG™) , V(DRo™ (®0M))) 0, ™ 0, ™
<(Db)2hém) Vpém) : V2Pém) DPm) ((I)(Tm))>n

— (V2P DPRS (D)™ (@) v, )

+ (bV2R DPRGY R DR @) (1)

— LME  ME L M DB B (1K) 82,00 (D) (1, )

a1f1 azfB2 asf3 alazag

Then, by definition
DPhy™ = Fm

as well as

V2, b (k) =0, VR M (r k) = 0%0(r)

TiT;T]
and
Vi (1) = 056 ().

We finish the proof using

trea (9P 9, PS™) () = g™ (k)
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and that for any symmetric matrix M € C"*" and vector ¢ € C" we have

(Mije, Vg§™") = My a0y tred (055" 0;P5™)
= My cr (trea (03P 0, P5™ ) + trea (0™ 03, P5™))
=2 M;; citrea (83Pém) @Pém))
= 2t (V2P ¢, MVPF™))
=2t ((MVPF™, V2R c) ) .
O

Corollary 6.6 Let the assumptions of Proposition 6.4 hold. In addition, assume
P = |y) (| with oy = e 1 At/e by where the initial state 1 € (*(Z?) satisfies
UB g =1 € ﬂa(m)LQ(Mq, CY). Then,

tre(z2) (pt }?) = tr2(p,,00) (ﬁo op. ((o(m)(q>§m)) + g2 0m) (t)) (r,k+3b r)) )
+ O(%)

where py = \zzo)@()].

PROOF By definition
trg2(Zz) (pt ﬁ) = trZQ(ZZ) (e—iHAEt/a o eiHAEt/s ﬁ{)
= tre(z2) (e—iHAEt/a [ Box T %o e B ol HA 1/ é) .

By the unitarity of the Bloch-Floquet transform together with the cyclicity of
the trace we have

tI‘gQ(ZQ) (eiHAat/E UBO* ﬁa(m) ﬁO ﬂa(m) Z/{BO ei HAst/E R)

= trL2(Mq,(Cq) <ﬁ0 ]jf(m) Z/{BO eiHAEt/E _Re_iHAEt/E UBO* I_A[E(’fﬂ))

Then, applying Proposition 6.4 finishes the proof. O

6.3 An Egorov Type Theorem
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Application: 7
Born-Oppenheimer Type
Hamiltonian

In this section we aim to apply the theory developed in Chapter 2 - 5 to
the paradigmatic system of adiabatic perturbation theory, namely to Born-
Oppenheimer type Hamiltonians. Hereto, we consider the Hamiltonian
operator
A =2(-iV, — Ax)?* + V(z)

acting on H = L?(R") @ H; for H; some separable Hilbert space. The
magnetic vector potential A : R” — R” is assumed to be smooth and
bounded and V(z) € So(R", Bs.(H¢)). In addition, we assume V(x) to
have a non-degenerate eigenvalue ¢, (z) with eigenprojection Fy(q) such that
e, : R — R is continuous and satisfies the uniform gap condition

dist(e,(x), o(V(x))\{e,(x)}) > g >0 (7.1)

for every x € R"™. Since —i V, is infinitesimally operator bounded with respect
to A,, the operator % (—iV, — A(z))? is self-adjoint on the Sobolev space
H2(R"™). Hence, A" is self-adjoint on H%(R") @ H;. The Born-Oppenheimer
type Hamiltonian A~ can be represented as Weyl-operator with symbol

H(q,p) =50 —cA(@P 1y, + V().  for (g.,p)=z€R™"  (7.2)
satisfying the gap condition Assumption 2.11 with eigenvalue

e(g.p) =1lp—ecAlQ)f + eulq)

and eigenprojection FPy(q). Nevertheless, the Weyl symbol H(q,p) is un-
bounded in p and so does not fulfill Assumption 2.10. This prevents us from
applying our results to : directly. Therefore, we introduce the Hamiltonian

171



7.1

172

H,(q, p) by replacing |p — € A(q)|? by a function that flattens at large kinetic
momentum |p — £ A(q)| depending on a parameter )\, i.e.

Hy=3x(p—cAW@)P) +V(g)

where x) : R — R is a smooth and monotonically non-decreasing function
satisfying that x,(z) = z for x < X and x,(x) is constant for = > X + 1.
Clearly, FI; satisfies Assumption 2.10 and 2.11 with eigenvalue

ex(q:p) = 5 (|p — £ Ag) [*) + en(9)

and eigenprojection P,(q).

The Classical Hamiltonian System

We start with the derivation of the Hamiltonian system (h*, w5) associated to
H, with eigenvalue e,. By (B.25) the associated classical Hamiltonian is

h(q,p) = 3 xa(lp —  A(q)]?) + eu(q)

ap- o 2 .03
+38 x(lp—eA@))" lp — e Al@) v + O)

with
Wis(q) == trw ([0 Po | (V = e,) " [0 Po] ) (a)

Note here, the second order correction to the classical Hamiltonian can be
reformulated to

3 16l = 5 st ([0 P | (V = €)™ [ 95 P ]4 ) (a) 55
= try, ({5, VP(q)) (V(2) — en(0)) " (VPo(q), k).

By (B.26) the coefficients of the symplectic form are

wi(q,p) = w’ +£Q(q) + & XA(Ip — ¢ A(q)|*) Qu(q. p)
+2X5(lp — e A(Q)*) Qe (g, p) + O(E?)

where

Qo(q):(QOéQ) 8) with  Qo(q) = —itrs, ([8:Py, 0,7 Po)(q)  (7.4)
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and

Q(0.p) = (Ql(q,fv;(z ;4(q)) WO(Q)) (7.5)
with

O (q, k) == —(:Walq) — 9;Walq)) ki
and

cut(q p)
Cu q p
' ( cht q p 0 )

where Q..t(q,p) = (p—e Aq)) ® (W q) (p—e Alq )) By (B.27) the associated
Liouville measure satisfies )\5 = 1v5(q,p)dg1 A -+ - A dp, with

vi(g,p) =1+ XA(lp — e A(@)]?) Tro (W) (q)

2 2 2 3 (7.6)
+e xallp—eAl@)) lp — e Al + O(”) -
By Lemma B.6 the Hamiltonian equations of motion are
j 9,h(q,
1) ——isqpt (2H0P)
p Oph(q,p)
where
wi)"H(g:p) = +eXA(Ip — £ A(g)
@ an = g o] PRl —ea@n) (T
" 0 cht(Qap) 3
+e2Xa(lp — e A(9)) +0(e”)
’ —Qele,p) 0

with
U (q,p) = Q(q) +exXA(Ip —  AQ)]) Qu(q,p — £ A(q))

The Hamiltonian equation can be represented as

¢ =xA(lp == A(@)*) (p — = Alq)) + O(?)

7.1 The Classical Hamiltonian System
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and

pi = — 0ien(q) +eXi(Ip — e A(q)P) (3iA(q), p — € A(q))
—exa(lp— A(Q)P) 2 (¢,p) (p — £ Alq));
—3X(p—c A1) (p— e Alg), BiW(q) (p — £ Alg)))
+e2 XA\(Ip — e A(@)|*) Wi(q) Djen(q)
+e2XA(lp = A@)P) (p— < Ag), Veu(q)) Wiiq) (p — £ Alq));
+ 0.

As is easy to see, the associated Fubini-Study metric g° (3.72) satisfies

(@) 0
0 0) + O(e)

where (7.7)
96 (q) = tra, (P [0:Po(q), 0 Po(q)]+) -

g°(¢,p) = golq) + O(e) = (go

REMARK 7.1 Assume ¢(q) to be a eigenfunction of V'(¢) depending smoothly
on ¢, i.e. Py(q) = |v(q)){%(q)|- Then, a straightforward computation leads

Tra(90)(g) = 2 ((D:46(9) | Pi-(q) D) ) + i%e(8i¢(q) [0(a))?).

Here, the first term on the right hand side is known as the Born-Huang
potential and the second is closely related the Berry connection A(q) =
i(Vi(q)|¥(q)), see e.g. [PSTO7]. Note, when deriving an effective Hamilto-
nian whose quantum evolution approximates the quantum evolution of the
full Hamiltonian A EA then the Born-Huang potential and Berry connection
are part of the effective Hamiltonian, see e.g. [WL93] or [PST07]. Since we
do not compute an effective Hamiltonian in that sense but yield to directly
approximate the dynamics through semiclassical approximations it is not
surprising that our effective/classical Hamiltonian does not coincide with
the effective Hamiltonian derived in [PSTO7]. Nevertheless, we will see
later in this section that by altering the coefficients of the symplectic form
as well as the quantum corrections one can reformulate the semiclassical
approximations in the dynamic case leading to a classical Hamiltonian the
coincides with the one stated in [PSTO07].

REMARK 7.2 Note that in the case where V' (¢) is a real operator, with 1 (q)
also ¢*(q) is an eigenfunction of V' (¢) to the eigenvalue e,. Thus, y(q) =
w is an eigenfunction of V'(¢) to the eigenvalue e, taking value in the
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real numbers. Moreover, since e, is assumed to be non-degenerate 1(q) is of
the form e'/(@) 4(¢) where f(q) is a real function. Clearly, the eigenprojection

Py(q) is gauge invariant, i.e. Po(q) = [¥(q) ){¢(q) | = |¥o(q) )(o(q) [ We
conclude

Q (q) = 29m (try,, (9 Po(q) ;Po(q) Po)) = 0.

Therefore, the second order corrections are the leading order quantum
corrections to the canonical classical Hamiltonian system (ey, w?).

Expectation Values of Equilibrium States

Now, we are ready to apply our main results where we begin with the semi-
classical approximation of expectation values in thermodynamic equilibrium.
Note that here and also in the subsequent proposition we will only show the
result for the semiclassical approximation up the errors of order 3. The only
reasons for this are that we want to present the result in a specific way and
only compute the explicit expressions for the corrections up to second order.
Rather than that one gets semiclassical approximations to any order in € with
the same arguments just by including the additional corrections as given by
Theorem 4.4 or Theorem 5.2, respectively.

Proposition 7.3 Let ¢ small enough, \ > 0 and f[f\ be the super-adiabatic
projection associated to H) with eigenvalue e,. Further, assume f € A, k >
2n+ 1 and R € S*(g, B (Hs)) a classical symbol. Then,

try, (f(A) B7IT)
= (2776)*"/A (f(h(a,p) + > Qsola,p)) ¥ (g, p) v*(q) dgdp
+@re) ([ F ) a0 () dad -

+e [ QUino0)(a.) 7S (0.0) da )
A

+O0(* Y | Ri|l)
=0
with classical Hamiltonian

ha,p) = 51p—e A + eu(q) + 5% Ip — e Al T (p) »

Liouville measure
V(q) =1+ Tr,(W)(q)

7.2 Expectation Values of Equilibrium States
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and quantum correction to the equilibrium state

Qeol(q,p) = 3 f'(elg,p) Tralgo(q)) + 5 f"(e(a, p)) Ip — e A(D2 )
— 5 ["(elq,p)) Aey(q)
— 51 17(e(a,p) (Ilp = £ A2,y + [Veul0) )

where in the first summand of the rh.s. of (7.8) we restrict the integration over
phase space to Ay := {(¢,p) € R* : |p — e A(q)|* < \}. The effective symbol
(%) is the effective symbol of R(q,p) defined by (3.26) with the ;s associated to
H(q,p) = 1 |p—cAlq)|*+V(q) and eigenvalue e(q,p) = 1 |p— A(q)|* + e, (q).

The effective equilibrium distribution f¢(hy,m,) is given by (4.28) with
classical Hamiltonian h), given by (7.3) and =) the symbol of 7§ = ﬁi + O(e™).
The quantum correction (Q(hyo,8o) is defined by (4.30) with Fubini-Study
metric g, given by (7.7). The Liouville density v5(q, p) is given by (7.6). The
effective symbol ry € S*(e,R) is the effective symbol of R(q, p) associated to 11,

REMARK 7.4 The expression of interest in (7.8) is the expression one gets
when formally considering the original Hamiltonian (7.2), i.e. the phase space
integral over A,. In the following we will argue why one can actually neglect
the additional phase space integral at least in the case of special assumptions
on f. Every summand in (7.8) has a j-th derivative of f evaluated at hy(q, p)
as prefactor and e, is bounded. Hence, it is obvious that in the case where
f is compactly supported, the terms with |p — ¢ A|? larger than A\ vanish
independent of ¢ by choosing A sufficiently large. If f is rapidly decreasing
the behavior of the error terms is not so clear at this point. On the one
hand, one can choose A\ depending on ¢ in a way that the derivatives of f are
sufficiently small, i.e. some order in . The problem here is that by increasing
A one will also increase every term of this extra error that includes a factor
p — € A(q). Clearly, for the terms in the expansion this can be handled since
their norm can be estimated by some polynomial of |p — ¢ A(¢q)| and thus
can be controlled by f. The big uncertainty here are the estimates for the
approximation error O(g37"). By increasing A the constants in this estimate
will get larger and they may even grow exponentially with A. On the other
hand the p — ¢ A(q) factors stem from derivatives of H, and e,. Since all
the estimates leading to this error are related to the estimate of the Moyal
remainders (2.3) we expect that one can control the error terms by some
expression of the form ||e,||o.7, || Hx|lo,-,. Assuming this to be true, one can
control the growth of the error with respect to A\ by some polynomial of
|p — € A(q)| which is exactly what we are looking for. Moreover, this leads to
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full control over the errors depending on ) so that one can even let \ tend to
infinity.

PrROOF Fix A > 0. Clearly, F[; , f and R satisfy the assumptions of Theo-
rem 4.4. Hence, (4.29) yields

- (f(HA) )
@re) ([, £ nm) () 1) v5(2) d
+ e /Rzn Q(hxro, 90)(2) T )(z) dz)
+ (& (IRI + > (IRlas + =+ (R~ RO5))) -

In addition, by definition of y, we have for every (¢q,p) € A, that

u(le=A@P) =p-A@P  X(p-A@P) =1
and
XV (lp— Alg)?) =0 for j>1.

It follows directly that

[ F ) i@ p) vitap) dadp <t [ QUi go)(a.p) 1 (a.p) dgdp
A

A

~ 2 (h,m)(q,p) 7 (q,p) v (q) dg dp

+ &2 /A Q(ho, 0)(¢,p) 7 (q,p) dgdp.

A

Clearly,
_ Ve,(q) R
Vho(q,p) = (p_gA(q)) +0(e)
and
V2ho(q, p) = (W(g’(q) 10) +0(e).

Then, a straight forward computation shows

Q(ho, 80)(¢:p) = & Tran (W’ V(f'(ho(q, p)) 80(q) w’ Vho(q,p)))
% ( (¢,p)) llp — € Alq )Hf]o(q)
+ 5 f'(e(q,p)) Tra(go(q)) + O(e)
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as well as

F(h)(g,p) = = 31 " (ho(q, ) (w° Vho(q, p) , V2ho(g, p) w’ Vho(q,p))
+ 16 /" (ho(q, p)) Tran(w® V2ho(q, p) w° VZho(q, p))
=— % 1"(e(a.p) (Ip — £ A@) |20, q) + | Veula)]P)
— 5 ["(e(q,p)) Aey(q) + O(e)

and

fadi(h’ 7T) —_ _ % //(hO(Qap)) ||WO th(qap)Hzo(Q)
=— 3 f"(e(@.p) lp — e AD5() -

To finish the proof we combine the above results with (3.57) and (2.13). [

An Egorov Type Theorem

In addition to the approximation of expectation values in thermodynamic
equilibrium we also want to approximate the quantum evolution of an
observable in the adiabatic subspace f[f\ Clearly, one can directly apply
Theorem 5.2 to the quantum evolution generated by F[; to obtain a semiclas-
sical approximation dependent of the Hamiltonian system (h*, w5) and the
quantum correction associated to H, and e,. However, our goal here is to
derive an approximation that relates to H(q, p), at least for A large enough.
To achieve this we introduce an operator CM(}AI i) that cuts off large energies.
This then leads to the following result.

Proposition 7.5 Let € small enough, R a classical symbol in S°(B..(H;)) and
¢, : R —= R, u > 0asmooth cutoff function satisfying ¢,(z) = 1 for < p and
(u(r) = 0 for > i+ 1. Then, there exist \, > \, > 0 and a T}, , > 0 such
that for f[e/\u the super-adiabatic projection associated to H), with eigenvalue
ex, and 0 <t < T, we have

H 1, <eiﬁ@ Ve B e o, ((r®(@l) + 2 A1) &,.1,) ) i3, Gu(fy,) H
= 0(%).
(7.9)

Here, &5, ,, is a smooth cutoff function with &5, (q,p) = 1 for (¢,p) € A5,

and &5, (¢,p) = 0 for (q,p) € R\ A5 ;5,0 where Ay == {(¢,p) € R*":
Ip — e A(q)|?> < A). The effective symbol r?) of R(q,p) is defined by (3.26)
with the m;s associated to H(q,p) = 5|p — ¢ A(q)|* + V(q) and eigenvalue
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e(q,p) = 5 |p — € A(q)|* + e,(q). The Hamiltonian flow @ is the flow of the
Hamiltonian system (h,w*) with classical Hamiltonian

h(g,p) = 5P = AQ))* + eu(a) + 5 ° 0 = A}
and symplectic form
W (g,p) =+ Qo(q) +2° (g, p)

where Qy(q) and 24(q,p) are defined by (7.4) and (7.5), respectively. The
resulting Hamiltonian equations are given by

G =p—cAlg)+0(E)
and
pi = —0iey(q) + ¢ (9:A(q), p — € Alq)) —927(q,p) (p — £ A9));
— 38 {p—cAlg), AW (q) (p— e Aq)))
+e2Wii(q) 9jeu(q) + O(E?) .

The quantum correction 2A(t) is given by
t
At) = [ A (ro(®7)) 0 LT dr
0

with

25 (r0) (g, p) = — 3 Trn(92,70(¢.2) 90(9)) — 3 (Bprolg, 1), V Tralo(q))
+ 102, ro(q,p) (p — 2 A()); 0igd) (q)
+ i 822‘10]';017“0((]7])) a?jlev(%p) + 0(5) .

REMARK 7.6 In Remark 7.1 we stated that instead of our classical Hamiltonian
h(q, p) we can also use the symbol of the effective Hamiltonian from [PST07]

ha,p) =L Ip—cA(@))* + eu(@) + 2 * Tra(g0) (@) — 3% lp — e A(@) I} g

to semiclassically approximate the quantum evolution up to errors of order
3. Note, in addition to including the Born-Huang potential Tr,(go)(q) also
the sign of the last summand changed here. Clearly, we have to adjust the
coefficients of the symplectic form w® as well as the quantum correction 2§,

7.3 An Egorov Type Theorem
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in order to get similar result to Proposition 7.5. We change the coefficients
of the symplectic to

& (q,p) =’ + e Q(q) + 2 Qi (q,p)

where

.05 (mq,p —<Alg) W<q>)

Wi(q) 0

with
Q7 (q, k) == ;Wulq) ki -

In this case @*(q, p) is not skew-symmetric and therefore does not define a
symplectic form. For the quantum correction we use

A5 (r0(q,p), 0:p) = — 3 Trn (VZ,70(g, ) 90(q) )

+387 ,r0(q.p) (0 — € A(9)): igh) (q) (7.10)
+ i a;)ip]-plro(Q7p) a?jlev(q) + O(E) :

Then, (7.9) holds with ®! being the flow of the system of ordinary differential
equations
= —0%(2)" Vh(z).

Note here that the change of the sign in the last term of the scalar Hamilto-
nian causes the change in the symplectic form. Hence, by solely including the
Born-Huang potential Tr, (¢) one can approximate the quantum evolution
up to errors of order £* using the simpler quantum correction resulting from
(7.10).

