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Abstract

Theories and models of multisensory perception have been drawing attention in the past
decade. Understanding the multisensory perception is great of interest for cognitive scientists
and is crucial for engineers to develop artificial sensory devices such as wearable and sensory
substitution systems. The potential of touch for artificial sensory devices as well as the strong
link between touch and vision motivated us to study the interactions of vision and touch with
the focus on touch stimulations from a custom designed artificial sensory device. Specifically,
we investigated three different type of interactions through three studies: The multisensory
perception and calibration for visual-tactile information in a realistic environment (study 1),
multimodal task-irrelevant effect (study 2), and finally cross-modal learning and integration of
vision and touch under novel tactile experiences (study 3). Study 1 investigated how
participants would adjust their perception to the discrepancy among sensory information under
varying reliability conditions. Our findings showed participants switched from an integration
strategy to a selection or to a calibration strategy according to reliability condition of the
sensory information. Our comprehensive simulation and modelling revealed that the optimal
causal inference not only depends on the amount of the cue conflict, but also on the relative
reliability of stimuli across different modalities. We investigated, through study 2, how task
irrelevant information affects the perception of task relevant information in a multimodal setup.
Particularly, we extended the well-known Simon experiment to the multimodal edition, in
which two source of information, from two modalities, deliver the task irrelevant information.
We conducted a visual-tactile and a visual-auditory extension of Simon task. Both experiments
showed expected visual congruency effects for task-irrelevant information, such as the slower
responses and less accurcy in incongruent than congruent conditions. We additionally observed
congruency effects of tactile task-irrelevant information, although the effects were smaller than
the visual task-irrelevant information. However, the congruency effects of auditory task-
irrelevant information were insufficient and negligible. It revealed that in the co-presence of
visual and auditory spatial task-irrelevant information, visual information dominates the
auditory congruency effect. A proposed multimodal extension of the Diffusion Model for
Conflict Tasks (MDMC) was fitted to the results of both experiments. MDMC provided
reasonable fits for the experimental data while keeps the genuine assumptions of DMC. We
finally investigated, through study 3, whether and how tactile information from a non invasive
sensory feedback device can be learned or even integrated with visual perception. The
performance of unimodal tactile perception was improved over seven blocks of training,
showed that participants learned the associations between the visual and tactile information.
Further analyses showed that participants integrated the unexperienced tactile information with
experienced visual information from the very beginning of the training, despite of the fact that
the accuracy of tactile modality was initially lower than the visual modality in some conditions.
Proposed computational models revealed that participants initially employed a metacognitive
oriented decision integration policy. However, they later switched to an optimal Bayesian
integration of sensory inputs. We believe our findings connects the topic of multisensory
perception to the artificial sensory feedback devices.



Zusammenfassung

Theorien und Modelle der multisensorischen Wahrnehmung haben in den letzten Jahren
Aufmerksamkeit erregt. Das Verstindnis der multisensorischen Wahrnehmung ist fiir
Kognitionswissenschaftler von gro3em Interesse und fiir Ingenieure von entscheidender Bedeutung, um
kiinstliche sensorische Gerdte zu entwickeln. Das Beriihrungspotential fiir kiinstliche sensorische
Gerdte sowie die starke Verbindung zwischen Berithrung und Sehen haben uns motiviert, die
Wechselwirkungen zwischen Sehen und Berithrung zu erforschen, wobei der Schwerpunkt auf
Beriihrungsstimulationen mit einem speziell entwickelten kiinstlichen sensorischen Gerit liegt.
Insbesondere untersuchten wir drei verschiedene Arten von Interaktionen in drei Studien: Die
multisensorische Wahrnehmung und Kalibrierung fiir visuell-taktile Informationen in einer
realistischen Umgebung (Studie 1), den multimodalen aufgabenunrelevanten Effekt (Studie 2) und
schlieflich das modaliibergreifende Lernen und Integrieren von Sehen und Beriihren unter neuartigen
taktilen Erfahrungen (Studie 3). In Studie 1 wurde untersucht, wie sich die Teilnehmer unter
verschiedenen Zuverléssigkeitsbedingungen an den Cue-Konflikt zwischen sensorischen Informationen
anpassen wiirden. Unsere Ergebnisse zeigten, dass die Teilnehmer je nach Zuverldssigkeitsbedingung
der sensorischen Informationen von einer Integrationsstrategie zu einer Auswahl oder zu einer
Kalibrierungsstrategie wechselten. Unsere umfassende Simulation und Modellierung hat gezeigt, dass
die optimale kausale Inferenz in einer Umgebung mit variierender Zuverldssigkeit nicht nur vom
Ausmal} der multimodalen Diskrepanz abhingt, sondern auch von der relativen Zuverléssigkeit der
Stimuli. Analysen der Vertrauensberichte zeigten, dass wir in Studie 2 untersucht haben, wie sich
aufgabenunrelevante Informationen auf die Verarbeitung aufgabenrelevanter Informationen in einem
multimodalen Setup auswirken. Insbesondere haben wir die bekannte Simon-Aufgabe auf die
multimodale Ausgabe erweitert, in der aufgabenunrelevante Informationen aus zwei sensorischen
Modalitédten hervorgehen konnen. Wir haben eine visuell-taktile und eine visuell-auditive Erweiterung
der Simon-Aufgabe durchgefiihrt. Beide Experimente zeigten erwartete visuelle Kongruenzeftekte fiir
aufgabenunrelevante Informationen, wie z. B. langsamere Reaktionen und geringere Genauigkeit bei
inkongruenten als bei kongruenten Bedingungen. Wir beobachteten auch Kongruenzeffekte von taktilen
aufgabenunrelevanten Informationen, obwohl die Effekte geringer waren als die visuellen
aufgabenunrelevanten Informationen. Die Kongruenzeffekte auditorisch aufgabenunrelevanter
Informationen waren jedoch unzureichend und vernachléssigbar. Es zeigte sich, dass bei gleichzeitiger
Anwesenheit von visuellen und auditorischen rdumlich aufgabenunrelevanten Informationen visuelle
Informationen den auditorischen Kongruenzeffekt dominieren. Eine vorgeschlagene multimodale
Erweiterung des Diffusionsmodells fiir Konfliktaufgaben (MDMC) wurde an die Ergebnisse beider
Experimente angepasst. MDMC lieferte angemessene Anpassungen fiir die experimentellen Daten,
wahrend die echten Annahmen von DMC beibehalten wurden. In Studie 3 haben wir schlielich
untersucht, ob und wie kiinstliche taktile Informationen von einem neuartigen nicht-invasiven Gerét
gelernt und in visuelle Informationen integriert werden. Die Leistung der unimodalen taktilen
Wahrmehmung wurde iiber sieben Trainingsblocke verbessert und zeigte, dass die Teilnehmer die
Assoziationen zwischen visuellen und taktilen Informationen lernten. Weitere Analysen zeigten, dass
die Teilnehmer die unerfahrenen taktilen Informationen von Beginn des Trainings an mit erfahrenen
visuellen Informationen kombinierten, obwohl die Genauigkeit der taktilen Modalitit anfangs unter
bestimmten Bedingungen geringer war als die visuelle Modalitit. Vorgeschlagene Rechenmodelle
zeigten, dass die Teilnehmer zunéchst eine metakognitiv orientierte Entscheidungsintegrationspolitik
anwendeten. Spéter wechselten sie jedoch zu einer optimalen Bayes'schen Integration sensorischer
Eingaben. Wir glauben, dass unsere Ergebnisse das Gebiet der multisensorischen Wahrnehmung mit
der Entwicklung kiinstlicher sensorischer Gerite verbinden.
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Introduction

Humans evolved to benefit from multiple sensory modalities such as visual, auditory, olfactory,
gustatory, and tactile. These sensors allow us to perceive the complex and multimodal
environment. In many situations, information of more than one sensory modality contributes
to a perceptual decision process. We benefit from multisensory perception in order to improve
the reliability and accuracy of perception (Drugowitsch, DeAngelis, Klier, Angelaki, & Pouget,
2014; M.-A. N. Mahani, Sheybani, Bausenhart, Ulrich, & Ahmadabadi, 2017; Rowland,
Quessy, Stanford, & Stein, 2007). As a matter of fact, studying the interaction among sensory

modalities is crucial to understand and model our perceptual system.

Touch and vision both play crucial role in our perception. Vision is one of the most informative
modalities while touch, through the skin, is known as the largest sensory organ(Hertenstein &

Weiss, 2011) and acts like the physical interface of our body to the environment.

Many studies reported the strong link/interaction between of visual and tactile modalities.
Interactions of vision and touch could be so strong that visual cortical area is active during a
normal tactile perception. This phenomenon was first observed in a positron emission
tomographic (PET) study (Lacey & Sathian, 2016; Sathian, Zangaladze, Hoffman,
Neuroreport, & 1997, n.d.). Another example of visual and tactile interactions is the redundant
target effects, in which the perception reaction time to a double visual-tactile target is
significantly faster than single/double uni-visual/uni-tactile target (Forster, Cavina-Pratesi,
Aglioti, & Berlucchi, 2002). This effect actually shows the mutual influence of simultaneous

visual and tactile information.

Furthermore, the rubber hand illusion example (Botvinick, Nature, & 1998, n.d.), and
interactions among vision and touch during the development(A Streri, Pownall, & Kingerlee,
1993; Arlette Streri & Gentaz, 2004) bold further the importance of both modalities and their

interactions.

In other hands, recent advances in technology highly affected life habits and brought novel
sensory experiences to our daily life. Various wearable devices (Dakopoulos & Bourbakis,
2010; Johnson & Higgins, 2006), human in loop assistance systems(Driver assistance system
for driver assistance for consumption controlled driving, 2011; Pilot Assistance System, 2015;

Krause, Knott, & Benger, n.d.), and sensory substitution systems (Kristjansson et al., 2016;



Shull & Damian, 2015) are some examples of these novel sensory experiences. Nevertheless,

cognitive aspects of these artificial devices could benefit from more studies.
Vision-touch as novel sensory experience

Touch has a high potential for providing novel sensory experiences through wearable devices.
Skin has a large input field that can potentially be utilized by novel sensory feedback devices.
It can be used to transfer the processed data to a human-in-loop agent such as a pilot or a driver.
Alternatively, it can aid visually/hearing impaired people to perceive the environment through
the skin with more details. Entertainment and gaming systems are another potential example

in which touch sensory feedback systems can be utilized.

Interactions between the touch-based sensory feedback device and other sensory modalities are
crucially important and can affect the perception effectiveness. It specifically becomes
important in vision-touch interactions, because vision is the most informative sensory in a wide
range of applications, and therefore, the influence of vision on the perception of touch-based
sensory feedback device should not be neglected. Moreover, interactions between vision and
touch during the development and in adulthood was repeatedly reported in many studies (A
Streri et al., 1993; Arlette Streri & Gentaz, 2004). Thus, a high probability of cross-modal

visual-tactile interactions, effects, and side-effects is expected to be observed.
Aim of the present study

In the present thesis, we addressed cross-modal interactions between the visual and tactile
modalities in adults with the focus on tactile information which delivers by a custom artificial
device. Visual and tactile interactions are specifically important since tactile is known as the
main source which visual sensory calibrates with and learns from during the development
(Gori, Giuliana, Alessandra, Sandini, & Burr, 2010; Gori, Giuliana, Sandini, & Burr, 2012).
Furthermore, activation of visual cortical area during touch perception (Sathian et al., n.d.)
bolds the importance of visual-tactile interactions. Therefore, cross-modal effect of visual and
tactile modalities is expected to be relatively strong (Gentile, Petkova, & Ehrsson, 2011;
Keetels & Vroomen, 2008; Ossandon, Konig, & Heed, 2015; Salzer, Aisenberg, Oron-Gilad,
& Henik, 2014).

Touch-vision interactions can be categorized into active or passive interactions, Figure 1. In

the present work, active interactions refer to ones that involve some kind of perceptual learning.



Perceptual learning can be an explicit cross-modal learning which is designed and encoded in
the experiment instructions. Alternatively, it can be an implicit learning, like calibration, which
emerges during the cross-modal interactions. Passive interactions refer to those tasks in which

no or very little (non-significant) perceptual learning involve.

Cross-Modal
Interactions

Passive
Interactions

Learning Novel R Sensory Multisensory Irrelevant Task
Concepts : Calibration Perception Effects

Figure 1. Scope of cross modal interactions in different studies. In the passive interactions, no explicit learning process was

involved, while in the active interactions, a learning effect was hypothesized and evaluated in the study.

In the present study, we tried to cover both active and passive interactions by three experiments:
multisensory perception (integration and calibration) in an environment of varying reliability,
task-irrelevant cross-modal effect of tactile information on visual perception, and finally
learnability and integration of novel tactile sensory experiences with existing visual sensory
information. For each case a separate experiment was designed, and sufficient experimental
data was collected. We statistically analyzed the experimental data and provided various
computational models that explain the mechanism underlying the correspondence perception

behavior.

In the first study, we investigated the overall visual-tactile perception in a realistic environment
of varying reliability information. The goal of this study was to study the multisensory
perception in a realistic multimodal environment which covers the passive aspects of
interactions across sensory modalities. However, we expect to observe a cross-modal
calibration or adaption due to the discrepancy in the information. Therefore, the first study was
designed to cover both passive and potential active interactions, Figure 1, green section. In the
first part of the experiment, we studied the multisensory perception of visual and auditory
information with a discrepancy among visual and auditory information. In the second part of
the experiment, we added the tactile information to investigate the multisensory perception in
presence of three modalities. The reliability of information varied in the visual and tactile

modalities, allows us to study the effect of reliability condition on the perception.
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In addition to the experimental results, rich simulations and modeling were provided that shed
light on the mechanism and processes undelaying the experimental results. The multisensory
perception models are usually proposed for up to two modalities. However, we provided an
extension of multisensory models for three (and more) modalities to account for our

experimental results.

Covering both active and passive interactions might be closed to the real scenarios, and enables
us to better generalize the results to daily perception activities. However, there are also
important passive-only or active-only scenarios which we addressed in this thesis in two

separate experiments.

In the second study, we investigated the visual-tactile conflict task and proposed a multimodal
diffusion model for conflict tasks (DMC). There are different types of conflict tasks such as
Stroop task, Eriksen-Flanker task, and the Simon task. The main focus of the second study is a
visual-tactile version of Simon task. In a traditional Simon task, the people are instructed to
respond to a non-spatial attribute such as color or letter with a spatially defined target (usually
left or right hand key press). Although the spatial information is task-irrelevant, responses are
faster and more accurate when both the stimulus and the response are on the same spatial side
(congruent condition) rather than on different sides (incongruent condition). This study is
actually a passive-only experiment in which the processing of simultaneous visual and tactile
information is investigated. This study covers two important aspects: 1- whether and how
strong is the effect of task-irrelevant tactile information (and also task-irrelevant visual
information) on a visual perception task? 2- How a multimodal DMC model can address the

cross-modal relations in a multi-modal conflict task?

Unimodal DMC model suggests two parallel processes in a conflict task, an automatic process
and a control process. The task-irrelevant information trigs an automatic process, while the
control process accumulates task-relevant evidences. The DMC model shows that the decision
process can be simply predicted by the superimposition of the automatic and the control
process. In the second study, an extension of DMC model for multi-modal stimuli was
proposed and a multimodal DMC with the same principles was suggested and fitted to the

experimental results.

The main focus in the final study of the thesis is the active interactions across visual and tactile
modalities. Specifically, we investigated the explicit cross-modal learning of visual and tactile

information. In this study, a custom vibrotactile device was utilized to provide novel tactile

11



experiences (through novel tactile patterns) to participants. This study would address whether
and how an artificial sensory feedback device can be integrated to the sensory and perceptual
system of humans. Furthermore, it provides insights on designing and instructions of artificial

sensory devices for real world applications.

In the learning phase of the study, participants were exposed to simultaneous visual and tactile
information and they were asked to learn the association between novel tactile stimuli and
visual stimuli. In the evaluation phase, participants utilized the learned associations to respond
to multi-modal or unimodal visual/tactile stimuli with different reliability levels. There were
seven blocks of training-evaluation and the learning curve for different reliability conditions
were statistically analyzed. We discuss and analyzed the integration-while-learning behavior
for different reliability conditions. Furthermore, we provided two computational models that
explains the integration of the artificial sensory device. One model is proposed based on the
fusion of decisions and the alternative model is aligned with Bayesian integration of sensory

information.

12



Multisensory perception in an environment of

varying reliability [Study 1]

The first part of the present thesis addresses the multisensory perception of contradictory
information from visual, tactile and auditory modalities in an environment of varying
reliability. It is a general consensus when the information of various sensory modalities are
congruent and synchronous (Atteveldt, Formisano, ..., & 2006, n.d.; Navarra, Vatakis,
Zampini, ..., & 2005, n.d.) we benefit from a decrease in response time (Drugowitsch et al.,
2014; Rowland et al., 2007) an increase in reliability, and an increase in accuracy
(Drugowitsch, DeAngelis, Angelaki, & Pouget, 2015; M. O. Ernst & Banks, 2002; Pouget,
Beck, Ma, & Latham, 2013). Nevertheless, the incongruent information across different

sensory modalities, may lead to a biased percept and more complex scenarios.

It is not surprise if information from an artificial sensory feedback device is not well calibrated
with other sensory modalities. It can specially happen at the beginning, when the sensory
feedback device delivers new sensory experiences to users. Therefore, information from all

sensory modalities, including sensory feedback device, is incongruent and maybe uncalibrated.

Moreover, relative reliability of information across sensory modalities is a crucial factor in
multisensory perception as well as multisensory calibration. Different reliability conditions
might result in various perceptual behaviors and even some behaviors might emerge only in an
environment of varying reliability. In order to understand mentioned cognitive aspects of an
artificial sensory device, multisensory perception of incongruent information in an

environment of varying reliability was studied.
Multisensory causal inference and multisensory calibration

Multisensory causal inference is an important sub process of perception specially in case of a
discrepancy among the modalities. It predicts whether sensory inputs originate from the same
cause or different ones (M. Ernst, integration, & 2011, n.d.; Shams & Beierholm, 2010). It has
been reported that multimodal causal inference depends on temporal, spatial, contextual
features of the stimuli (Woods, Lehet, & Chatterjee, 2012), and also prior knowledge and
experiences (Roach, Heron, & McGraw, 2006; Vision & 2007, n.d.). The multisensory causal

13



inference usually conforms Bayesian rule (Kording et al., 2007), and aimed to minimize the

error between true signal and the estimated one by perceptual system.

In case of the inconsistent sensory information, the brain should find out whether the
inconsistency is due to a systematic error in perceptual system or just inherited noise from the
sensory systems. Some studies showed if the discrepancy is due to a systematic error,
multisensory calibration can resolve the persisting discrepancy. In such case, cross-modal
calibration increases the accuracy of the multisensory perception. However, conditions in
which calibration takes place is not crystal clear. Indeed, multisensory causal inference and
multisensory calibration processes are expected to be coupled and should be analyzed together
(Kording et al., 2007). Only if signals are received from a same occasion, then calibration of

those signals, with respect to each other, is reasonable.

Interactions between multisensory integration process and cross-sensory calibration process is
crucial to understand the mechanisms underlying the optimal multisensory perception. This
becomes more relevant for real world applications which are often complex, with dynamic flow
of information. Dynamic nature of real-world application might reveal behaviors which cannot
be captured easily in restricted experimental environment. In order to reduce the gap between
the experimental environment and a real environment, we should consider the effect of varying
reliability sensory information on perceptual processes such as causal inference and calibration.
This is particularly informative to find the required conditions for the calibration process and
to study the elasticity of the multisensory calibration. Multisensory causal inference and cross-
modal calibration benefit from a history of observations (Kdrding et al., 2007; Vision & 2007,
n.d.). We also plan to investigate the behavior of causal inference in an environment of varying
reliability. Specifically, we want to study whether causal inference is independently processed
for each reliability condition or whether the causal inference process considers all reliability

conditions together.
Varying reliability environment and perceptual strategies

One of the goals we kept in mind during the experiment design was to reduce the gap between
the experiment setup and the real-world conditions. Therefore, we designed the experiment in
a way to include multiple reliability conditions and various modalities. We divided the
experiment into three sections: visual-auditory section (Experiment 1.a), visual-tactile-auditory

section (Experiment 1.b), and unimodal section (Experiment 1.c). We introduced various

14



reliability conditions for multisensory sections 1.b and 1.c in order to make the experiment
more realistic. The trials of different reliability conditions were presented in random order.
Figure 2 depicts the multisensory sections of the experiment and reliability conditions.
Participants received two consecutive stimuli, and the task for participants was to choose

whether the second stimulus was on the left or on the right side of the first stimulus.

By embedding a cue conflict between different modalities, we investigated whether and how
different modalities interacts with each other to solve the conflict and provide a coherent
perception across multiple modalities. Visual-auditory stimuli had a spatial discrepancy with a
conflict angle (A) of —4° in the experiment 1.a. Tactile vibration was also delivered 4 cm to the

left of the audiovisual stimuli in experiment 2.a.

We think that the cue-conflict was not too large, and therefore, participants would consider a
common cause for information from different modalities at the beginning and would integrate
the information. Over the course of the experiment, if participants find out the systematic
repetitive discrepancy, they might alter their perceptual strategy. We expected three different
perceptual strategy for the second half of experiments: (1) Participants do not capture the
repetitive systematic discrepancy and therefore, continue to integrate the information. (2)
Participants capture the systematic discrepancy but still infer the same cause for information
from different modalities. They would go for a calibration strategy to resolve or reduce the
discrepancy. (3) Participants capture the systematic discrepancy and infer different causes for

information. In this case they would select the most reliable source of information.

We have tested these hypotheses for different reliability conditions which we introduced in the
experiment. Figure 2 shows the design of artificial sensory feedback device and the experiment
procedure. We also modelled the experimental data using multisensory calibration and the

multisensory causal inference models and some simulations.
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Experiment 1.a with two reliability conditions Experiment 1.b with three reliability conditions

X . I I High Visual Low Visual Low Visual
L?W Vusua.l High Visual | Medium Auditory Medium Auditory Medium Auditory
Medium Auditory  Medium Auditory | I Low Tactile High Tactile Low Tactile
LV-MA HV-MA I I HV-MA-LT LV-MA-HT LV-MA-LT

Figure 2. Experiment and stimuli design. Top part of the figure shows the artificial sensory feedback device for the experiment
while the bottom part depicts the experiment procedure and reliability conditions. Figure is reprinted from (M.-A. N. Mahani
etal., 2017).

Results and discussion

The alteration of perceptual strategy can be assessed through analyses of point of subjective
equality (PSE) between the first half and the second half of experiments. Shift of PSE towards
visual, auditory, or tactile modalities indicates weighting of each modality in the integration.
The data has been analyzed based on individual psychometric functions, which were fitted to

for each reliability condition.
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In experiment 1.a, subjects received stimuli with two reliability conditions:

e HV-MA: High reliability Visual and Medium reliability Auditory stimuli.
e LV-MA: Low reliability Visual and Medium reliability Auditory.

