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Abstract 

Theories and models of multisensory perception have been drawing attention in the past 
decade. Understanding the multisensory perception is great of interest for cognitive scientists 
and is crucial for engineers to develop artificial sensory devices such as wearable and sensory 
substitution systems. The potential of touch for artificial sensory devices as well as the strong 
link between touch and vision motivated us to study the interactions of vision and touch with 
the focus on touch stimulations from a custom designed artificial sensory device. Specifically, 
we investigated three different type of interactions through three studies: The multisensory 
perception and calibration for visual-tactile information in a realistic environment (study 1), 
multimodal task-irrelevant effect (study 2), and finally cross-modal learning and integration of 
vision and touch under novel tactile experiences (study 3). Study 1 investigated how 
participants would adjust their perception to the discrepancy among sensory information under 
varying reliability conditions. Our findings showed participants switched from an integration 
strategy to a selection or to a calibration strategy according to reliability condition of the 
sensory information. Our comprehensive simulation and modelling revealed that the optimal 
causal inference not only depends on the amount of the cue conflict, but also on the relative 
reliability of stimuli across different modalities. We investigated, through study 2, how task 
irrelevant information affects the perception of task relevant information in a multimodal setup. 
Particularly, we extended the well-known Simon experiment to the multimodal edition, in 
which two source of information, from two modalities, deliver the task irrelevant information. 
We conducted a visual-tactile and a visual-auditory extension of Simon task. Both experiments 
showed expected visual congruency effects for task-irrelevant information, such as the slower 
responses and less accurcy in incongruent than congruent conditions. We additionally observed 
congruency effects of tactile task-irrelevant information, although the effects were smaller than 
the visual task-irrelevant information. However, the congruency effects of auditory task-
irrelevant information were insufficient and negligible. It revealed that in the co-presence of 
visual and auditory spatial task-irrelevant information, visual information dominates the 
auditory congruency effect. A proposed multimodal extension of the Diffusion Model for 
Conflict Tasks (MDMC) was fitted to the results of both experiments. MDMC provided 
reasonable fits for the experimental data while keeps the genuine assumptions of DMC. We 
finally investigated, through study 3, whether and how tactile information from a non invasive 
sensory feedback device can be learned or even integrated with visual perception. The 
performance of unimodal tactile perception was improved over seven blocks of training, 
showed that participants learned the associations between the visual and tactile information. 
Further analyses showed that participants integrated the unexperienced tactile information with 
experienced visual information from the very beginning of the training, despite of the fact that 
the accuracy of tactile modality was initially lower than the visual modality in some conditions. 
Proposed computational models revealed that participants initially employed a metacognitive 
oriented decision integration policy. However, they later switched to an optimal Bayesian 
integration of sensory inputs. We believe our findings connects the topic of multisensory 
perception to the artificial sensory feedback devices. 
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Zusammenfassung 

Theorien und Modelle der multisensorischen Wahrnehmung haben in den letzten Jahren 
Aufmerksamkeit erregt. Das Verständnis der multisensorischen Wahrnehmung ist für 
Kognitionswissenschaftler von großem Interesse und für Ingenieure von entscheidender Bedeutung, um 
künstliche sensorische Geräte zu entwickeln. Das Berührungspotential für künstliche sensorische 
Geräte sowie die starke Verbindung zwischen Berührung und Sehen haben uns motiviert, die 
Wechselwirkungen zwischen Sehen und Berührung zu erforschen, wobei der Schwerpunkt auf 
Berührungsstimulationen mit einem speziell entwickelten künstlichen sensorischen Gerät liegt. 
Insbesondere untersuchten wir drei verschiedene Arten von Interaktionen in drei Studien: Die 
multisensorische Wahrnehmung und Kalibrierung für visuell-taktile Informationen in einer 
realistischen Umgebung (Studie 1), den multimodalen aufgabenunrelevanten Effekt (Studie 2) und 
schließlich das modalübergreifende Lernen und Integrieren von Sehen und Berühren unter neuartigen 
taktilen Erfahrungen (Studie 3). In Studie 1 wurde untersucht, wie sich die Teilnehmer unter 
verschiedenen Zuverlässigkeitsbedingungen an den Cue-Konflikt zwischen sensorischen Informationen 
anpassen würden. Unsere Ergebnisse zeigten, dass die Teilnehmer je nach Zuverlässigkeitsbedingung 
der sensorischen Informationen von einer Integrationsstrategie zu einer Auswahl oder zu einer 
Kalibrierungsstrategie wechselten. Unsere umfassende Simulation und Modellierung hat gezeigt, dass 
die optimale kausale Inferenz in einer Umgebung mit variierender Zuverlässigkeit nicht nur vom 
Ausmaß der multimodalen Diskrepanz abhängt, sondern auch von der relativen Zuverlässigkeit der 
Stimuli. Analysen der Vertrauensberichte zeigten, dass wir in Studie 2 untersucht haben, wie sich 
aufgabenunrelevante Informationen auf die Verarbeitung aufgabenrelevanter Informationen in einem 
multimodalen Setup auswirken. Insbesondere haben wir die bekannte Simon-Aufgabe auf die 
multimodale Ausgabe erweitert, in der aufgabenunrelevante Informationen aus zwei sensorischen 
Modalitäten hervorgehen können. Wir haben eine visuell-taktile und eine visuell-auditive Erweiterung 
der Simon-Aufgabe durchgeführt. Beide Experimente zeigten erwartete visuelle Kongruenzeffekte für 
aufgabenunrelevante Informationen, wie z. B. langsamere Reaktionen und geringere Genauigkeit bei 
inkongruenten als bei kongruenten Bedingungen. Wir beobachteten auch Kongruenzeffekte von taktilen 
aufgabenunrelevanten Informationen, obwohl die Effekte geringer waren als die visuellen 
aufgabenunrelevanten Informationen. Die Kongruenzeffekte auditorisch aufgabenunrelevanter 
Informationen waren jedoch unzureichend und vernachlässigbar. Es zeigte sich, dass bei gleichzeitiger 
Anwesenheit von visuellen und auditorischen räumlich aufgabenunrelevanten Informationen visuelle 
Informationen den auditorischen Kongruenzeffekt dominieren. Eine vorgeschlagene multimodale 
Erweiterung des Diffusionsmodells für Konfliktaufgaben (MDMC) wurde an die Ergebnisse beider 
Experimente angepasst. MDMC lieferte angemessene Anpassungen für die experimentellen Daten, 
während die echten Annahmen von DMC beibehalten wurden. In Studie 3 haben wir schließlich 
untersucht, ob und wie künstliche taktile Informationen von einem neuartigen nicht-invasiven Gerät 
gelernt und in visuelle Informationen integriert werden. Die Leistung der unimodalen taktilen 
Wahrnehmung wurde über sieben Trainingsblöcke verbessert und zeigte, dass die Teilnehmer die 
Assoziationen zwischen visuellen und taktilen Informationen lernten. Weitere Analysen zeigten, dass 
die Teilnehmer die unerfahrenen taktilen Informationen von Beginn des Trainings an mit erfahrenen 
visuellen Informationen kombinierten, obwohl die Genauigkeit der taktilen Modalität anfangs unter 
bestimmten Bedingungen geringer war als die visuelle Modalität. Vorgeschlagene Rechenmodelle 
zeigten, dass die Teilnehmer zunächst eine metakognitiv orientierte Entscheidungsintegrationspolitik 
anwendeten. Später wechselten sie jedoch zu einer optimalen Bayes'schen Integration sensorischer 
Eingaben. Wir glauben, dass unsere Ergebnisse das Gebiet der multisensorischen Wahrnehmung mit 
der Entwicklung künstlicher sensorischer Geräte verbinden. 
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Introduction 

Humans evolved to benefit from multiple sensory modalities such as visual, auditory, olfactory, 

gustatory, and tactile. These sensors allow us to perceive the complex and multimodal 

environment. In many situations, information of more than one sensory modality contributes 

to a perceptual decision process. We benefit from multisensory perception in order to improve 

the reliability and accuracy of perception (Drugowitsch, DeAngelis, Klier, Angelaki, & Pouget, 

2014; M.-A. N. Mahani, Sheybani, Bausenhart, Ulrich, & Ahmadabadi, 2017; Rowland, 

Quessy, Stanford, & Stein, 2007). As a matter of fact, studying the interaction among sensory 

modalities is crucial to understand and model our perceptual system.  