PROOF For now, choose an arbitrary momentum cutoff i > 0, energy cutoff
A > 0 and time ¢ > 0. We will make a specific choice for \,,, \, and 7}, , later
in the proof. Since ﬁ; is self-adjoint on H and (,, € A the Helffer-Sjostrand
formula (4.1) together with the fact that f[f\ almost commutes with the
Hamiltonian ]'—Al'/\6 yields

I, Gu(Hy) = 11, Gu(Hy) IT, + O(e™).
By Proposition 4.3
1} Gu(Fy) T, = I, op. (G (ha, m)) I + O(%)

where
G (ha, ™) = Culha) + €2 G (ha) + €2 G (ha, )
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with ¢5°(hy) and Czdi(h)\,ﬂ)\> given by (4.12) and (4.13), respectively. In
addition, by Theorem 5.2 the Hamiltonian flow ®! , of (h,,w5) exists globally
and

ﬁi eiﬁ;t/a RE e_iﬁ;t/a ﬁi _ ﬁi op. (7&2)(@;)\) + e2 Ql)\(t)) ﬁi + 0(63)

where ry € $°(¢,R) is the symbol of the effective Operator of 2~ restricted
to the adiabatic subspace I, % and 2, (t) € S(¢, R) is

t
Un(t) = [ A (rao(@7,)) 0 B dr
with

A5 (rr0)(@:p) = 21 {1,720 Ja(a,p) — 5 tras ({{R0, Po b {0 Po} }) (45 p)
+O(e).

Combining the above results we conclude

I O A TN
=TT, op, (r7(@L ) + 2 2A,(1)) 11 0p. (¢ (hr, ™)) TT, + O(?)

=TT, op, ((r{(®L,) + & An (1)) # ma # G (ha, ™)) T+ O(%)
(7.11)

By definition, ¢, (z) is zero for every = > p + 1. In addition, e, is assumed
to be bounded. Hence, there exists a \, > 0 such that for every A > )\, it
holds that

(P (h)(g.p) =0 forall jeN, and (g,p) €R™\A; .

Here, ¢{/)(z) denotes the j-th derivative with respect to = of (,(z). As a
consequence we have for every \ > \, that

¢i(h,m) =0  forall (g,p)eR™\Aj, . (7.12)

It follows for every A > )\, and every (¢,p) € R?" \ Aj, that

((rP (@) + 2 A(1)) # ma # (0 7)) (g,p) = 0. (7.13)

7.3 An Egorov Type Theorem
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Now, choose )\, > )\, and § = % Clearly, for every (q,p) € A, it holds

o (q.p) =7P(q.p), h*(q.p) =h(g.p), and 10(q,p) =r(q,p).

(7.14)
Since the Hamiltonian flow @, depends smoothly on ¢ and A5, s C Ay,
there exists a 7}, 5, > 0 such that

@Z,Au(%p) € Ay, forevery (¢,p) € A5,,; and t€0,7,,,). (7.15)

Combining (7.14) and (7.15) it holds for every (¢,p) € A5, sandt € [0,7,,)
that ®(q, p) exists and ®, 0 (@:p) = ®L(q,p). Furthermore, a straight forward
computation shows for (¢,p) € A,, that

A, (72,0)(a,9) = 2 {ho 70 }a(q,p) = tra, ({{ho, Po } . {70, Po} })(a,p)
== 5T (V2r0(2:0) 90(0)) — £ (Vprolg,p), V Tralg0(q)))
+ 102 ,r0(g,p) (0 — 2 A(9))i 9igd ()
+ 5708 nro(a,p) 8en(q, p)
= A5, (r0) (g, p)

which shows 21, (t)(¢, p) = A(t)(q, p) for every (¢,p) € Az, and t € [0, T}, ).
We conclude that
(2@ ) + 20, () # 7x,, # Gl 7)) ()

(7.16)
= ((rP(@) + A1) i, # G () (@,9)

for every ¢t € [0,7},,,) and every (¢,p) € A; ;. Moreover, (7.12) implies
that for every (¢,p) € R\ A5, DR\ Ay, and t € [0,7),,) we have

0= ((r® (@) + 2 A() # ma, # C(haam2,)) (4, P)

(7.17)
= ((rP(®Y) + 2 A)) &, 0, # 70, # (B, 70,)) (0 0)

where &5, is a smooth cutoff function with &5, (¢.p) = 1for (¢,p) € Aj,
and &5, (¢,p) = 0 for (¢,p) € R\ Ay ,,. By combining (7.16) with (7.13)
and (7.17) we obtain for every (¢, p) € R** and every t € [0,7},.»,)

(r2(@L,,) + 22U, () # o, # B, 70,) ) (. )
= (r®(@L) + A1) # mr, # G (P, 72, ) (D)
= ((rP(@L) + 2 A()) &5, 0, # 7 # (B T)) (0:1) -
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7.4

Note here, the reason why we introduced SRR that the Weyl quantization
of 7@ (®!) + £22(t)) may not make sense for all ¢ € [0,7,,,) since the
Hamiltonian flow ®! may not exist for arbitrary (¢,p) € R* and t € [0,T},»,)-
Including the cut off, the expression r*)(®!) + £ (1)) &5, ,, is smooth and
bounded with all its derivatives for any ¢ € [0,7),,,). Then, similar to (7.11)
we get

op. ((r® (®L) + 22 A1) &, 5, # 7, # G (B, 70, )
= op. ((r (@) + 2A(1)) &5, 5, ) T, Guly,) + O(P).

Then, combining the two results above and (7.11) finishes the proof. O

Numerical Experiments

In this section we apply the numerical scheme described in Section 5.2
to a simple example of Born-Oppenheimer type where we will restrict to
approximations to errors of order 3. Our main goal is to show that the
algorithm suggested in Section 5.2 can reach the accuracy of order 3, does
so in a efficient way and is therefore feasible also in a moderately high
dimensional setting. On the contrary, we will also discuss a situation where
the algorithm fails to reach the expected accuracy.
We consider the Hamiltonian

A E

0 =-SA, +V(2)

acting on the Hilbert space H = L?(R) ® C? with matrix valued potential

[ tanh(z) )
V(z) = ( 5 —tanh(x)) , 0>0.

The eigenvalue bands of V' (z) are

e (z) = —/tanh?(z) + 42 and eWM(z) = —eO ()

with associated eigenprojections P;(x) = |p;(z)){p;(x)| where p;(z) = @;/|5il,

Wi = 1

1(p(®)
_ <5(e —|—tanh(x))> for ic0.1.

See Figure 7.1 for a plot of the eigenvalues for 6 = 0.1.

7.4 Numerical Experiments
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Figure 7.1. Eigenvalues ¢ (z) and ¢V)(z) of the matrix valued potential
V(z) for § = 0.1.

As initial wave function )y (z) we consider a gaussian wave packet centered
at (go, po) € R? that is a section of the eigenbundle Py (x) C?, i.e.

o) = ()™ exp (= 3 lo = qo” + Lpo - (2 = o)) (o(@)]

Then, the initial wave function is in the almost-invariant subspace I x
associated to e(?). The scalar Wigner function w¥°(z) := try, (W¥°)(z) of v
can be computed analytically and satisfies

wh(z) = (me) " exp (= L1z — (qo0,po)[?) -
see e.g. [LR10, §3].
We consider an observable A” with symbol A taking value in the hermitian
matrices over C2. By (5.32) the quantum mechanical expectation value at

time ¢ > 0 with respect to the observable A and initial state 5% = |t;) (10|
is approximated by

(0 A% = /R w'(z) (a(@L) + 2 (1)) (2) dz + O()
~ IV (a(®h)) + &2 IV (A3(L)) .

(7.18)

Here, we use quasi-Monte Carlo quadrature, i.e. quadrature nodes {z;}1, C
R? of low star discrepancy with respect to the multivariate normal distribu-

Chapter 7 Application: Born-Oppenheimer Type Hamiltonian



tion. Then, for an appropriate f : R x R? — R the Koksma-Hlawka inequality
yields a constant C' = C(f(t)) > 0 such that

< C (log(M))% M~ (7.19)

R2n

wwo(z) f(t,z)dz — ]\1/[ Z:f(t, 2;)

where ¢; > 2, see e.g. [LR10, §3.2].

Note, in (7.18) we use the approximation scheme that results from the
reformulation of Theorem 5.2 derived in Remark 5.5. When applying the
numerical scheme to systems with Born-Oppenheimer type Hamiltonian
without external Magnetic field then this reformulation has a big impact on
the efficiency of the algorithm. The main reason hereto is the following.
The simple structure of the canonical Hamiltonian equations of motion
(g) = (_vj(?m (q)) allows the use of very effective symplectic integrators.
Roughly speaking, this is due to the fact that the r.h.s. of the differential
equations for ¢(t) and p(t) are independent of ¢(t) or p(t), respectively. Hence,
when treating the differential equations for ¢(t¢) and p(t) independently then
they attain the trivial solutions ¢(t) = tpy and p(t) = —t Ve (qy). This
property allows the use of high order splitting schemes. Here, we will use
a eighth-order splitting scheme with time-step size 7y. For details see e.g.
[GL14, Section 3.3].

Of course the use of the canonical Hamiltonian equations for the Hamilto-
nian flow results in additional correction terms. Due to the 2 prefactor of all
corrections those terms can be approximated rather coarsely to achieve the
same overall accuracy. Clearly, this effect is more prominent for smaller «.
Nonetheless, we see in Table 7.2 that even for a relatively large ¢ of 0.1 the
run-time for the approximation of the classical Hamiltonian flow ®}, already
excels the run-time to approximate the second order corrections for a given
overall accuracy.

Following the procedure in Section 5.2 the corrections 22(t) can be refor-
mulated to z
A2(t,2) = S Th(t, 2, D™ a0 dL(z))
k=0

where

mj, —times
Tk(t, 2) RZX X2 LR

are explicitly defined linear mappings from the space of m,-tensors to the
real numbers that are independent of a. Then, for fixed »z € R? the vector-

7.4 Numerical Experiments

185



186

ized tensor (F’“ (t, z))
problems

i denoted by I'(t, z) solves a system of initial value

gtf@, 2) = N(®h(2)) T(t, 2) + b(D4(2)),  T(0,2)=0

where T : R x R? — R Np = Y°L_ 2™, The components of the Matrix
N : R? — RN r and the vector b : R? — R are given explicitly in terms
of the eigenvalues ¢, the eigenfunctions ¢;(x), i = 0,1 as well as their
derivatives. In this work will not state the explicit expressions for N(z)
and b(z). An interested reader may follow the procedure of Section 5.2 to
determine the expressions. For the expression of the IVP that is associated to
the quantum correction

t
2i / {ho,ao(®I)}; 0 @7 dr,
0

see [GL14, Section 2.2].

Similar to [GL14], we resort I'(¢,z) and split it into two parts Z'(¢, z),
Z2(t,2z) : R x R? — RMr/2 to transform the system of IVPs into a similar
structure as the canonical Hamiltonian equations. This then allows the direct
use of higher order splitting schemes. In particular, there exists a o € SNr
such that

9 (?W)) = a@tf”(t’ 2) = N, (®(2)) Ty (1, 2) + by (®h(2))

_ ( 0 Ay(d(2)) (é (t, z)) . (51@;(2)))
Ay (P4(2) 0 =2(t2))  \P(25(2)

VYhe{e Fo = (Fa(i)){lﬁiSNp};’ No = (Na(i)’j){lﬁi,jng}’ bU = (ba(i)){lﬁiSNp}’
Al,AQ R — RNF/QXNF/Q, bl R — RNF/Q, b2 :R?2 — RNF/Z and @6(2) =

(@Z(z), (IDZ(Z))T.

Additionally including the canonical Hamiltonian equations, we get

5 (= 0 A 0 =0 0
S |2 =10 0o AE)||=|+]| VE) (7.20)
=2 0 A(Z% 0 =2 b(20,=1)
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=t 2

where Z0(t, z) = ®(2), ZX(t,2) := ( CWZ))), bl(q) = (_76(0)(‘1)), Ay =

N, —times
——

(1,0,....0), Ai(q) = (Azq)) and A(q) = (0, As(q)).

Note, the above system of IVPs has exactly the same structure as the one in
[GL14]. Most importantly we again have that e.g. the r.h.s. of the differential
equations for =! is independent of =!. It follows that we can construct a
fourth order splitting scheme in the same way as done in [GL14]. We will
skip the details for this step here. To conclude, we obtain an approximation

scheme
AE 1 No 82 UAL! 1 1
trw(p" A7) = - o al0™ (6 2)) + X TR (2, D™ a0 o™ (1,5)))
0 j=1 L k=0j=1
+O((log(No))* Ny + 7§ + € (log(N1))™ Ny ' + €2 7§ + &%) .

(7.21)

where ¢™(t) is the approximation of the Hamiltonian flow using an eighth
order splitting scheme with time-step 7y and I'}!(t,z,-) results from the
approximation of the above system of IVPs using a fourth-order splitting
scheme with time-step 7.

Regarding the quasi-Monte Carlo points (20)1<j<n, (2))1<j<n, C R*: We
use the cumulative distribution function of the normal distribution to map
Halton points to low star discrepancy points with respect to the normal
distribution.

Note, for every quantum system with Born-Oppenheimer type Hamiltonian
and without external magnetic field the associated IVP can be brought into
the structure (7.20) which allows a numerical treatment with the procedure
above. Whenever a magnetic field is present the zero pattern in (7.20) does
not hold up. Hence, a direct application of high order splitting schemes is not
feasible in this case. Clearly, any other feasible numerical integrator as e.g. a
classical Runge-Kuta method may be used. This of course has an impact in
the run-time of the algorithm. Nevertheless, we still expect the leading order
to be the limiting factor regarding run-time at least for moderately small
dimensions and .

In what follows we will validate the approach developed above for different
observables, namely the position a(q, p) = ¢, second a(q, p) = ¢* and third
moment a(q,p) = ¢°. In the validation we will focus mainly on the second
order contributions.
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As reference we use grid-based solutions computed by a Strang splitting
scheme with Fourier collocation (see [LR10, Appendix]). The parameters we
used for computing the reference solution are given in Table 7.1. Except for
the experiments where we examine a situation where the numerics fails, we
use the time interval [0, 7] in all our experiments.

Table 7.1. The parameters for the grid-based reference solutions computed
by a Strang splitting scheme with Fourier collocation.

€ # time-steps domain # grid points
0.1 1.2 % 105 [—5,20] 4096
0.05 3.6 % 10° 9,20 4096

[—5,20]
0.02  3.6%10°  [—5,20] 4096
0.0l  1.2%10°  [—5,20] 4096

In what follows we will present the result of several numerical experiments.
We begin with the time-evolution of the quantum mechanical expectation
value try (p¥ 1218). Figure 7.2 shows the absolute error of the Egorov approxi-
mation

try (p¥ A7) & N > a(e™(t,2Y)) (7.22)
j=1

and the full approximation (7.21) compared to the position expectation
computed from the reference solution for both ¢ = 0.1 and ¢ = 0.01. In
addition, it is shown how the error evolves when we exclude certain parts
form the full approximation. Namely, the corrections resulting from the
second order corrections that are incorporated in the e-dependent classical
Hamiltonian system 'no classical’, second-order the quantum correction in
the semiclassical approximation of Hamiltonians with scalar symbol 'no
scalar Q-corr’ and the quantum corrections that result from the adiabatic
perturbation "no adiabatic Q-corr". We see in both cases ¢ = 0.1 and ¢ = 0.01
that the error of the full approximation is almost two orders in ¢ smaller
than the error of the Egorov approximation this although only an increase
in accuracy of order ¢ is expected. Also, it seems like the ’scalar’ quantum
correction has the least influence on the error while the corrections to the
Hamiltonian system have the largest. Of course this may just be true for
this particular Hamiltonian. The values for the number of sampling points
and the time-step sizes are given in Table 7.2. In addition, the run-times
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for the Egorov algorithm (7.21) and the approximation for the second order
correction

1
try (p¥° op. (212( ) N1 ZZF“ 2, D™ a0 ¢ (t, 2})) (7.23)

k=0 j
are shown. We observe that even for large £ = 0.1 the run-time for the Egorov
approximation excels the computing-time for the second order correction.
As the dimension of the system of initial value problems to approximate the
second-order corrections grows with order three in the dimension N of the
configuration space while the dimension of the classical Hamiltonian grows
linearly with N, the computing time for the quantum corrections excels the
computing time of the Egorov algorithm for large IV and . Nevertheless, for
small enough ¢ the computing-time of the algorithm to be feasible even for
moderately high dimension N.

Table 7.2. Number of quasi-Monte Carlo points Ny, and N;, time-steps 7
and 7; as well as the run-times ¢5°** and ¢{*"**¢ for the ap-
proximation of the leading order (7.22) as well as the second
order contributions (7.21) for each value of ¢ used in Figure 7.2,
Figure 7.3 and Figure 7.4.

it d 1 d
e NO To te apse Nl T te apse

0.1 105 7/30/2'  10.25sec 500  7/30/2° 1.51sec
0.05 10° 7/30/2' 120.70sec 103 7/30/2'  3.96sec
0.02 2-107 7/30/2' 45.08 min 100 7/30/2% 52.41sec
0.01 108 7/30/2% 345,72min 5-10% 7/30/2% 203.77sec
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Figure 7.2. The error of the expectation values of position for ¢ = 0.1 (top)
and ¢ = 0.01 (bottom). The figures (b) and (d) show the error
for the full approximation (7.21). The figures on the (a) and (c)
show the error for the Egorov approximation (7.22), when ex-
cluding the correction to the classical Hamiltonian system, when
excluding the ’scalar’ quantum correction, when excluding the
adiabatic quantum correction as well as the full approximation
(7.21). For the used values for the number of sampling points
and the time-step sizes see Table 7.2. The gap parameter 6 = 1.
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To verify the asymptotic accuracy, namely that the algorithm (7.21) is
of order %, we determine the mean and maximal error over time of the
position, second and third moment expectations for ¢ = 0.1, 0.05,0.02, 0.01,
see Figure 7.3.

O(e")
10 ----0(e?) 10

q: position

O(et)
== 0

q: position

—sk— ¢*: second moment
——¢’: third moment

—— ¢*: second moment
——¢’: third moment

._.
S,
S

mean error

maximal error

._.
S
&

0.1 0.05 0.02 0.01 0.1 0.05 0.02 0.01
€ €

(a) (b)

Figure 7.3. The mean (a) and maximal (b) error over time of the expectation
value of position, second and third moment as function of . The
used number of sampling points and step sizes are given in
Table 7.2. The gap parameter § = 1.

Moreover, Figure 7.4 compares the mean and maximal errors over time of
the position expectation for ¢ = 0.1,0.05,0.02,0.01 from the approximation
by the Egorov algorithm (7.22), the complete second-order algorithm and
the second-order algorithm when omitting corrections to the classical Hamil-
tonian system, the semi-classical correction for scalar symboled Hamiltonians
and the correction from the adiabatic approximation. We observe that only
the complete algorithm reaches an asymptotic accuracy of order &3, all other
algorithms reach only £2.

Next, we examine the discretization errors in the approximation of the
second order contributions (7.23). Hereto, we present the mean and maximal
error over time of the expectation value of position, second and third moment
for ¢ = 0.01 as function of the number of sampling points N; Figure 7.5
and the time-step size 7, Figure 7.6. While we use a time-step size of
7, = 7/30/2? in the analysis of the N,-dependence, we chose the number of
sampling points NV, in the examination of the 7;-dependence as N; = 5 * 10%.
For the approximation of the leading order we use N, = 10® sampling points
and a time-step size o = 7/30/22. We observe that the mean and also the
maximum error decrease with an order of 1/N; in the number of sampling
points until they reach a lower bond of order 3. Regarding the time-step
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10 —d— ¢: no classical —— ¢: no scalar Q-corr 10 —k— ¢: no classical —g— ¢: no scalar Q-corr
—8—¢: no adiabatic Q-corr == g: all —f&— ¢: no adiabatic Q-corr == g: all

maximal error
mean error

(a) (b)

Figure 7.4. The mean (a) and maximal (b) error over time of the expec-
tation value of position as function of ¢ for only leading order
contribution (7.22), without second order contributions for the
e-dependent classical Hamiltonian system, without semiclassic
quantum correction, without adiabatic quantum correction as
well as the full approximation (7.21). The discretization param-
eters are presented in Table 7.2. The gap parameter 6 = 1.

size, we see that the degression of the mean as well as maximal error does
not quite reach an order of 77 but is slightly better than order 7.