All trials of two conditions were randomly mixed. We found out that the spatial perception was
significantly shifted towards the auditory source in the second half of the LV-MA condition.
However, the PSE in the HV-MA condition remained close to the visual stimuli. It suggests
that changes in perceptual strategy are specific to different reliability conditions. Moreover,
participants reported lower confidence for the LV-MA condition in compare to HV-MA. This

can be considered as an evidence for the conscious perception.

We extended the first experiment by adding the tactile stimuli in the second experiment and
providing tri-modality information to participants. Obviously, the reliability conditions were

also extended to three cases:

HV-MA-LT: High rel. Visual, Medium rel. Auditory, and Low rel. Tactile condition.
LV-MA-HT: Low rel. Visual, Medium rel. Auditory, High rel. Tactile condition.
LV-MA-LT: Low rel. Visual, Medium rel. Auditory, Low rel. Tactile condition.

The PSE was shifted towards tactile in the LV-MA-HT condition and therefore, showed a
change in multisensory perception. A similar change was observed in HV-MA-LT condition.
No significant change of PSE was observed for the LV-MA-LT condition, probably because
the auditory was the most reliable modality in LV-MA-LT reliability condition and was not
altered by touch/vision. The slope analyses of the unimodal Experiment (Experiment 1.c)

supports this interpretation, see appendix paper for details.

All findings were confirmed statistically, and details are provided in the paper, please see the
appendix. Underlying processes of these behavior were further studied by modeling and
simulation. We proposed an ideal observer model and performed sophisticated simulations. We
tried to provide grounds for various perceptual strategies by jointly studying the causal
inference and calibration processes. The model is designed to minimize the overall perception

error across all reliability conditions.
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N. Mahani et al., 2017)

Perceptual conflicts are the source of some misperceptions, however, they can also initiate
perceptual learning processes in the brain. Some studies reported that cross-modal calibration
processes initiated conflicts (Van der Burg, Alais, & Cass, 2013; Wozny, Neuroscience, &

2011, n.d.; Zwiers, Opstal, neuroscience, & 2003, n.d.).

We simulated the perception in the presence of conflict stimuli in an environment of varying
reliability. Specifically, we simulated three possible multimodal perception strategies and
mechanisms which could potentially account for PSE shifts: Collaborative calibration,

Modality Dominant (MD) calibration, and selection, please see Figure 4.
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N. Mahani et al., 2017)

We can shed light on perceptual strategies, which were taken by participants, by corresponding

the PSE shifts between simulations and experimental observations.

By associating the result of Experiment 1.a with the possible simulated strategies, it seems that
the perceptual strategy in this section is shifted from integration toward selection strategy; PSEs
shifted toward the most reliable source of information. This indicates that, even if participants
start with integration behavior, calibration is not the only strategy for resolving/reducing the
cue conflict. Actually, under certain reliability conditions, participants might prefer taking the
selection strategy instead of performing a cross-modal calibration. We have further
investigated the mechanism underlaying this behavior by modeling the causal inference in

varying reliability conditions. Please see the paper for more details.

Associating the result of experiment 1.b with the possible simulated strategies showed that

participants took MD calibration strategy to resolve/reduce the cue conflict in this section of
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the experiment. Specifically, the result revealed that touch calibrated vision, and therefore
visual spatial perception was shifted toward the source of tactile information. That is why even
the high reliability visual condition (HV-MA-LT) shifted toward the tactile source of
information. This type of dominant calibration is also consistent with previous reports (Gori,

Sciutti, Burr, & Sandini, 2011).

We provided causal inference modelling and quantitative comparison of all models with

experimental results in appendix.
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Multimodal Simon effect: A Multimodal Extension of

the Diffusion Model for Conflict Tasks [Study 2]

In our daily life, we sometimes suppress irrelevant information and focus only on task-relevant
information to improve our efficiency. These situations, where there are task-irrelevant and
task-relevant information at the same time, are addressed as conflict tasks. There are several
well-known and standard examples for conflict tasks such as the Simon task and the Stroop
task (J Richard Simon & Wolf, 1963; Stroop, 1935). In our second study we focused on Simon
task and investigated the passive interactions of visual-tactile and visual-auditory information.
Having both visual-tactile and visual-auditory experiments would allow us to compare the
multisensory interactions for different combination of modalities. We can therefore investigate
whether multi-modal interactions are subjected to specific combination of modalities or

whether the same interaction behavior can be emerged from other combination of modalities.

In the standard Simon task, participants are asked to respond to a non-spatial attribute of the
stimulus (e.g. color) with a spatially coded response key (e.g. left or right). In this experiment,
spatial information is considered as task-irrelevant information and the non-spatial attribute
would be the task-relevant information. Surprisingly, the findings showed that participants
cannot suppress the task irrelevant information. Both the reaction time (RT) and the perceptual
error can be influenced by task-irrelevant information. Specifically, when the visual stimulus
is presented at the same spatial side as the response key, then the perception is faster and more

accurate in comparison with having stimulus and response key on different spatial sides.

This finding is not only limited to visual perception, but also has been observed in other
unimodal perceptions like auditory and tactile. Even the task irrelevant information from a
modality can influence the perception of another modality. E.g. the auditory information can
affect the reaction time of a visual perception task (Donohue, Appelbaum, Park, Roberts, &
Woldorft, 2013; J R Simon & Craft, 1970). Similarly, a cross-modal effect of conflictual
information has been observed for visual-tactile perception (Kennett, Eimer, Spence, & Driver,
2001; Poole, Couth, Gowen, Warren, & Poliakoff, 2015; Spence, Pavani, & Driver, 2004; Yue,
Bischof, Zhou, Spence, & Rdder, 2009). Despite of many researches, the findings are still
limited to a single source of task irrelevant information; we addressed this limitation in our

second part of the thesis.
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Diffusion model for conflict tasks (DMC)

Computational models underlaying this behavior suggest that two separate processes acts
simultaneously on input stimulus: a Controlled process and an automatic process. The
controlled process is responsible for accumulating the task relevant information. Meanwhile,
the automatic process works on task irrelevant information. In a recent study, an elaborated
diffusion process model for conflict tasks (DMC) (Ulrich, Schroter, Leuthold, & Birngruber,
2015)was suggested. DMC is introduced on top of the standard diffusion models where a
decision process accumulates noisy decision relevant information until one of two decision
boundaries is hit (R Ratcliff, review, & 2004, n.d.; Roger Ratcliff, 1978; Stone, 1960). DMC
extends this model by superimposing a second short-lived process, aka automatic process, for
task-irrelevant information. The rest is the same, the superimposed activation accumulated both
the controlled and automatic processes until it hits a decision boundary. DMC can reasonably
predict the conflict tasks and has been successfully linked to neurophysiological findings

(Servant, White, Montagnini, & Burle, 2016).

The present study extends the DMC to support the conflict tasks with two task-irrelevant
information sources. Thus, we designed two Simon task experiments, a visual-tactile Simon
task and a visual-auditory one. In both experiment both modalities provided task irrelevant
information. The relevant task was the visual perception of non-spatial attribute, while

simultaneous spatial task irrelevant information was presented from both modalities.
Experiments

As the main focus of the present thesis is visual-tactile interactions, we firstly extended the
Simon task to a visual-tactile Simon Task. In this experiment task irrelevant information was
delivered by tactile and visual modalities. The main task for participants was to respond to the
non-spatial attribute of a visual stimulus with a left/right located key. More specific,
participants had to respond to the stimulus letter “H” or “S” with left or right key. At the
beginning of the experiment they received an instruction that explained them how left/right key
is associated with “H” and “S” letter. The association was fixed for each participant during the
experiment, but varied participants. The letter stimulus was accompanied by a vibrotactile
stimulus. The location of both stimuli varied across three predefined positions on right, at
center, and on left side; Combination of both stimuli and three locations resulted is nine

congruency conditions. Please see Figure 5.

22



/

feedback
Time
In case of wrong,
delayed or early

response
Pressing the A/L
(left/right) key

Figure 5. (A) Experimental setup for visual-tactile Simon task. (B) Time course of a trial. The figure is reprinted from (M.-A.
N. Mahani, Bausenhart, Ahmadabadi, & Ulrich, 2019)

Figure 6 depicts the result of the both visual-tactile experiment (top row) and visual-auditory
one (bottom row). RT was significantly affected by both visual congruency condition and
tactile congruency condition. Surprisingly, out further analyses showed that the difference
between the effect of visual neutral and the effect of visual congruent is not meaningful.
Although tactile irrelevant information influenced the RT, there is clearly no difference

between tactile neutral and tactile incongruent conditions.

As it can be seen in Figure 6, the effect of both visual congruency and tactile congruency on
mean response error was significant. Similar to RT, the difference between the visual neutral
and the visual congruent condition was not meaningful. But, in contrast to RT, the difference
between tactile congruent and tactile neutral conditions was not meaningful. Please see the
paper in the appendix for statistical details and analyses for these findings as well as for
distributional reaction time and conditional accuracy functions. In general, the first experiment
revealed that tactile information, even as a second source of irrelevant information, can alter

the perception of visual information in terms of reaction time and response errors. However,
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effect of tactile information was not exactly the same on RT and response error. We provided
more insight in this regard in discussion and modeling sections, please see the appendix.
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Figure 6. Reaction time (in ms) and mean percentage of response errors in Experiment 1 as a function of visual/tactile

congruency. The figure is reprinted from (M.-A. N. Mahani et al., 2019)

We designed and conducted a second experiment by replacing the tactile modality with the
auditory one. The second experiment was motivated by two factors: first, we wanted to
investigated whether the effect of cross-modal task irrelevant information on visual perception
is exclusively valid for tactile modality or it can be observed for other modalities as well.
Literature supports the strong effect of touch on vision, but the effect of auditory on vision is
not always strong and is rather limited to specific conditions. Secondly, the second experiment
would enable us to evaluate our proposed computational model, multimodal DMC, for another
combination of modalities rather than visual-tactile. Multimodal DMC is introduced later in
this thesis and also in the paper in details. In the second experiment, the effect of task-irrelevant

auditory stimulation on performance of visual perception was assessed. Similar to the first
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experiment, the results for reaction time, response errors, distribution of the reaction time, and

conditional accuracy functions were statistically analyzed and details are available in the paper.

Our analyses showed the effect of visual congruency on RT was again meaningful while
auditory congruency had only a mild effect on RT. Similar to the first experiment, the
difference between visual neutral and visual congruent conditions was neglectable. Analyses
of response errors showed a significant effect of visual congruency on response errors.
However, the effect of auditory congruency was not significant. In general, the results indicated
a weak effect of task-irrelevant auditory information on visual performance in comparison with
the effect of task-irrelevant tactile information. As it can be seen in Figure 6, tactile congruency
conditions in visual-tactile experiment is clearly distinguishable. However, auditory
congruency conditions have a huge overlap and it is hard to observe a clear effect of auditory

congruency condition.

Considering both experiments together, task irrelevant visual information had a meaningful
effect on both RT and response error of the visual perception. In both experiments and for both
RT and response errors, the difference between visual congruent and visual neutral condition
was not meaningful, but visual incongruent condition had a higher RT and a worse response
error. This finding was robust and was replicated in both experiments. It has been reported that
the visual perception benefits from faster retinal processing at the center of field of view (FOV),
in comparison with a stimulus on the left or right side (Osaka, 1976). This might justify why
the visual neutral and visual congruent conditions had similar effect. Visual neutral condition
can benefit from faster retinal processing and results in similar effect as visual congruent

condition. This assumption will be investigated in modelling section.

Nevertheless, tactile and auditory revealed various effects on visual perception. In general,
tactile congruency effect on visual RT and response error was meaningful while auditory
congruency had a weak effect on RT and no effect on response error. This is consistent with
the previous findings which show the dominant of vision over auditory in processing the spatial
information. All in all, we can order the effectiveness of various irrelevant information on
visual perception as follow: Visual irrelevant information > Tactile irrelevant information >>

auditory irrelevant information.

MultiModal DMC model
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The multimodal DMC is proposed based on the DMC (Ulrich et al., 2015). In accordance to
the DMC, we considered the total reaction time as sum of a decision process (D) and a residual

process (R), RT = D+R. Residual process is all other processes rather than the decision process.

DMC models the decision process as a standard Wiener diffusion process. At each time stamp
t, the decision process, X(¢), is defined as superimposition of a controlled process, X.(¢), and an
automatic process, X.(f). DMC assumes that the controlled process and the automatic process
are processed independently and in parallel. Similar to the original diffusion model, the
decision process accumulates the information until it reaches one of the decision boundaries, -
b or b. We formulated the controlled process, Xc(f), at each time stamp ¢ as the following

differential equation:
X (t+At) = X.(t) + p(t) - At + W.(t) - 0, - VAL (1)

W(t) is the standard Wiener diffusion process with mean = 0, and variance = 1.0, and o. is the
diffusion constant. p.(#) denotes the drift rate of the controlled process, p(f) = p.. We similarly

formulated the automatic process as follow:
X, (t+At) = X, (t) + u,(t) - At + W, (t) - 04 - VAL (2)

The time course of an automatic process, Xa(?), is modeled as a pulse-like rescaled Gamma
distribution with fixed shape parameter a = 2 and the free scale parameter 1. Please refer to the

appendix for more details.

The original DMC assumes the decision process as sum of only one automatic process and one
controlled process, X(¢) = X(¢)+X.(¢). Multimodal DMC (MDMC) extends the DMC by making
the genuine assumption of DMC more general. Specifically, MDMC allows the
superimposition of more automatic processes and consider each automatic process as an
independent and parallel process to the others, X(¢) = X(¢#)+X.(¢)+Xux(2). Of course this

assumption was evaluated by the two experiments which were explained in previous section.

Figure 7 exemplifies how MDMC considers the interactions of a control and two automatic
processes. In this example the expected values of the decision process E[X(7)] (blue line), the
controlled process E[X(?)] (red line), and two automatic processes E[X.(?)], E[Xa(?)] (black
and green lines) are plotted. The effect of different combination of congruency conditions on
decision process is depicted in four cases. We also assumed that the neutral automatic process

does not affect the decision process.
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Figure 7. An exemplary illustration of multimodal DMC. The figure is reprinted from .

As it was mentioned in previous section, the visual neutral condition might benefit from a faster
retinal processing. Therefore, we considered two variants of MDMC, the first one is the
genuine MDMC, as is described so far. The second variant considers a faster process of

information for neutral visual condition. We named the second variant as FN-MDMC (Faster

Neutral Visual Multimodal DMC).

MDMC was fitted using the similar method described in (Hiibner, 2014) and also (Servant et
al., 2016). Since the data of individual participants are typically noisy, we fitted the model to

the averaged data of all participants and consider this fitting for further analyses. However, the

results of individual model fits are available in the supplementary document of the paper.
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Figure 8. Modelling result of CDFs and CAFs for both experiments. Red lines show the model predictions while the blue dots
are the experimental data. The figure is reprinted from (M.-A. N. Mahani et al., 2019)



Figure 8 depicts the results for both cumulative distribution functions (CDFs) and Conditional
accuracy functions (CAFs). Our genuine MDMC fits reasonably the experimental data,
however, FN-MDMC provides slightly better fits than MDMC. In a Simon task, usually we
observe more errors for faster RTs, and it can be also observed in the incongruent visual
conditions in our experiments. Modelling results confirm that MDMC could capture this
pattern relatively well. The fits of MDMC and FN-MDMC were compared using the paired-
sample permutation test across simulated G? and BIC values. Please see the paper and

appendix for the estimated parameters and model comparison.

Discussion

The present study extends the classical Simon task by considering an additional source of task
irrelevant information from a second modality; We studied the effect of additional tactile
irrelevant information in Experiment 1 and additional auditory irrelevant information in the
Experiment 2. Both experiments were theoretically motivated by MDMC, an extended version
of DMC. MDMC keeps the genuine assumption of DMC, which is the independent process of
information. i.e. MDMC assumes that the irrelevant information from various modalities are
independently processed and therefore, the effect of one modality does not influence the effect
of another modality. MDMC could reasonably predict the experimental results in both visual-

tactile and visual-auditory experiments.

Similar to the previous studies, the results of both experiments revealed the meaningful effect
of task irrelevant visual information on RT and response errors, like as in the classical Simon
effect. Beside the effect of task irrelevant visual information, we also studied the effect of
second task irrelevant information. Our findings of the first experiment showed that tactile
irrelevant information could meaningfully affect the RT and response error of visual
perception. However, findings of the second experiment revealed that auditory irrelevant
information, in presence of the visual irrelevant information, had a weak effect on RT and no
effect on response error of visual perception. Considering all results together, one can conclude
that the visual irrelevant information had a strong effect, tactile irrelevant information had a
mild effect, and auditory irrelevant information had almost no meaningful effect on processing

of task relevant visual information.

Although many studies reported the effects of task-irrelevant information on non-visual

decisions, to the best of our knowledge, no one studied the effect of simultaneous task irrelevant
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information from both tactile and visual sources on non spatial visual perception. The result of
the first experiment was consistent with previous studies and our expectations, since the strong
cross-modal interactions of touch on vision was already reported in many studies. However,
we were not expected such weak effect of irrelevant auditory information. Indeed, some of the
previous studies reported the meaningful effect of irrelevant auditory information on visual
perception in the context of Simon task (J R Simon & Craft, 1970). Nevertheless, in that
experiment auditory was the only one source of irrelevant information, whereas in our setup,
we had two source of irrelevant information, auditory and visual. By looking at the studies in
which simultaneous spatial visual and spatial auditory information are processed, we came
across similar and consistent findings (Bertelson & Radeau, 1981; Howard & Templeton, 1966;
Welch & Warren, 1980). In fact, the effect of auditory irrelevant information on visual
perception is expected to be very weak, when it is accompanied by irrelevant visual

information.

We proposed and fitted the MDMC, an extension of DMC, to the experimental data. Despite
genuine MDMC fitted the observed RT data and response errors reasonably, it was suboptimal
with regard to the neutral conditions, probably because the model did not support the
contribution of faster foveal processing for neutral conditions. Therefore, the model fit was
improved by the FN-MDMC, which considers a potential speedup for central (neutral) visual
stimuli. FN-MDMC addresses differences in processing latency/duration for different stimulus
locations, but retains our genuine assumption that automatic activation from multiple task

irrelevant source of information may act independently and overlap controlled process.
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Learning how to integrate an artificial sensory device

[Study 3]

Introduction

In everyday life, we perceive our complex environment through our multisensory input. The
lack or degradation of inputs can significantly decrease the accuracy of perception. Artificial
sensory devices are designed to partially compensate the lack of a sensory modality (Abboud,
Hanassy, Levy-Tzedek, Maidenbaum, & Amedi, 2014; Maidenbaum, Abboud, & Amedi,
2014) , or to improve perception by providing complementary and processed information
(Shull & Damian, 2015). Therefore, it is important to investigate whether and how an
artificially sensory device can be learned and integrate to our multisensory perception system.
In the last study of the present thesis, we explicitly imposed a cross-modal visual-tactile
learning and investigated how integration behavior might evolve over the course of learning.
We designed and utilized a custom artificial sensory device to present vibrotactile stimuli to
participants. In general, this experiment covers mainly the active interactions of visual and

tactile modalities and completes the sequence of studies we considered for the thesis.

Invasive artificial sensory systems affect directly the neuronal system (Collins et al., 2017) and
lead to optimal integration of multisensory information (Dadarlat, O’doherty, & Sabes, 2015).
However, non-invasive sensory devices are a better alternative because they are well-
developed and more appropriate (and affordable) for realistic applications. Even though, many
studies investigated the technological aspects of non-invasive devices such as wearable devices
(Igbal, Aydin, Brunckhorst, Dasgupta, & Ahmed, 2016; Mukhopadhyay, 2015; Son et al.,
2014), the cognitive aspects are less studied. Particularly, it is yet open how we utilize input
from a non invasive artificial sensory system and if we can integrate it into our multisensory

perception.

Many studies have been previously reported that humans optimally integrate multiple sensory
inputs, that leads to a significant increase in accuracy and reliability of perception (Butler,
Smith, Campos, & Biilthoff, 2010; Drugowitsch, DeAngelis, Angelaki, Elife, et al., 2015; M.
Ernst, Nature, & 2002, n.d.; Pouget et al., 2013). The majority of studies have assessed the
multisensory integration only for well-experienced sensory information. Among the rare

studies which investigated the novel artificial sensory devices, Dadarlat et al. showed that
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unfamiliar multichannel intracortical microstimulation (ICMS) signals and proprioceptive
input could optimally get integrated in monkeys. However, this issue has not been addressed

for non-invasive artificial devices.

We addressed this question by investigating the cross-modal learning and integration of a
custom designed wearable device and visual information. Figure 9 depicts the procedure and
setup of our experiment. We designed the visual stimulus as a set of motion dots and the tactile
stimulus was a unique pattern of vibrations. The experiment had seven blocks of training and

evaluation.

Each block of the experiment starts with a training phase. In each training trial, a set of moving
dots and a unique vibro-tactile pattern were presented to participants. Tactile patterns were free
of any directional movement but were associated to a specific direction of dot motion during
the course of experiment. Participants were explicitly asked to learn the associations as best as
they could. In each trial of the evaluation phase, either a unimodal visual/tactile stimulus, or a
multimodal stimulus was presented. Participants had to perceive and decide on the direction of
movement from either the motion dots, or the associated tactile stimulation, or both stimuli in
case of the multimodal stimuli. They also reported their confidence in their decisions. The
visual stimulus had a constant reliability only in training phase whereas the reliability of tactile
stimulation was constant in both training and evaluation phases. In the evaluation phase, we
controlled the reliability of visual stimulus in three levels of low, medium and high for both

uni-visual and visual-tactile conditions.
(B)
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Figure 9. Experimental setup, stimuli design, and learning procedure of the third study. This figure is reprinted from (M. N.
Mabhani, Bausenhart, & Ulrich, 2020)

Experimental Results

We analyzed the accuracy of perception in all reliability conditions across all learning blocks
(Figure 10). The results revealed that the novel vibrotactile patterns were efficiently learned
and associated with the moving direction of corresponding visual stimuli.
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Figure 10. Perception accuracy in all reliability conditions over the learning process. Tactile is replotted for the sake of clarity.