Touch and vision both play crucial role in our perception. Vision is one of the most informative 

modalities while touch, through the skin, is known as the largest sensory organ(Hertenstein & 

Weiss, 2011) and acts like the physical interface of our body to the environment. 

Many studies reported the strong link/interaction between of visual and tactile modalities. 

Interactions of vision and touch could be so strong that visual cortical area is active during a 

normal tactile perception. This phenomenon was first observed in a positron emission 

tomographic (PET) study (Lacey & Sathian, 2016; Sathian, Zangaladze, Hoffman, 

Neuroreport, & 1997, n.d.). Another example of visual and tactile interactions is the redundant 

target effects, in which the perception reaction time to a double visual-tactile target is 

significantly faster than single/double uni-visual/uni-tactile target (Forster, Cavina-Pratesi, 

Aglioti, & Berlucchi, 2002). This effect actually shows the mutual influence of simultaneous 

visual and tactile information.  

Furthermore, the rubber hand illusion example (Botvinick, Nature, & 1998, n.d.), and 

interactions among vision and touch during the development(A Streri, Pownall, & Kingerlee, 

1993; Arlette Streri & Gentaz, 2004) bold further the importance of both modalities and their 

interactions. 

In other hands, recent advances in technology highly affected life habits and brought novel 

sensory experiences to our daily life. Various wearable devices (Dakopoulos & Bourbakis, 

2010; Johnson & Higgins, 2006), human in loop assistance systems(Driver assistance system 

for driver assistance for consumption controlled driving, 2011; Pilot Assistance System, 2015; 

Krause, Knott, & Benger, n.d.), and sensory substitution systems (Kristjánsson et al., 2016; 
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Shull & Damian, 2015) are some examples of these novel sensory experiences. Nevertheless, 

cognitive aspects of these artificial devices could benefit from more studies. 

Vision-touch as novel sensory experience  

Touch has a high potential for providing novel sensory experiences through wearable devices. 

Skin has a large input field that can potentially be utilized by novel sensory feedback devices. 

It can be used to transfer the processed data to a human-in-loop agent such as a pilot or a driver. 

Alternatively, it can aid visually/hearing impaired people to perceive the environment through 

the skin with more details. Entertainment and gaming systems are another potential example 

in which touch sensory feedback systems can be utilized.  

Interactions between the touch-based sensory feedback device and other sensory modalities are 

crucially important and can affect the perception effectiveness. It specifically becomes 

important in vision-touch interactions, because vision is the most informative sensory in a wide 

range of applications, and therefore, the influence of vision on the perception of touch-based 

sensory feedback device should not be neglected. Moreover, interactions between vision and 

touch during the development and in adulthood was repeatedly reported in many studies (A 

Streri et al., 1993; Arlette Streri & Gentaz, 2004). Thus, a high probability of cross-modal 

visual-tactile interactions, effects, and side-effects is expected to be observed.  

Aim of the present study 

In the present thesis, we addressed cross-modal interactions between the visual and tactile 

modalities in adults with the focus on tactile information which delivers by a custom artificial 

device. Visual and tactile interactions are specifically important since tactile is known as the 

main source which visual sensory calibrates with and learns from during the development 

(Gori, Giuliana, Alessandra, Sandini, & Burr, 2010; Gori, Giuliana, Sandini, & Burr, 2012). 

Furthermore, activation of visual cortical area during touch perception (Sathian et al., n.d.) 

bolds the importance of visual-tactile interactions. Therefore, cross-modal effect of visual and 

tactile modalities is expected to be relatively strong (Gentile, Petkova, & Ehrsson, 2011; 

Keetels & Vroomen, 2008; Ossandón, König, & Heed, 2015; Salzer, Aisenberg, Oron-Gilad, 

& Henik, 2014).   

Touch-vision interactions can be categorized into active or passive interactions, Figure 1. In 

the present work, active interactions refer to ones that involve some kind of perceptual learning. 



 10 

Perceptual learning can be an explicit cross-modal learning which is designed and encoded in 

the experiment instructions. Alternatively, it can be an implicit learning, like calibration, which 

emerges during the cross-modal interactions. Passive interactions refer to those tasks in which 

no or very little (non-significant) perceptual learning involve.  

 

Figure 1. Scope of cross modal interactions in different studies. In the passive interactions, no explicit learning process was 

involved, while in the active interactions, a learning effect was hypothesized and evaluated in the study.  

In the present study, we tried to cover both active and passive interactions by three experiments: 

multisensory perception (integration and calibration) in an environment of varying reliability, 

task-irrelevant cross-modal effect of tactile information on visual perception, and finally 

learnability and integration of novel tactile sensory experiences with existing visual sensory 

information. For each case a separate experiment was designed, and sufficient experimental 

data was collected. We statistically analyzed the experimental data and provided various 

computational models that explain the mechanism underlying the correspondence perception 

behavior.  

In the first study, we investigated the overall visual-tactile perception in a realistic environment 

of varying reliability information. The goal of this study was to study the multisensory 

perception in a realistic multimodal environment which covers the passive aspects of 

interactions across sensory modalities. However, we expect to observe a cross-modal 

calibration or adaption due to the discrepancy in the information. Therefore, the first study was 

designed to cover both passive and potential active interactions, Figure 1, green section. In the 

first part of the experiment, we studied the multisensory perception of visual and auditory 

information with a discrepancy among visual and auditory information. In the second part of 

the experiment, we added the tactile information to investigate the multisensory perception in 

presence of three modalities. The reliability of information varied in the visual and tactile 

modalities, allows us to study the effect of reliability condition on the perception. 

 

Cross-Modal 
Interactions 

Active Interactions Passive 
Interactions 

Learning Novel 
Concepts 

Sensory 
Calibration 

Multisensory 
Perception 

Irrelevant Task 
Effects 

First Study 

Third Study Second Study 
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In addition to the experimental results, rich simulations and modeling were provided that shed 

light on the mechanism and processes undelaying the experimental results. The multisensory 

perception models are usually proposed for up to two modalities. However, we provided an 

extension of multisensory models for three (and more) modalities to account for our 

experimental results.   

Covering both active and passive interactions might be closed to the real scenarios, and enables 

us to better generalize the results to daily perception activities. However, there are also 

important passive-only or active-only scenarios which we addressed in this thesis in two 

separate experiments.  

In the second study, we investigated the visual-tactile conflict task and proposed a multimodal 

diffusion model for conflict tasks (DMC). There are different types of conflict tasks such as 

Stroop task, Eriksen-Flanker task, and the Simon task. The main focus of the second study is a 

visual-tactile version of Simon task. In a traditional Simon task, the people are instructed to 

respond to a non-spatial attribute such as color or letter with a spatially defined target (usually 

left or right hand key press).  Although the spatial information is task-irrelevant, responses are 

faster and more accurate when both the stimulus and the response are on the same spatial side 

(congruent condition) rather than on different sides (incongruent condition). This study is 

actually a passive-only experiment in which the processing of simultaneous visual and tactile 

information is investigated. This study covers two important aspects: 1- whether and how 

strong is the effect of task-irrelevant tactile information (and also task-irrelevant visual 

information) on a visual perception task? 2- How a multimodal DMC model can address the 

cross-modal relations in a multi-modal conflict task? 

Unimodal DMC model suggests two parallel processes in a conflict task, an automatic process 

and a control process. The task-irrelevant information trigs an automatic process, while the 

control process accumulates task-relevant evidences. The DMC model shows that the decision 

process can be simply predicted by the superimposition of the automatic and the control 

process. In the second study, an extension of DMC model for multi-modal stimuli was 

proposed and a multimodal DMC with the same principles was suggested and fitted to the 

experimental results.  

The main focus in the final study of the thesis is the active interactions across visual and tactile 

modalities. Specifically, we investigated the explicit cross-modal learning of visual and tactile 

information. In this study, a custom vibrotactile device was utilized to provide novel tactile 



 12 

experiences (through novel tactile patterns) to participants. This study would address whether 

and how an artificial sensory feedback device can be integrated to the sensory and perceptual 

system of humans. Furthermore, it provides insights on designing and instructions of artificial 

sensory devices for real world applications.  