In Figure 7.7 we compare the maximal error over time of the expectation
value of position as function of ¢ for both, § = 0.5 and § = 1. We observe
that due to poor adiabatic decoupling for small gap ¢ and large large  we
do not reach an order €% error. In this case, the second order corrections
show no improvement over the leading order approximation. We even see
that for ¢ = 0.1 and § = 0.5 the error of the Egorov algorithm (7.22) shows a
slightly smaller maximal error compared to the error of the full second-order
approximation (7.21). Nevertheless, as one expects the error decreases
rapidly as ¢ gets smaller and is of order % once ¢ is smaller than 0.02.

In Figure 7.8 we see a situation where the numerics of the algorithm fails.
Here, we consider a Gaussian wave-packet centered at (g, po) = (—3,0.91)
where the total energy ho(qo, po) = % + e (q) satisfies ho(qo, po) ~ —1 =
ho(0,0) = —d. So, roughly speaking the average particle just reaches the
maximum of the potential ¢(*) and the wave-packet splits into two parts
after reaching the maximimum of the potential ¢(*), one moving to the ’left’
and the other to the ’right’ of the maximum. We see in Figure 7.8a that the
error resulting from the full second-order algorithm (7.21) rises to order
10° while the error of the leading order approximation is of order 1073.
Removing the ’scalar’ quantum correction from the approximation reduces
the error significantly (see Figure 7.8b) but also the ’adiabatic’ quantum
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Figure 7.5. The mean (a) and maximal (b) error over time of the expectation
value of position, second and third moment as function of the
number of sampling points N,. The semiclassical parameter is
chosen as ¢ = 0.01, the gap size 6 = 1 and the time-step size
71 = 7/30/22%. For the leading order approximation N, = 108
sampling points and a step size of 7, = 7/30/2? are used. In
both plots the error decreases with order N; ' until the lower
bound of order £? is reached.
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Figure 7.6. The mean (a) and maximal (b) error over time of the expectation
value of position, second and third moment as function of the
time-step size 7;. The semiclassical parameter is chosen as
e = 0.01, the gap size § = 1 and the number of sampling points
N; = 5%10% In both plots the error decreases with order slightly
worse than 77 until the lower bound of order £ is reached.
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Figure 7.7. The maximal error over time of the expectation value of posi-
tion as function of ¢ with gap (a) 6 = 0.5 and (b) § = 1 for
only leading order contribution (7.22), without second order
contributions for the e-dependent classical Hamiltonian system,
without semiclassic quantum correction, without adiabatic quan-
tum correction as well as the full approximation (7.21). For
large € and small gap § = 0.5 the error is relatively large as the
two adiabatic subspaces associated to the eigenvalues ¢(*) and
eV are not well decoupled. The used number of sampling points
and step sizes are given in Table 7.2.

correction contributes to a relatively large error when comparing to the
Egorov algorithm (7.22).

So, where does the numerics fail in such a situation? Recall that in the
approximation of the second-order corrections we approximate the phase
space integral

tr (7 op. (A1) = [ 0 () W(t,2) d

R2n

!
= Z/ w? (2) Ty (t, z, D™a o ®'(z)) dz
=0 R2n

using a quasi-Monte Carlo method. Here, it is important to know that the
constant C' = C'(f(t)) in the Koksma-Hlawka inequality (7.19) depends on
the variation of the integrand f(¢). This means that the quasi-Monte Carlo
method looses accuracy with large variation of the integrand which of course
makes sense considering the nature of Monte Carlo type methods. The
occurrence of such large variations in the integrand w¥°(z) 'y (¢, z, D™ a o
PL(2)) is exactly the issue here. To exemplify the issue in place we select a
particular I';(¢, z, D™a o ®L(z)) that stems from the second-order quantum

Chapter 7 Application: Born-Oppenheimer Type Hamiltonian
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q: all 0.014
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(a)

——q: Egorov

q: classical correction
q: adiabatic Q-corr
q: no scalar Q-corr

0 5 10 15 20 25 30

time

(b)

Figure 7.8. The error of the expectation values of position for ¢ = 0.05 and
0 = 1. The initial wave-function 1), is a Gaussian wave-packet
centered at (qo, po) = (—3,0.91). Figure (a) compares the error
of the leading order approximation (7.22) with the error of the

full second-order algorithm (7.

21). Figure (b) shows the errors

of the leading order approximation (7.22), the approximation
with only the second-order correction to the classical Hamilto-
nian system, the approximation with only the adiabatic quantum
correction and the approximation with classical and adiabatic
quantum correction. For semiclassical approximation Ny = 10°
and N, = 10 particles and time-step sizes 7, = 7/30/2% and

7 = 7/30/2? are used.

7.4 Numerical Experiments
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correction in the semiclassical approximation for Hamiltonians with scalar
symbol. So, there is a 0 < ¢ <[ such that

Fi(t, z,D™ao CI)Z(;;))
— i (Dac), ['[(2%07) ,, (70%%),, | o 0lt = . 2)ir,

see [GL14, Theorem 2.1]. Note, all T';(¢, z, D™a o ®!(z)) are quite of this
form and in particular include an expression of the form D ®” where
the ’scalar’ correction is the only expressions that includes a third order
derivative of the Hamiltonian flow with respect to the initial configuration.
Now, choose a particle with initial configuration (qo, po) where the total
energy ho(qo, po) satisfies ho(qo, po) = % +¢(qo) = 1(0,0) = 4. Then the
particle reaches exactly and stays at the unstable maximum of the potential
e®, ie. ®(qo,po) = ®"(qo,p0) = (0,0) for t > t,. However, an arbitrary
small perturbation to the initial configuration lets the particle 'fall’ from the
maximum left or right, see Figure 7.9. Therefore, the derivative D, ,®*(qo, po)
increases rapidly in time ¢ once the particle gets close to ®(q,p) = (0,0).
On the other hand, most particles never reach the configuration ®‘(q, p) ~
(0,0) as their total energy ho(qo, po) is either larger or smaller than —§ and
therefore the derivative D, ,®(qo, po) stays relatively small for such particles.
Clearly, this effect increases with the order of derivatives acting on the
Hamiltonian flow ®(gy,po). To conclude, there is a neighborhood of the
set M = {(qo,p0) € R? : ho(qo,po) = —9d,sen(qo * po) = —1} where the
derivatives D" ®” and thus also I';(t, z, D" a o ®(z)) get very large for some
time ¢ > 0 while outside this neighborhood the magnitude of these functions
is relatively small. The quasi-Monte Carlo method can not cope with these
large variations at least not with a reasonable number of particles.

To support the above explanation, in Figure 7.10, we show the error when
excluding all particles with total energy |ho(qo, po) + 6| < 0.1 from the Monte
Carlo integration. We see that this exclusion of particles leads to significant
reduction of the error. Clearly, we will not reach an order £* accuracy by
simply excluding ’critical’ particles. As the modified classical Hamiltonian
system (h,w*) has it’'s maximum of the total energy at a slightly different
place in phase space, it is worth considering the algorithm (5.26) resulting
from our original Egorov theorem for these ’critical’ particles. Nevertheless,
as the correction of the total energy is only of order 2 it is not clear whether
this approach leads to a significant improvement. So, at this point it is not
clear how to solve this issue and we have no aspiration to so within this work.

Chapter 7 Application: Born-Oppenheimer Type Hamiltonian
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Figure 7.9. Sketch of the classical evolution ®'(qy,py) of a particle with

(a) initial configuration (g, py) and (b) perturbed initial con-
figuration (g £ h,po), h > 0 where the total energy h(qo, po)
satisfies ho(qo, po) = % + e©(gy) = h(0,0) = —§ for gap pa-
rameter § = 0.1. For initial configuration (qo,p) the parti-
cle stays at the unstable maximum of the potential ¢, i.e.
D' (qo, po) = D™ (qo,po) = (0,0) for t > ty. On the contrary, for an
arbitrary small perturbation A of the initial configuration (qo, po)
the particle will drop’ left or right of the maximum for ¢ > ¢,.
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Figure 7.10. The error of the expectation values of position for ¢ = 0.05 and
0 = 1. The initial wave-function ¢, is Gaussian wave-packet
centered at (g, po) = (—3,0.91). In the approximation of the
quantum corrections all particles satisfying |ho(qo, po) + | < 0.1
were excluded. We compare the error of the leading order
approximation (7.22) with the error of the full second-order
algorithm (7.21). For the semiclassical approximation Ny = 10°
and N, = 10* particles are used where through the exclusion
of particle only 4832 particles affect the approximation of the
quantum corrections. The time-step sizes are 7, = 7/30/2% and
7 =17/30/22.
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Technical Lemmata

This chapter consists of a collection of technical lemmata used in the general
Chapters 2-5. Lemmata A.1 and A.7 are used in the derivation of trace formu-
lae for the Lebesgue density of Liouville measures, Section 2.2. Lemma A.1
applied in the derivation of effective operators. The results of Lemmata A.8
- A.10 are needed for the error estimates of the approximation by effective
operators. Lemma A.11 is used in the error estimate of the semiclassical
approximation of equilibrium states.

Lemma A.1 Let k € N and my,...,my € {1,...,2n}. In addition, we as-

sume B',..., B¥ € R?*?" to be skew-symmetric matrices. Then, the matrix
AL (B, ..., B¥) as defined by (2.25) is skew-symmetric.

PROOF We proof the skew-symmetry of A* by induction over k. So let
B' € R****" be skew-symmetric then A} ;(B') := B/, is skew-symmetric. For
k =2, let B!, B* € R?"*?" be skew-symmetric matrices and m; € {1,....2n}.
By the skew-symmetry of B!, B? as well as w"

A2

m1;5,0

(B',B*) =B?,, W B}

jm1 Fmy [mi4n]on & mi4+n]oni
1 0 2
+ Bj |mi+n]on wLm1+nJ2n mi Bmli

1 0 2
Bi [m1+n]2n CL)Lmri-nJZn my Bm1 J

— B}, wh 1on Bl

im1 “my [mi+n [mi1+n]on J

= A2 . (B!, BY.

mi;i,J

..;(B',...,B") to be skew-symmetric for r < k we

(BY,...,A%, (B, B",...,B¥1).

mE—1

By induction assumption A2, (B', B¥) is skew-symmetric for every 1 <[ <
k — 1. Then, also

B, ... A2 (B"'B",...,B¥Y for 1<I<k-1

mg—1
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is skew-symmetric by assumption. We conclude that A¥, — (B',..., B")

is skew-symmetric as a sum of skew-symmetric matrices.

Let BY,..., B¥ € R?*?" and for k < n, o € Sy a permutation of {1,...,k}
and L={l+n}, I C{l,...,n},|I|=k. O

Lemma A.2 Let Q) € R**?" skew-symmetric and my,...,my € {1,...,2n}. In
addition, let r € N, ly,...,l. € {1,... .k} and a € {1,]}". We will show some
important properties of the short notation introduced in (2.50)-(2.51).

We have
197197 =0 (A.1)
as well as
Trpon (15718% -+ 127 157) = 0. (A.2)
The trace is cyclic in the sense that
Trpon (15715 - 107) = Tre (I8 157 - 17771 (A.3)
The trace is symmetric in the sense that
Trjon (15718 - 107 ) = T (L0 17257 57 1F7). (A.4)

In case there are two equal symbols contained in a trace then the trace can be
split into two traces, i.e.

Trpon (157 - 105 IS 15 0 ) = Tgen (192 -+ 197" ) Ty (18500 -+ 127)
(A.5)

for any let 1 < s <= r. The part in between two symbols with equal index and
inverted direction is skew-symmetric in the sense that for 1 < s <=1r

Trpen (197 -+ 127 (7 10557127
N (S Y o) o TR
= —TI‘loq (laz .. lOés 1 lal lar lar T, ZE)

= T (I 18557 - 17 I I 17T U

(A.6)
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PROOF Let Q) € R?**?" skew-symmetric and my,...,my € {1,...,2n}. To
show (A.1) assume [; € {1,...,k} and «; =]. Then,

(ltlll Z(IXT)]Z - Q] mi wgll Lml—i—nj 2n Ql_m1+nJ 2n I_ml"l‘nJ 2n w(fml—l-nj on M1 lei - O

by the skew-symmetry of €. It’s easy to see that the same result holds for the
case where «; =1. Note that in the following we will use the symbol (-) as
placeholder for indices that are not important for the argument. Let r € N,
li,..., L. €{l,...,k}and a € {1, ]}" with oy =]

T (192 15° - 12 1)
0 0
= Wiy [manfan Lmitnlon () 700 Q) Imatnlan Dlmy+n)zn my $mama

=0

where we again used the skew-symmetry of ). Obviously, the analogous
holds for the case where a; =1 which proves (A.2).

Regarding (A.3), let r € N, [3,...,l, € {1,...,k} and a € {1,]}" with
a1 = ag = «a, =J then

Trpon (192 15° -+ 127)

_ .0 0
= Whn [my4n)zn $2lman)zn me Wiy [matn]a, $Lmasn)an ()
0
Q(') mr Wi, |my+n)an QLmr+nJ 2n M1
0
= Wiy [matn]an QLm2+nJ2n ()"

0 0
Q(')mr Win, | me+n]2n QLmH‘nJ 2nm1 Yy |mi4n)on QLm1+nJ2n ma

= T (1% 127 157).
Clearly, the analogous holds for arbitrary oy, as, o, € {1,1}.
Now, let r € N, ly,...,l, € {1,...,k} and a € {1,]}" with a; = «, =|
then
Trjon (15715% -+ 127) = Wby st Qmrnon () *
Q) me Wi, (2o Plomrbnfon ms -

All the 2r matrices occurring in the above equation are skew-symmetric.
Thus, reversing the order of the matrices and transposing each matrix leads

to
w? Q e Qe WP Q
m1 [mi+n)an 2 4lmitn]an () C)mr Cmp [metn]on 2 4lmetn)an ma
0 0
= Qs lmn)2n Wlmetn)on me Qe ()0 S0 Imatn)zn Wimg 4o ma -
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Finally, moving €,,, |m,+n)., from the first to the last position in the result
above yields

0 0
Qm1 [mr+n)2n Y me4n]on my er () Q(‘) Lmi+n)2n Y mi+n]2, m
0 0
= Win -tz my Sme () 0 matnlan Wi ma $ma Ltz

_ [ 7%r—1 jOr—2 Qg jo1
= Tl"lgr (lrfl N )

Combining the three results above shows (A.4) for the special case where
a; = a, =|. As before, the result clearly holds for any a4, a. € {J,1}.

Regarding (A.5),letr e N, 1 <s<=r,1l;,...,l, €{1,...,k} and o € {
.4} with o = a5_1 = a, =|. Then,
Ty (152 - 157 I G5 1)
0 0
= Wy [m1+n]2n thl"‘”J?n () Q() ms—1 Wi,y [ms—1+n]on thsfl“’”hn mi

0 0
Winy [m1+n]an Qmitnlzn () Qym, Win |mr+n]an Qmptnon ma
= T (182 197" T (150 -+ 107)

which is true for any oy, a1, - € {],1}. Note that in the special case where

s =r we get

Trjon (157 - 17 19 ) = Tgen (157 - 17771 T ()

r—1

which is consistent with our notation.

What is left is to show (A.6). Letr e N, 1 < s <=7, 1,...,l, € {1,... k}
and a € {1,]}" with a; = @ = a5 =, =]..

a2 Qs—1 jary J%s+1 Qo
Trjes <l2 S Sl IR )

0 0
= Wy [mi+n]2n QLm1+nJ2n ma W, [m2-+n]on QLmT"”J% ()

0
Q(')ms—l wms,1 [ms—1+n]an les—lJrann [mi+n]on

0 0
Wi 4n)on mi le () Q(')mr Wi, |me+nan QLmr-l-ngn my *

By the skew-symmetry of (2 and w® we have
0
QLmﬁ-ngn ma Wiy [ma+n]on QLmz'i-nJQn ()
0
Q) ma1 Wiy me_14n)on Sms_1+nlan [m1+nlon

0
= _th1+nj2n Lmsfl‘i’nJQn wl_ms_l—f—njgn Mg—1 Qm371 () U

0
Q) lma+n)an Wmg-tn]an ma $4ma [mr+n)on -
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Combining the two above results we get

[} As—1 jay JQs+1 «@
Trlill (l2 T ls—l ll ls—i—l T er)

0 0
%, lmi+n]on QLm1+nJ2n [ms—1+n]2n WLms,1+nJ2n ms_1 Qms,1 (O
0
Q() [ma2+n]2n wLm2+nJ on M2 Qm2 [mi+n]on

0
le () P Q()mT wmr \_mr+nj2n Q\_mr+ﬂj2n m1

_ Qs—1 10s—2 Qg Ja1 J0s+1 [e7%
= _Trl‘fl (ls—l e N B SS R ) :

0
Wmi+n)on mi

The other two claims in (A.6) follow by additionally using the cyclicity (A.3).