The figure is reprinted from (M. N. Mahani et al., 2020)

Our statistical analyses showed the significant effect of learning block and reliability condition
on accuracy of perception (see paper for more details). This means first our control of reliability
was successful and secondly learning happened over the course of blocks. To understand
further the learning of the novel artificial sensor and its possible integration with our visual
perception, we statistically analyzed each reliability condition. For the low reliability condition,
the effect of both modality and block was significant. The results also showed the dominance
of tactile stimulation in visual-tactile perception, which was expected because the reliability of
visual information is very low in this condition. For the medium reliability condition, similar
to the low reliability condition, the effect of both modality and block was significant. However,
our further analyses of medium reliability condition revealed an interesting finding. Perceptual
accuracy of visual-tactile exceeded the accuracy of both unimodal stimuli in some of the
blocks. This points to a potential interaction of visual and tactile information for boosting the

perception, even from the early blocks.
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The accuracy of visual-tactile perception in high reliability condition, shows clearly the mutual
contribution of both visual and tactile information. It is obvious by the intermediate accuracy
of visual-tactile perception, which lies between the accuracies of visual and tactile unimodal
perceptions. This finding, surprisingly, suggests that the visual and tactile information are
likely integrated from the beginning of learning, despite of the decreased performance in

comparison with the unimodal visual condition. See appendix for post-hoc and statistical tests.
Modeling

In order to understand the mechanisms behind the learning of our artificial sensory device and
its integration to our multisensory perception, we proposed and investigated two computational
models. The first proposed model assume a decision integration process whereas the second
model focused on Bayesian model of sensory integration. A numeric comparison of both

models in terms of BIC is also provided.
Decision Integration Model

Before jumping into the proposed model for the fusion of the decisions, we introduce a type of
confusion matrix that is calculated by the confidence reports. This confusion matrix, which we

called Confidence Confusion Matrix, is required for the decision integration model.
Confidence Confusion Matrix

We extended the normal confusion matrix to second order judgments, which is self-reported
confidence in decisions. When a participant reports a confidence for a decision, the confidence
reports, which is kind of meta information, can be exploited to compute the meta-accuracy

(type Il accuracy). A confidence confusion matrix (CCM) is defined similar to confusion matrix

as follows:
C1,1 Cl,N
CCM =] : : 3)
Cvag - Cun
Cij is sum of confidence values for decision R, ;, where a ground truth signal { has been

precepted as signal j. Meta-accuracy is defined on top of CMM as follows:

o1 Cij
MetaAccuracy = cy—n——
Zi=1 Zj=1 Cij

4
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Meta-accuracy reflects the performance of the participants, by weighting the decisions with the
confidence reports associated to those decisions. High confidence hits boost the meta-accuracy
more than low confidence hits. Similarly, low confidence mistakes are not as bad as high
confidence mistakes. CCM can be seen as a general representation where the normal confusion

matrix is a sub-form of that with only one level of confidence.

Decision policy

In our decision fusion model, we assumed that the model can only access the first and second
order decisional information, which are the decisions and the confidence reports. Considering
that perceptual decisions come from only two modalities, we would have two separate CCMs,
CCM# and CCMB. CCM is actually a table with decision-value pairs. The value of each
decision in this table is an internal estimation obtained from confidence reports. An intuitive
method for decision making in a multimodal setup, with multiple CCMs, is to choose the
highest confidence ratings. Therefore, we defined Max CCM, which selects, for each cell (i,

J), the max value from the two confidence confusion matrices,

Max_CCM; ; = max (CCM{;, CCM; )

Assuming Max CCM shows the values of all decisions, we have investigated two decision

making policies: linear decision making and parametrized softmax decision making. Please see

the paper and appendix for more details and formula of decision-making policies.

If an agent chooses the linear policy, the perceptual accuracy is equivalent to the meta-accuracy
obtained from the Max CCM. The top rows of Figure 11 shows the result of the ideal linear
decision maker. The model can successfully explain the accuracy of visual-tactile perception
in the first blocks. Nevertheless, it fails to fit the experimental results in the last blocks and
systematically underestimates the accuracy of visual-tactile perception. We provided more

insight into this systematic underestimation in the paper and appendix.

We proposed a second variant of the model, parametrized softmax model, to address the
systematic underestimation issue. This model is inspired from temperature scaling confidence
calibration method as well as from softmax models of decision making (Cooper et al., 2014;
Daw, O’doherty, Dayan, Seymour, & Dolan, 2006; Reverdy & Leonard, 2016). Please refer to

the paper and appendix for more details and formula of this model.
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Figure 11. Linear and softmax decision integration models. The top figure depicts the linear model whereas the below one is

the softmax model.

Figure 11 depicts and compare both the linear decision-making policy and the softmax decision
making policy. The linear ideal observer model predicts reasonable only in the first blocks
whereas the softmax model performs better on average and in all blocks. Both models do not
consider a selection or a weighted combination of inputs, rather a simple integration of
decisional information. Despite of this limitation, both models could reasonably capture the
complex pattern of experimental results. Both models can successfully capture some surprising
patterns. One of the surprising patterns can be observes in medium reliability condition, second
and third blocks, where the accuracy of visual-tactile condition is higher than both unimodal
accuracies. As another example, both models are able to capture the accuracy of visual-tactile
perception in the first blocks of high reliability condition, where it resides between the

accuracies of the unimodal conditions.

Nonetheless, the model fits also revealed the weakness of linear ideal observer; Specifically,
model predictions are not adequate in the second half of the experiment, where the systematic
underestimation is clearly an issue. This underestimation can happen because of a gradual
alteration in the mechanism underlaying the fusion across multiple source of information. By
gaining more experiences in novel tactile patterns, the perception strategy can shift from a

decision fusion towards a multisensory integration. We propose a Bayesian multisensory

36



integration model to investigate the possible gradual shift of perception strategy towards the

multisensory integration.
Multisensory Integration Model

We assessed whether and how the Bayesian model can explain the behavior of visual-tactile
perception. We assumed that the reliability of perception is represented by the angular distance
between the ground truth direction and the chosen direction by participants. If the dots move
in direction a and while direction f is selected, then we defined the perceptual reliability as

follows:
do(a,B) = cos‘l(sin(a) -sin(B) + cos (a) - cos (ﬂ)) (6)
Tap =T —dg(a,B) (7)

dg(a, B) is the angular distance between « and 8, with an upper limit of 7, and 7,5 is defined

as the reliability of perception. This definition indicates a less reliability of the perception for

a high angular distance.

We utilized the concept of confusion matrix to predict the accuracy of visual-tactile perception,
this time in accordance with the by Bayesian principles of sensory integration. We defined an
integrated Bayesian confusion matrix as the weighted sum of unimodal confusion matrices.
Obviously, the weight of each unimodal confusion matrix was defined as based corresponding

relative perceptual reliability.

As it can be observed in Figure 12, the predicted accuracy by the Bayesian model is closed to
the observed accuracy of the visual-tactile modality for the medium and high reliability
conditions. This is especially prominent in the last 3 to 4 blocks. Nevertheless, the model
behaves differently in the low reliability condition and suggests a selection behavior, because
the predicted accuracy of the visual-tactile condition follows the observed unimodal tactile

accuracy.
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Figure 12. Predicted accuracy of perception by Bayesian sensory integration model. This model was fitted to each individual

subject. The figure is reprinted from (M. N. Mahani et al., 2020).

The proposed Bayesian model could explain well the perceptual accuracy of last blocks in
medium and high reliability conditions. Nevertheless, it almost failed to predict the perceptual
accuracy of visual-tactile in the first blocks, whereas the linear decision fusion model could
reasonably predict the accuracy. This shows the complementary predictions of linear decision
fusion model (first blocks) and Bayesian sensory integration model (last blocks), and supports
the gradual shift of perception strategy from decision fusion towards the multisensory
integration. Please see the appendix and paper for statistical comparison of all proposed

models.

Discussion

In the third study we investigated how a novel non-invasive artificial sensory system can be
learned and possibly integrated within the human multisensory system. Our findings revealed
that the perceptual accuracy of unimodal tactile condition raised over the course of the
experiment, showing that participants successfully learned tactile patterns. Surprisingly, from
the very beginning of the training, participants could integrate the information of novel
artificial device into the visual-tactile perception, even though the accuracy of tactile modality
was lower than the visual modality. The integration behavior can be clearly observed in the
medium and high visual reliability conditions. Nevertheless, tactile was the dominant modality
in the low reliability condition, and the perception strategy was selection of tactile rather than

integration.

We proposed two computational models to shed light on mechanism underlying the perception

and integration of our novel sensory device. The first model was based on the fusion of the
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decisions and predicts the accuracy of visual-tactile perception by only accessing to the
decisional information of unimodal perceptions, which are first order decisions and confidence
reports. The second model was a Bayesian integration model which combines the sensory
inputs in accordance with their reliability on a pre-decisional processing level. The second

model considers a simple decision process on top of the integrated sensory signal.

The proposed decision fusion model interprets the confidence ratings as the estimation of
decision values, and finds a policy that predicts well the observed data. We proposed a linear
decision-making policy as well as a parametrized softmax decision-making policy. The linear
model reasonably fitted the data only in the first half of the experiment. However, it
underestimated accuracy in the second half of the experiment. To address this issue, we propose
a new decisions-making policy with more degree of freedom: parametrized softmax policy with
the linear equation parameter. The model with parametrized softmax policy could adequately
fit the observed data in all training blocks. Both decision fusion models suggest that confidence
reports are a decent representation of decision values. The gap between the two policy variants
point to a possible gradual alteration of perception mechanism over the course of training. We
addressed this possible alteration by exploiting a Bayesian model of sensory integration. The
Bayesian model could reasonably fit the observed data in the second half of the experiment,
complementary to the linear decision fusion policy. The complementary fits of both models

support the gradual alteration of perception mechanism over the course of the learning.

All in all, the third study shows that participants incorporated and integrated symbolic tactile
information to improve the accuracy of perception. Participants rely on a linear decision
integration process during the initial learning phases, whereas in later phases they shift to

Bayesian integration behavior.
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General Discussion

We live in a complex and multimodal environment, where our evolved multisensory system
allows us to optimally perceive it. With the advance of technology and rapid dynamics of our
life habits, artificial sensory systems, such as wearable devices and sensory substitution
systems, are becoming a part of our daily life. In the present thesis, we studied the interactions
of tactile and visual sensory modalities with a major focus on tactile information generated by
an artificial sensory feedback device. We believe that studying how such novel artificial

systems are perceived by human is of great interest to scientists and engineers.

The thesis was organized in three studies in order to cover both the active and passive
interactions of visual and tactile modalities. We addressed different aspects of visual-tactile
interaction, with the minimum overlap across our studies. This diversity would help to acquire
a broad vision of cognitive aspects of artificial devices, and their interactions with the visual

sensory system.

The first study investigated the visual and tactile interactions in a realistic environment with
varying reliability information. This study focused on the integration and calibration of visual
and tactile modalities and covers the passive and potential active interactions. Our results show
that we use different perception strategies to resolve conflicts in information. We found that
participants started the integration strategy, however, they later adapted their perceptual
strategy to selection or calibration in order to overcome the conflict. A comprehensive
simulation allowed us to map the experimental results to appropriate perceptual strategies. We
modeled the perceptual behavior and provided an ideal observer model that sheds light on the
rationale for using different strategies. Our modelling revealed that causal inference in an
environment of varying reliability depends on the amount of discrepancy as well as the relative
reliability of stimuli across sensor modalities. Since the amount of discrepancy was constant
across experiments, the reason behind taking different strategies is the difference in relative
reliability across experiments. Moreover, we assessed the participants’ awareness by analyzing
the confidence reports in their judgments. Results show they performed better in high
confidence situations than in the low confidence situations, which is an evidence for conscious
perception. Interestingly, our findings show that participants did not change their confidence
when they shifted from the integration behavior to the selection one. In contrast, they altered

their confidence when they took calibration strategy and calibrated their modalities.
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The second study of the thesis focused on the interactions of irrelevant cross-modal
information. Specifically, we investigated the effect of task-irrelevant tactile/auditory
information on processing of visual information. Introducing a novel artificial sensory device
to some of our daily tasks, might cause some unwanted effects on other irrelevant tasks. This
is thus important to investigate whether and how far could be the effect of such artificial sensory
devices on cross-modal irrelevant tasks. On the other hand, the study was theoretically
motivated by an extended version of DMC, which we called Multimodal DMC or MDMC. We
extended the classical unimodal Simon experiment, which is a well-known task-irrelevant
example, to a visual-tactile (experiment 1) and a visual-auditory (Experiment 2) Simon

experiments.

The results of both experiments revealed the classical Simon effect, which is the effect of task
irrelevant attribute of visual stimuli on response error and reaction time of visual perception.
Furthermore, the effect of task irrelevant tactile information on response error and reaction time
of visual decisions was significant in the visual-tactile experiment. In the visual-auditry
experiment, the task irrelevant auditory stimuli could weakly affect the reaction time of visual
perception, but not the response errors. The unreliable effect of auditory information on visual
decisions was slightly unexpected. Nonetheless, other studies already found the insufficient
effect of task irrelevant auditory stimuli on visual perception where both visual and auditory

information are presented together.

Our proposed MDMC model, which is the multimodal extension of DMC model, fitted
reasonably the experimental data in both visual-tactile and visual-auditory experiments. We
further extend MDMC to the FN-MDMC (Faster Neutral MDMC), which was motivated by
considering faster responses in experimental data of visual neutral condition. FN-MDMC was
inspired from the studies that showed a visual stimulus presented at center point benefits from

faster retinal processing in comparison with stimuli presented in the left or right.

Our modelling revealed that MDMC was not perfect with respect to the neutral conditions,
because the MDMC did not consider the contribution of faster visual neutral conditions. The
modeling results was thus improved by the FN-MDMC, which considers a faster residual
processing for foveal visual stimuli. Our statistical comparison (in terms of BIC) between
MDCM and FN-MDMC models also confirms the improvement of FN-MDMC. In general,
both models retain our main modeling contribution that independent automatic activations

from multiple task-irrelevant information may superimpose the controlled process to shape the
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final decision process. MDMC framework helps us understanding the multisensory processing

in conflict tasks and can be exploited for further studies in this area.

Last but not least, we addressed cross-modal learning of visual and tactile modalities with a
focus on novel sensory experiences from an artificial sensory device. Specifically, we
investigated how symbolic information from a non invasive wearable vibrotactile system can
be learned and possibly integrated within our visual perception. Shedding light on this question
would help us to design artificial sensory devices appropriately, in a way that can optimally
integrate to our sensory system. It would also reveal the potentials and limits of such non-
invasive sensory systems. We designed and implemented a custom vibrotactile belt which
could generate novel and unexperienced tactile patterns. Our experiment had seven blocks of
learning and evaluation phases. The main task was to learn the associations between symbolic
tactile patterns and the moving direction of visual dot stimuli. In the evaluation phase, we
manipulated the reliability of visual stimuli to have three reliability conditions: low, medium,
and high. Our findings revealed that participants could learn and utilize novel tactile patterns
in unisensory and multisensory perceptions. Surprisingly, they integrated the unexperienced
tactile information with experienced visual information from the very beginning of the training.
The integration behavior could be observed despite of the fact that the accuracy of tactile
modality was initially lower than the visual modality. We even observed the selection of novel
tactile information where the reliability of visual information was low. Without knowing the
mechanism underlaying this perception behavior, it would be hard to generalize the findings of
the study and reuse the obtained knowledge in further practical designs/theoretical studies. We
therefore proposed two computational models that explained the observed perception behavior
from two different aspects: decision integration, and multisensory integration perspectives. The
proposed decision integration model predicts only based on first- and second-order perceptual
decisions, whereas the sensory integration model considers a Bayesian integration of
multisensory information, in which the sensory inputs integrate on a pre-decisional processing
level. We considered a linear policy and a parametrized softmax policy for the decision
integration model. The linear decision making policy reasonably predicted the visual-tactile
perception only in the first several blocks of the experiment, but it underestimated the accuracy
in the last blocks of the experiment. The parametrized softmax policy could fitted reasonably
the experimental data in all training blocks because it has enough degree of freedom to consider
a potential change in perception strategy during the learning. We hypothesized that the gradual

alteration of the perception might represent a transition from a decision integration behavior
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towards a sensory integration behavior. We investigated our hypothesis by modelling the
experimental data with a Bayesian model of multisensory integration. Complementary to the
linear decision fusion model, the Bayesian model reasonably predicted the experimental data
only in the last several blocks of the experiment. The complementary predictions of the linear
decision making policy and the Bayesian multisensory model supports our proposed
hypothesis. Our numeric comparison of the models also confirmed the gradual change of
behavior in the perception and integration over the course of training. Our findings also
revealed that the confidence reports can be interpreted as a reasonable estimation of the
decision values, and the proposed notion of confidence confusion matrix opens a novel horizon

for future studies on decision making models with confidence ratings.

Taking everything into account, we designed and conducted three studies to investigate
interactions of visual and tactile information. We put a major focus on tactile information
delivered by an artificial vibrotactile device, which was designed and implemented for this
thesis. We covered both active and passive interactions of visual and tactile modalities and kept
studies diverse with almost no overlap. Each of the studies addressed one aspect of visual-
tactile interactions and helped to understand the limits and potential of artificial devices. There
are of course open points and potential future works which would improve our understanding

of visual-tactile interactions as well as the cognitive aspects of artificial sensory devices.
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Two psychophysical experiments examined multisensory integration of visual-auditory (Experiment 1)
and visual-tactile-auditory (Experiment 2) signals. Participants judged the location of these multimodal
signals relative to a standard presented at the median plane of the body. A cue conflict was induced by
presenting the visual signals with a constant spatial discrepancy to the other modalities. Extending
previous studies, the reliability of certain modalities (visval in Experiment 1, visual and tactile in
Experiment 2) was varied from trial to trial by presenting signals with either strong or weak location
information (e.g., a relatively dense or dispersed dot cloud as visual stimulus). We investigated how
participants would adapt to the cue conflict from the contradictory information under these varying
reliability conditions and whether participants had insight to their performance. During the course

of both experiments, participants switched from an integration strategy to a selection strategy in
Experiment 1 and to a calibration strategy in Experiment 2. Simulations of various multisensory
perception strategies proposed that optimal causal inference in a varying reliability environment not
only depends on the amount of multimodal discrepancy, but also on the relative reliability of stimuli
across the reliability conditions.

Optimal integration of multisensory information received from different sensory organs is crucial for a coher-
ent perception of the complex environment. Many studies have reported benefits of multisensory compared to
unisensory perception in psychophysical tasks. Integration of different modalities when they are congruent and
synchronous'~ leads to a significant decrease in response time*-, an increase in reliability, and an increase in
accuracy’"'*. However, when information is incongruent across different sensory modalities, integration may lead
to a biased percept. Various models of information processing, including causal inference and calibration, have
been suggested to describe perception when different modalities receive inconsistent information'* '°.

Multisensory causal inference is the process of deciding which sensory inputs originate from the same cause'” '%.
It plays a crucial role in multisensory perception, especially when there is a discrepancy among the modalities.
Previous studies have reported that the probability of assuming a common cause decreases with the increase
of this discrepancy'. It has also been shown that causal inference across different modalities not only depends
on temporal, spatial, and contextual features of the stimuli*’ but also on prior knowledge and experiences*" %,
According to ideal observer models'’, causal inference in multisensory perception is often performed in line with
Bayes’ rule'® and in such a way to minimize the estimation error, defined as the mean squared error between the
true value and the estimated value of the perceptual system.

In order to cope with inconsistent sensory information, the brain has to discover whether the discrepancy
is due to a random noise in the sensory information, or to a systematic error, potentially in one of the sensory

1Cognitive Systems Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran,
Tehran, Iran. 2Cognition and Perception, Department of Psychology, University of Tibingen, Tibingen, Germany.
3School of Cognitive Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran. Correspondence
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systems'®. Recent studies have suggested that if the source of the discrepancy is a systematic error, calibration is
beneficial to resolve the persisting discrepancy. Meanwhile, the accuracy of the sensory systems is maintained
throughout calibration'® ?*. Calibration models describe how unimodal sensory percepts could be changed so
that the inconsistency between unimodal percepts decreases. Classical calibration models indicated that all the
sensory modalities are calibrated corresponding to vision, known as visual dominance®" >°. Recent studies have
proposed general calibration models which involve other modalities as well. In such models, all of the modalities
are calibrated in accordance with each other based on the relative reliability’* 2 of their corresponding cues,
assuring minimum-variance sensory estimates over time'>?”. However, Zaidel et al.”® reported independence of
calibration from cue reliabilities in the context of a visual-vestibular setup. They proposed a fixed-ratio calibration
model in which each modality contributes to calibration with a certain weight that remains constant irrespective
of variations of cue reliability.

Although calibration adjusts perception in the case of systematic errors, it is still not clear under which con-
ditions calibration takes place. It seems that multisensory causal inference and multisensory calibration are tied
together, that is, calibration of different modalities according to each other would be reasonable only when signals
originate from the same external event. Even though the interaction of causal inference and calibration is still
unclear, the minimal error in the integration of multimodal contradictory information can be achieved if causal
inference and Bayesian integration processes are considered jointly'®.

Consequently, several processes underlying multisensory perception of incongruent information have been
suggested. In order to better understand the mechanisms of perception on one hand and calibration in a mul-
timodal environment on the other hand, it is important to study interactions across these processes. However,
some of these interactions might emerge especially under more realistic conditions rather than in the restricted
environment that is usually studied in multisensory perception experiments. In natural environments, the reli-
ability of the information received from each organ is often not stationary but can change within a short period
of time. For example, when one drives in foggy (or rainy) weather, the reliability of the visual information can
change within a short period when the density of the fog varies. Thus, the reliability of the information is not
stationary in natural scenarios. Therefore, when studying the interaction of different perceptual processes such
as causal inference and calibration, one should consider the role of varying reliabilities. This might be especially
informative, for example, in order to identify the conditions which are required for the calibration process, or to
investigate the flexibility of the processes underlying multisensory calibration. The multisensory processes, such
as causal inference and calibration, require experiences that are acquired through previous observations®> . In
an environment of varying reliability, the question is raised whether the causal inference problem is solved based
on the aggregated information across all reliability conditions, or whether it is solved for each reliability condition
separately.

To the best of our knowledge, multisensory calibration and multisensory causal inference of contradictory
information have never been studied under conditions where the reliability of the sensory modalities varies ran-
domly from trial to trial within a single session. Therefore, the present study investigates multisensory percep-
tion of contradictory spatial information with a concurrent variation of reliabilities. Specifically, we designed
an experiment comprised of three sections administered in the following order: a visual-auditory section, a
visual-tactile-auditory section, and a unimodal section. In every trial of each section, participants received two
consecutive section-specific stimuli presented from varying spatial locations. They were asked to determine
whether the second stimulus was perceived spatially on the left or on the right side of the first stimulus (see fig-
ures in methods and apparatus section). In the first section, the reliability of the visual stimuli was high in half of
the trials, while the reliability of the auditory stimuli was constant in all trials (see Fig. 1). Visual-auditory stimuli
had a spatial discrepancy; the auditory stimulus was always presented on the left side of the visual stimulus with a
conflict angle (A) of —4°. In the visual-tactile-auditory section, tactile stimuli (delivered to the abdomen) accom-
panied the visual-auditory stimuli. The reliability of the various modalities changed according to three different
reliability conditions (see Fig. 1). In this second section, the tactile stimulus was presented 4 cm to the left of the
spatially congruent audiovisual stimuli, where the central position of the tactile stimulus was the vertical body
axis. The term cue-conflict refers to the spatial conflict between different individual modalities in our study. In
this section, cue-conflict means that tactile stimulus was shifted two motors (4 cm) to the left. The third and
final section was a unimodal section in which the reliability of each modality was evaluated separately for each
participant.