In the learning phase of the study, participants were exposed to simultaneous visual and tactile 

information and they were asked to learn the association between novel tactile stimuli and 

visual stimuli. In the evaluation phase, participants utilized the learned associations to respond 

to multi-modal or unimodal visual/tactile stimuli with different reliability levels. There were 

seven blocks of training-evaluation and the learning curve for different reliability conditions 

were statistically analyzed. We discuss and analyzed the integration-while-learning behavior 

for different reliability conditions. Furthermore, we provided two computational models that 

explains the integration of the artificial sensory device. One model is proposed based on the 

fusion of decisions and the alternative model is aligned with Bayesian integration of sensory 

information.  

  



 13 

Multisensory perception in an environment of 

varying reliability [Study 1] 

The first part of the present thesis addresses the multisensory perception of contradictory 

information from visual, tactile and auditory modalities in an environment of varying 

reliability. It is a general consensus when the information of various sensory modalities are 

congruent and synchronous (Atteveldt, Formisano, …, & 2006, n.d.; Navarra, Vatakis, 

Zampini, …, & 2005, n.d.) we benefit from a decrease in response time (Drugowitsch et al., 

2014; Rowland et al., 2007) an increase in reliability, and an increase in accuracy 

(Drugowitsch, DeAngelis, Angelaki, & Pouget, 2015; M. O. Ernst & Banks, 2002; Pouget, 

Beck, Ma, & Latham, 2013). Nevertheless, the incongruent information across different 

sensory modalities, may lead to a biased percept and more complex scenarios.  

It is not surprise if information from an artificial sensory feedback device is not well calibrated 

with other sensory modalities. It can specially happen at the beginning, when the sensory 

feedback device delivers new sensory experiences to users. Therefore, information from all 

sensory modalities, including sensory feedback device, is incongruent and maybe uncalibrated.  

Moreover, relative reliability of information across sensory modalities is a crucial factor in 

multisensory perception as well as multisensory calibration. Different reliability conditions 

might result in various perceptual behaviors and even some behaviors might emerge only in an 

environment of varying reliability. In order to understand mentioned cognitive aspects of an 

artificial sensory device, multisensory perception of incongruent information in an 

environment of varying reliability was studied. 

Multisensory causal inference and multisensory calibration  

Multisensory causal inference is an important sub process of perception specially in case of a 

discrepancy among the modalities. It predicts whether sensory inputs originate from the same 

cause or different ones (M. Ernst, integration, & 2011, n.d.; Shams & Beierholm, 2010). It has 

been reported that multimodal causal inference depends on temporal, spatial, contextual 

features of the stimuli (Woods, Lehet, & Chatterjee, 2012), and also prior knowledge and 

experiences (Roach, Heron, & McGraw, 2006; Vision & 2007, n.d.). The multisensory causal 
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inference usually conforms Bayesian rule (Körding et al., 2007), and aimed to minimize the 

error between true signal and the estimated one by perceptual system. 

In case of the inconsistent sensory information, the brain should find out whether the 

inconsistency is due to a systematic error in perceptual system or just inherited noise from the 

sensory systems. Some studies showed if the discrepancy is due to a systematic error, 

multisensory calibration can resolve the persisting discrepancy. In such case, cross-modal 

calibration increases the accuracy of the multisensory perception. However, conditions in 

which calibration takes place is not crystal clear. Indeed, multisensory causal inference and 

multisensory calibration processes are expected to be coupled and should be analyzed together 

(Körding et al., 2007). Only if signals are received from a same occasion, then calibration of 

those signals, with respect to each other, is reasonable. 

Interactions between multisensory integration process and cross-sensory calibration process is 

crucial to understand the mechanisms underlying the optimal multisensory perception. This 

becomes more relevant for real world applications which are often complex, with dynamic flow 

of information. Dynamic nature of real-world application might reveal behaviors which cannot 

be captured easily in restricted experimental environment. In order to reduce the gap between 

the experimental environment and a real environment, we should consider the effect of varying 

reliability sensory information on perceptual processes such as causal inference and calibration. 

This is particularly informative to find the required conditions for the calibration process and 

to study the elasticity of the multisensory calibration. Multisensory causal inference and cross-

modal calibration benefit from a history of observations (Körding et al., 2007; Vision & 2007, 

n.d.). We also plan to investigate the behavior of causal inference in an environment of varying 

reliability. Specifically, we want to study whether causal inference is independently processed 

for each reliability condition or whether the causal inference process considers all reliability 

conditions together. 

Varying reliability environment and perceptual strategies 

One of the goals we kept in mind during the experiment design was to reduce the gap between 

the experiment setup and the real-world conditions. Therefore, we designed the experiment in 

a way to include multiple reliability conditions and various modalities. We divided the 

experiment into three sections: visual-auditory section (Experiment 1.a), visual-tactile-auditory 

section (Experiment 1.b), and unimodal section (Experiment 1.c). We introduced various 
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reliability conditions for multisensory sections 1.b and 1.c in order to make the experiment 

more realistic. The trials of different reliability conditions were presented in random order. 

Figure 2 depicts the multisensory sections of the experiment and reliability conditions. 

Participants received two consecutive stimuli, and the task for participants was to choose 

whether the second stimulus was on the left or on the right side of the first stimulus.  

By embedding a cue conflict between different modalities, we investigated whether and how 

different modalities interacts with each other to solve the conflict and provide a coherent 

perception across multiple modalities. Visual-auditory stimuli had a spatial discrepancy with a 

conflict angle (Δ) of −4° in the experiment 1.a. Tactile vibration was also delivered 4 cm to the 

left of the audiovisual stimuli in experiment 2.a. 

We think that the cue-conflict was not too large, and therefore, participants would consider a 

common cause for information from different modalities at the beginning and would integrate 

the information. Over the course of the experiment, if participants find out the systematic 

repetitive discrepancy, they might alter their perceptual strategy. We expected three different 

perceptual strategy for the second half of experiments: (1) Participants do not capture the 

repetitive systematic discrepancy and therefore, continue to integrate the information. (2) 

Participants capture the systematic discrepancy but still infer the same cause for information 

from different modalities. They would go for a calibration strategy to resolve or reduce the 

discrepancy. (3) Participants capture the systematic discrepancy and infer different causes for 

information. In this case they would select the most reliable source of information. 

We have tested these hypotheses for different reliability conditions which we introduced in the 

experiment. Figure 2 shows the design of artificial sensory feedback device and the experiment 

procedure. We also modelled the experimental data using multisensory calibration and the 

multisensory causal inference models and some simulations. 
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Figure 2. Experiment and stimuli design. Top part of the figure shows the artificial sensory feedback device for the experiment 

while the bottom part depicts the experiment procedure and reliability conditions. Figure is reprinted from (M.-A. N. Mahani 

et al., 2017). 

Results and discussion 

The alteration of perceptual strategy can be assessed through analyses of point of subjective 

equality (PSE) between the first half and the second half of experiments. Shift of PSE towards 

visual, auditory, or tactile modalities indicates weighting of each modality in the integration. 

The data has been analyzed based on individual psychometric functions, which were fitted to 

for each reliability condition. 
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In experiment 1.a, subjects received stimuli with two reliability conditions:  

• HV-MA: High reliability Visual and Medium reliability Auditory stimuli. 

• LV-MA: Low reliability Visual and Medium reliability Auditory. 

All trials of two conditions were randomly mixed. We found out that the spatial perception was 

significantly shifted towards the auditory source in the second half of the LV-MA condition. 

However, the PSE in the HV-MA condition remained close to the visual stimuli. It suggests 

that changes in perceptual strategy are specific to different reliability conditions. Moreover, 

participants reported lower confidence for the LV-MA condition in compare to HV-MA. This 

can be considered as an evidence for the conscious perception.  

We extended the first experiment by adding the tactile stimuli in the second experiment and 

providing tri-modality information to participants. Obviously, the reliability conditions were 

also extended to three cases:  

HV-MA-LT: High rel. Visual, Medium rel. Auditory, and Low rel. Tactile condition.  

LV-MA-HT: Low rel. Visual, Medium rel. Auditory, High rel. Tactile condition.  

LV-MA-LT: Low rel. Visual, Medium rel. Auditory, Low rel. Tactile condition.  

The PSE was shifted towards tactile in the LV-MA-HT condition and therefore, showed a 

change in multisensory perception. A similar change was observed in HV-MA-LT condition. 

No significant change of PSE was observed for the LV-MA-LT condition, probably because 

the auditory was the most reliable modality in LV-MA-LT reliability condition and was not 

altered by touch/vision. The slope analyses of the unimodal Experiment (Experiment 1.c) 

supports this interpretation, see appendix paper for details. 