Again, the above result obviously holds for any a4, as, a1, o € {{,1} which
shows (A.6) and with this finishes the proof. O

Lemma A3 Letk € N, k> 2 me {l,...,n}fand R = {Ry,...,Rp} C
{1,...,k}. Then, fori,j € {1,...|R|}

> X Trg(of oty
2

ac{t,J}* oeSym(R\{R;})

= > X Trg(eftealy).

ae{t 1}k oeSym(R\(R;})

PROOF Letk e N,k >2,1C (1,....,n), m € I*, R={Ry,...,Rp} C
{1,...,k}andi,j € {1,...|R|}, i # j. Then,

2 > Trpe(oftopty)

a€{t,d}* oeSym(R\{R;})

k—1
= Y Y Y Tt ol R ol o)
a€{t 4} =1 ceSym(R\(R.}),
o(r)=R;

By the cyclicity of the trace (A.3) we get

k-1
> > > Trper (0 -+ 077" Ry oy - 037"
aE{f )k r=1 oeSym(R\(R.}),
o(r)=R;

k—1
T Oh— "1
= § E E TTR?T(UZ-? oty B o "'07?(—11)'
a&{f 4}k r=1 oeSym(R\(R.}),
o(r)=R;
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By renaming the as and os we get

k—1
>, > 2 Trgplodt ol Rttt 0rly)

ac{t,l}* r=1 c€Sym(R\{R;}),

o(r)=R;
k—1
_ Ok—r—1 DOk—r _Qk—r41 okt
= 2 2 > TI’R?’C( o BT o o)
o(k—r)=R;

Substituting £ — r by 7 yields

k—1
O —pr—1 Og—pr Ok—prit1 A —1
Z Z Z Terk( o BT o B o)
ae{t,}}* r=1 ceSym(R\{R;}),
o(k—r)=R;

k—1
C S T Teler o R o)
ac{t 4}k =1 oeSym(R\{R:}),
o(F)=R;

As last step note that

k—1
S Y Y Trglof oy RO 0l
ae{tJ}F r=1 o€Sym(R\{R:}),
o(7)=R;

k—1
= Z Z Z TrR(.lk (0-‘111 .. Otr 1 RaT Oé'r“rl . o_zzkll)
ac{t,|}* 7=1 ceSym(R\{R;}), J
o(F)=R;
- Z Z TI'R;?‘k< a?kll) _

a€{t,d}* oeSym(R\{R;})

Then, combining the above results finishes the proof.
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Lemma A4 Let k € N, k > 2and m € {1,...,n}*. In addition, assume
ie{l,....;k}and R = {Ry,...,Rg)} C {1,...,k}\ {i}. Then, for every
1 <r < |R|+ 1it holds that

1 - X [0}
S X T (of oty i ol o)
ac{t,|}|BI+2 o€Sym(R)
1

ST (WD S Sl

AUB=R, ae{t,{}|Al+1 ceSym(A)

|Al=r—1
) > )TrzﬂlBHl (77/"81 o 'Tlilfjlg)>> '

BE{1,4}IBI+1 T€Sym(B

PROOF Let k € N, k > 2, m € {1,...,n}r, i € {1,...,k} and R C
{1,...,k}\ {i}. We start with the following observation. Combining (A.2)
and (A.3) we have for any o € {1, |}¥I*! and o € Sym(R) that

R+« YR _ a YR| | R[+1Y _
Tr,i\RH»l(Z' ‘ 0'110"R| )—TI"Z-\R|+1(011"'O'|R| ZI | )—0

Moreover, by (A.6) we have for 2 < r < |R|, a € {1,{}/#*! and ¢ € Sym(R)
that

_ a1 | Q=1 B+l _ar | 9IR|
0 = Tryp+ (01 o1 1 0. O R

Qpr—1 aq |B|+1 a Q|R|
+ Tr;i8141 (0,,,1 ceeott 0" Opg

aq Qpr—1 |B|+1 A R| o
+ Tr; 18141 (01 RN O 0y

or—1 ai ;|B|+1 _“IR| a
+ Tr;i8141 (O’T_l RN O 0"

From now on, let 1 < r < |R| + 1. Combining the two results above shows

> > Trsim (af‘l g B o 'ar;‘f‘) =0. (A.7)
ac{t,J}|RI+1 oeSym(R)
By (A.5)
> > Trsim <af‘1 gt B gar ~U|o;f‘)

ac{t,{}|RI+1 ceSym(R)

= Z Z (Tri|B|+1 (0?1 . 07«34111) Tr; 541 (afr . UER)> .

ac{t,|}Rl o€Sym(R)
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Combining (A.3) and (A.4) we get for every [ C {1,...,k}, a € {1,]}/*!
that

’ <Tr S+ (l l\clylll‘) + Trepn (l\clyl” ' 'l?l>)
= Trpeqm (l?l e lﬁl‘”) + Tr¢W<lW' .. l?)
+ Tl"iau|+1 (lW cee l?) + TI",oéll‘ﬁ(lO‘1 e Z‘C;l”‘)

= % (Tl ) T (T )

Be{tl}

We conclude from the result above that

2 Z Z (Trfmﬂ(olo‘l. o 1>Tra‘m+1< TU.UCE%IF))

a€{t L} 1FI+1 c€Sym(R)

— Z Z <TI',L-O‘|R+1 (0‘?1 .. Ur 1 ) Tr. O‘IR\+2( ar |, O.‘ZF))

ac{t,|}IEl+2 oeSym(R)

In the next step we sort the sum over the partitions of R by splitting R into
two disjoint sets A and B which leads to

@ Qr—1 ar A R|
Z Z (Tlﬁz'“IR+1 (‘71 b0 ) Trjomy42 (Ur " OiR ))

ac{t,}}|RI+2 ceSym(R)

-y (( > > T (ot -ai!)) (A9

AUB=R, ac{t,|}AlI+1 ceSym(
|Al=r—1

(L X Tea(dnn).

Be{t}IBI+1 7€Sym(B)

Then, combining (A.7)-(A.9) finishes the proof. O
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Lemma A5 Let k € N, k > 2, [ C (1,...,n) and m € [I* satisfying that
there are i,l € {1,...,k}, i # [ such that m; = my. In addition, assume
R c{l,...,k}withi,l € R. Then,

> ) Tr oy (07 |1¥|%| )
ae{t \}Bl oeSym({R1,...R(r-)})
1

=3 2 <( > > T (of! o))

AUB=R\{i,l} * ac{t,|}IAl+1 ceSym(A)

(X > T”IBIH( "'753'13)))‘

BE{T,4}IBI+1 r€Sym(B

PROOF We start our proof by considering the case where R|z = i. Then,

> > Tt i (07 - - o)

ae{t 1}l oeSym({R1,...R(r|-1)}) Him

O{G{T,\L}‘R‘ T16{17"'7|R|_1} UESym({Rl7"'7R(|R\71)})7

Ory =l

aq « A R|-1
TrialR\ (0‘1 . l 1 . 0-|R| 1 )

ac{t MBI rie{l,. . |R|-1} o€Sym({R1,....R(|r|-1) }):
Urlzl

Qi g0y | R|-1
Tr e m (0] i op)

(A.10)

Clearly, in the case where Rz = [ we get the same result, i.e.

> > Tr i (07 - - o)

ae{j‘,i}uﬂ JESym({R1 ..... R(|R\71)}) ‘Rl

= X > > (A11)
QE{T”L}‘R‘ ri€{l,...,|R|-1} O'GSym({Rl,...,R<|R‘,1)}),

or =

. «
Tryeim (07" - d%0 - 0|R“|2| 1)

Now, we examine the case R # 4,[. By the cyclicity of the trace (A.3) and

the assumption that m; = my,

Z Z TI‘ a|R‘ ( . e 7:&7”1 e lO‘V'Q . 0—|]%|R| 11)
ac{t}EBl o€Sym({R1,...R(r|-1)}), IR\
Orq :’L',O',,-2:

= > > (A.12)

ac{t } B oeSym({R1,....R(r-1)}),
orq =i, Ory=

Qry+1 J0trg AR|-1 pYR| Gri—1
Trien (0,40 82 Ojp Ty Ry 07" 00117
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for any ri,7m € {1,...,|R| =1}, < ry. By symmetry of the symmetric group
Sym({Ri, ..., Rqr-1) we obtain for any r, € {1,...,|R| — 1} that

2 2 2

7’1€{1, :\R| 1}, ae{t Bl o€Sym({R1,....R(|r|-1)})s
<r2 Ory =1, Org=l

Trjer (p 34t 02 g RO 001 g
vy e 19
ae{?,i}“ﬂ T1€{1,...,|R‘*1}, UESym(R\{i})v
T1<r2 O|R|—ry =R R}, Org—r =1
yOlpo —p Y R|—r (07 —
Tria‘Rl (Jlal."la2 1 RIR‘ 1 Uléll%_lll)
Substituting r; by |R| — 7 we get
ac{t 4} Bl rie{l,...,|R|-1}, oeSym(R\{i}),
r1<re G\R|—T1:R\R|7U’F2*T‘1:
Troqm (051 - %27+ ROWITT g
Z . 1 (A.14)

= 2 2 D

ac{t}EIFe{l,.. |RI-1},  ocSym(R\{i}),
|R|—F<ry  or=R|R|;0ryt7—|R|=!

Q1 || Qi |R| ... ROF Y R|—1
Trjoim (07" -+ - i%r2tr=18 - REE -eo 7))

for any r, € {1,...,|R|—1}. Combining (A.12) - (A.14) and summation over
ro yields

D )y 2.

r1,72€{1,..|R|=1}, ae{t I} Bl o€Sym({R1,....R(|r|-1)});

r1<re o, _ UT2_Z
Tr “IR\( Looog®m.o %2 o F;ll%lll)
o (A.15)

|R|—7<r2 0r=R|R|; Ory 15— |R|=L

ar . Oy yi|R| ... ROT AIR|-1
Tl‘iﬂ\m (Jl 7 T2 IRl ‘R| O"R| 1 )
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Analogously, we get

2. 2 2

r1,72€{L,..|R|=1}, ac{t,J}I1Bl o€Sym({R1,....R(|r|-1)}),
T1>7T2 Oy =1, 0o =l
1 ) 2
Tr ROIR ( R S U Lo I O-Iéf”‘ 11)
Bir) (A.16)

= 2 2 2

ac{t I}l Fro€{l,.. |R[-1},  o€Sym(R\{i}),
|R|—7>r2 0r=R|R|; 0pg+7—|R|=]

QLR L OratT L gl IR

Then, by (A.15) and (A.16) we obtain

> 2. 2

r1,72€{1,..,|R|=1}, ac{tJ}IBl o€Sym({R1,....R(|r|-1)}),
r1#r2 Oy =%, Orgy =l

y X T ®|R|-1
Tr &‘Rl( Lo.o.gQr ... %2 L, \}%“1)

= 2

ae{t, ~|/}‘R| 7,r2€{1,...,|R|—1}, c€Sym(R\{i}), (A.17)

7‘757'2 Or= R|R‘ 0'7‘2—l
TI' Ot‘R| ( R‘R| O-f;%fl 11)

ac {1, } Bl ro€{l,..,|R|-1} o€Sym(R\{i}),
Org=

ay ary |, s OIRI-1
Trjem (07" i o 7).

As is easy to see, the result of (A.17) can be reformulated leading to

>

ae{t, 1} 1Bl re{l,..,|R|—1} oceSym(R\{i}),

or=l
om0 1% o)
ac{tJ} Bl re{l,...,|R|—1} o€Sym(R\{4,})

a1, gYr-1 saiR) gar Q| R|-2
Tre-1 (0F o1 v o " O|R|—- 2)

(A.18)

r

Combining (A.10), (A.11), (A.17) and (A.18) we get

> > Tr i (070 - - o)

a€{t}Fl o€Sym({Ry,...R(r|-1)}) Him

= 2 2 2

ac{t|}BI re{l,...,|R|-1} o€Sym(R\{i,l})

ai |, LO%r—1 | LOr Q| R|—2
Tr,or-1 (0F oLy RO o )
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Then, applying Lemma A.4 with R = R\ {i,1} shows

Z Z Tr au:u( U|1¥f‘ 11)
ae{r IR oeSym({R oo Rym )
1

Ly oy
re{l,...,|R|—1} AUB=R\{4,l},
[Al=r—1

(X X muforom))

ae{t,}}" oeSym(4)

S S ()

Be{1,4}IBI+1 T€Sym(B)

which finishes the proof. O

Lemma A.6 Let k € N and m € {1,...,n}*. In addition, assume R C
{1,...,k}and i € {1,...,k} with i € R. Then,

) > Tr o (070 - o)

ac{t Rl oeSym({R1,....R(r|-1)}) sl

= > > Trem(of o).

ac{t,|}I1Bl ceSym(R\{i})

PROOF Clearly, the assertion holds in the case where i = R5. So, from
now on we assume i # R|p. By the cyclicity of the trace (A.3) we obtain

> > Tt (05 - o)
ac{t 4}l o€Sym({R1,....R(|r|-1)}) sl
ac{t 4} Bl re{l,...,|R|-1} UESym({Rl,...,R(|R‘_1)}),
TI' ilz?‘ (0‘1 e iaT . Uﬁéf—‘_ll> (A'19)

OCE{T,\L}‘RI TE{L...,‘R|*1} UESym({R1,...,R(|R‘_1)}),

or=t

) Q1 A R|-1 RYR| Qr—1
Trlozr( T+1 * 0|R| 1 R‘R| 01 "'O-T. 1)

Appendix A Technical Lemmata



By the symmetry of the symmetric group Sym({ Ry, ..., R(r-1)}) and renam-
ing of the a;s we have

2. X 2

ae{t |} B re{l,..,|R|-1} o€Sym({Rz,..., .R<|R\—1)})’

ac{t Bl re{l,...|R|-1} c€Sym(R\{i}),
9|Rr|-r=RR|
Tr,e gy (o7 RET‘ i Uﬁ%fl}l) .
Substituting |R| — r by 7 be get
ac{t}Bl re{l,...|R|—1} o€Sym(R\{i}),
9|R|-r=1R|
Treg (09 - Rf},‘zﬁ; ﬁg’f' )
o€ {1 I FE{L [ RI-1} oeSym(R\(i}), (A.21)
or=R|p|
Trjoim (0 - RE™ - op7")
ae{t, L} Bl oeSym(R\{i})
Trop (0 - af]gf‘ 1)
To finish the proof we combine (A.19)- (A.21) O

Lemma A.7 Let k € N and m € {1,...,n}* satisfying that there are i,l €
{1,...,k}, ¢ # [ such that m; = m,. In addition, let p € P(k) a partition of
{1,...,k} satisfying that thereis a pn € {1, ..., |p|} such that i, € p,. Also, let
KPr be the set of all partitions of p,, into two sets py, po With i € py and [ € p,, i.e.
KPe = {{p1, p2} : pUp2 = pu,i € p1,1 € pa}. Then, T? = p\ {p,} Up € P(k)
for all p € KP» and

0= (_1)|p\ ok—Ipl H

Je{1,....Ipl}

a Fpjl-1
Z Z Tr Ypjl <Ul1 O-|p]p\] 1 ))

ae{T’\L}“’j‘ oeSym({(p;)1;---» (pj)(‘pj 1} (Pj)‘pﬂ

+ Z (_1)\Tp|2k*|Tp| H

pEKPH JE{1,....[T?[}

o NTf-1
( 2 2 Tr(T.P “Inyl (077 - Oprr]-1 >)'

aeft, )77t oESYMAT )1 (T o)D)

21
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PROOF Let £ € N and m € {1,...,n}"* satisfying that there are i,/ €
{1,...,k}, i # [ such that m; = m;. In addition, choose p € P(k) a partition
of {1,...,k} satisfying that thereisa yu € {1,...,|p|} such thati,! € p,. We
start with the following observation. By definition

Z (_1)\T”| ok—[T?] H

peKPr je{lTel}

o XN7P -1
( Z Z Tr(TP “Ipj| (o7t U\TJPJ\A ))

aefr )Tt oS ) () gD 1
_ Z (_1)|p+12k—|p—1[ (A.22)
peKPu
« FXpq|-1
( 2 2 Tr(puf"”ﬁ'(all"'“\pff—l ))
ae{t}P11=1 o€Sym({(p1)1,(01) (|py |-1)}) L
« Xpg|—1
T
ac{t}le2l=1 o€Sym({(p2) 1, (P2)(1py|-1)}) 2

I ( x 3 Tr a,pj(alal.._gf;m)l,

JE{Lnlpl}s  aeft yPil =t o€Sym{(2i)1, (21) (1p;1-1)}) (P3) 1
7K

By Lemma A.6 we have

> [( > > Tl"(pl)a\m(ff?l"'Uf;‘ff,']l))

peKPE = ae{t}lr1l e€Sym({(p1)1,--,(P1) (|py1-1)}) o1l
o Flpg|—1
¥ S T o)]
ac{t}lr2l e€Sym({(p2)1,--,(p2) (|pg)-1) }) 2

= Z [( Z Z Trio‘\m\ (O-(ll1 o 'Uﬁ;‘fﬁ_l_ll))

peKPE = ac{t}e1l o€Sym({(p1)1,--5(P1)(Jpy ) F D)

Trf‘lﬂz\ (O—?l T 03752_11))]
ae{t}le2l o€Sym({(p2)1,-,(02)(|pg|—1) }\{!})

SRR SN (R SRR DR R CE Y )

AUB=p,\{i,l} ac{t,}A+1 oeSym({A})

> X T o).

ac{t,|}IBl+1 oeSym({B})
(A.23)
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Combining (A.22) and (A.23) we get

> (P2 ]

pEKPH JE{L,...,|T?[}

X rP—1
J

( 2 2. T gyt 07"+ Oy )>

ae{T,i}lTJPI?l oeSym({(T7})1,--, (Tf)qTJP\—n}) yd

_ _; (—1)lPl 2k~ (A.24)

S O0X Y T o)

AUB=p,\{i,l} = ae{1,}}|AI+1 ceSym({A})

(X > Trema (o U%T?I))}

ae{1,}}|Bl+1 ceSym({B})

ol % S T et
je{l‘;é.-,lp\}v ae{t,4}Pil=t o€Sym({(pj) 1, (Pj) (1p;1-1)}) ]
JFH

On the other hand, an application of Lemma A.5 with L = p,, yields

> > RORIC R
ac (o} 7l c€SYm{ (i) 1rs(Pi) (1) D) Pl
1

S (3 S T )

AUB=p,\{i,l} ac{t,J}14I+1 oeSym(A)

S S Tl ).

Be{1,4}IBI+1 TeSym(B)

Therefore,

(—1)lPl 2k=IP! H

Je{1,....Ipl}

> > Tr %;—|(U?1"'U|C;jp|ﬂ1l)>

ac {0} P! oESYMUEN 1 (0) oy -0} Pl

_ ; (—1)l7l 2k~ (A.25)

Y (0 X 5 (o))

AUB=p,\{i,l} ac{t,}1Al+1 o€Sym(A)

3 Yo Trep (Tfl " 'TI%JIB»)

BG{T7¢}|B\+1 T€Sym(B)

Qp; |1
Tr o (01" -0, )) '
j€{1‘¥-,|P\}v ae{t,}Pil e€Sym({(pj)1,-(Pi)(p;1-1)}) !
JFu

Adding (A.24) to (A.25) finishes the proof. O
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Lemma A.8 Let N € Ny, B a symbol in S* € (¢,B(Hy)), k > 0and B, €
Sk(e, B(Hy)) for a € Ny defined by

Ba(g) = {{ﬂ-al 7B<8)}a2 ’7TO<3}

Qq

Then

Z Ba(g) - Z {{ﬂ-ﬂl ’Ba(€>}ﬁ2 77T53}ﬁ4 .

aeNG |a|=N a,BENG,lal+|8|=N

PROOF To simplify the notation we assume that B is independent of ¢,
i.e. B € S¥(B(H;)). By the asymptotic expansion of the Moyal product for
classical symbols (2.9) we have

W#B#ﬂ'xié‘i(ﬂ'#B#ﬂ')i:iéi >  Ba
i=0 i=0

a€eNG, |o|=i

and
W#W#B#W#?TXifi(ﬂ#W#B#W#W)i
i=0

= isi > {75 . Ba}, ’7%},34 ’

=0 a,BeNG|al+|B|=i

On the other hand, = is a Moyal projection, i.e. 7 = 7 # 7 + O(*). Thus

(r#B#m)y=(n#n#BH#n#m)y forany N € Ny

which proves our claim for symbols that are independent of <. Note that
besides the notation, we never actually used that B is independent of .
Therefore the proof is complete. O

Lemma A.9 Let N € Ny and B be a symbol in S*(e, B(Hy)), k € Ny with
b € S*(e,C) the associated effective symbol as defined in Section 3.2. Then
there exist QY™ € S°(J(Hy)), 0 <r < N, a € {1,...,2n}" such that

@)=Y Y (@ VIBE)). (A.26)

r=0 ae{l,...,.2n}"
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PROOF We start with the following observation. Assume R € S*(e, B(H;)),
k € Ny and [ € Ny. By the definition of the generalized Poisson bracket (2.5)
the expression

DEACRIENECINE NN

aENo,
lal=t

can be expressed as sum where each summand is of the form
ter (85%1 &YR(E) 857Ta3 Po)

where 3,7v,5 € N2¢ are multiindices with ||, |v],|d] < . By the cyclicity

.....