Since the cue-conflict was not large, it was expected that the participants would initially assume a common
cause, and hence integrate the different modalities at the beginning of a multimodal section. However, during the
course of the experiment, one could expect that participants would realize that there is a systematic conflict rather
than unsystematic noise. Accordingly, during each section, the participants’ integration strategy might change.
We therefore investigated how their spatial perception varied between the first half and the second half of each
section. We hypothesized that three different perceptual strategies could emerge in this setup: (1) Assuming the
same cause for the modalities and continuing to integrate the different modalities without any calibration or any
change in perception. (2) Assuming the same cause for the modalities, but calibrating the individual modalities
in order to resolve the cue-conflict. (3) Inferring that there are several causes for the modalities and thus selecting
the most reliable one in each trial.

The first strategy implies that there is no significant change in the perception, specifically between the first
and the second half of each section in the experiment. However, the second and the third possibilities represent
new strategies of perception. In this study, for the sake of simplicity, we use the term “adaptation” to indicate such
possible perceptional changes between the first and the second half of a section, independent of the specific per-
ception strategy. Crucially, we were interested in determining whether these adaptation strategies would depend
on the varying reliability of the signals.
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Figure 1. Reliability conditions in Experiment 1.a and Experiment 1.b. Experiment 1.a was a visual-auditory
experiment with two reliability conditions (the two left-most figures). The spread of the visual dots was wider
in the LV-MA condition than in the HV-MA condition. Experiment 1.b had three reliability conditions (the
three right-most figures). In the HV-MA-LT condition, the visual input had the highest reliability, while in
the LV-MA-HT condition the tactile stimulus was the most reliable stimulus. In the LV-MA-LT condition, the
reliability of both the visual and tactile stimuli was low. The reliability of the auditory stimulus was the same in
all the three conditions of Experiment 1.b.

As the environment becomes more dynamic, the uncertainty in decisions should increase. Even though it is
reported that people are usually aware of their own uncertainty during their perception®, there is no consensus
on this issue in the literature. Faivre et al.’' showed that people integrate multimodal information unconsciously
when the stimuli were subliminal and after undergoing a conscious learning procedure. Nevertheless, they did
not ask their participants to report their confidence about their decisions. Such confidence ratings assess a partic-
ipant’s awareness of his/her perceptual performance. Specifically, participants demonstrate a high level of moni-
toring accuracy when their confidence and perceptual performance are positively correlated. Confidence ratings
have also been used to assess whether a brain process is conscious or unconscious”. For example, if the variation
in perceptual performance is not accompanied by consistent changes in confidence, then the perceptual processes
and the resulting decisions are likely to be unconscious™. In our study, we also assessed the participants’ confi-
dence ratings in order to examine whether the participants were aware of the perceptual difficulty associated with
the varying reliabilities of the stimuli.

Results

Psychometric function. As outlined above, comparing the point of subjective equality (PSE) for each reli-
ability condition between the first half and the second half of the experiment assesses the strategy adopted by the
participant during the experiment. This comparison addresses PSE shifts towards either the visual, auditory, or
tactile cues and thus reveals the relative weighting of each modality in the integration process for each reliability
condition. The observed psychometric functions measured the proportion of rightward choices against the stim-
ulus angle. Therefore, PSE = —4 means a shift of four degrees to the right and PSE = +4 a shift of four degrees to
the left. We used generalized linear model (GLM) regression in order to fit all psychometric functions. These are
maximum likelihood models with the binomial distribution and the probit as the link function (the inverse of the
transformation is the link function). The PSE was calculated as the threshold value of the psychometric function
at 0.5. Figure 2 illustrates the fitted psychometric function (averaged over participants) for each reliability con-
dition; the solid blue lines show the performance before adaptation and dashed red lines show the performance
after adaptation. The mean squared error of these fits is 0.0058 = 0.0049.

Comparison of the PSEs before and after adaptation (see the magnified plots) illustrates that the PSE changed
in some reliability conditions. In a further analysis, psychometric functions were fitted to the data of each partici-
pant in each reliability condition. All further analyses and modeling were based on these individual psychometric
functions. The average mean squared error of these individual psychometric functions was 0.018 £ 0.016 which
indicates a reasonable fit. The average correlation between individual psychometric functions and data points was
0.902+0.085 (average p-values. 014 4 0.020).

Visual-Auditory (Experiment 1.a). In this part of the experiment, the strategy adopted by participants to
cope with the visual-auditory perception in an environment of varying reliability was studied. Participants were
exposed to two reliability conditions in this section: the high reliability visual and medium reliability auditory
stimuli (HV-MA), and the low reliability visual and medium reliability auditory (LV-MA). All trials of the two
conditions were randomly mixed. Figure 1 illustrates all reliability conditions in Experiment 1.a and Experiment
1b.
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Figure 2. Fitted psychometric functions to all trials of all participants. The first row shows the psychometric

functions before and after adaptation in all reliability conditions. The second row shows the magnified plots of

the first row around the midpoint.

In order to examine the potential effect of reliability condition (LV-MA vs. HV-MA) and of adaptation (first
half vs. second half) on perception, the PSEs were analyzed using 2 x 2 within-subjects ANOVA (Bayesian
analyses are available in the Supplementary material). This analysis showed a significant interaction effect,
F(1,18) =5.52, p=0.030, and a significant effect of reliability condition, F(1,18) =72.52, p < 0.001; while factor
adaptation was not significant, F(1,18) = 3.43, p=0.080 (see Fig. 3A). Since the interaction effect was significant,
the PSE changes were assessed for each reliability condition. According to a two-sided paired-sample t-test, the
effect of adaptation on the PSE was not significant in the HV-MA condition, t(18) =0.53, p=0.599, but signif-
icant in the LV-MA condition, t(18) = 2.17, p = 0.043. Therefore, in the second half of the LV-MA condition,
participants’ judgments about the multisensory location were significantly biased towards the auditory location.
However, the PSE in the HV-MA condition did not change and remained close to the location of the visual stim-
uli. This pattern of results indicates that perceptual changes are specific to different reliability conditions. We will
investigate the source of this change later by modeling these effects.

The slope of psychometric functions was analyzed with the same ANOVA design as the PSE. The results
showed that the slope in the HV-MA condition was significantly greater than in the LV-MA condition,
F(1,18) =23.59, p < 0.001. Neither the factor adaptation, F(1,18) =0.17, p=0.682, nor the interaction of adap-
tation x reliability condition yielded a significant effect, F(1,18) =0.12, p =0.733. The average slope of the psy-
chometric function was 2.09 4 2.25 and 1.85 = 2.14 in the first half and second half of the HV-MA condition,
respectively. In the LV-MA condition, the average slope was 0.171 & 0.08 and 0.148 £0.09 in the first half and
second half. The difference between the slopes in the HV-MA and LV-MA conditions suggests that our manipu-
lation of the reliability condition was successful.

An analogous ANOVA was performed on confidence ratings. This analysis revealed no significant interaction
between reliability condition and adaptation, F(1,18) = 1.73, p =0.205. There was also no significant effect of
adaptation, F(1,18) =0.14, p=0.712. Nevertheless, the effect of the reliability condition on confidence was highly
significant, F(1,18) =112.28, p < 0.001, see Fig. 3B. These results showed that participants reported significantly
lower confidence when the reliability of stimuli was also low (the LV-MA condition) which supports the view that
they were aware of their performance. However, confidence ratings did not significantly differ between the first
and second half of the experiment, even when they changed their judgments in LV-MA conditions.

Visual-Tactile-Auditory (Experiment 1.b). The second section of the experiment had the same struc-
ture as the first section, except that the tactile modality was added and three varying reliability conditions were
implemented: a high reliability visual (HV-MA-LT) condition, a high reliability tactile (LV-MA-HT) condition,
and a medium reliability auditory (LV-MA-LT) condition (see Fig. 1 and also methods section for more details).
Although many studies have mentioned interactions between touch and the other modalities in the context of
adaptation’® 3>, those which have studied the spatial adaptation are rare”’. Similar to the first section, the dif-
ference in the PSEs between the first half and the second half of the experiment is crucial to study the adaptation
strategy among the modalities.

The PSE results of this section are shown in Fig. 3C. The 3 x 2 within-subjects ANOVA on PSEs demon-
strated that the interaction effect of factor adaptation and reliability (HV-MA-LT, LV-MA-HT, and LV-MA-LT)
was significant, F(2,36) =4.53, p=0.018. It also indicated that the effect of adaptation on PSE was not significant,
F(1,18) =0.082, p=0.777, while the effect of the reliability condition on PSE was significant, F(2,36) =41.64,

SCIENTIFICREPORTS|7:3167 | DOI:10.1038/s41598-017-03521-2 4

54



www.nature.com/scientificreports/

(A) PSE (B) Confidence

4.5 4
sssssss HV-MA
=T - 4 LV-MA
- 2 35 8
35 § [rmmm——m
w g3 235
S w2s S
2 o —
% - 2 =]
5 ° g
- A 23 i
S 51 2 | .
n oz < [™ S8
S 0.5 l-_------l
25

- (o4
i) 4.5( ) 4(0)
- . = e LV-MA-HT
% - w— o == HV-MA-LT
w ¢35 4 8 e LV-MA-LT
o §’ 3 - s
.‘33 »b’f g35-|--—._.l'
T w25 s
K o” Z{‘ (3} = - -—
S © N :
e e, |
5 §15 MER-E
2 E 1 e s ~<w‘—‘ﬂ"'ﬁz“gwwm 4
3 £ . I

0.5 . -
2 -
- 0 2.5

First Half Second Half  First Half Second Half

Figure 3. PSE variations as well as confidence changes between the first and the second half of each section
across different reliability conditions. The error bars were computed by the method described in ref. 34

and show =+ 1SE. (A) PSE variation in the visual-auditory section: The PSE was shifted toward the auditory
location in the LV-MA condition, while it remained close to the visual location in the HV-MA condition. (B)
Confidence alteration in the visual-auditory section: there was no significant change in the confidence, however
the confidence in the HV-MA condition is significantly higher than in the LV-MA. (C) PSE variation in the
visual-tactile-auditory section: the PSEs in the HV-MA-LT and the LV-MA-HT conditions moved toward the
tactile location significantly. Nevertheless, it was not significant in the LV-MA-LT condition (yellow line). (D)
Confidence alteration in the visual-tactile-auditory section: All confidence ratings changed significantly, a
significant increase in the LV-MA-LT condition, and significant decrease in the HV-MA-LT and the LV-MA-HT
conditions.

P <0.001. The significant interaction effect indicates that adaptation varied across reliability conditions.
Therefore, we conducted a separate 2 x 2 within-subjects ANOVA without the LV-MA-LT condition, since
the LV-MA-LT condition had a different adaptation trend. This second ANOVA revealed that the interaction
between HV-MA-LT and LV-MA-HT was not significant, whereas the effect of reliability condition on PSE,
F(1,18) =138.93, p < 0.001, and also the effect of adaptation on PSE, F(1,18) =7.23, p =0.015, were significant.
The paired-sample t-test also showed that the effect of adaptation on the PSE was not significant in the LV-MA-LT
condition, t(18) =1.30, p=0.209.

The PSE in the LV-MA-HT condition was shifted towards the tactile location, suggesting an alteration of mul-
tisensory perception. The same alteration was seen in the condition in which the high reliability stimuli was visual
(HV-MA-LT), even though confidence was higher in the LV-MA-HT condition. However, for the LV-MA-LT
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condition, there was no indication of such variation in the PSE since audition was not affected by touch/vision
and the auditory stimuli were the most reliable stimuli in the LV-MA-LT reliability condition (see the slope anal-
yses in the “unimodal study Experiment 1.c section”).

An analogous ANOVA on the slope of the psychometric function revealed that the effect of the reliabil-
ity condition was significant; F(2,36) = 12.08, p < 0.001. However, neither factor adaptation, F(1,18) =0.83,
p=0.374, nor the interaction of adaptation x reliability condition, F(2,36) =2.39, p=0.106, was significant. Like
in Experiment 1.a, the manipulation of the reliability conditions was successful, since the effect of the reliability
condition was significant. The slope of psychometric functions in the first half and second half were, respectively,
as follows: 0.30 £0.15, 0.49 4= 1.08 in the LV-MA-HT condition, 2.08 +2.6, 1.14 4- 1.49 in the HV-MA-LT condi-
tion, and 0.14+0.10, 0.21 +0.09 in the LV-MA-LT condition.

The same ANOVA design was used to study the confidence ratings. When all three modalities are considered
together, the 3 x 2 repeated two-way ANOVA on confidence rating showed an significant interaction between
reliability and adaptation, F(2,36) = 11.47, p < 0.001, while factor adaptation was not significant, F(1,18) =0.43,
p=0.519, and the effect of reliability condition was significant, F(2,36) = 39.05, p < 0.001, see Fig. 3D. However,
an ANOVA without the LV-MA-LT condition showed that there was no interaction between reliability condition
and adaptation, F(1,18) = 0.10, p=0.750. Factor adaptation, F(1,18) = 6.90, p=0.017, and reliability condition,
F(1,18) =7.27, p=0.015, produced significant effects on confidence. Paired-sample t-tests showed that the effect
of adaptation on the confidence was also significant in the LV-MA-LT condition, t(18) =2.49, p=0.023, but in
the opposite direction than in the HV-MA-LT and LV-MA-HT conditions. Figure 3D illustrates the changes of
the confidence ratings in each reliability condition.

As in experiment 1.a, participants reported significantly different confidence in various reliability conditions
suggesting that they were aware of their performance (additional analyses of confidence ratings are provided in
the discussion section). In contrast to experiment 1.a, they changed their confidence between the first and the
second half of the experiment. Thus, in this section the bias in participants’ perception changed together with
their confidence.

Unimodal study (Experiment 1.c). In order to model multisensory perception, we need to estimate the
unimodal perceptual reliabilities of the participants. Therefore, the last section was a unimodal experiment,
designed to estimate the reliability of the stimuli in each of the modalities for each of the participants separately.
One-sample t-tests were conducted for each stimulus type in order to examine whether there were any persisting
biases in location perception for unimodal stimuli. The average of PSEs, as well as the p-values of the t-test, in
each of the reliability conditions were as follows: —0.22 4-0.96, t(18) =0.99, p = 0.335, for high reliability visual,
0.6243.9, t(18) =0.69, p=0.498, for low reliability visual, —0.90 £ 1.8, t(17) = 2.08, p = 0.052, for high reliability
tactile, 3.2 4.6, t(18) =3.01, p =0.007, for low reliability tactile, and —0.04 + 1.1, t(18) = 0.15, p = 0.880, for
medium reliability auditory conditions. One PSE value was eliminated from the analysis in the high reliability
tactile condition since it was outside of the average 4 30 range. Thus, the t-test for this condition was conducted
with eighteen data instead of nineteen.

The PSE for low reliability tactile was significantly biased. Specifically, participants displayed a partial bias to
the left for the low reliability tactile condition. Since the unimodal experiment was performed after experiment
1.b, this may reflect an acquired shift in location perception corresponding to the previously experienced conflict
angle. Presumably, the shift was significant in the low reliability condition because the certainty was lower when
the reliability of the stimuli was also lower. Thus, participants probably used their prior information about the
conflict angle more when the uncertainty of the stimuli was higher.

A one-way within-subjects ANOVA revealed that there is a significant difference across slopes of the unimodal
perceptions, F(4,72) = 4.42, p=0.003. The average of the slopes was 0.57 4 0.25 in the high reliability visual con-
dition, 0.075 £ 0.026 in the low reliability visual condition, 0.58 £ 1.16 in the high reliability tactile condition,
0.1240.13 in the low reliability tactile condition, and 0.39 4 0.18 in the medium reliability auditory condition.

The average of the reported confidence was 3.43 +0.39 in the high reliability visual condition, 2.72 4 0.54 in
the low reliability visual condition, 3.39 £ 0.37 in the high reliability tactile condition, 2.32 £ 0.75 in the low relia-
bility tactile condition, and 3.02 + 0.48 in the medium reliability auditory condition. A one-way ANOVA showed
that there is a significant difference in confidence across unimodal conditions, F(4,72) = 37.74, p < 0.001. Post-hoc
Tukey test showed that all unimodal confidence ratings were significantly different from each other except two of
them: the difference between the high reliability visual and high reliability tactile conditions (p =0.988), as well as
the difference between the low reliability tactile and low reliability visual (p =0.110) situations.

In order to account for the results of the experiment, we developed a mathematical model and conducted
simulations that explain different strategies by considering the causal inference and calibration processes simulta-
neously. This model is inspired by the Bayesian framework of multisensory perception and minimizes the overall
perception error across all reliability conditions.

Discussion
Adaptation strategies in an environment of varying reliability. Our brain faces many percep-
tual conflicts every day, especially in multimodal perception. Although conflicts seem to be the source of some
misperceptions, they often trigger perceptual learning processes. Several studies suggested that cross-modal cali-
bration processes are triggered by cross-modal cue-conflicts**-*’. The present experiments examined how per-
ception is modified in the presence of cross-modal conflict stimuli in an environment of varying reliability. To
enable a better understanding of the results, we simulated different possible multimodal perception strategies in
order to model the mechanism that may cause the PSE shifts in an environment of varying reliability (see Fig. 4).
Consider a multimodal stimulus S being perceived through two different modalities A (blue line), and B (red
line) and letgA =f,(S)and §B =£(S) denote their internal estimations, respectively. Furthermore, several studies®
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Figure 4. Simulation of different perception strategies in an environment of varying reliability. (A) stimulus S is
perceived through two sensory modalities A (blue) and B (red) under two different reliability conditions. In the
reliability condition 1, the reliability of modality A is higher than the reliability of modality (B) while it is vice
versa in reliability condition 2. We simulated the variation of integrated PSEs in different adaptation strategies:
(A) Collaborative calibration, (B) Modality Dominant (MD) calibration, and (C) Selection.

showed that the brain integrates unimodal estimations, $,; = w, - §, + wy - Sj, in an optimal Bayesian fashion,
where the summation of all individual weights (in this case the summation of w, and w;) equals 1. Facing an envi-
ronment of varying reliability with two reliability conditions, two multisensory stimuli (yellow and green lines) are
perceived with the same unimodal but different integrated estimations:

reliability condition 1: 8,15 = wy, - S, + wyp - Sp

reliability condition 2: Sy, = wyy - §, + wap - S 1)

where §,,; denotes the integrated estimation of stimuli A and B in the i* reliability condition. The difference
between the integrated estimations, §i apand §2 A in the two reliability conditions is due to the various reliabilities
of unimodal stimuli. However, the unimodal estimations, $, and S, do not change across these reliability condi-
tions. The weights are calculated as follow:

S
2\

— TAi —
Wia = > Wip =

+
+

T T 1 1
i o @)
where 0} and oy, are the variance of the modality A and modality B in the i" reliability condition.

Comparing the PSE variations in the simulation study and the observed PSE shifts informs us about the
strategies taken by participants in the present psychophysical study. Assume that modality A receives the more
reliable stimulus in reliability condition 1 and modality B receives the more reliable stimulus in reliability con-
dition 2, similar to our experimental design. Our simulation shows how the integrated PSEs change dependent
upon different adaptation strategies. As discussed before, we assume that three different strategies might occur:
Calibration, selection, and no change in the perception. Here, we simulated the selection behavior as well as two
modes of calibration. We did not simulate the case when there is no change in the behavior since the PSEs simply
would not change. The simulated strategies are as follow: (A) Collaborative calibration: assumes that both of the
conflicting modalities shift toward each other in a calibration process. (B) Modality dominant (MD) calibration:
one modality is calibrated according to the other modality, so one modality remains steady, called the supervisor

SCIENTIFICREPORTS|7:3167 | DOI:10.1038/s41598-017-03521-2 7

57



www.nature.com/scientificreports/

modality, and the other modality adapts to the supervisor modality. (C) Selection: the perceptual system selects
the most reliable modality, instead of integrating both inputs.

The discrepancy between the modalities is denoted by A = §; — §; before the adaptation. In a calibration
process the unimodal estimators, f,(S) and f3(S), are updated in order to decrease the conflict A. The collaborative
calibration, as well as the MD calibration, were defined as follow:

New _ cOld New _ cOld
- — AG = - AG
Collaborative{ ™2 = “4 *, MD L Mo o !
f f + ACy fn =JB (3)

where f% s the old estimator, £ is the updated estimator of the j* modality, and C; is the calibration coeffi-
cient of the j* modality. In our simulations, C4 and Cy are equal and positive values in the collaborative calibra-
tion while Cy is zero in the MD calibration. After the adaptation, the multisensory stimuli were calculated
according to Equation (3) in the collaborative calibration and MD calibration models.

By comparing the simulation and the experimental result (see Figs 3 and 4), it becomes clear that calibration
is not the sole strategy the brain takes to overcome a conflict, at least in a varying reliability multisensory envi-
ronment. Experiment 1.a suggests that when the participants received conflicting visual-auditory stimuli in an
environment of varying reliability, they started to select between the visual and the auditory stimulus (Fig. 3A),
exhibiting the selection strategy (Fig. 4C). In this situation, the PSEs corresponding to the multimodal stimuli
moved toward the location of the unimodal stimuli during the experiment, each one toward the most reliable
unimodal stimulus. The integrated PSE of the LV-MA condition (red line) moved toward the auditory source.
However, the integrated PSE of the HV-MA condition (blue line) reflected the visual source. This pattern is con-
sistent with the view that participants selected the auditory stimulus in the low reliability visual (LV-MA), and
the visual stimulus in the high reliability visual (HV-MA) condition. Undoubtedly, this trend in the changes of
the PSEs is inconsistent with each of the two calibration processes and is best described by a selection strategy.

The results of Experiment 1.b correspond to the Modality Dominant calibration strategy (Fig. 4B), suggesting
that vision was calibrated by touch which is also consistent with previous findings* *!. According to the results
(Fig. 3C), the PSEs in both the HV-MA-LT (purple line) condition and the LV-MA-HT (green line) condition
moved toward the tactile source, meaning that touch affected both reliability conditions, probably by calibrating
vision.

Furthermore, the three models were quantitatively compared to experimental results. To this end, we mini-
mized the sum of the absolute error between empirical and predicted PSEs using the genetic algorithm®”. For the
data of Experiment 1.a, this sum was 0.01 for the selection model, 0.12 for the MD calibration model, and 1.55 for
the collaborative calibration model. Therefore, the results of the Experiment 1.a are best described by the selec-
tion model. Likewise, for Experiment 1.b this sum was 0.34 for the selection model, 0.18 for the MD calibration
model, and 1.06 for the collaborative calibration model. Accordingly, MD calibration was the dominant strategy
in Experiment 1.b.

Merging the integration model and the selection model.  Our experimental results together with the
simulation results provide evidence that participants rely on both selection and calibration strategies when facing
conflict stimuli in an environment of varying reliability. We have fitted a perceptual model to experimental data
that enables us to assess the probability of different perception strategies in experiment 1.a and experiment 1.b.

According to previously suggested models'?, causal inference in multisensory perception is performed in line
with the model averaging approach'® ', In the model averaging approach, the optimal estimate is a weighted
average of two estimates: one derived under the assumption that two stimuli originate from different sources, the
other derived under the assumption that two stimuli originate from the same source.