All findings were confirmed statistically, and details are provided in the paper, please see the 

appendix. Underlying processes of these behavior were further studied by modeling and 

simulation. We proposed an ideal observer model and performed sophisticated simulations. We 

tried to provide grounds for various perceptual strategies by jointly studying the causal 

inference and calibration processes. The model is designed to minimize the overall perception 

error across all reliability conditions. 
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Figure 3. PSE variation and confidence changes between the first and the second half of experiments. (A) and (B) show the 

PSE alterations while (C) and (D) depict the confidence changes. See paper for more details. Figure is reprinted from (M.-A. 

N. Mahani et al., 2017) 

Perceptual conflicts are the source of some misperceptions, however, they can also initiate 

perceptual learning processes in the brain. Some studies reported that cross-modal calibration 

processes initiated conflicts (Van der Burg, Alais, & Cass, 2013; Wozny, Neuroscience, & 

2011, n.d.; Zwiers, Opstal, neuroscience, & 2003, n.d.).  

We simulated the perception in the presence of conflict stimuli in an environment of varying 

reliability. Specifically, we simulated three possible multimodal perception strategies and 

mechanisms which could potentially account for PSE shifts: Collaborative calibration, 

Modality Dominant (MD) calibration, and selection, please see Figure 4.  
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Figure 4. Simulation of different perception strategies under different reliability conditions. Figure is reprinted from (M.-A. 

N. Mahani et al., 2017) 

We can shed light on perceptual strategies, which were taken by participants, by corresponding 

the PSE shifts between simulations and experimental observations.  

By associating the result of Experiment 1.a with the possible simulated strategies, it seems that 

the perceptual strategy in this section is shifted from integration toward selection strategy; PSEs 

shifted toward the most reliable source of information. This indicates that, even if participants 

start with integration behavior, calibration is not the only strategy for resolving/reducing the 

cue conflict. Actually, under certain reliability conditions, participants might prefer taking the 

selection strategy instead of performing a cross-modal calibration. We have further 

investigated the mechanism underlaying this behavior by modeling the causal inference in 

varying reliability conditions. Please see the paper for more details.  

Associating the result of experiment 1.b with the possible simulated strategies showed that 

participants took MD calibration strategy to resolve/reduce the cue conflict in this section of 



 20 

the experiment. Specifically, the result revealed that touch calibrated vision, and therefore 

visual spatial perception was shifted toward the source of tactile information. That is why even 

the high reliability visual condition (HV-MA-LT) shifted toward the tactile source of 

information. This type of dominant calibration is also consistent with previous reports (Gori, 

Sciutti, Burr, & Sandini, 2011). 

We provided causal inference modelling and quantitative comparison of all models with 

experimental results in appendix.  
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Multimodal Simon effect: A Multimodal Extension of 

the Diffusion Model for Conflict Tasks [Study 2] 

In our daily life, we sometimes suppress irrelevant information and focus only on task-relevant 

information to improve our efficiency. These situations, where there are task-irrelevant and 

task-relevant information at the same time, are addressed as conflict tasks. There are several 

well-known and standard examples for conflict tasks such as the Simon task and the Stroop 

task (J Richard Simon & Wolf, 1963; Stroop, 1935). In our second study we focused on Simon 

task and investigated the passive interactions of visual-tactile and visual-auditory information. 

Having both visual-tactile and visual-auditory experiments would allow us to compare the 

multisensory interactions for different combination of modalities. We can therefore investigate 

whether multi-modal interactions are subjected to specific combination of modalities or 

whether the same interaction behavior can be emerged from other combination of modalities. 

In the standard Simon task, participants are asked to respond to a non-spatial attribute of the 

stimulus (e.g. color) with a spatially coded response key (e.g. left or right). In this experiment, 

spatial information is considered as task-irrelevant information and the non-spatial attribute 

would be the task-relevant information. Surprisingly, the findings showed that participants 

cannot suppress the task irrelevant information. Both the reaction time (RT) and the perceptual 

error can be influenced by task-irrelevant information. Specifically, when the visual stimulus 

is presented at the same spatial side as the response key, then the perception is faster and more 

accurate in comparison with having stimulus and response key on different spatial sides.  

This finding is not only limited to visual perception, but also has been observed in other 

unimodal perceptions like auditory and tactile. Even the task irrelevant information from a 

modality can influence the perception of another modality. E.g. the auditory information can 

affect the reaction time of a visual perception task (Donohue, Appelbaum, Park, Roberts, & 

Woldorff, 2013; J R Simon & Craft, 1970). Similarly, a cross-modal effect of conflictual 

information has been observed for visual-tactile perception (Kennett, Eimer, Spence, & Driver, 

2001; Poole, Couth, Gowen, Warren, & Poliakoff, 2015; Spence, Pavani, & Driver, 2004; Yue, 

Bischof, Zhou, Spence, & Röder, 2009). Despite of many researches, the findings are still 

limited to a single source of task irrelevant information; we addressed this limitation in our 

second part of the thesis. 



 22 

Diffusion model for conflict tasks (DMC) 

Computational models underlaying this behavior suggest that two separate processes acts 

simultaneously on input stimulus: a Controlled process and an automatic process. The 

controlled process is responsible for accumulating the task relevant information. Meanwhile, 

the automatic process works on task irrelevant information. In a recent study, an elaborated 

diffusion process model for conflict tasks (DMC) (Ulrich, Schroter, Leuthold, & Birngruber, 

2015)was suggested. DMC is introduced on top of the standard diffusion models where a 

decision process accumulates noisy decision relevant information until one of two decision 

boundaries is hit (R Ratcliff, review, & 2004, n.d.; Roger Ratcliff, 1978; Stone, 1960). DMC 

extends this model by superimposing a second short-lived process, aka automatic process, for 

task-irrelevant information. The rest is the same, the superimposed activation accumulated both 

the controlled and automatic processes until it hits a decision boundary. DMC can reasonably 

predict the conflict tasks and has been successfully linked to neurophysiological findings 

(Servant, White, Montagnini, & Burle, 2016). 

The present study extends the DMC to support the conflict tasks with two task-irrelevant 

information sources. Thus, we designed two Simon task experiments, a visual-tactile Simon 

task and a visual-auditory one. In both experiment both modalities provided task irrelevant 

information. The relevant task was the visual perception of non-spatial attribute, while 

simultaneous spatial task irrelevant information was presented from both modalities.    

Experiments 

As the main focus of the present thesis is visual-tactile interactions, we firstly extended the 

Simon task to a visual-tactile Simon Task. In this experiment task irrelevant information was 

delivered by tactile and visual modalities. The main task for participants was to respond to the 

non-spatial attribute of a visual stimulus with a left/right located key. More specific, 

participants had to respond to the stimulus letter “H” or “S” with left or right key. At the 

beginning of the experiment they received an instruction that explained them how left/right key 

is associated with “H” and “S” letter. The association was fixed for each participant during the 

experiment, but varied participants. The letter stimulus was accompanied by a vibrotactile 

stimulus. The location of both stimuli varied across three predefined positions on right, at 

center, and on left side; Combination of both stimuli and three locations resulted is nine 

congruency conditions. Please see Figure 5. 
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Figure 5. (A) Experimental setup for visual-tactile Simon task. (B) Time course of a trial. The figure is reprinted from (M.-A. 

N. Mahani, Bausenhart, Ahmadabadi, & Ulrich, 2019) 

Figure 6 depicts the result of the both visual-tactile experiment (top row) and visual-auditory 

one (bottom row). RT was significantly affected by both visual congruency condition and 

tactile congruency condition. Surprisingly, out further analyses showed that the difference 

between the effect of visual neutral and the effect of visual congruent is not meaningful. 

Although tactile irrelevant information influenced the RT, there is clearly no difference 

between tactile neutral and tactile incongruent conditions.  

As it can be seen in Figure 6, the effect of both visual congruency and tactile congruency on 

mean response error was significant. Similar to RT, the difference between the visual neutral 

and the visual congruent condition was not meaningful. But, in contrast to RT, the difference 

between tactile congruent and tactile neutral conditions was not meaningful. Please see the 

paper in the appendix for statistical details and analyses for these findings as well as for 

distributional reaction time and conditional accuracy functions. In general, the first experiment 

revealed that tactile information, even as a second source of irrelevant information, can alter 

the perception of visual information in terms of reaction time and response errors. However, 
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effect of tactile information was not exactly the same on RT and response error. We provided 

more insight in this regard in discussion and modeling sections, please see the appendix.  