Be{l,...,2n}", 0 <7 <[ such that

l ~ ~
> trw (P {{mar  ROYoy Mo} ) =2 X trw(QF VER(E)).
Olflliof 7=0 ge{1,...,.2n}7

(A.27)
We want to show inductively that the b;s can be represented in a similar
manner. Defining P, := Q%° we have by() = try, (Q"° B(e)). Assuming
(A.26) to hold for all j < N, we will prove it for N + 1. By definition

bnpi(e) = Y try (PO {{F"‘l Be)}a, ’WQS}M)

aENg,
|a|=N+1

35 (b m),)

= aeNé,
|a|=N+1—i

Applying (A.27) yields

N+1

) = Y (@) VIBE)

=33 Yt QT Vibi(e))

i=0 7=0 Be{l,...,.2n}"
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Finally, applying the induction hypothesis yields

N+1

byyi(e Z Z tl"?-tf(QNH i 53(5))

7=0 ge{l,....2n}"
N N+1-—i

yyY Y Y ¥

i=0 7=0 pBec{l,...,2n}7 r=0a€{l,...,2n}"

oy (Q) T Vit (QY V5 B(e)))
=3 Y QT VBE)

s IEED VD VD
i=0 7=0 pBe{l,..,2n}" r=0a€e{l,...,.2n}"

tryg, (e, (@) VE(QE VI B(e)))

A simple verification using the product rule and regrouping the resulting
terms shows that by, is of the desired form, finishing the proof. O

Proposition A.10 Let ¢ > 0 small enough, o € N2", R, S € S%(e, J(Hy)) be
classical symbols, Q € S°(J(H;)) and B € S*(e, B(Hs)), k > 2n + 1. Then
there exist constants Cxy > 0 and Cy > 0 forevery N € Z, N > —1 such that

[ (RO # BE #5(6)
- iej > {{Ral , B(e) } g, ,Sag}m)(s, z)dz

i=0  aeN,
|| =3

<" CN B -

(A.28)

and

[t (BUE) 03 (QP B g # S(2)

~ 3 Y Ry 1, (Q°B() Ly}, ,Sa3}a4>(5,z) dz

J=0  aeNg,
||=3
<M Oy |B(e)]|5 -

(A.29)

PROOF Before we start with the actual proof we will introduce the basic
idea, state some known results and introduce the notation. For now, let B
be a symbol in S*(¢, B(H;)), k > 2n and R, S be symbols independent of ¢
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taking value in the trace class operator acting on H, i.e. R, S € S°(J (Hs))-

By the continuity of the Moyal remainder we have for any N € Z, N > —1

W (REBHS - SR BE), S}, ) € SM(e. T (My).

7=0 =0

Therefore, it holds for any N € N, that

/RQ”ter<R#B#S—§: é{{RB }Z,S}ji>(5,z)dz

= 0N .

(A.30)

S0, [pen try, (R# B # S)(e, z) dz has an asymptotic expansion given by
/ try (R#B#S)(e, 2) dz
R2n
o J
=y [ S, ( {R.BE)}, S, ) (e, 2)dz.
j=0 R izg

By integration by parts there exist constants C; > 0 for each j € N; such that

| [ SR BE), 5}, )(e02) de|

=G sup | B(e, 2)| [ Rllo,35,1 [|S 10,35 d2 (A.31)

R2™ ¢€[0,e0)

= C; || B|7: |1 Rllo,35,1 [1S]]0,3 -

Combining (A.30) and (A.31)

N

‘/RQnter(R#B#S—Z 2;0 {R,B(e }Z,S}j_i>(€,z)dz‘

<\/[R ter<R# i:; zi:{{R B}, .S}, Z>(€ 2)dz|
Z gfz/ ter( ,B(s)}i,S}j_i)(s,z)dz‘

j=N+1 =0
= OV BJlgy) + O

for every N, N € Ny, N > N.

The difficulty to obtain (A.28) is to get access to the error terms in the
expansion of the Moyal product. Therefore the idea is to reproduce the
proof of the Moyal expansion and further estimate the resulting terms to
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make integration by parts applicable. The proof reproduced here is the
proof of [Zwo12, Theorem 4.17]. In [Zwo12] all the symbols are scalar
valued and independent of ¢ but it is straightforward to generalize the results
to symbols in S*(e, B(H;)) using the same proofs. Throughout this proof
we will denote (z1,...,2;) := (2T,..., 2T for zy,...,2; € R*, [ € N. If
R, S, B € #(e, B(H;)) the Moyal product can be represented as

(R# B#5)(e, 2)
= 370 D)0 @Du) R(e 2 4 1) B(e,w + x) S(e, y)

w=y=2z2,x=0
1 in 2i 2i
— PR e—?a(x,y)e—?a(u,w)
e R8n

R(e,z+u+z)Ble,z+w+2z)S(e, 2z +y)dudwdy dz

(see for instance [Zwo12, Theorem 4.11]). For R, S € S%, J(Hy)), B €
Sk(e, B(H;)) the integral

(R# B#5S5)(,2)

= (71'6)_4”/ e—%a(x,y)e—%a(u,w)
RS™ (A.32)

R(e,z+u+2z)Ble,z+w+x)S(e, z+y)
dudwdz dx

uniquely defines an element of .*’(¢, J(Hs)) by [Zwo12, Theorem 3.18],
extending R # B # S. Additionally, by examining the proof of [Zwo12, Theo-
rem 4.11] one can find that for R, B € C{°(¢, B(Hz)), N € Z, N > —1

(=)

= ZO ;ii:l [J(@u, D) R(e,z+u) Ble, z + w)}

/ e 27 R(e 2+ u) B(e, 2 + w) dudw

w=u=0 (A33)

s \N+1 1 )
(15) / (1 - tl)N [el;to(@“”@w)a(@u, @w>N+1
0

2N+1Aﬂ

dt.

w=u=0

R(e,z+u) B(e, z + w)}

The operator ¢27®@2w)g(D, D,)¥*! is defined as a Fourier multiplier
.7-"(’1 e%"(&@)a(&,&)NH}"(“M) with F(,,,, the Fourier transform and &, & €

u,w)

R?",

From now on, let R, S € S%(e, J(H;)) be classical symbols, B a symbol in
Sk(e, B(Hy)), k > 2nand N € Z, N > —1. In addition, let y : R®" — R be
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a smooth function with x(z,w,z,y) = 11in By(1) := {£ € R®" : |¢| < 1} and

supp(x) = B2(0). By (A.32)

(R# B#S)(e,2) = M(g,2) + Ms(e, 2)

where
LN [ 2o g-Zotu)
Mie,2) = (=) [, ¢ Bt tetun
e RSn
R(e,z+u+2z)B(e,z+w+z) S(e, 2+ y) (1 — x(u,w, z,y))
du dw dzx dy
and
LN [ oot o o)
M2(€,Z):<> / e e I\WIWYgT oW
e RSn
R(e,z+u+x) Ble,z+w+1x) S, 2 +y) x(w, w,z,y)
du dw dz dy

We split the proof into two parts. In the first part we estimate ;. In the
second part we handle M, where we make use of the fact that R(e, z + u +
x)B(e,z +w+z)S(e, z + y) x(u, w, x,y) has compact support. Therefore,
the basic idea is to apply (A.33) to M, and estimate the resulting terms.

1. Estimates for M,

(Vo @s) —526w)

. Since
|v(m,y)g(zvy)|2

Define L, ) :=

V(I,y)a(x, Y) = (=Y2, Y1, T2, —21) (A.34)

for x = (x1,22), y = (Y1, ¥2), T1, T2, y1, Y2 € R™ we have

oo (Vno(@,y), —5D @)
(e0) (@, )2 '
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Then L, e 27@¥) = e~ 27(=%) such that for N € N,N > 2n+ 1+ N

My(e, 2) = (me) ™" /

N —%J(m,y) N —%J(u,w)
o (L)Y em =) (L) Ve 2o 0))
R(e,z4+u+z)B(e,z+w+x)S(e, 2+ y)
(1 = x(u,w,z,y)) dudwdzdy
— —4n —%U(.’E,y) _%U(uvw)
= (me) /Rgn e e

(L;,y)N(LZ,w)NR(& z4+u+z)Ble,z+w+1x)S(e, 2+ y)
(1 - x(u,w, r,y)) dudwdz dy

where L7, = § <®(x,y) : Vﬁ(;)i;’)j;”% denotes the adjoint of L, ,. Then, there
exists a constant C; > 0 such that for all z,y,u,w € R*" and [y, ls, j1,j2 €
N, iy > ji,le > Jo:

1 1

‘ 1
|(u, w)|" [(z,y)

((w, w)){(z,y))

|12 (1 - X(U,w,x,y))| < Cl

By (A.34)
z, 2_ x, 2
P Oko(z,y) %7 for (z,y)1 = (—y2, 41, T2, =71 )k
15 —
|($, y) |2 (_927y1712‘7(—acxy1))|11 (=2(z,)1) . otherwise

(A.35)
Therefore, there exists a constant C' > 0 such that
(L3 )V (L)Y R(e 2 +u + )
Ble,z +w+2) (e, 2+ y) (1 = x(u,w,,y))] (A.36)
< C{(u,w)) (2, 9) N (2) FURIG 21 1Bl 2w 15115 5

tI‘Hf

where we used the fact that 23:633(5, z+w+ :U)H < <Zl>k | Bl

o € N2, |a| < 2N. It follows that

€
kol for any

_2i

e« "(x’y)e’%"(“’w)(L;y)N(L;w)NR(&t, z+u+x)Ble,z+w+x)
S<€7 zZ+ y) (1 - X(’LL,’LU,.T,Z/))

Appendix A Technical Lemmata



is Bochner-integrable as map from R®" to J (Hs). Since try, : J(H;) — Cis
a continuous linear operator we have that

2i

—4n —=o(z —Zo(uw * v * V
ter(M1(€,Z)) :(7'('6) /RSne o ’y)e e 7l )(L(z,y))N(L(u,w))N

ton (R(e, 2+ ut o) Ble,2 +w o+ ) (e, 2 + )

(1 - x(u,w,x, y))) du dw dz dy.

By (A.36) exists a constant C' > 0 such that

b

o <z>kdz < 00

/ Itry, (Mi(e, 2))|dz < C
RZTL

and thus

‘ / tra, (M (g, 2)) dz‘ =(§)2N (me) ™" / e~ 2o(@y)g=Fo(uw)
RQn Rl()n
V(x,y)a(zfy) N v(u,w)a'(x’y) N
<©<w> P T @) > <@<u7w> T T ww)P >
ter(R(e,z +u+x)B(e,z4+w+ )
S(e,z+y) (1 — x(u,w,z, y))> dz dudw dz dy ‘
(A.37)

In the next step we apply an integration by parts with respect to z to the
right hand side of (A.37) and make use of the cyclicity of the trace. Then
there exists a differential operator V., . of order 3N such that

£\2N —4n —Zs(zy) —Lo(u,w
’/R2n ter<M1(g’ Z)) dz' :<§>2N (71'8) /Rlone =0l y)e 2o (u,w)

tr?‘lf <§u,x,y,z (S(€7 z 4+ y) R(g7 z4+u—+ I)

(1 —x(u,w,x, y))) B(e,z+w+ ZL‘)>

dzdudwdxdy‘.

With similar arguments as in the estimate (A.36) there exists a constant
C > 0 such that

‘ter (B(&t, 24w+ 2) Viway (S(a, z2+y)R(e, z+u+x)(1 — x(u,w,z, y))) ‘

< C{(u,w)) (@, ) N Be, 2 + ut )| RIS 5, 1S5 45 -
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Consequently there is a Cy; > 0 such that

| /R s (Mi(e,2)) dz| < O €577 | B, < O V71 Bll.,

< Cna "B, -

2. Estimates for 1/,

Recall M;(e, 2) is given by

1 an 770’I 770"11,’(1]
MQ(g’z):<m> /Rsne () g~ Zor(uw)

R(e, 2 +u+3) Ble, s +w+1) S(e, 2+ y) x(u,w,2,9)
dudwdxdy .

Note that R(e,z + u+ z) B(e,z + w + x) S(e, 2 + y)x(u, w, z,y) has compact
support. Applying (A.33) twice yields

Mg(é, Z) = K1(€,Z) + Kg(g, Z) + K3(€, Z) + K4(€,Z)

where
ey .
m;Om; 2matmip,lm, | (D Dy)"™0 (Do, D)™ Rle, 2+ u + 2)
Blez+w+a)Se sty xwwry)
Ko, 2) = g: (ig)matN+1 /1(1 — 1)V (D,, D)
’ a0 o 2m2tNHm, N o Y
elstl o(Du,Dw) (Qu,@w)NHR(&,Z+u+x)B(5,z+w+x)
S(e,z+y) x(u,w, z,y) R odtl’
al i)+t ! N 25D N+1
Kife.2)= 3 2m1+N+1m1!N!/0 (1= ty) Ve Br@2) () D N+

0(Du, Dy)™" R(e,z +u+x) B(e, 2z + w+ x)

S(€,Z+y) X(U,'LU,Z',y) dt2

w:u:x:yzo
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and

Ky (6 z) 22<1if-|-)2<j\+[l)/1(1_t2>N/01(1_t1)N

ieto

e 2 U(Dm’ Y J(qugy)N+1 G%U(QWQW)U(QUJQW)N—FI
R(e,z+u+w) B,z +w+x)S(€, 2+ y)

X(U,Uhx,y) dtl dtg .

IU:ZIL:HE::y:ZO

We will focus on Ky(¢, z) first. By definition of the Fourier multipliers we
have

1t1

ieto
e 2 7(Da

(@ D >N+1 (@u,ﬁw)a(©u7©w)N+l

Re,z+u+2) Ble, 2+ w+2) S(e, 2 + y)x(u, w,7,)
w=u=r=y=0

_ (27T)—8n / ei<§1 ,u—u}el<§2 , W—w) ei<§3 ,:E—a:)ei(&; ,T—Y)
R16n
eTQU(Es §4) (5 £)N+1 Elo(6r.62) (51 €)N+1
R(e, =+ uta) (e, +w+2) S(e, 2 + ) x(u,w,2,3)
du dw dé; déy dz dy dés dé,

U=w=r=y=0

= (2m)78" / i) i Wl i )i
R16n

e H T (g, 6V e T TERg (g, )
R(e,z+u+2)Ble,z+w+2) S, 2+ y) x(uw,w, z,y)
du dw dé, d&, da dy dés A&y

Define L; , := =£:22) g0 that Ly e 62 = ¢76:2) For N > 2n 4+ N + 2 we
3 © 3
obtain

LN

Ri6n S u®

<£1 ’u> LN efi<£2 7w> LN efi<£3 733) Ljiiye*i(é‘l »y>

o (€5, &)V H T @R (g, )N
R(S,Z+u+x)3(672+w+$) S(e,z +y) x(u, w, 2, y)
dudw d&; d&s do dy dés déy
— o1&, u) (—i{&2,w) (—i(&3,2) —i(€4,y)

Rlﬁn

7680 (6,6) e @85 (g), &)V

(Lﬁl,u) (Lﬁg,w) (L§3,$) (LZ4,y)N‘R(€7 z + u + I) B(€7 z + w + .']J)
S(EI, Z+ y) X(ua w,x, y) dudw dgl d£2 dx dy d§3 d£4
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where L; , = 1+<<§>© Thus there exists a constant C' > 0 such that

(&, 0N o(&r, )N TULE Y (LY, )Y (LE, )Y (LE,,)Y
R(5,2+u+x)B(5,z+w+x)S(€,z+y)‘
< O(y) NN (g) TNFNFL () "NFNHL (g ) NANHL ()=

1B(E)lo,2m1 1Bl 25 15 (E)llo, 5 X (w1, w, 2, ).

As a consequence

tl"q.[f

(A.38)

e, u) e—i<§2 ,w) o if6s , ) e &,y g 0(53 §4) (5 &, )N'H 6%0(51752)0(51, fg)N—H

(g )N (L )™ (Le, N (L5, )V R(e, 2 +u+2) Ble, 2 +w + 2)S(e, 2 + y)

is Bochner-integrable as operator from R'®" to 7 (H) and since try, : J(H;) —
C is a continuous linear operator

try, (Ka(e, 2)) = 2(2N+2()i(€])\f!);<27r)8n /01(1 — t2)N /01(1 — tl)N

/ oL, W) g —il€2 W) g —i(Es @) g—1Ea )
]R16n

7is,8) (53,5 YV T8 (g )N
<Lzl DY (L)Y (L)Y <Lz4 Y
tr(R(s,z +u+x)Ble,z4+w+x)S(e, 2+ y))
X(u, w, z,y) dudw d&; d&; do dy d€s A&y diy dis.

Furthermore, by (A.38) there exists a constant C' > 0 such that

1
/R% [ty (Ki) (e, 2)|dz < C [ —dz < oo,

R2n (2)
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Thus

| / try (K2, 2)) dz|
]R2n
(ig)(2N+2)

92N+2(N1)Z (27)8n /01(1 —ty)V /01(1 —t)V

/ ol ) gmilEe ) g—ilEs  2) g —i(€a,v)
R16n

1at2

7(&3:80) 5 (&3, 54)N+1 Slo(€1.6) (€1, &) N+
/R%wzl,n (L, )" (L2, )N (L2,,)°
try, (R(e, z4+u+z)Ble,z+w+x)S(e, 2+ y)) dz

X(u, w, z,y) dudw d§; dés do dy dés A&y dty dt,

This again takes us to the point where we apply an integration by parts with
respect to z to remove all derivatives acting on B(e, z + w + z) and make

use of the cyclicity of the trace. Then, there exists a differential operator
VéLeads of order 3N such that

‘ /Rgn tryy, (Ku(e, 2)) dz ‘
(ig)?N+2

~ v b 0 0w

/ o1 ) gmil6e ) o —ilEs @) o —i(6a,v)
Rl6n

e (5 54)N+1 o(£1,62) (f & )N+1
/ try, (B(g, z4+w+x)
H§2
vqfﬁx&zf; 64 (5(57 z+ y) R(€, zZ+u-+ ZL‘) X(ua w,x, y)))

dz du dw dfl d§2 dz dy d§3 d§4 dtl dtg .
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With similar arguments as in estimate (A.38) there is a constant C' > 0 such

that
(i€)2N+2
‘2(2N+2)(N[)2 (2)8n
6%0(53’54)0(53, &)V ei?la(&’&)a(fl, &)™y, (B(g, Z 4w+ )

/1(1 —t,)N /1(1 _ tl)Ne—i<f1 Ju) o= i(€2,w) o —il€s 7)o —i{Ea,y)
0 0

V&1 €2.:68,64 (S(E, z+y)R(e, z+u+x) x(u,w, z, y)))dt1 dts

u7x’y

< C€2N+2<£1>7N+N+1 <€2>—N+N+1 <£3>7N+N+1 <€4>N+N+1

IBERNG 551 I15115,35 x(u, w, 2, 9).
(A.39)

Consequently, there is a constant Cy 4 > 0 such that
| [, (e, 2)) 2] < Coa 2 | Bl < O™ | Bl

The estimation of K, and K is analogous to K and leads to the following
estimates. There are constants Cy 3 > 0 and Cy 4 > 0 such that

’/R o (Ka(e, 2)) dz| < O eV 1B
and

| [, ol Eale, ) d2] < Cova ™ | B
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Regarding K, note that by (2.4) and the fact that y(u, w, x, y) is constant on
B:(0)

(i 5)|B\

_ B2 B1
/R%trﬂf(Kl(s,z))dz— > Sh /RMJ(@x,@y) (Do, D)

tI"fo(R(E,Z +u+z)B(e, z +w+ )

dz

fw:u:;p:y:o

S(e,z+y) X(u,w,x,y))

Z Z /RQ ter {Ra1 ’B( )}az 7Sa3} )(Z> dz
J=0  aeNg,
la]=j
(i 5)|5|
+ 0(@“@3;)'820(@%@1”)51
Be{0,...,N}* 218l /8' /]Rzn
|BI>N

ter(Rgg(z +u+x)B(e,z+w+x)

dz

Ssu(z +y) x(u, w,z,y))

(2|ﬁ|)ﬂl /RQn U(i)am ,}Dy)ﬁzg(i)qm @w)ﬁl

ter<<R - R(N))(E,Z +u+z)B(e,z4+w+ x)

(S —SM(e,z+y) X(u,w,x,y)) dz

w:u:x:y:(}

=3 [ wa({{Ra BEL, Su},, )(2)d2

ozeN4
lov|=3

+ ];31(6) + ]2’2(6) .

Since S and R are classical symbols, an estimate similar to (A.39) yields
Fi(e)] < Cwse™ M |BlS:  and  |ka(e)| < Cng eV B -

for some Cy5 > 0 and Cy > 0. Finally, assembling the above results we

obtain
‘/ ter(R#B#S SED> {Ra, . B}, ,SQS}M)(,Z)dz
J=0  aeNg,
=)

6
< Cnie™ Bl = Coe™ Bl
i=1
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This finishes the proof, since try, (Q 9*B)1y, € S°(B(H;)). Therefore (A.29)
follows with almost the same proof, replacing B by try, (Q0“B)ly, €
SY(B(H;)) and removing 9% form B whenever applying an integration by
parts. []

Lemma A.11 Let a € S*(¢,C), k > 2n, b,c € S°(e,C). Then

L, e {al) b)) dz = [ {e(e) al2)} bie) de

and

{a(z),b(z)}, dz =0

R2n

foranyl e N.