We extended the model averaging approach in order to compare the probability of the common cause between
experiment 1.a and experiment 1.b. For the sake of simplicity, the prior probability of all unimodal stimuli is
assumed to be uniform in our study. According to the model averaging approach, the perception in an environ-
ment of varying reliability with two reliability conditions would be as follows:

reliability condition 1: §1 =P - §1AB +(1-F)- §A
reliability condition 2: §2 =F- §2AB +(1-F)- §B (4)

where P denotes the probability of the common cause, §, is the averaged estimation in the it " reliability condition,
and$, ., and S, , ; are Bayesian integrated stimuli which are calculated according to Equation (1). SA/SB is assumed
to be the most reliable stimulus in reliability condition 1/2. The ideal observer integrates §, and §, with the prob-
ability P, and selects the most reliable stimulus between §, and S, with the probability (1—P,).

We have fitted the model of averaging to the average performance of participants. In the experiment 1.a, we
assumed P,/ P, (probability of common cause in the first/second half of the experiment), Sy,/Sy, (location of
visual stimulus in the first/second half of the experiment), and Sy,/S,, (location of auditory stimulus in the first/
second half of the experiment) are free parameters. In the experiment 1.b, $;,/S;, (location of tactile stimulus in
the first/second half of the experiment) were also added to the list of free parameters. The slope of the unimodal
perceptions (which were measured in experiment 1.c) was used as the reliability of the individual modalities in
the averaging model. We have minimized the sum of the square of the difference between the estimated and
observed PSEs using the genetic algorithm (GA)*. The values of P, and P, were limited between 0 and 1 in the
minimization procedure. We imposed the experimental perceptual reliabilities on the model and let the model fit
the other parameters to the experimental data. Therefore, comparison between P, and P, shows how the model
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Experiment 1.a 0.56 0.18 —0.18 | 0.00 241 3.97 NA NA <0.0000

[Experiment1b  [049 [047 [-020 [o4s [239 [123 [285 [399 [<0.0000

Table 1. Fitted parameters in experiments 1.a and 1.b.

predicts the change of strategy. Furthermore, comparison of location of the individual modalities between the
first and the second half would reveal the effect of calibration on the perception.

Table 1 illustrates the fitted parameters in experiment 1.a and 1.b where the fitting error were minimum. The
model of the experiment 1.a shows a decrease in the P. It also illustrates that the perception of the auditory stim-
ulus was shifted to the auditory location while the perception of the visual stimulus was almost unchanged. The
fitted parameters in experiment 1.a are in favor of changing the strategy from integration to selection, specifically
since P decreased from first half to second half. In contrast, the P was almost constant in experiment 1.b while
location of the individual modalities varied between the first half and second half. This pattern is more consistent
with the calibration strategy rather than selection strategy. The model proposed that the visual and tactile modal-
ities were shifted toward the tactile location while the auditory modality was shifted toward the location of the
visual and auditory stimuli. The possible account for auditory shift is that the biased perception of the auditory
stimulus in experiment 1.a affected the perception of the auditory in experiment 1.b. Thus, the auditory stimulus
was shifted back to the unbiased location in experiment 1.b.

The parameters of the fitted models confirm the findings which were provided by simulation to some extent.
However, the modeling reveals that the probability of the integration was about fifty percent at the beginning of
experiments 1.a and 1.b. Thus, participants did not integrate the modalities perfectly. This imperfect integration
may explain why the reliability of the multisensory perceptions were not always greater than the reliability of
the unimodal perceptions as is expected in the Bayesian integration model. The fitted model predicted that the
location of the auditory stimulus was shifted in experiment 1.a. Therefore, participants adjusted their auditory
perception while they altered their strategy. It seems that the perception of the auditory stimulus was affected
by the discrepancy at the beginning of the experiment when the probability of a common cause of the auditory
stimulus and visual stimulus was higher. However, the participants seem to have adjusted their perception of the
auditory stimulus later when they decided not to integrate the information.

Even though the results show that participants used the selection strategy in experiment 1.a and the calibra-
tion strategy in experiment 1.b, other perceptual processes seemed to be involved in both experiments. Therefore,
further investigation is required to rule out the effect of other processes and to confirm our findings.

Model averaging explains the optimality in conflict solving strategy. We have investigated the
multisensory perception of contradictory information in an environment of varying reliability and showed that
participants use different strategies when facing different situations. However, the rationale for using different
strategies in experiments 1.a and 1.b was not yet clear. Therefore, we investigated why it might be optimal to use
different strategies in these two experiments. To this end, an ideal observer was modeled that minimized the
perceptual estimation error in an environment of varying reliability based on the model averaging approach
(equation 4). Since all reliability conditions were mixed and presented randomly, the ideal observer should infer
the causality in such a way to minimize the overall error across all reliability conditions. Therefore, the overall
estimation error, Errory, for the two reliability conditions is defined as follows:

Errory = [BAS — $14p) + (1= BI(S — §0I + [PS — Spup) + (1 — BY(S — ST ®)

Assuming that P is not changing in each trial, an optimal estimation of the common cause probability, P, is
the one which minimizes the Errory, (see the supplementary material for the proof and derivation):
B = S+ 85— 28

Al = wyy — wyy) (6)

According to Equation (6), increasing the discrepancy,A, leads to decrease in F; that is, the larger the discrep-
ancy, the more probable that selection strategy is chosen by an ideal observer, which is consistent with previous
studies investigating multisensory perception'®. Furthermore, minimizing the error function in an environment
of varying reliability reveals a term we call discrepancy weight,

wy = (1 = wy — wyy), (7)

This discrepancy weight shows the gain effect of the discrepancy (weight of the effect of the discrepancy) on
Pc. Since w;, = 1w, the discrepancy weight, w,, depends on the relative reliability of both stimuli in both reli-
ability conditions. Consequently, the ideal observer chooses between the selection or integration strategies not
only according to the amount of the discrepancy A, but also based on the relative reliability of the stimuli in all
reliability conditions, represented by discrepancy weight wx.

Similar to Equations (5) and (6), the optimal P and the discrepancy weight for three modalities and three reli-
ability conditions, as in experiment 1.b, was derived as follows (see the supplementary material for error function,
derivation and the proof).
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Figure 5. Discrepancy Weights. The discrepancy weights depend on the relative reliability of the cues across the
different reliability conditions. Discrepancy weights are inversely correlated to the probability of the common
cause Pc. Thus, the lower discrepancy weight in the experiment 1.b indicates a higher probability of an assumed
common cause, which is consistent with the observed behavior in that experiment. In contrast, the higher
discrepancy weight in the experiment 1.a points to a lower common cause probability that explains the selection
strategy in experiment 1.a.

B S+ 8+ 8. —38
AR = Wiy — wyy — Wiy — Wi — Wop — Wip) (8)

Fe

Wy = (2 = Wiy — Wy — Wiy — Wip — Wy — Wip) )

Equation (9) indicates the gain effect of the discrepancy on P for three modalities across three reliability
conditions.

Discrepancy weights explain the dissimilarity in perception strategies. Since the amount of the
discrepancy (A) was the same in experiment 1.a and experiment 1.b, we hypothesize that the discrepancy weight
is the source of taking different multimodal perception strategies. To investigate this, we compared the w, in
experiment 1.a and in experiment 1.b using Equation (7) and Equation (9) respectively. The values of o in
Equation (2) are obtained by fitting psychometric functions to the results of the unimodal experiment (experi-
ment 1.c). Figure 5 illustrates the average of the discrepancy weights over all participants in experiments 1.a and
L.b. The paired-sample t-tests showed a significant difference, #(17) =2.14, p=0.047, suggesting that the dissim-
ilarity in taking different strategies is related to discrepancy weight (excluding one outlier whose weights outside
of the range average + 30). The lower discrepancy weights in experiment 1.b points to the higher probability of
the common cause P in that experiment. Therefore, the participants preferred to integrate the information in the
visual-tactile-auditory experiment and tended to solve the conflict by calibration. In contrast, the discrepancy
weight is higher in the visual-auditory experiment (experiment 1.a), and therefore the probability of the common
cause is lower than in the visual-tactile-auditory experiment. As a result, the participants preferred to use the
selection strategy to decrease the overall error in the visual-auditory experiment.

Evidence for conscious adaptation in multisensory environment. Confidence reporting is a
metacognitive process which represents the cognition about one’s own judgments®. In multisensory perception,
it illustrates how much an individual is aware of his/her perceptual performance when coming across a multisen-
sory stimulus. The confidence ratings together with slopes of the psychometric functions provide a measure of the
participants’ awareness of their performance®~*. In order to investigate the degree of correspondence between
the self-reported confidence and the perceptual performance, we partitioned the confidence ratings into high
confidence and low confidence trials. The high confidence trials include all trials in which the reported confidence
level was equal to or greater than 3 and the low confidence trials consist of the trials with confidence level equal
to or less than 2. For multisensory sessions (experiments 1.a and 1.b), a 2 x 5 (high/low confidence level x five
reliability conditions) within-subjects ANOVA showed that there is a main effect of confidence level on the slope
of the fitted psychometric functions, F(1,18) =7.89, p=0.012, as well as a significant effect of reliability condition,
F(4,72) =13.63, p < 0.001. However, no significant interaction effect was observed, F(4,72) =1.93, p=0.115. The
same result was obtained for the unimodal experiment (experiment 1.c). The 2 x 5 within-subjects ANOVA again
showed a main effect of confidence level on the slope, F(1,18) =12.35, p=0.002, as well as a significant effect of
reliability condition on the slope, F(4,72) = 8.45, p < 0.001, but no significant interaction effect, F(4,72) =1.38,
p=0.249. The psychometric functions for each experiment were plotted separately for high and low confidence
trials (see Fig. 6). If participants were aware of their discrimination performance, better performance (a steeper
slope) should be observed in high confidence trials than in low confidence trials. This expectation was clearly
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Figure 6. The Performance of overall subjects in high confidence and low confidence groups: (A)- Unimodal,
high reliability visual. (B)- Unimodal, low reliability visual. (C)- Unimodal, high reliability tactile. (D)-
Unimodal, low reliability tactile. (E)- Unimodal, medium reliability auditory. (F)- Multimodal high reliability
visual-medium reliability auditory. (G)- Multimodal, low reliability visual-medium reliability auditory. (H)-
Multimodal, high reliability tactile-low reliability visual-medium reliability auditory. (I)- Multimodal, low
reliability tactile-high reliability visual-medium reliability auditory. (J)- Multimodal, low reliability tactile-low
reliability visual-medium reliability auditory. The error bars show the standard deviation for running the
bootstrap with 1000 iterations.

confirmed by the above analysis. The corresponding variation between the perceptual performance and the con-
fidence reporting is seen for both unimodal (Fig. 6A-E) and multimodal judgments (Fig. 6F-]).

Furthermore, the variation of the confidence and the PSE in experiment 1.b (Fig. 3C,D) favor conscious cali-
bration; that is, the changes of PSEs regarding the calibration in experiment 1.b were accompanied by a cor-
responding variation in confidence, thus providing evidence for conscious calibration. However, there was no
significant variation in the confidence of experiment 1.a, in which participants used the selection strategy.

Conclusion. The brain employs multiple perceptual processes such as integration of multimodal stimuli,
causal inference, and calibration in order to achieve a coherent perception of the complex and dynamic envi-
ronment. Even though many studies have investigated and modeled these perceptual processes in multisensory
environments, multisensory perception has never been studied when the reliability of the sensory modalities
varies within a single session. We investigated the multisensory perception of contradictory information in such
an environment of varying reliability. Particpiants were tested in a visual-auditory experiment, where they were
asked to discriminate the direction of conflicting visual-auditory stimuli with two different reliability condi-
tions. They also performed the same task in a visual-tactile-auditory experiment with three different reliability
conditions.

Our results demonstrate that participants initially started to integrate the information, but later they changed
their perception strategy in order to overcome the conflict. They chose the selection strategy in the visual-auditory
experiment and the calibration strategy in the visual-tactile-auditory experiment. To understand the rationale for
using different strategies, we modeled the perceptual mechanisms in an environment of varying reliability and
also provided an ideal observer model. Our model suggests that causal inference in an environment of varying
reliability depends not only on the amount of discrepancy but also on the reliability of stimuli across all reliability
conditions. Thus, the rationale for using different strategies is probably mediated by the difference in weights of
stimuli across reliability conditions. We also investigated the participants’ awareness during the experiment by
analyzing their confidence in their judgments. Their performance was better in high confidence trials than in the
low confidence trials, indicating that participants were aware of their performance levels during the experiment.
Moreover, participants did not change their confidence in Experiment 1.a, when they switched from integration
behavior to the selection behavior. However, they changed their confidence in Experiment 1.b in which they
calibrated their modalities.

In conclusion, the present study demonstrates that humans employ various strategies in a multimodal envi-
ronment of varying reliability to cope with inconsistent information. Modeling of the results obtained suggests
that it is optimal to utilize different strategies based on the amount of inconsistent sensory information and rela-
tive cue reliability. The results also indicate that humans engage consciously in these various perceptual strategies
in such an environment.
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Figure 7. Experimental setup. Participants received tactile stimuli through a vibrotactile belt around their
abdomen. The belt consists of 14 minatory vibration motors, which are fixed horizontally on the belt. Running
avibration motor in a specific location on the belt causes a tactile stimulus to a subject. They simultaneously
received auditory stimuli through a headphone and visual stimuli through a monitor.

Methods and Apparatus

Participants. 20 healthy male subjects (21.61 4 0.63 years old) participated in the experiment. The data of
one participant was excluded from data analysis because his PSE was outside average + 30. None of the partic-
ipants reported having any history of neurological disorders. They all reported normal or corrected to normal
vision, normal hearing, normal tactile sense, and no neurological problems.

All procedures and experimental protocols are approved by the ethical committee board of the University
of Tehran, Tehran, Iran. All methods were carried out in accordance with the approved guidelines. A written
informed consent was also obtained from all participants prior to data collection and they were compensated
10000 Rials per hour (approx. 3 USD) for their participation.

Stimuli and Materials. Participants were seated in an armchair in a sound-attenuated room in front of a
19" LCD screen with 60 Hz refresh rate, on which the visual stimuli were presented. The distance between partic-
ipants’ eyes and the screen was 50 cm, corresponding to approximately 40° visual angles.

Auditory stimuli were delivered to the participant through headphones (Sennheiser HD419). Tactile stim-
uli were delivered by a custom designed belt, which was tightened over the participant’s abdomen under the
bottom of the sternum. The belt, which is called vibrotactile belt, was designed in the Cognitive Robotics Lab at
University of Tehran, see Fig. 7.

Visual stimuli.  The visual stimulus was a random dot cloud made up of ten white and ten black dots against
a grey background (#7d7d7d). The diameter of each dot was approximately 0.4 degrees. The average position of
all dots typifies the position of the visual stimulus and the spread of the dots corresponds to the reliability of the
visual stimulus. The more wide-spread the dots, the lower the reliability of the stimulus. A standard deviation of
0.1 of the total screen size (4 degrees of the visual angle) was used to produce the high reliability visual stimuli
while a standard deviation of 0.4 of the screen size (16 degrees of the visual angle) was used for the low reliability
stimuli.

Auditory stimuli.  The auditory stimulus was a white noise sound played through stereo headphones. The
Head Related Transform Function (HRTF) simulated the position of the origin of the sound. The auditory stim-
ulus was generated by SLAB which is an open source real-time virtual acoustic environment rendering system
developed by the Spatial Auditory Displays Lab at NASA Ames Research Center. The intensity of the auditory
stimulus was approximately 70 db (SPL). The reliability of the auditory stimuli did not change in the experiment.

Tactile stimuli.  The vibrotactile belt consists of 14 vibration motors which are fixed horizontally on a cotton
canvas tape. Running a vibration motor in a specific location on the belt causes a tactile stimulus to the subject.
The reliability of the tactile stimuli can be adjusted by a separated PWM (Pulse Width Modulation) level for
each vibration motor. The vibration motors are controlled by a microcontroller with a 32 MHz clock. According
to a pilot test, the values 100%, and 60% were used as the PWM levels to produce high reliable and low reliable
vibrations.

Experimental Procedure. The experiment included two multisensory and one unimodal spatial perception
tasks which consisted of delivering visual, auditory and tactile stimuli to the participants. Each of these sections
consisted of trials which only differed in the reliability of the information provided to the stimulated modalities.
For example, in one trial, a high reliability visual stimulus may have accompanied a medium reliability auditory
stimulus, while in the next trial a low reliability visual stimulus may have accompanied a medium reliability
auditory stimulus. This setup, therefore, provided an opportunity to investigate the mechanisms underlying mul-
tisensory integration under more realistic conditions than previous setups since it provides an environment of
varying reliability.
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Figure 8. Time course of an exemplary trial: Subjects were presented a fixation screen for 800 ms, and then
the first multimodal stimulus for 100 ms. Afterwards, another fixation screen was presented for 600 ms, and
the second multimodal stimulus with a cue-conflict (spatial discrepancy of —4° visual angle) was presented for
100 ms. Subjects were asked to report whether the second stimulus was to the left or right of the first one. They
also reported their confidence on a scale of 1 (low confidence) to 4 (high confidence).

In multimodal trials, the stimuli from the different modalities were presented simultaneously. In each trial,
first a fixation cross was presented for 800 ms. Afterward, two consecutive stimuli were presented, each for 100 ms,
separated by an interval of 600 ms, in which again a fixation cross was presented (Fig. 8). After the presentation of
the stimuli, the subject was asked if the second stimulus (i.e., the comparison stimulus) was perceived on the left
or the right of the first stimulus (i.e., the standard stimulus). The standard stimulus was always presented at the
central position, and the location of the comparison stimulus varied between 11 spatial points evenly distributed
around fixation along the horizontal axis. In multisensory trials, the judgment should be based on a combined
impression from all stimulated senses. After judging the relative position, the participant was asked to report their
confidence about the judgment, on a scale of 1 (low confidence) to 4 (high confidence), by pressing the corre-
sponding number on the numeric keypad. The inter-trial interval was 800 ms for all trials.

Experimentl.a. Experiment la was a visual-auditory spatial perception session. In each trial of this section,
the first visual stimulus was always presented at the fixation cross. The second visual stimulus could be presented
at 11 different stimulus locations distributed along the horizontal axis on the screen (the distance between fixa-
tion and the most left/rightwards presented stimulus was 10° visual angle), with a higher density at the middle of
the range, where spatial discrimination should be harder. Each visual stimulus was accompanied by an auditory
stimulus. There was no cue conflict between vision and audition for the first stimulus pair (standard stimulus).
For the second stimulus pair (comparison stimulus), the auditory stimulus was always presented at a cue-conflict
of —4 ° angle from the visual stimulus. There were two sets of trials with two different reliability conditions: In
the high-reliability set, visual stimuli were presented at a high reliability and auditory stimuli at a medium reli-
ability (HV-MA), and in the low-reliability set, visual stimuli were presented with low reliability and auditory
with medium reliability (LV-MA). Inside each set, there were 115 trials, covering a symmetric range of 11 spatial
points for spatial locations. These points were adjusted to be denser in the middle of the range, where differenti-
ating between the first and the second stimulus in a pair becomes more challenging (15 trials for 5 midpoints). In
order to avoid any bias resulting from the order of the trials, both trial sets were randomly mixed.

Experiment1.b. The second section was a visual-tactile-auditory spatial perception session, which was com-
pleted right after the first section with no break. As in the first section, it consisted of several sets of trials, with
varying reliability of the visual and/or tactile stimulation. Auditory stimuli were always presented with medium
reliability. For the standard stimulus, the visual, tactile, and auditory stimuli were presented concurrently at the
central position. For the comparison stimulus, auditory stimuli were presented at the same spatial position as
the visual stimuli, while tactile stimuli were presented at a conflict angle of —4° degrees visual angle from the
audiovisual ones. Specifically, three different stimulus sets were presented: LV-MA-HT: visual (low reliability),
auditory (medium reliability), tactile (high reliability). HV-MA-LT: visual (high reliability), auditory (medium
reliability), and tactile (low reliability). LV-MA-LT: visual (low reliability), auditory (medium reliability), tactile
(low reliability). Similar to the first section, there were 115 trials in each trial set, covering a symmetric range of
11 spatial locations. All three trial sets were randomly mixed. After the second section, the subject had a break
for about 5 minutes.

Experiment 1.c. The third section consisted of 575 unimodal trials, comprising five sets of 115 trials each.
The stimuli specification in each set, as well as the order of the presentation, was as follows: 1°*! set: auditory
(medium reliability), 2" set: tactile (high reliability), 3" set: tactile (low reliability), 4" set: visual (high reliabil-
ity), 5" set: visual (low reliability). The 2" and the 3¢ set were presented together and in random order, just as
the 4" and the 5% set.
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Practice trials. Before the experiment, all participants performed a number of practice trials with instruc-
tions provided by an experimenter. The practice section consisted of 50 trials, but it was terminated as soon as the
participant felt familiarized with the task. The practice section included only visual-auditory trials.
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In conflict tasks, like the Simon task, it is usually investigated how task-irrelevant
information affects the processing of task-relevant information. In the present
experiments, we extended the Simon task to a multimodal setup, in which task-irrelevant
information emerged from two sensory modalities. Specifically, in Experiment 1,
participants responded to the identity of letters presented at a left, right, or central
position with a left- or right-hand response. Additional tactile stimulation occurred on
a left, right, or central position on the horizontal body plane. Response congruency
of the visual and tactile stimulation was orthogonally varied. In Experiment 2, the
tactile stimulation was replaced by auditory stimulation. In both experiments, the visual
task-irrelevant information produced congruency effects such that responses were
slower and less accurate in incongruent than incongruent conditions. Furthermore,
in Experiment 1, such congruency effects, albeit smaller, were also observed for the
tactile task-irrelevant stimulation. In Experiment 2, the auditory task-irrelevant stimulation
produced the smallest effects. Specifically, the longest reaction times emerged in the
neutral condition, while incongruent and congruent conditions differed only numerically.
This suggests that in the co-presence of multiple task-irrelevant information sources,
location processing is more strongly determined by visual and tactile spatial information
than by auditory spatial information. An extended version of the Diffusion Model for
Conflict Tasks (DMC) was fitted to the results of both experiments. This Multimodal
Diffusion Model for Conflict Tasks (MDMC), and a model variant involving faster
processing in the neutral visual condition (FN-MDMC), provided reasonable fits for the
observed data. These model fits support the notion that multimodal task-irrelevant
information superimposes across sensory modalities and automatically affects the
controlled processing of task-relevant information.

Keywords: conflict processing, simon task, multimodal congruency effect, diffusion model for conflict tasks
(DMC), reaction time, multisensory processing

INTRODUCTION

People sometimes need to suppress task-irrelevant information to minimize interference with
processing of task-relevant information. Standard examples for the empirical investigation of such
situations are conflict tasks, such as the Stroop task, the Eriksen-Flanker task, and the Simon task
(Stroop, 1935; Simon and Wolf, 1963; Eriksen and Eriksen, 1974). For instance, in the Simon task
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participants are instructed to respond to a non-spatial stimulus
attribute (e.g., color, form, letter, or pitch) with a spatially defined
response (e.g., a key press of the left or the right hand). Although
the location of the stimulus presentation is task-irrelevant, it
influences task performance. Specifically, responses are faster and
more accurate when both the stimulus and the response are
on the same spatial side (congruent condition) rather than on
different sides (incongruent condition) (Simon and Wolf, 1963).
Such congruency effects have been reported not only for the
visual but also for other modalities (Simon and Rudell, 1967;
Simon et al., 1970; Cohen and Martin, 1975; McClain, 1983;
Jerger et al., 1988; Medina et al., 2014; Salzer et al., 2014). Thus,
the effects of task-irrelevant information are not limited to a
single modality but rather reveal a general phenomenon that
presumably emerges from an amodal processing mechanism.