Figure 6. Reaction time (in ms) and mean percentage of response errors in Experiment 1 as a function of visual/tactile 

congruency. The figure is reprinted from (M.-A. N. Mahani et al., 2019) 

We designed and conducted a second experiment by replacing the tactile modality with the 

auditory one. The second experiment was motivated by two factors: first, we wanted to 

investigated whether the effect of cross-modal task irrelevant information on visual perception 

is exclusively valid for tactile modality or it can be observed for other modalities as well. 

Literature supports the strong effect of touch on vision, but the effect of auditory on vision is 

not always strong and is rather limited to specific conditions. Secondly, the second experiment 

would enable us to evaluate our proposed computational model, multimodal DMC, for another 

combination of modalities rather than visual-tactile. Multimodal DMC is introduced later in 

this thesis and also in the paper in details. In the second experiment, the effect of task-irrelevant 

auditory stimulation on performance of visual perception was assessed. Similar to the first 
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experiment, the results for reaction time, response errors, distribution of the reaction time, and 

conditional accuracy functions were statistically analyzed and details are available in the paper.  

Our analyses showed the effect of visual congruency on RT was again meaningful while 

auditory congruency had only a mild effect on RT. Similar to the first experiment, the 

difference between visual neutral and visual congruent conditions was neglectable. Analyses 

of response errors showed a significant effect of visual congruency on response errors. 

However, the effect of auditory congruency was not significant. In general, the results indicated 

a weak effect of task-irrelevant auditory information on visual performance in comparison with 

the effect of task-irrelevant tactile information. As it can be seen in Figure 6, tactile congruency 

conditions in visual-tactile experiment is clearly distinguishable. However, auditory 

congruency conditions have a huge overlap and it is hard to observe a clear effect of auditory 

congruency condition.  

Considering both experiments together, task irrelevant visual information had a meaningful 

effect on both RT and response error of the visual perception. In both experiments and for both 

RT and response errors, the difference between visual congruent and visual neutral condition 

was not meaningful, but visual incongruent condition had a higher RT and a worse response 

error. This finding was robust and was replicated in both experiments. It has been reported that 

the visual perception benefits from faster retinal processing at the center of field of view (FOV),  

in comparison with a stimulus on the left or right side (Osaka, 1976). This might justify why 

the visual neutral and visual congruent conditions had similar effect. Visual neutral condition 

can benefit from faster retinal processing and results in similar effect as visual congruent 

condition. This assumption will be investigated in modelling section.  

Nevertheless, tactile and auditory revealed various effects on visual perception. In general, 

tactile congruency effect on visual RT and response error was meaningful while auditory 

congruency had a weak effect on RT and no effect on response error. This is consistent with 

the previous findings which show the dominant of vision over auditory in processing the spatial 

information. All in all, we can order the effectiveness of various irrelevant information on 

visual perception as follow: Visual irrelevant information > Tactile irrelevant information >> 

auditory irrelevant information.  

MultiModal DMC model 
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The multimodal DMC is proposed based on the DMC (Ulrich et al., 2015). In accordance to 

the DMC, we considered the total reaction time as sum of a decision process (D) and a residual 

process (R), RT = D+R. Residual process is all other processes rather than the decision process. 

DMC models the decision process as a standard Wiener diffusion process. At each time stamp 

t, the decision process, X(t), is defined as superimposition of a controlled process, Xc(t), and an 

automatic process, Xa(t). DMC assumes that the controlled process and the automatic process 

are processed independently and in parallel. Similar to the original diffusion model, the 

decision process accumulates the information until it reaches one of the decision boundaries, -

b or b. We formulated the controlled process, Xc(t), at each time stamp t as the following 

differential equation: 

𝑋!(𝑡 + ∆𝑡) = 	𝑋!(𝑡) +	𝜇!(𝑡) ∙ 	∆𝑡 +𝑊!(𝑡) ∙ 𝜎! ∙ √∆𝑡 (1) 

Wc(t) is the standard Wiener diffusion process with mean = 0, and variance = 1.0, and  σc is the 

diffusion constant. μc(t) denotes the drift rate of the controlled process, μc(t) = μc. We similarly 

formulated the automatic process as follow: 

𝑋"(𝑡 + ∆𝑡) = 	𝑋"(𝑡) +	𝜇"(𝑡) ∙ 	∆𝑡 +𝑊"(𝑡) ∙ 𝜎" ∙ √∆𝑡 (2) 

The time course of an automatic process, Xa(t), is modeled as a pulse-like rescaled Gamma 

distribution with fixed shape parameter a = 2 and the free scale parameter τ. Please refer to the 

appendix for more details.  

The original DMC assumes the decision process as sum of only one automatic process and one 

controlled process, X(t) = Xc(t)+Xa(t). Multimodal DMC (MDMC) extends the DMC by making 

the genuine assumption of DMC more general. Specifically, MDMC allows the 

superimposition of more automatic processes and consider each automatic process as an 

independent and parallel process to the others, X(t) = Xc(t)+Xa1(t)+Xa2(t). Of course this 

assumption was evaluated by the two experiments which were explained in previous section.  

Figure 7 exemplifies how MDMC considers the interactions of a control and two automatic 

processes. In this example the expected values of the decision process E[X(t)] (blue line), the 

controlled process E[Xc(t)] (red line), and two automatic processes E[Xa1(t)], E[Xa2(t)] (black 

and green lines) are plotted. The effect of different combination of congruency conditions on 

decision process is depicted in four cases. We also assumed that the neutral automatic process 

does not affect the decision process.  
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Figure 7. An exemplary illustration of multimodal DMC. The figure is reprinted from . 

As it was mentioned in previous section, the visual neutral condition might benefit from a faster 

retinal processing. Therefore, we considered two variants of MDMC, the first one is the 

genuine MDMC, as is described so far. The second variant considers a faster process of 

information for neutral visual condition. We named the second variant as FN-MDMC (Faster 

Neutral Visual Multimodal DMC).  

MDMC was fitted using the similar method described in (Hübner, 2014) and also (Servant et 

al., 2016). Since the data of individual participants are typically noisy, we fitted the model to 

the averaged data of all participants and consider this fitting for further analyses. However, the 

results of individual model fits are available in the supplementary document of the paper. 
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Figure 8. Modelling result of CDFs and CAFs for both experiments. Red lines show the model predictions while the blue dots 

are the experimental data. The figure is reprinted from (M.-A. N. Mahani et al., 2019) 

 



 29 

Figure 8 depicts the results for both cumulative distribution functions (CDFs) and Conditional 

accuracy functions (CAFs). Our genuine MDMC fits reasonably the experimental data, 

however, FN-MDMC provides slightly better fits than MDMC. In a Simon task, usually we 

observe more errors for faster RTs, and it can be also observed in the incongruent visual 

conditions in our experiments. Modelling results confirm that MDMC could capture this 

pattern relatively well. The fits of MDMC and FN-MDMC were compared using the paired-

sample permutation test across simulated G2 and BIC values. Please see the paper and 

appendix for the estimated parameters and model comparison. 

Discussion 

The present study extends the classical Simon task by considering an additional source of task 

irrelevant information from a second modality; We studied the effect of additional tactile 

irrelevant information in Experiment 1 and additional auditory irrelevant information in the 

Experiment 2. Both experiments were theoretically motivated by MDMC, an extended version 

of DMC. MDMC keeps the genuine assumption of DMC, which is the independent process of 

information. i.e. MDMC assumes that the irrelevant information from various modalities are 

independently processed and therefore, the effect of one modality does not influence the effect 

of another modality. MDMC could reasonably predict the experimental results in both visual-

tactile and visual-auditory experiments.  

Similar to the previous studies, the results of both experiments revealed the meaningful effect 

of task irrelevant visual information on RT and response errors, like as in the classical Simon 

effect. Beside the effect of task irrelevant visual information, we also studied the effect of 

second task irrelevant information. Our findings of the first experiment showed that tactile 

irrelevant information could meaningfully affect the RT and response error of visual 

perception. However, findings of the second experiment revealed that auditory irrelevant 

information, in presence of the visual irrelevant information, had a weak effect on RT and no 

effect on response error of visual perception. Considering all results together, one can conclude 

that the visual irrelevant information had a strong effect, tactile irrelevant information had a 

mild effect, and auditory irrelevant information had almost no meaningful effect on processing 

of task relevant visual information.    