PROOF Let !/ € N. By the skew-symmetry of w" and integration by parts

/R?n c(2) W?j 0;a(z) 0;b(z) dz
=~ [, o)y Bal)b)dz — [ Bie(=) e Dya(=) b(z) ds
= W?Z- 0;c(2) 0ja(z) b(z) dz.

R2n

This and the definition of the generalized Poisson bracket implies
L e {at) b)), dz

1
- (21”'/
- (21)11'/

(21 /IR% 11]1 Z2]2 wll]l 8;1 gl ( )8111 zl ( )b(z) dZ
{e(2),a(2)},0(2) d=

W 0b a(z)dl L b(z)dz

Qn 11J1 lz]t J1-- Jz 1.9

on 11]1 ZQ]Q wzljla C( )azlljg jl ( )a’fz lzlb( )d

=

=

R2n

Finally, by choosing ¢(z) = 1

{a(z),b(2)}; dz=0

R2n
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Computations

This chapter consists of a collection of computations used to derive explicit
expressions of semiclassical approximations to errors of order . Lemmata
B.1 and B.2 are applied in the derivation of the asymptotic expansion to
second order of the space-adiabatic projection’s symbol 7. Lemmata B.3
and B.4 are used in the proof of the Egorov Theorem to errors of order &3.
The results of Lemmata B.5 and B.6 are used in the derivation of the ex-
plicit expressions of the classical Hamoltonian system for Born-Oppenheimer
type Hamiltonians. Finally, Lemmata B.7 - B.10 give the larger part of the
derivation of the second order semiclassical expressions for Hamiltonians
with periodic potentials.

Lemma B.1 Let P € 5%, J(H;)) be a pointwise rank-one projection and
B € S%¢e, B(Hy)). If B is diagonal with respect to P then

P [9;P,0,B] P=P9;PO,P BP — PyBO,P ;PP
—P [0,P|B|OP]P
P+ [0,P,0,B] P+ = —P+9;P9,P BP+ + P+ BO,PO,P P+
+ P+ [0,P|B|o,P] Pt.

(B.1)

PROOF By the product rule

0;(PBP) =P0;(BP)+ 0P BP = 9;(P B)P + P Bo;P
0;(P+ BP*) =P+ 9;(BP*) — 0,P BP+ = 9;(P* B)P* —PL Bo,P.

Since 0,P is off diagonal with respect to P

PO,PO,BP =PO;PO;PBP —PO,PBOPP,
Po,BO;PP=PBOPOPP-POPBOPP,
P+ 9,P 0;BP* =P+ 9,P Bo;PP+ — P+ 9,PO;P BP*,
and
P+ 0,B0,P P+ = P+ 9,P BO,P P+ — P BO,P9;P P+,

which directly implies (B.1). O]
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Lemma B.2 Let Assumption 2.10 and 2.11 hold. Then for (Hy—eq)~! denoting
the reduced resolvent, i.e. (Hy — eg)™' = By (Hy — eo) ™' Py and

Fy =Hy 7y — 7o Hy + Hy Py — Py Hy
—3{Ho+¢ 2, P} +5{P, Ho+ ¢ 2}
with
o = — 1 Py Trop (w° QF) Py + L Py~ Troy, (w° QF) Py
we have

Py Fy (Hy — e9) ™" P =3 Py (0* VR, V(Ho + e0) +2&) (Ho — e9) ™"
— PyH) (Hy — o)

(B.2)

as well as

Py (Ho — €)™ Fy Py =4 (Ho — €0) ™" (V(Ho + €0) + 2, " VPy) Py
+ (Ho —60)_1 HS Po.

(B.3)

In addition for

GQ—W0P1+P17T0+7T07T0 0(‘9P06P1 08P18P0
08P0(917T0 w (97?08]30 (,L) wlm5’2 Poa

where

Py =5 Py (W’ VP, V(Hy+ o) +2&) (Ho — )™ — Po Hy (Ho — €9) ™"
— £ (Ho — €)™ (V(Ho + o) + 2¢, " VPy) Py — (Ho — o) H) Py

we have

Pg GQ Pg = i P() Trgn(wo Q?p> P() — % Pg TI‘Qn(WO Qgp) TI'gn(wO Qgp) Pg
+ é Po Trgn(wo Q(O)p (.UO Qgp) PO (B.4)
+ £ Py Troy (w0’ V2P Py " V2 Py) By,

Py Gy Py =1 Py Tray (W QF) Py~ + £ Py~ Trap (w® QFF w® QF) Py
— & Py Trop (w” QFF) Tray (w® QF) Py (B.5)
+ § By Tron(w’ V2P Pyw® V2 Py) Py
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and
tr2, (P Ga Py") = — 3 trgy, (P Tran (w® QFF)) — L trag, (Po Tran (w° QFF w° QFF))
+ 75 trag, (Po Trapn (w” QFF) Trap (w” QFF))

+ § trpg, (P Tron (W’ V2R Py w” V2 Ry)) .
(B.6)

PROOF As P, is the eigenprojection of H, to the eigenvalue ¢, and 7 is
diagonal with respect to P, we have

H07~T0:€0P07?0P0+H0P0L77'OP0J'IPo’ﬁ'opoHo—FHopoLﬁ'opoL
leading to

Fy =1 Hy Py~ Tran (w® Q) Py~ — 1 Py Tra, (w° QFF) Py~ Hy
+ Hy Py — Py Hy +iw); 0;Py &
+ %w?jang @HO - %ng 6]‘H0 81P0

where we also used that ¢; is a real value and thus commutes with any
operator acting on H;. Therefore

P0F1 (HO —Ei())_lpoL
=1 Py Hy (Ho — o) " Py Tran (W’ QFF) Py~
— PO Hé (HO - 60)71 + 1w?] PO 8]-P0 é@ (HO - 60)71
‘|‘ %CU?]P() GjPO @HO (H() — 60)_1 — %UJ?J PO 0]~H0 8ZP() (HO — 60)_1 .

Using that e is a scalar function, 0;F, is off diagonal with respect to I and

0= 8j(P0 (60 - H(])) = (9]»P0 (60 — H()) + P08j<60 — H(])
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yields

w?j Py 9; Py 0i(Ho + eo) (Ho — eg) ™!
= %W%POajpoaiHO(HO —eo) M+ %wo Py 0; Py Oieq (Hy — €9)~ 1
= %W%PO@jPOaiHO(HO —eo) ! ; 0 Py 0je0 0; Py (Ho — €)™ !
= %WQPO@‘P()@'HO(HO — o)t — ; 0 ; Po0;jHo 0: (Hy —eg)~ !
— 2w Py 8j(eg — Ho) 0;Py (Hy — €9) "
= 1w PO 0; Py 0;Ho (Ho — eo) ™" — 3w} Py 0;Ho 0; Py (Hoy — €9) ™"
+ 3 wy; ;P (eg — Ho) 8; Py (Hy — eq) ™"
= %w?jPoajPo&Ho(Ho —eo) - fwo Pyd;Hy 0;Py (Hy — €9) "

This and the fact that H, and P, commute finally shows

Py Fy (Hy —eg)!
= —PyHy (Hy— €)' +iw); & Py 0; Py (Hy — eo) ™
+ 3 Pyw}; 0P 9;(Hoy + o) (Ho — €0) ™"
=1 P (" VP, V(Ho + eo) +2€) (Ho — eo) ™" — Py Hy (Ho — €g) ™"

and analogously

(HO — 60)71 F1 P(] :%(HU — 60)71 <V(H0 + 60) + 25, CUO VPO> P,
+ (H(] — 60)71 H& P(].

To show (B.4), first note that

POG2P0 P07T07TOP0 OPOaP()aPlPO 0P08P18P0P0

—%quoa'Poa‘WoPo—iwijpoaj’iroaipopg (B7)
—%w wlmPO(‘?Q P() lePOPO

By the skew-symmetry of w"

Tr2n(w0 g w 0 QF) = Trgn(gO W° Qi 0)

— 40P _ op

— gO ,ij l QO Im Wi gO K7 w QO Ilm ]l

_ op 0 op

- _90 mw Q lwl] - gU]'L Q lwlj

= —Tron(w’gf wo Q)
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and similarly
Tro, (w? QF W giF) = —Tra, (wW° QF W° g7)
which yields
Tron (W g5 w® QF) = Tra, (W’ QF W giF) = 0.
By definition of 7y, 7°7, ¢°7, 2°? and the equation above

iw?jpoajpo’ﬁ'oaipopo
= 1 Q-w?mP()&Po@ PQ@[PQ(?Z'P()PO

2
1
2("} wlmpo%]m%lz
1

(B.8)
s wlmPOQOng012P0+ w wlmPOQOJmQOZzPO
+ § Wi Wi Po 9orm Q00 Po — § Wiy Wi Po Qm 200 Po
=1 L Py Tropn (w? ggf w° gF) Po + 5 L Py Trg, (w® QF W° Q) Py
In addition, by (2.15)
—%w?jpoajpoaipoﬁ'opoz —%w%POfro@jPO@iPOPO.
Therefore, Lemma B.1 and (B.8) leads to
—%w?jPo[ﬁjPO,aﬁo]Po
= —1w) Py [0;Py, 0;Py | 7o Py + Y wi; Py7o [0;Py,0;Py] P
+§w%P0 [8]P0|7~TO|E)ZP0] P()
:_%W%Po[ajPO>aiP0]7~TOPO (B.9)
+1LUZO]P08]P07~T081P0P0
= —% TI'Qn( 0 QOp) TI'Qn (wo Qgp) P()
— %PO Tron (W g5 w° g5F) Py + % Py Trop, (w® QFF w° QF) Py.
In addition, by (2.16)
%w wlmP()@Q PO QQZPOPO
= —twy;wp, Py 03, Py Py 0;,Py Py (B.10)
—gw--wlmpo[a'Po,a Po] [8-P0,8ZP0]
= —tw)wh, P07, Py Py 05 Py Py + & PoTrgn(w 9P W ) Py
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We now use that P, is off-diagonal and 7, diagonal with respect to I, such

that
OZP()ﬁ'QPlPO:P()Plﬁ‘()P().

Then combining (B.7) with the equation above, (B.9) and (B.10) finally
yields

POG2P0 :Poﬁ'()ﬁ'opo
—%ngPoajPoaiPlPo—%w?jPoajPl@PgPO

—%w%PoajPoaiﬁoPo—%w?jpoajﬁoaipopo

1,0,.0 2 2

:% Py Trgn (w° Q) Tron (w® Q) P
—qwi Po [0, 0P| Po — i Py [0;P1,0: ] Po
— LWl Ry [Py, O | Py
Ll R P
=1 Po Tran (W’ QF) Py — 15 Po Tran (@ QFF) Tra (W° Q) Fo

+ é Py Trop, (w® QF w® QF) Py — é w?j wh Py ag?mPO P93Py Py

Analogously it follows that

Py G Py~ =1 Py Tray (W’ Q) Py~ — & Py Trapn (w” QFF) Tran (w° QFF) Py
+ é POL Trgn(wo Qi W° QF) POL
+ 1 Py Trop(w’ V2P By’ V2R) By

What is left is to show (B.6). By the cyclicity of the trace

— %trq.[f(PoL Tron (w® QF) Tray, (wW° QFF))
= ftry, (P w) [0;P0, 0Py ) wiy, [0mPo, 0P))
= i tr?if(PoL W?j Wlom 0; Py 0; Py 0 Py 0, Fy)

= i tI‘Hf(PO w?j w?m 0ZP0 8jP0 8ZP0 0mP0) .
This and a computation similar to (B.8) shows

— 1—16 tray, (POL Tro, (w® QF) Tray, (wW° QFF))

= 55 (P Tran (6 957 0 657)) = S5t (P T 057 0 )
(B.11)
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and analogously

L vy, (Py- Trap (w” QF w° QFF))
= 1= try (P Tro, (wW° QFF) Tra, (W’ QF))
— 3= try (P Tron (w? g5F w° gF)) — = tryg, (P Tron (w® QF W° QF)) .
(B.12)

In addition,

Ltry, (P OQ‘;PJZPL)
= — oy (P wy; [0;P, 0;P1] Py") — L tryy (Py-wy; [0;P1,0;Py] Py)
:——ter<PD(,u [8P178 Po] Po) tI'Hf(PQLd [Gpo,a Pl] Po)

ter(POw Ql i Po)

(B.13)
and
- %w?jwlomtrﬂf<P()L8]2mP0P08 POPL)
= —t Wl wh, try (P 053 Py Py 02, Py) (B.14)

= L tr3, (P Tron (W’ V2 Py Py w” V2 Fy))
Combining (B.11)-(B.14) yields

131"7'11°(P0J_ G POJ-)
= try, (i By Tron (w” Q) Py~ — = Py" Troy (w® QFF) Tray, (w” QF) Py
+ 5 Py Tran (W QF o QF) By = S wl wh,, Py 03, Py Po 03P Py )
= — 1 tr3, (P Trap (w® Q7)) — & tryg, (P Trap (w” QFF w° QFF))
+ 1 tr3¢, (Po Tran (w” QFF) Tray (w” Q)
+ L trgg, (P Trop (w° V2P Py’ V2 Ry))

finishing the proof. ]

235



236

Lemma B.3 Let the assumptions of Lemma 5.1 hold and the operator-valued
symbol B € S°(e, B(Hs)) be given by

B(e,2) = | {h(e, ), 7(e,2)} , {ale, 2) , 7(, 2)} |

Then, the effective symbol b € Sy(e,C) of B(e, z) has an asymptotic expansion
starting with

b=i <w0 QW Vh, Va> — 1 e Try, (W0 ) <w0 QW Vh, Va>
+ % € <w0 (W) Vh, Va> — %5 <w0 (¢° w2 Vh, Va>
+0(£%).
Moreover, there exists a constant C' > 0 and a 7 € N, for every r € Ny such that
HW# [ {h,n} {a,n} } #m
S <i (w0 QWO Vh, Va) — & Trp (W 0°) (0w’ Vi, Va)
+ % € <w0 (Q°w’)?Vh, Va> — %5 <w0 (gu°)*Vh, Va>) #7 Ho,r

< Ce|allgs-

PROOF We start our proof by reformulating K := [{h,7} ,{a,7}]. We
have

K = 0xh0ia w?k@m,w?ﬂjﬁ} = w); (057, 0] wi), Och Dia

=: wloj Kjiw) Oxhda = (W KW’ Vh, Va).

Defining
kY = tra (Kij Po) = try ([0, 057 Fy)

we have
try, (K Py) = (W’ kK° W’ Vh, Va) =: k.

By the definition of 7 (see Proposition 3.2)

k;?j:tryf([ai(P+&?7~r),@(P—l—ﬁr)] Po)
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In addition, 7 is diagonal with respect to . Therefore, applying Lemma B.1
results in

k,?j = try, ([O;P,0;P] Py) + etry, (Po 7 Py [0;P,0; R ])

—5ter([8iP’POL7~TPOL‘8jPO} Po)—i-é‘tI'Hf(Pgﬁ'Po [81P0,8]P])
— ety ([P [P 7 Py | 0;P] o) + O(?).

Recall that 9, P, is off-diagonal with respect to P, and PP = 0. Hence,

k?] :ter([(‘?,-P,ajP] P)+2€t1"7.tf(P07~TP0 [&P,é’]Pg])
+2€ter(POLﬁ'POL [&P,@Po])—l—O(EZ)

Replacing 7 by its expansion (3.19) in the previous equation leads to

k) =try ([0:P ,0;P] P) — % & tryy, (Po Tran (W QFF)) tray (Po [9:P, 0, Py])
+ %Ster<P()L Trgn(wo Qgp) POL [@P s OJPO]) + 0(82) .
(B.15)

By (3.9) P* = P+ O(e*) = Py + O(¢). Hence,
tI"Hf(PO [@P s a]PQD = ter(PE [817)5 y 8]735 ]) + 0(5) = IQZ (B.16)
and

ter(Po Trgn(wo Qgp)) = —1w;]Z tI'Hf<P0 [8ZPU ,@PO ]) = TI'QTL(CL)O QE) + 0(8) .
(B.17)
By (3.9), the cyclicity of trace and the skew-symmetry of w°

ter(‘Pd_ Tr2n(w0 Qgp) POJ_ [alP y 5’jP0 ])
= —2iwy, tryy, (P° O, P° 9;P° 0P O, P°) (B.18)
+ 2iwlok try, (P° 0;P° Ox P O, P° 8j736) + O(e)
Plugging in the definition of 7¢ (3.73) and using the symmetry of the Fubini-
Study metric g° as well as the skew-symmetry of the symplectic forms 2° and
w? we get
tI"Hf(POl TrQn(wO Qgp) POL [8ZP s 8jP0 D
= —2iwy Ty Tir + 2iwy, T I
= —3 1wy g; g + 3 iwi, 9 Oy + 3 Wik, 9 9y — 3 iwi, 95, 2

(B.19)

o . € 0 ¢ : O)E 0 15
= —1gg W 9i; + 15 wiy ;-

237



238

Combining (B.15)- (B.19) shows
Ky =10 = e T (@ )0 e} (' )y
+e % (QE W QE)U + 0(52) .

Next we want to compute the first order terms in the effective symbol of K
Since [ K;; , Py ] = O(e) we have

(IC—K,Q)PO :<WO(POKPQ—/{JOPO)WOVh, VCL>+O<E)

=(w (tra, (P K) Py — k° Py) w° VR, Va) + O(e)
=0(e)

which implies

az(lC — /io) Po = —(K — Ho) (9ZP0 + O(€) .
Then

e T H#H(K — k)#m =m (K — ko) Py + Py (K — ko) m +{Py, K — ko 11 Py
+ P {K — ko, Po }1 +{Fo | K — ko[ Po }1 + O(e)
=—{R|K—-ro|F}1+0O()
=L (W {R| K —k°| Py}’ VI, Va) + O(e)

which suggests defining k' by
ki = 4 toa, ({Po| Kij — kS | o} Py).
such that

K/l’_l

=1 try, (W {P | K = k| Py}’ VI, Va) By) = (0" k' w’ VI, Va).

Plugging in the definition of K and £° and using the cyclicity of the trace
yields

ki = — Stry (P {Po, Ro} [0iPy, 9 Py))
— stry ({Po, Po} tra ([0: Py, 9; Py ]) Po) + Oe).