It has been suggested that this mechanism involves two
separate processes acting simultaneously on stimulus input.
More specifically, it is assumed that task-relevant information
is processed by a controlled process, whereas task-irrelevant
information is mediated by an automatic process. Moreover,
these two processes are often assumed to operate in parallel
and in independent pathways (Logan, 1980; Coles et al., 1985;
Cohen et al., 1990; Hommel, 1993; Ridderinkhof, 2002). A recent
quantitative account of this processing architecture is provided
by an elaborated diffusion process model, called the Diffusion
Model for Conflict Tasks (Ulrich et al., 2015). DMC is based
on standard diffusion models according to which a decision-
making process accumulates noisy task-relevant information
until one of two decision boundaries is hit and the corresponding
response is selected (Stone, 1960; Ratcliff, 1978; Ratcliff and
Smith, 2004). This accumulation process is typically modeled as a
standard Wiener diffusion process (Ratcliff, 1978). DMC extends
this framework by adding a second process to incorporate
processing of task-irrelevant information, which leads to a
short-lived activation. This automatically triggered activation
superimposes the activation from the controlled process, which
operates on the task-relevant information. The superimposed
activation from both processes triggers either the correct or
the incorrect response. DMC can predict various phenomena
associated with common conflict tasks, including reaction time
(RT) patterns, the shape of conditional accuracy functions, and
the shape of delta functions (Ulrich et al, 2015; Ellinghaus
et al.,, 2018; White et al., 2018). Furthermore, DMC has been
successfully linked to neurophysiological findings (Servant et al.,
2016).

DMC’s core assumption of independently operating
controlled and automatic processes receives particular support
from studies demonstrating that task-relevant and task-
irrelevant information needs not to stem from the same stimulus
source. Specifically, task-irrelevant information may impede
performance even if it stems from a different modality than
the task-relevant information. For example, task-irrelevant
congruent auditory information decreases RT to visual stimuli
compared to task-irrelevant incongruent auditory information
(Simon and Craft, 1970; Donohue et al., 2013; Schupak et al.,
2015). Similar cross-modal conflict effects have been reported
for visual-tactile conflict tasks (Kennett et al., 2001; Spence
et al,, 2004; Yue et al., 2009; Wesslein et al., 2014; Poole et al.,
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2015). These results strengthen the notion that automatic
and controlled processes act independently. Nevertheless,
these results are limited to single sources of task-irrelevant
information. Hence the question is, whether DMC accounts for
the processing of multiple sources of task-irrelevant information
as well.

The goal of the present study was thus to examine whether
DMC can be extended to conflict tasks with two task-
irrelevant information sources. Within DMC, it seems most
reasonable that these conflicting sources are processed by two
independent automatic processes, with each process generating
separate activation and superimposing the controlled process. By
orthogonally manipulating the compatibility of two independent
task-irrelevant sources, it is possible to put this assumed
superimposition within DMC to a comprehensive test.

To this end, we conducted two Simon task experiments
with two rather than one task-irrelevant information sources
(i.e., task-irrelevant location information was provided by two
modalities). The first (second) experiment was a typical visual
Simon task with additional task-irrelevant tactile (auditory)
information. In both experiments, the spatial congruency
of these task-irrelevant information sources (i.e., visual and
tactile/auditory stimulus location) and the response side varied
orthogonally. Specifically, stimulus location in both modalities
could be congruent, neutral, or incongruent with the side of the
correct response. DMC’s architecture was extended to address
the contribution of these two independent sources of automatic
activation and the extended DMC was fitted to the experimental
results of the two experiments. These experiments emulated the
Simon task of the original DMC study (Ulrich et al., 2015) in
order to facilitate the comparison of results between the present
experiments and this former study.

EXPERIMENT 1

This experiment examines whether task-irrelevant tactile
stimulation influences speeded decisions in a visual Simon task.
The spatial position of the tactile stimulation was congruent,
incongruent, or neutral with the required response to a letter
appearing to the left, to the right, or at the central position of the
fixation point.

Method

Participants

Thirty participants (26 women and 4 men) volunteered in
this experiment (23.5 & 3.5 years of age). They all reported
normal or corrected-to-normal vision, normal tactile sense, and
no neurological problems. All procedures and experimental
protocols are approved by the ethical committee board of the
University of Tehran and all methods were carried out in
accordance with the approved guidelines. A written informed
consent was also obtained from all participants prior to data
collection and they either received 8 € per hour or course credit
for their participation.

Stimuli and Apparatus
Participants were seated in a sound-attenuated room in front of
a 19” CRT screen on which the visual stimuli were presented
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(see Figure 1A). The distance between participants’ eyes and the
monitor screen was about 50 cm. Like in Ulrich et al. (2015),
we employed letters as imperative stimuli. Specifically, these
were the letter “H” and “S” (Font: Arial; letter size: 48 pt, ~1.5°
visual angle) which were presented in white color against a
black background. One of these two letters appeared either to
the left or to the right (8° visual angle) from of the center of
the screen, or at the center. The tactile stimulus came from
a custom canvas belt consisting of six vibration motors. Two
motors were placed on the left, two at the center, and two
on the right of the belt. Running vibration motors on the
left/center/right side of the belt causes a tactile stimulus to
the left/center/right side along the participant’s horizontal body
plane. Since participants varied in waist size, we designed two
belts: a medium size belt and a large size belt. In the medium
(large) size belt, the horizontal distance of motors was 16.5 (19.0)
cm and the vertical distance was 1.3 (1.5) cm. The vibration
motors were controlled by a XMEGA microcontroller with a
32 MHz clock, the same device as used in a previous study
(Mahani et al., 2017). Stimulus durations of both visual and
tactile stimuli were 200 ms. Oscilloscopic measurements were
conducted to ensure simultaneity of the visual stimulation and

the maximum vibration amplitude. Both the experiment and the
microcontroller program were written in C++ language. Left
and right responses were recorded with the “A” and “L” keys,
respectively.

Procedure

Each trial of Experiment 1 started with the presentation of
a fixation cross for 500 ms at the center of the screen (see
Figure 1B). Then, the visual stimulus and the tactile stimulus
were presented simultaneously for 200 ms. In both modalities,
and independent of each other, stimuli were presented either
on the left, on the right, or at the central position. For half of
the participants, the stimulus “H” was associated with the left
response key and “S” with the right response key. A reverse
setting was used for the remaining participants. Participants were
asked to ignore the location of the stimulation and to respond
to the letter identity quickly within 1,500 ms, but also to avoid
errors as much as possible. They received visual feedback for
1,000 ms when their RT was longer than 1,500 ms, or shorter than
150 ms, or if their response was wrong. The inter-trial delay was
1,000 ms.

feedback
Time

FIGURE 1 | (A) Experimental setup and vibrotactile belt. Running two vibration motors on the left/center/right side of the belt causes a tactile stimulus to the
left/center/right side of the participant’s waist. (B) Time course of a trial. A left/center/right visual stimulus was presented along with a left/center/right tactile stimulus.
Participants were asked to identify the visual stimulus (H or S) with a left/right key press and to ignore the location of the visual stimulus.

N

In case of wrong,
& delayed or early
‘ response
Pressing the A/L
(left/right) key
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Design

The combination of three visual positions (left, center, and
right), three tactile positions (left, center, and right), and two
letters (“H” and “S”) resulted in 18 trial types. Each trial type
was repeated five times per block, and trials were presented
in random order. Overall, participants completed six blocks.
Note that the side of visual and tactile stimulation could be
either congruent (same side), incongruent (opposite side), or
neutral (central position) to the side of the correct response.
Thus, from the orthogonal combination of the two within-
subject factors Visual Congruency and Tactile Congruency,
nine different conditions emerged: (1) Congruent visual and
congruent tactile stimulation CVCT, (2) congruent visual and
neutral tactile CVNT, (3) congruent visual and incongruent
tactile CVIT, (4) neutral visual and congruent tactile NVCT, (5)
neutral visual and neutral tactile NVNT, (6) neutral visual and
incongruent tactile NVIT, (7) incongruent visual and congruent
tactile IVCT, (8) incongruent visual and neutral tactile IVNT,
and (9) incongruent visual and incongruent tactile IVIT. Each
participant received each of the nine congruency conditions 60
times.

Results

Trials with RTs > 1,200 ms or < 150 ms were discarded (0.68%)
from data analysis. However, statistical results were virtually
identical when we kept those trials. Separate 3 x 3 within-subject
ANOVAs with factors visual congruency (congruent, neutral, and
incongruent) and tactile congruency (congruent, neutral, and
incongruent) were performed on RT and on response errors.
Figure 2 depicts mean RT and the percentage of response errors
as a function of visual and tactile congruency.

Reaction Time

RT was significantly affected by visual congruency,
F(y, 58) = 62.74, p < 0.001, 171% = 0.68, and tactile congruency,
Fp, 58 = 13.94, p < 0.001, nf, =033 (r;f, indicates the partial
eta-squared). However, the interaction of the two factors was not
significant, Fys5) = 0.95, p = 0.43, ’71% = 0.03. Post-hoc Tukey
tests showed that RTs were longer in the visual incongruent than
in the visual neutral (p < 0.001), and in the visual congruent
(p < 0.001) conditions. No significant difference was observed
between the visual neutral and visual congruent condition
(p = 0.20). Post-hoc Tukey tests for the tactile congruency
conditions showed that RTs were shorter in the tactile congruent
than in the tactile neutral (p < 0.001), and in the tactile
incongruent (p < 0.001) conditions. The difference between
the tactile incongruent and tactile neutral condition was not
significant (p = 0.98).

Response Error

There were also significant main effects of visual congruency
F58) = 29.02, p < 0.001, '7}2; = 0.50, and tactile congruency,
F(y,58)=7.93,p =0.001, r;f, = 0.22, on mean response error. The
interaction of visual and tactile congruency was not significant,
Fs58=0.39, p =081, n; = 0.01. Post-hoc Tukey tests on visual
congruency showed that the percentage of error was higher in the
visual incongruent than in the visual neutral (p < 0.001), and in
the visual congruent (p < 0.001) conditions. However, there was
no difference between the visual neutral and the visual congruent
condition (p = 0.36). The same Tukey test on tactile congruency
revealed similar results; the percentage of errors was higher in
the tactile incongruent than in the tactile neutral (p = 0.016), and
in the tactile congruent (p = 0.002) conditions. The difference
between the tactile congruent and tactile neutral conditions was
not significant (p = 0.90).

440
=== Tactile Congruent
=== Tactile Neutral

430} =Tactile InCongruent

S
N
o

Reaction Time (ms)
&
o

390

380
Visual Congruent Visual Neutral

Visual Congruency Condition
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FIGURE 2 | Mean reaction time (left figure) and mean percentage of response errors (right figure) in Experiment 1 as a function of visual and tactile congruency. Error

bars were computed according to Morey’s method (Morey, 2008).
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Distributional Analysis of Reaction Time

RT percentiles (10, 30, 50, 70, 90%) for each congruency
condition and for each participant were estimated. Percentiles
were analyzed by a three-way ANOVA with factors percentile,
visual congruency, and tactile congruency. As one expects, the
main effect of percentile was significant, Fy;16) = 228.74,
p < 0.001, '71% = 0.89. There was also a significant main effect of
tactile congruency, F(; 5y = 12.82 p < 0.001, 17; =10.31,and visual
congruency, F(, 53y = 64.91, p < 0.001, 7713 = 0.69. The three-way
visual congruency x tactile congruency x percentile interaction
was significant, F(y6, 464) = 1.76, p = 0.034, r]}f = 0.06. Figure 3
illustrates the cumulative distribution functions (CDFs) for all
congruency conditions, as well as delta functions for the visual
and tactile modalities. The CDF of each of the visual congruency
conditions was averaged over all tactile congruency conditions
(e.g., the visual congruent CDF is the average of the CVCT,
CVNT, and CVIT conditions). The same approach was used to
calculate CDFs for the tactile congruency conditions. Delta (A)

functions show the percentile difference between the congruent
and the incongruent condition for each modality.

Analysis of Conditional Accuracy Functions
Conditional accuracy functions (CAFs) depict response accuracy
given response speed (Figure 8). As in previous investigations on
conflict tasks, we have analyzed CAFs for each of the congruency
conditions. All RTs of a given congruency condition were sorted
from fastest to slowest. Thereafter, the RT distribution was split
into five equal bins (0-20, 20-40, 40-60, 60-80, 80-100%) and
the percentage of correct responses was calculated for each bin.
A three-way ANOVA with factors bin, visual congruency, and
tactile congruency was used to analyze the CAFs. This analysis
revealed a main effect of visual congruency, F, 55y = 12.30,
p < 0.001, 17‘2, = 0.30, and a main effect of tactile congruency,
F(3, 58) = 4.00, p = 0.024, nﬁ = 0.12. However, the effect of bin on
CAFs was not significant, F(y 116) = 1.88, p = 0.12, r;; = 0.06.
The three-way bin x visual congruency x tactile congruency
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FIGURE 3 | Cumulative distribution functions (CDFs) and delta (A) functions for percentiles (5, 10, 15, ..., 95%) in Experiment 1. Error bars show 95% confidence
intervals and are calculated according to Morey (2008). Each of the visual (tactile) CDFs was calculated as the average over all tactile (visual) congruency conditions.
For example, the visual congruent CDF is the average of CVCT, CVNT, and CVIT conditions. Delta functions show the difference between the congruent and
incongruent CDFs as a function of response time.
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interaction, F(j, 464) = 0.75, p = 0.73, 17}2, = 0.03, and all of the
two-way interactions were not significant (all Fs < 0.85 and all ps
> 0.56).

Discussion

We extended the Simon task to study the effect of simultaneous
task-irrelevant tactile and task-irrelevant visual information on
speeded visual decisions. The results show that both visual
and tactile congruency significantly affected the task-relevant
processing of letter identity. In general, visual and tactile
incongruent stimulus locations produced longer RTs and more
response errors than visual and tactile congruent stimulus
locations, reflecting the typically expected pattern of results in
the Simon task. In addition, post-hoc analyses showed that the
effects regarding the neutral condition were not the same for the
visual and tactile modalities. There was no significant difference
between the visual congruent and the visual neutral condition
in terms of both RT and response errors. Thus, only the visual
incongruent information significantly increased RT and response
errors. In contrast, there was no meaningful difference between
the tactile incongruent and tactile neutral information in terms of
RT while they had significantly different effects on the response
errors. That is, for the tactile modality, the neutral condition was
the same as the incongruent condition in terms of RT while it was
the same as the congruent condition in terms of response errors.

EXPERIMENT 2

This experiment assesses the effect of task-irrelevant auditory
stimulation instead of task-irrelevant tactile stimulation on letter
processing performance in the visual Simon task. Task-irrelevant
tones were presented to the left or to the right ear, or to
both ears simultaneously. Otherwise the experimental setup was
identical to the one in Experiment 1. Thus, this experiment
examines whether similar multimodal effects would emerge as
in Experiment 1, when the task-irrelevant tactile information is
replaced by task-irrelevant auditory information.

Method

Participants

Thirty individuals (23.8 = 3.0 years of age, 9 men and 21 women)
participated in this experiment. They all reported normal or
corrected-to-normal vision, and no neurological problems. All
procedures and experimental protocols are approved by the
ethical committee board of the University of Tehran and all
methods were carried out in accordance with the approved
guidelines. A written informed consent was also obtained from
all participants prior to data collection. They either received 8 €
per hour or course credit for their participation.

Apparatus and Procedure

In the second experiment, tactile stimuli were replaced by the
auditory stimuli. The auditory stimuli came through Sony MDR-
XD200 stereo headphones. The leftward (rightward) auditory
stimulus was a mono sound provided to the left (right) ear and
the central (neutral) stimulus was a stereo sound provided to
both ears. The intensity of the mono and stereo stimuli were
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corrected using the binaural correction method (Epstein and
Florentine, 2009) where the intensity of the mono stimulus was
75 dB (SPL) and the intensity of the stereo stimulus was 63 dB
(SPL). The source of the auditory stimulus was a square wave
with a frequency 440 Hz and a duration of 200 ms, that is, the
same duration as the visual stimulus. The onsets of the visual and
the auditory stimulus were synchronous. All other experimental
details were identical to those of Experiment 1.

Results

As in Experiment 1, trials with RTs > 1,200ms or < 150 ms
were discarded (0.44%) from the data analysis. However,
statistical results were virtually identical when these trials were
included in the statistical analysis. Figure 4 shows mean RT and
percentage of response errors as a function of visual and auditory
congruency.

Reaction Time

RTs were again analyzed using a within-subject ANOVA with
factors visual congruency (congruent, neutral, and incongruent)
and auditory congruency (congruent, neutral, and incongruent).
As before, there was a significant main effect on RT of visual
congruency, Fp 53 = 80.76, p < 0.001, n; = 0.74, as well as
of auditory congruency, F, s = 4.19, p = 0.019, n; = 0.13.
The interaction of visual x auditory congruency on RT was not
significant, F(y, 59 = 0.25, p = 0.90, n; = 0.01. A post-hoc
Tukey test on auditory congruency illustrated that the difference
between auditory neutral and auditory congruent (p = 0.021)
was significant. However, the difference between the auditory
incongruent and auditory congruent (p = 0.19), as well as
the auditory incongruent and auditory neutral (p = 0.53) was
not significant. Tukey tests also showed that the difference
between visual incongruent and visual congruent (p < 0.001),
as well as visual incongruent and visual neutral (p < 0.001)
was significant. Nevertheless, and as in Experiment 1, no
significant difference between visual neutral and visual congruent
conditions (p = 0.15) was observed.

Response Error

Response errors were analyzed with the same ANOVA design as
for RT. There was a significant main effect of visual congruency
on response errors, F(, 53y = 26.72, p < 0.001, r;lz, = 0.48, while
the effect of auditory congruency, F(, 55y = 0.89, p = 0.41,
17; = 0.03, and the interaction of visual x auditory congruency,
F 58y = 1.69, p = 0.15, 11; = 0.06, were not significant.
Post-hoc Tukey tests on visual congruency illustrated significant
differences between the visual incongruent and visual neutral
(p < 0.001), as well as the visual incongruent and visual
congruent (p < 0.001) conditions. No difference in terms of
response errors was observed between visual neutral and visual
congruent (p = 0.18).

Distributional Analysis of Reaction Time

RT percentiles were estimated and analyzed as in Experiment
1 by a three-way ANOVA with factors percentile, visual
congruency, and auditory congruency. The main effect of
percentile, Fiy 116y = 292.56, p < 0.001, 7112, = 0.91, the effect
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of auditory congruency, F(, s5) = 5.48, p = 0.007, ry; = 0.16,
and the effect of visual congruency, F(, 53y = 90.36, p < 0.001,
771% = 0.76, were all significant. The three-way visual congruency
x auditory congruency x percentile interaction, F(j¢, 464) = 0.38,
p= 099, 77/% = 0.01, and all of the two-way interactions were
not significant. Figure 5 shows the CDFs for congruent, neutral,
and incongruent conditions for both the visual and auditory
modality. It also illustrates how the delta function decreases with
an increase of RT.

Analysis of Conditional Accuracy Functions

CAFs were calculated similarly to the first experiment. A three-
way ANOVA with factors bin, visual congruency, and auditory
congruency showed a significant effect of visual congruency,
F(y,58) = 8.23, p = 0.001, 7712, = 0.22. In contrast, the effect of
auditory congruency, F, s = 0.54, p = 0.59, 77; = 0.02, and
bins, F4, 116) = 0.48, p = 0.75, 17[2, = 0.02, were not significant.
The visual congruency x auditory congruency interaction was
signiﬁcant, F(“lﬁ) = 2.51, p = 0.046, n; = 0.08. However,
the three-way bin x visual congruency x tactile congruency
interaction, F(i4, 464y = 1.06, p = 0.40, nf, = 0.04, and all other
two-way interactions were not significant.

Discussion

The second experiment investigated how simultaneous task-
irrelevant visual and task-irrelevant auditory information affects
visual decisions. Exactly as in Experiment 1, task-irrelevant
visual information evoked pronounced congruency effects on RT
and response errors. However, the effects of the task-irrelevant
auditory information were less pronounced than the effects
of tactile information in Experiment 1. Although there was a
significant effect of auditory congruency on RT, further analysis
showed that this effect was due to especially slow responses in
the neutral compared to the congruent condition. No significant
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difference between the congruent and the incongruent auditory
condition was observed. The results regarding response errors
indicate that task-irrelevant auditory information did virtually
not affect the accuracy of the visual decisions.

Taken  together, task-irrelevant visual information
significantly affected RT and response errors of the visual
decisions, which is in line with the typical Simon effect and
the results of the first experiment. The lack of congruency
effect of the task-irrelevant auditory information presumably
suggests that the influence of auditory spatial information on
visual information processing is rather limited in the presence
of visual spatial information. This is in line with many studies
suggesting that the visual modality dominates the auditory one
in processing spatial information (Howard and Templeton, 1966;
Welch and Warren, 1980; Bertelson and Radeau, 1981; Slutsky
and Recanzone, 2001).

Modeling
Similar to the previous models (Luce, 1986; Ulrich et al., 2015),
total RT is assumed to be the sum of two parts (RT = D+R),
that is, the duration of the decision process (D), and the duration
of residual processes (R), which represent the duration of all
processes besides the decision process. It is also assumed that
the congruency of the stimuli only affects the duration of D
and not of R. Within DMC, the decision process is modeled as
a standard Wiener diffusion process. Specifically, the state X(t)
of the decision process at time is ¢ regarded as a superimposed
Wiener process, that is, X(t) = Xc(t) + X,(t), where X.(t)
denotes a controlled process and X,(t) an automatic process. The
superimposed process accumulates until it hits either the upper
(correct) decision boundary (b > 0) or the lower (incorrect)
decision boundary (-b).

According to the original version of DMC, the controlled
process can be described by the following stochastic difference
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equation
Xe(t+AD) = Xe () + pe(®) - At+ W () -0 VAL (1)

where X.(f) denotes the state of the controlled process at time t.
W, (t)is the standard Wiener diffusion process (mean = 0, and
variance = 1), o, indicates the diffusion constant, and . (f) is
the time-independent drift rate of the controlled process, that is,
fe () = . Likewise, the automatic process is given by

Xo(t+AD = Xo () 4+ pa () At+ Wa(t)-0a-VAL (2)

where W, (t) is a Wiener diffusion process, with diffusion
constant o,. The drift rate of the automatic process 114(t) is
time-dependent.