Although many studies reported the effects of task-irrelevant information on non-visual 

decisions, to the best of our knowledge, no one studied the effect of simultaneous task irrelevant 
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information from both tactile and visual sources on non spatial visual perception. The result of 

the first experiment was consistent with previous studies and our expectations, since the strong 

cross-modal interactions of touch on vision was already reported in many studies. However, 

we were not expected such weak effect of irrelevant auditory information. Indeed, some of the 

previous studies reported the meaningful effect of irrelevant auditory information on visual 

perception in the context of Simon task (J R Simon & Craft, 1970). Nevertheless, in that 

experiment auditory was the only one source of irrelevant information, whereas in our setup, 

we had two source of irrelevant information, auditory and visual. By looking at the studies in 

which simultaneous spatial visual and spatial auditory information are processed, we came 

across similar and consistent findings (Bertelson & Radeau, 1981; Howard & Templeton, 1966; 

Welch & Warren, 1980). In fact, the effect of auditory irrelevant information on visual 

perception is expected to be very weak, when it is accompanied by irrelevant visual 

information. 

We proposed and fitted the MDMC, an extension of DMC, to the experimental data. Despite 

genuine MDMC fitted the observed RT data and response errors reasonably, it was suboptimal 

with regard to the neutral conditions, probably because the model did not support the 

contribution of faster foveal processing for neutral conditions. Therefore, the model fit was 

improved by the FN-MDMC, which considers a potential speedup for central (neutral) visual 

stimuli. FN-MDMC addresses differences in processing latency/duration for different stimulus 

locations, but retains our genuine assumption that automatic activation from multiple task 

irrelevant source of information may act independently and overlap controlled process.  
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Learning how to integrate an artificial sensory device 

[Study 3] 

Introduction 

In everyday life, we perceive our complex environment through our multisensory input. The 

lack or degradation of inputs can significantly decrease the accuracy of perception. Artificial 

sensory devices are designed to partially compensate the lack of a sensory modality (Abboud, 

Hanassy, Levy-Tzedek, Maidenbaum, & Amedi, 2014; Maidenbaum, Abboud, & Amedi, 

2014) , or to improve perception by providing complementary and processed information 

(Shull & Damian, 2015). Therefore, it is important to investigate whether and how an 

artificially sensory device can be learned and integrate to our multisensory perception system. 

In the last study of the present thesis, we explicitly imposed a cross-modal visual-tactile 

learning and investigated how integration behavior might evolve over the course of learning. 

We designed and utilized a custom artificial sensory device to present vibrotactile stimuli to 

participants. In general, this experiment covers mainly the active interactions of visual and 

tactile modalities and completes the sequence of studies we considered for the thesis. 

Invasive artificial sensory systems affect directly the neuronal system (Collins et al., 2017) and 

lead to optimal integration of multisensory information (Dadarlat, O’doherty, & Sabes, 2015). 

However, non-invasive sensory devices are a better alternative because they are well-

developed and more appropriate (and affordable) for realistic applications. Even though, many 

studies investigated the technological aspects of non-invasive devices such as wearable devices 

(Iqbal, Aydin, Brunckhorst, Dasgupta, & Ahmed, 2016; Mukhopadhyay, 2015; Son et al., 

2014), the cognitive aspects are less studied. Particularly, it is yet open how we utilize input 

from a non invasive artificial sensory system and if we can integrate it into our multisensory 

perception.  

Many studies have been previously reported that humans optimally integrate multiple sensory 

inputs, that leads to a significant increase in accuracy and reliability of perception (Butler, 

Smith, Campos, & Bülthoff, 2010; Drugowitsch, DeAngelis, Angelaki, Elife, et al., 2015; M. 

Ernst, Nature, & 2002, n.d.; Pouget et al., 2013). The majority of studies have assessed the 

multisensory integration only for well-experienced sensory information. Among the rare 

studies which investigated the novel artificial sensory devices, Dadarlat et al. showed that 
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unfamiliar multichannel intracortical microstimulation (ICMS) signals and proprioceptive 

input could optimally get integrated in monkeys. However, this issue has not been addressed 

for non-invasive artificial devices.  

We addressed this question by investigating the cross-modal learning and integration of a 

custom designed wearable device and visual information. Figure 9 depicts the procedure and 

setup of our experiment. We designed the visual stimulus as a set of motion dots and the tactile 

stimulus was a unique pattern of vibrations. The experiment had seven blocks of training and 

evaluation.  

Each block of the experiment starts with a training phase. In each training trial, a set of moving 

dots and a unique vibro-tactile pattern were presented to participants. Tactile patterns were free 

of any directional movement but were associated to a specific direction of dot motion during 

the course of experiment. Participants were explicitly asked to learn the associations as best as 

they could. In each trial of the evaluation phase, either a unimodal visual/tactile stimulus, or a 

multimodal stimulus was presented. Participants had to perceive and decide on the direction of 

movement from either the motion dots, or the associated tactile stimulation, or both stimuli in 

case of the multimodal stimuli. They also reported their confidence in their decisions. The 

visual stimulus had a constant reliability only in training phase whereas the reliability of tactile 

stimulation was constant in both training and evaluation phases. In the evaluation phase, we 

controlled the reliability of visual stimulus in three levels of low, medium and high for both 

uni-visual and visual-tactile conditions.  
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Figure 9. Experimental setup, stimuli design, and learning procedure of the third study. This figure is reprinted from (M. N. 

Mahani, Bausenhart, & Ulrich, 2020) 

Experimental Results 

We analyzed the accuracy of perception in all reliability conditions across all learning blocks 

(Figure 10). The results revealed that the novel vibrotactile patterns were efficiently learned 

and associated with the moving direction of corresponding visual stimuli.  

 

Figure 10. Perception accuracy in all reliability conditions over the learning process. Tactile is replotted for the sake of clarity. 

The figure is reprinted from (M. N. Mahani et al., 2020)  

Our statistical analyses showed the significant effect of learning block and reliability condition 

on accuracy of perception (see paper for more details). This means first our control of reliability 

was successful and secondly learning happened over the course of blocks. To understand 

further the learning of the novel artificial sensor and its possible integration with our visual 

perception, we statistically analyzed each reliability condition. For the low reliability condition, 

the effect of both modality and block was significant. The results also showed the dominance 

of tactile stimulation in visual-tactile perception, which was expected because the reliability of 

visual information is very low in this condition. For the medium reliability condition, similar 

to the low reliability condition, the effect of both modality and block was significant. However, 

our further analyses of medium reliability condition revealed an interesting finding. Perceptual 

accuracy of visual-tactile exceeded the accuracy of both unimodal stimuli in some of the 

blocks. This points to a potential interaction of visual and tactile information for boosting the 

perception, even from the early blocks. 
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The accuracy of visual-tactile perception in high reliability condition, shows clearly the mutual 

contribution of both visual and tactile information. It is obvious by the intermediate accuracy 

of visual-tactile perception, which lies between the accuracies of visual and tactile unimodal 

perceptions. This finding, surprisingly, suggests that the visual and tactile information are 

likely integrated from the beginning of learning, despite of the decreased performance in 

comparison with the unimodal visual condition. See appendix for post-hoc and statistical tests. 

Modeling 

In order to understand the mechanisms behind the learning of our artificial sensory device and 

its integration to our multisensory perception, we proposed and investigated two computational 

models. The first proposed model assume a decision integration process whereas the second 

model focused on Bayesian model of sensory integration. A numeric comparison of both 

models in terms of BIC is also provided. 

Decision Integration Model 

Before jumping into the proposed model for the fusion of the decisions, we introduce a type of 

confusion matrix that is calculated by the confidence reports.  This confusion matrix, which we 

called Confidence Confusion Matrix, is required for the decision integration model.  