A similar computation as the one leading to (B.20) shows

kij = —1(070° 9%)ij + (7w’ Q)5 + { Tran (w” Q) QF; + O(e).
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Fix r € Ny. By definition of the effective symbol (3.26) of [{h,7} ,{a,7}]
and Theorem 3.6 there exists a constant C; > 0 and a 7; € N, such that

Hﬂ'# [ {h,n} {a,n} } #
—T# (i <w0 QW Vh, Va> — iéTrgn(wo 0F) <w0 QW Vh, Va>
+ 3 <w0 QW) Vh, Va> — 3¢ <w0 (¢°w")?Vh, Va>) #WHOJ
<G e ||[[{h, 7} {a, 7} ][5

Finally, choosing €' = €' max;<i<an Haih”g,ﬁﬂ (|’7TH8,7*1+1)2 and 7 = 7 + 1
finishes the proof. O

Lemma B.4 Let the assumptions of Lemma 5.1 hold and the operator-valued
symbol B € S°(e, B(H;)) be given by

B(e) == { {h(e) ,m(e)} . {ale) . m(e)} }, — {{ale) ,m(e)} , {h(e) ,m(e)} },

Then, the effective symbol b € Sy(e,C) of B(e, z) has an asymptotic expansion
starting with

b= —Str ({{h, o} {a, Po}}) + 5 (" (9" ")’ Vi, Va)
+1 <w0 Qw2 Vh, Va> + L Ty, (W Q°) <w0 QF W Vh, Va> + O(¢).
Moreover, there exists a constant C' > 0 and a 7 € Ny for every r € Ny such that
| m# ({{h.7} Aa, 7)) —{{a. 7} {h,7}} ) #7
—m# (= St ({{h, Po} {a, Po}}) + & (o° (¢°w)? VI, Va)
+ i <w0 (Q°wW’)?Vh, Va> + i Tron (w? Q) <w0 Q°WVh, Va>> #7 HOT

< Ce lalfs;

PROOF We start with the observation that by (2.16) and the fact that
Pe=P+0(E®)=F+0() (3.9

Poaiszop():—tryf(Po [Q-Po,(?jPo]Jr Po)P[):gzajpo—{—O(&“)

Therefore,

tra, ({0;Po | Po | O; Py} Po) = wiytray, (03 Py Py afkpo R)

0 & ¢ e 0 ¢ (B21)
= Wy 9 G5 + O(e) = —(¢°w” ¢%)ij + Ofe).
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By the cyclicity of the trace as well as that 0; P, is off diagonal with respect

to P, we obtain

ter({azPo‘POL’E?JPO} P()L):wgltr’;.[f(a POPL(()kPO )
= w,gl ter(akPO 8ZP0 6ZP0 8]-P0 P()) + wkl ter(akPg (‘9lP0 8ZP0 @PO P())
+ wgl ter(81P0 GkPO 8jP0 aZP() P()) + wgl ter(éin (9kP0 8jP0 GZPO Po)

Now, by (3.9) and the definition of 7¢ (3.73)

tryg, ({0 Py ‘PL \ 0P} Py

= wi T ;T WMTETE +wy Ty AT+ WleETE' + O(e)

= kal 9ri G — 5 wiy i O+ 5%1 9r 955 — sz Q4 % + O(e)
% (Qa wo Qa)i]‘ + %Tl"gn(w QE) QZ + O( ) .

=1 (F g+
(B.22)

By the cyclicity of the trace we get

—try, {0: Py, 0; P} Bo) + try, ({0 R0, 0: P} By)
= —try,({0: 10 [ Po | 0o} Fo) — ter({aiPO ‘PUL ‘ 3jPo} )
({0:Po [Py | 9;Po} Po) — trw, ({0iFo | Py | 9; Po} Fy)
—tra, ({00 | P | 0;P0} ) + tra ({0u 0 | Py | 050} )
= —try,({0: 7,0, })
— trw, ({0 Py | P | 0o} Po) + tra ({0: P | P3| 0o} Py

- tI‘Hf

Then, plugging in the results from (B.21) and (B.22) into the above equation
yields

— ter({&-Po s (9jP0} Po) + ter({(’)jPo ,@-PO} Po)

= —ter({az-Po s 6]P[)})
% (QE wo Qs)ij + %TI‘Q”(CUO QE) QZEJ + 0(8) .

(B.23)
4 % (gewo ge)ij +
In addition, we have

— tI‘Hf(PO 8kP0 {@h , @PO}) + ter (P() {@Po , @h} akpo)
= —tI"Hf(PO 8kP0 {&h s alpo}) - JCl"qﬁ(]DoL akPO {8Zh s 31P0})

= —ter (8kP0 {azh ) alPO})
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and similarly

— tl“'Hf(Po {akpo s 8]'&} GZPO) + ter(PQ 0l7r {Gja s 8kpo})
= —ter({ékPo s 8ja} (%Po)

as well as

- {&h 5 8ja} tl"q.[f(Po BkPO 81P0) + {@-a N &h} tl";l.[f(PO 81P0 8kP0)
= — {alh s 8]'&} tI‘Hf (8kP0 8[P0) .

(B.24)

Finally, the product rule followed by an application of (B.23)-(B.24) gives
tryg, (=3 {{h, 7} e, 73} + S {{a, 7} {h,7}}) P)

== %wgz wloj( — tr’}.[f(PO {@h (9kP0 y 8ja (9;P0})
+ tI“'Hf(PO {8ja (‘)IPO s &h 8kP0})) + O(é)

Y w;)j( ~ tep ({00 0Py, 0,0 01 Py))
F g w0 gy + (D) + L Tran W 0) ) + O(e)

= —sto({{h, Po} {a, Po}}) + 3 (o (¢°w)* VA, V7a)
+ 5 (W (W2 Vh, Va) + & Trgy (w0 ) (w* °w’ Vi, Va)
+O(e).

By definition of the effective symbol (3.26) of the operator valued sym-

bol {{h,7} ,{a,7}}, — {{a,7} ,{h,7}}, and Theorem 3.6 there exists a
constant C; > 0 and a 7, € Ny such that

7t ({4homy Aot} = {Hamd omd ) #e
—m# (= S ({{h, P} {a, Po}}) + & (w° (" w°)? VA, Va)
+ 1 ()2 Vh, Va) + £ Tran(w® @) (0 @ w® Vh, Va) ) # 7 HO
<Ciel{{h, 7} {a, 7} b — {{a, 7} {h, 7} hlGs, -

Which finishes the proof choosing C' = Cy maxi<i<on [|0:h[§ 7,11 (171157, 12)°

and 7 =7, + 2. O
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Lemma B.5 Let H : R*™ — B, (Hs) : (¢,p) — 3x(p — £ A(@)?) + V(q)
where V' : R" — By, (H¢) and x : R — R are smooth and bounded with all
their derivatives. In addition, assume e, : R"™ — R to be an eigenband of V'
with associated eigenprojection Py(q) satisfying the gap condition (7.1). Then,
eo(q,p) == sx(Ip — € A(q)|*) + e.(q) is an eigenband of H with eigenprojection
Py(q) satisfying Assumption 2.11 and the associated classical Hamiltonian is
given by

hg,p) = 3 x(Ip — e A(@)*) + eu(q)
+38X(Ip—cAl@)P)? (p—<Alg), W(g) (p—eA(g))) (B.25)
+ O(e%)
where
Wii(q) == tra ([0iPo | (V — €)1 0;P0]4)(q) -

The symplectic form is

w(q,p) = w’ +eQ(q) + "X (Ip — e A()]*) Qu(a,p)

2.1 2 3 (B26)
+e*X"(Ip — e A(Q)]") Qews(q,p) + O(e7)

no<q>=(ﬂ°o(q> 8) with  Qo(q) = —itrs (0P 0,5 Po)(0)

and

(g, p — e Aq)) W(q))

with
QY (q,k) = —(0iWj(q) — O;Wa(q)) ki -

The matrix Q.. (q, p) is defined by

0 Q%L (g, p))

ch ) -
t(q p) (_cht(Q>p) 0

where Qeu(g,p) = (p—2 Alg)) ® (W(g) (p—=Alq))).
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The associated Liouville measure satisfies A\* = v*(q,p) dg; A - - - A dp,, with

v (q,p) =1+ X'(Ip — e A(q)]*) Tr,(W)(q)

+e* X" (Ip— e A@)*) (p— e Ala), W(q) (p — e Alg))) + O().
(B.27)

PROOF Clearly, eo(q,p) := ix(|p—e A(q)[*)+e,(q) is an eigenband of H(q, p)
with eigenprojection Fy(q) that satisfies the gap condition. Regarding the
classical Hamiltonian. By (3.65)

h=ey+¢ (Trgn(wo M)) (1 — L eTry, (W QO))
+&* [5(w” (Veo), W o' (Vep) )
— trpg (Tron(w® M) ) (V = €)™ (Tran((w” M?)*)) Py)
— %tI"Hf<<UJO VTrgn(wU MOp) s VP() > PQ)
+ £ try (Trgn( WO V2P W VAV —e,)) Po)}

By the fact that P, and V' — ¢, are independent of p we have

Qi (q.p) = (—itrm(Po 0.7 0,7 g) |

Wi(a.p) — (”Hf@@f’o = 19RL 8) |

ij

M, - (étmf(@iPo(V—ev>8jPo)<q> 0)

and

It follows that

0 = Try, (W M) = Tro, (w’ Q) = Try, (W’ M?P)

) er e (B.28)
= Trop(w” V2 Pyw” VAV —e,) ).

In addition, we have

Veolq,p) = (_5 X'(Ip — € A(q)]?) VA(q) (p — € A(q)) + Vev(q)

Yl — < AW@)?) (p — ¢ Alg) ) - (529
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Hence, the classical Hamiltonian h(q, p) simplifies to (B.25). By (3.70) the
symplectic form w® up to second order is

e _ 0 ij | .2 ¢yl
wi; = wy; +eQy +e” Qg

where by (3.71)
Qf = 9:S;(¢,p) — 9;Si(q. p) (B.30)
with

) (_itqu Pi(q,p) . VPy(q)] Po<q>>)

and by (3.12)

Py(q,p) = — Po(q) (Tran(w” M) )(¢)(V — e,) " (q)
+iPy(q) (w’ VigpPolq), Veolg,p)) (V — €)' (q)
— (V= ey) 7 (q) (Tran((w* M?)*) )(q) Po(q)
—i(V =) (9){(Veolq,p), ©° Vg Fo(a) ) Polg)-

Substituting (B.28) and (B.29) into the above equation for P, we obtain

Pi(q,p) = —ixX'(Ip — e A(@)]*) Po(q) (VPs(q) . p — e Alq)) (V — ) (q)
+ix'(lp—cAl@)P) (V —en) ' (q) (p— Alq), VPo(q)) Po(q) -

Hence,

Su:(q,p) = — itry, ([ Pi(q,p), 0iPo(q)] Po(q))
=—X(lp—£A(q)]*)
(trr, (9;Po(@) (V = e0) ™ (q) 9:Po(q) Po(a)) (0 — € Al0));
+tr3, (9 Polq) (V = €)™ (9) 0 Polq) Po(9)) (p — £ Alg));)
=—X'(lp— e A(@)*) Wis(q) (p — € Aq)); -

We conclude that

S(a.p) = (—X’(Ip - aA(qW)OW(q) (v - eA(q))) |
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Then, a staight forward computation using the above result and (B.30) yields

~W(q) 0
+X"(lp — £ A(9)]?) Qeut (¢, p) + O(e)

0 (a.0) =X (Ip - < Ala)) (Ql(q’p o) W(q))

what finishes the proof for (B.26). By (3.75) the density of the associated
Liouville measure is

V¥ =1— 2Ty, (w’ Qo) — 1 Ty, (w° )

+ 162 Trn (W’ 20)* — § €° Trap(w” Qo w’ Qo) + O(%) .
We have
Tran(w’ Q1(q, p)) = Tro (2 (q, p) — QF(q,p)) = Tra (=W (q) — W(q))

and

Tr?n(wo cht(Q>p)) = _Trn (cht<Qap)) - TI‘n (Qzllt(%p))
=-2(p—eAlq), W(g) (p—cA9))) -

Therefore, additionally using (B.28) as well as the fact that
TI"Qn (wo Qo UJO Qo) =0

finishes the proof of (B.27). O

Lemma B.6 Let the assumptions of Lemma B.5 hold and (h, w*®) be the Hamil-
tonian system with classical Hamiltonian h given by (B.25) and symplectic form
w® given by (B.26). Then, the inverse of the symplectic form’s coefficient matrix
has an expansion starting with

e\ —1 o 0 _]-n 2 ./ —¢ 2 0 W(q)
(W) a.p) = (1n gﬂ(q,p)) +e X (lp—eAl@)f) (_W(q) 0 )
2.1 2 0 cht(qap) 3

+e X" (Ip—<AQ)) (_ng(q’p) 0 ) +0(%)

where Q(q,p) == Qo(q) +e X (Ip — ¢ A(@)]?) (g, p — £ A(q)).
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Moreover, the Hamiltonian equations are

i =X(lp—cA@)?) (p—cAq) + O

and

pi = — dieo(q) +eX'(Ip — e A(Q)]?) (8:A(q), p — £ A(q))
—eX'(Ip = A@)P) QY(g,p) (p — £ A9));
— 53X (Ip—c AQ)P)* (p—eA(q), W (q) (p — £ Alq)))
+e2 X (Ip — e Alq)*) Wii(q) Dsen(q)
+e2x"(Ip— e A(Q)]) (p — € Ag), Veu(q)) W(q) (p — € Ag))s
+ 0.

PROOF By the Neumann series for (w®)~! (5.4) we have
(W)t =-w’ -’ Quw’ -2’ QW QW + O(?).
where

Q=) +eX(Ip— A1) Qulg,p) +ex"(Ip — € AQ)]*) Qeut (¢, p) -

A straight forward computation shows

0 o_ (0 0 0 0 0_
w” Qo(q) w” = (0 —Qo(q)) : w” Qo(q) w” Qp(q)w” =0,
e WO = 0 ~Wi(q)
iap) (W<q> —Ql<q,p—eA<q>>)

0 _ch )
W Qeu(g,p)° = | (ar))
cht(Qap) 0

Combining the above results shows (B.31). The Hamiltonian equations are
q o dyh(q, p
) = () (g p) (2M0D)
p Iph(q,p)
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Here, a simple computation shows that

Oy h(q,p) = —eX'(Ip — e A(q)*) 8, A(q) (p — £ Aq)) + Diew(q)
+5X(Ip—cAQ)f)? (p—<c Alg), W (q) (p — € A(q)))
+ (9( )

as well as

Oy h(q,p) = X'(Ip — e A(Q)*) (p — £ A(q))s
+e2 X (Ip — e A(Q)PP)* Wis(q) (p — € Alq));
+e2 X (Ip = AQP) X" (Ip — e A(Q) (p — € Aq))s
<p—€A() W(q) (p—eA(g)) + O(e%) .

Thus, we get

=X'(lp—cAl@)) (p—cA@) + > X' (Ip — £ A(Q)]*)* W(q) (p — € A(q))

+2X (lp—c Alg)P) X" (Ip — e A(9)]?)
(p—é‘A(q)M —cA(q), W(q) (p—<Alqg))
X' (Ip—eAlq)P)* W(g) (p— e A(g))
) X

(q)?
e X (Ip— e A@)) X" (Ip — £ Alg))
(p—cAq) ® (W <><—eawn)@—eA@»+0@%
=X (Ip—eA@)]?) (p— £ A()) + O(?)

where in the last equality we used that

(p—cA(@) ® (W(g) (p—=cA@)) (p—eAlg))
=(p—cAlg) (p—cAlg), W(g) (p— £ Alg))-

The momentum p solves the equation

pi == dien(q) +eX'(Ip = AQP) (9:A(q), (p — € Alq)))
—eX'(Ip == A@)) Qij(a,p) (p — £ A9));
+e2 X' (Ip — e A(Q)*) Wi (q) 9jeu(q)
35X (Ip =A@ (p— e Alg), dW(q) (p — £ Ag)))
+ 62 X"(Ip = A@) (p— e Alq), Veu(q)) Wis(q) (p — € A(q)); + O(&?)
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where we used the fact that

OLi(a,p) Veu(q) = (p — e Aq), Veu(q)) W(q) (p — £ A(q)) -

]

Lemma B.7 Let the Hamiltonian symbol H : R*" — Bg,(Hs); (r, k) — Ho(k —
A(r)) + ¢(r) where Hy : R" — B, (Hs) be smooth and bounded with all its
derivatives. In addition, assume the magnetic vector potential A : R — R" to
be of the form A(r) = Ay(r) + br with b € R"" and A, : R" — R" smooth
and bounded with all its derivatives and the electric potential ¢ : R" — R
given as ¢(r) = ¢p(r) + € - r with ¢, : R" — R smooth and bounded with all
its derivatives and £ € R". Moreover, let ey : R™ — R be a continuous, non-
degenerate eigenvalue of H, satisfying the uniform gap condition (2.82) and
Py(k) the eigenprojection of Hy(k) to the eigenvalue ey(k). Then, H is a Weyl-
symbol in S°(Bs.(Hy)) and E(r, k) := é(r, k) + ¢(r) := eo(k — A(r)) + ¢(r) is a
isolated, smooth and non-degenerate eigenvalue of H(r, k) with eigenprojection
Py(r, k) := Py(k — A(r)). The associated classical Hamiltonian is given by

hr, k) = h(r,k — A(r)) + O(%) (B.32)

where

h(r, k) = eo(k) + 6(r) + & Tra (B(r) M(x)) (1 = % Tr, (B(r) Qo(x)))
+ (3 Fror(r, k), W(K) Froe(r, )
— try (Tra(B(r) M(k)) (Ho — €0) ™ () Tra (B(r) M(5))") Po(k))
—iter(< (r) OxTra (B(r) M(x)), vpo< )) Po(r))
(0 Tra(B(r) M (k) , VPo(r)) Fo(r))
+ £ tryg, (Tra (B(r) V2Po(k) B(r) v?(HO — e0)(k) ) Po(x))
+ § trgg, (Tra (V2 Po() (V2A(r) V2(Hy — €9)(k)) ) Po(k))
+ L trgg, (Tra ((V2A(r) V2 Po(s)) V2(Ho — €0) (k) ) Po(k))

(B.33)
with Berry curvature
QF (k) == —itry, ([P0, 0P Po) (k) (B.34)
Magnetic field
B(r) := VA(r) — (VA(r))", (B.35)
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Lorentz force
Fror(r, k) := =Vé(r) + B(r) Veg (k) ,

effective magnetic moment
Mij(/i) = %ter (&PO (HO — 60) 8jPO> (H)

as well as
Wij(k) = ten ([0:Po | (Ho — e0) ™" [9;Po ] ) (k)

and
Mz(;p(/i) = L aZP()(/i) 8j(H0 — 60)(:%) .

-2

The associated symplectic form &° is given by

O (k) = W' + e Q(r k) = ¥ + e Qo(r, k) + 2 (r, k) + O(?)
=W +eQo(r,k — A(r)) + 2 Qu(r, k — A(r)) + O(e?)

where Q is
() = (m(r) Qo (k) (VA@)" —VA(r) QU(K))
’ —Qo(r) (VA(r)T Qo(k).
For
O o (romy (R )
Sy o) 0 g)
we have
QF(r k) = Qq(r, k),
Q" (r,k) = =VA(r) Q(r,k) + L(r, k),
Q" (r, k) = —Qu(r, k) (VA@)T = LT (r, k),
and
Q" (r,k) = VA®r) Qi (r, &) (VA(r))*
—L(r, k) (VA(r)T + VA(r) LY (r, k)
where

(B.36)

(B.37)

(B.38)

Qij(r, R) = 8,{1,5]5(7“, K) — Ok, SiB(?“, k) + 0ip(r) (O;Wi;(k) — 0;Wii(k)) (B.39)

and
L(r, ) := (0,S%)(r, k) + VZ¢(r) W (k)

249



250

with

SP(r, k) = Retry, ((B(r) VPy(k), V(Ho + €o)(r))

’ (B.40)
(Ho — e0) ™" (#) 8; Po(k) Po(”v)) :

The corresponding equations of motion are

(7.'") = (W e (=0 (r k) + e (=@ (r k) ) (M(T’ k)) (B.41)

k 8kl~1(7’7 k)
where ) )
~e -1\ _Qkk(rv k) ri (T, k)
(=& (r k) ")y = ( Q(r k) —Qr(r, ’f))
and

(_ﬁ(r?k)%:( ~( h) ~(r ) (VA (1) )

—VA(r) Q4(r,k) —VA(r)Q(r,k) (VAT (r)
Here, Q3 (r, k) is defined as
QL(r, k) = Q4(r, k — A(r))

where
QL(r, k) = Qo(k) B(r) Qo(k) .

The Liouville measure associated to <) is given by
Xo= 0 (rk—A@r) + OEY)) dry A+ A dk, (B.42)
with density

V(r k) =1 — 3 eTr,(B(r) Qr, k) + £ T, (L(r, k)
+ £ &2 Tr,,(B(r) Qo(k))* — 1€ Tr,(B(r) Qo(r) B(r) Qo(k))
(B.43)

where Q(r, k) := Qo(k) + € Q4 (7, k).