Here we extend DMC in order to fit the data from the
multimodal Simon task studied in Experiments 1 and 2. In the
multimodal DMC (MDMC), two (or more) automatic processes
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superimpose on the controlled process to form the decision
process: X(t) = X (t) + Xa1 (1) + Xaz (t). Xc(t) denotes again
a standard Wiener diffusion process with the constant time-
independent drift 1. (f) = pc. The time course of an automatic
process is modeled as a pulse-like rescaled Gamma distribution,
X, (t) , with shape parameter a = 2 and the free scale parameter
7. The parameter A corresponds to the maximum of this pulse-
like function. Thus, the time course of the expected mean of the
automatic process is given by (cf. Ulrich et al., 2015)

t-e

a—1
EXa)]=A-e"7- [m] (3)

and thus the time-dependent drift rate p, (t) of the automatic
process is given by the first derivative of E[X, (¢)] with respect to
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time,

t t-e “lrg—1 1

ua(t)—A-e“[(a_l).r] [ ; T] (4)
The parameters A and 7 are estimated for each of the two
automatic processes. Figure 6 exemplifies the architecture of
MDMC. The expected decision process E[X (t)] (blue line) is
modeled as the sum of the expected controlled process E[X, (t)]
(red line) and two expected automatic processes E [X, (1)]
and E [Xg (1)] (black and green lines). A congruent automatic
process is represented by a positive (ie., A > 0) pulse-like
function (e.g., Figure 6A: both of the automatic processes are
congruent), and an incongruent automatic process is represented
by a negative (i.e., A < 0) pulse-like function (e.g., Figure 6D:
both of the automatic processes are incongruent). It is assumed
that the neutral automatic process does not affect the decision
process (Figure 6B: black line). The trial-to-trial variability of
the starting point is modeled by random samples from a

beta distribution, with the free parameter «, supported on the
bounded interval [-b, b], where b is the decision boundary.

We fitted two variants of MDMC to the data, one as is
described so far, and one with a faster processing of neutral visual
information. Previous studies mentioned that a visual stimulus
at the center of field of view (FOV) benefits from faster retinal
processing in contrast to a stimulus presented to the left or to the
right of the center (fixation point) (Osaka, 1976). For example,
presenting a stimulus by 5-10° degree nasal or temporal from
the fovea typically increases RT by 10-20 ms (Rains, 1963). This
phenomenon motivates an extension of MDMC with a separate
mean residual process time for neutral visual information. This
version of the MDMC model is called FN-MDMC (Faster Neutral
visual-Multimodal DMC).

Fitting Criteria

The fitting procedure was similar to the method described by
Hiibner (2014) and also Servant et al. (2016). The MDMC was
fitted to the CAFs and the CDFs for each of the nine congruency
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FIGURE 6 | Multimodal DMC. The decision process (blue line) is a superimposition of a controlled process (red line) and two automatic processes (green and black
lines). (A) Both of the automatic processes are congruent. (B) The first automatic process is congruent and the second one is neutral. (C) The first automatic process
is congruent and the second one is incongruent. (D) Both of the automatic processes are incongruent.
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conditions. There were five CAF bins (0-20, 20-40, 40-60, 60—
80, 80-100%), and five CDF quantiles (0.1, 0.3, 0.5, 0.7, 0.9)
for each given congruency condition. MDMC predictions were
generated using Monte Carlo simulations (Metropolis and Ulam,
1949) with a step size of At = 1 ms, and a constant diffusion
constant of 0 = 4 ms for the superimposed process, similar to
Ulrich et al. (2015). The following function was employed to fit

the model to the data
pos (22)

=2y Ny,

where p;; and m; denote the observed and the predicted
proportion of responses, respectively. The index c indicates the
congruency condition, and the summation over the i includes
both CAFs (five bins) and CDFs (five bins). N, is the number
of trials per congruency condition. Fifty thousand trials were
simulated for each minimization call in each of the congruency
conditions. The G? criterion was minimized using the MATLAB
implementation of the SIMPLEX (Lagarias et al., 1998) method.
Since SIMPLEX is sensitive to the choice of initial values, the
fitting procedure was repeated with different sets of initial values
in order to ensure the stability of the resulting estimates.!

(5)

Fitting MDMC

MDMC was fitted to the aggregated experimental data over
all participants using the aforementioned criteria. We fitted
the model to the averaged data of all participants because the
data of individual participants are typically noisy and may be
prone to outlier RTs. Especially if trial numbers are rather
small, it is difficult to identify the best fitting model parameters
for individual participant data. Even though a previous study
showed a virtually negligible difference between fitting DMC to
individual data and to average group data (Servant et al., 2016), it
should be highlighted that fitting data to group averages neglects
interindividual variability and thus may result in distortions of
parameter estimates (e.g., Estes and Maddox, 2005; Cohen et al.,
2008). Nevertheless, the results of model fits to individual data
are available in the Supplementary Material. Moreover, raw data
and the complete Matlab code for model fitting are available
online via the Open Science Framework (Mahani, 2018).

Figures 7, 8 show the results for both CDFs and CAFs in
all congruency conditions of both experiments. Figures 9, 10
also depict predicted delta functions of the FN-MDMC model
for both experiments. In general, MDMC provides a reasonable
fit of the experimental data. However, FN-MDMC fits slightly
better than MDMC. Observing more errors for faster RTs is a
common pattern in Simon tasks and this is especially bold in
the incongruent visual conditions of the present experiments.
MDMC captures this pattern relatively well, with only a few
small deviations (cf. Figure 8). Table 1 contains the estimated
parameters for both the visual-tactile and the visual-auditory
task, and for both variants of the model. This table also provides
the average of G for 1,000 simulations given the best parameters

To validate this parameter estimation procedure MDMC data were simulated
with the estimated parameters reported in Table 1. Then, the recovery of the
original parameters from these simulated data was assessed.
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for each model. Similar to Servant et al. (2016), we compared
MDMC and FN-MDMC by a BIC statistic that penalizes models
based on the G* and number of free parameters f:

BIC = G? +flogZ:'= 11 (6)
We compared the fits of MDMC and FN-MDMC using
the paired-sample permutation test across 1,000 simulated
G? and BIC values with 50,000 permutations. In the visual-
tactile experiment, both the G?> and BIC of FN-MDMC were
significantly lower than G> and BIC of MDMC (ps < 0.001). The
same result was obtained for the visual-auditory experiment, that
is, G* and BIC of FN-MDMC were also significantly lower than
G?* and BIC of MDMC (ps < 0.001). Table 1 shows the average of
simulated G> and BIC values of the two experiments.

Note that ur and og represent the mean and standard
deviation of the residual process time, respectively. However,
the mean of the residual process time for the neutral visual
condition is given by gy in the FN-MDMC model. « and b
correspond to the shape and decision boundary of the starting
point distribution, respectively. ¢ is the drift rate of the
controlled process. A and 7 are the parameters of the automatic
process for each modality (see Equation 3). The only difference
between MDMC and FN-MDMC is the addition of the parameter
urn in the latter case to enable a direct assessment of the effect
of pry on the goodness of fit. In both FN-MDMC models
the shorter mean residual process time for the visual neutral
condition (j4gy) compared to the mean residual process time of
the other congruency conditions (jg) results in a smaller fitting
error (cf. Table 1). This result is consistent with the phenomenon
that visual stimuli presented at the fovea benefit from faster
processing and the size of this effect agrees with the typical speed
benefit for foveal processing (Rains, 1963).

Table 1 also reveals that in all models the peak activation
of the visual automatic process (Ay) is higher than the peak
activation of the tactile/auditory automatic process (Ar/). This
result points to a relative dominance of visual stimuli over
tactile/auditory stimuli (see Figure 11).

GENERAL DISCUSSION

Numerous studies have suggested that task-irrelevant
information affects the task-relevant decision processes in
speeded RT tasks. The standard Simon task assesses the
influence of task-irrelevant information on the processing of
task-relevant information within the visual modality. In the
present study, we investigated whether additional task-irrelevant
information from the tactile modality (Experiment 1) or from
the auditory modality (Experiment 2) would also influence
the processing of visual information. The experiments were
theoretically motivated by an elaboration of DMC, which
assumes that task-irrelevant information from different sense
modalities superimpose. Specifically, this elaboration assumes
that the contribution of task-irrelevant information from one
modality does not affect the contribution of task-irrelevant
information from the other modality. MDMC further assumes
that this superimposed information spills over to the decision
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FIGURE 7 | Experimental data and model predictions of CDFs for both experiments. Blue dots show the experimental data and red lines show the model predictions.
Both models provide a reasonable fit of the experimental data, however, FN-MDMC fits slightly better than MDMC.

process. The MDMC provided a reasonable account for the
results of the two experiments. As expected, the results of the
two experiments revealed the classical Simon effect (ie., a
task-irrelevant influence of spatial visual stimulus position on
RT and response errors). In Experiment 1 we also observed
the influence of task-irrelevant tactile stimulation on RT
and response errors of visual decisions. In Experiment 2 the
task-irrelevant auditory information affected the RT of visual
decisions, but not the response errors. Furthermore, there was
no difference between the auditory congruent and auditory
incongruent conditions, pointing to an unreliable effect of
auditory stimulus location on the RT of visual decisions.
Moreover, the observed delta functions, especially for the visual
congruency conditions, are negative-going, thus indicating
that the congruency effect decreases with increasing reaction
time. Such negative-going delta functions have been repeatedly
reported for the Simon task (for an overview, see Schwarz and
Miller, 2012).

Our findings also corroborate the robust phenomenon
showing that task-irrelevant spatial visual information affects
visual decisions. Even though there is a large number of
studies on the effects of task-irrelevant information on non-
visual decisions (MacLeod, 1991; Lu and Proctor, 1995; Dolk
et al,, 2014), so far, no one studied the effects of simultaneous
task-irrelevant tactile and visual information on non-spatial
visual decisions. However, several studies reported cross-modal
effects of touch on visual perception (Macaluso et al., 2002;
Diederich et al., 2003; Ossandén et al, 2015). Therefore,
we expected to observe an influence of task-irrelevant tactile
information on RT and response errors for visual decisions,
and the results of Experiment 1 are consistent with these
expectations.

In Experiment 2, however, the lack of a clear effect of auditory
stimulation on visual decisions was rather unexpected in the
light of previous studies (Simon and Craft, 1970; Donohue
et al, 2013; Schupak et al, 2015). For example, Simon and
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FIGURE 8 | Observed results and model predictions of CAFs for both experiments, across all congruency conditions, and for both variants of the model. Blue dots
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Craft showed that task-irrelevant auditory information can
influence visual decisions in a Simon task. However, in this study,
auditory stimulation was not accompanied by simultaneous
task-irrelevant visual stimulation, as in the present Experiment
2. In fact, several other studies have reported the lack of or
small effects of task-irrelevant auditory information on visual
decisions in co-presence of both visual and auditory spatial
information (Howard and Templeton, 1966; Welch and Warren,
1980; Bertelson and Radeau, 1981; Slutsky and Recanzone, 2001).
These observations suggest that the effect of task-irrelevant
visual information on visual decisions is much stronger than the
effect of task-irrelevant auditory information when simultaneous
visual and auditory stimulation is provided. Thus, the relatively
small effect of task-irrelevant auditory stimulation in the present
Experiment 2 might be attributed to the fact that the auditory
stimulus did not carry task-relevant information and was

accompanied by visual-spatial stimulation. This is also reflected
in the fitted parameters of the MDMC and FN-MDMC, as a
relatively small peak of the automatic activation corresponding
to the auditory compared to the visual stimulation (cf. Figure 11,
bottom row, and Table 1).

The performance of participants in the neutral conditions
revealed a rather surprising pattern. Intuitively, one might expect
that the mean RT in the neutral condition is just the average
of the RTs in the congruent and incongruent conditions, if the
influences of inhibition and facilitation are equally effective.
Contrary to this expectation, neither RT nor response errors
did significantly differ between the visual neutral and visual
congruent conditions. Interestingly, MDMC assumes that the
effects of inhibition and facilitation on the decision process
are symmetrical (i.e., automatic activation in incongruent trials
favors the wrong response to the same amount as automatic
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FIGURE 9 | Predicted delta (A) functions by FN-MDMC for the visual-tactile experiment. Delta functions show the difference between the congruent and incongruent
CDFs as a function of response time.

Visual Delta Function Auditory Delta Function
40 40
£ 35
s
< 30 30
5
= 25 25
o
=
3 20 20
=]
©
= 15 15
[
©
- 10 10
[
g
2 5 5
o
;_d 0 0
-5 -5
300 350 400 450 500 300 350 400 450 500
t [ms] t [ms]

FIGURE 10 | Predicted delta (A) functions by FN-MDMC for the visual-auditory experiment. Delta functions show the difference between the congruent and
incongruent CDFs as a function of response time.

TABLE 1 | Parameter estimates for the model fit of MDMC and FN-MDMC to the results of the visual-tactile (V-T, Experiment 1) and visual-auditory (V-A, Experiment 2)
tasks.

Task Model "R HRN or « b ne Ay v A7/ 1A [ BIC
VT MDMC 313 - 334 3.1 546 052 13.4 39.0 6.1 285 126.1 176.5
FN-MDMC 317 303 368 29 64.1 066 19.8 385 7.1 28.2 1145 1705
VA MDMC 31 - 405 27 57.7 062 15.1 514 65 355 1362 186.6
FN-MDMC 315 302 353 35 55.6 058 16.7 466 53 320 98.6 154.6

Unit of measurement for ug, jan, or is the millisecond (ms), while the unit of uc is mLS
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FIGURE 11 | Automatic activation processes of the fitted models. In both models, the peak activation of the visual automatic process is higher than the peak
activation of the automatic tactile/auditory process and thus reflects the relatively strong influence of visual-spatial task-irrelevant information.

activation in congruent trials favors the correct response).
Nonetheless, it can be shown that this symmetry need not
necessarily manifest itself at the level of mean RT. It must be
admitted, however, that the deviation from symmetry was so
large that it cannot be captured quantitatively by MDMC.

There is at least one explanation for this asymmetry effect.
One may generally refute the idea that it is possible to introduce
a true neutral condition in conflict task paradigms in order
to reveal the contributions of interference and facilitation, as
previous studies with such baseline conditions suggest (Simon
and Acosta, 1982). For example, a neutral stimulus presented
at the fixation point may benefit from retinal processing in
contrast to stimuli presented in the periphery, that is, to the
left or to the right of the fixation point (Slater-Hammel, 1955;
Osaka, 1976). Within MDMC, this would simply mean that the
residual process operates faster in the visual neutral condition
than in both the congruent and incongruent ones. Hence, we
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have investigated this proposal by extending the MDMC to FN-
MDMC. The FN-MDMC indeed provides a better model fit than
the standard MDMC and, as one might expect, corroborates a
faster residual process for neutral visual information. Specifically,
the FN-MDMC reveals that when a visual stimulus is presented
at the fovea, processing time is ~10-15ms faster than in the
periphery. This finding is consistent with simple reaction time
results from a previous study (Rains, 1963).

The asymmetrical effect produced by tactile stimulation
in Experiment 1 is probably more surprising than the
aforementioned asymmetrical congruency effect in the visual
modality. Here we observed that RTs in the neutral tactile
condition were not significantly different from those in the
incongruent tactile condition, although response errors were
about the same as in the congruent tactile condition. One can
only speculate about the reasons for this surprising pattern of
results. One reason may be that tactile stimulation along the
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body’s median sagittal plane takes more time to process than
along the body’s horizontal plane. Accordingly, the residual
process within MDMC should take more time for central
than for peripheral tactile stimuli. Unfortunately, this account
cannot address the difference in response errors. Another
speculation is that there is a tradeoff between speed and
accuracy within the tactile modality, which seems difficult
to address within the present version of MDMC. Thus,
providing a comprehensive interpretation of the tactile neutral
condition is difficult. However, the results of the tactile neutral
condition show that tactile stimulation cannot be ignored even
if it provides task-irrelevant, modality-irrelevant, and neutral
information.

In the present work, MDMC was fitted to average
data. Model fits to individual data are presented in the
Supplementary Material. The parameter estimates of both
approaches are reasonably similar. Nevertheless, we preferred
model fits to averaged data in the present case in order to reduce
not only the computational complexity and effort, but also to
minimize the influence of spurious responses that may render
individual datasets noisy. Future efforts should be directed
toward overcoming these limitations, for example, with the
Approximate Bayesian Computation approach (Turner and Van
Zandt, 2018).

In conclusion, the present study examined crossmodal
congruency effects within the classical visual Simon task. In
Experiments 1 and 2, the spatial position of task-irrelevant
tactile and auditory stimulation, respectively, varied orthogonally
with the spatial position of the relevant visual information.
MDMC provided a reasonable account of the observed RT data
and response errors. This model suggests that task-irrelevant
activation combines additively across modalities before the
summed automatic activation spills over to the processing
of task-relevant information. MDMC’s predictions, however,
were suboptimal with regard to the neutral conditions. One
reason for this suboptimal prediction is that the neutral
conditions may not provide an ideal baseline for assessing
the respective contributions of facilitation and inhibition
through congruence and incongruence within the Simon task,
a conclusion that receives support from other experimental
work. In fact, the model fit was improved by an extension of
MDMC, which incorporates faster residual processing time for
foveally presented (neutral) visual stimuli than for peripherally
presented (congruent and incongruent) stimuli. Importantly,
this model extension acknowledges potential differences in
processing latency according to stimulus location within the
visual field, but does not change our main conclusion that
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Abstract

The present study examines how artificial tactile stimulation from a novel non-
invasive sensory device is learned and integrated with information from another
sensory system. Participants were trained to identify the direction of visual dot
motion stimuli with a low, medium, and high signal-to-noise ratio. In bimodal
trials, this visual direction information was paired with reliable symbolic tactile
information. Over several blocks of training, discrimination performance in
unimodal tactile test trials improved, indicating that participants were able to
associate the visual and tactile information and thus learned the meaning of the
symbolic tactile cues. Formal analysis of the results in bimodal trials showed that
the information from both modalities was integrated according to two different
integration policies. Initially, participants seemed to rely on a linear decision
integration policy based on the metacognitive experience of confidence. In later
learning phases, however, our results are consistent with a Bayesian integration
policy, that is, optimal integration of sensory information. Thus, the present study
demonstrates that humans are capable of learning and integrating an artificial
sensory device delivering symbolic tactile information. This finding connects the
field of multisensory integration research to the development of sensory
substitution systems.
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1. Introduction

Humans perceive the environment through multiple sensory inputs. Lacking or
unreliable sensory inputs can cause a significant drop in the accuracy of
perception. Some artificial sensory devices, such as substitution systems, can
partially compensate the loss of a sensory modality *2. Other artificial sensory
devices are designed to improve perception by providing complementary or
processed information34. Invasive artificial sensory systems exert a direct effect
on the neuronal system? that can even lead to optimal integration of multisensory
information®. However, invasive techniques can still gain from further
development. Therefore, non-invasive sensory feedback devices such as wearable
systems are potentially the best alternatives for invasive techniques because they
are already developed for realistic applications. Although there is a large number
of studies that addressed the technical aspects of non-invasive and wearable
devices 79, the cognitive aspects of them are less well studied. In particular, it is
still unclear whether and how the input from a non-invasive artificial sensory
device can be integrated into the multisensory perceptual system.

Many studies reported that adult humans integrate multiple sensory modalities in
an optimal Bayesian fashion. Bayesian integration, in comparison to unimodal
perception, leads to a significant decrease in response time %12 and an increase in
accuracy and reliability of perception 1216, However, most of the previous studies
have only examined the integration of well-experienced sensory inputs. There are
only a few studies that addressed whether the learning of novel sensory devices
leads also to an optimal integration or the selection of a sensory modality.
Dadarlat et al. showed that monkeys could optimally integrate unfamiliar
multichannel intracortical microstimulation (ICMS) signals and proprioceptive
input®. Nevertheless, this issue has not been addressed so far for non-invasive
artificial devices.

In the present study, we thus investigated the integration of visual motion
information with symbolic input from an unfamiliar wearable vibrotactile device.
In several consecutive training phases, participants received synchronous static
vibrotactile spatial patterns and visual random dot motion stimuli. They were
asked to learn these visual-tactile associations. Following each training phase, the
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trained stimuli were presented either unimodally or bimodally and participants
were asked to report the associated direction of motion. Accuracy and self-
reported confidence were assessed to examine whether or not participants can
learn the symbolic meaning conveyed by the artificial wearable device and
whether the information form the two inputs could be integrated.

To this end, participants performed a multisensory learning task which involves a
novel artificial vibro-tactile device (see Figure 1Error! Reference source not
found.). The experiment consisted of seven blocks, each involving a training phase
followed by an evaluation phase. During the training phase, participants
simultaneously received a dot motion and a novel vibro-tactile stimulation
pattern, which did not involve any directional movement. Throughout the whole
experiment, each motion direction was paired with a specific symbolic vibro-
tactile pattern. Participants were asked to learn the associations between each
specific motion direction and the corresponding vibro-tactile stimulation pattern.
In the evaluation phase, participants received a unimodal visual motion dot
stimulus, a unimodal vibro-tactile stimulus, or a multimodal stimulus combining
both inputs (see materials and methods for more details). Participants were then
asked to report motion direction, either directly from the motion of the dots,
from the associated vibro-tactile pattern, or from both. They also rated the
confidence of their decisions. The visual stimulus in both unimodal conditions and
the multimodal visual-tactile condition had three levels of reliability: low, medium
and high. The reliability of tactile stimuli was constant during the whole
experiment.
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Figure 1. (A) Experimental setup. Participants received synchronous static vibrotactile spatial patterns and visual
random dot motion stimuli. Vibroractile patterns were provided by a custom designed belt through a matrix of
3x4 tiny vibration motors. (B) Visual stimulus, tactile stimulus and synchronous visual-tactile stimulus. The
reliability of visual dot motion stimulus was manipulated through three coherence levels, while the reliability of
the vibrotactile stimulus was fixed. (C) The experiment consisted of seven blocks, each involving a training phase
followed by an evaluation phase.

The impact of the artificial sensory stimulation on multisensory perception was
assessed over the course of learning. We analyzed the accuracy of perception as
well as the confidence in perceptual decisions in low, medium, and high reliability
conditions.

2 Results

Figure 2 depicts the accuracy of perception in low, medium, and high reliability
conditions. The accuracy of tactile perception increases over the course of the
experiment, thus demonstrating that the visuo-tactile patterns provided by our
artificial sensory device were efficiently learned and associated with the
corresponding dot-motion patterns.
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Figure 2. Accuracy of perception in low, medium, and high reliability conditions over the course of the learning
procedure. For the sake of clarity, data from the tactile condition are re-plotted in each panel.

Separate two-way within-subject ANOVA with factors reliability condition (low,
medium, and high) and block (block 1 to block 7) were performed on accuracy of
visual and visual-tactile perceptions.

The accuracy of visual perception was significantly affected by reliability
condition, F(2,44) = 457.22, p < .001, as well as by block, F(6,132) =9.48, p < .001.
The interaction of reliability condition and block was not significant, F(12,264) =
1.47, p = .13. Post-hoc Tukey tests on reliability condition showed significant
differences between all reliability conditions (ps < .001). This result points to a
successful reliability control of the visual motion stimuli.