Confidence Confusion Matrix 

We extended the normal confusion matrix to second order judgments, which is self-reported 

confidence in decisions.  When a participant reports a confidence for a decision, the confidence 

reports, which is kind of meta information, can be exploited to compute the meta-accuracy 

(type II accuracy). A confidence confusion matrix (𝐶𝐶𝑀) is defined similar to confusion matrix 

as follows: 

𝐶𝐶𝑀 = $
𝐶!,! ⋯ 𝐶!,#
⋮ ⋱ ⋮

𝐶#,! ⋯ 𝐶#,#
( (3) 

𝐶$,% is sum of confidence values for decision , where a ground truth signal 𝑖 has been 

precepted as signal 𝑗. Meta-accuracy is defined on top of CMM as follows: 

𝑀𝑒𝑡𝑎𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ '!,#$
!%#%&

∑ ∑ '!,#$
#%&
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  (4) 
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Meta-accuracy reflects the performance of the participants, by weighting the decisions with the 

confidence reports associated to those decisions. High confidence hits boost the meta-accuracy 

more than low confidence hits. Similarly, low confidence mistakes are not as bad as high 

confidence mistakes. CCM can be seen as a general representation where the normal confusion 

matrix is a sub-form of that with only one level of confidence. 

 
Decision policy 

In our decision fusion model, we assumed that the model can only access the first and second 

order decisional information, which are the decisions and the confidence reports. Considering 

that perceptual decisions come from only two modalities, we would have two separate CCMs, 

𝐶𝐶𝑀( and 𝐶𝐶𝑀). CCM is actually a table with decision-value pairs. The value of each 

decision in this table is an internal estimation obtained from confidence reports. An intuitive 

method for decision making in a multimodal setup, with multiple CCMs, is to choose the 

highest confidence ratings. Therefore, we defined Max_CCM, which selects, for each cell (i, 

j), the max value from the two confidence confusion matrices,  

𝑀𝑎𝑥_𝐶𝐶𝑀$,% = max	9𝐶𝐶𝑀$,%
( , 𝐶𝐶𝑀$,%

) ; (5) 

Assuming Max_CCM shows the values of all decisions, we have investigated two decision 

making policies: linear decision making and parametrized softmax decision making. Please see 

the paper and appendix for more details and formula of decision-making policies.  

If an agent chooses the linear policy, the perceptual accuracy is equivalent to the meta-accuracy 

obtained from the Max_CCM. The top rows of Figure 11 shows the result of the ideal linear 

decision maker. The model can successfully explain the accuracy of visual-tactile perception 

in the first blocks. Nevertheless, it fails to fit the experimental results in the last blocks and 

systematically underestimates the accuracy of visual-tactile perception. We provided more 

insight into this systematic underestimation in the paper and appendix. 

We proposed a second variant of the model, parametrized softmax model, to address the 

systematic underestimation issue. This model is inspired from temperature scaling confidence 

calibration method as well as from softmax models of decision making (Cooper et al., 2014; 

Daw, O’doherty, Dayan, Seymour, & Dolan, 2006; Reverdy & Leonard, 2016). Please refer to 

the paper and appendix for more details and formula of this model.  
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Figure 11. Linear and softmax decision integration models. The top figure depicts the linear model whereas the below one is 

the softmax model. 

Figure 11 depicts and compare both the linear decision-making policy and the softmax decision 

making policy. The linear ideal observer model predicts reasonable only in the first blocks 

whereas the softmax model performs better on average and in all blocks. Both models do not 

consider a selection or a weighted combination of inputs, rather a simple integration of 

decisional information. Despite of this limitation, both models could reasonably capture the 

complex pattern of experimental results. Both models can successfully capture some surprising 

patterns. One of the surprising patterns can be observes in medium reliability condition, second 

and third blocks, where the accuracy of visual-tactile condition is higher than both unimodal 

accuracies. As another example, both models are able to capture the accuracy of visual-tactile 

perception in the first blocks of high reliability condition, where it resides between the 

accuracies of the unimodal conditions. 

Nonetheless, the model fits also revealed the weakness of linear ideal observer; Specifically, 

model predictions are not adequate in the second half of the experiment, where the systematic 

underestimation is clearly an issue. This underestimation can happen because of a gradual 

alteration in the mechanism underlaying the fusion across multiple source of information. By 

gaining more experiences in novel tactile patterns, the perception strategy can shift from a 

decision fusion towards a multisensory integration. We propose a Bayesian multisensory 



 37 

integration model to investigate the possible gradual shift of perception strategy towards the 

multisensory integration.  

Multisensory Integration Model 

We assessed whether and how the Bayesian model can explain the behavior of visual-tactile 

perception. We assumed that the reliability of perception is represented by the angular distance 

between the ground truth direction and the chosen direction by participants. If the dots move 

in direction 𝛼 and while direction 𝛽 is selected, then we defined the perceptual reliability as 

follows: 

𝑑*(𝛼, 𝛽) = 𝑐𝑜𝑠+!9𝑠𝑖𝑛(𝛼) ∙ 𝑠𝑖𝑛(𝛽) + 𝑐𝑜𝑠	(𝛼) ∙ 𝑐𝑜𝑠	(𝛽);  (6) 

𝑟,- = 𝜋 − 𝑑*(𝛼, 𝛽) (7) 

𝑑*(𝛼, 𝛽)	is the angular distance between 𝛼 and 𝛽, with an upper limit of 𝜋, and 𝑟,- is  defined 

as the reliability of perception. This definition indicates a less reliability of the perception for 

a high angular distance.  

We utilized the concept of confusion matrix to predict the accuracy of visual-tactile perception, 

this time in accordance with the by Bayesian principles of sensory integration. We defined an 

integrated Bayesian confusion matrix as the weighted sum of unimodal confusion matrices. 

Obviously, the weight of each unimodal confusion matrix was defined as based corresponding 

relative perceptual reliability. 

As it can be observed in Figure 12, the predicted accuracy by the Bayesian model is closed to 

the observed accuracy of the visual-tactile modality for the medium and high reliability 

conditions. This is especially prominent in the last 3 to 4 blocks. Nevertheless, the model 

behaves differently in the low reliability condition and suggests a selection behavior, because 

the predicted accuracy of the visual-tactile condition follows the observed unimodal tactile 

accuracy.  
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Figure 12. Predicted accuracy of perception by Bayesian sensory integration model. This model was fitted to each individual 

subject. The figure is reprinted from (M. N. Mahani et al., 2020). 

The proposed Bayesian model could explain well the perceptual accuracy of last blocks in 

medium and high reliability conditions. Nevertheless, it almost failed to predict the perceptual 

accuracy of visual-tactile in the first blocks, whereas the linear decision fusion model could 

reasonably predict the accuracy. This shows the complementary predictions of linear decision 

fusion model (first blocks) and Bayesian sensory integration model (last blocks), and supports 

the gradual shift of perception strategy from decision fusion towards the multisensory 

integration. Please see the appendix and paper for statistical comparison of all proposed 

models. 

Discussion  

In the third study we investigated how a novel non-invasive artificial sensory system can be 

learned and possibly integrated within the human multisensory system. Our findings revealed 

that the perceptual accuracy of unimodal tactile condition raised over the course of the 

experiment, showing that participants successfully learned tactile patterns. Surprisingly, from 

the very beginning of the training, participants could integrate the information of novel 

artificial device into the visual-tactile perception, even though the accuracy of tactile modality 

was lower than the visual modality. The integration behavior can be clearly observed in the 

medium and high visual reliability conditions. Nevertheless, tactile was the dominant modality 

in the low reliability condition, and the perception strategy was selection of tactile rather than 

integration. 

We proposed two computational models to shed light on mechanism underlying the perception 

and integration of our novel sensory device. The first model was based on the fusion of the 
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decisions and predicts the accuracy of visual-tactile perception by only accessing to the 

decisional information of unimodal perceptions, which are first order decisions and confidence 

reports. The second model was a Bayesian integration model which combines the sensory 

inputs in accordance with their reliability on a pre-decisional processing level. The second 

model considers a simple decision process on top of the integrated sensory signal. 

The proposed decision fusion model interprets the confidence ratings as the estimation of 

decision values, and finds a policy that predicts well the observed data. We proposed a linear 

decision-making policy as well as a parametrized softmax decision-making policy. The linear 

model reasonably fitted the data only in the first half of the experiment. However, it 

underestimated accuracy in the second half of the experiment. To address this issue, we propose 

a new decisions-making policy with more degree of freedom: parametrized softmax policy with 

the linear equation parameter. The model with parametrized softmax policy could adequately 

fit the observed data in all training blocks. Both decision fusion models suggest that confidence 

reports are a decent representation of decision values. The gap between the two policy variants 

point to a possible gradual alteration of perception mechanism over the course of training. We 

addressed this possible alteration by exploiting a Bayesian model of sensory integration. The 

Bayesian model could reasonably fit the observed data in the second half of the experiment, 

complementary to the linear decision fusion policy. The complementary fits of both models 

support the gradual alteration of perception mechanism over the course of the learning.   