PROOF Before we start with the actual proof we show some simple identi-
ties. Let R, Q € Sy(B(H;)) and R, Q be given by R(r, k) = R(r,k — A(r)) and
Q(r, k) = Q(r, k — A(r)), respectively. Then, an application of the chain rule
yields

VR(r k) = (1Y) (VR)(r, k — A(r)) (B.44)
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and
(" VR(r k), VQ(r,k))

= ((“whityr 1) @ (5 70) (VR k = A1), (VQ)(r k= A(r)))
={( O sly) (VR k= A(r)), (VQ)(r,k — A(r))

In the special case where R and () are functions mapping from R" to B(Hy)
and R(r, k) = R(k — A(r)) as well as Q(r, k) = Q(k — A(r)) we get
VR(r k) = (") (VR)(r, k — A(r)) (B.45)

1n

and

(" VR(r k), VQ(r,k)) = (B(r) (VR)(k — A(r)), (VQ)(k — A(r))) .
(B.46)
We start by computing the symplectic form. By definition (3.70)

Q (r, k) = ity ([0:P0, 0;P0 ] Py ) (r, k).
It follows directly that
Q" (r,k) = —itry, ([0iP, 0P ) Po) (k — A(r)) = Qf (k — A(r)) . (B.47)
By (B.45) we have 0,, Py(k — A(r)) = —0;A,(r) 0, Py (k — A(r)). Thus,

Q" (r k) = —itryg, ([0 Po(k — A(r)), 0k, Po(k — A(r))] Po(k — A(r)))
= —9;A,(r) Q (k — A(r))

and therefore
QrF(r, k) = =V A(r) Qo(k — A(r)).

Similarly we get
Q" (r, k) = —Qo(k — A(r)) (VA(r))"

and
Qi (r, k) = VA(r) Qo(k — A(r)) (VA@)T. (B.48)
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Regarding ();, substituting the definition of S” (B.40) and W (B.37) into Q7
(B.39) we get

Qv (r,k) = 8,{1,5]5(7“, K) — O, SB(r, k) + 00(r) (O:Wi(k) — 0;Wii(k))
= 0, Retry, ((B(r) VP, V(Hy +eo)) (Hy — eo) " 9; P Po) (k)
+2010(r) O Re try, (0P (H — €)' 0; Py Py) (k)
— O, Re tryy, ((B(r) VP, V(Hy + €9) ) (Ho — €9) ' 0P Po)(k)
—2010(r) 0;Re tra, (0P (H — €)' 9, Py Py) (k).
(B.49)

On the other hand, by (3.71)

QZP(T, ]{7) = -2 @-%e(itr;{f(ﬁl Gj]-:’o ﬁo))(T, k) + 2 @9‘%2(1 tI';LLf<p1 82150 po))(’]“, k') .
(B.50)
Also, by (3.11)

Bi(r. k) —%( o (WO VP, V(H +8)) (H =)' )(r,k)
(f’ akP0>( é)_1>(r> k)
%( V(H +é), wOVf’())po)(T,k)

(H
—i((H - > <akPo,v¢<>> Po) (r, k).

(B.51)

Substituting (B.51) into (B.50) we get

QF (r, k) = 0%e(tray, (" VP, V(H +€)) (H— &) ;5 By) ) (r, k)
+20:%e(try, ((Vo(r), Po) (H — &) 0;Py o) ) (r, k)
— 0;%e(tr, (" VP, V(H +6)) (H— &) 0Py By) ) (r, k)

—20;%Re(try, ((Vo(r), OuPo) (H — &) 0Py By) ) (1, k).
(B.52)

Applying (B.46) to (B.52) and comparing with (B.49) we conclude

M (r, k) = QY (r, k — A(r)).
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Next, we compute 7% (r, k). By (B.46)

0pRe(tr3y, ((w* VP, V(H +&)) (H — &) 0, Py o) ) (1, k)
= —0;Au(r) |0, Re(tr3, ((B(r) VP, V(Ho + e9) )

(Ho—e0) ' 0, Py Po))} (k— A(r)) (B.53)
 [2n et (B VR, V(Ho +c0))

(Ho— o) 9Py Py) )| (k — A(r))
= —0;Au(r) (05,87 )(r.k — A(r)) + (0,57 ) (r, k — A(r))
as well as

Op, Re (trzg, (Po (WO V Py, V(H +€)) (H — &)™ 0, Py ) ) (1, k)
= |0x, Re(try, (Po (B(r) VPy, V(Ho + e9) )

(B.54)
(Ho — €0) ™" (—0iA,(r) 0, Py) )] (k — A(r))
= —0;A,(r) (85].35)(70, k— A(r)).

Moreover, combining (B.46) and the product rule

20, Re(tryy, (Po (Vo(r), P (H — €)' 0, By By) ) (r, k)
= 2030(r) Re(tryy, (0P (Ho — €0) L 0P Py ) (k — A(r))
— 20,(r) 0 Au(r) O, Re (tryy, (0P (Ho — €0) ™" 0;P0 Py) ) (k — A(r))
= 0;0(r) Wi;(k — A(r)) — 916(r) 0;A,(r) 8, Wi;(k — A(r))

(B.55)
and similarly

20, Re(try, (P (Vo(r), 0P ) (H — &) 0, Py By) ) (r, k)

—2016(r) ;A (r) 0;Re (tr3y, (Po O Py (Ho — e0) ' 9P o) ) (k — A(r))
= —019(r) 0:Au(r) O;Win(k — A(r))

(B.56)
Combining (B.53) - (B.56) with (B.52) we obtain

O (1 k) = = 0,A(r) (0, 57 (1 k = A(r) = 01, 5,7 (r k= A(r))

— 0iAu(r) 0ig(r) (0. Ws (k = A(r)) = 9 Wiu(k — A(r)))
+ (arisf)(r, k— A(r)) + 056, (r) Wi (k — A(r))
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which can be reformulated to

Q{k(r, k) =—VA(@r)Q(r,k— A(r))
+(0,88)(r, k — A(r)) + V2o(r) W(k — A(r)).

Similarly we obtain

Q’f”(r, k) =—Qi(r k— A(r)) (VA(r))"
— (8.58)"(r, k — A(r)) = W(k — A(r)) VZ¢(r)

and

O (r.k) = VA(r) Qu(r, k — A(r)) (VA(r)”
— (0:87)(r,k = A(r)) (VA(r))" = V2o (r) W (k — A(r)) (VA(r))"

+VAW) (0,85) (r k — A(r)) + VAr) W (k — A(r)) V26(r) .

By (3.75) the Liouville measure associated to ) is given by

N =0(rk)dry A - Adky,

where
77 (r, k) = 1 — & 1 Trop (w® Qo(r, k)
+ &2 % Tron (w® Qo(r, k))? —
+ O(e%)

) —&” 4 Tran(w "0u(r k)
2 — 1 Ty, (w O Qo(r, k) w” o (1, k)

It is easy to see that

Trop (w° QO)(T, k) = Trn(Qgr(r, k) — ng(r, k)) = Tr,(B(r) Qo(k — A(r)))

and

Tron(w® Qi (r, k) = Trn (QF (r, k) — Q5% (r, k)
= Tr,(B(r) Qu(r,k — A(r))) — 2T, ((0,57) (r, k — A(r)))

— 2T, (V2p(r) W(k — A(r))).
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Moreover,

TI'Qn(CUO Qo(r, k) W0 Qo(r, k)) = Trn(fllgr(r, k) QIST(T, k) — Q’Sk(r, k) QST(T, k)
— QT (r, k) QFE (r, k) + QR (r, k) QR (r, k)

— v, (B(r) Qo(k — A(r) B(r) Q(k — A(r)).

Then
7 (r k) = v5(r, k — A(r)) + O(£%)

where
Vi(r k) =1 — 3 eTr,(B(r) Qo(k)) — 1 & Tr,,(B(r) Q4 (r, K))

+&* Tra(V2(r) W (k) + &* Tr ((0,57) (r, )
+ 5 T (B(r) Qo(k))* — § €* Tra(B(r) Qo(k) B(r) Qo(r))

By Corollary 3.8 the effective Hamiltonian A(r, k) associated to H(r, k) is

given by

h(r, k) = &(r, k) + & Tray (W° M) (r, k) (1 — 3 & Trop (° Qo) (7, k)
+ & ( (WVe, WuWOVe)(r k)
— trpg (( Tron(w” M) (Ho — &) ( Tran((w° M%)")) P (r, k)
— 5 tr3g, (" VT (0 M), VP ) Bo) (r, k)
+ & (Tron(w® V2P V*(H — €)) By) (r, k) + O(?)
where
MP(r k) = =5 8;Py(r, k) 0;(H — €)(r, k),
Mij(r, k) = § 1y, (0P (H — &) 0, ) (r, k)

and
Wii(r, k) = tryg ([0:Po | (H — &)1 [0; Py ] ) (1, ).

Then a simple computation similar to above results in (B.32). The details of
this computation are left to the reader. What is left is to derive the equations

of motion (B.41). By a simple computation using (5.4) we have
Ok _ Qb
~€ -1 _ 0
O (r k) =—w’+¢ (_Qrk fyrr ) (r, k)
N 62 Sizla:r g:zlgk’ _ g:zlgk ng (:Zlgk g:zgr _ S?lgr (:Zkr
QuF Quk — Qur QFk - QEr Qb — Qrk QT

0 ) (r, k) + O(%) .
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Then, (B.41) follows by substituting (B.47) - (B.48) into to above equation
and using the definition of B(r) (B.35), which finishes the proof. O

Lemma B.8 Let the assumptions of Lemma B.7 hold. Then, a change of
coordinates to kinetic momentum x = k — A(r) in the equations of motion
(B.41) associated to H (r, k) with eigenvalue é(r, k) + ¢(r) yields

T . Orh(r, K)

= —(wy B.57

(m) (wWim) ™ (1K) (&h(r, ) ( )

with classical Hamiltonian h(r,x) given by (B.33). The symplectic form

win (1, K) satisfies

-B 1, ,[ 0 L

€ = B.58

i (—1n 59) e (—LT o) (B.58)

and its inverse has an expansion given by
(s )_1_ ctQ -1, Y- ceQBO -QB
e\, -B BQ -BQB

2 0 —(QB)? o [ O LT 3
e ((BQ)2 —(BQ)213)+€ (—L BLT+LB)+O<E)'

(B.59)
Here, B(r) is defined by (B.35) and
L(r, k) = V*¢(r) W (k) + (0,57)(r, k)

where W (r) and SB(r, k) are defined by (B.37) and (B.40), respectively. The
coefficient matrix of the modified Berry curvatures Q(r, k) is given by

Q(r, k) = Qo(r, k) +Qy(r, K) (B.60)

with Qq(r, k) and Q4 (r, k) given by (B.34) and (B.39). The Liouville measure

of wiy (7, k) s
2= (VF(r, k) + OE))dry A+ Adky, (B.61)

with density v°(r, k) given by (B.43).
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PROOF By definition & (r, k) = h(r,k — A(r)). Then, (B.44) yields
Oh(r k) (1, —VA@)) ((0h)(r,k — A(r))
ah(rk)]  \o 1, (0xh)(r,k— A(r)))
In addition, a simple computation shows
A 1, 0\ (7
i) \=(VA@)T 1,) \k)°
Moreover, by (B.38) we have
@ (r, k) = w(r, k — A(r))

where
wi(r, k) == w® 4+ eQo(r, k) + > (r, k).

Substituting the result above into the equations of motion (B.41) we obtain

AN 1, 0 (" 4 (1. —VA(r)\ [0:h(r, k)
i) T\ S(vAE)T 1, Sy B.h(r, )

Since

(f(VlA?r))T 10n)_1 = ((VAl(i))T 10n) and <1on _vﬁw) )_1 = (10" vfﬁ)

we get
r _ wa r K —1 87]1(7”, ’%)
[7) = i (7)

wi(ry k) = (5 717) @08 (watoy 1) (B.62)

Then, a simple computation shows that for any R € R"*" we have

where

(5 727) (a7 %7") (watwr 1) = (B 8)

as well as

(3 ™4 (PR (el £) = ().

In addition,
(5 707) " (a1 ) = (B0 %)
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Then, (B.58) follows by replacing w®(r, k) in (B.62) by its explicit expression
and using the results above. To compute the inverse of w®(r, k) we again
make use of a Neumann series. We have

(Wi (r,K)) ! = (:Bl(:) 10" )_1 f:l ( —¢ (—z—:Lg(r,n) 65((7:;:))) (7—33(:) 10n)_1 >j ’
=

Then, making use of the fact that
—b(r n -1 0 -1,
( —Bl(n) 10 ) - (ln —B(r))

a straight forward computation shows (B.59). Clearly, (B.61) directly follows
from (B.42) by transformation to kinetic momentum, which finishes the
proof. O

Lemma B.9 Let the assumptions of Lemma B.7 hold. In addition assume f € A.
Then, the associated Fubini-Study metric is given by

(VAW sl AG) (TAD)T VAR aok— AGD |
gl &) ( —gulk— AG) (VAW gle—ae) ) T

(B.63)
where
96 (k) := try ([0 50, 0;P0 ] Fo) (k) -
Moreover, for the classical Hamiltonian h given by (B.32) and Q(hy, Py) defined
by
Q(ho, Go) (r k) = 5 Tran(w® V(' (ho(r, k)) Go(r, k) ° Vho(r, k)) )

we have

Q(ho, o) (r, k) = Q(ho, go)(r, k — A(r)) (B.64)

where
Q(ho, 90)(r, k) := 5 Tty (GN/\GQ(T, k) — 0N (r, k) + VA(r) 9N (r, /i))

(B.65)
with
NQ

NO(r, k) := (/\/}Q
2

—VA(r) go(k) Fron(r, ﬁ)) |
gO(“) FLor (T, “)

) (r, k) := f'(ho(r, K)) (
(B.66)

Here, the Lorentz force JFi, is given by (B.36). Furthermore, for

Fo(hym) (k) = f(h(r k) + € F(R)(r k) + €2 f*4 (h, &) (r, k)
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with

FeR)(r k) = = & Tran (WO V(£ (ho(r, k) Vho(r, k) Vho(r, k)))
+ F"(ho(r, k) Tron (w° V2ho(r, k) W° V2ho(r, k) + O(e)

and
Fih, i) = =5 " (ho(r, k) [[” Vho(r, k) 130 + Oe)
we have
fE(h,7@)(r, k) = f(h,m)(r, k — A(r))
where
fo(h,m)(r, &) =f(h(r, K)) +&* f*(r, &) (B.67)
- 76 f”(hO(r K’) |’FLOF(T K’)Hgg(n + 0(83)
with
<0 R) = = 3 Tea (9N ) — O NG(r, ) + VA() NG ()

+ 35 £ (ho(r, 1)) Tra (B(r) V2eo () B(r) VZeo(x)) (B.68)

= 51 /" (o (7 1)) Tea (V2o () V26 (7))

+ 57 " (ho(r, k) Tr, (VZeo (k) VZA(r) Veg (k)
Here,

N(r, k) = f"(ho(r, k) (= VA(r) V2eo(k) Fro(r, )
— (Veo(r), V2A(r) Veo(r)) + V26(r) Veo(r))
and (B.69)
NQSC(T7 k) = f”(ho(ﬁ K)) Vze0(/‘5) Froe(r, K) .

Note, in (B.68) and (B.69) we denote (Vey, V?AVey), = 0;e0 0%A; 9jeq and
<V2€0 V2A Veo)ij = 8i2ueo 35]-/4[ 3160.

PROOF By (3.72) the expansion of the Fubini-Study metric starts with

gij(r, k‘) = géj<7’, k) + 0(5) = ter([aiPO s @-FN’O] Po)(T, k) + O(€> .
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Therefore, (B.63) is a direct consequence of the chain rule. The expression
(B.64) for () follows by a straight forward computation using the explicit
expression (B.63) for the Fubini-Study metric g and the fact that

~ B Veo(k — A(r))
Vhor, k) = (wx(r) Veo(k — A(r)) — ngﬁ(r)) (B.70)

as well as the definition of the magnetic field
B(r) = VA(r) — (VAT (r).

Regarding, f*(h)(r, k) recall that

FEB)(r k) = = 35 Tron (W V(£ (ho) V2ho o Vho) ) (r, k)
+ % fNU;J()) TI'Qn(WO v2]~10 (,UO V2B0)(T, k’) + 0(5) .

Here, we have

v? il _ vgrho vzkﬁo
AV Ry V2, ke

with
vaiLO(T, k) = VA(r)Viey(k — A(r)) (VA (r)
— V2A(r) Veo(k — A(r)) + V2¢(r),
kafzg('r, k) = —VA(r) Viey(k — A(r)),
Viho(r, k) = =Veq(k — A(r)) (VA)T(r)
and

Vﬁkﬁo(r, k) = VZey(k — A(r)) .

Hence, (B.68) follows by additionally using (B.70) and the definition of the
Lorentz force. Finally, recall that f*di(h, By) is
fadi(il7 ﬁ')(r, k) = _i f”(iLo)(T, k) ”wO vBO(T? k) H2 ) + 0(5) :

Jo(r,k

A straight forward computation similar to above shows
P (R, 7) (k) = =5 2 f"(ho(r,k — A(r) | Fror(r, & — A5 00-atry

which finishes the proof. O
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Lemma B.10 Let a,b € Syo(C) and P € Sy(B(H;)) of the form P(r k) =
P(k — A(r)) where A : R — R™;7 — —1br with b € R"*" skew-symmetric.

Then for a(r, k) := a(r,x + A(r)) and o(r, k) := o(r, k + A(r)) we have

{{a, P} {0, ﬁ}}( k) =

( ), V(DPo)), 0., PO, P
<Db )2a VP, V:PDPo >n
—(V*PD"a, (D*)*0V,P)

+(bV’PDPa, V’P D) )(r,k—A(r))
and

{a, 0} (1. k) = 5p M@y, M2y, My, (0575050 0U03,0) (r b — A(r)).

b 0o 1,
()

The differential operator D : S°(C) — S°(C") acts on ¢ € S°(C) by

where

DP ¢(r, k) = bOc(r, k) — Oyc(r, k).

Hereto, (DP)? : S°(C) — S9(C™*") satisfies

(Db)?j c(ry k) = D}’ D;’ c(r,k) = D;-’ Df’ c(r k).

PROOF We start with the following observation

Viemi(r, k) = M4V a(r, k — A(r))

where

In addition, for w® = (_gn 15) we have

T,.0 _ 0 Ln = oo -
(M) M7 = (_1n VA(r) — (VA(T))T) - (—1n b) _Mb.

261



262

Also, for arbitrary ¢ € Sy(C) and ¢(r, k) = ¢(r, k + A(r)) it holds that

{2, P}r,k) = (&* M* Ve, MAVgP)  (rk—A(r)
= (MPV e, Vi P), (rk—A(r))
= (D¢, 0.P) (r,k—A(r)).

where we used the fact that 9, P(x) = 0. Hence,
{a,P}(r,k) = (D’a, 0,P) (rk—A(r)).

and
{0,P}(r,k) = (D0, 0:P) (r.k—A(r)).

Thus,

o (DPa, 0,P) (r.k— A(r))
oM (DPo, 0,P) (r,k— A(r))
:MB#< oI DPa, 9,P) (9D 0, 0,P

which we reformulate to

{{a,P} {5.P}} (r.k)
_ <<Mb VimDPa, VieDP0), 8, PO, P
+(DPDPaV,P, ViPD )
— (V2P DPa, D"DPo vﬁp>n
{

+ (bV2PD%, V2P DY) ) (rk — A(r)).
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Regarding {a, o}, (r, k), by (2.5)

{d ) 5}3 (Tv k)
i rk),3 ~ T T
— 24 Wa wgzﬁz w243[33 V(ﬁlﬂiﬁsa(r’ k> Vi b(?“, k)

a1/ alazas

= g M ME s, MB s (V550 VRS 0) o (rk — A(r)

1B azf32 aszfs3 ajazag

where we used that MP is independent of r and k. O
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