Analysis of the visual-tactile perception also showed a significant effect of
reliability condition on accuracy, F(2,44) = 30.73, p < .001. The effect of block on
accuracy was also significant, F(6,132) = 44.93, p < .001. Post-hoc Tukey tests on
reliability condition showed the same result as before, that is, accuracy increased
from low to medium, and from medium to high reliability (all ps < .001). This
effect of reliability condition was especially pronounced in the initial blocks of
learning, as indicated by an interaction of both factors, F(12,264) = 2.81, p = .001.
This shows that the information from both modalities is integrated differently
depending on the reliability of the visual input.

Additional two-way within-subject ANOVAs with factors modality (visual, tactile,
visual-tactile) and block (1 to 7) were conducted for each of the three reliability
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conditions to assess learning and multisensory integration of the artificial sensory
device.

In the low reliability condition, the effect of modality, F(2,44) = 83.40, p < .001,
the effect of block, F(6,132) = 52.76, p < .001, and their interaction, F(12,264) =
23.04, p < .001, were significant. Post-hoc Tukey tests revealed that the visual
stimuli were perceived less accurately than tactile (p < .001) and visual-tactile
stimuli (p < .001). However, the difference between the accuracy of visual-tactile
and tactile was not significant (p = .81). This result indicates a dominance of
tactile stimulation on visual-tactile perception, when the reliability of the visual
stimuli is low.

The same analysis in the medium reliability condition also showed effects of
modality, F(2,44) = 24.93, p < .001, block, F(6,132) = 52.42, p < .001, and their
interaction, F(12,264) = 16.08, p < .001. Although post-hoc Tukey tests indicated
significant differences among all modalities (all ps < .007), the slope of accuracy
across blocks was different between modalities. At the beginning of learning, the
accuracy for the tactile stimuli was lower than for the visual stimuli, and the
accuracy for visual-tactile stimulation was determined by the visual input.
However, tactile perception got more accurate over the course of learning and as
a result, its influence on the multimodal visual-tactile perception increased. In
some learning blocks, the accuracy for visual-tactile stimulation was even higher
than for the unimodal visual and tactile stimuli in isolation (see Figure 2). This
indicates an effective integration of visual and tactile information (see the
modeling section for a more elaborated account of this integration effect).

Finally, in the high reliability condition, accuracy was also affected by modality,
F(2,44) = 13.59, p < .001, block, F(6,132) = 47.80, p < .001, and their interaction,
F(12,264) = 14.67, p < .001. At the beginning of the experiment, the accuracy for
visual-tactile stimulation was codetermined by both visual and tactile
information, as indicated by intermediate accuracy, lying between the respective
accuracies for visual and tactile unimodal stimulation. This was confirmed by a
one-way within-subject ANOVA, which showed a significant difference of accuracy
between the different modalities in the first block, F(2,44) = 55.21, p < .001. Post-
hoc tests showed significant differences among all modalities (ps < .001). Most
interestingly, this suggests that participants integrated the visual and tactile
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information from the beginning of learning, even though this impaired
performance in comparison to the unimodal visual condition.

3 Modeling

The potential mechanisms underlying the integration of the two modalities were
investigated by computational modeling in the subsequent section. In order to
shed light on the mechanisms behind the perceptual learning of this artificial
sensory device, two computational models are proposed and fitted to the
experimental data. The first model focuses on decision integration and the second
one on multisensory integration.

3.1 Decision Integration Model

Confidence Confusion Matrix and Meta-Accuracy

The confusion matrix is a useful tool for evaluating the performance of
participants in a multiple-choice task or the performance of a classifier algorithm
in solving supervised multi-class problems. Various criteria like accuracy,
precision, and recall can be determined from the confusion matrix for both 2AFC
and multiple choice (multiple class) problems.

For the present purpose, the confusion matrix is extended to second order
judgments, that is, self-reported confidence in judgments which is also associated
with a given response. When a participant (a classifier) reports a confidence for
each of the first-order judgments, this meta information can be used to compute
meta-accuracy (type Il accuracy). A confidence confusion matrix (CCM) is defined
with the same structure as the confusion matrix as follows:

Ci1 - Cin

CCM = C @

CN,l o CN,N

C;; indicates the sum of all confidence ratings associated with response R, ,
where a ground truth signal i (class i) has been predicted as signal j (class j).
Similar to the accuracy, we define meta-accuracy as the sum of the diagonal

divided by the sum of all elements:
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Meta-accuracy represents the performance of the participants not only by
considering the decisions but also by weighting the decisions according to the
confidence ratings associated with these decisions. High-confidence correct
answers thus increase meta-accuracy more than low-confidence correct answers,
while the low-confidence wrong answers decrease the meta-accuracy less than
the high confidence wrong answers. In fact, CCM is a more general representation
of performance than confusion matrix, which is a special case with just one
confidence level.

Decision policy

We modeled the multi-modal integration of perceptual decisions considering an
ideal observer. This observer has only access to the decisional information, i.e.
first- and second-order decisions. In the present case, perceptual decisions are
based on two modalities A and B, thus yielding two separate unimodal confidence
confusion matrices, CCM“ and CCM?5. CCM can be interpreted as a decision-value
table, for which the value of a decision is an internal estimation based on the
confidence values. By this interpretation, decision values are considered to be
correlated with the confidences, or, in other words, confidences represent the
internal estimation of decision values. For example, given an observed signal i,
the " column of the decision value table represents how valuable (and how
likely) is each perceptual decision j. One rational way of taking decisions based on
two modalities is to decide based on the Max_CCM table, where the highest
confidence value is selected for each cell (ij) from the two confidence confusion
matrices,

Max_CCM; ;= max (CCM{,CCME) . (3)

Given the values of all decisions, the probability of selecting a decision when a
specific signal is observed can be estimated by various decision making policies.
We have investigated two decision making policies in the present study: linear
decision making and parametrized softmax decision making.

The linear decision-making policy is defined as follows:
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V(sud)
p(dlsl) = Zd'env(si‘dv) (4)

Where s; denotes the state in which signal i is observed, D is the set of all possible
decisions, and V(s;d) shows the value of decision d when the signal i is observed.
The Max_CCM table is used as the estimation of the decision value table (V).
When an agent decides based on the linear policy, the perceptual accuracy of the
agent is actually equal to the meta-accuracy of the Max_CCM.

The top row of Figure 3 depicts the result of the ideal linear decision maker. The
model successfully predicts the integration behavior for the first blocks. However,
it systematically underestimates the accuracy in the last blocks. We have
investigated further the accounts for this systematic underestimation by analyzing
the calibration of observed confidence ratings. Figure 4 reveals the confidence
calibration for all reliability conditions and across all blocks. The orange line
indicates the ideal calibration pattern. In an ideal situation, the confidence should
represent the actual probability of making correct decisions. As an example,
assume that a participant would report the confidence level of 2 (50% probability)
for ten trials. If five decisions out of these ten are correct, the confidence would
be well calibrated. Lower or higher numbers of correct decisions would show
overestimation or underestimation of the confidence.

Figure 4 reveals that the confidence calibration was almost fixed across all blocks
in the unimodal visual reliability conditions. This is probably due to none or very
little perceptual learning in these conditions. However, confidence calibration
varied across blocks in the tactile and all visual-tactile conditions. Specifically,
participants tended to report lower confidence for correct decisions in the last
three blocks compared to the first three to four blocks. This indicates an
underestimation of confidence reports in the last blocks, which also explains the
systematic underestimation of the predicted accuracy by the linear decision-
making policy. Therefore, we proposed the parametrized softmax model to
counterbalance the systematic underestimation error introduced by the linear
model. The parametrized softmax model is mathematically equivalent to the
temperature scaling 7, which is a well-known approach in deep neural networks
to recalibrate the probability estimation.

94



bioRxiv preprint doi: https://doi.org/10.1101/2020.01.29.924662. The copyright holder for this preprint (which was not peer-reviewed)ls]:he
author/funder. It is made available under a CC-BY 4.0 International license.

Moreover, many studies in neuroscience and psychology utilized the softmax
policy to model decision making behavior 21, In a softmax approach, usually a
decision with a higher value is selected with an exponentially higher probability.
The general form of the softmax policy with a linear objective function ! can be
defined as follows:
exp(6” V(sud))
p(dls) = 5 — @) )

In the present study, 9 is described by a linear equation with respect to the block
number 8 =wb + a, where b is the block number and {w,a} are free scalar
parameters. We considered separate {w,,a,} for each reliability condition, where
r denotes the reliability condition and re{low, medium, high}. The total number
of six free parameters has been fitted to the experimental data for all blocks and
all three reliability conditions.

Figure 3 depicts results of both linear and softmax ideal observer decision makers.
The performance predicted by the linear ideal observer model is close to the
observed performance for the visual-tactile stimulation in the first blocks and this
is true for all reliability conditions. However, the softmax model depicts a better
performance on average in all blocks. It should be noticed that these models do
not imply absolute dominance or a weighted combination of the modalities’
inputs. Rather the simple decision integration mechanisms outlined above are
sufficient to predict the quite complex result pattern. For example, both models
are capable to predict the counterintuitive result that multimodal accuracy is
partly higher than accuracies for the unimodal conditions (medium reliability
condition, blocks 2 and 3). Both models can also predict multimodal accuracy in
the high reliability condition, which is between the accuracies of the two
unimodal conditions.

Nevertheless, the modeling results also show that the linear ideal observer cannot
successfully predict the performance in all cases. Specifically, in the first half of
the experiment (blocks 1 to 3/4), the model predicts the performance of the
visual-tactile perception very accurately in all reliability conditions. However, the
prediction is worse for the second half of the experiment, where this decision
integration model systematically underestimates the observed multimodal
accuracy. The discrepancy in the linear model can be attributed to a gradual
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change in the mechanism that integrates information from the different sensory
modalities as the participants become more familiar with the tactile stimulation,
from a pure decisional process towards a genuine perceptual integration process.
In contrast to the linear model, the softmax model benefits from a linear increase
in model parameters across the learning blocks and therefore can capture the
gradual change of perceptual mechanism. We will however address the possibility
of a genuine perceptual integration process with a Bayesian multisensory
integration model in the next section.
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Figure 3. Linear and softmax decision integration models in low, medium and high reliability conditions. The
upper row shows the linear model and the lower row depicts the softmax model. Red lines show the
experimental visual-tactile integration results while orange lines indicate the modeling result. The model was
fitted to the aggregated data from all subjects.
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Figure 4. Confidence calibration plots of aggregated data from all participants. The orange line indicates the
ideal calibration pattern. The results reveal that unimodal visual confidence calibration changed very little
across blocks. However, the change of calibration is obvious in tactile and visual-tactile conditions. Specifically,
the participants tended to report lower confidence for correct answers in the last blocks in comparison with the
first blocks.

3.2 Multisensory Integration Model

During the previous decade, multisensory integration has become an increasingly
prominent research topic and various computational models have been proposed
to unravel the mechanism underlying sensory integration across multiple
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modalities 101216, The well-known model of multisensory integration suggests that
the sensory inputs are combined according to the principle of maximum-
likelihood estimation (MLE)®3. Even in case of small deviations the core principle
of MLE is valid 22 for multisensory integration. Specifically, this model holds that
the inputs from different modalities are linearly combined according to the
reliability of their respective sensory inputs. This simply means that if there are
two modalities, A and B, the weight of each modality in integration, wy, and wpg
=1 - wy, and the optimal integrated signal S 45 are calculated as follows:

wy = % (6)
Sap=wsS4+ wpSp (7)

Where r, and rp show the reliability of signal A and reliability of signal B,
respectively. We investigated how well the Bayesian model can predict the visual-
tactile perception given the unimodal visual and tactile information. The angular
distance between the ground truth direction (i.e. dot movement direction) and
the chosen (predicted) direction by participants is assumed to represent the
reliability of the perception. If in a given trial, the dot display moves in direction o
while a participant selects the direction g, then the reliability of perception can be
calculated as follows:

dg(a,B) = cos ~(sin(a) - sin(B) + cos (a) - cos (B)) (8)
T =1 —dg(a,f) (9)

dg(a,B) is the angular distance between ¢ and g3, which has a maximum value of
m. Therefore, 1,4 is an estimation of the perceptual reliability that is negatively
correlated with the angular distance. A higher angular distance indicates less
reliability in the perception.

AB
g’
the weighted sum of unimodal confusion matrices, where the weights are
indicated by unimodal perceptual reliabilities:

The confusion matrix of the Bayesian integration model, CM4?, is estimated as

A
CMY} =r{CM; + ricMf;  (10)
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r{; and rf are unimodal perceptual reliabilities obtained from Eq (9), CM{} and
CMg- are unimodal confusion matrices.

Figure 5 depicts the predicted accuracy by the Bayesian integration model. As can
be seen in medium and high reliability conditions, the observed accuracy for the
visual-tactile condition resembles the predicted accuracy by the Bayesian model
especially in the last 3 to 4 blocks. In the low reliability condition, however, the
observed accuracy for the visual-tactile condition closely follows the observed
unimodal tactile accuracy, suggesting selection behavior rather than integration.
Thus, the Bayesian integration model failed to predict the selection behavior in
the low reliability condition.

Even though the Bayesian integration model predicted the accuracy of medium
and high reliability in the last blocks, it could not fit the experimental data in the
first blocks, where the linear decision integration model provided a reasonable
data fit. In other words, the linear decision integration model and the
multisensory integration model supplement each other.

Table 1 compares BIC statistics of all three models that we mentioned in this
paper. These additional results demonstrate that none of three models alone
provide a satisfactory description of the experimental data. This additional
analysis, however, confirms the conclusion that the linear decision model
accounts for the observed accuracy for the first three blocks, whereas the
Bayesian integration model accounts for the last three blocks after the initial
learning phase.

99



bioRxiv preprint doi: https://doi.org/10.1101/2020.01.29.924662. The copyright holder for this preprint (which was not peer-reviewed)lsﬁhe
author/funder. It is made available under a CC-BY 4.0 International license.

Low Reliability Medium Reliability High Reliability

Accuracy (%)

1 2 3 4 H 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Learning Blocks Learning Blocks Learning Blocks

Figure 5. Predicted accuracy by the Bayesian sensory integration model in the low, medium and high reliability
conditions. Accuracy is calculated according to Eq (10). Red lines depict the empirical results of the visual-tactile
condition, and orange lines show the model fits of the Bayesian integration model. This model was fitted to each
individual subject and the confidence intervals were computed by the method explained in 23,

Table 1. Model Comparison

) ) . - X2 First | x*Last ) BIC First | BIC Last
Model ré(liaLt?i‘I’ivty Xre’::lae:i:;ym Réli:tl)?lri]ty Three Three T;(tal Three Three Tzltcal
Blocks Blocks Blocks Blocks
Linear
Decision 3.86 1.86 1.29 1.74 5.26 7.00 1.74 5.26 7.00
Fusion
Softmax
Decision 0.86 2.39 3.66 5.82 1.08 6.90 11.54 6.80 14.83
Fusion
sensory 8.80 6.86 5.87 1970 | 1.8 |2154| 1970 | 1.83 | 2154
Integration

4. Discussion

With the advance of medical and wearable devices, understanding the
mechanisms of perception for novel artificial devices is of great interest to
scientists and engineers. This study addresses whether and how symbolic
information from a novel non-invasive artificial sensory device is learned and
becomes integrated within the human sensory system. We have introduced a
custom designed vibrotactile belt that generates novel and unexperienced tactile
patterns. Participants were asked to learn the associations between these novel
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tactile stimuli and the direction of visual dot motion stimuli across seven
consecutive training phases. At the end of each training phase, there was an
evaluation phase in which the performance in unimodal visual, unimodal tactile,
and visual-tactile conditions was assessed. Thus, perceptual accuracy for the
different modality conditions could be tracked over the time-course of the whole
experiment.

The results show that accuracy in the tactile condition increased throughout the
experiment, and thus, participants could learn the novel tactile patterns. Results
also revealed that symbolic information from the novel artificial device can be
integrated into the visual-tactile perception from the very beginning of the
training. This integration process was evident even though accuracy for the tactile
modality was initially lower than for the visual modality. This phenomenon was
evident in the medium and high visual reliability conditions. However, in the low
visual reliability condition, the tactile information dominated over the visual
information, resulting in selection behavior rather than sensory integration.

To better understand the mechanisms underlying the perception and integration
of novel symbolic information, two computational models were proposed and
evaluated with the data of this study. The decision integration model predicts
accuracy in the visual-tactile condition based on first- and second-order
perceptual decisions in the two modalities. The multisensory integration model
assumes a genuine perceptual information integration, which combines the
sensory inputs based on their respective sensory variances on a pre-decisional
processing level. This model thus assumes that decision processes operate on the
combined sensory multisensory input.

The decision integration model treats confidences as estimates of decision values.
Higher confidences are associated with greater values. Assuming that these
values are known, the modeling problem is reduced to finding a proper decision-
making policy that fits the experimental data. Two decision making policies were
evaluated: A linear policy and a parametrized softmax policy. The linear policy
explained well the integration behavior in the first half of the experiment.
However, it did not fit well the data in the second half of the experiment.
Specifically, it underestimated accuracy in the visual-tactile condition. To
overcome this problem, we exploited the parametrized softmax policy with a
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linear equation parameter (see the modeling section for more details). Since the
policy parameters were linearly updated w.r.t. training blocks, the model now
fitted reasonably the experimental data in all training blocks. In general, the
decision-making model revealed that confidences in decisions properly represent
the decision values. This finding together with the notion of confidence confusion
matrix provides a new perspective for future research on decision-making models
employing self-reported confidence ratings. Moreover, the comparison between
the linear policy and the parametrized softmax policy provides evidence for a
gradual change in the integration mechanism over the course of training.

We have hypothesized that this gradual change might reflect a switch from a pure
decisional integration towards perceptual integration. We addressed this
hypothesis by fitting a Bayesian integration model to the experimental data. In
contrast to the linear decision-making policy, the Bayesian model fitted well the
experimental data only in the second half of the experiment. The complementary
fits of the linear policy decision integration model and the Bayesian sensory
integration model are consistent with the proposed hypothesis.

In conclusion, the present data show that participants can utilize symbolic tactile
information to improve the processing of visual information, thereby improving
the accuracy of decision making. We have suggested two models of how this
multimodal integration might proceed. In the initial learning phase, participants
seem to rely on a linear decision integration process, whereas in a later phase the
integration process operates in a Bayesian fashion.

5. Methods

Participants

18 women and 11 men (23.72 * 3.42 years old) recruited from student population
of Tlibingen University participated in the experiment. They all reported normal
or corrected-to-normal vision and no neurological or psychiatric disorder. The
experiment was conducted in accordance with the Helsinki Declaration and the
guidelines for scientific work of the University of Tldbingen. Written informed
consent was obtained from all participants prior to data collection. Participants
were compensated with 8 Euros per hour or course credit for their participation.
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They were also told that the best performer would get a 50 Euro Amazon gift
card. The results of six participants were excluded from all analyses, since their
performance in tactile perception was always below 50% in all blocks.

Stimuli and Apparatus

Participants were seated in a sound-attenuated room in front of a 19” screen with
100 Hz refresh rate and 1024x768 pixels resolution, on which the visual stimuli
were presented. The distance between participants' eyes and the monitor screen
was about 50 cm. The experiment was implemented in C++.

The visual stimuli consisted of a random dot motion display, made up of 100
white dots against a black background. The diameter of each dot was 10 pixels,
approximately 0.33° visual angle. The dots were randomly distributed within a
circle with a diameter of 400 pixels (approximately 13.3° visual angle) called
excircle. The initial x/y position of each dot came from two Gaussian distributions
with mean zero (center of the screen) and variances of 0.1 of the width/height of
the screen. Each dot started to move with the speed of 11.25°/s in a specific
direction. Whenever a dot hit the excircle, it was replaced by a new dot. There
were eight possible directions (0, 45, 90, 135, 180, 225, 270, and 315°). The
percentage of the dots moving in the same direction, called coherence level,
determined the reliability of the visual stimulus. For example, a coherence level of
75% means 75 out of 100 dots moved in the same direction, while 25 dots moved
in a random direction. The duration of the visual stimulus was one second.

Tactile stimuli were provided by a custom designed belt fastened around the
subjects' waist. The vibrotactile belt was designed in the Cognitive Robotics Lab at
University of Tehran. It consists of 12 vibration motors located in a 3x4 matrix
formation on a cotton canvas tape. All motors are controlled by a custom
embedded device similar to the one employed in a previous study. ¢ Eight
different tactile stimulation patterns were produced, each consisting of two
simultaneous vibrations at pre-defined locations on the belt. These patterns were
defined to be maximally distinguishable. The vibration of all tactile stimuli lasted
one second, that is, the same duration as the visual stimuli. White-noise auditory
stimuli were continuously delivered to the subjects through a pair of Sony MDR-
XD200 stereo headphones to override the sound produced by the vibration
motors.
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Procedure

The experiment consisted of seven consecutive blocks, each of which was divided
into a training phase and an evaluation phase (see Figure 1Error! Reference
source not found.).

Training phase. Each block started with a training phase in which participants
were asked to learn the associations between the tactile patterns and the visual
motion directions. A random, subject-specific, and one-by-one mapping
associated each of the tactile patterns with one of the visual motion directions.
The mappings were randomly assigned prior to the experiment for each
participant. The training phase included an associative learning section followed
by an associative test section. In the learning section, all visual-tactile association
pairs were presented four times in a random order. In the associative test section,
participants were asked to decide if the presented pair of visual-tactile stimuli
were associated or not, by selecting a green/red circle with a mouse click.
Subsequently, they reported their confidence in these decisions on a scale of 1
(lowest confidence level) to 4 (highest confidence level) by selecting one of four
adjacent circles by mouse. The cursor position was set to the screen center prior
to each judgement to avoid response bias. Participants received feedback about
the correctness of their decision at the end of each trial. A splash screen, which
showed the overall accuracy achieved during the test section, concluded each
training phase. The coherence of the visual stimuli during the whole training
phase was 75 %.

Evaluation phase. Following each training phase, performance for visual, tactile,
and visual-tactile judgments was assessed. Each evaluation phase included a
visual evaluation section, a tactile evaluation section, and a visual-tactile
evaluation section, which were presented in random order. In each trial of the
visual evaluation section, participants received a unimodal visual stimulus with a
coherence level of 10%, 15%, or 25% (low, medium, and high reliability,
respectively). Participants were asked to judge the direction of the dot motion by
a mouse click on the corresponding sector in a circle. Then, they were asked to
report their confidence level on a scale of 1 to 4, similar to the test section of the
training blocks. The visual evaluation section consisted of 48 trials (8 directions x 3
coherence levels x 2 repetitions), presented in a random order. The visual-tactile
evaluation section was identical to the unimodal visual evaluation section, with
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the exception that the visual stimulus in each trial was accompanied by its
associated tactile pattern. The tactile evaluation section consisted of 16 trials (8
patterns x 2 repetitions). Participants were asked to report the learned associated
motion direction and their confidence in this decision.
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