All in all, the third study shows that participants incorporated and integrated symbolic tactile 

information to improve the accuracy of perception. Participants rely on a linear decision 

integration process during the initial learning phases, whereas in later phases they shift to 

Bayesian integration behavior. 
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General Discussion 

We live in a complex and multimodal environment, where our evolved multisensory system 

allows us to optimally perceive it. With the advance of technology and rapid dynamics of our 

life habits, artificial sensory systems, such as wearable devices and sensory substitution 

systems, are becoming a part of our daily life. In the present thesis, we studied the interactions 

of tactile and visual sensory modalities with a major focus on tactile information generated by 

an artificial sensory feedback device. We believe that studying how such novel artificial 

systems are perceived by human is of great interest to scientists and engineers. 

The thesis was organized in three studies in order to cover both the active and passive 

interactions of visual and tactile modalities. We addressed different aspects of visual-tactile 

interaction, with the minimum overlap across our studies. This diversity would help to acquire 

a broad vision of cognitive aspects of artificial devices, and their interactions with the visual 

sensory system.   

The first study investigated the visual and tactile interactions in a realistic environment with 

varying reliability information. This study focused on the integration and calibration of visual 

and tactile modalities and covers the passive and potential active interactions. Our results show 

that we use different perception strategies to resolve conflicts in information. We found that 

participants started the integration strategy, however, they later adapted their perceptual 

strategy to selection or calibration in order to overcome the conflict. A comprehensive 

simulation allowed us to map the experimental results to appropriate perceptual strategies. We 

modeled the perceptual behavior and provided an ideal observer model that sheds light on the 

rationale for using different strategies. Our modelling revealed that causal inference in an 

environment of varying reliability depends on the amount of discrepancy as well as the relative 

reliability of stimuli across sensor modalities. Since the amount of discrepancy was constant 

across experiments, the reason behind taking different strategies is the difference in relative 

reliability across experiments. Moreover, we assessed the participants’ awareness by analyzing 

the confidence reports in their judgments. Results show they performed better in high 

confidence situations than in the low confidence situations, which is an evidence for conscious 

perception. Interestingly, our findings show that participants did not change their confidence 

when they shifted from the integration behavior to the selection one. In contrast, they altered 

their confidence when they took calibration strategy and calibrated their modalities. 
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The second study of the thesis focused on the interactions of irrelevant cross-modal 

information. Specifically, we investigated the effect of task-irrelevant tactile/auditory 

information on processing of visual information. Introducing a novel artificial sensory device 

to some of our daily tasks, might cause some unwanted effects on other irrelevant tasks. This 

is thus important to investigate whether and how far could be the effect of such artificial sensory 

devices on cross-modal irrelevant tasks. On the other hand, the study was theoretically 

motivated by an extended version of DMC, which we called Multimodal DMC or MDMC. We 

extended the classical unimodal Simon experiment, which is a well-known task-irrelevant 

example, to a visual-tactile (experiment 1) and a visual-auditory (Experiment 2) Simon 

experiments.  

The results of both experiments revealed the classical Simon effect, which is the effect of task 

irrelevant attribute of visual stimuli on response error and reaction time of visual perception. 

Furthermore, the effect of task irrelevant tactile information on response error and reaction time 

of visual decisions was significant in the visual-tactile experiment. In the visual-auditry 

experiment, the task irrelevant auditory stimuli could weakly affect the reaction time of visual 

perception, but not the response errors. The unreliable effect of auditory information on visual 

decisions was slightly unexpected. Nonetheless, other studies already found the insufficient 

effect of task irrelevant auditory stimuli on visual perception where both visual and auditory 

information are presented together.  

Our proposed MDMC model, which is the multimodal extension of DMC model, fitted 

reasonably the experimental data in both visual-tactile and visual-auditory experiments. We 

further extend MDMC to the FN-MDMC (Faster Neutral MDMC), which was motivated by 

considering faster responses in experimental data of visual neutral condition. FN-MDMC was 

inspired from the studies that showed a visual stimulus presented at center point benefits from 

faster retinal processing in comparison with stimuli presented in the left or right.  

Our modelling revealed that MDMC was not perfect with respect to the neutral conditions, 

because the MDMC did not consider the contribution of faster visual neutral conditions. The 

modeling results was thus improved by the FN-MDMC, which considers a faster residual 

processing for foveal visual stimuli. Our statistical comparison (in terms of BIC) between 

MDCM and FN-MDMC models also confirms the improvement of FN-MDMC. In general, 

both models retain our main modeling contribution that independent automatic activations 

from multiple task-irrelevant information may superimpose the controlled process to shape the 
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final decision process. MDMC framework helps us understanding the multisensory processing 

in conflict tasks and can be exploited for further studies in this area. 

Last but not least, we addressed cross-modal learning of visual and tactile modalities with a 

focus on novel sensory experiences from an artificial sensory device. Specifically, we 

investigated how symbolic information from a non invasive wearable vibrotactile system can 

be learned and possibly integrated within our visual perception. Shedding light on this question 

would help us to design artificial sensory devices appropriately, in a way that can optimally 

integrate to our sensory system. It would also reveal the potentials and limits of such non-

invasive sensory systems. We designed and implemented a custom vibrotactile belt which 

could generate novel and unexperienced tactile patterns. Our experiment had seven blocks of 

learning and evaluation phases. The main task was to learn the associations between symbolic 

tactile patterns and the moving direction of visual dot stimuli. In the evaluation phase, we 

manipulated the reliability of visual stimuli to have three reliability conditions: low, medium, 

and high. Our findings revealed that participants could learn and utilize novel tactile patterns 

in unisensory and multisensory perceptions. Surprisingly, they integrated the unexperienced 

tactile information with experienced visual information from the very beginning of the training. 

The integration behavior could be observed despite of the fact that the accuracy of tactile 

modality was initially lower than the visual modality. We even observed the selection of novel 

tactile information where the reliability of visual information was low. Without knowing the 

mechanism underlaying this perception behavior, it would be hard to generalize the findings of 

the study and reuse the obtained knowledge in further practical designs/theoretical studies. We 

therefore proposed two computational models that explained the observed perception behavior 

from two different aspects: decision integration, and multisensory integration perspectives. The 

proposed decision integration model predicts only based on first- and second-order perceptual 

decisions, whereas the sensory integration model considers a Bayesian integration of 

multisensory information, in which the sensory inputs integrate on a pre-decisional processing 

level. We considered a linear policy and a parametrized softmax policy for the decision 

integration model. The linear decision making policy reasonably predicted the visual-tactile 

perception only in the first several blocks of the experiment, but it underestimated the accuracy 

in the last blocks of the experiment. The parametrized softmax policy could fitted reasonably 

the experimental data in all training blocks because it has enough degree of freedom to consider 

a potential change in perception strategy during the learning. We hypothesized that the gradual 

alteration of the perception might represent a transition from a decision integration behavior 
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towards a sensory integration behavior. We investigated our hypothesis by modelling the 

experimental data with a Bayesian model of multisensory integration. Complementary to the 

linear decision fusion model, the Bayesian model reasonably predicted the experimental data 

only in the last several blocks of the experiment. The complementary predictions of the linear 

decision making policy and the Bayesian multisensory model supports our proposed 

hypothesis. Our numeric comparison of the models also confirmed the gradual change of 

behavior in the perception and integration over the course of training. Our findings also 

revealed that the confidence reports can be interpreted as a reasonable estimation of the 

decision values, and the proposed notion of confidence confusion matrix opens a novel horizon 

for future studies on decision making models with confidence ratings. 

Taking everything into account, we designed and conducted three studies to investigate 

interactions of visual and tactile information. We put a major focus on tactile information 

delivered by an artificial vibrotactile device, which was designed and implemented for this 

thesis. We covered both active and passive interactions of visual and tactile modalities and kept 

studies diverse with almost no overlap. Each of the studies addressed one aspect of visual-

tactile interactions and helped to understand the limits and potential of artificial devices. There 

are of course open points and potential future works which would improve our understanding 

of visual-tactile interactions as well as the cognitive aspects of artificial sensory devices.  
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